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ABSTRACT OF THE DISSERTATION 

Identification and Characterization of Targets of Metastasis in High-Grade Serous Ovarian 

Cancer 

by 

Emilee Nicole Kotnik 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2023 

Dr. Katherine C. Fuh. Chair 

 Dr. Jason Weber, Co-Chair 

High-Grade Serous Ovarian Cancer (HGSC) is a highly metastatic cancer with the 

majority of patients presenting in advanced stages. Currently there are limited targeted treatment 

options for patients, especially for women with high metastatic tumor burdens. In order to 

improve patient outcomes, we have aimed to identify and characterize novel targets of metastasis 

utilizing sequencing from patient tumors and a functional genomic screen.  

First, we identified genetic alterations of metastasis and short survival by characterizing 

the genomic and transcriptomic alterations of primary and metastatic tumors in HGSC patients 

from 23 short-term survivors (overall survival (OS) <3.5 years) and 16 long-term survivors (OS 

>5 years). We compared somatic mutations, copy number alternations, mutational burdens, 

differential expression, immune cell fractions, and gene fusion predictions between the primary 

and metastatic tumors of the ST and LT survival groups. From this project we identified a TP53 

R273H mutation, which may have a gain-of-function in ovarian cancer, suggested from evidence 

in triple negative breast cancer. We aimed to determine if this mutation can be targetable with 
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PARP inhibitor combination treatments and if this mutation is gain-of-function in ovarian cancer 

cell lines.  

Third, we performed a siRNA functional genomic screen on 719 kinases in an attachment 

assay utilizing a collagen fibronectin matrix plated with primary ovarian fibroblasts and GFP-

labeled ovarian cancer cell lines. From this initial screen, we have identified 4 candidate kinases 

to validate. Candidate kinases were validated by siRNA knock-down in ovarian cancer cell lines 

and assessed on their ability to migrate in a wound-healing assay.  



	
 

	 1 

Chapter 1: Introduction 
1.1 Ovarian Cancer Overview 

As of 2019, there were approximately 233,565 women in the United States living with ovarian 

cancer; less than half of those women will survive more than 5 years after their diagnosis.[1] Although 

ovarian cancer is less prevalent than other cancer types, like breast cancer, patients diagnosed with 

ovarian cancer are more likely to die of their disease. [2] An estimated 12,810 patients died from ovarian 

cancer in 2022. [1] High-Grade Serous Ovarian Cancer (HGSC) is the most lethal ovarian cancer 

histotype, the second most common gynecologic malignancy, and the most deadly. [3, 4]  Epithelial 

ovarian tumors are categorized into five classes: serous, endometrioid, mucinous, clear cell, and 

undifferentiated. [5, 6] Serous tumors are the most common and can be broken down further into low-

grade and high-grade tumors, depending on the appearance of their nuclei, mitosis, and molecular 

abnormalities. [7] 

1.2 Current HGSC Treatment and Patient Survival 

The first line of treatment for patients with HGSC is chemotherapy and an initial debulking 

surgery, where surgeons remove as much visible tumor as possible. Debulking surgery is usually then 

followed by chemotherapy. [8] In advanced cases, neoadjuvant chemotherapy is sometimes used to 

reduce tumor size prior to debulking surgery. [9-11] The typical treatment regimen is platinum 

chemotherapy with a taxane, usually these are carboplatin and paclitaxel, which are either given through 

an IV or by injecting directly into the peritoneal cavity. [8] Another type of treatment currently being used 

are PARP inhibitors (PARPi), which are inhibitors that target PARP proteins involved in detection and 

repair of single-strand DNA breaks. PARP inhibitors work effectively in patients that have mutations in 

the homologous recombination (HR) repair pathway genes, such as BRCA1 or BRCA2, because the 
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combination of a defective HR pathway and inhibiting single-strand break repair will lead to an 

accumulation of DNA damage that cannot be repaired and will result in cell death. [12-15] Clinical trials 

on the PARP inhibitors Olaparib and Niraparib have shown that combination therapy with these drugs can 

improve progression free survival in ovarian cancer patients with germline and somatic BRCA1/2 

mutations or tumors with homologous recombination deficiency (HRD). [12, 13] Therefore, PARP 

inhibitors are beneficial for patients with HRD defects, but that only accounts for up to half of patients 

with HGSC [12, 16]       

Over the past few decades, chemotherapy and combination treatments have been the standard of 

care, and the overall patient survival has not significantly improved. [17] This problem is partially due to 

recurrent chemoresistant tumors, which contributes the most to ovarian cancer deaths. [14] Patients are 

more likely to survive longer than 5 years after diagnosis if their cancer is caught early, however about 

80% of cases present at late stages of disease, when the tumor has already metastasized. [1, 18] Women 

who are diagnosed at more advanced stages have only a 29.2% chance of surviving longer than 5 years, 

hence the need for a better understanding of ovarian cancer metastasis and for genetic targets as 

biomarkers or for drug development in more aggressively metastatic tumors. [1]  

1.3 Ovarian Cancer Metastasis and Tumor Microenvironment 

HGSC tumors most commonly metastasize to other areas in the intrabdominal cavity, also known 

as the peritoneal cavity, such as the local reproductive organs, the sigmoid colon, and the omentum. [2] 

The omentum is a fat pad that drapes over the bowel and abdominal cavity and is particularly prone to 

tumor metastasis, where the tumor burden can lead to obstruction of the stomach and bowels. [2, 6] The 

ovarian cancer tumor microenvironment in the peritoneum is unique because its designed to surround and 

protect the abdominal organs, but is also composed of surface epithelium that is exposed within the 

cavity. [2, 6, 8] In the peritoneal cavity, the surface epithelium and serosal membrane, made up of 
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mesothelium, sits on top of a basement membrane, which is composed of collagen types I and IV, 

laminin, and fibronectin. [2, 6]  Metastasis in HGSC happens more readily compared to other cancers like 

colon or breast cancer and ovarian tumors usually only invade the surface mesothelial cell layers of the 

peritoneum. [2] 

In the process of metastasis, tumor cells must undergo epithelial-to-mesenchymal transition 

(EMT) to leave the primary tumor site. When cells begin EMT, they lose E-cadherin-mediated cell-cell 

interactions and then interact with the surrounding stromal cells to induce mesenchymal signaling to enact 

a cascade of events that lead to the cleavage of the E-cadherin ectodomain. [2] This cleavage event frees 

the cells to shed as single cells and spheroids into ascites, the surrounding fluid, where the cancer cells 

can easily follow the movement of the peritoneal fluid and come into contact with the peritoneum or 

omentum. [2, 3] It is still unknown if single cells detach from the primary site and clump with other single 

cells in the ascites before attaching to a secondary site, or if spheroids shed as a clump from the primary 

site to attach elsewhere to seed other tumors. Once split from the primary tumor, a tumor cell will attach 

to the mesothelial cell layer of peritoneal cavity. [2] Although these earlier stages of ovarian carcinoma 

metastasis have been well studied, less is known about the tumor cell behavior after they have implanted 

onto the mesothelium and invade into the stroma.   

1.4 Genetic and Genomic Landscape of HGSC Tumors 

In 2011, The Cancer Genome Atlas (TCGA) Research Network published one of the first large-

scale genomic characterizations of ovarian cancer, analyzing microarray and exome sequencing data from 

over 300 HGSC patient primary tumors. [19] They originally observed that 96% of their tumor cohort 

harbored TP53 mutations, but a rereview acknowledged that the wildtype TP53 cases were not typical of 

HGSC and concluded that 100% of HGSC cases have TP53 mutations. [19, 20]  
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TP53 is one of the most mutated tumor suppressor genes in cancer and in general lead to tumors 

with an aggressive phenotype that are more invasive, metastatic, proliferative, and poorly differentiated. 

[21-23] When mice are deficient in their version of this gene, Trp53, they develop spontaneous tumors. 

[24] Additionally, human germline mutations in TP53 leads to Li-Fraumeni syndrome where people have 

a high-risk of early-onset cancers. [25] A study that examined TP53 gain-of-function mutations in ovarian 

cancer saw correlations with more distant metastases and platinum treatment resistance. [26] However, it 

is still unclear if specific TP53 mutations are therapeutically targetable in HGSC. [23, 27, 28] TP53 

mutations are thought to arise early in HGSC development and it is debated if these mutations are a 

consequence or cause of high genomic instability in HGSC tumors. [19, 23] 

TCGA observed that HGSC tumors have high copy number alterations and a low prevalence of 

other recurrently mutated genes. [16] This observation is consistent with another study that compared 

oncogenic signatures among different cancer types in TCGA, which found that ovarian cancer had one of 

the most densely packed copy number alterations signatures, but a more moderate mutational burden. [29, 

30] Other significantly mutated genes in HGSC include BRCA1, BRCA2, CSMD3, NF1, CDK12, FAT3, 

GABRA6, and RB1. [19] Overall, about 20% of ovarian cancer tumors have a germline or somatic 

mutations in BRCA1 or BRCA2, and about 11% of patients show DNA methylation of BRCA1. [16, 17, 

31] Additionally, TCGA reported that about half of their cohort tumors had HRD. [16] Similar to the use 

of PARP inhibitors for patients with BRCA1/2 mutations, there are targeted therapies for both NF1 and 

RB1 mutations that have been used for other cancer types that frequently have mutations in these genes. 

[32] 

TCGA’s microarray clustering analysis found four expression subtypes, which they grouped as 

immunoreactive, differentiated, proliferative, and mesenchymal based on the gene contents of each 

cluster. [16] Prior to TCGA, other studies used GeneChip microarrays from normal ovary, primary and 

metastatic tumors of HGSC patients, with the goal of identifying potential biomarkers with gene 
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expression data. Both studies found a small number of differentially expressed genes between the primary 

and metastatic tumors, which they determined was evidence for high clonality between HGSC primary 

and metastatic tumors. [33, 34]  

Recent studies have attempted to identify structural genomic signatures and patterns in HGSC 

tumors. A Nature Genetics article, Macintrye et al., examined copy number signatures in ovarian cancer 

by analyzing shallow WGS of primary and relapsed samples from 132 patients for absolute copy number 

profiles. [17] They were able to identify seven copy number signatures and proposed mechanisms that 

caused each signature. Good survival correlated with signatures that had higher enrichment for HRD, both 

with and without BRCA1/2, while poor survival correlated with signatures which had higher mutations in 

NF1, the RAS signaling pathway, and CDK12 mutations with tandem duplications. [17] Similarly, 

another study examined WGS data from 80 primary HGSC tumors and matched normal samples; the 

authors found one genomic rearrangement signature that correlated with poor prognosis. This signature 

was characterized by medium to large deletions and tandem duplications. Additionally, tumors with a 

higher contribution of this signature demonstrated poor overall survival, which was confirmed in a TCGA 

validation set. [35] Interestingly, other studies have described ovarian, breast, and endometrial cancers as 

having a tandem duplicator phenotype (TDP), meaning that they detected tandem duplication 

configurations throughout the genomes of these gynecological tumors. [36-39] Further classifications of 

the TDP showed that the ovarian cancer cohort had the most enrichment for the TDP and more than 20% 

of the ovarian cancer tumors analyzed had tandem duplications that spanned about 11 kb in size. They 

also showed this span size correlated with TP53 and BRCA1 mutations, and that abrogating TP53 and 

BRCA1 in mice could drive the development of tumors with a similar TDP observed in human tumors. 

[39] These studies demonstrate the distinct structural changes that characterize ovarian cancer genomes, 

but they fail to examine the genomes of HGSC metastatic tumors.  
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In October of 2018, Yang et al. characterized clinical and genomic features that correlated with 

good and poor survival using whole-exome sequencing (WES) and RNA-seq data. [32] Their cohort of 

HGSC patients consisted of primary tumors from 20 long-term survivors that lived greater than 10 years 

after diagnosis and 21 short-term survivors that lived between 6 months to 2 years after diagnosis. They 

found clinical characteristics such as younger age at diagnosis, low CA125 levels in the blood after 

chemotherapy, and no residual disease post debulking surgery correlated with long-term survival. Long-

term survivor tumors had a higher somatic mutational burden, loss of heterozygosity, and biallelic 

inactivation of BRCA1 and BRCA2. They were also enriched for activated CD4+, CD8+ T cells, and 

effector memory CD4+ T cells. Short-term survivor tumors had more focal copy number gains of CCNE1 

and had lower HRD scores. [32] While this study does provide evidence that there are clinical and genetic 

characteristics of patients with different survival outcomes, it does not characterize metastatic tumors 

from HGSC patients and only focuses on the genetic characteristics from WES. An integrative study that 

examined the genomes of over 500 metastatic tumors from several major cancer types, but not including 

ovarian cancer, determined that profiling metastatic tumors can provide clinically relevant and 

dimensional views of the molecular landscape of metastatic cancer, thus stressing the need to profile more 

genomes from metastatic cancers. [34]  

The most recent study in HGSC patient survivorship was completed by the Bowtell Lab, where 

they examined the whole-genome sequencing, RNA-sequencing, and methylome profiling from primary 

tumors of 60 patients that lived more than 10 years compared to 66 patients with short or moderate 

survival. They found that multiple alterations in HDR and DNA repair related genes correlated with long 

survivorship. They also saw that markers of proliferation correlated with long survivorship, possibly 

because proliferation sensitizes the cells to chemotherapy treatment. The tumors they analyzed could be 

stratified by survival into genomic and immune cell signatures, thus providing evidence that survivorship 

does have distinct characteristics. [40] 
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1.5 Gene Fusions in Cancer 

The Yang et al. study analyzed gene fusion predictions from the RNA-sequencing transcripts in 

their patient cohort. They identified 4 recurrent gene fusions, one of which involved the genes ESR1 and 

CCDC170 that was recurrent in two short-term survivors. [32] The ESR1>CCDC170 gene fusion has also 

been characterized in aggressive estrogen-receptor positive breast cancers, along with other ESR1 gene 

fusions that have been shown to drive endocrine therapy resistance, EMT, and metastasis. [33, 41] Lei et 

al. demonstrated that CDK4/6 inhibitors were able to suppress growth that was driven by ESR1 gene 

fusions, indicating that gene fusion driven cancers are treatable. [41] Perhaps the most well-known 

example of treatable tumor gene fusions arose from the discovery of the Philadelphia Chromosome, a 

gene fusion between the genes BCR and ABL in chronic myeloid leukemias, whose discovery lead to the 

development of ABL inhibitors. [33] Additionally, the identification of EML4>ALK gene fusions in non-

small cell lung cancer paved the way for the development of ALK inhibitors. Finally, drugs targeting 

tumors of any cancer type with gene fusions involving NTRK genes have recently been approved by the 

FDA. [33, 42]  Studies have characterized gene fusions across cancer types, such as Gao et al. which 

analyzed over 9600 tumor samples from TCGA with multiple gene fusion tools. They identified over 

1000 fusions involving kinases with intact kinase domains and they suggested that gene fusions can drive 

the development of 16.5% cancer cases. They also found that many gene fusions involve genes that are 

already druggable and suggest that fusions could expand immunogenic peptide predictions and provide 

more targets for drugs and immunotherapies. [43] Gene fusions such as BCAM-AKT2 and 

CDKN2D>WDFY2 have been implicated in ovarian cancer previously, suggesting that gene fusion 

predictions might be targetable biomarkers for HGSC tumors. [44, 45] 
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1.6 Role of Kinases in Ovarian Cancer 

Kinases are a class of proteins that activate signal transduction, usually through phosphorylation, 

and induce many biological processes like proliferation, migration, mitosis, and apoptosis. [46] They have 

the potential to be therapeutically targetable because we can develop inhibitors that bind to their receptors 

and mimic their ligands to influence their functionality. Several kinases, such as tyrosine kinases and 

Aurora kinases, have previously been implicated in ovarian cancer and seem to influence tumor cell 

metastasis. [47, 48] For example, Aurora kinases are serin-threonine kinases that regulate the formation of 

the mitotic spindle and are highly expressed in ovarian cancers and other cancer types. Clinical trials on 

Aurora kinase inhibitors in combination with other treatments have shown to improve progression free 

survival. [49] The Fuh Lab has studied DDR2 and AXL and their role in metastasis and the use of drug 

inhibitors to target these kinases. [50-52] Other groups have shown that reducing the expression of DDR2 

in mouse cells can increase the production of CD8+ T cells and has been shown to increase sensitivity to 

PDL-1 inhibitors. [53] There are also several small molecule inhibitors that target DDR1 and DDR2 that 

are in development, again showing that these kinases are targetable. [54] AXL is another tyrosine kinase 

has been shown to be highly expressed in ovarian cancer and particularly in metastatic tumors. Genetic 

inhibition of AXL in vivo prevented the development of further metastatic tumors and decreased invasion. 

[51] Therefore, there is evidence that AXL inhibition and therapy can prevent metastatic tumor 

progression.  

1.7 Ovarian Cancer Immune Cell Landscape  

The immune cells in the tumor microenvironment play an important role in how HGSC develops, 

metastases, and becomes chemoresistant. Many groups have characterized the immune cell landscapes of 

HGSC with a variety of methods including immunohistochemistry, RNA sequencing, and single-cell 

sequencing of patient tumors, blood, and ascites. This work has established that lymphocytes, 
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macrophages, and neutrophils play a large role in the cell-to-cell interactions between cancer cells and the 

tumor microenvironment. In general, these immune cells form a network with cytokines and chemokines 

that surrounds tumor cells to create local immunosuppression. As a consequence, those cancer cells 

survive and become metastatic. [55]  

Recent ovarian cancer research has drawn attention to tumor infiltrating lymphocytes (TILs). [56, 

57] TILs consist of white blood cells, like T-cells, B-cells, macrophages, and natural killer cells, that have 

localized into the tumor stroma. [57] Meta analyses and primary studies have found that TILs, especially 

CD8+ TILs, are a prognostic factor for survival in ovarian cancer. One meta-analysis on TCGA and the 

Gene Expression Omnibus (GEO) database of ovarian tumor RNA-seq found that patients with the best 

outcomes had a tumor microenvironment high in macrophage M1 and T cell follicular helper cells. They 

determined that the follicular helper T cells, mast cell activation, and M1 and M2 macrophages influence 

the patient’s immunotherapy. [58] Meanwhile, regulatory T-Cells (Tregs) have been associated with poor 

outcomes and more advanced stages and grades of disease [59-61], possibly because their presence in the 

tumor microenvironment decreases the immune system’s ability to attack cancer cells. [57, 62] 

Tumor-associated macrophages (TAMs) are the major immune cell population for primary ovarian 

tumors and ascites. [55] These TAMs mostly take on an M2-like phenotype that support the HGSC tumor 

growth, metastasis, and resistance to chemotherapy. They encourage tumor growth at several stages of 

cancer development including immune escape of tumor cells, cell invasion, migration, and angiogenesis. 

The M2-like TAMs also correlate with poor prognoses in patient survival. [55, 63] Several groups have 

been working to develop and test therapies to target TAMs by blocking the migration and recruitment of 

the macrophages, re-polarizing the macrophages from M2 to M1-like phenotype, or by blocking the 

immune checkpoint PD-L and PD-L1. Some of these anti-TAMs therapies are in clinical trials. [55] 

TAMs are adaptable to changes in the tumor microenvironment, and there are complex immune cell 

interactions occurring that we still do not fully understand. [55, 64-67] 
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Most recently, Izar et al. performed single-cell sequencing on 22 ascites samples from 11 HGSC 

patients for a total of 35,957 cell profiles. A highlight from this study is their comparison between the 

cluster expression of their cohort to the four TCGA expression subtypes: differentiated proliferative, 

mesenchymal, and immunoreactive. They observed that the mesenchymal and immunoreactive expression 

signatures show low expression in cancer cell clusters but were highly expressed in the macrophage and 

cancer-associated fibroblast (CAF) cell clusters. This correlation suggests that signatures derived from 

bulk RNA sequencing may reflect impure sampling of malignant cells and may actually reflect the 

composition of immune cells and CAFs in the tumor microenvironment. They also provided extensive 

evidence that the JAK/STAT pathway would be targetable in HGSC. They then performed a drug screen 

and identified that JSI-124 inhibits the JAK/STAT pathway to effectively inhibit OVCAR4 cell viability. 

Therefore, this group demonstrates that single-cell sequencing of cancer cells and immune cell 

populations from HGSC tumor samples and ascites can provide insights into the tumor microenvironment 

and discover treatments that can be utilized in HGSC. [68] 

1.8 Thesis Rationale and Significance  

HGSC is a rapidly evolving cancer that easily metastasizes, which leads to a high proportion of 

diagnoses being made at advanced stages that are more difficult to treat. Characterization studies of 

metastases, like Robinson et al. [34], have stressed the necessity to examine metastatic tumors to find 

genetic drivers of cancer. Yang et al. [32] has demonstrated that genomic differences between long-term 

and short-term survivors exist among HGSC primary tumors. Most studies, including Yang et al. [32], 

Adib et al. [69], and Patch et al. [31], thus far have yet to identify mechanisms that drive ovarian cancer 

metastasis and are predictive of poor prognosis outcomes. Therefore, understanding the genetic variation 

in HGSC metastases that exist between patients with different prognoses can better inform treatments and 

may identify new targets for drug development. In order to improve patient outcomes, there is also a need 
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to identify actionable targets that influence process of metastasis, so we can develop drugs that not only 

target metastatic tumors but can also serve as maintenance therapies to help prevent further metastasis and 

mediate chemoresistance.  

I predict that there are distinct genetic characteristics that distinguish between primary and 

metastatic tumors of HGSC patients with different prognoses. I expect to identify recurrently mutated 

genes, mutations, gene fusions, copy altered genes, and/or differentially expressed gene in metastatic 

tumors and the tumors of HGSC patients with short survival. I also hypothesize that there are genes 

important to promoting metastasis that will be discovered using genetic screens and will significantly 

promote or suppress tumor cell attachment and invasion within the context of the tumor 

microenvironment. These revelations will lead to a deeper understanding of the mechanisms behind 

HGSC metastasis and have the potential to identify targets that can be further studied for treatment 

development.  
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2.1 Abstract 

High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and the 

majority of cases present with metastasis and late stage disease.  Over the last few decades, the overall 

survival for patients has not significantly improved and there are limited targeted treatment options. We 

aimed to better characterize the distinctions between primary and metastatic tumors based on short- or 

long-term survival. We characterized 39 matched primary and metastatic tumors by whole exome and 
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RNA sequencing. Of these, 23 were short-term (ST) survivors (overall survival (OS) <3.5 years) and 16 

were long-term (LT) survivors (OS >5 years). We compared somatic mutations, copy number alterations, 

mutational burden, differential gene expression, immune cell infiltration, and gene fusion predictions 

between the primary and metastatic tumors and between ST and LT survivor cohorts.  

We identified more distinct genomic and transcriptomic alterations between ST and LT survivors. 

Overall, there were few differences in RNA expression between paired primary and metastatic tumors, but 

significant differences between the transcriptomes of LT and ST survivors in both their primary and 

metastatic tumors. We identified gene fusions in ST Survivors involving ESR1 and collagen genes. 

Additionally, there were DE lncRNAs between ST and LT survivors. 

2.2 Introduction 

High-Grade Serous Cancer (HGSC) of ovary, fallopian tube, or peritoneum is the most lethal 

ovarian cancer histotype and the second most common gynecologic malignancy [1, 2]. Over the past few 

decades, chemotherapy has been the standard of care, yet overall survival (OS) has not significantly 

improved [3, 4]. PARP inhibitors, which target base-excision DNA repair mechanisms and cause genetic 

lethality in tumors of patients harboring BRCA1 or BRCA2 mutations or homologous recombination 

deficiencies (HRD), can be used as maintenance therapies, but are only applicable for ~ 50% of HGSC 

patients [5, 6]. The majority of cases, about 80%, present with late stage disease, when the tumor has 

already metastasized [3, 4, 7]. These patients have only a 29.2% chance of surviving longer than 5 years 

[4]. Therefore, to improve patient survival, we sought to better characterize the genomic and 

transcriptomic landscapes of matched primary and metastatic ovarian cancers and to identify novel targets 

for drug development, especially in a more aggressive metastatic disease setting. 

Large-scale tumor characterizations, by consortia such as The Cancer Genome Atlas (TCGA), 

have established that primary HGSC tumors harbor ubiquitous TP53 mutations and copy number 
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alterations, and a low prevalence of other recurrently mutated genes [8]. Prior genomic studies of ovarian 

cancers have only included large numbers of primary tumors rather than comparing matched primary and 

metastatic disease in the context of outcomes. A recent study, Yang et al., characterized clinical and 

genomic features from HGSC primary tumors that correlated with short-term (ST, OS < 2 years) and 

long-term (LT, OS > 10 years) survival [9]. While this study does provide evidence that there are clinical 

and genomic characteristics unique to patient survival in primary tumors, metastatic tumors were not 

included. Study design is further nuanced by the context of survival duration, since exceptional survivors 

(>10 years of survival), have a high prevalence of BRCA mutations, and are known to respond well to 

standard therapy [10]. One study has examined genomic and transcriptomic sequencing from matched 

primary and metastatic tumors in the context of response to chemotherapy or surgical resection [11]. 

Another study identified a transcriptome signature that distinguished between primary and metastatic 

tumors but did not relate this to survival [12]. 

Here, we sought to determine whether there are unique features in the genomes and transcriptomes 

of metastatic tumors from short-term survivors when compared to their matched primary tumors and/or to 

primary/metastasis paired tumors from long-term survivors. Our cohort design examines these differences 

between tumors from patients within the median survival time for ovarian cancer [13]. In this context, we 

compared somatic variants, copy number alterations, mutational burden, differential expression, immune 

cell infiltrates, and gene fusion predictions between chemo naïve primary and metastatic tumors from 23 

HGSC short-term (ST, OS < 3.5 years) survivors and 16 HGSC long-term (LT, OS >5 years) survivors 

using whole exome sequencing (WES) and RNA sequencing (RNA-seq). 
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2.3 Materials and Methods 
2.3.1 Patient cohort sample criteria  

We collected normal tissue, primary tumor, and metastatic tumor samples from a total of 39 patients 

diagnosed with FIGO stage III or higher HGSC. Normal tissue samples consisted of adjacent non-

malignant omentum or peritoneum. All tumors were collected during primary cytoreductive surgery, prior 

to any chemotherapy treatment, and were stored as either fresh frozen (FF) or formalin-fixed paraffin-

embedded (FFPE). These patients were separated into two groups, based on their overall survival. Patients 

who lived less than 3.5 years after their diagnosis were considered short-term (ST) survivors and patients 

who lived more than 5 years after diagnosis were considered long-term (LT) survivors (Table 1). Other 

clinical characteristics of patients are shown in Table 1. All patients received standard regimens of 

carboplatin and paclitaxel following cytoreductive surgery. More LT survivors received intraperitoneal 

(IP) chemotherapy than ST survivors (1 ST survivors, 5 LT survivors, p-value=0.042), Otherwise there 

were no differences in the use of bevacizumab or PARP inhibitor treatments between the two cohorts.  All 

23 ST patients and 12 LT patients had matched DNA and RNA extracted and sequenced.  An additional 4 

LT patients had tumor sequencing performed: Patients 031 and 035 had matched primary and metastatic 

tumors DNA sequenced and Patients 032 and 040 only had RNA-sequencing from their matched primary 

and metastatic tumor tissue.  

2.3.2 Exome and RNA sequencing 

All tumors were examined by a pathologist to determine tumor cellularity and necrosis and only samples 

of 60% tumor cellularity or higher with <20% necrosis were sequenced. DNA and RNA were extracted 

from FF or FFPE tissues using Qiagen’s DNeasy Blood & Tissue Kit and RNeasy kit.  Whole exome 

sequencing of DNA from matched primary tumor, metastatic tumors, and normal tissue samples was 

completed for 39 patients with the NimbleGen VCRome exome capture kit (NimbleGen Roche) 
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according to the manufacturer’s protocol. Paired-end Illumina 151 bp reads were generated for normal 

samples to a minimum of depth of 65x, while tumor samples were sequenced to a minimum of 139x, with 

the average coverage of ~300x. A coverage table provides per-sample coverage details (Supplementary 

Table 1). RNA sequencing of primary and metastatic tumor samples was performed using the Illumina 

TruSeq stranded Total RNA library kit following the Manufacturer-recommended protocol. Paired-end 

Illumina sequencing of 151 bp read length yielded an average of approximately 125 million paired reads 

per sample and an average of approximately 134 million reads mapped per sample. Quality Control 

metrics for the RNA-seq samples were generated using MultiQC and are reported in Supplementary File 2 

[14]. 

2.3.3 Variant calling and genomic analysis  

Exome sequencing data were aligned to human reference build GRCh37 using BWA-mem and 

deduplicated with Picard version 1.113 [15, 16]. Somatic variants were called from combined data using 

the Genome Modeling System pipeline [17, 18]. In brief, variants were called from the union of 4 callers 

which included Samtools version r932, Somatic Sniper version 1.0.4, VarScan version 2.3.6, Strelka 

version 1.0.11, and Mutect v1.1.4 [17, 19-23]. Indels were detected from the union of 4 callers; GATK 

somatic-indel version 5336, Pindel version 0.5, VarScan version 2.3.6, and Strelka version 1.0.11 [17, 20, 

21, 24, 25]. Further variant filtering was applied as described in Ghobadi et al. [17]. Briefly, SNVs and 

indels were discarded if they had below 20x coverage, appeared as artifacts in a panel of 905 normal 

exomes, or exceeded 0.1% frequency in the 1000 genomes or NHLBI exome sequencing projects [26, 

27]. A Bayesian classifier (https://github.com/genome/genome/blob/master/lib/perl/Genome/ 

Model/Tools/Validation/IdentifyOutliers.pm) was also applied and variants that classified as somatic with 

a binominal log-likelihood of at least 5 were retained [17]. All called variants compared in this study are 

provided in Supplementary Table 2. Mutational burden was calculated as the number of variants called 

per megabase for all variants that passed the QC filtering. The waterfall plot (Figure 1A-B) depicting 
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frequently mutated genes from TCGA-OV was generated using GenVisR [8, 28]. Mutational clinical 

significance for somatic and germline BRCA mutations was determined from ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) (Tables 3-5) [29]. CLOVAR signatures were calculated 

according to parameters defined in Verhaak et al. [30]. Copy-altered segments were identified from 

VarScan (Supplementary Figure 5) [21]. Significant copy-altered segments were identified for all tumors, 

all tumors from ST survivors, all tumors from LT survivors, metastatic tumors, primary tumors, and only 

the metastatic tumors of ST survivors using the GISTIC 2.0 version 6.15.28 Module on the AWS 

GenePattern cloud (https://cloud.genepattern.org/gp). Default parameters and reference genome 

Human_Hg19.mat were used to run GISTIC 2.0 analyses [31]. We used the wide peak region analyses 

from GISTIC 2.0 to calculate the total number of genes amplified or deleted within those regions. The 

correlation between CNA and RNA-seq expression was completed using the thresholded CNA values 

GISTIC 2.0 calculated based on each sample’s segment files [31, 32]. The violin plot was created by 

binning all CNA threshold values from every gene for every sample and plotting that with their 

corresponding log2(FPKM) values (Supplementary Figure 5E). 

2.3.4 Differential expression analysis  

Normalization and quality control: Transcript read counts were obtained using Kallisto version: v0.43.1 

and gene-level read counts were calculated using GRCh37 in Ensembl [33]. Quality control and 

normalization of the raw count data were performed using the R/Bioconductor package edgeR version 

3.28 [34]. For our comparison of LT survivor samples to ST survivor samples, we removed genes with 

less than 1 Count Per Million (CPM) mapped reads in at least half of the samples to ensure that a gene 

was retained if expressed in only one of the two groups. For our comparison of primary to metastatic 

tumors, genes with less than 1 CPM mapped reads in at least half the samples were removed. 

Normalization factors were calculated using the Trimmed Mean of M-values (TMM) normalization 

method in edgeR to account for compositional biases in libraries between each pair of samples.  



	
 

	 24 

Removal of batch effects: Due to technical artifacts introduced by the use of FFPE that can affect gene 

expression analyses, we performed batch effect correction prior to differential expression analysis for the 

comparison of LT to ST survival samples [35, 36]. We used the SVA function of the R/Bioconductor 

package SVA version 3.34.0 to estimate and remove surrogate variables for unwanted and unknown batch 

effects and other sources of variation present in the data [37]. The SVA function estimated surrogate 

variables for each subset analysis, which was adjusted for within the statistical model applied in the 

edgeR package in downstream analyses of differential gene expression. After batch effect correction, 

samples were analyzed by a Principal Component Analysis (PCA) using the R function “dist” on 

regularized log-transformed (rlog) data to calculate the Euclidian distance between samples. Plotting of 

the first (PC1) and second (PC2) principal components revealed that expression values from the same 

patient are more related to one another than between groups (Supplementary Figure 3). We also observed 

4 potential outlier samples, which were removed from downstream analyses because of their distance 

from the other samples in the PCA plot after normalizing and batch correcting transcript counts. These 4 

removed samples are highlighted in Supplementary Figure 3A and were all collected within the same 

year, but their exclusion could mean we are missing out on some biological features of these tumor 

samples.  

Differential gene expression (DGE) analysis: DGE analysis was performed using edgeR version 3.28.0, 

which implements a negative-binomial general linear model [34]. We performed 4 comparisons: ST 

survival samples versus LT survival samples for all tumors in the study; ST survival versus LT survival 

among metastatic tumors; ST survival versus LT survival among primary tumors; and primary tumors 

versus their matched metastatic tumor.  The surrogate variables estimated with SVA were included in the 

model used for the LT versus ST survival comparison. To normalize gene-level variance, the biological 

coefficient of variation (BCV) was calculated using Cox-Reid dispersion for negative binomial general 

linear models. The p-values of differential expression tests were corrected for multiple-hypothesis testing 
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using Benjamini-Hochberg false discovery rate (FDR) correction. The threshold for significance was set 

to FDR Q-value < 0.01. We further curated our differentially expressed genes (DEGs) by limiting to 

protein coding genes that were listed in Ensembl genes 100 Human genes (GRCh38.p13) protein_coding 

transcript type on BioMart. All DEGs discussed in this paper are listed in Supplementary  File 1. Pathway 

analysis was applied to the DEG and gene fusion gene lists using the PANTHER classification system 

16.0 (http://pantherdb.org/), with the organisms set as ‘Homo sapiens’ and performing a statistical 

overrepresentation test using Fisher’s Exact test and calculating a False Discovery Rate [38]. We used all 

Gene Ontology (GO) terms (Biological Processes, Molecular Function, and Cellular Components), 

PANTHER pathways, and Reactome pathways annotation sets [39-41]. We used DAVID to identify 

enrichment for KEGG and Biocarta pathways. [42, 43] 

2.3.5 Immune cell abundance estimates 

We used Cibersort (https://cibersort.stanford.edu/) to estimate the abundance of infiltrating immune cell 

types using our tumor RNA-seq data [44]. We generated a mixture file for our cohort of tumor samples 

based on the gene abundance counts generated from the RNA-seq reads using Kallisto [33]. We used the 

LM22 gene signature, which calculated immune cell fractions for 22 immune cell types, and ran our 

Cibersort analysis with 500 permutations under the relative mode. 

2.3.6 Gene fusion predictions 

Gene fusion predictions for each tumor sample were produced using INTEGRATE v0.2.6 to analyze the 

tumor RNA-sequencing data [45]. Full-length raw reads and a set of reads trimmed to remove potentially 

low-quality bases were each aligned to human reference genome GRCh38 (r90) using STAR v2.5.3a with 

a minimum chimeric segment length of 18 and chimeric alignments output to a separate SAM file 

[46]. The chimeric alignments were then used as inputs for INTEGRATE fusion with default parameters 

for fusion discovery with tumor RNA-seq only.  Fusion predictions from the full and trimmed reads were 
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then merged and manually reviewed to ensure all fusion calls were valid. Since normalization of FFPE 

and FF tumor samples is more challenging for gene fusions, we characterized the predicted gene fusions 

as independent events regardless of sample preparation. 

2.4 Results 
2.4.1 Characterization of Genomic Landscape 

We compared somatic variants, copy number alterations, and mutational burden between the 

primary and metastatic tumors of the ST and LT survival groups. Our cohort of patient tumors exhibited 

characteristics typical of those seen in previously sequenced HGSC tumors, such as nearly ubiquitous 

TP53 mutations, high numbers of copy alterations, and a low number of recurrently mutated genes 

(Figure 1A-B). As was found in the Yang et al study, our cohort of LT survivors also exhibited a 

significantly greater mutational burden than the ST survivors (Mann-Whitney-Wilcoxon Test stat (MW) 

statistic = 611, p-value = 5.1e-6) [9]. There was no statistical difference between the mutational burden of 

paired primary and metastatic tumors (MW stat = 611, p-value = 0.4299) (Figure 2C).  

Interestingly, in comparison to recurrently mutated genes identified in the TCGA cohort, we also 

observed that RB1 mutations were found only in primary and metastatic tumors of LT survivors. This is a 

finding consistent with studies analyzing exceptional HGSC survivors [8, 47]. CDK12 was only mutated 

in the LT survivors. We confirmed previously published findings that tumors of LT survivors were more 

likely to have BRCA1 alterations and copy-altered segments when compared to ST survivors [9]. In total, 

we identified an average of 723 somatic mutations per LT survivor (10,124 SNVs total / 14 patients) and 

an average of 591 somatic mutations per ST survivor (13,599 SNVs total/ 23 patients). Four patients 

exhibited somatic BRCA1 mutations with VAF >30 (Table 1).  Six patients exhibited germline BRCA1 

mutations and 1 LT survivor had a benign germline BRCA2 mutation (VAF >30), all of which had mixed 

ClinVar-based clinical interpretations of pathogenic significance (Tables 4-5) [29]. 
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We applied “Classification of Ovarian Cancer” (CLOVAR) signatures to our data set and 

observed no statistically significant differences based on survivorship or tumor type among the signatures. 

The most prevalent signatures among our cohort were Mesenchymal and Differentiated (Figure 1B) [30]. 

To compare the types of variants found in each of the tumors, we calculated the percentage of total 

variants identified in each patient that can be contextualized by the human cancer mutational signatures 

[48] [49]. In our cohort, the most common signatures were for 5-methylcytosine deamination, mismatch 

repair, and double-strand break repair, along with a large number of mutations contributing to the 

unknown signature. There were no statistically significant differences between the signature percentages 

when comparing matched primary and metastatic tumors or ST and LT survivors. However, there is a 

higher percentage contribution to the mismatch repair signature in LT survivors compared to ST 

survivors, although not statistically significant (Supplementary Figure 1). We also calculated percentages 

of the mutational nucleotide transitions and transversions. Transitions from C>T account for the largest 

percentage of total mutations in most of the tumor samples. The percent of total mutation ratios remain 

relatively the same between the primary and metastatic tumors in the majority of patients, but large shifts 

in the mutational transitions and transversions can be seen in Patients 15, 20, 30 and 34. There were no 

statistically significant differences when comparing the mutational percentages of transitions and 

transversions between ST and LT survivors and primary and metastatic tumors (Supplementary Figure 2). 

2.4.2 ST survivors exhibited a higher percentage of shared variants 

For each patient, we calculated the percentage of called variants that were unique to the primary or 

to the metastatic tumor, or were shared between the two tumors.  We observed that there were higher 

percentages of shared variants between the primary and metastatic tumors for ST survivors compared to 

LT survivors, although this was not statistically significant (MW statistic = 117.0, p-value = 0.0866) 

(Figure 2A-B). Of note, all of our LT survivor samples were FFPE whereas the ST survivors included FF 

specimens. There was no FFPE/FF specific variant filtering applied in our variant calling pipeline, but 
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each sample did undergo quality control and log likelihood ratio (LLR) filtering 

(https://github.com/genome/docker-somatic-llr-filter/blob/master/somatic_llr_filter.py). Thus, the 

differences seen in the number of shared variants of the ST and LT cohorts could be affected by FFPE 

artifacts from sample preparation.  

Within our cohort, all but 2 patients had tumors that harbored TP53 variants (Table 2). Of the 35 

patients that carried TP53 mutations, all but one patient shared the same TP53 mutation between their 

primary and metastatic tumor and 4 patients carried multiple TP53 mutations. The majority of TP53 

mutations were missense or frame-shift deletions within the DNA-binding domain. One known hotspot 

mutation, R273H, was present in 3 patients, 2 of which were ST survivors. The 2 ST survivors that 

harbored this hotspot mutation had an overall survival ranging between 17-19.6 months, whereas the LT 

survivor lived more than 147 months after their diagnosis. In the TCGA-OV patient cohort, 2% (11/489) 

of tumor samples also had the TP53 R273H mutation, compared to the 8% (3/37) in our cohort [8, 50, 

51]. 

2.4.3 LT survivors exhibited more copy number alterations 

Concordant with findings from the TCGA-OV project, copy number alterations (CNAs) were 

abundant in these data, with CNAs observed in every sample, and the number of copy-altered segments 

ranged from 33 to 739, with segment lengths ranging from 3,636 to 229,754,969 nucleotides. The average 

segment length was 3,997,903 nucleotides (Supplementary Figure 5A-B) [8]. The LT survivors had a 

greater proportion of copy-altered segments (p = .03, 95% CI 0.004 to 0.11), driven by a greater 

proportion of amplifications (p = .01, 95%CI 0.01-0.1). There was no significant difference between 

primary tumor samples and metastases, nor were there significant differences in mean estimated ploidy 

between groups. 
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We identified recurrent CNAs in our cohort overall and subsets of the ST survivors, LT survivors, 

primary tumors, and metastatic tumors (Supplementary Figure 5C-D) [31]. Overall, our cohort exhibited a 

total of 254 recurrent copy-altered segments, including 85 amplified segments and 169 deleted segments 

with a 90% confidence interval. We identified 2333 genes within the amplified peaks and 4904 genes 

within the deleted segments. Region 20q13.12, previously identified in other ovarian tumors, was 

amplified in our cohort, along with other genes that have previously found amplified in ovarian cancer 

such as CCNE1, ERBB2, RSF1 and deleted genes like BRCA1 [8, 52]. Among the cohort and subset 

analyses, there were more recurrently deleted segments than amplified segments and regions within 8q, 

3q, and 19q were among the most recurrently amplified segments while peaks on 9q, 15q, 16q, 17q were 

among the most recurrently deleted segments. We correlated the CNA and our RNA-seq data for all 

samples in our cohort, utilizing the threshold values GISTIC2.0 calculates with their corresponding RNA-

seq FPKM values for the genes involved in altered regions (Supplementary Figure 5E). The relationship 

between copy number and expression is not simple, but the medians of the data suggest that more 

amplified genes trend toward having higher RNA expression.  

Our GISTIC2.0 analysis results comparing ST to LT survivors revealed that there were more 

recurrent copy-altered segments among the ST survivors (ST=79 amplified, 198 deleted; LT= 60 

amplified, 101 deleted). Comparing the primary and metastatic tumor analyses showed that the metastatic 

tumors had more recurrent segments (primary= 39 amplified, 135 deleted; met= 63 amplified, 157 

deleted). Consistent with published data [9], CCNE1 was amplified in ST survivors, primary tumors, and 

metastatic tumors sample subsets, but not among the LT survivor samples. Both the primary tumor and 

metastatic tumor subsets were significantly amplified at 19q12 and at 20q13.12, while the ST subset had 

19q12 amplified and the LT subset had 20q13.12 significantly amplified.  
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2.4.4 Differentially expressed genes correlate with survival 

We calculated differential expression (DE) of genes between the ST and LT survivors in both 

primary and metastatic tumors. Overall, there were distinct transcriptomes that correlated with ST or LT 

survival, both within the tumor cohorts separately and when combining all patients regardless of tumor 

type (Figure 3A-B).  

Within the metastatic tumor cohort, there were 4792 DE genes (DEGs) between ST and LT 

survivors, with an FDR <0.01, after selecting for only protein-coding genes. Genes such as SZRD1 and 

ERV3-1 were upregulated in the metastatic tumors of ST survivors, as previously reported in other solid 

cancer types such as cervical and colorectal cancer [53, 54]. 

In order to identify DEGs that were specifically associated with survival in the metastatic tumors, 

we filtered out any genes that were also differentially expressed between the ST and LT survivors’ 

primary tumors. This revealed 325 genes only DE in metastatic tumors, with 295 of these (90.7%) 

downregulated in ST survivors (Figure 3A). The DEGs unique to metastatic tumors of ST survivors are 

enriched for several Biological Processes GO terms with an FDR <0.05, such as “regulation of cellular 

biosynthetic process” (Supplementary Figure 4A) [38-41]. A GO enrichment analysis on the 30 

upregulated DEGs unique to metastatic tumors showed enrichment with an FDR <0.05 for several 

Molecular Function GO terms associated with DNA binding and transcriptional activity (Figure 3C) [38, 

40, 41]. This enrichment is most likely due to the 13/30 of those upregulated DEGs that are in the zinc 

finger family, and many of which have previously been implicated in cancer. We also used DAVID to 

find enrichment of the KEGG and Biocarta pathways within our DEGs, and although there were no 

significantly enriched Biocarta terms, there were 9 KEGG pathways enriched. Some of these included 

“Adherens junction” and “protein processing in endoplasmic reticulum”. (Supplementary Figure 4C) Of 

note, FOXL2NB and PTCH2 have correlated with poor survival in other cancer types [55, 56]. There is 

evidence that OGN plays a role in EMT, and PRDX1 has been studied as prognostic marker in lung cancer 
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[57, 58]. We calculated DE between genes of ST and LT survivors within the primary tumors. We found 

that there was a total of 4248 DE genes with FDR <0.01. After filtering for protein-coding genes, we 

narrowed our list of DE genes to 3694, with 502 DEGs that were specifically differentially expressed only 

in primary tumors (Figure 3B).  

When all tumors are included in the DE analysis, there were a total of 7304 protein-coding DEGs 

between ST and LT survivors (Supplementary Table 1). The top 50 upregulated and top 50 downregulated 

DEGs are included in Supplementary Figure 4B. Additionally, we calculated DEGs between primary and 

metastatic tumors and identified only 4 DEGs with an FDR <0.01. When we lower the FDR filter to <0.1, 

the number of DEGs increased to 15. Of those, 5 genes (WIPF3, STAR, SCUBE1, PEG3, CNTNAP2) 

were also found in the top 100 DEGs identified by Sallinen et al, which compared DEGs between 10 

matched primary and metastatic ovarian tumors having an FDR <0.1 [12]. 

2.4.5 Differentially expressed lncRNAs correlate with survival 

From the RNA-sequencing data, we identified several long-noncoding RNA transcripts (lncRNAs) 

that were among the top differentially expressed transcripts between the ST and LT survivors in both 

metastatic and primary tumors. Within the metastatic tumors, we identified 11 lncRNAs that were 

differentially expressed and all but one was upregulated in ST survivors (Figure 3D). This set of lncRNAs 

included ARRDC1-AS1, which was shown to be a part of a potential lncRNA prognostic signature in 

breast cancer [59]. Among the primary tumors, we identified 36 lncRNAs of which 35 were upregulated 

in ST survivors. Of these 36 lncRNAs, 9 lncRNAs (25%), (FAR2P1, ARRDC1-AS1, MIRLET7BHG, 

OVCH1-AS1, C11orf72, FLJ22447, LACTB2-AS1, ALOX12-AS1, and C5orf56) overlapped with the 

lncRNAs identified in our metastatic tumor cohort. 
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2.4.6 Tumors from ST survivors harbored recurrent gene fusion predictions 

A total of 1,164 gene fusions were predicted among our tumor sample cohort, 35 of which were 

recurrent (seen in at least 2 samples) and unique to ST survivors (Table 6). The higher number of gene 

fusions identified in ST survivors was due to a higher level of quality in the RNA-sequencing since this 

subgroup included FF tumor samples, whereas all LT survivors were FFPE samples.  

INTEGRATE detected several ESR1 gene fusions in our tumor cohort, which have previously 

been implicated in breast and ovarian cancer [9, 60]. In particular, the ESR1>CCDC170 recurrent gene 

fusion identified by Yang et al. was present in 2 of our tumor samples, 1 ST primary tumor (5 reads) and 

1 LT metastatic tumor (7 reads). Interestingly, we also noticed that a total of 33 gene fusions involved 

collagen genes, 32 of which were identified in ST survivors, 21 were in metastatic tumors, and 20 are in-

frame fusions (Table 7). Pathway analysis on the genes involved in recurrent gene fusions in our cohort 

were significantly enriched for terms related to “collagen chain trimerization” and “Collagen degradation” 

in the PANTHER reactome set, which is interesting given the known role of collagen in the ovarian 

cancer tumor microenvironment [38-41]. 

 

2.4.7 Immune cell populations abundances 

We used the program Cibersort to estimate the fraction of immune cell types in our tumor samples 

(Figure 4A). The immune cell groups CD4 T-Cells, macrophages, and monocytes had the highest 

fractions in many of the tumor samples. There was much variability in immune cell type fractions across 

patients, but there were few significant differences in immune cell fractions between primary or 

metastatic tumors or between ST and LT survivors among the 22 immune cell types (Supplementary 

Figure 6). Of note, CD4 naïve T-cells (higher fractions in ST), follicular helper T-cells (higher fractions in 

LT), regulatory T-cells (higher fractions in LT), and activated dendritic cells (higher fractions in LT) were 
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significantly different between ST and LT survivors with Mann-Whitney statistical p-values <0.05. 

Between the primary and metastatic tumors, the CD8 T-cells, activated CD4 memory T-cells, and 

neutrophils were significantly higher in metastatic tumors based on Wilcoxon statistical p-values <0.05. A 

chart of the statistical differences between all of the subsets for the 22 immune cell fractions is in 

Supplementary Figure 6W.   

Lee et al. found significant abundance differences of M2 macrophages and monocytes between 

their R0 and NACT patient groups, and a significant difference between the abundance of resting CD4 

memory T cells between primary and metastatic tumors, but these patterns did not appear in our dataset 

[12]. Thorsson et al. performed immunogenomic analysis across cancer types in TCGA and identified six 

immune subtypes [61]. In their analysis, the ovarian cancer cohort correlated the most with their C2 IFN-y 

dominant signature, which is defined by having high M1 and M2 macrophage polarization and strong 

CD8 signal. This is consistent with the higher fraction of macrophages we found in our Cibersort analysis. 

The ovarian cohort also had representation of their C1 wound healing and C4 lymphocyte depleted 

signatures, but did not have representation for their C3 inflammatory, C5 immunologically quiet, or C6 

TGF-B Dominant signatures.  The lack of these signatures is consistent with our cohort’s low immune 

cell fractions for several lymphocytes and the variability between patient samples. Since our cohort 

included metastatic tumors that are not represented in TCGA, perhaps a more specific immunogenomic 

analysis with more metastatic tumors for ovarian cancer is necessary to better understand the immune 

landscape in these tumors [61]. 

2.5 Discussion 

HGSC can rapidly metastasize before patients experience symptoms, therefore many patients are 

diagnosed at late stages and have limited treatment options. Despite many studies of the genetics of 

HGSC tumors, we have yet to fully characterize and identify genetic biomarkers of HGSC metastatic 
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tumors, especially those with poor survival outcomes. In this study we built on previous studies to better 

characterize the genomic features of matched primary and metastatic tumors in the context of patient 

survival, so we might identify unique features of ST metastatic tumors. 

We found supporting data for RB1 mutations as a marker for long survivorship as previously 

discovered, since RB1 mutations were identified exclusively in our LT survivor cohort [8, 47]. In our 

study we found that there was a higher percentage of shared variants between the primary and metastatic 

tumors of ST survivors compared to LT survivors. Although this difference was not significant, it can 

suggest that tumors from ST survivors may be more clonal and genetically similar than tumors from LT 

survivors. This could mean that tumors from ST survivors are inherently more resistant to treatments, 

since both their primary and metastatic tumors are genetically similar. However, other studies of the 

clonality of HGSC tumors have yet to find a correlative pattern between clonality and survival [1, 7, 62-

64], hence, many more tumor samples will need to be analyzed to answer this question. Shared variants 

that are likely to be present in all clones of the tumor may be the best suited for targeted therapies. With 

the advent of single-cell sequencing, we may now be able to answer more questions about the 

heterogeneity and clonal development of HGSC tumors [65].  

TP53 mutations are a hallmark of high-grade serous ovarian cancer and TP53 gene has known 

hotspot mutations across cancer types. One of these hotspot mutations, R273H, was identified in 3 

patients within our cohort, two of whom had an overall survival ranging 17-34 months. In TCGA 

Genomic Data Commons Portal, there are a total of 99 cases across cancer types that harbor a mutation at 

this position in TP53, 9 of which are in ovarian cancer samples. Recent functional studies have shown that 

this particular mutation results in a p53 gain-of-function that may promote metastasis in colorectal, 

esophageal, and breast cancers. Additionally, breast cancer cell lines with a R273H gain-of-function have 

been found to have improved response to combination PARPi and a DNA-damaging agent [66-68]. If this 

is also seen in ovarian cancer cells, this may lead to additional patients receiving PARP inhibitor and 
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combination treatments in the future. However, further work in characterizing the therapeutic potential of 

this specific TP53 mutation in ovarian cancer is needed. 

Yang et al. demonstrated genomic differences between HGSC primary tumors of ST and LT 

extreme survivors [9]. Our study focused on paired primary and metastatic tumors within the median 

survival range of ovarian cancer.  Yang et al. demonstrated that more than 50% of tumors with BRCA 

mutations are LT survivors with an OS >10 years. This is consistent since HGSC patients with BRCA 

mutations respond better to chemotherapy [10]. Therefore, our study was better able to characterize the 

genomic features of tumors from patients with more moderate survival to poor survival. 

Recently gene fusions have proven to be useful drug targets for cancer. For example, the 

identification of EML4>ALK gene fusions in non-small cell lung cancer paved the way for the 

development of ALK inhibitors and recently drugs targeting tumors of any cancer type with gene fusions 

involving NTRK genes have been approved by the FDA [69, 70]. In our analyses, we identified an ESR1-

CCDC170 gene fusion in our cohort as previously described in another cohort [9]. There is evidence that 

ESR1 gene fusions in estrogen receptor-positive breast cancer promote endocrine therapy resistance and 

metastasis, thus ESR1 gene fusions may have a role in ovarian cancer progression [60]. Lei et al. 

demonstrated that CDK4/6 inhibitors were able to suppress growth that was driven by ESR1 gene fusions, 

indicating that gene fusion driven cancers are treatable [60].  We found a higher number of gene fusion 

predictions in our tumors from ST survivors and these could be a potential source for new drug 

development, but additional work will be needed to identify recurrent gene fusions that are targetable in 

ovarian cancer 

Previous studies have demonstrated that HGSC primary and metastatic tumors have similar 

transcriptomes. Two such studies using microarrays identified few differentially expressed genes between 

the HGSC primary and metastatic tumors [71, 72]. In this study, we also identified few DEGs between 
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primary and metastatic tumors. However, when we analyzed primary or metastatic tumors separately to 

find DEGs between ST and LT survivors, we found DEGs unique to metastatic tumors from patients with 

ST survival. This demonstrates that clinical outcome can be used to identify DEGs specific to metastatic 

tumors. We found several DEGs in the zing finger family that were upregulated in the ST survivor 

metastatic, suggesting that these tumors have more transcriptionally active genes that could be promoting 

metastatsis or could be used as markers for poor prognosis, like FOXL2NB [55] and PTCH2 [56] which 

have correlated with poor survival in other cancer types. The large number of DEGs that identified in our 

DE analyses are a resource for future studies for biomarkers given their correlation with poor prognosis in 

ovarian and other cancer types and because we filtered for genes unique to the metastatic tumors in our 

cohort.   

Additionally, we identified lncRNAs that were differentially expressed between survival groups. 

LncRNAs have only recently been studied for their role in cancer development and prognosis and have 

not been extensively studied in ovarian cancer yet [73, 74]. There are some lncRNAs, such as RP11-

190D6.2, that have shown to be tumor suppressors or oncogenes in ovarian cancer cell lines [74, 75]. 

Given that we found several lncRNAs having increased expression in ST survivors, they could serve as 

potential targets or biomarkers for future treatment development. 

It should be noted that all of our LT survivor samples are from FFPE, while ST tumors were not. 

Though we have applied rigorous quality control and filtering to our variant calling, we cannot exclude 

the possibility that sample preparation has some effect on the results. It is possible that the batch 

correction from FFPE and FF samples reduced the number of DEGs that were able to be identified in our 

cohort between the primary and metastatic tumors. The SVA batch correction may have over accounted 

for unknown variation or it may be introduced variation, but was still necessary so we could include all 

tumor samples in our DE analysis, regardless of RNA sample preparation.This dataset, like many using 
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patient samples, has limitations but provides insights into the differences between HGSC primary and 

metastatic tumors in the context of moderate survival outcomes.  

2.6 Conclusions 

In this study we characterized the exomes and transcriptomes of a unique data set of matched 

primary and metastatic tumors in the context of patient survival. We were able to confirm many of the 

genomic features seen in previous studies [8, 9, 11, 12, 30]. We observed that the transcriptomes of 

primary and metastatic tumors were similar to each other, compared to the transcriptomes of tumors from 

ST and LT survivors that had more DEGs and DE lncRNAs. Our gene fusion analysis revealed previously 

identified and novel fusions that have the potential to be new targets in HGSC and could warrant further 

functional studies.  

Our findings suggest that there are more defining genomic features of tumors from ST survivors 

rather than unique features of metastatic tumors or primary tumors. Further analysis and characterization 

of metastatic tumors of ST survivors could lead to additional treatment developments and maintenance 

therapies. Our results identified several unique expression patterns for HGSC metastatic tumors from ST 

survivors. This increased understanding of genetic variation in HGSC metastases that exist between 

patients with different prognoses can better inform treatments and may identify new targets for drug 

development.  
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2.7 Figures and Tables 
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Table 2.1 Clinical Characteristics of Patient Cohort 

Clinical Characteristics of Patients diagnosed with HGSC at FIGO stage III-IV. Tumor samples were 

collected from patients during primary cytoreductive surgery in Washington University in St. Louis.  
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Table 2.2 Somatic TP53 mutations 

Somatic TP53 mutations identified in tumor cohort from WES. 



	
 

	 42 

 

 



	
 

	 43 

Table 2.3 BRCA1 Somatic Mutations  

All BRCA1 somatic mutations identified in tumor cohort for WES with a VAF>30. Nucleotide position 

and amino acid changes are based on GRCh37. 
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Table 2.4 BRCA1 Germline Mutations  

All BRCA1 germline mutation identified in patient cohort from WES with a VAF>30. Nucleotide 

position and amino acid changes are based on GRCh37. 
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Table 2.5 BRCA2 Germline Mutations  

All BRCA2 germline mutations identified in patient cohort from WES with a VAF>30. Nucleotide 

position and amino acid changes are based on GRCh37. 
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Table 2.6 INTEGRATE Recurrent Gene Fusions 

Chart showing the recurrent gene fusions predicted by INTEGRATE for the ST survivor tumor samples. 

The chart displays a breakdown of number and types of samples each gene fusion was identified among 

the ST survivors. 
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Table 2.7 Predicted Collagen Gene Fusions 

Chart displaying the 33 gene fusions involving collagen genes, the sample the fusion was identified in, the 

number of encompassing and spanning reads that identified the fusion, and INTEGRATE’s prediction if 

the reads were in- or out-of-frame. 
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Figure 2.1: Mutational Landscape of primary and metastatic tumors from ST and LT survivors 

A. Samples are organized as matched tumor pairs, with primary first followed by metastic tumor. 

Somatic mutations in OV TCGA frequently mutated genes, colors indicate mutational type  

B. Status of samples source (primary tumor (light blue), metastatic tumor (dark blue)), survival class 

(ST (dark red), LT (red)), and CLOVAR signature (mesenchymal, differentiated, immunoreactive, 

and proliferative) (Green shades) 



	
 

	 54 

 

 

 

A B 

C 



	
 

	 55 

Figure 2.2: Shared variants between primary and metastatic tumors.  

A. Percentage of somatic mutations unique to primary (Red) and metastatic tumor (Blue) and shared 

(Purple) between samples.  

B. Comparison of percentage of shared variants among primary and metastatic tumor between ST 

and LT survivors. (ST survivors n= 23 LT survivors n= 14) 

C. Boxplot displaying the mutational burden rates (mutations/MB) for all tumors and subsets. (All n= 

74, ST survivors n= 23, LT survivors n= 17, primary tumors n= 37, metastatic tumors n= 37) 
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Figure 2.3 DEGs and lncRNAs in tumors from ST and LT survivors 

A. Heatmap displaying the 325 significant protein-coding DEGs between ST (left) and LT survivors 

(right) unique to metastatic tumors in our patient cohort. (ST survivors n= 20, LT survivors n= 14) 

Red indicates upregulated DEGs while blue indicates downregulated DEGs with FDR <0.01.  

B. Heatmap displaying the 502 significant protein-coding DEGs between ST (left) and LT survivors 

(right) unique to primary tumors in our patient cohort. (ST survivors n= 21, LT survivors n= 14) 

Red indicates upregulated DEGs while blue indicates downregulated DEGs with FDR <0.01.  

C. Barplot displaying the GO Molecular Function Terms that are statistically overrepresented in the 

30 upregulated DEGs unique to Metastatic tumors. Plot displays their -Log10(FDR) value for each 

GO term.  

D. Heatmap displaying 11 significantly (FDR <0.01) differentially expressed lncRNAs between the 

ST (left) and LT (right) survivors in metastatic tumors. (ST survivors n= 20, LT survivors n= 14) 
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Figure 2.4: Cibersort Immune Cell Fractions 

A. Stacked bar plot of the proportion of the 22 immune cell types expressed in each tumor sample. 

Samples are organized by tumor type, then by survival. (from left to right: ST Primary n= 22, LT 

Primary n= 14, ST Metastatic n= 22, LT Metastatic n= 14) Annotation colors are shown in legend 

above barplot.  
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2.8 Supplementary Figures and Tables 
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Supplementary Table 2.8: Tumor Sample WES coverage 

Exome sequencing coverage for each patient’s normal, primary, and metastatic tumor. Coverage is 

expressed as the number of times a base would be covered by sequencing reads.  
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Supplementary Figure 2.5: Mutational Signatures 

A. Stacked bar plot displaying the percent of total mutations that fit into the mutational signatures 

shown on the right. Each patient is ordered by patient number and their metastatic and primary 

tumor with ST survivors on the left (001-met – 030 tumor) and LT survivors on the right (031-met 

– 046-tumor).  

B-C. Box and whisker plots showing the percentage of total mutations for each signature,  grouped 

by the patients tumor as a ST or LT survivor (B) or as a primary (P) and  metastatic tumor (M) 

(C)
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Supplementary Figure 2.6: Mutational Spectrum  

A. Stacked bar plot displaying the percent of total mutations that were nucleotide transitions or 

transversions, according to the key on the right. Each patient is ordered by patient number and 

their metastatic and primary tumor with ST survivors on the left (001-met – 030 tumor) and LT 

survivors on the right (031-met – 046-tumor).  

B-C. Box and whisker plots showing the percentage of total mutations for each signature,  grouped 

by the patients tumor as a ST or LT survivor (B) or as a primary (P) and  metastatic tumor (M) 

(C) 
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Supplementary Figure 2.7: PCA Plots of Log CPM counts in Differential Expression Analysis  

A. PCA of cohort samples RNA-sequencing transcript counts with all tumor samples after 

normalization and batch effect correction with SVA. The 4 samples circled in the plot were 

removed as outliers. 

B. PCA of cohort samples RNA-sequencing transcript counts after removal of the 4 outlier samples 

and normalization. 

C. PCA of cohort samples RNA-sequencing transcript counts after removal of the 4 outlier samples, 

normalization, and batch effect correction with SVA.  
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Supplementary Figure 2.8: Pathway Enrichment and DEGs  

A. Barplot displaying the -Log10(FDR) values for each Biological Processes GO term that was 

statistically overrepresented among the DEGs unique to metastatic tumors  

B. Heatmap displaying the top 50 upregulated and top 50 downregulated DEGs between the all ST 

and LT survivors.  

C. KEGG Pathways enriched in DEGs as identified by DAVID 
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Supplementary Figure 2.9:  Copy number alterations in tumors of ST and LT survivors 

A. Copy-altered segments in primary and metastatic tumors of ST survivors across the genome. 

Amplifications are depicted in red while deletions are seen in blue. 

B. Copy-altered segments in primary and metastatic tumors of LT survivors across the genome. 

Amplifications are depicted in red while deletions are seen in blue.  

C. GISTIC Qplot of significantly amplified lesions across genome of all patient tumors (n=74)  in 

cohort with 90% Confidence. 

D. GISTIC Qplot of significantly deleted lesions across genome of all patient tumors (n=74) in cohort 

with 90% Confidence. 

E. Violin plot of the GISTIC2.0 CNA value for every gene in every patient primary and metastatic 

sample plotted against their corresponding Log2(FPKM) value from RNA-seq. The medians of the 

FPKM values and the CNA threshold values has a spearmanr correlation value of 0.999 and p-

value of 1.4x10^-24). (Number of genes in Copy Number Threahold groups from left to right: -2 

n= 24316, -1 n= 416616, 0 n=280688, 1 n=346144 , 2 n=51856)
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Supplementary Figure 2.10:  CIBERSORT immune cell fraction violin plots 

A-V. Breakdown of the immune cell fractions calculated by CIBERSORT for each of the 22 immune 

cell signatures broken down by tumor type subgroup (all Patient tumors n= 72, ST survivors n= 44, 

LT survivors n= 28, Primary tumors n = 36, Metastatic tumors n= 36, ST survivor metastatic tumors 

n= 22, LT survivor metastatic tumors n=14, ST survivor primary tumors n= 22, and LT survivor 

metastatic tumors n= 14) 
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Chapter 3: Assessment of TP53 R273H as a Gain-
of-Function mutation in High-Grade Serous 

Ovarian cancer 
 

Declarations  
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Noia, and Pat Kung advised on experimental design for the plasmid and lentiviral transfections and drug 

treatments for cell viability assays. Daniel Wilke helped design the clonogenics protocol. Shirley De 

Leon-Lopez assisted with cell maintenance and sanger sequencing.  

3.1 Introduction 

TP53 mutations are a hallmark of high-grade serous ovarian cancer, as virtually all High-Grade 

Serous Ovarian Cancer (HGSC) tumors harbor them [1]. TP53 encodes for a transcription factor, known 

as p53, that plays a major role in maintaining the integrity of the genome and controls the expression of 

hundreds of genes in response to stress signals in cells. It is also one of the most commonly mutated 

tumor suppressor genes across cancer types. [2, 3] 

TP53 has several known hotspot mutations across cancer types and in HGSC there are 9 reported 

hotspot mutations at loci R273, R248, R175, Y220, I195, C176, G245, S241, and Y163. [4] The majority 

of alterations to TP53 are missense mutations in the DNA-binding domain and cause loss-of-function 

(LOF). The LOF effect means that the cell losses the anticancer protection of wild type p53, but some 

time the mutant allele actually masks the function of the wild-type copy of the gene. [3, 5] There are also 

gain-of-function (GOF) p53 mutations identified in cancers that contribute to metastasis and 
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chemoresistance. [4] For example, Zhou et al showed that mutant TP53 mutations R175H, G245C, and 

R282W promoted invasive cell growth in head and neck cancer cells and that mutant p53 could influence 

cancer cell metabolism through inhibiting AMPK Activation. [6] Mutant p53 has also been shown to 

modify histones and affect chromatin modeling and gene expression. [7] 

Recent functional studies have shown that the TP53 R273H mutation results in a p53 GOF that 

may promote metastasis in colorectal [8], esophageal [9], and breast cancer [10-12]. It has been shown 

that mice expressing human TP53 R273H have more metastatic disease compared to mice without p53 or 

with WT p53 [13]. Studies on breast cancer cell lines have linked the mutant p53 to PARP1 and DNA 

repair pathway mechanisms [11, 12]. Their work suggests that cancer cells with this mutation could be 

treated more effectively with combination therapy with Temozolomide and PARP inhibitors (PARPi) 

[11]. Between 1.5-2.25% of ovarian cancer patients harbor the TP53 R273H mutation, making this a 

targetable mutation that has the potential to be clinically relevant. [1] If this biology were to hold true in 

ovarian cancer, it would potentially qualify more patients for PARPi and combination treatments in the 

future. Therefore, we aimed to gather preliminary evidence that the TP53 R273H mutation causes a GOF 

in ovarian cancer cells and to determine if the TP53 mutation sensitizes cells to PARPi treatment in 

combination with Temozolomide.  

3.2 Methods and Materials 

3.2.1 Cell culture and maintenance  

CAOV-3 cells were obtained from Wendy Fantl (Stanford University) and maintained in DMEM 

(Sigma-Aldrich) media supplemented with 10% FBS and 1% penicillin (pen) and streptomycin (strep) 

antibiotics. DPBS (Gibco) and 0.25% trypsin-EDTA (Gibco) were used to wash and lift cells for 

expanding. Cell counting was performed on a Countess II (Life Technologies) according to 

manufacturer’s protocols. OVCA-420 cells were obtained from Joyce Lui (Dana-Faber Canccer Institute)  
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and cultured with RPMI 1640 media (Sigma-Aldrich) supplemented with 10% FBS, 10 mM HEPES, and 

0.5% pen/strep antibiotics. MDA-MB-468 cells were maintained in DMEM media (Sigma-Aldrich) with 

10% FBS and 1% pen/strep antibiotics and were a gift from the Jason Weber Lab (Washington University 

in St. Louis). LentiX 293T cells were maintained in DMEM with 10% FBS. All cells were incubated at 

37°C with 5% CO2. 

3.2.2 Plasmid transfections  

Plasmids were obtained from Addgene for the empty vector control (pCMV-Neo-Bam plasmid 

#16440), mutant TP53 R273H (pCMV-Neo-Bam p53 R273H plasmid #16239 [14]), and wildtype TP53 

(pCMV-Neo-Bam p53 wt plasmid #16434 [14]). They were provided in bacteria as agar stabs. Plasmids 

were maxi-prepped according manufacturer’s protocols using the HiSpeed Plasmid Maxi Kit 

(REF#12662).  

Plasmid transfections were attempted with 3 transfection reagents to see which performed the 

most effectively with either lipofectamine 2000 (ThermoFisher), TransIT-LT1 (Mirus Bio), and 

TurboFect (ThermoFisher) in alignment with their individual manufacturer’s protocols. All transfections 

were performed with CAOV-3 cells in DMEM media with 10% FBS without antibiotic supplements. 

Plasmids and transfection reagents were diluted in Opti-MEM (Gibco) for the Lipofectamine and 

TransIT-LT1 protocols. These plasmids contained the neomycin resistance gene and were selected for 

with the addition of G418 solution (Millipore Sigma #G8168) at a concentration of 0.5 mg/ml. We 

determined that TurboFect transfected cells exhibited stable mutant p53 expression after antibiotic 

selection.  

3.2.3 Lentiviral transductions  

We obtained 3rd generation lentiviral plasmids from Addgene: scramble shRNA (Plasmid #1864 

[15]), mutant TP53 R273H (pLenti6/V5-p53_R273H Plasmid #22934 [16]), and wildtype TP53 
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(pLenti6/V5-p53_wt p53 Plasmid #222945 [16]). We used viral packaging plasmids pMDLg/pRRE 

(Addgene #12251), pRSV-Rev (Addgene #12253), and envelope plasmid pCMV-VSV-G (Cell Biolabs 

RV-110). These plasmids were received in a bacterial stab and were maxi prepped using the Qiagen 

HiSpeed Plasmid Maxi Kit (REF#12662).  

LentiX 293T cells were seeded at a concentration of 2x10^6 in a 10 cm dish for viral packaging. 

The following day when they were 70-80% confluent, media was replaced on the cells 2 hours prior to 

transfection and then transfected with the transfection plasmids and reagent. We used 60µl of TransIT-

LT1 diluted in 85 µl of opti-MEM that was incubated with 5µg of pMDLg/PRRE, 2.5 µg of pRSV-Rev, 

pCMV-VSV-G, and 10 µg of either the empty vector, mutant p53, or wildtype p53 plasmid for 30 

minutes. This solution was added to the 293T cells dropwise and replaced to the incubation overnight for 

18 hours. Transfection media was replaced with 15 ml of high serum growth media consisting of DMEM, 

30% FBS, and 1% pen/strep for 24 hours. To harvest, media was spun down at 1250 rpm for 5 minutes 

and the supernatant was filtered through a 45 um PES filter. The viral media was added directly to the 

CAOV-3 cells that were seeded the day before at 4x10^6 cells/well in a 10 cm plate. This harvesting 

process was repeated and the virus was again used to the transduce the cells directly after collection. Cells 

were selected with 6 µg/ml of blasticidin  (Invitrogen cat #R210-01) for 10 days post-transfection.  

3.2.4 MTS survival assay 

CAOV-3, OVCA-420, or MDA-MB-468 were plated at 5000 cells/well in a 96-well plate (TPP) 

and were treated the next day with Temozolomide (Selleck Chemicals), Olaparib (Selleck Chemicals) 

Talazoparib (Selleck Chemicals, BMN 673) alone or in combination with each other. All MTS assays 

were plated in triplicate and the highest dose formulated with media at concentrations of 2 mM 

Temozolomide, 20 µM of Talazoparib, and 100 µM of Olaparib and then serially diluted by half to create 

cell viability curves. All drugs stocks were diluted in DMSO and heated to get the drug into solution. 
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After 72 hours of treatment, 20 µl of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium) solution (Promega) was added to each well, incubated for 4 hours, and 

then the absorbance was measured at 490 nm with a 96-well plate reader (Tecan infinite M200 Pro). If 

PARPi treatment was used, plates were treated for 72 hours and then washed and changed to full media 

without treatment and read with MTS 72 hours after the media change. Alongside all treatments, a DMSO 

control was used to validate that the DMSO volume was not affecting cell viability. Cell viability 

percentages were calculated by subtracting the average absorption reading of the media and MTS and 

then dividing by the no treatment well for each triplicate and converting to a percentage. Statistics were 

calculated with GraphPad Prism 9 software and the cell viability percentages were log transformed. A log 

inhibitor vs response 4 parameter nonlinear regression fit test was used.  

3.2.5 Clonogenics  

CAOV-3 and OVCA-420 cells were plated at a concentration of 5000 cells/well in a 6-well plate (TPP) 

and treated with Temozolomide, Talazoparib, Olaparib, or a combination of those drugs. Dose 

concentrations were determined based on the MTS cell viability curves IC50 values. Cells were treated 

for 3 consecutive days with drug combinations and then replaced with full media without drug and 

incubated for 7 days before staining. Staining consisted of washing the with cold DPBS, and fixing with 

100% MeOH for 20 minutes. We then stained with 2 ml of crystal violet for 5 minutes and washed with 

water twice. Plates were then covered with foil and dried overnight. Images were taken on a ChemiDoc 

(Bio-Rad Laboratories). The plates were then de-stained and the amount of crystal violet was measured by 

absorbance. 

3.2.6 Western blot 

Cells were lysed using 8 molar urea lysis buffer and DTT and then sonicated for a few seconds before 

being spun down in a centrifuge at 4C for 15 min at 13000 rpm. Protein amounts were quantified by 
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Bradford assay and 50-70 ug of lysates were mixed with BME. Lysates were subjected to SDS-PAGE. 

The gel was run for 30 min at 61V and another 60-90 minutes at 120V. The protein was then transferred 

to a nitrocellulose membrane at 85 V for 80 minutes. Membranes were blocked with 10% milk solution 

dissolved in TBST, washed with TBST, and probed with primary antibodies for TP53 (Cell Signaling, 

#2527, diluted 1:1000 in BSA) to assess knockdown and B-actin (Millipore Sigma A1978, diluted 1:3000 

in milk) or GAPDH (Cell Signaling, diluted 1:3000 in milk) for 1 night at 4C. The blot was then washed 

with and incubated in secondary mouse antibody (Thermo Fisher Scientific A-11001) for approximately 2 

hours and washed with TBST. Primary and secondary antibodies were diluted in 5% milk and TBST. 

Protein signals detected with the Pierce ECL Westering Blotting Substrate and imaged using 

chemiluminescence on a ChemiDoc (Bio-Rad Laboratories).  

3.2.7 Sanger Sequencing  

Primers flanking the TP53 R273H mutation in CAOV-3 cells were ordered from IDT, with the forward 

sequence 5’TAACTGCACCCTTGGTCTCC3’ and Reverse sequence 5’ 

GGCTTTGGGACCTCTTAACC’. Plasmid primers were also from IDT with forward sequence 5’ 

cctcaccatcatcacactgg 3’ and reverse sequence as 5’ tggacagtgctcgcttagtg 3’. The TP53 gene was amplified 

in PCR with master mix (x) and annealing temp 60C. The PCR reaction was run on a 1.5% agarose gel 

and bands were cut and purified with the Qiagen gel purification kit according to manufacturer’s protocol. 

The isolated DNA was diluted with nuclease free water and sent for sanger sequencing through GeneWiz 

according to their plasmid or purified PCR product guidelines. Chromatograms were viewed using 

FinchTV.  
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3.3 Results 

3.3.1 Identification of the TP53 R273H mutation in HGSC patient cohort 

In Chapter 2, our lab whole-exome sequenced primary and metastatic tumors from 39 HGSC 

patients and identified the mutant TP53 R273H in the primary and metastatic tumors of 3 patients. Two of 

these patients were short-term survivors (OS <3 years after diagnosis). (Figure 1A) The OS of the ST 

survivors ranged between 17-19.6 months and the LT survivor lived more than 147 months after their 

diagnosis. In The Cancer Genome Atlas (TCGA) database, there are a total of 99 cases across cancer 

types that harbor a TP53 R273H mutation, 9 of which are in ovarian cancer tumors.  

3.3.2 Creation of an ovarian cancer cell line that expresses the TP53 R273H 

mutation 

In order to determine if the TP53 R273H mutation creates a GOF p53 protein and is 

therapeutically targetable, first we created an ovarian cancer cell line that expresses the mutant p53. We 

transfected CAOV-3 cells with a plasmid with the TP53 R273H mutated gene, an empty vector or 

wildtype TP53 gene. CAOV-3 is an ovarian cancer cell line that does not express TP53 because of a 

nonsense mutation early in the gene. First, we validated that CAOV-3 cells do no express p53 at the 

protein level via western blot. (Figure 1B) We also demonstrated that the ovarian cancer cell line OVCA-

420 and breast cancer cell line MDA-MB-468 both endogenously the express TP53 R273H mutation. 

(Figure 1B)  

We attempted to transfect and transduce mutant p53 plasmids into CAOV-3 cells several times.  

Figure 1C highlights the p53 protein expression of those cell lines. The CAOV-3 cells replicate slowly 

and took several weeks to recover from being transfected with the mutant p53 plasmid after selection and 

reselection with Neomycin (G418). We also verified via Sanger Sequencing that the plasmid transfected 
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into the CAOV-3 cells harbors the R273H resulting mutation from a G>A. (Figure 1D) The CAOV-3 

cells transfected with Turbofect had the most stable mutant p53 protein expression and we moved forward 

with treatment experiments with those cells. We attempted lentiviral plasmid transfections 2 times, but 

did not see much mutant p53 expression and did not use them for further experiments. (Figure 1C) All 

cells transfected or transduced with wildtype p53 plasmids died, unsurprisingly given the function of p53 

as tumor suppressor. Even if the cancer cells successfully took up the plasmid, p53 expression most likely 

led to apoptosis for those cells.   

3.3.3 TP53 R273H does not influence sensitivity to PARP inhibitors and 

Temozolomide treatment  

After establishing mutant p53 expression in ovarian and breast cancer cells, we next determined 

whether expression of the mutation TP53 R273H sensitizes cells to PARP inhibitors and is clinically 

treatable. First, we wanted to recapitulate combination treatments that other groups have published. [11, 

12] 

To measure cell viability in response to treatment, we performed MTS assays and treated cells 

with PARPi (Talazoparib or Olaparib) in combination with Temozolomide, a DNA alkylating agent. First, 

we treated MDA-MB-468 using treatment amounts based on the published Qiu et al paper. [11] We 

treated with 20 µM of Talazoparib and 1 mM of Temozolomide in combination and alone as our highest 

treatments, then serially diluted by half for 11 dilutions and compared to no treatment. (Figure 2A) The 

MDA-MB-468 cells were most sensitive to combination treatment at levels comparable to the breast 

cancer studies that demonstrated sensitivity to the combination of Talazoparib and Temozolomide in an 

XTT cell viability assay (Figure 2B).  

After validating the MTS methods with previously published results, we used this same approach 

to test whether TP53 R273H mutations altered the sensitivity of PARPi using OVCA-420 and the 
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transfected CAOV-3 cells. We expected that the OVCA-420 and CAOV-3 cells with mutant p53 would 

be more sensitive to PARPi treatment than the parental or empty vector controls.  

We again used the same treatment amounts of Talazoparib and Temozolomide from the MDA-

MB-468 experiments as a starting point for these ovarian cell lines. The CAOV-3 mutant p53, empty 

vector control, parental cell lines were the most sensitive to combination treatments of Talazoparib and 

Temozolomide than either drug alone. (Figure 3A-C) If we compare each of the CAOV-3 cells 

combination treatment response (Figure 3D), they all have comparable IC50 values and show that the 

CAOV-3 cells are sensitive to the combination of drugs regardless of the presence of mutant p53.  

Next, we wanted to see if using a PARPi that is more commonly used in ovarian cancer patients 

would show any differences in sensitization with Temozolomide in the context of the mutant p53. Figure 

3E-H shows the MTS cell viability curve comparison between the CAOV-3 parental, empty vector 

control, and mutant p53 cells treated with the combination of Olaparib and Temozolomide. We used 100 

µM as the highest dose of Olaparib and 2 µM as the highest dose of Temozolomide, which were then 

diluted by half and normalized to no treatment. Again, there were no differences between these cell lines 

in response to the combination treatment, so we can determine that the mutant p53 R273H in the CAOV-3 

does not improve the sensitivity of the cells more to this combination treatment.  

Additionally, we sought to further investigate cell survival to complement our MTS cell viability 

assay by treating the cells in a clongenics assay. The transfected CAOV-3 cells and parental cells were 

treated with 8 µM of Olaparib, 10 µM of Olaparib, 200 µM of Temozolomide, or the combination of 

those treatment doses. In this assay, the CAOV-3 cells were the most sensitive to the Temozolomide 

treatment, therefore we could not conclude that the combination treatments with Temozolomide led to any 

further sensitization at these treatment doses. All the CAOV-3 cell lines were sensitive to Olaparib as well 

and showed no further sensitivities to the PARPi in the presence of mutant p53. (Figure 3I) 
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We treated the OVCA-420 cells with combinations of either Talazoparib or Olaparib, and 

Temozolomide. The cell viability of the OVCA-420 were also the most sensitive to combination 

treatment of Talazoparib and Temozolomide, but this combination was not significantly different from the 

sensitivity to Temozolomide alone and the combination of Olaparib and Temozolomide. However, at the 

same concentration of drugs used in the previous MTS assays, the cells viability never showed less than 

50% viability even at the highest combinations of the treatments. At these high doses, the cells began to 

die from the high volume of DMSO added from the drug solutions so we could not further increase our 

treatment doses. This shows that the OVCA-420 cells are not as sensitive to these drugs as the other cell 

lines tested. (Figure 4A). We also performed a clonogenic assay to measure cell survival of the OVCA-

420 cells in response to Olaparib and Temozolomide treatments. The results did show that the cells were 

most sensitive to the combination treatment compared to the controls (Figure 4B).   

3.4 Discussion 

We set out to determine if mutant TP53 R273H can sensitize cells to combination treatments 

between PARPi and Temozolomide because of a GOF in p53 in ovarian cancer. We were able to replicate 

the published results by Qui et al showing that the MDA-MB-468 cell line that harbored the R273H 

mutation are most sensitive to the combination treatment of Temozolomide and Talazoparib. We therefore 

expected this result to hold true in the OVCA-420 cell line and transfected CAOV-3 cells with mutant 

p53. However, our results showed that the combination of PARP inhibitors Talazoparib and Olaparib with 

Temozolomide was effective in eliminating ovarian cancer cell lines, independent of the TP53 R273H 

mutation. 

To further determine if the p53 mutation causes the increased sensitivity to combination treatment, 

we could have knocked-down or knocked-out p53 expression in the OVCAR-420 or MDA-MB-468 cells. 

This would have shown if sensitivity to the combination treatments occurred without the presence of any 
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p53 expression. We also could have used different DNA alkylating reagents other than Temozolomide. 

Further, we showed that the OVCA-420 cells were overall less sensitive to PARPi and Temozolomide 

treatment, individually and in combination, compared to the other breast and ovarian cell lines. Perhaps 

these cells were not a proper comparison to treatment sensitivity and the mutant p53 could still have more 

oncogenic functions that have yet to be explored. Our results could also be explained by the amount of 

mutant p53 in the transfected ovarian cells. According to our western blots, the amount of p53 expression 

in the transfected cells was much less than the OVCA-420 cells. This suggests that perhaps a higher 

expression of the mutant p53 would be needed to show an effect on treatment sensitivity.  

If we were to investigate this mutant p53 regardless of treatment response, we would have 

gathered evidence if this mutation causes the cells to have a more metastatic phenotype, for example if the 

cells were more proliferative or invasive. Proliferation assays measure how many cells divide, and 

therefore proliferate, over time while an invasion assay measures how a cell line is able to invade through 

a layer of Matrigel that mimics the tumor microenvironment. We hypothesize that the cells expressing 

mutant R273H p53 would proliferate and invade significantly more than their wildtype counterparts if 

mutant p53 were to have a distinct function from wildtype.  

3.5 Conclusions  

Ultimately, we did not gather enough evidence to support that this mutation is a GOF in ovarian 

cancer cells and this question warrants further study. We decided that since cells that contain the mutation 

are not susceptible to targetable treatments than it might not be translational for patients and will be 

unlikely to improve patient survival in the near future.   
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3.6 Figures 
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Figure 3.1: TP53 mutations in HGSC patients and p53 protein in ovarian and breast cancer cell lines  

A. Lollipop plot displaying all TP53 mutations present in 39 HGSC patients that were WES, 

highlighting that 3 patients had the same R273H hotspot mutation in the DNA binding domain 

B. Western blot displaying presence or absence of p53 protein in cell lines CAOV-3, SKOV-3, ES2, 

MDA-MB-458, and OVCA-420. CAOV-3 cells do not express a p53 protein compared to other 

ovarian cancer cell lines as negative (SKOV-3) and positive (ES2) controls for p53 protein 

expression. 

C. Western blot for p53 with plasmid and lentiviral transfected CAOV-3 cell lines created to 

expression TP53 R273H 

D. Sanger sequencing chromatograms validating the presence of the R273H mutation in the plasmid 

from the standard transfection 
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Figure 3.2: MAD-MB-468 are most sensitive to the combination of Talazoparib and Temozolomide 

treatment 

A. MTS cell viability curve for MDA-MB-468 cells treated with Talazoparib, Temozolomide, and 

their combination 

B. Bar graphs comparing the cell viability from our MTS assay to published XTT cell viability at 

published treatment doses  
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Figure 3.3: Cell Viability of transfected CAOV-3 cells treated with Talazoparib, Olaparib, and 

Temozolomide  

A. MTS cell viability curve of parental CAOV-3 cells treated with Talazoparib and Temozolomide 

B. MTS cell viability curve of CAOV-3 cells transfected with empty vector treated with Talazoparib 

and Temozolomide 

C. MTS cell viability curve of CAOV-3 cells transfected with mutant TP53 R273H treated with 

Talazoparib and Temozolomide 

D. MTS cell viability curve of CAOV-3 parental, empty vector, and mutant TP53 R273H comparison 

treated with combination of Talazoparib and Temozolomide 

E. MTS cell viability curve of parental CAOV-3 cells treated with Olaparib and Temozolomide 

F. MTS cell viability curve of CAOV-3 cells transfected with empty vector treated with Olaparib and 

Temozolomide 

G. MTS cell viability curve of CAOV-3 cells transfected with mutant TP53 R273H treated with 

Olaparib and Temozolomide 

H. MTS cell viability curve of CAOV3 parent, empty vector, and mutant TP53 R273H treated with 

combination Olaparib and Temozolomide 

I. Clonogenic plates and corresponding bar graph showing cell viability of CAOV-3 parental, empty 

vector, or mutant p53 treatment response to Olaparib, Temozolomide or their combination   
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Figure 3.4:  Cell Viability of OVCA-420 cells treated with combinations of Olaparib, Talazoparib, 

and Temozolomide  

A. MTS cell viability curve of OVCA-420 cells treated with Olaparib, Talazoparib, Temozolomide, 

and their combination  

Clonogenic plate and corresponding bar graph comparing OVCA-420 cells treated with Olaparib, 

Temozolomide and their combinations  
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Chapter 4: Functional genomic screen of kinases 
in high-grade-serous ovarian cancer metastasis 

Declarations 
Emilee Kotnik performed analyzed the patient data and screen data selection of candidates and designed 

and performed all secondary screen experiments including transfections, scratch assays, western blots, 

qRT-PCRs, and cell viability assays. Daniel Wilke performed the original genomic kinase screen with 

High Throughput Screening Center (Washington University in St. Louis).  

4.1 Introduction 

High-Grade Serous Ovarian Cancer (HGSC) is a highly metastatic cancer with the majority of 

patients presenting in advanced stages. Currently there are limited targeted treatment options for patients, 

especially for women with high metastatic tumor burden. HGSC tumors must overcome certain barriers to 

metastasize. In brief, tumor cells must break away from the original tumor, attach to the mesothelial layer 

of cells in the perineal cavity, clear away those mesothelial cells, and then invade into the stroma [1] In 

order to improve patient outcomes, there is a need to identify actionable, druggable targets that influence 

these steps of metastasis. This way we more precisely target metastatic tumors and develop maintenance 

therapies to help prevent further metastasis and mediate chemoresistance.  

Thus far, the field has characterized primary tumors in HGSC and in Chapter 2, we discussed our 

attempt to further characterize metastatic tumors, which have not been extensively studied in ovarian 

cancer. Patient tumor databases are a powerful and essential tool for discovery-based projects, but they 

also require a lot of coordination, consistency, deep sequencing, and power in order to find novel targets 

and unique features that can be used for precision medicine. [2] In the lab, performing high-throughput 
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screen is another approach we can use to complement patient data and expand the possibilities of finding 

targets and drug compounds with high-powered, systematic, controlled methodology. [3] 

Kinases serve as actionable targets because inhibitors can be developed that mimic their ligands or 

block their receptors to reduce their functioning and signaling. Several kinases, such as tyrosine kinases 

and aurora kinases, have previously been implicated in ovarian cancer and seem to influence tumor cell 

metastasis. [4-6] For example, Aurora kinases are serine-threonine kinases that regulate the mitotic 

spindle formation. They are highly expressed in ovarian cancers, and other cancer types, and clinical trials 

on Aurora kinase inhibitors in combination with other treatments have shown to improve progression free 

survival. [4] In particular, the Fuh Lab has studied tyrosine kinases DDR2 and AXL. We have studied 

their role in metastasis and the use of drug inhibitors to target these kinases. [7-9] Reducing the 

expression of DDR2 in OVCAR4 cells can increase the production of CD8+ T cells and has been shown 

to increase sensitivity to PDL-1 inhibitors. [10] There are several small molecule inhibitors that target 

DDR1 and DDR2 that are in development. [11] AXL is another tyrosine kinase has been shown to be 

highly expressed in ovarian cancer and particularly in metastatic tumors. Inhibiting AXL genetically in 

vivo prevented the formation of new metastatic tumors and decreased metastatic invasion. Therefore, 

there is evidence that AXL inhibition and therapy can prevent metastatic tumor progression. [8]  

Our study aims to identify actionable targets that influence the steps of metastasis, so we can 

develop drugs that target metastatic tumors and serve as maintenance therapies to help prevent further 

metastasis, mediate chemoresistance, and improve patient outcomes. We have utilized a functional 

genomic screen for tumor cell attachment and invasion to identify additional kinases that may promote or 

suppress tumor cell attachment and invasion. We then designed a secondary screen to validate the results 

of this original screen to identify candidate kinases that promote metastasis, which is measured by their 

ability to affect tumor cell migration.  
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4.2 Methods and Materials 

4.2.1 Cell Culture and Maintenance  

OVCAR8 cells were obtained from the National Cancer Institute. OVCAR8 cells were cultured in 

RPMI 1640 media (Sigma-Aldrich) supplemented with 10% FBS and 1% penicillin (pen) and 

streptomycin (strep) antibiotic when culturing and expanding cells. RPMI media with 10% FBS and no 

antibiotics was used during transfection and seeding cells prior to transfection. ES2 cells were cultured in 

McCoy’s 5A Medium (1X, Gibco) media supplemented with 10% FBS and 1% pen/strep antibiotics. 

Transfections with ES2 cells were done with McCoy’s with only 10% FBS and no antibiotics and cells 

were kept in antibiotic free media for the duration of the cell seeding, the transfection, and during the 

scratch assay. All Cells are incubated at 37°C with 5% CO2.     

4.2.2 Functional genomic screen design, statistical analysis, and controls  

Primary fibroblasts cultured from the human omentum were plated as one component to 

recapitulate the tumor microenvironment.  An arrayed small-interfering RNA (siRNA) panel targeting 

719 genes encoding kinases was used. The screen was performed on tumor cells derived from human, 

high-grade serous, epithelial ovarian cancer cells stably labeled with GFP. Following exposure to siRNA, 

ovarian cancer cells are overlaid upon a mixed submesothelial (NOFs, collagen I, and fibronectin) matrix. 

We did this process in 3 ovarian cancer cell lines, including OVCAR8, ES2, and A2780 across 9 panels 

for two libraries. Both libraries had distinct siRNAs for each kinase, and each well had a pool of 2 oligos 

per kinase, adding up to a total of 4 siRNAs per kinase. The functional readout is a decrease in 

attachment/early invasion.  Cell death was controlled by staining with resazurin. Data was analyzed by 

expressing the effect of increased or decreased attachment using the median average deviation (MAD).  



	
 

	 113 

In order to account for background fluorescence, the fluorescent background was subtracted from 

each plate which was represented by the wells which did not contain GFP labeled cancer cells.  Values 

were then normalized to the siNegative controls on a plate by plate basis.  Finally, it was determined how 

many Median Absolute Deviations a given value was from the overall experiment wide median. 

Thresholds to identify outliers were determined for each cell line based on the dynamic range of the 

measured fluorescence values. Therefore, MAD values were calculated by dividing each fluorescence 

value by the mean fluorescence of transfection reagent mock to normalize. Then those values are 

averaged for all 3 replicates. The following equations were used: 

median absolute deviation: median(abs(value-median1)) = medianabs. 

average deviation = (mean-median1)/medianabs. 

For controls, one panel included the fibroblasts alone without any GFP labeled cell lines, giving a 

baseline for no florescence. We used RNAiMAX Mock with all the transfection reagent to demonstrate 

that the transfection wouldn’t affect basal level tumor cell attachment and we used siRNA negative to 

measure for baseline tumor cell attachment. We used two positive controls, with integrin and cantharidin, 

which are both known to inhibit tumor cell attachment so these controls served as a comparison of regents 

that should block tumor cell attachment. Lastly, siDeath was used as a control to measure transfection 

efficiency. The RNAiMAX Mock control wells were used to normalize the Alamar blue staining, so we 

could better determine if lack of tumor cell attachment or invasion was due to the siRNA knockdown of a 

kinase or due to cell death from transfection or technical errors. The MAD values for these controls are 

included in Figure 2.  

4.2.3 Secondary screen siRNA transfections 

For siRNA transfections, dsiRNAs from IDT were used to knockdown candidate genes and 

controls via transfection reagent lipofectamine 2000 (Invitrogen 1mg/ml REF#11668-027). The name and 
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reference numbers for the dsiRNAs used for our candidate genes are listed in Table 1. DsiRNAs were 

diluted in nuclease-free dulex buffer (IDT cat#11-01-03-01) to a 100 µM stock concentration and were 

heated at 94°C for 2 minutes, then allowed to cool to room temperature. A 20 µM working stock was 

made from the 100 µM stock and both dilutions were stored at –20°C.  

For the transfection protocol, 24-hours prior to transfection OVCAR8 cells were plated in 10 cm 

plates (TPP) at a concentration of 1.8x10^6 cells per plate using RPMI media 10% FBS without 

antibiotics. Cells were counted with a Countess II (Life Technologies). Transfections were performed 

according to the Lipofectamine 2000 manufacturer’s protocol. We added 0.1 nmol of dsiRNA was added 

to opti-MEM media (Gibco, REF#31985-070). We then added the volume of dsiRNA and the 

lipofectamine solution together, mixed gently by pipetting, and allowed to incubate for 20 minutes at 

room temperature. OVCAR8 cells were washed with DPBS (Gibco, REF# 14190-136) and received 5ml 

of fresh RPMI media with 10% FBS. After the incubation period, 3 ml of the transfection reagent and 

dsiRNA solution were added dropwise to OVCAR8 cells in 10 cm plates containing 5 ml of 10% FBS 

containing RPMI media. After 24 hours of transfection, RPMI media was supplemented again with 10% 

FBS and 1% pen/strep antibiotics until the scratch assay was performed. After scratches were made, cells 

were kept in serum free RPMI media with 1% pen/strep antibiotics.  

For transfections with ES2 cells, the same protocol as described was followed, but prior to 

transfection cells were plated at a concentration of 4x10^5 cells/well in 6-well plates in triplicate and 

McCoy’s media was used for culturing. When scratches were made, ES2 cells were kept in serum free 

and antibiotic free McCoy’s. 

4.2.4 Secondary screen scratch assay and analysis  

Twenty-four hours post transfection, the cells were washed with DPBS lifted with 0.5% trypsin-

EDTA (Gibco, REF# 25300-054) and plated in triplicate in 12-well plates (TPP) at a concentration of 
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4.5x10^5 cells/well for OVCAR8 cells and at 5x10^5 cells/well for ES2 cells. Twenty-four hours after 

plating (which is also 48 hours post-transfection) we used an unfiltered 200 µl pipet tip (Molecular 

BioProducts) was used to create a scratch down the center of each well. Images of the center of the 

scratch were taken for each well at timepoints 0, 8, or 24 hours after the scratch was created under 4x 

magnification using either a Visual Dynamix EXI-300 microscope or a Nikon Eclipse Ti microscope 

using QCapture Pro 6.0 software.  

An ImageJ plugin was used to measure scratch areas and widths from the images taken at various 

timepoints, which is called “wound healing size tool” (https://github.com/AlejandraArnedo/Wound-

healing-size-tool/wiki). [12] This software is able to measure the scratch space in pixels or measurements, 

depending on the type of file images being analyzed. Images take with Visual Dynamix EXI-300 

microscope were measured in pixels, and images with the Nikon Eclipse Ti microscope were measured in 

inches from tif images. The percent change in area and/or width of the scratch over an 8- or 24- hour time 

period was calculated by taking the area measurement at 0 hours minus the 12-hour area measurement, 

dividing by the 0-hour measurement and multiplying by 100 to get a percentage. If 3 images of the same 

scratch were taken, then the average percentage change of those 3 images was used. To calculate the 

statistical differences between the controls and candidate genes scratches, we used GraphPad Prism 7 

software to calculate a Welch’s correlation. 

4.2.5 RT-qPCR  

RNA was collected from cells 48-hours post-transfection using the Qiagen RNeasy plus mini kit. 

RNA was quantified by nanodrop and between 0.5-1 µg of RNA was converted to cDNA using the 

SuperScript IV First-Strand Synthesis System (Invitrogen, REF#18091050) according to the 

manufacturer’s protocols. SYBR Green PCR Master Mix (Applied Biosystems) was used in the ABI 

detection system (Applied Biosystems) for real-time PCR reactions. Each target RNA was measured in 
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triplicate and quantified using the 2-delta-deltaCT methods. All primer pairs for gene targets are listed in 

Table 2.  

4.2.6 Western Blotting 

Cells that transfected but not utilized for the scratch assay triplicates were plated separately and 

harvested at 48 hours post-transfection to be analyzed. Cells were lysed using 8M urea lysis buffer and 

DTT and sonicated for a few seconds before being spun down in a centrifuge at 4C for 15 min at 13000 

rpm. Protein amounts were quantified by Bradford assay and 50-70 µg of lysates were mixed with BME 

and subjected to SDS-PAGE. The gel was run for 30 min at 61V and another 60-90 minutes at 120V. The 

protein was then transferred to a nitrocellulose membrane at 85 V for 80 minutes. Membranes were 

blocked with a 10% milk solution diluted in TBST, washed with TBST, and probed with primary 

antibody (AXL, Cell Signaling #4977 and B-actin, Sigma #A1978) for 1 night at 4C. The blot was then 

washed and incubated with secondary mouse antibody for approximately 2 hours and washed with TBST. 

Primary and secondary antibodies were diluted in 5% milk and TBST. Protein signals were detected with 

the Pierce ECL Westering Blotting Substrate and imaged using chemiluminescence on a ChemiDoc (Bio-

Rad Laboratories).  

4.2.7 CellTiter Glo Assay 

CellTiter Glo 2.0 luminescent cell viability assay (Promega, REF#G924C) was used to measure 

cell proliferation in the OVCAR8 cells after siRNA transfection of candidate kinases. OVCAR8 cells 

were seeded in RPMI media with 10% FBS and no antibiotic at a concentration of 1x10^4 cells/well in a 

96-well plate. The next day the cells were transfected according to the Lipofectamine 2000 protocol. 48-

hours post-transfection, 200 µl of the CellTiter Glo 2.0 reagent was added to each well. The plate was 

placed on an orbital shaker for 2 minutes, covered in foil, and them allowed to incubate at room 
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temperature for 10 minutes before reading luminescence on the GloMax Navigator instrument (Promega) 

with software version 3.1.0. 

4.3 Results 

4.3.1 Functional genomic screen identifies multiple targets for tumor cell attachment 

and invasion 

Our lab performed a functional genomic screen on 719 kinases in a tumor cell attachment and 

invasion assay to identify kinases that effect tumor cell invasion and attachment. In this screen, we 

cultured primary fibroblasts from patient omentum and plated them on top of a collagen and fibronectin 

matrix, to mimic the tumor microenvironment. We added siRNA transfection reagents atop the fibroblasts 

and plated GFP-labeled ovarian cancer cells on top. The florescence of the ovarian cancer cells was 

measured and used to calculate a median average deviations (MAD) value. (Figure 1A) Kinases that were 

knocked-down and demonstrated a negative MAD value, attached to or invaded through the tumor 

microenvironment cell layers less than controls. Conversely, kinases that were knocked-down and 

demonstrated a positive MAD value, attached to or invaded through the tumor microenvironment cell 

layers more than controls. From this screen, we had several significant kinases with a total of 17 kinases 

had a MAD value of 3 and 19 hits that were below at -3 MAD value (Figure 1B).   

In the functional genomic screen, both the GFP labeled ovarian cancer cells and patient fibroblasts 

were exposed to the siRNA transfection reagents, so knockdown of the kinase could have occurred in 

both cell types. This design was done purposefully so we could elevate kinases on both the tumor cell and 

stromal cell level at the same time. Additionally, since the cells were incubated for a couple days and 

allowed to invade, the screen MAD value results could also measure tumor cell proliferation and 
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attachment to the Matrigel as well as invasion. So in order to identify kinases that influence tumor cell 

metastasis, we decided to design a secondary screen to further investigate candidates kinases.  

4.3.2 Screen results and prioritization of candidates for secondary screen 

Considering the above limitations, we used a known marker of invasion that was also screened to 

find candidate kinases to investigate in a secondary screen. We focused on kinases that had negative 

MAD values, because this would mean that when that kinase is knocked-down there is less tumor cell 

attachment and invasion. Therefore, this knockdown mimics the function of an inhibitor drug and has 

more potential to be therapeutically translational. The Fuh Lab has previously shown that the tyrosine 

kinase, DDR2, can promote tumor cell invasion and mesothelial cell clearance in ovarian cancer [9-11] In 

the screen, DDR2 had a MAD of -1.56 and -1.47 in ES2 cells (values form each library performed during 

the functional genomic screen). We then estimated that kinases in a range around -1.5 would be a priority 

and give us a more relaxed cut-off to find more potentially interesting candidates.  

We identified 19 kinases with MAD values less than -1.5 in ES2 cells and 25 kinases in OVCAR8 

cells. We narrowed this list further looking at their expression levels in ES2 and OVCAR8 cells in 

cbioportal and with published literature to find kinases with functions that could be involved in cancer 

mechanisms. [13, 14] Table 4 details the top 10 candidates we identified to pursue further and lists their 

function from GeneCards. [15, 16] In the end, we were able to test 4 candidate kinases that were selected 

based on their cell viability comparison to DDR2. These kinases were BUB1, PFKP, ITPK1, and PAK6.    

4.3.3 Secondary screen design and troubleshooting in ES2 cells  

We utilized a wound-healing (henceforth called a scratch assay) to determine if the candidate 

kinases influence ovarian cell migration when silenced by siRNAs. We transfected ES2 and OVCAR8 

cells with siRNA and assessed the cell’s ability to migrate into the scratch area over time. We 
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hypothesized that kinases that promote metastasis and had negative MAD values in the functional 

genomic screen would show less tumor cell migration when knocked-down by siRNA.  

To develop our secondary screen protocol, we decided to use AXL as a positive control, since it is 

expressed in both ES2 and OVCAR8 and has previously been shown by our lab to promote metastasis and 

migration in Boyden chamber assays [7, 8, 17] Figure 2A shows the scratch assay performed 48-hours 

post siRNA transfection at time points 0, 8, and 24 hours of the scratch through confluence cells. 

Replicates of the percentage of wound-closure area over the 8-hour time period are shown in the box and 

whisker in Figure 2B. There were no significant differences between the percent change in wound areas 

between the siRNA knockdown of AXL and the non-transfected ES2 cells or the ES2 transfected with a 

non-targeting siRNA, despite sufficient knockdown of AXL at the RNA and protein level shown in 

Figures 2C and 2D. 

Next, we attempted the screen with ES2 cells again and testing one candidate, ULK2. During 

transfection, many cells died but we were able to perform the scratch assay in duplicate and showed 

significant knockdown with siRNA against AXL and ULK2 (Figure 2C) 24-hours post-transfection and at 

the protein level for AXL 48-hours post-transfection (Figure 3D). After 8 hours, there visually was less 

wound-closure in samples with knockdown of AXL compared to the non-targeting control, although this 

was not statistically significant. Visually, there did not seem to be less migration between ULK2 

knockdown and the negative control. After 24 hours, the non-targeting control scratch had completely 

closed, while the ULK2 knockdown was nearly closed and AXL knockdown sample still had a visual 

scratch. These experiments showed that we could transfect the ES2 with siRNAs and use AXL as a 

positive control (Figures 3A and 3B).  

We observed that the ES2 cells’ morphology changes when they are stressed by creating a wound 

and they do not tolerate serum free media conditions well. We wanted to keep cells in serum free media 

after scratching to be a true measure of migration, rather cell migration. So we ultimately decided from 
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these observations and the experiments described above that ES2 cells were not conducive to a wound-

healing assay. 

4.3.4 Secondary screen results in OVCAR8 cells  

Instead, we adapted our scratch protocol to OVCAR8 cells. We tested some preliminary candidate 

kinases first, which consisted of AURKB, CHEK1, FGFR1, and ULK2. Ultimately, we decided not to 

pursue investigating these candidate kinases further since multiple testing with them changed the cell 

morphology, likely due to cell cycle dysregulation, too much to be able to properly assess migration. 

AURKB and CHEK1 have already been implicated in ovarian cancer previously in the literature [18, 19] 

The siRNA transfections of these candidates were successful and showed significant knockdown 

according to the RT-qPCR on cDNA collected from the cells at the time of the scratch was made, which is 

48-hours post-transfection (Figure 5B). Lysates collected at the same time, 48-hours post-transfection, 

showed that our positive control AXL was almost completely knocked down (Figure 5C). Images from 

these scratches at timepoints 0, 24, and 48 hours post-scratch showed variable results across the scratches 

and cells were too connected to be able to measure wound-closure with our imageJ plugin. (Figure 5A) 

Therefore we showed that we can get sufficient knockdown with siRNA transfection in these cells, but we 

decided to pursue other candidate kinases that didn’t affect the cell cycle and cell morphology as much. 

We performed a cell viability assay, CellTiter Glo, to see if siRNA knockdown of our other top 10 

candidates (Table 3) affected cell proliferation. We picked 4 candidates to test in the secondary screen 

based their cell proliferation results comparable to AXL, our positive control.  

In the final iteration of the secondary screen, we knocked-down BUB1, PFKP, ITPK1, and PAK6 

in OVCAR8 cells. Although the siRNA transfections were inconsistent between gene targets, according to 

the RT-qPCR results, there was significant knockdown of gene expression in BUB1, ITPK1, and PAK6. 

(Figure 6D) While the transfections for AXL and PFKP showed reduced gene expression, they were not 

significantly less expressed. With transfection efficiency taken into account, we cannot make conclusions 
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about the percent change in area for the candidate gene PFKP. The candidate gene ITPK1 had a moderate 

reduction in gene expression and showed significant wound closure after 8 hours, but not after 24 hours. 

The loss of significance between 8- and 24- hours could be explained by the siRNA transfection waning 

over time. Candidates BUB1 and PAK6 showed highly significant knockdown by siRNA and 

significantly less change in their scratch wound closure over both the 8-hour and 24-hour time periods 

when compared to the negative control with the non-targeting siRNA. (Figure 6A-C) These candidates we 

can determine that when knocked-down, the ovarian cancer cells showed less migration over a 24-hour 

time period.  

4.3.5 Overlap of patient data and functional genomic screen results to prioritize 

candidates 

Additionally, we also attempted to find patterns between the patient sequencing data our lab 

collected and the screen results. From Chapter 2 of this dissertation, we had analyses from the WES and 

RNA-seq data from 37 patients with matched primary and metastatic tumors collected during their 

debulking surgery. We attempted to see how many kinases screened were among the recurrent single 

nucleotide variants (SNVs), differentially expressed genes, and recurrent gene fusions identified in the 

patient sequencing analyses. In total, there were 90 kinases screened with genes that were recurrently 

mutated among the patient data (61 kinases were from ST survivors, 20 were from metastatic tumor 

samples, and 9 kinases in tumors that were both metastatic and ST survivor samples). There were 15 

kinases screened that were differentially expressed between ST and LT survivors in metastatic tumors and 

23 kinases screened that were differentially expressed between ST and LT survivors among the primary 

tumors. Among the recurrent gene fusions predicted among the patient sequencing data, there were 15 

kinases that were screen. To further narrow these potential candidates, we focused on kinases that had 

extremely high or low MAD values in at least 2 of the cell lines used in the functional genomic screen. 
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This filtering resulted in a total of 6 kinases (3 from recurrent SNVs, 2 from differentially expressed 

genes, and 1 from the recurrent gene fusion data). (Figure 1C) 

These 6 kinase genes were PIK3C2B, WNK2, CDKL2, MAST4, PACSIN2, and PI4KA and a 

description of their function, results the patient data and screen, and a summary of the literature of them 

are displayed in Table 3. Most of these potential candidates were not good targets to pursue for further 

study, since they had conflicting evidence between the patient data and their results from the screen or 

there was a lack of literature on their function or relevance to cancer mechanisms. However, PIK3C2B 

has been studied in ovarian cancer and may be therapeutically targetable. [20] We determined that these 

candidates did not warrant further validation and that having hard cut off for MAD values and a smaller 

cohort of patient data meant that prioritizing candidates in this manner wouldn’t be logical at the time.  

4.4 Discussion 

We performed a functional genomic screen on over 700 kinases to identify kinases that have the 

potential to influence metastasis in the context of the tumor microenvironment. This initial screen had 

limitations in its design, namely that results could have been affected by the fibroblast kinase knockdown 

and could have measured proliferation as well as migration and invasion. We attempted to prioritize 

candidates using patient data described in Chapter 2 of this dissertation, however those candidates had a 

lack of supporting evidence to be translational targets. We chose 4 candidates, based on having 

significantly negative MAD values in at least two cells lines in the screen, peer-reviewed literature, and 

cell proliferation results. Kinases BUB1, PFKP, ITPK1, and PAK6 were validated in a secondary screen 

that measures migration in a wound-healing scratch assay.  

We acknowledge that a scratch migration assay does not consider the context of the tumor 

microenvironment like the original screen. This assay is performed in a dish without a cell matrix, but as 

an initial validation does show that some of our candidate kinases can influence cell migration and have 
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the potential to be targeted for treatments. The migration assay is also a cost-effective assay that could 

gather evidence to support the investigation into these kinases and it was conducive to the time sensitivity 

of siRNA knockdowns. In our case, the siRNA transfections are better than CRISPR knock-outs because 

they better recapitulate the activity of kinase inhibitors.   

When designing this secondary screen, we observed variable results with positive controls and 

candidate kinases in ES2 cells, and instead performed the assay with OVCAR8 cells. We completed the 

screen and determined that BUB1 and PAK6 kinases showed less cell migration when knocked down in 

OVCAR8 cells and could promote metastasis in ovarian cancer cell lines. For reproducibility, the positive 

controls and candidates PFKP and ITPK1 should be repeated.  

BUB1 is necessary for the spindle assembly checkpoint during mitosis and contributes to 

chromosome alignment and segregation. [21] There has been published literature on BUB1 in ovarian 

cancer. BUB1 mRNA is broadly expressed in ovarian tumors and is co-expressed with AURKA and 

AURKB kinases, which as previously stated are also related in function to spindle formation. BUB1 

expression is lower in post-chemotherapy ovarian tumors. [22] Downregulating BUB1 in hepatocellular 

carcinoma cells can inhibit cell proliferation, migration, and invasion [23] and in breast cancer BUB1 

expression has correlated with poor clinical outcomes and metastases [24]. Another kinase, KIF4A has 

been associated with BUB1, because when knocked-down, BUB1 expression was also reduced and 

OVCAR3 cells showed less migration and cell viability. [25] 

Our secondary screen provides further evidence that BUB1 can promote metastasis in ovarian 

cancer. Further studies would be necessary to investigate BUB1 in more ovarian cancer cell lines and in 

other steps of metastasis, like invasion, has it has been for other cancer types. After defining BUB1’s 

ability to influence metastasis, further studies would focus on how its regulation of spindle formation and 

mitosis lead to the development of metastases and if therapeutically targeting BUB1 can be beneficial to 

HGSC patients.  
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PAK6 is a p21-activating kinase in the serine/threonine kinase family. So far, PAK6 has not been 

linked to ovarian cancer, but in cervical cancer tumor microarrays showed elevated expression of PAK6. 

Additionally, when overexpressed in HeLA cells, PAK6 promoted metastasis and showed less cell 

migration when knocked-down. This group suggests that PAK6 plays a role in regulating Wnt/B-catenin 

signaling. [26] An earlier study on prostate cancer showed evidence that PAK6 is required for cell-to-cell 

dissociation in prostate cancer cells and that it interaction with junctional proteins, suggesting that it can 

drive junction disassembly. [27] Recent studies in gastric cancer have associated PAK6 with chemo 

resistance through its role in DNA damage response, specifically in activating homologous recombination 

through ATR. They saw correlations between high expression of PAK6 with poorer stages of gastric 

cancer and with metastatic tumors in the lymph nodes. [28]  

Our findings provide support evidence that PAK6 can influence migration in ovarian cancer and is 

the first time PAK6 has been associated with ovarian cancer. Like BUB1, further evidence is needed to 

define its role in all the steps of metastasis in more ovarian cancer cell lines and to see if it can be 

therapeutically targeted. Homologous recombination and DNA damage response are important 

mechanisms for ovarian cancer tumorigenesis , so linking PAK6 with cell junctions or cell migration and 

metastasis has potential to be useful in combination with other DNA damaging drugs like PARP 

inhibitors.  

The results shown here for ITPK1 and PFKP were inconclusive, given that their siRNA knock-

down was only moderately successful. ITPK1 has not yet been associated with cancer, but it does have a 

role in regulating Ca2+-activated chloride channels in the plasma membrane [29] and seems to be required 

for necroptosis [30]. PFKP has been implicated as a mediator of cancer cell metabolism through its role in 

glycolysis [31, 32] and in particular, it may influence cell invasion and metastasis in triple negative breast 

cancer [33]. Despite our unsatisfying results, these kinases still have potential to be targetable kinases and 

warrant further consideration and study. 
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4.5 Conclusions  
In this chapter, we used screens to identify kinases that regulate HGSC metastasis. We identified 

BUB1 and PAK6 as potential targets that affect tumor cell migration when knocked-down with siRNAs. 

These kinases will need to be further studied to elucidate how they influence migration and if they can 

regulate the other steps of tumor cell metastasis, like cell clearance and invasion. If promising and 

validated in vitro and in vivo, these kinases could be used as a potential target for drug inhibitors for 

HGSC patients.  
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4.6 Figures and Tables 
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Figure 4.1: Functional genomic screen MAD values and patient overlap data 

A. Graphical schematic of functional kinase screen design  

B. Each dot represents a knocked-down kinase’s MAD value. Screen control conditions are 

highlighted in red.  

C. Schematic demonstrating the filtering and overlap between patient data and screen MAD value 

results  
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Figure 4.2: Secondary Screen with ES2 cells with AXL positive control  

A. ES2 cell images at 4x showing scratch at time points 0, 8, and 24 hours. Time 0 is 48 hours post-

transfection for the non-targeting siRNA and AXL siRNA  

B. Box and whisker of percent change in the area of the scratch over the 8 hour time course 

C. Fold change of the siRNA knockdown 24 hours post-transfection, prior to scratch 

D. Western blot for AXL in cells 48 hours post-transfection, at time 0 for the scratch assay  
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Figure 4.3: Secondary Screen with ES2 with knockdown of AXL and ULK2 

A. ES2 cell images at 4x showing scratch at time points 0, 8, and 24 hours. Time 0 is 48 hours post-

transfection for the non-targeting siRNA, AXL siRNA, and candidate ULK2 siRNA.  

B. Box and whisker of percent change in the area of the scratch over the 8-hour time course. NT and 

AXL conditions were plated in duplicate, while ULK2 was plated in triplicate. 3 images per each 

replicate was taken and the percent change in scratch area was averaged for those 3 images to get 

one percentage per replicate.   

C. Fold change of the siRNA knockdown 24 hours post-transfection, prior to scratch 

D. Western blot for AXL in cells 48 hours post-transfection, at time 0 for the scratch assay  
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Figure 4.4: Secondary screen in OVCAR8 with knockdown of AURKB, CHEK1, FGFR1, and 

ULK2 

A. OVCAR8 cell images at 4x showing scratch at time points 0, 24, and 48 hours. Time 0 is 48 hours 

post siRNA transfection of NT siRNA, AXL, AURKB, CHEK1, FGFR1, and ULK2 

B. Fold change of the siRNA knockdown 48 hours post-transfection, at time 0 for the scratch assay 

C. Western blot for AXL in cells 48 hours post-transfection, at time 0 for the scratch assay  
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Figure 4.5: CellTiter Glo assay on OVCAR8 cells transfected with siRNA 

A. Bar graph displaying the luminescence measurements taken from OVCAR8 cells 48-hours after 

they were transfected with siRNAs against the top 10 candidate kinases  

B. Bar graph displaying the cell proliferation as a percent, which is the luminescence measurements 

normalized to the NT siRNA control 
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Figure 4.6: Secondary screen in OVCAR8 with knockdown of candidate kinases BUB1, PFKP, 

ITPK1, and PAK6 

A. OVCAR8 cell images at 4x showing scratch at time points 0, 8, and 24 hours. Time 0 is 48 hours 

post siRNA transfection of NT siRNA, AXL, BUB1, PFKP, ITPK1, and PAK6 

B. Box and whisker of percent change in the area of the scratch over the 8-hour time course. All 

conditions were plated in triplicate and a single image in the center of the scratch was take for 

each replicate. 

C. Box and whisker of percent change in the area of the scratch over the 24-hour time course. 

D. Fold change of the siRNA knockdown 48 hours post-transfection, at time 0 for the scratch assay 
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TABLE 4.1: IDT dsiRNA details 
 
 
 Candidate 

Gene 
Reference 
# Batch # Description 

Product 
Amount 

AURKB 318486628 460702464 hs.Ri.AURKB.13.1 2 nmol 
CHEK1 318486631 460702465 hs.Ri.CHEK1.13.2 2 nmol 
FGFR1 408511126 494468348 hs.Ri.FGFR1.13.2 10 nmol 
ULK2 408511129 492783403 hs.Ri.ULK2.13.1 10 nmol 
PLK2 408511132 494468349 hs.Ri.PLK2.13.1 10 nmol 
GUK1 408511135 492627404 hs.Ri.GUK1.13.1 10 nmol 
BUB1 408511138 492627405 hs.Ri.BUB1.13.2 10 nmol 
PFKP 408511141 492627406 hs.Ri.PFKP.13.2 10 nmol 
DLG1 408511144 492627407 hs.Ri.DLG1.13.2 10 nmol 
CSNK2B 408511147 492627408 hs.Ri.CSNK2B.13.1 10 nmol 
ITPK1 408511150 492627409 hs.Ri.ITPK1.13.1 10 nmol 
PAK6 408511153 492627410 hs.Ri.PAK6.13.2 10 nmol 
AXL 408511156 492627411 hs.Ri.AXL.13.2 10 nmol 
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TABLE 4.2: RT-qPCR primer sequences  
 

Target gene qPCR F1 sequence qPCR R1 sequence 
ULK2 5′-CTCCTCAGGTTCTCCAGTGC-3′ 5′-TTGGTGGGAGAAGTTCCAAG-3′ 
AURKB 5’-CGCAGAGAGATCGAAATCCAG-3 5’-AGATCCTCCTCCGGTCATAAAA-3’ 
CHEK1 5'-TGTTGGATGAAAGGGATAAC-3' 5'-AAACATCAACTGGTTCTGC-3' 
FGFR1 5'-GAC CAC AGA ATT GGA GGC TA - 3' 5' - ATG AAC TCC ACG TTG CTA CC - 3' 
GAPDH AGCCACATCGCTCAGACA GCCCAATACGACCAAATCC 
PLK2 5′-TCAgCAACCCAgCAAACACAgg-3′ 5′-TTTCCAgACATCCCCgAAgAACC-3′ 
GUK1 5′-CGG CCC ATC TAC ATC TCT GT-3 5′-CGG TCC TTT GAG CTT TCT TG-3′ 
BUB1 -TGGGAAAGATACATACAGTGGGT-3 5'-AGGGGATGACAGGGTTCCAAT-3 
PFKP TGACGTGGACATCCGCAAAG CTGGAAGGTGGACAGCGAGG 
DLG1 5′- AATTCAGGGCTTGGTTTCAG-3′ 5′-ATACAGTCATTGACCCGCAA-3′ 
ITPK1 CATCCTTGAAGCCGACCAGAATG CTCATAGGACTTGGAGCGGTCA 
PAK6 GACTCCATCCTGCTGACCCTC CACCTCAGTGGCATACAAAGACC 
ULK2 AATCTTGCCCAGTCCCAGTG GCTTCTCCACCATCCCTTCC 
CSNK2B TGAGCAGGTCCCTCACTACC GTAGCGGGCGTGGATCAAT 
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Table 4.3: Patient Data and Functional Genomic Screen Result Top Candidates  
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Table 4.4: Top 10 candidate kinases selected for secondary screen validation  
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Chapter 5: Conclusions and Future Directions 
 

At the onset of this dissertation work, I set out to complete discovery-based projects that would 

identify markers of metastasis to characterize and utilize for translational purposes. I hypothesized that I 

would discover genetic targets from both patient sequencing data and innovatively designed screens that 

would promote metastasis in HGSC and become sources for new projects in the Fuh Lab.  

In Chapter 2, I used sequencing from HGSC patient data to characterize the genetic differences 

between primary and metastatic tumors and survivorship. I aimed to find unique genetic features of 

metastatic tumors, however these analyzes revealed that there were more genetic differences between ST 

and LT survivors than unique features distinguishing metastatic tumors from primary tumors in our 

cohort. This finding is interesting considering that many studies have focused on longer survivorship 

differences, usually comparing between patients that lived less than 5 years and over 10 years, while our 

survival groups were between less than 2 years and over 5 years after their diagnoses. Overall, a larger 

cohort of patients would be needed to identify more targets or defining features of metastatic tumors. Our 

study found a few differences, but that could be due to a lack of sampling or biases in race and 

demographics of this small cohort of patients. Further analysis and characterization of metastatic tumors 

of ST survivors could lead to additional treatment developments and maintenance therapies. 

One of the original goals of this study was to define clonal evolution features between the primary 

and metastatic tumors, in order to identify gene targets that aid in the development of metastases. 

However, with the progression of the tumor sequencing over the last decade, I would have needed more 

spatial samples for each of the primary and metastatic tumors pairs to define clonal origins. Perhaps with 

the emergence and prevalence of single-cell sequencing, this kind of sampling will be more feasible now 

and in the near future. We also now know that whole genome sequencing is vital to understanding the 
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genetic features of ovarian cancer, since it is a cancer characterized by large structural and copy number 

alterations that cannot be confidently detected with only whole exome sequencing.  

There are several findings from this study that could warrant further investigation. I identified 

several gene fusions involving ESR1. Some of these gene fusions have also been identified in the 

literature with other HGSC patient tumor cohorts, but they have not been investigated for their role in 

cancer metastasis or as a target for treatments. I identified gene fusions predictions involving several 

collagen genes that could be explored more as either an artifact to the RNA-sequencing or verified gene 

fusions that could be involved in the structure of the tumor microenvironment. For example, DDR2’s 

ligand is collagen 1A, so perhaps these collagen gene fusions could lead to receptor activation and 

contribute to tumorigenesis. Additionally, in my differential expression analyses I identified several 

lncRNAs and their role in ovarian cancer has also largely been understudied.   

One of the findings from Chapter 2 that I did further investigate was the TP53 R273H mutation 

found in 3 patient’s tumors and discussed in Chapter 3. I determined that in the HGSC ovarian cancer cell 

lines that endogenously expressed the TP53 R273H mutation and the cells transfected with the mutation 

showed no more sensitivity to Temozolomide and PARP inhibitor treatments compared to controls 

without the mutation. I did not however determine or gather any further evidence that the mutation is a 

gain-of-function. If I were to further investigate the mutation as a gain-of-function, we would first need to 

establish if the mutant causes a different, perhaps more aggressive, phenotype in ovarian cancer cell lines. 

For instance, I have shown that the OVCA-420 were less susceptible to PARPi and temozolomide 

treatment than the other ovarian cancer cell lines discussed in Chapter 3. To further this, I would design 

experiments to test if cells with the mutation are more proliferative, migratory, and/or invasive. If we 

observed that cells with the mutation were significantly more proliferative or invasive compared to 

wildtype counterparts, or by knocking-down p53 expression in the OVCA-420 cells, that would be 

evidence to support a distinct function from wildtype p53. Had any of these combination treatments 



	
 

	 150 

sensitized the cells specifically because of the TP53 mutation, we had planned to move these experiments 

in vivo and test the same hypothesizes and treatment combinations in mice. We would then use the same 

combination treatments as stated with Temozolomide, PARPi, and carboplatin to see which combinations 

reduce tumor burden the most in vivo. With the expectation that PARPi and Temozolomide and PARPi 

with carboplatin will show the least amount of tumor burden after treatment in the mice with cells that 

express the mutant p53. Perhaps if the mutation did cause a more aggressive phenotype in vitro and in 

vivo, we could learn more about the mechanisms behind the hotspot mutation and discover a way to target 

it therapeutically beyond what was tested here.   

Another approach I used to identify targets that promote metastasis is with a high-throughput 

screen. My lab designed a functional screen in the context of the tumor microenvironment that sought to 

identify kinases that regulate HGSC metastasis. We silenced over 700 kinases in 3 GFP-labeled ovarian 

cancer cell lines to identify kinases that either increased or decreased tumor cell attachment and/or 

invasion to primary fibroblasts and a matrix of collagen and fibronectin. I first attempted to prioritize 

candidates using patient data described in Chapter 2, however those candidates had a lack of supporting 

evidence to be translational targets. However, those targets could still be investigated for their role in 

metastasis in the future.  

I was able to validate 2 kinases from this screen, BUB1 and PAK6, in a secondary screen 

measuring cell migration. There were several other kinases I selected as candidates, ITPK1, PFKP, 

DLG1, GUK1, ULK2, PLK2, CSNK2B, and FGFR1 that were not tested in the final iteration of the 

secondary screen. It will be necessary to improve the secondary screen design for these additional 

candidates by having at least 2 dsiRNA’s pooled for each candidate to ensure proper knockdown during 

siRNA transfection and to verify the protein expression of the knockdown. BUB1 and PAK6 will need to 

be further studied to elucidate how they are able to influence migration and if they can regulate the other 



	
 

	 151 

steps of tumor cell metastasis, like cell clearance and invasion. If promising and validated in vitro and in 

vivo, these kinases could be used as a potential target for drug inhibitors for HGSC patients.  

I have shown the culmination of using both patient tumor data and in vitro screens as tools to 

discover new targets that promote metastasis in high grade serous ovarian cancer. I have learned that both 

methods can present different challenges and limitations, but both are useful discovery tools. Ultimately, 

the goal has always been to find genes and proteins that can be therapeutically targeted so we can provide 

more precision-based treatments for patients and improve their survival. Every patient and every tumor is 

unique and the more our field can characterize and understand the mechanisms of metastasis, the more 

hope we have at developing treatments for individuals to prevent their cancer from metastasizing and 

reduce their tumor burden. Although there is much more work to be done to investigate the discoveries 

made here, this work presents targets that have potential to improve patient survival in the future.  
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Appendix  
Implementation of Families Accelerating Cascade Testing Toolkit for Hereditary Cancers 

The following is a final class report for the Dissemination and Implementation course I took as part of the 

requirements for the Cell-to-Society pathway.  

Quality gap 

In 2018, breast, ovarian, endometrial, and colon cancers together accounted for over 200,000 

deaths in the United States. 1 It is estimated that 5-30% of breast, ovarian, endometrial, and colon cancers 

are caused by genetic mutations that cause hereditary breast and ovarian cancer (HBOC) or Lynch 

Syndrome (LS). 2 Fortunately, genetic testing can reduce this cancer risk through preventative medicine 

strategies such as screening, early detection, and risk-reducing surgeries. There has also been a rise of 

tailored treatment plans based on genetics, such as the use of PARP inhibitors for HBOC, thus providing 

more incentive for genetic testing in cancer patients. Patients with inherited mutations (probands) are 

encouraged to share their results to at-risk first-degree relatives so they can undergo genetic testing 

(cascade genetic testing) and subsequent preventative care.3,4 However, there are numerous barriers faced 

by clinicians, probands, and their family members that prevent cascade genetic testing. For example, 

clinicians often do not have enough time to educate their patients on cascade testing, patients often lack 

the proper knowledge to inform their family members of the benefits of genetic testing, and family 

members bear the burden to reach out to health care providers for testing. In order to improve cascade 

genetic testing rates, we aim to mitigate the challenges of cascade genetic testing by implementing the 

Families Accelerating Cascade Testing Toolkit (FACTT) in the Siteman Cancer Center. 

Thus far, there has been a lack of data available for cascade genetic testing rates. One study 

surveyed 115 probands with BRCA1/2 mutations and found that 77% of the probands informed their 

family members of their results, but only half of those relatives underwent genetic testing. Other studies 
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have reported as few as 9% of high-risk family members underwent testing.5 The Washington University 

Gynecologic Oncology Division surveyed 103 probands with HBOC and LS between 2011 and 2016. 

Although the surveys reported that 87% of the first-degree relatives were informed of their family 

members’ positive result, only 40% of those relatives underwent testing. This data emphasizes the need 

for more consistent data collection of cascade genetic testing and for better communication between 

clinicians, probands, and family members on the benefits of lifesaving genetic testing, which the FACTT 

can help facilitate.  

Evidence-Based Intervention 

The FACTT is built on evidence-based tools and is designed to facilitate communication between 

cancer providers and their patients to educate probands’ family members about the importance of genetic 

testing. If family members test positive for cancer-risk mutations, the toolkit offers them resources for 

genetic counseling and subsequent preventative treatment, if necessary. FACTT does this by offering a 

variety of materials for probands and their 

relatives, such as an online pedigree tool, 

informational videos, letters to send to family 

members, brochures on genetic testing, and a 

letter for family members to give to healthcare 

providers. The chart to the right lists all of the 

tools currently provided in FACTT. 

Other studies are implementing other interventions to improve cascade genetic testing rates, such 

as directly sending genetic testing kits to relatives. 3 However, thus far the efficacy of a toolkit such as 

FACTT has not been evaluated nor has there been studies evaluating strategies to implement a genetic 

testing kit for family members in cancer clinics. FACTT is currently being tested in the Siteman Cancer 

center to test its efficacy and effectiveness in increasing the number of family members of probands that 
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undergo genetic testing, compared to the current standard of care. This on-going study also aims to 

improve the toolkit based on feedback from patient advocacy groups and surveys from patients, while also 

gathering more information of the barriers for patients and family members for genetic testing and 

preventative treatments. The study will identify barriers for the proband disseminating the information 

about their diagnosis to their relatives and for the family members in getting tested and undergoing 

preventative measures. These barriers will be helpful in the future for shaping the implementation of the 

toolkit and adjusting its materials to better suit the needs of probands and their family. For the purposes of 

this project, we will assume that the toolkit is effective in improving the number of proband family 

members that undergo genetic testing. This study is designed to test and report on implementation 

strategies to effectively adopt the toolkit in the Siteman cancer clinics and it will use the effectives of the 

toolkit as one measure of the implementation outcomes.  

Framework/Theoretical model 

We will use the model PRISM (Practical, robust implementation and sustainability model), which 

incorporates some elements from the RE-AIM Model. 4 This model will be useful because it incorporates 

both organizational and patient perspectives into implementation and examines the organizational 

perspective at multiple levels. This will be used in the study to consider the opinions of staff and the 

implementation team at their different hierarchies, so we can better measure outcomes for how well the 

toolkit can be adapted and maintained within the existing infrastructure of the clinics. PRISM as a model 

will evaluate how FACTT will influence adoption, implementation, maintenance, reach and effectiveness 

and will be useful to guide measurements for implementation outcomes. 4 The following graphic and table 

depict a the model applied to the context of this study and the PRISM elements that are activated.  
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PRISM Elements Activated:  

 

Study Context 

This study will occur within the same 3 clinics in the Siteman Cancer Center that are testing the 

efficacy of the FACTT toolkit currently. These oncology clinics include the Gynecology Oncology, 

Breast Surgery, and Colorectal Surgery Divisions. In this context, probands that will be enrolled in the 

study will be from a variety of socioeconomic backgrounds and will be dealing with their own diagnosis 

and treatments while bearing the burden of disseminating the FACTT materials and information to their 

family members. The toolkit will hopefully help reduce the burden on probands and surveys for patient 

feedback and reporting will be designed to be read and understood by patients from all backgrounds, 

along with the patient’s health and treatment timeline in mind. Surveys will be completed online in their 

own time, in the clinic, or by mail depending on the patient’s access to internet and other resources. 

Patient advocacy groups will be consulted to advise when and how to best conduct surveys.   

On the clinical side, oncologists, nurses, genetic counselors and staff all have very busy schedules 

and will have to coordinate their time together for proper implementation of FACTT. A dedicated team to 
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conduct the implementation will help coordinate and facilitate the study around everyone’s schedules. 

Any surveys given to these employees will be online so they can complete them at their discretion.   

Stakeholders 

• Target population: Probands diagnosed with ovarian, breast, or colorectal cancer and their first-

degree relatives.  

• End users of the EBI: Probands, which are defined as patients that have been diagnosed with 

cancer and carry a mutation in a gene that would increase the risk of developing cancer for family 

members. Probands will receive the toolkit and disseminate the information, letters, and resources to 

their first-degree relatives so they may choose to seek genetic testing and preventative care. 

• Implementers/interventionists: Oncologists, champions, nurses, genetic counselors, and research 

staff within the Divisions clinics.  

• Other key decision makers: Additional faculty, like nurses and genetic counselors, will have to be 

hired to form implementation teams in each clinic and conduct the study, therefore the Division 

chiefs and directors may be involved in supervising or hiring team members.  

• Community members: Patient advocacy group members will be consulted to advise the study and 

make sure we are sensitive to the needs of patients and family members.  

Adaptations  

The implementation team will assess the progress and implementation strategy procedures 6 

months into the study, to make adjustments and improvements to the delivery or consultation of the 

toolkit or to re-train personnel (see implementation strategies). Additionally, probands will be surveyed 

on their experiences and can give feedback on the toolkit materials to give recommendations on 

improving FACTT. Before expanding the implementation of the toolkit to other clinics, those suggestions 

and additional materials can be incorporated into the kit. Since we are implementing the same strategies 
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into 3 clinics, we can also tailor implementation and compare findings based on the different settings and 

clinic infrastructures, which will advise implementation and adoption for future clinics.    

Implementation Strategies 

The following strategies are adapted from ERIC implementation strategies and defined according to the 

specifications recommended in Proctor et al. 5,6 
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Approach  

Study design and Evaluation: This study will be a randomized clinical trial. Each clinic will enroll up to 

120 probands into the study, 40 of which will be given the toolkit and do the online pedigree tool with a 

nurse while the other 40 will be given the toolkit and complete the pedigree with a genetic counselor, and 

40 probands will be a baseline control group where they are given the toolkit but not consulted by a nurse 

or genetic counselor. To control for randomization, every other proband that is enrolled in the study will 

be put into each group. Therefore, both the nurses and genetic counselors will conduct consultations over 

the same time frame.  

Implementation Outcomes: The study is also a hybrid III design, as the focus is on measuring the 

implementation strategies and outcomes for FACTT adoption and actors in the cancer clinics. To assess 

effectiveness, reach, and adoption, the probands enrolled in the study will be surveyed at the time of 

enrollment and 6-months after enrollment. Adoption, maintenance, and implementation will be assessed 

with a survey for the oncologists, nurses, genetic counselors, and staff on the implementation team every 

6 months for the duration of the study to assess their perceived barriers to implementing the toolkit in 

their clinic and to make adjustments while the project is on-going.  

We will measure effectiveness of the intervention by assessing the number of family members that 

undergo genetic testing for each proband. This measure will be proband-reported for the cascade testing 

rates of first-degree relatives, which will be defined as the number of first-degree relatives tested divided 

by the number of living first-degree relatives of each proband. This outcome will allow us to assess the 

efficacy of the toolkit to compare between the nurse and genetic counselor consultations. We will also 

collect each probands’ demographics, cancer history data, cancer status, and specific mutation status from 
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their electronic health record, to assess any differences in the reach of FACTT between these 

demographics.  

Internal and external validity: There are several barriers to consider when performing cascade genetic 

testing, mainly because we cannot control for diverse family relations and dynamics, communication 

styles, and family members having differing access to health care. These are the threats to internal 

validity, since the kit and delivery method are not the only factors that determine if family members are 

able to undergo genetic testing and preventative care. In terms of external validity, the structure of each 

division participating in the study may be different, but they are all within the Siteman Cancer Center and 

have the same resources at the Barnes Jewish hospital. Therefore, applying the findings here to other 

clinics and hospitals systems may be challenging depending on the internal structures of the clinics, 

resources available, and personnel available. For example, some rural hospitals may not have genetic 

counseling services or personnel to consult probands about genetic toolkits.  

PRECIS-2 wheel 

The following table displays the ratings considered by the PRECIS-2 Wheel.7  

7Element Rating (Scale 
1-5) 

Rationale 

Eligibility 5 Probands selected for each group will be the same. We will not be selecting for any certain 
demographic for type of patient, their eligibility will be their status as a proband having potentially 
at-risk family members. 

Recruitment 4 Patients will be recruited in the clinics and the implementation team will use health records to 
identify patients that are probands after the genetic testing results are received by the clinic and they 
will be asked to enroll in the trial. 

Setting 4 Implementation of the toolkit will be done in the same clinical settings for each proband, but they 
will need an extra appointment to meet with the nurse or genetic counselor to be given the kit, 
consulted about its contents and do the online pedigree tool with the nurse of counselor.  

Organization 2 Study will create a new team in the divisions and introduce genetic counselors directly to the clinics 
to implement the toolkit and give extra training to nurses and counselors for the toolkit and tools for 
dealing with family relations. 

Flexibility: Delivery 2 The implementation team can be flexible by allowing adaptions and adjustments to implementation 
during the study. But will be strict in having every other proband enrolled be consulted about the 
toolkit with either a nurse of genetic counselor.  

Flexibility: Adherence 4 Adherence to using the kit will be not be judged in enrolling patients for the study. Since we are 
measuring the efficacy of how many family members are reached and if they undergo genetic testing, 
we actually want to include all participates that are given the kit and complete follow-up surveys.  

Follow-up 5 The follow-up is the same for all probands in the study.  

Primary Outcome 2 We are measuring outcome in terms of how many probands utilize the kit and family members are 
undergo testing and preventative care, while also testing their trust of the nurse/genetic counselor that 
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consults them about the kit to see if differing the delivery person affects this outcome and seeing how 
feasible it is to have a nurse versus counselor in the clinic delivering the kits. 

Primary analysis 5 We will use and analyze all data from surveys collected and stats from health records and kits given 
to probands etc. 

 

Implications 

At the completion of the study, we will determine if there is difference in the effectiveness of the 

FACTT between the groups that were given no consultation, or given a consultation with a nurse or 

genetic counselor. Then the implementation team will write a suggested protocol for implementation 

based on the outcomes and evaluation of the staff on the feasibility of the implementation strategies, 

which would be the condensed plan for implementation that can be disseminated to other clinics. In the 

end, we hope that FACTT will be seamlessly adopted into the divisions, so it can benefit and reach all 

probands and their family members at Siteman and help patients receive preventative strategies and 

eventually reduce hereditary cancer deaths.   

The results of this work will be presented to faculty and staff of each of the divisions by the 

implementation team champion during grand rounds. This will also be when the final plan for uptake and 

sustainability will be announced (see below). We will publish the findings in a peer-reviewed journal and 

the results can be presented at conferences to disseminate this work and protocol to other clinicians. A 

presentation designed for non-researchers/clinicians will be presented to patient advocacy groups that 

were consulted during the implementation and have previously helped refine the toolkit. Pamphlets can 

also be created to summarize the results and materials in the toolkit for advocates and the patients 

involved in the study.  

Plan for sustainability 

In order to maintain the use of FACTT in the clinics moving forward, the personnel (dedicated 

nurse/genetic counselor/coordination staff) that are determined to lead to the most effective outcomes, 

will become permanent members(s) of the clinical team in the divisions and will continue to disseminate 

the toolkits to probands in the most efficient manner possible. Depending on the success of the study, to 
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further maintain FACTT we could use more implementation strategies such as mandating the change, so 

that providing the toolkit and a consultation to all probands in the clinic becomes the standard of care 

within the divisions. In the future we could also use implementation strategies to stage a scale-up so we 

can implement the tool to other divisions in the Siteman Cancer Center and eventually expand it to other 

hospitals in our network and around the state.  
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Executive Summary: There is a stark disparity in motor vehicle crash deaths and injuries 

between male and female drivers. Female drivers are 13% more likely to be killed than 

their male counterparts in similar motor accidents. However, vehicle safety test practices 

do not account for diverse body proportions when assessing safety outcomes. Vehicle 

crash testing standards only require testing of two variations of adult-sized crash test 
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dummies: a 50th percentile male and a 5th percentile female. Automotive companies are not 

required to test safety outcomes in crash test model’s representative of average female 

proportions or of differing body size proportions and physiological compositions. Current 

crash test standards are regulated by the National Highway Traffic Safety Administration 

(NHTSA) under the US Department of Transportation. This memo proposes three actions 

for the NHTSA and the Department of Transportation to address disparities in vehicle 

safety outcomes: (i) update safety standard requirements to include a 50th percentile female 

crash test dummy, (ii) implement a federal tax incentive program for companies to include 

a greater diversity of vehicle occupant models, and (iii) allocate funds for research and 

development of virtual crash testing models. These proposed initiatives seek to raise the 

minimum safety requirements and prioritize wider representation of vehicle occupants to 

improve parity in vehicle safety outcomes. 

I. Statement of the issue 

In the past few decades, vehicles have become increasingly safer, with fewer crash deaths and injuries 

(Kahane 2013). This is due, in part, to stricter safety regulations and technological advances in automobile 

safety features, such as increased safety belt use and advanced air bag installation. However, there 

remains a stark disparity in vehicle crash deaths and injuries when comparing male and female drivers 

involved in similar vehicle accidents.  

Men drive more miles, are involved in more vehicle crashes, and are more likely to engage in risky 

behavior while driving compared to women, yet women are about 13-20% more likely to be killed than 

men in similar motor accidents (IIHS 2021).  

These disparities in vehicle crash safety outcomes are not adequately addressed in present-day safety 

vehicle safety testing requirements. Crash testing currently uses 50th percentile male dummies (171 lb, 5ft 
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9in) but only 5th percentile female dummies (108 lb, 4ft 11in) to represent adult vehicle occupants 

(NHTSA 2021). Additionally, female dummies are scaled-down versions of male dummies and do not 

account for sex differences in mass distribution, muscle and ligament strength, and bone structure and 

density (Linder & Svedberg 2019). Female crash test dummies do not represent average female vehicle 

occupants, which leads to inaccurate crash test data collection and inadequate safety features. For 

example, due to differences in neck musculature, females are about twice as likely to suffer from whiplash 

injuries than males. Whiplash protection seats, designed in response to crash test results, are more 

effective for males than females (Linder & Svedberg 2019). 

Physiological differences between male and female occupants are not the sole factor in risk disparity. 

Compared to males, female drivers are more likely to be in passenger cars than heavier vehicles like 

SUVs and vans, and drivers in heavier vehicles are less likely to be injured (Bose 2011). Female injury 

risk was reduced after accounting for differences in vehicle and crash type (Brumbelow & Jermakian 

2021). However, both of these studies concluded that females still have a higher risk of injury compared 

to males, particularly extremity injury, and that female-specific safety designs need to be incorporated.  

Other factors beyond sex, such as age and weight, also lead to risk disparities. Fatality risk increases with 

age (Kahane 2013), and research groups have found that obese and underweight drivers have increased 

risk of death (Zhu 2006, Viano 2008). Current crash test dummies do not represent underweight, obese, 

elderly, or disabled body types (Cornell Law School, n.d.).  

II. Current car safety standards 

Vehicle safety tests are regulated by the NHTSA, which is a federal agency under the US Department of 

Transportation. The NHTSA implements laws from Congress by writing and enforcing the Federal Motor 

Vehicle Safety Standards (FMVSS), which sets requirements for vehicles that test for crash avoidance, 

crashworthiness, and post-crash survivability. 
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These standards are developed and supported by research conducted under the NHTSA through the 

Vehicle Research and Test Center. Their responsibilities include crash test dummy standardization, as 

well as testing and research on crash avoidance and crashworthiness. In the United States, crash tests are 

performed by the NHTSA and the Insurance Institute for Highway Safety, a nonprofit organization. Both 

organizations evaluate vehicles based on crash test performance (Consumer Reports, n.d.).  

One example of regulatory success in improving car safety is the response to airbag deaths in low-speed 

crashes that were not expected to be fatal. Airbag deployment was designed to protect 50th percentile 

males in crashes. However, the force of these airbags was too strong for children and smaller women, 

leading to 179 deaths between 1996 and 2000 (Barry 2019). The NHTSA responded by implementing 

new airbag regulations, relaxing testing requirements to quickly promote lifesaving improvements 

(Hollowell, n.d.), and requiring advanced airbags that deploy with a force relative to the weight of the 

vehicle occupant. These measures significantly reduced airbag fatalities, demonstrating that regulation 

can mitigate vehicle injury and fatalities. Yet, since these safety measures were designed and tested 

primarily using 50th percentile male dummies, female drivers have higher risk of injury (Bose 2011). 

Automotive companies must test several different crash conditions in order to meet FMVSS, using both 

front and side impacts at different speeds (NHTSA 1999). In these tests, the effectiveness of the safety 

equipment is determined by measurements of acceleration, force, and deflection of a representative crash 

test dummy (Hollowell, n.d.). After meeting a minimum requirement of FMVSS, the NHTSA gives the 

vehicle a rating out of five stars for its performance in various types of accidents (Consumer Reports 

2014). These tests determine injury severity based on the Abbreviated Injury Scale and use the results 

from all types of crashes to give a vehicle an overall rating. Unlike the compliance testing of FMVSS, 

which uses the 5th percentile female dummy in a variety of positions, the NHSTA star ratings only 

procure data with the female dummy as a passenger on the driver’s side. This is notable since the NHSTA 

star ratings are made available to the public while compliance testing remains private. Separate ratings are 
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used for the passenger and driver side dummies, but in testing, a 50th percentile male dummy is used as 

the driver while the 5th percentile female and children dummies are put in passenger positions (Consumer 

Reports 2014). Additionally, the FMVSS requires maximum measurements of force and acceleration, but 

excludes considerations for differences in bone density, mass distribution, and other physiological 

differences between men and women in the injury calculations (Cornell Law School, n.d.; Linder & 

Svedberg 2019). Current standards do not represent diverse body types since they exclude publicly 

available data on female drivers and don’t use dummies with more inclusive body types. 

While regulations for crash tests are often updated to improve vehicle safety, standards for crash test 

dummies have been slow to change. Efforts by the NHTSA to expand its crash test dummy repertoire in 

the 1980s were hindered by budget cuts and shifts in government attitudes towards regulation. The cost 

and time needed to develop new dummies continue to be key factors in maintaining the status quo. 

According to a senior research engineer at the IIHS, crash test dummies can take over twenty years to 

develop (Barry 2019). In support of the current standards, an NHTSA representative explained that using 

a wider range of crash test dummies (50th percentile male and 5th percentile female) allows for better 

protection for a greater range of occupants (Putka 2021). 

III. Car safety research and development 

A crash test dummy representing the 50th percentile female body has yet to be commercially produced or 

used in US automotive testing, despite there being a physical prototype model, the BioRID 50F, and a 

computer model called EvaRID. However, due to cost and the absence of regulatory incentive to 

incorporate these models in vehicular safety testing, they are not yet fully developed nor widely used in 

crash testing (Gendered Innovations, n.d.). Some individual automotive companies are implementing 

additional safety testing to improve safety measures for a wider diversity of drivers and passengers. For 

example, in 2019 Volvo launched the Equal Vehicles for All initiative with the aim to expand crash 

testing research for a greater variety of body types and has shared more than 40 years’ worth of their data 
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and research (Gendered Innovations, n.d.). However, these additional safety measures vary in scope and 

efficacy across brands and vehicle models. Unless FMVSS requirements are updated to reflect updated 

proportions, present-day vehicle operators will continue to experience poor safety outcomes in automobile 

accidents. 

Considering the cost, labor, and time of developing diverse crash test dummies and running multiple crash 

tests per dummy, some companies have turned to virtual models. As of 2021, Toyota has made its virtual 

human-modeling software, Total Human Model of Safety, free access, without a government incentive to 

do so. This system digitizes crash testing and performs computer simulations and injury analyses for 

vehicle collisions. The system can replicate vehicle impacts on the muscle tissue, skeleton, and internal 

organs of several sexes, age groups, and body types in greater detail (Autovista Group 2020). Virtual 

crash testing has the potential to gather crash data and inform safer vehicle designs, especially since 

Toyota can continue to improve the software when it is more widely available to users (Toyota Motor 

Corporation 2020). 

IV. Policy recommendations  

Vehicle safety can be improved through federal regulation and support. This memo recommends the 

following measures: 

i. Update FMVSS to require a 50th percentile female crash test dummy in vehicle crash testing. 

Update the FMVSS to include a female crash test dummy proportioned for the 50th percentile of adult 

American women in automotive crash testing. Additionally, this crash test dummy must be tested in 

driver and passenger positions. 

Advantages 
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Requiring the inclusion of a 50th percentile female crash test dummy in vehicle safety testing will ensure 

that crash test data incorporates average female proportions. Testing updated female crash test dummies 

in both driver and passenger placements will improve representation of actual vehicle operators. Inclusion 

of a female crash test dummy in vehicle crash testing is a promising first step to address disparities in 

vehicle occupant safety outcomes. 

Disadvantages 

Changes in safety testing requirements will require significant administrative and financial investment by 

automotive companies for compliance with new guidelines. While 50th percentile female crash test 

dummies have already undergone significant research and development, additional research may be 

required to ensure standardized implementation for safety testing across companies. Finally, this 

requirement still only represents a limited subset of vehicle operators. 

ii. Incentivize automotive companies to incorporate additional safety testing for diverse vehicle occupants 

Inclusion of an updated female crash test dummy improves the representation of diverse vehicle 

occupants in safety testing protocols, but it still provides only a limited scope of occupants. Therefore, we 

propose the use of federal tax incentives to encourage automotive companies to incorporate additional 

diversity in vehicle safety testing. While the NHTSA or IIHS issue industry-wide safety ratings based on 

testing at their affiliated sites, automotive companies also conduct their own crash testing to ensure 

compliance with FMVSS in the United States. The NHTSA can recommend and incentivize the inclusion 

of additional standardized crash test dummy specifications for automotive companies to incorporate in 

company-specific car safety testing to represent a wider diversity of vehicle occupants. These can include 

models representing higher and lower size percentiles, weakened bone density or joint strength, internal or 

external implants, etc. In addition, virtual crash testing presents promising opportunities for cost-effective 

testing of diverse occupant safety outcomes. 
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Advantages 

The utilization of a tax incentive approach for the incorporation of additional vehicle safety testing will 

encourage automotive companies to consider vehicle safety data from a wider diversity of vehicle 

occupants. The automotive industry will retain the option to consider which safety measures beyond the 

basic FMVSS requirements will be valued by their consumers. Incentivizing the inclusion of diverse crash 

test models, whether physical or virtual, may promote further development of safety models which 

represent a wider range of vehicle occupants to improve overall safety outcomes. 

Disadvantages 

An incentive model does not require additional safety testing of diverse vehicle occupancy. Safety testing 

will still vary between vehicle brands and models, which may not be clearly communicated to consumers. 

In addition, more research may be required to set national standards for diverse crash test dummies. 

Finally, inclusion of tax incentives for companies to incorporate improved diversity in crash test dummies 

may result in reduced federal tax revenue received from the automotive sector. 

iii. Fund vehicle research and development for virtual crash testing and analysis  

The NHTSA requests a total of $32,805,000 for Vehicle Safety Research and Analysis in their Fiscal Year 

2021 budget estimate. This budget focuses on improving research for driving automation, advanced 

vehicle safety technologies, and crash survivability, including the development of innovative physical and 

virtual testing tools for crashworthiness (NHTSA 2021). We recommend that the appropriations 

committee approve this investment in technology to make vehicles safer.  

Advantages 

Virtual crash testing allows for a greater number of crash test simulations on a greater variety of vehicles 

and body types. This allows for more data and analyses without the costs and time of physical crash 
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testing and dummies. Approving this budget to fund the development and access of virtual crash test 

systems, like Toyota’s system, would lead to more vehicle manufactures having the resources and data to 

improve car safety for more people. 

Disadvantages 

Virtual crash testing can never completely replace physical crash testing, as virtual models are based on 

the physical world. There will always be a need to confirm and validate virtual models with physical 

testing, which will still need better representative dummies to create safety features (Barry 2019). 

V. Conclusions:  

Despite increased safety measures in vehicle development and testing, there remain significant 

demographic disparities in safety outcomes following vehicular accidents. Federal agencies can help 

prevent unnecessary injury and fatalities by updating crash test dummy requirements to be more 

representative, incentivizing automotive companies to be more inclusive and extensive in their crash 

testing research, and by investing in virtual crash testing technology. Implementing these 

recommendations can help make vehicles safer for more people. 

 



	
 

	 172 

References 

Autovista Group. “Toyota to Make Its Virtual Crash Test Dummy Freely Available,” June 2020. 

https://autovistagroup.com/news-and-insights/toyota-make-its-virtual-crash-test-dummy-freely-

available. 

Barry, Keith. “The Crash Test Bias: How Male-Focused Testing Puts Female Drivers at Risk.” Consumer 

Reports, October 2019. https://www.consumerreports.org/car-safety/crash-test-bias-how-male-

focused-testing-puts-female-drivers-at-risk/. 

Bose, Dipan, Maria Segui-Gomez, and Jeff R. Crandall. “Vulnerability of Female Drivers Involved in 

Motor Vehicle Crashes: An Analysis of US Population at Risk.” American Journal of Public 

Health 101, no. 12 (December 2011): 2368–73. https://doi.org/10.2105/AJPH.2011.300275. 

Brumbelow, Matthew L, and Jessica S Jermakian. “Injury Risks and Crashworthiness Benefits for 

Females and Males: Which Differences Are Physiological?” Insurance Institute for Highway 

Safety, February 2021, 18. 

Consumer Reports. “NHTSA Crash Test 101: How Crash Worthiness Is Measured and How Crash 

Ratings Can Help You Choose Your next Car,” April 2014. 

https://www.consumerreports.org/cro/2011/08/crash-test-101/index.htm. 

Cornell Law School: Legal Information Institute. “49 CFR Part 572 - ANTHROPOMORPHIC TEST 

DEVICES,” n.d. https://www.law.cornell.edu/cfr/text/49/part-572. 

Gendered Innovations. “Inclusive Crash Test Dummies: Rethinking Standards and Reference Models,” 

n.d. https://genderedinnovations.stanford.edu/case-studies/crash.html#tabs-2. 



	
 

	 173 

Hollowell, William T, Hampton C Gabler, Sheldon L Stucki, Stephen Summers, and James R Hackney. 

“REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208.” Office of Vehicle 

Safety: National Highway Safety Administration, n.d. 

IIHS. “Fatality Facts 2019: Males and Females.” Insurance Institute for Highway Safety, March 2021. 

https://www.iihs.org/topics/fatality-statistics/detail/males-and-females#fn3. 

Jehle, Dietrich, Seth Gemme, and Christopher Jehle. “Influence of Obesity on Mortality of Drivers in 

Severe Motor Vehicle Crashes.” The American Journal of Emergency Medicine 30, no. 1 (January 

2012): 191–95. https://doi.org/10.1016/j.ajem.2010.10.017. 

Kahane, Charles J. “Injury Vulnerability & Effectiveness of Occupant Protection Technologies for Older 

Occupants and Women.” NHTSA Technical Report. Office of Vehicle Safety: National Highway 

Safety Administration, May 2013. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811766. 

Lavallière, Martin, Mathieu Tremblay, Frédéric Lefebvre, Maxime Billot, and Grant A. Handrigan. 

“Aging, Obesity, and Motor Vehicle Collisions.” Frontiers in Sustainable Cities 2 (July 14, 2020): 

33. https://doi.org/10.3389/frsc.2020.00033. 

Linder, Astrid, and Wanna Svedberg. “Review of Average Sized Male and Female Occupant Models in 

European Regulatory Safety Assessment Tests and European Laws: Gaps and Bridging 

Suggestions.” Accident Analysis & Prevention 127 (June 2019): 156–62. 

https://doi.org/10.1016/j.aap.2019.02.030. 

NHTSA. “FY21 NHTSA Budget Estimate.” National Highway Traffic Safety Administration, 2021. 

https://www.nhtsa.gov/document/fy2021-nhtsa-budget-estimate. 



	
 

	 174 

NHTSA. “NHTSA’s Crash Test Dummies.” National Highway Traffic Safety Administration, n.d. 

https://www.nhtsa.gov/nhtsas-crash-test-dummies. 

NHTSA. “Standard No. 208,” March 1999. https://icsw.nhtsa.gov/cars/rules/import/FMVSS/#SN208. 

Putka, Sophie. “Why Are There No Crash Test Dummies That Represent Average Women?” Discover 

Magazine, February 16, 2021. https://www.discovermagazine.com/technology/why-are-there-no-

crash-test-dummies-that-represent-average-women. 

Toyota Motor Corporation. “Toyota Offers Free Access to THUMS Virtual Human Body Model 

Software.” Toyota Motor Corporation, June 16, 2020. 

https://global.toyota/en/newsroom/corporate/32665896.html.  

Viano, David C., Chantal S. Parenteau, and Mark L. Edwards. “Crash Injury Risks for Obese Occupants 

Using a Matched-Pair Analysis.” Traffic Injury Prevention 9, no. 1 (February 19, 2008): 59–64. 

https://doi.org/10.1080/15389580701737645. 

Zhu, Shankuan, Peter M. Layde, Clare E. Guse, Purushottam W. Laud, Frank Pintar, Raminder Nirula, 

and Stephen Hargarten. “Obesity and Risk for Death Due to Motor Vehicle Crashes.” American 

Journal of Public Health 96, no. 4 (April 2006): 734–39. https://doi.org/10.2105/AJPH.2004.0581 

 

 

 

 



	
 

 

 

175 

 


	Identification and Characterization of Targets of Metastasis in High-Grade Serous Ovarian Cancer
	Recommended Citation

	Microsoft Word - Kotnik_dissertation_FINAL_Jan2022.doc

