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Since their discovery, low dimensional van der Waals materials have attracted increasing 

research interests. They serve as ideal platforms to study novel physics in reduced-dimensional 

systems, and are critical in nowadays’ nanotechnology applications. Due to the reduced dielectric 

screening in low dimensions, strong excited state properties dictate their electronic, transport and 

optical properties, the study of which calls for a description of the many-particle interactions 

beyond the traditional density functional theory. This is where the many-body perturbation 

theory comes into play. In this thesis, I will present a comprehensive study of the quasiparticle 

and excitonic properties of a variety of two-dimensional materials using first-principles 

simulations with many-body effects taken into consideration. 

In Chapter 3, we study the phonon assisted optical excitations in monolayer MoS2 and 

MoS2/WS2 heterostructures. The monolayer MoS2 was shown experimentally to possess a direct 

band gap, whereas its bilayer form characterizes an indirect band gap. The energy difference 

between the valence band maximum at 𝛤 and 𝐾 is small, motivating us to study the possibility of 

brightening the indirect exciton states with the assistance of acoustic phonons. Since photon 

cannot provide momentum in optical transitions, an elementary excitation that has finite 
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momentum is needed to assist the brightening of a momentum dark exciton. Our results not only 

confirm the increased oscillator strength of originally forbidden indirect exciton states, but also 

help identify certain phonon branches that are capable of fulfilling this process. 

In Chapter 4, we turn to the study of a correlated magnetic two-dimensional material, CrCl3. Due 

to the localized 3d orbitals of the magnetic atom Cr, its electronic band structure features flat 

bands around the Fermi level. The flat bands warrant large joint density of states in the system, 

which is promising for strong excitonic effects. We show that the exciton binding energy in 

monolayer CrCl3 is much larger than typical two-dimensional materials, and we further find that 

the exciton binding energy in bulk CrCl3 remains large due to the unique flat bands in the 

magnetic material. The crystallographic structure and magnetic order dependence of the 

excitonic effects are also studied in bilayer CrCl3. 

In Chapter 5, the quasiparticle-plasmon coupling in doped moiré heterostructure MoS2/WS2 is 

investigated. Under electron doping, the different local stackings in a moiré system renders 

varied strength of quasiparticle-plasmon couplings. This in turn modifies the original moiré 

potential landscape and results in increased moiré potential. Since the physical properties of a 

moiré structure are largely determined by the moiré potential, the doped moiré system 

experiences much stronger correlated effects and features a set of ultra-flat minibands. A 

quantum phase transition between the Mott and charge-transfer insulating states at half-filling is 

also examined, which helps us understand the rich insulating states observed in gated transition 

metal dichalcogenides moiré systems in recent experiments.  
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Chapter 1: Introduction 

 

1.1 Low dimensional van der Waals materials 

The successful exfoliation of monolayer graphene has opened the new era of studies of low-

dimensional materials [1]. According to a simple tight binding model, the high symmetric 

honeycomb lattice leads to a linear-dispersed electronic band structure at the K point, which 

boasts the massless Dirac fermions in graphene [2–4]. There are two carbon atoms in a unit cell, 

each forming a triangular sublattice in monolayer graphene. Considering hopping only between 

nearest neighbors, and on-site energy being zero, the real space Hamiltonians for the nearest unit 

cells read 𝐻(𝟎) = (
0 1
1 0

) , 𝐻(𝒂2) =  𝐻(𝒂2 − 𝒂1) = (
0 1
0 0

) , 𝐻(−𝒂2) = 𝐻(𝒂1 − 𝒂2) =

(
0 0
1 0

). The Fourier transform of the Hamiltonian to reciprocal space 𝐻𝑘 = ∑ 𝑒𝑖𝒌∙𝑹𝐻𝑖𝑗(𝑹)𝒌 , 

𝐻𝑘
0 = 𝑡 (

0 ℎ𝑘

ℎ𝑘
∗ 0

) where ℎ(𝒌) = 1 + 𝑒𝑖𝒌∙𝒂𝟐 + 𝑒𝑖𝒌∙(𝒂𝟐−𝒂𝟏), yields the electronic band structure of 

monolayer graphene 𝜀±(𝒌) = ±𝑡|ℎ𝑘|, as shown in Figure 1.1 (b). The resulting eigenvalues at 

high symmetry points are therefore 𝜀±(𝛤) = ±3𝑡, 𝜀±(𝑀) = ±𝑡, 𝜀±(𝐾) = 0. 

Together with the reduced dielectric screening in low dimensions, the carrier mobility in 

graphene is high, leading to applications of graphene in integrated circuit devices, light-emitting 

diodes [5,6], etc. Despite the vast electronic applications of graphene, the gapless Dirac cone has 

inhibited its optical responses, and a search for strong photoluminescence semiconductor is due. 

When the sublattice degeneracy in monolayer graphene is broken, a finite band gap naturally 

arises at 𝐾. If the potential difference between the two sublattices is 2𝜇, then the Hamiltonian 



2 

 

becomes 𝐻𝑘 = 𝐻𝑘
0 + (

𝜇 0
0 −𝜇

) , and the degeneracy at 𝐾  is broken 𝜀±(𝐾) = ±𝜇 . Monolayer 

hexagonal boron nitride (hBN) falls into this category. Its lattice structure is the same as 

graphene, despite that each unit cell contains one boron and one nitride atoms. The broken 

sublattice degeneracy renders a direct band gap at 𝐾 ~7𝑒𝑉 in monolayer hBN. Whereas the hBN 

crystal is an indirect band gap semiconductor [7]. Previous optical spectroscopy measurements 

have demonstrated phonon assisted bright optical transitions in bulk hBN [8]. The large band gap 

in hBN has triggered wide interests in deep ultraviolet (DUV) optoelectronic applications [9,10]. 

 

 

Figure 1.1 (a) Hexagonal lattice structure of graphene. The unit cell is composed of two carbon 

atoms, which constitutes two triangular sublattices. (b) Tight-binding calculated band structure 

of graphene, featuring zero gap and a linear-dispersed band at the K point. 
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More recently, the transition metal dichalcogenides (TMD) family has emerged as a promising 

platform for visible light optical applications. The demonstration of layer dependent 

photoluminescence spectra in molybdenum disulfide (MoS2) has revealed the indirect to direct 

band gap crossover from few-layer to monolayer MoS2 [11]. In its bulk from, the 

photoluminescence is quenched due to the indirect nature of the band gap. It is only until 

exfoliated to monolayer that the band gap becomes direct at 𝐾 , and significant 

photoluminescence signal is observed. More interestingly, due to the broken inversion symmetry 

and spin orbit coupling (SOC), monolayer MoS2 hosts coupled spin and valley physics, making it 

an ideal playground for studying the valleytronics [12,13]. Other variants in the TMD family 

hold similar band structures and properties, and are gaining increasing attentions. 

The discovery of ferromagnetism in monolayer CrGeTe3 marks another milestone in the study of 

2D van der Waals (vdW) semiconductors [14]. This directly contradicts the Mermin-Wagner 

theorem [15], which states that the continuous symmetries cannot be spontaneously broken at 

finite temperature in systems with dimensions 𝑑 ≤ 2. However, the strong exchange interaction 

of density of states (DOS) around the Fermi level allows for the Stoner criterion [16], which 

stabilizes the ferromagnetism in 2D systems. In 2D ferromagnetic semiconductors, the bands 

around the Fermi level are typically composed of highly correlated and localized 3d orbitals of 

the magnetic metals, resulting in small band dispersions. The parallel band dispersion around the 

band edges results in large joint density of states (JDOS), which promises strong optical 

transitions. The chromium trihalides family is a group of intralayer FM materials known to 

possess flat band edges [17]. Depending on the halide species, the interlayer magnetism can be 

either FM (CrI3) or AFM (CrCl3), and the strength of SOC determines the type of magnetic 

exchange interactions, which could be Ising like (CrI3) or Heisenberg like (CrCl3). The diversity 
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within chromium trihalides family warrants its importance in 2D magnetic materials. The class 

of 2D magnetic semiconductors serves as a building block in the study of spintronics and its 

applications. 

The variety of vdW materials makes it possible to stack different systems together to form more 

intriguing platforms, also known as homo/hetero structures. Another freedom in the stacked vdW 

systems is the twist angle between constituent layers. Since the discovery of superconductivity 

and correlated insulating states in magic angle twisted bilayer graphene [18,19], moiré systems 

formed by a rotational misalignment or lattice mismatch between semiconducting vdW layers 

have ignited increasing interests. The moiré supercell allows for the formation of moiré flat 

bands and mimic of the Wigner crystals [20,21]. The long period moiré potential can contain 

trapped moiré excitons for higher single photon emission purity and longer exitonic lifetime [22]. 

These observations established vdW moiré systems as ideal platforms to study highly correlated 

physics and quantum information applications. 

 

1.2 First principles study of excited state properties 

On a theoretical perspective of view, the aforementioned electronic band structures and optical 

responses in 2D systems are based on various elementary excitations upon external pumps. The 

precise determination of band edges requires the excitation of an electron quasiparticle from the 

valence band and a hole quasiparticle from the conduction band. These are, however, single 

particle excitations that can be approximately described by an independent electron/hole moving 

in a background potential. When an electron is ejected from the valence band by incident 

photons, and the Coulomb interaction between the electron and the hole left in the valence band 

is not screened by the dielectric background, an exciton is formed, which determines the 
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absorption spectra of the system. The description of exciton therefore requires solving the many-

body interactions, as its formation is a two-particle process. 

The dielectric screening is weak in systems with reduced dimensions, which dramatically 

enhances the many-body interactions that are determined by Coulomb interactions. On the other 

hand, exciton states are a coherent superposition of many similar energy electron-hole pair 

excitations. Therefore, large exciton binding energies are typically found in low-dimensional 

materials and can be expected from flat-band materials. The main topic of this thesis will be 

around the quasiparticle and exciton excitations in low dimensional semiconductors. 

I will present a theoretical study of the many-body interactions in a variety of novel 2D 

materials, which are promising candidates for optoelectronic applications. The study is based on 

first principles methodologies, which is self-consistent and requires no parameters from 

experiments. The ground state properties are simulated by density functional theory 

(DFT) [23,24], which produces reliable crystal structures and non-interacting electronic 

wavefunctions. As a ground state theory though, DFT is notoriously known to underestimate the 

electronic band gap and ignore electron-electron interacting dielectric effect. In order to account 

for the quasiparticle excitations, a theory beyond DFT is needed. For example, even though 

monolayer MoS2 is experimentally determined to be a direct gap material [11], it is not until 

beyond DFT that the correct band alignment is predicted [25]. Within the many-body 

perturbation theory (MBPT), the quasiparticle self-energy is calculated with GW 

approximation [26]. 𝐺  represents the Green’s function, and 𝑊  is the screened Coulomb 

interaction. The self-energy is directly calculated by their product Σ = 𝐺𝑊, which represents the 

motion of an electron in the screened background of other electrons. The two-body excitonic 

effect is calculated with Bethe-Salpeter equation (BSE) [27]. The electron-hole kernel describes 
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the interaction between electron and hole, which is consisted of two parts, the direct kernel 𝐾𝑑 

and exchange kernel 𝐾𝑥 . The eigenvalues and eigenvectors of the BSE represent the exciton 

energy and wavefunctions, respectively. 

 

1.3 Outline of the thesis 

Based on the first principles techniques, in this thesis, the exciton-phonon interaction is studied 

in monolayer and bilayer MoS2. Since the valence band maximum (VBM) at 𝛤 and 𝐾 are close 

in energy, the indirect optical transition from valence band at 𝛤 to conduction band at 𝐾 can be 

fulfilled by assistance of certain phonon modes. Then I will demonstrate strong excitonic effects 

in magnetic CrCl3, which has flat bands around the Fermi level. The excitonic effect is predicted 

to be strong even in the bulk structure, due to its unique band structure. The effect of Hubbard 

potential in the DFT starting point is also discussed. Finally, the doping effect in twisted 

MoS2/WS2 moiré heterostructure is studied. The quasiparticle-plasmon coupling will 

substantially deepen the moiré potential and enhance the correlated effect in the moiré system, 

resulting in ultra-flat bands. The transition between Mott and charge-transfer insulating states at 

half-filling of the moiré superlattice is discussed. 
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Chapter 2: Theoretical Framework 

 
The lattice structure and electronic properties of condensed matter systems are largely 

determined by the outer valence electrons of the constituent atoms. The many-body system is too 

complicated that an exact solution would be impractical. The electronic Hamiltonian can be 

treated as independent electrons moving in an effective mean field of the ions and other 

electrons, then the many-body problem is transformed to a one-particle problem [28–30]. 

                                                    (−
ℏ2

2𝑚
∇2 + 𝑉(𝑟)) 𝜓(𝑟) = 𝜀𝜓(𝑟)                                                    (2.1) 

                                               𝐻 = ∑𝑖

𝑝𝑖
2

2𝑚
+ ∑𝑖𝑣(𝑟𝑖) +

1

2
∑𝑖≠𝑗

𝑒2

|𝑟𝑖 − 𝑟𝑗|
                                              (2.2) 

The second term covers the electron-ion interaction in the crystal and the external potentials. The 

third term is the electron-electron interaction. Different ways of approximating the electron-

electron interaction have led to different solutions to the one-particle problem. 

Central to the first principles studies of the electronic properties of condensed matter systems is 

the density functional theory (DFT) [23,24]. It is exact in describing the ground state properties, 

such as total energy and electron charge density distributions, of interacting many-electron 

systems. 

Hartree-Fock approximation, on the other hand, is a variational approach for the ground-state 

energies and wavefunctions. Because of the variational method, it is not exact compared with 

DFT. 

The excited state properties involve the excitation of particles above the ground state, and need 

more advanced theoretical treatment beyond DFT. For single particle excitations, GW 
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approximation is widely adopted to obtain the accurate quasiparticle energies [26,31], and is 

based on the interacting-particle Green’s functions. The description of optical excitations 

requires the inclusion of electron-hole interactions, and the Bethe-Salpeter equation is generally 

employed to study the excitonic effects [27]. 

I will introduce the above-mentioned methodologies for first principles calculations of 

condensed matter systems in this chapter. 

 

2.1 Density functional theory 

2.1.1  Hohenberg-Kohn theorems 

The formalism of DFT is based on the theorems proposed by Hohenberg and Kohn in 1964 [23], 

which states that the ground state energy 𝐸 of an interacting many-electron system in an external 

potential 𝑣(𝑟) can be expressed as a functional of the charge density 𝜌. 𝐸[𝜌] = ∫ 𝑣(𝑟)𝜌(𝑟)𝑑𝑟 +

𝐹[𝜌], where 𝐹[𝜌] is a universal functional of the density, independent of the external potential 

𝑣(𝑟) . This substantially simplifies the 𝑁 -body problem with 3𝑁  dimensional wavefunctions 

𝐸[Ψ(𝑟1, . . , 𝑟𝑁)] to 𝐸[𝜌(𝑟)]. The universality of the energy functional is derived by a proof by 

contradiction. 

The second Hohenberg-Kohn theorem states that the total energy 𝐸 is a minimum for the correct 

charge density 𝜌. This can be proven by a variational principle of quantum mechanics, where the 

energy of the system is at its minimum for the ground-state wavefunction relative to a small 

perturbation. 

The interacting many-electron system would be exactly solvable if the density functional of 

external potential 𝐹[𝜌] were known.  



9 

 

 

2.1.2  The Kohn-Sham equations 

Even though the explicit expression for the density functional is unknown, we can write out 

analytical contributions that are already known 

                       𝐸[𝜌] = ∫ 𝑣(𝑟)𝜌(𝑟)𝑑𝑟 + 𝑇[𝜌] +
1

2
𝑒2∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐸𝑥𝑐[𝜌].                      (2.3) 

𝑇[𝜌] represents the kinetic energy of the system, and the third term on the right-hand side is the 

electron-electron interaction in the Hartree approximation. The exchange-correlation energy 

functional now absorbs the unknown part of DFT. In order to arrive at a practical approach, 

Kohn-Sham framework further considers a fictitious system with non-interacting electrons in an 

effective one-body potential. Using the variational principle, the electron density in the non-

interacting system is varied to find out the energy minimum of the energy functional of the real 

interacting system. Then the set of Kohn-Sham equations for the non-interacting system is 

written [24] 

                                      {
𝑝2

2𝑚
+ 𝑣(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟)} 𝜑𝑖(𝑟) = 𝜖𝑖𝜑𝑖(𝑟).                                      (2.4) 

The exchange-correlation potential 𝑣𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐

𝛿𝜌(𝑟)
 is not known, but there are different 

approximations for 𝐸𝑥𝑐 = ∫ 𝜌(𝑟)𝜀𝑥𝑐(𝑟)𝑑𝑟 . The exchange-correlation energy density 𝜀𝑥𝑐(𝑟) is 

presumed to be a function of local density 𝜌(𝑟) in the local density approximation (LDA), and a 

function of 𝜌(𝑟) and ∇𝜌(𝑟) in the generalized gradient approximation (GGA) [32–34]. These 

two approximations are developed from charge densities of the homogeneous electron gas, and 
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are proved to produce accurate ground state properties such as total energy, structural and 

vibrational properties of a variety of materials. 

However, due to the variational construct of the Kohn-Sham equations, the eigenvalues cannot 

be interpreted as the excitation energies of quasiparticles and do not agree with experimental 

results. This leads to the notorious underestimate of band gap in DFT. Nonetheless, DFT serves 

as a good starting point for excited properties calculations for many materials. 

 

2.2 Self-consistent field method 

2.2.1  Hartree-Fock approximation 

Besides the density functional theory, the solutions to the single-particle Schrödinger equation 

Eq. (2.1) can be derived by a self-consistent iterative approach. In the Hartree-Fock 

approximation, the trial wavefunction in the form of a single Slater determinant is used to be the 

ground state many-electron wavefunction [35] 

                                   Ψ𝐻𝐹(𝑟1𝜎1, … , 𝑟𝑁𝜎𝑁) = |
𝜙1(𝑟1𝜎1) … 𝜙1(𝑟𝑁𝜎𝑁)

⋮ ⋮ ⋮
𝜙𝑁(𝑟1𝜎1) ⋯ 𝜙𝑁(𝑟𝑁𝜎𝑁)

|.                                   (2.5) 

The variational principle requires the variation of the ground state energy with respect to the 

single-particle orbitals 𝜙𝑖 to be zero, 

                                                                 
𝛿⟨Ψ𝐻𝐹|𝐻|Ψ𝐻𝐹⟩

𝛿𝜙𝑖
= 0.                                                                (2.6) 

Then the set of Hartree-Fock equations can be solve iteratively 
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−
ℏ2

2𝑚
∇2𝜙𝑖(𝑟, 𝜎) + 𝑉(𝑟)𝜙𝑖(𝑟, 𝜎) + 𝑉𝐻(𝑟)𝜙𝑖(𝑟, 𝜎) + ∑𝜎′∫ 𝑉𝑥(𝑟, 𝑟′, 𝜎, 𝜎′)𝜙𝑖(𝑟′, 𝜎′)𝑑𝑟′ 

                                                                         = 𝜀𝑖𝜙𝑖(𝑟, 𝜎).                                                                      (2.7) 

The exchange term 𝑉𝑥(𝑟, 𝑟′, 𝜎, 𝜎′) = −∑𝑗
𝑒2

|𝑟−𝑟′|
𝜙𝑗

∗(𝑟′, 𝜎′)𝜙𝑗(𝑟, 𝜎)  represents the effective 

electron interactions from the Pauli exclusion principle, and stems from the antisymmetric form 

of the many-electron wavefunction. The quantitative solution to the Hartree-Fock equations is 

hard to get, but analytical solutions in the homogeneous interacting electron gas system can be 

derived rigorously. 

 

2.2.2  Variational principles 

The variational procedure used in deriving the Hartree-Fock equations dooms the interpretation 

of the eigenvalues cannot be the electron excitation energies. Nonetheless, according to the 

Koopman’s theorem, the eigenvalues and eigenfunctions of the Hartree-Fock Hamiltonian can be 

regarded as the ground state energies of the many-electron system. This happens to me to 

coincide with the way of finding eigenvalues in the DFT framework, though we do not refer to 

the Koopman’s theorem in DFT. 

Personally, I am always enchanted by the beauty of the variational method used to solve the 

ground state of electron-electron interacting Hamiltonian in condensed matter physics. This 

further reminds me of the science fiction “Story of Your Life” by Ted Chiang. He embedded the 

variational principle in the field of optics in the fiction, to address the topic of free will and how 

people deal with the inevitable quoted from the fiction: 
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“The thing is, while the common formulation of physical laws is causal, a variational principle 

like Fermat’s is purposive, almost teleological.” 
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Figure 2.1 The Heptopod language in the movie Arrival, which is adapted from the fiction Story 

of Your Life. The language is graphic, and does not have start or end, which represents the notion 

of teleology. “Despite knowing the journey and where it leads, I embrace it. And I welcome 

every moment of it.” 

 

Ted described the way human reckon on physics to be in a chronological and causal manner, 

where causes and effects grow from past to future as a chain reaction. In contrast, the physical 

intuition of heptapods, which are extraterrestrial creatures, are based on a teleological 

interpretation of events. They view events over a period of time, and find the requirements that 

have to be satisfied to reach a goal. This perspective requires the knowledge of initial and final 

states of the goal, or put it another way, the effects are needed before the causes are initiated. 

This perhaps articulates what variational principles looks like to me. By the requirement of the 

variation of ground-state energy corresponds to an extremum, the Euler-Lagrange equations can 

be determined, so are the ground-state energies. I cannot help thinking about the theme of the 

fiction, “from the beginning I knew my destination, and I chose my route accordingly. But am I 
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working toward an extreme of joy, or of pain? Will I achieve a minimum, or a maximum?” I 

wish I could always stand on the positive side and persist to every dream that I have. 

 

2.3 Quasiparticle excitations 

2.3.1  Dyson equation 

The DFT wavefunctions give a starting point for calculating the excited state properties. 

Generally, a perturbation scheme is used to calculate the changes in the quasiparticle excitations 

when screened Coulomb interactions are included. In the one-particle Green’s function 

formalism, the excitations are treated by perturbing the exact ground state by quasiparticles or 

collective excitations with finite lifetimes [36]. The Feynman diagram for the irreducible self-

energy Σ is shown in Figure 2.2. The sum over an infinite number of repeated graphs is given by 

the Dyson equation 

                                                            𝑖𝐺 = 𝑖𝐺0 + 𝑖𝐺0(−𝑖𝛴)𝑖𝐺.                                                             (2.8) 

 

Figure 2.2 Green’s function representation of the Dyson equation. 
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A general approximation of the self-energy is the GW approximation [26], where 𝛴 = 𝑖𝐺𝑊 is a 

direct product of the Green’s function 𝐺 and the screened Coulomb interaction 𝑊 in the first 

order. Explicitly, the Dyson equation in the GW scheme reads 

       (−
ℏ2

2𝑚
∇2 + 𝑉𝑖𝑜𝑛(𝑟) + 𝑉𝐻(𝑟)) Φ𝑛𝑘(𝑟) + ∫ 𝑑𝑟′Σ(𝑟, 𝑟′; 𝐸𝑛𝑘)Φ𝑛𝑘(𝑟′) = 𝐸𝑛𝑘Φ𝑛𝑘(𝑟),       (2.9) 

the self-energy operator is  

                              Σ(𝑟, 𝑟′; 𝐸) = 𝑖∫
𝑑𝐸′

2𝜋
𝑒−𝑖𝛿𝐸′

𝐺(𝑟, 𝑟′; 𝐸 − 𝐸′)𝑊(𝑟, 𝑟′; 𝐸′).                                (2.10) 

The energy dependence on both sides of the Dyson equation indicates that an iterative self-

consistent solution is needed. The Green’s function can be obtained by single-particle 

eigenfunctions 𝜙𝑛𝑘(𝑟) and eigenvalues 𝜀𝑛𝑘 from DFT calculations 

                                                       𝐺(𝑟, 𝑟′; 𝐸) = ∑𝑛𝑘

𝜙𝑛𝑘(𝑟)𝜙𝑛𝑘
∗ (𝑟′)

𝐸 − 𝜀𝑛𝑘 − 𝑖𝛿𝑛𝑘
,                                              (2.11) 

and the screened Coulomb interaction in real space reads 

                                        𝑊(𝑟, 𝑟′; 𝐸) = ∑𝑞𝐺𝐺′𝑒𝑖(𝑞+𝐺)∙𝑟𝑊𝐺𝐺′(𝑞, 𝐸)𝑒−𝑖(𝑞+𝐺′)∙𝑟′
.                            (2.12) 

In the reciprocal space, the screened Coulomb interaction is a product of the inverse dielectric 

function and the bare Coulomb interaction 

                                                  𝑊𝐺𝐺′(𝑞, 𝜔) = 𝜖𝐺𝐺′
−1 (𝑞, 𝜔)𝑣(𝑞 + 𝐺′).                                               (2.13) 

Taking only the diagonal term from the self-energy operator, the Dyson equation Eq. (2.9) can 

then be expressed as 
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                                             𝐸𝑛𝑘 = 𝜀𝑛𝑘 − ⟨𝑛𝑘|𝑉𝑥𝑐|𝑛𝑘⟩ + ⟨𝑛𝑘|Σ(𝐸𝑛𝑘)|𝑛𝑘⟩,                                    (2.14) 

where the exchange-correlation energy from the DFT is replaced by the self-energy operator that 

includes many-body interactions to estimate the quasiparticle energy 𝐸𝑛𝑘. The Eq. (2.14) needs 

to be solved iteratively. 

In practice, the solution to Eq. (2.9) is obtained by a first-order perturbation to the DFT ground-

state energy 

                                          𝐸𝑛𝑘 = 𝐸𝑛𝑘
0 +

𝑑∑𝑛𝑘(𝜀𝑛𝑘)/𝑑𝐸

1 − 𝑑∑𝑛𝑘(𝜀𝑛𝑘)/𝑑𝐸
(𝐸𝑛𝑘

0 − 𝜀𝑛𝑘),                                     (2.15) 

where 

                                          𝐸𝑛𝑘
0 = 𝜀𝑛𝑘 − ⟨𝑛𝑘|𝑉𝑥𝑐|𝑛𝑘⟩ + ⟨𝑛𝑘|Σ(𝜀𝑛𝑘)|𝑛𝑘⟩.                                        (2.16) 

Then the quasiparticle energies based on a single-particle excitation can be obtained from a 

meanfield calculation of the electron wavefunction and energies. 

 

2.3.2  Dielectric function and random phase approximation 

One key component in understanding the many-body interactions in condensed matter systems is 

the dielectric response function. It dictates the response of a material to external fields, such as 

electromagnetic and optical probes. It is also one of the building blocks in the determination of 

the screened Coulomb interaction 𝑊 = 𝜖−1𝑣, and thus, the excited quasiparticle properties. 

In the linear response theory, the dielectric function for a periodic system is usually expressed as 

a matrix in the reciprocal lattice vectors [30],  
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                                   𝛿𝑉(𝑞 + 𝐺, 𝜔) = ∑𝐺′𝜖𝐺𝐺′
−1 (𝑞, 𝜔)𝛿𝑉𝑒𝑥𝑡(𝑞 + 𝐺′, 𝜔).                                        (2.17) 

The off-diagonal elements in the dielectric matrix 𝜖
𝐺𝐺′(𝑞, 𝜔) reflect the charge inhomogeneity of 

the crystal, where a long-wavelength external perturbation can render short-wavelength fields in 

a crystal. This effect is also known as the local-field effect. 

There are some well-known forms of the dielectric function in certain limits. In the long-

wavelength limit, the dielectric function for a three-dimensional homogeneous electron gas can 

be simplified to 

                                                                           𝜖(𝑞 → 0, 𝜔) = 1 −
𝜔𝑝

2

𝜔2
,                                              (2.18) 

where 𝜔𝑝 = √4𝜋𝑛𝑒2

𝑚
 is the classical plasma frequency. In the static limit with 𝑞 ≪ 𝑘𝐹, the famous 

Thomas-Fermi screening function is obtained 

                                                                      𝜖(𝑞, 𝜔 = 0) = 1 +
𝐾𝑠

2

𝑞2
,                                                   (2.19) 

where 𝐾𝑠
2 = 4𝜋𝑒2𝐷(𝜀𝐹), and 𝐷(𝜀𝐹) is the density of states at the Fermi energy 𝜀𝐹. 

The polarizability 𝜒 relates the external perturbation 𝛿𝑉𝑒𝑥𝑡 to the change in the electron density 

𝛿𝜌  in an interacting electron system 𝛿𝜌 = 𝜒𝛿𝑉𝑒𝑥𝑡 . Similarly, the independent-particle 

polarizability describes the response to the total perturbing potential 𝛿𝜌 = 𝜒0𝛿𝑉. Ignoring the 

exchange-correlation potential, 𝛿𝑉 = 𝛿𝑉𝑒𝑥𝑡 + 𝛿𝑉𝐻 = 𝛿𝑉𝑒𝑥𝑡 + 𝑉𝑐𝛿𝜌 , where 𝑉𝑐  is the bare 

Coulomb interaction. Recall that the dielectric response function relates 𝛿𝑉𝑒𝑥𝑡 and 𝛿𝑉 by 𝛿𝑉 =

𝜖−1𝛿𝑉𝑒𝑥𝑡. Combining the results together, one arrives at the random phase approximation (RPA) 
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                                                                            𝜖𝑅𝑃𝐴 = 1 − 𝑉𝑐𝜒0.                                                         (2.20) 

Within the formalism of DFT, the RPA polarizability is given by 

                            𝜒𝐺𝐺′
0 (𝑞, 𝜔) =

1

Ω
∑𝑛𝑛′𝑘(𝑓𝑛𝑘 − 𝑓𝑛′𝑘+𝑞)

𝑀𝑛𝑛′
∗ (𝑘, 𝑞, 𝐺)𝑀𝑛𝑛′(𝑘, 𝑞, 𝐺′)

𝜀𝑛𝑘 − 𝜀𝑛′𝑘+𝑞 + ℏ𝜔 + 𝑖ℏ0+
,               (2.21) 

where 𝑀𝑛𝑛′(𝑘, 𝑞, 𝐺) = ⟨𝑛𝑘 + 𝑞|𝑒𝑖𝐺∙𝑟|𝑛′𝑘⟩. Intuitively, the RPA polarizability takes into account 

all possible transitions from occupied to unoccupied states that contribute to screening. The 

contribution is dictated by the transition amplitude and the transition energy between the initial 

and final states. RPA is generally used in the GW approximation to calculate the screened 

Coulomb interaction. 

 

2.3.3  Generalized plasmon-pole model 

The frequency dependence in the dielectric function 𝜖
𝐺𝐺′
−1 (𝑞, 𝜔) makes it the bottleneck in excited 

state properties calculations. In practice, only the static polarizability is calculated within the 

generalized plasmon-pole (GPP) model [26]. The calculation of the self-energy is usually broken 

into two parts, the screened exchange operator Σ𝑆𝑋  and the Coulomb-hole operator Σ𝐶𝐻 , Σ =

Σ𝑆𝑋 + Σ𝐶𝐻, 

⟨𝑛𝑘|Σ𝑆𝑋(𝐸)|𝑛′𝑘⟩ = −∑𝑛′′∑𝑞𝐺𝐺′𝑀𝑛′′𝑛
∗ (𝑘, −𝑞, −𝐺)𝑀𝑛′′𝑛′(𝑘, −𝑞, −𝐺′) 

                                                               × 𝜖𝐺𝐺′
−1 (𝑞, 𝐸 − 𝜀𝑛′′𝑘−𝑞)𝑣(𝑞 + 𝐺′),                                       (2.22) 

⟨𝑛𝑘|Σ𝐶𝐻(𝐸)|𝑛′𝑘⟩ =
𝑖

2𝜋
∑𝑛′′∑𝑞𝐺𝐺′𝑀𝑛′′𝑛

∗ (𝑘, −𝑞, −𝐺)𝑀𝑛′′𝑛′(𝑘, −𝑞, −𝐺′) 
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                                                               × [𝜖𝐺𝐺′
−1 ]

ℎ
(𝑞, 𝐸 − 𝜀𝑛′′𝑘−𝑞)𝑣(𝑞 + 𝐺′),                                  (2.23) 

where 

                                                 [𝜖𝐺𝐺′
−1 ]

ℎ
(𝑞, 𝐸) =

1

𝜋
𝑃 ∫ 𝑑𝐸′

∞

0

Im𝜖𝐺𝐺′
−1 (𝐸′)

𝐸 − 𝐸′
.                                         (2.24) 

In the GPP model, the full frequency dependence is included in the inverse dielectric function by 

a single-pole 

                                                   Re𝜖𝐺𝐺′
−1 (𝑞, 𝜔) = 𝛿𝐺𝐺′ +

Ω𝐺𝐺′
2 (𝑞)

𝜔2 − 𝜔𝐺𝐺′
2 (𝑞)

,                                         (2.25) 

where Ω
𝐺𝐺′(𝑞) is the plasmon-pole strength and 𝜔

𝐺𝐺′(𝑞) is the plasmon-pole frequency. Finally, 

under GPP model, Eq. (2.24) can be written as 

                                                     [𝜖𝐺𝐺′
−1 ]

ℎ
(𝑞, 𝜔) =

1

2

Ω𝐺𝐺′
2 (𝑞)

𝜔𝐺𝐺′(𝑞)(𝜔 − 𝜔𝐺𝐺′(𝑞))
.                                (2.26) 

 

2.4 Optical properties and excitonic effects 

2.4.1  Bethe-Salpeter equation 

The screening dielectric function discussed previously is the longitudinal dielectric function to 

external electromagnetic probes. It is in principle a density-density response function. In order to 

study the optical properties of a many-electron interacting system, the appropriate dielectric 

function to describe the response from transverse electromagnetic probes is the transverse 

dielectric function, which is a current-current response function. 
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Optical properties, on the other hand, depends highly on the excitonic effects of the system. 

Excitons are formed when an electron is kicked out to the conduction band, and a hole is left in 

the valence band. The Coulomb interaction between the electron and hole dictates the binding 

energy of excitons. Exciton states generally are a coherent superposition of interband transitions, 

and needs to be described by a two-particle excitation picture. Bethe-Salpeter equation 

(BSE) [27] encodes the electron-hole interaction in the interaction kernel 𝐾𝑒ℎ , which is 

composed of a direct 𝐾𝑑 and an exchange term 𝐾𝑥. 𝐾𝑑 represents the e-h attractive interactions, 

and 𝐾𝑥 describes the repulsive exchange energy, 

                           ⟨𝑣𝑐𝑘|𝐾𝑑|𝑣′𝑐′𝑘′⟩ = ∑𝐺𝐺′𝑀𝑐𝑐′(𝑘, 𝑞, 𝐺)𝑊𝐺𝐺′(𝑞; 0)𝑀𝑣𝑣′
∗ (𝑘, 𝑞, 𝐺′),                     (2.27) 

                            ⟨𝑣𝑐𝑘|𝐾𝑥|𝑣′𝑐′𝑘′⟩ = ∑𝐺𝐺′𝑀𝑐𝑣(𝑘, 𝑞, 𝐺)𝑣(𝑞 + 𝐺)𝛿𝐺𝐺′𝑀𝑐′𝑣′
∗ (𝑘, 𝑞, 𝐺′).                (2.28) 

𝐾𝑥  dictates the exciton triplet and singlet splitting, and is determined by the wavefunction 

overlap between the valence and conduction states. 𝐾𝑑 can be decomposed into three parts 

                                  ⟨𝑣𝑐𝑘|𝐾𝑑|𝑣′𝑐′𝑘′⟩ =
𝑎𝑣𝑐𝑘,𝑣′𝑐′𝑘′

𝑞2
+

𝑏𝑣𝑐𝑘,𝑣′𝑐′𝑘′

𝑞
+ 𝑐𝑣𝑐𝑘,𝑣′𝑐′𝑘′ ,                            (2.29) 

where 

                                          𝑎𝑣𝑐𝑘,𝑣′𝑐′𝑘′ = 𝑀𝑐𝑐′(𝑘, 𝑞, 0)𝜖00
−1(𝑞)𝑀𝑣𝑣′

∗ (𝑘, 𝑞, 0),                                    (2.30) 

        𝑏𝑣𝑐𝑘,𝑣′𝑐′𝑘′ = ∑𝐺 {𝑀𝑐𝑐′(𝑘, 𝑞, 𝐺)
𝜖𝐺0

−1(𝑞)

|𝑞 + 𝐺|
𝑀𝑣𝑣′

∗ (𝑘, 𝑞, 0)

+ 𝑀𝑐𝑐′(𝑘, 𝑞, 0)
𝜖0𝐺

−1(𝑞)

|𝑞 + 𝐺|
𝑀𝑣𝑣′

∗ (𝑘, 𝑞, 𝐺)},                                                                (2.31) 
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                   𝑐𝑣𝑐𝑘,𝑣′𝑐′𝑘′ = ∑𝐺≠0∑𝐺′≠0𝑀𝑐𝑐′(𝑘, 𝑞, 𝐺)
𝜖𝐺𝐺′

−1 (𝑞)

|𝑞 + 𝐺||𝑞 + 𝐺′|
𝑀𝑣𝑣′

∗ (𝑘, 𝑞, 𝐺′),                    (2.32) 

are called the “head”, “wing”, and “body”, respectively. 

Based on the e-h interaction kernel 𝐾𝑒ℎ, the BSE is then like the Schrödinger equation, with the 

single-particle Hamiltonian replaced by the two-particle kernel 

                                  (𝐸𝑐𝑘
𝑄𝑃 − 𝐸𝑣𝑘

𝑄𝑃)𝐴𝑣𝑐𝑘
𝑆 + ∑𝑣′𝑐′𝑘′⟨𝑣𝑐𝑘|𝐾𝑒ℎ|𝑣′𝑐′𝑘′⟩ = Ω𝑆𝐴𝑣𝑐𝑘

𝑆 ,                           (2.33) 

where 𝐴𝑣𝑐𝑘
𝑆  is the exciton wavefunction, and Ω𝑆 is the exciton excitation energy. According to 

the Tamm-Dancoff approximation, an exciton state is represented by including only the linear 

superpositions of valence to conduction interband transitions 

                                                                        |𝑆⟩ = ∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑆 |𝑣𝑐𝑘⟩.                                                    (2.34) 

And the real-space exciton wavefunction can be expressed as 

                                              Ψ(𝑟𝑒 , 𝑟ℎ) = ∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑆 𝜓𝑘,𝑐(𝑟𝑒)𝜓𝑘,𝑣

∗ (𝑟ℎ).                                               (2.35) 

In practice, the exciton wavefunction is plotted in real-space by fixing the position of the hole. 

 

2.4.2  Optical absorption spectra 

The optical absorption spectra are obtained from Fermi golden rule. Without the e-h interaction, 

it is a direct summation of the oscillator strength from independent vertical transitions 

                                  𝜖2
0(𝜔) =

16𝜋2𝑒2

𝜔2
∑𝑣𝑐𝑘|𝑒 ∙ ⟨𝑣𝑘|𝑣|𝑐𝑘⟩|2𝛿(𝜔 − 𝐸𝑐𝑘

𝑄𝑃 + 𝐸𝑣𝑘
𝑄𝑃),                       (2.36) 
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where 𝑣 is the velocity operator along the polarization direction of light. It is worth pointing out 

that from the formula, a large joint density of states (JDOS) in the electronic band structure will 

lead to large oscillator strengths of the vertical transitions [30]. With the e-h interaction, the 

optical spectra will be largely modified by the coherent superposition of e-h pairs 

                                                 𝜖2(𝜔) =
16𝜋2𝑒2

𝜔2
∑𝑆|𝑒 ∙ ⟨0|𝑣|𝑆⟩|2𝛿(𝜔 − Ω𝑆).                                (2.37) 

For 2D systems, it is more convenient to renormalize the dielectric function into the optical 

absorbance 𝐴(𝜔) in order to make direct comparison with experiments 

                                                                       𝐴(𝜔) =
𝜔𝜖2(𝜔)𝑑

𝑐
,                                                          (2.38) 

where 𝑑 is the periodic distance perpendicular to the 2D material plane, and 𝑐 is the speed of 

light. 𝐴(𝜔) describes the fraction of incident photon that is absorbed by the 2D material. 

Overall, the excitonic effect is strong in reduced dimension materials and materials with large 

JDOS. The reduced dielectric screening in low-dimensions makes the effective e-h Coulomb 

interaction stronger, resulting in large exciton binding energies. On the other hand, large JDOS 

helps facilitate the coherent superposition of e-h pairs, hence enhancing the optical transition 

oscillator strength. 
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Chapter 3: Phonon Assisted Optical 

Transitions in Transition Metal 

Dichalcogenides 

 

3.1 Introduction 

Exciton is the quasiparticle formed by an electron excited to the conduction band and the left 

hole in the valence band, which are bounded by the Coulomb interaction. However, not all 

excitons are optically bright. For spin orbit splitting bands, according to the exciton selection 

rules, only the excitons with electrons and holes residing in the same spin configuration bands 

can be accessed by light, and hence are called bright excitons. Besides, since photons have 

negligible momentum, the excitons with Coulomb bound electrons and holes at different high 

symmetry points in the Brillouin zone are also optically dark. The momentum dark excitons can 

be activated via coupling with phonons, which can provide the needed momentum 

transfer [30,37]. 

MoS2 is a typical transition metal dichalcogenide, which exhibits indirect band gap in few layer 

and bulk form, but becomes a direct band gap material in the monolayer limit [11]. Because of 

the direct band gap and reduced dielectric screening in monolayer MoS2, the exciton effects 

dominate its optical properties and result in drastically enhanced photoluminescence compared 

with bulk MoS2. In this chapter, we will present the work on first principles calculations of the 

exciton states in MoS2 as well as MoS2/WS2 heterostructure, and the effect of lattice vibrations 

(phonon) on the exciton states. 
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3.2 Computational methods 

Density functional theory (DFT) is a widely used first principles method to calculate the ground 

state electronic properties of materials. Center to the theory is the Kohn-Sham equation [24] 

                                          (−
1

2
𝛻2 + 𝑉𝑖𝑜𝑛 + 𝑉𝐻 + 𝑉𝑥𝑐

𝐷𝐹𝑇) 𝜓𝑛𝑘
𝐷𝐹𝑇 = 𝐸𝑛𝑘

𝐷𝐹𝑇𝜓𝑛𝑘
𝐷𝐹𝑇 ,                                (3.1) 

which is obtained by variational method on a fictitious non-interacting system. Therefore, DFT 

can only capture the ground state properties of materials. However, excitons consist of excited 

electrons in the conduction band, which are excited state properties. Besides, DFT always 

underestimates the band gap. If we want to study exciton effects in first principles calculations, 

we must go beyond DFT. 

Using DFT as a starting point, GW approximation [26] treats the quasiparticle self-energy 

∑(𝐸𝑛𝑘
𝑄𝑃) as the first term of the expansion in terms of the single particle Green’s function 𝐺 and 

the screened Coulomb interaction 𝑊. The one particle excitation energies are then solved by the 

Dyson equation 

                                          (−
1

2
𝛻2 + 𝑉𝑖𝑜𝑛 + 𝑉𝐻 + ∑(𝐸𝑛𝑘

𝑄𝑃)) 𝜓𝑛𝑘
𝑄𝑃 = 𝐸𝑛𝑘

𝑄𝑃𝜓𝑛𝑘
𝑄𝑃,                                 (3.2) 

GW approximation can give very accurate band gaps. The correlated electron-hole (exciton) 

excited state wavefunction and excitation energy can be further solved by the Bethe-Salpeter 

equation (BSE) [27] 

                                   (𝐸𝑐𝑘
𝑄𝑃 − 𝐸𝑣𝑘

𝑄𝑃)𝐴𝑣𝑐𝑘
𝑆 + ∑𝑣′𝑐′𝑘′⟨𝑣𝑐𝑘|𝐾𝑒ℎ|𝑣′𝑐′𝑘′⟩ = 𝛺𝑠𝐴𝑣𝑐𝑘

𝑆 .                           (3.3) 
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where 𝐾𝑒ℎ is the electron-hole interaction kernel. The exciton states are a collective state formed 

by different electron-hole pairs at different k points in the Brillouin zone modulated by the 

exciton wavefunction 𝐴𝑣𝑐𝑘
𝑆  

                                                                      |𝑆⟩ =∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑆 |𝑣𝑐𝑘⟩.                                                          (3.4) 

Based on these theories, we can study the exciton effects in materials with first principles 

calculations. The DFT calculations are performed with the package Quantum 

ESPRESSO [38,39]. And for the GW+BSE calculations, the package BerkeleyGW [40] is used. 

 

3.3 Monolayer MoS2 

The interlayer interaction for bulk MoS2 is Van der Waals interaction, hence it is easy to 

exfoliate few layer MoS2 from the bulk. The atomic structure for monolayer MoS2 is shown in 

Figure 3.1. The Mo atom is sandwiched by two layers of S atoms. Unlike the indirect band gap 

with valence band maximum (VBM) at 𝛤 and conduction band minimum (CBM) at 𝐾 in few 

layer MoS2, monolayer MoS2 has direct band gap at 𝐾 valley. The band structure at DFT level 

(note that DFT band structure gives the wrong indirect band gap) is shown in Figure 3.2 (a), and 

the GW band gap correction is shown in Table 3.1. Since the indirect band gap 𝛤𝑣  → 𝐾𝑐  is 

comparable to the direct band gap 𝐾𝑣 → 𝐾𝑐, besides the bright exciton state at 𝐾 valley, we also 

expect there to be momentum dark excitons formed by the transitions 𝛤 → 𝐾. However, in the 

package BerkeleyGW, only the direct transitions in momentum space are considered. In order to 

study the indirect transitions, a supercell with lattice constant √3 times the unit cell is used to 
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fold the band at 𝐾 back to 𝛤 point, so that the transitions from 𝛤𝑣 to 𝐾𝑐 can also be captured by 

the calculation. The band structure calculated with the supercell is shown in Figure 3.2 (b). 

 

Figure 3.1 Atomic structure of monlayer MoS2: top view (upper panel) and side view (lower 

panel). The parallelogram represents the unit cell. 

 

Figure 3.2 Monolayer MoS2 band structure at DFT level in (a) unit cell calculation (b) supercell 

calculation. 

Table 3.1 DFT/GW band gap and exciton energy for monolayer MoS2 

Energy unit: 

eV 

DFT gap 

(𝐾 → 𝐾) 

DFT gap 

(𝛤 → 𝐾) 

GW gap 

(𝐾 → 𝐾) 

GW gap 

(𝛤 → 𝐾) 

1st bright 

exciton 

energy 

Exciton 

binding 

energy 

Monolayer 1.666 1.657 2.586 2.718 1.903 -0.683 
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Besides, we would like to consider the effect of lattice vibrations on the exciton states. Using 

second order harmonic approximation, the equation of motion for the atoms is [30] 

                                                                           𝑀𝑗�̈�𝑗
𝛼 = −∑𝑗′𝛼′𝐴𝑗𝑗′

𝛼𝛼′
𝜉𝑗′

𝛼′
.                                               (3.5) 

We are interested in the normal modes of the atomic vibrations (the collective motion of the 

atoms forms the quasiparticle, phonon), where each atom with mass 𝑀𝑗 moves periodically with 

the same frequency 𝜔 

                                                                      𝜉𝑗
𝛼(𝑡) = 𝐶𝑗

𝛼 1

√𝑀𝑗

𝑒−𝑖𝜔𝑡.                                                      (3.6) 

By plugging this into the equation of motion, we get the dynamical matrix 𝐷𝑗𝑗′
𝛼𝛼′

(𝒒) for the lattice 

vibrations 

                                                                      𝜔2𝐶𝑗
𝛼 = ∑𝑗′𝛼′𝐷𝑗𝑗′

𝛼𝛼′
(𝒒) 𝐶𝑗′

𝛼′
.                                              (3.7) 

We can get the dynamical matrix with first principles calculations, and the eigenvectors of the 

matrix describe the motion of the atom 𝑗 in the direction 𝛼. By shifting the atomic positions 

according to the different phonon modes, we can use first principles calculations to simulate the 

effects of lattice vibrations.  

For the momentum dark exciton 𝛤𝑣  → 𝐾𝑐 , according to momentum conservation of optical 

transitions, the phonon at 𝐾  point (hence with momentum 𝒒 = 𝑲 ) can compensate the 

momentum required to fulfill the transition. The calculated phonon dispersion along the path 𝛤 to 

𝐾 in the first Brillouin zone [Figure 3.3 (b)] is shown in Figure 3.3 (a). Here I mainly focus on 

the low energy acoustic phonon modes, as in low energy settings only the acoustic phonons can 
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be excited and are populated. The atomic motions for the TA1, TA2 and LA phonon modes are 

depicted in Figure 3.4. For the TA1 mode, Mo atoms move in the out of plane direction and S 

atoms move in the in-plane direction; for the TA2 mode, Mo atoms move in the in-plane 

direction and S atoms move in the out of plane direction; for the LA mode, both Mo and S atoms 

move in the in plane direction. Since for 2D materials, in the out of plane direction atoms feel 

less interatomic interactions, intuitively we would expect the LA phonon mode to have the 

strongest effect on the exciton states. 

Figure 3.3 (a) Phonon dispersion for monolayer MoS2. (b) First Brillouin zone of hexagonal 

lattice. The transitions with momentum 𝑲 are labeled by black arrows. 

The calculated exciton states for monolayer MoS2 are shown in Table 3.2. For the unit cell 

calculations, the first two excitons are from the direct 𝐾 → 𝐾 and 𝐾′ → 𝐾′ transitions (in the first 

Brillouin zone there are two 𝐾 points). The higher energy exciton states are the higher energy 

level states (2p, 2s, etc.) of the direct excitons. The first bright exciton energy is 1.903 eV, agrees 

well with the experimental value of 1.90 eV. The high binding energy makes the exciton 

observable at room temperature. 



29 

 

 

       

Figure 3.4 Schematic diagrams of the atomic vibrations for the TA1 phonon mode (left panel), 

TA2 phonon mode (middle panel) and LA phonon mode (right panel). 

Table 3.2 Exciton states for monolayer MoS2 with unit cell and supercell calculations (quantities 

in the bracket represent the transition dipole oscillator strength) 

Monolayer MoS2 

(unit: eV) 

1st exciton 

energy 

2nd exciton 

energy 

3rd exciton 

energy 

4th exciton 

energy 

5th exciton 

energy 

6th exciton 

energy 

Unit cell 

1.903 

(3 × 103) 

(𝐾𝑣  𝑡𝑜 𝐾𝑐) 

1.904 

(3 × 103) 

(𝐾𝑣
′  𝑡𝑜 𝐾𝐶

′ ) 

2.107 

(2 × 10−1) 

2.120 

(2 × 10−2) 

2.136 

(2 × 101) 

2.138 

(1 × 101) 

√3 cell original 

structure 

1.901 

(4 × 103) 

(𝐾𝑣  𝑡𝑜 𝐾𝑐) 

1.901 

(1 × 103) 

(𝐾𝑣
′  𝑡𝑜 𝐾𝐶

′ ) 

1.903 

(6 × 10−2) 

(𝐾𝑣  𝑡𝑜 𝐾𝐶
′ ) 

1.903 

(5 × 10−2) 

(𝐾𝑣
′  𝑡𝑜 𝐾𝑐) 

2.040 

(1 × 10−5) 

(𝛤 𝑡𝑜 𝐾𝑐) 

2.040 

(2 × 10−5) 

(𝛤 𝑡𝑜 𝐾𝐶
′ ) 

√3 cell LA 

phonon shifted 

structure 

1.898 

(3 × 103) 

(𝐾𝑣  𝑡𝑜 𝐾𝑐) 

1.898 

(5 × 102) 

(𝐾𝑣
′  𝑡𝑜 𝐾𝐶

′ ) 

1.903 

(5 × 102) 

(𝐾𝑣  𝑡𝑜 𝐾𝐶
′ ) 

1.903 

(3 × 102) 

(𝐾𝑣
′  𝑡𝑜 𝐾𝑐) 

2.046 

(1 × 103) 

(𝛤 𝑡𝑜 𝐾𝑐) 

2.046 

(2 × 102) 

(𝛤 𝑡𝑜 𝐾𝐶
′ ) 

 

For the supercell calculation, besides the bright direct excitons, we observe four dark excitons, 

which originate from the indirect 𝐾𝑣 → 𝐾𝑐
′, 𝐾𝑣

′ → 𝐾𝑐, 𝛤𝑣 → 𝐾𝑐 and 𝛤𝑣 → 𝐾𝑐
′ transitions. Based on 
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the calculated exciton energies and GW band gap, we can calculate the binding energies of the 

direct and indirect excitons, as shown in Table 3.3. We see that the indirect excitons have similar 

binding energies with that of the direct excitons. 

Table 3.3 Direct/Indirect exciton binding energies for monolayer and bilayer MoS2 

Exciton binding 

energy (eV) 

Unit cell direct exciton 

(𝐾 → 𝐾) 
√3 cell direct exciton 

(𝐾 → 𝐾) 

√3 cell Indirect exciton 

(𝛤 → 𝐾) 

Monolayer -0.683 -0.691 -0.678 

bilayer -0.520 -0.501 -0.501 

Then for the supercell calculation with the shifted atomic positions according to LA phonon 

mode, we do observe that the indirect excitons 𝛤𝑣 → 𝐾𝑐 and 𝛤𝑣 → 𝐾𝑐
′ now have the same order of 

oscillator strength with the direct excitons, confirming that the LA phonon mode can brighten the 

indirect exciton by momentum transfer. Besides, the excitons  𝐾𝑣 → 𝐾𝑐
′  and 𝐾𝑣

′ → 𝐾𝑐 also pick 

up large oscillator strength under the effect of LA phonon mode. In fact, the 𝐾 → 𝐾′ momentum 

change is the same as 𝛤 → 𝐾, as shown in Figure 3.3 (b), hence the phonon with momentum 𝑲 

can not only render the 𝛤 → 𝐾 exciton bright, but also the 𝐾 → 𝐾′ excitons. 

 

3.4 Bilayer MoS2 

There are different stacking styles for MoS2, as shown in Figure 3.5. Here we adopt the AA’ 

stacking, which is the more common stacking style observed in experiments. Bilayer MoS2 has 

indirect band gap with the VBM at 𝛤 and CBM at 𝐾. The DFT band structure for bilayer MoS2 is 

shown in Figure 3.6. 
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Figure 3.5 AA’ stacking (left panel) and AB stacking (right panel) for bilayer MoS2 

 

Figure 3.6 Band structure for AA’ stacking bilayer MoS2 at DFT level 

For bilayer, since the dielectric screening is increased, we would expect smaller exciton binding 

energies. The exciton state calculations are shown in Table 3.3, and are consistent with our 

expectations. Then in order to study the indirect excitons and phonon effects, I again introduced 

the supercell calculations and atomic position shifts. The corresponding results are shown in 

Table 3.3 and Table 3.4, respectively. Again, we see that the indirect excitons have similar 
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binding energies as the direct excitons, and that the LA phonon mode has most significant effect 

on the exciton oscillator strength. 

Table 3.4 Exciton states for bilayer MoS2 

√3 cell 

Bilayer calculation (eV) 

1st dark exciton (𝛤 → 𝐾) 

energy (oscillator strength) 

1st bright exciton (𝐾 → 𝐾) 

energy (oscillator strength) 

Original structure 1.611 (1 × 10−5) 1.901 (4 × 102) 

TA1 phonon 1.613 (1 × 10−6) 1.889 (1 × 103) 

TA2 phonon 1.613 (3 × 10−5) 1.891 (1 × 103) 

LA phonon 1.613 (3 × 10−2) 1.880 (1 × 103) 

 

3.5 MoS2/WS2 heterostructure 

For heterostructures, there are typically two band alignments, as shown in Figure 3.7. For type I 

band alignment, the VBM and CBM are in the same layer, hence the lowest energy exciton state 

is an intralayer exciton. For type II band alignment, the VBM and CBM are in different layers, 

and the lowest energy exciton is an interlayer exciton which typically has longer life time than 

intralayer exciton. The DFT band structure for the MoS2/WS2 heterostructure is shown in Figure 

3.8. 

 
Figure 3.7 Type I band alignment with intralayer exciton (left panel) and type II band alignment 

with interlayer exciton (right panel) in heterostructure 
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The calculated exciton states using supercell for the MoS2/WS2 heterostructure are shown in 

Table 3.5. 

 
Figure 3.8 MoS2/WS2heterostructure band structure at DFT level 

Table 3.5 Exciton states in MoS2/WS2heterostructure 

 

 

In order to study the phonon effect and band to band optical transitions of the heterostructure, I 

calculated the non-electron-hole interaction (without exciton) optical transitions under the atomic 

position shifts. This can serve as a good estimate for the exciton states. For the phonon modes, 

1st dark exciton 

(unit: eV) 

DFT band gap  

(𝛤𝑣1 → 𝐾𝑐1) 

GW band gap 

(𝛤𝑣1 → 𝐾𝑐1) 

1st dark exciton 

energy 

Exciton binding 

energy 

√3 cell 1.10 1.98 1.47 -0.51 

1st bright exciton 

(2-degenerate) 

DFT band gap  

(𝐾𝑣1 → 𝐾𝑐1) 

GW band gap 

(𝐾𝑣1 → 𝐾𝑐1) 

1st bright exciton 

energy 

Exciton binding 

energy 

√3 cell 1.47 2.25 1.78 -0.47 

2nd bright exciton 

(2- degenerate) 

DFT band gap 

(𝐾𝑣2 → 𝐾𝑐1) 

GW band gap 

(𝐾𝑣2 → 𝐾𝑐1) 

2nd bright exciton 

energy 

Exciton binding 

energy 

√3 cell 1.62 2.39 1.84 -0.55 
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now that the two layers are different, there are two different LA phonon modes. LA1 consists 

only MoS2 layer motions and both W and S atoms move in-plane, while LA2 mode consists only 

MoS2 layer motions and both Mo and S atoms move in-plane. The phonon effect on the non-eh 

transition oscillator strength is shown in Table 3.6. An interesting phenomenon with the phonon 

effect is that the LA1 phonon has stronger effect on the 𝛤𝑣1 → 𝐾𝑐2 transition, while the LA2 

phonon has stronger effect on the 𝛤𝑣1 → 𝐾𝑐1 transition. Along with the physical motion of the 

phonon modes, we infer that the CBM (𝐾𝑐1) consists of Mo atom orbitals while the second 

lowest conduction band (𝐾𝑐2) mainly consists of W atom orbital. To check this inference, I 

calculated the partial density of states for the MoS2/WS2 heterostructure, as shown in Figure 3.9. 

The PDOS at 𝐾  (right panel) confirms our expectation, and clearly shows the type II band 

alignment at 𝐾 point. 

Table 3.6 Non-electron-hole interaction optical transition oscillator strength for MoS2/WS2 

Non-eh transition to 𝐾𝑐1 𝛤𝑣1 → 𝐾𝑐1 𝐾𝑣1 → 𝐾𝑐1 𝐾𝑣2 → 𝐾𝑐1 

Original structure 4 × 10−12 0.68 9.42 

LA1 phonon mode shifted 

structure 
1 × 10−5 0.68 9.41 

LA2 phonon mode shifted 

structure 
2 × 10−3 0.68 9.35 

 

Non-eh transition to 𝐾𝑐2 𝛤𝑣1 → 𝐾𝑐2 𝐾𝑣1 → 𝐾𝑐2 𝐾𝑣2 → 𝐾𝑐2 

Original structure 8 × 10−12 10.58 0.56 

LA1 phonon mode shifted 

structure 
7 × 10−3 10.57 0.56 

LA2 phonon mode shifted 

structure 
2 × 10−6 10.57 0.56 
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Figure 3.9 Partial density of state at 𝛤 point (left panel) and 𝐾 point (right panel) 

 

3.6 Conclusions 

In conclusion, we have studied the direct and indirect exciton states for monolayer MoS2, bilayer 

MoS2 and MoS2/WS2 heterostructure by first principles calculations, with the application of a 

supercell to fold the band at 𝐾 to 𝛤 . We found that the indirect 𝛤𝑣 → 𝐾𝑐  exciton has similar 

binding energy as the direct 𝐾𝑣 → 𝐾𝑐 exciton, implying its significance under interactions with 

phonon, which can apply the momentum required to fulfill the indirect optical transition. The 

phonon effect is investigated with atomic position shifts according to the phonon modes, and we 

found that the LA phonon mode has the most significant effect on the indirect exciton state. 
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Chapter 4: Quasiparticle and Optical 

Properties of Correlated Magnet CrCl3 

 

4.1 Introduction 

Layered van der Waals (vdW) magnetic materials have attracted significant research interest to 

date. In this chapter, we employ the first-principles many-body perturbation theory to calculate 

excited-state properties of a prototype vdW magnet, chromium trichloride (CrCl3), covering 

monolayer, bilayer, and bulk structures. Unlike usual nonmagnetic vdW semiconductors, in 

which many-electron interactions and excited states are sensitive to dimensionality, many-

electron interactions are always enhanced and dominate quasiparticle energies and optical 

responses of both two-dimensional and bulk CrCl3. The electron-hole (e-h) binding energy can 

reach 3 eV in monolayer and remains as high as 2 eV in bulk. Because of the cancellation effect 

between self-energy corrections and e-h binding energies, the lowest-energy exciton (“optical 

gap”) is almost not affected by the change of dimensionality. In addition, for the excitons with 

similar e-h binding energies, their dipole oscillator strength can differ by a few orders of 

magnitude. Our analysis shows that such a big difference is from a unique interference effect 

between complex exciton wave functions and interband transitions. Finally, we find that the 

interlayer stacking sequence and magnetic coupling barely change quasiparticle band gaps and 

optical absorption spectra of CrCl3. Our calculated low-energy exciton peak positions agree with 

available measurements. These findings give insight into the understanding of many-electron 

interactions and the interplay between magnetic orders and optical excitations in vdW magnetic 

materials. 
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Many-electron interactions are known to be enhanced in low-dimensional structures, and they 

dominate corresponding excited-state properties. Because of the reduced screening, electronic 

self-energy and excitonic effects are dramatically enhanced. For instance, the electron-hole (e-h) 

binding energy of monolayer transition metal dichalcogenides  [11,25,41–45] and black 

phosphorus [8–11] can be around a few hundred meV, which is about one to two orders of 

magnitude larger than those of typical bulk semiconductors [11,45,47–51]. This reduced 

screening effect stems from the surrounded vacuum and, thus, is sensitive to dimensionality. For 

example, e-h binding energy of bulk Tellurium is less than 10 meV, while that of its monolayer 

structure is increased to be around 700 meV [52]. In addition to screening, the electronic band 

dispersion (effective mass) also impacts many-electron interactions. Particularly, flat bands 

contribute to a large joint density of states (JDOS), enhancing the chance of forming e-h pairs 

[15]. However, there have been very limited studies to clarify the roles of dimensionality and 

band-curvature effects on many-electron interactions and excitonic effects to date.  

Recently achieved two-dimensional (2D) magnetic materials [16–19] may provide a unique 

opportunity to answer this fundamental question because their electronic band edges are usually 

dominated by localized 3d orbitals and are flat for both 2D and bulk structures. With the help of 

magnetic anisotropy [20], these 2D structures hold a long-range magnetic order by gapping low-

energy modes of magnons [21]. Because of enhanced light-matter interactions, layered van der 

Waals (vdW) magnetic structures exhibit significant magneto-optical effects, such as the 

magneto-optical Faraday and Kerr effects, and magnetic circular dichroism (MCD), which have 

been applied to identify magnetic orders [55,56,60] and give rise to optomagnetic applications 

based on vdW structures [61,62]. More recently, enhanced excitonic effects on magneto-optical 

responses have been calculated for monolayer magnetic structures [63,64]. These theoretical 
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works showed that e-h binding energy can be 1.7 eV in monolayer CrI3 [63], which is 

substantially larger than those of other nonmagnetic semiconductors and satisfactorily explained 

available measurements. 

Chromium trichloride (CrCl3) is a good candidate to explore the relationship between many-

electron interactions and dimensionality in correlated vdW magnetic structures. Unlike the 

widely studied CrI3, whose bulk exhibits a ferromagnetic (FM) order [18,27], bulk CrCl3 exhibits 

an interlayer antiferromagnetic (AFM) order with an intralayer FM order [19], the so-called A-

type AFM order. Moreover, because of the significantly smaller spin-orbit coupling (SOC), the 

magnetic anisotropy energy is small in CrCl3 [57,59], and its 2D structure may exhibit an in-

plane ground state magnetism [19,28,29] and rich topological spin textures, such as meron-like 

pairs at finite temperatures [30]. This weak SOC also substantially simplifies the optical spin 

selection rules, making CrCl3 ideal to analyze many-electron interactions and corresponding 

optical activities. 

In this chapter, we have employed first-principles many-body perturbation theory (MBPT) to 

study many-electron interactions and excited-state properties of CrCl3. Significant self-energy 

corrections and excitonic effects are discovered for monolayer, bilayer, and bulk CrCl3. Our 

calculated exciton energies are in good agreement with available measurements for both 

monolayer and bulk structures. Interestingly, for excitons with similar e-h binding energies 

within the same structure, their dipole oscillator strength can be different for a few orders of 

magnitude. Our analysis shows that this big difference is from a unique interference effect 

between the complex exciton wave functions and interband transition matrices. Moreover, we 

show that many-electron interactions and excitonic effects are less sensitive to dimensionality in 

these vdW magnets. Thus, the flat bands and enhanced JDOS play an important role in deciding 
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excited-state properties, giving hope to robust room-temperature excitons in bulk magnets. 

Finally, we find that these optical spectra and many-electron effects have little dependence on 

the interlayer crystallographic structure or magnetic orders. Therefore, magneto-optical 

effects [56,60] or second-harmonic generation  [69,70] may be applied to identify those complex 

symmetries of ultra thin magnets. 

 

4.2 Atomic structures and computational details 

The atomic structures of CrCl3 are presented in Figure 4.1. Below 240 K [19], bulk CrCl3 is a 

vdW layered material adopting the rhombohedral phase (space group R3̅), which is formed by an 

interlayer shift along the (�⃗� − �⃗⃗�) direction, as shown in Figures 4.1 (a1) and 4.1 (a2). This is also 

known as the low-temperature (LT) phase. Above 240 K, it experiences a crystallographic phase 

transition into the monoclinic phase (space group C2/m), which is formed by an interlayer shift 

along the −�⃗� direction, as shown in Figures 4.1 (b1) and 4.1 (b2). This is the high-temperature 

(HT) phase. Such a structural phase transition is similar to that observed in bulk CrI3 [27]. 

Within each single layer of CrCl3, the chromium atoms are arranged in a honeycomb structure, 

and each chromium atom is surrounded by six chloride atoms forming an octahedra. Below 17 

K, an intralayer FM order is formed in bulk CrCl3, followed by an interlayer AFM order below 

14 K [19]. The magnetic moments are dominantly hosted on chromium atoms. The interlayer 

AFM/FM orders are schematically shown in the Figures 4.1 (a2) and 4.1 (b2), respectively, with 

each layer taking the FM order within the layer. 

The ground-state properties are obtained by density functional theory (DFT) within the general 

gradient approximation using the Perdew-Burke-Ernzerhof exchange-correlation functional [33] 
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as implemented in the Quantum ESPRESSO package. The vdW interactions in bilayer and bulk 

CrCl3 are included via the semiempirical Grimme-D3 scheme [34]. Semicore 3p and 3d electrons 

of chromium atoms are included in norm-conserving pseudopotentials [73], and the plane-wave 

energy cutoff is set to be 65 Ry. A vacuum distance of 18 Å between adjacent layers is used 

along the periodic direction in monolayer and bilayer calculations to avoid spurious interactions. 

SOC is relatively small in CrCl3 due to the small atomic number of the ligand atom and, hence, is 

not considered in our calculations. Figure 4.2 (a) and (b) show the band structure of monolayer 

CrCl3 with and without SOC effect, respectively. From both the band structure and the partial 

density of states (PDOS), we can see that the SOC has little effect on CrCl3 since SOC strength 

varies as the fourth power of the atomic number, and both elements in CrCl3 have relatively 

small atomic numbers [57,59]. Therefore, in our calculations we do not consider the SOC effect. 

The MBPT calculations are performed using the BerkeleyGW code [37] including the slab 

Coulomb truncation for monolayer and bilayer structures. Quasiparticle (QP) energy is 

calculated by using the single-shot G0W0 approximation within the general plasmon pole model 

[38]. The Bethe-Salpeter equation (BSE) is employed to obtain excitonic effects and optical 

absorption spectra [39]. Because of the depolarization effect [40,41], only the incident light 

polarized parallel to the atomic plane (the in-plane direction) is considered for the monolayer and 

bilayer cases. Ten valence bands and six conduction bands are included in optical calculation to 

provide converged spectra below 3.5 eV. For monolayer and bilayer CrCl3, a coarse k grid of 

9x9x1 is adopted to calculate the dielectric function and QP energies, and it is interpolated to a 

fine k grid of 18x18x1 for the e-h interaction kernel and solving BSE. The coarse k grid is set to 

be 9x9x2 and the fine k gird is set to be 18x18x4 for bulk CrCl3. The convergence test shows that 

the error bar of this k-point sampling is within 0.1 eV for GW band gaps and exciton energies.  
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Figure 4.1 (a1) and (a2) Top and side views of the rhombohedral (LT) structure. (b1) and (b2) 

top and side views of the monoclinic (HT) structure. Cr atoms in different layers are shown with 

different colors. The Cl atoms are not shown in top views [(a1) and (b1)) for clarity. The arrows 

in (a1) and (b1) show the relative interlayer shift direction. The structure in (a1) is slightly 

shifted along the interlayer shift direction for clarity. The unit cells are marked by red dashed 

lines. The interlayer AFM/FM orders are schematically shown in (a2) and (b2), respectively, by 

the black arrows representing atomic spin directions in each FM ordered layer. The polarizations 

are shown in the in-plane direction to reflect the experimentally observed in-plane magnetic 

polarizations, although only collinear polarizations are considered in the calculations. 
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Figure 4.2 DFT level band structure and partial density of states of monolayer CrCl3 with 

intralayer FM order (a) with SOC effect and (b) without SOC effect. The energy of the valence 

band maximum is set to be zero. 

We have also tested the convergence of band gap and exciton energy on coarse k grid for 

monolayer CrCl3. When the k grid goes from 9x9x1 to 18x18x1, the quasiparticle band gap 

change is within 50 meV and the 𝑋1,  𝑋2 exciton energy change is within 100 meV. Therefore, 

we use the coarse k-gird of 9x9x1 for monolayer and bilayer calculations, and 9x9x2 for bulk 

calculations. 

Table 4.1 Convergence test of DFT and GW band gaps,  𝑋1 and 𝑋2 exciton energies on coarse k-

grid for monolayer CrCl3. The unit is eV. 

Coarse k-

grid 

DFT band gap GW band gap 𝑋1 exciton energy 𝑋2 exciton energy 

9x9x1 1.84 4.66 1.48 2.25 

12x12x1 1.84 4.64 1.52 2.28 

18x18x1 1.84 4.63 1.56 2.32 
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4.3 Monolayer CrCl3 

The DFT-calculated band structure of an FM monolayer CrCl3 is presented in Figure 4.3 (a). For 

FM monolayer CrCl3, the valence band maximum (VBM) is located at the high-symmetry 𝑀 

point and the conduction band minimum (CBM) is located around the middle point of the 𝐾 − 𝛤 

line, resulting in an indirect band gap of 1.84 eV and a direct band gap of 1.87 eV at 𝑀 point. 

According to the projected density of states (PDOS) in Figure 4.3 (a), the four lowest-energy 

conduction bands and the five highest-energy valence bands have a sizable amount of 3p orbital 

components of chloride atoms. Interestingly, those higher-energy (spin down) conduction bands 

between 2.5 and 3.5 eV are nearly from pure 3d orbitals of chromium atoms. Finally, both the 

valence and conduction band edges exhibit relatively flat dispersions and are composed of the 

same spin (up) states. This enhanced JDOS indicates strong many-electron interactions and 

potentially active interband transitions due to the spin-allowed selection rule [15].  

We have calculated QP energies within the GW approximation. The DFT and GW band gaps are 

summarized in Table 4.2. The indirect QP band gap is 4.66 eV, and the direct QP band gap is 

4.69 eV. The linear fit of GW-calculated quasiparticle energies to DFT eigenvalues is presented 

in Figure 4.3 (b). Due to the reduced dielectric screening of the suspended 2D structure and 

enhanced JDOS, QP energy corrections in monolayer CrCl3 are significant, rendering a 2.82 eV 

enlargement of the GW band gap from the DFT result. This enhancement is larger than those in 

monolayer MoS2 (~ 1.0 eV) [4,6] and black phosphorus (~ 1.2 eV) [10], indicating that 

correlated flat bands further enhance many-electron interactions in addition to the dimensionality 

factor.  
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We have further calculated the optical absorption spectrum of FM monolayer CrCl3. To avoid 

the artificial effect from the choice of vacuum space in simulations, we plot the optical 

absorbance by 𝐴(𝜔) =
𝜔𝑑

𝑐
𝜀2(𝜔), where 𝜀2(𝜔) is the calculated imaginary part of the dielectric 

function and 𝑑 represents the distance between adjacent CrCl3 layers along the periodic direction 

of our calculation. Figure 4.4 (a) shows the optical absorbance of monolayer CrCl3 with and 

without excitonic effects included. In the absence of e-h interactions, the absorbance (blue 

dashed line) edge starts at around 4.7 eV, corresponding to the QP direct band gap at the 𝑀 

point. This significant absorption edge is consistent with the enhanced JDOS and allowed spin-

selection rule as shown in Figure 4.3 (a). 

 

Figure 4.3 (a) DFT-calculated band structure (left panel) and projected density of states (right 

panel) of monolayer CrCl3 with an intralayer FM order. The energy of the valence band 

maximum is set to be zero. (b) Linear fit of QP energies to DFT eigenvalues for monolayer 

CrCl3. 
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Figure 4.4 Absorbance of monolayer CrCl3 without e-h interaction (blue dashed line) and with e-

h interaction (red solid line) calculated on top of (a) DFT ground state and (b) DFT+U ground 

state (with Hubbard parameters U = 1.5 eV, J = 0.5 eV). The two characteristic absorption peaks 

are marked as 𝑋1 and 𝑋2, respectively. A dark exciton state below 𝑋1 is marked as 𝑋0 in the inset 

of (a). An exciton state at higher energy is marked as 𝑋3 in (a). 

After e-h interactions are included, the optical absorption spectrum is dramatically changed. The 

main optical absorption happens between 3 and 5 eV, which is a 2-eV red shift from the 
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interband-transition result. Importantly, we observe two characteristic excitonic peaks in the 

optical spectrum at the low energy regime, which are marked as 𝑋1 and 𝑋2 at 1.48 and 2.25 eV in 

Figure 4.4 (a), respectively. It is worth mentioning that more excitonic states are around 𝑋1 and 

𝑋2 while most of them are optically dark. In the inset of Figure 4.4 (a), we also mark the lowest-

energy dark exciton, 𝑋0 , whose energy is about 20 meV below 𝑋1  but its dipole oscillator 

strength is about four orders of magnitude smaller than that of 𝑋1. These low-energy excitons 

result in significant exciton binding energies of 3.23, 3.21, and 2.44 eV for 𝑋0, 𝑋1, and 𝑋2 , 

respectively. Such exciton binding energies are enormous compared with those of other typical 

2D semiconductors such as monolayer MoS2 (~ 960 meV) [4] and black phosphorous (~ 800 

meV) [10], and they are almost two times larger than that of the sibling magnetic material, 

monolayer CrI3 (~ 1.7 eV) [25]. The e-h binding energy of the lowest bright 𝑋1 exciton is even 

larger than the self-energy (GW) correction. As a result, the “optical gap” (1.48 eV) is lower than 

the DFT band gap (1.84 eV). Recent photoluminescence measurements of monolayer and 

multilayer CrCl3 at 2 K found a single peak around 1.43 eV [66]. This agrees with our MBPT 

results, where the 𝑋1 exciton is located at 1.48 eV. 

We have tested the dependence of MBPT results on top of the DFT ground state with Hubbard 

potential, denoted by DFT+U/MBPT. We choose the Hubbard parameters [43] U = 1.5 eV and J 

= 0.5 eV as an example [26]. The band structure and PDOS for monolayer CrCl3 at this DFT+U 

level are presented in the Figure 4.5. To avoid the double-counting problem in this 

DFT+U/MBPT scheme, we have subtracted the DFT+U-level Hubbard potential 𝑉𝐻𝑢𝑏 together 

with the DFT exchange-correlation potential 𝑉𝑥𝑐  from the conventional self-energy operator 

𝛴(𝐸) within the GW approximation, following Ref. [25,44,45] by 
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              [𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝐻 + 𝑉𝑥𝑐 + 𝑉𝐻𝑢𝑏]𝛹(𝒓) + ∫ 𝑑𝒓′𝛥𝛴(𝒓, 𝒓′; 𝐸𝑞𝑝)𝛹(𝒓′) = 𝐸𝑞𝑝𝛹(𝒓),           (4.1) 

and 

                                                       𝛥𝛴(𝐸) = 𝛴(𝐸) − 𝑉𝑥𝑐 − 𝑉𝐻𝑢𝑏.                                                          (4.2) 

The DFT+U/MBPT absorption spectra of monolayer CrCl3 are shown in Figure 4.4 (b). After 

Hubbard potential is included, the DFT+U level band gap is around 150 meV larger than the 

DFT band gap, and the GW quasiparticle indirect gap is increased by about 180 meV to 4.84 eV, 

as seen from the onset of the absorbance without e-h interaction in Figure 4.4 (b). The optical 

absorption spectrum from DFT+U ground state also shows a significant blue shift. For example, 

the 𝑋1  exciton energy is increased by around 400 meV to 1.87 eV. Given the better 

correspondence with available measurements [66] in the absence of the Hubbard potential, we 

use the DFT/MBPT scheme without U in the following calculations of bilayer and bulk CrCl3.  

 

Figure 4.5 DFT+U level band structure (left panel) and DOS (right panel) for monolayer CrCl3 

with Hubbard parameters U = 1.5 eV, J = 0.5 eV. 
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Moving to higher excitation energies (between and 5 eV), there are exciton states with much 

stronger dipole oscillator strength than those lower-energy exciton states. For example, the peak 

marked by 𝑋3 in Figure 4.4 (a) has an oscillator strength two orders larger than that of 𝑋1. These 

bright excitons dominate the main optical absorption spectrum. 

To better understand these strongly bound excitons, we have plotted the real-space exciton wave 

functions of 𝑋0, 𝑋1 and 𝑋3 with the hole positioned on a chromium atom in Figures 4.6 (a) - (c). 

Because of the large e-h binding energy, all three excitons exhibit highly localized wave 

functions. Particularly, for 𝑋0 and 𝑋1, their wave functions are nearly confined within one unit 

cell. These highly localized real-space wave functions indicate a smearing of the e-h pair 

contributions from the whole Brillouin zone (BZ) in reciprocal space. This also agrees with the 

argument that those flat bands around band edges actively contribute to the formation of strongly 

bound excitons. For 𝑋3, because of its smaller e-h binding energy, the wave function is slightly 

broader and roughly covers the size of three unit cells.  

It is hard to tell any significant difference from the real-space wave functions of excitons 𝑋0 and 

𝑋1, whose dipole oscillator strength differ, however, by four orders of magnitude. Following Ref. 

[46], we try to find the original contributions of dipole oscillator strength of these excitons. We 

rewrite the optical transition matrix element ⟨0|𝑣|𝑖⟩ from the ground (vacuum) state |0⟩ to an 

exciton state |𝑖⟩ = ∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑖 |𝑣𝑐⟩ (𝐴𝑣𝑐𝑘

𝑖  is the exciton amplitude solved from the BSE [39]), to 

analyze the contribution of interband transition matrix elements ⟨𝑣𝑘|𝑣|𝑐𝑘⟩ at a certain energy 𝜔 

to the optical transition matrix element 

                                          ⟨0|𝑣|𝑖⟩ = ∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑖 ⟨𝑣𝑘|𝑣|𝑐𝑘⟩ = ∫ 𝑆𝑖(𝜔) 𝑑𝜔,                                         (4.3) 



49 

 

where 

                                      𝑆𝑖(𝜔) = ∑𝑣𝑐𝑘𝐴𝑣𝑐𝑘
𝑖 ⟨𝑣𝑘|𝑣|𝑐𝑘⟩𝛿(𝜔 − (𝐸𝑐𝑘 − 𝐸𝑣𝑘)),                                      (4.4) 

and 

                                                            𝐼𝑖(𝜔) = ∫
0

𝜔
𝑆𝑖(𝜔′)𝑑𝜔′.                                                                (4.5) 
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Figure 4.6 (a)-(c) Real-space wave functions of exciton states 𝑋0, 𝑋1 and 𝑋3 in monolayer CrCl3, 

respectively. The hole positions are marked with red triangles. (d)-(f) 𝑆𝑖(𝜔) and its integral 𝐼𝑖(𝜔) 

for exciton states 𝑋0, 𝑋1, and 𝑋3, respectively. 

The corresponding interference effect between the complex interband transition matrices 

( ⟨𝑣𝑘|𝑣|𝑐𝑘⟩ ) and exciton amplitude ( 𝐴𝑣𝑐𝑘
𝑖 ) is essential for determining the overall dipole 

oscillator strength of excitons [note that the exciton dipole oscillator strength is proportional to 

the square of 𝐼𝑖(𝜔)). Since monolayer CrCl3 is FM and lacks time reversal symmetry, 𝑆𝑖(𝜔) and 

its integral 𝐼𝑖(𝜔) are complex functions. To address main characters, we only plot the real part of 

𝑆𝑖(𝜔) and 𝐼𝑖(𝜔)  in Figures 4.6 (d) - (f) for the exciton states 𝑋0, 𝑋1 and 𝑋3, respectively. The 

imaginary part is similar. These plots essentially show how e-h interactions obtain dipole 

oscillator strength from interband transitions at different energies and reform them into 

corresponding excitons. Like previous studies on graphene [79], the energy distribution of 𝑆𝑖(𝜔) 

of all studied excitonic states is spread over a wide energy range, which is consistent with their 

large binding energies.  

For the dark exciton 𝑋0, there is a coherent cancellation of 𝑆𝑖(𝜔). As shown in Figure 4.6 (d), 

𝑆𝑖(𝜔) fluctuates positively and negatively with similar amplitude at all energies. As a result, the 

integral of 𝑆𝑖(𝜔) is not able to build up over the energy range and produces a small overall 

𝐼𝑖(𝜔). This is the reason for the tiny dipole oscillator strength of 𝑋0. This interference effect 

between interband transition matrix elements and exciton wave functions is less prominent for 

the bight exciton state 𝑋1, especially at the low energy side. As shown in Figure 4.6 (e), 𝐼𝑖(𝜔) 

grows dominantly from the quasiparticle band gap around 4.7 eV, and nearly saturates after 5 

eV. This indicates that the dipole oscillator strength of the bright exciton 𝑋1  is mainly 
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contributed by those flat bands around band edges. Finally, for the bright exciton 𝑋3 in Figure 

4.6 (f), there is only minor interference effect. Particularly, the interband contributions have 

nearly the same positive sign over the whole energy range. As a result, the integral 𝐼𝑖(𝜔) builds 

consistently along the way to higher transition energies, resulting in a large oscillator strength. In 

a word, the dramatically different optical dipole oscillator strength of excitons with similar e-h 

binding energy is mainly from the interference effect between the complex interband transitions 

and exciton amplitude involved in forming excitons. 

 

4.4 Bilayer CrCl3 

Compared with monolayer CrCl3, the interlayer magnetic order and stacking sequence in bilayer 

CrCl3 bring more degrees of freedom. First, as shown in Figure 4.1, there are two 

crystallographic structures of bulk CrCl3. Unlike bulk CrCl3, recent experiments have shown that 

no crystallographic transition was observed in few layer CrCl3, keeping a monoclinic HT phase 

structure at low temperatures [80]. Nevertheless, in order to identify the possible influence of 

crystallographic structure on the electronic and optical properties of bilayer CrCl3, we consider 

both stacking sequences in our calculations. Second, the energy difference of interlayer FM and 

AFM orders is small, less than 5 meV/Cr as shown in previous calculations [57,81] and depends 

critically on the approach used [81]. Although interlayer AFM order is widely observed in 

available measurements [57,66,67,80], the FM order can be easily achieved by applying a small 

magnetic field as shown by recent experiments [57,66,67]. Therefore, we will consider both 

interlayer AFM and FM orders in the following calculations of bilayer CrCl3. 
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The DFT-calculated band structures are summarized in Figure 4.7 for AFM/FM and LT/HT 

configurations of bilayer CrCl3. For the interlayer AFM order shown in Figures 4.7 (a) and 4.7 

(c), the bands of the two layers are almost degenerate, with opposite spin components from each 

layer. For the interlayer FM order shown in Figures 4.7 (b) and 4.7 (d), the two layers have the 

same spin components, resulting in an overall double-degenerated spin up band-edge states. 

Meanwhile, the  
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Figure 4.7 DFT-calculated band structure of bilayer CrCl3: (a) LT rhombohedral stacking with an 

AFM interlayer coupling; (b) LT rhombohedral stacking with a FM interlayer coupling; (c) HT 

monoclinic stacking with an AFM interlayer coupling; (d) HT monoclinic stacking with a FM 

interlayer coupling. The energy of the valence band maximum is set to be zero. 
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band structures and band gaps of LT and HT phases are similar, except that the monoclinic HT 

structure exhibits a little larger splitting of the bands than the rhombohedral LT structure. 

The GW-calculated QP energy vs the DFT results are summarized in Table 4.2. Because of the 

similar reasons for enhanced self-energy corrections as in monolayer CrCl3, significant QP 

energy corrections are obtained in bilayer CrCl3. For example, the QP band gap of bilayer 

rhombohedral LT phase AFM CrCl3 is increased from a DFT value of 1.84 to 4.45 eV. As shown 

in Table 4.2, these self-energy corrections are not sensitive to the interlayer structure or magnetic 

order; the self-energy corrections are around 2.6 eV for all four configurations. On the other 

hand, this GW correction is around 200 meV smaller than that of monolayer. This is mainly from 

the increased screening in bilayer structures.   

The optical absorption spectra of these four configurations are presented in Figure 4.8. Like the 

results of QP energies, the optical absorption spectra are similar for all four configurations. 

Therefore, many-electron effects and linear optical absorption spectra are not sensitive to the 

interlayer crystallographic structure and magnetic orders. Take the bilayer LT phase of AFM 

CrCl3 as an example [Figure 4.8 (a)]. Without e-h interactions, the absorption edge starts at 

around 4.5 eV, which is due to the QP band gap. After including e-h interactions, a significant 

red shift of the optical spectrum is observed. Like the result of a monolayer, the main optical 

spectrum is still located between 3 and 5 eV, although the QP band gap is reduced by around 200 

meV compared with monolayer. Moreover, the two characteristic excitonic peaks, 𝑋1 and 𝑋2, are 

observed in all spectra. Their energies are similar for all four configurations as well. 

Interestingly, the energies of 𝑋1 are slightly higher than that of monolayer. As seen from Table 

4.2, the GW correction for AFM rhombohedral (LT) bilayer is 2.61 eV, which is about 200 meV 

smaller than that of the monolayer. However, the e-h binding energy of the bilayer is reduced by 
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about 300 meV than that of the monolayer. As a result, the absolute value of exciton energy is 

slightly increased finally. This is an opposite trend according to the usual quantum confinement 

effect, in which thinner samples show a blue shift of the optical spectrum [48,49,52].  

In most typical semiconductors, the e-h binding energy is usually smaller than GW self-energy 

correction. As a result, even if e-h binding energy and self-energy correction follow a similar 

scaling law as the dielectric screening environment changes, the reduction of e-h binding energy 

is smaller than that of the self-energy correction, resulting in a normal quantum confinement 

effect (the “optical gap” is reduced for thicker samples). 

However, in CrCl3, the quasiparticle energy correction is less than the e-h binding energy for all 

studied structures, which results in lower “optical gaps” than DFT band gaps. Therefore, for 

thicker samples, the reduction of e-h binding energy is also larger than that of the self-energy 

correction, resulting in the unusual quantum confinement effect. In this sense, the fundamental 

reason is the huge e-h binding energy. Compared with typical 2D semiconductors, in which the 

enhancement of excitonic effects is mainly from the reduced screening, e-h binding energy of 2D 

CrCl3 is further enlarged by the flat bands with significant joint density of states (JDOS). 

Therefore, the unusual quantum confinement effect is essentially associated with the flat bands. 

For example, the similar behavior was reported in another flat band material CrI3 [4], where the 

“optical gap” of bulk is also larger than that of monolayer.  

Such an unusual confinement effect is due to the enhanced excitonic effects in CrCl3, where e-h 

binding energy is larger than the self-energy (GW) correction. Following a similar scaling law as 

dielectric screening increases, the reduction of e-h binding energy in thicker samples is larger 

than the reduction of self-energy correction. As a competing result, the absolute energy of the 𝑋1 
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exciton is slightly increased. In other words, this unusual quantum confinement effect is 

essentially from the flat bands with significant JDOS. This quantum confinement effect was 

reported in previous studies of other vdW magnetic structures [63]. 

 

Figure 4.8 Optical absorbance of bilayer CrCl3 without and with e-h interactions: (a) those of the 

LT rhombohedral stacking with an AFM interlayer coupling; (b) those of the LT rhombohedral 

stacking with a FM interlayer coupling; (c) those of the HT monoclinic stacking with an AFM 

interlayer coupling; (d) those of the HT monoclinic stacking with a FM interlayer coupling. The 

two characteristic excitonic peaks are marked as 𝑋1 and 𝑋2, respectively. 
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Table 4.2 Summary of DFT and GW band gaps (the values listed are for the direct band gap, and 

the values in the parenthesis are for the indirect band gap), 𝑋1 and 𝑋2 exciton energy and their 

experimental values for monolayer, bilayer and bulk CrCl3. The unit is eV. 

 
DFT band 

gap 

GW band 

gap 

𝑋1 

energy 

𝑋1 energy 

expt. 

𝑋2 

energy 

𝑋2 energy 

expt. 

Monolayer 
1.87 (1.84) 4.69 (4.66) 1.48 

~ 1.43 

(PL) [66] 
2.25 _ 

2L Rhombohedral AFM 1.87 (1.84) 4.48 (4.45) 1.55 _ 2.31 _ 

Rhombohedral FM 1.83 (1.80) 4.43 (4.40) 1.53 _ 2.29 _ 

Monoclinic AFM 1.85 (1.84) 4.44 (4.43) 1.54 _ 2.29 _ 

Monoclinic FM 1.81 (1.80) 4.41 (4.40) 1.53 _ 2.30 _ 

bul

k 

Rhombohedral AFM 

(in-plane polarization) 
1.87 (1.85) 3.89 (3.87) 1.78 

~ 1.7 

(Abs) [19,48

] 

2.51 

~ 2.3 

(Abs) [19,48

] 

 

4.5 Bulk CrCl3 

We have performed the GW-BSE calculations on bulk CrCl3. Given the results from bilayer 

CrCl3 where quasiparticle energy corrections and absorption spectra are not sensitive to the 

interlayer stacking and magnetic order, we only consider the experimentally observed 

rhombohedral bulk structure with the AFM interlayer coupling [19]. The DFT-calculated band 

structure of bulk CrCl3 is presented in Figure 4.9 (a). Interestingly, quantum confinement effects 

are nearly negligible within DFT results: the band structure and band gap of bulk CrCl3 is nearly 

the same as those of monolayer and bilayer structures.  

The GW-calculated QP energy vs the DFT results are summarized in Table 4.2. Significant self-

energy corrections are observed in bulk CrCl3. Because of stronger screening in three 
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dimensions, the GW enlargement of the band gap is around 2.0 eV, and it is smaller than those in 

the monolayer (around 2.8 eV) and bilayer (around 2.6 eV). Nonetheless, this reduction of band 

gap from the monolayer (~ 4.66 eV) to bulk (~ 3.87 eV) is significantly smaller than other 

typical semiconductors such as black phosphorous (~ 2 eV in the monolayer and less than 0.3 eV 

in bulk) [48] and tellurium (~ 2.35 eV in the monolayer and less than 0.41 eV in bulk) [52]. 

Further we have calculated the absorption spectrum 𝜀2(𝜔)  of bulk CrCl3. Because the 

depolarization effect is negligible in bulk structures, we consider both in-plane and out-of-plane 

polarizations of incident light, as shown in Figures 4.9 (b) and 4.9 (c), respectively. As expected, 

before including e-h interactions, both the optical absorption spectra start from the QP band gap 

around 3.9 eV. Excitonic effects substantially shift the main optical absorption spectrum to 

between 3 and 4 eV. For in-plane polarized incident light [Figure 4.9 (b)], those two 

characteristic excitonic peaks (𝑋1 and 𝑋2) are similar to the monolayer and bilayer cases and are 

located at 1.78 and 2.51 eV with e-h binding energies of 2.11 and 1.38 eV, respectively. These 

exciton energies are higher than those of the bilayer (1.55 and 2.31 eV) and monolayer (1.48 and 

2.25 eV), exhibiting an opposite trend of the usual quantum confinement effects according to the 

same reason as explained in the Chap. 4.4 for bilayer CrCl3. Moreover, the dipole oscillator 

strength of these two characteristic peaks is also enhanced. This can be from the stronger 

interlayer hybridization that enhances the overlap of electron and hole wave functions and 

corresponding transition matrices.  
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Figure 4.9 Electronic and optical properties of bulk CrCl3 in the LT rhombohedral stacking with 

an AFM interlayer coupling: (a) the DFT-calculated band structure. The energy of the valence 

band maximum is set to be zero. The optical absorption spectra without and with e-h interactions 

for incident light polarized in the (b) in-plane and (c) out-of-plane direction. 

 

The dipole oscillator strength distribution is largely different for different incident-light 

polarizations, resulting in a highly anisotropic optical spectrum. For incident light polarized 

along the out-of-plane direction [Figure 4.9 (c)], the characteristic peak 𝑋2 becomes optically 

dark, and the dipole oscillator strength of 𝑋1 is further enhanced. In addition, the main absorption 

between 3 eV and 4 eV develops into more isolated absorption peaks around 3.1 and 3.8 eV. The 
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redistribution of exciton dipole oscillator strength under different incident light polarization may 

be employed in experiments to detect the crystal orientation. 

There are extensive experiments on the absorption spectrum of bulk CrCl3, as summarized in 

Table 4.2. In Refs. [19,48], they reported absorption peaks around 1.7 and 2.3 eV for bulk CrCl3. 

These are in good accordance with our calculated absorption peaks at 1.78 eV (𝑋1) and 2.51 eV 

(𝑋2) and their energy splitting (0.73 eV). It has to be pointed out that the measurements of 

Ref. [48] were performed at 80 and 300 K, which are above the Néel temperature (14 K) of bulk 

CrCl3. It could be a problem to compare our results under a perfect AFM order to measurements 

of the paramagnetic order. Unfortunately, we cannot find optical measurements of bulk CrCl3 

under its Néel temperature. On the other hand, there is a report of another A-type AFM material 

CrPS4, in which the photoluminescence peak positions are not shifted when passing the Néel 

temperature [83], although the peak width and shape change as temperature increases. Therefore, 

we expect that those absorption peaks in Refs. [57,82] will not be substantially changed by the 

magnetic order. 

 

4.6 Evolution of band gaps and excitons with 

dimensionality 

Finally, we have summarized the evolution of band gaps and characteristic excitons of CrCl3 

from monolayer, bilayer, to bulk. Given available measurements and the insensitivity of 

electronic and optical properties to the interlayer stacking and magnetic configurations, we use 

the results of interlayer LT structures and AFM coupling, and the fitting results are universal for 

all configurations. In Figure 4.10 (a), the evolution of the DFT and QP band gaps as well as the 
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“optical gap” (the first bright exciton peak 𝑋1) is presented. To quantitatively provide the band 

gap dependence on the layer number, we employ the widely used empirical power law 

formula [48,49,84]: 

                                                                     𝐸𝑁 = 𝐸𝑏𝑢𝑙𝑘
∞ +

𝐴

𝑁𝛼
,                                                               (4.6) 

where 𝑁 is the layer number and 𝐸𝑏𝑢𝑙𝑘
∞  represents the bulk value. The fitted results are included 

in Table 4.3. Although the DFT band gap barely changes from monolayer to bulk, the significant 

QP energy corrections reflect the trend of the increased dielectric screening effect. The failure of 

DFT in predicting the band gap as well as the dielectric screening effect indicates it is important 

to go beyond DFT in calculating the electronic properties of vdW layered magnetic materials 

even for obtaining qualitative trends of quantum confinement. Interestingly, the GW-calculated 

band gap follows the 1/𝑁0.5  power law. This decay is slower than the usual quantum 

confinement case with 1/𝑁2 [84] based on free-electron gas, and indicates that many-electron 

correlations are significantly less sensitive to the quantum confinement in correlated CrCl3.  

Table 4.3 Fitting parameters of DFT, QP band gaps, and “optical gap” (energy of the first bright 

exciton 𝑋1) to the layer number according to the power law formula 𝐸𝑏𝑢𝑙𝑘
∞ + 𝐴/𝑁𝛼. 

  

 DFT QP “Optical gap”  

𝛼 0.03 0.51 0.48 

A -0.01 0.79 -0.30 
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In Figure 4.10 (b), we focus on those two characteristic peaks (𝑋1 and 𝑋2). As noticed in above 

presentations, the brightness of these two excitons are sensitive to the layer number of structures. 

As shown in Figure 4.10 (b), the absorbance of the lower-energy exciton (𝑋1) is more sensitive 

to the thickness, and it is increased from 0.06% in monolayer to 0.25% in bulk. Thus, we expect 

these two characteristic excitons can be useful to estimate the thickness of samples. 

 

Figure 4.10 (a) Evolution of DFT, QP band gaps and “optical gap” (energy of the first bright 

exciton 𝑋1) of CrCl3 with the layer number. The dashed lines are power law fits to the results. (b) 

Evolution of the optical absorbance of the characteristic peaks 𝑋1 and 𝑋2 with the layer number. 

 

4.7 Conclusions 

In summary, we have systematically studied the electronic and optical properties from 

monolayer, bilayer to bulk CrCl3 using a first-principles MBPT approach. Unlike typical 
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semiconductors, the increased dielectric screening in bulk CrCl3 only renders a less than 20% 

decrease in the QP band gap relative to the monolayer case, and the energy of the lowest bright 

exciton is even slightly increased from monolayer to bulk. Besides, the absorption spectrum of 

bulk CrCl3 resembles that of the monolayer, with significant e-h binding energy of the lowest 

exciton state around 2 eV compared with 3 eV in monolayer CrCl3. The physics origin of 

different dipole oscillator strengths between excitons is discussed based on the interference effect 

between exciton wave functions and interband transition matrices. Our calculated results are in 

good agreement with available measurements. Finally, we find that the absorption spectra of the 

vdW magnet CrCl3 is not sensitive to the interlayer magnetic order or stacking structure. 

Magneto-optical probes such as the Kerr effect and MCD may be needed in future experiments 

to probe the magnetic order in these magnetic materials. 
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Chapter 5: Moiré Potential Renormalization 

Induced by Quasiparticle-Plasmon Coupling 

 

5.1 Introduction 

Moiré potential profile can form flat electronic bands and manifest novel correlated states of 

electrons, where carrier doping is essential for observing those correlations. In this work, we 

uncover a hidden but remarkable many-electron effect: doped carriers form a two-dimensional 

plasmon and strongly couple with quasiparticles to renormalize moiré potential and realize ultra-

flat bands. Using many-body perturbation theory, we demonstrate this effect in twisted 

MoS2/WS2 heterobilayer. The moiré potential is significantly enhanced upon carrier doping, and 

the bandwidth is reduced by an order of magnitude, leading to drastic quenching of electronic 

kinetic energy and stronger correlation. We further predict that the competition between 

correlated mechanisms can be effectively controlled via doping, giving hope to a quantum 

transition between Mott and charge-transfer insulating states. Our work reveals that the potential 

renormalization effect of doping is much more significant in determining and controlling many-

electron electronic correlations than sole filling-factor tuning in moiré crystals. 

When two van der Waals (vdW) layers are stacked together, moiré patterns naturally form along 

with a lattice mismatch or twist angle between the constituent layers. Due to the intrinsic 

periodic potential, flat moiré bands can be formed [1], which induce complex correlated physics, 

such as the superconductivity and insulating states observed in twisted bilayer graphene [2,3]. 

Recently, twisted transition metal dichalcogenide (TMD) heterobilayers have gained increasing 

attention, where the layer degeneracy is natively broken, and the semiconducting nature provides 
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higher electrical tunability and optical accessibility  [86–93]. Mott insulating and generalized 

Wigner crystal states were observed in half and fractionally filled TMD moiré superlattices as a 

result of correlated quantum physics  [20,21,94–99]. Furthermore, displacement field-induced 

quantum anomalous Hall effect was predicted and observed in half hole-filled MoTe2/WSe2 

moiré lattices due to the interlayer hybridization  [100–102]. These works establish TMD 

heterobilayers as a versatile playground for forming flat bands and studying correlated quantum 

phenomena. 

Gate-field tunable filling factor is essential in realizing the above correlated physics in two-

dimensional (2D) moiré systems. To date, most works have adopted the assumption that doped 

carriers effectively tune the filling factor while not affect quasiparticle (QP) energies and hence 

the moiré potential. However, doped carriers will inevitably alter the electronic screening, which 

is known important in determining the strong many-electron interactions and QP energies in 2D 

structures  [103–107]. Besides, moiré potential will naturally induce inhomogeneous carrier 

distributions within moiré superlattices. As a result, inhomogeneous many-electron effects are 

expected, which may substantially revise the moiré potential, the dispersion (kinetic energy) of 

electronic bands, and the subsequent correlated physics pictures.  

In this work, we employ first-principles many-body perturbation theory (MBPT) to study the 

renormalization of moiré potential under carrier doping. Figure 5.1 (a) schematically shows the 

doping effects on quasielectron moiré potential and wavefunctions. Because of inhomogeneous 

carrier distributions, the doped area will experience lowered QP potential via QP-plasmon 

renormalization  [106–109]. Thus, the moiré potential minimum further deepens, and the 

quasielectron wavefunction becomes more localized in the case of carrier occupation, quenching 

the electronic kinetic energy and forming ultra-flat bands. We take twisted MoS2/WS2  
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Figure 5.1 Carrier plasmon induced quasiparticle energy renormalization. (a) Schematic of 

doping enhanced moiré potential in semiconducting vdW superlattices. 𝑉(𝑟) and 𝑤(𝑟) are the 

real-space moiré potential and wavefunction of quasielectrons, respectively. Under doping, the 

potential minimum drops due to inhomogeneous carrier distributions and QP energy 

renormalization. (b) Moiré superlattice formed by a twist between the 𝐻-type MoS2/WS2. The 

three high symmetry stackings 𝐻ℎ
ℎ, 𝐻ℎ

𝑋 and 𝐻ℎ
𝑀 are labeled for simplicity as 𝐴, 𝐵, 𝐶, 

respectively. (c) Intrinsic moiré QP potential landscape along the three interlayer registries. The 

red dots represent first-principles GW results. (d) Band gap and (e) CBM renormalization for the 

three interlayer registries of 𝐻 type MoS2/WS2 under electron doping. The dots are from many-

body perturbation theory calculations. 
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heterobilayer as an example to illustrate the mechanism of doping enhanced quasiparticle moiré 

potential. Our quantitative calculations show that a moderate doping density renders an increase 

of the moiré potential variation from 90 meV to 300 meV and can reduce the low-energy moiré 

band width by an order of magnitude. Moreover, we find that doped carriers alter the 

characteristic potential scales (e.g., on-site Coulomb repulsion 𝑈 and charge transfer gap ∆) in 

different ways. As a result, a quantum phase transition from Mott insulator to charge-transfer 

insulator is predicted as the twist angle varies. Therefore, besides the apparent filling factor 

control, doping will effectively modify the moiré potential and can serve as another tuning knob 

for achieving ultra-flat bands and correlated physics.  

The ground state calculations are performed with Quantum ESPRESSO  [28], and the intrinsic 

self-energies are obtained by BerkeleyGW  [40]. The coupling between carrier plasmon and QPs 

are included by the generic double plasmon pole model  [106,107]. We do not include spin-orbit 

coupling, which does not significantly change self-energy corrections in TMDs and can be 

estimated by a rigid shift to QP energies  [110,111]. In this work, we limit our discussions within 

single-particle properties. Optical properties associated with two-particle excitations, such as 

excitons, are not discussed but worthy of future studies. 

 

5.2 Computational methods 

The ground state properties of the MoS2/WS2 heterobilayer are calculated by density functional 

theory (DFT) within the general gradient approximation (GGA) using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional as implemented in Quantum ESPRESSO 

package  [28]. A 36 × 36 × 1 k-grid is adopted, and the van der Waals (vdW) interactions are 
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included via the semiempirical Grimme-D3 scheme  [112]. The plane-wave energy cutoff is 65 

Ry. The vacuum distance between adjacent layers is set to be 18 Å. The many-body perturbation 

theory (MBPT) calculations for intrinsic structures are performed with BerkeleyGW  [40]. The 

intrinsic quasiparticle (QP) energies are calculated by using the single-shot G0W0 approximation 

including the slab Coulomb truncation. The energy cutoff for the dielectric matrix is 10 Ry, and 

224 unoccupied bands are used for the summation. For the calculation of plasmon energies, a 

dense k-grid of 90 × 90 × 1 is used. An energy cutoff of 2 Ry and 34 unoccupied bands are 

sufficient to get converged plasmon frequencies. All parameters are tested for QP energy 

convergence within 50 meV. 

When filling electrons in the conduction band minimum (CBM) moiré potential, we sweep the 

Fermi energy and determine the local doping density by the energy difference between the Fermi 

energy and the local potential. The Fermi energy is chosen when the integrated doping density 

over the moiré superlattice is within 1% difference with the number of doped electrons. Then the 

renormalized moiré potential is determined by the CBM renormalization at local doping density 

as in Figure 5.1 (e). We self-consistently run the potential renormalization process until 

convergence is reached (i.e. the Fermi level variation between two consecutive steps is less than 

1 meV). 

 

5.3 Quasiparticle band renormalization 

Figure 5.1 (b) shows the moiré superlattices formed by a twist between the 𝐻 stacked MoS2/WS2 

bilayers. Three distinct high symmetry stacking orders 𝐻ℎ
ℎ , 𝐻ℎ

𝑋  and 𝐻ℎ
𝑀  can be recognized 

(labeled for simplicity as 𝐴 , 𝐵 , 𝐶  in Figure 5.1 (b), respectively), where the superscripts 
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represent a hollow/chalcogen/metal atom center in the top layer that is vertically aligned with a 

hollow center in the bottom layer, respectively. The atomic structures of the three local registries 

are shown in Figure 5.2 (a), and the quasiparticle band structure for the 𝐻ℎ
ℎ stacking is shown in 

Figure 5.2 (b). The corresponding results for 𝑅 stacked MoS2/WS2 are shown in Figure 5.3, 

along with the intrinsic moiré potential landscape. In the following sections, we will take the 𝐻 

stacking as an example, and the results for 𝑅 stacking should be similar. 

 

 

Figure 5.2 Intrinsic quasiparticle electronic structures. (a) Moiré superlattice formed by a twist 

between the 𝐻-type MoS2/WS2. (b) Local stacking orders of three high-symmetry interlayer 

registries as labeled in (a). (c) QP band structure of intrinsic 𝐻ℎ
ℎ stacked MoS2/WS2. The energies 

are relative to the vacuum level. The projected layer components are represented by the color 

bar. 
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Figure 5.3 Intrinsic moiré potential of 𝑅 type heterobilayer. (a) Moiré superlattice formed by a 

twist between the 𝑅 stacked MoS2/WS2. The three high symmetry local registries are labeled. (b) 

The local stacking orders (top view and side view) of the three registries as labeled in (a). (c) 

Real space moiré potential of the conduction band minimum in 𝑅 stacked MoS2/WS2. (d) Moiré 

potential landscape along the three interlayer registries. 

 

The ab initio QP self-energy of the three local atomic registries are calculated under the GW 

approximation, Σ = 𝑖𝐺𝑊. The CBM for three high-symmetry stackings are all at 𝐾 point in the 

reciprocal space. The locally varying stackings cause a periodic modulation of the CBM energy. 
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Quasielectrons in the superlattice hence experience a periodic potential, which can be 

interpolated by a Fourier expansion over the nearest moiré reciprocal lattice vectors 

                                𝑉(𝒓) = 𝐸𝑐(𝒓) = 𝑇0 + 2𝑉0 ∑ cos (𝒃𝑖 ∙ 𝒓 ± 𝜓)𝑖=1,2,3 ,                                   

(5.1) 

where 𝐸𝑐  is the local CBM. For intrinsic MoS2/WS2 heterobilayer, the fitted parameters 

(𝑇0, 𝑉0, 𝜓) from ab initio MBPT are (−3.083 𝑒V, 9 𝑚𝑒V, 14°). Figure 1c plots the QP moiré 

potential calculated by Eq. (5.1) along the three high symmetry stacking sites. It agrees well with 

first-principles GW results (isolated dots), and the variation of local CBM is 90 meV. This is 

similar to previous DFT results  [88,113] since the self-energy corrections are similar for 

different stackings of the intrinsic heterobilayer. 

Considering the effects from doped carriers, the QP self-energy can be obtained by  [105–

107,114] 

Σ = 𝑖(𝐺𝑖𝑛𝑡𝑊𝑖𝑛𝑡 + 𝛿𝐺𝑊𝑖𝑛𝑡 + 𝐺𝑖𝑛𝑡𝛿𝑊 + 𝛿𝐺𝛿𝑊) 

                                          ≡ 𝑖(Σ𝑖𝑛𝑡 + Σ1 + Σ2 + Σ3).                                                                 

(5.2) 

The subscript 𝑖𝑛𝑡  denotes the operator in the intrinsic structure, and 𝛿  terms account for the 

doping effects. Σ1 is only affected by the carrier occupation 

                          𝛴1
𝑛𝒌(𝐸) = −𝛴𝑛′,𝐺𝐺′ ∫

𝑑2𝒒

(2𝜋)2𝒒<𝑘𝑓
𝜉𝑮𝑮′

𝑛𝑛′
(𝒌, −𝒒)𝑊int,𝑮𝑮′(𝒒, 𝐸 − 𝜀𝑛𝒌−𝒒),               

(5.3)           
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where 𝜉𝑮𝑮′
𝑛𝑛′

(𝑘, 𝑞) = 𝑀𝑛𝑛′
∗ (𝒌, 𝒒, 𝑮)𝑀𝑛𝑛′(𝒌, 𝒒, 𝑮′)  contains the band structure effect and 

𝑀𝑛𝑛′(𝒌, 𝒒, 𝑮) is the plane-wave matrix element. 𝑘𝑓  is the Fermi wave vector. Σ2 and Σ3  have 

contributions from the variation of dielectric screening 𝛿𝑊 = 𝑣𝛿𝜖−1 , where 𝑣  is the bare 

Coulomb interaction. The calculation of 𝛿𝜖−1 requires a description of the interaction between 

carrier plasmon and quasiparticles. As shown in previous works  [106,107], the dynamical 

screening effect can be accounted for by an approximation to the head matrix elements using the 

carrier-plasmon pole model 𝛿𝜖00
−1(𝑞, 𝜔) =

Ω𝑑
2 (𝑞)

𝜔2−𝜔𝑑
2(𝑞)

, where Ω𝑑(𝑞) and ω𝑑(𝑞) are the plasmon-

pole strength and frequency that can be obtained by first-principles calculations  [106,107]. The 

explicit forms for Σ2 and Σ3 are thus 

                           𝛴2
𝑛𝒌(𝐸) = ± ∫

𝑑2𝒒

(2𝜋)2𝑞<𝑞𝑐
𝜉𝟎𝟎

𝑛𝑛(𝒌, −𝒒)𝛿𝑊𝟎𝟎
±  (𝒒, 𝐸 − 𝜀𝑛𝒌−𝒒),                               

(5.4) 

                           𝛴3
𝑛𝒌(𝐸) = − ∫

𝑑2𝒒

(2𝜋)2𝑞<𝑘𝑓
𝜉𝟎𝟎

𝑛𝑛(𝒌, −𝒒)𝛿𝑊𝟎𝟎 (𝒒, 𝐸 − 𝜀𝑛𝒌−𝒒),                               

(5.5)            

where ± in Σ2 are for conduction and valence states, respectively. Σ1 and Σ3 include the effect of 

partial band filling, hence under electron doping, they only contribute to the conduction band 

energy renormalization, and are integrated to the Fermi wavevector 𝑘𝑓. As a result, Σ1 roughly 

scales as −𝜖𝑖𝑛𝑡
−1𝑘𝑓  and Σ3  scales as −𝛿𝜖−1𝑘𝑓 . Σ2 , on the other hand, is related to the carrier 

screening, and contribute to the energy renormalization of both valence and conduction bands.  
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Figure 5.4 Self-energy contributions to quasiparticle energy renormalizations. Individual self-

energy contributions to quasiparticle band gap renormalization for (a) 𝐻ℎ
ℎ (b) 𝐻ℎ

𝑋 (c) 𝐻ℎ
𝑀 local 

stacking orders at different doping densities. The dots are from many-body perturbation theory 

calculations, and the lines are interpolations. 

Under the linear response theory, we integrate Σ2  up to a cutoff wavevector 𝑞𝑐 = 0.16 𝒃 for 

converged self-energies in the studied heterobilayer. The individual contributions of Σ1, Σ2, and 

Σ3 to the on-shell QP self-energies are shown in Figure 5.4. 

The QP self-energy under a self-consistent GW calculation is obtained by a rigid shift of the 

whole resonance profile so that the on-shell energy of Σ  coincides with the QP 

solution  [106,107]. Figures 5.1 (d) and (e) show the band gap and CBM renormalization for the 

three high-symmetry registries under doping, respectively. The results for valence band 

maximum are listed in Figure 5.5. As manifested by Figure 5.1 (d), the band gap renormalization 

(BGR) is most prominent in the light-doping side and gradually saturates to around 300 meV for 

all three stackings at high doping densities ~2.3 × 1013 cm−2. Compared to monolayer MoS2, 

whose BGR reaches about 500 meV at doping density ~6.0 × 1013 cm−2 [107], the band-gap 

reduction in heteobilayer is smaller and saturates faster. The origin of this difference is twofold. 

First, the intrinsic dielectric screening in a bilayer is stronger than that in a monolayer, as a 



74 

 

result, the extra screening introduced by the doped carriers Σ2 = 𝑖𝐺𝑖𝑛𝑡𝛿𝑊 is weaker. Second, the 

CBM of the heterobilayer features a hybridized 𝑄 point along the 𝛤 − 𝐾 high symmetry line, 

which lies ~100 meV above the 𝐾 point [see Figure 5.2 (b)]. As doping density increases, the 𝑄 

point also gets occupied, thus the carrier-occupation effect Σ1
𝐶𝐵𝑀 = 𝑖𝛿𝐺𝑊𝑖𝑛𝑡 at 𝐾 diminishes. In 

this regime, the carrier screening becomes the dominant mechanism of band renormalization. 

This effect is more evident in the evolution of CBM shown in Figure 5.1 (e). At low doping 

densities, the CBM drops dramatically, and after the onset of filling at 𝑄, the CBM saturates with 

a slight uprise. The uprise is due to the transition from a holelike resonance to an electronlike 

resonance of Σ2
𝐶𝐵𝑀 + Σ3

𝐶𝐵𝑀   [106] and the saturation of Σ1
𝐶𝐵𝑀 . Note that the onset of 𝑄 

occupation happens at ~2.3 × 1013 cm−2  for 𝐻ℎ
ℎ  and 𝐻ℎ

𝑀  stackings, and at ~3.4 × 1013 cm−2 

for 𝐻ℎ
𝑋 owing to their distinct 𝐾 and 𝑄 energy difference. These two factors together cause the 

reduced BGR in heterobilayer and its facilitated saturation behavior. 

 

Figure 5.5 Carrier induced valence band renormalization. Valence band renormalization under 

electron doping for the three atomic registries. The dots are from first principles calculations, and 

the solid lines are fitted results. 
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5.4 Moiré potential landscape renormalization and ultra-

flat bands 

Under electron doping, the variation of the CBM at different local stackings renders an 

inhomogeneous carrier density within superlattices, which further modifies the moiré potential 

landscape according to the doping dependent band renormalization [see Figure 5.1 (e)]. We find 

out the doping modulated moiré potential by firstly filling electrons into the intrinsic 

heterobilayer potential landscape [Figure 5.1 (c)]. Then we self-consistently update the 

quasielectron moiré potential according to the CBM renormalization at local electron densities. 

The typical iteration number for convergence is about 8~10.  

 

Figure 5.6 Moiré potential renormalization under carrier doping. Real-space moiré potential of 

the 2° twisted MoS2/WS2 (a) intrinsic structure (b) doped with 𝑛 = 1 electron per moiré 
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superlattice (c) doped with 𝑛 = 5 electrons per moiré superlattice. The charge-transfer gap ∆ is 

labeled in (b) and (c). 

 

The moiré potentials of intrinsic and doping renormalized MoS2/WS2 heterobilayer at 2° twist 

angle are presented in Figure 5.6. The overall moiré potential variation increases from around 

90 meV in the intrinsic structure and saturates to over 300 meV under a moderate doping density 

(~1.3 × 1012 cm−2 or half-filling 𝑛 = 1 electron per moiré supercell). The dramatic change in 

the potential landscape is accompanied by an alteration of the moiré bands. The moiré band 

structures can be obtained by solving the moiré band Hamiltonian under the continuum 

model  [113,115],  

                                                              ℋ =
ℏ2𝑸2

2𝑚
+ 𝑉(𝒓) ,                                                          

(5.6) 

where the moiré potential 𝑉(𝒓) as defined in Eq. (5.1) now includes the doping renormalization 

effect. Figures 5.7 (a) and (b) present the moiré band structures at a 2° twist angle for intrinsic 

and half-filled superlattices, respectively. The bandwidth of the lowest conduction band shrinks 

from 5 meV to 0.04 meV and becomes extremely flat under doping. The ultra-flat bands will 

affect a wide range of transport and optical properties, such as quenched electric conductivity 

due to heavy effective mass and strong excitonic effects via the enhanced van Hove singularities.   

Meanwhile, the vanishing bandwidth indicates very weak inter-moiré-cell hoppings, pushing the 

system to the strong-correlated limit. Particularly, the lowest-energy flat band is isolated from 

the second mini band by 70 meV, while in the intrinsic structure, this energy separation is only 
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10 meV. As a result, the doping enhanced moiré potential not only flattens the bands but also 

isolates them, so that the flat bands are more robust to external perturbations and accessible in 

experiments. 

We further plot the real-space wavefunctions of the low-energy moiré bands in Figures 5.7 (c) 

and (d). Consistent with a flat-band picture, the wavefunctions of the doped system show a much 

more concentrated structure. Specifically, the 𝑠 orbital band I wavefunction is highly localized at 

the potential minimum (𝐻ℎ
𝑋  site), whereas the wavefunction smears over adjacent potential 

minima in the intrinsic structure. Interestingly, the wavefunctions of the degenerate bands II and 

III show orthogonal symmetric p orbital characters as an isolated “atom”. While in the intrinsic 

case, the wavefunctions of the non-degenerate bands II and III are not symmetric. Therefore, due 

to the enhanced moiré potential, the electronic states in a doped system resemble large 

wavelength artificial atomic arrays. Besides, since the energy separation between the lowest flat 

minibands are large, the trapped periodic “cold atoms” can be stable even under room 

temperature. 
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Figure 5.7 Isolated ultra-flat bands in doped moiré system. Low-energy moiré QP band structure 

of 2° twisted MoS2/WS2 (a) intrinsic structure (b) doped with 𝑛 = 1 electron per moiré 

superlattice. (c) and (d) Real-space wavefunctions associated with the three lowest conduction 

bands I, II and III shown in (a) and (b), respectively. (e) Variation of bandwidth in terms of the 

twist angle. (f) Variation of bandwidth in terms of the average doping density. The vertical axes 

in (c) and (f) are shown in log scale for clarity. 

 

In Figures 5.7 (e) and (f), we summarize the band I width as functions of twist angle 𝜃 and 

average doping density 𝑛0, respectively. The shrinkage of bandwidth is significant at low doping 
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density. As shown in Figure 5.7 (e), the bandwidth shrinks from around 40 meV to 5 meV as the 

twist angle varies from 4° to 2° in the intrinsic structure, whereas the bandwidth reaches less 

than 1 meV under 2.5° at slight doping 𝑛0 = 0.7 × 1012 cm−2. The correlated physics hence is 

reachable in a larger range of twist angles in the doped system. Moreover, the moiré bandwidth 

experiences a dramatic decrease under slight carrier doping and becomes an order smaller than 

the intrinsic structure for 2° and 3° twist angles [see Figure 5.7 (f)]. This is in accordance with 

Figure 5.6, where the overall potential variation increases significantly at low doping density and 

saturates with further doping.  

It is worth justifying the validity of continuum model with our many-body calculations. First, 

within our studied doping density range, the quasielectron-plasmon interaction range can be 

estimated by the characteristic scale 2𝑘𝑓  [107], which is about 0.1 𝒃. Hence the real space extent 

of the doping altered dielectric screening is about 10 unit cells (~3 nm), which is smaller than 

the studied moiré superlattices (~ 10 nm for a 2° twist angle). Second, the Wannier extent of the 

s orbitals of the localized electrons in real space can be approximated by a harmonic expansion 

of 𝑉(𝒓)  around the potential minimum 𝑎𝑊 = (ℏ2/16𝜋2𝑚𝑉0)1/4
√𝑎𝑀   [113,116]. At 2°  twist 

angle and 𝑛 = 1  doping, 𝑎𝑊 = 1.2 𝑛m , which is significantly smaller than the moiré lattice 

constant and consistent with a flattened-band picture as shown in Figures 5.7 (a) – (d). Thus, our 

many-body treatment of the local dielectric screening under carrier doping shall be valid within 

the studied small twist angles (up to 4°). 
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5.5 Phase transition between Mott and charge-transfer 

insulators 

The substantial renormalization of moiré potential by doped carriers will impact and alter a broad 

range of properties. Here we take the discussion of Mott and charge-transfer insulating states as 

an example, which is crucial for realizing unusual superconductivity. Despite the insulating 

states observed in doped 2D moiré crystals, the nature of these insulating states is still in 

controversy  [116,117]. Particularly, for the moiré potential with multiple minima, the formation 

of insulating states can have two origins. When the local Coulomb interaction 𝑈 is smaller than 

the potential difference ∆ between minima, the ground insulating state is a Mott insulator. On the 

other hand, if 𝑈 > ∆ , it is a charge-transfer insulator. In TMD heterostructures, the on-site 

Coulomb interaction is typically on the order of hundreds of meV, while the DFT-calculated 

charge-transfer energy (∆) is generally on the order of tens of meV [113,116]. In this regard, the 

TMD heterostructures are normally within the charge-transfer picture. However, the many-body 

doping effect may change this picture.  

The half-filling doping significantly increases the charge transfer energy from 22 meV [Figure 

5.6 (a)] to 228 meV [Figure 5.6 (b)] for 2° twisted MoS2/WS2 heterobilayer. Meanwhile, the 

local Coulomb interaction 𝑈  can be estimated by 𝑈 = 𝑒2/4√2𝜋𝜖𝑎𝑊   [113], where 𝜖  is the 

average dielectric constant related to the heterobilayer entities and substrate environment. The 

variation of 𝑈 and ∆ with twist angle are summarized in Figures 5.8 (a) and (b) for half-filling 

𝑛 = 1  at 𝜖 = 7  and 10 , respectively. For 𝜖 = 7  [Figure 5.8 (a)], a quantum phase transition 

between Mott and charge-transfer insulating states happens at around 2.5°  as twist angle 

increases. At small twist angle (i.e., small average doping density under the same filling factor), 

∆ exceeds 𝑈 due to the enhanced moiré potential and charge-transfer energy as shown in Figure 
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5.6 (b). Therefore, the system is in the Mott-insulating state. At larger twist angle, 𝑈 increases 

more rapidly and exceeds Δ, the system transits to a charge-transfer state. The phase transition 

happens at larger twist angle for higher dielectric constant. When 𝜖 = 10 [Figure 5.8 (b)], as 

twist angle increases, the average doping density at half filling increases because of smaller 

supercell size. As shown in Figure 5.6 (c), the second potential minimum starts to get occupied, 

and the charge-transfer barrier ∆ is reduced. The system hence transits back to a charge-transfer-

like state around the twist angle of 4.1°. Therefore, the experimentally observed insulating states 

at half and fractional fillings can have different origins depending on the average doping density 

(or twisting angle) and dielectric environment. The overall phase diagram between Mott and 

charge-transfer insulators at half filling  

 

Figure 5.8 Phase diagram of the half-filled heterobilayer. Characteristic energies of 𝑈 and ∆ at 

half filling over different twist angles for (a) 𝜖 = 7 (b) 𝜖 = 10. The purple line is for U, and the 

red line is for ∆. The background represents the ratio ∆/𝑈. The white dashed line represents the 

crossing between U and ∆, which is the critical point of the transition between Mott (to the left of 

the dashed line) and charge-transfer (CT) insulators (to the right of the dashed line). (c) Phase 
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diagram of Mott and charge-transfer (CT) insulators at half filling under different twist angles 

and dielectric constants. 

is summarized in Figure 5.8 (c). A larger environmental dielectric constant favors the Mott state 

while a larger twist angle prefers the charge-transfer insulating state. 

We notice that the shear solitons at stacking domain boundaries will influence the different 

domain sizes  [118–121]. This structural reconstruction around domain boundaries will introduce 

strain into the system, which will impact the QP energies and moiré potential. As shown in 

previous Raman measurements on twisted bilayer MoS2  [122] and first-principles simulations of 

WSe2/WS2  [123], the strain due to lattice reconstruction is less than 1%. This strain level will 

induce a change in the QP band gap in TMD of around 100 meV, and CBM/VBM individually 

up to 50 meV  [44]. Thus, strain will quantitatively affect the carrier distribution and potential 

renormalization, and the straightforward many-electron calculation in such huge moiré supercell 

is formidable for our simulation capability. On the other hand, the fundamental picture of 

enhanced moiré potential illustrated here will still be valid as long as the inhomogeneous doping 

picture sustains and induces inhomogeneous many-electron corrections. 

 

5.6 Conclusions 

In summary, we propose electron doping as a general way to induce enhanced moiré potential 

and realize pursued flat bands for quenching electronic kinetic energy in twisted semiconducting 

vdW structures. Combining first principles many-body perturbation theory and continuum 

model, we show that the nonlinear band renormalization under doping significantly deepens the 

moiré potential minimum and results in isolated ultra-flat bands. Depending on the average 
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doping density, the moiré potential landscape varies, which in turn affects the charge-transfer 

energy ∆ and may induce a quantum phase transition between Mott insulator and charge-transfer 

insulator at half-filling. Our findings are crucial for understanding the carrier filling dependent 

electronic structures in vdW superlattices, including heterobilayers and homobilayers, and 

predict that electrostatic doping can be an effective tool to tune electronic correlated physics. 
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