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Black holes are among the most exotic phenomena in our universe, physical objects so

dense and compact that within their horizon not even light can escape. In binary systems,

black holes can accrete material from their companion star, forming an accretion disk that is

subjected to extreme physical conditions. Often, these disks are accompanied by jets - highly

relativistic outflows of material moving at significant fractions of the speed of light. This

extreme environment is the source of some of the most luminous and energetic processes in

our universe. Black hole accretion disks are often modeled as a steady state, razor thin disk

aligned in the equatorial plane of the black hole spin. In reality, however, this approximation

is not always valid as these systems are highly dynamic, with their energy spectra varying

as the state of the accretion flow changes. These changes of state occur on timescales of

days to weeks to months, during which the luminosity can increase or decrease by orders

of magnitude. Simultaneously, variations in the luminosity are also observed on sub-second

timescales, a phenomenon known as quasi-periodic oscillations (QPOs). While the charac-

teristics of these state transitions and QPOs have been well typified by modern observations,
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the physical mechanisms underlying them are only beginning to be understood.

This thesis contains work I have completed in to better understand and explain the ob-

servational characteristics of accretion disks which deviate from the thin disk model. In

the first part of this thesis I explore the effect of finite geometric thickness on the po-

larization spectra produced by accreting black holes, achieved by introducing a modified

geometry to the raytracing code xTrack. I find that, in general, disks of geometric thick-

ness produce higher polarization signatures than thinner disks. The remainder of the thesis

focuses on the time domain characteristics, reflection spectra, and polarization spectra of

a dynamically evolving accretion disk undergoing tearing events. To achieve this, I devel-

oped a raytracing code based on xTrack that utilizes the output of the General Relativistic

Magneto-Hydrodynamical simulation H-AMR as initial conditions and raytraces the spectral

emission through the evolving geometry. I show, for the first time, spectral high frequency

QPOs that result from tearing events in the disk itself. Additionally, I show that precession

of an inner, quasi- Bardeen-Petterson aligned disk produces low frequency QPOs. I also

explore the dynamic behavior of the both the polarization and Fe-Kα line emission during

these tearing events. These novel results lay the groundwork for developing new methods

for measuring the spin of accreting black holes and are an important step toward explaining

the dynamics of the accreting plasma during the state transitions observed in stellar mass

black holes.
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The most beautiful thing we can experience is the mysterious. It is the source of all true art

and science. He to whom the emotion is a stranger, who can no longer pause to wonder

and stand wrapped in awe, is as good as dead - his eyes are closed.

—Albert Einstein
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Chapter 1

Introduction

1.1 Motivation

Black holes are the most exotic and arguably the most intriguing consequence of Einstein’s

Theory of General Relativity [3], the result of the core collapse of very massive stars. Shortly

after Einstein published his work, Karl Schwarzchild discovered the simplest black hole

solution to Einstein’s field equations - that of a non-rotating, charge free black hole [4].

The subtlies of this solution were not well understood until more than 40 years later. It

was Finkelstein who first realized that the Schwarzchild solution described an object with an

event horizon, a boundary of causality from within which all futures have the same ending:

the singularity of the black hole [5, 6]. Then, in 1963, Roy Kerr [7] derived the solution of

the field equations for a rotating black hole. The Kerr solution requires only two quantities

to fully describe the spacetime of a rotating black hole - the mass M and the spin, a (which

in conjunction give the angular momentum of the black hole).

In the years that followed, the idea of astrophysical black holes gained more traction and

legitimacy, and in 1970 the first black hole candidate was discovered - Cyg X-1 [8, 9]. In

the fifty years since, the list of black hole candidates has grown significantly, with 80 [10]

stellar mass black holes having been discovered thanks to the advent of ever more powerful
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telescopes. In 2015, the first binary black hole merger was detected with LIGO [11], providing

one of the strongest confirmations to date of the validity of Einstein’s Theory of General

Relativity and marking the beginning of a new era of high energy astrophysics.

Accreting black holes are the brightest objects in our universe and are capable of gen-

erating emission across nearly all wavelengths, from radio, infrared, visible/UV, and up to

X-rays and γ rays. The mechanisms producing the observed emission vary, but are all deeply

connected to the high gravity regime produced by the black hole through the dynamism of

the plasma accreting onto it. But it is not only the energy of the light produced in these

systems that is of scientific interest, for nature has encoded far more subtle clues about

these extreme objects in their spectra. The emission, particularly the high energy emission,

is encrypted with the features of the spacetime geometry, the dynamics of the plasma, the

mechanisms of emission, and the evolution of the system through polarization and long term

(days/weeks/months) and short term (subsecond) variability. Understanding these extreme

objects and the exotic physics that occurs in the high gravity that they produce is essential

to our understanding of the universe - its origin, its fate, and humanity’s place within it.

1.2 Observational Characteristics

The bulk of the work in this thesis is focused on emission from stellar mass black holes. With

that in mind, emphasis will be given in the following sections to stellar mass systems, with

some of the differences between stellar mass and supermassive spectra and properties being

pointed out along the way.
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1.2.1 Spectra

The majority of stellar mass black holes spend their lives in a state of quiescence, with

luminosities well below 1% of the Eddington limit [12], though there are a few persisent

emitters, notably the first black hole discovered - Cyg X-1. Periodically, transient systems

erupt in violent outbursts during which their luminosities can increase by many orders of

magnitude. During these outburts, stellar mass black hole spectra are characterized by

two component X-ray emission consisting of ‘soft’ thermal emission peaking between a few

hundred eV to a few keV followed by a ‘hard’ powerlaw component extending up to ∼ 100keV

or more. These phases of outburst are dynamic, with the spectra varying between soft and

hard emission (and some combination thereof) on very long (days/weeks/months) timescales

as they cycle through different accretion states. In some cases, variation is observed on very

short (sub-second) timescales, which will be discussed in Section 1.2.3. The long timescale

variability is associated with changes of state in the accretion flow (and thus, the spectra)

itself.

In the high-soft and low-soft states, the emission spectrum is dominated by a quasi-black

body spectrum, peaking in stellar mass black holes at ∼ 1 − 2keV (and in the optical/UV

for supermassive black holes). As a source moves higher on the hardness scale (to the right

on Figure 1.1), its spectra develop a powerlaw component characterized by a photon index

Γ between 1 and 2, such that dN/dE ∝ E−(1+Γ). This emission is associated with the devel-

opment of a corona, a hot (Te ≃ 100keV), optically thin electron dominated atmosphere. As

the virial temperature of the electrons is significantly above the effective temperature of the

photons thermally emitted from the disk, these photons inverse Compton scatter (Comp-

tonize) in the corona. Provided the photon energy ≪ 4kbTe and the corona is non-relativistic

( kbTe ≪ mec
2), the rate that energy is imparted on the photons through comptonization in
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Fig. 1.1: Hardness-Intensity Diagram Adapted from [1, 2]. Sources cycle counter clockwise.
As a source moves to the right, the amount of Comptonized powerlaw emission
increases, and as sources move up the Luminosity increases.

the corona is given by
dE

dt
= 4

3σT cβ2γ2U. (1.1)

Here, σt is the Thompson cross section. γ is the Lorentz factor of the electron (prior to

interaction) and β2 = v2
e/c2, where ve is the velocity of the electron and c is the speed of

light. Finally, U is the energy density of the incident radiation. [13]. From here, the average

energy change of a single interaction, and the maximum energy change given N interactions

[14, 13], is

⟨∆E⟩ = (4kbTe − E) E

mec2 → Ef ≃ Eie
N

4kbTe

mec2 . (1.2)

As photons interact and gain energy, the energy imparted from each subsequent inter-
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action goes down, yielding a step cut-off in the spectra known as the power-law tail. As

these high energy comptonized photons leave the corona, they may reflect back off of the

disk and spur fluorescence from the cooler accreting plasma. The most notable of these

fluorescence lines is the Fe-Kα line, which is relativistically broadened from its very narrow

rest frame energy of 6.4keV after emission due to the orbital motion of the gas and the grav-

itational potential near the compact object. The Fe-Kα has become a standard benchmark

for estimating black hole spin and inclination.

The geometry and location of the corona is the subject of much debate. Microlensing

([15, 16, 17]) and X-ray reverberation studies ([18, 19, 20]) of Active Galactic Nuclei (AGN)

have shown that the corona is compact and located close to the black hole (within a few

gravitational radii, rg = GM/c2). A 2018 study by Kara et al. using the same techniques

showed the corona dynamically evolving and contracting [21], while remaining in a region

very close to the black hole. These indications of compactness and close proximity to the

central object have led to the corona being associated with the base of a jet, and are the

source of the common ‘lamppost’ corona model. Recently, however, observations with the

Imaging X-Ray Polarimetry Explorer (IXPE) have deviated from this jet-corona association,

indicating that the corona in Cyg X-1 - at least in the state it was observed in - is spatially

extended and perpendicular to the jet [22]. In reality, there is likely not one singular geometry

of the corona. Long term observations of X-ray sources reveal their emission to meander

from state-to-state, and the changes in both the intensity and hardness of the comptonized

emission are likely to be due to the formation, evolution, and dissipation of the corona.
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1.2.2 Polarization

Polarization is a measure of the alignment of the electric fields of the photons in a beam

of light. In most cases, light is unpolarized - that is, all of the electric fields amongst all

the photons are distributed in all directions evenly. There are many processes that will

polarize an otherwise unpolarized beam of light, the most common of which, and the only

process that will be addressed in this thesis, is scattering. When light scatters off of a

surface, it is preferentially endowed with a polarization angle perpendicular to the plane of

scattering. The more scattered photons that reach an observer, the higher the polarization

degree. The degree and angle, commonly denoted Π and χ, are the two observables of

polarization,measuring the relative intensity of the polarization emission and electric field

direction (relative to some reference direction), respectively. A formal definition of Π and

χ requires the introduction of the Stokes parameters: I, Q, U, and V [23], which can be

defined as follows
I = ⟨E2

x + E2
y⟩

Q = ⟨E2
x − E2

y⟩

U = ⟨2ExEy cos δ⟩

V = ⟨2ExEy sin δ⟩.

(1.3)

Here, the brackets ⟨⟩ denote the time average. I represents the total intensity of of the

radiation (both polarized and unpolarized). Q is a measure of the intensity of the polarized

emission perpendicular or parallel to the reference plane - be that the detector, or the detector

signal transformed into sky coordinates. U is a measure of the intensity of the polarized

radiation in the 45◦ direction to the reference plane. V is a measure of circular polarization,

which is not relevant to the work that follows but is included for completeness. δ is a measure
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Fig. 1.2: Stokes Parameters Q and U

of the phase, or the lag of Ey behind Ex. The Stokes parameters Q and U are schematically

drawn in Figure 1.2. From the Stokes parameters, the polarization fraction and angle are

defined as

Π =

√√√√(Q

I

)2

+
(

U

I

)2

and χ = 1
2arctan

(
U

Q

)
. (1.4)

The treatment of polarization in this thesis follows the formalism of Chandrasekhar [24]

and his calculations of the polarization induced for scattering off an indefinitely thick electron

atmosphere. The strong gravity environment around a black hole can impact the polarization
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of X-rays emitted from the accreting plasma and corona. One of the predictions of General

Relativity is that light does not travel in a straight line as it is perceived to in our every day

lives, but in fact follows a path determined by the curvature of the spacetime through which

it travels. Observation of this phenomena was one of the first experimental verifications

of General Relativity when Sir Arthur Eddingonton and Andrew Crommelin measured the

gravitational lensing of a star around the sun during a solar eclipse in 1919 [25]. X-rays

emitted from near the black hole are bent by the curvature it induces in the spacetime which

has two consequences on the polarization. The first consequence is that these photons can

be bent back onto the disk from which they emitted and scatter, inducing a polarization

angle perpendicular to the plane of scattering and a polarization degree proportional to the

intensity of the incident radiation and the incoming and outgoing angles of the interaction.

The second consequence has to due with the orthogonality of the photon’s polarization

four vector, fµ and its wave vector kµ. Light is a transverse electromagnetic wave - the

direction of its propagation, encoded in kµ, and the direction of its electric (and magnetic)

field, encoded in fµ, must remain - by definition - orthogonal, such that fµkν = 0. As the

photon moves forward, the polarization vector is ‘parallel transported’ along with it. As

the photon’s path is bent around the black hole, the direction of its electric fields must also

necessarily change to maintain this relationship.

Both of these effects - scattering and propogation through curved spacetime - have an

effect on the polarization spectra, as shown in the simulated spectra of a stellar mass black

hole in the soft state in Figure 1.3. As the spin (a) increases, the inner edge of the accretion

disk moves to smaller radii where the curvature of the spacetime is higher. The swing in

polarization angle from horizontal to vertical is due to the effect of this curvature on the

trajectory of the photons. As the path of light emitted closer to the black hole moves through

this highly curved spacetime the polarization vector rotates relative to the wave vector to
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Fig. 1.3: Simulated spectra for polarization degree (left) and angle (right) for thin disks
with various values of spin.

maintain orthogonality. Additionally, light emitted from these smaller radii at higher spins

have a higher chance of scattering, again due to the curvature, raising the polarization

fraction at high energies. The polarization induced by both lensing and scattering increases

with increasing inclination - with the lowest values measured when the disk is viewed face

on, and the highest values measured when it is viewed edge on. This trend allows X-ray

polarization to be utitlized to measure the spin [26] and inclination [27] of accreting stellar

mass black holes.

X-ray polarization has long been studied theoretically, but is a very young field experi-

mentally. The first X-ray polarization measurements of an accreting black hole were of Cyg

X-1 in 1976, showing low polarizations - 2.4% and 5.3% at 2.6keV and 5.2keV, respectively

[28]. Though these were low significance detections, they are inline with theoretical mod-

els. More recently, the field of X-ray polarimetry has been burgeoning, with balloon borne

missions like X-Calibur [29] and XL-Calibur [30], and space-borne missions like the Imaging
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X-ray Polarimetry Explorer - IXPE [31] all launching within the last five years. IXPE is al-

ready producing exciting - and unexpected results - with observations of Cyg X-1 indicating

that the corona is extended and perpendicular to the jet [22].

1.2.3 Quasi-Periodic Oscillations

In Section 1.2.1 the effect of state transitions on the spectra of accreting black holes were

discussed. These transitions occur on timescales of days/weeks/months. There are, however,

other variations in spectral output associated with these state transitions which occur on sub-

second timescales, known as Quasi-Periodic Oscillations (QPOs). QPOs come in two flavors,

low frequency (lfQPO) and high frequency (hfQPO), and both are relevant to the work that

follows. While lfQPOs are common in stellar mass black holes, hfQPOs are exceedingly rare

- having only been observed in a few sources. QPOs are identified by the behavior of the

lightcurve in Fourier space, with the square magnitude of the transform giving the power

spectral density, the amount of power in a signal at a given frequency.

1.2.3.1 Low Frequency Quasi-Periodic Oscillations

Low-frequency QPOs (lfQPO) are characterized as having a centroid frequency ≤ 30Hz and

are classified into three types, Type A, B, and C. Type C and B QPOs are the strongest

of the three, with narrow features and high power density, whereas Type A are broad and

have lower power density [32]. There are two important distinctions between Type B and

C QPOs, both of which give indications of their physical origin. Type C QPOs are often

associated with broadband noise[32], a feature which may be due to fluctuations in the mass

accretion rate Ṁ propagating through the disk [33], while this noise is absent in Type B

QPOs. Secondly, Type C QPO signals tend to have higher power spectral density for high
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inclination sources, whereas the opposite is true for Type B QPOs [34, 35]. This trending

of power and inclination implies that Type C QPOs may have a geometric origin (e.g.,

precession of the inner disk [36]), as the boosting of emission would be stronger at higher

inclinations. This is supported by observations of H1743-322 which showed a shift in the

Fe-Kα centroid along the phase of a Type C QPO[37].

Fig. 1.4: Hardness-Intensity Diagram Adapted from [1, 2] with lfQPO associations added.

The occurence of these signals is tightly correlated to the state transitions discussed in

Section 1.2.1, and so the figure is repeated here with the addition of the lfQPO types in their

state of occurrence. Type C QPOs are by far the most common; a statistical study by Motta

et al. in 2015 [34] identified 564 lfQPOS in archival RXTE data, with 400 being Type C.

Most typically these signals are seen in the ‘hard-intermediate’ (bottom and top of loop) and

low-hard to high-hard transition (right side of loop), though they have also been observed
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in the low soft and ultra-luminous soft states [38]. The frequency of their oscillation tends

to increase with increasing flux. Type C QPOs have also been observed in the infrared [39],

optical [40], and ultra-violet [41]. In some of these cases the lfQPO frequencies across the

infrared, optical, and ultraviolet bands correlated directly with the X-ray oscillation.

Some systems abruptly transition from the hard-intermediate state to the so called ‘soft-

intermediate’ state (SIMS) (along the top of the H-I Diagram in Figure 1.4). In this state,

the Type C QPOs disappear and Type B QPOs arise. These oscillations, which as men-

tioned previously tend to have more power at lower inclinations, may be associated with

the production of radio jets [42], a phenomena which often occurs in the SIMS state. They

typically have a frequency 1 − 6Hz. Finally, Type A QPOs - the rarest of the three lfQPOs

- are known only to occur in the high-soft state after the SIMS transition has completed.

There have only been on the order 10 detected, and they are characterized by a very weak

and broad signal [32]

1.2.3.2 High Frequency Quasi-Periodic Oscillations

High frequency QPOs have shown to be more elusive than lfQPOs, with detections in only

< 10 sources. The first hfQPO detection [43] was in GRS1915+105 (GRS1915 hereafter) at

67Hz. Since then, multiple hfQPOs have been observed in GRS1915 at varying frequencies

[44, 45], 34 Hz, 41 Hz, 113 Hz, and 166 Hz, and some of them - in particular the 67 Hz

signal - have been observed numerous times. GRS1915 is a special case, with only one other

source - IGR J17091-3642 showing an hfQPO near this frequency, at 66 Hz [46]. The rest of

the hfQPOs detected have all been above 100 Hz, with the highest signal coming from GRO

J1655-40 in which a 450 Hz signal was discovered [47].

The source of these signals is not known. Some of these frequencies - like the 450 Hz

frequency in GRO J1655-40 - correspond to characteristic orbital frequencies in the inner
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regions of the disk near or inside the innermost stable circular orbit. In sources that have

shown multiple hfQPOs, the frequencies commonly appear in 2 : 1 and 3 : 2 harmonics

(41 Hz and 67 Hz frequencies in GRS1915 [43, 44], 180 Hz and 280 Hz in XTE J1550-564

[48]). However, these harmonic pairs have only occurred simultaneously in one source, GRO

J1655-40, with significance [47]. Given that, and the rarity of their detection, the apparent

ratios exhibited may simply be coincidence.

There is an apparent energy and state dependence to these detections, with the strength

of the signal typically increasing with increasing energy [47, 43, 48]. In XTE J1550-564,

the majority of hfQPOs are detected while the system is in the SIMS state; prior to that

particular detection, [49] noted that all significant detections had occurred in the high hard

state. Also worth noting is that while many sources are repeaters, the frequencies of signals

that appear over a single outburst do not seem to shift their frequency as the luminosity

increases during state transitions [49]. This particular observation, combined with sources

like GRS1915 that over years have repeated the same signal at approximately the same

frequency, imply that the source of these signals is related directly to the mass and spin of

the black hole (as those two characteristics are the only quantities which would be constant

over such long time periods). With a better understanding of the production mechanism(s)

behind hfQPOs, new methods for measuring the mass and spin of accretion black holes may

be developed.

1.3 Accretion Disks Theory

The standard model of accretions disks - thin disk disk model - was originally introduced by

Shakura & Sunyaev in 1973 [50], and that same year was given a relativistic treatment by

Novikov and Thorne [51]. The model is that of a steady state, geometrically thin, optically
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thick disk in equatorial plane of the black hole. It is assumed that the torque vanishes at

the innermost stable circular orbit (rISCO), and thus the disk truncates at this radius. The

symmetry of the thin disk allows it to be treated as a series of concentric annuli each of

which is assumed to orbit with a Keplerian frequency Ω = 1
a+r3/2 , where r is the radius

of the orbit and geometrized units of G = c = 1 and M = 1 have been adopted. This

Keplerian nature of the disk requires that the orbital motion of the disk be differential;

two adjacent annuli will orbit at different azimuthal speeds, inducing shear in the plasma.

This shear in the presence of viscosity leads to dissipation, which they supposed would

naturally shed angular momentum by generating heat, allowing the matter to slowly infall

towards the black hole. The disk here is radiatively efficient, meaning the heat generated by

viscosity is radiated away immediately, which keeps the disk cool (and thus, geometrically

thin). As matter moves inward to smaller radii, orbital frequencies increase, and thus shear

increases, generating more heat but over smaller and smaller volumes, which increase the

luminosity and the temperature at these smaller radii. Page and Thorne derived the profile

of this emission in 1974 [52], finding it to be a quasi-thermal blackbody proportional to

the accretion rate, Ṁ , and peaking in soft X-ray band. The highest energy emission in this

profile, correlated with the highest disk temperatures, are generated in the innermost regions

of the flow.

One of the strengths of this model is that it is agnostic of the details of the viscosity,

parameterizing all of the possible viscosity mechanisms into the α parameter. The exact

nature of the viscosity need not be known in order to make predictions based off of this

model, and the predictions resulting from it have proven very successful. It correctly predicts

the thermal components of emission in the soft state and with the addition of some coronal

component, like the lamppost [53], seems to more or less predict the behavior of the Fe-Kα

emission observed in stellar mass black hole and AGN.
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The Fe-Kα is the most prominent fluorescence line in both active galacy nuclei (AGN)

and stellar mass black holes. Emitted from the K-shell at a very narrow rest frame energy of

6.4keV, this line is spurred from Comptonized emission from the corona reflecting off of the

cool, optically thick accretion disk. Gravitational redshifting as well as Doppler red and blue

shifting broaden this line over ∼ 2 − 12keV. The width of the line is correlated with both

spin and inclination. As rISCO decreases with increasing spin, higher spinning black holes

exhibit stronger relativistic boosts on emission from the inner-most regions. The boosts also

have more of an effect at higher inclinations as the line of sight of the observer approaches

the direction of motion, as shown in Figure 1.5.
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Fig. 1.5: Fe-Kα profiles and Doppler maps for a thin disk with a spin of a = 0.9 at inclina-
tion angles of i = 25◦, 55◦, and 85◦. The top figure shows the boosting, or g-factor,
of the Fe-Kα line with normalized flux. The bottom images are dopper maps of
this boosting, with the inclination angle increasing as from left to right. At higher
inclinations the blue shift increases, as more emission is boosting directly at the
observer. The relativistic motion not only blue shifts the light, but beams it with
an opening half angle θ1/2 ∝ 1/γ. This is the source of the higher flux observed as
Eobs/Eem > 1. Also worth noting is that the red shifted emission extends farther
than the blue - this is due to the combination of Doppler redshifting and gravita-
tional redshifting.
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There are, however, some obvious shortcomings to the thin disk model, foremost being

that it is steady state - it does not allow for the state transitions, including the generation

and evolution of a corona that is observed in nature. Coupled with these state transitions is a

mounting body of observational evidence that suggests that the angular momentum vectors

of the black hole and the binary system are misaligned [54, 55, 56, 57]. This misalignment

can lead to a warped and, in some cases, dynamically unstable accretion flow geometry.

The model is also only applicable to accretion rates between a few percent and a few tens

of percent of the Eddington rate. For very low accretion rates Ṁ < 0.01ṀEdd, disks no

longer radiate efficiently (and thus their luminosities fall), inducing thermal pressures that

cause an increase in thickness and catalyze advection as a mechanism for cooling. At very

high accretion accretion rates, Ṁ ≥ 0.3ṀEdd, the infall of the matter becomes sufficiently

high that the heat generated by viscosity cannot be radiated away fast enough to keep the

disk cool. These disks continue to radiate, but advection becomes an additional method of

cooling as the thermal pressures rise [58, 59, 60]. These two families of disks are known as

Advection Dominated Accretion Flows (ADAFs) and ‘slim’ disks, respectively.

ADAFs are a popular candidate to explain the quiescent and low-hard state observed in

stellar mass black holes and AGN [61]. As the radiative efficiency of the plasma falls, the

electrons and ions thermally decouple, naturally leading to the generation of a hot, optically

thin electron corona in the inner regions of the disk, which sets up the transition into the

low-hard and high-hard states. The majority of accreting black holes spend most of their

lives in this state of quiescence, outbursting into accretion episodes only periodically. Thus

in order to truly understand the exotic physics that occurs in these systems an exploration

of the parameter space beyond the standard thin disk is required. This effort is enacted

through detailed and computationally expensive numerical simulations of the plasma in the

high gravity regime.
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1.4 General Relativistic Magneto-Hydrodynamical

Simulations (GRMHD)

General Relativistic Magneto-Hydrodynamical simulations (GRMHD) are a powerful tool for

exploring the dynamics of plasma in the high gravity regime. These simulations are based

on the ideal MHD assumption that electrons and ions form a charge neutral inseparable

medium. The predictive power is often limited by the finite resolutions and finite run times

of the simulations. The latter render the outcome dependent on the usually idealized initial

conditions. Nevertheless, GRMHD have already afforded us with new insights, revealing

the mechanisms responsible for turbulence and viscosity, the validity of the inner boundary

zero torque assumption, and indications of how different mechanisms can conspire to create

jets. This section will provide a (very) brief overview of the numerical scheme involved

in GRMHD calculations and the challenges involved therein, followed by a review of some

important discoveries that have been made in these experiments in the past three decades.

The section will close with a description of the current state of the art, and work in progress.

1.4.1 GRMHD Equations in Less Than Two Pages

In simplest terms, GRMHD simulations provide a numerical scheme over which to integrate

the conservation laws for mass, momentum, and energy. Following the formalism of Misner,

Wheeler, and Thorne [6], these equations can be written in a General Relativistic framework

by utilizing the metric tensor and the stress energy tensor. The following aligns with the

standard convention of using greek indices to refer to components of a four vector and roman

indices to refer only to the spatial components. Depending on the purpose of the simulation

the metric may take either the Kerr or Schwarzchild form. Often the metric is expressed
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in the Kerr-Schild formulation, which has no coordinate singularity at the event horizon,

allowing the trajectory of matter to be traced through the horizon. Mass conservation is

given by

∂t(
√

−gρut) = −∂i(
√

−g)ρui, (1.5)

where uµ is the four velocity of the fluid, ρ is the rest-mass density, and √
−g is the deter-

minant of the metric. Momentum and energy conservation have a very similar form, with

the addition of the Christoffel symbol components required for covariant differentiation,

∂t(
√

−gT t
µ = −∂i(

√
−gT i

µ) +
√

−gT δ
ρΓρµδ. (1.6)

Here, T δ
ρ is the stress energy tensor, and Γρµδ are the aforementioned Christoffel symbols,

which are composed of derivatives of the metric. The stress energy tensor contains the

physical details of the fluid as defined in the fluid frame - its internal energy, pressure,

magnetic field, etc. In ideal GRMHD, the internal energy is the thermal energy of an ideal

gas, with each degree of freedom adding a factor kT/2 to the internal energy density ug,

where k is the Stefan Boltzmann constant and T is the temperature. The pressure is then

given by the ideal gas law for a gas with an adiabitic index of γ as pg = (γ − 1)ug. Next, the

induction equation is of the form

∂t(
√

−gBi) = −∂j(
√

−g(bjui − biuj)), (1.7)

where Bi are the spatial components of the magnetic field four vector bµ = 1
2ϵµνδρuνFδρ

[6, 62].

These equations are the foundation of modern GRMHD but they are not the entire story.

There are many assumptions which are requisite simply to make the computation technically
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possible. The equation of state of the plasma, for example, is not known, and is often

approximated as an ideal gas. Viscosity is also not commonly treated from first principles

and is instead added artificially in accordance with the well understood microphysics [63] of

MRI induced turbulence [64] (as will be discussed in the next section). These equations also

do not account for radiation, so an additional layer of computation is added as a ‘source’

term to artificially cool the gas. This is typically an exponential function, the decay time of

which is comparable to the Keplerian time scale of the disk at that point [65].

1.4.2 The Role of Magnetic Fields

Shakura & Sunyaev’s thin disk model is based on the assumption that differential shear

from the gradient in orbital velocity in concentric annuli of the disk was the source of the

viscous stresses that transport angular momentum outward. It turns out that from a purely

hydrodynamical standpoint, shear viscosity is incapable of generating sufficient turbulence

to effectively transport angular momentum outward. However, Balbus and Hawley [66, 64]

showed that the presence of a weak magnetic field in a differentially rotating fluid would nat-

urally lead to what they called the magneto-rotational instability (MRI). The field threading

the disk begins to twist due to the differential rotation of the plasma, and in so doing amplifies

the perturbations and eddies induced by shear. These amplifications create the turbulence

necessary to effectively shed angular momentum and allow the matter to accrete.

Seeding disks with poloidal magnetic fields has other benefits in addition to catalyzing

the turbulence necessary to allow accretion. As the MRI develops, the magnetic field is

stretched radially and begins to shear into a toroidal field. The magnetic field, particularly

in the ergotic regions near the black hole and threading the horizon, coils up and is ejected

due to magnetic pressure, forming a so called ‘magnetic tower.’ These towers drive conical
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jets, funneling matter from the accretion flow along the field lines and away from the compact

object [67, 68]. It has been shown that when a poloidal magnetic field threads the event

horizon of a spinning black hole, the launching of a jet is inevitable [69]. Additionally,

magnetic energy is dissipated in the upper regions of the disk, heating it and generating a

hot corona that becomes trapped between the jet and the disk [70]. Recently, the mechanisms

behind jets have been further refined by Liska et al. [71], who have shown that an initially

seeded poloidal magnetic field is not a necessary condition for the launching of jets. Their

results show that a toroidal field in the disk will naturally be converted via coriolis forces

into a poloidal field, which in time launches a jet. This process also naturally truncates the

disk into a magnetically arrested disk (MAD) state.

1.4.3 Recent Discoveries

Much work has been done to identify both the mechanisms of state transition and the source

of QPOs in the accretion flow. With QPOs in particular, the congruence between Lense-

Thirring precession frequencies and observed lfQPO frequencies have made precession a

favored model to explain the source of this variability[36, 72]. Simulations of (thick) slightly

tilted disks have been shown to precess due to the Lense-Thirring torques [73, 74, 75, 76, 77],

but these simulations have so far only produced signatures of a possible lfQPO. This is due,

in part, to the high computational cost of simulating tilted disks, which places a constraint

on the runtime of the simulation itself and on the inclination of the disk in initialization.

Liska et al. have developed a GRMHD code, H-AMR [78], which incorporates adaptive

mesh refinement and utitlizes GPU acceleration to effectively lower the computational cost

while achieving significantly higher resolutions, allowing the simulation of long duration runs

and thin disks. They have shown multiple tilted precessing thin disks which are sometimes
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accompanied by precessing jets [79, 80]. In recent work utilizing this code, it has been

shown that sufficiently tilted and thin disks undergo tearing events which not only produce

an lfQPO like precession in the inner disk (spanning numerous precession cycles) but also

induce hfQPO like features in the accretion rate [81]. This work forms the basis for this

thesis and will be described in detail in Chapter 3. Some efforts have been made to explain

hfQPO’s through Rossby wave instabilities in the disk. Through post processing GRMHD

data with raytracing, Varniere et al [82] have reproduced hfQPO like features in the power

spectrum of the raytraced lightcurve from the RWI event. Though it must be said that the

problem is still very much open, as the RWI in this case was artificially seeded and the disk

was tuned to manifest its propagation.

As GRMHD simulations become more detailed and sophisticated, they allow for more

powerful comparisons of simulated and observed signatures. The work described in this thesis

contributed to this development by providing a radiation post-processor for the output of

a GRMHD simulation. It will be shown that this post processing can be used to predict

the temporal properties of the emitted X-rays. This is similar to those post processors

utilized in the Event Horizon Telescope, but is specialized to raytrace X-rays rather than

radio waves. This work compliments the development of simulations accounting for radiative

pressure in the accretion flow and those that deviate from the ideal MHD assumption by

allowing electrons and ions to have distinct temperatures (as will be described below). Such

simulations may, with high enough temporal and spatial resolution, predict the location,

temperature, and geometry of the coronal gas which is a major component of X-ray emission

in accreting stellar mass black holes.

The inclusion of radiative transport in particular is non-trivial and very computationally

expensive. Some efforts have approached the problem by implementing radiative transfer

as a post-process applied to completed GRMHD simulations. Kinch and collaborators have
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taken data produced with the HARM3D [62] and given it two stage iterative post processing

to predict X-Ray spectra. This process feeds the GRMHD into the radiative transfer solver

PXTRANS [83] and raytraces the predicted spectrum with PANDURATA [84] over many

iterations to numerically predict the generated X-ray spectrum produced from the disk.

Their work shows, at least for the spins and accretion rates considered, that the inner radius

of Fe-Kα photon production is not always at rISCO, and the depth of the red shifted tail

is more dependent upon Ṁ than on the spin, a. This is due to the brightness profile’s

extent depending both on spin and the density profile of the disk [85]. Another important

observation to result from this work is the powerlaw component of the spectrum tended to

harden with increasing spin. While much follow up is needed, these results could potentially

allow refinements to models that currently are used to measure spin.

There are also fully radiative GRMHD (so called ‘GRRMHD’) codes that now exist, many

unitilizing a radiation transfer scheme called "M1 Closure" [86] (which is well described in

[87]). M1 closure defines the radiation stress tensor Rµν with the radiation energy density

and fluxes in the orthonormal ‘rest frame’ of the radiation under the assumption that the

field is isotropic in this frame. Part of this simplification consequently demands that the

net radiation flux be uni-directional; it is, in simplest terms, an approximation of averages.

GRRMHD simulations have answered some fundamental questions that were previously out

of reach, such as the thermal stability of sub-Eddington disks with moderate thickness [88],

and shown that disks in a MAD state at moderate accretion rates [89] and during the super-

Eddington to sub-Eddington transitions [90] remain stable.

The inclusion of two-temperature fluids brings GRRMHD even closer to reality. It is

well known that the low densities and high temperatures in the corona lead to the thermal

decoupling of electrons and ions, which prevents the corona from cooling. Treating the

plasma with a radiative, two-temperature scheme will shed new light on the processes that
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lead to the formation, evolution, and eventual dissipation of the corona observed in the

state transitions of outbursting stellar mass black holes. In the past year, H-AMR has

begun running the first fully radiative two-temperature GRMHD simulations of thin disks

[91]. One of the models initialized was a geometrically thin disk threaded with a poloidal

field, intended to simulate the hard intermediate state. This configuration naturally led to

a build up of magnetic pressure, interrupting accretion and truncating the disk. The result

was a magnetically supported hot inner corona and a radiatively supported cool outer disk,

consistent with a MAD state. The simulation also showed the accretion of cold lumps of

matter flowing from the truncation radius through the corona and into the black hole. This

result shows for the first time that disks can naturally transition from a hard intermediate

state to a hard state.

1.5 Thesis Outline

The work presented in this thesis is focused on the X-ray signatures of accretion disks which

deviate from the standard thin disk. In Chapter 2, the polarization signatures of high lumi-

nosity ‘slim’ disks are explored, with an emphasis given to the effect of geometric thickness

on the polarization over a range of disk scale heights. Chapters 3 - 5 focus on the raytracing

of a GRMHD dataset representing a thin, misaligned disk in the soft-intermediate state as it

undergoes tearing events, precession, and Bardeen-Petterson [92] alignment. Chapter 3 will

review the GRMHD code H-AMR, the physics involved in disk tearing, and the details of

the GRMHD dataset used in this thesis. Chapter 4 will review the details of the raytracing

code utilized to create the spectral and timing signatures of this dynamically evolving disk.

Chapter 5 will review the results of the raytracing, including the polarimetric, time domain,

and Fe-Kα fluorescence behavior during the course of the disk’s evolution. Chapter 6 will
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review the works contained in this thesis and reflect on ways to build on these results.
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Chapter 2

General Relativistic Raytracing Slim

Accretion Disks

This chapter represents the earliest work of my graduate career, work which was completed

with much help from my mentor Henric Krawczynski. This work is in the process of being

submitted for publication, and this chapter follows the manuscript of the publication closely.

2.1 Introduction

The general relativistic raytracing code utilized in the following section was originally devel-

oped by Krawczynski [93] in 2012 to test the observational signatures of alternative metrics

in General Relativity. In the years since it has been leveraged test the no-hair theorem

using coronal emission [94], constrain the geometry of the corona using polarization and

spectral timing [95], test the effect of microlensing on fluorescence lines [96, 97] and probe

the location of the ISCO in AGN [98]. Most recently, it was adapted to explore the effect of

Bardeen-Petterson alignment on the polarization spectra and Fe-Kα emission from accreting

X-ray binaries [99, 100]. In this chapter, the code is adapted to explore the effect of disk

thickness on the polarization spectra of accreting stellar mass black holes.
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The standard model of accretion disks is a geometrically thin, optically thick disk isolated

to the equatorial plane. While it is a good approximation, its applicability is limited to those

radiatively efficient flows whose luminosities are between a few percent and a few tens of

percent of the Eddington limit. However, as accretion rates rise, the heat generated by

viscosity does not have enough to time radiate away efficiently, and advective cooling arises

as a mechansism for energy dissipation. Thermal pressures and radiative pressures build in

the disk, increasing the scale height of the disk and forming ‘slim’ disks [101, 102]. For rates

close to the Eddington rate, the scale heights can reach as high as H = 0.3 [58]. At the

highest luminosities, these disks have a lower efficiency than the standard thin disk [103] and

can deviate from the thin disk in both their radial brightness profile and their radial extent,

falling within the ISCO and up to the horizon. For cases where the radiative cooling remains

dominant over advective cooling, these geometrically thick disks can remain optically thick.

In recent years much work has been done to explore the effect that geometric thickness

has on reflection spectra - particularly the Fe-Kα line [104, 105, 106] and X-ray reverberation

signatures [107, 108]. These works have noted that disks of sufficient thickness can effectively

self-shadow their inner regions, truncating the blue-wing of the Fe-Kα line, leading to an

under-estimation of spin. Geometric thickness can also cause an under-estimation of the

height of the compact corona by shortening the signal delay of reverberation signals.

The effect of this geometric thickness on the reflection spectra in XRBs motivate the

following chapter, which explores the effect that geometric thickness has on the polarization

of thermal emission from stellar mass black holes.
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2.2 Raytracing in xTrack

xTrack is a fully relativistic ‘forward-shooting’ raytracing code. Photon trajectories are

tracked from the source - in this case, the plasma surrounding an accreting black hole -

through the highly curved spacetime surrounding the black hole to an observer located

sufficiently far away that space is flat. A photon is emitted as a ‘packet,’ a statistical

ensemble which is smeared over the applicable energy range of the emitting region in analysis.

Henceforth, the term ‘photon’ will refer to these photon packets.

The code emits photons in the rest frame of the plasma in 10, 000 logarithmically spaced

radial bins at ϕ = 0. The distribution of initial photon trajectories is isotropic, achieved

by randomly drawing the photon’s spatial wave vector components with equal probability

per solid angle while ensuring |kt| = |ki| = 0, where i = r, θ, ϕ. The photons are initially

unpolarized, with the f r and fϕ components being drawn at random and f t and f θ being

zero under the constraint |fµ| = 1.

Once initialized, the photons are transformed from the plasma frame into the global

frame (see 2.3). The trajectory of each photon is forward integrated using the Cash-Karp

methodology [109], a fifth order Runga-Kutta numerical integration which allows for step-size

adaptation during the integration. This is a requisite of general relativistic raytracing, as the

highly curved spacetime around the black hole necessitates very small step-sizes to ensure

accuracy. Photon trajectories are advanced by integrating the geodesic equation according

to

d2xµ

dλ′2 = −Γµσν
dxσ

dλ′
dxν

dλ′ (2.1)
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and parallel transporting the polarization vector fµ according to

dfµ

dλ′ = −Γµσνfσ
dxν

dλ′ . (2.2)

The code utilizes the Kerr metric in Boyer-Lindquist coordinates,

ds2 = r2 − 2Mr + a2

r2 + a2cos2θ
(dt − asin2ϕ)2 + sin2θ

r2 + a2cos2θ
((r2 + a2)dϕ − adt)2

+ r2 + a2cos2θ

r2 − 2Mr + a2 dr2 + (r2 + a2cos2θ)dθ2,

(2.3)

which describes the curved spacetime around a charge-free spinning black hole. Here, M is

the black hole mass and a is the dimensionless spin parameter.

Photon geodesics have two possible fates: they either cross into the event horizon or

reach an observer. Due to the coordinate singularity at the event horizon in Boyer-Lindquist

coordinates, it is assumed that any photon whose trajectory comes within 2% of the event

horizon is lost. An observer is defined as being in asymptotically flat spacetime, located

at a distance of 10, 000Rg. As this disk is axisymmetric, photons which reach the observer

are integrated over all ϕ for a given inclination θ, and inclination windows are defined by

as xθγ ± 4◦. These observed photons are transformed into a coordinate stationary frame for

analysis

2.2.1 Conserved Quantities - Parameterizing the Geodesic

Equation

Killing vectors on a Reimannian manifold represent isometries (symmetries) of the manifold

itself and are indicative of a conserved quantity within the metric describing the manifold.
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These Killing vectors, and their associated conserved quatities, are a property of the space-

time itself and thus are independent of the coordinate basis used to describe the metric

[6, 25] In the Kerr metric, which is stationary and axially symmetric, the Killing vectors are

ξ1 = (1, 0, 0, 0) and ξ2 = (0, 0, 0, 1). These vectors imply the conservation of the photon’s

energy and angular momentum at infinity,

gµνξ
µ
1 kν = −Eγ = gttk

t + gtϕk
ϕ (2.4)

gµνξ
µ
2 kν = Lγ = gtϕk

t + gϕϕk
ϕ (2.5)

Taking kt = dt
dλ

, kϕ = dϕ
dλ

, λ′ = Eγλ, where λ is an affine parameter, and Equations 2.4

and 2.5, one can define

dt

dλ′ = −gϕϕ − (Lγ)/(Eγ)gtϕ
gttgϕϕ − g2

tϕ

(2.6)

dϕ

dλ′ = (Lγ)/(Eγ)gttgtϕ
gttgϕϕ − g2

tϕ

. (2.7)

This allows the calculation of the t and ϕ components of the geodesic equation (Equation 2.1)

without needing to compute the integration, which reduces both the error on the calculation

and the computational expense required [93].

2.3 The Torus Model

The model used is a simple, phenomenological toroidal disk similar to the ‘slim’ disk model

introduced by Abramowicz in 1988 [101]. The parameterization ignores the accretion rate

and thermal and radiative pressures in the disk, as this study is concerned only with the

effect of the geometry on the polarization signatures. The thickness of the torus scales with
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the root of the distance from ρ − rISCO, where ρ is the cylindrical radius.

z(ρ) = H

√√√√(r0

2

)2

− (ρ1(ρ))2
√

ρ2(ρ) (2.8)

with

ρ1(ρ) = ρ − risco − r0

2 (2.9)

and

ρ2(ρ) = ρ − risco
r0

. (2.10)

Fig. 2.1: Torus geometry for scale heights of 0.1 (dashed line), 0.2 (dotted line), 0.3 (dash-
dotted line)

Here, H = z
ρ

is the scale height, r0 is the outer edge of the disk, and ρ2(ρ) defines

the convexity of the surface. This cylindrical parameterization can then be converted to

Boyer-Lindquist coordinates as

Θ(ρ) = arctan
(

ρ

z(ρ)

)
(2.11)

r(ρ) = ρ

sin(Θ(ρ)) (2.12)

yielding

T µ(r, Θ) = {0, r(ρ), Θ(ρ), ϕ}. (2.13)
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Here, ϕ ∈ [0, 2π). Equation (2.13) is used to determine photon-disk interactions and

to the calculate the tetrad of the disk at those locations. The disk is assumed to rotate

rigidly at a given cyclindrical radius ρ, such that the material above or below any point in

the equatorial plane has a Keplerian angular velocity of Ωk = 1
a+ρ

3
2
. With Boyer-Lindquist

tangent vectors eµ = ∂µ and denoting the plasma frame with a tilde, the tetrad is formed

by orthogonalizing the four velocity against the tangent vectors of the surface as described

in Appendix A. The time-like basis vector of the tetrad is then given by

et̃ = 1√
−gtt − Ωk(2gtϕ + gϕϕΩk)

(∂t + Ωk∂ϕ). (2.14)

The radial tangent er̃ is proportional to d
dr

(T (r, Θ)) and normalized to unity. eθ̃ is

proportional to er and eθ and orthogonal to er̃. The final component eϕ̃ will be proportional

to eϕ and orthogonal to et̃. This yields

er̃ = 1√
grr( drdρ)2 + gθθ(dΘ

dρ
)2

(
dr

dρ
∂r + dΘ

dρ
∂θ

)
(2.15)

e
θ̃

= α

( dΘ
dρ

(dΘ
dρ

− dr
dρ

)grr
∂r +

dr
dρ

( dr
dρ

− dΘ
dρ

)gθθ
∂θ

)
(2.16)

α =

√√√√√ ( dr
dρ

− dΘ
dρ

)2grrgθθ

( dr
dρ

)2grr + (dΘ
dρ

)2gθθ
(2.17)

and

e
ϕ̃

= β

(
gtϕ + gϕϕΩk

g2
tϕ − gttgϕϕ

∂t + gtt + gtϕΩk

gttgϕϕ − g2
tϕ

∂ϕ

)
(2.18)

β = gtt + gtϕΩk

(g2
tϕ − gttgϕϕ)(Ωk − 1)

√√√√−
(g2
tϕ − gttgϕϕ)(Ωk − 1)2

gtt + Ωk(2gtϕ + gϕϕΩk)
(2.19)

In the limit z/ρ → 0, the tetrad becomes the thin-disk tetrad used in [93]. These vectors
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form the basis eν
µ̃
, where eµ̃ = eν

µ̃
· eν . Letting a bar denote the inverse transformation

matrix, photon wave vectors kµ are transformed into and out of the plasma frame with

kµ̃ = ēµ̃ν · kν (2.20)

and

kν = eνµ̃ · kµ̃. (2.21)

2.4 Thermal Emission

Thermal photons are emitted isotropically into the upper hemisphere of the disk from 10, 000

logarithmically spaced bins on the interval rISCO ≤ r ≤ 50rg. Here, rg = GM
c2 is the

gravitational radius with G being the gravitational constant, M being the black hole mass,

and c being the speed of light. The energy dissipation of the toroidal disk over a given

cyclindral radius δρ is assumed to be proportional to the dissipation over the same radial

interval ∆r = ∆ρ as derived by Page and Thorne [52]. They derive the effective temperature

and time-average flux of radiant energy (time-average radiative energy dissipation) for a

geometrically thin, quasi-Keplerian and optically thick accretion flow as

Teff =
(

F (r)
σSB

) 1
4

(2.22)

with

F (r) = Ṁ

4π
e−(ν+ψ+µ) −pt ,r

pϕ

∫ r

rISCO

pϕ,r
pt

dr (2.23)

which is projected onto the surface of the toroid as F (ρ).

The photons are weighted with the product of Equation 2.23 of Page and Thorne with
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the limb brightening function for an indefinitely deep electron atmosphere as derived by

Chandrasekhar [24]. It is assumed that photons do not interact with infalling matter in the

plunging region rEH ≤ r ≤ rISCO (where rEH is the event horizon).

Photons are allowed to repeatedly interact with the disk. When a geodesic intersects

the disk, the integration is truncated such that the photon’s trajectory ends exactly on

the surface. From here, the tetrad eν
µ̃

and its inverse are calculated at the location of the

photon interaction. The wave vector and polarization vector are transformed into the rest

frame of the disk, and from f νPF the incoming polarization angle and fraction are calculated.

The outgoing Stokes parameters are then calculated from Chandrasekhar’s Table XXV and

Equation 164 (Chapter X, Section 70) [24] and subsequently used to calculate the outgoing

polarization angle and fraction, the intensity of the reflected emission, and the statistical

weight of the interaction according to

ωsc = 2µI

µ0F
(2.24)

The trajectory of the photon after reflection is drawn from a random probability per solid

angle in the plasma frame, and subsequently both kµ and f ν are transformed back into the

global Boyer-Lindquist frame where the integration and parallel transport of each, respec-

tively, continues until the photon either falls into the event horizon or reaches an observer.

The observer is stationary and located in flat spacetime 10, 000rg away from the compact

object. Photons which reach r = 10, 000rg are transformed into the observer frame using a

tetrad constructed such that

et̃ = pt = et√
gtt

(2.25)
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er̃ = er√
grr

(2.26)

e
θ̃

= eθ√
gθθ

(2.27)

with eϕ̃ being a linear combination of et and eϕ and orthogonal to et̃. The vectors of this

tetrad then satisfy

eµ̃ · eν̃ = ηµν , (2.28)

where ηµν is the metric of Minkowski. Due to the symmetry of the disk, photons arriving

below the equator (θγ ≥ π
2 ) can be folded into the upper hemisphere with the following

transformations

xθγ new = π − xθγ (2.29)

kθγ new = −kθγ (2.30)

f θγ new = −f θγ . (2.31)

The code was vetted by comparing the polarization results for a torus with a scale height

of zero against the standard thin disk model [93], shown in in Figure 2.2. Small deviations

from the thin disk are expected with this torus model, particularly at lower energies, due

to the truncation of the outer edge of the disk at 50rg. The maximum deviation in the

polarization angle is < 8◦ and the maximum deviation of the polarization degree is ∼ 14%

of the thin disk value (0.7% and 0.8% at 2keV).

2.5 Polarization Spectra of Toroidal Accretion Disks

In this section the polarization spectra of three toroids with scale heights H = 0.1, 0.2, 0.3

are compared, each having an outer radius r0 = 50rg across a range of spins and observer
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Fig. 2.2: Polarization angle (left) and degree (right) inclinations of 65◦ and (top) and 75◦

(bottom). The standard thin disk model is in black and the thick disk with a
scale height of zero is in red.
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inclinations. The results are compared to the spectra of a thin disk with the same outer radius

and spin. Additionally, the spectra are explored over a range of luminosities expected to give

rise to geometrically thick accretion flows. Unless otherwise stated, the spectra and images

that follow are for a spin of a = 0.9 and luminosity 50%LEdd. In each data set the black hole

has a mass of 10 M⊙ and 5 × 107 photons are generated for each configuration. Emission is

assumed to follow a Planckian distribution of a dilute black body with T = fh T (ρ), where

T (ρ) is given by Equation 2.22 and fh = 1.8 is the spectral hardening factor [110].

Images of the accretion disk are made by back projecting the wave vector in the coordinate

stationary frame, kµobs, into a plane perpendicular to the line of sight and intersecting the

point r = 0. These images are composed of the total emission (both direct and reflected) and

colored in log scale according to the intensity. The overlaid bars indicate the polarization,

where the magnitude corresponds to polarization degree and the direction corresponds to

polarization angle. In all images, the black hole spin axis is ‘right-handed,’ such that the

angular momentum of the black hole points out of the page for an inclination of 0◦ and

vertically in the page for an inclination of 90◦. Accordingly, the material in the left side of

the image is rotating towards the observer and receives a boost due to its relativistic motion,

appearing brighter than the material on the right side of the images which is receding and

thus boosted away from the observer. Note that the emission from the far side of the disk is

lensed around the compact object both above and below the disk for high inclinations.

Figure 2.3 shows disk images with polarization overlaid for four values of inclination,

θ = 25◦, 45◦, 65◦, and 85◦, which increase from top to bottom. From left to right the scale

height increases with the thin disk in the left-most column and H = 0.1, 0.2, 0.3 following.

At low inclinations (θ = 25◦, 45◦), there is a qualitative increase in the polarization degree

as the scale height increases. At 65◦ the polarization angle, particularly on the approaching

side of the disk, also begins to shift. At an inclination of 85◦, the appearance of the disk
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Fig. 2.3: Simulation results for different disk scale heights H (from left to right: H=0.0, 0.1,
0.2, 0.3) and different inclinations I (from top to bottom: i = 25◦, 45◦,65◦, 85◦).
The color scale gives the total flux (direct and reflected) using a logarithmic color
scale. The lengths and directions of the black bars give the linear polarization
degree and angle, respectively. The overall polarization degrees increase with
increasing inclinations. At the highest inclination, the disk shadows itself, the
cooler outer edges (near 50Rg) blocking some emission from the inner most regions
of the disk, as well as some of the lensed emission from below the disk.
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itself begins to change, along with the polarization degree and angle, as the scale height

increases. The thickness of the torus self-shadows the inner-most regions and the strongly

lensed emission from the back, underside of the disk.

Figure 2.4 shows the energy, polarization degree, and polarization angle spectra over four

inclinations, i = 25◦, 45◦, 65◦, and 85◦. In order to understand the effect that geometric

thickness has on the spectra, first examine the case of the thin disk. At energies above ∼ 0.5

keV, emitted from the inner regions of the disk, two phenomena in conjunction combine to

change both the polarization degree and angle. Firstly, the highly curved spacetime induces

a rotation in the polarization vector fµ. As fµ is by definition orthogonal to kµ, it must

rotate as the geodesic transverses the highly curved spacetime near the compact object. At

the same time, relativistic beaming due to the motion of the disk both raises and lowers

the polarization depending on its emission relative to the observer. On the approaching

side, the beaming lowers the polarization fraction as the photons are received at a lower

effective inclination than they were emitted in the plasma frame; on the receding side the

opposite is true, the beaming raises the polarization as photons are received at a higher

effective inclination [26]. As the flux of returning radiation increases, an effect which is

more pronounced in the inner regions of the disk where the curvature is highest, the net

polarization begins to increase. The minima in polarization degree observed in these spectra

are due to these competing effects between the direct and reflected emission.

Armed with this understanding, the obvious correspondence between the scale height of

the torus and the polarization can be explained geometrically. First, due to the increase

in surface area there is an increase in the lensed emission from the backside of the disk.

This can be seen visually in Figure 2.3 comparing the left-most and right-most images for

inclinations of 65◦ and 85◦. An increase in the lower-energy emission being lensed causes the

swing in polarization angle from horizontal to vertical to shift to lower energies.

40



Fig. 2.4: Energy spectra (left), polarization degree (middle), and polarization angle (right)
for inclinations of 45◦ (top row), 65◦ (middle row), and 85◦ (bottom row). Flux
energy spectra are approximately uniform across scale heights for a given inclina-
tion, with the exception of very high - nearly edge on - inclinations where disk
self-shadowing becomes apparent. Polarization degree minima shift to lower ener-
gies with increasing scale height, as the geometry leads lower energy emission to
scatter that would otherwise have gone directly to the observer. This same effect
causes the polarization angle to swing from horizontal to vertical at lower energies
with increasing scale heights.
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Fig. 2.5: Average number of scatterings for photons emitted from various radii for the thin
disk and the three scale heights explored as received by an observer inclination of
65◦. Photons launched at small radii, inside the ‘doughnut hole’ of the accretion
flow, scatter more often than photons emitted further out, at the outward facing
sides of the disk.

The shift in the minimum of polarization degree is similarly of geometric origin. The

apparent minimum in polarization degree is caused by the competition of boosting, which

lowers the polarization for high intensity emission, and scattering, which raises the polar-

ization. Firstly, as the thickness increases, the innermost regions of the disk where boosting

(both red and blue) has the strongest effect becomes shadowed. Thus, there is less emission

from the approaching side, the source of unpolarized high energy emission. The increased

lensing from the backside simultaneously adds more polarized high energy emission. Fur-

thermore, as the disk thickness increases, so too does the surface area of the disk, leading

to an increase in scattering as shown in Figure 2.5. Due to this geometry, a photon emitted

from the inner regions at a very small inclination above the surface will be beamed nearly

parallel with the surface. Such photons are effectively beamed back into the disk itself due
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to its geometric thickness. This effect becomes more prominent at both larger scale heights

and higher inclinations. This increase in scattering at all radii corresponds to a reduction

in direct emission and an increase in scattered emission received by the observer, which to-

gether with the effect of lensing and self-shadowing pushes the minimum in the polarization

degree down to lower energies while increasing the polarization degree at higher energies.

The spin affects the polarization spectra for disks with goemetric thickness similarly to

thin disks. As spin increases, we see the minimum in polarization degree and the swing from

horizontal to vertical in polarization angle shift to lower energies. Higher spins bring rISCO

closer to the event horizon, which in turn adds returning vertically polarized photons at lower

energies as evidenced in Figure 2.6. Overlaying multiple spins for a thin disk and one with

a scale height of H = 0.2 reveals degeneracies in the polarization spectra. At an inclination

of θ = 65◦, the polarization degree and angle for H = 0.0, a = 0.9 and H = 0.2, a = 0.6 are

nearly identical below ∼ 8 keV.
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Fig. 2.6: Polarization degree (left) and polarization angle (right) for a thin disk (solid lines)
and a toroid (dashed lines) with a scale height of H = 0.2 for spins of a = 0.5, 0.8,
and 0.9 viewed at inclinations of i = 65◦ (top) and 75◦ (bottom). As spin increases,
the inner edge of the accretion disk moves closer to the event horizon and there
is more emission in the highly curved regions around the black hole. This, in
turn, causes the minimum of polarization degree and the swing from horizontal
to vertical in polarization angle to shift to lower energies.
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2.6 Discussion

This chapter has explored the effect of geometric thickness on the polarization spectra of

accreting stellar mass black holes over a range of spins and luminosities. In general, increases

in geometric thickness correspond to increases in polarization degree at energies above ∼ 4

keV while yielding lower polarization degrees for energies below ∼ 3 keV. This trend is due

to the geometry itself, owing partly to increases in the amount of scattering in the inner

regions of the disk where higher energy emission originates, and decreases in the amount of

scattering in the outer regions of the disk which correspond to lower energy emission.

Across all observer inclinations, for all spins, the increasing disk thickness shifts the

polarization degree minimum and the swing in polarization angle from horizontal to vertical

to lower energies. The trend is, in general, due to the competing effects of direct and reflected

emission in concert with lensing from the far side of the disk. The effect is exacerbated

in the geometrically thick disks. Thick disks self-shadow their innermost regions, where

doppler boosting depolarizes the high energy emission, which - in concert with the increased

scattering in these regions - raises the polarization degree at higher energies. Additionally,

there is more lensed emission from large radii from the far side of the disk, which shifts the

swing in polarization angle down to lower energies.

Increases in black hole spin on the spectra have a similar effect between thin and thick

disks, bringing the inner edge of the accretion disk to smaller and smaller radii and in so

doing lowering the polarization degree minimum and swing in polarization angle to lower

and lower energies. There are degeneracies that exist between spin and scale height, as

noted in in Figure 2.6, particularly for higher inclination angles. As an example, a thin disk

with a spin of a = 0.9 and a slim disk of scale height H = 0.2 and spin of a = 0.5 show

approximately identical polarization degree and angle below ∼ 8keV. A larger parameter
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space study would likely yield other degeneracies; this is left to future work as the goal here

was simply to establish whether any such degeneracies exist at all.
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Chapter 3

General Relativistic

Magneto-Hydrodynamical

Simulations with H-AMR

3.1 Introduction

This chapter details the data set which is the focus the rest of this thesis. The data set

was produced with the GRMHD code H-AMR [78], which was conceived and produced by

Matthew Liska et al. and is based on the publicly available HARMPI [111] code. The

data concerns a highly inclined, very thin accretion disk around a highly spinning stellar

mass black hole, and its dynamical evolution through multiple tearing events and periods of

precession. This chapter has two sections. The first will review H-AMR, its basic operational

alogrithm and the clever computational adaptions that allow it to resolve thin disks. The

following section will review the dataset itself. This section will specifically focus on the

physical mechanisms driving the tearing events and the dynamism of these events, which

make this dataset so unique. The final section will review the oscillatory signals found in the

47



dataset, relating these signals back to the characteristic frequencies of the orbiting plasma

that produces them. All of the figures in this chapter were made from the H-AMR data

files produced for integration into xTrack. Due to the limited resolution of the datasets (in

comparison with the original GRMHD data), there are artifacts - blank spaces or lines -

which appear. These have been left in the plots, as efforts to smooth them reduce the overall

quality of the output.

3.2 The Current State of the Art - H-AMR

H-AMR is branched from [111], a version of the publicly availableHARM2D code. The code

can utilize multiple metrics and coordinate systems, but this work shall be concerned with

the Kerr-Schild formulation of the Kerr metric, with the additional adaption of a logarithmic

radial coordinate (i.e., r −→ log(r)). Kerr-Schild coordinates are non-singular at the event

horizon, allowing particle trajectories to be tracked through rEH to the singularity at r = 0.

The numerical scheme has a cell maximum resolution of Nr×Nθ×Nphi = 13440×4608×

8096. The code integrates the conservative GRMHD equations,

∂U(p)
∂t

= ∂Fr(p)
∂xr

− ∂Fθ(p)
∂xθ

− ∂Fϕ(p)
∂xϕ

+ S(p), (3.1)

where U(p) is the vector of conserved quantities (particle number density, energy density,...),

Fi(p) is the vector of fluxes corresponding to U(p), and p is the vector of primitive variables

(velocity, internal energy, density,...). S(p) is the source term, accounting for the effects of

the strong gravity on the spacetime, radiative interactions in the gas, and other physical

processes. At each time step ti the fluxes at each cell face are computed and the source

terms are added at the cell centers, allowing the conserved quantities to be computed at
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ti+1. The magnetic field is evolved on the cell faces and the electric field calculated along

cell edges in a staggered grid to ensure a divergence free evolution of Bµ.

The ‘AMR’ in H-AMR stands for Adaptive Mesh Refinement [112, 113], a feature which

allows the code to adjust its spatial resolution as needed, increasing the resolution in regions

of interest and reducing it in regions with low dynamical variability. This enables H-AMR to

resolve features which would otherwise occupy only a fraction of a computational volume. In

addition to refining the spatial grid, H-AMR also has the ability to adjust the time-stepping

of the integration cell-by-cell, known as Local Adaptive Timestepping (LAT). The code is

fully parallelized and GPU accelerated, which in conjunction with the AMR and LAT result

in 5 orders of magnitude performance increase compared to traditional, non-AMR, CPU

based GRMHD.

3.3 Characteristics of Thin, Misaligned Disks

The dataset that is the subject of the rest of this thesis was produced with H-AMR on

the Summit supercomputer at Oak Ridge National Lab. The simulation ran for 5 million

NVIDIA V100 GPU-hours (equivalently 800 Milion Sky Lake CPU core-hours). The disk

was initialized for a black hole of 10M⊙ with a spin of a = 0.9375 surrounded by a torus in

hydrostatic equilibrium [114] at a tilt of θtilt = 65◦. The disk is initially given a Keplerian

velocity distribution and is seeded with a poloidal magnetic field. The plasma in the disk

is artificially cooled to a target scale height of H = 0.03 by allowing the internal energy

to exponentially decay, with the time constant of the decay determined by the orbital time

scale [65].
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3.3.1 Tearing Events

Immediately upon initialization the disk begins to precess, though it takes t ≃ 10, 000 rg

c
to

cool to from the toroid it is initialized as to a thin disk with a scale height of H = 0.03. Lense-

Thirring torques begin to warp the disk soon after initialization and, as these warps build, the

viscous stresses in the disk become unable to transport angular momentum outward rapidly

enough to counteract these differential torques. Eventually the Lense-Thirring torques exceed

the viscous torques holding the disk together, causing the disk to tear apart.

The disk is held together by its own viscosity, and following the derivations of Nixon et

al. [77] (and Frank et al. [115]), the radius of the tearing event can be estimated. The

azimuthal viscous force per unit area is given by

fv = µr
dΩ
dr

, (3.2)

where µ is the dynamical viscosity, and r dΩ
dr

is the rate of shear [77]. Letting the area of the

interface between two disk segments be 2πrH (where H is the scale height of the disk) and

the kinetic viscosity be v = µ
ρ
, the total force in the azimuthal direction can be written as

Fv = 2πΣvr2 dΩ
dr

, (3.3)

where Σ = ρH is the integrated surface density. The torque due to viscosity is then

Gv = |r × Fv| = −2πΣvr3 dΩ
dr

. (3.4)

The Lense-Thirring precession frequency is ΩLT = (2GLBH/(c2r3)) (numerous deriva-

tions can be found in [116, 25, 6]), where LBH = aGM2/c is the angular momentum of
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the black hole. For an approximately Keplerian orbit (i.e., Ω2 ≈ GM/r3), and a disk with

angular momentum Ldisk = ρHr2Ω, this precession induces a torque on the disk of

GLT = 2πrH|ΩLT × Ldisk| = 2πH|ΩLT |Σr3|Ω sin θ|. (3.5)

Here, θ is the angle between the angular momentum of the disk and the black hole. Tearing

occurs when GLT > Gv. For a thin, quasi-keplerian α disk [50], the radius of the expected

break is then

Rbreak <

(
4ar

3αH
|sin(θ)|

)2/3

rg, (3.6)

where rg = GM/c2 is the gravitational radius. As the Lense-Thirring torques interact with

the disk and induce warps, Ldisk develops a strong radial dependence. At high enough spins

and inclinations, this leads to multiple tearing radii, resulting in concentric precessing rings

of matter as shown in [77]. From Equation 3.6, the high spin of the black hole and highly

misaligned, very thin disk considered here is expected to undergo tearing as the disk warps

and precesses from its high misalignment towards an equatorial alignment.

Indeed, there are 10 distinct episodes of tearing which occur over the 150, 000 rg/c run

time of the simulation. Of these ten events, 8 have very short durations (less than ∼

5500 rg/c), wherein the disk tears and very quickly reforms as a single misaligned disk. The

two remaining tearing events, which shall be referred to as T1 and T2 moving forward, have

durations of 42, 282 rg/c (T1) and 26, 865 rg/c (T2). The analysis that follows in Chapter

5 will focus on these two tearing events, with the majority of the focus given to T1 as the

simulation ends during the T2 tearing event.
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3.3.2 Precession and Bardeen-Petterson Alignment

The tearing events are preceded by rings of high density that form across the disk. As the

plasma flows inwards and accretes, so too do these rings of density as is evidenced in Figures

3.1-3.3. In both T1 and T2, the tearing event starts when the ring reaches ∼ 20rg.
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Fig. 3.1: Density (top left), Internal Energy (top right), Temperature (bottom left), and
Luminosity (bottom right) immediately preceding the tearing event. Note the
ring structures in density and internal energy, the most prominent of which is at
20 − 30 rg.
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Fig. 3.2: The most prominent ring of density from Figure 3.1 has moved inward and is now
at r < 20rg, while density and internal energy across the entire inner disk have
increased.
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Fig. 3.3: There is now a more apparent separation between the inner and outer disks, with
there being a dense ring on the outside of the inner disk. Note the presence of an
additional density ring at ∼ 40rg.
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When the disk tears, the inner disk begins a rapid, differential Lense-Thirring precession,

while the slow precession of the outer disk remains more-or-less unchanged. The tearing

events are most easily identified by the sharp discontinuity that occurs in the tilt and pre-

cession angles [81] as is evidenced in Figure 3.4. This figure shows the tilt angle as measured

from the black hole spin axis (left) and precession angle as measured from an arbitrary ϕ = 0◦

(right) which is constant for all times. The tilt and precession are plotted here as functions of

radius (vertical axis) and time (horizontal axis). In particular in the plot of precession, sharp

discontinuities between ∼ 40, 000 and ∼ 80, 000rg/c are the periods of differential precession

of the inner disk during the tearing event.

Following the procedure of Fragile and Anninos [73] and Nelson and Papaloizou [117],

the tilt and precession angle can be calculated as

θtilt = cos−1
(

LBH · Ldisk

|LBH ||Ldisk|

)
(3.7)

ϕprec = cos−1
(

LBH × Ldisk

|LBH × Ldisk|

)
, (3.8)

where, as in the preceding section, LBH and Ldisk are the angular momenta of the black hole

and the disk, respectively.

In T1, the inner disk precesses for 5 cycles before accreting into the black hole. During

these cycles, the disk enters a Bardeen-Petterson alignment [92] as shown in Figure 3.5,

and in so doing undergoes another tearing event which is again preceded by a differentially

precessing ring of density. During this period there are two inner disks (sub-disks). To avoid

confusion, the innermost sub-disk will be called inner disk 1, and the outermost inner sub-

disk will be called inner disk 2. The alignment begins in the innermost regions of the inner

disk 1 and propagates outward to ∼ 5rg. This alignment is accompanied by an increase in

56



Fig. 3.4: Plots of the tilt angle (left) and precession angle (right) over the entire runtime
of the simulation for 1 ≤ r ≤ 20. There is a coincidence of discontinuities that
occur in each plot corresponding to tearing events. In particular, on the plot of
precession angle for ∼ 40, 000rg/c ≤ t ≤∼ 80, 000rg/c, the multiple consecutive
discontinuities correspond to the 5 precessions of the tearing cycle T1. White
horizontal lines on both plots are artefacts from the log(r) binning of the data
sets.

density in this region, which is speculated to be sourced from a reduction of the infall speed

of the plasma in the absence of warp. An additional alignment occurs from the outside of

inner disk 2 and moves inward on a timescale comparable to the accretion time of the inner

disk system. This is thought to be due to angular momentum cancellation as matter is fed

from the outer disks to the inner disks via ‘streamers’ [81, 80], cancelling θ components of

the disk’s momentum in the process (though the exact cause is still being explored1).

While these ‘streamers’ feed gas from one adjacent sub-disk to the next, the inner disk

system is eventually disconnected from the outer disk (see Figures 3.5-3.7). From here inner

disk 2 transfers more mass to the aligned inner disk 1, increasing the density and catalyzing
1 The effective viscosity in this simulation exceeded the sum of the Maxwellian and Reynolds viscosities

by more than an order of magnitude, indicating that stresses due to local α-viscosity cannot be responsible
for angular momentum transport [80].
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Fig. 3.5: The two inner sub-disks during Bardeen-Petterson alignment. Note the ring of
high density at the outer edge of the larger inner sub-disk (inner disk 2), and that
the density of the innermost, aligned sub-disk (inner disk 1) is approximately an
order of magnitude higher than the precessing inner sub-disk.

an increase in the accretion rate (as will be explored in the next section). More mass

accretes from the inner disks with each precession, and the difference in the Lense-Thirring

precession rate of the inner sub-disks gets continually smaller. As the mutual alignment of

the two inner disks increases in concert with a rise in the accretion rate, the radial extent

of the inner disk system diminishes. Simultaneously, the extent of the outer disk moves to

smaller and smaller r, with streamers reconnecting with the inner disk system and their

density gradually increasing. These processes continue until the entire disk reforms as a

single, inclined body, only to tear again at a different radius some time later[80].
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Fig. 3.6: The two inner sub-disks during Bardeen-Petterson alignment.
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Fig. 3.7: There is now a more apparent separation between the inner and outer disks. Note
the second tear that has opened up between the aligned innermost sub-disk, and
the precessing inner sub-disk.
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3.3.3 Oscillatory Behavior During Tearing Events

As mentioned above, tearing events are all accompanied by a spike in the accretion rate

(see Figure 3.8) over the duration of the tearing event. This increase in Ṁ is spurred by a

decrease in the infall speed of the gas as the inner disk aligns, leading to an increase in the

density.

Fig. 3.8: The accretion rate Ṁ in arbitrary code units as calculated over the null surface
of the event horizon over the full run time of the simulation. There are large,
long duration increases in Ṁ that occur with each tearing event (i.e., three large
increases between ∼ 40, 000−60, 000 rg/c. Additionally, these are accompanied by
short duration spikes, the magnitude of which tend to be larger when the baseline
accretion rate is higher (e.g., compare the short spikes at 50, 000 rg/c to those at
50, 000 rg/c).

More interestingly, there are high frequency oscillations in the radial accretion rate,

Ṁr, at distances corresponding to the tearing radius as outlined in detail in Musoke et

al, 2023 [81]. Binning the accretion rate over T1 into radial bins (whereby the rate is

calculated as the integrated density flux through a given radial shell), Ṁr, reveals power

dissipated at frequencies corresponding to an epicyclic mode of the density rings just inside

the tearing radii of the two inner sub-disks. Specifically, there is a 55Hz oscillation located
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at 13rg ≤ r ≤ 14.5rg corresponding to a radial epicyclic oscillation at ∼ 13rg (see Figure

3.9). There is an another, weaker oscillation observed at 110Hz located at the same radii.

In addition to the Keplerian and Lense-Thirring frequencies, the radial and vertical

epicyclic frequencies represent two additional characteristic frequencies of an orbital sys-

tem. These epicyclic frequencies represent modes of oscillation given a perturbation in θ or

r at a given orbital radius and are functions of the mass M (here in natural units of M = 1)

and spin a of the black hole. From Nowak and Leher (1999)[118] with Ω2
K = GM

r3 (r3/2 + a)−2

and ΩLT = GMa
πc2r3 the radial and epicyclic frequencies are

ω2
r = (1 − 6

r
+ 8a

r3/2 − 3a2

r2 )Ω2
K (3.9)

ω2
θ = (1 − 4a

r3/2 + 3a2

r2 )Ω2
K (3.10)

Musoke et al. also found indications of a possible low-frequency oscillation associated

with the Lense-Thirring precession of the inner disk, which had a frequency of ∼ 2 − 4Hz

at 10rg. Lense-Thirring precession has been thought to give rise to low-frequency QPOs,

[36, 72].

3.3.4 Discussion

Observational evidence supports the idea that many black holes accretion disks are mis-

aligned with the black hole spin axis. Jets in stellar mass black holes have displayed periodic

brightening during outbursts [55], a seeming indication of precession. A statistical study of a

set of Seyfert galaxies showed an approximately random distribution of jet inclinations with

respect to the plane of the host galaxy [57] which is a likely indication of a misaligned and/or

warped accretion flow. TDEs have also displayed indications of initial misalignment followed
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Fig. 3.9: Lense-Thirring precession (thick-black), Keplerian (dash-dot green), radial
epicyclic (dashed black), and vertical epicyclic (dash-dot pink) frequencies as func-
tions of radius. The vertical red line is the tearing radius for tearing event T1.
The horizontal dash-dot blue and red lines correspond to the oscillations found in
the power-spectrum of Ṁ .

by precession and magnetic arrest [56]. This misalignment naturally induces warps in the

disk due to Lense-Thirring torques, which cause the disk to precess and can, under the right

conditions, induce tearing events which lead to a precessing quasi-Bardeen-Petterson align-

ment. This precession is a popular explanation for lfQPOs as the frequencies of these signals

are commensurate with the Lense-Thirring frequencies in the inner regions of the disk where
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precession is expected. Additionally, these warped and misaligned disks are expected to ex-

hibit significant increases in luminosity [119]. The observation of both hfQPO-like behavior

in the accretion rate and the precession of the innerdisk over many cycles in this simulation

motivate the following study of the spectral, polarimetric, and time domain characteristics of

this dataset that follows. Additionally, as warped and precessing disks are often associated

with powerful jets in nature and because variations in the centroid of the Fe-Kα line have

been observed concurrently with lfQPOs [37], the effect of this evolving geometry on Fe-Kα

line profiles is explored.

64



Chapter 4

Raytracing GRMHD Data in

Kerr-Schild Coordinates

4.1 Introduction

Chapter 4 details the changes required in xTrack in order to accommodate Kerr-Schild

formulation of the Kerr metric and integrate the data from H-AMR. In the following sections,

the transformation of the metric into Kerr-Schild coordinates is explored in detail and some

fundamental conserved quantities and characteristic radii are derived. The specifics of the

data read in from H-AMR is also detailed, along with the calculations required to convert

the arbitrary ‘code units’ into real, physical quantities. The raytracing code - specifically

the changes required to raytracing this asymmetric and evolving disk structure - is reviewed,

and the scattering algorithm and tetrad construction are covered in detail. The chapter ends

with sections on the validation of the code completed by comparing an artificial thin disk -

created by projecting a frame of the H-AMR data into the equatorial plane - with a classic

thin disk constructed with the treatment of Page and Thorne (1974)[52].
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4.2 Kerr-Schild Spacetime

Boyer-Lindquist coordinates are the most common formulation of the Kerr metric and are

particularly useful in astrophysical problems. Their popularity is due to the convenient

properties they render in the metric, for example they minimize the number of off-diagonal

elements (leaving only mixed terms in gtϕ), greatly simplifying calculations as was shown in

Section 2.2.1, and reduce the spacetime to the metric of Schwarzchild in the limit a → 0.

There are, however, some applications where these coordinates are ill-suited, not least of

which involves probing the event horizon. The Kerr metric in the form given in Equation

2.3 is contains a coordinate singularity at r = M +
√

M2 − a2. This is not a true singularity,

as evidenced by the Kretschmann scalar, RµνρδR
µνρδ, being finite at the horizon [6, 25], and

as such is removable given an appropriate parameterization of the spacetime.

The singularity of Boyer-Lindquist coordinates is problematic for GRMHD simulations,

as the trajectories of infalling matter through the event horizon are of particular interest for

simulating accretion, thus many codes choose to adopt Kerr-Schild coordinates which are

non-singular at rEH . [120, 121, 122] The Kerr-Schild formulation of the Kerr metric requires

a coordinate transformation of the Boyer-Lindquist coordinates t and ϕ of the form

dt̃ =
(

dt + 2Mr

∆ dr
)

and dϕ̃ =
(

dϕ + a

∆dr
)

, (4.1)

rendering the metric as

dS2 = −
(

1 − 2Mr

ρ2

)
dt̃2 −

(
4Marsin2θ

ρ2

)
dt̃dϕ̃ +

(
4Mr

ρ2

)
dt̃dr

−2asin2θ

(
1 + 2Mr

ρ2

)
drdϕ̃ +

(
Σ
ρ2 sin2θ

)
dϕ̃2 +

(
1 + 2Mr

ρ2

)
dr2 + ρ2dθ2

(4.2)
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where

ρ2 = r2 + a2cos2θ , (4.3a)

∆ = r2 − 2Mr + a2 ,and (4.3b)

Σ = (r2 + a2)2 − a2∆sin2θ. (4.3c)

While these pseudo-spherical Kerr-Schild coordinates xµ = {t̃, r, θ, ϕ̃} remove the coordinate

singularity that existed in Equation 2.3, they also lack much of the convenience of the

Boyer-Lindquist formulation. The metric no longer reduces to the Schwarzchild metric at

a = 0, and now has mixed terms in gtr, gtϕ, and grϕ. These additional components in the

metric will prevent the parameterization of the geodesic equation utilized in integration in

the Boyer-Lindquist case, as will now be shown.

4.2.1 Conserved Quantities and the Innermost Stable Circular

Orbit

As described in Section 2.2.1, the existence of Killing vectors on a Reimannian manifold

represent an isometry of the manifold itself. Their existence in the Kerr metric, and the con-

served quantities associated with them, are a property of the spacetime and are independent

of any chosen coordinates [6]. For the Kerr spacetime, the Killing vectors are ξ1 = (1, 0, 0, 0)

and ξ2 = (0, 0, 0, 1). Just as in the Boyer-Lindquist case, the conserved quantities associated

with these vectors can be found as

gµνξ
µ
1 kν = −E = gttk

t + gtrk
r + gtϕk

ϕ (4.4)

gµνξ
µ
2 kν = L = gtϕk

t + grϕk
r + gϕϕk

ϕ (4.5)
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There is no parameterization of the geodesic equation in terms of these conserved quantities

in Kerr-Schild coordinates as there is in Boyer-Lindquist, as the two equations are over-

determined. But, the quantities that they represent are still conserved, and are used to

check the error on the calculation as the system is integrated.

It is also possible to derive these same conserved quantities via the Euler-Lagrange equa-

tion, which the reader knows well from mechanics, finding conserved quantities as they apply

to any orbiting body in the Kerr spacetime. Taking the Lagrangian as L = 1
2gµνu

µuν , where

uµ = ẋµ, the Euler-Lagrange equation is

d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 −→ d

dτ

∂L

∂ẋµ
= ∂L

∂xµ
. (4.6)

Here, τ is the proper time. Conjugate momenta occur when ∂L
∂xµ = 0, which for this station-

ary, axially symmetric metric is satisfied for both xt and xϕ. Then,

∂L

∂t
= 0 −→ ∂L

∂ẋt
= constant = 1

2gtν ẋ
ν = 1

2(gttẋt + gtrẋ
r + gtϕẋ

ϕ) (4.7)

∂L

∂ϕ
= 0 −→ ∂L

∂ẋϕ
= constant = 1

2gϕν ẋ
ν = 1

2(gtϕẋt + gϕrẋ
r + gϕϕẋ

ϕ) (4.8)

For a photon, where ẋµ = kµ, the conjugate momenta recovered are exactly the conserved

quantities found via the Killing vectors (as they should be). The Langrangian formulation

is shown here as careful consideration of Equation 4.6 allows the definition of an important

quantity in the physics of black hole accretion: the innermost stable circular orbit, rISCO.

Following Bardeen (1974)[123] and Johannsen and Psaltis (2011)[124], the innermost

stable circular orbit is that which satisfies dE
dr

= 0. A stable circular orbit trivially satisfies
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dr/dτ = ẋr = 0, which renders the factor ∂L
∂ẋr = 0. Then,

∂L

∂xr
= 1

2(∂rgtt(ut)2 + ∂rgϕϕ(uϕ)2 + ∂rgθθ(uθ)2 + ∂rgtϕu
tuϕ) = constant = E. (4.9)

Adding the constraint that the particle’s orbit is confined to the equatorial plane, uθ = 0.

Solving for uϕ/ut gives,

uϕ

ut
=

∂rgtϕ −
√

(∂rgtϕ)2 − ∂rgtt∂rgϕϕ

∂rgϕϕ
= Ω, (4.10)

where Ω is the orbital frequency of the particle. Next, as uµ is a timelike vector, ut can be

written as

ut = 1√
−gtt − 2Ωgtϕ − Ω2gϕϕ

. (4.11)

uϕ is then

uϕ = Ωut, (4.12)

leaving Equation 4.9 as

E = − (gtt + Ωgtϕ)√
−gtt − 2Ωgtϕ − Ω2gϕϕ

. (4.13)

Equation 4.13 has terms determined solely by the metric and its derivatives. From here,

finding rISCO is a matter of solving dE/dr = 0 for the appropriate spin and mass as is shown

in Figure 4.1. Completing this process in Boyer-Lindquist coordinates yields the same result.
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Fig. 4.1: Numerical solution of solving the dE
dr

= 0 (E given in Equation 4.13) to solve for
the innermost stable circular orbit. The vertical line is the spin of the black hole
simulated by the H-AMR data.

70



4.3 The GRMHD Data from H-AMR

The data from the H-AMR GRMHD simulation is binned in 3000 ∼ 50 rg

c
wide frames. In

each frame, the disk is parameterized into 512 azimuthal bins and 356 logarithmic radial

bins on the interval rEH ≤ r ≤ 140 rg. The θ value corresponding to each (r, ϕ) grid point

is given as a midplane approximation, wherein a value (θmp) is calculated as the being the

midpoint of the volume element of the disk based on the density in a 1 r2
g bin around the

grid point. For each frame, the input data contains the accretion rate in code units, Ṁau,

calculated by integrating the net flux of matter density into the event horizon over all solid

angle. The surface flux, F = dU
dtdA

, the energy dissipation per unit surface area in the plasma

frame, is determined by an artificial cooling function designed to keep the disk thin over the

runtime of the simulation. Table 4.1 gives a summary of the H-AMR data that is read into

xTrack.

Physical Quantity V ariable Units Binning

time stamp of frame tframe
rg

c
for frame

accretion rate Ṁau arbitrary units for frame
integrated density ρau arbitrary units (r, ϕ)

internal energy Uau arbitrary units (r, ϕ)
Flux Fau = dU

dtdA
arbitrary units (r, ϕ)

4-velocity uµKS γ, ṙ, θ̇, ϕ̇ (r, ϕ)
normal 3-vector n⃗ r̂, θ̂, ϕ̂ (r, ϕ)

tilt angle θtilt degrees ϕ
precession angle ϕprec degrees r

radial accretion rate Ṁ(r, ϕ)au arbitrary units (r, ϕ)

Tab. 4.1: Parameterization of the H-AMR Data

The conversion of variables like Ṁ from arbitrary code units into physical units is neces-

sary for the analysis. In order to simplify these calculations, some useful scale quantities are
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defined here. Letting the mass of the black hole, MBH = 10M⊙ = 2×1034g, the fundamental

length scale can be defined as

ℓ = GMBH

c2 [cm] (4.14)

where G = 6.67 × 10−8cm3g−1s−1 is the gravitational constant and c = 3 × 1010cm/s is the

speed of light. This can be thought of as the mass of the black hole in geometrized units. A

fundamental time scale can then be defined as

t = ℓ

c
[s]. (4.15)

In order to calculate the accretion rate, emissivity, and temperature in physical units, the

efficiency of the flow η must be calculated. Following Novikov & Thorne’s [51] prescription,

η = 1 − EISCO = 0.179 (4.16)

where EISCO is given by Equation 4.13. Taking this efficiency and the formal definition of

luminosity, L = ηṀc2 [115], and choosing the desired accretion rate, which here is Ṁ =

0.1ṀEdd corresponding with a scale height of H = 0.03, with ṀEdd being the Eddington

rate, a scale density can also be defined as

ρsc = Ṁt

Ṁauℓ3
[g/cm3]. (4.17)

With these definitions, the arbitrary units utilized in the code can be converted into real,

physical units. The flux emitted per unit surface area per unit time in the plasma frame, for

example, is calculated as

F = |Fauγ|ρscc2ℓ

t
[ergs/cm2/s]. (4.18)
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The optical depth, which is assumed to be due to electron scattering, is found with

τ = κRΣ = κRρauℓ [unitless], (4.19)

where κR ≃ σT

mp
≃ 0.4cm2g−1 for electron scattering (see Chapter 5.6 in [115]).

4.4 Thermal Emission

Unlike the thick torus disk discussed above in 2.4, there is no azimuthal symmetry (or indeed,

any symmetry) in this disk - photons cannot be emitted solely into the upper hemisphere

without loss of accuracy, and photons arriving at θobs ≥ π
2 cannot be folded to the upper

hemisphere of the observer plane. Instead, thermal photons are emitted isotropically across

all solid angle from each (r, ϕ) grid point for rEH ≤ r ≤ 100 rg and for all ϕ, such that the

initial position of each photon is some xµγ = (tframe, ri, θmp, ϕi).

Photon wave-vectors kµ are initialized as null 4-vectors with their components being

drawn with a random probability per solid angle in the plasma frame such that |kµ| = 0. Each

photon energy kt is given a value of unity, allowing a simple calculation of the Doppler boost

by evaluating ktobs (this boost, commonly called a g-factor, is necessary for applying proper

energies in the analysis, as will be described below). The polarization vector fµ is similarly

drawn from a random distribution and initialized such that f t = 0 and |fµ| = constant.

A final constraint on the initialization of a photon wave packet is the orthogonality of the

wave and polarization vectors, with each initialized four vector satisfying kµf ν = 0. The

initial polarization is calculated from Table XXIV of Chandrasekhar [24] and the photons

are statistically weighted with the product of his limb brightening function and Fau.

After initialization in the plasma frame, photons are transformed into the global Kerr-
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Schild frame and propogated forward by integrating the geodesic equation

d2xµ

dλ′2 = −Γµσν
dxσ

dλ′
dxν

dλ′ (4.20)

and parallel transporting the polarization vector fµ according to

dfµ

dλ′ = −Γµσνfσ
dxν

dλ′ . (4.21)

Here, Γµσν = 1
2gρλ(∂µgνλ + ∂νgµλ − ∂λgµν) are the Christoffel symbols and are determined

entirely by the metric as defined in its coordinate basis. The integration algorithm follows

the Cash-Karp methodology [109], a fifth order Runge-Kutta algorithm that utilizes adaptive

step sizes. The adaptive step sizing is necessary for raytracing in the high gravity regime,

as the curved space near the compact object requires very small step sizes for accuracy.

The maximum step size of the integration is smaller than in the Boyer-Lindquist case, as

the Kerr-Schild spacetime does not allow the parameterization of the geodesic equation

described in Section 2.2.1. Thus, all four components of the wave vector must be integrated,

which consequently increases the error on the calculation. In an effort to reduce this error

further, and to prevent possible photon-disk interactions from being erroneously missed, an

additional step size adaptation is added to the integration which truncates the the step size

as the photon travels from xµi to xµi + ∆xµi to the grid in (ri, ϕi), (rj, ϕj) which bounds xµi

such that ri ≤ xri ≤ rj and ϕi ≤ xϕi ≤ ϕj. This adaptation limits the maximal step size of a

single integration to the edge of the grid that the photon is in currently, forcing smaller step

sizes than would ordinarily be tolerable with Cash-Karp and ensuring that no photon-disk

interactions can be missed due to multiple grid cells being traversed in a single step.

Photons are allowed to scatter off of the disk an indefinite number of times where τ >
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1 as calculated in 4.19, while passing through the gaps that open up during the tearing

events. This includes scattering in the plunging region where rEH ≤ r ≤ rISCO, provided

the aforementioned requirement on the optical depth is met. The disk evolves on timescales

much faster than the light travel time from the inner-edge of the disk to its outer-edge, an

effect known as ‘slow light.’ To account for this, multiple frames of the disk are read in at a

time. As each photon is initialized with its xt0 = tframe, the disk geometry used to determine

scattering is simply updated to a time configuration that is closest to the photon’s age when

the scattering check occurs. The intersection of the geodesic with the disk is determined

geometrically, and when a valid intersection is detected the geodesic is truncated such that

it ends exactly on the midplane of the disk (this algorithm is described in detail in Section

4.4.1). When this occurs, the same prescription is followed as in the Boyer-Lindquist case of

the torus disk. The photon’s wave and polarization vectors are transformed into the plasma

frame using the tetrad described in 4.4.2, where the incoming polarization angle and degree

are calcualted with the Stokes parameters encoded in f ν . The outgoing Stokes parameters

are then calculated using Equation 164 and Table XXV of Chandrasekhar [24]. The stokes

parameters are then used to calculate the outgoing polarization degree and angle and the

statistical weight of the interaction based on the direction of scattering. The trajectory of

the outgoing photon is drawn from a random probability per solid half-angle, with the sign

kθPF determined algorithmically to ensure that photons impinging from above are reflected

above, and vise versa. Finally, kµ and f ν are transformed back into the global Kerr-Schild

frame, and the integration of the geodesic equation and parallel transport of the polarization

vector resume.

Photon geodesics are integrated until they either cross into the event horizon or reach

an observer in asymptotically flat space. Contrary to the torus disk in Boyer-Lindquist

coordinates, where geodesics are determined to cross into the horizon when xrγ ≤ 1.02 rEH ,
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in the Kerr-Schild case photon geodesics are only terminated when xrγ < rEH . The observer

is located at a distance of 10, 000rg, and photons reaching this distance are transformed into

a coordinate stationary frame such that eµ · eν = ηµν , where ηµν is the metric of Minkowski.

At emission, Equation 4.18 is utilizied to calculate the temperature for the grid point of

emission with

Teff = fh

(
F

σSB

) 1
4

. (4.22)

where σSB is the Stef-Boltzmann constant and fh = 1.8 is the spectral hardening factor

[110]. To determine the statistical weight of each photon that reaches the observer, F must

be calculated in the global frame. The number of photons emitted in the plasma frame per

unit proper time and area is equal to the number of photons emitted in the global frame

per unit global time and area. Kulkarni [125] and Krawczynski [93] note that as the proper

four volume is an invariant and the proper distance along θ is an invariant for boosts along

the eϕ direction, √−gtrϕ is also an invariant. This fact holds true even in the presence

of θ components of momentum, as can be verified numerically by transforming the vector

Y µ = (0, 0, dθ, 0) into the plasma frame. Thus, the number of photons emitted in the global

frame per unit global time and area is given by

dN

dt dr dϕ
=
√

−gtrϕ
F

⟨Ê⟩
ωi. (4.23)

The factor √−gtrϕ = sin θ
√

r2 − a2 cos θ2 is the determinant of the t − r − ϕ components of

the metric. The statistical weight at the observer of each photon is then given by

ωst =
√

−gtrϕ
F

⟨Ê⟩
ωi (4.24)

where ωi contains the weights of emission and all scattering processes and ⟨Ê⟩ = 2.7fhkbTeff
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is the average energy of the photon in the plasma frame. For a spectral bin bounded below

by E1 and above by E2, the photon then contributes a statistical weight of

ω = ωst

∫ E2
E1

E2

eE/ϵ0 −1dE∫∞
0

E2

eE/ϵ0 −1dE
(4.25)

The factor ϵ0 = Teff ∗ g encodes the effect of boosting on the distribution.

4.4.1 Scattering Algorithm

Disk crossings are determined geometrically by utilizing the the photons current position,

xµi , next position after integration, xµj = xµi +∆xµ, and the grid (ri, ϕi) and (ri+1, ϕi+1). The

integration steps are limited such that the grid bounds both the current position of the photon

and the next integration step of the photon, with ri ≤ xri , xrj ≤ ri+1 and ϕi ≤ xϕi , xϕj ≤ ϕi+1.

The indexing of this grid defines two sides of a quadrilateral surface with three vertices

given (for example) by P1 = (ri, ϕi), P2 = (ri+1, ϕi) and P3 = (ri+1, ϕi+1). With these three

vertices, it is straightforward to define an equation of surface, S. First, after converting to

cartesian coordinates, let the normal n⃗ = (P2 −P1)×(P3 −P2) and let P0 ∈ S. The equation

of the surface is then

(P − P0) · n⃗ = 0 (4.26)

Any point P that satisfies this equation must be on the plane defined by the surface (but is

not necessarily on the surface bounded by the grid). Next, letting li and lj be the cartesian

coordinates of the spatial components of xµi and xµj , respectively, the equation of the ray is

then

P = li + l⃗d (4.27)
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where l⃗ = lj − li and d is some constant. If l⃗ · n⃗ ̸= 0 then there is the possibility of a crossing.

Combining Equations 4.26 and 4.27,

d = (P0 − li) · n⃗

l⃗ · n⃗
(4.28)

Fig. 4.2: Schematic drawing of the points and vectors required for detecting a photon-disk
interaction.
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Plugging d back into Equation 4.27 allows a solution for P . If P lies between the end

points of l⃗ then it is within the grid bounded by (ri, ϕi) and (ri+1, ϕi+1), thus P ∈ S and

a disk crossing has occurred. The integration step is then truncated such that the geodesic

ends on point P .

4.4.2 Tetrad of the Misaligned Disk

In order to transform into the plasma frame and out of the plasma frame into the global

Kerr-Schild frame, a tetrad must be constructed for the point of emission (or interaction, in

the case of scattering). This tetrad, composed of one time-like and three space-like vectors,

must span the local frame rest frame of the disk element, rendering its effective metric to

be Minkowskian, while conserving the Lorentzian properties of the space. As described

in Appendix A, the Graham-Schmidt orthogonalization algorithm is used to construct the

tetrad. Unlike the result discussed in Section 2.3 or in [93, 99], the tetrad describing this

misaligned and warped disk does not have an elegant, closed form solution. This is in part

due to the complexity of the Kerr metric in Kerr-Schild coordinates, and in part due to the

the complexity of the disk itself.

Unlike Boyer-Lindquist coordinates, which render the spacetime into 6 metric elements

(the diagonals gtt, grr, gθθ and gϕϕ the mixed terms gtϕ and gϕt), the Kerr-Schild prescription

renders the spacetime into 10 metric elements, with only the mixed terms in θ being zero.

And unlike the classical thin disk and toroidal disk described in Chapter 2, which have only a

ϕ component to their orbital velocity, this misaligned, warped disk has velocity components

in all three spatial dimensions. Finally, the normal vector, which is the θ tangent vector,

may also contain three spatial components. To overcome these complexities, the tetrad

is computed numerically by computing the orthogonalization algorithm at every necessary
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point.

The time-like input vector is chosen to be the four-velocity of the plasma, uµKS =

(γ, ur, uθ, uϕ). The radial and azimuthal tangent vectors ( dS
dxµ ) are taken from the sur-

face itself. For emission, these are found by indexing, such that a photon emitted from

xµ = (xt, xri , xθ, xϕj ), where (i, j) are the indexes of the radial and azimuth grid for the

point of emission, will have radial and azimuthal tangent components of dS
dr

= xµi+1 − xµi

and dS
dϕ

= xµj+1 − xµj , respectively. Taking the Kerr-Schild tangent vectors as eµ = ∂µ, and

the tangents of the surface as dS
dxµ , the values of the (unnormalized) seed vectors for the

orthogonalization are taken as vµ ∝ dS
dxµ eµ, with vϕ having an extra factor et to ensure the

orthogonality with uµ and allow the tetrad of a Keplerian thin disk to be recovered.

The θ tangent is then taken as the the normal to the surface as defined by H-AMR

and read in at runtime. From here, denoting the plasma frame with the tilde, the basis is

computed as follows:

et̃ = uµKS (4.29)

er̃ = vr + (et̃ · vr)et̃ (4.30)

eϕ̃ = vϕ + (et̃ · vϕ)et̃ − (er̃ · vϕ)er̃ (4.31)

eθ̃ = vθ + (et̃ · vθ)et̃ − (er̃ · vθ)er̃ − (eϕ̃ · vθ)eϕ̃ (4.32)

Note that, as described in Appendix A, each eµ̃ is normalized after it is computed and

before the calculation proceeds to the next step. These vectors are by construction mutually
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orthogonal, and the three spatial vectors of the tetrad are properly space-like four-vectors.

The vector et̃ is time-like by definition, and this is accounted for in the change of sign

accompanying the subtraction of these projections across the spatial components of the

tetrad. These vectors are the column vectors of the transformation matrix eν
µ̃
, satisfying

eµ̃ = eν
µ̃

· eν . Letting a bar denote the inverse, transformations into and out of the plasma

frame occur with

kµ̃ = ēµ̃ν · kν (4.33)

and

kν = eνµ̃ · kµ̃. (4.34)

The tetrad required for scattering events follows the same basic algorithm, but the input

vectors change. The vector et̃ is set equal to the four velocity of the plasma as linearly

interpolated between the two nearest neighboring grid points and the point of scattering.

The normal at the point of scattering (to be used as vθ) taken as the norm defined for the

grid surface in the scattering alogrithm. The radial and azimuthal tangents are computed

by finding dS
dr

or dS
dϕ

between the point of scattering and the nearest grid point in increasing

r or ϕ, respectively. Transformations into the frame of a coordinate stationary observer also

utilize this algorithm, taking the input for et̃ as the momentum of a stationary observer and

letting eµ be the tangents of Minkowski space, we have:

et̃ = pt (4.35)

eϕ̃ = eϕ + (et̃ · eϕ)et̃ (4.36)

eθ̃ = eθ + (et̃ · eθ)et̃ − (eϕ̃ · eθ)eϕ̃ (4.37)
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er̃ = er + (et̃ · er)et̃ − (eϕ̃ · er)eϕ̃ − (eθ̃ · er)eθ̃ (4.38)

Note that er̃ is orthogonalized last in the alogrithm. This is due to the to the grϕ and gϕr

components of the metric, which have a form drdϕ = −2a sin2 θ(1 − 2r
ρ

). These components

do not go to zero at large r. Orthogonalizing in the order t, ϕ, θ, r yields basis vectors which

produce a Minkowskian metric, transform pt into its own rest frame with the proper sign,

and minimize the error on |kµ| and |f ν | after the transformation.

4.5 Lamppost Emission

The distribution of momentum across the disk as it warps, tears, and precesses, is highly

dynamic and deviates significantly from a Keplerian prescription. In particular, there are

large variations in the θ component of the momentum, the influence of which on emission

lines, like the Fe-Kα line, are up to this point not well understood. In an effort to quantify

this, a ‘lamppost’ corona geometry is initialized in the code to emit power-law photons that

will reflect off of the evolving disk structure.

In other H-AMR simulations of misaligned and precessing disks, jets were produced that

precessed with the disk. The alignment of these jets correlated to the alignment of the disk

on comparable scales. On scales smaller than the tearing radius, the jet aligns with the

angular momentum of inner disk, and at scales larger than the tearing radius, the jet aligns

with angular momentum of the outer disk.

In order to fully explore the effects of this precessing disk and its accompanying jets on

the Fe-kα line, two lamppost models have been built into the code. The first is a classic

lamppost aligned with the black hole spin axis, though slightly offset to avoid the coordinate

singularity that occurs at θ = 0, π. The second has been designed to mimic the precessing
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jet observed in simulations and is aligned with the inner disk angular momentum vector.

Letting the lamppost LP1 be aligned with the inner disk and r1 be the outer edge of the

inner disk, the lamppost is located at

xµLP1 = (tframe, r1, θtilt, ϕprec). (4.39)

where θtilt and ϕprec are the tilt and precession angles of the disk at radius r1.

Fig. 4.3: Schematic of lamppost model LP1. The lamppost is offset from the black hole
spin axis by the tilt angle at the tearing radius and its height above the disk is
equal to that radius.

Due to the lack of symmetry in the disk there are two lampposts for each configuration,

one above and one below the disk. For the axially aligned configuration, the second lamppost

is located at θ = π − δ, and in the offset configuration the second lamppost is located at

θtilt + π
2 and ϕprec + π. For simplicity, the lampposts are initialized in the frame of a zero

angular momentum observers (ZAMO), with their positions advancing at rest frame by frame
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as the disk precesses. ZAMO frames, or locally non-rotating inertial frames as they were

originally coined by Bardeen et al in 1974 [126], are frames which are stationary with respect

to an observer located at infinity (i.e., Equation 2.5 equals zero). Locally, however, these

frames co-rotate with the ergotic precession of the spacetime induced by the black hole’s

spin [6]. The frequency of this frame dragging in Boyer-Lindquist coordinates is given by

Ω ≡ dϕ

dt
= dϕ/dτ

dt/dτ
= uϕ

ut
= −gtϕ

gϕϕ
(4.40)

Substituting Equations 4.1 into 4.40 to convert to Kerr-Schild coordinates,

dϕ

dτ
= dϕ̃

dτ
− 2Mr

∆
dr

dτ
(4.41)

dt

dτ
= dt̃

dτ
− a

∆
dr

dτ
(4.42)

The factors dr
dτ

are trivially zero by the requirement of stationarity in the frame. Thus,

ΩBL = ΩKS = −gtϕ

gϕϕ
. The tetrad of our ZAMO frame is then constructed following the

prescription in Appendix A, with et̃ = (1, 0, 0, ΩKS).

The lamppost emits power law photons corresponding to a photon index of Γ = 1.7

proportional to dN/dE ∝ E−(Γ+1), producing emission in the range 1 − 100keV . These

photons are emitted isotropically over solid angle, irradiating the disk from above and below.

The fluorescence of Fe-Kα photons follows the prescription of George and Fabian [127], where

a minimum ionizing energy of 7.1keV is required to liberate the electron from the k-shell of

the Fe atom. When a photon interacts with the disk, it is transformed into the plasma frame

and if utPF > 7.1keV an iron photon is emitted following the same procedure used for thermal

emission, with the caveat that its plasma frame energy is 6.4keV. If utPF does not meet this

threshold, the photon is reflected according to the procedure outlined in Section 4.4. Iron
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photons are tagged on emission so that they can be separated in analysis.

4.6 Thin Disk in Kerr-Schild Coordinates

4.6.1 Thermal Emission

In order to test the validity of a code, a psuedo thin disk is constructed by projecting a

frame of the H-AMR data into the equatorial plane and adding small deviations in θdisk such

that θdisk = π
2 + 0.1 ∗ δθ where δθ is a random number in the range (−1, 1) corresponding

to a maximum deviation of 5◦ from the equatorial plane. The velocities are constructed to

be Keplerian, with ΩK = (a + r3/2)−1 and the tetrad is constructed following the procedure

in Appendix A with et̃ = (1, 0, 0, ΩK). Photons are emitted isotropically across solid angle

from each (r, ϕ) grid point in the disk. Photons impinging on the disk from above are

reflected upwards and photons impinging from below are reflected downwards. Finally, a

radial brightness profile corresponding to an accretion rate of 0.1 ṀEdd and a spin of a = 0.9 is

applied following the Page and Thorne prescription (appropriately derived in the Kerr-Schild

formulation of the Kerr Metric). The same brightness profile (again, derived in appropriate

coordinates) is then applied to the classic thin disk in Boyer-Lindquist coordinates. Emission

from the Boyer-Lindquist disk occurs in radial bins at a single azimuth, while emission from

the Kerr-Schild disk occurs in radial and azimuth bins. Observations are integrated over

all azimuths for the Boyer-Lindquist case photons arriving below θ = π/2 are folded up

as described in Chapter 2. In the Kerr-Child case, no photons are folded from the lower

hemisphere to the upper hemisphere, as in the GRMHD data set there is no symmetry in

the disk. Kerr-Schild photons are collected in single azimuthal bins with Φ ± 4◦. For both,

the inclination observation window is i ± 4◦.
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The comparison begins with images of the direct and reflected emission for each case,

where the bars overlaid are proportional to the polarization degree and angle. Figure 4.4

shows the direct emission for the Boyer-Lindquist disk on the left, and the Kerr-Schild disk

on the right. The maps show three inclinations, i = 25◦ (top row), 45◦ (middle row),

and 65◦ (bottom row). The color in these maps is logarithmic intensity and is scaled to

arbitrary units. The differences in apparent intensity between the two cases are due mainly

to the difference in binning between the two cases. The Boyer-Lindquist (on the left) disk is

segmented into 10,000 logarithmic spaced radial bins, whereas the Kerr-Schild case (on the

right) is segmented into only a few hundred. Overplotted on the intensity is the polarization

due to direct emission, with the length and direction of the bars encoding the polarization

degree and angle. The maps are approximately the same.
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Fig. 4.4: Direct emission of Boyer-Lindquist thin disk (left) and Kerr-Schild pseudo-thin
disk (right). Color here is logarithmic intensity and in arbitrary units. These
images are for inclinations of i = 25◦, 45◦, and 65◦ moving from the top row to
the bottom row.
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Fig. 4.5: Polarization angle (left) and degree (right) of the direct emission for inclinations
of i = 25◦, 45◦, and 64◦. At i = 25◦ there is good agreement between the
Boyer-Lindquist result and the Kerr-Schild result. at i = 45◦ the angle agrees
at low energies and the polarization degrees align closely. At a moderately high
inclination of i = 65◦ both the polarization angle and degree begin to diverge for
energies above ∼ 2 keV.
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Comparison of the polarization spectra is evaluated more rigorously in Figure 4.5, with

the polarization angle on the left and the polarization degree on the right. These plots are

for the same inclinations as Figure 4.4. At low inclinations, the spectra are nearly identical.

As the inclination increases to i = 45◦, the polarization angle begins to deviate from the

Boyer-Lindquist case. At i = 65◦, both the polarization angle and degree deviate. Note

that the deviations are maximal at high energies. In comparing the images and spectra

for the total emission in Figures 4.6 and 4.7, these discrepancies become larger. For the

Kerr-Schild case the polarization angle is higher across all inclinations, though its swing to

vertical happens at approximately the same energies as the Boyer-Lindquist thin disk. The

polarization degree shows deviations at high energies at low inclinations. As the inclination

increases, these deviations shift to lower energies and grow larger in magnitude. These

discrepancies are attributed to higher statistical error on the integration of the geodesic

equation and parallel transport of the polarization vector at small radii. As mentioned in

Section 4.2.1, the integration of the geodesic equation in Kerr-Schild coordinates cannot be

parameterized into an integration of only r and θ as it can in the Boyer-Lindquist case. The

lack of symmetry in the disk and high spin of the black hole also play a role. Errors are kept

as low as possible by minimizing step sizes below the Boyer-Lindquist thresholds throughout

the integration, but remain non-negligible in the Kerr-Schild case nonetheless.
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Fig. 4.6: Total emission of Boyer-Lindquist thin disk (left) and Kerr-Schild pseudo-thin
disk (right). Color here is logarithmic intensity and in arbitrary units. These
images are for inclinations of i = 25◦, 45◦, and 65◦ moving from the top row to
the bottom row.
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Fig. 4.7: Total emission over inclinations of i = 25◦, 45◦, and 65◦.

91



4.6.2 Fe-Kα Line Profile

To compare Fe-Kα line profiles, the axially aligned lamppost model described in Section 4.5.

The disk is taken as a frame of the of the H-AMR data when it is in a Bardeen-Petterson

alignment and projected into the equatorial plane. Small deviations in θdisk are added such

that θdisk = π
2 + 0.1 ∗ δθ where δθ is a random number in the range (−1, 1). The disk is

then given a Keplerian velocity profile. The tilt angles from the H-AMR data are left at

their original values and the conditional check for gaps in the disk is left in the scattering

algorithm as a test. The lampposts emit isotropically over all solid angle. Photons impinging

on the disk from above are reflected upwards, those impinging from below are reflected

downwards, and photons whose trajectory passes through the gap in the disk are allowed

to continue without interruption. The accuracy of this scattering algorithm is evidenced in

Figure 4.8. This figure shows a random selection of photon geodesics (black lines) from each

lamppost projected into cylindrical coordinates, with the trajectories being truncated at a

radial distance of 20rg. A schematic of the disk is overplotted in blue.

The Fe-Kα profiles are not given any weighting. These raw Fe lines are compared against

the raw Fe lines for a lamppost over the Boyer-Lindquist thin disk. Each line is normalized

to its own flux before comparison. Doppler maps of reflected emission for the Kerr-Schild

disk and the Fe-Kα lines for the Boyer-Lindquist and Kerr-Schild disks are compared in

Figure 4.9 for inclinations of i = 45◦ (top), 75◦ (middle), and 85◦ (bottom). The Doppler

maps show the gap between the inner and outer disks - a remnant of the frame data before it

is projected into the equatorial plane. The line profiles between the Kerr-Schild and Boyer-

Lindquist disks match closely, with red and blue shifts for each being equal. Interesting to

note is that in all three inclinations, the peak of the line is higher in the Boyer-Lindquist

case than in the Kerr-Schild case, though the difference is small.
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Fig. 4.8: Geodesics from two lampposts are shown in black. The blue line is a schematic of
the projection of the disk into the equatorial plane with the gaps visible at ∼ 13rg.
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Fig. 4.9: Doppler maps of the blue/red shift of reflected emission for the Kerr-Schild thin
disk are on the left. Raw Fe-Kα lines are shown on the right for both the Boyer-
Lindquist (black) and Kerr-Schild disks (red) for inclinations of i = 45◦ (top), 75◦

(middle), and 85◦ (bottom).
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Chapter 5

Observational Characteristics of

Dynamically Evolving Accretion

Flows

5.1 Introduction

Chapter 5 details the results of postprocessing the H-AMR for the data set described in

Chapter 3 with the raytracing code described in Chapter 4. In all, the raw raytracing data

used to produce these results totalled in excess of 5 Pb. These results are being prepared for

publication. In particular, Section 5.2 represents a unique and important result, the first of

its kind. A selection of images has been included in this chapter, and those interested will

find many movies of the raytraced accretion flow which can be viewed here2.

The H-AMR data set is large, with the full runtime of the simulation being ∼ 3000

frames. Each of these frames is ∼ 50 rg

c
in temporal width. The main tearing event occurred

over the range 40, 000 rg

c
≤ t ≤ 80, 000 rg

c
. This temporal range is the primary focus of the

analysis that follows. For all of the analysis in the following sections, only two inclinations
2 https://www.youtube.com/channel/UCs4DWHchu3DHuFZ-cPhyDxA
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will be considered, i = 27◦ and 65◦. This is due simply to the computational and storage

demands of the calculations. These inclinations were chosen as they correspond Cyg X-1

(27◦ [128]) and GRS1915+105 (65◦, [129]), the latter of which is a known source of hfQPOS

[43]. A variety of azimuths are explored for each of these inclinations, and will be denoted

as Φ. Φ = 0 is defined as the azimuthal direction of the net angular momentum vector of

the disk at t = 0. It has no deeper physical meaning and may be considered an arbitrary

value by which the azimuthal orientation of the observer with respect to the black hole is

measured, with some Φ = 0 being constant for all inclinations and times.

The chapter begins with a time domain analysis of the X-ray emission of the disk over the

course of the tearing event. These results are related back to the geometry and dynamics

in the accretion flow itself. Section 2 contains an analysis of the Fe-Kα emission from a

co-rotating lamppost. The effect of the differentially precessing disk geometry on the shape

of the Fe-Kα line is evaluated, as well as the time domain behavior of its centroid. Section 3

details the behavior of the polarization degree and angle over the course of the tearing event.

The chapter closes with a discussion of the results and their impact on the field. The results

of the time domain analysis of Section 1 are well vetted and being prepared for publication.

The sections on the Fe-Kα line profiles and polarization represent first results. Additional

simulations are in progress that will reduce the statistical errors on these results and will be

described in a forthcoming publication.
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5.2 Quasi-Periodic Oscillations

5.2.1 Analysis Methods

As discussed in Section 3.3.3, oscillatory signals were discovered in the radial accretion rate

Ṁr at the outer edge of the inner disk, located at ∼ 13 rg. The strongest of these signals

was at 55Hz, while the second signal was weaker - too weak to be definitive - at 110Hz. The

55Hz oscillation corresponds to the radial epicyclic frequency of that radius ∼ 13rg. Here,

the thermal emission from the frames in the range 40, 000 rg

c
≤ t ≤ 80, 000 rg

c
is evaluated.

For each frame, ∼ 1.5 × 109 photons are generated. Multiple frames are loaded at a time

and the disk geometry is updated for scattering to that configuration which is closest to the

photon’s age.

Counts are added to the lightcurve based on the received flux in arbitrary units. As

described in Section 4.4, each photon contributes a statistical weight of

ωst = 2π∆r
√

−gtrϕ
F

⟨Ê⟩
ωi (5.1)

where ∆r is the width of the emission bin, √−gtrϕ is the invariant area measured in the

global frame, and F is the flux of emission in the plasma frame and ⟨Ê⟩ is the average

emission energy in the plasma frame. The weights of emission and all scattering processes

are encoded in ωi. For an energy bin bounded below by E1 and above by E2 each photon

then contributes with a weight of

ω = ωst

∫ E2
E1

E2

eE/ϵ0 −1dE∫∞
0

E2

eE/ϵ0 −1dE
(5.2)

As the photons are statistical packets, each photon contributes to the lightcurve a weight
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equal to the sum of all ω over all energies to the lighcurve bin corresponding to the photon’s

receipt time at the observer. In practice, the raw data from each frame is filled into a

lightcurve of 4096 bins covering the range 0 rg

c
≤ tlc ≤ 160, 000 rg

c
giving ∼ 40 rg

c
wide bins.

This is a slightly smaller cadence than the binning of the frames themselves, ensuring that no

frame to frame variation can be lost. For a black hole of 10M⊙ and a spin of a = 0.9375 these

∼ 40 rg

c
wide bins correspond to a wall clock time width of 3.8 ms. After all the lightcurves

are generated they are combined into a single lightcurve of identical dimension.

The lightcurve is then taken to Fourier space and the power spectral density computed

using the Stingray timing package [130, 131]. Stingray leverages the Fast Fourier Transform

(FFT) functionality of numpy to compute the Fourier transform of the lightcurve. The

magnitude of oscillations at a given frequency is measured with the power spectral density,

P (ν) = lim
t→∞

1
ν

|f̂t(ν)|2, (5.3)

where T is the period of the signal, f̂t(ν) is the Fourier transform, and ν is the Fourier

frequency. The power spectra that follow are all normalized with the fractional RMS.

5.2.2 Emission Characteristics of the Evolving Accretion Flow

The details of the H-AMR data set were discussed in detail in Chapter 3, but are reviewed

briefly now. The disk is initialized at an inclination of 65◦ with respect to the black hole

spin. As time passes, the Lense-Thirring torques from the dragging of spacetime due to

the black hole’s spin build. Eventually, these torques exceed the vicsous torques holding

the disk together, inducing a tearing event. During a tearing event, the disk splits into

two (or more) distinct sub-disks, which begin differentially precessing at the Lense-Thirring

precession frequency. Figure 5.1 shows images of the disk at various times before and during

98



the tearing event. These disk images are constructed by back projecting the photon wave

vector kµ into a plane intersecting the black hole spin axis and orthogonal to the line of

sight. The color scale is log intensity in arbitrary units.

These tearing events are accompanied by an increase in the accretion rate as integrated

over the null surface of the event horizon. This corresponds to an increase in the luminosity

across the inner sub-disks. The lightcurves from the tearing event reflect this increase in

luminosity clearly as shown in Figure 5.2. Here, the x axis has been converted from scale

free units of rg

c
to seconds. The tearing event begins at ∼ 4 seconds and ends at ∼ 8

seconds. The light curve is shown for two inclinations, i = 27◦ and 65◦. Note that at the

higher inclination the features are broadened, an effect induced by the relativistic motion of

the accreting plasma. The 4 peaks in the count rate visible here between 4 and 8 seconds

correspond to the four peaks in the accretion rate shown in Figure 3.8.

The lightcurve is taken to Fourier space and the power spectral density (PSD) is com-

puted. To begin, the raw, unaveraged PSD is computed. In all PSD plots that follow, the

frequency is on the X-axis and frequency×power is plotted on the Y-axis. The raw PSDs

for a variety of azimuths are given in Figure 5.3. There are a few important features to note

in this figure, with the first and most obvious being the appearance of between 2 (i = 27◦,

Φ = 274) and 4 (i = 65◦, Φ = 154) peaks. The largest peak, present at every azimuth for

both inclinations, is spread over a frequency range of 55 Hz ≤ ν ≤ ∼ 59 Hz, with its centroid

at ∼ 57.5 Hz. (recall that the oscillation observed in Ṁr was at 55 Hz). This 57 Hz peak

is the fundamental frequency of the oscillations. The second largest peak is spread over a

frequency range of 113 Hz ≤ ν ≤ ∼ 116 Hz with a centroid occurring at ∼ 115 Hz. This peak

is the second harmonic, or octave, of the fundamental frequency, occurring almost exactly in

a 2 : 1 ratio depending on azimuth. Some observers (i = 65◦, Φ = 154◦) also see a third peak

spread over a frequency range of 87 Hz ≤ ν ≤ ∼ 90Hz, frequency peak at ∼ 89 Hz, which is
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Fig. 5.1: Four images of the disk for an inclination of i = 27◦ and an azimuth of Φ = 64◦.
Overlaid on the images are bars denoting the polarization degree and angle. These
images progress forward in time from left to right and top to bottom, with the
upper left being just before the tearing event begins and the bottom right being
just after it ends.
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Fig. 5.2: Lightcurves generated by raytracing the H-AMR data from a simulation of a 10M⊙
black hole with spin a = 0.9375. The accretion disk is initially misaligned at 65◦.
Top: Bolometric lightcurve over the runtime of the simulation. The ‘counts’ for
all lightcurves are in arbitrary units. Bottom: Lightcurves of total emission for
the two inclinations at an azimuth of Φ = 19◦. Note the broader features at the
higher inclination of i = 65◦. This is a product of relativistic beaming due to the
orbital motion of the plasma.
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in a 3 : 2 ratio with the fundamental peak. There also exists a narrow low frequency peak

centered at ∼ 3 Hz.
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Fig. 5.3: Raw (unaveraged) power spectral density of total emission for the two inclinations
at azimuths of Φ = 94◦, 154◦, and 274◦.
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Unsurprisingly, these signals are present in the reflection spectrum for most inclinations

and azimuths. Figure 5.4 shows one azimuth for each inclination. At some azimuths there

is less power in the reflection spectrum at i = 65◦ than i = 27◦. This is likely due to the

occulting of the inner disk and the outer disk, which is aligned at approximately 65◦ during

the tearing event.

Fig. 5.4: Reflection PSD

Plotting these PSDs in log-log form and averaging the FFT before computing the PDS

reduces the noise and makes the signals more apparent. For the following PSDs in Figure

5.5, the lightcurve was limited to the range 4-8 seconds. The lightcurve is cut into 4 intervals

of length 1 second and the FFTs of each segment are averaged together before the PSD is

computed. These PSDs were chosen in particular to illustrate that the lfQPO does not

always increase in power as the inclination increases.

The quality of and power in these signals is quantified by fitting a Lorentzian of the form

f(ν) = Aγ2

γ2 + (ν − ν0)2 . (5.4)

Here, A is a constant of the fit, γ is half of the full width at half maximum (FWHM), and

ν0 is the centroid frequency. The quality factor is taken as Q = ν/FWHM . Overplotting

104



Fig. 5.5: Power spectral density for inclinations of i = 27◦ (left) and i = 65◦ (right) at
azimuths of Φ = 4◦ (top) and Φ = 109◦ (bottom)/ The 57.5 Hz peak and its first
octave at 115 Hz are visible at all four orientations, as is the low frequency ∼ 3
Hz oscillation to a varying degree.
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Fig. 5.6: Lorentzian fits for the spectra in Figure 5.5.

the fit on the PSD can obscure the peak itself, so for clarity the fits in Figure 5.6 are for the

same spectra from Figure 5.5. The quality factor of the hfQPO fits are high, a reflection of

the power in the signal and the narrow frequency band of the oscillations.

The most important question underlying these results concerns the origin of the oscilla-

tions. Recall that Musoke et al [81] found a 55 Hz oscillation in Ṁr isolated at the tearing

radius (∼ 13rg), corresponding to the radial epicyclic frequency at this radius. Intuitively

then it seems likely that these signals are emanating from the outer edge of the inner disk.

To ascertain this, the lightcurve is broken into 1rg wide bins based on the last interaction

radius (i.e., emission radius for direct emission or last scattering radius for reflected emis-

sion) extending from the event horizon to 50rg. For each radial bin three lightcurves are
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computed, one for the total emission, the direct emission, and the reflected emission. These

lightcurves are then taken to Fourier space where the PSD is computed identically to those

shown above.
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Fig. 5.7: PSD maps for i = 27◦, Φ = 4◦. Note that for 10 ≤ r ≤ 20 there is diminished
power in the fundamental frequency and increased power in octave.
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Fig. 5.8: PSD maps for i = 27◦, Φ = 109◦. As in Figure 5.7, diminished power at 10 ≤
r ≤ 25 in total emission and ∼ 18 ≤ r ≤ 20 in direct emission at the fundamental
frequency is accompanied by increased power in the octave.
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Fig. 5.9: PSD maps for i = 65◦, Φ = 4◦.
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Fig. 5.10: PSD maps for i = 65◦, Φ = 109◦.
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Fig. 5.11: PSD maps for i = 27◦, Φ = 64◦ (left) and i = 65◦, Φ = 304◦ right.

These PSD maps reveal an unexpected result - the fundamental frequency of the hfQPO

and its harmonics (when present) are global modes, emanating from both within the inner

disk and throughout the outer disk. An interesting pattern emerges in the case of i = 27◦,

Φ = 109◦, where diminished power in the oscillation at a given radius in the fundamental

frequency corresponds to an increase of power in the harmonic at that same radius (see Figure

5.8). This trend is repeated across both inclinations at a variety of azimuths, implying that

the harmonic is in fact due to a resonance in the fundamental frequency, see Figure 5.11.

Fig. 5.12: Bolometric PSD for total emission (left) and reflected emission (right).

To quantify whether the visibility of these oscillations is dependent the viewing angle,

a lightcurve is integrated over all observer orientations (i.e., all solid angle) and taken to
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Fourier space where its power spectral density is examined. Figure 5.12 shows this result for

the total and reflected emission. The fundamental frequency of the hfQPO and the lfQPO

are visible for all observers in both the total emission and the reflected emission. A number

of smaller peaks from the i,Φ PSDs carry over at low frequencies. These are due to the

warped and differentially precessing inner disk tearing into sub-disks as it evolves toward

Bardeen-Petterson alignment. One high frequency peak arises that was not apparent in the

individual observer PSDs, either being washed out due to interference or present but of low

amplitude. This peak is at ∼ 44 Hz. It is possible that was thought to be a 3 : 2 harmonic

is in fact not related to the fundamental hfQPO frequency at all, but instead is the second

harmonic (first octave) of a different oscillation altogether. This 44 Hz frequency corresponds

to a radial epicyclic frequency near the inner edge of the outer disk during the tearing event,

∼ 15.5rg. Figure 5.13 shows the frequencies of all of these oscillations against the orbital

characteristic frequencies for a 10M⊙ black hole with a spin of a = 0.9375.

5.2.3 Discussion

The 55 Hz oscillation in Ṁr observed at the tearing radius in the GRMHD data translates

into a spectral hfQPO at ∼ 57 Hz in the thermal emission of the disk which is visible at

all inclinations and azimuths. This spectral hfQPO is accompanied by a harmonic at ∼ 115

Hz that is visible at both inclinations examined, but not all azimuths. In some observer

orientations, there is a second harmonic at ∼ 88 Hz that arises. Additionally there is an

lfQPO that arises from the differential Lense-Thirring precession of the inner disk, also visible

to all observer inclinations and azimuths.

Binning the lightcurve into 1rg wide radial bins and computing the power spectral density

reveals that, unlike the oscillation in Ṁr, these signals are not isolated to the tearing radius
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Fig. 5.13: Fundametal orbital frequencies are plotted with the lfQPO and hfQPO frequen-
cies overlaid. The two red vertical lines are the radii where the radial epicyclic
frequencies correspond to the two hfQPO frequencies.

but are in fact global modes (Figures 5.7 - 5.10). The fundamental frequency and its octave

occur in the direct, reflected, and total emission from the entirety of the inner disk and

throughout the outer disk to varying degrees. The third 3 : 2 peak is present only in the

direct and total emission. When present, this oscillation occurs across the entirety of the

inner disk but its presence in the outer disk is less extended than the fundamental and

2 : 1 harmonic, typically disappearing after ∼ 30rg. The lfQPO is also present as a global

114



mode from across the entirety of the inner disk and throughout the outer disk to varying

extents. Its presence in the direct emission is typically isolated to the inner precessing disk

(and sometimes to near the inner edge of the outer disk), but extends across all radii in the

reflection spectrum for all observer orientations examined.

There is evidence of a resonance inducing the 2 : 1 harmonic as shown in Figure 5.11.

Diminished power in the fundamental frequency at a given radius often (but not always)

corresponds to an increase in power in the harmonic, implying self interference in the os-

cillation itself. This conclusion requires further investigation. The bolometric lightcurve

integrated over all solid angle shows that the fundamental hfQPO and the lfQPO are visible

to all observers across all inclinations. It also reveals a fourth high frequency oscillation

not present (or not of significant amplitude) in the individual observer PSDs at ∼ 44 Hz.

This oscillation corresponds to a radial epicyclic oscillation near the inner edge of the outer

disk at ∼ 15.5rg. It is possible the ∼ 89 Hz oscillation thought to be the 3 : 2 harmonic

of the fundamental frequency is in fact the first octave of this 44 Hz oscillation, but more

investigation is required to determine this definitively.

The source of these oscillations during the tearing event, and their propagation across

the disk, is the dynamics of the evolving plasma itself. Preceding the tearing event there is a

standing ring of density near the tearing radius. After the tearing event occurs and the disk

begins to precess, this ring oscillates in the inner disk. While the inner disk is precessing

and oscillating, material is fed from the outer disk to the inner disk(s) via streamers. This

process provides a mechanism for the transfer of angular momentum from the inner to

the outer disk, causing the inner disk to (eventually) align and the streamers to break off.

During this oscillation, angular momentum is being transported outward via these streamers,

propagating the 57 Hz and 115 Hz oscillations to the outer disk kinetically via viscosity. If

the apparent 3 : 2 harmonic is infact the 2 : 1 octave of the 44 Hz oscillation at the inner
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edge of the outer disk, the infalling material in these streamers would provide a mechanism

for transporting this oscillation inward to the inner disk in a similar fashion.

116



5.3 Fe-kα Profiles

H-AMR has been used to simulate numerous thin disks of varying inclination which develop

warps and undergo precession to varying degrees without the presence of tearing events. In

some of these simulations, jets are formed which expel matter along the poloidal magnetic

fields of the disk. During periods of misalignment, warp, and precession, these jets precess

with the disk and are aligned with the disk on comparative distance scales (i.e., aligned

and precessing with the inner disk on small scales, aligned and precessing with the outer

disk on large scales) [79]. It has been shown that steady state geometries diverging from the

standard thin disk can have strong effects on the reflection spectra of stellar mass black holes

and AGN. Slim disks of moderate scale height self-shadow their inner regions, leading to a

truncation of the blue wing of the Fe-Kα line [105, 104], and the boosting profile of Keplerian

disks in Bardeen-Petterson alignment can shift the extent of the red wing and change the flux

ratios in blue and red shifted emission leading to errors in estimating spin [100]. In nature, a

correspondence between the Fe-Kα line’s shape and the phase of lfQPOs has been observed.

The stellar mass black hole H1743-322 has exhibited a shifting of its Fe-Kα centroid from

red to blue-shifted energies over the the (∼ 5 second) cycle of an observed ∼ 0.2 Hz Type C

QPO [37].

These theoretical and observational results motivate the following anaylsis. As described

in Section 4.5, two lampposts corona are initialized, one above the disk and one below. Each

lamppost is aligned with the disk configuration at a radius of 10rg, such that their offset

from the black hole spin axis and azimuthal location are equal to the tilt and precession

angle of the annulus of the disk at this distance, and located at a radial coordinate equal to

10rg. The lamppost co-rotates with the inner disk in the frame of a ZAMO, and emits power

law radiation proportional to dN/dE ∝ E−(Γ+1) with a photon index of Γ = 1.7. For this
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section of the analysis, there are no emission mechanisms considered other than the emission

of the lamppost itself. The Fe-Kα profiles that follow are raw (unweighted). These emission

profiles at various stages of the tearing process will be evaluated, as well as the integrated line

profile over the duration of the tearing event. The shift in the centroid frequency will also

be examined. Fitting and spin estimation analysis are not completed here and are instead

left for future work.

5.3.1 Evolving Fe-Kα Profiles

The Fe-Kα profiles produced with this co-rotating lamppost across the duration of the tearing

event vary widely in their breadth, the location of their centroid, and the relative amplitude

of their blue and red shifted emission. Some profiles look familiar (e.g., Figure 5.14), having

higher counts in the blue shifted than red shifted emission due to Doppler beaming. The

Doppler maps can also can also seem reasonable, with blue shifted emission coming from the

approaching (left) side of the disk and redshifted emission coming from the receding (right)

side and lensed emission from the back (see the bottom left of Figure 5.16).
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Fig. 5.14: Dopper maps and Fe-Kα line profiles for the two inclinations at the same azimuth
of Φ = 120◦. Both are from the same time, during the precession of the inner
disk. Note that the warp covering the black hole shadow is still illuminated by
the lammpost, as it is aligned with the lower most blue tendril of the disk in the
frame, oriented out of the page in this azimuth and moment in time.
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Fig. 5.15: Doppler maps and Fe-Kα line profiles for an inclination of i = 27◦ at an azimuth
of Φ = 30. These figures run sequentially forward in time from left to right and
top to bottom, with the top left image being just before the disk tears and the
bottom right being near the end of the tearing cycle
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The evolution of the system causes these emission line to vary significantly over the

duration of the tearing event, with a single inclination and azimuth showing a diverse range

of profiles (Figure 5.15). There are two physical mechanisms that are responsible for this

variation, the first being the orbital motion of the plasma itself. The inner and outer disks

precess as the system evolves, but there is additional motion in each disk due to the warps

that develop. These warps lead to large θ components of momentum, skewing the Doppler

profile of the disk and resulting in Fe-Kα line profiles which deviate significantly from those

expected from a thin disk or even a Bardeen-Petterson aligned disk with a Keplerian profile.

This effect is typical strongest at lower inclinations, where the observer’s line of sight is more

closely aligned with θ̂. The second mechanism at work here is the precession of the lamppost

itself. By design it precesses with the inner disk, and thus there are configurations where

parts of the outer disk may not be illuminated at all (top left and bottom left of Figure

5.15).

The detection of a chaotic Fe-Kα line like those shown above in a stellar mass black hole

is not feasible with the current technology available. The full duration of this tearing event

for a 10M⊙ black hole is on the order 4 wall clock seconds, and the Fe-Kα fluxes received

even from the brightest sources are orders of magnitude too low to facilitate a meaningful

measurement in such a short time. However, the duration of the event scales linearly with

black hole mass, making the detection of an emission line during a tearing event possible for

an AGN given a sensitive enough instrument. In stellar mass black holes, given long term

observations of sources exhibiting hfQPOs, it may be possible to determine whether such

tearing events are actually occurring via the behavior of the iron line and its integrated line

profile. As will be shown in the last section of this chapter, the line profile’s behavior over

the course of the tearing event encodes the orbital evolution of the plasma. First, though,

the integrated Fe-Kα line is examined. Raw Fe-Kα profiles are normalized in each frame
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and added across all energy bins. The resulting line profiles, in some cases, look markedly

different than the snapshots which compose them as shown in Figures 5.16-5.19.

Abarr and Krawczynski [100] examined the Fe-Kα lines of Keplerian disks in a Bardeen-

Petterson configuration extensively. They showed that for a fixed viewing angle the location

of the breaking radius and the tilt of the outer disk can have dramatic effect on the line

profile, manifesting double peaks or flattening the line depending on the orientation. This

is seen at various stages of the tearing event as shown above. They also observed that the

centroid of the Fe-Kα line (as well as its width and shape) shift as the observer’s azimuth

changes for a given inclination (see Figure 5.20). For both snapshots and integrated profiles,

shifting the observer orientation shifts the centroid and changes the line shape. As in the

Keplerian Bardeen-Petterson case, this is attributed to the change in the boosting profile

seen by different observers.

5.3.2 Shift in the Centroid frequency

For a quantitative examination of the evolution of the Fe-Kα profile, the centroid of the line is

examined over the duration of the tearing event. This examination will end up bolstering the

results of Section 5.2, as will be detailed at the end of this section. As mentioned previously,

Ingram et al. [37] have observed a modulation of the Fe-Kα centroid over the cycle of an

lfQPO in H1743-322. This further reinforces the idea that lfQPOs are due to the orbital

motion of a precessing inner disk. In the data evaluated so far in this chapter, the presence of

the lfQPO in the direct and reflected emission does not definitively rule out a low frequency

harmonic related to Ṁ modulating the luminosity as the source of the lfQPO signal. But, if

the signal is present in the reflection spectrum generated by an emitter of constant output,

then the orbital motion must be (at least in part) a source of the low frequency oscillation
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Fig. 5.16: Doppler maps and Fe-Kα line profiles for an inclination of i = 65◦ at an azimuth
of Φ = 30. The frames go in sequential order from left to right and top to
bottom.
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Fig. 5.17: The integrated Fe-Kα over 80% of the duration of the tearing event for an incli-
nation of i = 65◦ and Φ = 30◦. This is the integrated profile of Figure 5.16. The
corresponding Doppler map shows the disk in Bardeen-Petterson configuration,
and is taken ∼ 1000rg/c after the final frame of Figure 5.16.
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Fig. 5.18: Doppler maps and Fe-Kα line profiles for an inclination of i = 65◦ at an azimuth
of Φ = 90. The frames go in sequential order from left to right and top to
bottom.
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Fig. 5.19: The integrated Fe-Kα over 80% of the duration of the tearing event for an in-
clination of i = 65◦ and Φ = 90◦. This is the integrated profile of Figure 5.18,
and shows the same moment in time as Figure 5.17. The Bardeen-Petterson
alignment is viewed facing the outer disk.
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Fig. 5.20: Doppler maps and Fe-Kα line profiles for an inclination of i = 65◦ at azimuths
of Φ = 60◦ and 120◦ for the same moment in time (unintegrated). Here, the
disk is in Bardeen-Petterson alignment. For a given breaking radius and outer
disk tilt, the Fe-Kα profile changes drastically as the observer azimuth rotates
at fixed inclination.

127



observed.

The centroid is found by first normalizing the line profile and then bin averaging the

total counts per energy bin by the total counts in the line profile. The centroid evolution is

shown for two inclinations and azimuths in Figure 5.21. The centroid as a function of time

is then taken to Fourier space and its PSD is computed identically to the PSDs in Section

5.2.

The PSDs shown in Figures 5.22-5.24 show remarkable consistency over the two incli-

nations and azimuths examined. There is a broad peak in the PSD at ∼ 3.5 Hz, the same

frequency as the lfQPO previously observed in the thermal emission. There also appear to

be peaks at 6, 8, and 10 Hz, frequencies which all correspond to Lense-Thirring precession

frequencies within the precessing inner disk. These peaks remain through different averages

of the FFTs in PSD computation, while the higher frequency noise shifts inconsistently. The

3.5 Hz oscillation is fit with a Lorentzian as done for previous PSDs. The fit has a quality

factor of ∼ 12
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Fig. 5.21: Fe-Kα centroid over the duration of the tearing event for inclinations of i = 25◦

(top) and 65◦ (bottom) and azimuths of Φ = 120◦ and 210◦. The apparent gaps
in the data are frame loss in the computation, which each correspond to ∼ 50rg/c
of data loss. These losses are negligible and do not affect the result.
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Fig. 5.22: Raw Power spectral density of the Fe-Kα centroid for the inclinations in Figure
5.21. The PSDs are highly consistent over the two inclinations and azimuths
shown. There is a broad, high peak visible at all azimuths for both inclinations
located at ∼ 3.5 Hz, the same frequency as the lfQPO observed in the thermal
emission. There are subsequent smaller oscillations at ∼ 6, 8, and 10 − 11 Hz.
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Fig. 5.23: Power spectral density of the Fe-Kα centroid for the inclinations in Figure 5.21 in
log-log form with ν ×Power on the Y-axis and the X-axis extended to cover ν up
to 100 Hz. The PSDs are highly consistent over the two inclinations and azimuths
shown. There is a broad peak visible at all azimuths for both inclinations located
at ∼ 3.5 Hz, the same frequency as the lfQPO observed in the thermal emission.
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Fig. 5.24: Lorentzian fits of the Fe-Kα centroid in log-log and ν×Powser space.
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5.3.3 Discussion

The orbital motion of the warped and precessing accretion disk has a strong effect on the

shape of the Fe-Kα line frame by frame. Integrating this emission over the duration of

the tearing event yields line profiles that can be remarkably different than those of their

individual constituent frames. This tearing event has a duration of ∼ 4 wall clock seconds

for a 10M⊙ black hole, and as the duration scales linearly with mass, it may be possible to

detect misalignment and warps spectroscopically in AGN. In the case of stellar mass black

holes, discerning these events with line profiles alone is next to impossible given the low

fluxes and long integration times required. But, long duration observations of known hfQPO

emitters allow for time domain analysis of the shift in the Fe-Kα centroid frequency as has

been completed by Ingram et al [37]. This work shows that modulation in the Fe-Kα centroid

can occur from the precession of the inner disk and occurs at the frequency of the lfQPO

induced by this precession, which is approximately the Lense-Thirring precession frequency

of the outer edge of the precessing disk. The coronal emission modeled here is of constant

output over the duration of the precession cycle and in the frame of a ZAMO it emits without

boosts to increase/decrease reflection from the disk. showing that modulations in Ṁ and

thus in L are not required for the production of lfQPOs.

5.4 Thermal Emission and Polarization

As was shown in Chapter 2, deviations from the thin disk model can have strong impact

on the polarization spectra of the thermal emission of accreting stellar mass black holes.

As the geometric thickness increases, so too does the measured polarization degree and

angle. Abarr and Krawczynski [99] have examined the polarization spectra of geometrically

thin accretion disks in Bardeen-Petterson alignment. Their results show that while at low
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energies (in the outer, misaligned disk) the polarization degree and angle match that of a

thin disk, at high energies the degree is typically lower. Further, the polarization angle

exhibits dynamic behavior depending on the viewing angle, with it matching the thin disk

case when the observer orientation is such that there is no apparent rotation between the

angular momentum vectors of the inner and outer disks and being offset by the rotation

angle for all other observers.

Ingram et al [132] have shown that Lense-Thirring precession of the inner disk in stellar

mass black holes is expected to modulate the polarization degree and angle on a frequency

equal to the QPO frequency induced by the precesesion. They find higher RMS modulation

of the polarization degree and a lower modulation of the angle as the inclination of the

observer increases. The analysis that follows examines the polarization degree and angle of

the thermal emission from the accretion disk at various times during the course of the tearing

event, as well as their behavior over the full duration of the tearing event. An analysis is

presented on the modulation of the polarization degree and angle as it relates to the hfQPO

and lfQPO observed in the thermal emission.

5.4.1 Polarization Degree and Angle During Precession and

Bardeen-Petterson Alignment

Like the Fe-Kα line shown above, the polarization degree and angle show significant variation

for a given inclination and azimuth over the duration of the tearing event. There are two

physical mechanisms driving these variations. Firstly, the orbital motion of the disk as the

inner and outer disks precess at different rates affects the boosting profile and lensed emission

towards the observer. As described in Chapter 2, increased boosting towards the observer

can effectively lower the polarization of the emission, while increased boosting away from the
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observer can raise the polarization. Lensing acts to rotate the polarization vector. A second

effect is that of the disk geometry. As the inner and outer disks warp and precess relative

to one another the polarization is expected to change based on the amount of scattering

occuring. This increased surface area available for scattering is the driving force of the

increased polarization observed in the slim disks discussed in Chapter 2. The concavity (or

convexity) of the disk increases (or decreases) the amount of scattering occuring.

The following figures will show disk images with polarization overlaid and the polarization

degree and angle as functions of energy for the two inclinations. The plots will look at three

distinct times during the tearing event. t ≃ 50, 000rg/c is shortly after the tearing event

starts and the inner disk is differentially precessing and out of alignment. t ≃ 70, 000rg/c is

more than half way through the event and there are two distinct inner sub-disks, one that

is precessing and one that is in Bardeen-Petterson alignment. Finally, t ≃ 80, 000rg/c is a

period of Bardeen-Petterson alignment shortly before the inner disk is accreted away and

the entire misaligned disk reforms.

Figures 5.25 - 5.26 show the disk when the inner region is misaligned and precessing. At

i = 27◦, the high energy emission from the inner-most regions of the flow is highly polarized,

while its angle is nearly horizontal. The section of the image above the black hole’s shadow

is the far side of the inner disk warped away from the observer, and the section below the

black hole shadow is warped out of the page towards the observer. The high polarization

above and low polarization below in the image is due to this geometry. At an inclination of

i = 65◦ the observer’s line of sight is nearly aligned with the edge of the outer disk, obscuring

the inner regions and lowering the polarization.
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Fig. 5.25: Disk image, polarization degree and polarization angle for an inclination of i =
27◦ and an azimuth of Φ = 184◦ at a time shortly after the tearing event begins,
t ≃ 50, 000rg/c. Here the inner disk is misaligned and precessing.
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Fig. 5.26: Disk image, polarization degree and polarization angle for an inclination of i =
65◦ and an azimuth of Φ = 184◦ at a time shortly after the tearing event begins,
t ≃ 50, 000rg/c. Here the inner disk is misaligned and precessing.
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In Figures 5.27 - 5.28 there are two inner sub-disks, the inner-most disk is Bardeen-

Petterson aligned and the other is still precessing. These two inner sub-disks are not discon-

nected from each other as the inner disk system is from the outer disk, but are connected

by a smooth warp. At i = 27◦, the inner, hot disk is unobscured and the polarization angle

is nearly aligned with the black hole spin in this inner region. As shown in Section 5.3, θ

components of momentum have a stronger effect at this low inclination, lowering the polar-

ization at high energies compared to i = 65◦. At this higher inclination, the polarization is

a factor ∼ 3 higher.

Figures 5.29 - 5.30 show the disk in Bardeen-Petterson alignment near the end of the

tearing cycle. At this azimuth the observer can see the face of the outer and inner disks

clearly. At all energies the polarization is approximately orthogonal to the black hole spin,

while the polarization degree peaks near the middle to outer region of the inner disk. At

i = 65◦ the observer sees more reflection from the inner disk off of the outer disk. Here,

the polarization pattern on the map in the inner regions where the orbit of the plasma is

roughly Kerplerian approximately follows that of a thin disk. Boosted emission (left side) is

depolarized and emission from the receding edge has higher polarization. The polarization

angle in outer disk also matches well the results of Abarr and Krawczynski (see Figure 2 in

[99]).
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Fig. 5.27: Disk image, polarization degree, and polarization angle for i = 27◦ and Φ = 184◦

at t ≃ 70, 000rg/c. The innermost disk is in Bardeen-Petterson alignment, and
the second inner disk is precessing..
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Fig. 5.28: Disk image, polarization degree, and polarization angle for i = 65◦ and Φ = 184◦

at t ≃ 70, 000rg/c. Here there are two inner sub-disks. The innermost disk is in
Bardeen-Petterson alignment, and the second inner disk is precessing.
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Fig. 5.29: Disk image, polarization degree, and polarization angle for i = 65◦ and Φ = 184◦

at t ≃ 80, 000rg/c. Here the disk is in Bardeen-Petterson alignment.
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Fig. 5.30: Disk image, polarization degree, and polarization angle for i = 65◦ and Φ = 184◦

at t ≃ 80, 000rg/c. Here the disk is in Bardeen-Petterson alignment.
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Fig. 5.31: Maps of Polarization angle (right) and degree (left) for inclinations of i = 27◦

(top) and i = 65◦ (bottom) at an azimuth of Φ = 124◦.

Over this brief selection of the data the polarization angle and degree are diverse both

between different frames at a fixed inclination and between inclinations at a fixed frame. In

order to evaluate the the behavior more efficiently, maps have been constructed showing the

polarization degree and angle as functions of energy and time for different observers (Figures

5.31 - 5.32). There is an apparent periodicity in both the polarization angle and degree at

low inclinations. At high inclinations, the periodicity in the polarization angle smooths out

(note that 180◦ and 0◦ are the same polarization angle) while the pattern in the polarization

degree grows stronger.
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Fig. 5.32: Maps of Polarization angle (right) and degree (left) for inclinations of i = 27◦

(top) and i = 65◦ (bottom) at an azimuth of Φ = 214◦.
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In order to quantify this periodicity, the signals are taken to Fourier space where their

power spectral density is computed. Considered here are polarization degrees and angles

corresponding to energies of 20 ≤ Eobs ≤ 30 keV. These signals are averaged and Fourier

transformed and the PSDs computed identically to the preceding analysis. Evaluating the

PSD shows a low frequency oscillation in both the polarization degree and angle occurring

between ∼ 2 ≤ ν ≤ 4 Hz, corresponding to the Lense-Thirring precession frequency in

the outer edge of the inner disk. This analysis is recent, and considering the errors on the

polarization degree and angle noted in Section 4.6, requires further examination. But the

result, if verified, would not be surprising given the signals found in the thermal emission

and Fe-Kα line.
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Fig. 5.33: Raw power spectral density for polarization angle (right) and degree (left) for
inclinations of i = 27◦ (top) and i = 65◦ (bottom) at an azimuth of Φ = 124◦.
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5.4.2 Discussion

The non-Keplerian velocity profile of the disk, its dynamical and highly variable geometry,

and its emission profile all have a strong impact on the polarization signatures observed.

From the velocity profile, blue (red) shifting increases (decreases) the polarization degree in

areas of where the velocity of the disk is large and approaching (receding from) the observer.

The velocity profile in this warped and precessing disk shifts this polarization pattern from

the areas of the disk that would be approaching (receding from) the observer in the Keplerian,

equatorially aligned case. The warped geometry itself can increase (decrease) the polarization

from scattering in the convex (concave) regions of of the disk. The precession also has an

effect as the inner disk, the source of high energy highly polarized emission, is shadowed by

the outer disk. In all, these effects combine to create dynamic signals in the polarization

degree and angle. Plotting these signals over the duration of the tearing event reveals episodic

variability in both, which when taken to Fourier space reveal oscillations with a frequency

matching that of the Lense-Thirring precession of the inner disk. These are new results, and

higher fidelity simulations which will yield reduced statistical errors are in progress and will

be described in a forthcoming publication.

147



Chapter 6

Summary and Future Outlook

This thesis has detailed work I have completed on modeling the X-ray emission from black

hole accretion disks that deviate from the standard thin disk model. Chapter 2 showed the

polarization of slim accretion disks, which are expected to arise at accretion rates exceeding

∼ 30% of the Eddington limit where thermal pressures build as matter infalls towards the

black hole faster than it can efficiently radiate away its thermal energy. My results showed

that as the thickness of the disk increases, so too does the polarization degree and angle.

Chapter 3 reviewed the GRMHD code H-AMR and examined the data set of a highly

inclined, thin accretion disk undergoing tearing events. The dynamics of the disk during

these tearing cycles were reviewed in detail. This data set serves as the foundation for the

work that follows in Chapter 5. Chapter 4 detailed the development of a General Relativistic

raytracing code used to read in the data from H-AMR and post process its emitted radiation.

Care was taken to outline the subtle details of the code and the theoretical framework on

which it is built. The code was compared against the standard thin disk in Boyer-Linquist

coordinates for thermal emission and using an axially aligned lamppost. In this comparison,

errors in the calculation of the polarization degree and angle were noted and possible sources

of the error were identified. Minimizing these errors is a high priority for future work, but

their presence does not undermine the validity of the results shown in Sections 5.2 and 5.3.
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Chapter 5 showed the results of raytracing the GRMHD data set of Chapter 3. Section

5.2 showed that a 55 Hz oscillation in Ṁr at the tearing radius translated into a 57 Hz high

frequency quasi-periodic oscillation in the thermal emission from the disk. This hfQPO was

accompanied by a 2 : 1 harmonic at 115 Hz for some observers. There was an additional

89 Hz signal at a 3 : 2 ratio to the hfQPO fundamental frequency, which upon evaluating

the bolometric lightcurve in Fourier space seems to in fact be the first harmonic of a slightly

lower frequency (44 Hz) hfQPO emanating from the inner edge of the outer disk during

the tearing cycle. This 44 Hz hfQPO signal, if it is indeed the source of the 89 Hz signal,

is somehow washed out in the observer lightcurves. Determining the robustness of this

particular conclusion is an ongoing effort. There was an additional low frequency QPO

found in the data at ∼ 3 Hz, corresponding to the Lense-Thirring precession frequency at

10rg. This signal and the fundamental hfQPO signal at 57 Hz are visible to all observer

inclinations and azimuths.

Next, the Fe-Kα line from a co-roating lamppost was examined. The diversity of line

profiles was explored in some detail, as well as the integrated total of these profiles over the

course of the tearing event for a variety of azimuths across two observer inclinations. The

variety of Fe-Kα line profiles spurred an exploration of the behavior of the line centroid,

which when taken to Fourier space revealed the presence of an lfQPO at ∼ 3Hz caused

by the precession of the inner disk. This result shows that an lfQPO signal can be due

solely to precession, no modulation of the accretion rate and/or luminosity is required,

further substantiating long held theories on the possible origin of these signals. Finally, the

polarization signals from this evolving disk structure were examined. These signals - like

the Fe-Kα line - show a diversity of behaviors across different azimuths and inclinations.

At a few carefully chosen frames, the results agree to an extent with previous work on the

polarization signals from Keplerian disks in Bardeen-Petterson alignment [99]. Maps were
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made of the polarization angle and degree, revealing an apparent periodicity in each signal.

The signals were then brought to Fourier space where low frequency ∼ 2 − 4 Hz oscillations

were found in each. This analysis is new, and simulations with much higher resolution and

lower statistical errors are in currently in progress to verify this result.

There are some shortcomings to this work, the most notable of which is the discrepancy

in the polarization spectra between the thin disk in Boyer-Lindquist coordinates and that in

Kerr-Schild. Reducing the statistical errors to bring these results into alignment is of high

priority moving forward. This notwithstanding, these results lay the groundwork for a litany

of exciting future projects. One of which I am most excited about, and which stands to have

a meaningful impact on the field, is the incorporation of data from the two-temperature,

fully radiative version of H-AMR which recently began running. Once integrated, the Kerr-

Schild version of xTrack will emit photons from the true photosphere of the disk, allow

those photons to seed a corona generated from first principles and Comptonize, subsequently

reflecting off or fluorescing in the disk. Another exciting prospect which the aforementioned

TTGRRMHD data set will aid is developing a model to measure spin based on hfQPO

frequencies. The tearing radius is determined by the spin, inclination, and thickness of the

disk. If high resolution spectral measurements can constrain the accretion rate and the state

of the disk allowing an estimation of its thickness, and orbital measurements can estimate

the inclination of the binary giving a measure of the disk misalignment, then the frequency

of hfQPOs could stand as a viable measure of black hole spin. It would also be worthwhile

to incorporate older H-AMR data sets which did not show oscillatory signals in Ṁ or Ṁr but

did show precession to determine if there are lfQPO and hfQPO oscillations in the spectral

output. These works can and will be computed with minimal effort given the current status

of the code.
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Appendix A

Tetrads

In classical Euclidean space any vector element of any space can be described in any basis.

Consider a space Sn having n elements, and let B = {⃗b0, b⃗1, ..., b⃗n} be a set of n vectors

such that B ∈ S. If the elements of B are linearly independent and span S then B is

a basis of S. Thus, any vector v⃗ ∈ S may be written in terms of the basis B such that

v⃗ = {v1, v2, ..., v3} = a1⃗b1 + a2⃗b2 + ...an⃗bn where a1...an are scalar constants. The vector v⃗ in

basis B is given by a⃗ = {a1, a2, ..., an}. The basis B is not unique, however, and there may

exist other bases which also properly span S. Consider another set of n linearly independent

vectors, D = {d⃗0, d⃗1, ..., d⃗n} which also span S. We may describe v⃗ = {v1, v2, ..., v3} =

a1⃗b1 + a2⃗b2 + ...an⃗bn = c1d⃗1 + c2d⃗2 + ...cnd⃗n. Regardless of which basis we choose, the

fundamental properties of v⃗, for example |v⃗| or the direction of v⃗, remain unchanged. Most

importantly, the transformation to a basis is reversible. Letting v⃗ = a1⃗b1+a2⃗b2+...an⃗bn = Ba⃗,

then a⃗ = B−1v⃗ where B−1 is the inverse of B, such that BB−1 = 1

In order to fully illustrate the utility of our choice of choice of basis, consider two vectors

in Euclidean space, A⃗ and D⃗, described by the same orthonormal basis E = e⃗1, e⃗2, ...⃗en, as

A⃗ = Ea⃗ = e⃗µaµ and D⃗ = Ed⃗ = e⃗νd
ν . Here the switch is made to scripted notation, with

e⃗α referring to one vector in the basis E and aα referring to one component of the vector

a⃗. The dot product of A⃗ and D⃗ is A⃗ · D⃗ = e⃗µaµe⃗νd
ν = aµdν(e⃗µe⃗ν). By definition, e⃗µe⃗ν = 0

152



for all µ ̸= ν and e⃗µe⃗ν = 1 for all µ = ν. If the requirement is placed on the basis that

e⃗µe⃗ν = −1 for µ = ν = 0, the basis describes a space that is locally Lorentzian (i.e., respects

Lorentz transformations and thus conserves Lorentz invariance). Additionally, if e⃗µe⃗ν = 1

for µ = ν = 1, 2, 3, the basis recovers the metric of Minkowski, which describes locally flat

space time e⃗µe⃗ν = ηµν .

It follows that one can write any metric for any space in terms of the outer product of

an orthonormal basis with itself, and can be shown that any set of mutually orthonormal

vectors tangent to a space constitute a basis of that space. In concert with the fact that

any point in spacetime can be described as locally flat on some interval, one can construct a

tetrad and thus a metric from any set of vectors which satisfy these conditions. This choice

of mutually orthonormal tangents which together form a tetrad is what is meant by choosing

a ‘frame.’ The tangents cannot be chosen arbitrarily, however. The zeroth component of the

tetrad, corresponding to the dimension of time, must be properly timelike (i.e., |et| = −1),

and the spatial tangents must be properly spacelike. The Kerr metric, for example, can be

written in terms of the Boyer-Lindquist basis vectors, gµν = eµeν , where each eµ corresponds

to the Boyer-Lindquist tangent vector ∂µ. A tetrad describing the rest frame of an equatorial

accretion disk can then be built from these tangent vectors, and by extension from the metric

itself. We first assume that the zeroth tangent is proportional to the velocity of the accretion

flow, which orbits with Keplerian frequency Ωk,

et̃ ∝ ∂t + Ωk∂ϕ. (A.1)

There are no r or θ components of momentum, thus

er̃ ∝ ∂r (A.2)

153



and

eθ̃ ∝ ∂θ. (A.3)

The last tangent vector must be mutually orthogonal to all others, so it must have a form

eϕ̃ ∝ α∂t + β∂ϕ. (A.4)

These four basis vectors constitute a tetrad and allow us to transform into and out of

the frame of the disk. We can describe a photon wave vector, kµ, in a general frame as the

product of this basis and the wave vector in the plasma frame, which is denoted with a tilde,

kν = eνµ̃kµ̃. (A.5)

As above, we can use the inverse of this tetrad, ē µ̃
ν , to find the wave vector in the plasma

frame, kµ̃,

kµ̃ = ē µ̃
ν kν (A.6)

For an equatorial disk in the Kerr Metric in Boyer-Lindquist coordinates, the orthogonal-

ization of these tangents can be done by hand. However, a disk geometry that deviates from

the equatorial disk, or the use of a different coordinate system, adds non-trivial complexity

to the system of equations. In such cases, the solution is to turn to an algorithmic approach

to orthogonalization.

The Graham-Schmidt process allows one to take a finite set of k linearly independent

vectors vk in an n-dimensional subspace Sk (where k ≤ n, vk ∈ Sk, and Sk ⊂ Rn) and

reduce them to a linearly independent k-dimensional set of vectors Bk which span Sk. This

is achieved by choosing some vector in the set vk as a starting point and letting it be the
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first vector in the orthogonal basis Bk. Let that initial vector be v1 = b1. The next vector

in the basis is found by subtracting the projection of b1 onto v2 from v2, this yields a vector

b2 ⊥ b1. This process is repeated for all vk. The projection operator is

Pµ
b (v) = bµvν

bµbν
bµ (A.7)

The entire algorithm can written as

bk = vk −
k−1∑
i=1

Pbk(vk), (A.8)

where each vector bk is normalized after it is computed and before the algorithm continues. It

is worth noting that applying Graham-Schmidt to a set of tangents will by definition produce

an orthonormal set of vectors which are Lorentzian, but care must be taken in choosing the

both the tangents and the order of the orthogonalization to ensure that the resultant basis

correctly describes the frame of interest. An easy check to ensure that the basis is a proper

tetrad of the frame is to transform the input vector et̃ = uµ, which is the four velocity of the

frame, into its own rest-frame and check that uµrf = ē µ̃
ν · uµ = (1, 0, 0, 0). If this condition

is satisfied, the tetrad properly describes the frame.
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