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Washington University in St. Louis, 2023 

Professor Andrew L. Kau, Chair 

Professor S. Joshua Swamidass, Co-Chair 

 

Asthma is a common respiratory disease with a highly heterogeneous pathophysiology. 

The human gut microbiota, comprising of all the microorganisms that inhabit the gastrointestinal 

tract, is linked to the development of asthma and can alter airway inflammation in animal 

models. The idea that the gut microbiota can have bidirectional cross-talk with the lung, such as 

gut dysbiosis affecting lung disease, is termed the gut-lung axis. While the gut microbiota of 

early life has been an area of particular interest for asthma pathogenesis research, the effect of its 

taxonomic and functional composition after asthma diagnosis is less clear. This dissertation 

employs both amplicon sequencing followed by gnotobiotic mouse models (Chapter 2) and 

whole metagenomic shotgun sequencing (Chapter 3) to characterize human fecal microbiomes 

from school-aged children and adults with asthma.  

Investigation of the gut-lung axis in asthma later in life requires clinical studies with 

well-defined asthma inclusion criteria and strategic gnotobiotic experiments guided by 
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taxonomic profiling of properly handled human samples. In Chapter 2, amplicon sequencing was 

used to identify population shifts between allergic moderate-to-severe asthma and healthy 

cohorts. Taxonomic shifts associated with asthma were observed even when accounting for other 

microbiome-modifying covariates such as age and race. Additionally, statistical modeling and 

gnotobiotic mouse models were used to identify taxa that could affect lung inflammation in vivo. 

A Naïve Bayes Classifier fit to a mixture model that accounts for the sparsity inherent to 

compositional data was built to optimize selection of samples from the human cohorts that would 

best represent a asthma-associated microbial community differences. The selected stool samples 

were then used to inoculate, or “humanize”, germ-free mouse gastrointestinal tracts before 

administration of allergen sensitization and challenge. Immunophenotyping, IgA-Seq, gut 

permeability assays, and whole genome sequencing of human fecal bacterial isolates uncovered 

an enterotoxigenic Bacteroides fragilis that affected lung inflammation in the context of intact 

human fecal communities as well as on its own in a monocolonization experiment. A PCR screen 

for the B. fragilis toxin (bft) across all human participants revealed that bft was more prevalent in 

the stool of people with asthma compared to that of healthy individuals. These findings suggest 

that the gut microbiota affects lung inflammation even after the diagnosis of asthma. 

While discovery of disease-modifying taxa is invaluable, taxonomic profiling by 

amplicon sequencing skips the genetic material that encodes a wealth of functional information 

about gut microbes. In Chapter 3, whole metagenomic shotgun sequencing is utilized on the 

human fecal samples from Chapter 2 to describe the genetic content of the entire gut microbiota, 

also called the “metagenome”. Read-based annotation revealed a shift in genetic content 

attributable to asthma even when accounting for covariates such as age and race. Metabolic 

pathway annotation suggested that fatty acid metabolism pathways, particularly those that result 
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in long-chain fatty acid synthesis, are differentially abundant in the asthma cohort. Antibiotic 

resistance is a growing concern among physicians who provide asthma care and patients with 

asthma tend to require more antibiotic prescriptions than usual, particularly macrolide 

antibiotics. Antibiotic usage was tallied for all participants in this study and a higher proportion 

of the asthma cohort was found to have taken antibiotics in the past year compared to the healthy 

cohort. Subsequent profiling of antibiotic resistance genes (ARGs) in the gut metagenomes 

revealed an increased richness of ARGs in the asthma cohort while the total abundance of ARGs 

was not increased. Additionally, macrolide resistance markers were differentially abundant in the 

asthma cohort. Interestingly, the B. fragilis toxin, found to be more prevalent in the same asthma 

cohort in Chapter 2, was more likely to co-occur in the samples with ermF in the asthma cohort 

compared to the healthy cohort. Co-occurrence analysis of all ARGs and all virulence factors 

revealed a unique set of VF-ARG pairs in the asthma cohort compared to the healthy, together 

suggesting that the asthma gut microbiota offers opportunities for virulence factors and ARGs to 

co-occur that do not co-occur in healthy gut microbiota. The ermF-bft pair is particularly 

concerning given that bft has the potential to affect airway inflammation and macrolide 

resistance is already becoming a clinical problem for patients with asthma. 

In summary, this work characterizes metagenomic shifts in the gut microbiota associated 

with asthma, identifies a gut pathobiont that can alter lung inflammation, and reveals 

accumulation of antibiotic resistance genes in populations suffering from asthma. These findings 

provide needed insights into the gut-lung axis of asthma beyond diagnosis, and will guide 

development of gut-directed therapy for a frustratingly common disease.  
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Chapter 1: Introduction to the Gut-Lung Axis in Asthma 

1.1                  The ABCs of Wheeze: Asthma and bacterial communities 

 

Naomi G. Wilson1,2,*, Ariel Hernandez-Leyva1,2,* and Andrew L. Kau1,2,§ 

 

1 Department of Medicine, Division of Allergy and Immunology, Washington University School 

of Medicine, St. Louis, MO, 63110 

2 Center for Women's Infectious Disease Research, Washington University School of Medicine, 

St. Louis, MO, 63110 

§ These authors contributed equally 

§ Correspondence: akau@wustl.edu  

mailto:akau@wustl.edu


2 

 
 

1.1.1 Is asthma a problem of microbial ecology? 

Asthma is a common respiratory illness affecting approximately 8% of Americans and is 

characterized by symptoms of wheeze, cough, and shortness of breath. These symptoms are 

caused by an inappropriate sensitization to an environmental antigen, or allergen, that leads to 

airway inflammation upon reexposure. These responses are typically mediated by allergic T cells 

(T-helper 2 [Th2]) cells, which trigger eosinophilic inflammation characteristic of allergic 

asthma. Multiple factors contribute to the clinical risk for asthma. A genetic predisposition to 

allergy and asthma, called atopy, is a well-established feature in its development. Additionally, 

environmental factors including exposure to allergens, birth delivery mode, diet, and childhood 

surroundings may also modify asthma risk. 

More recently, the role played by the body’s endogenous microbial communities 

(microbiota) has emerged as a new component to this puzzle. Healthy environmental microbial 

exposures not only help the neonatal immune system, including humoral and innate components, 

to mature into an adult-like state after birth but also likely influence immune function throughout 

life 1. Maladaptive microbiota–host interactions have likewise been linked to the development of 

disease. A number of studies across a wide variety of illnesses have changed the way that we 

regard “pathologic” microbe–host interactions to include the concept of “dysbiosis,” or 

dysfunctional microbial communities that contribute to pathology. These dysbiotic communities 

fail to adequately perform the normal functions of a healthy microbiota in educating the immune 

system, processing dietary components, producing bioactive compounds, and more, which can 

profoundly impact host health and disease susceptibility. Dysbiotic gut and airway microbial 

communities have been implicated in asthma pathogenesis, indicating that a comprehensive 
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understanding of the disease will require a detailed understanding of resident bacterial–host 

interactions. 

1.1.2 How could microbial community dynamics promote allergy? 

Our microbiota can shape immune responses in numerous ways, including interacting 

directly with host immune components, altering metabolic functions, or preventing or promoting 

pathogen invasion. Understanding microbial ecology in the context of the host environment is 

therefore an increasingly important objective as we seek to understand how microbes may 

facilitate allergic inflammation. Even in a stable, nondiseased state, the mucosal environment in 

which most commensal microbes reside presents a highly dynamic and complex habitat with 

distinct niches and available resources. Further complicating this interaction, microbes in the 

mammalian host have the capacity to alter their environment through their interaction with the 

host immune system. These microbe-stimulated changes to the environment may be an 

opportunity for bacteria to alter their habitat in their favor, either producing a unique niche or 

creating a barrier to competing microbes. Bacteroides fragilis, for example, has recently been 

reported to take advantage of the host intestinal immunoglobulin A (IgA) response to generate a 

unique niche that enables resistance to displacement by other microbes 2. Although beneficial to 

a specific microbe, such immunomodulation may have consequences for the host. 

Like asthma, atopic dermatitis (AD), also called eczema, is a chronic inflammatory skin 

disease triggered by Th2 allergic inflammation and is characterized by itchy, dry, and red skin 

rashes. Interestingly, AD is associated with a defined skin microbial signature, dominated by 

Staphylococcus aureus, that likely plays a role in AD manifestations. S. aureus colonization in 

AD has been associated with disease severity 3,4 and may directly promote AD by activating 
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mast cells through the production of δ-toxin 5 and contributing to Th2 activation 6 (Figure 1.1F). 

Inflamed skin, in turn, down-regulates the expression of antimicrobial peptides 7, which permits 

further proliferation and persistence of S. aureus, potentially amplifying the course of disease. 

Although it is not yet clear what the specific role of such interactions is in allergic responses, 

these examples underscore how the factors that govern the microbial ecology of our microbiota 

may contribute to asthma and emphasize the potential importance of microbial communities 

residing in close association with allergic inflammation in the airway.  

 
Figure 1.1. Bacterial communities and metabolites impact multiple stages in the well-established pathway of 

allergic inflammation, both offering potentially protective effects (blue arrows) and exacerbating allergic 

inflammation (red arrows). 

(A) SCFAs produced by gut microbiota enhance bone marrow production of dendritic cells and mac rophages with 

increased phagocytic capacity but reduced ability to stimulate Th2 responses in the lung 8. (B) Bacteria found in the 

airway have been associated with increased markers of Th17 inflammation 9–11. (C) Microbially derived metabolites 

may directly stimulate or inhibit 12 Th2 development 13. (D) Microbially derived SCFAs found in the healthy gut 

promote Treg differentiation 14, whereas metabolites like DiHOME produced by asthmatic gut microbiota inhibit 

Treg proliferation 13. (E) Viral respiratory tract infections are associated with increased risk for asthma and 

exacerbations 15. (F) Staphylococcus aureus colonizes the skin of AD patients depleted of antimicrobial peptides by 
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allergic inflammation and carries virulence factors that influence the host immune system to sustain the inflamed 

state. S. aureus delta toxin, for example, acts on pathways not associated with immunoglobulin E to stimulate mast-

cell degranulation near the site of colonization 3. Investigating the precise mechanisms by which bacteria can worsen 

or mitigate asthma and allergic inflammation will offer novel probiotic candidates and biomarkers with therapeutic 

potential. AD, atopic dermatitis; DiHOME, dihydroxy-9Z-octadecenoic acid; IL, interleukin; SCFA, short-chain 

fatty acid; Th2, T-helper 2; Th17, T-helper 17; Treg, T regulatory cell. This figure was created by an integral 

contributing author of this work, Ariel Hernandez-Leyva. 

1.1.3 Is microbial community composition in the upper airway a risk factor for asthma? 

Early-childhood viral respiratory tract infections have long been recognized to increase 

the risk of asthma and contribute to asthma exacerbations 15 (Figure 1.1E). Bacterial infections 

have likewise been implicated in promoting asthma exacerbations, but the roles of airway-

colonizing bacteria in shaping allergic airway responses are only recently being explored. 

Similar to the gastrointestinal tract 16, the anatomy of the airway plays an important role in 

shaping microbial communities along the respiratory tract. The nasal vestibule is perpetually 

exposed to the environment and encounters a constant barrage of debris, microbes, and microbial 

products, which presumably contribute to the relatively high density of microbes in the upper 

airway. Beyond the nasal vault, air, remaining particles, and microbes aspirated from the 

oropharynx can pass into the trachea, which is often defined as the beginning of the lower 

respiratory tract. Particles and microbes that are deposited in the lower airway are entrapped in 

mucus and returned back up to the esophagus by mucociliary clearance. These natural clearance 

and relocation mechanisms contribute to shared members but marked differences in abundance 

between the upper- and lower-airway bacterial communities 17.  

In the upper respiratory tract, specific bacterial taxa have been associated with the 

development of asthma. Multiple studies have reported that neonates colonized with 

Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis are at an 

increased risk for later diagnosis of asthma compared with uncolonized children 18,19. The 
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presence of these asthma-associated microbes in infancy does not reflect mere chance exposure, 

because their appearance is associated with acute viral respiratory infections as well as multiple 

other environmental factors including antibiotic usage and daycare attendance 20. These findings 

have been extended to early childhood through 16S rRNA sequencing of nasopharyngeal 

aspirates from a cohort of children carefully monitored for respiratory infections during the first 

5 years of life. Confirming earlier reports, these studies found that the same three taxa were 

predictors of future diagnosis of asthma 21. Additionally, the high temporal resolution of 

sampling enabled the observation that illness-associated taxa bloom in abundance preceding viral 

infection. Perhaps most intriguingly, this study found a time period during early childhood in 

which colonization with Streptococcus, Moraxella, and Haemophilus in the upper airway 

predicted later wheeze (a precursor to asthma) in children 21. A similar “critical window” of 

microbial exposure important for later asthma development has also been described in the gut 

microbiota and could be scientifically and clinically valuable because it marks a time frame for 

potential intervention.  

1.1.4 Is there a lung microbiota, and does it play a role in asthma? 

The lung itself was regarded as a sterile environment in healthy individuals, maintained 

by intrinsic clearance mechanisms, until culture-independent techniques revealed the presence of 

a lung microbiota, though at a markedly decreased abundance compared with the upper airway 

22. Although studying microbial communities in the lungs is technically challenging because of 

low bacterial biomass and the difficulty in acquiring samples 23, differences in the lung 

microbiota are associated with asthma 24 and other pulmonary diseases 25. Airway microbes may 

also exert an important effect on asthma even after it is established by modulating response to 
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therapy 26 or altering the character of inflammatory response 9,10. Moreover, specific alterations 

to the lung microbiota have been associated with distinct asthma phenotypes. For instance, 

Proteobacteria from lower-airway samples have been associated with neutrophilic asthma, an 

endotype of asthma associated with T-helper 17 (Th17) responses 9,10 (Figure 1.1B). This ability 

of airway microbes to alter clinical features of asthma parallels our evolving understanding of 

asthma as a highly heterogeneous condition, with many unique pathophysiologies (referred to as 

endotypes) that all ultimately lead to asthma’s characteristic features: airway 

hyperresponsiveness and obstruction. Whereas the endotype associated with “classical” allergic 

asthma is mediated by Th2 inflammation, multiple endotypes have been described 27.  

Although there are multiple clinical studies validating the association between upper- and 

lower-airway microbes and asthma, further efforts will be needed to unravel how these bacteria 

modify allergic responses. The ability of upper-airway microbes to shape allergic responses has 

been investigated in animal models. Inoculation of neonatal mice with nontypeable Haemophilus 

results in transient infection and later susceptibility to worsened allergic airway inflammation 28. 

Exposure to M. catarrhalis has likewise been found to intensify allergic inflammation in mice 

through the induction of interleukin 17 (IL-17), resulting in more recruitment of neutrophils and 

eosinophils to the lungs 11. Using these animal models, we have additionally gleaned that early 

colonization of the airway by bacteria helps shield mice from asthma through programmed death 

ligand 1 (PD-L1)-dependent induction of T regulatory (Treg) cells 29. Microbial colonization in 

the first 2 weeks of life induces PD-L1 expression on dendritic cells, which signal Tregs to 

persist in the immune system. The specific host–bacterial interactions that promote allergic 

airway inflammation remain enigmatic, however, and require additional investigation. 
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1.1.5 How do gut microbes shape allergic inflammation in the lung? 

The vast community of microbes inhabiting the gut has been documented to influence a 

surprisingly diverse set of diseases, even illnesses that typically involve pathologies at 

anatomically distant sites, like multiple sclerosis 30,31 and arthritis 32. The influence of gut 

microbes on pulmonary diseases has been referred to as the “gut–lung axis,” and several studies 

have implicated intestinal microbial communities in the pathogenesis of asthma, particularly in 

early childhood. Although multiple pathways probably underlie the communication between gut 

microbial communities and the lung in asthma 33,34, microbiota-derived metabolites are emerging 

as a particularly compelling example.  

For instance, the composition of neonatal gut microbial communities can acquire 

configurations with decreased representation of Akkermansia, Bifidobacterium, and 

Faecalibacterium, which predict later development of allergy and asthma 13. Coculture of sterile 

fecal extracts generated from these dysfunctional microbial communities with human 

lymphocytes promotes the development of allergy-inducing Th2 cells while inhibiting the 

differentiation of Treg cells, directly implicating microbially derived products in conferring 

susceptibility to allergic disease (Figure 1.1C,D).  

Furthermore, investigators studying the Canadian Healthy Infant Longitudinal 

Development cohort identified four taxa in neonates—Faecalibacterium, Lachnospira, 

Veillonella, and Rothia (FLVR)—that corresponded to later protection from asthma. When these 

four bacteria were supplemented to an asthmatic gut microbial community in gnotobiotic mice, 

animals receiving FLVR taxa experienced protection from allergic airway inflammation 

compared with controls that received no supplementation. Colonization with FLVR also 
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corresponded to increases in the amounts of fecal acetate 35, a short-chain fatty acid (SCFA) 

known to protect from asthma 8. Differences in SCFAs have been observed in 3-month-olds who 

displayed atopy and wheeze at 1 year 35 – symptoms that are predictive of later asthma. 

Moreover, SCFAs are known to influence Treg differentiation and function (e.g., 14), which may 

contribute to asthma. Additionally, SCFAs generated by the gut microbiota have also been 

demonstrated to alter dendritic-cell recruitment and function within the lungs and reduce Th2 

inflammation 8,12 (Figure 1.1A). Intriguingly, FLVR were protective only when present during 

the first 100 days of life, which suggests a critical window of gut colonization during which 

exposure to key organisms can prevent later disease. This phenomenon is similar to the critical 

window observed for airway colonization 21, suggesting that exposure to particular microbial 

communities during a crucial moment in early life results in a lasting restructuring of the host’s 

immune system.  

1.1.6 Concluding remarks 

Our growing appreciation for the role of commensal microbes in human health has placed 

the microbiota among the important factors contributing to asthma pathogenesis. Although the 

mechanisms by which endogenous bacterial communities affect asthma are still being elucidated, 

the enticing potential for therapeutic interventions will ensure continued interest and exploration 

on the influence of microbial communities on allergic diseases. Perhaps most compellingly, 

unlike host genetics and environmental exposures, which are known risk factors for allergic 

diseases, the microbiota presents a more easily modifiable feature in asthma development. One 

potential approach is to design probiotics that alter the composition or function of respiratory or 

gastrointestinal microbial communities in at-risk children. The promise of this approach relies on 
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identifying individuals who would benefit from a probiotic intervention and exploiting the 

“critical window” in early life, during which microbial exposures can shape later asthma 13,21,35. 

However, before we can benefit from microbiota-directed therapeutics in asthma, it is necessary 

to further define the mechanism(s) by which gut and airway microbes protect from the disease 

and to assist the identification of therapeutic candidates and biomarkers. Together, these new 

insights signify the beginning of a novel paradigm to understand the etiology of asthma as an 

emergent condition resulting from the codevelopment of microbial communities and host 

immunity. Innovations from this research may lead to transformative advances in our 

understanding and treatment of asthma. 
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1.2 The gut-lung axis after asthma diagnosis 

In addition to the gut microbiota being an area of keen interest for understanding the 

etiology of allergy and asthma in order to prevent its onset, it is a largely unexplored source of 

potential therapeutic targets for those already suffering from their asthma diagnosis. Asthma is 

not only a frustratingly common disease but can be complex to manage due to its interpersonal 

heterogeneity. Under the label of “asthma” you find patients with a spectrum of disease triggers, 

molecular pathophysiology, and clinical features37. “Endotypes” of asthma refer to these subsets 

of patients, often categorized by the main immune component that infiltrates the airways. For 
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example, many children with early-onset allergic asthma have a T-helper 2 cell driven disease 

that tends to be receptive to corticosteroid treatment whereas another subset of patients tend to be 

adults that exhibit an eosinophil-dominated phenotype that is resistant to corticosteroids27. No 

definitive cause for susceptibility to one type of asthma over another has yet been determined. 

However, since the gut microbiota is already known to co-develop with the immune system38 

and is highly variable between individuals, it has been hypothesized that perhaps some of the 

heterogeneity of asthma can be explained by the interpersonal variability in the gut microbiota.  

A handful of studies have focused on patients after asthma diagnosis and found 

taxonomic and functional shifts in the gut microbiota that were associated with disease39. 

Notable gut taxa that are reduced in abundance in school-aged and/or adult asthma include 

Akkermansia muciniphila40, Faecalibacterium prausnitzii41 as well as Roseburia species42. Even 

fewer studies have utilized whole metagenomic sequencing to identify microbial functions 

associated with asthma. One such study sequenced stool from a population of women with 

asthma41 and found an increase in lipid and amino acid metabolism pathways and a decrease in 

the production of short-chain fatty acids (SCFAs) compared to healthy controls41. Similarly, 

microbial SCFA biosynthesis and tryptophan metabolism were associated with improved asthma 

symptoms in a clinical study of probiotic supplementation to adults43. Interestingly, histamine 

production in the gut and has been linked to asthma as well. One study found an increase in 

histidine decarboxylase, an enzyme that converts histidine to histamine, as well as the bacteria 

that often encodes it, Morganella morganii, in the gut microbiota of adults with asthma44. In a 

follow-up study, the same group found that histamine produced by bacteria in the gut can affect 

allergic airway inflammation in a mouse model45. Each of these studies reveal that the gut 
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microbiota has the potential to shape lung inflammation in children and adults with asthma. 

However, more studies using metagenomics sequencing and mouse models are necessary to 

characterize the gut microbiota and mechanisms of the gut-lung axis in asthma 

One hypothesis raised by this dissertation is that transfer across a dysfunctional gut 

barrier may be one route connecting microbial products to lung immune components. The gut 

barrier consists of a monolayer of epithelial cells coated in mucus that is essential for keeping 

pathogens and bacterial toxins from leaving the gut lumen, while allowing ions and nutrients to 

access the circulation. Further, the immune cells of the lamina propria are exposed to only the 

microbes and products that the gut barrier allows, which means that this one layer of cells is an 

immensely important part of immune tolerance. A more permissible, i.e. permeable, gut barrier 

has been implicated in intestinal diseases, food allergy, and metabolic diseases46–50. The barrier 

becomes more permeable when the gut is damaged by inflammation and when the tight junction 

and adherens proteins that form the seal between epithelial cells are under-expressed51. The gut 

microbiota is an integral part of preventing inappropriate permeability and maintaining 

homeostasis of the gut barrier52–54. For example, gut dysbiosis is associated with altered 

permeability, especially in disease states55,56. Since gut barrier function is important for 

communication with the immune system and maintaining homeostasis, it is plausible that gut 

barrier dysfunction could be involved in the pathogenesis of asthma. In fact, studies have 

demonstrated increased gut permeability in both adults57 and children58 with asthma compared to 

healthy cohorts. No study has yet tested if the gut microbiota alone is sufficient to cause gut 

permeability in asthma. 
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The negative association of SCFAs with asthma8,12,41,59 may itself be indicative of the 

role of the gut barrier to prevent asthma. One of the ways the gut microbiota affects barrier 

homeostasis is via SCFAs which guide maturation of the epithelium by increasing tight junction 

protein expression60,61, strengthening the epithelial seal. Seminal work by Arrieta and colleagues 

found that 3-month old infants who were at higher risk of asthma symptoms at 1 year had less 

fecal acetate content than their healthy counterparts35. The lack of SCFA-producing bacteria seen 

in studies of high-risk infants13,35 supports this result. These data suggest that SCFAs may play a 

role in asthma susceptibility early in life. No study has measured the fecal content of SCFAs in 

adults or older children with asthma, so it is still unknown whether SCFA levels are differentially 

abundant later in life. Functional annotation of the gut metagenome and metabolomics of human 

microbiota samples are necessary to reveal the capacity of asthmatic microbiota to produce 

SCFAs and change the trajectory of the disease. 

Gnotobiotic models of allergic airway inflammation are another method of uncovering 

mechanisms of the gut microbiota that could be life-changing therapeutic targets in humans. 

Several seminal gnotobiotic experiments using neonatal stool microbiota have been previously 

discussed and have found metabolites such as SCFAs and DiHOME-12,13 as potential mediators 

of asthma development13,35,62, but there are very few studies focused on what effect the adult or 

pediatric gut microbiota has on asthma after diagnosis, if any. One such study of school-aged 

children found no difference in markers of allergy between germ-free mice colonized with fecal 

microbiota from five subjects with asthma compared to that from seven healthy subjects63. 

However, another study demonstrated that supplementing Akkermansia muciniphila, a species 

found decreased in a population with obesity-associatetd asthma, to non-germ-free mice protects 
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against allergic airway inflammation40. Considering these studies do not rule out the effect of the 

gut microbiota on asthma in older populations, mouse studies to address this question are still 

needed. 

Additionally, in order to further pinpoint actionable differences between the gut 

microbiota of individuals in older populations with and without asthma, state-of-the-art 

characterization of the human gut metagenome is required. Functional annotation of the gut 

microbiota in asthma research has previously been done using marker gene identification of taxa 

followed by inferred metabolic profiling from those taxonomic classifications with tools such as 

PICRUSt35,64. These approaches suffer from false positives and false negatives due to arbitrary 

marker gene similarity cutoffs and incomplete reference databases. Shotgun metagenomic 

sequencing improves on this method by directly measuring total gene content and is widely used 

to profile metabolic functions. Due to the rapid decrease in cost, shotgun metagenomics 

sequencing has become more feasible on large scales, and has begun to be used to study asthma 

in metagenome-wide association studies (MWAS)41.  

A feature of the gut microbiota that only functional annotation can measure is the library 

of antibiotic resistance markers that are carried by gut microbes. The gut microbiota is now a 

recognized reservoir for antibiotic resistance genes, the sum of which is called the antibiotic 

“resistome” that is shaped by antibiotic usage65,66. Characterization of the gut resistome could 

disentangle why pre- and post-natal antibiotic usage has been associated with an increased risk of 

asthma later in life67,68. One recent study found an increase in richness of antibiotic resistance 

genes carried by infants whose gut microbiota showed signatures associated with asthma risk69. 

No study has yet, to my knowledge, characterized the gut resistome of older pediatric and adults 
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with asthma to determine whether this pattern persists. Antibiotic resistance is already a growing 

concern among physicians that offer asthma care and is thought to be rising due to the high 

amount of antibiotic drug prescriptions that patients with asthma require compared to a given 

healthy patient. This increased need is likely linked to the observation that many patients with 

asthma are prone to airway infections that are often treated with antibiotics70. In some studies, 

long-term low dose macrolide antibiotic usage prevented asthma exacerbations71–73, but not in 

others74, and establishing such a treatment as standard practice has remained controversial, not 

least because of the risk of antibiotic resistance75. Interestingly, antibiotic usage can also affect 

the gut barrier, largely thought to be due to the antibiotic-induced gut dysbiosis. Antibiotics have 

been associated with increased gut permeability, decreasing tight junction gene expression, and 

affecting zonula-occludin-1 morphology76. Profiling the gut resistome of patients with asthma 

would further inform physicians concerned with antibiotic resistance and may contextualize the 

functions affecting the gut-lung axis. 
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2.1 Abstract 

The composition of the gut microbiota in early childhood is linked to asthma risk, but the 

gut microbiota may continue to play a role in older patients with established asthma. In this 

study, we profile the gut microbiota of 38 school-aged children (19 with asthma, median age 8) 

and 57 adults (17 with asthma, median age 28) by 16S rRNA sequencing and found evidence 

that individuals with asthma harbored compositional differences from healthy controls in both 

adults and children. We develop a model that aids in the design of mechanistic experiments in 

gnotobiotic mice and show that enterotoxigenic Bacteroides fragilis (ETBF) is more prevalent in 

the gut microbiota of patients with asthma over 6 years of age compared to healthy controls. In 

mice colonized with ETBF experiencing allergic airway inflammation (AAI), ETBF, modulated 

by community context, can increase oxidative stress in the lungs. Our results provide evidence 

that ETBF affects the phenotype of airway inflammation in a subset of patients with asthma 

outside of early childhood which suggests that therapies targeting the gut microbiota may be 

helpful tools for asthma control. 

2.2 Introduction 

Asthma is a common respiratory disease characterized by airway inflammation triggered 

by an allergic response to environmental antigens. While asthma is predominately associated 

with T helper (Th)-2 inflammation associated with high levels of cytokines IL-4, IL-5, and IL-

13, detailed characterization from clinical studies has revealed substantial heterogeneity in the 

immunopathology of this disease, referred to as an asthma endotype 77. The majority of children 

tend to have a Th2-dominant endotype and often experience virus-induced exacerbations. In 

contrast, a significant fraction of adults have a non-Th2 driven endotype and experience a wider 

spectrum of immunopathologies27. For example, Th17-associated inflammation is more common 
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in adults and is associated with corticosteroid resistance and increased frequency of 

exacerbations78. Furthermore, greater intracellular oxidative stress increases inflammation and 

hyperreactivity in the airways of patients with asthma79 and has been associated with IL-17A 

mediated inflammation in mouse models80. Although disease heterogeneity plays an important 

role in the prognosis and treatment of asthma, the specific factors that drive the endotype of 

asthma are not well understood.  

A potential source of disease variability in the lung lies in the diverse immunologic and 

metabolic activities of the gut microbiota. Gut microbes have been implicated in the pathology of 

a range of lung diseases including chronic obstructive pulmonary disease 81, fungal 82 and 

bacterial pneumonia 83,84, and, notably, asthma 35. One mechanism by which this phenomenon, 

termed the “gut-lung” axis 85, affects asthma is through the synthesis of bioactive metabolites. 

For example, microbe-derived molecules like short-chain fatty acids 12,35 and 12,13-diHOME 

13,62 are thought to permanently alter the immune system during infancy. Other metabolites 

produced by the gut microbiota have also been shown to influence oxidative stress in distal 

tissues including the brain and kidneys later in life 86,87. 

Metagenomic surveys have revealed a “critical window” 88 where microbiome and 

immune co-development 1 during the first year of life has an exaggerated effect on the 

development of asthma later in life. 21,35,89,90. Additionally, gnotobiotic animal studies have 

shown that asthma-associated microbes from early childhood can modulate susceptibility to 

experimental models of AAI 35. However, it remains unclear whether the mechanisms 

influencing the development of asthma in infants continue to affect the disease in older children 

and adults, or whether functions of the gut microbiota modulate the characteristics of asthma 
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after it has been established. Among older children and adults that are beyond the critical 

window, individuals with asthma harbor differences in microbial diversity and composition 

40,44,91,92 compared to healthy controls, emphasizing the need to further investigate the influence 

the microbiota might have on asthma throughout life. 

Few studies have been devoted to identifying and defining the effects of the gut 

microbiota on lung inflammation in older individuals with asthma. One of these studies has 

demonstrated that the gut commensal, Akkermansia muciniphila, which is reduced in individuals 

with obesity-associated asthma, can mitigate AAI in mice 40. In contrast, a study of AAI severity 

in gnotobiotic mice colonized with gut microbiota from school-aged children did not find a 

difference in markers of allergy between mice colonized with microbiota from healthy children 

and children with asthma 63. Given these variable results, there remains a need to assess the 

effect of the gut microbiota on established asthma and to find testable mechanisms for human 

clinical studies.  

In this study, our goal was to analyze the fecal microbiota from a clinical study of healthy 

and asthmatic subjects from which we could select representative human samples to thoroughly 

characterize in a gnotobiotic mouse model of AAI. Follow up experiments would then test the 

prevalence of the discovered immune phenotypes in additional fecal microbiota donors. We 

hypothesized that there would be effector gut microbes, more prevalent in people with asthma, 

that could promote airway inflammation in mice. Our results show that while typical markers of 

allergy were not affected by the gut microbiota, asthma-associated microbiomes were more 

likely to harbor enterotoxigenic Bacteroides fragilis (ETBF) which was associated with gut 

barrier dysfunction, as well as oxidative stress in the lungs of gnotobiotic mice. 
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2.3 Results 

2.3.1 The composition of the gut microbiota differs between individuals with and without 

asthma  

To investigate if asthma is associated with distinct gut microbial signatures outside of 

early childhood, we recruited 17 adults and 19 school-aged children with physician-diagnosed, 

moderate-to-severe atopic asthma along with 40 adult and 19 school-aged healthy controls into 

the previously described Microbiome and Asthma Research Study 93 (MARS; see demographic 

summary in Table S1A, B and Figure 5.1A; see also Methods). The adult cohort was 18-40 years 

old with a median age of 28 years (s.d. 6.2 years) and the pediatric cohort was 6-10 years old 

with a median age of 8 years (s.d. 1.6 years). We performed V4-16S rRNA amplicon sequencing 

of participant stool samples obtained at the patient’s baseline and identified amplicon sequence 

variants (ASVs) using DADA2 94 (Figure 5.1B). There was a slight increase in alpha diversity in 

subjects as measured by Simpson’s metric within individuals with asthma compared to healthy 

controls (p = 0.035), even after accounting for differences between age group (p = 0.030) and 

read depth (p = 0.063, Figure 2.1A). The significance of this trend is unclear however, as the 

same was not true for other metrics of alpha diversity which were more susceptible to read depth 

(Figure 5.1C). To determine how demographic features affected community composition, we 

performed a PERMANOVA on Bray-Curtis dissimilarity distances (Figure 2.1B and Figure 

5.1D) between fecal microbiomes. First, we analyzed demographic factors reported to influence 

microbiome composition as independent terms using a sequential PERMANOVA and found that 

asthma status (p=0.00009; R2=0.025), age (p=0.00001; R2=0.032), and race (p=0.001; R2=0.02) 

significantly contributed to the variation in subject gut microbiota composition, but adiposity 

(p=0.3; R2=0.03), sex (p=0.4; R2=0.009), smoking history (p=0.4; R2=0.009), and antibiotic 
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exposure within the past year (p=0.7; R2=0.008) did not (Table S2). We then ran another 

sequential PERMANOVA that included interaction terms between all the factors that had a p-

value of less than 0.05 in the first PERMANOVA and found that asthma status (p=0.02; 

R2=0.015), age (p=0.0017; R2=0.019), and race (p=0.0041; R2=0.018) remain contributors to the 

variation in beta diversity, even when accounting for sequencing batch effect and interaction 

terms (Figure 2.1C). Although age is an important factor in determining asthma phenotype, we 

did not find the interaction of age and asthma to be significant. Guided by the PERMANOVA  

 
Figure 2.1. V4-16S rRNA profiling of stool from MARS cohort identifies gut microbiome differences in patients 

with asthma. 

A) Simpson alpha diversity based on ASVs in stool samples from the MARS Cohort. Read depth was included as a 

variable to control for differences in library size. B) Non-metric multidimensional scaling (NMDS) on Bray-Curtis 

dissimilarity of MARS gut microbiomes. Ellipses represent 95% confidence intervals; diamonds indicate donor dyad 

(MARS0022/MARS0043). C) Bar plot summarizing results of PERMANOVA analysis on the beta diversity in (B). 

We also tested the homogeneity of the variance using PERMDISP2 and found no detectable difference in dispersion 

associated with age group or asthma status. Color represents R2 value and the length of the bar represents -log(p-

value). Dashed line indicates a p-value threshold of 0.05. D) Heatmap of average relative abundances of 

differentially abundant taxa identified between patients with asthma and healthy controls using DESEQ2. Average 

relative abundances have been rescaled using the arcsine-square-root transformation. See a lso Figure 5.1. 
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results, we performed differential abundance analysis and identified alterations in taxa 

corresponding to disease status (11 ASVs), age (13 ASVs), and race (18 ASVs; see Table S3) 

after accounting for sequencing batch effect. Taxa differentially abundant between healthy and 

asthmatic individuals included several that have been previously reported to discriminate 

between healthy and atopic individuals including Prevotella copri (ASV8, ASV50) 95,96 and 

Ruminococcus bromii 97 (ASV119; Figure 2.1D).  

2.3.2 Germ-free mice humanized with fecal microbiota from an adult with asthma 

showed an increase in lung oxidative stress and Th17 responses  

We next sought to test whether the asthmatic gut microbiota could affect pulmonary 

inflammation in a mouse model of AAI. To explore this question, we selected a pair (“dyad”) of 

human fecal microbiota samples from a healthy and asthmatic subject to “humanize” gnotobiotic 

mice by oral gavage. We initially selected an unrelated healthy-asthma dyad where the 

individuals were demographically similar (Subjects 0022 and 0043; matched for age, sex, BMI, 

race, and smoking history, see Table S1C). We constructed a Naïve Bayes Classifier (NBC) to 

generate several metrics that would help us evaluate the suitability of the selected dyad for 

characterization in a gnotobiotic animal model (see Methods for additional details). First, to 

quantify how similar each sample was to its respective cohort, we calculated a Sample Score that 

ranged from 0 (typical of healthy) to 1 (typical of asthma) and found that both candidate donor 

microbiomes were typical of their respective disease cohorts (Figure 2.2A). Second, we 

visualized samples by Feature Score (Figure 2.2B, Figure 5.2A-C, see Methods) to confirm our 

selected samples cluster with their respective cohorts. Third, to evaluate the testable microbial 

relationships in the selected dyad relative to all other possible selections, we counted the number 

of ASVs, for all possible dyads agnostic to host demographics, whose relative abundance was 
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consistent with the NBC’s learned differences between the asthma and healthy cohorts. We 

defined this metric as a Pairwise Feature Score (PFS) which is greater than zero for every taxon 

in a dyad whose relative abundances are concordant with our model’s predictions (see Methods). 

We compared the number of “model concordant taxa” (PFS>0) between all possible dyads 

(Figure 2.2C, Figure 5.2D) and found that our selected dyad contained a greater than average 

proportion of model concordant taxa. This indicates that the number of testable microbial 

comparisons mirroring the relationship between the asthma and healthy cohorts within our 

selected dyad is typical among all dyads. Together, these results support the idea that the 

demographically well-matched MARS0022-0043 dyad is characteristic of the microbial 

differences between cohorts and showcases a new tool for characterizing microbiome dyads. 

 
Figure 2.2. Selected donors capture discriminatory microbial relationships. 

A) Histogram of Platt-scaled MARS NBC Sample Scores. A score of 0 is consistent with a “healthy appearing” 

sample and a score of 1 is consistent with an “asthma appearing” sample. Vertical dashed lines denote the sample 

scores for MARS0022 (purple) and MARS0043 (pink). B) PCA of NBC Feature Scores, calculated as the log 

likelihood that the relative abundance for a given taxon would occur in the healthy or asthma cohorts. MARS0022 

(purple diamond) and MARS0043 (pink diamond) are the donor samples used in subsequent experiments in 

gnotobiotic mice. Green diamonds denote bft positive samples. C) Histogram of the proportion of pairwise 

concordant taxa across all possible healthy-asthma donor dyads. Vertical dashed line denotes the MARS0022 and 

MARS0043 dyad. See a lso Figure 5.2, Figure 5.8, and STAR Methods. 
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Mice humanized with the “healthy” (originating from MARS0022) or “asthmatic” 

(MARS0043) fecal microbiota underwent ovalbumin sensitization and challenge (OSC) or were 

sacrificed after 4 weeks without OSC, resulting in four groups of mice we will denote as follows: 

HO, mice colonized with a healthy microbiota undergoing OSC; AO, mice colonized with the 

asthmatic microbiota undergoing OSC; HN, mice colonized with a healthy microbiota that 

remained naïve; AN, mice colonized with an asthmatic microbiota that remained naïve (Figure 

2.3A).  

We performed V4-16S rRNA profiling of humanized gnotobiotic mice to better 

understand how gut microbial community ecology influences immune responses in the lung. 

This analysis affirmed that the gut microbial communities present in the gnotobiotic mice 

strongly resembled the human donors from which they had originated (Figure 5.3A-B). While 

human fecal transplantation into gnotobiotic mice can result in some reconfigurations of the 

original community 98, our analysis showed that many pairwise concordant taxa identified by our 

NBC colonized AO and HO gnotobiotic mice. These taxa included  B. uniformis, B. fragilis, and 

Erysipelotrichaceae (Longicatena caecimuris), of which the latter two have been previously 

implicated in asthma pathogenesis8,99,100 (Figure 5.3C). 

To demonstrate that we successfully induced AAI in these mice, we performed bulk 

RNA-Seq on whole lungs and measured Th2 cytokines, Il4, Il5 and Il13 as well as serum anti-

ovalbumin IgE. Although the degree of sensitization to ovalbumin and expression of Th2-related 

cytokines (Il4, Il5, or Il13) were markedly different between naïve germ-free mice and both OSC 

treated groups, consistent with successful induction of AAI, we found no difference between AO 

and HO mice (Figure 5.4A,B).  As expected, humanized mice undergoing OSC had 
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transcriptome profiles that were distinct from naïve humanized mice, reflecting upregulation of 

genes and pathways related to Type 2 and eosinophilic inflammation and demonstrating that we 

successfully induced AAI in HO and AO mice (Figure 5.4C-E, Table S4, and Table S5).  

 
Figure 2.3 An asthmatic microbiota alters allergic airway inflammation phenotype in humanized gnotobiotic mice.  

The panels combine four different experiments shown denoted by shape. A) Overview of experimental paradigm. O: 

recipients of ovalbumin sensitization and challenge (OSC); N: no ovalbumin sensitization or challenge; A: recipient 

of fecal sample from human donor with asthma; H: recipient of healthy donor fecal sample. B) Principal 

Components Analysis of variance-stabilized gene counts from lung RNA-Seq (n=4,5). (PERMANOVA, 999 

permutations: OSC (p = 0.001), donor (p = 0.022), and donor:OSC interaction (p=0.037); Results of a post-hoc test 

are also shown in the table. C) Bar plot showing normalized enrichment score (NES) of  select GO pathways 

upregulated (red) or down-regulated (blue) in AO mice compared to HO mice (n=5) (p-adjusted<0.05). D) GSEA 

enrichment plot of the hydrogen peroxide catabolic process pathway upregulated in the lungs of AO mice compared 

to HO mice. E) Heatmap of individual hydrogen peroxide catabolic process genes in AO and HO mice. In purple 

scale: log-transformed size factor normalized counts. In blue-red scale: Log-2 fold change of AO compared to HO. 

Genes outlined in black represent a p < 0.05. F) Oxidized guanosine in AO and HO mouse lungs (n=9-10 mice per 

group; Wilcoxon, one-tailed). G) Flow cytometry of the lungs of AO and HO mice comparing effector T-cells 

(CD44+CD62Llow, CD4+TCRb+) from the lungs of AO and HO mice (n=6-10 mice/group). All experiments include 

2-5 males and 2-5 females per group. Shapes denote four separate experiments and are consistent with subsequent 

figure. See also Figure 5.3, Figure 5.4, and Figure 5.5. 

We next evaluated the effect of the gut microbiota on overall lung transcriptome profiles. 
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In naïve mice, the gut microbiota appeared to have little or no effect on the overall transcriptome 

profiles since the difference between HN and AN mice was negligible (Figure 2.3B). In contrast, 

mice undergoing OSC colonized with different microbiota had distinct lung transcriptome 

profiles (see HO vs. AO mice in Figure 2.3B), suggesting the gut microbiota may be important in 

the context of AAI. Notably, expected allergy-related genes (Il4, Il5, Il13) and pathways (Type 2 

immune response, hyperreactivity, eosinophil, and neutrophil pathways) that were upregulated 

by the induction of AAI were not differentially expressed between HO and AO mice (Figure 

5.4A-C). These data suggest that Th2-related responses do not make up the transcriptomic 

differences between HO and AO mice.  

Differentially abundant pathways between HO and AO mice included several involved in 

DNA repair and recombination (Figure 2.3C, Figure 5.4F-G, Table S4 and S5). We also saw 

enrichment of a pathway associated with the breakdown of hydrogen peroxide (GO:0042744) in 

HO compared to AO mice (Figure 2.3C, D). Many of the genes in this pathway have been 

implicated in protective responses to oxidative stress. These include hemoglobin synthesis genes 

(Hba-a1, Hbb-bt, and Hbb-bs), which are known to be upregulated and protective during 

oxidative stress in extra-erythropoietic tissues 101,102, and peroxidasin (Pxdn), an enzyme which is 

likewise known to play a protective role during oxidative conditions in tissues (Figure 2.3E)103. 

When considered with the known roles of oxidative stress in upregulating DNA damage and 

repair machinery in AAI 104,105, we hypothesized that increased oxidative stress led to DNA 

damage in AO mice. To test this idea, we measured oxidized guanosine, a marker for oxidative 

stress106, in the lung tissue, and found it to be increased in AO compared to HO groups (Figure 

2.3F). Together, these data reflect increased oxidative stress in the lungs of mice that received 
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the asthmatic microbiota in the context of airway inflammation.  

We further investigated the impact of the microbiota on immune cell subsets by 

performing immunophenotyping on tissues from HO and AO mice. Flow cytometry of lung 

tissue demonstrated an increase in effector T cells in AO mice compared to HO mice 

(TCRb+CD4+CD62LloCD44+ cells; Figure 2.3G). Consistent with RNA-Seq results, we did not 

observe a difference in neutrophils or eosinophils recovered from the lung tissue (Figure 

5.5A,B). However, we observed an increase in CD4+ T cells expressing IL-17A after 

restimulation and intracellular staining (Figure 5.5C). Coupled with the increased transcription of 

Il17a in the lung tissues (Figure 5.4B), these findings are consistent with enhanced Th17 cell 

recruitment to the lungs of AO mice compared to HO mice. This increased Th17 response could 

also be detected in the mesenteric lymph nodes of AO mice but we did not observe systemic 

increases in Th17 cells in the spleen or increased serum IL-17A protein (Figure 5.5C-E), 

suggesting the presence of Th17 cells in the gut and the lung. Taken together, these results 

support the idea that the gut microbiota from our selected dyad did not change the expression of 

allergy-associated pathways but did demonstrate alterations in Th17 responses and increased 

markers of oxidative stress in the lungs of OSC treated mice. 

2.3.3 IgA-Seq identifies enterotoxigenic Bacteroides fragilis as a potential effector taxon 

during AAI 

Based on other studies finding that IgA-coated bacteria modulate the host mucosal 

immune response 107, we used a technique called IgA-seq to identify microbes from the fecal 

microbiota that are coated with IgA. Our IgA-seq analysis showed that Bacteroides species were 

more likely to be coated by IgA in AO mice compared to HO mice (Figure 2.4A, B). In AO 
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mice, these IgA-coated bacteria included B. uniformis and most prominently, B. fragilis.  

 
Figure 2.4. Enterotoxigenic Bacteroides fragilis from human donor with asthma is linked to increased gut 

barrier permeability in humanized gnotobiotic mice.  

A) Bubble plot of IgA-Seq results from AO and HO mice at the genus level (n=8-10 mice/group), and specific 

species of Bacteroides.  Bubble color indicates significant enrichment (red) or depletion (blue) in the IgA coated 

fraction. Bubble size indicates the magnitude of enrichment as determined by the IgA index. B) IgA Index of 

Bacteroides genus between AO mice and HO mice colonized with asthmatic or healthy microbiota (Wilcoxon 

p=0.012; n=8,10 mice/group). C) Intestinal permeability of mice colonized with asthmatic and healthy microbiota 

following a 1-week (Wilcoxon p=0.7; n=3 females/group) and 6-week colonization (Wilcoxon p=0.03; n=8-10 

mice/group) on a log10 scale. D) qPCR of occludin gene (Ocln) in the proximal colon of humanized mice 

(Wilcoxon p=0.008; n=5 mice/group). All experiments include 4-5 males and 4-5 females per group unless 

otherwise stated. Shapes denote separate experiments and are consistent with previous figure. Two-sided Wilcoxon 

test for all boxplots. See also Figure 5.3 and Figure 5.4. 

Supported by the observation that B. fragilis was in the top 25% of the most discriminatory taxa 

in the NBC, we isolated and sequenced the B. fragilis strain found in the asthmatic microbiota, 

referred to here as BFM04319. We found that its genome encoded for the B. fragilis toxin gene, 

bft, also called fragilysin. 
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Fragilysin is a B. fragilis diarrheal toxin 108 whose proteolytic activity is directed against 

the adherens junction protein E-cadherin and disrupts the intestinal epithelial barrier 109,110. We 

reasoned that gut barrier function would be impaired in AO mice, so we assessed FITC-Dextran 

leakage in the humanized gnotobiotic mice and found a trend towards increased intestinal 

permeability in mice colonized with the asthmatic microbiota as early as one week after gavage 

that persists after OSC (Figure 2.4C). Similar to previous studies 111, increased FITC-Dextran 

leakage was also accompanied by downregulation of the gene encoding for occludin (Ocln), an 

important protein involved in the regulation of intestinal tight junctions, in the colons of AO 

mice (Figure 2.4D).   

Since gut barrier dysfunction has been previously implicated in inducing systemic 

oxidative stress 111,112, we hypothesized that ETBF in our asthmatic stool sample was responsible 

for the increased oxidative stress in the lungs of AO mice by disrupting the gut barrier. We 

directly tested whether ETBF alone is sufficient to modulate oxidative stress after OSC by 

examining three groups of gnotobiotic mice: 1) mice that remained germ-free (GF); 2) mice 

monocolonized with BFM04319 (ETBF), and 3) mice monocolonized with a non-toxigenic B. 

fragilis strain VPI2553 (NTBF) (Figure 2.5A) 113. We performed OSC on all three groups and 

confirmed that all groups had increases in anti-ovalbumin IgE and Th2 cytokine expression, with 

the exception of Il4, compared to naïve germ-free controls providing evidence that we 

successfully induced AAI (Figure 5.6A-B). We note that IL-4 from whole lung tissues in C57 

BL6 mice is a less sensitive measure of AAI than other markers such as IL-5 or IL-13 114,115. 

There were no differences in these markers between OSC groups. As expected, mice colonized 

with ETBF had greater intestinal permeability than either GF controls or NTBF colonized mice 
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(Figure 2.5B). We observed higher levels of oxidized guanosine in the lungs of ETBF colonized 

mice compared to GF controls (p = 0.018), a trend for NTBF colonized mice to have greater lung 

oxidized guanosine than GF mice (p = 0.15), as well as a trend for ETBF colonized mice to have 

higher levels of lung oxidized guanosine than NTBF colonized mice (p = 0.1, Figure 2.5C).  

 
Figure 2.5. Monocolonization with ETBF increases gut barrier permeability and lung oxidative stress in 

gnotobiotic mice.  

A) Overview of the experimental paradigm testing the ability of bft carrying enterotoxigenic B. fragilis (ETBF) and 

bft lacking non-toxigenic B. fragilis (NTBF) to affect gut barrier function in mice. B) Intestinal permeability of mice 

colonized with either ETBF or NTBF and germ-free controls (GF) (n=8-10 mice/group; Kruskal-Wallis, one-tailed 

Dunn post hoc with Benjamini-Hochberg correction). C) Oxidized guanosine in lungs of ETBF, NTBF, and GF 

mice (n=8-10 mice/group; Kruskal-Wallis, one-tailed Dunn post hoc with Benjamini-Hochberg correction). D) 

Cytospin cell counts from bronchoalveolar lavage collected from mice colonized with ETBF, NTBF or germ -free 

controls. PMN=polymorphonuclear cells (i.e. neutrophils), Lymph=lymphocytes, Eos=eosinophils, 

Mac=macrophages (n=8-10 mice/group; Kruskal-Wallis, one-tailed Dunn post hoc with Benjamini-Hochberg 

correction). This experiment includes 3-4 males and 5-7 females per group. See also Figure 5.6. 

Further, mice colonized with ETBF had lower neutrophil counts in their bronchoalveolar lavage 

compared to NTBF-colonized mice or GF controls, although eosinophils, lymphocytes, alveolar 

macrophages and Il17a transcription were not significantly different (Figure 2.5D, Figure 5.6B). 

These results provide evidence that colonization with ETBF is sufficient to cause gut barrier 
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dysfunction, modulate airway inflammatory profile, and increase oxidative stress following 

OSC.  

2.3.4 Expression of bft in mice humanized with ETBF+ donor microbiota is highly 

dependent on microbial community context 

Following our identification of ETBF as an important driver of oxidative stress in the 

lungs of gnotobiotic mice undergoing OSC, we then sought to investigate the importance of 

ETBF in the context of different microbial communities. While exploring multiple donors does 

not guarantee translatability to humans 98, it does reveal the strength and robustness of the ETBF-

oxidative stress phenotype. Therefore, we selected multiple dyads made up of one ETBF+ donor 

with asthma and one ETBF- healthy donor for humanization and measured gut barrier 

permeability, lung cytokine gene expression, and pulmonary oxidative stress after OSC. To 

select donor samples, we screened MARS stool samples for bft using PCR and qPCR 116,117 and 

identified five asthmatic fecal samples harboring ETBF and five healthy fecal samples lacking 

ETBF, each pair matched by both age group and community composition metrics derived from 

our NBC (see Methods; Figure 5.7A-B and Table S1C). Using the selected communities, we 

humanized germ-free mice and performed OSC. We evaluated humanization in recipient 

gnotobiotic mice by comparing the Bray-Curtis dissimilarity scores from 16S rRNA sequencing 

of stool from human donors and recipient mice at the time of sacrifice. This led us to exclude 

three groups of humanized mice (2 ETBF-, 1 ETBF+) whose engrafted fecal microbiome did not 

best reflect their donors, leaving seven humanized mouse groups (Figure 2.6A, Figure 5.7C; see 

Methods). As previously observed, all experimental mice had increases in Th2 cytokine 

expression, except Il4, and anti-ovalbumin IgE compared to naïve germ-free controls and that 

there were no differences in these markers between OSC groups (Figure 5.7D-E).   



32 

 
 

 
Figure 2.6. Humanization with multiple microbiota suggests ETBF produced bft can alter lung inflammation in 

a community context dependent manner.  

A) Overview of experimental paradigm. Five healthy and five asthmatic donor microbiota were used to humanize 

germ-free mice (4 - 7 mice per donor). Two weeks later, pulmonary inflammation was induced by OSC. After 

evaluating humanization, only seven mouse groups were used in subsequent analyses. B) qPCR measurements of bft 

in the cecal content of humanized mice (t-test against initial MARS0043 microbiome). C) Pearson correlations 

between RT-qPCR measures of lung cytokines from mice humanized by ETBF- healthy (top) and ETBF+ asthmatic 

(bottom) microbiota. Area and color of the circle represent the absolute value of the Pearson  correlation coefficient 

with corresponding color key. Asterisks represent the p-value from the Pearson correlation. Solid (Steiger’s test; 

p=0.0044) and dotted (Steiger’s test; p = 0.0026) black squares indicate a statistically significant difference between 

the two outlined correlations. D) Pearson correlation between oxidized guanosine in the lungs of humanized mice 

and RT-qPCR measures of lung Il17. All experimental groups included 1-4 female and 2-4 male mice. See also 

Figure 5.7. 

Overall, we found no differences in gut barrier leakage, pulmonary oxidative stress, or 

gene expression of lung cytokines between mice colonized with an asthmatic ETBF+ microbiota 

and those receiving an ETBF- healthy microbiota (Figure 5.7E-G). To understand the differences 

between these experiments and our original donor experiment, we measured copies of bft RNA 

and DNA in the cecal contents of ETBF+ humanized mice and found that the median expression 

levels of the mice with newly selected human samples were 1.2- to 67.5-fold lower than that of 
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the original donor sample, MARS0043 (Figure 2.6B, t-test p=0.01). These results are consistent 

with previous research showing that ETBF vary their enterotoxin expression based on the 

microbial community context 118 and may explain the lack of an ETBF-oxidative stress 

phenotype seen in these mice. 

Given that the expression of bft was far more variable than observed in the original donor 

dyad, we tested if there was any correlation between bft expression and markers of Th17 or AAI. 

As expected, the expression of Th2 cytokine encoding genes Il5 and Il13 were highly correlated 

with each other in both experimental groups. However, we found that Il5 and Il13 were 

correlated with Il4 in mice colonized with ETBF- microbiota from healthy individuals, but not in 

mice colonized with ETBF+ microbiota from individuals with asthma (Figure 2.6C). The Il4/Il5 

and Il4/Il13 correlations observed in the healthy group were significantly stronger than that in the 

asthma group (Steiger’s test p=0.0044 and 0.0026 respectively), suggesting different patterns of 

Th2 cytokine expression in the lungs. Previous studies have identified a correlation between Il17 

expression and oxidative stress in the lungs80. We found that ETBF+ humanized mice displayed 

the expected correlation between lung Il17a expression and oxidative stress (Figure 2.6D, 

Pearson = 0.443, p = 0.039), but the ETBF- healthy humanized mice did not (Pearson = -0.004, p 

= .987). Together, these results suggest that ETBF+ microbiota from donors with asthma may 

link oxidative stress to Il17a. 

2.3.5 Gut colonization with ETBF is more prevalent among individuals with asthma 

compared to healthy controls 

Finally, we investigated the importance of bft in humans by examining its prevalence in 

the stool of MARS participants. Using PCR and qPCR 116,117, we screened all human fecal 

specimens in which B. fragilis was detected by 16S rRNA sequencing for bft and found a total of 
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eight individuals with asthma and two healthy subjects with detectable bft. Though prevalent in 

only 22% of the asthma cohort, bft is significantly enriched in subjects with asthma compared to 

healthy individuals (Figure 2.7A and Figure 2.2B). There was no statistically significant 

difference in Asthma Control Test score 119 between patients with or without ETBF (Table S1D, 

p=0.3). We then asked whether higher rates of ETBF could be a consequence of an increased 

prevalence of B. fragilis in the asthma cohort but found no difference in the frequency of B. 

fragilis colonization (Figure 2.7B). Even amongst only individuals colonized with B. fragilis, 

patients with asthma were still more likely to be colonized with ETBF than NTBF compared to 

healthy individuals (Figure 2.7C). We next examined fecal calprotectin levels from remaining 

subjects to determine whether asthma was associated with gut barrier permeability. Overall, we 

found that calprotectin was either low or undetectable in all samples but tended to be more 

detectable in samples originating from a donor with asthma (Fisher’s test p-value = 0.053, Figure 

2.7D). While the low levels of calprotectin are likely due to long-term sample storage, these 

results tentatively suggest a degree of barrier dysfunction in patients with asthma.  

To check if bft presence alone associated with a shift in the microbiota as a whole, we 

tested bft presence as a feature in a sequential PERMANOVA on Bray-Curtis beta diversity 

(Figure 2.7E) after accounting for the important demographics presented in Figure 2.1C 

(sequencing batch, race, age, and asthma status). We found no statistically significant effect of 

bft presence alone on global shift in the beta diversity (p=0.24; Figure 2.7F). However, we 

suspected that other taxa in the gut may be associated with ETBF, so we performed a co-

occurrence analysis with bft presence and our 16S rRNA sequencing results (Figure 2.7G). In  
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Figure 2.7. bft is enriched in individuals with asthma.  

A-D) Ratios of (A) bft positive over bft negative samples (n=59 Healthy, 36 Asthmatic). bft positive samples were 

characterized by PCR and qPCR screening among the 37 total subjects with B. fragilis. The 58 remaining subjects 

without B. fragilis by 16S rRNA sequencing were not screened and were considered bft negative. B) B. fragilis 

positive samples over B. fragilis negative samples, characterized by V4 16S rRNA community profiling (n=59 

Healthy, 36 Asthmatic). C) bft positive samples with B. fragilis over bft negative samples with B. fragilis (n=20 

Healthy, 17 Asthmatic). D) Stool samples with detectable calprotectin via ELISA over those with no detectable 

calprotectin. E) Non-metric multidimensional scaling (NMDS) on Bray-Curtis dissimilarity of MARS donor 

microbiomes at ASV-level. Ellipses represent 95% confidence intervals. Shape denotes asthma (circle) or healthy 

(square). Color denotes a positive (green) or negative (grey) hit for bft in fecal gDNA. F) Bar plot summarizing 

results of a sequential PERMANOVA analysis on the beta diversity in (E). Color represents R2 value and the length 

of the bar represents -log(p-value). Dashed line indicates a p-value threshold of 0.05. G) Volcano plot describing co-

occurrence between bft and taxa in human stool samples, calculated as the log ratio of the number of samples in 

which bft was observed in the same sample as the taxon compared to the number of times bft and the taxon would be 

expected to occur in the same sample by chance alone73. Color represents a significant positive (red) or negative 

(blue) co-occurrence with bft after multiple hypothesis correction. Taxa positively correlated with bft and B. fragilis 

(ASV4) are shown in green. Gray represents a non-significant relationship. Size represents the area under the ROC 

curve (AUC) of the taxa calculated from the NBC. (For all panels except C and D: n=59 Healthy, 36 Asthmatic). 

See also Figure 5.1. 

addition to B. fragilis, we identified 7 taxa positively correlated and 4 negatively correlated with 

ETBF colonization. Among the positively correlated taxa were 4 taxa that co-occurred with bft 

but not B. fragilis (ASV4), suggesting that ETBF may influence gut microbiota composition in a 

different manner from NTBF species. Notably, bft co-occurs with Dorea formicigenerans 

(ASV113, AUC = 0.663, Rank 11), Longicatena caecimuris (ASV220, AUC = 0.662, Rank 12), 

and Clostridium spiroforme (ASV270, AUC = 0.657, Rank 13), which are highly discriminatory 

between asthma and healthy individuals according to our NBC (Figure 5.8A). Additionally, our 
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differential abundance analysis of ETBF+ microbiota against ETBF- microbiota, identified 

enrichment of C. spiroforme (ASV270, AUC = 0.657, Rank 13) and  Ruminococcacae (ASV255, 

AUC = 0.628, Rank 29) in the ETBF+ donors and R. intestinalis (ASV168, AUC = 0.602, Rank 

65) in the ETBF- donors, supporting the findings from the co-occurrence analysis (Table S3). 

These results imply that the presence of bft reinforces asthma-associated changes in the gut 

microbiota.  

2.4 Discussion  

Despite our growing understanding of the origins of asthma, the heterogeneous nature of 

the disease remains a barrier to treatment. In addition to factors such as age 120, sex 121, smoking 

status 122, and microbial exposures 123, the gut microbiota is increasingly appreciated as a 

determinant of asthma risk 8,35. Here we leverage a cross-sectional human clinical study of 95 

patients with and without asthma and use humanized gnotobiotic mice to show that, in the right 

community context, ETBF can increase Th17 inflammation and oxidative stress in the lungs of 

mice with AAI, potentially by disrupting the gut barrier. This finding is of potential clinical 

relevance since we found that ETBF is more prevalent in the gut microbiomes of people with 

asthma. 

 Humanization of gnotobiotic mice is a powerful tool to study the human microbiota and 

its effects on host phenotypes, but has many well-established caveats. First, the human 

microbiota does not perfectly maintain community and functional structure between donors and 

mouse recipients98,124. Second, virulence factors adapted to human hosts may not affect mice to 

the same degree. Third, a gut microbiota may influence the host phenotype by multiple 

mechanisms simultaneously, such as in asthma where multiple microbial metabolites are known 
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to alter the course of the disease, each by their own respective mechanisms 12,13,35,62. Together, 

these issues can complicate the interpretation of results from gnotobiotic experiments and affect 

the translatability of those results back to humans.  

 Designing experiments to address these limitations requires the selection of donor 

samples that both control for confounding factors that modify the microbiome apart from the 

disease of interest as well as capture the relevant microbial relationships between healthy and 

disease-affected populations. Control of confounding factors is often accomplished by matching 

the clinical demographics of donors 98,125 (Figure 2.1B-C) but there is no standardized practice 

for identifying samples that capture important microbial relationships. Given the immense 

interpersonal variability of the microbiome 126–128, no single pair of samples captures all the 

discriminatory microbial features from a population but we can still select pairs enriched in these 

relationships to study. We believe that the approach presented here for sample selection will be 

useful in identifying microbial drivers of disease in future clinical studies. 

Our in-depth profiling of a single dyad revealed an ETBF+ microbiome from a donor 

with asthma increased the Th17 response and oxidative stress within the lungs of humanized 

gnotobiotic mice in the context of AAI. While previous studies have implicated airway microbes 

in inducing Th17 responses in AAI 11,93, our work provides evidence that this phenotype can be 

mediated by a gut microbiota-expressed factor. In follow-up monocolonization experiments, we 

confirmed that the ETBF isolated from the donor with asthma causes increased gut barrier 

permeability and pulmonary oxidative stress in the context of pre-existing inflammation. 

Intriguingly, we observed that neutrophils were lower in ETBF colonized mice, implying that the 

increased oxidative stress is not a result of reactive oxygen species generation from neutrophils. 



38 

 
 

On the other hand microbial products, including LPS and fragilysin, have been shown to directly 

induce oxidative damage in lung and gut epithelial cells, respectively 129,130, suggesting an 

alternative source of oxidative stress. Notably, we did not measure an increased Th17 response in 

the lungs of ETBF monocolonized mice compared to NTBF or GF mice. This could mean that 

other community members in addition to ETBF are important for inducing systemic 131 and lung 

Th17 responses.  

We also explored the effect of community context on ETBF by colonizing groups of mice 

with ETBF+ communities from multiple donors with asthma. We did not detect increased gut 

permeability, pulmonary oxidative stress, or lung Th17 responses in the ETBF+ humanized 

mice. However, we did observe that overall expression of bft was much lower in this experiment 

compared to the MARS0043. Despite this, ETBF+ asthmatic microbiota caused an altered 

pattern of Th2 cytokine expression compared to ETBF- healthy microbiota. Taken with our 

ETBF monocolonization data, these results imply that bft may influence inflammation in the 

lungs, but that its expression and impact on asthma may be modulated by community context. 

Based on these results, we propose that bft and ETBF may contribute to the clinical 

heterogeneity of asthma in humans and raise the question of whether additional gut microbes 

may contribute to asthma endotype.  

 While gnotobiotic experiments offer control over many features of the gut microbiota, 

they ultimately remain a proxy of asthma in humans. Confirming the findings from our 

humanized mouse models will require a longitudinal human clinical study including ETBF 

colonized subjects with asthma and controls that undergo rigorous phenotypic characterization 

that incorporates measuring gut barrier permeability, circulating microbial products, and 
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immunophenotyping of the blood and bronchial lavage. The results of this study would establish 

whether ETBF could adversely influence asthma in people and define the environmental and 

microbial circumstances that enable ETBF to cause these phenotypes. Additionally, the 

outcomes of such a clinical study could also link two previously disparate features of asthma: 

first, that increased gut permeability 57,58 and increased gastrointestinal symptoms 132 have been 

observed in patients with asthma, and secondly, that increased oxidative stress is associated with 

more severe asthma with a higher rate of exacerbations and corticosteroid resistance133,134. 

We acknowledge that ETBF is unlikely to be a universal mechanism contributing to 

asthma and would probably only apply to a subset of people living with asthma (22% from our 

study). We also observed in our mouse models that the effects of ETBF were highly variable and 

caused barrier permeability and increased pulmonary oxidative stress in only one of the six 

ETBF+ microbiota samples we tested from individuals with asthma. These results came from 

four different colonization experiments (Figure 2.3 and Figure 2.4) using the first human donor 

dyad before the experiment that employed ten human donors (Figure 2.6), strongly supporting a 

distinct effect of the initial donor dyad on AAI. The first set of experiments replicated an effect 

on lung inflammation associated with ETBF colonization in AAI, while the second set of 

experiments demonstrates that this phenotype is not generalizable to all of the ETBF+ donors. It 

could be the case that, like ETBF-induced weight loss, the gut and lung phenotypes caused by 

the one ETBF+ microbiota sample opportunely emerge in particular community and 

environmental contexts (Figure 2.6 and Figure 5.7) 118. Here, we suspect that other members of 

the gut microbiota are important for bft expression and substantially modulate the penetrance of 

the ETBF phenotype on AAI. For example, Roseburia species, linked to protective effects in 
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AAI 90, tend not to co-occur with ETBF in our study while Ruminococcus species including R. 

callidus that co-occur with ETBF have been found to be enriched in the stool of patients with 

asthma 135.  

On the other hand, implicating a barrier-disrupting organism in asthma pathology could 

lead to unique interventions to improve asthma control. For instance, targeting ETBF 

colonization by vaccination, antibiotics, or phage therapy could offer a novel means of 

manipulating the immune manifestations of asthma. Alternatively, candidate therapeutics 

designed to improve gut barrier function through their effects on tight junctions for other 

diseases including arthritis 136 and celiac disease 137 could be repurposed to modify the gut-lung 

axis in asthma. Unlike early childhood interventions that aim to alter the development of asthma, 

these therapies may provide benefit to patients with established disease. 

2.4.1 Limitations of the study 

Since our cross-sectional study focused on patients with established disease, we cannot 

demonstrate a causal relationship between ETBF or the gut microbiota and asthma. Rather, our 

findings demonstrate that ETBF modifies the immunological characteristics of the lung in 

gnotobiotic mice experiencing AAI. We identified these findings by contrasting microbiota 

sourced from healthy donors against stool sourced from patients with asthma, but our findings 

are limited in that we cannot separate the effects of the rest of the microbiota. While this could 

be accomplished by testing microbiota from subjects with asthma that contain ETBF against 

microbiota from asthma subjects without ETBF, based on our data from Figure 2.6, we estimate 

that the number of samples we need to separate the effect of ETBF from other microbes exceeds 

the number available from our clinical study. In our experiments, we intentionally chose the 
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ovalbumin-alum model since it is a well-characterized antigen that is easily translated into 

gnotobiotic models. Ovalbumin does not evoke the strongest AAI response in C57 BL6 

mice114,115, as we observed for Il4 in our study, and future gnotobiotic experiments will need to 

include a broader range of biologically relevant antigens such as house dust mite or cockroach 

antigen to better contextualize our findings in acute mouse AAI to human asthma, a chronic 

disease. Additionally, humanized gnotobiotic experiments are limited by the level of engraftment 

of donor microbes and the differences between human and mouse host biology. While we could 

reduce variation due to engraftment in some experiments by performing multiple replicates (e.g. 

Figure 2.3), it was not technically feasible for us to perform this on all experiments given the 

challenges inherent to gnotobiotic experiments. Future studies extrapolating our results to other 

strains and microbiota would further contextualize our findings, but ultimately the mechanistic 

insights revealed by these models must be confirmed in clinical studies. 

2.5 Materials and Methods 

Data and code availability 

RNASeq and V4 16S rRNA and genome sequencing data have been deposited at the 

European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/home) and are publicly 

available as of the date of publication under project accession number PRJEB45298. All original 

code to run the mixture distribution-based NBC is available via zenodo (doi: 

10.5281/zenodo.7522060). Any additional information required to reanalyze the data reported in 

this paper is available from the lead contact upon request. 

Human Subjects 

https://www.ebi.ac.uk/ena/browser/home
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The Microbiome and Asthma Research Study (MARS) was designed to investigate the 

role of intra- and interpersonal variation in the gut microbiome on human asthma pathogenesis. 

This cohort has been described in a previous manuscript 93. Briefly, all individuals were either 

healthy or had moderate-to-severe asthma and had not received oral corticosteroids or antibiotics 

in the 30 days prior to enrollment. Individuals were included in the asthma cohort if they had at 

least one positive skin prick test or serum aeroallergen-specific IgE. Two age cohorts were 

recruited representing a pediatric (aged 6-10 years) and an adult (aged 18-40 years) population. 

Of 104 patients initially enrolled in the study, 103 were asked to provide samples and fill out the 

questionnaire. Of the 103 asked, 6 were excluded due to insufficient medical documentation and 

2 did not provide stool samples (Error! Reference source not found.). As summarized in Table S

1A, a total of 95 patients provided stool and relevant demographic data, including antibiotic and 

asthma medication use over the past year, and were ultimately included in this study. Fecal 

collection tubes with spoons and toilet hats were provided to patients after enrollment. Patients 

either provided a fecal specimen at the recruitment visit or collected and stored a fecal sample at 

home at -20° C for no more than 24 hours before returning the sample to the study site where it 

was stored at -80° C until processing.  

MARS was approved by the Washington University Institutional Review Board (IRB 

ID# 201412035). Written informed consent documents were obtained from all MARS subjects or 

their legal guardians. All animal studies conformed to ethics of animal experimentation and were 

approved by the Institutional Animal Care and Use Committee (IACUC Protocol ID #: 

20180286 and 21-0394). 

Experimental Animals and Ethics 
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Germ-free C57BL/6 mice were bred and maintained in sterile flexible vinyl isolators. 

Sterility was assured by monthly monitoring of mouse stools by 16S rRNA gene PCR 

amplification as well as aerobic and anaerobic culture. Germ-free mice were maintained on a 

strict 12 hour light cycle and a diet of autoclaved mouse chow (LabDiet: Standard Diet 5021 - 

Autoclavable Mouse Breeder). For each experiment no more than five mice were housed in a 

cage. Mice were randomly assigned to experimental groups, with the exception of age and 

gender matching mice in each experimental group. Investigators were not blinded to 

experimental groups. Male and female mice within a group were caged separately but housed 

and handled within the same flexible vinyl isolator. Within all experiments, mice of the same sex 

and receiving the same human microbiota (or isolate) were caged together. Sex was tested, but 

not a significant contributor to the phenotypes described unless otherwise shown. 

Isolation and Growth Bacteroides fragilis strains  

B. fragilis strain BFM04319 was isolated from MARS0043 (subject with asthma) stool 

using anaerobic culture methods. Briefly, a 10 mg/mL stock of homogenized stool in 10% 

glycerol/PBS was thawed in a Coy anaerobic chamber, plated on BHI/mucin agar containing 

0.1% mucin, 0.1% Resazurin, and 0.05% L-Cysteine (HCl) and 1.2 mg/L histidine/hematin and 

incubated at 37˚C for 6 days. Single colonies were isolated in BHI/mucin liquid media and 

stocked in 10% glycerol. Culture purity and identity was confirmed by V4 16S sequencing. Non-

toxigenic B. fragilis VPI2553 was provided as a generous gift from Dr. Jeffrey I. Gordon. All 

strains were grown anaerobically in BHI/mucin media as above at 37˚C for 24 hours before 

diluting 1:2 with 20% glycerol, freezing, and gavaging into GF mice. 
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Humanized Gnotobiotic Mouse Model  

We began with frozen pulverized fecal samples brought into an anaerobic chamber and 

transferred into reduced 1X PBS supplemented with 0.1% Resazurin and 0.05% L-Cysteine 

(HCl) to a concentration of 10 mg/mL. Fecal samples were then thoroughly homogenized using a 

sterilized probe homogenizer. Resuspended fecal samples were diluted 1:2 in 20% glycerol in 

PBS/Cysteine and stored in sealed HPLC vials at -80° C until use. Sample viability was 

confirmed by outgrowth of 100 uL of prepped gavage material on BHI/mucin agar containing 

0.1% mucin, 0.1% Resazurin, and 0.05% L-Cysteine (HCl) and 1.2 mg/L histidine/hematin. A 

minimum of 1x104 CFU/mg was used for colonization. Germ-free mice were humanized by oral 

gavage of 200 mL of a thawed homogenized stool sample. The microbiota was allowed to 

stabilize over two to four weeks prior to further intervention. All experiments were performed 

with at least one asthmatic and one healthy microbiota and separate donor groups were 

maintained in separate isolators to prevent cross-contamination. For the additional humanization 

experiments seen in Figure 2.6, we selected asthmatic microbiota containing ETBF, of which 5 

were viable in culture outgrowth. For each donor with asthma, we selected a healthy sample 

within the same age group – either adult or pediatric – that did not contain ETBF but had the 

highest pairwise feature score (Figure 5.7C). We assessed the quality of human microbiota 

transplantation by calculating the Bray-Curtis dissimilarity of 16S rRNA sequencing data 

between human donors and murine recipients. We then ranked the average dissimilarity between 

recipients and donor and only included recipient groups who were the top ranked in similarity to 

their human donor.  

Allergic Airway Inflammation Model 
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Allergic airway inflammation was induced in mice using chicken egg ovalbumin as 

previously described 93,138. The ovalbumin model of sensitization and challenge is convenient for 

gnotobiotic experiments since it is a pure, sterile protein and has previously been used in other 

gnotobiotic systems35. Germ free mice were sensitized on days 0, 7, and 14 by intraperitoneal 

injections of 200 mL of OVA/alum: ovalbumin (50 mg, Sigma grade V) combined with Imject 

Alum (Thermo Scientific) as per the manufacturer’s recommendations. Mice were challenged on 

days 20 - 22 by intranasal introduction of 1 mg ovalbumin suspended in 50 mL sterile PBS while 

under anesthesia. Ovalbumin lot number SLBK645SV was used for experiments shown in 

Figure 2.3, Figure 2.4, and Figure 2.5. Ovalbumin lot number SLBQ9036V was used for 

experiments shown in Figure 2.6. We controlled for this by only directly comparing 

experimental groups of mice treated with the same lot of ovalbumin. Control mice were neither 

sensitized nor challenged unless otherwise noted.  

Processing of Stool and 16S rRNA Profiling Library Preparation 

Human stool was pulverized in a biosafety cabinet with liquid nitrogen using a pestle and 

mortar and aliquoted into 50 - 100 mg samples and stored at -80° C prior to use. For both human 

and mouse fecal specimens, crude DNA was extracted using phenol:chloroform:isoamyl alcohol 

and homogenized with a bead beater using sterilized zirconium and steel beads as previously 

described 107. The aqueous layer was then purified with a 96-well QIAGEN PCR Clean up kit 

and quantitated by measuring the absorbance at 260/280 nm. DNA concentrations were 

normalized to 5 ng/mL using a broad range Quant-iT™ dsDNA Assay and 10 ng of DNA was 

used to PCR amplify the V4 16S rRNA region using barcoded primers as previously described 

139. PCR-amplified DNA was pooled to equal concentration and the library purified using 
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AMPure XP SPRI beads. DNA was sequenced using a MiSeq with 2x250 bp chemistry. All 

samples had a minimum read-depth of 5000. 

Analysis of 16S rRNA data 

Fastq files were demultiplexed and binned into amplicon sequence variants (ASVs; Table 

S6) using DADA2 as previously described93. Taxonomic determination of ASV sequences to the 

lowest possible level was performed with RDP Classifier140 using a database built to permit 

species level identification107 with a minimum bootstrap support of 80%. 

ASVs were normalized using total sum scaling. Diversity analysis of 16S data was 

carried out with vegan (v2.5-7) and phyloseq (v1.28.0) in R. Richness was estimated as the 

average count of observed taxa after rarefying to 5000 reads using the vegan rarefy function. 

Sequential PERMANOVA was carried out for 100,000 iterations to achieve a minimum p-value 

of 10-5 using adonis2 in vegan. PERMDISP2 was performed with the betadisper function in 

vegan. Differential abundance analysis was carried out with DESEQ2 (version 1.24.0) as 

previously described141,142. Random permutation of samples revealed a DESEQ2 positivity rate 

of 6.7% for asthma and 6.8% for age, consistent with previous reports of DESEQ2 performing 

with a slightly higher than the expected 5% positivity rate, but less than the positivity rate of real 

data 143. Batch effect in 16S data resulting from sequencing run differences was assessed using 

PERMANOVA and found to contribute significantly to the variance in the data, but did not 

otherwise affect our results (see Table S2). Co-occurrence was calculated using the cooccur 

package144.  

IgA-Seq 
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We performed IgA-seq on mouse fecal samples as previously described 107. In brief, fecal 

samples were prepared in reduced PBS, stained with polyclonal goat anti-human IgA (Abcam 

#ab96998) or goat anti-mouse IgA (Abcam #ab97104) fluorescently labeled with DyLight649. 

Following antibody staining, samples were washed with PBS and resuspended in 100 mM 

HEPES and 150 mM NaCl containing a 1:4000 dilution of Syto-BC (Invitrogen). Samples were 

run and acquired on a BD Aria II maintained in a laminar flow biosafety cabinet. Input, IgA- and 

IgA+ positive fractions were acquired and sequenced as previously described 145. To analyze 

these data we used a previously reported IgA index 107. 

Whole Genome Sequencing of BFM04319 

Genomic DNA was extracted from B. fragilis strain BFM04319 by phenol/chloroform 

extraction. We then used an adaptation of the Nextera Library Prep kit (Illumina, cat. FC-121-

1030/1031) 146 and sequenced on a MiSeq to achieve ~80X coverage of the 5Mbp ETBF 

genome. Reads were trimmed by quality and adapter content with bbtools 

(sourceforge.net/projects/bbmap/). Scaffolds were created with SPAdes 147 and annotated with 

prokka 148. Our assembly had an N50 of 432688 and an L50 of 5. BFM04319 had an average 

nucleotide identity of 98.84% to the genome of the B. fragilis type strain VPI2553 (NCBI 

reference sequence: CR626927.1) 149. 

Immune Cell Isolation from Tissues 

Cells were extracted from tissues as described93. Briefly, lungs were minced and 

incubated in digestion buffer (0.2 U/ml Liberase DL (Roche Applied Sciences) and 0.2 mg/ml 

DNase (Sigma) in Hank’s Buffered salt Solution (without Ca2+/Mg2+) for 25 min at 37°C before 
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being passed through a 70µm cell strainer150. Spleen and lymph nodes were dissociated manually 

and passed through a 70 µM cell strainer. Red blood cells were removed from lung and spleen 

samples by treatment with ACK lysis buffer. 

Flow Cytometry of Isolated Immune Cells 

Data were acquired on a FACSCanto II (BD Biosciences) equipped for the detection of 

eight fluorescent parameters. The following antibodies were used: PE anti-mouse SiglecF (Clone 

E50-2240; BD Pharmigen™), FITC anti-mouse CD4 (Clone GK1.5, Biolegend), FITC anti-

mouse CD11c (Clone N418, Biolegend), PE anti-mouse CD44 (Clone IM7, BD Pharmigen™), 

PE anti-mouse IL-17A (Clone TC11-18H0.1, Biolegend), PerCP-Cy™5.5 anti-mouse TCR β 

chain (Clone H57-597, BD Pharmigen™), PE-Cy™7 anti-mouse CD11b (Clone M1/70, BD 

Pharmigen™), PE/Cyanine7 anti-mouse CD62L (Clone MEL-14, Biolegend), APC anti-mouse 

Ly6G (Clone 1A8, Biolegend), APC anti-mouse CD45 (Clone 30-F11, Biolegend), PerCP anti-

mouse CD45 (Clone 30-F11, Biolegend), APC/Cyanine7 anti-mouse I-A/I-E (Clone 

M5/114.15.2, Biolegend), eFluor450 anti-mouse FoxP3 (Clone FJK-16s, eBioscience™), 

eFluor450 anti-mouse IL-13 (Clone 13A, eBioscience™), Brilliant Violet 421™ anti-mouse 

F4/80 (Clone BM8, Biolegend), APC/Cyanine7 anti-mouse TCR β chain (Clone H57-597, 

Biolegend), PE/Cyanine7 anti-mouse IFNγ (Clone XMG1.2, Biolegend), APC anti-mouse TNFα 

(Clone MP6-XT22, BD Pharmigen™). Intracellular staining of cytokines was conducted as 

previously described93. Briefly, cells were stimulated for 4 h at 37°C with PMA (10ng/mL), 

ionomycin (200ng/mL), monensin (1:1000), and brefeldin A (1:1000). LIVE/DEAD Fixable 

Aqua Dead Cell Stain Kit was used to assess cell viability in all panels. Data analysis was 
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performed using FlowJo version 10 or higher software (Treestar, Ashland, OR). Gating strategies 

are summarized in Figure 5.5F-H. 

Transcriptional Profiling of Mouse Lungs 

We isolated total RNA from mouse lungs and performed transcriptomic analysis as 

previously described93. Whole lungs were removed from mice and homogenized in 2 mL of 

TRIzol reagent. Crude RNA was extracted from 0.3 mLs of homogenized tissue using the 

QIAgen RNAeasy kit following manufacturer’s protocol. Reads were mapped to the mouse 

genome using bowtie2 (v2.3.4.1)151, quantified at the gene level using htseq (v 0.9.1)152, and 

differentially expressed genes were identified using DESeq2 (v1.24.0)142. Functional pathways 

altered during colonization and/or OSC were identified using gene set enrichment analysis 

FGSEA (fgsea R package; v1.10.1)153 with KEGG and GO databases. PERMANOVA was 

performed using adonis (vegan R package; v2.5-7) and the post hoc test was performed with 

pairwise.adonis (pairwiseAdonis, v0.3). 

Lung RT-qPCR 

RNA from flash-frozen, pulverized lung tissue or lung tissue stored in RNALater 

(Invitrogen cat. AM7021) was extracted by probe homogenization in TRIzol Reagent followed 

by chloroform phase separation. DNase I (Qiagen) was then used to degrade DNA according to 

the manufacturer and this reaction was carried onto Qiagen’s RNeasy Mini kit for purification of 

RNA. We then quantified the RNA with a Quanti-iT Ribogreen RNA Assay kit (Invitrogen cat. 

R11490) and synthesized cDNA with a high-capacity RNA-to-cDNA kit (AB cat. 4387406). RT-

qPCR was performed on a Biorad CFX96 Real-Time System using Power SYBR Green PCR 
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Master Mix (AB 4367659). Primer pairs used in this paper are shown in Table S8 including 

GAPDH as the reference gene. Samples were run in triplicate and were excluded if the range of 

raw Ct values for target or reference exceeded 2. 

Protein Quantification 

Mouse Serum IgE specific to ovalbumin was quantified by sandwich ELISA 93. Briefly, 

plates were coated with 10 mg/mL purified ovalbumin overnight at 4˚ C and then blocked with 

PBS 1x with 1% BSA. Sera were diluted 1:10 and plated alongside purified OVA-specific IgE 

(Clone 2C6, AbD Serotec) as a standard curve. The plate was incubated for 2 hours at room 

temperature. Bound IgE was detected using goat anti-mouse IgE-HRP (Clone RME-1, 

Biolegend). Serum IL-17A was measured as part of a LEGENDPlex Multiplex protein assay 

(Biolegend) following the manufacturer's protocol. 

DNA/RNA Oxidative Damage ELISA 

DNA was extracted from the lungs of mice by homogenization and ethanol precipitation 

or using the QIAGEN Dneasy Blood & Tissue Kit. To estimate pulmonary oxidative stress we 

measured oxidized guanosine (8- hydroxyguanosine, 8-hydroxy-2’-deoxyguanosine, and 8-

hydroxyguanine) from extracted lung DNA by ELISA (Cayman Chemical cat. 589320) 

following the manufacturer’s instructions and analysis template.  

Intestinal Permeability Assay 

In order to assess intestinal permeability, FITC-Dextran gut-to-serum absorption was 

measured at the time of sacrifice as previously described 56,154. Briefly, a baseline blood sample 
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(150 - 250 uL) was taken from each mouse via facial vein puncture. After one hour of fasting, 

the mice were orally gavaged with 200 mL of 40 mg/ml FITC-Dextran (4 kDa; Sigma Aldrich) 

in sterile PBS. Food and water were then withheld for an additional 45 minutes. After three hours 

mice were sacrificed and blood was collected by cardiac puncture. Serum was separated from 

blood samples using serum separator tubes according to manufacturer’s instructions (BD 

microtainer). Fluorescence of pre- and post-gavage serum were measured (at a 5-fold dilution in 

PBS) using an excitation wavelength of 485nm and an emission wavelength of 528nm. A 

standard curve from 0 to 40 mg/ml FITC-Dextran read on the same plate was used to convert the 

RFU values to concentration of FITC-Dextran. Finally, pre-gavage serum FITC-Dextran 

concentrations were subtracted from post-gavage serum FITC-Dextran concentrations to 

quantify leakage from the gastrointestinal tract to the circulation. 

Cytospin 

Bronchoalveolar lavage was collected by flushing the mouse lungs using 1 mL of 0.1% 

bovine serum albumin (BSA) in sterile PBS. 5x105 cells of each sample were loaded onto a slide 

using a Shandon Cytospin 2. Slides were then methanol fixed and stained with eosin and 

methylene blue following kit directions (ThermoScientific Shandon KwikDiff Stains). Cells 

were counted using a bright-field microscope at 400X magnification. 300 non-red blood cells 

were counted per sample, with careful scanning to ensure no repetition between high power 

fields. 

Screening for bft in Subject Stool Samples 



52 

 
 

Purified DNA from stool samples containing Bacteroides fragilis based on V4-16S rRNA 

community profiling were normalized to 5 ng/mL. PCR was used to amplify the constant c-

terminal region of the bft gene (Table S8)116. The results of the reaction were assessed using a 

2% agarose gel stained with GelRed (Biotium). Previous literature has identified this method 

suffers from low sensitivity, so we also conducted qPCR on the same samples117. qPCR primers 

were designed based on the bft sequence identified in BFM04319 and verified by confirming 

amplification against purified BFM04319 genome, and a complete fecal community harboring 

BFM04319 (AO stool gDNA), but not in a community lacking BFM04319 (HO stool gDNA). A 

single band of the expected size was detected by electrophoresis of BFM04319 genome 

amplification and AO stool gDNA amplification, but not HO stool gDNA. A dilution series of B. 

fragilis genome was used to demonstrate primers were sufficiently sensitive to detect bft from 

less than 2*10-5 ng of B. fragilis genome. The presence of a band or a Cq value of less than 35 

was considered a positive result and indicated the presence of bft in patient stool. 

Quantitation of bft expression in mouse cecal contents 

Mouse cecal content RNA and DNA was extracted using the QIAgen AllPrep 

PowerFecal DNA/RNA kit as per kit instructions (cat. 80244). Nucleic acids were quantitated 

and cDNA synthesis was performed on 450 ng of cecal RNA using the Lambda Biotech 

EasyScriptPlus cDNA Synthesis kit (cat. G236) and a primer specific to bft (see Table S8). 

qPCR was performed as previously described. Copies of B. fragilis genome were estimated by 

comparing cycle number against a dilution series of purified BFM04319 genome and then 

normalized to the amount of nucleic acid per milligram of cecal content. 
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Quantitation of calprotectin in human stool samples 

Human fecal calprotectin was measured using the Calprotectin ELISA Assay Kit (Eagle 

Biosciences cat. CAL35-K01) following manufacturer’s directions. Between 50 and 100 mg of 

pulverized human stool was used for each assayed sample. 

Statistics 

Statistics and analysis were all performed in R Version 3.6.3. Data are presented as mean 

with SEM. Statistical significance was conducted using an unpaired Wilcoxon test or Kruskal 

Wallis test with a post hoc Dunn test where appropriate. Adjustment of p-values for multiple 

hypotheses was performed using Benjamini-Hochberg correction. Boxplots display IQR and 

whiskers display 1.5*IQR. The following symbols were used to designate significance:  *p < 

0.05, ** p < 0.01, *** p < 0.001. 

Mixture Distribution Naïve Bayes’ Classifier for 16S Profiling of Asthma vs. Healthy Patients 

Input Data: 

Raw ASV counts data were normalized to total counts (relative abundance). To be 

included in the NBC, a taxon had to appear in at least 7 samples. This number was determined by 

calculating how many samples are required to identify enrichment of a taxa in either the healthy 

or asthmatic cohort with 95% confidence, based on presence/absence alone (Binomial Test).  In 

total, 392 ASVs between 95 human stool subjects were included in this analysis. 

Algorithm:  
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The algorithm is summarized in Figure 5.8B. By Bayes’ theorem, the probability that a 

microbiome composed of many taxa belongs to an individual with asthma is 𝑃(𝐴𝑠𝑡ℎ𝑚𝑎 |𝑋) =

 
𝑃(𝑋|𝐴𝑠𝑡ℎ𝑚𝑎)∗𝑃(𝐴𝑠𝑡ℎ𝑚𝑎)

𝑃(𝑋)
 , where 𝑃(𝑋|𝐴𝑠𝑡ℎ𝑚𝑎)  is the likelihood of a microbiome sample (𝑋) 

occurring given all the microbiome data from the asthmatic cohort, 𝑃(𝐴𝑠𝑡ℎ𝑚𝑎) is the prior 

probability of any MARS patient having asthma, and 𝑃(𝑋) is the probability of the microbiome 

data (𝑋) occurring given the entire MARS microbiome dataset. To accommodate the sparsity 

and zero-inflation inherent to microbiome data, we built our NBC to fit relative abundance data 

to a mixture distribution. We model P(X|Asthma) and 𝑃(𝑋|𝐻𝑒𝑎𝑙𝑡ℎ𝑦) (see Figure 2.2A: pink 

and purple, respectively) as mixtures of (1) a beta distribution of relative abundance when the 

taxon is present and (2) a binary distribution when the taxon is not detected, 

 𝑃(𝑋|𝐶𝑙𝑎𝑠𝑠) = {
𝑃(𝑁𝑜𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑|𝐶𝑙𝑎𝑠𝑠) , 𝑥 = 0

(1 − (𝑁𝑜𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑|𝐶𝑙𝑎𝑠𝑠))𝐵𝑒𝑡𝑎(𝑋, 𝛼, 𝛽|𝐶𝑙𝑎𝑠𝑠), 𝑥 ≥ 0
. 

By modeling the frequency of non-detection separately from relative abundance we 

increase the sensitivity of our model to learn differences in sparse taxa. The prior probability of a 

patient having asthma 𝑃(𝐴) was determined based on the proportion of patients with asthma 

used in the training data. The beta distribution for each taxon was fit by Maximum a Posteriori 

estimation using Newton’s Method, given a Gaussian prior. Hyperparameters of the prior 

distributions were optimized by a grid search. Using mixture distributions generated for each 

taxon in the model, we constructed a Naïve Bayes’ Classifier in R to predict patient asthma 

status based on microbiome composition. The NBC produces metrics that are useful for further 

analysis, including a Feature Score which can be described as the log likelihood ratio of a taxon 
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occurring at a given relative abundance in stool from an asthma donor compared to from a 

healthy donor. The Feature Score per taxon (𝑖) per sample (𝑗) is 𝐹𝑖𝑗 = log (
𝑃(𝑋𝑖=𝑥𝑖𝑗 |𝐴𝑠𝑡ℎ𝑚𝑎)

𝑃(𝑋𝑖 =𝑥𝑖𝑗 |𝐻𝑒𝑎𝑙𝑡ℎ𝑦)
). 

For each sample, the Feature Scores for all taxa (𝑛) in a sample are summed to calculate 

the Sample Score, which can be described as the log likelihood of the sample being from the 

asthma population rather than the healthy. The Sample Score per sample is 𝑆𝑗 = ∑ 𝐹𝑖𝑗
𝑛
𝑖 . Samples 

were classified as asthmatic if the Sample Score was positive, and healthy if negative. We 

identified taxa concordant with the model in any given healthy-asthma dyad by calculating the 

Pairwise Feature Score between the two samples for each ASV. The Pairwise Feature Score for a 

taxon in a dyad is then calculated as the difference between the Feature Score for the taxon in the 

sample with asthma and the Feature Score of the same taxon in the healthy control is 𝑃𝐹𝑆𝑖𝑗𝐴𝑗𝐻
=

𝐹𝑖𝑗𝐴𝑠𝑡ℎ𝑚𝑎𝑡𝑖𝑐
−  𝐹𝑖𝑗𝐻𝑒𝑎𝑙𝑡ℎ 𝑦

 . ASVs in a dyad with a positive pairwise feature score were considered 

concordant with the model. See examples in Figure 5.2A.   

Random Forest: 

The random forest model (RF) was created in R using the randomForest package155 

(v4.6-14). All forests included 1000 trees (ntrees=1000) with 30x30 tree sampling with 

replacement (sampsize=c(30,30)) and were built on the same 392 ASVs used in the NBC. 

Model Evaluation: 

All AUC and ROC curve values were calculated in R using pROC (v1.16.2). ROC curve 

and AUC values in Figure 2.2C were calculated based on the sample scores for the NBC and tree 

classification votes for the RF. Platt-scaling was performed using the glm (family = 
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binomial(logit)) and predict functions in R. We performed leave-one-out cross-validation 

(LOOCV) and repeated this process 100 times to estimate an average LOOCV classification rate. 

The NBC achieved a leave-one-out cross validation (LOOCV) accuracy of 75.8% (Figure 

5.8C,D), which is similar to studies of comparable size40,156, and performed as well as a Random 

Forest classifier (LOOCV accuracy: 75.1%), another tool commonly used to classify disease-

associated microbiome data. Taxa identified as highly discriminatory by the NBC were highly 

correlated with those found to be important by Random Forest (Figure 5.8A, Table S7, rho = 

0.4439, p-value < 0.0001, Spearman Correlation). 
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3.1 Abstract 

Asthma is a common allergic airway disease that develops in association with the human 

microbiome early in life. Both the composition and function of the infant gut microbiota have 

been linked to asthma risk, but functional alterations in the gut microbiota of older patients with 

established asthma remain an important knowledge gap. Here, we performed whole 

metagenomic shotgun sequencing of 95 stool samples from 59 healthy and 36 subjects with 

moderate-to-severe asthma to characterize the metagenomes of gut microbiota in children and 

adults 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 

2.9% of the variation in metagenomic content even when accounting for other important clinical 

demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid 

(LCFA) metabolism pathways which have been previously implicated in airway smooth muscle 

and immune responses in asthma. We also observed increased richness of antibiotic resistance 

genes (ARGs) in people with asthma. One differentially abundant ARG was a macrolide 

resistance marker, ermF, which significantly co-occurred with the Bacteroides fragilis toxin, 

suggesting a possible relationship between enterotoxigenic B. fragilis, antibiotic resistance, and 

asthma. Lastly, we found multiple virulence factor (VF) and ARG pairs that co-occurred in both 

cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in 

the fecal microbiota of people with asthma. Overall, our results show functional alterations via 

LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of 

subjects with moderate-to-severe asthma and could have implications for asthma management 

and treatment. 

Importance 

Asthma is an airway disease that affects the everyday lives of millions of people and 
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accounts for approximately 1.5 million emergency room visits yearly in the US158. Both 

antibiotic usage and gut microbiota dysbiosis have been linked to the development of asthma, 

however, little is known about the specific gut microbial functions associated with asthma, 

particularly in older populations. In this study, we characterize the gut microbiota of school-aged 

children and adults with moderate-to-severe asthma to uncover asthma-associated microbial 

functions that may contribute to disease features. We find that people with asthma have an 

increase in gut microbial genes associated with long-chain fatty acid metabolism as well as an 

accumulation of antibiotic resistance genes, both of which may have practical consequences for 

monitoring and treatment of asthma. 

3.2 Introduction 

Asthma is a common respiratory disease characterized by symptoms of airway 

obstruction including wheeze, cough, and shortness of breath. In most cases, asthma onsets in 

early childhood with the development of sensitization to environmental allergens. Ongoing 

environmental exposures lead to airway inflammation and ultimately result in asthma symptoms 

manifesting within the first few years of life. Recent findings support the notion that asthma 

develops in association with the human gut microbiome composition early in life35,39. This 

finding is supported by 16S rRNA sequencing surveys demonstrating that alterations in the gut 

microbiota precede asthma development within the first few months of life13,35.  

Early childhood gut microbial communities have been proposed to contribute to asthma 

by several mechanisms. Epoxide hydrolases encoded by enterococci and other gut bacteria 

produce the lipokine 12,13-diHOME that predisposes towards atopic sensitization and 

asthma13,62. Similarly, short-chain fatty acids (SCFAs), produced by the metabolism of dietary 
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fibers by diverse members of the gut microbiota, are thought to protect from asthma through 

their effect on the host G-protein coupled receptor GPR41, shaping immune cell differentiation 

in the lungs, and ameliorating allergic airway inflammation8,12,35,159,160.  

In addition to microbially-encoded metabolic features, carriage of antibiotic resistance 

genes (ARGs) within the gut microbiota, termed the resistome, has been associated with asthma 

risk. In infants, microbial signatures associated with the development of asthma are also 

associated with increased richness of ARGs in the gut microbiome69. These differences in ARG 

carriage were found to be driven primarily by E. coli, which is a common colonizer in the first 

days of life69. These findings are important in understanding the origins of asthma since 

antibiotic exposure correlates both to the number of ARGs within the gut microbiome161 and the 

later development of asthma and other allergic diseases162–164. This association between 

antibiotic exposure and asthma is supported by animal models that found antibiotic treatment 

worsens allergic airway inflammation (AAI)165–167.  

While there is an abundance of data supporting the idea that asthma susceptibility is 

associated with features of the gut microbiota in early childhood, the potential effect of gut 

microbial functions on asthma later in life remains an important knowledge gap. Since asthma 

often begins in infancy when the gut microbiota composition is highly unstable, disease-causing 

microbial functions may not persist into older children and adults. Nevertheless, the gut 

microbiota in older individuals could underlie the variable manifestations of asthma27 and may 

hold valuable prognostic and therapeutic significance. 
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Asthma-associated differences in later childhood and adult gut microbial communities 

have already been noted in several reports. Studies in preschool-aged children have noted distinct 

taxonomic composition of gut microbial communities in subjects with asthma compared to 

healthy controls39. These differences are reported to include reductions in Akkermansia 

muciniphila40, Faecalibacterium prausnitzii41 as well as Roseburia species42. Functional 

characterization of microbial communities by whole metagenomic sequencing from an older 

population of women with asthma41 has shown that pathways related to lipid and amino acid 

metabolism, as well as carbohydrate utilization were enriched compared to healthy controls. In 

contrast, microbial pathways involved in the production of SCFAs, like butyrate, were enriched 

in the healthy cohort of the same study41. These findings are supported by a complementary 

study designed to test the effect of probiotic supplementation on asthma that found an association 

of improved asthma symptoms with SCFA biosynthesis as well as tryptophan metabolism 

pathways in the adult gut microbiota43.  

In this study, we describe an analysis of whole metagenomic sequencing data from a 

cohort of 36 subjects with physician-diagnosed, moderate-severe asthma along with a matched 

cohort of 59 healthy controls. We test the hypothesis that the gut metagenome harbors signatures 

of asthma after the disease has been established . Our results identify global differences in 

metagenomic functions between the asthma and healthy cohorts and reveal an enrichment in the 

asthma cohort for long-chain fatty acid biosynthesis pathways. We also find increased richness 

of ARGs associated with asthma and co-occurrence of ARGs with known bacterial virulence 

factors, suggesting a potential relationship between antibiotic exposure and pathogen 

colonization in people with asthma. 
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3.3 Results  

3.3.1 Whole metagenomic shotgun sequencing of fecal samples from adults and children 

with asthma and healthy controls 

We performed whole metagenomic sequencing on fecal samples from subjects with 

asthma and healthy controls taking part in the Microbiome & Asthma Research Study (MARS), 

which we have previously described93,157. MARS participants were recruited from the St. Louis, 

Missouri area and included pediatric (6-10 years) and adult (18-40 years) age groups. All asthma 

cohort patients had a physician diagnosis of moderate-to-severe asthma, and history of allergic 

sensitization as evidenced by positive skin testing or serum specific-IgE to one or more common 

aeroallergens. In total, we analyzed 95 patient stool samples including 17 adults and 19 school-

aged participants with asthma, and 40 adults and 19 school-aged participants without asthma.  

NovaSeq S4 sequencing of our libraries yielded 1.69 billion paired-end reads translating 

to a total of approximately 500 Gigabases (Gb). After filtering for read quality, dropping host 

contaminants, and trimming adaptor content, we achieved 1.23 billion paired-end reads and an 

average 3.4 Gb per stool sample with a range of 0.4-9.9 Gb/sample (Figure 5.9A). Neither host 

contamination nor sequencing depth differed between asthma and healthy cohorts (t-test p=0.2 

and 0.7, Table S9). All samples achieved an estimated average metagenomic coverage of at 89% 

(range of 61-98%) with the annotation-free redundancy-based metagenome coverage estimator, 

Nonpareil168 (Figure 5.9B). Further, estimated metagenome coverage was not different between 

the asthma and healthy cohorts, although we noted coverage was slightly reduced in the pediatric 

cohort (Figure SB, Table S9). We also found that the most abundant functional pathways (Figure 

5.9C) across all MARS participants are involved in essential processes of gut microbes such as 

starch degradation and glycolysis, demonstrating that our sequencing captured core functions of 
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the gut metagenome as expected. Taken together, we concluded that our sequencing is of 

sufficient depth and quality to be used for further analyses. 

3.3.2 Gut taxonomic composition differs between people with and without asthma   

 We first leveraged the clade marker annotation tool, MetaPhlAn169, to analyze the 

taxonomic composition of the study participants. We found dominate genera typical in gut 

microbiota communities including Bacteroides (phylum Bacteroidota) and Faecalibacterium 

(phylum Bacillota) (Figure 5.9D). Simpson alpha diversity was slightly higher in the asthma 

cohort even when taking read depth and age group into account (Figure 5.9E). Bray-Curtis 

dissimilarity (Figure 5.9F) was shifted between the asthma and healthy cohorts (p<0.0004, 

R2=0.029) even when accounting for other covariates including age (p<0.001, R2=0.032), race 

(p=0.0006, R2=0.026), recent antibiotic usage (p=0.9, R2=0.006), read depth (p=0.2, R2=0.013), 

obesity (p=0.7, R2=0.008), sex (p=0.4, R2=0.011), and tobacco exposure (p=0.2, R2=0.012) by 

sequential PERMANOVA (Figure 5.9G). There was also no significant interaction between 

asthma status and age group (p=0.8, R2=0.007), or between asthma status and recent antibiotic 

usage (p=0.6, R2=0.009) (Figure 5.9G). To determine differentially abundant taxa, we tested the 

fixed effect of asthma along with the random effects of age group and race in a general linear 

model170 and found Eubacterium rectale and Prevotella copri were enriched in the healthy 

cohort (Figure 5.9H, Table S10). All of these findings are consistent with 16S rRNA sequencing 

performed in a previous study157 which lent us further confidence that our sequencing data was 

suitable for functional profiling. 

3.3.3 Fatty acid metabolism pathways are enriched in the gut metagenomes of people with 

asthma 

Given that our samples had adequate coverage to capture expected taxonomic shifts, we 
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started interrogating the differences in metagenomic functions of the gut microbiota attributable 

to asthma status. The alpha diversity of genes (UniRef90 clusters) was neither different between 

the asthma and healthy cohorts nor between the pediatric and adult cohorts, suggesting that our 

gene profiling reached a similar total number of genes in both cohorts (Figure 3.1A). Using 

PERMANOVA, we noted that, even while accounting for significant covariates of age (p<0.001, 

R2=0.029), race (p<0.001, R2=0.024), and read depth (p=0.03, R2=0.015), asthma status also 

significantly impacted gut microbiome functional composition (p=0.008, R2=0.017; Figure 3.1B, 

C). We note that age group’s interaction term with asthma did not significantly contribute to the 

variance in beta diversity, suggesting that the influence of asthma and age on beta diversity is 

non-overlapping. These findings support the idea that the gut metagenomic content of people 

with asthma is different than that of healthy individuals, even when accounting for other clinical 

sources of interpersonal gut microbiome variation.  

We next considered which metagenomic functions and metabolic pathways may be 

involved in the differences between asthma and healthy cohorts. We first examined a list of 

specific metagenomic functions previously implicated in asthma, including genes related to 

histamine production, 12-13 diHOME biosynthesis, and tryptophan metabolism, but we were 

unable to identify a difference between cohorts (Figure 5.10A). To identify pathways that 

differed between asthma and healthy subjects, we performed a Wilcoxon Rank Sum test with a 

false discovery rate q<0.2 on the relative abundance of all pathways annotated by the MetaCyc 

database that were above 10% prevalence within the population. Using these criteria, we found 

seven pathways that were enriched in asthma and one that was enriched in the healthy cohort out 

of 312 total pathways (Figure 3.1D). To determine if these findings were robust to other analysis 
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methods, we performed additional differential abundance approaches on the 312 MetaCyc 

pathways, including a Wilcoxon test on centered log-transformed counts and ALDEX2, both of 

which demonstrated that these pathways differed between healthy and asthma cohorts (See Table 

S11). All differentially abundant pathways enriched in patients with asthma were involved in 

fatty acid synthesis, and included the production of oleate, palmitoleate, (5Z)-dodecenoate, 8-

amino-7-oxononanoate, biotin, and octanoyl acyl-carrier protein, as well as saturated fatty acid 

elongation. In the healthy cohort, only a single L-lysine biosynthesis pathway was enriched.  

Using taxonomically tiered functional mapping, we determined which taxa were driving 

the observed differences in asthma-associated pathways. For the L-lysine biosynthesis III 

pathway which was more abundant in healthy subject, we found that it primarily originated from 

Blautia obeum, Figure 5.10B). In the case of the asthma-enriched pathways, we found that 

Bacteroides vulgatus and Alistipes finegoldii account for the largest fraction of complete fatty 

acid biosynthesis pathways (Figure 3.1E, Figures S3C). However, the differential abundance of 

these asthma-associated pathways was probably not due solely to an enrichment of B. vulgatus or 

A. finegoldii in asthma stool since neither species was differentially abundant (maaslin2 q-

value=0.58 and 0.25, respectively; See Table S10). Further, the majority of mapped pathways 

were not attributable to any single species and these unmapped pathway counts made up more of 

the overall pathway richness than B. vulgatus (Wilcoxon q values < 0.05 for all seven pathways; 

see “Community” stratification in Figure 5.10C). Taken together, these findings indicate that the 

differences may be either driven by community-level effort (i.e. distinct steps of the pathway are 

encoded across more than one species), or that current databases are insufficiently granular to 

identify the key taxa responsible for these differences. 
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Figure 3.1. Gut metagenomes from individuals with asthma show increased genes encoding fatty acid 

metabolism.  
A) Stacked violin plots of Uniref90 cluster richness (unique Uniref90 cluster with CPM>0) grouped by either 

healthy and asthma cohort (blue green colors in background) or age (brown colors in foreground. B) Non-metric 

multidimensional scaling plot of Bray-Curtis Dissimilarity distance between Uniref90 (copies per million) profiles. 

Axis 1 and 2 of five total are shown of an NMDS with stress value 0.09. C) Sequential PERMANOVA of Bray-

Curtis dissimilarities between Uniref90 profiles. Input order of terms to the test is identical to the order of the 

barplot from top to bottom. D) Relative abundance of MetaCyc pathways that were differentially abundant given a 

Wilcoxon q value below 0.2 (p-value after FDR correction). E) Stacked bar plot of differentially abundant fatty acid 

metabolism pathways mapped to respective taxa by MetaPhlAn3.0/HUMAnN3.0, averaged within asthma or healthy 

cohorts. F) Heatmap of MetaCyc pathway abundance ratios between groups in important clinical dem ographics: 

Asthma vs. Healthy, Adult vs. Pediatric, Obese vs Non-Obese, and Well-Controlled Asthma vs. Poorly-Controlled 

Asthma. Asterisk denotes a significant differential abundance (*q<0.2) according to Wilcoxon tests controlled for 

multiple comparison testing within each demographic category. G) Differentially abundant MetaCyc pathways 

plotted as four cohorts: asthma by age with respective Two-Way ANOVAs. Only statistically significant p values 

shown. 

We reviewed the enzymatic steps of each of the eight pathways represented in Figure 

3.1D and found that, of the 78 total reactions in these pathways, only 11 reactions were shared 

between 2 pathways (Figure 5.11). The 8-amino-7-oxononanoate biosynthesis I pathway consists 
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of the first 11 reactions of the larger biotin biosynthesis pathway and the latter only has four 

additional reaction steps past synthesizing 8-amino-7-oxonanoate to produce biotin. 

Additionally, the (5Z)-dodecenoate pathway can feed directly into the palmitoleate biosynthesis 

pathway, and that the octanoyl acyl carrier protein pathway shares an upstream substrate 

(acetoacetyl-acyl carrier protein) with the saturated fatty acid elongation pathway (Figure 5.11). 

Together, our findings indicate that long chain fatty acid biosynthesis is differentially abundant 

in the asthma gut metagenome via related but largely non-redundant pathways. 

 Given the association between obesity with fatty acid metabolism171 as well as asthma172–

174, we next wanted to determine whether obesity (which we define here as a BMI greater than 30 

in adults or a BMI-for-age percentile of greater than 95% in children) confounds the association 

of microbial fatty acid metabolism with asthma. We compared the abundance of the 

differentially abundant fatty acid pathways between all non-obese and obese patients and found 

no significant difference (Figure 3.1F). Within the asthma cohort, there was similarly no 

statistically significant difference between the patients with and without obesity, suggesting that 

obesity is not a confounder for the difference we observed in fatty acid metabolism. To 

determine whether fatty acid metabolism is related to the intensity of asthma symptoms and their 

effect on everyday life activities, we utilized a validated survey of asthma control (The Asthma 

Control Test; ACT)119. None of the fatty acid pathways were differentially abundant between 

patients with well-controlled and poorly-controlled asthma (Figure 3.1F). We tested if age group 

affects the differentially abundant metabolic pathways and found that these pathways were not 

differentially abundant between age groups alone (Figure 3.1F). We also tested the impact of 

asthma and age as independent variables to differentially abundant metabolic pathways using a 



69 

 
 

Two-way ANOVA. We found that, even while taking age into account, these pathways are 

differentially abundant between asthma and healthy cohorts, but are not different by age or an 

interaction between asthma and age (Figure 3.1G, 2-Way ANOVA). Given that the effect of 

asthma status on differentially abundant metagenomic functions was distinct from that of age, we 

primarily focused our subsequent analyses on the asthma and healthy cohorts overall, combining 

age groups. 

3.3.4 Richness of antibiotic resistance genes is increased in the gut metagenomes of people 

with asthma 

Since people with asthma tend to be prescribed antibiotics frequently175 and oral 

antibiotic exposure is a risk factor for the acquisition of ARGs in the gut161, we wanted to 

determine if the members of our asthma cohort were more likely to have received antibiotics. To 

test this, we counted how many subjects had taken a course of antibiotics within one year of their 

participation in the study. As part of the study design, participants could not take antibiotics in 

the month prior to fecal donation. We found that a greater proportion of the asthma cohort 

received antibiotics in the past year compared to that of healthy participants (42% of asthma 

cohort versus 15% of the healthy cohort, Fisher’s test, p=0.011, Figure 3.2A). This finding 

represents evidence of increased antibiotic exposure amongst subjects with asthma in our study.   

We next sought to characterize the gut antibiotic resistome in the asthma and healthy 

cohorts. To test if the increased antibiotic exposure in the asthma cohort was reflected in the gut 

resistome, we utilized the ShortBRED pipeline176 to detect reads mapped to the Comprehensive 

Antibiotic Resistance Database (CARD)177. We first asked whether there were more ARGs in 

our asthma cohort by summarizing our dataset into richness (Total number of unique ARGs 
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detected  

 
Figure 3.2. Gut metagenomes from individuals with asthma harbor an increased richness of antibiotic resistance 

genes.  

A) Table describing short-term antibiotic usage in the MARS cohorts. B) Overlapping violin plots of ARG richness 

and load by grouped by either healthy and asthma cohort (blue green colors in background) or age (brown colors in 

foreground. C) Stacked bar plots of average ARG richness painted by antimicrobial family (AMR), drug class to 

which the ARG confers resistance, and ARG resistance mechanism. 

per sample) and load (Total sum of ARG RPKM per sample). We found that ARG richness was 

higher in people with asthma even when accounting for differences due to age (p=0.03) and 

sequencing depth (p=0.09 while ARG load was not different between asthma and healthy cohorts 

(p=0.4) when accounting for age (p<0.001) and read depth (0.002) (Figure 3.2B). We note that E 

coli was not differentially abundant between asthma and healthy cohorts (p=0.52, Table S10), so 

the richness increase we observe in the asthma cohort is not due solely to an increase in E. coli 
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relative abundance. These results suggest that there are a higher number of unique ARGs, or a 

higher diversity, in asthma compared to healthy controls. 

From our 95 stool samples, we detected 71 unique ARGs, comprising 32 antimicrobial 

resistance families, 29 drug classes, and 7 mechanisms of resistance, with 26 ARGs (37% of the 

total) conferring multi-drug resistance (Figure 3.2C). Similar to previous studies of gut 

resistomes, we found that tetracycline resistance markers were the most commonly detected 

ARGs and inactivation is the most common mechanism of resistance followed by efflux pumps69  

(Figure 3.2C). Using the abundance data of each detected ARG, we determined that asthma 

(p=0.005, R2=0.028) and age (p<0.001, R2=0.053) were the strongest factors contributing to the 

variance in ARG beta diversity even when accounting for important technical and demographic 

covariates (Figure 3.3A and Figure 3.3B). We next wanted to ascertain to what degree the  

 
Figure 3.3. The gut antibiotic resistome is altered in asthma patients.  

A) Non-metric Multidimensional Scaling (NMDS) plot of antibiotic resistome with units in Bray -Curtis 

dissimilarity of total-sum scaled RPKM, labeled by asthma and age cohorts. Showing two axes out of five with 

stress value=0.1. B) Effect of demographic categories on antibiotic resistome data in A (sequential PERMANOVA). 

C) Procrustes and PROTEST analysis between MetaPhlAn species-level Bray-Curtis dissimilarity distances and 
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CARD ShortBRED Bray-Curtis dissimilarity distances. Arrows connect the two data points belonging to identical 

samples. 

resistome profile was determined by microbial composition. We used a Procrustes analysis178 to 

compare compositional data generated from MetaPhlAn169 to the antibiotic resistome profile 

derived from ShortBRED and found that the microbiome composition correlated to the resistome 

profile (Figure 3.3C, PROTEST corr = 0.627, p-value < 0.0001), indicating that ARG profiles 

are directly related to bacterial species composition. 

3.3.5 Macrolide resistance markers are differentially abundant in asthma 

To determine gut-associated ARGs that are differentially abundant between patients with 

and without asthma, we applied negative binomial tests to the abundance of all ARGs detected in 

at least 7 samples. This prevalence cutoff was chose because it is the minimum number of 

samples needed to detect a difference using a negative binomial distribution. We found that 

genes encoding resistance to macrolides (ermF, ermB and ermA), vancomycin (vanRO), 

tetracycline (tet(45)), as well as multi-drug efflux pumps (smeB, mdtO, and oqxA) were enriched 

in the asthma cohort (Figure 3.4A, Table S12). Prominent amongst these was the 23S rRNA 

methyltransferase ermF, which is typically encoded by Bacteroides species and confers 

resistance to macrolides. 

Next, we explored the genomic context of ermF by assembling metagenomic sequencing 

reads into contigs with metaSPAdes147 and annotating open reading frames with Prokka148 and 

BLAST. We detected full-length ermF with 98% or higher identity in 53 out of 95 samples. Out 

of 53 contigs, the vast majority originated from members of the Bacteroidota, 75.4% originated 

from the Bacteroides genus and 60.3% of them were likely from B. fragilis based on the top 

BLAST homology. Of the contigs that encoded ermF, 68% occurred on scaffolds with at least 
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one other open reading frame within ten kilobases (Figure 3.4B). We found that many ermF 

genes are co-located with genes associated with mobile genetic elements such as transposases, 

mobilization genes, and toxin/antitoxin systems, as well as with other ARGs like btgA which 

encodes clindamycin resistance (Figure 3.4B,C). This indicates that ermF occurs in multiple 

different genomic contexts within our cohort and suggests that its presence is not strictly due to 

propagation of a single B. fragilis strain. 

3.3.6 People with asthma have a distinct set of co-existing pairs of antibiotic resistance 

genes and virulence factors in the gut metagenome 

In our prior work on this same cohort of patients, we found that, compared to healthy 

subjects, a greater portion of asthma subjects were colonized with B. fragilis strains harboring 

the virulence factor B. fragilis toxin (bft), which we showed has the potential to shape 

inflammation in the lung157. Given that our resistome analysis pointed to an enrichment of a B. 

fragilis ARG, we wanted to test whether the ermF gene is associated with bft in the asthma 

cohort. We found that metagenomes harboring both ermF and bft were more prevalent in 

individuals with asthma compared to those without (Figure 3.4D). In our MARS samples, we did 

not find any instances where bft and ermF occurred on the same scaffold, so it remains unclear 

whether these two genes are encoded within the same B. fragilis strain or within two separate 

strains. Nevertheless, the enrichment of ermF and bft in adults and older children with asthma 

could suggest that the intestinal habitat of individuals with asthma presents opportunities or 

niches for macrolide ARGs and virulence factors such as bft.  
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Figure 3.4. Resistance gene ermF is differentially abundant in diverse genomic contexts of gut resistomes 

belonging to individuals with asthma. 

A) Boxplots of antibiotic resistance gene (ARG) abundance by cohort on log-scale. Showing only ARGs present in 

at least 7 out of 95 samples and have q-values less than 0.2. A pseudocount of 0.0015 RPKM (designated as the 

limit of detection “LOD”) was used for the negative binomial tests. Bolded genes are enriched in the asthma cohort 

while non-bolded are enriched in the healthy cohort. B) Summary of ermF contexts on contigs from metagenomic 

assemblies that had at least one detectable open reading frame flanking the ermF within 10 kilobases. C) Three 

representative ermF context maps generated in GeneSpy. D) Count table of fecal metagenomes with co -detection of 

bft+ and ermF+ vs. detection of one or neither of ermF and bft, split by donor asthma status. Fisher’s Exact two -

sided p-value shown. 

To explore the possibility that virulence traits and ARGs are linked in the gut microbiota, 

we characterized virulence factor (VF) content of all samples using the Virulence Factor 
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Database179 and compared these data to the antibiotic resistome profiles. We did not find the 

same overall shift in the virulence factor beta diversity between asthma and healthy that we 

observed with the resistomes (Figure 5.12A-C), but we did find differentially abundant VFs 

belonging to capsule and peritrichous flagella VF families (Table S13, q values<0.2). Further, we 

found that microbiota composition is highly correlated with virulence factor profile (Figure 

5.12D, Protest correlation coefficient=0.61, p<0.0001). Given that microbiota composition 

strongly affects both VF and ARG content, we used a partial correlation between VF and ARG 

richness to test our hypothesis while removing the effect of total metagenomic content. We 

found a positive partial correlation between VF and ARG richness in both the asthma and 

healthy cohorts (Figure 3.5A). Similarly, virulence factor and resistome beta diversity profiles 

were also positively correlated (Figure 3.5B, Protest correlation coefficient=0.574, p=1e-4). 

Together, our results suggest that these two microbial features, virulence and antibiotic 

resistance, are closely linked within the gut metagenome.  

We next performed a co-occurrence analysis to uncover other linked virulence and 

antibiotic resistance traits that could be important in gut ecology. We found numerous co-

occurring VF-ARG pairs in MARS gut metagenomes (Figure 3.5C, p<0.05). Several of these 

positively co-occurring pairs were shared between the two cohorts (yellow), suggesting that 

these relationships are not dependent on asthma status. In contrast, many pairs specifically co-

occur in one cohort and may indicate microbial interactions important in asthma but not healthy 

gut metagenomes (Figure 3.5C). In summary, we found that VF and ARG presence is linked in 

the gut metagenome and that people with asthma have a distinct set of co-occurring functions 

compared to healthy people. 
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Figure 3.5. Asthma patients have unique sets of virulence factor and antibiotic resistance gene associations.  

A) Partial correlations split by asthma status between virulence factor richness and ARG richness after accounting 

for species richness. B) Procrustes and PROTEST analysis between Bray-Curtis dissimilarity distances of virulence 

factors and CARD resistomes. Arrows connect the two data points belonging to identical samples. C) Heatmap of 

statistically significant (cooccur R package p<0.05) co-occurrence relationships between all VFs and ARGs. Colors 

indicate direction of co-occurrence and in which cohort(s) the respective effect was detected. Grey squares mark 

pairs with no statistically significant co-occurrence. White squares were pairs filtered out due to a lack of observed 

co-occurrence. 

While our co-occurrence analysis between VFs and ARGs demonstrated multiple 

examples of virulence and antibiotic resistance traits found in the same gut metagenome, this 

analysis does not indicate if these genes are present in a single organism. To obtain a more 

granular view of VF-ARG co-occurrence, we limited our analysis to look for VF-ARG pairs that 

could be encoded by the same species. This analysis showed that the asthma cohort had a greater 

number of ARGs (p=0.007 and 0.01) and VFs (p=0.005 and 0.09) annotated as coming from 

Klebsiella pneumoniae and Escherichia coli, respectively (Figure 5.13A). Individual co-
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occurrences attributable to each of these species are summarized in Figure 5.13B and show that 

cepA, encoding a beta-lactamase, and chuU, a VF involved in iron acquisition, are both 

putatively encoded by E. coli and co-occur in patients with asthma, suggesting that the 

metagenome-wide co-occurrence of CepA and Chu families observed in Figure 3.5C may be due 

to enrichment within one or more E. coli strains harboring these VF/ARG pairs. Together, our 

co-occurrence analyses show that there appear to be multiple co-occurring VFs and ARGs, 

similar to B. fragilis-encoded bft and ermF, in the gut metagenome and within putative 

individual species that could be important for asthma. The cohort-specific co-occurring VF-ARG 

pairs found here could serve as candidates for future studies of asthma gut microbiome ecology. 

3.4 Discussion 

In this study, we present an exploratory analysis of fecal whole metagenomic sequencing 

contrasting subjects with moderate-to-severe asthma to a group of healthy controls to identify 

disease-associated microbial genes with the strongest likelihood of affecting disease. Our 

sequencing and subsequent analyses revealed that the functional content of individuals with 

asthma differed significantly from that of healthy controls. We found an enrichment of functions 

associated with saturated and mono-unsaturated fatty acids, including oleate, palmitoleate, 5(Z)-

dodecenoate, biotin, 8-amino-oxononanoate, saturated fatty acid elongation, and octanoyl acyl 

carrier protein pathways. Currently, the functional significance of gut bacterial synthesis of these 

long-chain fatty acids (LCFA) to asthma has not been well defined. Excess LCFAs, usually 

studied in the context of dietary fat intake, have been associated with metabolic diseases 

including diabetes, obesity, and atherosclerosis risk173 but is also linked to asthma risk in 

adults172–174,180. Increasing recognition that obesity predisposes to asthma has motivated 
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investigation of the impact of fatty acids on airway biology and has shown that LCFA signaling 

through free fatty acid receptor 1 (FFAR1, also called GPR40) induces airway smooth muscle 

cell contraction and proliferation, both of which are important components of asthma 

pathophysiology173,181. Notably, a study that sequenced airway microbes in children with cystic 

fibrosis implicated a similar list of LCFA production pathways during exacerbations, suggesting 

that microbially produced LCFAs may influence airway physiology182. To our knowledge, the 

potential for gut microbes to contribute to the amount of free fatty acids available to the lung has 

not yet been defined, however, LCFAs are readily absorbed into the circulation183 and could 

plausibly reach the airways. Further, previous studies have shown the effect of SCFA (e.g. 

acetate, butyrate, propionate) produced by gut microbes to directly alter lung inflammation via 

GPR41 (FFAR3)8,160. While our study did not find a direct enrichment of SCFA production 

pathways in the healthy cohort as has been previously reported41, we did observe that lysine 

biosynthesis was enriched. Since lysine may serve as a precursor to the SCFA butyrate184, 

SCFAs may still be more abundant in our healthy cohort but may be subject to transcriptional 

regulation that would not be detected by metagenomic DNA sequencing. Together, our 

metabolic pathway analyses of the gut metagenome demonstrate a positive association between 

LCFAs produced by gut microbes and asthma, in contrast to the negatively associated SCFAs. 

In addition to metabolic alterations, analysis of the gut resistome demonstrated that 

subjects with asthma had a distinct ARG composition. In a recently published prospective gut 

metagenomic study of infants, asthma-associated taxonomic signatures were associated with a 

higher number of ARGs69. These differences in the resistome were largely driven by a single 

species of bacteria, E. coli, and reveals that acquisition of ARGs in subjects with asthma may 
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begin in early childhood and could affect asthma development. In our study of older subjects 

with established asthma, we similarly found a higher richness of ARGs that is associated with 

asthma in both school-aged children and adults, supporting the idea that increased ARG carriage 

may persist in people with asthma throughout life. Based on our resistome annotation, however, 

ARGs in our cohort were likely from a diverse assemblage of bacteria in contrast to what was 

observed in infants. This is likely due to differences in gut dynamics between age groups. The 

infant microbiome is heavily shaped by limited available niches in the developing gut, which 

favor transient, facultative anaerobes like E. coli 69, whereas the gut resistome in older subjects 

reflects selective pressures experienced over a lifetime. One important consequence of increased 

richness of ARGs in people with asthma is that it may promote persistence of some bacterial 

strains185,186 and contribute to the taxonomic differences in the gut microbiota between asthma 

and healthy people39,157.  

While asthma was among the important factors accounting for a significant amount of the 

variance in ARG beta diversity, we found that recent antibiotic exposure (within the past year) 

was not. Notably, no participant in our cohort received a course of antibiotics in the month prior 

to fecal sampling since this could have confounded our analyses on asthma-associated microbial 

community changes. Previous studies have shown that the gut microbiota recovers in 

approximately a month after perturbation from antibiotics in healthy adults66. We interpret these 

findings to mean that recent exposure (within 1 - 12 months) to antibiotics does not drastically 

change the resistome, whereas repeated exposures over time may be more important for driving 

the population-wide shifts we observed in our cohort186. 

Of the ARGs found to be enriched within asthma resistomes, the ARG ermF, encoding 
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resistance to macrolide antibiotics, was especially prominent amongst the cohort  with asthma. 

While we did not collect data on the antibiotic drug classes, number of courses and their 

duration, or the reason for prescription of antibiotics, our subjects received, it is likely that our 

asthma population has been exposed to macrolides. Macrolide antibiotics, including 

clarithromycin and azithromycin, are commonly prescribed for upper and lower airway 

infections which disproportionately affect people with asthma70. This class of antibiotics, 

particularly azithromycin, have been a focus of special concern for driving antibiotic resistance 

due to their frequent usage and pharmacological properties187–189. Nevertheless, azithromycin has 

been noted to have beneficial effects in asthma, and some72, but not all74, studies suggest that 

azithromycin may prevent exacerbations in patients with asthma. Given the interest in 

azithromycin as a treatment modality in asthma, there will be an urgent need for additional 

studies to determine the robustness of the association between asthma and macrolide ARG 

accumulation in the gut to inform parameters for antibiotic selection and prescription in people 

with asthma. 

Additional exploration of the gut metagenomes revealed potential co-selection in people 

with asthma for B. fragilis genes ermF and bft (B. fragilis toxin), the latter of which is more 

prevalent in fecal samples from the asthma compared to healthy cohort157. Untargeted analysis of 

gut resistomes revealed multiple examples of virulence factor and ARG co-occurrence as well as 

positive correlations between ARG and VF richness in people with and without asthma. Our 

findings are consistent with previous reports that found correlations between VFs and ARG 

richness and VF-ARG cooccurrence relationships in both gut metagenomes190 and human-

associated bacterial genomes191. Our findings also add to these studies by demonstrating that, 
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while the correlation between VF and ARG richness does not appear to be any stronger in the 

asthma cohort after taking gene richness into account, the two MARS cohorts do not have 

identical sets of statistically significant co-occurring VF-ARG pairs. These data suggest that 

people with asthma may be experiencing different selection pressures from that of healthy 

people, leading to accumulation of a distinct set of virulence and antibiotic determinants. Given 

that antibiotics induce gut inflammation through the disruption of the gut microbiota192, and 

strains encoding virulence factors such as bft are known to thrive in an inflammatory 

environment193, one plausible model for the apparent accumulation of distinct VF-ARG pairs is 

that antibiotic treatment not only selects for ARGs161,186, but simultaneously selects for VFs. 

Together with evidence that virulence determinants, such as bft, are associated with airway 

inflammation157, our model implies that heightened antibiotic treatment may contribute to the 

manifestations of asthma via co-selection for VFs and ARGs. Considering that prenatal and early 

life antibiotic exposure is linked to asthma risk163,192, this model could be used to test whether the 

initial events driving VF and ARG co-occurrence start with the first vertical transmission events 

in very early life. 

Our study has several limitations that constrain the scope of our claims. First, MARS is 

an exploratory, cross-sectional study with only a moderate number of subjects, which is less 

ideal for identifying disease-associated microbiome differences98. As a result, our study had 

limited statistical power to detect less prevalent or abundant functions. Second, our study 

focused on school-aged and older subjects with moderate-to-severe asthma, and thus our findings 

may not be applicable to other younger populations or those with less severe disease. These 

population differences may explain why we were unable to identify statistically significant 
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differences in microbial metabolic pathways identified from other studies including bile acid 

metabolism35, epoxide hydrolases62, histamine metabolism44,45, or tryptophan metabolism194,195 

(Figure 5.10A). Third, the factors driving the shift in gut bacterial metabolism to LCFA 

biosynthesis and whether gut microbiome enrichment of this pathway is sufficient to change the 

hosts’ LCFA profile is not known. Collecting blood to interrogate host metabolism as well as 

dietary information at the time of fecal sample collection would have helped to disentangle the 

effects of diet on host and gut microbiota metabolism. Fourth, we lacked relevant subject 

information, such as diet, environment, infrastructure, stress level, and social relationships, 

needed to precisely disentangle the effects of social, environmental, and health disparities on the 

gut microbiome196. We recognize that our finding of subject-reported race as a statistically 

significant covariate in our analyses of the gut metagenome likely does not reflect a direct effect 

of race on biology197. Rather, we interpret this finding as a proxy for the biological consequences 

of active systemic disparities associated with race197. We included race in our models to account, 

albeit inadequately, for the impact that multi-faceted ecosocial factors underlying race are known 

to have on asthma and the microbiome198,199. Fifth, a record of the frequency and class of 

antibiotics administered to our participants would have allowed us to confirm whether macrolide 

administration associates with the enrichment of ermF in our asthma cohort and whether a higher 

diversity of antibiotic usage correlates with ARG richness. It is likely that antibiotic exposures 

accumulated throughout life contribute to the resistome, and a complete catalog of exposures is 

critical to determine patterns of antibiotic prescription most likely to account for the ARG 

associations to asthma found in this study. Lastly, as with all metagenomic sequencing studies, 

we are limited by annotation bias in existing databases. This is a concern for our virulence factor 
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and antibiotic resistance profiling especially, where we rely on the database to predict source 

species for ARGs and VFs. We also recognize that the databases we used for these two analyses 

are biased towards well-studied human pathogens rather than commensals or opportunistic 

pathogens. However, we note that other investigators have reported similar co-occurrence of 

ARGs and VFs190,191, and co-selection of these features is biologically plausible.  

Despite these constraints on the scope of our study, we provide evidence that there is an 

increased production of LCFA and an increased richness of ARGs encoded by the gut microbiota 

in people with asthma. These findings could have applications in the care of patients with 

asthma. If LCFA pathways are shown to play a causal role in airway inflammation in future 

studies, microbiota-directed therapeutics in the form of dietary interventions or probiotics, could 

be developed to modify gut microbial metabolism to protect against asthma. Additionally, our 

resistome findings add to the growing concern over antibiotic resistance in patients with asthma 

by suggesting that antibiotic administration may also contribute to gut carriage of virulence 

factors that can alter airway inflammation. Ultimately, our study shows that the gut microbiota of 

school-aged and older subjects with moderate-to-severe asthma harbor important functional 

alterations that could serve as a foundation for future studies investigating how gut microbial 

functions affect pulmonary diseases. 

3.5 Materials and Methods 

MARS Study Population 

The Microbiome and Asthma Research Study (MARS) consisted of 104 subjects from the 

St Louis, MO USA area that are either healthy or had physician-diagnosed moderate-to-severe 

asthma. This study included an adult cohort (ages 18-40 years) and pediatric cohort (ages 6-10 

years). As described in previous manuscripts93,157, 9 patients were disqualified or did not donate 
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stool samples. The remaining 95 patients donated stool samples either at home or at the 

recruitment visit and were evaluated with a clinical questionnaire to gather relevant metadata. 

Stool samples were kept at -20°C and delivered within 24 hours to the study site, Kau Lab at 

Washington University School of Medicine, where they were stored at -80°C for no more than 

three years until processing for DNA isolation. This study was approved by the Washington 

University Institutional Review Board (IRB# 201412035). Written informed consent documents 

were obtained from all MARS subjects or their legal guardians. All recruitment, follow up, and 

sample acquisition occurred between November 2015 and December 2017. 

Fecal DNA Isolation 

Frozen human stool samples were pulverized in liquid nitrogen using a pestle and mortar. 

We then homogenized the stool in a mixture of phenol, chloroform, and isoamyl alcohol with a 

bead beater using sterilized zirconium and steel beads as previously described107 to extract crude 

DNA. We purified the fecal DNA with a 96-well QIAGEN PCR Clean up kit and quantitated by 

measuring the absorbance at 260/280 nm. Sample DNA concentrations were normalized to 0.5 

ng/mL. Neither depletion of human DNA sequence nor enrichment of microbial or viral DNA 

was performed. No experimental quantification like a spike-in were used. 

Whole Metagenomic Sequencing of Fecal Communities 

To generate fecal metagenomic sequencing data, we adapter-ligated libraries by 

tagmentation using an adaptation of the Nextera Library Prep kit (Illumina, cat. No. FC-121-

1030/1031)146. Individual libraries were then purified with AMPure XP SPRI beads, quantitated 

using Quant-iT (Invitrogen, cat. Q33130), and then combined in an equimolar ratio. We 

confirmed that each library was adequately represented in the combined library by preliminary 

sequencing on a MiSeq instrument at the Washington University in St. Louis Center for Genome 
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Sciences to assess the evenness of the library. Once the quality of the library was assured, we 

sequenced the combined library on a NovaSeq 6000 S4 with 2x150 bp chemistry to achieve an 

average of 3.4 Giga-base-pairs (Gb) per sample. NovaSeq services and data demultiplexing were 

performed by the Genome Technology Access Center at the McDonnell Genome Institute (St 

Louis, MO). All samples were tagmented simultaneously and sequenced on the same run to 

avoid batch effects. 

Processing of sequencing data 

Metagenomic raw demultiplexed reads were then processed to (1) remove spurious 

human sequences (human reference database was hg37dec_v0.1.1), (2) remove low quality 

sequences, and (3) trim remaining adapter content using Kneaddata v. 0.10.0 

(huttenhower.sph.harvard.edu/kneaddata) bypassing the tandem repeat finder step (“- -bypass-

trf"). FastQC (fastqc v0.11.7) and MultiQC (multiqc v1.2) with default settings were used to 

create quality reports and visualize processing steps. See Figure 5.9A and Table S9 for number 

of reads dropped per processing step. After trimming and filtering, no samples had adaptor 

content, overrepresented sequences, or an average sequence quality score below Phred 24. 

Estimated metagenome coverage was calculated with Nonpareil168,200 (version 3.4.1) via the 

online querying tool at http://enve-omics.ce.gatech.edu/nonpareil/submit. 

Read-based metagenome profiling 

To obtain functional information about the metagenomic contents of fecal samples, we 

processed samples using HUMAnN169 v3.0.0 on filtered reads with default parameters. The 

marker gene database used by HUMAnN to identify taxonomic identities was ChocoPhlAn 

v201901b and the protein database used by HUMAnN to identify functions was the UniRef90 

full database v201901b. Alpha diversity analysis of Uniref90 genes and two-sample tests of 



86 

 
 

KEGG orthologs were performed on respective genes that were present (>0 copies per million) 

in at least 16 out of 95 samples, which was the lowest prevalence cutoff that would allow for 

Bonferroni corrected Wilcoxon p-values below 0.0001. HUMAnN was used to determine the 

abundance of metagenomic pathways by mapping UniRef90 genes to the MetaCyc database. We 

performed differential abundance analysis using the Wilcoxon 2-sample tests on pathways that 

had a minimum of 10% prevalence. 

To identify antibiotic resistance genes present in the fecal metagenomes of MARS stools, 

we used ShortBRED-identify176 (v0.9.4) with the Comprehensive Antibiotic Resistance 

Database177 (downloaded 2021-07-05 16:10:04.04555) and Virulence Factor Database179 

(downloaded Fri Jul 16 10:06:01 2021). ShortBRED-Quantify was run on the filtered reads with 

default parameters. ARGs or VFs that had an abundance greater than zero in less than 7 out of 95 

samples were excluded from downstream analyses. This prevalence cutoff was determined using 

the binomial distribution to maintain a 95% confidence that enrichment was not due to random 

chance (using stats::binom in R). In the analyses that compared virulence factor profiles to 

antibiotic resistance gene profiles, any gene with the same name was excluded from the list of 

antibiotic resistance and considered a virulence factor only, to prevent spurious results due to co-

correlations. Only one gene matched this criterion: ugd (UDP-glucose 6-dehydrogenase). 

Microbial composition was determined with MetaPhlAn 3.0 which is included in the 

HUMAnN pipeline described. MaasLin170 (Maaslin2_1.5.1) was used in R to find taxa of any 

taxonomic level that correlated with asthma by setting asthma as a fixed effect and setting age 

group and race as random effects. 
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For PERMANOVA analyses, BMI class refers to two stratifications: Non-obese 

(underweight, healthy, or overweight) and obese determined for adults by BMI cutoffs and for 

pediatric patients by BMI-for-age percentile as defined by the Centers for Disease Control and 

Prevention (see cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html). 

Self-reported race was used as a co-variate in our PERMANOVAs since precise variables that 

would better describe the many facets of racism and health disparities were absent (see 

Limitations). Subject-reported race was represented in our models as a dichotomous variable of 

either “Caucasian” or “Non-Caucasian”, with 92% of the latter population having reported as 

“Black or African-American” and the remaining 8% as “Other”. We chose to combine self-

reported “Black or African-American” and “Other” populations into a single category of “Non-

Caucasian” because there were insufficient numbers of reported “Other” to power a robust 

analysis of this group but we still wanted to account for potential health disparities associated 

with non-Caucasian races201. 

Metagenome Assemblies 

Filtered reads were assembled into contigs using spades147 (v3.14.0) with the “meta” flag 

and k-mers lengths as follows: -k 21,33,55,77. The resulting scaffolds achieved an average N50 

of 3525 +/- 178 bp, an average L50 of 7192 +/- 372 and an average total length of 136.8 +/- 4.5 

Mbp as measured by QUAST (v 4.5) 202,203 (see Table S9). Prokka (v1.14.5) was used to find 

open reading frames and annotate them, and manual BLAST was used to annotate “hypothetical 

protein” open reading frames for the contexts of ermF. 

Statistics and Reproducibility 

R version 3.6.3 was used for all analyses downstream of HUMAnN and ShortBRED, and 

for data visualization. Wilcoxon tests with false discovery rate multiple testing correction or 
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Type II ANOVAs were used to determine statistically significant differences with the car::Anova 

package in R. PERMANOVAs were performed in R using the vegan::adonis package with 

default settings and 100,000 iterations. The following symbols were used to designate 

significance:  * p < 0.05, ** p < 0.01, *** p < 0.001 and the following for q values (FDR-

adjusted p-values): * q < 0.2, ** q < 0.05. 

Data Availability 

Whole metagenomic sequencing data without host contamination, low quality reads, and 

adapter sequences are available at European Nucleotide Archive 

(https://www.ebi.ac.uk/ena/browser/home) under project accession number PRJEB56741. 

Demographic data can be found in this manuscript (Table S9) and previous articles about the 

MARS study93,157. A STORMS (Strengthening The Organizing and Reporting of Microbiome 

Studies) checklist204 is available at doi: 10.5281/zenodo.7492635. 
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Chapter 4: General Conclusions and Future Directions 

4.1 Features of the gut microbiota could be therapeutic targets for asthma 

 While several studies report that the gut microbiota is involved in the development of 

asthma and in shaping lung immune responses206, little is currently known about the effect of the 

gut microbiota on established asthma. This thesis work characterized gut microbiota samples 

from adults and school-aged children with moderate-to-severe asthma and found an asthma-

specific shift in the taxonomic and metagenomic profiles of the gut microbiota even after 

diagnosis. This shift cannot be attributed to age group, recent antibiotic usage, race, obesity, or 

tobacco usage. Parallel to studies of the early life gut microbiota, these results suggest the gut 

microbiota later in life may directly affect the trajectory of asthma. It also likely reflects 

exposure to asthma medication and the heightened mucosal inflammation within patients with 

asthma that healthy individuals do not experience. Importantly, this finding emphasizes that 

research into the human microbiota for asthma treatment is worthwhile and potentially life-

changing. Future clinical studies of longitudinal nature with large sample sizes and narrow 

asthma severity exclusion criteria similar to this thesis work are necessary to confidently confirm 

that the shift in the gut microbiota found here is generalizable to the global population. 

Lung oxidative stress and Th17 responses have been linked to asthma endotypes in 

human populations77,78,207,208 and increased gut permeability has been observed in children and 

adults with asthma57,58. In this thesis work, lung oxidative stress, gut barrier permeability, and T-

helper 17 related responses in gnotobiotic mice were caused by one but not all tested asthma gut 

microbiota samples. Further, lung oxidative stress and gut permeability were at least partially 

caused by the presence of toxin-producing strain of the commensal bacterium, Bacteroides 

fragilis. This thesis work provokes the question of whether clinically recognized asthma 
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endotypes can be associated with particular gut community features such as the presence of a 

toxin or virulence factor. Such a question could be answered with a longitudinal study designed 

to characterize endotypes of controllable and uncontrolled asthma alongside the gut microbiota. 

The ultimate goal of this study would be to gut microbiota states associated with patients that 

experience less resistance to existing treatment. With these insights, one could design a probiotic 

or prebiotic to cause an existing community to mimic the non-resistant population’s gut 

microbiota. Then, ideally, the gut microbiota of patients with previously highly resistant, 

uncontrolled asthma could be reshaped towards controllable asthma and manage their disease 

with existing treatments. 

Enterotoxigenic B. fragilis (ETBF) are well-known to wreak havoc on the gut barrier by 

cleaving E-cadherin110, one of the proteins that keep the gut barrier from allowing harmful 

molecules and organisms into the circulation. While increased gut permeability has been linked 

to asthma and metabolic diseases209, little is currently known about whether ETBF play a role in 

this association. Here, a human isolate of ETBF from an adult with asthma was sufficient to 

cause gut permeability and oxidative stress in the lungs of mice undergoing allergic airway 

inflammation. Further, this thesis work found that samples containing ETBF from additional 

donors with asthma neither caused the same level of bft expression nor resulted in the increase in 

Il17 expression or oxidative stress in the lungs as was caused by the first donor sample. This 

suggests that the AAI-ETBF phenotype is 1) ETBF strain-dependent, 2) community-context 

dependent, or 3) both. Future investigations will perform monocolonization experiments that 

include multiple human stool isolates of ETBF to assess if the phenotype is persistently induced 

between strains. To establish a stronger link to human health, many more human stool samples 
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from people with and without moderate-to-severe asthma that do and do not contain ETBF 

should be tested in humanized gnotobiotic experiments. 

Gnotobiotic mouse models are powerful tools to assess the potential for human 

microbiota to affect human disease. However, the transfer of fascinating insights from mouse 

models to humans is a colossal task for the laboratory. Although this thesis work is built on 

experiments performed meticulously in line with recommendations from the field 98, it has only 

begun to link its findings back to human populations. With the resources available, the presence 

of ETBF and a marker of gut permeability in stool was found to be more prevalent in the asthma 

compared to healthy cohort. This result was limited both by small sample sizes and human 

sample depletion. Optimal translation of the ETBF-AAI phenotype to humans will require a 

large, longitudinal clinical study with strict asthma severity exclusion criteria, that collects 

appropriate gut permeability and lung oxidative stress measurements, blood samples for immune 

cell panels, bronchoalveolar lavages or brushings, and stool. As discussed at length among 

human microbiome researchers98, large, longitudinal studies are best for the statistical power 

needed to discover mechanisms that will be actionable for human gut-directed therapies. 

4.2 Antibiotics may select for both resistance genes and immunomodulatory virulence 

factors 

Another highlight of this thesis that has implications for asthma patients is that of the gut 

antibiotic resistome. Concerns about antibiotic resistance in the asthma population have become 

more widespread in the wake of studies assessing the efficacy of macrolides for asthma 

management70–75 as well as studies revealing the increased risk of airway infections for 

individuals with asthma70. Whole metagenomics sequencing revealed an increased richness of 
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antibiotic resistance genes in the gut microbiota of the asthma cohort. Further, macrolide 

resistance markers were differentially abundant in the asthma cohort and one of these genes 

tended to co-occur with the gene encoding B. fragilis toxin (bft) in asthma gut microbiota. A 

follow-up analysis suggested that several antibiotic resistance genes co-occurred with virulence 

factors in the gut and some of these co-occurring pairs were unique to the asthma cohort. 

Together, these findings suggest that the resistome differs between those with and without 

asthma. Although this study lacked information about specific drug class prescribed to the 

participants, there was a statistically significant association of asthma status and recent antibiotic 

usage (at least one prescription in the past 1 to 12 months). Considering this, it is reasonable to 

hypothesize that the signature of macrolide resistance observed in the gut may be a result of the 

increased need for macrolides in the asthma population. The co-occurrence of a ARGs with 

virulence factors is alarming and warns of a possible co-selection of toxins that can affect airway 

inflammation and resistance to dependable medications (see Figure 4.1). Future studies  

 
Figure 4.1. Hypothesized model of bft and macrolide resistance co-selection in patients with asthma 

Created with BioRender.com 

ought to sample stool from patients with moderate-to-severe asthma and controls over time while 

keeping detailed records of the participants’ antibiotic usage: drug class, reason for prescription, 
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duration of treatment, multiple stool collections, and exacerbation frequency. Such studies could 

answer whether antibiotic usage in patients with asthma affects the gut resistome more than a 

given healthy person and whether antibiotic treatment is followed by virulence factor 

accumulation, vice versa, or if these are randomly co-selected. Further, one could follow how the 

resistome and the virulence factor profile change in response to perturbations caused by 

antibiotics and exacerbations. These studies would inform when is best to intervene with a 

potential gut-directed therapy or how to prescribe antibiotics for the asthma population in a way 

that will not select for virulence factors that might worsen symptoms. 

4.3 Two understudied potential mechanisms of the gut-lung axis in asthma 

This thesis work suggests a handful of promising avenues for mechanistic studies of the 

gut-lung axis in asthma. The finding that ETBF colonization in particular community contexts 

can alter lung inflammation and gut permeability, suggests that B. fragilis toxin is key to this 

avenue of the gut-lung axis (Chapter 2). One prevailing hypothesis for how this mechanism 

occurs is that the B. fragilis toxin reaches the gut lining, cleaves E-cadherin, disrupts gut barrier 

homeostasis, and thus allows the bloodstream and lymph system greater access to microbial 

products from the gut. The crosstalk of the immune components with microbial products then 

causes an amplified inflammatory response (i.e. oxidative stress and IL-17 production) upon 

sensitization and challenge with an allergen in the lungs. Animal models of sepsis have 

previously shown that circulating lipopolysaccharide – a microbial product – causes oxidative 

stress in the lungs112. Further, oxidative stress favors Th17 responses in asthma models210 and 

one study found that blocking IL-17 decreases inflammation after induction of oxidative stress 

and lung injury with LPS211. Preliminary data generated during the course of this thesis work 
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could neither confirm nor deny that higher concentrations of microbial products were circulating 

in asthma recipient mice undergoing AAI compared to healthy recipient mice undergoing AAI, 

unfortunately. Focused experiments designed to test this hypothesis are needed to validate the 

proposed events, and measurement of circulating lipopolysaccharides or other microbial products 

may be illuminating for human clinical studies of asthma and the gut microbiota. 

The metagenomics analysis outlined in Chapter 3 offers a detailed description of the gut 

microbiota from adult and school-aged patients with asthma. Although this report was entirely in 

silico, some of the signatures of asthma revealed here could be indicative of gut-lung axis 

mechanisms. A prominent difference found between the healthy and asthma cohorts was that of 

fatty acid metabolism pathway abundance. An enrichment of genes encoding enzymes that 

synthesize long-chain fatty acids (LCFAs), especially mono-unsaturated fatty acids, was an 

unexpected result associated with the asthma cohort. However, mono-unsaturated LCFAs have 

been linked to asthma in several studies. Palmitoleate, for example, affects macrophage 

polarization212, and is negatively associated with upper airway neutrophil counts174 and lung 

function213 in male adults with asthma. Additionally, oleate is linked to asthma risk in adults via 

dietary intake180. However, whether microbial LCFA production contributes to or modifies 

asthma is not yet determined. Host lipid profiles are known to be affected by the gut microbiota 

and are important in metabolic syndrome, which includes asthma under its umbrella, as well as 

inflammation in general214. The finding in Chapter 2 could be indicative of diet-related 

differences between the asthma and healthy cohorts that were not tested by the MARS study. In 

this case the fatty acid metabolism signature may be an artifact of the substrates being made 

available to gut microbes via the diet. But if these differences are not due to dietary intake, they 
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could be accumulated in response to systemic mucosal inflammation thought to occur in those 

with asthma. Perhaps organisms of the microbiota have evolved to produce LCFA end products 

that create protective niches and/or prevent adverse effects from immune cells. Regardless, in 

light of existing literature, the metagenomic signature found here suggests that the gut microbiota 

makes LCFA in moderate-to-severe asthma that can then alter lung inflammation. A clinical 

asthma study with stool and serum lipidomics alongside gut metagenomic sequencing would 

further describe the implications of this finding. 
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Chapter 5: Appendix I – Supplemental Figures 

 
Figure 5.1. Overview of MARS inclusion and 16S rRNA sequencing results summarized to the genus level  

A) Flowchart depicting steps for inclusion/exclusion of MARS participants B) Relative abundance bar plot at genus 

level of 95 human fecal samples characterized in this study. Left: mean relative abundance by age group and asthma 

cohorts; Right: One stacked bar plot per fecal sample. White space represents unclassified taxa. C) Shannon, Inverse 

Simpson, and Observed Number of Taxa alpha diversity based on ASVs in stool samples from the MARS Cohort. 

Read depth was included as a variable to control for differences in library size. D) Non-metric multidimensional 

scaling (NMDS) on Bray-Curtis dissimilarity of MARS gut microbiomes. Ellipses represent 95% confidence 

intervals; diamonds indicate donor dyad (MARS0022/MARS0043). For all panels: N=59 Healthy, N=36 Asthmatic. 
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Figure 5.2. Overview of NBC pairwise concordance metric and estimation of taxa importance from AUC scores, 

related to Figure 2.2 and STAR Methods.  

A)The NBC feature score describes the likelihood that a taxon at a  given relative abundance would be found in one 

class over another. A comparison of the feature scores of the same taxon across two different samples provides the 

pairwise feature score (PFS) that compares the likelihood of these taxa abundances occurring between two samples 

from different classes. Example scenarios where the pairwise feature score is used to identify concordance with the 

model are provided. Scenario 1 shows a case where both the asthma sample and healthy sample are present at 

relative abundances expected by the model. Scenario 2 shows a case where a healthy sample is absent, and the 

asthma sample is present at abundances expected by the model. Scenario 3 demonstrates a unique situation where 

the taxon is absent in both samples. In this case, the pair provides no information about the taxon and thus is equal to 

zero. Scenario 4 demonstrates the case where the relative abundances of the taxon in both the asthma sample and 

healthy sample are not consistent with the model. The pairwise feature score in this case is negative, reflecting 

discordance with the model. Scenario 5 depicts an edge case, where the relative abundance in the asthma sample is 

expected, but the relative abundance of the healthy sample is not. The magnitude of the likelihood of the asthma 

sample is much greater than that of the healthy sample however, and so the pairwise feature score is positive 

reflecting model concordance in this taxon. B) Left: raw data histograms overlaid with NBC curve of best fit and 

right: ROC curve for highly ranked ASVs and B. fragilis (ASV4). Donor samples are represented by dashed lines 

(pink for MARS0043 and purple for MARS0022). C) Distribution of AUC values from all 392 ASVs in NBC 

training set. D) Histogram of raw counts of pairwise concordant features per sample. Donor pair 

(MARS0022/MARS0043) represented by dashed blue line. 
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Figure 5.3. 16S rRNA metagenomic characterization of stool from gnotobiotic mice humanized with MARS0022 

and MARS0043, related to Figure 2.3 and Figure 2.4.  

A) PCoA of the fecal 16S Unifrac distances of humanized gnotobiotic mice colonized for six weeks (n=5-10/group). 

Shapes correspond to separate experiments and are consistent with previous figure. Star corresponds to human donor 

sample. B) Relative abundance bar plot of all HO and AO mice colonized for six weeks as part of this study (n=5-

10/group, 4 experiments). C) PCoA of the fecal 16S Unifrac distances of humanized gnotobiotic mice colonized for 

one week (n=9-10) only along with donor fecal samples (stars). D) Heatmap of taxa concordant by NBC and 

occurring in HO and AO mice colonized with human donors. Statistically significant differences noted by black 

rectangle outlines (Wilcoxon, two-tailed). All experiments here include 2-5 males and 2-5 females per group.   
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Figure 5.4. Typical AAI markers found in OSC mouse lungs and DNA repair and recombination upregulated in 

AO compared to HO mice, related to Figure 2.3 and Figure 2.4.  

A) Serum anti-ovalbumin IgE measurements from naïve GF, HN, AN, HO and AO mice (n=6-10/group, 4 

experiments denoted by shapes). Two-sided Wilcoxon Test result between OSC treated and non-OSC treated mice 

shown. B) Expression of genes encoding Interleukin-4, -5, -13, and -17A measured by RT-qPCR from the lungs of 

Naïve GF, HO, and AO mice (n=4-10/group, 2 experiments denoted by shapes). Significant two-sided Wilcoxon test 

results shown. C) Heatmap of variance stabilized counts and log2 fold-changes of allergic airway inflammation-

related genes. In purple scale: the counts of the genes (z scores scaled by row). In blue-red scale: the log2 fold 

change. Statistically significant fold changes are outlined in black (n=4-5). D) GSEA enrichment heatmap of 

normalized enrichment scores (NES) of relevant GO and KEGG pathways (n=4-5). E) GSEA enrichment plots of 

the KEGG Asthma pathway and GO Type 2 immune response pathway in OSC vs. Non-OSC mice (n=4-5). F) 

GSEA enrichment plots of GO:0006281 DNA repair and GO:0006310 DNA recombination  pathways (n=5/group). 

G) Heatmap of variance stabilized counts of leading edge genes from the GO pathways in (A). In purple scale: the 

counts of the genes (z scores scaled by row). In blue-red scale: the log2 fold change. Statistically significant fold 

changes are outlined in black (n=5, p-adjusted<0.05). This experiment includes 2-3 males and 2-3 females per 

group. The ten naïve germ-free mice are identical to those shown in subsequent figures.  
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Figure 5.5. Immunophenotyping of humanized gnotobiotic mice, related to Figure 2.3 and STAR Methods.  

A - B) Flow cytometry profiling of granulocytes in the lungs of AO and HO mice (n=6-10/group, 2 experiments 

denoted by shapes). C) Intracellular staining of IL-17A following in vitro restimulation from lymphocytes isolated 

from the lungs and spleen of AO and HO mice (n=5-10/group, 2 experiments denoted by shapes). D) Serum 

measurement of IL-17A in AO and HO mice (n=6-10/group, 4 experiments). E) Intracellular staining of IL-17A 

following in vitro restimulation from lymphocytes isolated from the mesenteric lymph nodes of AO and HO mice  

(6-10/group, 1 experiment) F-H) Flow cytometry gating strategies for F) effector T-cells, G) neutrophils and 

eosinophils, and H) IL-17A producing lymphocytes. All experiments here include 2-5 males and 2-5 females per 

group. Shapes denote separate experiments and are consistent with previous and subsequent figure.   
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Figure 5.6. Markers of AAI increase after OSC in mice colonized with ETBF, NTBF, or neither but Il17 

expression is unchanged between OSC mice, related to Figure 2.5.  

A) Serum anti-ovalbumin IgE ELISA results. Two-sided Wilcoxon Test result between OSC treated and non-OSC 

treated mice shown. Reference naïve GF control OVA-IgE values are the same data shown in Figure 5.3A,B. B) 

Lung cytokine RT-qPCR relative expression. Two-sided Wilcoxon results shown for all lung cytokines between GF 

No OSC (i.e. naïve) and all OSC mice. Kruskal-Wallis between only OSC groups is shown for Il17. All p-values for 

Kruskal-Wallis between only OSC groups for Il4, Il5, and Il13 were greater than 0.05. A) and B): n=8-10 

mice/group; includes 3-4 males and 5-7 females per group.  



118 

 
 

 
Figure 5.7. Humanization with additional ETBF+ microbiota does not always increase intestinal permeability or 

markers of AAI compared to humanization with healthy controls, related to Figure 2.6.  

A) Legend key of MARS donors used for each humanization. Shapes correspond to matched samples by age group 

(pediatric vs. adult) and microbiome composition. Red names were excluded from analysis. B) Histogram of the 

proportion of pairwise concordant taxa across all possible healthy-asthma donor dyads (also shown in Figure 2.3C). 

Vertical dashed line denotes the ETBF+/ETBF- dyads used in this experiment. C) Heatmap of Bray Curtis 

dissimilarity between stool from human donors and recipient mice at the time of sacrifice. The heatmap is presented 

as ranked across human microbiomes to highlight mouse samples most reflective of their donor (left, top rank 

outlined in white) and as raw dissimilarity values (right). Mouse recipients in red and bolded were not the most 

similar to their donor and were excluded from further analysis. D) ELISA serum anti-ovalbumin IgE amounts; two-

sided Wilcoxon Test result between OSC treated and non-OSC treated mice shown (total Healthy n=19, total 

Asthmatic n=22). All experimental groups included 1-4 female and 2-4 male mice. Two-sided Wilcoxon test 

between OSC and non-OSC mice shown. Naïve GF control OVA-IgE values are the same data shown in previous 

figures. E) Lung tissue expression of genes encoding IL-4, -5, -13, and -17A measured by RT-qPCR relative to 

healthy donors with asterisks and numeric values denoting adjusted p -values from the Kruskal-Wallis post hoc Dunn 

Test with Benjamini-Hochberg multiple comparisons correction (total Healthy n = 18-19, total Asthmatic n = 21-

22). Reference Naïve GF control qPCR are the same data shown in Figure 5.3A and B. F) Intestinal permeability of 

ovalbumin sensitized and challenged (OSC) mice colonized with healthy or asthmatic microbiota following a 2 -

week colonization (total Healthy n=19, total Asthmatic n = 22). G) Oxidized guanosine in lungs of humanized OSC 

mice (total Healthy n=19, total Asthmatic n = 22).  
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Figure 5.8. A Naïve Bayes’ Classifier is an intuitive tool for the exploration of microbiome data, related to Figure 

2.2 and STAR Methods.  

A) A comparison of taxa identified as important by NBC and RF. Feature importance in the random forest was 

inferred based on mean decrease in accuracy. Feature importance in the NBC was inferred based on the AUC of an 

individual taxa’s ROC curve in predicting asthma. Colors correspond to percentiles of ranked importance for taxa 

considered by each of the models. The top 20 predictive features in each model are presented. B) Overview of Naïve 

Bayes’ Classifier (NBC) fit with a mixture distribution. I) Individual counts of taxa by 16S rRNA sequencing are 

scaled by total read count per sample. II)  Relative abundances of each taxon across samples are separated by class. 

III)  Bayes’ theorem can be used to calculate the probability of a given class given the microbiome composition. We 

model relative abundance as a mixture distribution such that when a taxon is not detected, it is part of a binary 

distribution and when detected is part of a beta distribution. IV) Using our mixture model, an individual taxon can 

be modeled overall and as part of a class to calculate the probability of belonging to different classes. V) The sample 

score describes the likelihood that a sample is from one class over another. C) Confusion matrices summarizing 

Leave-One-Out Cross Validation (LOOCV) predictions for NBC and Random Forest (RF), respectively. The NBC 

performed significantly better than chance (p=8.2e-6 by Fisher’s exact test). D) Receiver Operating Characteristic 

(ROC) Curves and area under the ROC curve (AUC) scores from LOOCV NBC and RF models.  
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Figure 5.9. MARS whole metagenomic shotgun sequencing captures essential functions and taxonomic shifts of 

the asthma gut microbiota.  

A) Summary of select sequencing statistics from NovaSeq shotgun metagenomic sequencing and subsequent 

filtering steps. B) Boxplot of redundancy-based estimated metagenome coverage (%) as calculated by running the 

forward reads through the Nonpareil tool. Split into asthma and age group and Two-way Type II ANOVA results 

shown. C) Bar plot of MetaCyc pathway copies per million (CPM) in all MARS samples annotated by HUMANnN 

pipeline, with horizontal length representing mean and bars the standard error. For all pa nels: N= 20 healthy 

children, 39 healthy adults, 19 children with asthma, 17 adults with asthma. D) Relative abundance stacked barplots 

of top abundant bacterial genera split by age group and asthma cohort. E) Simpson alpha diversity boxplots split by 

asthma and age group cohorts (2-Way Type II ANOVA). F) NMDS of Bray-Curtis Dissimilarity of species-level 

relative abundance grouped by age and asthma. G) Sequential PERMANOVA to test effect of demographics on beta 

diversity. Terms were input into the test as ordered from top to bottom of barplot. Dotted vertical line represents a p 

value of 0.05. Color scale is mapped to the R2 value. H) Arcsine transformed relative abundance boxplots of 

differentially abundant species as determined by Maaslin2 with age group and race modeled as random effects. For 

all panels: N= 20 healthy children, 39 healthy adults, 19 children  with asthma, 17 adults with asthma.  
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Figure 5.10. KEGG orthologs and differentially abundant MetaCyc fatty acid pathways.  

A) Relative abundance of KEGG orthologs previously implicated in asthma. Copies per million (CPM) are counts 

normalized by gene size and read depth, then total-sum-scaled to one million. B-C) Stacked bar plots of 

differentially abundant pathways mapped to respective taxa including “Community” bin which accounts for the 

remaining reads that mapped to the pathway but not to any single species by MetaPhlAn3.0/HUMAnN3.0, averaged 

within asthma or healthy cohorts. B) L-lysine biosynthesis III pathway. Only top 13 taxa shown in addition to 

Community category. C) Seven fatty acid metabolism pathways differentially abundant in the asthma cohort. Only 

top 9 taxa shown in addition to Community category. Stars represent a q value < 0.05 of Wilcoxon tests between the 

Community pathway richness and B. vulgatus-encoded pathway richness. For all panels: N= 59 healthy, 36 

individuals with asthma. 
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Figure 5.11. Pathway collage for differentially abundant MetaCyc pathways.  
“PWY-6519: 8-amino-7-oxononanoate biosynthesis I” is completely overlapping with “BIOTIN-BIOSYNTHESIS-

PWY: biotin biosynthesis I” and its steps are highlighted in blue text. Pathway collage made on MetaCyc browser 

tool.  
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Figure 5.12. Gut virulence factor ecology shifts with age group but not asthma cohort.  

A) Total-sum scaled RPKM Bray-Curtis Dissimilarity Non-metric Multidimensional Scaling (NMDS) plot labeled 

by asthma and age cohorts. Showing two axes out of 5 with stress value=0.09. B) Effect of demographic categories 

on virulence factor profile in A (by sequential PERMANOVA, input terms ordered from top to bottom of barplot). 

C) Stacked violin plots of virulence factor alpha diversity grouped by eithter healthy and asthma cohort (blue green 

colors in background) or age (brown colors in foreground). Two-Way ANOVA results shown in table above plot. D) 

Procrustes plot and PROTEST analysis between virulence factor profile Bray -Curtis dissimilarity distances and 

Metaphlan species relative abundance Bray-Curtis dissimilarity distances. Arrows connect the two data points 

belonging to identical samples. For all panels: N= 20 healthy children, 39 healthy adults, 19 children  with asthma, 

17 adults with asthma. 
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Figure 5.13. Asthma-associated ARG richness and ARG-VF co-occurrence relationships are observed within K. 

pneumoniae and E. coli.  
A) Richness bar plots between antibiotic resistance genes (ARGs) and virulence factors (VFs) grouped by asthma 

status. B) Heatmap of the co-occurrence of each VF/ARG pair colored by the direction in which (positively or 

negatively co-occurring) and the cohort for which (asthma vs. healthy) the pair had a p-value less than 0.05 via R 

cooccur function. Blank squares were pairs filtered out due to a lack of observed co -occurrence. SS: secretion 

systems. (N=36 Healthy, 59 Asthmatic) 
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Chapter 6: Appendix II – Supplemental Tables 
Tables S1-S8 can be found with the associated publication at iScience157. 

Tables S8-S13 can be found on bioRxiv205. 


	The influence of the gut microbiota on asthma in school-aged children and adults
	Recommended Citation

	Table of Contents
	List of Figures
	Acknowledgments
	ABSTRACT OF THE DISSERTATION
	Chapter 1: Introduction to the Gut-Lung Axis in Asthma
	1.1                  The ABCs of Wheeze: Asthma and bacterial communities
	1.1.1 Is asthma a problem of microbial ecology?
	1.1.2 How could microbial community dynamics promote allergy?
	1.1.3 Is microbial community composition in the upper airway a risk factor for asthma?
	1.1.4 Is there a lung microbiota, and does it play a role in asthma?
	1.1.5 How do gut microbes shape allergic inflammation in the lung?
	1.1.6 Concluding remarks
	1.1.7 Acknowledgements
	1.2 The gut-lung axis after asthma diagnosis

	Chapter 2: The gut microbiota from people with asthma influences lung inflammation in gnotobiotic mice
	2.1 Abstract
	2.2 Introduction
	2.3 Results
	2.3.1 The composition of the gut microbiota differs between individuals with and without asthma
	2.3.2 Germ-free mice humanized with fecal microbiota from an adult with asthma showed an increase in lung oxidative stress and Th17 responses
	2.3.3 IgA-Seq identifies enterotoxigenic Bacteroides fragilis as a potential effector taxon during AAI
	2.3.4 Expression of bft in mice humanized with ETBF+ donor microbiota is highly dependent on microbial community context
	2.3.5 Gut colonization with ETBF is more prevalent among individuals with asthma compared to healthy controls

	2.4 Discussion
	2.4.1 Limitations of the study
	2.5 Materials and Methods
	2.6 Acknowledgements

	Chapter 3: The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma
	3.1 Abstract
	3.2 Introduction
	3.3 Results
	3.3.1 Whole metagenomic shotgun sequencing of fecal samples from adults and children with asthma and healthy controls
	3.3.2 Gut taxonomic composition differs between people with and without asthma
	3.3.3 Fatty acid metabolism pathways are enriched in the gut metagenomes of people with asthma
	3.3.4 Richness of antibiotic resistance genes is increased in the gut metagenomes of people with asthma
	3.3.5 Macrolide resistance markers are differentially abundant in asthma
	3.3.6 People with asthma have a distinct set of co-existing pairs of antibiotic resistance genes and virulence factors in the gut metagenome
	3.4 Discussion
	3.5 Materials and Methods
	3.6 Acknowledgements

	Chapter 4: General Conclusions and Future Directions
	4.1 Features of the gut microbiota could be therapeutic targets for asthma
	4.2 Antibiotics may select for both resistance genes and immunomodulatory virulence factors
	4.3 Two understudied potential mechanisms of the gut-lung axis in asthma

	References
	Chapter 5: Appendix I – Supplemental Figures
	Chapter 6: Appendix II – Supplemental Tables

