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ABSTRACT OF THE DISSERTATION 

Genetic and Transcriptomic Aspects of Major Depressive Disorder: In Vivo Functional Assays of 

Risk-Associated Variation, Candidate Disease Cell Types,  

and Their Pharmacologic and Sex Interactions 

by 

Bernard Mulvey 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2022 

Professor Joseph D. Dougherty, Chair 

 

Major depressive disorder (MDD) is a debilitating illness that affects hundreds of millions 

globally, with substantial personal, medical, economic, and societal consequences. While 

depression occurs more commonly in females, the biology of the brain and sex underlying this 

skewed prevalence remains unclarified. This body of work explores two aspects of how biological 

sex may influence the brain at the level of gene expression: through intrinsic sex differences and 

through sex-mediated effects of depression risk genetics. 

 

The monoamine hypothesis of depression suggests that modulatory neurotransmitters including 

serotonin and norepinephrine constitute a key axis in development of MDD. Large-scale studies 

of MDD treatment response have found that women respond better to serotonergic agents, while 

males respond better to mixed serotonergic-noradrenergic agents, suggesting one or both of these 

cell types may play a role in sex-differentiated MDD risk biology. Using translating ribosome 
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affinity purification (TRAP), gene expression in norepinephrine neurons of mouse locus coeruleus 

(LC) was profiled and compared across sexes, revealing over 100 genes with both sex-differential 

and LC-enriched expression. Three female-upregulated genes of interest emerged: SLC6A15 and 

LIN28B, implicated in MDD, and prostaglandin receptor PTGER3. Pharmacologic activation of 

PTGER3 had female-specific effects on LC electrophysiology and behavior, confirming that 

genetic sex differences in noradrenergic neurons have functional consequences on these neurons 

and behavior. 

 

The role of genetic variation in MDD has recently come to be appreciated as an underlying cause 

of MDD, though whether sex interacts with genetic risk factors remains unknown. The primary 

work in this thesis focused on over 1,000 noncoding, putatively transcription-regulating common 

variants from 31 MDD-associated genomic regions—including those near LIN28B and 

SLC6A15—using functional assays in mouse brain in vivo to examine sex-by-genotype 

interactions. This work identified extensive sex-by-allele effects in mature hippocampus and, using 

TRAP, its excitatory neurons in particular. Unbiased informatics approaches indicated a role for 

nuclear hormone receptors, further supported by comparative analysis of analogous experiments 

in neonates during the masculinizing testosterone surge and in older, hormonally quiescent 

juveniles. This study provides novel insights into MDD genetics as influenced by age, biological 

sex, and cell type, and provides a framework for in vivo parallel assays to functionally define 

interactions between disease-linked genetic variation and complex biological or environmental 

variables. 

 



 1 

Chapter 1: Introduction 
Sections 1.3, 1.5, and 1.6 of this chapter were previously published: 

Mulvey, B., Lagunas, T. & Dougherty, J. D. Massively Parallel Reporter Assays: Defining 

Functional Psychiatric Genetic Variants across Biological Contexts. Biol Psychiat (2020) 

doi:10.1016/j.biopsych.2020.06.011. 

 

1.1 Abstract 
Sex differences in numerous psychiatric disorders have been recognized for decades at the level 

of patient populations, including differences in their incidence/prevalence, natural history, 

progression, and treatment responsivity. The molecular bases of such differences, however, remain 

largely unknown across psychiatry. Rapid advances in genetic and functional neuroscience 

techniques have provided glimpses into possible cellular and molecular mechanisms of sex 

differences, especially at levels of gene expression, regulation, and function. These technologies 

have been applied in human postmortem and model organism brain, affording a new depth of 

resolution in the neurogenetics of health, disease, and their interplay with sex. The vast majority 

of this work, however, has targeted single brain regions and often single genes, limiting the scope 

of genetic-molecular investigations of how sex and the brain interact. To contribute broader 

insights into the interplay of sex and genetics within the brain, I first employed existing molecular-

genetic techniques to characterize innate sex differences in an undercharacterized cell population 

implicated by pharmacotherapeutic strategies in depression: the noradrenergic locus coeruleus. 

Subsequently, I adapted high-throughput gene-regulatory assays to examine genetic risk loci for 

depression both for pharmacologic interactions in vitro and biological sex interactions in the mouse 

brain in vivo. These experiments illustrated that most depression-associated loci contain several 
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functional variants, and that sex interactions with variant regulatory effects are only observable 

during periods of sex hormonal circulation. Altogether, this body of work illustrates that sex 

differences are widespread in the molecular brain, with impacts spanning cellular physiology to 

behavior and disease risk. 

 

1.2 Major depressive disorder (MDD) 
Major depressive disorder (MDD) is a widespread psychiatric disorder, affecting hundreds of 

millions of people worldwide during the course of their lifetime. Studies of the disorder—spanning 

from levels of populations to single genomic nucleotides—point to evident sex differences in the 

prevalence, severity, recurrence, and in the underlying tissue, cellular, and molecular phenomenon 

observed in the disorder. Nonetheless, mechanisms for the influence of biological sex on MDD 

remain a vexing problem in biological and molecular psychiatry. Human and model organism 

research has implicated several brain regions and/or cell types in both the general and sex-

differentiated pathophysiology of depression, as have pharmacologic approaches to MDD 

treatment. Meanwhile, studies of genomic variation in large cohorts of MDD cases and population-

matched controls have discovered over one hundred genomic regions associated with having the 

disorder, though these studies cannot identify the precise variants that are causal for disease 

association. To characterize how sex, gene expression, and genetic risk loci may influence the 

molecular brain with respect to MDD, I utilized and developed molecular techniques: 1) to 

characterize sex differences in gene expression of norepinephrine-releasing neurons of the brain; 

2) to experimentally identify variants from MDD-associated loci which influence gene regulation 

and their interplay with retinoid signaling in vitro; and 3) to identify variants from these same 

MDD-associated loci affecting gene regulation in a sex-and-cell-type specific manner in the mouse 



 3 

brain in vivo. This introduction first describes clinical, putative biological, and genetic aspects of 

MDD, emphasizing sex differences throughout. Subsequently, a primer in genetic association 

studies, their limitations, and biological questions they raise about psychiatric disease heritability 

is provided as motivation for the experiments presented. 

 

1.2.1 Epidemiology, clinical presentation, and treatment of MDD 

Major depressive disorder (MDD) affects between to 5-15% of people in the United States1,2, with 

approximately 2/3 of lifetime diagnoses occurring in women3–5. The disorder is responsible for a 

substantial proportion of total life years effectively lost6 due to health-impaired social and 

occupational function, extending the toll of the disease on patients to families, friends, and 

communities. Moreover, MDD has been repeatedly associated with up to two-fold increases in 

cardiovascular disease risk, morbidity, and mortality7–11, compounding patient- and society-level 

burdens of the disease. 

 

MDD is characterized by nine primary features: feelings or manifestations of 

sadness/hopelessness, suicidal ideation or behavior, loss of interest (anhedonia), fatigue, excessive 

feelings of guilt, impaired concentration, and more heterogenous disruptions to psychomotor 

function (agitation or retardation), appetite/weight change (gain or loss), and sleep (insomnia or 

hypersomnia). Any five of these symptoms present on a near-daily basis are indicative of 

depression, resulting in hundreds of observable diagnostic MDD phenotypes12. MDD generally 

occurs in an episodic manner, once or more in a lifetime, with symptomatic period(s) of months 

to years followed by remission. Earlier age of onset and recurring episodes over the lifetime are 

indicative of more severe disease in both clinical13,14 and biological15–17 terms.  
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Two commonly identified patterns of depressive symptoms include “atypical” and “melancholic” 

depression, the former featuring hyperphagia, hypersomnia, and psychomotor retardation, while 

the latter features appetite loss and insomnia. Atypical depression is more common in females, 

while melancholic depression is more common in males18–21, illustrating a role for biological sex 

underlying disease manifestations. A third form of the disorder, postpartum MDD, provides an 

even stronger case for the role of biological sex in disease, as illustrated by a novel treatment 

mechanism, discussed below. 

 

One of the first pharmacotherapeutic approaches to major depression was monoamine oxidase 

inhibitors (MAOIs), which were incidentally discovered in the process of developing treatments 

for tuberculosis22. The efficacy of these drugs—which increase brain monoamine 

neurotransmitters dopamine, serotonin, and norepinephrine—was a major contributor to the 

“monoamine hypothesis” of depression23,24 and the development of (most) other 

pharmacotherapeutics for the disorder. The three main classes of antidepressants commonly used 

in treatment today are, in order of their development: tricyclic antidepressants (TCAs), which 

elevate extracellular serotonin and norepinephrine and modulate levels of several additional 

neurotransmitters; selective serotonin reuptake inhibitors (SSRIs), which selectively increase 

extracellular serotonin; and selective serotonin-norepinephrine reuptake inhibitors (SNRIs), which 

increase extracellular serotonin and norepinephrine without the myriad off-target effects of their 

TCA predecessors. Monoamine-releasing (or -receptive) areas of the brain likely play a role in sex 

differences in depression, as males show better response to TCAs, while females respond better to 

SSRIs25. Interestingly, the intersection of sex differences in depression and cardiovascular 
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comorbidities has been hypothesized to originate from dysregulated autonomic (adrenergic, 

noradrenergic, and cortisolic) functions and their modulation by the hippocampus10. 

 

Novel treatments for depression have also emerged in the last decade, including the rapidly-acting 

antidepressant ketamine, which transiently blocks glutamate receptors, resulting in days or weeks 

of symptom relief near-immediately after each dose26. More notably for our purposes, 

brexanolone, approved specifically for postpartum MDD, is a progesterone metabolite 

administered intravenously in the weeks or months after delivery. The drug modulates inhibitory 

signaling in the brain via GABA receptors27, and likely plays a role in modulating sex hormonal 

signaling given the dysregulation of female sex hormones in postpartum MDD28. 

 

1.2.2 Candidate molecular, cellular, and brain mechanisms of MDD 

Studies in depression patients have identified a number of potential features of the disease at the 

structural level of the brain. Chief among these is a loss of hippocampal volume, an observation 

replicated in several cohorts to date15,29–31. The hippocampus plays numerous roles in cognition 

and behavior, including memory formation and dampening of fear and stress circuit activity. As is 

the case for most psychiatric disorders, changes in subregions of the frontal cortex have also been 

observed and reviewed31,32. Sex differences are manifest in gross-anatomic and molecular-

pathology brain measures in MDD, including surface area and volume of the prefrontal cortex 

(PFC), with opposite disease effect directions between sexes33; female-specific loss of functional 

connectivity between frontal and parietal cortices in depression with inattentive symptoms34; and 

greater degree of volume loss in hippocampal subregions in females29. 
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The treatment approaches discussed above highlight several candidate cell types of the brain which 

may play direct roles in MDD, or whose modulation may compensate the (unknown) primary 

dysregulation. The primary monoamine targets of MDD drugs—serotonin and norepinephrine—

are released from small populations of neurons with wide-ranging projections throughout the brain, 

respectively the raphe nuclei and the locus coeruleus. Given the sex differences in antidepressant 

response discussed above, these two populations constitute candidate cell types involved in sex-

differential risk and presentation of MDD. 

 

Studies of postmortem brain gene expression have, principally, identified extensive sex differences 

across cortical and subcortical regions in MDD, including the hippocampus and frontal cortices35–

37. Work in healthy and MDD human tissue and in human cell types in vitro have nominated several 

additional cell types on the basis of gene expression and regulation, discussed more below. In brief, 

cell types implicated by genetic assays across model organisms and human tissues include several 

excitatory neuron layers of the PFC38–41, inhibitory and granule neurons of the hippocampus42–

44, and fetal excitatory and inhibitory neurons45,46. Importantly, excitatory neurons as a broad 

cell type have been implicated by several forms of genetic and intersectional analysis (see Chapter 

5 for more discussion of this cell type); moreover, the glutamatergic system shows sex differences 

in human brain levels of the transmitter and expression of its receptors, hormone-mediated levels 

of pathway activity, and sex-specific behavioral responses to its modulation (reviewed in47). 

 

Rodent models of depression generally revolve around the use of chronic stressors and/or genetic 

perturbations to induce depression-like behavior. In these paradigms, females are more susceptible 

to stress induction of depressive phenotypes, showing behavioral changes with several fewer days 
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of stress than males35,48–50, reinforcing the roles for both the environment (stress) and biological 

sex in MDD. Consistent with human postmortem studies, multiple brain regions of the mouse 

including cortex and nucleus accumbens exhibit broad sex differences after chronic stress51. While 

monogenic forms of MDD have not been described in the literature, regional perturbations of 

candidate genes in rodent hippocampal excitatory neurons, of Creb1 and Ppara in total 

hippocampus, and myriad other genes in PFC, nucleus accumbens, and raphe have been able to 

recapitulate depressive phenotypes35,52–57, including sex-specific behavioral effects35,55. 

 

Finally, given the sex differences in MDD, several research groups have directly investigated the 

roles of sex hormones in human MDD and rodent models thereof. Treatment of postpartum MDD 

with a single three-day course of brexanolone (a progesterone metabolite, as noted above) indicates 

sex hormones as a proximal cause of this subtype of disease. For MDD more broadly, low serum 

testosterone in males has been associated with a 1.5-fold increase in five-year odds of developing 

MDD58. Rodent model studies of hormonal signaling in the brain have identified sex differences 

in hippocampal neurite outgrowth in response to estrogen59, protective effects of estrogen (locally 

converted from androgen) against stress susceptibility to depressive phenotypes in male mice60, 

and changes in behavior and hippocampal gene expression specific to stages of the estrus (female 

hormonal) cycle61–63 consistent with robust epigenomic sensitivity of the female hippocampus to 

estrogens64. 

 

Likewise, perturbations of rodent hormones using gonadectomy/ovariectomy with or without 

hormone replacement have shown consequent effects on candidate cell types in MDD, including 

in the norepinephrine nexus of the brain, the locus coeruleus (LC). There, the population of neurons 
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is larger in females or with developmental estrogen treatment, while it is smaller in males and 

androgen-treated females65,66; estrogens regulate expression of Th and Dbh67, the two key enzymes 

for the conversion of tyrosine to norepinephrine; the sexes exhibit opposite, sustained 

electrophysiologic responses to adolescent stress68; and females have greater receptor availability 

and response to the endocrine stress signal, corticotrophin releasing factor (CRF) (reviewed 

in69,70).  

 

1.2.3 MDD heritability and genetics 

Concentration of MDD in families has been consistently observed, with approximately 35% 

heritability based on twin studies71–74. These findings imply that part of MDD risk is conferred 

through the genome, which has spurred much research into the disorder using genome-wide 

association studies (GWASes; see Section 1.3 for further description). GWAS for MDD across 

multiple studies involving hundreds of thousands of cases75–79 has identified population-level 

genetic associations explaining a similar degree of heritable risk, ranging 10-33%. Intriguingly, 

GWAS of clinically-ascertained or self-reported MDD required tens of thousands of cases to 

identify the first associated loci, except for an early GWAS of a single-sex (female) clinical cohort 

exclusively with recurrent, melancholic MDD, wherein two significant loci were identified using 

only five thousand cases80. That mixed-sex and -subtype GWAS required a substantially greater 

number of subjects to be powered for such detections suggests that the sexes, MDD subtypes, or 

both may have non-shared genetic risk factors. Nonetheless, these studies have cumulatively and 

fundamentally confirmed that there is an inherited, genetic basis for MDD. 
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1.3 Common noncoding variant discovery and association in 
psychiatry 

Psychiatric diseases are genetically influenced by both heritable variation (common and rare) and 

non-inherited, de novo mutations. Estimated common variant (frequency ≥ 1%) influence on 

disease liability ranges from 10-33% for major depressive disorder (MDD)74,78,81 and 

schizophrenia (SCZ)74,82,83 to over 50% in autism spectrum disorders (ASD)84,85. The remaining 

familial heritability of psychiatric—especially neurodevelopmental and psychotic86,87—diseases 

is largely conferred by rare variants85. Two major hurdles have prevented variant data from 

illuminating disease mechanisms: the volume of variant discoveries/associations to test for 

functionality and causality, and imperfect methods of predicting variant consequences. 

 

Variant-disease associations arise from correlational methodologies. Genome-wide association 

studies (GWAS) identify overrepresented single nucleotide polymorphisms (SNPs), tagging 

hundreds of mostly non-protein coding, linked SNPs85. Similarly, family studies identify proband-

specific (de novo) or -enriched (rare, inherited) variants, though few of these are causal for disease 

at the individual level. However, these statistical association-based approaches alone are incapable 

of specifying which variants have biological function. 

 

Predicting whether and how noncoding variants are functional is a nontrivial enterprise. The 

majority of GWAS loci bear indirect indication(s) of transcriptional regulatory function, including 

expression quantitative trait locus (eQTL) associations, chromatin accessibility, or histone 

marks88–90. As others have noted, these data alone cannot define functional regulatory 

elements/variants91,92.  However, even within one cell type, such data are often mutually 

discordant: an emerging (i.e., preprinted) study examining six epigenomic datasets from K562 
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cells showed 49% of functional regulators did not overlap any epigenomic annotations; another 

40% only overlapped one of the six93. Similarly, MPRA of chromatin-based K562 enhancer 

predictions found only 30% regulated transcription94. Unsurprisingly, these discrepancies 

apparently extend to disease variant interpretation: only a minority of GWAS variants (except for 

blood traits) overlap tissue-specific regulatory predictions95 from histone marks96. Such findings 

collectively suggest that heritable, disease tissue-specific regulatory phenomenon are both missed 

and mislabeled when relying solely on chromatin states. 

 

Despite the clear excess of de novo variation in coding sequences in ASD and other 

neurodevelopmental disorders, and though coding variant consequences can often be predicted 

(e.g., nonsense mutations), this constitutes the minority of heritable risk for several psychiatric 

diagnoses97. The remaining burden falls within putative transcriptional97 and translational 

regulatory elements (e.g., promoters, UTRs)98,99. ASDs provide a representative case: among 1,902 

subjects, over 255,106 de novo variants were recently identified, with thousands each in 

upstream/promoter sequences and untranslated regions (UTRs)100. UTRs regulate transcript 

stability and miRNA interactions101; emerging work further implicates UTRs in nuclear transcript 

trafficking in the brain102. The occurrence of most disease-linked variation in the least-well 

understood features of the genome/transcriptome thus obstructs understanding of disease biology. 

Collectively, these two problems necessitate high-throughput assays with functional readout 

for putative regulatory elements and variants. Such assays enable identification of functional 

variants and the biological contexts in which they act. This knowledge can shape hypotheses 

regarding shared mechanisms by which disparate genetic factors converge on shared phenotypic 

endpoints. 
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Here, I will primarily discuss MPRAs for high-throughput parcellation of genetic discoveries. 

MPRA technology pairs genomic features (e.g., each allele of a genomic sequence) to a reporter 

gene bearing unique, transcribed barcodes, allowing multiplexed RNA-level readout of element 

activity103,104. Critically, there is substantial potential for MPRAs to identify functional variants 

from neuropsychiatric-associated loci. I first discuss uses of MPRAs in functional identification 

of gene regulatory elements and variants, design/interpretation considerations for MPRA, and 

methods to complement/follow-up findings. Subsequently, I discuss potential applications of 

MPRA to identify mechanistic convergence across polygenic risk space. 

 

1.3.1 MPRAs for identification of functional regulatory elements and variants 

MPRAs offer a flexible framework to study elements regulating transcription (e.g., enhancers, 

promoters), splicing, protein translation, and post-transcriptional phenomenon. Though too 

numerous to review deeply here, I point readers to published and emerging applications of MPRA 

to splicing105–107, RNA editing108, and protein translation109. MPRAs have been most broadly 

applied to explore and computationally model transcriptional “regulatory grammar”—how 

sequence features such as binding motifs, their abundance, and arrangement affect regulatory 

capacity94,110–116. More recently, these approaches have been applied to characterize UTR 

functions in RNA stability and translation117–121, and to identify SNPs and rare variants influencing 

transcription122–128. 

 

As shown in Supplementary Figure 1.1A-B, a canonical ‘enhancer’ MPRA utilizes a promoter 

with candidate elements either upstream or in a 3’UTR (i.e, for the STARRseq variant of 

MPRAs)129. Each element is paired with unique barcodes in the transcribed UTRs, which are 
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sequenced as quantitative readouts. Expression—representing transcription or RNA stability—is 

measured as the RNA barcode counts per DNA barcode count (Supplementary Figure 1.1E). 

This measure can be leveraged to define active or differentially active enhancer elements. 

Functional elements have been defined by either comparing to minimal-promoter only 

barcodes94,112,115,116,130,131, or individual sequences against their shuffled counterparts110,116; 

MPRAs have also successfully compared activity between alleles122,124–128,128,132. 

 

 
Figure 1.1. Example Allele-Differential Phenomenon in Common MPRA Approaches, and 
Analysis of MPRA Data. A) In a transcriptional-regulatory assay, a putative regulatory SNP may 
create, ablate, strengthen, or weaken a TF binding site. As a result, one allele drives more 
transcription (detected via its 3’UTR barcodes) per encoding DNA than the other allele. B) In a 
5’UTR assay, a functional SNP may sequence features controlling translation initiation. For 
example, a variant allele may introduce an upstream start codon out of frame with the reporter 
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gene, resulting in nonsense mediated decay, and thus, decreased detection of the barcodes paired 
to that UTR allele. C) In a 3’UTR assay, a variant may alter an RBP binding site; in this example, 
an RBP site specific to one allele increases the stability of the reporter transcript, and thus of the 
barcode paired to it. D) After transfection/transduction, RNA is collected from specimens and 
prepared along with DNA (often the delivered DNA, though sometimes this is recovered from the 
specimens as well) to generate sequencing libraries to quantify expression of the delivered 
elements in the RNA, compared to starting abundance in the DNA. E) Example read counts, 
presented visually, for the DNA and RNA barcode counts of one barcode paired to each allele. F) 
MPRA analysis centers on taking the ratio of RNA/DNA counts (or counts per million), 
represented by the sequence fragments at top left, as a measure of expression—i.e., approximating 
the number of transcripts generated per encoding DNA. These can be compared relative to the 
expression of all elements to find the strongest features (e.g., strongest enhancers and repressors, 
or most stabilizing and destabilizing UTR elements), or G) compared on a variant-wise basis to 
determine significant allelic regulatory effects. 
 

1.3.2 MPRAs identify functional elements in specific cellular contexts 

Perhaps the most exciting—if underappreciated—property of MPRAs is the ability to assay 

elements using disease-relevant cells and conditions. Functional elements are defined by each cell 

type’s unique milieu of expressed TFs, chromatin modifiers, miRNAs, and RBPs, which mediate 

regulatory element activity. The breadth of published and emerging tissue/cell type differences in 

gene expression133,134, chromatin marks96,135, and chromatin interactions136–138 all illustrate the 

magnitude of these regulatory differences. The importance of cell type was illustrated by an MPRA 

of the same elements in U87 glioblastoma and neural progenitor cells (NPCs): the most active 

enhancers in each cell type contained entirely different motifs and sequence features115. 

Recent139,140 and emerging141 approaches have identified highly cell type-specific brain enhancers 

using adeno-associated viral (AAV) vectors alongside traditional (e.g., immunofluorescent) 

readouts. Moreover, a novel, AAV-based MPRA (i.e., using barcodes) identified novel functional 

enhancers for somatostatin interneurons142. Aside from these examples, MPRAs in neural cells 

have been limited to date. Several early MPRAs utilized explanted retina to explore influences of 

TF binding sites and their arrangements on activity116,125,131,143. One novel study, relevant to 

functional contexts (discussed below), assayed mouse neuron enhancers for activity changes 
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following KCl depolarization144. Other studies include an MPRA characterizing temporal patterns 

of cis-regulatory element activity across seven timepoints in human NPC differentiation into 

neurons145. This delineation of regulatory element function illustrates the power of regulatory 

assays to reveal timepoints and cellular states wherein gene regulation—especially for 

neurodevelopmental disorders—may exert its causal effects. 

 

In vivo regulatory assays—including in the brain—have more recently been demonstrated, 

generally at smaller scales than in vitro MPRAs. Osterwalder, et. al146 singly or multiply knocked 

out putative limb development enhancers in mice, illustrating enhancer redundancy—that is, limb 

development disruption only with perturbation of multiple elements. McClymont et. al147 

identified 2,000 candidate embryonic mouse enhancers in purified midbrain dopamine neurons, 

and validated the developmental and regional specificity of a subset using transgenic reporter mice. 

The scale of these assays has been expanded by groundbreaking implementation of MPRA in the 

brain in vivo125,142 to query functional effects in native cell contexts. 

 

This transition to in vivo MPRA is beneficial because, while cell type overwhelmingly influences 

regulatory assays, additional conditions may equally alter outcomes (Figure 1.2A-C). Age, sex, 

pharmacology, and environment (e.g., stress)—all can shape gene expression. For example, 

MPRAs have identified elements responsive to hormonal contexts such as steroid-responsive 

glucocorticoid receptor binding148. Altogether, MPRAs enable identification of functional 

regulatory elements across varied internal and external environments. 
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Figure 1.2. Regulatory Assays are Influenced by a Range of Conditions, from Environment 
to Sequence Context. The range of conditions that influence regulatory assays (from top to 
bottom) starts when considering A) the environment, e.g., sex, time, and pharmacology. These 
parameters have the potential to affect various –omic profiles in a given system. B) The next level 
of consideration is the organism, which can include human-derived tissue or one of the many 
model organisms. Human genomic context is ideal for studying the biology of human disease – 
though a comparatively limited scope of techniques for human-derived tissues exists. C) Next, one 
should consider the selected cell type(s) and whether to assay in vitro or in vivo. Each of these 
provides a unique set of benefits, and one approach can be used to validate findings from the other. 
In the case of modeling the brain and psychiatric genetic variants, cell type-specific/enriched 
MPRAs in vivo would constitute the highest-fidelity model of variant effects by accounting for 
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regulatory effects of endogenously interacting cell types. D) Lastly, sequence (or chromatin) 
context is dictated by delivery method, yielding extragenomic or intragenomic MPRA DNAs. In 
either case, only limited length of sequence surrounding a feature of interest is preserved (e.g., in 
~120bp tiles of genomic sequence in custom oligonucleotide cloning, or ≤ 1kb in clone-and-
capture methods), preventing assessment of any interactive effects from elements further away. (A 
recent study suggests that size of a tile negatively correlates with reproducibility of expression 
driven compared to that driven by ~120bp tiles, emphasizing the importance of this consideration 
(93)). While AAV-transduced episomes gain histones (105) and chromosome-like nucleosome 
spacing (106), it is unknown whether gene-regulatory histone marks on these episomes mirror 
those of endogenous regulatory chromatin. I suggest corroboration of MPRA findings in native 
genomic settings, by, for example, introducing the variant to the genome of a cell line using 
CRISPR methods to account for local sequence and chromatin structure effects on MPRA results. 
E) The consequences of cell type in a previous MPRA testing the enhancer potential of random 
sequences in human NPCs (hNPCs) and U87 glioma cells. Notably, activity of sequences in one 
cell type was negatively correlated to activity in the other cell type (left), and sequence motifs 
corresponding to high-activity enhancers for the cell types were strikingly distinct (right) 
(reproduced from115). F) Previously, Grossman, et. al110 took a series of mouse genomic sequences 
with motif matches to the TF PPARγ, only some of which were actually bound by PPARγ in ChIP-
seq of mouse adipose. They performed an MPRA on several such motif-and-binding genomic 
sequences, centered on the binding site, but shuffling the bases in 10bp windows surrounding the 
site, or swapping 20bp windows between bound and unbound, motif-centered sequences. Shown 
are results for one genomic sequence, illustrating differential MPRA expression between each tile 
mutant relative to the reference sequence. 
 

1.3.3 MPRAs, assay context, and functional variants: MPRAs can be designed 
not only to identify functional elements, but to assay and compare 
genetic variants in contexts known—or predicted—to mediate disease. 

As transcriptomic and epigenomic studies highlight an enormous role for cell type, it is 

unsurprising that this influence extends to regulatory variants. For example, variants exert cell 

type-dependent effects on chromatin structure even within a neurodevelopmental lineage: an 

emerging study discovered chromatin accessibility QTLs in human NPCs and neurons, with ~80% 

of QTL SNPs being specific to one of the cell types149. Cell type roles in putatively functional 

variation are also implicated by GWAS SNPs enrichment in tissue-specific eQTLs134,150, neural 

cell type-specific chromatin interactions136, and eQTLs that evade detection in bulk brain (i.e., 

multi-cell type) tissue but are evident in purified populations like dentate granule neurons151. 

MPRA has likewise demonstrated the essentiality of cell type in defining functional variants: the 
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Critical Assessment of Genome Interpretation 5 (CAGI5) consortium performed an MPRA on 

saturation-mutagenized human enhancers and disease-associated promoters in numerous cell lines, 

challenging analysts to computationally predict functionality and effect size for held-out variants. 

The most predictive annotations for a given cell line were often from the same cells across several 

top-performing analyses152. Thus, experimental study of putative disease-associated variants 

requires firm hypotheses on where (tissue/cell type), when (development/differentiation), and how 

elements are expressed/active and biologically relevant. Careful consideration needs to be given 

to the appropriate cellular context when designing assays for psychiatric genetics: key variant-

interacting TFs and RBPs expressed in neurons may not be present in convenient cell lines (e.g., 

K562), potentially rendering functional neural elements/variants apparently silent. 

 

Despite their potential, few MPRAs have examined disease-associated variants while considering 

both cell type and –omic predictions. Tewhey, et. al126 screened 30,000 eQTL SNPs from human 

lymphoblastoid cell lines (LCLs) using MPRA in LCLs, maintaining the discovery context in their 

assay. Over 3,400 active regulatory sequences were identified, including 850 activity-modulating 

variants (24%), consistent with functional (expression-modulating) SNP associations tagging 

linked, non-functional SNPs, akin to GWAS. Illustrating MPRA’s sensitivity, significant allelic 

differences in activity were detectable at effect sizes <2-fold. Emerging work by Choi, et. al153 

prioritized over 800 SNPs—guided by fine-mapping and epigenomics—from 16 melanoma 

GWAS loci, to assay for transcriptional-regulatory activity in cultured melanocytes. Candidate 

variants with concordant eQTL signal in independent melanocyte data were further investigated, 

ultimately enabling experimental demonstration of biophysical (TF binding), molecular (target 

gene expression), cellular (growth rate), and in vivo (melanoma rate in transgenic zebrafish) variant 
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mechanisms. Finally, a recent MPRA of autoimmune GWAS loci yielded replicable findings 

across 12 donor lines of CD4+ T-cells, which were discordant with the more easily accessible—

but leukemic—Jurkat cell line154. These experiments exquisitely illustrate MPRA’s capacity for 

sensitivity, context specificity, and high discovery rates, especially when integrating both 

association data and multi-omic annotations. 

 

As with functional element assays, functional variant assays have recently moved in vivo, again 

including the brain. Kvon, et. al155 utilized a novel knock-in system to generate transgenic mice 

expressing a LacZ reporter expressed under putatively regulatory elements containing rare, 

polydactyly-associated variants; subsequent LacZ staining clarified which variants were functional 

based on alterations of limb bud LacZ patterns. Excitingly, a small-scale MPRA has recently 

emerged using in vivo tissue: after prioritizing a single SNP from a bipolar disorder GWAS locus 

using epigenomic annotations, the two alleles of this sequence region were paired to 20 barcodes 

each and electroporated into embryonic mouse brains to confirm variant function125. 

 

1.3.4 MPRAs: limitations and design considerations 

With the powerful opportunities of MPRA come limitations. A major caveat lies in gathering 

candidate variants to assay. For example, a prominent and functionally characterized schizophrenia 

GWAS locus in the major histocompatibility complex (MHC) region82—containing hundreds of 

linked SNPs—turns out to mark heritable copy number variations in the complement C4a gene156; 

assaying only SNPs from this locus would not reveal the primary causal variant. Likewise, an 

MDD-associated SNP tags the absence of a transposon with regulatory effects on a noncoding 

RNA157. In other words, MPRA’s usefulness is contingent on investigation (and size—see below) 

of sequences to be assayed. 
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Further considerations include appropriateness of biological ‘contexts’ (Figure 1.2). At the level 

of ‘sequence context,’ MPRAs generally use multiplex oligonucleotide synthesis to custom-design 

sequences and variations by the thousands. However, such approaches are size-limited to ~300bp, 

which precludes assay of large or spaced regulatory sequences. Oligonucleotide synthesis also is 

error-prone; tagging each element with multiple barcodes safeguards against error-driven false-

positives. Bulk capture-and-clone strategies circumvent these issues by utilizing larger, genomic 

DNA fragments directly124,158–160 at the expense of precision assay design. Finally, element 

positioning can substantially influence results and replicability. While STARR-seq is favorable for 

one-step cloning (putative enhancers doubling as 3’UTR barcodes), emerging works illustrate that 

enhancer-like sequence placement in 3’UTRs yields results which cluster separately from other 

MPRA designs testing the same sequences161, and that such sequence placement can exert RNA 

stability effects that, without correction, may confound interpretation162. 

 

Reporter gene features are also important in regulatory assays. Previous enhancer MPRAs have 

demonstrated replicability by testing the same elements with a second promoter, with element 

activities highly correlated between the two122,163,164. However, these cross-promoter correlations 

(Pearson r 0.7-0.8) have been weaker than often reported for biological replicates in MPRA 

(r>0.9). Promoter choice thus can influence assay results, via, for example, absence—or species 

differences in—promoter elements a cis-regulator requires. Likewise, UTR regulatory elements 

may be sensitive to the stoichiometry of transcripts and RBPs or miRNAs in the cell; excess 

transcript production by a strong promoter could potentially render effects of interacting regulators 

undetectable. In brief, rigorous MPRAs or follow-up assays should use both a minimal promoter 
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and either a strong exogenous (e.g., CMV) or a genomic promoter from the pertinent cell/tissue 

type (e.g., a constitutively expressed, neuron-specific gene). 

 

Importantly, the ability to test candidate sequences in their endogenous locus is not a feature of 

MPRAs. Thus, ‘genomic context’—that is, episomal (AAV, plasmid) vs. genome-integrated 

(lentiviral) approaches—require consideration. Emerging comparisons find these approaches 

correlate well161, though certain applications may require a specific approach (e.g. MPRA of 

chromatin conformation165). The comparative throughput for a fixed number of cells is greater for 

plasmid transfection—thousands of plasmids per neural cell in vitro166 compared to viral 

transduction (≤ tens of sequences/cell). These limitations and alternative methods are further 

considered in Table 1.1. 

 

Other considerations include determining an appropriate ‘cellular’ and ‘organismal’ context 

(Figure 1.2B-C). Common strategies for choosing cellular contexts include using pathology (e.g., 

substantia nigra in Parkinson’s disease), expression patterns of disease-associated genes (e.g., 

cortical excitatory neurons in SCZ167), or GWAS-eQTL overlaps (e.g., neurogenic niches of mid-

fetal brain in ASD and SCZ168). (Cell type prioritization was further covered elsewhere in the 

Special Issue169 of Biological Psychiatry wherein this section was previously published.) 

 

A notable opportunity is utilization of MPRAs in human iPSC-derived neural cell types, which 

offer the ability to conduct cell type-specific assays in a human genetic context. Very recent145 and 

emerging125,170 MPRAs are proof-of-principle for this approach, supporting advancement to 

assaying variants in the setting of iPSC derivates. Moreover, while cell type-specific MPRAs have 
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been restricted to in vitro settings, where reproducing tissue physiology (e.g., inter-cell type 

interactions, hormones, stress) is difficult, barcoded multiplex AAV regulatory assays142 indicate 

in vivo, cell type-specific MRPA is possible. Nonetheless, negative MPRA results should be 

interpreted cautiously; absence of function in one context may not extend to all contexts. 

 

Statistical considerations in MPRA include appropriate library size (number of elements and 

paired barcodes) for the cell type to be tested. Generally, library size should be downsized for 

rarer, hard-to-maintain, or hard-to-transfect/transduce cell types to ensure robust barcode recovery 

and measurement. MPRAs have tested ~107 sequences simultaneously in easily transfected cancer 

cell lines 159,160, though in physiological cell types, like NPCs, this capacity is 104-105 115,144,171, 

with emerging work approaching 106 170,172. Library size is further constrained by element-per-cell 

(i.e., lentiviral) approaches. In other words, the fidelity of the model system and the MPRA library 

size it can support are generally anticorrelated. A consensus on the depth of barcodes-per-element 

is, to date, absent, ranging from 1 (STARR-seq129) to several hundred in previous145 and 

emerging172,173 work, with highly correlated replicate measurements across this range. Tewhey, et. 

al estimated that statistical benefits for small-effect transcriptional-regulatory variants accrue by 5 

barcodes, and asymptote around 25-50126; another finds > 10 barcodes consistently yield inter-

replicate r>0.97 in several cell types161,172. Whether these guidelines apply to UTR assays remains 

unclear. Overall, MPRA power guidelines would benefit substantially from deep assessment by 

modelers and statisticians. 

 

Finally, given a finite number of elements that can be simultaneously assayed, one can choose 

whether to prioritize candidate variants using epigenomic data, or simply include all linked SNPs 
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(Supplementary Figure 1.2). An assay’s ‘hit rate’ may be improved by prioritizing variants with 

indirect evidence of function, with the caveats of relying on epigenomic data discussed previously. 

However, foregoing such prioritization enables analysis of how well such features actually predict 

measured expression. Thus, the decision of prioritization must balance the value of ‘hits’ vs. 

identifying functionally predictive indirect measures (epigenetics) for the target cell type or 

disease. 

 

1.3.5 Complementary methods in high-throughput study of DNA and RNA 
regulatory elements 

There are a variety of other approaches that complement MPRAs (Table 1.1). Of course, lower 

throughput enhancer assays allow screening of the same elements or variants across a variety of 

contexts, even in vivo. Whether conducted using AAV (e.g.,174), or transgenesis (e.g.,175), these 

should remain gold standard approaches for validation and deep characterization of small numbers 

of elements and variants, including those identified by MPRAs.  

 

A primary limitation of MPRA is the inability to test regulators in their endogenous genomic 

position and sequence context. Sequence-specific targeting using CRISPR/Cas9 has enabled 

several additional techniques for probing molecular and cellular effects of regulatory variation, 

with the caveat that, unlike MPRA, these techniques do not currently allow for the multiplexed 

study of post-transcriptional/translational regulatory variants. Nonetheless, these techniques 

enable study of putative disease gene roles in gene expression networks and cellular phenotypes. 

Perturb-seq176 combines genewise perturbation by CRISPR with single-cell RNA-seq to identify 

gene sets dysregulated by loss of function of each candidate gene. These have, for example, been 

used to discover co-transcribed gene networks involved in neuronal remodeling177 and for in vivo 
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assessment of genes harboring de novo loss of function mutations in ASDs178. Likewise, CRISPR 

screens can be used to define functional elements influencing selectable traits (e.g., proliferation), 

as in an emerging study perturbing both genes and cis-regulatory elements to define their roles in 

human neural stem cell proliferation179. Finally, CRISPR editing has been used in vitro to assess 

single-transcript noncoding variant effects by comparing allelic RNA and genomic DNA 

abundances in edited cultures180, a potential means of single-variant validation/follow-up of UTR 

MPRA findings. To my knowledge, such assays have not been conducted at a genome-wide scale 

in psychiatric disease, but have been used to identify genes that alter expression of the Parkinson’s-

associated PARKIN181. 

 

Cis-regulatory MPRAs cannot identify the endogenous target gene(s) of functional elements. 

Fortunately, CRISPR-derived methods using a mutagenically-‘dead’ Cas9 (dCas9) conjugated to 

a transcriptional activator or repressor allow targeted potentiation or repression of endogenous 

genomic regulatory elements (CRISPRa and CRISPRi, respectively) to assess altered gene 

expression and other outcomes. These technologies are already online in state-of-the-art human 

neuroscience models: a recent CRISPRi study knocked down over 2000 genes by targeting their 

promoters in iPSC-derived excitatory neurons, defining their context-specific roles in their 

survival, differentiation, and proliferation—including gene effects altered by co-culture with 

astrocytes182. Emerging work has further leveraged CRISPRi’s cell type specificity to study ASD-

associated gene knockdown effects in an etiologically relevant cellular context (NPCs)183. A 

recently introduced extension of CRISPRi (‘CRISPRi-FlowFISH’) targets intergenic regulators, 

identifying their target gene by concurrent fluorescent in situ hybridization against genes from the 

same chromodomain. Fluorescence-intensity sorting into bins and subsequent RNA-seq can then 
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pair regulators (via guide RNA sequence) and target genes (altered FISH signal in a guide RNA’s 

presence)184. While this assay was performed in K562 cells, it is not hard to envision its extension 

to neural cell types in vitro or in vivo. Altogether, CRISPR-based follow-up of MPRA candidates 

to define target genes and verify of genomic activity of regulators/variants will be key to 

developing insights in psychiatric genomics.  
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Table 1.1. Strengths and Limitations of Functional-Regulatory Assays in Terms of Throughput and Sequence and Cellular 
Contexts. Method family: An umbrella term covering multiple adaptations of an assay. Technique: The particular adaptation of the 
family’s assay. “CRISPR editing” signifies precision replacement of an endogenous genomic sequence with a desired sequence (as 
opposed to CRISPR mutagenesis). Table begins on next page.
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Method 

Family 
Method 

Can 

assay 

variants 

(e.g. 

SNPs) 

for 

function

? 

Can assay 

elements 

(e.g., 

TFBS, 

enhancers) 

for 

function? 

Largest 

sequence 

/ target  

Simultaneous 

throughput for 

variants / 

perturbations 

per sample 

Can 

assay 

cellular 

phenotyp

e? 

Genome-

integrated? 

Assays at 

the 

endogenous 

genomic 

sequence?   

Demonstrated 

in model 

organism CNS 

in vivo?  

Demonstrated 

in human 

primary or 

iPSC-derived 

neural stem 

cells, NPCs or 

neurons? 

Can identify 

target gene 

of 

endogenous 

cis-

regulator? 

MPRA 

Multiplex  

(Barcoded) 

AAV 

Transcription 

Regulatory 

Assays 

Yes Yes 

3-5 kb  100s-1000s 

No 

No 

No 

Yes 142 No No 

Enhancer 

MPRA and 

STARR-seq 

~150-200 

(custom 

oligos); 

~700 

(capture-

and-

clone) 

10,000-10^6 

Often not 

(exception: 

lentivirus 

random or 

targeted 

integration) 

Yes 125 Yes 125,170,172 No 

3'UTR 

MPRA/PTR

E-seq 

Not 

demonstrated 

but see above 

No N/A 

5'UTR 

MPRA 
" No N/A 

RNA 

Splicing 

MPRA 

" No N/A 

Protein 

Translation 

MPRA 

" No N/A 

CRISPR 

Regulatory 

Disruption 

Assays 

CRISPRi No Yes ~50 bp 

•Max 

demonstrated in 

CNS in vivo: 5 

targets (2 

sgRNAs each) 

Yes Yes Yes Yes 185 Yes  182,186,187 Yes 
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•Max 

demonstrated in 

neural cell 

types in vitro: 

~12,000 

CRISPRa 

•Max 

demonstrated in 

CNS in vivo: 10 

targets (5 

sgRNAs each) 

•Max 

demonstrated in 

neural cell 

types in vitro: 3  

Yes Yes Yes 188–190 Yes 187,191,192 Yes 

CRISPR 

Mutagenesis 

of regulatory 

elements 

•Max 

demonstrated in 

neural cell 

types in vitro: 

26,000 targets 

(2 sgRNAs per 

target) 

Yes Yes No Yes 179 

For an a 

priori 

defined gene 
193,194 

CRISPRi-

FlowFISH 
~900 

Not 

demonstra

ted 

Yes No No Yes 

Low/single 

throughput 

CRISPR 

Editing 

Yes Yes 

Several kb 1-2 Yes Yes Yes Yes Yes Yes 

AAV 

Transcription

Regulatory 

Assays with 

traditional 

readouts 

3-5 kb  1 No No No 

Yes (esp. tacitly 

via cell-type 

targeted 

optogenetic, 

chemogenetic, 

and circuit-

labeling 

Yes 174 No 
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(fluorescence

, LacZ, etc.)  

techniques, as 

in 174) 

Luciferase 

Reporter 

Assay 

3-5 kb  1 No No No Yes 195 Yes No 
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1.3.6 The utility of MPRAs for parsing linked variation 

One minimally-explored challenge in parsing loci implicated in common variant association 

studies is that multiple variants in the region are near-equally statistically associated, and thus near-

equally plausible functional mediators of risk. Indeed, in statistical genetics, repeating a GWAS or 

eQTL association analysis after conditioning on the lead SNP within a block often reveals one or 

more additional independent variants associated with traits or gene expression, respectively 

(e.g.,196–198); in fact, nearly half (~8,000) of brain expressed genes have ≥1 conditional eQTL199. 

An exemplary reporter assays systematically evaluated such linked sets of variants, using 

epigenomic data to identify 16 enhancers near the RET gene, known to be downregulated in 

Hirschsprung’s disease (failure of terminal colonic nerves to form in utero). These putative 

regulators were assayed for allele-differential activity in a model of the disease-relevant cell type, 

neural crest cells. These were likewise assayed with transient expression in mouse embryos driving 

a LacZ reporter to identify the crest-relevant regulatory sequences. They also validated roles for 

regulator-binding TFs via siRNA knockdown. In all, this identified three functional SNPs in 

linkage disequilibrium with synergistic effects on Hirschprung-like deficits in colonic nerve 

development200. It is easy to imagine from this small-scale example how MPRAs could be used to 

simultaneously dissect several linked blocks of disease-associated common variants. 

 

While the RET SNPs were several hundred kilobases apart, another challenge is with variants in 

very close proximity, potentially within the same regulatory element. While oligonucleotide 

synthesis is limited in length, MPRA-based assay of such variants spanning up to 700bp is now 

possible with use of PCR amplification of oligos with uniquely complimentary ends161. Likewise, 

‘capture-and-clone’ MPRA designs, often using STARR-seq architecture to simplify cloning, 

fragment genomic DNA or capture e.g. ChIP-seq DNA fragments to test larger fragments than 
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attainable via oligonucleotide synthesis124,159,160,201. Altogether, MPRAs allow for discovery of 

multiple functional variants per linkage region, as well as close-proximity discovery and 

disentanglement of multi-variant regulatory effects. Such efforts at a consortium scale could 

likewise characterize functionality and properties of linked untranscribed and untranslated variants 

across myriad cell types. 

 

1.3.7 MPRAs as an avenue to dissect multiallelic and polygenic mechanisms of 
neuropsychiatric traits 

While MPRAs cannot intrinsically scale up to functional demonstration of cell-, tissue-, or 

behavior-level phenotypes, they have the potential to provide key information to guide molecular 

hypotheses for how these higher-order phenotypes emerge from large sets of regulators and/or 

their target genes. I focus here on examination of variants across disease loci—that is, defining 

shared and recurrent features among MPRA-nominated functional variants across the genome that 

may collectively underlie large portions of polygenic disease risk. 

 

The most vexing question that remains after individual functional variant mechanisms are 

elucidated is how variants collectively contribute to phenotypic risk. MPRAs provide several ways 

to begin addressing this question: 1) identifying regulatory features shared by across several 

functional risk variants; 2) identifying functional modules enriched for variant-impacted genes; 3) 

providing functional annotations to variants for computational genomic approaches; and finally, 

4) by enabling study of variant-by-environment interactions contrasting MPRA across conditions. 

 

Firstly, MPRA experiments running the gamut from basic regulatory genomics to human trait-

associated variation have defined ‘regulatory grammars’ of assayed contexts. Identification of 
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functional variants in the MPRA setting enables similar establishment of the ‘regulatory grammar’ 

of a trait or disease. Functional variants identified by MPRA across several UTRs may feature a 

specific RBP’s binding site, for example, or could be used to deliberately define functional activity 

of a disease-associated miRNA, like miR-13782. Likewise, variants associated with a trait could 

be more likely to fall in particular TF binding sites or be enriched in cell type-specific marks of 

genomic regulation. Evidence of this convergence is seen in de novo variants associated with ASD: 

several distinct variants disrupt binding sites for a single TF, NFIX202. Similarly, putative gene 

targets of schizophrenia-associated variants are also putative—biases aside203—Fmrp targets204. 

MPRA has also identified such regulatory convergence by, for example, intersecting identified 

functional SNPs with TF ChIP-seq datasets in pertinent cell types to discover recurrently disrupted 

TF binding sites173. Assays of downstream consequences of variation also confirm biological 

convergence across association loci. A four-element-target CRISPRi/a assay revealed that 

schizophrenia risk genes act synergistically via shared influence on synaptic activity, and 

concurrent alteration of expression of all four genes results in a cellular transcriptome more 

accurately reflective of postmortem schizophrenia brain tissue191. For both rare and common 

variants, identifying common regulators among risk genes provides information which can refine 

predictions of disease-related cell types based on TF, RBP, or epigenomic mark expression. 

 

Secondly, genes and gene networks affected by statistically associated variation are often predicted 

using MAGMA205, which in essence scores genes based on proximity to an associated variant and 

its linkage partners. Resulting gene sets are subjected to analyses such as Gene Ontology 

enrichment or are examined for enrichment in WGCNA (coexpression) networks from candidate 

tissue types to identify pathways and mechanisms on which these genes converge. While its use is 
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ubiquitous in genomic studies, standard MAGMA gene association statistics for psychiatric 

disorders only modestly correlate to those from a tissue-specific, chromatin configuration-aware 

modification of MAGMA206, suggesting that biological hypotheses from MAGMA gene sets may 

miss disease-associated genes in brain. Being able to refine implicated genes by functional 

validation using—or in follow-up to—MPRA will help to benchmark such approaches and refine 

prediction convergence with ‘truly’ dysregulated candidate genes. 

 

Thirdly, epigenomic data alone is not comprehensively predictive of active regulators. However, 

well-informed analyses of human genetic findings rely heavily on such annotations to convert 

associations into biological hypotheses. Critically, these epigenomic data—unlike MPRA data—

can be collected from postmortem human tissue. MPRAs focused on neuropsychiatric disorder 

associated variation stand to benefit from high-information datasets by aiding variant prioritization 

for assay inclusion. Several recent datasets on synthetic UTRs117,121, RNA binding proteins207,208, 

and postmortem human brain multi-omics135,197,209–217 are worth noting for readers investigating 

disease-associated variation. Integrative computational analyses have brought these datasets 

together predict functional variation in SCZ, bipolar disorder, and ASDs218,219. These constitute 

high-priority candidates for experimental validation by MPRA. Furthermore, emerging work 

reveals a symbiotic relationship developing between epigenomics and functional assays: 

functional element/variant information from MPRA has been used alongside epigenomic 

annotations to improve machine learning predictions of functional variants 220. Predictions from 

these refined algorithms are another low-hanging fruit for candidates to assay by MPRA; those 

results could then constitute new training data. Such refinement of epigenomic data interpretation 

coupled with functionally-demonstrated regulatory variation would mutually benefit one another 
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and myriad downstream analyses, such as variant enrichment in genomic features and disease gene 

identification. For example, TWAS221 and Predixcan222 intersect gene expression QTLs (eQTL) 

with trait-associated variants to predict expression differences between cases and controls, thus 

identifying dysregulated gene sets. MPRA data can disentangle which eQTL SNPs are truly 

functional from those associated only due to LD, which could thus refine variant-gene pairings 

used in these analyses. Altogether, MPRA can serve to refine both epigenomic and genic 

definitions of truly causal disease features. 

 

Finally, the context-specificity of MPRA represents a newfound ability to assess variant effects on 

gene regulation en masse under different biological and environmental contexts, including with in 

vivo models. While issues of convergent disease effects across genes and regulators are indeed 

complex, environmental effects—perhaps most canonically, stress—on these regulators are 

questions at the forefront of understanding polygenic risk in neuropsychiatric disorders. 

Pharmacologic variables have been successfully tested in MPRA, namely in the identification of 

glucocorticoid-responsive148 and p53-responsive201 regulatory elements. MPRAs could further be 

layered with concurrent gene perturbations (e.g., knockdown of a putative regulator), or cell 

culture conditions for in vitro identification of variant-environment interactions, exemplified by 

MPRA identification of neuronal activity-dependent enhancers144. As mouse and human brain cell 

types and their gene expression patterns are largely (though not entirely) conserved both in 

development223 and adulthood224, the extension of MPRAs to the in vivo context will enable study 

of broader endogenous and exogenous disease-associated factors, such as sex or stress. Identifying 

variants with environment-dependent functions would be a start toward identifying convergent 

molecular mechanisms behind conditional disease risk in disorders such as MDD.  
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Overall, MPRA presents unique opportunities to dissect polygenicity of psychiatric disorders via 

simultaneous identification of functional variants across identified risk space. Beyond the primary 

benefits of identifying ‘true positive’ functional variants in specific biological and environmental 

contexts, MPRAs stand to rapidly broaden, deepen, and refine hypotheses and mechanisms of both 

noncoding disease risk and of gene-regulatory architecture itself. 

 

1.4 Approach 
To characterize sex differences in MDD-relevant cell types and in genetic risk, I leveraged multiple 

techniques, including MPRAs as described above. Chapter 2 of this dissertation describes my work 

interrogating whether sex differences in gene expression and/or regulation are present in the 

noradrenergic locus coeruleus (LC) by using Translating Ribosome Affinity Purification (TRAP) 

to measure sex-differential expression, followed by pharmacology and behavior experiments 

demonstrating functional consequences of the observed sex differences. Pattern searching in the 

mouse genome near sex-differentially expressed genes of the LC revealed enrichment of several 

putative regulatory sequences. Chapter 3 then briefly outlines a project I designed to assay these 

features by MPRA to functionally demonstrate sex-differential regulatory activity of small regions 

of mouse genome containing them, and the unfortunate demise of these experiments before they 

began. In Chapter 4, I begin using MPRAs to identify functional variation from MDD-associated 

loci in mouse neuroblastoma cells in vitro. Enrichment analysis of sequence features disrupted by 

the functional variants identified recurrent roles across the loci for retinoic acid-responsive 

transcription factors. As neuroblastoma cells are robustly retinoid sensitive, this system was 

readymade for a subsequent drug-variant interaction MPRA, identifying additional retinoid-
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mediated or -altered variants from across MDD loci. Finally, in Chapter 5, I describe the results of 

successfully adapting highly-multiplexed MPRAs to the mouse brain, enabling me to measure 

variant function in a high-fidelity model of both the brain as an organ and its organismal 

environment dictated by sex and age. I further complex this with TRAP to specifically identify 

functional and sex-interacting variation within hippocampal excitatory neurons, honing the 

resolution of the assay to a specific candidate cell type underlying molecular perturbations in 

MDD. Identification of shared regulatory features for functional and sex-interacting variation from 

these first in vivo MPRAs indicated enrichment of transcription factors that co-operate with sex 

hormone receptors. To verify this, I then performed additional MPRAs in the neonatal whole 

mouse brain at day 0 and day 10 of life in order to utilize a developmentally distinct, but naturally 

occurring, period of sex hormone release (perinatal) and quiescence (day 10, juvenile age). These 

experiments confirmed that sex-interacting variation is absent solely at day 10, supporting an 

“activational” (ligand-dependent) role for sex hormones in sex-differential activity of MDD risk 

variants. 
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1.6 Supplementary Material 

 
Supplementary Figure 1.1. Common Designs and Library Delivery in MPRA. A) Visual key 
for subsequent panels. B) Enhancer MPRAs most commonly clone a pool of custom 
oligonucleotide pools containing sequences to be assayed, each paired to multiple unique barcode 
sequences, into a vector. Subsequently, a reporter gene driven by a minimal or core promoter—
alone, driving only modest transcription—is added downstream of the element of interest, placing 
the barcode is in a 3’UTR. In the case of STARR-seq (not shown), the paradigm in panel D is 
instead used, with the cis-regulatory element being transcribed and thus acting as its own barcode. 
C) 5’UTR assays likewise use a two-step cloning assay, placing elements immediately downstream 
of a promoter. A reporter gene itself is inserted between the element and barcode. D) 3’UTR assays 
place the elements of interest immediately adjacent to barcodes, all downstream of a promoter-
reporter in a single cloning step. E) A sequence pool from panel B, C, or D can then be packaged 
into AAV or lentivirus (if in a compatible vector), or used for assay as plasmid directly. It is 
important to note that in all three of these scenarios, the library is constructed as a pool of 
sequences, which can result in variable levels of DNA for each element and barcode, hence the 
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normalization of RNA counts to DNA counts in downstream analysis (Figure 1.1). F) The plasmid 
or viral MPRA library can be delivered to cells in culture or in vivo. 
 

 
Supplementary Figure 1.2. Example of a Hypothetical MPRA. A) Starting from common 
variant GWAS for a psychiatric disease (e.g. MDD), loci showing statistical association are 
selected for study. B) Within each locus, potential regulatory variants are identified based on 
showing sufficient linkage with the lead SNPs that they may be causal. Consideration should be 
given to whether such variants should be studied as candidate transcriptional or post-
transcriptional regulatory elements. (Linkage plot generated using LDLink 225. C) Variants can be 
prioritized based on epigenetic data from appropriate tissues or cell types, or all variants can be 
utilized (if such data are not available, or if one wants to test the predictive power of such data) 
(Data shown is from emerging neuronal chromatin contact data 137 using the WashU Epigenome 
Browser 226. D) Elements with variants are cloned and prepared as described in Figure 1.1. E) 
MPRA library is delivered into the appropriate context for the disorder. In this hypothetical 
example, the library was packaged in AAV (to allow delivery to adult neurons in vivo) of the 
hippocampus (associated with MDD by imaging studies 15, and powered to look for sex differences 
(since MDD has higher prevalence in females 5. F) RNA is recovered and data is analyzed to define 
impact of variants on the expression of each element as described in Figure 1.2. Hypothetical 
results might discover a significant main effect of an allele (left panel) and/or sex specific 
interactions (right panel).  
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Chapter 2: Molecular and functional sex differences of 
noradrenergic neurons in the mouse locus coeruleus 
This chapter was previously published as a journal article: 

Mulvey, B. et al. Molecular and Functional Sex Differences of Noradrenergic Neurons in the 

Mouse Locus Coeruleus. Cell Reports 23, 2225–2235 (2018). 

 

Preclinical work has long focused on male animals, though biological sex clearly influences risk 

for certain diseases, including many psychiatric disorders. Such disorders are often treated by 

drugs targeting the CNS norepinephrine system. Despite roles for noradrenergic neurons in 

behavior and neuropsychiatric disease models, their molecular characterization has lagged relative 

to other brain monoaminergic populations. We profiled mouse noradrenergic neurons in vivo, 

defining over 3,000 high-confidence transcripts expressed therein, including druggable receptors. 

We uncovered remarkable sex differences in gene expression, including female upregulation of 

the EP3 receptor—which we leverage to illustrate the behavioral and pharmacologic relevance of 

these findings—and of Slc6a15 and Lin28b, both MDD-associated genes. Broadly, we present a 

means of transcriptionally profiling locus coeruleus under baseline and experimental conditions. 

Our findings underscore the need for preclinical work to include both sexes, and suggest that sex 

differences in noradrenergic neurons may underlie behavioral differences relevant to disease. 

 

2.1 Introduction 
Numerous neuropsychiatric and neurodevelopmental diseases demonstrate a skew in incidence 

between sexes, including a female predominance of major depressive and generalized anxiety 

disorders (MDD and GAD, respectively)1, and a male predominance of attention-deficit 

hyperactivity disorder and autism spectrum disorders (ADHD and ASDs, respectively)2,3. Sex 
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differences in reproductive behavior have been thoroughly attributed to sexually dimorphic brain 

regions; however, questions remain as to whether more modest behavioral differences—especially 

those relevant to common psychiatric disorders—are mediated by transcriptional sex differences 

in key neuronal populations. 

 

The locus coeruleus (LC)—a small nucleus of neuromodulatory neurons whose projections release 

norepinephrine (NE) throughout the CNS—is implicated in a broad range of functions, including 

learning, novelty detection, arousal, anxiety, and fever4. Given these extensive neurobehavioral 

roles, it is perhaps unsurprising that the LC-NE system has been broadly implicated in psychiatric 

disorders and animal models of them. For example, depression is often modeled in rodents using 

pro-inflammatory compounds including interleukins and lipopolysaccharide (LPS). LPS, besides 

inducing fever, is known to induce substantial activation of the LC and other noradrenergic cell 

types (established by5). Interleukin-6, a common upstream pro-inflammatory messenger, was 

recently found to directly trigger tonic firing of the LC, eliciting depressive behaviors via 

activation of alpha-adrenergic receptors6. Tonic firing of the LC in response to corticotropin-

releasing factor (CRF) or optogenetic stimulation can also induce acute aversive and anxiety-like 

behaviors7,8. Sex differences in behavioral responses to stress have been attributed to molecular-

level differences in CRF signaling via the LC9,10. In the clinical setting, evidence-based practices 

offer a robust demonstration of the involvement of LC dysregulation—or its ability to normalize 

dysregulation occurring elsewhere—in psychiatric disease, given the use of NE-modulating drugs 

in depression, anxiety, attention-deficit hyperactivity disorder, and addiction. Altogether, a 

comprehensive transcriptomic profile of the LC is of substantial interest for understanding, and 

potentially targeting, the molecular functions of these cells. 
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To date, sex differences in the rodent LC have been observed at both single-gene and structural 

level. Sex differences in stress response have been attributed to differential CRF sensitivity and 

CRF receptor trafficking in mouse LC11,12, including sex-differential effects of CRF1 agonism on 

LC excitability13. µ opioid receptors are also highly expressed in the LC; µ agonism completely 

suppresses firing of the LC in male, but not female, mice14. Reports of structural dimorphism in 

the rodent LC have been ambiguous, with reports of the LC being larger in either sex depending 

on the strain of rat (compare9,15,16). These repeated demonstrations of sex differences in particular 

aspects of LC structure and function compelled us to study both sexes in our pursuit of 

characterizing LC gene expression. 

 

In order to transcriptionally profile the LC, we generated a translating ribosome affinity 

purification (TRAP) line. We identified dozens of potential LC-specific drug targets, and validated 

a subset of these with independent methods. We identified differentially-expressed genes (DEGs) 

in the LC following LPS stimulation, demonstrating the utility of this line and method to detect 

pharmacologically-mediated changes in gene expression in the LC. To our surprise, we discovered 

a comparable number of DEGs between sexes as well. In order to demonstrate that these transcript-

level sex differences in the LC correspond to consequent physiologic differences, we modulated a 

receptor upregulated in female LC, EP3 (encoded by Ptger3). Using electrophysiology and 

behavior experiments in cannulated mice, we demonstrate that the EP3 agonist sulprostone acts 

more strongly in female mice to suppress tonic firing of LC neurons in vitro and to specifically 

inhibit an LC-mediated stress response in females in vivo. Thus, we demonstrate previously 

unidentified sex differences in gene expression in NE neurons at a magnitude capable of 
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influencing neurophysiology and pharmacologic responses. These molecular sex differences at the 

level of LC neurons may guide future investigations into models, mechanisms, or treatments for 

sex-skewed psychiatric diseases. 

 

2.2 Results 
2.2.1 Generation and validation of reagents for transcriptional profiling of 

noradrenergic neurons 

We generated a mouse line for transcriptional profiling of noradrenergic neurons by expressing 

EGFP/RPL10A from a NE reuptake transporter (Slc6a2) bacterial artificial chromosome (BAC). 

Neuroanatomical characterization revealed robust transgene expression in the A4 and A6 

subdivisions of the LC (Figure 2.1A-C), where EGFP/RPL10A perfectly co-localized with the 

LC-specific NE-synthesizing protein, DßH (Figure 2.1D), along with reasonably robust co-

labeling in the A5 and A7 groups. EGFP/RPL10A labeling was weak and sparse in more caudal 

DßH+ populations (e.g., A1, A2), consistent with prior immunofluorescence studies of SLC6A2 

expression17. Little EGFP expression was seen in ependymal cells, except rarely in cells caudal to 

the 4th ventricle (not shown), in contrast to previously reported ependymal expression of SLC6A2. 

In total, this anatomical characterization asserts that mRNA collected by TRAP will be from the 

most robustly labeled and populous cells: the A4-A7 groups, predominantly the LC. 

 

We then performed TRAP on two Slc6a2 founder lines to evaluate consistency, to confirm 

enrichment of known LC-specific transcripts by TRAP, and to identify novel transcripts enriched 

in LC compared to the hindbrain. Reproducibility was strong between the lines (Pearson 

correlation >.99, Figure 2.1E). Relative to whole-hindbrain RNA from the same mice, TRAP 

enriched for genes with known specificity and functionality in the LC (Figure 2.1F), including 1) 
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enzymes related to NE turnover (Th, Ddc, Maoa, and Dbh), 2) Vesicular monoamine (Slc18a2) 

and NE (Slc6a2) transporters, 3) Galanin (Gal) and its receptor (GalR1), and 4) a transcriptional 

regulator of LC development (Phox2a). After conservative filtering for expression and 

background, at least 3139 transcripts were detected with high confidence in NE neurons; 526 were 

enriched >2-fold compared to hindbrain. 

 

Gene Ontologies (GO) analysis was applied to broadly characterize NE neuron-enriched 

transcripts, revealing enrichment of transmembrane receptors and ligands (Figure 2.1H), 

consistent with prior observations that CNS cell-type specific genes often include receptors18. 

These LC-enriched receptors are notable given the importance of the LC—and extrinsic 

modulation thereof—in behavior. Next, transcriptional profiles of LC and other CNS cell subtypes 

previously characterized by TRAP were compared to predict genes specific to the LC compared 

to other cells in the brain and the ‘transcriptional ontology’ of the LC using our previously 

described pSI algorithm (see Experimental Procedures). Compared to all other available cell types, 

162 genes scored as LC-enriched (pSI<0.05), 78 highly so (pSI<.005) (Figure 2.2A). Hierarchical 

clustering placed noradrenergic cells with other neuromodulatory populations (Figure 2.1G), 

including serotonergic, hypocretinergic (Hcrt), and forebrain cholinergic neurons. The shared 

transcriptional relationship with Hcrt neurons is striking; despite their anatomic separation and the 

use of distinct neurotransmitters, they form reciprocal connections and share functional roles in 

control of sleep and arousal (reviewed in19), supporting the notion that gene expression in neuronal 

cell subtypes is a strong predictor of a subtype’s functional roles. 
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Figure 2.1. Characterization of noradrenergic bacTRAP lines. A) Anti-GFP 
immunohistochemistry demonstrates EGFP/Rpl10a labeling in the hindbrain. B) Anti-GFP 
staining is most robust in anterior groups (A4-A7), especially LC. C) Immunofluorescence for 
GFP (green) labels entire LC (scale bar: 200uM) D) GFP colabels completely with DBH (red) 
(scale bar, 50uM). E) Comparison of two Slc6a2 TRAP lines demonstrates reproducibility. F) 
Slc6a2 TRAP mRNA vs. total hindbrain mRNA enriches NE neuron markers (blue) and depletes 
unrelated cell-type (glial) markers (red). Lines at 0.5, 1, 2 fold. Log10 scale. G) Hierarchical 
clustering of Slc6a2 neurons. H) Slc6a2 TRAP enriches for transmembrane proteins and receptors. 
(Hypergeometric test, Benjamini-Hochberg corrected *p <.06, **p <.01). 
 

Transcripts identified as LC-enriched (Figure 2.2A) were then validated using standard RNA and 

protein detection methods in wild-type mice. In-situ hybridization (ISH) for Calcr selectively and 
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robustly stained the LC (Figure 2.2B), consistent with microarray results, suggesting very high 

enrichment of Calcr in LC compared to hindbrain (over 300-fold). As the characteristic ‘quarter-

moon’ anatomy of the LC could be readily discerned by ISH, additional transcripts were 

systematically evaluated for enrichment using The Allen Brain Atlas (Figure 2.2C and 

Supplementary Figure 2.1). 70% of TRAP transcripts showed enriched in-situ staining in LC; 

over 19% scored as having ‘marker-like’ expression. Finally, we confirmed protein translation in 

LC of several identified genes using immunofluorescence (Figure 2.2D). 

 

Figure 2.2. Transcript and protein expression in LC neurons. A) Top 45 named genes enriched 
by TRAP over hindbrain (adj.p.value), fold change (TRAP/Hind), and Specificity index p-value 
(pSI) comparing Slc6a2 to all cell populations from Figure 2.1G. B) ISH confirms LC enrichment 
of calcitonin receptor. C) Blind comparison of TRAP-identified and random genes confirms TRAP 
transcript presence in LC (p<2.7E-38, χ2 test, normalized to number of scorable ISH, n=53,94). 
(See also Supplementary Figure 2.1). D) Immunofluoresence confirms translation of TRAP 
identified transcripts (green) in LC cells (arrowheads), labeled by either TH or DBH (red). 4V = 
4th ventricle; scp = superior cerebellar peduncle; 2cb = cerebellar vermis. 
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2.2.2 Transcriptional responses of NE neurons to LPS can be identified with 
Slc6a2 TRAP 

Having verified that TRAP characterizes baseline transcriptional features of the LC, we next 

sought to demonstrate the utility of this mouse line for profiling changes consequent to stimulation 

of the LC. LPS is a well-characterized example of an LC-activating stimulus: it strongly increases 

FOS expression in the LC , and the LPS-induced febrile response is lost with LC ablation20. We 

therefore injected individual TRAP mice with LPS or vehicle in a sex-balanced design. Whole-

hindbrain RNA from the same lysates served as controls, as did a parallel TRAP experiment with 

Slc6a4 TRAP mice targeting hindbrain serotonergic neurons (Figure 2.3). 

 

We first examined whole-hindbrain changes in response to LPS (Figure 2.3B); 56 genes showed 

a response, predominantly upregulation. GO analysis identified a significant increase of interferon-

induced transmembrane proteins (Supplementary Figure 2.2), consistent with a broad pro-

inflammatory transcriptional response. However, examination of Slc6a2 TRAP revealed an even 

greater response (Figure 2.3C), largely distinct from that of the hindbrain (only two genes were 

shared between hindbrain and LC). In contrast, response of serotonin neurons was limited (Figure 

2.3B). Given the multitude of psychopharmacotherapeutics and environmental stimuli—including 

inflammation, pain, and acute stress—known to modulate the LC, these findings establish a useful 

system for identifying LC-specific molecular responses to whole-animal manipulations. 

 

To our surprise, sex-stratified analyses of these same experimental data revealed substantial sex 

differences in noradrenergic neurons. First, analysis of transcriptional profiles of the whole 

hindbrain varied remarkably little between sexes, with the exception of a few sex chromosomal 
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genes (Figure 2.3C). Likewise, serotonin neurons showed no appreciable differences outside of 

sex chromosomal transcripts (e.g. Ddx3y, Eif2s3y). In contrast, noradrenergic neurons showed 

substantial molecular sex differences: a total of 152 LC-enriched transcripts were also sex DEGs, 

mostly autosomal (Figure 2.3D-E), and these did not overlap with the serotonin neuron-enriched 

sex-differential differential transcripts. These transcripts also do not significantly overlap with 

those stimulated by LPS, nor are they characterized by similar functional categories 

(Supplementary Figure 2.2). This indicates the observed molecular divergence is not likely due 

to sex differences in baseline activity level of the LC, but rather reflects a more complex molecular 

distinction between the sexes. Motivated by the clear role of sex as a risk factor for psychiatric 

disorders, we focused on these sex differences for additional study. 
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Figure 2.3. Differentially-expressed genes by sex. A) Scatterplots contrasting transcriptional 
data between LPS and vehicle (PBS) or sex; DEGs indicated by color. B-C) Number of DEGs 
after LPS (B: red=up, green=down) or between vehicle-treated sexes (C) in each sample type. D-
E) Top 50 named sex-DEGs in LC of females (D) or males (E). M/F or F/M: Fold change between 
sexes. TRAP/Hind: Fold change, TRAP vs hindbrain. (See also Supplementary Figure 2.2). 
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2.2.3 Sex-differential LC genes and putative cis-elements underlying 
differential regulation 

As a preliminary investigation into possible gene-regulatory mechanisms underlying sex 

differences in LC gene expression, I characterized DNA sequence motifs in cis with these 152 

genes. Performing de novo motif discovery for DEGs from each sex, I identified twelve motifs 

(Figure 2.4). Compared to their frequency near 1,000 randomly selected genes, six of these were 

significantly enriched near the DEGs. Thus, at least a portion of the sex differences in gene 

expression could be explained by conserved cis-regulatory elements in the surrounding genome. 

Known transcription factor binding sites predicted in these motifs included OTX2, NR2F6, and 

MTF1 (Figure 2.4). 

 

Figure 2.4: Motifs discovered in conserved, noncoding regions near sex-DEGs. Motif: Refers 
to the sex, algorithm (allowing ≤ 1 or ≥ 1 motif occurrence per query sequence) and the result # in 
the MEME output. Total # motif occurrences found: total number of significant matches for the 
motif. # Unique sequences matching: the number of queried sequences with ≥ 1 motif match out 
of the total number of sequences queried. E-value: a MEME measure of probability compared to 
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a shuffled version of the input sequences. Chi-sq p value: from comparative abundance of the 
identified motif in 1,000 randomly selected, protein-coding gene regions subjected to the same 
masking paradigm. Select TFBS predictions: TFBSes identified using TomTom with previously 
described expression in neural cell types and of functional and/or cell type relevance to the LC. 
Sequence: the position-weight matrix (PWM) given in the MEME results. 
 

2.2.4 Molecular differences predict functional differences between sexes  

Finally, we noted LC specificity and female LC enrichment (>2-fold) of the Ptger3 gene, encoding 

prostaglandin E2 (PGE2) receptor EP3. Given the specificity of this gene’s expression to the LC 

within the hindbrain and the existence of a known, selective agonist, sulprostone, we selected EP3 

to pharmacologically test whether the magnitudes of detected sex differences in receptor gene 

expression were adequate to alter LC electrophysiology and/or behavior. 

 

We first assessed whether pharmacologic manipulation of the EP3 receptor resulted in sex-

differential electrophysiologic responses by performing whole-cell recordings from LC neurons in 

ex vivo slices. EP3 presence in the LC was confirmed—and subsequently manipulated—by bath 

application of sulprostone (agonist), followed by L798,106 (antagonist) to displace sulprostone, 

halting its effects. Sulprostone suppressed baseline tonic firing of LC neurons in both sexes, but 

with a greater magnitude and duration of hyperpolarization in female LC compared to male 

(Figure 2.5A-B). Voltage-clamp recordings from a second cohort of mice revealed larger outward 

current from female LC neurons (Figure 2.5C-D), verifying that the magnitude of LC inhibition 

by EP3 corresponds to sex differences in Ptger3 expression. 

 

We previously showed in male mice that LC silencing with Gi-coupled DREADDs prevents 

anxiety-like behavior in the open-field task (OFT) after restraint stress7. This behavioral paradigm 

provided a robust model system in which we could activate the LC in vivo, and subsequently 



 67 

attempt to suppress LC pharmacologically, with behavior as the outcome measure. We first 

validated that restraint stress robustly induces anxiety-like behavior (avoidance of center) in the 

OFT in mice of both sexes (Figure 2.5E-H). Restraint stress did not impact total activity or the 

sex difference therein, but clearly induced avoidance of center in both sexes. Thus, we 

hypothesized that EP3 agonists could be used to reduce stress-induced anxiety specifically in wild-

type female mice. Indeed, administration of sulprostone via cannula to male and female LC 

immediately before restraint stress and OFT resulted in selectively reduced anxiety-like behavior 

in females (Figure 2.5I-L). Post-hoc analysis of phosphorylated-FOS (p-FOS) expression in TH+ 

neurons of the LC in the same animals revealed similar staining intensity of p-FOS and numbers 

of double-positive cells between sexes (data not shown). The robust immediate-early response in 

both conditions are consistent with intact stimulation of LC neurons by stress, suggesting 

sulprostone inhibits noradrenergic output. Sulprostone did not affect the baseline sex difference in 

total ambulatory activity (Figure 2.5M). 
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Figure 2.5. Sex differences in Ptger3 expression can be reflected in LC-mediated behavior. 
A, C) Representative current-clamp (A) and voltage-clamp (C) traces from LC slices exposed to 
sulprostone (200nM) followed by L798,106 (300 nM). B) Maximum change in membrane voltage 
(mV) after sulprostone, by sex (-10.5±2.1 mV, n=10 cells from 5 females, -2.6±1.8 mV, n=9 cells 
from 4 males; p<0.05, Mann-Whitney). D) Maximum change in outward current (pA) after 
sulprostone, by sex (78.5±9.7 pA, n=10 cells from 3 females, 44.4±8.9 pA, n=9 cells from 3 males, 
p<0.05, Mann-Whitney). E) Schematic of validated stress-anxiety paradigm. F-H) Effects of 
restraint stress on OFT task performance (n = 6-7). I) Timeline of LC pharmacology-behavior 
experiments. J) Representative OFT traces from each sex and treatment condition. K-L) 
Sulprostone administration prevents stress-induced anxiety in female (n=17,17) but not male 
(n=16, 14) mice in OFT (center zone entries and time, respectively). (See also Supplementary 
Figure 2.4 for estrous-stage specific behaviors). M) Total activity was unaffected by sulprostone 
for both sexes (*: p<0.05 , **: p<0.01). 
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2.3 Discussion 
Characterizing gene expression in noradrenergic neurons—regardless of whether they are at the 

etiologic root of neuropsychiatric diseases and disease models—is key to narrowing down possible 

mechanisms by which NE signaling may be dysregulated in disease states. We have presented a 

mouse line enabling transcriptional profiling of LC neurons at baseline and after physiologic 

manipulations (LPS). In characterizing this line, we discover and herein report a breadth of 

previously unidentified sex differences in molecular features of the mouse LC. These findings 

highlight the LC as an area of focus for future studies in neuropsychiatry—especially in domains 

where sex differences are observed in modeled behaviors or diseases. In contrast, we find that 

serotonergic neurons show few sex differences in gene expression, despite their hypothesized role 

in behavior and psychiatric disease. Sex-differential expression of one such receptor, PTGER3, 

was adequate in magnitude to sex-differentially affect electrophysiologic and behavioral 

pharmacologic responses. This independent verification of our transcriptomic findings suggests 

sex-differentially expressed genes in LC 1) may underlie sex differences in behavior and 

behavioral pathology and 2) can be targeted to sex-specifically modulate LC-mediated behaviors. 

Thus, we conclude that the LC is an interesting candidate for mediating sex differences in 

monoamine-associated psychiatric phenotypes. We further envision that this mouse line could 

provide an invaluable tool in studies aimed at identifying mechanisms of existing NE-targeting 

drugs at the transcriptomic level, and enable prioritization of new, precise drug targets aimed at 

the same transcriptional endpoints. 

 

Our profiling extends previous work illustrating discrete molecular sex differences in the LC. 

Perhaps best characterized is the trafficking of receptor CRF1 and response to its ligand, CRF11–
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13,21. Likewise, the expression of the µ opioid receptor and response to opioid agonism in the LC 

shows a sex difference14. Estrogen regulates genes required for NE synthesis in a sex-specific 

fashion (see below). Structural dimorphism in the rat LC has also been observed, though the 

direction of effect depends on the strain of rat9,15,16. Finally, postnatal citalopram exposure in rats 

causes ectopic projection of LC fibers into the neocortex and increased LC excitability in males, 

but not females22. We expand upon this body of research by identifying thousands of genes 

expressed in LC and sex differences therein, as well as recurrent, conserved motifs in cis with 

these genes. 

 

Among the transcripts with sex differences identified in the LC, we identified a number of genes 

and putative cis-regulators notable for their previous implications in behavior and brain 

development. Putative regulators in cis with the DEGs included three striking candidates: OTX2, 

NR2F6, and MTF1. OTX2 was recently shown to regulate depression-related consequences of 

early life stress in male mice (females were untested) through actions in dopaminergic neurons23. 

MTF1 is notable for its role in binding and responding to heavy metals, perturbations of which 

have been implicated in ASDs24,25; furthermore, this transcription factor was itself enriched in male 

LC, providing hints of a potential regulator of some of our observed sex differences. Finally, 

NR2F6 is a nuclear receptor known to be required for LC differentiation, consistent with LC 

enrichment of the genes used for motif analysis. As the motif analysis only utilized conserved 

regions of mammalian sequence near these genes, these regulatory mechanisms, and thus sex 

differences, may be conserved in humans. 
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Intriguingly, we also noted a previously unidentified female enrichment of the prostaglandin E2 

(PGE2) receptor Ptger3 (EP3) in the LC. PGE2 and PTGER family receptors are known to mediate 

sexually dimorphic neurodevelopment in the preoptic area of the hypothalamus26,27; sex-

differential expression of these receptors in a separate, adult brain region was thus intriguing. The 

enrichment of PGE2 receptors is interesting in the context of LPS, which we used here to stimulate 

LC, but also stimulates fever; PGE2 and the LC are major effectors of LPS-induced fever via the 

EP3 and EP4 receptors20,28. Follow-up studies are merited to explore whether the EP3 receptor 

plays a role in fever effects on behavior via the LC, and whether its differential expression is cause 

or consequence of the broader transcriptomic sex differences presented here. 

 

This expression difference was sufficient to modulate behavior in a sex-specific way, which we 

validated by LC-targeted pharmacologic manipulation. Using sulprostone to agonize EP3, we 

identified strong inhibitory effects on LC firing in female LC neurons, consistent with the pattern 

of its increased female expression. We then utilized restraint stress as a validated means of 

activating the LC and triggering LC-mediated behavioral changes7,8,29,30. In turn, we aimed to 

suppress restraint-driven LC activation by administering sulprostone beforehand, ameliorating 

behavioral signs of stress-induced LC activity in female, but not male, mice. We thus demonstrate 

that the sex differences in receptor expression measured in the LC by TRAP are of an adequate 

magnitude to manipulate an LC-regulated behavior in a sex-specific manner. 

 

Our stress paradigm was only used to robustly activate the LC, rather than to investigate stress per 

se. Whether EP3 plays a role in—or undergoes transcriptional or translational regulation in 

response to—physiologic sex differences in the stress response of LC remains unclarified. We also 
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note that the mice in which DEGs were identified were singly-housed (potentially a stressor, i.e. 

social isolation), and housed at an unstressful, thermonormal 30°C for fever experiments. We note, 

however, that our electrophysiologic and behavioral findings regarding Ptger3 were consistent 

with the observed expression changes, despite the mice for the later experiments being group-

housed at a normal room temperature. Using these TRAP mice to deliberately study sex-specific 

transcriptional/translational responses to stress will be an interesting application of this mouse line 

for future investigations. 

 

It is interesting to speculate that sex differences in LC gene expression may specifically influence 

increased female risk of disorders like GAD and MDD, where NE-modulating drugs have seen 

use for decades. If higher baseline expression of some genes in the female LC promotes risk for 

MDD, then common variants that elevate expression of those same genes may likewise confer 

depression risk. Indeed, when we examined the 15 documented MDD-associated loci31 for the 

presence of sex-differential LC genes, we find two genes are associated with MDD and enriched 

in female LC of mouse: Slc6a15 and Lin28b. This striking coincidence may imply that certain 

sex-and variant-mediated MDD risk factors converge in the LC. Future research is 

warranted to explore whether sex and disease-associated regulatory variants concordantly 

affect gene expression and psychiatric disease risk via LC and other cell populations. 

 

Overall, the marked molecular sex differences present interesting areas for future inquiry. Most 

notably, the mechanism of establishing these sex differences (hormonal-developmental, sex 

chromosomal, or post-pubertal hormonal) remains unclarified. Previous work has shown that 

estrogen regulates expression of Th and Dbh, and thus NE synthesis, in a sex-differential manner 
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in adult rodents32,33. In the present study, estrous cycling was not examined for effects on 

transcriptional sex differences. Regarding behavior, we note that estrous cycling does not appear 

to play a role in most behaviors34, including center time in the open field task for C57BL6 mice35; 

binning behavior data by estrus stage revealed no substantial differences (Supplementary Figure 

2.4). Another possible mechanism, the perinatal masculinizing hormonal surge in male rodents 

that organizes other dimorphic regions, might be equally important in the LC—indeed, structural 

differences in female rat LC can be attenuated by perinatal testosterone administration36. Overall, 

it is possible that multiple mechanisms contribute to the molecular sex differences we detected. 

Thus, future studies are warranted, both focusing on identifying these mechanisms and examining 

the potential conservation of these differences. 

 

2.4 Experimental Procedures 
Animal Research Statement. All procedures involving animals were approved by the Institutional 

Animal Care and Use Committees of Rockefeller University, Case Western Reserve University, 

and Washington University in St. Louis. 

 

Immunofluorescence microscopy. PFA-perfused mouse brains were dissected, cryoprotected, and 

cut by cryostat into floating sections for immunostaining with primary antibodies and Alexa 

fluorophore-coupled secondary antibodies. Antibodies used are described in Supplementary 

Table 2.1. 

 

TRAP for initial description of LC. Replicate pools of five mixed sex adult mice from each of the 

Slc6a2 lines were sacrificed. Brains were removed for collection of hindbrain posterior to the 



 74 

pontine/hypothalamic junction (discarding the cerebellum). All array data were analyzed in R 

using Bioconductor packages. GCRMA was used to normalize within replicates, and to 

biotinylated spike in probes (green dots, Figure 2.1F) between conditions. Fold change, 

Specificity Index (SI) and pSI were calculated for genes expressed above non-specific background, 

defined as the mean + 2 SD of the TRAP:hindbrain fold change of negative control transcripts 

(Figure 2.1F, red dots). LC-enriched transcripts were were identified using the empirical Bayesian 

statistic with FDR correction in limma. The pSI algorithm was used with default settings to 

compare LC TRAP to other cells profiled by TRAP (Figure 2.1G). Hierarchical clustering across 

cell types was conducted in R utilizing expression values from genes with pSI <0.01 in any cell 

type. 

 

Scoring of the Allen Brain Atlas for LC gene specificity. Any transcript that scored between 1 and 

3 (examples in Supplementary Figure 2.1) was considered to be marker-like. A χ2 test was 

performed comparing observed counts of each score with expected counts (based on the random 

gene set) for each score. 

 

Single animal TRAP for sex-differential and LPS-responsive gene expression. Samples were 

prepared and hybridized in two batches counterbalanced for mouse strain, sex, and LPS. After 

processing, one Slc6a4 TRAP sample and two hindbrain samples were excluded due to poor 

hybridization. Remaining samples were normalized using the lumi package. Appropriate clustering 

of replicates was confirmed with multidimensional scaling (MDS) plots (Supplementary Figure 

2.5). Differential expression was defined as p<.05 on a paired T-test (paired on batch and covariate) 

and Log2 change was +/- .585 across 3 of 4 paired comparisons. For balance, the single Slc6a4 



 75 

replicate was used twice to replace the low quality sample. To validate this analytic approach, we 

performed standard differential expression analysis in limma. The complete gene-wise analysis 

result tables are available with the published version of this work as supplemental tables. 

 

Motif Analysis of peri-TSS Sequences of Sex-DEGs in LC. For each sex-differentially expressed 

gene identified in the LC, mm10 genomic sequence 10kb 5’ and 10kb 3’ to the TSS were acquired. 

Exonic bases non-conserved regions of sequence (based on PhyloP scores) were masked out. 

Masked flanking sequences were submitted to MEME37 for de novo discovery of motifs 8-20bp 

long. The associated tool, TomTom, was used to compare motifs to known TF binding sites38–40. 

Motif frequency, consensus sequence, and predicted TFs discussed are provided (Figure 2.4). To 

assess motif enrichment near LC transcripts, 1000 random protein-coding TSSes were selected 

and processed identically. These were searched for motif matches using FIMO at the same p cutoff 

for a “match” used by MEME during discovery. The number of unique loci containing ≥1 motif 

match among all loci was then compared using chi-square analysis, followed by Benjamani-

Hochberg correction. 

 

Electrophysiology of LC neurons exposed to PTGER3 agonist/antagonist. Whole-cell recordings 

were made using an Axopatch 200B amplifier (Molecular Devices). LC neurons were identified 

by location, capacitance > 40 pF, an input resistance < 100 MΩ, and a tonic firing rate of 0.5 – 4 

Hz. 
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Stereotaxic cannulation of LC. Mice were allowed to recover from surgery 7-9 days prior to 

behavioral testing. Animals were also habituated to handling and connection to tubing for 3 

consecutive days prior to behavioral testing. 

 

Stress-induced anxiety behavioral paradigm. Anymaze was used for video recording of animal 

movements for center and periphery analysis. The center zone was defined as a concentric 

rectangle comprising 50% of the OFT area. Cannula placement was confirmed by cryostat 

sectioning of perfused brains (Supplementary Figure 2.3) to determine mice for inclusion in the 

final behavioral and c-FOS analyses. 

 

c-FOS quantification in LC following sulprostone/vehicle, restraint, and OFT. Gain, light 

intensity, and exposure time were identical for all prepared microscope slides. Using ImageJ: 

background was subtracted, ROIs made around the LC based on TH staining, and average pixel 

intensity for c-Fos fluorescence was measured. Fos-TH double positive cells were counted 

manually by a blinded experimenter. 
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2.6 Supplementary Material 
Supplementary Table 2.1. Antibodies used for immunofluorescence and ISH. Target: Protein 

or molecule targeted by the antibody. Concentration: Ratio of volume of antibody (at its provided 

concentration) to buffer for staining. Species: Species in which the antibody was generated. 

Target 
(Mouse) Concentration Species Figure Vendor Product No. Notes 

TH 1 : 500 Mouse 2 MilliPore 
Sigma MAB318  

DBH 1 : 500 Rabbit 2 Immunostar 22806  

CGRP 1 : 2,000 Rabbit 2 MilliPore 
Sigma AB1971  

CELF6 1 : 500 Rabbit 2 N/A N/A 

Custom produced. Original citation: 
Dougherty, JD, et. al. "The 
Disruption of Celf6, a Gene 
Identified by Translational Profiling 
of Sertonergic Neurons, Results in 
Autism-Related Behaviors." J 
Neurosci, 2016. 
doi.org/10.1523/JNEUROSCI.4762-
12.2013 

NGB 1 : 100 Rabbit 2 Santa Cruz 
Biotechnology SC-30144 Discontinued. 

GPX3 1 : 50 Mouse 2 Santa Cruz 
Biotechnology SC-58361  

RBP4 1 : 50 Rabbit 2 Genetex EP3657 Now supplied by Abcam. 

DLK1 1 : 50 Mouse 2 Santa Cruz 
Biotechnology SC-80024 Discontinued. 

Digoxigenin 1 : 7,500 Sheep 2 Roche 11093274910 
Coupled to alkaline phosphatase (for 
in situ hybridization staining with 
NBT+BCIP). 

Phospho-
Ser32 c-Fos 1 : 500 Rabbit N/A Cell Signaling 

Technologies 5348S Discussed in results section. 

Rabbit IgG 1 : 1,000 Donkey 2 Invitrogen A21206 Coupled to Alexa Fluor 488. 

Rabbit IgG 1 : 1,000 Donkey 2 Invitrogen A10040 Coupled to Alexa Fluor 546. 

Mouse IgG 1 : 1,000 Donkey 2 Invitrogen A21202 Coupled to Alexa Fluor 488. 

Mouse IgG 1 : 1,000 Donkey 2 Invitrogen A10036 Coupled to Alexa Fluor 546. 
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Supplementary Figure 2.1. Examples of Allen Brain Atlas ISH scoring. Images from Allen 
Brain Atlas for examples of in situ hybridizations that would score a 1-5, respectively.  
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Supplementary Figure 2.2. Pathway analysis of transcripts altered in hindbrain by LPS and 
of sex-differentially expressed transcripts in noradrenergic neurons. A) A pathway analysis 
using DAVID reveals the hindbrain showed a significant increase of interferon related gene 
expression, and trends in a variety of chemokine and inflammatory pathways. B-C) An exploratory 
pathway analysis using DAVID illustrates the trends in male and female noradrenergic gene lists 
(-Log10 p-values. No p<0.05 after Benjamini-Hochberg correction for multiple testing). Though 
no individual pathway survived correction for multiple testing, the trend towards more 
mitochondrial genes and vesicular transport transcripts in female neurons may suggest they have 
slightly higher metabolic demands. Male neurons had slightly more nuclear factors, driven by 
transcription factors such as Atrx1, Mtf1 and Pbx1. 
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Supplementary Figure 2.3. Map of LC cannula placements from post-mortem brain tissue. 
Tissue from all mice cannulated and given sulprostone or vehicle was sliced, and the deepest point 
of the two cannula tracks was noted for each mouse. These points are collectively mapped here for 
mice across all conditions. If cannulae were not in the target area, the mice/tissue were excluded 
from behavioral analysis, c-FOS quantification, and this diagram. Anatomy is shown in the coronal 
plane with mm along anterior-posterior (AP) axis; dotted lines outline location of the LC. Circle 
outlines: blue = male, orange = female; fill color: purple = sulprostone-treated, empty/white = 
vehicle-treated. 
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Supplementary Figure 2.4. OFT data by estrous stage from one cohort of sulprostone-
behavior mice. Boxplots for seven OFT measures in counts, meters (m), or seconds (s) from 
females in a cohort of sulprostone-behavior mice with estrus staging data. Metestrus and diestrus 
were combined per Silva, et. al41. 
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Supplementary Figure 2.5. Multidimensional scaling (MDS) and heatmaps illustrate the 
clustering of samples and gene sets. A) Hierarchical clustering confirms the expected segregation 
of samples by cell/sample type (Slc6a2 vs. Slc6a4 vs. hindbrain, or TRAP vs. hindbrain), and show 
a degree of batch effects, guiding the analytical strategies employed. B) Clustering genes that were 
DE between at least one comparison in the Slc6a2 TRAP samples (i.e., comparing expression 
between sexes or between LPS/PBS conditions) illustrates the presence of distinct LPS-and sex-
dependent DEG sets in noradrenergic neurons. The adjacent Slc6a4 samples illustrate that sex and 
LPS do not affect these genes in serotonergic neurons in an analogous manner.  
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Chapter 3: From sex differences in gene expression to sex 
differences in expression regulation 
Two findings in Chapter 2 form critical bridges from sex differences in the LC to the remaining 

work described in this dissertation. The first is the identification of conserved, recurrent 

sequences near sex-differentially expressed genes of the LC (Figure 2.4). Each mouse genomic 

sequence matching one of the twelve motifs were designed into an MPRA oligonucleotide 

library intended for in vivo testing to verify sex-differential regulatory function of those 

particular sequences. 

 

The second finding, described in Chapter 2.3 (discussion) highlights that two early genome-

wide candidate genes for MDD were also among the <100 genes with female-biased, LC-

enriched expression in the TRAP dataset. This was an exciting confluence of events that spurred 

me to additionally design an allelic MPRA oligonucleotide library for each human genomic 

sequence, in three sequence contexts relative to the SNP (with a tile such that the SNP was at the 

5’ end, center, or 3’ end) in modest linkage disequilibrium with the GWAS tag SNPs 

corresponding to these two genes’ (SLC6A15, LIN28B) loci. Given the sex differences in these 

genes’ expression and candidacy as mediators of MDD genetic risk, these two loci seemed like 

strong candidates for identifying sex-interacting risk variants for the disorder. 

 

Sadly, the oligonucleotide library purchased for these two experiments was irreparably ill-

synthesized, a fact which took nearly a year to identify. In the meantime, regulatory genomics 

data from postmortem human brain and in vitro human cell types had grown abundant, especially 

thanks to the PsychENCODE consortium’s first data tranche released in December of 2018. 

Simultaneously, the gold-standard psychiatric GWAS group, the Psychiatric Genomics 
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Consortium (PGC), had published new, better-powered, and well-phenotyped GWASes for 

several psychiatric disorders, including MDD, expanding the number of associated loci. 

Simultaneously, work leveraging UK Biobank data with PGC data identified new GWAS loci for 

depression and highly correlated traits, like neuroticism. Human genomics research now had a 

wealth of psychiatric GWAS statistics to work with, and far more brain-based -omics data to 

annotate these findings than had been available just a couple years prior. 

 

In light of the newly available human neural multiomic data and rapidly increasing number of 

genetic associations for MDD and closely related traits, a second library spanning many additional 

GWAS loci was constructed, which forms the basis of the remainder of this work. 
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Chapter 4: Transcriptional-regulatory convergence across 
functional MDD risk variants identified by massively 
parallel reporter assays 
This chapter was previously published: 

Mulvey, B. & Dougherty, J. D. Transcriptional-regulatory convergence across functional MDD 

risk variants identified by massively parallel reporter assays. Transl Psychiat 11, 403 (2021). 

 

Family and population studies indicate clear heritability of major depressive disorder (MDD), 

though its underlying biology remains unclear. The majority of single-nucleotide polymorphism 

(SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are 

believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of 

marks correlated with these functions. A key to understanding MDD pathophysiology will be 

elucidation of which SNPs are functional and how such functional variants biologically converge 

to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-

like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription 

factors (TFs). I therefore sought to simultaneously identify functional genetic variants and assess 

retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays 

(MPRAs), I functionally screened over 1 000 SNPs prioritized from 39 neuropsychiatric 

trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features—

including expression quantitative trait loci (eQTL) and histone marks—from human brains and 

cell cultures. I identified >100 SNPs with allelic effects on expression in a retinoid-responsive 

model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive 

transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans 

retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs 
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highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of 

MPRAs to screen MDD-associated SNPs suggests a shared transcriptional regulatory program 

across loci, a component of which is unmasked by retinoids. 

 

4.1 Introduction 
Major depressive disorder (MDD) is a common but debilitating psychiatric disorder affecting 

hundreds of millions worldwide1, exacting substantial tolls on both individuals2 and societies3. 

Despite the global burden of MDD, nearly half of patients do not clinically respond to treatment4, 

in part due to limited understanding of its biological underpinnings. Family studies have 

demonstrated that MDD risk is at least 30% heritable5,6. More recently, genome-wide association 

studies (GWASes) have demonstrated similar estimates for severe MDD7, and have helped narrow 

in on associated single nucleotide polymorphisms (SNPs)8–11, a tantalizing entry point for 

understanding the biology of MDD. However, GWAS studies do not identify causal variants, but 

rather implicate wider co-inherited regions consisting of many SNPs in linkage disequilibrium 

(LD). Most disease-associated SNPs are found outside of protein-coding sequences, suggesting 

probable roles in transcriptional regulation (TR)12–15. Which linked SNPs have functional allelic 

impacts on TR—and how they act together across loci to result in disease—remains unresolved. 

 

It is thought that undetected, small-effect SNPs acting across the genome—including conditional 

SNPs within GWAS-significant loci16—contribute to the substantial heritability not caught by 

GWAS-significant SNPs alone17. Early support for multiple linked variants underlying GWAS 

signals came from examination of cell line histone marks in loci from six autoimmune disorder 

GWASes ; all six showed enrichment of TR-suggestive marks at LD SNPs only in a pertinent cell 



 90 

type (B lymphocytes). Strikingly, 65% of the loci with ≥1 SNP overlapping lymphocyte histone 

marks contained multiple SNP-mark pairs, and over half of these loci contained at least three such 

SNPs18. Altogether, these findings implied that GWAS regions likely affect several TR features 

via several linked variants, especially in relevant cell types. More recently, GWASes have 

identified what are now called “conditional SNPs” associated with MDD19. However, despite 

predictions of multiple TR SNPs within GWAS loci, functional demonstration of this phenomenon 

has been sparse to date. The largest functional TR assay of MDD-associated variants examined 34 

SNPs using luciferase assays20, representing successful but low-throughput identification of 

functional MDD SNPs. However, in terms of broad linkage, these loci constitute well over 10 000 

SNPs, which will ultimately require higher-throughput approaches. 

 

Furthermore, how functional SNPs—even once identified—biologically result in disease remains 

unclear, given their individually small effects on risk. The polygenic21 and omnigenic17 models 

were conceived of to address these aspects of complex disease genetics, establishing  a guiding 

principle for GWAS interpretation. In brief, these theories posit that consistent emergence of a 

specific phenotype via widespread genomic variation necessarily requires common biological 

endpoints of those variants’ effects. At the molecular level, these points of convergence could be 

either upstream (shared regulation across loci)22 or downstream (common biological pathways 

across loci). For downstream analyses, myriad approaches have been developed to nominate gene 

targets of putative TR SNPs using proximity23, chromatin structure24–26, or expression quantitative 

trait loci (eQTLs)27–29, yielding gene sets tested for enrichment in biological pathways27,28,30 and 

cell types31. However, no analogous approaches exist for identifying convergent upstream (i.e., 

TR) molecular effects of genetic risk, in part because a prerequisite is defining the functional SNPs. 
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One possible point of upstream TR convergence of MDD risk variants is retinoic acid and related 

compounds (retinoids). Retinoids drive transcriptional responses via several retinoid-binding 

nuclear receptor transcription factors (TFs) and heterodimerizing partners32,33. Besides their 

critical role in neurodevelopment, including of depression-implicated limbic structures34, retinoids 

have been associated with MDD onset and suicidality by epidemiological studies of the retinoid 

agonist isotretinoin35. Moreover, thyroid hormone is often used as an adjunctive treatment in 

MDD, and thyroid receptor TR effects are frequently carried out cooperatively with RXR family 

retinoid receptors36. Additional evidence for retinoid pathway activity in the adult brain—and its 

overactivity as a risk factor for depression—comes from rodent pharmacology and genetic models. 

For example, knockdown of Cyp26b1—which metabolizes retinoids—in adult mouse anterior 

insula suppresses interest in social novelty by reducing spontaneous activity of excitatory 

neurons37. Likewise, depressive symptoms have been observed in rats after intracerebroventricular 

all-trans retinoic acid (ATRA) administration38. In addition, RARA is more abundant in CRH 

neurons of affective disorder hypothalami39, where it both upregulates corticotropin releasing 

hormone (CRH) expression and blocks glucocorticoid negative feedback on CRH 40, suggesting a 

link between retinoid TFs and elevated hypothalamic-pituitary-adrenal axis activity in MDD. 

Finally, given the substantial shared genetic risk across psychiatric disorders41, it is notable that 

schizophrenia GWAS loci show enrichment for retinoid TR42, and that circulating retinoids are 

dysregulated in schizophrenia patients43. Similarly, retinoid pathway genes, including CYP26B1, 

are dysregulated in postmortem brain from autism spectrum disorders, bipolar disorder, and 

schizophrenia patients44. Interestingly, retinoid deficiencies have been associated with these 

diseases, including recent observations of reduced serum levels of retinoic acid and its precursor, 
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retinol, in schizophrenia43; similarly, reductions in serum retinol and expression of all three RAR 

genes were shown in autism spectrum disorders45. These findings led us to speculate that a 

component of MDD-associated genetic risk may likewise demonstrate an upstream convergence 

via recurrent retinoid-mediated TR disruptions across loci.  

 

Massively parallel reporter assays (MPRAs) provide a solution to both experimentally identify 

functional variants and, consequently, their shared TR features. MPRAs assess thousands of DNA 

elements for transcriptional-regulatory functions and allelic differences simultaneously by pairing 

each short genomic sequence element of interest to several unique barcodes, with a constant 

promoter and reporter gene placed in between46–49. Delivery of a library of DNA elements to cells, 

followed by RNA collection and sequencing, enables quantitative estimation of the expression 

driven by each element as a ratio of expressed RNA barcode to delivered DNA barcode. These 

assays have recently been adapted to systematically identify SNPs with functional allelic TR 

differences from GWAS loci for several diseases50–58. Two key features make MPRAs 

advantageous for identifying both functional SNPs and their TR interactions. First, the assay is 

carried out via transfection and targeted RNA-sequencing, meaning it can be executed in 

unmodified cell lines appropriate to the application. Second, MPRAs can be conducted to define 

TR effects of experimental manipulations in these systems, such as drug administration59,60. 

 

Therefore, I sought to experimentally identify functional TR SNPs from 39 GWAS loci associated 

with MDD, neuroticism, and broader psychiatric disease risk, with the hypothesis that functional 

SNPs converge at the level of retinoid-mediated TR. From broad linkage regions, I selected over 

1 000 SNPs based on overlapping human brain and neural epigenomic signals suggestive of TR 
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activity. Critically, selection of neither the loci nor the SNPs was predicated on retinoid 

involvement, allowing for unbiased functional screening of a cross-section of MDD GWAS loci. 

To ensure I could detect SNPs subject to retinoid-mediated TR, I used neuroblastoma (N2a) cells, 

as they are strongly and rapidly retinoid-responsive61,62. My initial assay identified over 75 

functional SNPs from 29 GWAS regions, confirming that GWAS loci contain several functional 

SNPs. I then examined whether these functional SNPs possessed shared upstream TR features—

namely, transcription factor (TF) binding motifs. Remarkably, there was indeed enrichment of 

retinoic acid binding TFs among the MPRA-functional vs. -nonfunctional SNPs, supporting my 

hypothesis. To further characterize retinoid effects on TR at MDD-associated SNPs, I performed 

a second assay using all-trans retinoic acid (ATRA), known to stall division of N2a and other 

neuroblastoma cells by inducing neuronal-like differentiation61. First, I found that functional SNPs 

containing retinoid receptor motifs had increased magnitudes of effect in the presence of ATRA, 

consistent with bonafide retinoid receptor TR activity. More broadly, ATRA led to striking 

rearrangements of the baseline regulatory landscape, including altered magnitude and reversed 

direction of allelic effects. Additionally, it revealed new SNPs with allelic TR differences 

unmasked by ATRA treatment. Significant ATRA-allele interaction SNPs largely overlapped 

RXRA binding sites from chromatin immunoprecipitation (ChIP)-seq, as well as motifs of several 

known retinoid-induced TFs, indicating broad roles of both retinoid TFs and their downstream TR 

systems at functional MDD-associated SNPs. 

 

Finally, I explored the cell type-specificity of TFs predicted to regulate my functionally identified 

SNPs. Strikingly, I found TFs highly specific to serotonin neurons were strongly enriched among 

those I predicted to be recurrently involved in retinoid-dependent SNP function. These findings 
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suggest that the broad transcriptional-regulatory systems engaged by retinoids—and as I illustrate, 

the genetic component of MDD risk they engage—may converge on serotonergic neurons. In 

summary, I identify MDD-associated functional SNPs with both baseline and ATRA-mediated 

allelic differences in TR, and these disproportionately show upstream convergent regulation by 

retinoid receptors and TFs they induce. This highlights a striking potential point of convergence 

between genetic risk loci and an environmental risk factor for MDD. 

 

4.2 Methods 
4.2.1 Identifying candidate psychiatric GWAS regulatory variants. 

To prioritize putative regulatory variants from neuropsychiatric disease GWAS regions 

(predominantly MDD; Figure 4.1A), SNPs in linkage disequilibrium (LD) with GWAS tag 

variants at R2 > 0.1 were collected and intersected with histone modification, eQTL, Hi-C, and 

enhancer segmentation datasets from human postmortem tissue and neural lineage cell lines (see 

Supplementary Methods, Figure 4.1B). SNPs were manually selected based on diversity and 

density of annotation overlap within each locus (Supplementary Methods). As a negative control, 

I identified candidates from one additional locus associated with several anthropomorphic traits63, 

in a trait-blinded manner. Altogether, 1453 SNPs were selected. Final LD of selected SNPs was 

distributed similarly to starting SNPs (Figure 4.1D). To confirm that I could detect CNS-relevant 

regulatory SNPs, a positive control TR SNP functionally demonstrated in mouse retina and brain56 

was also included. 

 

Human genomic sequence (hg19) tiles up to 126bp were taken centered on the 1454 candidate 

enhancer SNPs, each paired to ten unique 10bp barcode sequences per allele and ordered as an 

oligonucleotide (oligo) pool from Twist Bioscience (San Francisco, CA). Also in the pool were 
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110 “basal” barcodes (no human genomic sequence cloned upstream of the minimal promoter), 

such that the only variable sequence between reporter clones was the barcode itself. The oligos 

were PCR amplified, then cloned into plasmid (Figure 4.1E); subsequently, a reporter cassette 

containing a minimal promoter (hsp68) driving the dsRed reporter gene64 and the untranslated 

“woodchuck” element (for RNA stabilization, to improve signal)65 was cloned in. 

 

4.2.2 Massively parallel reporter assays 

N2A cells were grown in uncoated 6-well plates in medium consisting of 0.1µM vacuum-filtered 

DMEM with 10% Fetal Bovine Serum (2% fetal bovine serum for the ATRA assay, based on 

media conditions from the literature66,67). For transfection, cells were reverse transfected by plating 

in antibiotic-free medium onto pre-plated 400µL mixtures of 2.5µg plasmid with Lipofectamine 

2000. In the first assay, n=6 replicate wells were transfected and co-prepared for sequencing. A 

power analysis of these results using the 25th, 50th, and 75th percentile standard deviation of 

sequence expression measurements indicated I were ≥80% powered to detect Bonferroni-corrected 

p<0.1 variant effects as low as abs(log2FC) 1.1 (Supplementary Methods). In the drug MPRA 

experiment, n=12 wells were transfected, harvested, and prepared for sequencing together, with 

n=6 ATRA-treated and n=6 vehicle-treated. 

 

After transfection, cells incubated for 7 hours at 37°C and 5% CO2. Medium was replaced with 

the respective medium containing antibiotics, and in the second assay, a final concentration of 20 

µM ATRA dissolved in DMSO, or equivalent volume of vehicle (DMSO). Medium was not 

replaced before RNA collection in the first assay; in the second assay, it was refreshed every 24 

hours. 72 hours after transfection, cells were collected and RNA extracted using the Zymo (Irvine, 

CA) Clean-and-Concentrator 5 kit per manufacturer instructions. Eluted RNA was treated with 
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Turbo DNA-free kit to remove any residual plasmid to prevent contaminating DNA reads during 

sequencing, and cleaned a second time using the Zymo kit as above. 

 

4.2.3 Targeted sequencing of RNA and input plasmid 

Briefly, equal amounts of RNA (1µg) from each sample were prepared for sequencing by targeted 

cDNA synthesis using a primer against the distal 3’UTR of the reporter. These, along with input 

plasmid, were subjected to PCR, enzymatic digestion, ligation of Illumina sequencing adapters, 

and a final PCR to add sample indexes for sequencing. Enzymes, and size-selection cleanup steps 

used in this process are fully detailed in Supplementary Methods. No-reverse-transcriptase controls 

utilizing sample RNA were co-prepared for both experiments and did not generate detectable 

product, indicating sequencing amplicons generated from RNA samples were exclusively 

representative of RNA content. Samples were sequenced to an average depth of ~8 million reads 

(first assay) or ~20 million reads (second assay).  

 

4.2.4 Analysis 

Allelic SNP effects on expression in the first assay and in single-condition analyses of the second 

assay were assessed by t-testing the element’s expression of each allele across replicates. In the 

first assay, over 90% of SNPs had normally distributed expression values (Shapiro-Wilk test, 

p>0.05). Uncorrected t-test p-values and Mann-Whitney U test p-values were well-correlated for 

the 89 non-normally distributed SNPs (Pearson’s r=0.825). Nonetheless, for t-test significant SNPs 

(pemp<0.05) not passing the Shapiro-Wilk test, I verified the result by checking for a nominally 

significant Mann-Whitney U test at p<0.05. No SNPs were excluded from analysis on this basis. 

dbSNP-assigned reference (“ref”) and alternative (“alt”) alleles for each SNP were used to define 

comparison direction (the difference of activity under the alt allele vs. the ref allele). For the first 
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MPRA and single-condition analysis of vehicle samples from the second assay, p values were 

adjusted using empirical p-value correction via simulated allelic comparisons between random 

subsets of “basal” barcodes (see Supplementary Methods) following an analogous procedure from 

a multiplex CRISPR study68, with significance defined as pemp<0.05 unless specified otherwise. 

This ensures that a representative cross-section of expression variability driven by barcode 

sequences is accounted for when assessing TR differences. Single-condition analysis of ATRA 

samples utilized standard Benjamini-Hochberg FDR correction, as primary effects of interest in 

these samples were ascertained by linear modeling. For analysis of ATRA effects, I verified that 

variances were similar between the drug and vehicle conditions; indeed, the median barcode 

expression level standard deviation was 0.1216 in ATRA-treated and 0.1226 in vehicle-treated 

samples (with respective 25th and 75th %ile standard deviations also matched within 0.005 

expression units). I calculated samplewise barcode-level expression values passing the “single-

condition” filtering steps used for t-testing (Supplementary Methods) were fitted using a linear 

mixed model (LMM) requiring a minimum of 40% (96) of the 240 possible expression 

measurements per SNP. The LMM included a random term for replicate (to account for well-

specific effects), expressed as: barcode expression ~ allele + drug + allele:drug + (1|replicate). 

Empirical q-value correction for LMM F statistics was performed in an analogous manner to the 

prior experiment, generating a vector of F statistics for each coefficient from 20 000 randomized 

basal-only comparisons. All SNPs with an interaction pemp<0.05 also had a likelihood ratio test 

(LRT) p<0.051 comparing a maximum-likelihood (ML) interaction model to an ML LMM with 

additive terms only, indicating that the interactive model was more predictive but not overfit 

compared to an additive model. For SNPs with significant allele and interaction coefficients, a 

meaningful allele main effect was considered present if the single-condition vehicle and ATRA 
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analyses showed the same allelic direction of effect, with a vehicle pemp < 0.1 and ATRA FDR<0.1 

(i.e., near-significant within each condition of n=6, thus reasonably capable of achieving 

significance in the LMM analysis of the two conditions combined). 

 

4.2.5 MotifbreakR analysis and functional SNP enrichment for perturbed 
motifs 

The motifbreakR69 package was used to identify TF binding motifs significantly different between 

alleles of each SNP. Briefly, the number of MPRA-identified functional SNPs matching a given 

TF’s motif(s) for at least one allele was compared to the number of non-functional SNPs matching 

across 10 000 random draws of n (number of significant) SNPs. A second version of this analysis 

focused on the concordance rate—that is, whether the frequency of functional variants 

experiencing concurrent strengthening of motif and expression or vice versa—was significant 

compared to 10 000 draws of n random SNPs from the analyzed set. Analysis of the first assay’s 

SNPs defined functionality based on a pemp value threshold of 0.05. I performed two motif analyses 

of the second assay results, one comparing allele main effect SNPs (pemp<0.1) to those with 

pemp>0.1 for allele, drug, and interaction effects, representing the breadth of functional variant-

susceptible cis-regulators. The second analysis compared interaction SNPs (pemp<0.05) to SNPs 

with an allele main effect (allele pemp<0.1) but no interaction (interaction pemp>0.1). 

 

4.2.6 Analyses of functional SNP-enriched TF expression in human brain and 
Chromatin Immunoprecipitation (ChIP)-seq 

I utilized outside ChIP-seq datasets to validate motif-based predictions of retinoid receptor binding 

and refine prediction of involved TFs. I intersected my functional SNPs to 25 tracks of ChIP-seq 

for retinoid receptors (19 human70,71, 6 mouse (3 ATRA treated, 3 vehicle treated) converted to 
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hg19 coordinates using UCSC’s LiftOver72); 11 tracks of RXR heterodimerization partners (10 

human THRA/THRB70,71 and one aggregate analysis of human VDR73); and human genome-wide 

predictions of DR574, a canonical RAR•RXR heterodimer binding sequence. For functional SNPs 

implicated at an RAR, RXR, VDR, or THRA/B site by either motifbreakR or ChIP, I identified 

potential target genes using chromatin-conformation75 and eQTL76–79 data. I performed broad-

scope gene enrichment analysis of this gene set using Enrichr80. To examine shared biology of TFs 

implicated by motifbreakR enrichment at functional variants, I utilized PantherDb81. I finally 

examined TFs for enrichment among highly-expressed genes in adult and developing human brain 

using the ABAEnrichment package’s Wilcoxon approach82, effectively weighting TFs by the 

number of functional SNPs implicated by motifbreakR (see Supplementary Methods). 

 

4.2.7 Code availability 

A summary spreadsheet of all significant SNPs identified in one or both assays, along with full 

analysis results, including barcode-wise expression in each sample, single-condition allelic effect 

tests, linear modeling results, and significantly enriched TFs in each of the comparisons executed, 

along with the code utilized to execute these analyses, is available at 

https://bitbucket.org/jdlabteam/n2a_atra_mdd_mpra_paper/src. 

 

4.3 Results 
4.3.1 Many MDD loci contain more than one functional SNP 

I identified >1 000 SNPs from MDD-associated GWAS loci, prioritizing SNPs overlapping with 

epigenetic data from neural samples, and cloned them into an MPRA library (Figure 4.1). I 

included one positive control SNP, shown to alter neural tissue gene expression, and one control 

locus near CDKAL1 not a priori associated with psychiatric disease. To identify functional variants 
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from these SNPs, the library was transfected into N2a cells (n=6 replicates, Figure 4.1E). Variant 

activity was assessed by RNA sequencing and barcode counts compared to input plasmid barcode 

counts. After filtering for read depth and barcode representation, 1013 SNPs spanning all 40 LD 

regions remained for analysis. Results were highly replicable across samples (Pearson r 0.63-0.85 

for barcode expression; 0.90-0.96 for elements, Supplementary Figure 4.1). I use “element” to 

signify the set of barcodes corresponding to one unique sequence of interest (1 SNP = 2 elements). 



 101 

 
Figure 4.1. Design of an MPRA library to identify candidate functional SNPs in MDD loci. 
A) Table of GWAS studies and number of loci covered in the MPRA library. B) Flow chart of 
design and prioritization process. C) Brain and neural transcriptional-regulatory predictive 
annotation overlap with SNPs included in MPRA library. Fraction and number of SNPs in 
designed MPRA library intersecting each transcriptional-regulatory predictive annotation type. 
D) The manual prioritization process was not LD biased. The subset of prioritized SNPs are 
spread over LD space similarly to the full set of screened SNPs. E) Schematic of library 
construction and delivery. Panel adapted from49. 
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Of 1013 SNPs analyzed, I identified significant allelic TR (pemp<0.05) at 76 SNPs (65 from MDD 

loci; 1 from the control CDKAL1 locus) across 27 of the 40 analyzed GWAS regions, with effects 

ranging 0.1 to 0.63 (median 0.2) log2 fold-change (Figure 4.2B). Interestingly, the functional 

variant from the control locus is suggestively associated (GWAS p < 5•10-6) with “Poisoning by 

analgesics, antipyretics, and antirheumatics” in UK Biobank83. As this likely includes attempted 

suicides, the SNP was retained for analyses. The positive control SNP, which I utilized to confirm 

my ability to detect small effect sizes expected of regulatory SNPs, showed the expected lower 

expression of the T allele at a pemp of <0.051 (Figure 4.2A)56. 

 

While my assay was designed to broadly examine wide LD regions around GWAS index variants, 

I did identify one functional variant, rs11209952, in a fine-mapped credible set of variants for 

seeking general practitioner care for depression in UK Biobank84. Moreover, consistent with prior 

studies of  “conditional” or “secondary” SNP associations—wherein additional LD SNPs have 

associations independent of their linked, larger-effect variant19,85,86—I identified several loci with 

multiple functional SNPs (Figure 4.2C) (range 1-8, mean 2.8, median 2). Notably, I identified as 

functional rs1806153, a recently defined “conditional SNP” for MDD19. My findings support 

models predicting multiple functional SNPs in GWAS loci, and directly validate one such finding 

from association analysis.  

 

One notable TR SNP I identified, rs314267, comes from a “LIN28B” (nearest gene) GWAS locus 

repeatedly linked to MDD8,87 as well as cross-psychiatric disorder risk41. MPRA significance and 

effect size are illustrated for the region, showing that this locus contains several functional SNPs 

(Figure 4.2D). All significant MPRA SNPs in the locus had effect directions consistent with brain 
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eQTLs. rs314267 is the most significant LIN28B eQTL SNP (eSNP) in the region in 

PsychENCODE77, and is a CommonMind Consortium (CMC) eSNP for both LIN28B and 

HACE176. HACE1 is also downregulated in postmortem MDD hippocampal CA188. Hi-C data 

from human neural cell cultures suggest rs314267 is within a neuron-specific LIN28B regulator, 

with promoter chromatin contacts found in dentate and cortical neurons, but not astrocytes75. 

LIN28B plays broad roles in neurodevelopment89 and has potentially sex-differentiated 

functions90–93; considering sex differences in MDD prevalence and severity94,95, LIN28B 

constitutes an especially interesting gene target from this locus. Finally, I examined potential 

upstream TR mechanisms for SNP activity using VARAdb96. Query of rs314267 revealed a two 

order of magnitude allelic difference in the motif match p-value for TCF4—a gene itself implicated 

in cross-psychiatric-disorder risk41,97. Overall, the identification of functional SNPs implicated in 

regulation of HACE1 and LIN28B exemplifies the ability of MPRAs to identify functional variants 

involving sensible TR mechanisms and target genes.  
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Figure 4.2. MPRA defines SNPs with a functional effect on gene expression. A) MPRA results 
of positive control SNP. Shen, et. al. found that the T allele drove decreased expression relative to 
the deletion (“-”) allele, which was robustly reproduced in the present assay. B) Volcano plot of 
allelic differences in reporter expression. Points represent one SNP’s composite log2 allelic fold 
change (alt vs. ref), determined as the mean of samplewise alternative allele barcode expression 
minus the matched mean of reference allele barcodes. The dotted line indicates the statistically 
corrected significance threshold. C) Number of functional SNPs (MPRA significant SNPs) per 
GWAS locus in the assay. Number of loci (y-axis) containing a given number of MPRA-significant 
(pemp<0.05) SNPs (x-axis). D) The LIN28B locus harbors several functional SNPs. SNPs are 
plotted according to their chromosomal position (hg19) and colored based on their composite log2 
allelic fold change. Refseq genes are visualized by the Integrative Genomics Viewer98. E) TF 
binding motifs involved in retinoid signaling, steroid synthesis and response, and neural activity 
are enriched among functional SNPs. Boxes are colored by FDR-corrected significance of 
enrichment for motifbreakR-defined “strong” allelic perturbations to binding motifs among 
functional SNPs; the number of functional SNPs perturbing (left column) and/or with concordant 
motif and MPRA effects (right column) are shown. Concordant effects were defined by greater 
MPRA expression driven by the allele better-matched to the corresponding TF motif and vice 
versa—the expected behavior of strictly activating TFs. 
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4.3.2 Shared regulatory architecture across distinct loci 

I next sought to test my hypothesis that functional MDD risk variants shared retinoic acid-related 

TR architecture. If so, functional SNPs should disproportionately disrupt binding sites of retinoid-

binding TFs compared to SNPs without an allelic effect on TR. Such data would indicate that 

MDD risk is mediated in part through perturbations of specific upstream transcriptional circuits 

and may highlight how risk conferred through retinoids converges with risk conferred through 

genetics to perturb downstream gene expression. 

 

To take an unbiased approach to my retinoid hypothesis, I broadly analyzed all motifs showing 

enrichment at TR SNPs. Motifs for several dozen TFs were perturbed by the functional SNPs more 

frequently than expected, often with ‘strong’ perturbations to motifs and/or overrepresentation of 

concordant expression effects (Figure 4.2E, Supplementary Figure 4.2). This included several 

TFs aligned with biological processes relevant to psychiatric disease. For example, several TFs are 

involved in steroid pathways, from regulating biogenesis (SREBF family, 6 SNPs) to conveying 

downstream TR effects—most notably, via glucocorticoid receptor (NR3C1, 5 SNPs; 

Supplementary Figure 4.3), a central component of the stress response. Functional SNP 

overrepresentation of SREBF motifs is consistent with high expression of these TFs in N2as and 

related neuroblastomas99,100. A second group of transcription factors included three TFs involved 

in neural lineage commitment/development: TCF3101,102, EOMES, and NR2F1103 (6,4, and 3 

SNPs, respectively). Altogether, functional SNP enrichment for these TFs’ motifs bolster my 

confidence in this approach, as a) detected variation involves TFs known to be expressed in N2As 

(SREBF); b) functional variation involves TFs with roles in developing CNS, where disease 

variants likely act; and c) that the single-best characterized trigger of MDD (stress) is reflected in 

enrichment of alterations to NR3C1 motifs. 
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Finally, consistent with my hypothesis of convergence on retinoid-mediated TR, functional 

variants were enriched for “strong” perturbations of retinoid receptor TF motifs (Figure 4.3), 

including RARA, RARB, and RXRA (5 SNPs from 4 MDD loci, Figure 4.3). Especially notable 

is the motif configuration at SNP rs34416841, which falls within three partially overlapping motifs 

for retinoid TFs. In addition, the elements overlapping rs489591 and rs13330178 appear to be 

functional human retinoid TF binding sites in vivo based on DNAse hypersensitivity 

footprinting104. 

 
Figure 4.3. MPRA signal at SNPs disrupting putative retinoid TF motifs. The five functional 
SNPs driving enrichment signals for retinoid TF motif perturbations are shown, along with the 
MPRA results for each variant. Each motif diagram shows only distinct position-weight matrices 
(PWMs). (motifbreakR uses a large meta-collection of motifs, which were often identical or nearly 
identical across retinoid TFs; such redundant motifs are not shown). Among functional-SNP 
enriched retinoid TFs, A) rs489591 and B) rs4801117 exclusively perturb RXRA motifs. C) 
rs79269275 perturbs an RARA (or RARB, identical but not shown) motif. D) rs34416841 alters 
several similar retinoid motifs across multiple positions and TFs. Not shown: near-identical motifs 
for RARB along the same sequence as the 5’ RARA motif; near-identical RXRB and RARB motifs 
along the same sequence as the center RXRA motif; and a near-identical RARB motif along the 
same sequence as the 3’ RARA motif. E) rs13330178 disrupts an RARA or RXRA binding site. 
Given that RXRA and RARs are known to heterodimerize, it is possible that this SNP disrupts the 
RXRA component of such a heteromer’s binding sequence. 
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4.3.3 Retinoids unmask additional functional SNPs in MDD loci. 

My findings supported the hypothesis that MDD-associated variants across multiple loci converge 

on TR, including that modulated by retinoids. I thus designed a pharmacological follow-up with 

two goals in mind. The first goal was to functionally verify that retinoids were involved in TR at 

SNPs where their motifs were found (in cis), and potentially unmask additional retinoid-targeted 

alleles. My second goal was to further assess retinoid signaling trans (i.e., indirect) effects on 

variants from these same GWAS regions, e.g., via non-retinoid TF induction, co-regulation, or 

repression32. Therefore, I performed a second MPRA with an all-trans retinoic acid (ATRA) 

condition. 

 

After 48 hours, cultures were imaged to verify drug activity (as ATRA is light-sensitive) based on 

known morphologic responses of N2as to ATRA, which include neurite outgrowth and mitotic 

arrest61,105,106. Indeed, drug-treated cells had a qualitatively lower cell density and produced 

neurite-like processes (Figure 4.4A) in comparison to vehicle-treated cells (Figure 4.4B). After 

RNA sequencing, I first analyzed vehicle-treated replicates alone to ensure replicability of the 

assay. Element expression levels in the vehicle condition strongly correlated to the first experiment 

(Pearson r = 0.91; Figure 4.4C), and replicated the functional variants (Figure 4.4D); all 31 shared 

significant SNPs showed consistent directions of effect. 

 

I next applied a linear mixed model (LMM) to identify SNPs responding to ATRA (that is, allele-

drug interactions). A total of 1079 SNPs were analyzed after filtering for read and barcode depth. 

In part due to the effective doubling in power to detect allelic effects with 12 replicates and the 

LMM approach, I now identified 137 variants with a main effect of allele (129 from MDD loci). 

Four of the five retinoid receptor motif-perturbing variants from the first assay passed filtering; all 
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four of these variants again showed allelic main effects (all pemp < 0.01), as did many other 

functional variants identified in the previous experiment (Figure 4.4D). To my surprise, more 

variants showed a significant drug-allele interaction effect: a total of 128 SNPs (122 from MDD 

loci) (Figure 4.4E-F). Among the drug-allele interaction SNPs were one of the four retinoid-

related SNPs identified from the first assay (rs4801117; interaction pemp<0.025, Figure 4.4G), 

while another trended towards interaction (rs489591; interaction pemp=0.117). This strongly 

supports a role of retinoid TF activity at rs4801117 as predicted by the motif analysis. More 

broadly, comparison of changes between the two conditions reveals the striking extent to which 

the regulatory landscape of the N2As was altered by ATRA (Figure 4.4F and 4.4H). Notably, 

several additional functional variants were identified in the previously highlighted LIN28B locus, 

further illustrating multi-variant and context-dependent aspects of GWAS loci (Figure 4.4E and 

4.4I). In all, this experiment highlights the ability of MPRAs to detect contextual influences such 

as cell states and signaling on functional noncoding variation, and to unmask distinct, context-

dependent functional SNPs. 
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Figure 4.4. Retinoid treatment alters transcriptional regulation and unmasks additional 
functional variants. A) ATRA-treated cells show growth arrest and neurite growth, demonstrating 
effective ATRA treatment, while B) Vehicle-treated cells continued to proliferate in a de-
differentiated state. C) Results of the vehicle treatment replicate the initial MPRA findings. 
Element (single-allele) expression values for each sequence assessed in both assays is plotted. D) 
Significant and marginally significant functional SNPs from the first assay showed effects in the 
second assay. The larger allelic difference value from the ATRA and vehicle single-condition 
analyses is plotted for each SNP on the x-axis; the y-axis value is the corresponding corrected p-
value (FDR correction for the ATRA-only analysis or empirical p-value correction for vehicle-
only analysis). E) Retinoids unmask functional SNPs with additional or exclusive retinoid-
mediated effects. F) SNP effect(s) color key for panels E, H, and I. SNPs with both effects were 
those with LMM interaction <0.05, LMM allele pemp<0.05, and both single-condition analyses 
showing the same allelic effect directionality at ATRA FDR<0.1 and vehicle pemp <0.1. G) 
rs4801117-A shows greater activity with ATRA treatment while the C allele is unaffected. The 
ATRA having an expression effect only on the A allele is consistent with the A allele matching 
the RXRA motif as shown in Figure 3B. H) Transcriptional-regulatory SNPs show a wide range 
of altered and unaltered effects with ATRA treatment. Single-condition log2FC values are shown. 
I) Several additional SNPs with retinoid-dependent function (i.e., allele-ATRA interaction) in the 
LIN28B locus. Only significant SNPs are illustrated. Notably, there are several functional SNPs 
clustered around the GWAS index SNP, suggesting association signal at this locus may be driven 
by multiple functional/conditionally functional variants. 
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4.3.4 Retinoids reveal additional axes of convergent regulation at functional 
MDD-associated SNPs at levels of TF and cell type 

As the ATRA-based assay provided improved power to identify allelic variant effects on 

expression, I again employed my motifbreakR-based analyses to assess convergent transcriptional 

mechanisms underlying identified regulatory variants.. When examining SNPs with allelic effects 

in comparison to SNPs with no allelic, drug, or interaction effects, several retinoid receptor motifs 

were again overrepresented, including those of RXRA, RXRB, RARA, and RARG (Figure 4.5A, 

Supplementary Figure 4.4), totaling 11 of the 92 allele-main effect SNPs analyzed, spanning 10 

MDD GWAS loci. These findings further support retinoid receptor binding sites as an upstream 

regulatory system recurrently involved in MDD risk genetics. 

 

As retinoids resulted in stark changes across the transcriptional-regulatory landscape, I further 

sought to predict TFs potentially underlying allelic effects following retinoid exposure. Therefore, 

I also analyzed the interaction SNPs in comparison to allelic SNPs that were not subject to 

interactions. This revealed a novel set of TFs not observed in the preceding analyses, including 

TFs with roles in neural differentiation and maturation (Figure 4.5A, Supplementary Figure 4.4), 

as well thyroid hormone receptor THRB, an RXR binding partner. I compared the overrepresented 

motifs to TFs recently demonstrated to be upregulated in human neuroblastoma lines (KCNR, 

LAN5) by ATRA. Of the 26 TFs identified as ATRA-induced in these two lines, motifs were 

available for 18 in my analysis. Of these, 6 of the TFs were enriched among allele main-effect-

only SNPs, while 12 of these TFs were enriched among the retinoid-allele interaction variants105 

(Figure 4.5A, Supplementary Figure 4.4), supporting my predictions of TFs playing ATRA-

dependent roles at functional SNPs. 
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4.3.5 Integrative analysis of TF sets at functional variants: TF binding, 
spatiotemporal brain enrichment, and putative target genes 

As retinoid receptors have highly redundant binding motifs, I sought to both validate motif-based 

implication of retinoid receptors and more finely identify the particular TFs binding at functional 

SNPs. I aggregated ChIP-seq data for RAR, RXR, and RXR-heterodimerization partners (VDR, 

THRA, THRB) and identified functional SNPs overlapping peaks for each TF. Altogether, 35 of 

my 277 functional SNPs from across the two assays were in at least one such binding site 

(Supplementary Table 4.2). 15/17 of the allele•ATRA interaction SNPs overlapped a ChIP peak 

for RXRA, suggesting RXRA may be the common mediator of the observed retinoid-dependent 

SNP effects. 

 

I also performed Gene Ontology analysis of functional-variant enriched TFs against a background 

of all TFs in the motifbreakR tool using PANTHERdb but found no detailed Biological Processes 

of note. I next sought to examine whether TFs enriched at functional variants in my motif analyses 

corresponded to particular spatiotemporal expression patterns in the brain. To favor the most 

broadly-implicated TFs, I utilized the ABAEnrichment package’s Wilcoxon analysis approach on 

the TF sets from the ATRA experiment using the number of motifbreakR SNPs as the TF gene 

“scores”. In this analysis, several brain regions across developmental stages were nominally 

enriched (family-wide error rates<0.05) in ATRA-dependent and -independent TF expression, 

with especially broad enrichment at high expression thresholds (≥ 90th percentile) in adolescent 

brain. This does not appear to be an artifact of the cell model, considering that neuroblastomas are 

arrested in a neural crest progenitor (i.e., pre-/peri- natal cell type) stage. If replicated in future 

studies with larger adolescent sample numbers, this may suggest that retinoid-mediated aspects of 
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MDD genetic risk are especially active in the adolescent brain, perhaps contributing to frequent 

emergence of the disorder around this time. 

 
Figure 4.5. Distinct TFs underlying retinoid-dependent functional SNPs and implication of 
serotonergic neurons. A) Motifs overrepresented among ATRA-independent (allele effect 
without interaction) SNPs (left columns) or among ATRA-dependent (interaction) SNPs (right 
column). The heatmap is shown in halves for visibility. TFs identified as ATRA-upregulated in 
human neuroblastoma lines105 are in bold font. B) TFs implicated by ATRA-interacting SNPs 
significantly overlap TFs enriched in serotonergic neurons. Plot generated using the cell-specific 
expression analysis (CSEA) tool (http://genetics.wustl.edu/jdlab/csea-tool-2/)31. 5HT: Serotonin; 
ACh: Acetylcholine; ODC: Oligodendrocyte; OPC: Oligodendrocyte Progenitor. 
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I additionally utilized these sets of TFs as gene sets to investigate whether retinoid-dependent or -

independent regulatory variants might be particularly active in certain cell types of the brain. I 

screened for enrichment of these TFs among genes with strong cell type-specific expression in 

brain as previously defined for over 20 cell type translatomes31. Three TFs (spanning 8 ATRA-

interacting SNPs) were discovered to be highly specific to serotonin neurons (Figure 4.5B): 

GATA2, GATA3, and FEV, while no cell type enrichments under FDR<0.1 were noted for TFs 

linked to ATRA-independent variants. Supporting these findings, an enrichment analysis of 

putative target genes (implicated by brain eQTL or neural Hi-C) of SNPs in retinoid TF motifs or 

ChIP peaks (Supplementary Table 4.2) revealed 5 genes nominally enriched for high regional 

expression in rhombomere 9, which gives rise to medullary populations of serotonin neurons107. 

(The full results can be explored at 

https://maayanlab.cloud/Enrichr/enrich?dataset=27d6db2a8510a90ed0d78e6b60c59287). 

 

Using the R2 database (http://r2.amc.nl), I examined expression of FEV, GATA2, and GATA3 TFs 

in 24 human neuroblastoma lines (GEO accession GSE28019), retinoic acid-treated human SH-

SY5Y neuroblastoma cells108, alongside human neural progenitors109 and melanoma lines as 

comparators110, confirming neuroblastomas strongly express all three of these TFs 

(Supplementary Figure 4.5). Single-cell RNA sequencing data from mouse brain confirms the 

specificity of these TFs, revealing that these TFs are only expressed in serotonergic, noradrenergic, 

peripheral autonomic, and midbrain inhibitory neurons—with all three expressed in serotonin 

neurons111. Furthermore, exogenous retinoids have been shown to lower circulating serotonin in 

humans45 and to alter morphology of rat raphe neurons in slice culture112, suggesting these neurons 

are retinoid responsive. I do not believe my finding is an artifact of the N2a system, as I could 
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identify no evidence in the literature suggesting a serotonin-like identity of N2a cells with or 

without ATRA treatment. Altogether, these findings suggest serotonin neurons and closely related 

cell types93 may be cellular points of convergence for several retinoid-mediated functional SNP 

effects on MDD risk. 

 

4.4 Discussion 
To date, most functional investigations of SNPs in the context of psychiatric disorders have taken 

place in a low-throughput manner, such as single-variant classical reporter assays20 or using 

CRISPR-Cas9 technology to edit limited positions for deep phenotyping113. Here, I leveraged 

MPRA to screen over 1,000 SNPs from loci associated with MDD, related phenotypes, and broader 

psychiatric disease, demonstrating the utility of this technique for dissecting the functional 

regulatory architecture of psychiatric GWAS loci, and defining shared upstream regulatory 

features across loci. 

 

In doing so, I identify over 100 SNPs with allelic effects on expression, with most coming from 

loci containing ≥ 2 functional SNPs. These data provide experimental support for the prediction 

that multiple SNPs with allelic effects exist within GWAS loci as put forth in polygenic/omnigenic 

theory literature. I further examined the omnigenic hypothesis’ more central prediction of 

regulatory convergence across loci. By examining the shared regulatory features (TF binding 

motifs) based on enrichment at functional SNPs, I were able to predict several TFs with TR activity 

recurrently altered across MDD-associated SNPs, highlighting retinoid receptors in particular. 
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Retinoids are encountered both exogenously (e.g., as ATRA in oncology, and as isotretinoin, 

carrying a black-box warning for suicidality) and endogenously, including during brain 

development. To investigate how SNP functions may be altered by retinoids, I repeated the assay 

with an ATRA condition. ATRA drastically rearranged the TR landscape of N2a cells, resulting 

in altered and novel allelic effects at over 100 SNPs and revealing ATRA-dependent mechanisms 

of function across 122 SNPs from 22 of 26 MDD GWAS loci assessed. Of 17 ATRA-interacting 

functional SNPs overlapping ChIP peaks for retinoid receptors, 15 overlapped ChIP sites of RXRA 

(Supplementary Table 4.2), suggesting it may be central in functional SNP activity at retinoid 

receptor binding sites in this system. Interestingly, single-cell epigenomics of human cortical cell 

types recently found RXRA motifs to be uniquely enriched in open chromatin of SST 

interneurons114, a strong candidate cell type for MDD115. These findings suggest that retinoid 

receptors—RXRA in particular—merit mechanistic follow-up regarding TR differences at MDD-

associated SNPs. Future work may be able to leverage biobank-level datasets to ascertain whether 

retinoid-interacting SNPs are overrepresented in retinoid-treated patients experiencing adverse 

psychiatric side effects. While data on endogenous retinoids, e.g. plasma values, are not currently 

available in large genotype-phenotype-health record cohorts like UK Biobank, future datasets may 

enable investigation of circulating retinoids and their interaction with genotype in cognitive and 

psychiatric phenotypes. 

 

The methodologic requirements of high-throughput assays such as MPRAs bring inherent 

limitations to their results. The primary precaution in interpreting these results concerns cell type 

relevance. MPRAs are subject to the TR landscape of the cell type used. Neuroblastoma cells, 

including N2As, are derived from peripheral neural crest progenitors—though they can be 
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differentiated into dopaminergic neurons106 and commit to neuronal differentiation with 

ATRA61,67—and were selected for these assays based on intact retinoid signaling rather than 

representing a disease cell type per se. On the other hand, the neural crest-derived autonomic 

nervous system has received little consideration (relative to brain) in psychiatric genetics of MDD 

despite the well-appreciated role of stress in depression. These data may form an interesting 

foundation for future study of autonomic effects of MDD genetic risk. 

 

Still, I can broadly speculate on brain cell types implicated by my findings. A notable prior 

pharmacology MPRA cleverly tested gDNA fragments for regulatory activity over a time course 

of dexamethasone treatment, while collecting epigenomic data in the same cell type over the same 

time course to compare MPRA signal and endogenous genomic marks. They found that 

endogenous genomic regulatory elements with repressive marks or depleted of glucocorticoid 

receptor binding were oftentimes active and/or dexamethasone-differentially active when assayed 

on the MPRA plasmids. This suggests that the transcriptional-regulatory capacity of an MPRA is 

not constrained by the epigenome of the model cell, but rather by its expressed TFs60. As such, 

retinoid receptor-mediated SNP functions observed are not limited to sequences that would be 

active in the N2a genome; as such, it is entirely plausible that the observed effects also occur in 

retinoid-receptor expressing brain populations. Mouse nervous system single-cell RNA-seq 

suggests retinoid receptor expression is absent in brain glia, but robust in many neuron types111. 

Thus, I suspect the directly-mediated retinoid receptor SNP effects I observe may be neuron-

specific. Future studies may be able to address the interesting question of differences in neuronal 

subtypes exhibiting functional SNP effects. 
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I find that principles of the omnigenic model appear to hold true for MDD risk genetics, including 

the presence of far more functional variants (a total of 277 SNPs with allelic and/or interaction 

effects of 1178 assessed across the two assays) than there were GWAS loci (i.e., tag SNPs). I find, 

interestingly, that functional SNPs form convergent subsets of upstream (transcription-regulatory) 

sequences and systems, which in turn have shared retinoid dependence and are collectively 

enriched in serotonin neurons via 8 ATRA-interacting functional SNPs in binding motifs of 

GATA2, GATA3, and FEV. It has previously been demonstrated that systemic administration of 

ATRA depletes serotonin by over 40% in the rat brain116, supporting the serotonin system as a 

convergent target of retinoid-regulated pathways. As GWAS of MDD begins to explore severe, 

treatment-refractory cases7, it will be interesting to see whether associated variation still shows 

such convergence, as treatment-resistant depression (generally, non-response to two or more 

classes of antidepressant) effectively signifies non-response to multiple serotonergic agents. 

 

In all, I assessed the architecture of cis-regulatory variation in psychiatric disease risk loci, 

identifying at least one functional SNP in the majority of the 40 GWAS loci examined, largely 

corresponding to MDD-associated SNPs. Strikingly, retinoid receptor binding sites and TR 

systems subject to regulation by ATRA have a substantial impact on whether and how MDD-

associated SNPs are functional. These findings constitute a robust experimental demonstration of 

the influence of physiological and environmental states on the molecular activities of disease-

associated SNPs, and constitute a high-confidence set of MDD SNPs meriting deeper functional 

characterization of both their TR mechanisms and their environmental interactions. 
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4.6 Supplementary Materials 
4.6.1 Supplementary methods 

Library Design and SNP selection. The library was designed by selecting tag SNPs of interest 

from neuropsychiatric trait and disease GWAS studies, predominantly for MDD or multi-diagnosis 

groups including MDD cohorts8–10,41,87,117–120, and from GWAS of traits with high SNP co-

heritability with MDD—namely, neuroticism121,122 and mood instability123. Additional variants 

discovered in other psychiatric disorder GWASes at or near MDD tag variants were included from 

studies of ASD120, anxiety disorders124, and attention-deficit hyperactivity disorder125. Two tag 

SNPs associated with intelligence126 and educational attainment127 near the gene PTGER3, which 

I previously illustrated to be sex-differentially expressed and functional in the mouse locus 

coeruleus93, were included. One negative control tag, rs1883640, close to the transcription start of 

gene CDKAL1 and associated with several anthropomorphic traits128, was also included as a 

negative control locus. In all, 38 tag SNPs were selected for LD expansion and epigenomic overlap 

screening in the LD neighborhood. All LD partners at R2 > 0.65 were included without 

consideration of epigenomic annotation intersections for two additional MDD-associated tag SNPs 

near sex-differentially expressed genes of mouse LC—Slc6a15 and Lin28b93; SNPs from these 

two loci with R2 < 0.65 were also included solely on the basis of a RegulomeDB score of ≥ 4, 

signifying a SNP overlapping both a TF binding site and a DNAse hypersensitive site across 

epigenomic data curated by the tool129. 

 

LDlink (using dbsnp 151) was queried for each tag SNP to acquire all biallelic EUR (or in the case 

of tags from Han Chinese CONVERGE9, Han Chinese (“CHB”))  SNPs in LD with the tag130. 

These SNPs were subsetted to those with a minor allele frequency ≥ 1% and with an LD R2 > 0.1 

with the tag, as GWAS studies generally define ‘independent loci’ as SNPs in with LD R2 < 0.1. 



 120 

The hg19 coordinates of the retrieved, and subsetted LD SNPs were then intersected to those of 

myriad CNS epigenomic datasets (also in hg19 coordinates), including postmortem brain tissue 

eQTLs from GTEX v778, PsychENCODE77, the CommonMind Consortium76, the Lieber 

Institute/Brainseq Consortium131,132, and ROSMap79; enhancers predicted based on human 

postmortem adult and fetal brain tissue histone marks or enhancer RNAs70,77,133–136; and chromatin 

contacts for human neural cell types identified in vitro75. 

 

LD SNPs were selected by manual inspection of intersecting epigenomic annotations within an 

LD block, including the negative control CDKAL1 block. Negative control locus SNPs were 

selected while blinded to control status of the locus (by replacing the parent locus’ name as one 

coming from a sub-region of interest during the selection process). 11 SNPs were removed from 

consideration due to overlap with a nonsynonymous coding SNP. For inclusion, a SNP was 

required to be an eQTL in at least one of the brain datasets mentioned and intersect with ≥1 

additional annotation track; two exceptions to this were that no overlaps were required for the 

SNPs included by RegulomeDB score (see above), and a single overlap (eQTL or otherwise) was 

considered adequate for inclusion in a small minority of loci where most SNPs did not intersect 

any annotation. In annotation-rich regions, SNPs with the greatest diversity and abundance of 

intersecting annotations were selected. While computationally selecting SNPs based on the 

greatest number of intersections would be a more time-efficient approach, recent work suggests 

that regulatory variants may be better predicted by training deep learning models on local genomic 

sequences rather than sequences from across the full genome137.  
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To design the MPRA oligonucleotide sequences ordered, genomic tiles of 126bp, centered on the 

variant of interest were extracted from human reference genome hg19. For variants where the 

alleles were not of the same length (e.g., single-base deletions or multi-base alleles), the longer 

allele’s sequence spanned 126bp, with the shorter allele spanning 126-(difference in length) bp. 

As oligonucleotide synthesis requires uniform sizing, all oligonucleotides were brought to a final 

length of 200bp by adding bases between cut sites used for directional insertion of the reporter 

gene, such that the bases are absent from the final plasmid library.  

 

Sequences containing cut sites that would interfere with cloning were taken from the smallest up- 

or down-stream window to keep the SNP as near the center of the sequence as possible, by shifting 

enough to trim away 1-2 bases of the interfering cut site. When this required shifting sequences 

more than ±30 bp, the selected SNP was removed from the design process (resulting in the removal 

of 8 SNPs from the selected set). The final, cut-site-free genomic tiles representing each allele of 

the 1453 selected SNPs were programmatically added to random ten, 10bp barcodes, which were 

pre-subsetted to be: ≥ 2 Hamming distances from one another, 25-75% GC, without >4 of any one 

nucleotide in a row, and without restriction sites or partial restriction sites that would recreate a 

full site during the cloning process. Control sequences were likewise paired to 10 barcodes each. 

Finally, ‘basal’ oligonucleotides with 126 bases filling the space between gene-insertion cut sites 

(to ultimately place the minimal promoter directly adjacent to the reporter gene) were generated 

and paired to 110 barcodes to get an accurate measure of transcriptional output driven by the hsp68 

minimal promoter in the absence of upstream mammalian genomic sequence. 
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Cell culture, transfection, and RNA collection. Mouse neuroblastoma N2A cells were grown in 

uncoated 6-well plates in medium consisting of DMEM and 10% Fetal Bovine Serum (2% fetal 

bovine serum for the ATRA assay, based on media conditions from the literature)66,67. Cells were 

fed 2mL per well at each passage, and medium was refreshed as needed indicated by yellowing of 

the phenol red indicator contained in the DMEM solution. Cells were incubated at 37°C, 5% CO2. 

 

For transfection, a tube containing 10µL per replicate of Lipofectamine 2000 in 200µL per 

replicate OptiMEM was prepared and incubated at room temperature for 5 minutes. Meanwhile, a 

second tube containing 2.5µg of MPRA plasmid library per replicate and 200µL of OptiMEM was 

prepared. The contents of the latter were added to the tube containing Lipofectamine 2000 and 

incubated at room temperature for 30 mintues. The mixture was then aliquoted out in volumes of 

400µL to each well (replicate) and the plate re-lidded. The plates stayed 45-90 minutes in the 

biosafety cabinet until cells, grown and split from the same parent culture in both assays and 

collected from all wells of a well plate (first assay) or T150 culture flask (second assay), were 

aliquoted on top of the 400µL of plasmid•lipofectamine•optiMEM mixture. 

 

Cells to be transfected were lifted from their existing wells by adding 1mL of 0.25% 

Trypsin•EDTA and incubating at 37°C for 5 minutes. 2mL of DMEM were added to each well, 

and the full 3mL of DMEM, trypsin, and cells were collected from each well into a tube containing 

n mL of 10% FBS in DMEM, where n was the number of wells being passaged. Cells were spun 

down at 700 rcf for 5 minutes at room temperature, then resuspended 10mL in antibiotic-free N2A 

medium (for initial MPRA, 0.1µM vacuum filter sterilized 10% FBS in DMEM; for retinoic acid 

MPRA, 0.1µM vacuum filter sterilized 2% FBS in DMEM). Duplicate counts of cells were taken 
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using the Countess automated cell counter. The average number of reported viable cells per mL 

was used to determine plating volumes to achieve target cell densities in 2mL volumes, and the 

required volume of the same medium used for resuspension (less 10mL) was added to the 

resuspended cells before aliquoting. For the initial MPRA, these target densities were three 9.6 

cm^2 wells with 5.7•10^5 cells/well and three 9.6 cm^2 wells with 8.3*10^5 cells/well. Linear 

modeling of results from the first assay revealed singular fits when attempting to fit a variable for 

initial plating density, indicating this played no role in the detected expression. In the retinoic acid 

MPRA, twelve 9.6 cm^2 wells at 7.8*10^5 cells/well. 2mL of resuspended cells were aliquoted to 

each well, then incubated at 37°C for (6.5 hours in initial MPRA, 7.5 hours in retinoid MPRA). At 

that time, medium was removed and replaced with the respective experiment’s N2A medium, now 

containing antibiotics (and in the case of the retinoid experiment, either 20µM all-trans retinoic 

acid in DMSO, or an equivalent amount of DMSO alone for vehicle). For the initial MPRA, 

medium was not changed before cells were collected; for the retinoid MPRA, medium was 

changed every 24 hours with a freshly prepared aliquot of N2A medium supplemented with 

respective drug or vehicle. Retinoic acid and vehicle were prepared in a dark room in 500 and 200 

µL aliquots, respectively, stored in black microfuge tubes at -20°C and handled opened only in 

biosafety cabinets without room or hood lights on. 

 

In the initial MPRA, cells were collected 72 hours after transfection by rinsing wells twice with 

1mL of DPBS, then adding 1mL of DPBS, thoroughly lifting cells with a scraper, and collecting 

the full 1mL of cells from the well into its own microfuge tube. Cells were spun down at 3000 rcf 

at 4°C for 10 minutes. 750µL of supernatant was removed, and replaced with 750µL Trizol. 

Samples were shaken vigorously by hand for 10 seconds to lyse cells and incubated on the 
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benchtop at room temperature for 10 minutes. In the retinoic acid MPRA, the same rinses were 

performed; followed by adding 250µL dPBS, then 750µL of Trizol LS to each well. The plate was 

swirled until cells were clearly lysed, at which point the full 1mL volume of each well was 

collected into a centrifuge tube, allowed to stand at room temperature for 10 minutes. 

 

The handling of samples from both experiments was the same from that point forward: 200µL 

chloroform was added to each tube, which was then shaken vigorously by hand for 30 seconds. 

Tubes sat at room temperature for 7 minutes, and then were spun down at 12,000 rcf at 4°C for 

30-40 minutes. 325µL of the aqueous phase was collected, and added to tubes pre-filled with two 

volumes (650µL) of Zymo RNA Binding Buffer and their combined volume (975µL) of 100% 

ethanol. The RNA solution was then purified using the Zymo Clean and Concentrator-5 kit per the 

manufacturer directions. RNA was eluted into 40µL of nuclease-free water. 

 

To remove any residual plasmid from the samples, the Turbo DNA-Free kit was used to perform 

vigorous DNAse treatment (2µL of DNAse per RNA sample) according to the manufacturer 

instructions. RNA with DNAse in solution was incubated at 37°C for 1 hour, followed by addition 

of the kit’s DNAse inactivating matrix and a 10 minute spin at 8000 rcf at room temperature. 44µL 

of supernatant was collected, and subjected to a second round of purification using the Zymo Clean 

and Concentrator-5 kit as described above. (A second purification was required in order to remove 

an unknown component of the Turbo kit which otherwise interfered with RNA 

concentration/integrity measurements). 
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Power analysis of first MPRA to inform n for ATRA MPRA. Using the code underlying the 

excellent MPRA tools package from Ghazi, et. al138, I performed power analysis of the first 

experiments’ element (single allelic sequence)-level measurements as calculated after the filtering 

steps discussed in methods. From the first experiment, I find an SD of 0.0396 (25th %ile), 0.0556 

(50th %ile), and 0.0801 (75th %ile). I assumed 6 barcodes per sequence, the median number of 

barcodes analyzed per sequence in the first experiment after filtering steps, with 6 replicates, to 

determine how well-powered I were for detecting effects at a Bonferroni-corrected p-value of 0.1 

(though I used an empirical test statistic correction instead of Bonferroni correction, as described 

in the Methods section). The results of this analysis are shown in Supplementary Table 4.1. Based 

on these findings, I determined that I would be similarly well-powered to differentiate allelic 

effects and allele-drug interactions using an n of 6 vehicle and 6 ATRA samples in the second 

experiment. 

 

Sequencing library preparation. 1µg of RNA was subjected to target-specific cDNA 

amplification using a primer reverse complementary to the proximal polyA signal sequence in the 

reporter transcript. 20µL reactions containing 1µg RNA, 4µL 5x SSRT first strand buffer, 0.6µL 

rRNAsin (Promega), 0.9µL SSRT III enzyme, 1µL 12µM antisense primer, 1µL 100 mM DTT, 

and 1µL 10mM dNTPs, brought to volume with water. Reactions were incubated at 50°C for 1 

hour. Remaining enzyme, primers and RNA were then removed by adding 3.5µL Exosap-IT and 

incubating for 15 minutes at 37°C, followed by addition of 1µL 0.5M EDTA, addition of 3µL 1M 

NaOH with heating at 70°C for 12 minutes, and neutralization with 3µL 1M HCl. 
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The single stranded cDNA was then purified by washing 10µL MyOne silane beads per sample 

with Buffer RLT (Qiagen), resuspending beads in 3•sample volume of RLT, and adding to each 

sample, mixing end-over-end for 30 minutes to bind cDNA. Beads were magnetized and washed 

twice with 80% ethanol, air dried for 5 minutes, and bound cDNA eluted into 12µL 5mM Tris HCl 

pH 8. 10µL of this product (cDNA) or 80ng transfected plasmid DNA were then used to generate 

double-stranded, target-specific product from the cDNA using the same antisense primer as reverse 

primer and a primer in the 3’UTR WPRE element of the reporter as the forward primer for 15 

cycles with Phusion HF 2x Master Mix. Product was size-selected using Ampure XP beads by 

bringing the 20µL PCR reaction to 100µL with water, adding 80µL beads, magnetization, capture 

of 160µL supernatant and adding 40µL fresh beads to it, magnetization, 3x washes with 80% 

ethanol, and air drying, followed by elution into 12µL 5 mM Tris HCl Ph 8. (This procedure is 

henceforth referenced as “80/40 Ampure XP cleanup”). 

 

The double stranded product was then digested with HindIII-HF (NEB) and NheI-HF (NEB) in 

CutSmart buffer at 37°C for 1 hour, to create sticky ends flanking the barcode sequences to which 

sequencing adapters could be attached. The digested product was purified as above, but using 

100µL beads and 50µL beads, with 180µL supernatant recovery added to the second (50µL) 

aliquots of beads. Product was eluted as above, using 10µL eluate for adapter ligation. 

 

Adapters were ligated using Enzymatics T4 ligase (1µL), Enzymatics T4 10x buffer (2µL), 1µM 

HindIII-compatible, staggered-length (to improve read heterogeneity for sequencer compatibility) 

Illumina adapters for read 1 and 1µM single-length NheI-compatible adapter for read 2. Ligation 

‘cycling’ was used, alternating cycles of 30s at 25°C (annealing) and 30s at 16°C (ligase activity) 
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for 560 cycles, a procedure previously shown to improve ligation yields twofold in restriction 

cloning139. Product was purified and eluted with the 80/40 Ampure XP cleanup; 10µL eluate was 

used for 50µL index PCRs with sample-specific read 1 indices, user-specific read 2 indices, 2x Q5 

Ultra II Mastermix (NEB) for 9 cycles. Product was purified using 80/40 Ampure XP cleanup, 

eluted into 19µL of 5mM Tris HCl pH 8. 17µL were recovered (2 used for verifying proper product 

at ~330bp was produced by using the D1000 kit with the Tapestation 4200 system). Up to 15µL 

of each library was mixed at an equimolar amount, with approximately 1.5 times the molar amount 

of the sample corresponding to input DNA for maximally accurate quantification of this single 

DNA sample. 

 

MPRA Analysis. Raw fastq files for each RNA sample are initially processed by using the bash 

terminal and the string-matching command, sed. The string matching requires an exact match of 

6bp upstream sequence and 8bp downstream sequence corresponding to the restriction-ligation 

sites wherein the reporter was ligated to the barcode, and the barcode to the plasmid, respectively. 

For each string matching this pattern exactly, the 10 bases of barcode sequence between are 

extracted and put in a text file for the corresponding fastq. To then get barcode counts, sequences 

in the text file of extracted barcode-positioned 10mers are subsetted to those containing a perfect 

10 base match to a barcode sequence in the library and are counted using the R function table , 

which tabulates the occurrences of each barcode sequence specified in a reference metadata file 

(containing the designed barcodes only and related information) for each sample’s string-

extraction output /text file. This process is extraordinarily efficient, requiring only 1-2 minutes per 

20 million reads on a personal computer. 
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Following the tabulation of barcode counts, barcode counts are converted to counts per million 

(mapped) before filtering. Several filtering steps are then used to ensure robust representation of 

barcodes, their paired sequences, and samples before testing expression effects. These steps 

proceed in the following order. 1) Barcodes with a DNA count under a specified threshold (75) 

are struck from the counts table from the DNA and RNA samples. 2) For sequences with 4 or 

fewer remaining DNA barcodes represented across all samples after this step, all other barcodes 

for the sequence are struck from all of the samples in the table to avoid analysis of sequences with 

inadequate barcoding depth. 3) Counts of RNA barcodes are then removed on a per-barcode-per-

sample basis if they fall below a separate minimum read threshold (30 counts), set below the DNA 

threshold to allow for detection of repressive effects). At this point, preliminary expression values 

for barcodes are calculated (log2 of the ratio of RNA barcode cpm to DNA barcode cpm) in each 

replicate and collapsed into a mean per sample. Single barcodes with expression values ≥ 2 

standard deviations apart from other barcodes for a given sequence in a given sample are dropped 

only from that sample, as this suggests the barcode exerted a cryptic regulatory effect (e.g. as a 

3’UTR element) in the sample, or that either mutations in other barcode(s) on delivered plasmid 

or during sequencing preparation are contributing to spurious counts for that barcode. 

Penultimately, all barcodes for a sequence are dropped from an individual sample if the filtering 

steps up until now have resulted in 4 or fewer barcodes remaining for a given sequence in that 

sample.  

 

After these filtering steps, expression is calculated on a per-barcode basis in each sample by taking 

log2 of the ratio of RNA cpm to DNA cpm. These values are then averaged for each sequence in 

each sample, resulting in a per-sequence expression value in each sequence. For the first assay, 
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where the sole comparison is between alleles of a sequence, a student’s t-test is applied to compare 

the vector of samplewise mean expression values for one allele to those of the other allele. In the 

case of linear mixed modeling, as in the ATRA assay, the barcode-level expression values for the 

two respective alleles are used as model input, along with the corresponding allele for each barcode 

and drug/vehicle status of the corresponding samples to model both as expression ~ allele + drug 

+ allele:drug. As a failsafe step, sequences with a calculable mean expression value in < 2 of the 

samples in a condition (of n=6 per condition in both experiments) were excluded from t-testing in 

the first experiment; in the ATRA experiment utilizing an LMM of barcode expression values, 

SNPs for which ≥ 60% of samplewise barcode expression measurements were missing (i.e., ≥ (12 

replicates * 10 barcodes per allele * 2 alleles * 0.6 ==) 144 sample-barcode expression 

measurements) were excluded from analysis. 

 

To perform statistical correction informed by the level of cross-sample and cross-barcode noise, 

the vector of Z values (t test) or F values (LMM) were stored for each SNP. For single-condition 

t-test analysis of the ATRA samples alone, Benjamini-Hochberg FDR correction was used, as my 

statistics of interest regarding these samples came almost entirely from the LMM (except for dual 

interaction and allele main effect cases, see below). To correct test statistics in the first assay, 

second assay vehicle-only, and LMM analyses, the same statistical comparison (t-test or LMM) as 

used for the sequences of interest was performed utilizing a vector of 10,000 (first assay), 20,000 

(second assay LMM), or 5,000 (second assay vehicle samples alone) Z or F test statistics random 

“allelic” comparisons between elements that should have a known null difference in 

transcription—that is, 5,000-10,000 comparisons between two sets of 6 randomly selected 

barcodes—representing the median number of barcodes analyzed for a given sequence—from 
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among the 110 barcodes assigned to the hsp68 promoter without human genomic sequences added 

upstream. This process effectively models the level of noise in expression calculations for the 

experiment due to e.g., variation in the cultures, across barcodes, and via biases during sequencing 

preparation. This method derives from an analogous statistical correction approach using non-

targeting CRISPR gRNA sets from within a CRISPR screening library68. 

 

For SNPs with significant allele and interaction coefficients in the LMM, a meaningful allele main 

effect was considered present if the single-condition vehicle and ATRA analyses showed the same 

allelic direction of effect, with a vehicle pemp< 0.1 and ATRA FDR < 0.1 (i.e., near-significant 

within each condition of n=6, thus reasonably capable of achieving significance in the LMM 

analysis of the two conditions combined). 

 

MotifbreakR analysis. In order to assess transcription factor binding motif perturbations 

corresponding to SNPs, I utilized the R package motifbreakR69 and its built-in database of motif 

position-weight matrices (PWMs) from multiple public repositories. The tool by design identifies 

PWM matches overlapping input SNPs from dbSNP (here, version 151) for which at least one of 

the SNP alleles results in a genomic sequence significantly matching a given motif sequence. I 

used the default significance cutoff of p < 10-4 for calling motif matches in all analyses and 

identified changes in motif match score using the tool’s default algorithm, which takes a weighted 

sum based on the position weights of each base in the motif sequence and considers these for the 

two alleles of the query SNP. As the use of dbSNP 151 required use of hg38, my queries thus took 

place in hg38 reference genome sequence space for the subset of SNPs with the same rsID in both 

the MPRA design and dbSNP 151. Computationally, all SNPs from a given set of positive and 
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negative comparators were run through motifbreakR once with these settings to identify motif 

perturbations. For analysis of SNPs with identified in the first assay in N2a cells, SNPs with an 

allelic effect pemp < 0.05 were compared to those with an allelic effect pemp > 0.05; from the second 

assay, allele-ATRA interaction SNPs with interaction pemp<0.05 were compared to allele-main-

effect-only SNPs (allele pemp<0.1 and interaction pemp>0.1), and allele main effect SNPs at allele 

pemp<0.1 were compared to the SNPs that were subject to neither main effects of allele or drug, 

nor their interaction (all pemp>0.1).   

 

Frequencies at the level of TF (which can include several motifs) were considered as the number 

of SNPs matched to a given TF, regardless of the number or identity of motifs to which that SNP 

matched. Null distributions of frequency were determined by 10,000 random selections of motif 

perturbations corresponding to n SNPs in the negative comparator SNP set, where n was the 

number of positive set SNPs analyzed based on the presence of an rsid in dbSNP 151. The p-value 

of frequency was then calculated from the empirical percentile of the positive SNP frequency count 

vs the distribution of frequencies in the negative set selections. Concordance was determined in a 

similar manner by permuting 10,000 random subsets of data covering n SNPs, but drawing motif 

assignments from the full set of SNPs analyzed and assigning a random “MPRA” allelic-

directional effect to each SNP to compare observed rates of concordant allelic effects on motif 

match and reporter expression to the rates obtained by chance. 

 

ABAEnrichment Analysis of TF Sets. To examine enrichment of motifbreakR-identified TFs in 

spatiotemporal human brain gene expression, I utilized my four sets of TFs identified from the 

ATRA experiment (TFs enriched at functional variants with allele•ATRA interaction effects over 



 132 

allele main-effect-only SNPs, and those enriched at allele-main-effect-only variants vs no-effect 

variants, considering only “strong” motif perturbations or all motif perturbations in each set). I 

constrained these TF sets to those considered enriched on the basis of motif perturbation at ≥ 2 

functional SNPs. Enrichment was then tested in the 5-developmental-epoch dataset (27 brain 

regions per epoch) and Allen Atlas adult microarray data of over 500 brain regions using a 

Wilcoxon approach, weighting TFs by their “score” (number of SNPs assigned by motifbreakR at 

their set’s strength level). Enrichment was tested using 8 percentile thresholds for whole-dataset 

genes to be considered expressed in brain: 25, 37.5, 50, 62.5, 75, 82.5, 90, 95. The ABAEnrichment 

tool then gives a Family Wide Error Rate (FWER) by performing 1,000 shuffled analyses at each 

cutoff for each age•region•threshold (8 thresholds x 27 regions x 5 stages = 1080 enrichment tests). 

 
4.6.2 Supplementary figures and tables 

 
Supplementary Figure 4.1. Cross-replicate correlations from initial N2A MPRA. A) Cross-
replicate comparison of individual barcode counts per million (CPM). B) Cross-replicate 
comparison of element-level expression (mean barcode RNA/DNA ratio). Pearson correlation 
coefficients are shown above the diagonal in both panels. 
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Supplementary Figure 4.2. Extended motifbreakR results from the first MPRA. Enrichment 
analysis results agnostic to the motifbreakR-defined “strength” of motif change between alleles 
(left-hand columns). A) TFs with enriched frequency of motifs among functional SNPs. The 
corresponding number of functional SNPs matched to each TF for a given strength are shown. B) 
TFs with greater than predicted concordant motif and MPRA effects among functional SNPs. 
Concordant effects were defined by greater MPRA expression driven by the allele better-matched 
to the corresponding TF motif and vice versa—the expected behavior of strictly activating TFs. 
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Supplementary Figure 4.3. Additional functional SNPs corresponding to an enriched TF 
motif group (NR3C1) from the first assay. Replicates are indicated by individual points and 
their connecting lines. 
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Supplementary Figure 4.4. Extended motifbreakR results from the ATRA treatment MPRA. 
Enrichment analysis results agnostic to the motifbreakR-defined “strength” of motif change 
between alleles (left-hand columns). A) TFs with enriched frequency of motifs among retinoid-
independent functional SNPs compared to SNPs with no detected allelic effects. The 
corresponding number of functional SNPs matched to each TF for a given strength are shown. 
Heatmap is split into two vertical slices for visibility. B) TFs with motifs overrepresented among 
ATRA-dependent (interaction) functional SNPs compared to ATRA-independent functional 
SNPs. The heatmap is shown in halves for visibility. TFs identified as ATRA-upregulated in 
human neuroblastoma lines105 are in bold font. 
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Supplementary Figure 4.5. Expression of TFs GATA2, GATA3, and FEV in a variety of 
human neuroblastoma cell lines at baseline, with retinoic acid treatment, and in melanoma 
cells and neural precursors for comparison. Expression values are log2 normalized microarray 
expression values. Each dash within the a given bar represents a single sample or replicate from 
the corresponding GEO dataset. Results were visualized using the R2 browser (http://r2.amc.nl). 
A) Expression of FEV. B) Expression of GATA2. C) Expression of GATA3. 
 

Supplementary Table 4.1. Power analysis for allelic effect size detection. 

Bonferroni 
p Power SD 

Expression 

log2 
Allelic 
Fold 

Change 
0.000 0.000 0.040 1.000 
0.050 0.838 0.040 1.051 
0.100 1.000 0.040 1.105 
0.000 0.000 0.056 1.000 
0.050 0.320 0.056 1.051 
0.100 0.999 0.056 1.105 
0.000 0.000 0.080 1.000 
0.050 0.059 0.080 1.051 
0.100 0.824 0.080 1.105 
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Supplementary Table 4.2. Number of functional SNPs, by effect type(s), overlapping at least 1 ChIP peak. Functional SNPs 
were subsetted based on unique patterns of which effect(s) were significant, and filtered to those overlapping at least one of the below 
features. Column names indicate motifs/TF binding sites: DR_5 retinoic acid response element predictions74; ChIP peak(s) for RARA, 
RARB, RARG RXRA, RXRB, THRA, or THRB135,140, and/or a VDR consensus ChIP region from lymphoblast cell lines73. 

Significant Effect(s) 

DR0-4 
RARE 
hg19 

FIMO 

DR5 
RARE RARA 

RARA 
(RA-

treated 
liver) 

RARB 

RARB 
(RA-

treated 
liver) 

RARG RXRA 

RXRA 
(RA-

treated 
liver) 

RXRB THRA THRB VDR 

First Assay Hit, First and 
VEH Hit, Second Assay 
Allele Effect (n=4 SNPs) 

0 0 3 1 0 2 0 2 2 2 1 0 1 

Second Assay 
Interaction Effect (n=16 

SNPs) 
0 1 6 5 1 6 1 14 6 7 4 2 2 

First Assay Hit (n=5 
SNPs) 0 0 3 2 1 3 1 3 1 1 0 0 0 

Second Assay Allele 
Effect (n=8 SNPs) 0 0 2 2 0 1 1 3 1 3 0 0 1 

First Assay Hit, Second 
Assay Allele Effect (n=1 

SNP) 
0 0 1 0 0 0 0 0 0 0 0 0 0 

Second Assay Allele 
Effect, Second Assay 

Interaction Effect (n=1 
SNP) 

0 0 1 0 1 1 0 1 1 0 0 0 0 

First Assay Hit, First and 
VEH Hit (n=1 SNP) 0 0 1 1 1 1 0 1 1 0 0 0 0 

              

Totals              

All Interaction SNPs ± 
other effects (n=17 SNPs) 0 1 7 5 2 7 1 15 7 7 4 2 2 

Non-interaction SNPs 
(n=19 SNPs) 0 0 10 6 2 7 2 9 5 6 1 0 2 
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Chapter 5: Sex significantly impacts the function of major 
depression-linked variants in vivo 
This chapter has been preprinted on Biorxiv and is undergoing peer review at Nature Neuroscience. 

The citation for the former is: 

Mulvey, B., Selmanovic, D. & Dougherty, J. D. Sex significantly impacts the function of major 

depression-linked variants in vivo. Biorxiv 2021.11.01.466849 (2021) 

doi:10.1101/2021.11.01.466849. 

 

Genome-wide association studies have discovered blocks of common variants—likely 

transcriptional-regulatory—associated with major depressive disorder (MDD), though the 

functional subset and their biological impacts remain unknown. Likewise, why depression occurs 

‘associated functional variants interact with sex and produce greater impact in female brains. I 

developed methods to directly measure regulatory variant activity and sex interactions using 

massively parallel reporter assays (MPRAs) in the mouse brain in vivo, in a cell type-specific 

manner. I measured activity of >1,000 variants from >30 MDD loci, identifying extensive sex-by-

allele effects in mature hippocampal neurons and suggesting sex-differentiated impacts of genetic 

risk may underlie sex bias in disease. Unbiased informatics approaches indicated that functional 

MDD variants recurrently disrupt sex hormone receptor binding sequences. I confirmed this with 

MPRAs in neonatal brains, comparing brains undergoing a sex-differentiating hormone surge to 

hormonally-quiescent juveniles. my study provides novel insights into the influence of age, 

biological sex, and cell type on regulatory-variant function, and provides a framework for in vivo 

parallel assays to functionally define interactions between organismal variables like sex and 

regulatory variation. 
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5.1 Introduction 
Major depressive disorder (MDD) is a profoundly disruptive and sometimes lethal disorder, 

affecting women 2-3 times more frequently than men across countries and cultures1. Sex 

differences are present across multiple levels of the disease, from symptom profiles2 and effective 

drug classes3 to brain-wide gene expression4,5. Genome-wide association studies (GWASes) have 

identified dozens of linkage regions each containing numerous single-nucleotide polymorphisms 

(SNPs) associated with MDD, demonstrating its heritability6–8. More recently, sex-by-genotype 

(SxG) analyses of large GWAS cohorts have revealed that MDD risk loci are the same for men 

and women, yet these loci explain up to 4-fold greater MDD heritability in females9,10. These 

findings suggest that sex interacts with a common pool of SNPs to attenuate or amplify the MDD 

risk they confer. However, disease-associated SNPs are seldom found in protein-coding space, 

complicating prediction of their molecular consequences. Instead, these SNPs are found in 

probable regulatory elements (REs), including transcriptional-regulatory sequences predicted from 

measures such as chromatin marks, accessibility, and conformation. Specific brain regions and cell 

types are enriched for such measures at—and in putative regulatory target genes of—MDD-

associated loci, including the hippocampus7,11 and excitatory neurons12–17, suggesting sites of 

action for these REs. In particular, there has been long-standing interest in the hippocampus 

regarding both MDD pathology and sex differences in the brain. Hippocampal volume reductions 

in MDD patients have been widely reported18. Moreover, the hippocampus is subject to influences 

of sex from perinatal19,20 to adult life, presenting in MDD as sex differences in hippocampal 

volume loss21 and gene expression4. 
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Determining the identity of functional SNPs from MDD-associated regions is the first key step 

toward understanding the biological perturbations resulting from risk genotypes, which can in turn 

enable inference of dysregulated target genes and shared regulatory programs involved across loci. 

However, studies connecting MDD-associated SNPs to gene expression in brain tissue, even those 

that considered sex effects22, have been limited to indirect indicators of function (e.g., chromatin 

state), or are confounded by linkage disequilibrium (e.g., for expression quantitative trait loci 

(eQTLs)). In contrast, direct measurement of regulatory output of common variants associated 

with disease has largely been restricted to the in vitro setting. Large-scale in vitro identification of 

functional regulatory variants has been made possible by massively parallel reporter assays 

(MPRAs), a method for functionally detecting activity from thousands of REs (and their variants) 

simultaneously. In brief, MPRAs adapt a traditional reporter assay paradigm—placing REs 

upstream of an optically measured reporter (e.g., luciferase)—but adds a unique, RE-identifying 

“barcode” sequence to the reporter’s 3’ untranslated region, enabling quantification of activity for 

thousands of REs simultaneously by RNA barcode sequencing. MPRAs have enabled 

identification of trait- and disease-associated SNPs affecting REs in culturable, disease-relevant 

cell types in vitro23–26. However, the complexities of cell types interacting in the brain and of the 

sex hormonal milieu cannot readily be emulated ex vivo. 

 

I overcome these prior limitations in functional regulatory SNP (rSNP) identification to interrogate 

the biological contexts under which MDD rSNPs act by delivering an MPRA library of MDD-

associated variants27 into the adult mouse hippocampus in vivo. Building on prior brain MPRAs 

of enhancers28 and an RE variant29, my approach greatly extends in vivo MPRA methods to identify 

rSNPs and their sex interactions, including those which are cell type-specific. First, I combined 
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MPRA with translating ribosome affinity purification (TRAP) to simultaneously identify MDD 

rSNPs in both excitatory neurons and the broader hippocampus. Further, these experiments utilized 

mice of both sexes, enabling us to additionally test the hypothesis that rSNPs are subject to sex-

by-genotype (SxG) interactions. Finally, to characterize the potential role of circulating hormones 

in sex-differentiated rSNP activity, and to functionally replicate predicted fetal brain RE 

enrichments suggesting a role for MDD SNPs during circuit organization15,30–33, I likewise 

delivered the library to the mouse brain in utero. This allowed us to identify rSNPs neonatally, 

coinciding with a testosterone surge and critical period for establishing sex-specific brain 

circuitry34, and test for loss of SxG effects in juveniles, when hormonal influences are quiescent. 

In sum, I illustrate that MPRAs can be leveraged in vivo to directly identify not only functional 

variants, but their context-dependence on age, sex, and cell type, while demonstrating that all three 

of these factors have substantial impacts on MDD-associated regulatory variation. 

 

5.2 Results 
5.2.1 Combining Translating Ribosome Affinity Purification (TRAP) with 

MPRAs 

Adeno-associated viruses (AAVs) have long been used to evaluate the activity of single REs in 

the brain, most recently in MPRA-like designs to screen multiple REs in parallel with RNA-seq-

based quantification28,35,36. This suggests it may also be possible to adapt AAV-MPRAs to study 

functional consequences of RE variants associated with disease. As MDD genetic risk is enriched 

in neuronal REs, I tested the feasibility of combining a cell type-specific profiling method, TRAP, 

with MPRA to attain measurements of RE activity specifically in neurons. I generated 4 small 

AAV9 libraries (Figure 5.1A-C) expressing dsRed under the control of the hsp68 minimal 

promoter, with full-length human promoters (denoted pGene) with documented expression in 
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neurons (human pCAMK2A), astrocytes (pGFAP), or all cells (pPGK2), each carrying unique 3’ 

untranslated region (UTR) barcodes for quantification by RNA-seq. I first individually confirmed 

cell-type specificity by immunofluorescence (IF) (Figure 5.1D-F), and then delivered37 a mixed 

pool of the four barcoded AAV9 libraries into the brain of postnatal day 2 (P2) neuron-specific 

TRAP mice (Snap25-Rpl10a-eGFP)38. TRAP was then used to compare total brain and neuronal 

activity levels of the three promoters and the hsp68 promoter alone. I prepared MPRA sequencing 

libraries from 1) the delivered AAV pool (DNA), 2) total brain (input) RNA, and 3) TRAP 

(neuronal) RNA and assessed expression of each barcode by calculating a ratio of RNA counts to 

DNA counts. Results were highly replicable at the level of barcodes (Figure 5.1G-H) in both RNA 

fractions. Moreover, neuronal TRAP fractions demonstrated increased expression of barcodes 

driven by pCAMK2A and lower expression of pGFAP-paired barcodes (Figure 5.1I). These results 

demonstrated that cell type-specific effects, even of relatively small magnitudes, can be detected 

using a combined MPRA-TRAP approach. I then turned to applying this method to test the effects 

of human variants associated with psychiatric disease. 
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Figure 5.1. Proof-of-principle for cell type-specific MPRA in vivo. A) Cell type-specific 
promoters, pGFAP (astrocytic) and pCAMK2A (neuronal) were barcoded by PCR. B) Amplicons 
were cloned into an AAV plasmid. C) Further restriction cloning added a reporter cassette 
containing a minimal hsp68 promoter, dsRed, and an RNA-stabilizing 3' UTR hepatitis E 
"woodchuck" (WPRE) element. Barcoded pools with each promoter were packaged into AAV9 
separately. D-F) IF of P27 mouse brain after P2 injection with a single AAV9 barcode pool. (D) 
hsp68 promoter alone preferentially drove dsRed expression in neurons, while (E) pCAMK2A 
drove reporter expression solely in neurons, and (F) pGFAP drove predominantly astrocytic dsRed 
expression. G) Replicability of barcode expression for the SNAP25-TRAP RNA fraction 
(Pearson’s r=0.9975) and H) total brain tissue (input) (r=0.9927). I) TRAP expression, compared 
to total brain expression, was higher for pCAMK2A and lower for pGFAP, as expected. **p ≤ 5 x 
10-4, ***p ≤ 5 x 10-8 

 

5.2.2 Identification of rSNPs and their sex-allele interactions in total 
hippocampus and excitatory neurons  

Given the association of MDD with sex, hippocampal pathology, and neuronal genetics, I sought 

to identify regulatory SNPs among variants selected from broad linkage disequilibrium (LD) 

regions associated with MDD in total hippocampus. To further investigate the roles of SNPs and 
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sex in hippocampal excitatory neurons in particular, I performed these experiments in a cross of 

Slc17a7 (or, Vglut1)-Cre mice39 to a Cre recombinase-dependent TRAP mouse line38. 

 

The analyzed MPRA library covered 40 GWAS loci spanning ~1,000 SNPs in LD R2>0.1 with 

MDD-associated tag variants. SNPs were prioritized by their overlap with human brain and neural 

cell type eQTLs, histone marks, enhancer RNA overlap, and chromatin contacts (see Data 

Availability). Of these SNPs, 926 were from 29 MDD GWAS loci6,7,33,40–44, 19 were from 2 loci 

identified by meta-analysis of MDD and autism spectrum disorders45, and 21 were from 4 loci for 

MDD-correlated traits (mood instability, anxiety, and neuroticism)46–49. 126bp human genomic 

sequences centered on the SNP were generated for each allele and paired to 10 unique 10bp 

barcodes per allelic sequence for internal replication (Supplementary Figure 5.1). These were 

inserted into an AAV plasmid, then cloned to contain an hsp68 minimal promoter 50 driving dsRed 

along with the “woodchuck” hepatitis 3’UTR element to improve recovery of reporter RNAs51, 

and packaged into AAV9. 

 

I delivered the AAV9 library bilaterally into the hippocampus of Vglut1-TRAP mice ages P60-

P80 (n=6 per sex), followed by hippocampal dissection and TRAP (Figure 5.2A) to identify rSNPs 

and their shared regulatory features (Figure 5.2B). IF of hippocampi from additional mice 

confirmed robust hippocampal expression of the dsRed reporter 28 days after injection (Figure 

5.2C). I first confirmed by qPCR that TRAP RNA was depleted for glial marker genes several-

fold as expected (Figure 5.2D), then conducted MPRA sequencing (Supplementary Table 5.1) 

and analysis of both input RNA (hippocampus) and TRAP RNA (Vglut1+) for each sample. 
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After quality control, n=5 male and n=5 female hippocampal samples (both the input and TRAP 

RNAs) were retained for MPRA analysis covering ~1,000 SNPs. These showed replicability at the 

level of barcode counts (pairwise Pearson’s r 0.7-0.89) (Figure 5.2E), RE-level expression (r 0.85-

0.96) (Figure 5.2F), and mean allelic fold changes between conditions (r 0.90-0.94) (sample-pair-

wise shown in Figure 5.2G), confirming I was able to reliably measure SNP-mediated regulatory 

effects and differences from a defined cell type in vivo. 

 
Figure 5.2. Experimental design, analysis plan, and quality control: adult mouse 
hippocampus and its excitatory neurons. A) Adult male and female C57BL/6J mice received 
bilateral stereotactic injections into the hippocampus delivering the AAV9-packaged MPRA. 
TRAP yielded two RNA fractions per sample: “input” (total hippocampal) and TRAP (Vglut1+). 
B) Analyses identified regulatory SNPs (rSNPs), transcription factor (TF) binding sites (TFBSes) 
enriched at rSNPs, shared protein interactors among these TFs, and shared regulators of these TFs’ 
expression. C) IF of Vglut1-TRAP mouse hippocampus 28 days after MPRA-AAV9 delivery, 
illustrating strong TRAP (GFP) co-expression with dsRed reporter, confirming RNA from the 



 156 

latter is present in the cell type of interest. D) qPCR confirmed depletion of glial genes (Gfap, 
P2ry12) and modest enrichment of excitatory neuron marker Gria1 in Vglut1+ RNA. E) Barcode 
count correlations between replicates. Each point represents the cross-correlation between one 
sample of the type on the x-axis and one of the color-coded type. F) Correlation of mean barcode 
expression between replicates. G) Correlation of samplewise allelic differences in expression. 
PCC: Pearson correlation coefficient (or Pearson’s r). 
 

5.2.3 rSNPs in the adult hippocampus and hippocampal Vglut1+ neurons 

I first assessed ~1,000 SNPs for allelic effects in each individual sex and RNA fraction, using 

linear mixed models (LMMs) fitting barcode expression as a function of allele with random 

barcode effects (Supplementary Figures 5.2-5.4). I calculated empirical p (pemp) values using 

50,000 simulated ‘allelic’ comparisons between subsets of random barcodes coupled to the 

minimal promoter alone27,52 to account for technical and barcode-mediated noise. Significance was 

called at FDR-corrected pemp<0.2, a stringency comparable to a recent study of sex-interacting 

eQTLs22. Data provided at the Bitbucket link in Acknowledgments provides allelic beta (log2FC) 

values and significance status for variants at 10 different significance thresholds, while 

Supplementary Figure 5.5 compares FDRs from standard and empirical p values in each 

experiment. For female mice, I additionally analyzed a separate cohort of n=3 Vglut1+ TRAP mice 

delivered the same library into the same hippocampal coordinates.  

 

In total hippocampus, I identified 36 (male) and 31 (female) rSNPs, 34 and 31 of which were from 

MDD loci, respectively. While male and female total hippocampi had similar numbers of rSNPs, 

I observed a striking sex difference in the number of rSNPs in Vglut1+ cells specifically—only 7 

(male) compared to 58 (female), indicating that within excitatory neurons, a higher proportion of 

MDD SNPs have discernible allelic effects in females. Moreover, all 7 male rSNPs were also 

functional in females. Female Vglut1+ and total hippocampal SNP effects were consistent in 

magnitude and direction between this sample set and the additional (n=3) TRAP cohort (Pearson’s 
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r 0.61-0.77) (Supplementary Figure 5.6). Notable rSNPs from ≥1 condition included rs2563323 

and rs250427, putative brain and hippocampal53 eQTLs for SRA1, a noncoding RNA which 

activates nuclear receptors even in the absence of their ligand54. Also notable were rs301806—an 

MDD GWAS index SNP41—and rs301807 (Figure 5.3A-B), both of which likely regulate the 

nearby gene RERE15,55. 

 

5.2.4 Sex-interacting rSNPs in hippocampus 

Given the role of sex in MDD risk and the observed differences in rSNP activity in the adult 

hippocampus, I sought to investigate whether sex interacts with MDD risk genotypes. To ensure 

there were not confounding sex differences in minimal promoter activity, I compared minimal 

promoter-only barcode expression between sexes for the two tissue fractions, finding no sex 

difference in activity (t-test of barcode expression, p>0.5 in both comparisons; Supplementary 

Figure 5.7).  

 

I therefore performed combined-sex LMM analysis of the Vglut1+ and hippocampus results, 

identifying 41 sex-allele interaction rSNPs in each. Notably, while only 1 SxG rSNP was shared 

between total hippocampus and Vglut1+, sex-interacting SNPs originated from the same GWAS 

loci across both analyses: 16 of the 18 Vglut1+ SxG loci also contained hippocampal SxG rSNPs. 

The tag locus rs119351040, for example, contained 11 sex-interacting rSNPs, including several 

unique to hippocampus (Figure 5.3C) or Vglut1+ (Figure 5.3D). This region is rich in neural 

chromatin contacts56–61, implicating several target genes of the identified rSNPs. Interestingly, 

SxG effects in hippocampus and Vglut1+ segregated into distinct portions of this LD region 

(Figure 5.3E). I additionally examined three SNPs in my assay that were recently reported 

significant in sex-genotype interaction GWASes of over 500 traits62. One of these reported 
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variants, rs2400075, was found to have several significant sex-interacting associations to body 

traits; this variant is located near LIN28B—which shows sex-differential expression in mouse 

norepinephrine neurons63–and was a near-significant SxG rSNP in Vglut1+ (0.20<FDR<0.25). 

 
Figure 5.3. Adult hippocampus rSNPs and complex context-dependent, polygenic 
architecture of the RSRC1 locus. Boxplots show single-barcode (BC) expression levels adjusted 
for random effects across analyzed replicates. Center bars: median; boxes: 25-75% quantile; 
whiskers: observations spanning box edges to ± 1.5*interquantile range (IQR); single points: 
observed values outside whisker range. Notched regions span ± 1.58 * IQR / sqrt (n 
measurements), approximating the 95% confidence interval for comparing median BC 
expression64. rSNPs corresponding to RERE locus33 tag variants A) rs301806 and B) rs301807 are 
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shown. C-D) Sex-interacting SNPs from the RSRC1 locus40 included (C) rs67446837 and (D) 
rs1048243. E) rSNPs identified in the RSRC1 locus and their regulatory target genes in human 
tissues ascertained by Hi-C. A plot of rSNP effects, colored by most significant condition, is 
embedded with its x-axis in human genomic (hg19) coordinates; chromatin contacts between the 
SNPs and distal gene promoters are illustrated below56–61. Curve heights correspond to -log10pemp 
for the plotted rSNP. iPSC: Induced pluripotent stem cell; DG: dentate gyrus; Ctx: cortex. *: pemp-
derived FDR < 0.25; **: <0.2; ‡ < 0.15; ‡‡ < 0.1; & < 0.05. 
 

5.2.5 Transcriptional-regulatory systems shared across hippocampal rSNPs 

I next asked whether there were any shared transcriptional-regulatory mechanisms underlying 

MDD rSNP effects in the hippocampus. I tested whether rSNPs perturbed specific transcription 

factor (TF) binding motifs more frequently than expected by chance (defined by their rates in 

rSNPs vs. non-effect SNPs in the assay)27. I assessed motif disruptions using motifbreakR65 and 

RSAT var-tools66 defining rSNPs at a nominal LMM pemp of 0.05. This resulted in sets of 80-110 

MPRA-identified rSNPs per condition, ensuring adequate depth for enrichment analysis. To refine 

these results, I filtered the enriched TFs (FDR<0.05) to those with altered putative binding sites 

≥4 rSNPs and expressed in Genotype-Tissue Expression atlas (v8) hippocampus in the 

corresponding sex. 

 

Altogether, I identified 38 enriched TFs in male total hippocampus rSNPs and 19 in female. The 

hippocampal TFs identified were largely distinctive between sexes; for example, KLF family TFs 

were unique to male hippocampal rSNPs, while nuclear receptor (NR) TFs were mostly unique to 

female rSNPs (Figure 5.4A). Among Vglut1+ rSNPs, I identified 8 TFs in female and 16 in male, 

many of which were shared (e.g., DLX1, POU3F1/2/3). POU3F2 has been previously shown to 

be a highly centralized, cross-disorder hub gene in postmortem brain co-expression analysis by 

PsychENCODE67. 
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To understand integrative biological functions of these TF sets, I utilized the tool Enrichr68 for 

each TF set, including both tissues per sex, to identify putative upstream regulators, co-interacting 

TFs (protein-protein interactions (PPIs)), enriched disease gene sets, ontologies, and brain regions 

expressing the TFs (full tables in the Bitbucket link under Acknowledgments). The most striking 

enrichments (> 25% of query TFs) for male glutamatergic and hippocampal TFs combined were 

for regulators of these TFs’ expression, including CREB1 (14/48), BRCA1 (19/48), and ZBTB7A 

(12/48). Male hippocampal TFs were likewise enriched for several upstream regulators, including 

TCF3 (8/38), HDAC2 (8/38), and ZMIZ1 (9/38). ZMIZ1 has roles in coactivation of androgen 

receptor (AR)69 as well as SMAD370, consistent with enrichment of these TFs in SMAD3 (6/38) 

and AR (7/38) PPIs. TFs from male glutamatergic neurons were enriched for four PPIs: SMAD3 

and SMAD4 (both 5/16), consistent with MPRA signal from neuronal enrichment by TRAP, and 

more surprisingly, sex hormone receptors: estrogen receptor α (ESR1; 4/16) and AR (3/16).  

 

Likewise, female glutamatergic TFs were enriched for PPIs with SMAD3 (3/8), along with RXRA 

(3/8), replicating in vivo my recent in vitro findings of retinoid-interacting rSNPs in MDD-

associated loci27. Female total hippocampal TFs, on the other hand, were enriched for upstream 

regulation by several TFs, including ATF2 (9/19), BRCA1 (8/19), and TCF3 (5/19). 

 

5.2.6 Transcriptional-regulatory systems implicated in SxG interactions at 
MDD rSNPs in hippocampus 

Using a similar approach to that above, I investigated TFs enriched at sex-allele interaction rSNPs 

(pemp<0.05) relative to sex-agnostic rSNPs (combined-sexes LMM allele main effect pemp<0.05), 

and separately enriched to nonfunctional SNPs, then combined the two enrichment outputs to form 

TF sets (Figure 5.4A). I identified only 8 TFs enriched among total hippocampal SxG rSNPs, 
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including ZNF410 and five TFs with a shared binding motif for FOX(C1/J2/J3/O4/P1). However, 

I identified 57 TFs enriched at glutamatergic SxG rSNPs, including six of those from total 

hippocampus, suggesting coherent regulatory dynamics spanning MDD loci in this cell type. SxG 

TFs included several KLF members, as well as nuclear receptors (NR4A3, NR2C1, NR1H2), and 

another retinoid TF, RARA. 

 

I ran both tissue fraction SxG TF sets through Enrichr, though nothing notable appeared for total 

hippocampus given the small size of the set. Top glutamatergic SxG TF enrichments included 

upstream regulation by BRCA1 (21/57) and CREB1 (15/57), as well as PPIs with AR (11/57), 

ESR1 (11/57), and HDAC2 (12/57) (Figure 5.4B). Also enriched was an MsigDB functional gene 

set term, “estrogen response early” (5/57). These SxG regulators implicate sex hormones and 

histone acetylation in both establishing sex-divergent MDD risk from upstream, e.g. via ESR1 

(5/57), and actuating it downstream via rSNP-enriched TFs and their protein interactors (AR, 

ESR1, HDAC2, ZMIZ1, ZBTB7A). Incidentally, both sex hormones71 and histone 

(de)acetylases72 have been major areas highlighted in recent reviews of sex differences in MDD 

and mouse models thereof. 
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Figure 5.4. Shared regulatory architecture of rSNPs by sex, cell type, and sex-interacting 
SNP type. A) TFs with binding motif disruptions by ≥ 4 nominally significant (empirical p < 0.05) 
rSNPs or sex-interacting rSNPs, enriched relative to nonfunctional SNPs. Number of rSNPs 
associated to a given binding site are shown. B) Terms from Enrichr 68 analysis, identifying shared 
upstream regulators (TFs controlling expression of several of the TFs in panel A), brain regions 
enriched for expression of the rSNP-enriched TFs, protein interactors enriched among rSNP-
enriched TFs, and MSigDB pathway term enrichment for rSNP-enriched TF sets. Bolded 
enrichments are discussed in the text. 
 

5.2.7 Identification of rSNPs in developing whole mouse brain 

As sex differences in brain structure and transcriptional regulation are established in part by the 

effects of sex hormones, including the perinatal testosterone surge34, I sought to investigate 

whether MDD risk variants were subject to sex-differential regulation during early development. 

To be able to assess the brain during this period, I delivered the AAV library 

intracerebroventricularly to embryonic day 15 (E15) mice, followed by whole brain collection at 
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postnatal day 0 (P0) or P10. P0—while not amenable to regionally-targeted viral assays—is in the 

midst of the masculizing testosterone surge, during which both acute activational effects and 

transcriptional-regulatory organizational effects occur; by contrast, P10 is a timepoint where sex 

hormones are effectively absent in normal development. 

 

I first verified by IF that dsRed expression was detectable at P0 and P10 following in utero 

delivery. Clear, widespread reporter expression was apparent at both timepoints despite the 

relatively short incubation time (Figure 5.5A-D; Supplementary Figure 5.8). IF at P10 

demonstrated prominent expression of the reporter in the hippocampus (Figure 5.5D)—a structure 

neither present at E15 nor well-developed at P0—consistent with prior observations of AAV9 

expression ultimately occurring in hippocampus when delivered to the perinatal brain73. I 

subsequently collected the whole brain (except cerebellum) for RNA isolation and MPRA 

sequencing. Additionally, I isolated DNA from n=4 brain samples (one per age and sex) to profile 

the transduced library contents, verifying that the distribution of delivered MPRA barcodes was 

similar both between replicates (r 0.86-0.94) and to input virus (r 0.88-0.91) (Figure 5.5E). 

Ultimately, I analyzed 15 samples for P0 (6 female, 9 male) and 13 for P10 (6 female, 7 male). 

Replicates from each condition had well-correlated barcode counts (PCC 0.86-0.98) and RE 

expression values (PCC 0.58-0.96) (Figure 5.5F-H). 

 

Within single sexes at P0, I identified 5 rSNPs in females and 12 rSNPs in males, respectively 

(pemp FDR < 0.2), 4 of which were shared between conditions with consistent effect direction. By 

contrast, I identified 105 female and 72 male rSNPs at P10, with 42 rSNPs identified in both sexes 

with consistent direction of effect. Three of these shared rSNPs were the same rSNPs shared 
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between P0 sexes, with consistent effect direction in all four conditions (two of which are 

illustrated, Figure 5.5I-J). Two of these three rSNPs also have rich chromatin contact evidence 

supporting gene regulatory roles in fetal, adult, and cultured human neural cell types (for the 

illustrated rSNPs, Figure 5.5K and 5.5L, respectively), consistent with their detection as rSNPs 

in whole brain tissue, highlighting in utero MPRA delivery as a robust method for detecting 

functional variation in the developing brain. 

 
Figure 5.5. Validating the in utero MPRA delivery method, and identification of rSNPs and 
sex-interacting rSNPs in the developing brain. A-B) IF of P0 brain after E15 MPRA-AAV 
delivery. C-D) IF of P10 brain after MPRA-AAV delivery. E) Comparability of barcode counts in 
recovered brain DNA and original AAV. F) Color legend for panels G-H. G) BC count correlation 
between samples. (H) Sequence expression correlation between samples. I-J) rSNPs rs61985706 
(I) and rs62444919 (J) showed effects consistent across sexes and ages. K-L) Putative target genes 
of the respective rSNPs from Hi-C in human fetal, adult, and cultured neural tissues. M) Example 
P0 SxG SNP with comparatively small sex difference in allele effect size. N) Example P0 SxG 
SNP with magnitude of sex difference in allelic effect comparable to smaller (female) allelic effect 
itself. GZ: germinal zone; CP: cortical plate74; IPC: intermediate progenitor cell; iN: inhibitory 
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neuron15; Ast: astrocyte58; dlPFC: dorsolateral prefrontal cortex; DA: dopamine neurons of 
substantia nigra and ventral tegmental area57; Ctx N: cortical neuron56; LMN: lower motor neuron; 
eN: excitatory neuron58; iPSC N: iPSC-derived neuron59. *: pemp-derived FDR < 0.25; **: <0.2; ‡ 
< 0.15; ‡‡ < 0.1; & < 0.05. 
 

5.2.8 Sex-allele interactions are widespread neonatally but absent during 
hormonal quiescence 

To identify SxG interactions occurring during neurodevelopment, I tested for SxG interactions as 

before, now within age groups. Again, the minimal promoter-only control was not sex-

differentially expressed (t-test of barcode expression, p>0.1) (Supplementary Figure 5.9). At pemp 

FDR <0.2, I identified 31 rSNPs with sex interactions in the P0 brain (e.g., Figure 5.5M-N). By 

contrast, I identified no SxG interactions at pemp FDR<0.25 among the 930 analyzed SNPs at P10. 

I confirmed this result—despite similar n and inter-sample correlations to P0—by repeating the 

SxG analysis with the least variable 5 samples per sex (removing two males and one female). 

 

5.2.9 Transcriptional-regulatory systems implicated in brain-wide rSNP 
function in postnatal development 

I examined single-sex, single-age rSNP sets for enrichment of TF motif perturbations using 

motifbreakR and RSAT approaches as before, again using nominally significant (pemp <0.05) 

rSNPs to define the sets tested for enrichment. I did not filter enriched TFs for expression in 

analogous human tissue, as fetal whole-brain gene expression profiles are unavailable; I instead 

required a more stringent minimum of 5 rSNPs to be found at significantly enriched (FDR<0.05) 

TF motifs. 

 

In P0 brain, I identified 20 TFs enriched at female rSNPs and 43 at male rSNPs, 9 of which were 

shared (Figure 5.6A). Male-specific transcription factors again included ZBTB7A and NR4A3 
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(Figure 5.6A). In P10 brain, I also found largely distinct sets of TFs in each sex (only 4 shared) 

(Figure 5.6A). Among the 42 P10 male TFs, 38 were male-specific, including RARG, again 

supporting my in vitro findings of retinoid-interactivity27 and the cortex-specific roles of retinoid 

receptors across brain development75. I then looked at these TF sets as before to identify 

convergent regulators and functions among them (Figure 5.6B; full tables in the Bitbucket link 

under Acknowledgments). Female P0 TFs were enriched in Allen Atlas expression signatures for 

cortical layers 1, 3, and 5, and, as found in hippocampus, in PPI targets of HDAC2 and ESR1. P10 

male TFs showed the greatest extent of overlap (12/42) with gene-regulatory targets of ZBTB7A. 

I likewise annotated P0 SxG TFs, which revealed broader extent of hormonal roles in functional 

variation than observed in either sex alone at P0: I found SxG TFs were again enriched for PPI 

targets of ESR1 (as had been P0 female TFs), but additionally enriched in PPI targets of AR and 

ESR2 (Figure 5.6B; full tables in the Bitbucket link under Acknowledgments). 
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Figure 5.6. Regulatory architecture of rSNPs at P0 and P10, permutation analysis evaluating 
the number of detected SxG rSNPs, and the context-dependent landscape of MDD loci. A) 
TFs with binding motif disruptions by ≥5 nominally significant (pemp < 0.05) rSNPs or SxG rSNPs, 
enriched relative to nonfunctional SNPs. B) Enrichr analysis findings for rSNP-enriched TFs in 
P0 and P10. Color key is shared with panel G. C-F) Distribution of significant (FDR < 0.2) SxG 
rSNPs in 1,000 permutation analyses per condition (400 for P10); red lines: number of SxG rSNPs 
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identified experimentally; overlaid p-values indicate the probability of observing as many SxG 
rSNPs by chance. G) Each MDD locus, labeled by tag SNP, with bars representing the percentage 
of analyzed variants that were rSNPs or SxG rSNPs for each condition at pemp-derived FDR<0.2. 
Color key shared with panel B. *: locus from all-female MDD GWAS43; **: near-genome-wide 
significant locus in males with MDD developing after age 5042; ‡: collapsed results from two loci 
near CELF4 with tags less than 150kb apart; ‡‡: collapsed results from LD partners of five tag 
SNPs, comprising two GWAS significant tags and several weaker association peaks covering a span 
of ~5Mb around the gene TCF46. 
 

5.2.10 Landscape of functional variation differs broadly across age, sex, and 
brain region/cell type 

If increased prevalence of MDD in females is in part caused by interactions between risk genetics 

and sex, then the number of SxG interactions observed in adult animals should exceed chance 

expectations. I therefore randomly scrambled sex labels and repeated my analyses to define a null 

distribution for the number of SxG rSNPs at a pemp FDR of 0.2. The number of adult total 

hippocampal (Figure 5.6E) and Vglut1+ (Figure 5.6F) SxG interactions I identified were both 

significantly greater than would be anticipated. 

 

Overall, I found that it was the norm for loci to contain multiple functional, context-dependent 

SNPs, in contrast to the concept of a singular “causal variant” driving a given GWAS association. 

To confirm that my results reflect genetic risk effects observed in humans, I examined the 

relationship between GWAS and MPRA effects for over 50 SNPs directly genotyped in a large 

MDD GWAS7. Modest, significant Pearson correlations between MPRA and GWAS effect sizes 

in hippocampus and Vglut1+ were observed, supporting the notion that functional variants beyond 

beyond GWAS tags and their near neighbors influence disease risk76 (Supplementary Figure 

5.10). 
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Altogether, my analyses identified 280 rSNPs from 31 LD regions (28 depression-associated), with 

up to 13 rSNPs in a single locus found in a single condition (P10 female, tag SNP rs117075826) 

(Figure 5.6G). In terms of age and cell type, I identified dozens of rSNPs with allele or SxG effects 

specific to one timepoint or tissue region: 26 P0-specific, 101 P10-specific, 34 total hippocampus-

specific, and 55 specific to Vglut1+ cells of the hippocampus. Indeed, only 64 (~23%) of rSNPs 

are functional in more than one developmental or cell type context. Similarly, 92 rSNPs were only 

identified as functional in female conditions and 37 only in male (excluding SxG interactions), 

while another 86 were only subject to SxG interactions. In other words, only 23% of rSNPs were 

sex-invariant in their in vivo activity.  

 

5.3 Discussion and Conclusion 
I have directly measured sex-genotype interactions across MDD in the adult hippocampus and 

sexually differentiating brain, thus demonstrating the existence of a genetic component of sex 

differences in MDD and the regulatory architecture underlying these differences across space, 

time, and genome. I have uncovered functional differences between sexes at particular MDD-

associated SNPs in the hippocampus, its excitatory neurons, and the brain during its sexual 

differentiation, expanding on observed genetic and clinical sex differences in MDD from general 

heritability to direct identification of sex-interacting variants.  

 

One of the strengths of my study is the application of empirical p-values along with random-effect 

modeling of barcodes, controlling several aspects of experiment and design-specific technical 

noise in defining my results. By controlling empirically for these sources of variation in the data, 

I obtain results supported by a wide variety of orthogonal datasets, including reporter assays and 
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human brain epigenomic datasets beyond those used for variant prioritization. For example, MDD-

associated SNP rs1467013 was previously demonstrated to be functional in a classical luciferase 

reporter assay in three different cell lines77. A prior in vitro MPRA identified rs301807, but not 

rs301806, as an rSNP27, while both were identified as functional here. This highlights the 

importance of in vivo context for obtaining relevant insights about functional variation within 

GWAS loci—in this case, revealing two rSNPs in close (~2kb) proximity that likely influence 

expression of the same target (RERE).  

 

Human datasets further support the translatability of my mouse approach in identifying regulatory 

SNPs and sex interactions. Four rSNPs identified here, rs7244124 (Vglut1+ SxG), rs76931017 

(P10 female), rs827187 (P10 female), and rs4482931 (male hippocampus) were recently identified 

as chromatin accessibility QTLs in human midfetal neural progenitors and/or neurons78, consistent 

with the allele-differential regulatory activity I observed. Intriguingly, an early attempt to identify 

sex-interacting GWAS loci for MDD79 found suggestive significance for a tag SNP rs1345818, 

near TMEM161B and MEF2C, a locus which has since been sex-agnostically associated to MDD6. 

my assay did not include the tag SNP, but I identified three variants in LD with rs1345818 that 

showed sex interactions, confirming that this risk locus indeed has sex-dependent regulatory 

activity: rs1814149 (hippocampal SxG, FDR<0.2, R2 with rs1345818=0.67), rs5869417 

(hippocampal SxG, FDR<0.1, R2=0.21), and rs6452770 (Vglut1+ SxG, FDR<0.2, R2=0.69). 

 

Downstream analyses aimed at identifying regulatory programs involved across rSNPs provided 

support for the rSNP findings themselves, while also identifying novel candidate TFs underlying 

sex interactions at MDD loci. My SxG-enriched TF sets were especially rich in sex hormone 



 171 

receptors and interactors, consistent with expectations for an in vivo assay detecting sex 

interactions, and indicating a role of sex hormone receptors in co-regulation of MDD risk variants. 

my hippocampal analyses revealed male-specific roles for AR: male rSNPs were enriched for 

binding sequences of ZMIZ1, an AR co-activator, while an AR co-repressor, ZBTB7A80, was 

identified as a shared upstream regulator of these TFs. Notably, ZBTB7A also regulates human 

non-coding RNA LINC0047381, which was recently been demonstrated to have sex-differentiated 

effects on depressive mouse behaviors when overexpressed in cortex82. My TF analyses of P0 SxG 

rSNPs also identified regulatory programs consistent with the critical period for sexualization of 

the brain. P0 SxG rSNPs were enriched for TFs interacting with ESR1, ESR2, and AR, consistent 

with the regulatory landscape necessary for accommodation of sex hormonal signals during the 

perinatal testosterone surge. Additionally, PAX5 motif disruptions were unique to P0 SxG variants; 

interestingly the PAX5 motif was recently shown to be enriched in promoters of sex-differentially 

expressed genes in adult brain22. my neurodevelopmental rSNP-enriched TFs likewise 

recapitulated aspects of recent preclinical studies of sex and depression: or example, P0 female 

rSNPs were enriched in motifs of endothelial marker SOX17, consistent with demonstration of 

sex-differential changes in mouse brain vascular permeability after stress83.  

 

My assay has several limitations. Notably, my P0/P10 assays could not be compared directly to 

my adult findings to look for sex-by-age effects, as adult experiments were limited to the 

hippocampus while developmental assays were brain-wide. Unfortunately, it is impractical to 

region-specifically deliver AAV9 in utero, and hippocampal morphogenesis is postnatal, 

precluding designs for direct comparison of hippocampus. Likewise, episomal AAV delivery may 

not capture all regulatory information of a genomic delivery, though benchmark studies indicate a 
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strong correlation84. However, I note that genome-integrated approaches for measuring variant 

function would require lentiviral MPRAs (which failed in vivo, likely due to the lower titer than 

AAV and decreased viral spread), or base editing methods, which would be limited by efficiency 

and throughput in vivo and require mouse orthology of human SNPs. While the latter problem 

might be solved by using human cell lines, cell lines cannot be used to generate fully mature, 

differentiated neurons like those studied here (even organoids only approximate the transcriptional 

state of the prenatal/infant brain85), nor would they be expected to reproduce the factors that 

produce sex differences in vivo (e.g., organizational or activational hormones), precluding an in 

vitro study or replication of sex effects. Finally, results might be influenced by use of either a 

different minimal promoter or longer fragments if nearby elements interact with the rSNPs. 

However, none of the limitations above would be expected to create spurious sex effects, 

indicating the SxG interactions that were central to supporting my primary hypothesis are likely 

to be robust. 

 

Finally, the presented in vivo MPRA approach indicates that critical biological and environmental 

factors involved in brain gene regulation and regulatory variation can be studied using a high-

fidelity model of development, cell types, and biological signals. my approach provides a 

framework for direct, functional study of psychiatric risk genetics and their interactions with 

biological and environmental factors that are imperfectly modeled in vitro, including cell type, 

sex, and brain development. This same approach could be readily used in the future to directly 

identify variants subject to genetic-environmental interactions with other key psychiatric risk 

factors, such as early life adversity and chronic stress. 
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5.5 Supplementary Materials 
5.5.1 Methods 

Animal Research. All procedures involving animals were approved by the Institutional Animal 

Care and Use Committee at Washington University in St. Louis, MO. 

 

Design and construction of minimal promoter-reporter-WPRE 3’ UTR cassette. A previously 

designed MPRA reporter consisting of a minimal hsp68 promoter and dsRed-Express286 was PCR 

amplified with a forward primer adding a 5’ MreI cut site and a reverse primer with 3’ overhang 

homologous to the 5’ end of the WPRE 3’UTR element. The WPRE 3’ UTR element was PCR 

amplified from a lentiviral plasmid encoding cyan fluorescent protein with the WPRE element 

(derived from plasmid FCIV)87 with a forward primer containing a 5’ overhang homologous to the 

3’ end of dsRed and a reverse primer adding a 3’ PacI cut site. These PCR products were cut and 

purified from a 1% agarose gel and subjected to 10 cycles of PCR stitching (without primer) to 

allow overhangs to anneal and act as primers to create a contiguous sequence, followed by addition 

of hsp68-dsRed forward primer and WPRE reverse primer and 15 further PCR cycles to amplify 

the contiguous product. The PCR reaction was run out on a 1% agarose gel and the properly sized 

band (~1.5kb = ~1kb hsp-dsRed + ~500bp WPRE) was cut and purified. Later, Sanger sequencing 

(described below) confirmed proper assembly of the cassette. 

 

An analogous version of this reporter was subsequently created using edited primer sequences to 

amplify the full cassette, replacing the 5’ MreI site with a 5’ BsiWI site and the 3’ PacI site with 

an AsiSI site. This reporter was subsequently cut and cloned into single-oligo plasmids generated 

during the cloning optimization process. Single clones were grown in liquid culture and isolated 
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plasmids were verified by Sanger sequencing to provide a clonal stock of reporter for the later full-

scale MPRA library of psychiatric GWAS loci. 

 

Design, construction, delivery, and RNA collection: cell-type-specific promoter proof-of-

principle MPRA library. Three promoters were PCR amplified with primers adding an MluI cut 

site to the 5’ end, and MreI and PacI cut sites to the 3’ end (for later insertion of the hsp-dsRed-

WPRE cassette). Promoters were 1) a 2.2kb human Gfap promoter region88 2) a 1.3kb mouse 

promoter region of the excitatory, neuron-specific gene Camk2a, amplified from plasmid 

pAAV.CamKII(1.3).eYFP.WPRE.hGH (Addgene plasmid # 105622, a gift from Karl Deisseroth 

to Washington University’s Viral Vector Core); and 3) a 521bp human promoter region of the 

constitutive, highly transcribed gene Pgk2, amplified from plasmid pRRLsinPGK-GFPppt87. 

These PCR products were used as the template for a second PCR, in which a reverse primer 

homologous to the added MreI and PacI cut sites was used. The reverse primer also contained an 

overhang consisting of a 9bp region of N’s, resulting in random sequences for use as barcodes, 

followed by a SalI cut site for insertion of the product into a plasmid backbone. For the minimal-

promoter only condition, a single oligonucleotide consisting of all four cut sites, intervening bases 

to ensure cuttability, and a barcode (MluI-MreI-PacI-barcode-SalI) was ordered, and PCR 

amplified. For all promoter PCR products, barcode identities were determined by Sanger 

sequencing after insertion of PCR product into vector (see below). 

 

Plasmid JD38689, originally encoding mTdTomato under the Gfap promoter, was digested at MluI 

and SalI sites (products #R3198 and #R3138, New England Biolabs, Ipswich, MA, USA) to 

remove the promoter and mTdTomato, leaving an intact human growth hormone (hGH) poly-A 
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signal sequence just downstream of the SalI site, as well as intact ampicillin resistance and inverted 

terminal repeats necessary for AAV packaging. The promoter PCR product was digested with the 

same enzymes. The plasmid digest was treated with antarctic phosphatase (AP) (NEB #M0289) 

and gel purified to isolate the desired backbone fragment. The digested PCR products and gel-

purified, AP-treated backbone digest fragment were ligated using T4 ligase (NEB #M0202) at 

16°C for 18 hours with vector:insert molar ratios ranging from 1:3 to 1:5. Ligations were then 

directly transformed into DH5α chemically competent cells (NEB #C2987H), outgrown for 45 

minutes in a 250rpm shaker at 37°C, then plated on LB agar with ampicillin and allowed to 

incubate for 16-18 hours at 37°C. Individual colonies were used to incubate 1mL wells of LB-

ampicillin liquid media in 96-well deep-well plates and shaken for a further 16 hours at 37°C. The 

liquid cultures were then used to generate two identical 96-well plates of 25% glycerol culture 

stocks, one of which was sent for Sanger sequencing. Sequencing in this round of cloning used 

primers upstream of the MluI site and downstream of the SalI site, allowing verification of the 

promoter sequence and identification of barcodes. Up to 10 clones per promoter were selected 

based on having both expected sequencing results and unique barcodes. Equal volumes of each 

clone’s glycerol stock were then used to inoculate a 10mL LB-ampicillin liquid culture of each 

promoter’s “library 1” and grown at 37°C for 18 hours. 

 

The “library 1” cultures were then mini-prepped (NucleoSpin Plasmid kit #740588.250 Macherey-

Nagel, Düren, Germany) to isolate plasmids for insertion of the previously mentioned reporter 

cassette. Each library 1 plasmid pool, as well as the reporter cassette, was digested with MreI and 

PacI (Thermo Fisher #ER2021, Waltham, MA, USA; NEB #R0547). As before, the plasmid digest 

was treated with AP and gel purified. The digested, AP-treated, purified plasmid fragment and 
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digested reporter cassette were combined at a vector:insert ratio of 1:5 and ligated using T4 ligase 

as above. Ligations were directly used for transformation, plating, and single-clone 96-well Sanger 

sequencing and glycerol stocking as described above. Sanger sequencing was performed with the 

same primers as for Library 1; this confirmed the presence of the inserted promoter (sequencing 

downstream from MluI site), as well as retention of the barcode and the presence of WPRE and 

the 3’ end of dsRed insert (sequencing upstream from the SalI site). Clones were selected for 

generation of “library 2” based on present and intact promoter, minimal promoter, dsRed, and 

WPRE, and were only selected if the barcode identified was one of the barcodes from among the 

library 1 clones. This resulted in 5 to 9 eligible clones for each promoter condition. The clones’ 

glycerol stock wells were again used as inoculum for a 10mL LB-ampicillin starter culture, used 

to inoculate 500mL LB-ampicillin cultures for maxiprep (Plasmid Maxi kit (#12163), Qiagen, 

Hilden, Germany). The four maxiprepped “library 2” plasmid pools (one pool per promoter) were 

submitted to the Washington University Viral Vectors Core for packaging into AAV9. 

  

Power analysis for in vivo MPRA of ~1000 variants, examining both allele and sex effects. In-

house in vivo MPRA pilot data (unpublished) was used to approximate the standard deviation of 

MPRA expression measures from low-depth sequencing of Vglut1+ TRAP samples. Importantly, 

the use of low-depth sequencing (~1 million reads in the pilot experiment for ~10,000 barcodes in 

each of several replicates) resulted in extremely conservative power estimates. To account for 

measuring both sex and allele effects, I estimated 1100 * 2 variants being analyzed for the adult 

hippocampal experiment. I then used the MPRA tools package from Ghazi, et. al 90 to approximate 

the variant effect sizes I would be powered to detect using n=8 replicates with 4-8 barcodes per 

allelic measurement (our minimum requirement was 4 per allele, described in the analysis methods 
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below). I estimated that with 8 replicates I would be 80% powered at a Bonferroni p<0.05 (p<0.1) 

to detect log2 fold changes in allele expression of 0.35-0.52 (0.33-0.49) using the standard 

deviation from the pilot data. When factoring in the time required for AAV delivery into 

hippocampus (2 hours per animal) and the intentionally hyper-conservative nature of the standard 

deviation estimates I used, I injected 6 animals per sex, getting 5 samples per sex with TRAP and 

total hippocampal RNA viable for MPRA sequencing. For P0 and P10, I did not formally perform 

a further power analysis; rather, I performed a pilot study using the full library of 29,000 barcodes 

in 4 mice, combined with immunofluorescence, to determine whether whole-brain in utero would 

be replicable animal-to-animal. Based on high percentage of barcode recovery within and barcode 

count correlation between neonatal pilot replicate samples, I then aimed to collect a minimum of 

6 replicable sequencing samples per sex and age—again, in part due to practical considerations, as 

I discovered much higher rates of RNA/sequencing sample dropout with in utero delivery. 

 

Neonatal mouse transduction with cell-type promoter MPRA library(ies); subsequent TRAP and 

immunofluorescence (IF). One litter of SNAP25-RPL10a-eGFP TRAP mice (described in38), 

back-crossed for >10 generations to wild-type C57BL/6J mice, was genotyped at postnatal day 2 

(P2). GFP-positive pups received intracranial injection of a mixture of all four viruses mixed at an 

equal titer; an aliquot of the mixture was set aside for later sequencing for DNA counts during 

MPRA analysis. GFP-negative pups (3) were injected with either the hsp68-only virus, CAMK2A 

promoter virus, or GFAP promoter virus to confirm cell-type specificity by immunofluorescence. 

All animals were injected with 2µL bilaterally of virus or viral mix into three coordinate pairs: 

four anterior to bregma (two anteromedial, and two ~1.5mm posterolateral to the former), and two 

medially midway between bregma and lambda. 
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At P17, the three GFP-negative pups were perfused with 4% paraformaldehyde in PBS, brains 

dissected and dehydrated, and sliced in the coronal plane into 40µm floating sections stored in 

PBS with 0.01% sodium azide for immunofluorescence (further IF method details below). Tissue 

was stained with primary antibodies as follows: mouse anti-NeuN 1:500 (MAB377), goat anti-

GFAP 1:250 (Abcam ab53554), and rabbit anti-dsRed 1:500 (Rockland 200-301-379). Secondary 

antibodies were used at 1:1000 donkey anti-mouse with Alexa Fluor 647, donkey anti-goat with 

Alexa Fluor 488, and donkey anti-rabbit with Alexa Fluor 546. Sections were then slide-mounted 

and imaged on a Zeiss LSM 700 (Zeiss, Germany) using a 40x oil objective. 

  

At P27, the three surviving GFP-positive mice were sacrificed for individual biological replicates 

of TRAP (methods below), performed as previously described63,91. Briefly, whole brain was 

separately homogenized from each mouse. 2.5% of the supernatant from the 20,000 x g spin of 

homogenate was collected as an “input” sample of RNA, i.e. RNA from all cell types in the tissue. 

Both input and TRAP RNA were QC’ed using an Agilent Tapestation’s high-sensitivity RNA 

assay (Agilent, Santa Clara, CA). Two replicates were retained, with input RNA integrity number 

estimates (RINe) 7.8 and 8.2; TRAP RINe values were 6.8 and 7.4. 

 

Design of the neuropsychiatric GWAS MPRA library. The neuropsychiatric GWAS MPRA was 

designed as previously described27. Briefly, tag variants were selected from neuropsychiatric 

GWAS studies, predominantly those of MDD or meta-analyzing MDD alongside additional 

neuropsychiatric disorders6,7,33,40–45. Additional tag variants were selected from GWAS of anxiety 

disorders 48, attention deficit hyperactivity disorder92, educational attainment/intelligence93,94, and 
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traits showing strong SNP coheritability with MDD (i.e., neuroticism46,47 and mood instability49). 

As a negative control locus, I selected one tag related to anthropomorphic traits, rs188364095. Loci 

were expanded to SNPs with LD R2>0.1 and minor allele frequency >0.01 with the tag variant in 

their appropriate 1000 genomes phase 3 population (EUR for all studies except two loci from the 

Han Chinese CONVERGE GWAS of MDD) using LDLink96. SNPs were manually selected for 

inclusion in the MPRA library on the basis of overlap with both human brain eQTL53,55,97–100 and 

at least one additional human brain epigenomic annotation58,101–105. 11 SNPs were removed due to 

introduction of a nonsynonymous coding change. Two loci instead included all SNPs in LD R2 

>0.65 and SNPs with a RegulomeDb106 score of ≥ 4 for LD 0.1 < R2 < 0.65. For loci especially 

sparse in overlaps with the screening annotations, a single overlap of any sort was considered 

adequate. I note that while this approach is not wholly empirical, recent machine learning-based 

approaches107 have identified that regulatory variation is better predicted by considering 

annotations only in the variant’s local genomic region (as I did manually here).  

 

Oligonucleotides (oligos) were designed for the 1453 selected SNPs, containing up to 126bp of 

human genomic sequence (hg19) centered on the variant. For small insertion/deletion variants, the 

larger allele was used to define the 126bp sequence (i.e., the smaller allele was 126-(allele length 

difference) bp). Each allele of each variant was assigned 10 randomly generated 10bp barcodes 

from a filtered set ≥ 2 Hamming distances apart, comprised of 25-75% GC, and filtered for runs 

of >3 of any one base. Promoter-only (“basal”) oligonucleotides instead included a 126bp filler in 

a region of the oligonucleotide cut out during cloning (below), paired to 110 of these barcodes. 

The deeper barcoding of the basal oligonucleotide allows for a well-powered, within-sample 

normalization factor to be calculated (see analysis methods below). The remaining oligonucleotide 
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sequence, 200bp in total, consisted of restriction sites for cloning and primer sites for oligo 

amplification from the single-stranded oligo pool (Supplementary Figure 5.1). 

 

A 200bp oligonucleotide pool, comprised of 29,280 unique sequences, was ordered from Twist 

Biosciences (San Francisco, CA). The oligonucleotides were flanked on the outside by a forward 

priming sequence, 5’ GAGGGAAATCGTGACGCGTG 3’ (forward primer same sequence), and 

reverse priming sequence of 5’ GTCGACCAGGTCATCACTATTG 3’ (reverse primer 5’ 

CAATAGTGATGACCTGGTCGAC 3’). The internal portions of these sites are MluI (followed 

by a G, to prevent creation of other used restriction sites resulting from design of adjacent genomic 

sequence) and SalI cut sites, respectively. Proceeding from the 5’ end, the remaining space 

comprised the ≤ 126bp allelic sequence of interest, followed by BsiWI, PmeI, and AsiSI sites end-

to-end, and the barcode (Supplementary Figure 5.1). 

 

Cloning of the neuropsychiatric GWAS MPRA library. Oligonucleotides were amplified by PCR 

for 12 cycles in 6, 50µL reactions, using Phusion High-Fidelity Polymerase 2x Mastermix (New 

England Biosciences) each with 500nM final primer concentrations and 10ng oligonucleotide pool 

as template. Reactions were thermocycled as follows: 98°C, 3 minutes à 12 cycles of 98°C/15s, 

65°C/30s, 72°C/15s à 72°C/5min à 4°C. Products were loaded into an unstained, 2% tris-

acetate-EDTA (TAE) agarose gel run at 90V for 105 minutes. The gel was post-stained with 15µL 

10,000x SyBr gold (Invitrogen) with 150mL of TAE in a small pyrex dish, gently rotated for 20 

minutes, and the 200bp product band cut for gel purification using the Nucleospin Gel and PCR 

Clean-Up kit (Takara Biosciences, Kusatsu, Shiga, Japan). 12ng of product was purified for 

cloning. 
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The purified PCR product wascut in a 100µL double digest reaction containing 1.5µL MluI-HF 

(NEB), 1.5µL SalI-HF (NEB) and supplied buffer at 37°C / 1hr followed by an 80°C/20 min heat 

kill. The AAV-compatible plasmid backbone (JD386, see above) was digested separately in four 

100µL reactions, each containing 2µL MluI-HF, 2µL SalI-HF, and 2µL BamHI-HF (to resolve the 

target product on subsequent gel), supplied buffer, and 2µg plasmid, incubated at 37°C / 1hr and 

heat killed at 80°C / 10min. Subsequently, 4µL H2O, 4µL Antarctic Phosphatase, and 12µL of 

supplied buffer (NEB) were added to each reaction; the reactions were then divided into 60µL 

aliquots for further incubation at 37°C / 1hr. The vector was then run on a 0.8% agarose gel with 

GelGreen dye (Biotium, Fremont CA), the target 3.4kb band cut and purified using the Nucleospin 

kit per manufacturer directions. The oligo digest reaction was used directly for ligation with the 

purified vector at a molar ratio of vector:insert 6:1. Nineteen 20µL ligation reactions were 

aliquoted from a single master mix containing 11.9ng digested oligo, 1.51µg digested, 

phosphatased, and purified vector, 10µL Enzymatics T4 ligase and 40µL supplied buffer (Qiagen). 

Ligations incubated at 16°C / 14hr, then heat killed at 80°C / 15min. Purification of the ligation 

product was performed using MyOne Silane magnetic beads (Thermo Fisher) from which the 

supplied buffer was removed and replaced with 3x the total ligation volume of Qiagen Buffer QG. 

The ligation reactions were recombined into a single 1.5mL microcentrifuge tube with the buffer 

QG•silane bead mixture, and incubated end-over-end at room temperature for 75 minutes. Beads 

were then washed on a magnet stand by removing supernatant and adding 80% ethanol thrice 

(without disrupting magnetized beads). The beads then air dried for 10 minutes and product was 

eluted into 196µL of water, with 192µL taken for transformation into E. coli. 
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For transformation, 6µL (~18 ng) of ligation product was added to each of 27 tubes of 50µL of 

DH5alpha chemical competent E. coli (NEB), which were transformed per manufacturer 

instructions. Three transformations were simultaneously performed using DH5alpha 

electrocompetent E. coli (NEB), each consisting of 8µL ligation product (~24ng) and 100µL cells 

in a 1mm cuvette per manufacturer instructions. All transformants were grown out for 45 minutes 

at 250 rpm and 37°C in their PCR tubes (chemical transformation) or after transfer into culture 

tubes with 2mL pre-warmed SOC (NEB; electrochemical transformation). The outgrowths were 

pooled (19mL total), added to a flask of 31mL luria broth (LB) with carbenicillin for a maxiprep 

starter which incubated with 250rpm, 37°C shaking for 6 hours. The full starter volume was then 

added to 450mL LB with carbenicillin and cultured with 250rpm shaking at 37°C for 10 hours. 

The plasmid was maxiprepped using GenElute HP Plasmid Maxiprep Kit (Sigma Aldrich, St. 

Louis MO). Low-depth next-generation sequencing was performed on the maxiprep with 

amplicons generated over the space spanning the MluI and SalI sites to confirm the presence of 

the library. 

 

The Sanger-verified hsp68-dsRed-WPRE cassette (described above) was cut back out of its 

backbone in four 30µL digest reactions, each containing 2µg of the clonal miniprep plasmid, 1µL 

BsiWI-HF (NEB), 1µL AsiSI (NEB), supplied buffers, heat killed at 80°C/10min, then gel purified 

from a GelGreen-stained 0.8% agarose gel using the Nucleospin kit. The maxiprepped “first 

plasmid library” was digested in 20µL reactions of 215ng each, using 1µL AsiSI for 37°C/1hr, 

followed by direct addition of 1µL BsiWI-HF, 1µL 10x CutSmart buffer, and 8µL water, and 

digestion at 37°C for a further hour. 1µL rSAP phosphatase (NEB) and 9µL H2O was then added 

to the reaction and incubated at 37°C / 1hr, 80°C / 20min, and brought to 4°C. Forty 20µL ligation 
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reactions were prepared as described above, each containing ~50ng DNA in 1:6 molar ratio of the 

cut vector and reporter cassette. The ligations were thermocyled 25°C/30s, 16°C/30s 20 hours 

(~800 cycles in practice) followed by 80°C/20min heat kill and 4°C incubation. Ligations were 

cleaned up with Silane beads as described above. 

 

The “second plasmid library” was transformed into 25 tubes of DH5a chemically competent cells; 

20 reaactions were 200µL cells, 19µL (~100ng) ligation; 2 were ~150µL cells and 5µL (~25ng) 

ligation; 2 were 50µL cells and 5µL ligation, and one was 50µL cells and 2.5µL (~12.5ng) ligation, 

all of which were transformed per manufacturer instructions. Cells were outgrown for 50 minutes 

at 37°C/250rpm. Outgrowth was pooled and used to inoculate a starter and subsequent maxiprep 

culture as described above. Sequencing (in the same manner as performed for later experimental 

analyses) was then performed to verify barcode coverage of the plasmid library. The resulting 

plasmid was sent to EZH Zurich Viral Vector Facility, which verified its sequence by Sanger 

sequencing and packaged the library in AAV9. 

 

Hippocampal stereotaxic delivery of the neuropsychiatric GWAS MPRA library. Hippocampal 

stereotaxic injections were performed in a counter-balanced fashion (alternating order 

male/female, with the order switched each day) over a three-day period (n=4 per day). Mice were 

anesthetized with continuous isoflurane up to 5% until unreactive to toe pinch, then maintained at 

2-3%. The skin of the head was retracted to expose the surface of the skull. A 0.485 µM hamilton 

syringe was stereotactically guided into place and used with an automatic pump to deliver 2µL of 

AAV9 at a rate of 0.2µL per minute to each of four positions (8µL AAV9 total per animal; deeper 

coordinate first): A/P -2.0 mm, M/L -1.5mm and 1.5mm, and depth (from dura) of -1.75mm first, 
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followed by partial withdrawal of the syringe and an additional delivery at -1.25mm depth. The 

needle was allowed to dwell for 10 minutes after each injection was completed. Mice were then 

given intraperitoneal buprenorphine 0.1mg/kg and cranial subcutaneous lidocaine 25mg/kg for 

post-operative analgesia and recovered in the home cage under a heat lamp with cagemates. Mice 

were checked for ambulation and absence of distress at 1, 24, 48, and 72-hours after return to 

consciousness. Mice then continued to live in the home cage with same-sex cagemates (same 

cagemates as prior to surgery) with the same ad libitum access to food and water and the 12:12 

light/dark cycle they had been reared under.  

 

In-Utero AAV injections and brain collection/lysis. CD1 IGS timed-pregnant female mice were 

purchased and delivered (Charles River Laboratories). Pregnant dams were allowed to house 

overnight after delivery to reduce stress and ensure optimal success during in-utero injections. 

Pregnant mice at 15 days of gestation were placed under isoflurane anesthesia and a midline 

laparotomy was done to expose the uterus. 1uL of viral MPRA-AAV was mixed with 0.025% Fast 

Green FCF (Sigma, St. Louis MO) and administered through a 10uL-Drummond glass micro 

dispenser pipette (Drummond Scientific, Broomall, PA) into pups through the uterine wall. 

Injections were targeted towards the anterior horn of the lateral ventricles as previously described 

in IUE and AAV injection studies108,109. For each dam, 2-4 pups were left non-injected due to 

position of pup in-utero or impaired development compared to other pups. On P0 and P10, mice 

were sacrificed and screened for fluorescence under a dual fluorescent protein flashlight 

(NightSea, Lexington MA). P10 mice brains were weighed post-removal to assess long-term 

changes in brain weight due to viral injection. Pups were decapitated and brains dissected out with 

removal of the cerebellum, and the remaining brain placed in a microcentrifuge tube on dry ice, 
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then stored at -80°C overnight to aid homogenization. The following day, the brains were removed 

from -80°C storage for addition of 500µL (P0) or 1mL (P10) Trizol reagent, homogenized 

thoroughly using a battery-powered hand pestle, and returned to -80°C until all samples were 

collected for that age group for single-batch RNA purification (below). 

 

Translating Ribosome Affinity Purification (TRAP). For immunoprecipitation (IP) of GFP-

containing ribosomes, 60µL per sample of streptavidin MyOne T1 beads were resuspended in 

17µL of 1µg/µL/sample protein L (reconstituted in 1x PBS), 36µg/µL/sample anti-eGFP 19C8 

and 36µg/µL/sample anti-eGFP 19F7 (both available through Sloan-Kettering’s antibody & 

bioresource center https://www.mskcc.org/research/ski/core-facilities/monoclonal-antibody-core-

facility), brought up to 200µL times the number of immunoprecipitations to be run with 1x PBS. 

The beads in this mixture were incubated with end-over-end mixing at 4°C for two hours to bind 

antibodies to the magnetic beads. Beads were then separated on a magnet stand and washed by 

resuspension and remagnetization 5 times using 0.1% bovine serum albumin (BSA) in 1x PBS. 

Beads were then washed three more times using wash buffer (above), then resuspended to a final 

volume of 105µL/IP and kept on ice until needed. 

 

On the day of tissue collection, DTT, RNAse inhibitors, and cycloheximide were added to stock 

TRAP buffers to the specified concentrations detailed below. Mice were deeply anesthetized with 

isoflurane, rapidly decapitated, and the brain removed and dissected for TRAP. Each brain was 

blunt dissected to remove anterior and posterior-most portions, then placed in a pre-chilled dish 

on ice containing 15-25mL of modified TRAP-compatible buffer consisting of 1x phosphate-

buffered saline (PBS), 0.1 mg/mL cycloheximide (to halt translation for ribosome capture), and 



 187 

1/2500 vol/vol each of rRNAsin (Promega, Madison, WI USA) and SUPERase•in (Thermo Fisher, 

Pittsburgh, PA USA). Hippocampus was dissected out bilaterally in a dish of buffer on ice, then 

both hippocampi from a single animal homogenized to constitute a sample. Samples were 

sequentially dissected and homogenized. 

 

TRAP was then performed as previously described with slight modifications. A wall-powered 

drill, run at full speed, was fitted with a Teflon pestle was used to homogenize each sample in 1mL 

pre-chilled homogenization buffer (10mM HEPES pH 7.4, 150 mM KCl, 10mM MgCl2, 0.5 mM 

diothiothreitol (DTT), 0.1 mg/mL cycloheximide, and 1/1000 vol/vol each of rRNAsin and 

Superasin, and Roche EDTA-free protease inhibitor cocktail (dissolved in homogenization buffer 

without DTT, cycloheximide, or RNAse inhibitors) to a final concentration of 1x). Homogenates 

were spun down at 2,000 x g for 10 minutes at 4°C. 825µL of supernatant was collected and 

combined with 100µL each of 10% NP40 in water and 300mM 1,2-diheptanoyl-sn-glycero-3-

phosphocholine (DHPC; Avanti Polar Lipids, Alabaster, AL USA) and incubated on ice for 30 

minutes. This solution was then spun at 20,000 x g for 15 minutes at 4°C. For the input (or here, 

“total hippocampus”) RNA fraction, 50µL of supernatant was collected and added to 200µL of 

wash buffer (1% vol/vol NP40, 10mM HEPES pH 7.4, 150 mM KCl, 10mM MgCl2, 0.5 mM 

diothiothreitol (DTT), 0.1 mg/mL cycloheximide, and 1/1000 vol/vol each of rRNAsin and 

Superasin, and Roche EDTA-free protease inhibitor cocktail (dissolved in homogenization buffer 

without DTT, cycloheximide, or RNAse inhibitors)) and 750µL Trizol LS (Thermo Fisher), and 

stored at -80°C until all TRAP and input samples had been collected. 
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975µL of the same supernatant was taken for ribosome capture by IP and added to an aliquot of 

100µL of the resuspended, antibody-coupled beads. The mixture then incubated end-over-end for 

5.3-5.7 hours at 4°C. After incubation, beads were separated on a magnet stand, supernatant 

removed, and resuspended in 1mL high-salt wash buffer (10mM HEPES pH 7.4, 350 mM KCl, 

10mM MgCl2, 0.5 mM diothiothreitol (DTT), 0.1 mg/mL cycloheximide, and 1/1000 vol/vol each 

of rRNAsin and Superasin, and Roche EDTA-free protease inhibitor cocktail (dissolved in 

homogenization buffer without DTT, cycloheximide, or RNAse inhibitors)) before remagnetizing. 

This supernatant was removed, the beads suspended in a second wash of high-salt buffer, and 

transferred to a new microcentrifuge tube (to avoid nonspecific RNA stuck on tube walls from 

releasing by later addition of Trizol LS). Beads were then magnetized and washed twice more with 

the high-salt wash buffer. Beads were then resuspended in 250µL of the wash buffer (i.e., the 

150mM KCl buffer described), and 750µL Trizol LS was added. These samples too were stored 

at -80°C until all samples were collected. 

 

RNA purification (all experiments) and brain DNA isolation (P0/P10). RNA purification was 

using the Zymo Clean and Concentrator-5 (Zymo, CA USA), with simultaneous processing of all 

samples for each condition (i.e., all hippocampal input and TRAP samples in one batch; all P0 

samples in one batch; all P10 samples in one batch, see Supplementary Table 5.1). The samples 

were removed from -80°C, allowed to come to room temperature for 5-10 minutes, followed by 

addition of 20% volume of chloroform. Tubes were shaken vigorously by hand for 30 seconds and 

allowed to stand for 7 minutes at room temperature. Subsequently, tubes were spun at 12,000 x g 

for 20 minutes at 4°C. For hippocampal samples, 500µL of supernatant was collected; otherwise, 
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175µL was collected. The remaining phase-separated Trizol-chloroform sample was returned to -

80°C (see DNA collection below).  

 

For uniform RNA handling, the Zymo kit instructions were followed, but prepared one mastermix 

adequate for all samples being purified so as to avoid variability in volumes of buffer/ethanol 

added to each. This mastermix consisted of 2 supernatant volumes of Zymo RNA Binding Buffer 

and 3 supernatant volumes of 100% ethanol per sample. 5 supernatant volumes of this mix was 

added to each Trizol-chloroform supernatant, mixed thoroughly by pipetting, and applied to the 

kit columns, spun through at 12,000 x g at room temperature until columns were loaded. 

Manufacturer instructions were then followed for the remainder of cleanup. RNA quality was 

assessed using Agilent High-Sensitivity RNA Tapestation assay. All samples in all experiments 

used for sequencing preparation, including the proof-of-principle pilot, had an RNA integrity 

number (RIN) of, at minimum, 6. 

 

For isolation of DNA from P0 and P10 brain to verify the presence of MPRA barcodes at the DNA 

level, phase-separated Trizol-choloroform mixtures were brought to room temperature and used 

for DNA isolation according to manufacturer instructions. 

 

Immunofluorescence. Brains not isolated for RNA analysis were removed and fixed in 

paraformaldehyde in PBS (4%) followed by serial sucrose in PBS solutions (15%, 30%). 

Following post-fixation, brains were embedded in OCT (Sakura, Torrence CA) and sectioned at 

30µm (hippocampus) or 35 µm (P0, P10) using a Leica CM1950 cryostat (Buffalo Grove, IL) and 
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processed for immunofluorescence as slide-mounted sections for P0 and free-floating sections for 

P10 pups and adult hippocampus. 

 

To characterize adult hippocampal AAV9 delivery, 30µM coronal sections were cut 21 days after 

delivery, incubated in 1x PBS with 5% normal donkey serum and 1:1000 chicken anti-GFP (to 

identify TRAP-positive cells), 1:500 rabbit anti-RFP ((1:500, Rockland, 600-401-379; to identify 

AAV-transduced cells), and 1:500 goat anti-GFAP (1:500, Abcam ab53554) to visualize potential 

astrocytosis around the viral injection sites. Slices incubated in primary antibodies overnight at 

room temperature on a horizontal mixer, were rinsed three times in 3x PBS, followed by 45 

minutes of incubation in 1x PBS with 5% normal donkey serum and 1:1000 each of Alexa Fluor 

488 donkey-anti-chicken, Alexa Fluor 568 donkey anti-rabbit, and Alexa Fluor 647 anti-goat. 

Sections were rinsed again with 1x PBS, then incubated for 5 minutes in PBS with 1:20,000 DAPI 

for nuclear fluorescence, rinsed once more with 1x PBS, then mounted onto slides with application 

of Prolong Gold, followed by nail polishing of cover slips into place. Slides were stored in a foil-

covered box at 4°C until imaged on the Axioscan.Z1 slide scanner (ZEISS, Germany) at 10x 

resolution. 

 

For P0 Primary antibodies included anti-RFP (as above), anti-GFAP (as above), and anti-NeuN 

(1:250, MAB377). Fluorescently conjugated secondary antibodies (AlexaFluor 488, 568, and 647) 

were obtained, and nuclei were labeled with a DAPI counterstain. “No primary” controls were 

done for both sets of time points to indicate and ensure staining was specific to primary antibody 

targets. Multi-channel imaging was performed at 20X using an AxioScan.Z1 slide scanner to 

assess both independent region and whole-brain viral transduction. Image editing was performed 
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using ImageJ software and only included re-scaling of resolution, brightness/contrast adjustments, 

and cropping.  

 

RNA-seq library prep (proof-of-principle and Neuropsychiatric GWAS MPRA libraries). RNA 

samples were treated with the Turbo DNA-Free kit (Ambion #AM1907, Austin, TX, USA) to 

remove extant DNA using the manufacturer’s instructions for high-concentration DNA (2µL of 

enzyme, followed by 20% volume of Inactivation Reagent to remove the DNAse). Sequencing 

libraries were prepared from RNA by performing a variation on the methods of e.g.50,86,110 by using 

a reporter-specific primer, targeting the polyA signal sequence just 3’ to the barcode sequence111, 

during first-strand reverse transcription with Superscript III Reverse Transcriptase (Invitrogen 

18080044, Carlsbad, CA, USA). Double-stranded cDNA was then synthesized and amplified by 

PCR using Phusion HF (NEB #M0531) using the same reverse primer and a forward primer in the 

WPRE of the 3’UTR. These primers added unique cut sites allowing subsequent Illumina adapter 

ligation. To prevent sequencer errors due to homogenous sequence at the start of read 1 (3’ end), 

these adapters were a mix of four different lengths to stagger the first base of the 3’ end read. 

Digestion, clean-up, ligation, clean-up, and final PCR with primers with partial homology to the 

adapter ends were used to add the remaining Illumina sequences and sample indices. The full 

details of each sample processing step, including bead-based size selection, were as described27. 

Sample input mass, number of PCR cycles for the two PCR steps (single-strand cDNA to double 

stranded DNA and index PCR), and read depths are described in Supplementary Table 5.1. 

Sequencing of proof-of-principle samples was performed on a MiSeq instrument (Illumina, San 

Diego, CA); all other experiments were sequenced on an Illumina NovaSeq 6000 instrument. 

NovaSeq 6000 (Illumina). Three samples from a pilot of the hippocampal Vglut1+ TRAP-MPRA 
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in female adults were additionally used as a validation dataset. In the pilot experiment, two 

technical replicates  for sequencing were prepared for each input (total hippocampus) sample, 

using 66ng (to match the input RNA mass of the pilots’ Vglut1+ samples) or 150ng RNA. 

  

qPCR verification of cell-type marker changes in TRAP. 20µL reverse transcriptase reactions 

were prepared using Quanta Biosciences qScript with supplied 5x buffer (containing both random 

hexamer and poly-T primers), containing 20ng of sample RNA. Reverse transcriptase reactions 

were incubated at 25°C/5minutes, 42°C/30minutes, 85°C/5minutes, then kept on ice. RT reactions 

were diluted with 140µL water (final volume 160µL) for use as qPCR template. 10µL qPCR 

reactions (technical triplicates per sample•gene) were prepared using Sybr Green 2x Mastermix 

(Thermo Fisher), containing 4µL cDNA, 0.5µL each primer, and 5µL of qPCR mastermix. qPCR 

thermocycling ran for 40 cycles at 95°C/15s, 63°C/30s per cycle, followed by a melt curve on a 

Quantstudio 6 instrument. Before analysis, data were quality checked by a) examining melt curve 

product heights (all were a singular, consistent peak per gene over 80°C, corresponding to a true 

amplicon as opposed to primer dimers) and b) identification of outlier wells based on a cycles to 

threshold of detection (CT) value ≥1 cycle different from other sample•gene technical replicates. 

One row of technical replicates corresponding to a total hippocampal sample were removed due 

to large CT discrepancies relative to the other two technical replicate sets; 6 other singular wells 

were excluded on the same basis of outlier status, and 1 well was excluded for failure to amplify 

any product. All analyzed sample•gene wells contained at least two technical replicates in strong 

agreement (CT values within 0.5 of one another). To assess enrichment in TRAP relative to total 

hippocampal RNA, the technical replicate mean CT value for the internal control gene, ß-actin 
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(Actb) was subtracted from the CT value of each other gene. qPCR primer sequences are in 

Supplementary Table 5.2. 

 

MPRA sequencing analysis: proof-of-principle experiment. Barcodes were counted from read 1 

sequences, allowing up to 3 mismatches in the 20bp upstream of the barcode and 0 mismatches 

within the barcode sequence itself. The number of reads mapping to each barcode were totaled and 

normalized to counts per million (CPM) with normalization for sequencing library size (in number 

of reads mapped) using EdgeR112,113. Expression for a given barcode was then calculated as the 

ratio of (CPM RNA / CPM viral DNA) for each RNA sample (TRAP and input RNA from each 

brain). Expression values were normalized to the within-sample mean expression of the minimal 

promoter (hsp68) alone by taking expression (BC in sample) / expression (mean(hsp68 BCs)) ). 

By normalizing within sample (i.e., input or TRAP), expression is thus normalized to general 

minimal promoter activity for that sample . Significance was calculated by performing repeated-

measures ANOVA / linear mixed modeling. Each barcode group’s expression was implemented 

as a repeated measure and modeled as a dependent variable of RNA sample type and of a random 

variable for source tissue, thus: expression ~ RNA.fraction + (1|mouse)114. For plotting and 

interpretation of barcode enrichment/depletion between biologically paired input and TRAP RNA 

samples, log2 fold-change in expression was calculated by subtracting log2(normalized expression 

in Input) from log2(normalized expression in TRAP) for each barcode. 

 

MPRA sequencing analysis: all other experiments. Barcodes were counted from read 1 

sequences, allowing mismatches neither within the barcode sequence nor the 6bp upstream/8bp 

downstream of flanking sequence. CPM were calculated using the total number of barcode-
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mapping reads prior to several filtering steps; for samples with multiple sequencing runs of data 

(DNA technical replicates and a subset of P0 RNA samples), a single CPM value per barcode per 

sample was first calculated by obtaining the mean CPM across the sequencing runs. 1) Barcodes 

with a DNA count under a specified threshold (187 or approximate CPM equivalent) are excluded 

from the counts table from the DNA and RNA samples. 2) For sequences with 4 or fewer 

remaining DNA barcodes represented across all samples after this step, all other barcodes for the 

sequence are excluded from all of the samples in the table to avoid analysis of sequences with 

inadequate barcoding depth. 3) Counts of RNA barcodes are then removed on a per-barcode-per-

sample basis if they fall below a separate minimum read threshold (75 counts or approximate CPM 

equivalent), set below the DNA threshold to allow for detection of repressive effects. 4) 

Preliminary expression values for barcodes (log2 (RNA barcode CPM / DNA barcode CPM)) are 

calculated for each replicate and collapsed across barcodes into a mean for each Regulatory 

Element (RE) within sample. Single barcodes with outlier expression values (≥ 2 standard 

deviations) apart from other barcodes for that sample are dropped only from that sample. (The 

expression values are not written out to a results table at this time). 5) Penultimately, all barcodes 

are dropped from individual samples if 4 or fewer barcodes remain for a given sequence in that 

sample, such that all samples analyzed for a given sequence have at least 4 barcodes represented 

in each sample. 6) A final check is made to ensure that each barcode remaining is represented in 

at least 50% of samples, and those represented in fewer samples are removed, followed by a second 

check that all samples have ≥4 barcode expression values remaining. 

 

Expression for a given barcode was then calculated as the log2 ratio of (CPM RNA / CPM viral 

DNA) for each RNA sample. Prior to linear modeling, within-sample barcode expression values 
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were normalized by subtracting the within-sample mean expression of the set of barcodes paired 

to the minimal promoter (hsp68) alone (<=110 barcodes). By normalizing within sample, 

expression is thus normalized to minimal promoter activity among the cell types and proportions 

comprising the RNA sample—while this notably does not change inter-sample correlations, it does 

alter the Euclidean distance between samples in hierarchical clustering (namely, samples with 

outlying barcode wise expression before normalization cluster back in with the other samples after 

this transformation). Shapiro tests for normality were performed on each condition-wide set of 

barcode expression values for each SNP (i.e., 4-10 barcodes * N samples * 2 alleles); all Shapiro 

tests were >0.05 for all analyzed SNPs in all eight conditions. 

 

Linear mixed modeling was then applied within single sexes for each condition to analyze allelic 

effects alone, and with data from both sexes pooled to test for allele-by-sex interactions. Each 

barcode group’s expression was implemented as a repeated measure and modeled as expression as 

a dependent variable of allele (and for interaction models, of sex and sex-by-allele), thus: 

expression ~ allele + sex + allele*sex + (1|barcode). I note that the random intercept values 

determined for barcodes were consistent even when running the model using different samples, 

indicating I were detecting and removing biologically invariant effects of the barcode sequences 

on RNA levels (Supplementary Figures 5.2-5.4). Empirical null test statistics were calculated as 

previously described27; in brief, I applied the respective experimental model to 50,000 

comparisons between two “alleles” each comprised of 6 randomly selected barcodes from among 

the 110 corresponding to the hsp68 minimal promoter alone, thus controlling for the noise inherent 

to the assay and sample set. These values were then used in the qvalue package52 to determine 



 196 

empirical p values, and corresponding q-values and FDR significance were generated from the 

empirical test statistics and p-values (also using the qvalue package). 

 

The pilot/validation hippocampal MPRA-TRAP dataset from n=3 adult females was sequenced 

with technical replicates using two starting quantities of total hippocampal RNA: 66ng or 150ng. 

For validation analysis of total hippocampal RNA from these three RNA samples, the two input 

masses were analyzed individually and jointly using the same analysis approach as described 

above. The correlations of allelic log2 fold-change between the main female hippocampal TRAP 

experiment and pilot are shown comparing the respective Vglut1+ analyses, as well as comparing 

each total hippocampal sequencing set (66ng, 150ng, or combined analysis), are shown in 

Supplementary Figure 5.6. The corresponding Pemp-derived FDR values and log2 fold-changes 

from the main experiment and each of the four replication analysis sets are provided in the 

additional datasets linked on bitbucket in Acknowledgments. 

 

Analysis of functional SNPs for enrichment in TF motifs. To assess TF binding sites potentially 

disrupted by functional variants, I first generated sets of positive (functional) and negative (non-

functional) variants for the analyses. For single-sex, single age/tissue analyses, I defined functional 

SNPs as those with an uncorrected Pemp<0.05, and the remainder of the measured SNPs as non-

functional. I also performed two comparisons for each age/tissue to identify TFs enriched at sex-

genotype interaction SNPs. One comparison assessed interaction SNPs at Pemp<0.05 to “non-

functional” SNPs (Pemp > 0.05 for both allele and sex-allele interaction) to maximize the size of 

the negative set used in enrichment analysis. I additionally compared functional interaction SNPs 

to those with only a significant main effect allele effect, so as to identify TFs potentially involved 
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in sex-divergent variant effects. The enrichment procedure required a negative set of greater size 

than the positive set (a random set of negatives equal to the size of positives was drawn each 

iteration, see below); to meet this condition, I allowed for more lenient definition of allele-only 

effects from the LMM.  

 

I performed motif perturbation analyses for all SNPs designed into the MPRA utilizing two tools: 

1) the R package motifbreakR65 and its built-in database of motif position-weight matrices 

(PWMs) from multiple public repositories, and 2) RSAT var-tool66 with each of 3 motif databases; 

its own 2017 database, comprised of clustered motifs (some without TFs assigned) based on 

similarities across multiple motifs for multiple TFs115, JASPAR 2020 TF-specific motifs116, and 

cisBP 2017’s human database117, which consists of both specific TF motifs and more general 

motifs not assigned to any one TF. Both tools are designed to identify PWM matches overlapping 

input SNPs in dbSNP (version 151 in hg38 for motifbreakR) or Ensembl (hg37, for RSAT) for 

which at least one of the SNP alleles results in a genomic sequence significantly matching a given 

motif sequence. I used the default significance cutoff of p < 10-4 for calling motif matches in all 

analyses and identified changes in motif match score using the tools’ default algorithms. 

MotifbreakR considers a weighted sum based on the position weights of each base in the motif 

sequence and considers these for the two alleles of the query SNP; the magnitude of these 

differences is used to classify motif perturbations as “strong” or “weak”. For motifbreakR, I 

performed separate enrichment analyses only considering those changes classified as strong, and 

regardless of the algorithm’s classification. RSAT performs a similar analysis, identifying the 

strongest position-weighted p-value match to a motif for each allele of a SNP within a sequence 

of user-defined length (here, I used 122bp flanks to approximate the 110-126bp sequences assayed 
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in the MPRA) under a first-order (dinucleotide) background frequency model, and reporting the 

best match p-value for each allele to each motif where at least one allele exceeds the defined cutoff 

for the best match value.  

 

Frequencies at the level of TF (which can include several motifs) were considered as the number 

of SNPs matched to a given TF, regardless of the number or identity of motifs to which that SNP 

matched. Null distributions of frequency were determined by 50,000 random selections of n SNPs 

of motif perturbations identified in the negative SNP set, where n was the number of positive set 

SNPs analyzed. Due to incomplete compatibility of hg37 and UK Biobank rsIDs with hg38/dbSNP 

151, only 1277 SNPs were actually analyzed by motifbreakR; 1452 were analyzed by RSAT; the 

number of positive SNPs analyzed, and negative SNPs drawn in permutations were based on the 

number of SNPs actually analyzed in each respective tool. The p-value of frequency was then 

calculated from the empirical percentile of the positive SNP frequency count vs the distribution of 

frequencies in the negative sets, and these were corrected using standard FDR correction within 

each individual analysis, with resulting significant enrichments considered as FDR<0.05. I 

additionally logged whether each TF/motif was depleted in the positive SNP set relative to the 

permuted negative sets. 

 

Finally, some results from the RSAT analyses using the RSAT 2017 and cisBP human 2017 

databases corresponded to motif sequences not ascribed to particular TFs (by nature of those 

databases). I separated these enrichment results from those for which a TF was explicitly listed in 

motifbreakR or RSAT. To predict corresponding transcription factors for the undefined motifs, I 

utilized the MEME-suite tool TomTom118 to predict significant matches (using Euclidean distance) 
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of the database motif to TF-specific motifs across 4 databases: JASPAR CORE Vertebrates 2018 

(non-redundant)119, Jolma 2013120, Mouse Uniprobe121, and HOCOMOCO v11 (human and mouse 

motifs)122. Corresponding TFs were assigned for all TomTom matches at p < 10-4; for cisBP/RSAT 

motifs where no TomTom match achieved this p-value, the single-lowest match p-value under 

0.01 was retained. 

 

Gene set enrichment analyses of motif-enriched TFs. From the above analyses, I generated lists 

of unique TFs identified across the 3 RSAT and motifbreakR analyses for each condition (9 

hippocampal TF sets total--Vglut1 sex-genotype interaction, hippocampus sex-genotype 

interaction, both interaction types combined, and allelic rSNPs from each sex in each of tissue 

fraction and in both tissue fractions for each sex). For the neurodevelopmental conditions, I 

generated one TF set per age•sex, and one TF set for sex-by-allele effect variants from the P0 

condition.  

 

To narrow the hippocampal TF sets down to those most likely present (expressed) and thus able 

to exert regulatory activity in the adult hippocampus, I collected the publicly available GTEX v8 

transcripts per million (TPM) expression dataset and subsetted to hippocampal samples (see data 

availability below), averaging the genewise TPM values across all samples (for interaction TF 

filtering) or against single-sex sample sets (for single-sex allele-effect TF filtering). From those 

TFs significantly enriched (FDR<0.05) from the analyses above—including those identified by 

matching nonspecific database motifs to putative TFs with TomTom—I filtered down to those 

with ≥ 3 average TPM in the respective GTEX hippocampal sample set. I did not perform any 

expression filtering of the P0 or P10 TF sets as comparable whole brain datasets do not exist. I 
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then utilized Enrichr to identify gene sets across ontologies, pathways, and drug perturbations 

where the TFs were enriched as a set (only considering enrichments of reported q-value < 0.01 and 

driven by ≥ 3 input genes if either the input gene or the result gene was a retinoid receptor or sex 

hormone receptor). 

 

Permutation tests of sex-by-allele interactions. In order to determine the null expectation for the 

rate of significant sex-genotype interactions, I performed 1,000 iterations of each sex-by-genotype 

linear mixed model, wherein the sample labels were randomly shuffled by sex. The same linear 

model, including the 50,000-iteration empirical p-value calculation step as described above, was 

performed for each permutation to ensure that the empirical p-values were of the same granularity 

as the experimental analyses. The 20% FDR cutoff for the empirical p-values were determined for 

each iteration, and the number of SNPs significant for a sex-allele interaction at this threshold were 

recorded for each iteration. The end result was a vector of 1,000 numbers of FDR 20% “sex-

genotype” significant rSNPs from the permutations, constituting a null distribution of the number 

of interaction effects for a given experiment.  That was than compared to the actual number of 

interaction SNPs found with the true labels.  

 

Comparison of MPRA allele effects to MDD GWAS effects. Summary statistics from the Howard 

2019 MDD meta-GWAS7, which included subjects from the UK Biobank, were obtained from the 

Psychiatric Genomics Consortium website and subsetted to variants measured in the MPRA 

experiments presented. The identity of genotyped SNPs in UK Biobank were obtained at 

http://geneatlas.roslin.ed.ac.uk/ . MPRA results for each individual condition were then split into 

those SNPs genotyped or imputed (i.e., not genotyped but with a summary statistic in the GWAS 
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results) and absolute MPRA allele effects from the condition were correlated to the GWAS 

summary statistic’s absolute effect sizes. 

 

5.5.2 Additional highlighted findings from TF analysis of rSNPs in P0 and 
P10 brain 

In P0 brain, I identified 20 TFs enriched at female rSNPs and 43 at male rSNPs, 9 of which were 

shared (Figure 5.6A). Shared transcription factors included EGR1/4, TBX1/15, and IRF9. Male-

specific transcription factors again included ZBTB7A and NR4A3 (Figure 5.6A). Female-specific 

TFs included a variety of zinc finger TFs, Krüpell-like factors (KLFs), endothelial-developmental 

regulator SOX17, and the neurodevelopmental TF SMAD3 (Figure 5.6A). Despite the absence of 

sex interactions in the P10 brain, I also found largely distinct sets of TFs in each sex at this age 

(only 4 shared) (Figure 5.6A). Among the 42 P10 male TFs, 38 were male-specific, including 

RARG—again supporting my in vitro findings of retinoid-interactivity27 and the cortex-specific 

roles of retinoid receptors across brain development75— and several KLF members. (In contrast, 

KLFs were instead only enriched at P0 in rSNPs from females). The 15 female P10 TFs were 

predominantly core transcriptional machinery, including YY1/2, GTF3C2, TAF1, and in both 

sexes, CTCF. I then looked at these TF sets as before to identify convergent regulators and 

functions among them (Figure 5.6B). Of the few enriched annotations for male P0 TFs, I notably 

found that 4 corresponded to genes downregulated by Rara knockout, and 6 were putative 

regulatory targets of PBX3, which shows widespread subcortical and midbrain expression in E18.5 

and P4 mouse brain123. Female P0 TFs were enriched in Allen Atlas expression signatures for 

cortical layers 1, 3, and 5, and, as found in hippocampus, in PPI targets of HDAC2 and ESR1. P10 

male TFs showed the greatest extent of overlap (12/42) with gene-regulatory targets of ZBTB7A 
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and were enriched for PPI targets of HDAC2, RXRA and RARA. The only enrichment found for 

P10 female TFs was via a modest (3/15) set of FOXA1 regulatory targets. 

 

Given the absence of FDR-corrected sex-genotype interactions at P10, I only analyzed P0 

interaction rSNPs for TF motif perturbation enrichment. TFs enriched at interaction SNPs were 

comprised largely of EGR, KLF, and SP family members, as well as PAX5 and 

neurodevelopmental factor SMAD3 (Figure 5.6A). Annotation of SxG TFs revealed a broader 

extent of hormonal roles in functional variation than observed in either sex alone at P0: I found 

SxG TFs were again enriched for PPI targets of ESR1 (as had been P0 female TFs), but additionally 

enriched in PPI targets of AR and ESR2 (Figure 5.6B). 

 

5.5.3 Annotation datasets and other outside datasets 

•GTEX v8 TPM https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-
06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz ; de-identified metadata used to identify hippocampal 
samples https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-5214/E-MTAB-5214.sdrf.txt 

•Hi-C contacts for dopaminergic neurons and cortical neurons: 
https://github.com/thewonlab/H-MAGMA/blob/master/Input_Files/Midbrain_DA.genes.annot 
and https://github.com/thewonlab/H-
MAGMA/blob/master/Input_Files/Cortical_Neuron.genes.annot 

•Brain Hi-C contact matrices from Jung 2019: ftp://ftp_3div:3div@ftp.kobic.re.kr 

•Song 2019 in vitro neural cell type and fetal primary astrocyte Hi-C: Corresponding paper’s 
Supplementary Table 2 

•Song 2020 fetal radial glia, intermediate progenitor cell, excitatory neuron, and inhibitory 
neuron chromatin contacts: files "iN.MAPS.peaks.txt", "IPC.MAPS.peaks.txt", 
"RG.MAPS.peaks.txt", and "eN.MAPS.peaks.txt" thru BDbag linked at 
https://assets.nemoarchive.org/dat-uioqy8b 

•Su 2021 Hi-C data for neural tissues: ebi.ac.uk with accession E-MTAB-9159 

•Fetal cortical plate and germinal zone Hi-C contacts from Won, 2016: corresponding paper’s 
supplementary tables S22 and S23. 

•Howard 2019 MDD GWAS summary statistics: entry “10.7488/ds/2458” on the Psychiatric 
Genomics Consortium’s results download page, https://www.med.unc.edu/pgc/download-results/  
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5.5.4 Supplementary figures and tables 

 
Supplementary Figure 5.1. Template MPRA oligonucleotide. Example MPRA oligonucleotide 
illustrating the features described including priming and cloning sites. The red box underlines the 
variant position at the center of the 126bp human genomic sequence tile. The PmeI site serves as 
a failsafe in the design such that, should a high fraction of plasmid not take on reporter constructs 
during cloning, digestion linearizes the reporter-negative plasmids and retransformation of the 
digested DNA results in isolation of reporter-positive plasmids. (This was not necessary for this 
library). Illustration captured from sequence design tools bundled with digital lab notebook, 
Benchling. 
 

 
Supplementary Figure 5.2. Barcode random effect coefficients are consistent within sex 
across ages/cell types. A) Random effect coefficients from separate LMMs used to analyze male 
total hippocampus and male Vglut1+ data. B) Ibid. for female. C) Random effect coefficients from 
separate LMMs used to analyze male P0 and male P10 MPRA data. D) Ibid. for female. 
 



 204 

 
Supplementary Figure 5.3. Barcode random effect coefficients are consistent between sexes. 
A) Vglut1+ BC random effect coefficients from female vs. male. B) Ibid. for total hippocampus. 
C) Ibid. for P0. D) Ibid. for P10. 
 

 
Supplementary Figure 5.4. Example of barcode random effect fitting on expression values. 
Each X axis position is a barcode, with its expression level before or after adjustment for random 
effects shown by color for each replicate among female Vglut1+ samples. 
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Supplementary Figure 5.5. Comparison of Benjamini-Hochberg corrected p-values and 
empirical p-values of allelic differences in each single-sex analysis, and of SxG interactions 
in each interaction analysis. Where X=M or F, representing male or female sex, Xz: P0; Xt: P10; 
Xhip: total hippocampus; Xglu: Vglut1+ hippocampal trap fraction; int: SxG interaction. 
 

 
Supplementary Figure 5.6. Log2FC between results from main adult female hippocampal-
TRAP experiment and a validation set of three additional female hippocampal-TRAP 
sample sets. Total hippocampal RNA was prepared for sequencing in parallel using 66ng or 150ng 
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from each sample (see Sequencing analysis: All other experiments above). The sequencing results 
from each input mass were analyzed separately and jointly. A) log2FC correlations between main 
experimental total hippocampus and replication samples prepared using 66ng input RNA. Pearson 
correlation 0.6098. B) log2FC correlations between main experimental total hippocampus and 
replication samples prepared using 150ng input RNA. Pearson correlation 0.7721. C) log2FC 
correlations between main experimental total hippocampus and replication samples when 
analyzing the 66ng and 150ng input RNA technical replicates together. Pearson correlation 0.7699. 
D) log2FC correlations between main experimental Vglut1+ and replication Vglut1+ samples. 
Pearson correlation 0.7549. 
 

 
Supplementary Figure 5.7. Basal (minimal promoter alone) barcode expression values do 
not vary by sex in total hippocampus or Vglut1+ TRAP. p>0.5 for both sex comparisons using 
student’s t¬-test; ≥ 99 BC expression values shown per sample type. 
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Supplementary Figure 5.8. IF negative controls for P0 and P10 AAV9 delivery. A) An RFP-
positive P0 brain without primary antibodies applied. B) An RFP-negative P0 brain with primary 
antibody staining (i.e., demonstrating that the dsRed primary antibody is selectively marking the 
AAV-delivered reporter per the main figure IFs). C) An RFP-positive P10 brain without primary 
antibodies applied. D) An RFP-negative P10 with primary antibody staining. 
 

 
Supplementary Figure 5.9. Basal (minimal promoter alone) barcode expression values do 
not vary by sex in P0 or P10 whole brain. P0 sex comparison p=0.14 (student’s t-test); P10 sex 
comparison p=0.11 (student’s t-test). 
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Supplementary Figure 5.10. Absolute MPRA SNP effects correlate more strongly to MDD 
GWAS summary statistic effects for SNPs directly genotyped than for those imputed in the 
Howard 2019 meta-GWAS of MDD. SNPs were divided into those genotyped in UK biobank 
samples (which comprised a portion of the cases and controls in the Howard 2019 GWAS) and 
those for which genotypes were imputed. Absolute GWAS effects and absolute SNP effects from 
the MPRA were then correlated (as the direction of effect on disease risk and on gene expression 
may not be the same). All SNPs with an effect measurement in both the GWAS and this study 
were considered, representing 792-865 SNPs with imputed genotypes in GWAS and measured by 
MPRA, or 51-56 SNPs with measured genotypes in GWAS and measured by MPRA. Fz/Mz: 
female or male, P0; Ft/Mt: female or male, P10; FHip/MHip: female or male total hippocampus; 
FGlu/MGlu: female or male TRAP (Vglut1+). 
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Supplementary Table 5.1. Sequencing preparation steps and data QC. Table describing 
sequencing preparation parameters: starting mass of RNA or DNA, number of PCR cycles for each 
amplification step, and number of resulting samples for sequencing. Sequencing outcomes 
provided are the number of retained (QC-passing) samples for analysis, and read depth for RNA 
and DNA samples in each sequencing group. *: For P0 and P10 expression calculations, the mean 
CPM of these 7 DNA samples was used. **P0 RNA samples A8, A9, A10, A12, A16, A17, A18, 
and A22 were prepared and sequenced in both of these runs; barcode CPM values for twice-
sequenced samples were averaged to obtain a single value per samples. Raw sequencing files and 
barcode counts for each run individually are included in the GEO dataset. 

Preparation 
and 

Sequencing 
Batch 

Input DNA 
per 

technical 
replicate in 

ng (# of 
tech. reps) 

Input 
RNA 
per 

sample 
(ng) 

# of 
cycles 

(cDNA / 
AAV 
PCR) 

# of 
cycles 
(index  
PCR) 

N 
total 
RNA 

N 
analyzed 

RNA 

RNA 
avg # 
reads 
(x 106) 

DNA 
avg # 
reads 
(x 106) 

RNA 
avg  
map 

rate (± 
SD) 

DNA 
avg  
map 

rate (± 
SD) 

Proof-of-
principle 
TRAP-
MPRA 

1.44 (1) 15 

17 for 
RNA, 12 
for AAV 

DNA 

9 6 4 0.4 0.9 41.8 (± 
22) % 91.90% 

Adult 
hippocampal 

TRAP 
68 (4) 

68.3 
(3.5-

6ng for 
3 

samples
) 

18 (RNA 
and 

DNA) 
13 24 20 26 35 92.6 (± 

0.6) % 
94.4 (± 
0.1) % 

P0 samples 
alone 10 (3*) 1500 19 12 15 11** 42 14 86.3 (± 

7.8) % 
94.9 (± 
0.5) % 

P0 samples 
and P10 
samples 

9.25 (4*) 1500 

18 cycles 
(P0), 19 
cycles 

(P10), 16 
cycles 
(DNA) 

11 43 23** 37.5 19 84.8 (± 
8)% 

94.3 (± 
1.3) % 

3 additional 
P0 samples NA 1000 19 12 4 3 94 NA 91.2 (± 

4)% NA 

 

Supplementary Table 5.2. qPCR primers used for Vglut1+ TRAP validation. 
Primer Name Primer sequence (5’ to 3’) 

Actb R CAATAGTGATGACCTGGCCGT 

Actb F AGAGGGAAATCGTGCGTGAC 

Snap25 F CAACTGGAACGCATTGAGGAA 

Snap25 R GGCCACTACTCCATCCTGATTAT 

Gfap Fw aaccgcatcaccattcct 

Gfap R cgcatctccacagtctttacc 

Gria1 F CAAGTTTTCCCGTTGACACATC 

Gria1 R CGGCTGTATCCAAGACTCTCTG 

P2ry12 F ATGGATATGCCTGGTGTCAACA 
P2ry12 R AGCAATGGGAAGAGAACCTGG 
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Chapter 6: Discussion 
6.1 Overview of findings 
This body of work has highlighted sex as a critical variable that shapes gene expression, behavior, 

and genetic risk effects relating to MDD and potential biological underpinnings thereof. 

Noradrenergic neurons of the locus coeruleus (LC) had previously been demonstrated to have sex-

differential anatomy and responsivity to peptide signals like CRF, though the underlying extent of 

these observed differences in LC were unknown. Using TRAP, I identified that adult mouse LC 

shows sex differences in its transcriptional profile after social (single-housing) and physical 

(surgical) stress, while serotonin neurons of the raphe nuclei lack such sex differences. 

Importantly, behavior follow-up work demonstrated replicability of the Ptger3 sex difference in 

group-housed mice solely after survival surgery, and electrophysiology indicated the same 

functional sex difference is present without isolation or surgical stress. The sequence motif 

analyses presented on LC genes with sex-differential expression had, tantalizingly, shown local 

enrichment of rodentia-specific B-family transposons that nonetheless constituted ‘conserved’ 

sequences across mammals up to humans (which possess an orthologous transposon family, Alu 

elements). An analysis in 2010 of rodent and primate genomes indicated that, despite their 

emergence after the rodent-primate evolutionary split, these orthologous transposons were 

ultimately inserted across the genome in very similar fashions1. As my LC motif analyses were 

limited to conserved bases across mammals including primates and humans, this finding suggests 

that orthologous Alu transpositions are present near the same genes in human. I will later discuss 

approaches that would constitute steps toward verifying human translatability of my findings on 

sex differences in mouse LC. 
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Subsequently, I identified functional variation across more than two dozen MDD loci both in vitro 

and, novelly, in vivo at multiple timepoints and in a cell type-specific manner. One key finding 

from both the in vivo and in vitro experiments was a breadth of functional variation per risk-

associated linkage region. This strongly suggests that MDD risk loci contain far more than one 

“causal variant” each, contrasting with a priori assumptions of methods like genetic fine-mapping 

and GWAS-eQTL colocalization. Secondly, both experiments identified shared, enriched 

regulatory features across functional variation associated with MDD, including retinoid receptor 

enrichments in neuroblastoma, developing mouse, and adult hippocampal assays. This finding 

confirms my hypothesis of shared regulatory architecture across MDD risk loci. Finally, the 

majority of functional variation in MDD loci showed dependency on sex, age, retinoids, and/or 

cell type. Strikingly, a median of only 45% of the functional variants identified in each of the 11 

in vivo analyses (8 single-sex-single-age/cell type analyses and 3 sex-allele interaction analyses) 

were functional in at least one of the three neuroblastoma analyses (allele effect, allele effect with 

vehicle treatment, and ATRA interaction), emphasizing the importance of context while also 

highlighting the impact of adapting psychiatric-genetic MPRAs to the mouse brain. Finally, this 

work demonstrated that common regulatory variation is very much capable of interacting with 

biological sex, likely via acute sex hormone receptor activity, and in the case of MDD, is over-

represented within hippocampus and its excitatory neurons, consistent with the hypothesis that 

sex-by-variant interactions underlie sex differences in genetically-mediated MDD risk. 

 

The following sections discuss extending findings from mouse LC to the human brain and several 

follow-up experiments and future directions for MPRAs of MDD GWAS loci. 
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6.2 LC sex differences: human validity and transcriptional-
regulatory mechanisms 

The clinical-translational value of my findings in the mouse LC depends on whether similar sex-

differential gene expression (or regulatory mechanisms thereof) occur in human brain. There are 

several potential avenues for exploring this question. One is collection of male and female human 

LC samples by, for example, laser confocal microdissection, to characterize gene expression and 

test for sex differences. Lower-throughput options include use of human tissue samples for IF or 

in-situ sequencing2–4 for the ~150 genes identified as LC-enriched and sex-differential in Chapter 

2, along with, say, ~150 top-enriched candidate LC markers from the TRAP experiments (to verify 

their human applicability and identify LC neurons within the tissue), and an additional top ~500 

genes in terms of sex-differential expression, both LC-enriched and not. All of these techniques 

are complicated, however, by the small number of LC neurons, even in human, and the LC as a 

structure running a long, thin, and angular path in all three dimensions, such that only a minority 

of the small population of LC occupies any section (of a thickness tractable for in-situ sequencing, 

laser confocal microdissection, etc.) along any canonical plane. 

 

An indirect approach to determining whether these sex differences in gene expression/regulation 

are conserved in human would be to test the enriched motifs near these genes and, critically, their 

orthologous human sequences, using MPRAs. These assays would: A) test for transcriptional-

regulatory activity, which could be easily achieved in neuroblastoma cell lines, which are arrested 

in mid-differentiation to an adrenergic cell type5–7; B) contrast both the human and mouse motifs’ 

activity in human- and mouse-derived neuroblastoma lines (explained below); and C) test for sex-

differential activity (i.e., in vivo MPRA), which ideally would be assayed in the LC itself (and a 

comparator cell type— perhaps serotonergic neurons, given the close relationship at the level of 
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gene expression but with a lack of sex differences) by multiplexing TRAP and MPRA. If the 

previously identified motifs are indeed a signature of evolutionarily conserved regulatory 

sequences in catecholaminergic cell types, then the bare-minimum outcome of experiments A/B 

would be regulatory activity of both the mouse sequence as assayed in mouse neuroblastoma and 

likewise of the human ortholog assayed in human neuroblastoma. This would support conserved 

function—that is, the human sequence in the presence of human regulatory proteins serves a 

function similar to the mouse sequence in the presence of mouse regulatory proteins. Human 

ortholog sequences that additionally show similar activity in mouse neuroblastoma would then be 

appropriate candidates—as this finding would confirm their compatibility with mouse gene-

regulatory architecture—for follow-up in vivo MPRA to test for sex-differential regulatory activity 

in mouse LC. 

 

6.3 Further dissection of functional MDD risk variants 
The experiments described in Chapter 5 identify both functional and sex-interacting variants from 

MDD loci, but leave several key aspects of the identified functional variants unresolved. One 

unforeseen limitation to the study is the inability to define enhancers and repressors under an hsp68 

minimal promoter in neural cell types, as virtually all sequences assayed had lower activity 

compared to the hsp68 minimal promoter alone. Additional areas for further investigation include 

direct demonstration of roles for functional variant-enriched regulatory sequences by perturbations 

of their cognate TFs in an MPRA setting. Likewise, a mechanistic demonstration of a role for sex 

hormones in SxG variants is warranted. Finally, recent advances in MPRAs (see Section 6.3.5) are 

ripe for implementation in the in vivo brain and could constitute means to further assess the 

predicted roles of transcriptional regulators, identify additional environmental and organismal 
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variables that may shape functional variation and/or its interaction with sex, and explore variant 

effects across multiple brain cell types. These areas of follow-up study are each explored in-depth 

below. 

 
6.3.1 Defining variant-perturbed enhancers and repressors and minimal 

promoter selection in MPRA 

One unforeseen limitation of the MPRA experiments—both in culture and mouse brain—was 

near-global repressive effects of sequences placed upstream of the hsp68 minimal promoter 

relative to the inserts of minimal promoter alone. Given that all sequences in the MPRA were 

included on the basis of several (mostly enhancer-like) epigenomic signatures from neural tissues, 

these findings do not necessarily that the sequences are “repressive” in their native genomic 

context. Rather, it is likely that the hsp68 promoter itself, and/or flanking regions of the DNA 

cassette, interact in a net-repressive manner with any sequence placed upstream of the promoter. 

Critically, this prevented determination of sequences with enhancer or repressor activity, which 

would ordinarily be identifiable by significant deviations from expression driven by the promoter 

alone. 

 

The simplest approach to this problem is to replace the reporter cassette used in the presented 

experiments with another cassette containing a different minimal promoter. Studies using human 

neural progenitor cells have utilized a short “super core promoter”8–10 and similar sequences to 

successfully discern enhancers and repressors, including in the setting of functional regulatory 

variants. Since the reporter is cloned in separately from the oligonucleotides to the plasmid, the 

final plasmid library could simply be re-digested at the reporter insertion sites, gel purified, and 

ligated with a new reporter cassette using the same cut sites as before. 
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Identifying sequences with enhancer or repressor activity in the assays presented would 

substantially aid interpretation and classification of results. First, MPRAs of disease-associated 

variation in other tissues have only examined active regulatory elements as defined above for 

allelic effects of variants they contain11,12. This filtering approach arguably supports greater 

biological relevance of identified functional SNPs; that is, if the variant is in a sequence with clear 

cis-regulatory activity, it is more likely to be perturbing a bona fide biological role in the genome. 

Additionally, the ability to define enhancer and repressor sequences would improve resolution of 

subsequent analyses of shared regulatory mechanisms, as motifs could be separately identified in 

repressors and enhancers, providing information on particular regulatory mechanisms 

dysregulated in each direction. Likewise, such stratification would enable discernment of whether 

dual-functioning TFs, like retinoid receptors, are implicated in MDD by disruption of their 

repressive effects or their enhancing effects. 

 

6.3.2 Validation/demonstration of predicted regulatory factor mechanisms 

One challenging aspect of in vivo MPRAs—especially the sex-differential aspects of these 

experiments—is that the approaches used to validate MPRA findings in vitro, such as single-

variant luciferase assays, are not nearly as readily implemented in the mouse brain. The following 

three sections discuss novel approaches that could be employed to maintain the in vivo contexts of 

the original assays while demonstrating roles for the predicted key regulatory systems and enabling 

refined parsing of variant effects. 

 

6.3.3 Confirming the role for sex hormones in hippocampal SxG variant effects 

Cumulatively, the three MPRAs performed in vivo implicated sex hormones as key mediators of 

functionality and sex-interactivity of MDD-associated variation in two key ways. First, sex-by-
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genotype interactions were only observed at the two age points where there are sex hormones 

circulating (P0 and adulthood). Second, sex hormone receptors and TFs known to modulate their 

activity were enriched regulators and interactors among functional variants. To functionally 

confirm these findings, any number of well-established methods for modulating sex hormonal 

effects in the mouse brain could be leveraged. Chief among them is ovariectomy/gonadectomy of 

adults, which results in a substantial reduction of ordinarily circulating sex hormones. 

 

Delivery of the same MPRA library in an extended experiment including intact mice of both sexes 

and gonadectomy and/or ovariectomy would enable re-assessment of variants in the absence of 

sex hormones. In a three-condition setting of intact males and females plus ovariectomized 

females, the roles of local testosterone conversion to estrogens (in males) could also be discerned. 

Given the original results, my primary prediction would be that ovariectomy reduces the number 

of female-specific Vglut1+ rSNPs toward that of males. Sex-by-genotype interactions from intact 

animals could be altered in more complex ways, however. Sex interactions driven primarily by 

androgens should remain unaffected by ovariectomy, as the sex difference in androgen abundance 

remains essentially unaltered in this scenario. Interactions driven primarily by progestins, on the 

other hand, will likely be absent altogether given progestin reduction in ovariectomized females. 

Finally, and most interestingly, there may potentially be novel sex-genotype interaction variants 

revealed by comparison of wild-type males and ovariectomized females—specifically at loci 

where local androgen conversion to estrogen results in an estrogen-mediated regulatory effect. In 

this case, comparison of the intact sexes would not have revealed an interaction (assuming 

comparable levels of female systemic estrogen and male local conversion of estrogen). However, 

the female-specific reduction of estrogen by ovariectomy would reveal that the variant’s effect 
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observed in the original experiments changes in magnitude or direction in the absence of estrogen, 

and thus result in an ovariectomy-vs-male specific sex interaction. 

 

6.3.4 Leveraging in vivo MPRA to explore consequences of other 
environmental factors on transcriptional-regulatory variants 

The adaptation of MPRA to the in vivo mouse brain may additionally enable assessment of the 

effects of other environmental factors relevant to MDD on associated variation. Preclinical studies 

on MDD and anxiety use, in fact, almost exclusively environmental manipulations to induce these 

phenotypes in rodents in the form of stressors. Delivery of the MPRA to the hippocampus or 

another brain region of interest—especially regions responsive to stressors—followed by stress 

and control conditions to induce depressive phenotypes and MPRAs comparing variant effects 

across these two groups may serve to highlight means by which stress unmasks or potentiates risk 

variant effects on the way to depression. Other insights that could be gleaned from the in vivo 

context include antidepressant effects on functional variation—that is, to address whether 

antidepressants result in attenuated risk variant effects in the process of ameliorating the disease. 

(Since long-term antidepressant treatments do increase the time between depressive episodes, it is 

not implausible that effects of genetic risk are “suppressed” by these medications longitudinally.) 

One interesting experiment toward this end this end would be to study the sex difference in MDD 

treatment response—that is, that tricyclic antidepressants are more effective in men while SSRIs 

are more effective in women, though both drug classes target broadly-projecting, monoaminergic 

neuromodulatory nuclei. If de-functionalization of MDD risk variants is a component of successful 

treatment, then I would expect to see A) a general decrease in the number of functional variants 

(or in their comparative effect sizes) between mice receiving vehicle and either a tricyclic or SSRI. 

Moreover, given the human sex difference in treatment responsivity, I would B) expect to see more 
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risk variants with attenuated effects or rendered non-functional in male hippocampus by chronic 

tricyclic intake compared to SSRI, while I would expect to see more attenuation of variant function 

in female hippocampus resulting from chronic SSRI. 

 

6.3.5 Single-cell MPRA: opportunities ahead 

A new frontier for MPRAs is on the horizon with novel implementations that co-utilize single-cell 

RNA sequencing. This method uses a portion of each cell’s RNA to identify its expressed genes, 

and the other portion to detect reporter barcodes13. In this way, cell typing and subsequent 

identification of functional variation in the same sample becomes possible, enabling dissection of 

functional variation in several cell types simultaneously. Performing these assays in a whole-brain 

manner, like the experiments presented at ages P0 and P10, would permit detection of Vglut1+ 

neurons (even if not hippocampal per se) and specific detection of sex-genotype interactions within 

the cell type for comparison to adult Vglut1+ neurons, for example. However, the cell type-

specificity information regarding functional variants would be extended from one cell type and 

one tissue type per brain/brain region (i.e., in TRAP) to all AAV-transducible cell types of 

reasonable abundance in the sequenced tissue, making it possible to determine virtually all relevant 

cell type contexts for functional variants from a similar number of samples. 

 

Moreover, the single-cell MPRA approach could be leveraged to confirm roles for enriched 

motifs/TFs and their interactors by integrating co-cloned interfering RNAs, resulting in an MPRA 

library with built-in capacity to validate roles for candidate regulatory factors. For example, given 

ten top-enriched TF motifs or cross-TF co-regulators, a library of larger oligonucleotides could be 

constructed to contain the same sequences as assayed in the initial library here, but with an 

upstream RNA polymerase III transcription start site and a small hairpin RNA (shRNA) targeting 
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one of the ten candidate regulators (along with non-targeting controls). As a result, the library 

contains co-transcribed machinery to determine whether each of the candidate regulators is 

necessary for an observed allelic effect. Importantly, this type of multiplexing would require 

single-cell resolution in order to discern which shRNA(s) was (were) present in a given reporter-

expressing cell. Excitingly, this could also facilitate observation of combinatorial regulator effects 

at candidate variants: for example, several functional variants directly perturbed predicted binding 

sites of ZBTB7A, which is in turn bound by the androgen receptor. A library containing shRNAs 

targeting ZBTB7A and AR in separate constructs across all assayed variants would result in cells 

with each TF repressed individually, as well as cells with both repressed, enabling examination of 

each TF’s singular and combined effects at ZBTB7A site variants. Whether this would be feasible 

in one brain per biological replicate or require several would likely require empirical testing to 

determine the transduction depth per cell type per regulatory sequence and shRNA of interest (i.e. 

a minimum number of cells for a full-fledged experiment being, a MPRA barcodes * b shRNAs * 

c cells per cell type * n unique cell types to get strongly correlated results between replicates for 

each cell type of interest with low noise between barcodes).  

 

Oligonucleotides for such a library could be produced by ordering oligo pools of 176bp, containing 

each intended 614bp product broken into four overlapping oligos with 30bp shared ends, enabling 

self-priming and extension into full-length target products using the multiplex pairwise assembly 

(MPA) method14. A schematic of such a hypothetical 614bp final product is shown in Figure 6.1. 
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Figure 6.1 Example MPA oligo product for a hypothetical MPRA library with co-delivered 
shRNAs. In this example, an shRNA targeting mouse estrogen receptor Esr2 is present. The pink 
block at the 3’ end of the shRNA indicates the RNA polymerase III termination site, a spacer, and 
the allelic sequence to be assayed. The remainder of the oligo contains the super core promoter 1 
minimal promoter (SCP1) and the original internal cloning sites for reporter gene insertion. 
Adjacent to the genomic sequence-tagging barcode is a second barcode specific to the shRNA 
separately encoded upstream. 
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6.4 Conclusions 
This body of work has illustrated several themes regarding MDD-pertinent genetic risk and sex 

differences. First, molecular sex differences with neurophysiological and behavioral consequences 

are present in the noradrenergic locus coeruleus of adult mice. Second, genetic risk loci for MDD 

are virtually all characterized by more than one functional variant per locus both in vitro and in 

vivo. Third, the function of MDD-associated variation is in no sense constitutive: which variants 

are functional and the nature of their effect varies with sex, age, retinoids, and cell type.  In all, 

this work demonstrates that the physiologic environment—including cell types, signals, and sex—

impact gene regulation, shaping transcriptomes and modulating the functional genetics of MDD 

risk. 
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