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Preface

Near the completion of this dissertation, we became aware of the recent upload of [1].

At first glance, this paper is very similar to our work presented in Chapter 3 in that it

uses the composite null distribution of Sobel’s test statistic to perform mediation analysis

in the high dimensional setting. There are, however, some key differences that make both

works valuable contributions to the literature of mediation analysis. [1] uses their Sobel-

comp method as an approach to do multiple mediation hypothesis testing, then applies this

multiple testing procedure in a high dimensional setting. Our approach, on the other hand, is

to use a marginal screening approach based on the Sobel test (our Marginal Sobel Screening

method) to reduce the dimensionality of the original problem while retaining the true set of

mediators. Since the Sobel test plays a different role in the two approaches, our theoretical

foundations and theorems proved also differ considerably from theirs. We cite a result of [1]

in Section 3.5.2 for the sake of theoretical completeness.
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In modern data analysis, problems involving high dimensional data with more variables

than subjects is increasingly common. Two such cases are mediation analysis and dis-

tributed optimization. In Chapter 2 we start with an overview of high dimensional statistics

and mediation analysis. In Chapter 3 we motivate and prove properties for a new marginal

screening procedure for performing high dimensional mediation analysis. This screening pro-

cedure is shown via simulation to perform better than benchmark approaches and is applied

to a DNA methylation study. In Chapter 4 we construct a cryptosystem that accurately

performs distributed penalized quantile regression in the high-dimensional setting using a

divide-and-conquer approach while preserving the privacy of subject data.
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1. Introduction

1.1 Motivation

In the modern age of high throughput computing and massive data collection, high di-

mensional data are increasingly common whose number of variables p is larger than its sample

size n. In such a case, traditional approaches to model building and statistical inference fail.

This problem has since created an explosion of literature for handling high dimensional data.

The LASSO [2], elastic net [3], and other penalized regression methods seeked to perform

variable selection and parameter estimation simultaneously while forcing a sparse solution

to the regression problem. While this sounds convenient and appealing, optimization of

these penalized functions can become computationally intensive and inconsistencies in these

estimates are common in ultrahigh dimensions. Another set of approaches uses a multistage

strategy in which the practitioner first performs variable screening to significantly reduce the

dimensionality, then further refines the set of candidate variables with a penalized regression

method. In this dissertation, we examine both classes of solutions via two applications. Us-

ing these applications as motivation, we then develop a new method for variable screening

in the context of mediation and another new method for penalized quantile regression in a

distributed setting.
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1.2 Summary of Objectives

Under an overarching theme of high-dimensional statistics, the objective of this disserta-

tion is motivated by:

1. An effective screening approach for conducting high-dimensional mediation analysis,

2. Methods for performing distributed penalized quantile regression in a manner that

preserves privacy of individual subject information.

Background information on the models and techniques can be found in Chapter 2. Deeper

details on the literature review, theory, and methodologies are further developed in Chapters

3 and 4.

1.3 Data Acknowledgement

The Coronary Artery Risk Development in Young Adults (CARDIA) study is a lon-

gitudinal study examining the development and determinants of clinical and subclinical

cardiovascular disease [4]. The study began in 1985 with a group of 5115 black and white

men and women aged 18-30 years. The participants were selected such that there would be

roughly the same number of people in subgroups of race, gender, education, and age in each

of 4 centers located in Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA.

These same subjects were asked to participate in follow-up examinations during 1987-1988

(Year 2), 1990-1991 (Year 5), 1992-1993 (Year 7), 1995-1996 (Year 10), 2000-2001 (Year 15),

2005-2006 (Year 20), 2010-2011 (Year 25), and 2015-2016 (Year 30). A majority of the group

attended each of these follow-up examinations where various cardiovascular measurements
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were repeatedly taken. Data have also been collected on physical measurements such as

weight and body composition in addition to lifestyle factors such as dietary habits, exercise

patterns, drug and alcohol use, behavioral and psychological variables, medical and fam-

ily history, and other chemistries (e.g., insulin). Our studies focus specifically on year 15

from 2000-2001 where we treat tobacco exposure as a treatment variable, DNA methylation

measurements as mediators, and lung function as a response variable.

The MIMIC III database [5] is a massive, freely-available database comprising of de-

identified medical data associated with over 46,520 patients who stayed in critical care units

of the Beth Israel Deaconess Medical Center between 2001 and 2012. MIMIC-III includes

features such as demographics, bedside vital sign measurements (1 data point per hour),

laboratory test results, procedures, medications, caregiver notes, imaging reports, and mor-

tality (both in and out of hospital). Detailed descriptions for each of these variables are

available at [6]. This database is provided largely through the work of researchers at the

MIT Laboratory for Computational Physiology and their collaborator research groups.
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2. Background

2.1 Inference in High Dimensions

The methods discussed in this dissertation take place in the high dimensional setting

where the number of predictor variables p exceeds the sample size n. While each problem

considered is specialized in its own way, they are rooted in ordinary least squares (OLS)

regression in high dimensions. As such, let us consider an overview of high dimensional

regression analysis. Let

Yi = β0 +

p∑
j=1

βjXi,j + ϵi, ϵi ∼ N (0, σ2), (2.1)

where Xi = [Xi,1, ..., Xi,p]
T denotes the covariate vector for the ith subject, Yi denotes the

response value for subject i, and p > n.

2.1.1 Variable Screening

In the presense of high dimensional data, one common technique to quickly reduce the

dimension of the regression problem is variable screening. Prior to variable selection, a mod-

erate size d < n < p of candidate variables are filtered out from the total set of variables

for further refinement to produce a final model. A key assumption here is the sparsity as-
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sumption that a small proportion of these candidate variables are actually members of the

underlying true model. Some examples of variable screening methods include sure indepen-

dence screening (SIS) [7, 8], high-dimensional ordinary least-square projection (HOLP) [9],

forward regression (FR) [10], and tilting [11]. These variable screening approaches aim to

create a computationally fast and easy way to reduce the dimension of the candidate set of

variables while retaining as many variables from the true model as possible. This is expressed

in the sure screening property:

P(M⋆ ⊂ M̂)
n→∞→ 1 (2.2)

where M⋆ denotes the set of variables in the true model and M̂ denotes the set of variables

retained by the screening procedure.

The following regularity conditions are assumed when performing variable screening to

ensure the sure screening property when performing variable screening:

1. p > n and log(p) = O(nξ) for some ξ ∈ (0, 1− 2κ), where κ is given by Condition 3.

2. Z = Xσ−1/2 has a spherically symmetric distribution and property C: that there exist

some c, c1 > 1 and C1 > 0 such that the deviation inequality

P
{
λmax

(
p̃−1Z̃Z̃T

)
> c1 or λmin

(
p̃−1Z̃Z̃T

)
< 1/c1

}
≤ exp (−C1n)

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p. Also, ϵ ∼ N (0, σ2) for some

σ > 0.
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3. Var(Y ) = O(1) and, for some κ ≥ 0 and c2, c3 > 0,

min
i∈M∗

|βi| ≥
c2
nκ

and min
i∈M∗

∣∣cov (β−1
i Y,Xi

)∣∣ ≥ c3

4. There are some τ ≥ 0 and c4 > 0 such that λmax(Σ) ≤ c4n
τ

Condition 1 acknowledges the high-dimensional setting where p may grow with n, but not

too quickly. Condition 2 is a regularity condition on all subsets of the matrix Z = Xσ−1/2.

Condition 3 requires a minimum signal strength for variables in M⋆. Condition 4 requires a

bound on the variability of the set of candidate variables. All four assumptions are easy to

satisfy in most datasets after proper preprocessing.

2.1.2 Penalized Regression

Given a likelihood function of ℓ(θ) that we would like to maximize, a penalized likelihood

function is a functon of the form ℓ(θ)+λP (θ), where λ is a scalar penalization hyperparameter

and P (·) is a penalty function. Common choices for P include the LASSO [2], ridge penalty

[12], elastic net [3], smoothly clipped absolute deviations (SCAD) [13], and minimax concave

penalty (MCP) [14].

2.1.3 False Discovery Rate Control

Historically, statisticians aimed to control Familywise Error Rate (FWER) while perform-

ing simultaneous inference and multiple hypothesis testing [15]. A rich literature of methods

emerged for dealing with this problem in low dimensions [16–18], but these methods proved

6



to be too stringent when the dimensionality of the regression problem gets too large. For

this reason, statisticians aim to control false discovery rate (FDR) in high dimensions, which

allows for more rejections of hypotheses while still controlling the number of false rejections.

Commonly used FDR control methods include the Benjamini-Hochberg procedure [19] and

Benjamini-Yekutieli procedure [20].

2.2 Mediation Analysis

Mediation analysis aims to explain the causal mechanism between a treatment A and a

response Y by examining the extent to which a third variable or set of variablesM contributes

to the relationship between A and Y .

In the classical setting there are 4 steps in establishing mediation [21–23]:

1. Step 1: Show that the treatment variable is correlated with the response. Use Y as the

dependent variable in a regression equation and A as a predictor. This step estimates

the total effect (TE) of A on Y .

2. Step 2: Show that the treatment variable A is correlated with the mediator M . Use

M as the dependent variable in the regression equation and A as a predictor.

3. Step 3: Show that the mediator affects the outcome variable. Use Y as the dependent

variable in a regression equation and A and M as predictors. Note that it is not

sufficient just to correlate the mediator with the outcome. Without including A in this

model, the correlation between mediator and response can be inflated because Y and

M are both caused by A. The effect of A on Y in the presence of M is known as the

direct effect (DE) of A on Y given M, denoted βA in Figure 2.2.
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4. Step 4: To establish that M completely mediates the A → Y relationship, the effect

of A on Y controlling for M calculated in Step 3 should be zero. If it is nonzero but

smaller than the effect of A on Y calculated in Step 1, we say thatM partially mediates

the A → Y relationship.

If all four of these steps are met, then the data are consistent with the hypothesis that

variable M completely or partially mediates the A → Y relationship. Step 1 is often con-

sidered to be optional, since cases can arise where mediation effects are significant but the

treatment variable is marginally uncorrelated with the response. In particular, this situa-

tion arises when mediation effects have opposite signs and cancel each other out. Mediation

effects are quantified by the indirect effect (IE). The quantification of the IE depends on the

assumed structure of the mediation model, but in this single mediator case we can express

IE as IE = γ − βA, where γ and βA are shown in Figures 2.1 and 2.2.

Figure 2.1.: Illustration of the first quantity considered in mediation analysis: the total effect
(TE) of A on Y with no mediators present.
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Figure 2.2.: Illustration of the breakdown of TE into direct effect (DE) of A on Y and
the indirect effect (IE) of A on Y through M . The treatment-mediator effect α and the
mediator-response effect β are estimated in Steps 2 and 3, respectively.

Figure 2.3.: Confounding variables are often taken into account in mediation analyses by
including them as covariates at each stage of the mediation model. One important assump-
tion of mediation analysis is no unmeasured confounders, so practitioners must be careful to
consider all possible important covariates for a mediation study. In general a link can also
exist from X to A to create a sequential mediation diagram, but for now we consider X to
be independent of A.
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Figure 2.4.: When M becomes multi-dimensional we can consider the IE of A on Y through
each mediator Mj, j ∈ {1, . . . , p} or the IE of A on Y through the entire set M .

Influenced by the works of [24, 25] and formalized for mediation analysis use by [21,

23], linear structural equation models (LSEMs) have been used to describe the relationship

between A, M , and Y using linear regression models. Specifically, the system of equations

for subject i, i ∈ {1, . . . , n}, is:

M1,i = µ+ αA,1Ai + ei, where ei
i.i.d.∼ N (0, σ2) (2.3)

Yi = β0 + βAAi + βM,1M1,i + ϵi, where ϵi
i.i.d.∼ N (0, σ2) (2.4)
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This pair of equations offers a model representation of Figure 2.2 and is often compared

to the equation:

Yi = γAi + εi where εi
i.i.d.∼ N (0, η2), (2.5)

which represents Figure 2.1. The indirect effect of A on Y through M can then be

expressed as either the product αβ or the difference γ − βA. In the case of LSEM with

continuous mediator and response, these two characterizations coincide. It is worth noting

that unlike in standard linear regression where there is a clear distinction between dependent

and independent variables, LSEMs come with the structure that M is the dependent variable

in one equation but an independent variable in the other equation. This role of the variable

M , however, allows us to infer causal relationships from mediation analysis [26]. There is

also an implied graphical structure as seen in Figures 2.1 and 2.2 that is not as commonly

seen or used in standard linear regression.

The LSEM structure allows for several ways to test the IE, with the primary method

in literature being Sobel’s test of the product of coefficients [27]. After fitting the equa-

tion models from Equations (2.3) and (2.4), the product method tests the null hypothesis

H0 : αβ = 0 by approximating the distribution of the product via the central limit theorem.

This test is performed by constructing the test statistic t = (α̂β̂)/SE, where SE denotes the

standard error of (α̂β̂): SE =
√

α̂2σ2
β + β̂2σ2

α. Using the standard normal approximation

for the distribution of t, the Sobel test rejects H0 if pSobel = P(|Z| > |t|) < αsig, where αsig

denotes the desired significance level of the test. Recent improvements to Sobel’s test have

been made to improve the approximation of the reference distribution by considering the

composite nature of the null hypothesis [28]. Note that H0 : αβ = 0 is also made up of three
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subcases: H10 : α ̸= 0 and β = 0, H01 : α = 0 and β ̸= 0, and H00 : α = 0 and β = 0. Under

the nulls H10 and H01, t asymptotically follows N (0, 1), but under null H00, t asymptotically

follows N (0, 1/4). This improvement boosted the performance of the Sobel test, particularly

because multiple mediators can be used to estimate the proportion of mediators from each

null distribution. MacKinnon [29] proposed the joint significance test, also known as the

MaxP test, which tests the hypotheses H0,a : α = 0 and H0,b : β = 0, then rejects the com-

posite null hypothesis if both H0,a and H0,b are rejected [29]. Concretely, two test statistics

are constructed Za = α̂/σ̂α and Zb = β̂/σ̂β, and p-values computed pa = P(|Z| > |Za|)

and pb = P(|Z| > |Zb|) where Z comes from a standard normal distribution. Finally, H0 is

rejected if pmax = max(pa, pb) < αsig.

Other variations of this approach can be taken when the linearity or normality assump-

tions in Equations (2.3) and (2.4) are not appropriate. For example, generalized linear models

may be employed when the mediators or response are discrete or binary [30]. Pearl’s inter-

ventionalist approach to causal mediation employs techniques from policy learning literature

to forgo functional or distributional form assumptions on the data [31].
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3. Sure Independence Screening for Mediation Analysis

3.1 Introduction

Mediation models are an increasingly popular family of statistical models that aim to

explain the relationship between an independent (treatment) variable A and a dependent

(response) variable Y via a third intermediate “mediator” variable M . Here, A and Y are

assumed to be univariate while M is a p-dimensional set of mediator variables (i.e. random

vector). In such a model, the total effect (TE) is a measure of the effect of A on Y with no

mediator variables present. This TE can be decomposed into two terms: the direct effect

(DE) of A on Y , denoted DE(A,M, Y ), describes the effect of A on Y in the presence of

the mediator, and the indirect effect (IE) of A on Y , denoted IE(A,M, Y ), describes the

effect of A on Y through the mediator M . We say that M is a mediator if the IE of A on Y

through M is nonzero. If TE(A, Y ) = IE(A,M, Y ), then DE(A,M, Y ) = 0 and we refer to

this case as complete mediation. In the complete mediation case, A no longer has any effect

on Y after controlling for M . If IE(A,M, Y ) < TE(A, Y ) and DE(A,M, Y ) ̸= 0, then we

refer to this case as partial mediation. In this case controlling for M reduces the effect of A

on Y , but the DE of A on Y is still present.

Two main approaches exist in the literature for approaching a mediation analysis prob-

lem. The first approach is rooted in the structural equation model (SEM) literature, dating

back to Wright’s works on causal paths [24, 25]. In the following decades, this literature
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grew with contributions across a variety of disciplines [23, 32–35]. In many of these applied

fields, mediation analysis with linear structural equation models (LSEMs) was attractive for

their interpretability and ease of implementation, though this approach does require strong

assumptions about the underlying data generating process.

The second approach was more recently developed by Pearl [36, 37]. Using the language

of counterfactuals and directed acyclic graphs (DAGs), this approach requires fewer assump-

tions but is more computationally expensive due to its reliance on graph structures and their

associated computationally complex algorithms. Pearl’s original framework considered a sin-

gle mediator, but in the past decade these results were extended to the multiple mediator

case where 1 < p < n [38–41]. This counterfactual and DAG approach is often used in the

context of structure learning [42].

We will ultimately be approaching a problem from the view of a practitioner who would

like to create an LSEM model from a high-dimensional set of mediators, which is a problem

of great interest in recent years. Thus, all mediation models for the rest of the paper will

follow the first approach mentioned above.

In recent years, mediation analysis has become a hot topic in the field of causal inference

with applications across a wide variety of disciplines from genomewide association studies

(GWAS) in biology to psychological studies [43–45]. In modern mediation analysis it is

common to consider the mediatorM not to be a single variable, but an ultra-high dimensional

set of candidate mediators. In such a context, traditional methods for performing mediation

analysis fail, and new techniques are needed to handle this massive set of potential mediators.

For i = 1, ..., n, let Ai denote the binary treatment variable of the ith subject, Mij the

corresponding observation of mediator j (j = 1, ..., p), Xi ∈ Rq a vector of covariates to ac-
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count for confounding, and Yi the corresponding response variable. Let Mi = [Mi1, ...,Mip]
T

for i = 1, ..., N be the vector of observed mediator variables for the ith subject, and M =

[M1, ...,MN ]
T the random mediator matrix. We will further denote the jth column of M,

i.e. jth mediator in M, as M (j) and the jth mediator observation of subject i with Mij.

Assume without loss of generality that the mediators M (j) have been standardized such

that E[M (j)] = 0 and E[M (j)2] = 1 for all j. Traditionally, mediation analysis considers the

linear structural equation model (LSEM):

Mij = µj +XT
i αX,j + AiαA,j + eij (3.1)

Yi = β0 +XT
i βX + βAAi +

p∑
j=1

βM,jMij + ϵi (3.2)

where ei = [ei1, ..., eip]
T ∼ N (0p,ΣM) and ϵi ∼ N (0, σ2). Plugging the definition for Mij

into the definition of Yi, it can easily be seen that

E[Yi|Ai, Xi] =

(
β0 +

p∑
j=1

βjµj

)
+XT

i

(
βX +

p∑
j=1

βjαX,j

)
+

(
β0 +

p∑
j=1

αjβj

)
Ai (3.3)

The coefficient of Ai,
(
β0 +

∑p
j=1 αjβj

)
, is the decomposition of TE(A, Y ) into

DE(A,M, Y ) = βX and IE(A,M, Y ) =
(
β0 +

∑p
j=1 αjβj

)
. We refer to each product αjβj

as the indirect effect of A on Y through mediator M (j). Defining Ui = [1, XT
i , Ai]

T ,
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Vi = [1, XT
i , Ai,M

T
i ]

T , αj = [µj,αX,j, αA,j]
T , α = [α1, ...,αp], and β = [β0,β

T
X , β

T
A,j,β

T
M ]T ,

equation (3.1) can be written succinctly as

Mij = UT
i αj + eij (3.4)

Mi = (UT
i α)T + ei (3.5)

Yi = V T
i β + ϵi (3.6)

Further defining U = [U1, . . . , Un]
T , V = [V1, . . . , Vn]

T = [U,M ], E = [e1, ..., en]
T , and

ϵ = [ϵ1, . . . , ϵn]
T , all observations can be combined into matrix form:

M = Uα+ E (3.7)

Y = V β + ϵ (3.8)

To describe the underlying true model of the data generating process, let α⋆ and β⋆ de-

note the true values of α and β underlying the data generating process. α⋆
A = [α⋆

A,1, ..., α
⋆
A,p]

T

and β⋆
M = [β⋆

M,1, . . . , β
⋆
M,p]

T denote the true parameters of interest of the model, while

µ⋆ = [µ⋆
1, . . . µ

⋆
p]

T , α⋆
X = [α⋆

X,1, . . . ,α
⋆
X,p], β

⋆
0 , β

⋆
X , and β⋆

A denote the true values for the

nuisance parameters. Let M = {1, . . . , p} denote the indices of the candidate mediators and

M⋆ = {j = 1, ..., p : α⋆
j ̸= 0 and β⋆

j ̸= 0} denote the set of true mediators.

In the low dimensional context, this problem has been studied extensively. The original

tests for mediation effects considered the case where M is univariate, i.e. p = 1. Sobel [27]

developed the product method, also known as Sobel’s Test, for testing the significance of

mediation effect. MacKinnon et al. [29] recommends the joint significance test, also known as
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the MaxP test, as a less conservative alternative for testing mediation effects. Both methods

rely on estimating α with α̂ = (UTU)−1UTM and β̂ = (V TV )−1V TY and applying their

respective decision rules. This approach was easily extended to a multiple mediator case

in which multiple mediators are added to the mediator-response regression and multiple

treatment-mediator regressions are considered [46]. Naturally, this resulted in increased

interest in mediation analysis under the high-dimensional setting.

In the high dimensional context (p > n), estimation of β becomes undetermined due

to the non-identifiability of f2(Y |M,A,X). To remedy this issue, one common technique

used in mediation is to apply sure independence screening (SIS) to the mediator variables

and only consider mediators with a high marginal correlation with the response variable

[8]. Using this screening approach, the set of mediators M of size p can be reduced to a

smaller candidate set M̂ of smaller size d < n to which we can apply traditional mediation

techniques. Under mild regularity conditions, SIS possesses the sure screening property:

P(M⋆ ⊂ M̂) → 1 as n → ∞ (3.9)

where M̂ is the set of mediators chosen by SIS. Other modern approaches include simply

conducting multiple testing in the high dimensional context [1, 28] or employing techniques

from the post-selection inference literature [47].

To develop our novel screening method, we follow the approach of [8], [48], [49], and others

by establishing properties needed at the population level and sample level to achieve the sure

screening property. Our screening method is developed in a similar fashion to [1], though to

our knowledge our approach is novel in its use as a screening method to reduce the dimension
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of a mediation analysis problem before employing low-dimensional techniques. This follows

the mediation analysis epigenetic study framework laid out by [50] with an improvement in

the screening technique employed.

3.2 Mediation Analysis

3.2.1 Model and Low-Dimensional Case

We first consider linear structural equation models to simplify calculations and proofs,

though our results can be readily extended to the case structural equation models of gener-

alized linear models.

Let us consider the linear structural equation model defined by (3.1). Consider the

mediators M to be partitioned into sets M1 = {j : αA,j ̸= 0 and βM,j ̸= 0}, M2 = {j :

αA,j = 0 and βM,j ̸= 0}, M3 = {j : αA,j ̸= 0 and βM,j = 0}, and M4 = {j : αA,j =

0 and βM,j = 0}. M1 can be considered to be the true set of true mediators that we wish

to identify (i.e. M1 = M⋆), while M2,M3, and M4 are sets of false mediators.

In the modern causal inference framework, there are five standard assumptions for esti-

mating the IE [51,52]:

1. There are no unmeasured treatment-response confounders given X,

2. There are no unmeasured mediator-response confounders given (X, A),

3. There are no unmeasured treatment-mediator confounders given X,

4. There is no effect of treatment that confounds the mediator-response relationship,

5. There is no treatment and mediator interaction on the response.
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Under these assumptions, the parameters α and β can be identified, as can the IE which

depends on them. In our continuous case, the IE of A on Y through mediator j is equal to

αA,jβM,j. Note that in practice, unmeasured confounders may be part of the true underlying

model.

These assumptions also imply that the causal effect of the treatment A on the mediator

M is independent of the causal effect of the mediator M on the response Y [28]. Indeed,

under assumptions (1)-(5), the joint probability density function of (Y,M,A,X) can be

factored as f(Y,M,A,X) = f2(Y |M,A,X)f1(M |A,X)f0(A,X). f0(A,X) is ancillary and

does not depend on the model parameters of model (3.1), so it can be discarded. Thus, only

f2(Y |M,A,X)f1(M |A,X) is needed for screening based on these parameters. f2(Y |M,A,X)

contains the M ⇒ Y associations, while f1(M |A,X) contains the A ⇒ M associations.

Denoting the log-likelihood function as ℓ(·), the previous factorization implies that ∂2ℓ
∂α∂β

= 0,

which tells us that the Fisher information matrix is block diagonal, i.e.

I(α, β) =

Iα(α) 0q+1

0q+1 Iβ(β)


where

Iα(α) = E

[(
∂

∂α
log f2(M ;α,X)

)2

| α

]
=

∫
R

(
∂

∂α
log f2(m;α, x)

)2

f(m;α, x)dm, and

Iβ(β) = E

[(
∂

∂β
log f1(Y ; β,M,X)

)2

| β

]
=

∫
R

(
∂

∂β
log f1(y; β,m, x)

)2

f(y; β,m, x)dy
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This tells us that the covariance matrix of the maximum likelihood estimator

Σα,β = I(α, β)−1 =

Iα(α)
−1 0q+1

0q+1 Iβ(β)
−1



is also block diagonal, which implies that α̂ and β̂ are independent in their limiting

distribution. Using this property, it becomes easy to derive the joint distribution of (α̂, β̂)

and construct our test for mediation.

3.2.2 Mediation Analysis in High Dimensions

In the high-dimensional setting (p > n), the maximum likelihood estimator θ̂MLE is noisy.

In a similar spirit to SIS, we aim to utilize marginal information from individual to screen

out mediators that are not likely to be important in the mediation model while retaining

as many important mediators as possible. In terms of our model, we would like to reduce

our candidate set of mediators M to a low dimensional size d < n by filtering out as many

mediators in M2,M3, and M4 as possible while also retaining as many mediators in M1 as

possible.

To make use of marginal information of the mediators, we first define the marginal log-

likelihood function. For θj = (αA,j, βM,j), define

ℓj(θj) = log(f1,j(Mj;αA,j, A,X)) + log(f2,j(Y ; βM,j,Mj, A,X))

= −
N∑
i=1

{
(Mij − µj − AiαA,j −XT

i αX,j)
2 + (Yi − β0 − βAAi −XT

i βX − βM,jMij)
2
}

(3.10)
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This marginal likelihood function ℓj can be viewed as a misspecified or underspecified

likelihood function in which the only mediator considered is Mj. Maximizing this likelihood

function with respect to θj then yields α̂A,j = argmaxαA,j
log(f1(Mj;αA,j, A,X)) and β̂M

M,j =

argmaxβM,j
log(f2(Y ; βM,j,Mj, A,X)). Define θ∗j = argmaxθj ℓj(θj). θ∗j is the value that

minimizes the KL divergence between the marginal model and the true model defined by θ⋆,

and we assume this value is unique [53]. Indeed, considering the distributions Q denoting

the cumulative distribution function corresponding to N (Zjβ
∗, σ2

1) and P the cumulative

distribution function corresponding toN (Zβ⋆, σ2
w), expanding the form of the KL divergence

yields

KL(β⋆||β∗) =
1

2
log

(
σ2
1

σ2
2

)
− 1

2
+

σ2
1 + (Zβ⋆ − Zjβ

∗)2

2σ2
2

, (3.11)

which has a unique maximum with respect to β∗ provided that (ZT
j Zj) is invertible. As a

misspecified maximum likelihood estimator, the asymptotic distribution of θ̂j is given by θ̂j =

[α̂A,j, β̂
M
M,j]

T ∼ N
(
[αA,j, β

M
M,j]

T ,Σθ

)
, where βM

M,j = argmaxβM,j
E [log(f2(Y ; βM,j,Mj, A,X))]

where expectation is taken under the true model of the data [53]. In other words, βM
M,j is

the population version of β̂M
M,j.

Since θ̂j satisfies the score equations ∇θjℓj(θ̂j) = 0, performing a Taylor series expansion

of the score equations around θ̂j = θ∗j yields

0 ≈ ∇θjℓj(θ
∗
j ) + (θ̂j − θ∗j )∇2

θj
ℓj(θ

∗
j ). (3.12)
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Moving terms around then yields

√
n(θ̂j − θ∗j ) ≈

{
1

n
∇2

θℓj(θ
∗
j )

}−1{
1√
n
∇θℓj(θ

∗)

}
. (3.13)

Applying the Central Limit Theorem to the right hand term yields

1√
n
∇θjℓj(θ

∗
j ) =

−1√
n

n∑
i=1

∇θj log(fj(Y,Mj; θj)) → N
(
0,Varθ∗j [∇θ log(fj(Y,Mj; θj))]

)
.

(3.14)

Similarly,

1

n
∇2

θj
ℓ(θ∗) → Eθ∗

[
∇2

θj
ℓj(θ

∗),
]

(3.15)

where the expectation is taken under the true model θ⋆. By Slutsky’s Theorem,

√
n(θ̂ − θ∗) → N (0,W ), where

W =
{
Eθ⋆

[
∇2

θj
ℓj(θ

∗)
]}−1

Varθ∗j
(
∇θj log(fj(Y,M ; θj))

){
Eθ⋆

[
∇2

θj
ℓj(θ

∗)
]}−1

= B−1CB−1, (3.16)

where B = Eθ⋆j

[
∇2

θj
ℓj(θ

∗
j )
]
and C = Varθ∗j

(
∇θj log(fj(Y,M ; θj))

)
. Expanding these terms

by applying the derivatives to ℓj then gives us

B = Eθ⋆

[
∇2

θj
ℓj(θ

∗
j )
]
= Eθ⋆


∑N

i=1 A
2
i 0

0
∑N

i=1M
2
ij

 =

ATA 0

0
∑N

i=1

{
(µj +XT

i αX,j + αA,jAi)
2 + σ2

M

}
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and

C = Varθ∗j
(
∇θj log(fj(Y,M ; θj))

)
= Varθ⋆


 −2

∑N
i=1(Mij − µj − αA,jAi −XT

i αX,j)Ai

−2
∑N

i=1(Yi − β0 −XT
i βX − βAAi − βM,jMij)Mij




= Varθ⋆


−2S1,j

−2S2,j


 = 4Varθ⋆


S1,j

S2,j




where S1,j =
∑N

i=1(Mij − µj − αA,jAi −XT
i αX,j)Ai and

S2,j =
∑N

i=1(Yi − β0 −XT
i βX − βAAi − βM,jMij)Mij. Computing the first and second mo-

ments of S1,j and S2,j then yields

Eθ⋆ [S1,j] = Eθ⋆

[
N∑
i=1

(Mij − µj − αA,jAi −XT
i αX,j)Ai

]
= 0,

Eθ⋆ [S2,j] = Eθ⋆

[
N∑
i=1

(Yi − β0 −XT
i βX − βAAi − βM,jMij)Mij

]
= Eθ⋆

[
N∑
i=1

∑
k ̸=j

βM,kMikMij

]

=
N∑
i=1

∑
k ̸=j

βM,k

{
(µj +XT

i αX,j + αA,jAi)(µk +XT
i αX,k + αA,kAi) + ρjk

}
,
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E
[
S2
1,j

]
= Eθ⋆

( N∑
i=1

(Mij − µj − αA,jAi −XT
i αX,j)Ai

)2


= Eθ⋆

[
N∑
i=1

N∑
i′=1

(Mij − µj − αA,jAi −XT
i αX,j)Ai(Mi′j − µj − αA,jAi′ −XT

i′ αX,j)Ai′

]

= Eθ⋆

[
N∑
i=1

(Mij − µj − αA,jAi −XT
i αX,j)

2A2
i

]
(cross terms independent)

= Eθ⋆

[
N∑
i=1

e2ijA
2
i

]
= σ2

jA
TA,

E[S1,jS2,j] =
N∑
i=1

Ai Eθ⋆ [
∑
k ̸=j

βM,k(µj +XT
i αX,j + αA,jAi)eijeik

+ e2ijβM,k(µk +XT
i αX,k + αA,kAi) + e2ijeikβM,k]

=
N∑
i=1

Ai

∑
k ̸=j

βM,k{(µj +XT
i αX,j + αA,jAi)Eθ⋆ [eijeik]

+ Eθ⋆
[
e2ij
]
(µk +XT

i αX,k + αA,kAi)βM,k}

=
N∑
i=1

Ai

∑
k ̸=j

βM,k{(µj +XT
i αX,j + αA,jAi)ρjk

+ ρjj(µk +XT
i αX,k + αA,kAi)βM,k}
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Eθ⋆
[
S2
2,j

]
= Eθ⋆

[
N∑
i=1

(Yi − β0 −XT
i βX − βAAi − βM,jMij)

2M2
ij

]

=
N∑
i=1

Eθ⋆
[
(Yi − β0 −XT

i βX − βAAi − βM,jMij)
2M2

ij

]
=

N∑
i=1

E

[∑
k ̸=j

(βM,kMik + ϵi)
2M2

ij

]
=

N∑
i=1

E

[∑
k ̸=j

(βM,kMik)
2M2

ij + ϵ2iM
2
ij

]

=
N∑
i=1

∑
k ̸=j

{
β2
M,k E

[
M2

ikM
2
ij

]
+ E

[
ϵ2iM

2
ij

]}
=

N∑
i=1

∑
k ̸=j

{β2
M,k(µj +XT

i αX,j +AαA,j)
2(µk +XT

i αX,k +AαA,k)
2

+ σkk(µj +XT
i αX,j +AαA,j)

2 + 4(µj +XT
i αX,j +AαA,j)(µk +XT

i αX,k +AαA,k)

+ σjj(µk +XT
i αX,k +AαA,k)

2 + σjj + σkk + 4σjk

+ σ2
(
(µj +XT

i αX,j + AαA,j)
2 + σjj

)
}

Finally putting these together, we obtain

Varθ⋆


S1,j

S2,j


 =

 E[S2
1,j] E[S1,jS2,j]

E[S1,jS2,j] E[S2
2,j]

−

E[S1,j]

E[S2,j]

[E[S1,j] E[S2,j]

]

=

 E[S2
1,j] E[S1,jS2,j]

E[S1,jS2,j] E[S2
2,j]− E[S2,j]

2


(3.17)

Since W = B−1CB−1, plugging everything in gives us the asymptotic covariance matrix

of (α̂A,j, β̂
M
M,j). In particular,

Cov(α̂A,j, β̂
M
M,j) →

4E[S12]

B11B22

(3.18)
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=
4
∑N

i=1Ai

∑
k ̸=j βM,k

{
(µj +XT

i αX,j + αA,jAi)ρjk + ρjj(µk +XT
i αX,k + αA,kAi)βM,k

}
(ATA)

(∑N
i=1 {(µj +XT

i αX,j + αA,jAi)2 + σ2
M}
)

=
4
{
AT (µj1n +AαA,j +XαX,j)I

T
−jΣM β̃−j + σjjA

T (1nµ+XαX +AαA)β̃−j

}
ATA {(µj1n +XαX,j +AαA,j)T (µj1n +XαX,j +AαA,j) + nσjj}

where I−j denotes the jth column of the p × p identity matrix Ip, and β̃−j is a copy of

β⋆ with the jth entry replaced by 0. This quantity is easily nonzero for many parameter

settings, especially in the high dimensional case. Thus, hypothesis tests for mediation that

assume independence between α̂ and β̂ are easily invalidated in high dimensions.

3.2.3 Screening

In the high dimensional context, the likelihood function f does not have a unique max-

imum, causing θ̂MLE = (α̂MLE, β̂MLE) to be an ill-conditioned estimator. Our screening

approach aims to lower the dimensionality of the high-dimensional mediation problem by

making use of marginal information of each mediator in a similar spirit to SIS [8]. The goal

when developing a screening method is twofold. The first goal is to create a method with

low computational cost, since screening is predominantly used as a crude and quick way to

reduce the dimensionality of the regression problem considered. The second goal is to create

a method that satisfies the sure screening property under reasonable assumptions.

Our screening approach for mediation modifies the conditional sure independence screen-

ing (CSIS) approach of Barut, Fan, & Verhasselt which uses a conditioning set of vari-

ables to further screen for more variables associated with a response [49]. We will con-

sider U = [1n, X,A] to be the conditional set of variables for the A → M relationships,
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UC = [1n, X] to be the conditional set of variables with no treatment, and Zj = [U,Mj] to be

the conditional set of variables for the M → Y relationships. While taking advantage of the

structure of mediation models, we hope to use this idea to detect more significant mediators

than traditional approaches that assume independence between the estimators α̂ and β̂M .

Given a set of covariates X, our goal is to screen the high-dimensional set of mediators

M for variables that mediate the relationship between A and Y . That is, we would like to

identify the set {j ∈ {1, ..., p} : αA,j ̸= 0 and βM,j ̸= 0}. In the language of causal paths, we

would like to identify which Mj lies on a path from A to Y in the graph corresponding to

the true underlying LSEM.

Given a random {(Xi, Ai,Mi, Yi)}ni=1 from the LSEM model, the conditional maximum

marginal likelihood estimator β̂M
Cj for j ∈ M is defined as the minimizer of the negative

marginal log-likelihood:

β̂M
Cj = argminβC ,βM,j

n∑
i=1

{log f2(Yi|Zj,(i), βCj)}, (3.19)

where ZT
j,(i) denotes the i

th row of Zj, log f2(Yi|Zj,(i) is the conditional marginal log likelihood

function for βCj, and βM
Cj = [β̂T

C , β
M
M,j]

T . This can also be compactly written as

ℓ2,j(βCj) = βT
CjZ

T
j Y − 1

2
βT
CjZ

T
j ZjβCj (3.20)
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Similarly, for the A → M relationship, consider the conditional maximum marginal

likelihood estimator α̂j for j ∈ M which minimizes the negative marginal log-likelihood:

α̂j = argminαj

n∑
i=1

{log f1(Mij|Ui, αj)} = argminαj
ℓ1(αj), (3.21)

where log f1(Mij|Ui, αj) is the marginal likelihood for Mj given U . This similarly defines

the marginal log-likelihood function for αj:

ℓ1,j(αj) = αT
j U

TM (j) − 1

2
αT

j U
TUαj. (3.22)

We will similarly consider αj to be partitioned αj = [α̂T
C , α̂A,j]

T .

Our mediation screening procedure based on estimated marginal magnitudes keeps the

mediators belong to the set:

M̂λ = {j ∈ M : |α̂M
A,jβ̂

M
M,j| > λ}, (3.23)

given a thresholding parameter λ > 0. This thresholding rule depends on the scale of the

parameters E[Mj|U ] and E[Y |Zj], so a scale-free thresholding may instead be preferred.

Rather than thresholding based on the absolute scale of |α̂M
A,jβ̂

M
M,j|, a scale-free thresholding

rule is based on the reduction in the negative log-likelihood function when adding mediator

Mj conditional on U . For this rule we compute

TSobel,j =
α̂A,jβ̂M,j√

α̂2
A,jσ̂

2
β,j + β̂2

M,jσ̂
2
α,j

, (3.24)
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which scales the product of marginal coefficients |α̂M
A,jβ̂

M
M,j| by its standard error√

α̂2
A,jσ̂

2
β,j +

ˆβM,j

2
σ̂2
α, where σ̂α,j and σ̂β,j denote the standard errors of α̂A,j and β̂M

M,j, re-

spectively [54]. This can especially be seen as a scaled version of the previous statistic if we

let Zα,j = α̂A,j/σ̂α and Zβ,j = β̂M
M,j/σ̂β,j. Then TSobel,j can be written

TSobel,j =
Zα,jZβ,j√
Z2

α,j + Z2
β,j

, (3.25)

where the standard error of Zα,jZβ,j is
√

Z2
α,j + Z2

β,j. The scale-free thresholding rule then

keeps variables according to

M̂λ̃ = {j ∈ M : |TSobel,j| > λ̃}, (3.26)

where λ̃ is a thresholding parameter associated with TSobel,j. In particular, the asymptotic

distribution of TSobel,j can be used to calculate thresholds λ̃ based on the inverse CDF of

TSobel,j. Due to this screening procedure’s influence from Sobel’s test, we refer to is as the

marginal Sobel screening (MSS) procedure.

Intuitively, we would like to keep the mediators that have large indirect effects on the

response, i.e. they lie on a more significant path from A to Y . Note that this approach differs

from traditional methods that only screen based on correlations between the mediators and

the response. By incorporating information about the relationships between the treatment

and the mediators, this approach helps to prevent removal of mediators with small βM,j but

large αA,j. It also does not use this screening as a simultaneous hypothesis test, but rather

a simple dimension reduction technique before further model selection takes place.
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3.3 Sure Screening Properties

In order to prove the sure screening property for our new approach, properties of the data

at the population and the sample levels must be addressed. We follow the approach of [49]

in developing these properties and related conditions in order to establish a sure screening

property.

3.3.1 Population-Level Properties

Each marginal fitting of the mediator - response relationships can be seen as a misspecified

or underspecified model. Due to this misspecification, the marginal regression estimator βM
M,j

can differ from the true model parameters β⋆
M,j. We investigate conditions under which βM

M,j

is still informative about β⋆
M,j in the sense that if |βM

M,j| is larger than some threshold value,

then |β⋆
M,j| is larger than another threshold value.

The marginal regression coefficients αj satisfy the score equations:

E[UTUαj] = E[UTMj] = E[UTUα⋆
j ], (3.27)

which implies

E[UTUα] = E[UTM ] = E[UTUα⋆]. (3.28)

Similarly, the marginal regression coefficients βM
Cj satisfy the score equations:

E[ZT
j Zjβ

M
Cj ] = E[ZT

j Y ] = E[ZT
j V β⋆]. (3.29)
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Without additional mediator variable Mj, the baseline parameter is

βM
C = argminβC

E l(UβC, Y ), (3.30)

which satisfies the equations

E[UTUβM
C ] = E[UTY ] = E[UTV β⋆]. (3.31)

In the following theorem, the following notation is used for linear conditional covariances:

CovL(A,Mj|X) = E [(Mj − E[Mj|X])(A− E[A|X])] , and

CovL(Y,Mj|A,X) = E [(Y − E[Y |A,X])(Mj − E[Mj|A,X])] .

Theorem 3.3.1 For j ∈ M,

(i) αA,j = 0 if and only if CovL(A,Mj|X) = 0, and

(ii) the marginal regression parameters βM
M,j = 0 if and only if CovL(Y,Mj|A,X) = 0.

Proof (i) Sufficiency:

Suppose αA,j = 0. The marginal regression coefficients αj satisfy the score equations

E[UTUαj] = E[UTMj] = E[UTUα⋆
j ]. (3.32)
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The baseline parameter αCj = argminαCj
E
[
ℓ(UCαCj,M

(j))
]
, where UC = [1n, X], sat-

isfies

E
[
UT
C UCαCj

]
= E

[
UT
C M

(j)
]
= E

[
UT
C UCα

⋆
j

]
, (3.33)

which can be rewritten

E
[
UT
C (M

(j) − EL[M
(j)|UC)]

]
= 0. (3.34)

When αA,j = 0, the first q components of αj are equal to αCj by uniqueness of equation

(3.33). Performing a similar manipulation to equation (3.32) for the treatment A results

in

E
[
AT (UCαCj)

]
= E

[
ATM (j)

]
,

or

E
[
AT (M (j) − EL

[
M (j)|UC

]
)
]
= 0.

Combining this expression with equation (3.34) then yields

CovL(M
(j), A|UC]) = E

[
(A− EL[A|UC])

T (M (j) − EL[M
(j)|UC]

]
= 0,

as needed.

Necessity: Suppose CovL(M
(j), A|UC) = 0, which is equivalent to

E[ATUCαCj] = EATM (j).
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This equivalency, along with equation (3.32), imply that ((αC)
T , 0)T is a solution to

the score equations (Equation 3.33). Uniqueness of this solution implies that

αj = ((αCj)
T , 0)T ⇒ αA,j = 0.

(ii) Sufficiency: Suppose βM
M,j = 0. Since the marginal regression coefficients βM

Cj satisfy

the score equations

E[ZT
j Zjβ

M
Cj ] = E[ZT

j Y ] = E[ZT
j V β⋆],

the first q + 2 components of βM
Cj should be equal to βM

C by uniqueness of equation

(3.31). Then the above expression becomes

E[MT
j UβM

C ] = E[M (j)TY ], or EL[M
(j)T (Y − E[Y |U ])] = 0,

which can then be expressed as

CovL (Y,Mj | U) ≡ E (Mj − EL (Mj | U)) (Y − EL (Y | U)) = 0.

Necessity: Suppose now CovL(Y,Mj|U) = 0, which is equivalent to

E[M (j)TUβM
C ] = E[M (j)TY ].
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This equivalency, along with Equation (3.31), imply that ((βM
C )T , 0)T is a solution to

the score equations (3.29). Uniqueness of this solution implies that

βM
Cj = ((βM

C )T , 0)T ⇒ βM
M,j = 0.

Indeed at the population level in order for a mediator to be identified, it should be both

linearly correlated with A given X and with Y given (X,A). Further, if the mediator is

conditionally correlated with A given X and with Y given (X,A), then the corresponding

marginal regression coefficients will be nonzero. The following condition is required to guar-

antee minimum signal strength of both treatment-mediator effects and mediator-response

effects for important mediators, which will be proven in the following theorem.

Condition 1 1. There exist positive constants c1, c2 > 0 and κ1, κ2 <
1
2
such that for all

j ∈ M⋆, |CovL(Mj, A|X)| ≥ c1n
−κ1 and |CovL(Y,Mj|U)| ≥ c2n

−κ2

2. EX2
ik ≤ c3 uniformly in k = 1, ..., q

3. EM2
ij ≤ c4 uniformly in j = 1, ..., p

Theorem 3.3.2 If Condition 1 holds, then there exist c3, c4 > 0 such that

(i) minj∈M⋆ |αA,j| ≥ c3n
−κ1 , and

(ii) minj∈M⋆ |βM
M,j| ≥ c4n

−κ2.
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Proof (i) By the score equations

E[UT
C Uαj] = E[UT

C UCαCj],

which can be rewritten as

E
[
UT
C (Uαj − UCαCj)

]
= 0.

Let α∆,j = αCj1 = αCj denote the subvector created from the first q + 1 entries of αj.

Then the previous expression can be rewritten as

E[UT
C (UCα∆,j + AαA,j)] = 0. Solving for α∆,j results in

α∆,j = −(UT
C UC)

−1UT
C AαA,j. (3.35)

Observe next the linear covariance

CovL(M
(j), A|UC) = E[AT (UCα∆,j + Aαj)] = UT

j UCα∆,j + UT
j AαA,j.

Plugging (3.35) into the previous expression then yields

CovL(M
(j), A|UC) = (UT

j A− UT
j UC(U

T
C UC)

−1UT
C A)αA,j. (3.36)
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Under Condition 1, taking the modulus of both sides of (3.36) then results in

|αA,j| ≥ c−1|CovL(M (j), A|UC| ≥ c3n
−κ1/c,

where c = (UT
j A− UT

j UC(U
T
C UC)

−1UT
C A). Taking minimum over all j ∈ M⋆ results in

the conclusion.

(ii) Let Ω2,j =

EUTU EUTMj

EMT
j U EMT

j Mj

 =

ΩCC ΩCj

ΩjC Ωjj

 .

By score equations (3.29) and (3.31)

E[UTUβM
C ] = E[UTZjβ

M
Cj )],

⇒ E[UTUβM
C )]− E[UTZjβ

M
Cj ] = E[UT (UβM

C − Zjβ
M
Cj )] = 0.

Let β∆,j = βM
Cj1 − βM

C . Then the previous expression can be rewritten

E
[
UT (UβM

∆,j +Mjβ
M
M,j)

]
= 0,

⇒ β∆,j = −Ω−1
CCΩCjβ

M
M,j.

and CovL(Y,Mj|U) = E[Mj(Y − El[Y |U)]]. Using the score equations, this expression

can then be rewritten as

CovL(Y,Mj|U) = E[Mj(Zjβ
M
Cj − UβC))]. (3.37)
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Again using the definition of β∆,j, this becomes

CovL(Y,Mj|U) = E[Mj(Z
T
j β

M
Cj − UTβM

C )],

= E[Mj(U
TβM

∆,j +MT
j β

M
M,j)] = ΩT

Cjβ∆,j + Ωjjβ
M
M,j,

⇒ CovL(Y,Mj|U) = (Ωjj − ΩT
CjΩ

−1
CCΩCj)β

M
M,j.

By Condition 1, |βM
M,j| ≥ c−1|CovL(Y,Mj|U)| ≥ c−1c4n

−κ2 . Finally, taking the mini-

mum over all j ∈ M⋆ yields the conclusion.

Corollary 1 If Condition 1 holds, then there exists c5 > 0 such that

min
j∈M⋆

|αA,jβ
M
M,j| ≥ c5n

−2κ.

Proof Under Condition 1, by Theorem 3.3.2

min
j∈M⋆

|αA,jβ
M
M,j| = (min

j∈M⋆
|αA,j||βM

M,j|) ≥ ( min
j∈M⋆

|αA,j|)( min
j∈M⋆

|βM
M,j|) ≥ c3c4n

−2κ := c5n
−2κ.

3.3.2 Sample-Level Properties

Next, we prove the uniform convergence of the mediation marginal maximum likelihood

estimator and the sure screening property of the mediation sure independence screening
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method. Further, we establish an upper bound for the size of the set M̂ selected by our

method.

The log-likelihood of the linear model is concave and thus has a unique minimizer over

βCj ∈ B at an interior point βM
Cj where B(B) = {β ∈ Rq+3 : |β1| ≤ B, ..., |βq+2| ≤ B, |βq+3| ≤

B} for sufficiently large B is the parameter space over which we maximize the marginal

likelihood. At the sample level, a few more conditions are required to obtain uniform con-

vergence.

Condition 2 1. The operator norm ∥Ij(βCj)∥B of the Fisher Information Ij(βCj) =

E
[
ZjZ

T
j

]
is bounded, where ∥Ij(βCj)∥B = supβCj∈B,∥Zj∥=1 ∥Ij(βCj)

1/2Zj∥.

2. There exist some positive constants r0, r1, s0, s1, and a such that

P(|Mj| > t) ≤ r1 exp(−r0t
a) for j = 1, ..., p,

for sufficiently large t and that

E [exp(b(V β⋆ + s0)− b(V β⋆))] + E
[
exp(b(V Tβ⋆ − s0)− b(V β⋆))

]
≤ s1,

where b(η) denotes the log-partition function for the canonical form of the likelihood of

Y given (X,A,M).

3. There exists an ϵ1 > 0 such that for all j ∈ M,

sup
βCj∈B,

∥∥∥βCj−βM
Cj

∥∥∥≤ε1

∣∣∣∣∣E
[(

1

2
UβCj

)2

I (|Mj| > Kn)

]∣∣∣∣∣ ≤ o
(
n−1
)
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where Kn is an arbitrarily large constant such that for a given β ∈ B, the function

ℓ(Zjβ, y) is Lipschitz for all (zj, y) in Λn = {zj, y : ∥zj∥∞ ≤ Kn, |y| ≤ K⋆
n} with

K⋆
n = r0K

α
n/s0.

4. For all βCj ∈ B, we have

E(l(ZjβCj, Y )− l(Zjβ
M
Cj , Y )) ≥ Sn∥βCj − βM

Cj∥2

for some positive constant Sn, uniformly over j = 1, ..., p.

The following theorem uses these conditions to establish the uniform convergence of our

conditional likelihood estimators and the sure screening property for our approach.

Theorem 3.3.3 Under Condition 2, it holds that for any t > 0,

P(
√
n∥β̂M

Cj − β⋆
Cj∥ ≥ 16kn(1 + t)/Sn) ≤ exp{−2t2/K2

n}n P(Λc
n).

where β⋆
Cj is the subvector of β⋆ whose indices correspond to those of β̂M

Cj .

Proof To prove this statement we follow the approach of [48] in proving their Lemma 1.

This approach uses several lemmas including the symmetrization theorem in [55], contraction

theorem in [56], and concentration theorem of [57]. We return to this proof after going

through these theorems, as well as Lemmas 1 and 5 from [48].
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Lemma 1 (Symmetrization; Lemma 2.3.1 [55]) Let Z1, ..., Zn be independent random

variables with values in Z and F is a class of real valued functions on Z. Then

E
{
sup
f∈F

|(Pn −P )f(Z)|
}

≤ 2E
{
sup
f∈F

|Pn ϵf(Z)|
}
,

where ϵ1, ..., ϵn is a Rademacher sequence (i.e. an i.i.d. sequence taking values ±1 with

probability .5) independent of Z1, ..., Zn and Pf(Z) = E f(Z).

Lemma 2 (Contraction Theorem; [56]) Let z1, ..., zn be nonrandom elements of some

space Z, and let F be a class of real valued functions on Z. Let ϵ1, ..., ϵn be a Rademacher

sequence. Consider Lipschitz functions gi : R 7→ R (i.e. satisfying |gi(s) − gi(s̃)| ≤ |s −

s̃| ∀s, s̃ ∈ R Then for any function f̃ : Z 7→ R,

E
{
sup
f∈F

|Pn ϵ(g(f)− g(f̃))|
}

≤ 2E
{
sup
f∈F

|Pn ϵ(f − f̃)|
}
.

Lemma 3 (Concentration Theorem [57]) Let Z1, ..., Zn be independent random vari-

ables with values in some space Z and let γ ∈ Γ, a class of real valued functions on Z.

Assume that for some positive constants li,γ and ui,γ, li,γ ≤ γ(Zi) ≤ ui,γ ∀γ ∈ Γ. Define

L2 = sup
γ∈Γ

n∑
i=1

(ui,γ − li,γ)
2/n

and

Z = sup
γ∈Γ

|(Pn−P )γ(Z)|.
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Then for any t > 0,

P (Z ≥ EZ+ t) ≤ exp

(
− nt2

2L2

)
.

For N > 0, let B(N) = {β ∈ B : ∥β − β⋆
Cj∥ ≤ N}. Let

G1(N) = sup
β∈B(N)

|(Pn−P)
{
l(Zjβ

⋆
Cj, Y

}
In(Zj, Y )|,

where In(Zj, Y ) = I((Zj, Y ) ∈ Λn) with Λn is defined in Condition 2. The following lemma

is about the upper bound of the tail probability for G1(N) in the neighborhood of B(N).

Lemma 4 (Lemma 5 from [48]) For all t > 0, it holds that

P(G1(N) ≥ 4Nkn(q/n)
1/2(1 + t)) ≤ exp(−2t2/K2

n).

Lemma 5 (Lemma 1 from [48]) If Condition 2.2 holds, then for any t > 0,

P(|Mj| > r0t
a/s0) ≤ s1 exp(−r0t

a).

Given these lemmas, we return to the proof of Theorem 3.3.3:

Proof [Proof of Theorem 3.3.3] Step 1: Bound ∥β̂M
Cj − β⋆

Cj∥ with G(N) for some small N

chosen such that Conditions 2.3 and 2.4 hold. [48] took inspiration from [58] by defining the

convex combination βs = sβ̂M
Cj + (1− s)β⋆

Cj, with

s = (1 + ∥β̂M
Cj − β⋆

Cj∥/N)−1.
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Then by definition

∥βs − β⋆
Cj∥ = s∥β̂M

Cj − β⋆
Cj∥ ≤ N,

so βs ∈ B(N). By convexity

Pn l(Zjβs, Y ) ≤ sPn l(Zjβ̂
M
Cj , Y ) + (1− s)Pn l(Zjβ

⋆
Cj, Y )

≤ Pn l(Zjβ
⋆
Cj, Y ).

Since β⋆
Cj is the minimizer

E
[
l(Zjβs, Y )− l(Zjβ

⋆
Cj, Y )

]
≥ 0.

Putting these together yields

E
[
l (Zjβs, Y )− l

(
Zjβ

⋆
Cj, Y

)]
≤ (E−Pn)

[
l (Zjβs, Y )− l

(
Zjβ

⋆
Cj, Y

)]
≤ G(N),

where G(N) = supβ∈B(N)

∣∣(Pn − P )
{
l (Zjβ, Y )− l

(
Zjβ

⋆
Cj, Y

)}∣∣. By Condition 2.4,

∥βs − β⋆
Cj∥ ≤ [G(N)/Sn]

1/2. (3.38)

Note that for any x,

P(∥βs − β⋆
Cj∥ ≥ x) ≤ P(G(N) ≥ Snx

2).
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Setting x = N/2, we have

P(∥βs − β⋆
Cj∥ ≥ N/2) ≤ P(G(N) ≥ SnN

2/4).

By definition of βs, the left hand side of the previous expression is equal to P(∥β̂M
Cj − β⋆

Cj∥ ≥ N).

Taking N = 4an(1 + t)/Sn with an = 4kn
√

q/n, we have

P
{∥∥∥β̂ − β⋆

Cj

∥∥∥ ≥ N
}
≤ P

{
G(N) ≥ VnN

2/4
}

= P {G(N) ≥ Nan(1 + t)} ,

where the last probability is bounded by

P {G(N) ≥ Nan(1 + t),Λn}+ P {Λc
n} , (3.39)

where Λn = {∥Zj,(i)∥ ≤ Kn, |Yi| ≤ K⋆
n} as in Condition 2.

On the set Λn, since

sup
β∈B(N)

Pn

∣∣l (Zjβ, Y )− l
(
Zjβ

⋆
Cj, Y

)∣∣ (1− In(Zj, Y )) = 0,

by the triangle inequality

G(N) ≤ G1(N) + sup
β∈B(N)

|E [l (Zjβ, Y )− l (Zjβ0, Y )] (1− In(Zj, Y ))| .
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Then by Condition 2.3, the upper bound in Equation (3.39) is bounded by

P {G1(N) ≥ Nan(1 + t) + o(q/n)}+ nP {(Zj, Y ) ∈ Ωc
n} .

Finally, the conclusion follows from Lemma 4.

Theorem 3.3.4 Suppose that Condition 2 holds. Let kn = b′(KnB(q + 1)) + r0K
a
n/s0 with

Kn given in Condition 2, and assume that n1−2κk−2
n K−2

n → ∞.

1. For any c3 > 0, there exists a positive constant c4 such that

P
(

max
q+1≤j≤p

|α̂A,j − αA,j| ≥ c3n
−κ

)
≤ 2d exp{−c4n

1−2κ}.

2. For any c5 > 0, there exists a positive constant c6 such that

P
(

max
q+1≤j≤p

|β̂M
j − βM

M,j| ≥ c5n
−κ

)
≤ d exp(−c6n

1−2κ(knKn)
−2) + dnr2 exp(−r0K

a
n),

where r2 = qr1 + s1.

3. For any c7 > 0, there exists a positive constant c8 such that

P
(

max
q+1≤j≤p

|α̂jβ̂
M
j − αA,jβ

M
M,j| ≥ c7n

−κ

)
≤2d exp{−cn1−2κ}+ d exp{−cn1−2κ(knKn)

−2}

+ dnr2 exp{−r0K
a
n}+ 2d exp{−cn1−κ},

where r2 = qr1 + s1.
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4. If Condition 1 also holds, then by taking λ = c5n
−κ with c5 ≤ c3/2, we have

P(M⋆ ⊂ M̂λ) ≥ 1− s exp(−c4n
1−2κ)(knKn)

−2)− nr2s exp(−r0K
a
n),

for some constant c5, where s = |M⋆| is the size of the set of true mediators

Proof 1. By our model assumptions, α̂j ∼ N
(
αA,j, (U

TU)−1
(q+2),(q+2)σ

2
M

)
where (UTU)−1

(q+2),(q+2)

denotes the bottom-right corner entry of (UTU)−1. This can be expressed in closed

form as

(UTU)−1
(q+2),(q+2) =

{
AT (I − UC(U

T
CUC)

−1UT
C )A

}−1
.

Thus,

P(|α̂A,j − αA,j| ≥ c3n
−κ) =

= P

 |α̂A,j − αA,j|√
{AT (I − UC(UT

CUC)−1UT
C )A}

−1
σ2
M

≥ c3n
−κ√

{AT (I − UC(UT
CUC)−1UT

C )A}
−1

σ2
M



= 2

1− Φ

 c3n
−κ√

{AT (I − UC(UT
CUC)−1UT

C )A}
−1

σ2
M

 .

Conditional on (X,A), AT (I − UC(U
T
CUC)

−1UT
C )A = nVar[A|UC], so the above is

= 2

(
1− Φ

(
c3n

−κ√
(nVar[A|UC])−1σ2

M

))

= 2

(
1− Φ

(
c3n

1/2−κ√
(Var[A|UC])−1σ2

M

))
n→∞−−−→ 0.
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In particular, using the Chernoff bound for Gaussian random variables yields

P(α̂A,j ≥ αA,j + t) ≤ exp{−t2/(2Var(α̂A,j)}

⇒ P(|α̂A,j − αA,j| ≥ t) ≤ 2 exp{−t2/(2
{
AT (I − UC(U

T
CUC)

−1UT
C )A

}−1
σ2
M)}

= 2 exp{−t2n/(2Var[A|UC]σ
2
M}

⇒ P(|α̂A,j − αA,j| ≥ c3n
−κ) ≤ 2 exp{−(c3n

−κ)2n/(2Var[A|UC]σ
2
M} = 2 exp{−c4n

1−2κ}.

Finally, the conclusion follows from applying Bonferonni’s inequality to obtain

P
(

max
q+1≤j≤p

|α̂A,j − αA,j| ≥ c3n
−κ

)
≤ 2d exp{−c4n

1−2κ}.

2. Let the event Λn = {∥M∥∞ ≤ Kn; |Y | ≤ K⋆
n}. By Lemma 5, Condition 2.2 implies the

bound

P(|Y | ≥ u) ≤ s1 exp{−s0u}.

Looking at the complementary event to Λn then yields

P(Λc
n) ≤ P(∥M∥∞ > Kn) + P(|Y | ≥ K⋆

n) ≤ r2 exp{−r0K
a
n}.
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Combining the previous statement with Theorem 3.3.3, let 1+ t = cSnn
−1/2−κ/(16kn),

we have

P
(
|β̂M

M,j − βM
M,j| ≥ c3n

−κ
)
≤ P

(
∥β̂M

Cj − βM
Cj ∥ ≥ c3n

−κ
)

≤ exp
(
−c4n

1−2κ/(knKn)
2
)
+ nr2 exp(−r0K

a
n)

for some constant c4 > 0 for all j ∈ M⋆. Applying Bonferroni’s inequality then yields

P
(

max
q+1≤j≤p

|β̂M
M,j − βM

M,j| ≥ c3n
−κ

)
≤ d

(
exp

(
−c4n

1−2κ/(knKn)
2
)
+ nr2 exp(−r0K

a
n)
)
,

which proves the statement.

3. Since

|α̂A,jβ̂
M
M,j − αA,jβ

M
M,j| = |α̂A,jβ̂

M
M,j − α̂A,jβ

M
M,j + α̂A,jβ

M
M,j − αA,jβ

M
M,j|

≤ |α̂A,j||β̂M
M,j − βM

M,j|+ |βM
M,j||α̂A,j − αA,j|,

by the triangle inequality,

= |α̂A,j − αA,j + αA,j||β̂M
M,j − βM

M,j|+ |βM
M,j||α̂A,j − αA,j|

≤ |α̂A,j − αA,j||β̂M
M,j − βM

M,j|+ |αA,j||β̂M
M,j − βM

M,j|

+ |βM
M,j||α̂A,j − αA,j|,
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again by application of the triangle inequality. Then P
(
|α̂A,jβ̂

M
M,j − αA,jβ

M
M,j| ≥ cn−κ

)
is bounded above by

P
(
|α̂A,j − αA,j||β̂M

M,j − βM
M,j|+ |αA,j||β̂M

M,j − βM
M,j|+ |βM

M,j||α̂A,j − αA,j| ≥ cn−κ
)
,

which is further bounded above by

P
(
|α̂A,j − αA,j||β̂M

M,j − βM
M,j| ≥ cn−κ

)
+ P

(
|αA,j||β̂M

M,j − βM
M,j| ≥ cn−κ

)
+P

(
|βM

M,j||α̂A,j − αA,j| ≥ cn−κ
)
.

Parts (1) and (2) of this theorem give us bounds for the last two terms, so we must

still bound P
(
|α̂A,j − α||β̂M

j − βM
M,j| ≥ cn−κ

)
. Since

P
(
|α̂A,j − α||β̂M

j − βM
M,j| ≥ cn−κ

)
= P

(∣∣∣∣∣
(
(α̂A,j − α)

σα

)(
β̂M
j − βM

M,j

σβ

)∣∣∣∣∣ ≥ cn−κ

σα,jσβ,j

)
,

where σ2
α,j and σ2

β,j denote the variances of α̂A,j and β̂j, respectively. This bound

can be found using the distribution of the product of two Gaussian variables. Letting

W =

(
(α̂A,j − α)

σα

)(
β̂M
j − βM

M,j

σβ

)
, W has characteristic function [59]

E[e−itW ] = φW (t) = (1− i(1 + ρ)t)−1/2(1 + i(1− ρ)t)−1/2,
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where ρ = Corr(α̂A,j, β̂
M
M,j). This allows us to apply the Chernoff bound

P(W ≥ a) ≤ E[etW ]

eta
=

φ(−it)

eta
= exp{−ta} {(1− (1 + ρ)t)(1 + (1− ρ)t)}−1/2 ,

⇒ P(|W | ≥ a) ≤ 2 exp{−ta} {(1− (1 + ρ)t)(1 + (1− ρ)t)}−1/2 .

Minimizing the right hand side (or equivalently, its log) yields a minimum at t∗ =
ρ2 − 2aρ− 1 +

√
4a2 + (1− ρ2)2

2a(1− ρ2)
.

Plugging this in, along with a = cn−κ/(σα,jσβ,j) = c′n1−κ, then yields that P

(∣∣∣∣∣
(
(α̂A,j − α)

σα

)(
β̂M
j − βM

M,j

σβ

)∣∣∣∣∣ ≥ cn−κ

σα,jσβ,j

)
is bounded above by

exp

{
2c′n1−κρ+ 1− ρ2 −

√
4c′2n2−2κ + (1− ρ2)2

2(1− ρ2)

}
×
{
1− 2ρt∗ − (1− ρ2)t∗2

}−1/2
.

Assuming that |ρ| ̸= 1, the first term of the product is bounded by O(exp{−cn1−κ}),

while the second term is O(1). Both terms are positive functions, so the total term is

O(exp{−cn1−κ}).

Putting these together, we have

P(|α̂A,jβ̂
M
j − αA,jβ

M
M,j| ≥ cn−κ) ≤2 exp{−cn1−2κ}+ exp{−cn1−2κ(knKn)

−2}

+ nr2 exp{−r0K
a
n}+ 2 exp{−cn1−κ}.

The conclusion then follows from applying Bonferonni’s inequality.
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4. Consider the event An =
{
maxj∈M⋆

∣∣∣α̂A,jβ̂
M
M,j − αjβ

M
M,j

∣∣∣ ≤ c3n
−2κ/2

}
. On An, Corol-

lary 1 implies that for all j ∈ M⋆,

|α̂A,jβ̂
M
M,j| ≥ c3n

−2κ.

Let λ = c5n
−2κ ≤ c3n

−2κ/2. On the event An this leads to M⋆ ⊂ M̂λ, i.e. we have

the sure screening property on An. Using the first result and the Bonferonni inequality

over all considered j, we obtain the concluding probability statement.

After proving the sure screening property, we consider other desirable properties for our

method. In particular the following condition allows us to bound the size of the set selected

by MSS, which helps us limit the number of false positives selected by the screener.

Condition 3 1. The variances Var(Uα⋆) = α⋆TΣUα
⋆, Var(V β⋆) = β⋆TΣMβ⋆, and b′′(·)

are bounded.

2. The minimum eigenvalues of the matrices E[ZT
j Zj] is larger than a positive constant,

uniformly over j.

3. Letting

Z = E
{
EL [M | U ]T

[
V β⋆ − UβM

C
]}

,

it holds that ∥Z∥2 = o{λmax(ΣM |U)}, with λmax(ΣM |U) the largest eigenvalue of

ΣM |U = E [M− EL (M | U)] [M− EL(M | U)]T .G
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Condition 3.1 is a regularity condition on the conditional means of M given U and

Y given V . For Gaussian LSEMS, b(θ) = θ2/2, so all of Condition 3.1 applies in our

scenario. Condition 3.2 is a mild stability condition for our marginal regression estimators

- in particular it guarantees that (ZT
j Zj) is invertible and that the variance of our marginal

maximum likelihood estimators is not too high. For Condition 3.3, in our Gaussian LSEM

setting EL(M |U) = Uα⋆, so Z = E
[
α⋆T (UTV β⋆ − UTUβM

C )
]
= 0 by the score equations, so

this condition is also satisfied.

Theorem 3.3.5 Under Conditions 2 and 3, for λ = c6n
−2κ, there exists a c4 > 0 such that

P
(∣∣∣M̂λ

∣∣∣ ≤ O
(
n2κλmax

(
ΣM |U

)))
≥ 1− p

(
exp

(
−c4n

1−2κ (knKn)
−2)+ nr2 exp (−r0K

α
n )
)
.

Proof Claim 1: ∥βM∥2 = O(λmax(ΣM |U)). This claim implies that the size of the set

{j = q + 1, ..., p : |βM
M,j| > ϵn−κ} is bounded by O(n2κλmax(ΣM |U)) for every ϵ > 0. We will

first accept this claim then prove it later.

Let ϵ > 0, and consider the events Bn =
{
maxq1≤j≤p |β̂M

M,j − βM
M,j| ≤ ϵn−κ

}
. On the event

Bn, the set {j = q + 1, ..., p : |β̂M
M,j| > 2ϵn−κ} is a subset of {j = q + 1, ..., p : |βM

M,j| > ϵn−κ},

which has size bounded by O(n2κλmax(ΣM |U)) Taking ϵ = c5/2 yields

P(|M̂λ| ≤ O(n2κλmax(ΣM |U))) ≥ P(Bn).

By Theorem (3.3.4),

P(Bn) ≥ 1− d
(
exp{−c4n

1−2κ(knKn)
−2}+ nr2 exp{−r0K

a
n}
)
.
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Proof of Claim 1: By Condition 3.2, Ωjj −ΩT
CjΩ

−1
CCΩCj is uniformly bounded below. Since

CovL(Y,Mj|MC) = (Ωjj − ΩT
CjΩ

−1
CCΩCj)β

M
M,j,

then

|βM
M,j| ≤ D1|CovL(Y,Mj|U)

for some constant D1 > 0 Using equations (3.29), (3.37), and Lipschitz continuity of b′, we

then obtain

|CovL(Y,Mj|U)| = E |Mj{b′(V β⋆)− b′(UβM
C )}|

≤ D2 E |Mj(V β⋆ − UβM
C )|

= D2 E |Mj(Uβ∆
C +Mβ⋆

M)|,

where β∆
C = β⋆

C − βM
C . Bounding the right hand side of this inequality requires us to

bound

∥EMT
j Mβ⋆ +MT

j Uβ∆
C ∥.

Combining the property of least-squares E
[
EL(M |U)TU

]
= E

[
MTU

]
with the definition of

ΣM |U in Condition 3.3, we obtain

∥∥ΣM |Uβ
⋆
M + EEL(M |U)

[
Uβ∆

C + EL(M
T |U)β⋆

M

]∥∥2 = ∥ΣM |Uβ
⋆
M +Z∥2,
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where Z = EEL(M |U)(Mβ⋆
M − UβM

C ) as in Condition 3. By the Law of Total Variance,

this term is bounded:

∥ΣM |Uβ
⋆
M +Z∥2 = β⋆T (ΣM |U)

2β⋆
M + 2ZTΣM |U +ZTZ

≤ λmax(ΣM |U)(β
⋆TΣM |Uβ

⋆
M) + 2ZTΣM |U +ZTZ

≤ λmax(ΣM |U)Var(M
Tβ⋆) + 2ZTΣM |U +ZTZ.

By Condition 3, the last two terms are o(λmax(ΣM |U)), so

∥βM∥2 = O(λmax(ΣM |U)),

which proves Claim 1.

Claim 2: ∥αA ◦ βM
M∥2 = O(Var(X)−1λmax(ΣM |U)), where αA ◦ βM

M here denotes the

Hadamard (entrywise) product between αA and βM
M . (to be proven)

Accepting Claim 2 for now, we have |{j = q+1, ..., p : |αA,jβ
M
M,j| > ϵn−κ}| ≤ O(n2κλmax(ΣM)λmax(ΣM |U))

∀ϵ > 0. Let ϵ > 0, and consider events Bn = {maxq+1≤j≤p |α̂A,jβ̂
M
M,j −αA,jβ

M
M,j| ≤ ϵn−κ}. On

event Bn, we have

{j = q + 1, ..., p : |α̂A,jβ̂
M
M,j| > 2ϵn−κ} ⊂ {j = q + 1, ..., p : |α̂A,jβ̂

M
M,j| > ϵn−κ},

with the right hand set having size bounded by O(n2κλmax(ΣM)λmax(ΣM |U)). Letting ϵ = c/2

yields

P
(
|M̂λ| ≤ O(n2κλmax(ΣM)λmax(ΣM |U))

)
≥ P(Bn).
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By Theorem (3.3.4) P(Bn) ≥ 1−O
(
n(1−κ)/2 exp {−cn1−κ}

)
, as needed.

Proof of Claim 2: Since ∥αA◦βM
M∥ ≤ Tr(αA(β

M
M )T ) ≤ ∥αA∥∥βM

M∥, and ∥βM
M∥ is bounded

by Claim 1, it remains to bound ∥αA∥.

Indeed, by Condition (3.1) we have that Var(Uα⋆) is bounded, i.e. Var(Uα⋆) ≤ O(1) ,

which in particular implies that Var(Aα⋆
A) ≤ O(1). Expanding this yields

Var(Aα⋆
A) = α⋆T

A Var(A)α⋆
A = Var(A)α⋆T

A α⋆
A =≤ O(1)

which implies

∥α⋆
A∥22 ≤ O(Var(A)−1).

3.4 Selection of Thresholding Parameter

Clearly, the exact choice of λ affects which mediators are screened out from M̂λ. In this

section, we derive some choices for this threshold. The following will be used:

α̂j = (UTU)−1UTMj, E[α̂A,j] = αA,j, σ̂
2
α := Var(α̂A,j) = σ2

M(UTU)−1
q+2,q+2,

β̂M
M,j = (ZT

j Zj)
−1ZT

j Y , E[β̂M
M,j] = βM

M,j,

σ̂2
β := Var(β̂M

M,j) = E[Var(β̂M
M,j|X,U,Mj)] + Var(E[β̂M

M,j|X,U,Mj)] = σ2 E[(ZT
j Zj)

−1]q+3,q+3.

Consider the potential mediators to be in four groups:

M1 = {j ∈ M : α⋆
A,j ̸= 0, β⋆

M,j ̸= 0},

M2 = {j ∈ M : α⋆
A,j ̸= 0, β⋆

M,j = 0},

M3 = {j ∈ M : α⋆
A,j = 0, β⋆

M,j ̸= 0}, and
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M4 = {j ∈ M : α⋆
A,j = 0, β⋆

M,j = 0}.

Define Zα,j =
α̂A,j

σ̂α

and Zβ,j =
β̂j

σ̂β,j

, and TSobel,j =
α̂A,jβ̂

M
M,j√

(β̂M
M,j)

2σ̂2
α + α̂2

A,jσ̂
2
β

=
Zα,jZβ,j√
Z2

α + Z2
β

.

Liu et al. [28] showed that the distribution of Zα,jZβ,j depends on which group the po-

tential mediator comes from. In particular, for non-mediators in M2 ∪M3,

Zα,jZβ,j ∼ N (0, 1), while for non-mediators inM4, Zα,jZβ,j ∼ N (0, 1
4
). This results in a mix-

ture distribution for the asymptotic null distribution of TSobel,j. Denoting this asymptotic

null cumulative distribution distribution F (x) = (π2 + π3)Φ(x) + π4Φ(2x), where Φ denotes

the standard normal cdf. We use a similar idea to [28] where these distributions in combi-

nation with the relative proportion of potential mediators in M2, M3, and M4 select the

most appropriate choice of λ.

We consider two types of thresholds when selecting the set M̂ according to the conven-

tions of [60]. The first type, soft thresholding, uses the null distribution of the computed

statistic for screening to compute a threshold. The second type, hard thresholding, prespec-

ifies a size d of variables to screen out of M. After the test statistics Tj’s are computed, the

mediators with the largest values of |Tj| are recruited into M̂.

3.4.1 Soft Thresholding: FDR Control Approach

In the high-dimensional setting, Bonferonni’s approach of controlling Type I error is too

conservative and often misses important signals. In this setting, it often more useful to

control the false discovery rate (FDR) of a screening approach. The following condition

allows FDR control when using TSobel,j to recruit variables into M̂λ.
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Condition 4 (i) For any j, let eij = Yi−zT
i,CjβCj for i = 1, ..., n. For a given j, Var(eij) ≥

c for some positive c > 0 and i = 1, ..., n, and supi≥1 E |ei|2+χ < ∞ for some χ > 0.

(ii) For j ∈ (M⋆)c, CovL(A,Mj|UC) = 0 or CovL(Y,Mj|U) = 0.

Theorem 3.4.1 Under Conditions 2, 3, and 4, if we choose

M̂λ = {j : |TSobel,j| ≥ λ} ,

where λ := F−1(1− f/(2p)) and f is the maximum tolerated number of false positives, then

for some constant c > 0,

E

(
|M̂λ ∩ (M⋆)c|

|(M⋆)c|

)
≤ f

p
+ cn−1/2.

Proof Note that E

(
|M̂λ ∩ (M⋆)c|

|(M⋆)c|

)
=

1

p− |M⋆|
∑
j∈Mc

1

P {|TSobel,j| ≥ λ}.

Under Conditions 2, 3, and 4, Theorem 3.3.1 says we have αA,j = 0 or βM
M,j = 0 for

j ∈ Mc
⋆. Since U includes an intercept term, E ei = 0. Since TSobel,j asymptotically follows

a mixture distribution with probability (π2 + π3) of coming from N (0, 1) and probability π4

of coming from N (0, 1
4
), the right hand side of the previous inequality is

1

p− |M⋆|

∑
j∈Mc

⋆

4∑
k=2

P
{
|TSobel,j| ≥ λ

∣∣j ∈ Mk

}
πk

=
1

p− |M⋆|

∑
j∈Mc

⋆

2(1− Φ(λ))(π2 + π3) + 2(1− Φ(2λ)π4

= 2(1− Φ(λ))(π2 + π3) + 2(1− Φ(2λ))π4.
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The asymptotic null cumulative distribution function of TSobel,j is F (x) = (π2 + π3)Φ(x) + π4Φ(2x).

Thus, there exists c > 0 such that

sup
z

|P (TSobel,j ≤ z)− F (z)| ≤ cn−1/2.

Putting these statements together yields

E

(
|M̂λ ∩ (M⋆)c|

|(M⋆)c|

)
≤ 1

p− |M⋆|

∑
j∈Mc

⋆

2(1− F (λ)) + cn−1/2

= 2(1− F (λ)) + cn−1/2.

Plugging in λ = F−1(1− f/(2p)) then yields

2(1− F (λ)) + cn−1/2 = f/p+ cn−1/2,

as needed.

Note that the left hand side of the previous inequality, E

(
|M̂λ ∩ (M⋆)c|

|(M⋆)c|

)
, is the false

positive rate rather than the FDR typically defined as E

(
|M̂λ ∩ (M⋆)c|

|M̂λ|

)
. [61] pointed out

that since

|M̂λ ∩ (M⋆)c|
|M̂λ|

=
|M̂λ ∩ (M⋆)c|

|Mc
⋆|

|(M⋆)c|
|M̂λ|

<
|M̂λ ∩ (M⋆)c|

|Mc
⋆|

p

|M̂λ|
,

controlling the false positive rate at level f/p is equivalent to controlling the FDR at level

f/|M̂λ|, conditional on |M̂λ|.
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In practice, the true sizes of the sets M1, M2, M3, and M4 are unknown, so the pro-

portions π2, π3, and π4 are also unknown. Jin and Cai [62] developed the JC-Method,

which uses the empirical characteristic function and Fourier analysis, for estimating the

proportion of non-mediators in each group, say with π̂2, π̂3, and π̂4 . These estimates

can then be used to construct weights ŵ2 = π̂2/(π̂2 + π̂3 + π̂4), ŵ3 = π̂3/(π̂2 + π̂3 + π̂4), and

ŵ4 = π̂4/(π̂2 + π̂3 + π̂4), as in [28]. Finally, the asymptotic null distribution of TSobel can be

estimated with F̂ (x) = (ŵ2 + ŵ3)Φ(x) = ŵ4Φ(2x) to create the cutoff value λ = F̂−1(1− f/(2p)).

3.4.2 Hard Threshold

Fan and Lv [8] recommend to fix a number, say d, of predictors to keep after screening.

Commonly recommended values of d are d = ⌊N/ log(N)⌋ or d = N − 1. This equates

to sorting the statistics |T̂Sobel| to obtain the order statistics T(1), ..., T(p) then setting λ :=

T(p−d+1). This thresholding rule is the standard choice in the literature [63] and works

well with the MSS method as well as shown in our simulation studies. This approach to

thresholding is called hard thresholding by [60] as opposed to soft thresholding which uses

FDR control to generate a probabilistic threshold. A researcher can choose a large value of

d (such as d = n − 1) to conservatively ensure that all true mediators are included in the

selected set with high probability, but too large of d will also cause the screening method to

select too many false mediators. Too small of d, on the other hand, causes the sure screening

property to fail and it becomes impossible for the screening method to select all of the true

mediators. While the standard d = ⌊N/ log(N)⌋ is common in practice, [63] also developed

the REflection via Data Splitting (REDS) procedure for selecting d in a general screening
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setting. In practice, hard thresholding performs very well and is very quick to implement as

it allows the user to skip estimating the composite null proportions while still maintaining

the sure screening property. The standard d = ⌊N/ log(N)⌋ or any d < n also guarantees

that the screened set of variables is smaller than the sample size, which is not always the

case with the soft thresholded methods.

3.5 Comparison with Other Methods

3.5.1 Comparison with SIS

To fully understand the behavior of MSS, we investigate the theory of how it compares

to SIS in terms of power and FDR. Specifically we would like to show that for j ∈ M1,

P(j ∈ M̂MSS|j ∈ M1) ≥ P(j ∈ M̂SIS|j ∈ M1),

and that for j ∈ M \M1,

P(j ∈ M̂MSS|j ∈ M \M1) ≤ P(j ∈ M̂SIS|j ∈ M \M1).

SIS targets the partial correlations betweenMj and Y , say ρj =
Cov(Mj ,Y )

σMjσY
. Assuming without

loss of generality that the columns of M have been scaled such that Var(Mj) = 1 for all j,
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this correlation learning is equivalent to choosing the mediators Mj with the largest absolute

covariance with Y . According to our model,

Cov(Mj, Y |X) = Cov(Mj, β0 +XTβX + AβA +

p∑
k=1

βM,kMk + ϵ|X)

= βA Cov(Mj, A|X) +

p∑
k=1

βM,k Cov(Mj,Mk|X)

= Var(A)αA,j

(
βA +

p∑
k=1

αA,kβM,k

)
+

p∑
k=1

βM,k Cov(ej, ek)

= αA,j Var(A)TE +

p∑
k=1

βM,kσMjk, (3.40)

where TE = βA +
∑p

k=1 αA,kβM,k denotes the total effect of A on Y . By application of the

triangle inequality, we also have

|Cov(Mj, Y )| ≤ |αA,j|Var(X)|TE|+

∣∣∣∣∣
p∑

k=1

βM,kσMjk

∣∣∣∣∣ . (3.41)

This decomposition suggests several components of the mediation model that may affect

performance of SIS:

• For j ∈ M1 and M3, i.e. when αA,j ̸= 0, |Cov(Mj, Y )| increases as |TE| increases,

and decreases as |TE| decreases.

• In particular, large |TE| may cause SIS to recruit too many variables from M3, while

small |TE| may cause SIS to recruit too few variables from M1.

• Note that |TE| is maximized when all αA,jβM,j have the same sign for all j ∈ M1.
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• Correlation of Mj with mediators in M1 and M2, i.e. mediators for which βM,k ̸= 0,

can further increase false positives and false negatives.

• In particular, if |TE| is small, SIS may recruit mediators from M2 with large β values.

3.5.2 Comparison with HDMT

[1] derived a similar statistical procedure to ours for the context of multiple hypothesis

testing. We include their Proposition 1 here for completeness, as it outlines a condition for

Zα and Zβ under which Sobel-Comp has greater power than HDMT. Details of proof can be

found [1].

Proposition 1 (Proposition 1 from [1]) Suppose |Zβ,j| > |Zα,j| ≥ 0. The case-specific

p-value under H00,j from Sobel-comp is smaller than that from HDMT if

|Zβ,j| > max

(
|Zα,j| ,

{
4
(
Φ−1

(
2Φ (|Zα,j|)2

))−2 − Z−2
α,j

}−1/2
)
,

where Φ(·) is the cumulative distribution function of a standard normal random variable.

The authors further explain that the above result requires π4 to be near one to hold.

Further, this result is also true when Zβ,j and Zα,j are interchanged.

3.6 Numerical Studies

To evaluate the performance of model selection based on our marginal Sobel screener

and compare its performance with other model selection approaches, we present a variety

of simulations and a real data example. The other model selection procedures considered
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are SIS, CSIS, MaxP, and DACT. MaxP screens using pMaxP,j = max(pα,j, pβ,j), where

pα,j = 2∗(1−Φ(|α̂A,j|/σ̂α,j)) and pβ,j = 2∗(1−Φ(|β̂M
M,j|/σ̂β,j)) and is found to be conservative

in practice. DACT [28] corrects this formulation by accounting for the composite nature of

the null hypothesis and screening using pDACT,j =
π2pα,j + π3pβ,j + π4p

2
MaxP,j

π2 + π3 + π4

. We consider

both soft-thresholded and hard-thresholded approaches to screening to reflect both the case

when the researcher may have no knowledge of the true sparsity of the mediators (soft

thresholding) and the case when the researcher has some prior knowledge of how many

mediators should be kept (hard thresholding). Note that the hard and soft threshold of

variable screening [60] differs from hard and soft thresholding in penalized regression and

variable selection literature.

3.6.1 Simulation Studies

For our first set of simulation study, we consider the LSEM model:

M = Xα+ e, e
iid∼ Np(0, Ip),

Y = [X,M ]β + ϵ, ϵ
iid∼ N (0, 1).

For j ∈ M1, αA,j ̸= 0 and βM,j ̸= 0. For j ∈ M2, αA,j = 0 while βM,j ̸= 0. For j ∈ M3,

αA,j ̸= 0 while βM,j = 0. Finally, for j ∈ M4, both αA,j = 0 and βM,j = 0. This structure is

chosen so that non-mediators, i.e. Mj, j ̸∈ M1, come from the composite null distribution

described throughout the paper. For this study the following procedure is used:

1. Generate sets (M1,M2,M3,M4) and parameters α⋆, β⋆ according to settings.
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2. For i = 1, 2, ..., nsim:

(a) Generate data (X,A,M ,Y ): For our numerical studiesX = ∅ andA ∼ BIN(p = .5)

are first generated. Then, α and β are generated from a normal or uniform dis-

tribution with difference variace values for each case. Once all parameters and

preconditioned variables are generated, (M ,Y ) are then generated according to

its LSEM model.

(b) Apply MSS to obtain M̂MSS. If a soft thresholding rule is used, save the random

size of the selected set |M̂MSS| = m̂MSS. For a hard thresholding rule, m̂MSS is

preset to log(N)/N .

(c) Apply SIS using m̂MSS as the prespecified number of variables to keep, yielding

M̂SIS also of size m̂MSS.

(d) Apply MaxP screener and DACT using the same soft thresholding or hard thresh-

olding rule as in (b) and (c) to obtain M̂MaxP and M̂DACT .

(e) For each procedure PROC ∈ {SIS,CSIS,MSS,MaxP,DACT} :

i. Compute sample TPR: TPRPROC =
|M̂PROC ∩M1|

m1

.

ii. Compute sample FDR: FDRPROC =
|M̂PROC ∩Mc

1|
m̂PROC

.

3. Estimate Power and FDR by averaging over simulated results.

For each setting, we generate nsim = 200 replications to estimate TPR and FDR of each

method. Further details are given in the captions of each figure. Inspired by the decom-

position of the marginal covariance shown in (3.41), the parameters α and β are drawn

from distributions symmetric around zero as is common in both real life situations and in
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non-informative priors in Bayesian statistics. In this common scenario, |TE(A,M, Y )| =

|βX +
∑p

j=1 αjβj| was small, resulting in small marginal correlation between the mediators

and response even for mediators Mj for whom αjβj ̸= 0. As shown in our results, this drives

up the FDR of the SIS and related methods while MSS outperforms them in terms of both

higher TPR (i.e. better power) and lower FDR.

Comparision 1a: Fixed p, varying N , hard thresholds

For our first set of simulations, we consider the case where the number of candidate medi-

ators p is fixed. Each selection procedure computes some test statistic Tj for each mediator,

then selects d = ⌊logN/N⌋ mediators with the most significant values of Tj. For each case

p = 100, 000 while N ∈ {200, 500, 1000} varies. Of the p mediators, let π = (.01, .02, .02, .95)

denote the proportions of mediators that are in M1, M2, M3, and M4, respectively. We

also consider different distributions for the generation of the nonzero parameters α and β,

indexed by a variance parameter σ2 ∈ {.1, .3, .7, 1}. One point of note is that under this

hard thresholding rule and these parameter settings, MaxP and DACT yielded the same

selected sets, causing their lines to be indistinguishable. This is because when π4 is close to

1, pDACT,j ∝ π2pα,j + π3pβ,j + π4p
2
MaxP ≈ p2MaxP,j, which keeps the same ordering as pMaxP,j.

Comparision 1b: Fixed p, varying N , soft thresholds

Our second set of simulations mirrors the first, but applies a soft thresholding rule for each

selection procedure. For each case p = 100, 000 while N ∈ {200, 500, 1000} varies. Of the

p mediators, let π = (.01, .02, .02, .95) denote the proportions of mediators that are in M1,
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M2, M3, and M4, respectively. We also consider different distributions for the generation

of the nonzero parameters α and β, indexed by a variance parameter σ2 ∈ {.1, .3, .7, 1}.
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Figure 3.1.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .1). Here the line representing MSS is in black,
SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in purple. Hard
thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.2.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .3). Here the line representing MSS is in black,
SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in purple. Hard
thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.3.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .5). Here the line representing MSS is in black,
SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in purple. Hard
thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.4.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .7). Here the line representing MSS is in black,
SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in purple. Hard
thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.5.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, 1). Here the line representing MSS is in black,
SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in purple. Hard
thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.6.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such that
Var(αA,j) = .1 for nonzero αA,j and Var(βM,j) = .1 for nonzero βM,j. Here the line repre-
senting MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green, and
MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.7.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such that
Var(αA,j) = .3 for nonzero αA,j and Var(βM,j) = .3 for nonzero βM,j. Here the line repre-
senting MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green, and
MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.8.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such that
Var(αA,j) = .5 for nonzero αA,j and Var(βM,j) = .5 for nonzero βM,j. Here the line repre-
senting MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green, and
MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.9.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such that
Var(αA,j) = .7 for nonzero αA,j and Var(βM,j) = .7 for nonzero βM,j. Here the line repre-
senting MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green, and
MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.10.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such that
Var(αA,j) = 1 for nonzero αA,j and Var(βM,j) = 1 for nonzero βM,j. Here the line representing
MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green, and MaxP in
purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.12.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .3). Here the line representing MSS is in black,
SIS in red, DACT in green, and MaxP in purple. Soft thresholding rule is applied with
f = 250.
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Figure 3.11.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .1). Here the line representing MSS is in black,
SIS in red, DACT in green, and MaxP in purple. Soft thresholding rule is applied with
f = 250.
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Figure 3.13.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .5). Here the line representing MSS is in black,
SIS in red, DACT in green, and MaxP in purple. Soft thresholding rule is applied with
f = 250.
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Figure 3.14.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, .7). Here the line representing MSS is in black,
SIS in red, DACT in green, and MaxP in purple. Soft thresholding rule is applied with
f = 250.
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Figure 3.15.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies. Nonzero
α and β parameters are generated from N (0, 1). Here the line representing MSS is in black,
SIS in red, DACT in green, and MaxP in purple. Soft thresholding rule is applied with
f = 250.
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Figure 3.16.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies.
Nonzero αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such
that Var(αA,j) = .1 for nonzero αA,j and Var(βM,j) = .1 for nonzero βM,j. Here the line
representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green,
and MaxP in purple. Soft thresholding rule is applied with f = 250.
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Figure 3.17.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies.
Nonzero αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such
that Var(αA,j) = .3 for nonzero αA,j and Var(βM,j) = .3 for nonzero βM,j. Here the line
representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green,
and MaxP in purple. Soft thresholding rule is applied with f = 250.
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Figure 3.18.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies.
Nonzero αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such
that Var(αA,j) = .5 for nonzero αA,j and Var(βM,j) = .5 for nonzero βM,j. Here the line
representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green,
and MaxP in purple. Soft thresholding rule is applied with f = 250.
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Figure 3.19.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies.
Nonzero αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such
that Var(αA,j) = .7 for nonzero αA,j and Var(βM,j) = .7 for nonzero βM,j. Here the line
representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT in green,
and MaxP in purple. Soft thresholding rule is applied with f = 250.
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Figure 3.20.: Comparison of TPR and FDR when p = 100, 000 is fixed and N varies.
Nonzero αA,j and βM,j parameters are generated from UNIF(−c, c), where c is chosen such
that Var(αA,j) = 1 for nonzero αA,j and Var(βM,j) = 1 for nonzero βM,j. Soft thresholding
rule is applied with f = 250.
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Comparison 2: Fixed N , varying p, hard thresholds

For this set of simulations, we test how the hard-thresholded versions of MSS and SIS

perform as N is fixed and the total number of mediators p ∈ {1000, 10000, 100000} varies.

The sizes of the mediator sets (m1,m2,m3,m4) vary as fixed proportions of p determined

by (m1,m2,m3,m4) = p ∗ (.01, .02, .02, .95). As with Comparison 1, under this hard thresh-

olding rule and these parameter settings MaxP and DACT yielded the same selected sets,

causing their lines to be indistinguishable.
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Figure 3.21.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero α and β parameters are generated from N (0, .1).
Here the line representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT
in green, and MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.22.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero α and β parameters are generated from N (0, .3).
Here the line representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT
in green, and MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.23.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero α and β parameters are generated from N (0, .5).
Here the line representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT
in green, and MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.24.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero α and β parameters are generated from N (0, .7).
Here the line representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT
in green, and MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.25.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero α and β parameters are generated from N (0, 1).
Here the line representing MSS is in black, SIS in red, CSIS (conditional on X) in blue, DACT
in green, and MaxP in purple. Hard thresholding rule is applied with d = ⌊N/ logN⌋.
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Figure 3.26.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero αA,j and βM,j parameters are generated from
UNIF(−c, c), where c is chosen such that Var(αA,j) = .1 for nonzero αA,j and Var(βM,j) = .1
for nonzero βM,j. Here the line representing MSS is in black, SIS in red, CSIS (conditional
on X) in blue, DACT in green, and MaxP in purple. Hard thresholding rule is applied with
d = ⌊N/ logN⌋.
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Figure 3.27.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero αA,j and βM,j parameters are generated from
UNIF(−c, c), where c is chosen such that Var(αA,j) = .3 for nonzero αA,j and Var(βM,j) = .3
for nonzero βM,j. Here the line representing MSS is in black, SIS in red, CSIS (conditional
on X) in blue, DACT in green, and MaxP in purple. Hard thresholding rule is applied with
d = ⌊N/ logN⌋.

80



0.25

0.50

0.75

1.00

0 20000 40000 60000
p

T
P

R

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000
p

F
D

R

Figure 3.28.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero αA,j and βM,j parameters are generated from
UNIF(−c, c), where c is chosen such that Var(αA,j) = 0.5 for nonzero αA,j and Var(βM,j) =
0.5 for nonzero βM,j. Here the line representing MSS is in black, SIS in red, CSIS (conditional
on X) in blue, DACT in green, and MaxP in purple. Hard thresholding rule is applied with
d = ⌊N/ logN⌋.

81



0.25

0.50

0.75

1.00

0 20000 40000 60000
p

T
P

R

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000
p

F
D

R

Figure 3.29.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero αA,j and βM,j parameters are generated from
UNIF(−c, c), where c is chosen such that Var(αA,j) = 0.7 for nonzero αA,j and Var(βM,j) =
0.7 for nonzero βM,j. Here the line representing MSS is in black, SIS in red, CSIS (conditional
on X) in blue, DACT in green, and MaxP in purple. Hard thresholding rule is applied with
d = ⌊N/ logN⌋.
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Figure 3.30.: Comparison of TPR and FDR when N = 500 is fixed and
p ∈ {1000, 10000, 100000} varies. Nonzero αA,j and βM,j parameters are generated from
UNIF(−c, c), where c is chosen such that Var(αA,j) = 1 for nonzero αA,j and Var(βM,j) = 1
for nonzero βM,j. Here the line representing MSS is in black, SIS in red, CSIS (conditional
on X) in blue, DACT in green, and MaxP in purple. Hard thresholding rule is applied with
d = ⌊N/ logN⌋.

Comparison 3: Simulation of Settings of a Real Data Set

To better understand how our screening approach performs on real data, we create a

simulation under the same (N, p) settings as the CARDIA dataset considered in our real

data analysis section. This comparison allows us to see how well the screening methods

perform when the underlying LSEM structure is known. For this study p = 860, 627 and

N = 892. As a “prior” for nonzero parameters, nonzero α and β values are drawn from

N (0, σ2) with σ2 ∈ {.1, .3, .5, .7}. In this case, we only consider the new MSS method vs the

benchmark SIS method.
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Figure 3.31.: Comparison of TPR and FDR when N = 892 and p = 860, 627. Our MSS
screening method performance is shown in black while the benchmark SIS method perfor-
mance is shown in red. Hard thresholding rule is applied with
d = 2⌊N/ logN⌋ = 262

For all levels of σ2, we see that MSS has a higher true positive rate (TPR) and lower

FDR compared to those of SIS. As expected, both methods perform better as the signal

strength of nonzero α and β increase.

3.6.2 Real Data Analysis: CARDIA Data Set

As a real world application of our screening approach, we consider mediation analysis

in the context of a DNA methylation study. Methyl groups are added to DNA at binding

locations known as cytosine-phosphate-guanine (CpG) sites, resulting in changes to gene

expression [64]. These methylation markers are potential mediators between an exposure

variable and a health response variable. In past studies, scientists usually considered a

small set of these potential mediators using ad-hoc selection based on prior information [50].
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Using the entire set of methylation markers for a mediation analysis allows a more objective

approach that is less dependent on subjective knowledge.

The methylation data come from the Coronary Artery Risk Development in Young Adults

(CARDIA) Study, which is a longitudinal study designed to investigate lifestyle and other

factors that influence the evolution of coronary heart disease risk factors during young adult-

hood [65]. The exposure is smoking status at 2 levels: never smokers and current smokers.

The response variable in our study is the change in lung function between year 10 and year

15 of the study. The candidate set of mediators M consists of 860,627 DNA methylation

measurements. To account for confounding, other subject information such as age, sex, race,

testing center, height, and measurement center are included as covariates. Our goal is to use

our screening method as part of the multi-step procedure developed by [50] for estimating

and identifying which DNA methylation sites mediate the relationship between smoking and

lung function.

In our analysis, we use the HIMA and HIMA2 procedures, which are both three-stage

procedures for performing mediation analysis [50, 66]. The two procedures have the same

basic steps, but they differ in the way each step is performed. The first step is to use SIS

to screen the set of candidate mediators and reduce its the dimensionality of the problem

from high dimensional p to lower dimensional d < n. HIMA applies SIS to the marginal

coefficients βM
M,j, while HIMA2 applies SIS using the product of coefficients αA,jβ

M
M,j. Note

that the screening step for HIMA2 is equivalent to the version of MSS when the product

αA,jβ
M
M,j is used rather than the scaled value TSobel,j =

αA,jβ
M
M,j√

(β̂M
M,j)

2σ̂2
α+α̂2

A,j

. Our work supports

the use of either screener in HIMA2, although the scaled version that uses TSobel detects more

mediators that are declared significant by the overall joint significance test. The second step

85



of each is to use penalized regression to perform model selection to estimate β̂. HIMA

uses the MCP penalty to perform this step, while HIMA2 produces more appropriate p-

values by using the debiased LASSO. During this step, α̂A,j is also estimated for j ∈ S

where S = {j : β̂M,j ̸= 0}. Finally in the third step, the MaxP test is used to perform a

final joint significance test for mediation effect with FDR control. HIMA uses the uniform

distribution as the reference distribution of the MaxP statistic, which results in a statistically

valid but overly conservative test [67]. HIMA2, on the other hand, uses a null mixture

distribution developed by [68] to achieve FDR control while allowing for greater power. For

both procedures we compare the performance of MSS as the screening procedure used in

Step 1 vs the previously mentioned SIS procedures. To keep explanations shorter and easier

to follow, we will refer to our settings as four cases:

• Case 1: HIMA2 procedure with MSS screener

• Case 2: HIMA2 procedure with SIS screener

• Case 3: HIMA procedure with MSS screener

• Case 4: HIMA procedure with SIS screener

The statistically significant mediators identified by each procedure is reported below, along

with their corresponding estimates β̂j, σ̂β,j, α̂A,j, σ̂α,j, the raw p-value praw, and indirect

effect IE.

In the screening step for HIMA2, d = 2⌊n/ log n⌋ = 262 mediators with the highest re-

spective statistic were recruited into Step 2. That is, for SIS the d mediators with highest

value of |α̂A,jβ̂
M
M,j| are recruited, while for MSS the d mediators with the highest value of
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CpG β̂M,j σ̂β,j α̂A,j σ̂α,j praw IE
cg01114441 -0.07463 0.01835 -0.09708 0.02134 0.00004779 0.007245
cg01873760 -0.05523 0.01539 -0.08258 0.02610 0.001557 0.004561
cg01907945 -0.04499 0.01572 0.07829 0.02584 0.004210 -0.003523
cg03820608 0.06107 0.01696 -0.08947 0.02353 0.0003175 -0.005464
cg04747388 0.05355 0.01517 0.07926 0.02523 0.001678 0.004244
cg04946953 0.03921 0.01285 -0.1103 0.03033 0.002271 -0.004324
cg05890855 -0.08780 0.02280 -0.08593 0.01759 0.0001172 0.007545
cg05974483 -0.06654 0.01701 -0.1148 0.02418 0.00009171 0.007636
cg06273376 -0.04947 0.01651 0.08539 0.02458 0.002724 -0.004224
cg08544271 -0.04398 0.01280 -0.1120 0.03192 0.0005933 0.004925
cg09277086 -0.03610 0.01272 -0.1013 0.03206 0.004554 0.003655
cg11346960 -0.07749 0.01637 -0.09529 0.02429 0.00008771 0.007384
cg14685642 -0.06156 0.01585 -0.1046 0.02560 0.0001032 0.006439
cg18375153 -0.04561 0.01534 -0.1193 0.02655 0.002941 0.005440
cg21596426 -0.05107 0.01479 -0.09996 0.02635 0.0005523 0.005105
cg23058194 0.03823 0.01273 0.1493 0.03170 0.002663 0.005706
cg24919394 -0.06404 0.01398 -0.1017 0.02880 0.0004167 0.006510
cg25512179 0.06995 0.01499 0.07930 0.02558 0.001939 0.005547
cg26120924 -0.04423 0.01186 -0.1121 0.03247 0.0005578 0.004957
cg26331243 0.06428 0.02183 -0.08424 0.01721 0.003241 -0.005415
cg26946015 -0.08017 0.02095 -0.09033 0.02003 0.0001302 0.007242
cg27363280 -0.06639 0.01386 0.08935 0.02890 0.001991 -0.005932
cg27626216 -0.06860 0.02151 -0.07389 0.01724 0.001428 0.005069

Table 3.1: Results for HIMA2 using MSS as screening procedure

|TSobel| are recruited. It is worth noting that two screening procedures shared 148 mediators

in common. After performing penalized debiased LASSO regression on the screened medi-

ators to obtain (α̂, β̂) and performing the joint significance test the HIMA2 procedure that

used MSS in the screening step identified 23 mediators while the procedure that used SIS

identified 15 mediators. After the final step, CpG sites cg05890855, cg05974483, cg14685642,

cg18375153, cg25512179, and cg26331243 are common to both sets of significant mediators.

For the HIMA procedure, we see that the choice of screening method makes a huge

difference in the number of mediators that are declared significant after the final step of the
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CpG β̂j σ̂β,j α̂A,j σ̂α,j praw IE
cg02044044 -0.08810 0.02792 -0.1336 0.01733 0.001604 0.01177
cg02671671 -0.05786 0.01659 -0.09744 0.02750 0.0004859 0.005638
cg04136921 -0.06791 0.01814 -0.09697 0.02509 0.0001820 0.006585
cg05753553 0.05970 0.01667 0.2086 0.02925 0.0003430 0.01246
cg05890855 -0.1014 0.02643 -0.08593 0.01759 0.0001250 0.008713
cg05974483 -0.06845 0.01950 -0.1148 0.02418 0.0004487 0.007855
cg06060595 0.05601 0.01481 0.1663 0.03063 0.0001552 0.009315
cg08644506 -0.09480 0.02302 -0.1332 0.02122 0.00003829 0.01263
cg11152412 -0.04671 0.01533 -0.1736 0.03096 0.002314 0.008108
cg14685642 -0.07954 0.01790 -0.1046 0.02560 0.00004403 0.008320
cg18375153 -0.06614 0.01735 -0.1193 0.02655 0.0001379 0.007889
cg19862839 0.05787 0.01910 -0.08429 0.02469 0.002443 -0.004877
cg22335872 -0.08007 0.02490 -0.1061 0.01780 0.001303 0.008494
cg25512179 0.07508 0.01717 0.07930 0.02558 0.001939 0.005954
cg26331243 0.08013 0.02553 -0.08424 0.01721 0.001695 -0.006750

Table 3.2: Results for HIMA2 using SIS as screening procedure

CpG β̂j σ̂β,j α̂A,j σ̂α,j praw IE
cg03820608 0.07109 0.01744 -0.08947 -0.08947 0.0001432 -0.006360
cg05974483 -0.06818 0.01793 -0.1148 -0.1148 0.0001427 0.007825
cg06273376 -0.05996 0.01636 0.08539 0.08540 0.0005114 -0.005120
cg08544271 -0.05248 0.01261 -0.1120 -0.1120 0.0004498 0.005878
cg08751854 -0.05351 0.01581 -0.1639 -0.1639 0.0007154 0.008771
cg18100580 0.06393 0.01887 -0.1047 -0.1047 0.0007059 -0.006691
cg21596426 -0.05397 0.01507 -0.1000 -0.1000 0.0003435 0.005395
cg24919394 -0.05867 0.01396 -0.1017 -0.1017 0.0004167 0.005963
cg26120924 -0.04527 0.01202 -0.1121 -0.1121 0.0005578 0.005073
cg26331243 0.09671 0.02517 -0.08424 -0.08424 0.0001219 -0.008147

Table 3.3: Results for HIMA when MSS is used in screening step

CpG β̂j σ̂β,j α̂A,j σ̂α,j praw IE
cg01320698 -0.1129 0.03440 -0.03815 -0.03815 0.001993 0.004308
cg05127574 -0.08570 0.02825 0.07125 0.07125 0.002419 -0.006106
cg07487014 -0.08333 0.02839 0.06634 0.06634 0.003338 -0.005528

Table 3.4: Results for HIMA when SIS is used in screening step
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procedure. When using MSS in Step 1, the HIMA procedure declares 10 mediators to be

significant in the mediation model, while only 3 are significant when SIS applied to the β̂M
M,j

is used.

It is also worth noting that case 4 shares no CpGs with any of the other methods. Case 3

shares 2 mediators with case 2: cg05974483 and cg26331243. Case 3 also shares 8 mediators

with case 1: cg03820608, cg05974483, cg06273376, cg08544271, cg21596426, cg24919394,

cg26120924, and cg26331243. CpG sites cg05974483 and cg26331243 are common to the

results of all three procedures and may be of special interest. CpG cg26331243 is located in

the body region of gene CCDC33, which is has been shown in previous studies to be differ-

entially expressed under the experimental condition of tobacco smoke exposure [66, 69, 70].

CCDC33 is also linked to susceptibility to lung disease such as pneumococcal meningitis

and SARS-CoV-2 infection [71,72]. It is plausible that cg26331243 plays a role in regulating

the expression of CCDC33, which in turn mediates the pathway from smoking to lung func-

tion. CpG cg05974483 is located on gene NXPH3, which enables signaling receptor binding

activity via a protein called Neurexophilin-3 [73, 74]. This newly identified gene is func-

tionally important for sensorimotor gating and motor coordination [75] and may be worth

investigating for further evidence of mediation effect.

3.7 Discussion

After reviewing mediation analysis in the traditional low-dimensional cases, we have

developed and compared methods for screening mediators in a high dimensional setting.

In particular, we have proved the Sure Screening Property for the Marginal Sobel Screen-
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ing method and demonstrated cases in which it performs better than traditional screening

methods such as Sure Independence Screening in the mediation setting. After reducing a

high-dimensional mediation problem to a low dimensional problem via screening, traditional

methods can then be applied to perform inference on the reduced set of candidate mediators.

This screening method is easy to implement and interpret for practitioners. We then applied

the rest of the multi-stage mediation analysis developed by [50, 66] by fitting a penalized

regression model after screening, then performing final mediation testing on the reduced set

of mediator variables. In our real data analysis we showed the improvement to HIMA and

HIMA2 when using our new screener for screening.

One point of note when performing the multi-stage mediation analysis procedure is that

inference conducted at later stages is performed conditional on earlier screening stages. Valid

post-selection p-values and confidence intervals can be obtained by considering the asymp-

totic distribution of TSobel or α̂β̂
M and the behavior of the MSS screener.

Clearly, this work can be expanded into many directions. The framework described in

this paper can be readily extended from LSEMs to generalized structural equation models

or sequential mediation models. We also would like to consider various correlation structure

between the mediators M to improve our screening approaches in the future.
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4. Privacy-Preserving Penalized Quantile Regression ADMM

4.1 Introduction

Quantile regression is a popular and versatile regression technique that offers a system-

atic strategy for examining how covariates influence the entire response distribution [76].

Instead of estimating the conditional mean as in least squares regression, quantile regression

models the relationship between the covariates and the conditional quantiles of the response.

Compared with its least squares counterpart, quantile regression provides a more flexible

approach to learn about responses that come from a distribution that does not follow the

standard OLS assumptions. For example, quantile regression estimates are robust to out-

liers and heteroscedastic data which is common in medical, educational, and social science

settings, among many others [76].

In our modern era of big data, it is increasingly common to build high-dimensional models

from huge numbers of observations. As the number of parameters in these models increases,

the required number of observations can quickly grow beyond the capacity or capability

of a single computational entity. Such an analysis would depend heavily on collaboration

between institutions, i.e. data sharing. This raises concerns for user privacy, especially

after high-profile attacks on widely-used online platforms [77, 78]. Summary statistics and
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local parameter estimates can also compromise sensitive user data or institutional data, and

should therefore be shared with caution [79]. Privacy laws such as HIPAA and FERPA make

medical data and academic data examples of cases where a privacy-preserving collaborative

scheme may be especially useful [80, 81].

When discussing data sharing, it is important to also discuss network structure. One such

structure we consider is a centralized network in which all agents are in communication with

a secure and powerful central computer that takes inputs from the agents and returns an

output to all agents. Centralized systems are attractive because they reduce data redundancy

(repeated copies of data) and are financially cost effective [82]. Some famous institutions that

use centralized structures include IBM and the National Informatics Center in India [83,84].

The strong central computer can also unfortunately be a weakness for this architecture

because the system fails if the agents lose connectivity to the central computer.

We also consider a decentralized network in which all agents have the computational

resources to carry all steps of the algorithm without dependence on a central entity. De-

centralized networks have become increasingly popular in recent years due to the increased

power of modern computers and the rise of bitcoin and blockchain technology, which use

decentralized networks to preserve privacy of personal data [85]. Decentralized networks

have the advantage of robustness to network bottlenecks or failures of single links [86]. That

is, if direct communication between agent A and agent B fails, there is still a path in the

network through which the two can exchange information. Although the initial cost of such a

network is high, decentralized algorithms also lend themselves well to scalabilty. One possi-

ble disadvantage of these structures is that decentralized networks require more information

to be exchanged between agents which can cause failure for low-bandwidth networks. As
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personal computers become more powerful, the line between centralized and decentralized

systems is blurring [83]. For example, cloud computing architectures may involve agents

directly communicating with one another as well as with a cloud server.

To make the problem concrete, suppose that K agents wish to collaborate on a quantile

regression analysis to estimate the τth quantile of a response variable given their combined

data. Each agent j collects nj observations independently such that
∑K

j=1 nj = N . In our

schemes, we make the assumption that all agents honestly compute the proper calculations

when told but also passively listen to other agents for information. This is a security model

commonly known as “honest but curious” in the cryptography literature [87]. In this case,

we do not consider cases in which agents are corrupted and provide false information. Our

goal is to devise a scheme that allows the agents to perform quantile regression efficiently

while maintaining security of the shared information. Here, “security” means that no agent

inside or outside the scheme learns anything of the true values data transmitted by other

agents.

Let y ∈ RN denote the observed response vector, X ∈ RN×(p+1) the design matrix, and

β ∈ Rp+1 a parameter vector. For τ ∈ (0, 1) suppose that the τth conditional quantile of

y|X is linear in β. That is, Qτ (y|X) = Xβ, where Qτ denotes the τth quantile. Then the

quantile regression estimate β̂(τ) is given by

β̂(τ) = argminβ∈Rp+1 ρτ (y −Xβ), (4.1)
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where for u ∈ Rn, ρτ (·) denotes the check loss function ρτ (u) =
∑n

i=1 ui[τ − I(ui < 0)]

, and I denotes the indicator function. This estimation is typically solved using linear

programming methods such as interior point search or the simplex method [76].

In the high dimensional setting, i.e. large p, quantile regression is often coupled with

regularization for variance reduction and feature selection. The penalized quantile regression

(PQR) problem is typically formulated as

argminβ∈Rp+1 ρτ (y −Xβ) + Pλ(β−0), (4.2)

where β−0 denotes the parameter vector with the intercept removed and Pλ is a penalty

function. Popular choices for penalty functions include the lasso [2], elastic net [3], MCP

[14], and SCAD [13]. The aforementioned linear programming methods for solving (4.2)

often prove too computationally intensive to scale effectively for big data [76]. To remedy

this, recent works use variants of the alternating direction method of multipliers (ADMM)

algorithm which has been shown to work well for distributed convex optimization problems

[88]. Gu et al. (2017) proposed a proximal ADMM and sparse coordinate descent ADMM

to solve the penalized quantile regression problem with the lasso, adaptive lasso, and folded

concave penalties. Yi and Huang (2016) proposed a coordinate descent algorithm for solv-

ing the elastic-net penalized Huber regression and used that to approximate the penalized

quantile regression estimator. QPADM [89] offers a distributed algorithm for solving (4.2)

based on ADMM with guaranteed convergence for convex penalty functions and empirical

success for some commonly used nonconvex penalties, such as MCP and SCAD [89]. Our

proposed schemes use the QPADM formulation to transform (4.2) into a distributed opti-
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mization problem for the agents to solve. Based on this framework, we develop a privacy

preservation step to ensure that no agents can obtain the shared data from any other agent.

Section 2 of this paper reviews the QPADM algorithm and its computation. Section 3

will detail some of the privacy-preservation methods considered for our schemes. We then

outline the overall centralized algorithm in Section 4, and the decentralized algorithm in

Section 5. An algorithm based on differential privacy is outlined in Section 6. Finally, we

compare the computation speed of our privacy-preserving QPADM algorithms to the plain

non-secure algorithm in Section 7 with discussions in Section 8.

4.2 QPADM

The key to QPADM lies in converting equation (4.2) to its equivalent parallelized ADMM

form. First, assume there are K agents with combined data

y = [yT
1 ,y

T
2 , ...,y

T
K ]

T and X = [XT
1 , X

T
2 , ..., X

T
K ]

T ,

where yj is a nj-dimensional response vector for the jth agent and Xj is a nj × (p + 1)

dimensional design matrix for the jth agent. Each agent j’s data, (Xj,yj), can be seen

as a block or partition of the combined data. Problem (4.2) can then be rewritten as a

constrained optimization problem by introducing auxillary variables rj

min
rj ,β

{
K∑
j=1

ρτ (rj) + Pλ(β−0)

}
s.t. yj −Xjβj = rj,βj = β, j = 1, 2, ..., K
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with the Lagrangian

Lγ(r,u,β) =
K∑
j=1

[
ρτ (rj) + uT

j (yj −Xjβj − rj) +
γ

2
∥yj −Xjβj − rj∥22

]
+ Pλ(β−0),

This function can then be minimized using ADMM alternatively over r, u, and β. At itera-

tion k + 1, the update rule is

β(k+1) := argminβ

Kγ

2
∥β − β̄(k) − η̄(k)∥22 + Pλ(β−0),

r
(k+1)
j := argminrj

ρτ (rj) +
γ

2
∥yj −Xjβ

(k+1)
j + u

(k)
j − rj∥22,

β
(k+1)
j := (XT

j Xj + I)−1
(
XT

j (yj − r
(k+1)
j + u

(k)
j )− η

(k)
j + β(k+1)

)
,

u
(k+1)
j := u

(k)
j + yj −Xjβ

(k+1)
j − r

(k+1)
j ,

η
(k+1)
j := η

(k)
j + β

(k+1)
j − β(k+1). (4.3)

where β̄(k) = K−1
∑K

j=1 β
(k)
j and η̄(k) = K−1

∑K
j=1 η

(k)
j [89].

Notice that the last four updates with subscript j only depend on the jth block of data,

so these updates can be performed locally and independently by each agent in the study.

The bulk of the computation difficulty lies in computing the β-update, especially when the

penalty function Pλ is nonconvex. This step has a closed form solution for many common
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penalties, including the lasso, elastic net, MCP, and SCAD penalties [89]. The r-update also

has a closed form solution

r
(k+1)
j :=

[
γ−1u

(k)
j + yj −Xjβ

(k+1)
j − τγ−1

1nj

]
+
−
[
−γ−1u

(k)
j − yj +Xjβ

(k+1)
j + (τ − 1)γ−1

1nj

]
+
.

(4.4)

Both of our schemes take advantage of this parallelizability to assign agents to comput-

ing local parameter estimates. The key difference in these two algorithms is how secure

aggregation of the local estimates is performed.

4.3 Privacy Preservation

For agents involved in the study the most important part of our algorithms is individual

data privacy and protection of summary statistics, i.e. the goal for agent j is to protect each

individual entry of (Xj,yj) (referred to henceforth as individual subject data) as well as any

statistic computed from (Xj,yj). Our schemes make the assumption that agents protect the

privacy of individual data by storing individual data in a secure location controlled only by

that agent. In other words, other agents in the scheme are unable to view the individual

subject data belonging to other agents. Under the “honest but curious” assumption, any

data transmitted between agents are public to all agents inside or outside the scheme. Under

this condition, we define privacy to mean that if an agent A has his message overheard, any

listeners do not obtain any information about any of A’s individual subject data or summary

statistics.
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Our schemes also preserve privacy of summary statistics, which can again pose a danger

to individual data within the institution who shares its summary statistics. The summary

statistics may also contain information that an institution wishes to keep private, especially

in situations where the collaborating institutions are competitors. In the case of QPADM,

these summary statistics are the local regression parameter estimates β
(k+1)
j and η

(k+1)
j which

are exchanged to compute the global parameter estimates β̄(k) and η̄(k) (Equation 4.3).

For our centralized scheme, this summary statistic privacy preservation takes place at two

levels using the help of J computation centers (J ≤ K) and a global center (Figure 4.1).

At the first level, agents encrypt their local summary statistics before sending them to

the J computation centers, which are independent and secure locations that aggregate the

encrypted local summary statistics. Note that since the computation centers only perform

operations on encrypted data, no one at the computation centers can see the local statistics of

any agent. The computation centers then send their encrypted aggregates to a global center,

which decrypts the aggregates and sends the update back to the agents. For our decentralized

scheme there is only one step that involves exchanging local parameter estimates, but this

step is carried out between every pair of agents in a way that preserves the parameter

estimates of each agent (Figure 4.2).
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Figure 4.1.: Illustration of Centralized Scheme. Each arrow denotes the transmission of
encoded data that can only be decoded by the global center after receiving J encoded
aggregates from the J computation centers.

Figure 4.2.: Illustration of Decentralized Scheme: Specifically Algorithm 5 for agent 1. The
outer arrows denote the sending of public keys to other agents. Upon receiving public
key(s), each agent encodes their local statistics using the public key and sends these encoded
statistics back to agent 1. Agent 1 then decodes these quantities using their private key.

The key to the secure aggregation used in these schemes is additively homomorphic en-

cryption. An encryption scheme is said to be additively homomorphic if certain mathematical
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operations can be applied directly to the ciphertext in such a way that decrypting the output

results in the sum of original unencrypted data [90]. Formally, the plaintext and ciphertext

are related by a group homomorphism. Specifically, if G is the domain of the plaintext and

H an Abelian group with group operation “⋆”, then the group homomorphism from (G,+)

to (H, ⋆) is a mapping f : G → H that satisfies the condition f(x1) ⋆ f(x2) = f(x1 + x2) for

all x1, x2 ∈ G. This mapping f denotes an encryption function. Given a plaintext number x,

f(x) denotes the encoded ciphertext and f−1(f(x)) = x denotes decrypting the cyphertext

to obtain the original plaintext x. The homomorphic property of such an f allows us to per-

form computation on encrypted data without the need for decryption during intermediate

steps of our algorithm. After combining this encrypted data, the result can be decrypted

to obtain the desired plaintext result. In creating our schemes we consider two classical

additively homomorphic cryptosystems, but our idea can be readily extended to use other

additively homomorphic schemes. More complicated cryptosystems may provide further se-

curity but also result in higher computational burden (i.e. they may take more time or

memory). Encrypting large amounts of data is known to be computationally expensive [91],

so for our study we only consider two foundational homomorphic cryptosystems: Shamir’s

secret-sharing algorithm (centralized) and the Paillier cryptosystem (decentralized).

The method of privacy preservation used in our centralized algorithm study is Shamir’s

secret-sharing algorithm [92]. This algorithm is commonly researched in the privacy preser-

vation literature and is a valuable tool for multiparty computation schemes [93]. In Shamir

secret-sharing, a plaintext number S is divided into pieces S1, S2, ..., Sn in such a way that

knowledge of k or more pieces allows easy computation of S while knowledge of k − 1 or

fewer pieces leaves all possible values of S equally likely [92]. These desired characteristics
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are attained by using a key fact: to uniquely determine a polynomial of degree k − 1, k

coordinate points are needed. To protect a plaintext S, we generate a random polynomial

p(x) of degree k − 1 with the plaintext S as its intercept. That is, p(x) = S +
∑k−1

i=1 aix
i,

where S is the secret to be protected and the ai are randomly generated coefficients. Using

this polynomial, S is split into pieces Si = p(i), i = 1, 2, ..., n. Given k of these pieces p(x) is

simple to compute using Legendre interpolation, and S can be recovered by evaluating p(0).

Note that we can only encrypt scalars in this manner, so each entry of the parameter vectors

must be encoded separately. Thus, each agent must generate p polynomials of degree k−1 to

encode their parameter estimates. Since Shamir’s secret-sharing algorithm is additively ho-

momorphic, the encoded secrets can then be aggregated securely by the computation centers

to create an encoded version of the aggregated statistic desired.

Our decentralized algorithm study depends on another homomorphic encryption scheme

known as the Pallier cryptosystem [94]. This scheme is also additively homomorphic like

Shamir’s algorithm, but does not break the secret into pieces. Instead it utilizes a public-

private key system that allows for agents to securely send information directly to one another.

Each agent in the decentralized scheme possesses a public key that can be used to encode

data by anyone and a private key that allows the agent to decrypt information encoded by

the public key. Just as with Shamir’s secret sharing, the Paillier cryptosystem can only

encode scalars so p public and private keys must be used to encode parameter vectors. The

public keys allow agents to exchange information safely without giving this information away

to outside listeners, while the private key allows an agent to decrypt summary statistics once

they have received enough data. See Algorithms 4 and 5 for further details.
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Another notion of privacy preservation is statistical privacy in the sense that if an attacker

has access to all of a database D except for one entry, a statistic computed from the full

database D offers no new information about the final entry. Differential privacy is a popular

technique that offers this statistical privacy [95].

To make this clear, define two databasesD andD′ as neighboring or adjacent if their Ham-

mig distance is 1, i.e. they differ by only one element. A randomized mechanism M provides

ϵ-differential privacy if for all neighboring databases D and D′ and for any S ⊆ Range(M),

P [M(D) ∈ S] ≤ eϵP [M(D′) ∈ S] [95]. The term ϵ is often referred to as the leakage, which

represents how much privacy is leaked by the mechanism. When ϵ is small, eϵ ≈ 1 + ϵ,

so this can be thought of as the requirement that for all S ∈ Range(M),
P [M(D) ∈ S]

P [M(D′) ∈ S]
∈

(1− ϵ, 1 + ϵ).

Differentially private QPADM protects the privacy of agents’ local data through statis-

tical privacy rather than a cryptosystem [95]. That is, we perturb the individual user data

in such a way that an attacker cannot determine whether or not a particular user is a part

of any differentially private database. Since this scheme does not need to encrypt and de-

crypt data for each step of the algorithm, this privacy scheme is expected to perform much

faster than the previously mentioned schemes. As a tradeoff, the perturbation of the data

introduces error that must be accounted for.

4.4 Centralized Algorithm

Our centralized algorithm takes place in three stages. In the first stage, each agent

uses the previously computed global parameter estimate to compute local estimates of the
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QPADM parameters. That is, each agent Ai computes local ri,βi,ui, and ηi (i = 1, 2, ..., K)

(Equation 4.3). Agent i then encodes βi and ηi using Shamir’s secret sharing algorithm and

send an encoded estimate to each of the J computation centers, say βk+1
is (j) and ηk+1

is (j)

denote the encoded parameter estimates sent from agent i to computation center j. Via

a secure aggregation technique, each computation center is able to aggregate the agents’

parameter estimates into a new global estimate without revealing the local information or

the global information. Each computation center j computes secret-protected aggregates

β̄
(k+1)
s (j) and η̄

(k+1)
s (j). Finally, the J computation centers submit their secure global esti-

mates to the global center, which can then decode the global estimate and update the global

estimates for the agents.
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Algorithm 1 Secure Local Computation

1: procedure SecureLoc(βk) ▷ Returns Shamir secret shares of βk+1
j ,ηk+1

j

2: for Agent i = 1, 2, ..., K do
3: Compute rk+1

i and βk+1
i .

4: Compute uk+1
i and ηk+1

i .
5: Make encoding polynomials βk+1

is and ηk+1
is such that βk+1

is (0) = βk+1
i and

ηk+1
is (0) = ηk+1

i

6: for Computation Center j = 1, 2, ..., J do
7: Securely submit the encoded βk+1

is (j) and ηk+1
is (j) to center j.

Algorithm 2 Secure Aggregation at jth Computation Center

1: procedure SecureAgg(βk+1
1s (j), ..., βk+1

Is (j), ηk+1
1s (j), ..., ηk+1

Is (j), λ)

2: Aggregate β̄s(j)
(k+1) =

∑I
i=1 βis(j)

(k+1)/I.

3: Aggregate η̄s(j)
(k+1) =

∑I
i=1 η

(k+1)
is (j)/I.

4: Securely submit secret-protected aggregates β̄
(k+1)
s (j) and η̄

(k+1)
s (j) to global aggre-

gator.

Algorithm 3 Global Update

1: procedure GlobUpdate(βk+1
1s , ..., βk+1

Js , ηk+1
1s , ..., ηk+1

Js , λ)
2: Use computation center aggregates to decrypt β̄(k+1) and η̄(k+1).
3: Compute β(k+1), where

βnew = min
β

J · γ
2

∥β − β̄(k+1) − η̄(k+1)∥22 + Pλ(β
(k+1)
−0 )

4: Transmit β(k+1) to all agents.
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4.5 Decentralized Algorithm

Compared to the centralized scheme, the decentralized scheme offers some advantages

and disadvantages. The clear advantage is that no single entity is entrusted to aggregate

the local statistics. As a tradeoff, more data transmission is required: each agent sends

a private key to all other agents, resulting in up to 2(K − 1)K data transmissions total.

Our decentralized scheme may also be useful in situations where a centralized computation

center may pose a security risk. For example, rival companies or institutions may wish to

collaborate in a study to mutually improve performance without entrusting a third party

to aggregate their data. Decentralized schemes are also attractive for their robustness to

network traffic bottlenecks and ease of scalability [86].

As mentioned, this decentralized case makes use of the Paillier cryptosystem (Pailier,

1999). This is a public-private key system, so each agent i has a public key Ei and a private

key Di such that Di(Ei(x)) = x for all integers x. The public key can be shared with

other agents for them to encode messages while the private key is known only to agent

i. This cryptosystem is also additively homomorphic in that Ei(x1)Ei(x2) = Ei(x1 + x2)

for any integers x1 and x2. This allows agent i to securely aggregate encrypted data via

multiplication without the need to decrypt the data he receives.

There is one remaining trivial security flaw that must be accounted for. If agent i receives

a local statistic Ei(β
k+1
j ) or Ei(η

k+1
j ) from agent j, he can simply decode this statistic and

compromise agent j’s security. To prevent this, agent j instead sends Ei(β
k+1
j + bj) and

Ei(η
k+1
j + cj), where bj and cj are secret constants known only to agent j, and

∑K
j=1 bj = B

and
∑K

j=1 cj = C are constants known to all agents in the scheme.
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Just as in the centralized case, the algorithm starts with each agent performing secure

computation of local parameter estimates. Once these are computed, each agent i sends its

public key Ei to all other agents. Each agent j, after receiving a public key Ei, replies with

Ei(βj + bj) and Ei(ηj + cj). After each agent collects the encrypted data, aggregates β̄ and

η̄ are computed by each agent, and the β-update is computed as before.

Algorithm 4 Secure Local Computation for Agent i

1: procedure SecureLoc(βk) ▷ Returns βk+1
i ,ηk+1

i

2: Compute rk+1
i and βk+1

i .
3: Compute uk+1

i and ηk+1
i .

Algorithm 5 Secure Local Aggregation for Agent i

1: procedure PaillierAgg(βk+1
i , ηk+1

i ) ▷ Compute update βk+1

2: for agent j = 1, 2, ..., i− 1, i+ 1, ..., K do
3: Send public key(s) Ei to agent j.
4: Agent j returns Ei(β

k+1
j + bj) and Ej(η

k+1
i + cj) to agent i

5: Compute
∏K

j=1Ei(β
k+1
j + bj) = Ei(

∑K
j=1 β

k+1
j +B)

6: Compute
∏K

j=1Ei(η
k+1
j + cj) = Ei(

∑K
j=1 η

k+1
j + C)

7: Use private key(s) Di to decode the above quantities. Subtract the known constants
and divide by K to obtain β̄(k+1) and η̄(k+1).

8: β(k+1) = minβ
J ·γ
2
∥β − β̄(k+1) − η̄(k+1)∥22 + Pλ(β

(k+1)
−0 )

4.6 Simulation Study

In our simulation study, we compare the runtime and accuracy of our two algorithms.

We also include preliminary results for an algorithm based on differential privacy, with

further comments in the discussion section. For each algorithm, we test for accuracy in case

information is lost during the encryption-decryption process. Naturally, the decentralized

scheme is expected to take significantly longer in total runtime, due to each agent needing to
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calculate the global summary statistics. For both simulations we used p = 1000 parameters

and varied the sample size n. For each experiment, the data is generated from the true

model :

yi = 2x2i − 3x5i + x6i − x9i + x1iϵ1i, where ϵ1i ∼ N(0, 1)

(i.e. a heteroskedastic normal model). We then applied our three methods to each dataset

using the SCAD penalty with hyperparameter a = 3.7 (determined empirically) to obtain

the quantile regression estimator for the quantiles τ = .3, .5, and .7. For each sample size n

we considered, we repeated this experiment 100 times and recorded the Monte Carlo error,

runtime, and final estimate for β. We then averaged over these 100 trials for each n and

recorded our results. All experiments were run on a linux-based 8-core server with an Intel

Xeon 3.3GHz processor and 16GB RDIMM.

From this, we can also see how the runtime of the three algorithms scales with the sample

size. We also run a controlled case without any privacy preservation so we can get a better

idea of how the privacy constraint affects our distributed optimization. In each study, we have

3 agents jointly performing quantile regression. To control for network latency, all agents

were simulated on one computer with the total runtime between all agents recorded. Due to

time and memory constraints, smaller sample sizes were used for the decentralized algorithm

experiment compared to the centralized algorithm experiments. These experiments were

repeated 100 times per case, with means and standard errors plotted in Figures 4.3 and 4.4.

As expected, adding encryption steps to the QPADM increases the runtime in both

cases. The centralized method takes roughly 4 times longer to perform than the non-private

method, while the decentralized method takes nearly 10 times longer in total runtime. For
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each generated dataset, the exact same quantile regression estimate is obtained from our

secure algorithm as standard unsecured QPADM. As shown in Figure 4.5, no information is

lost during the encryption, decryption, or secure aggregation.

Figure 4.3.: Comparison of Runtimes for Control Case and Centralized Scheme. Shaded
regions denote 95% bootstrap confidence bands.

Table 4.1: Performance Analysis of Centralized and Decentralized Algorithms on Synthetic
Data, τ = 0.5

Algorithm Control Centralized DP Control Decentralized DP
Number of Samples 4,505,000 4,505,000 4,505,000 10,000 10,000 10,000
Number of Parameters 1,000 1,000 1,000 100 100 100
Total Runtime (s) 56.90476 200.5945 60.811 20.01143 1818.368 26.371

Table 4.2: Performance Analysis of Centralized and Decentralized Algorithms on Synthetic
Data, τ = 0.3

Algorithm Control Centralized DP Control Decentralized DP
Number of Samples 4,505,000 4,505,000 4,505,000 10,000 10,000 10,000
Number of Parameters 1,000 1,000 1,000 100 100 100
Total Runtime (s) 54.818 204.298 55.014 21.007 1824.693 24.816
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Figure 4.4.: Comparison of Runtimes for Control Case, Decentralized Scheme, and Differen-
tial Privacy. Shaded regions denote pointwise 95% confidence intervals.

Figure 4.5.: Comparison of Beta Estimates without Encryption vs Estimate Obtained from
the Centralized Scheme βS and Estimate Obtained from the Decentralized Scheme βP . We
see that no accuracy is sacrificed in the encryption/decryption process.

4.7 Application to a Real Data Set

The MIMIC III database [96] is a massive, freely-available database comprising of de-

identified medical data associated with over 46,520 patients who stayed in critical care units
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Table 4.3: Performance Analysis of Centralized and Decentralized Algorithms on Synthetic
Data, τ = 0.7

Algorithm Control Centralized DP Control Decentralized DP
Number of Samples 4,505,000 4,505,000 4,505,000 10,000 10,000 10,000
Number of Parameters 1,000 1,000 1,000 100 100 100
Total Runtime (s) 55.230 202.075 55.419 19.172 1843.944 25.673

of the Beth Israel Deaconess Medical Center between 2001 and 2012. Access to this dataset

can be requested at https://mimic.physionet.org/. MIMIC-III includes features such as

demographics, bedside vital sign measurements ( 1 data point per hour), laboratory test

results, procedures, medications, caregiver notes, imaging reports, and mortality (both in

and out of hospital). To illustrate our procedure, we perform distributed quantile regression

using the following variables from the MIMIC III tables described below:

• Admissions: Ethnicity, insurance, religion, marital status, admission type, admission location

• CPT Events: cost center

• ICU Stays: first careunit, last careunit, los

• Patients: Gender, dob

Detailed descriptions for each of these variables are available at [6]. We designate the

total admission time at the medical centers (los) as the response while the remaining variables

are used as predictor variables. We also consider interaction effects between demographic

related categorical variables (ethnicity and gender) and age to demonstrate the flexibility of

quantile regression. That is,

Yτ = β0,τ +Xageβage,τ +Xethβeth,τ +Xgenβgen,τ +Xinsβins,τ +Xadmtypeβadmtype,τ
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+Xadmtimeβadmtime,τ +Xmarβmar,τ +Xcosβcos,τ +Xfcuβfcu,τ +Xlcuβlcu,τ + ϵ,

where E[ϵ] = 0 (no other distributional assumptions on ϵ), Yτ denotes the τth quantile of

the response Y , and the τ subscripts on the regression parameters indicate parameters for

regression on the τth quantile. These models are fitted using our centralized scheme. To

simulate 3 institutions collaborating to create these quantile regression models, we randomly

partitioned the patients horizontally into 3 blocks by sampling without replacement. To

avoid correlations between individual hospital visits we only consider unique patients, which

reduced our sample size from 100,000 to 46,520. Categorical variables were one-hot encoded

to allow use in regression, i.e. they were transformed from multicategorical variables . To

reduce the number of one-hot encoded variables, ethnicities were combined into 5 natural

categories: white, black, Hispanic/Latino, Asian, and other. The resulting quantile regres-

sion coefficient curve plotted is plotted in Figure 4.6 and quantile regression error recorded

in Table 4.4. Figure 4.7 shows that no information is lost during the encryption, decryp-

tion, or secure aggregation just as in the simulation study. We compare our results with a

previous neural network regression study [97], which aimed to classify MIMIC III cases into

serious cases lasting longer than 5 days and less serious cases lasting less than 5 days. The

classification accuracy of our median regression model here is 79.852%, which is higher than

that of the neural network approach. Our method has the advantage of being much faster

to train and a much more interpretable model that can be explained to researchers in other

disciplines.
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Figure 4.6.: Observation of variation in parameter estimates as quantile τ increases from 0.1
to 0.9

Figure 4.7.: Comparison of β Estimates without Encryption vs Estimate Obtained from
Centralized Scheme (βS) for MIMIC-III Data

4.8 Discussion

In this study, we combined two cryptographic methods with distributed ADMM to de-

velop methods for performing distributed penalized quantile regression. We found that both
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Table 4.4: Performance Analysis of Centralized Algorithm on Real Data

Quantile .1 .2 .3 .4 .5 .6 .7 .8 .9
Error 0.46073 0.90944 1.33026 1.71759 2.07093 2.39027 2.67689 2.96761 3.25719

methods were able to maintain security of local data and estimates while preserving accu-

racy of the quantile regression estimator obtained by the QPADM algorithm with no privacy

preservation. We also find that the same properties hold when applying the scheme to a real

data set, making the scheme useful in a variety of real life applications. We hope that these

methods may allow for expanded joint research between institutions while preserving the

safety of all customers and institutions involved.

The aforementioned two schemes can be useful in a variety of scenarios where het-

eroskedastic data is common and individual data must be protected. An example of such

a scenario is a genetic study in which the hospitals act as agents who collect data from

patients. When the response variable of a genetic study is continuous, quantile regression is

used to obtain a comprehensive examination of covariate effects on multiple quantile levels

of the response [98]. Examples of such cases include time-varying coefficient models [99],

GWAS [98], reference growth charts [100], etc. Many such studies depend on high-volume

data sharing or sharing of local statistics, which can give away sensitive information about

the subjects at an institution. Our scheme allows such analyses to be performed while still

respecting this privacy constraint.

Our schemes also work well in the context of educational studies. In this case, schools

would act as agents who collect data from students, whose data must again be protected.

For these studies, the response variable is often a continuous quantity such as school income,

average student grades, graduation rate, etc., and the results of such studies drive school
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policies [101]. Through our schemes, universities can collaborate on studies to obtain infer-

ence for the general student population while preserving the privacy of student information

and distributional information about the university’s sensitive data.

Another major scheme that looks promising, particularly in the big data setting, is dif-

ferential privacy. The algorithms presented in our work do not add extra noise to the data

which means it sacrifices no optimality in the ADMM optimization. Our empirical results

show that even though differential privacy trades data accuracy and utility for privacy, it

is much faster to perform especially in the big data setting. Differential privacy can be

advantageous in that there is no decoding step required, since all estimates are obtained by

the perturbed data. Our preliminary empirical studies show that differential privacy adds

a large amount of bias to the penalized quantile regression estimator, but it is currently

unclear if bias correction is possible to produce a more accurate estimate without sacrificing

privacy.
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5. Conclusion

High dimensional statistics is a rapidly evolving field in which each new answer gives

rise to even more questions. In this dissertation we considered two problems under the

overarching theme of high dimensional statistics and examined the challenges faced when

taking them from the traditional setting to the high-dimensional setting. Our first objective

was to develop an effective screening approach for conducting high-dimensional mediation

analysis. We described the linear structural equation model framework and key assumptions

underlying causal mediation analysis, then proposed a novel screening procedure for high

dimensional mediation analysis. This new procedure screens mediators based on the product

of coefficients obtained from the treatment-mediator model and the mediator - response

model in a similar way to how Sobel’s test statistic is computed in traditional mediation

analysis. After showing that this procedure has the sure screening property under our causal

mediation analysis assumptions, we demonstrate its use as a screening step within a multi-

stage mediation analysis procedure in a variety of synthetic datasets and a real data example.

Our second objective was to develop methods for performing distributed penalized quan-

tile regression in a manner that preserves privacy of individual subject information. This

problem was motivated by an example in which multiple agents want to perform a collab-

orative high dimensional quantile regression analysis with their shared data in such a way

that no agent inside or outside the scheme learns anything of the true values of data trans-

mitted by other agents. We first went over the QPADM algorithm, which is a version of the
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alternating direction method of multipliers algorithm applied to penalized quantile regres-

sion. Using the parallelizability of QPADM, we then developed a centralized cryptosystem

and a decentralized cryptosystem so that the agents in the study can perform the algorithm

collaboratively in a secure manner. Our cryptosystems were shown in simulations and real

data to be fast and lossless in the sense that models calculated by our scheme were the same

as those calculated without any encryption.

The work presented in this dissertation has great potential to be taken in many research

directions in the future. In the mediation analysis setting, our marginal screening approach

can be modified in similar ways to the other marginal screening methods that inspired it.

For example it can be extended from the LSEM framework to a generalized LSEM, where

the treatment - mediator model and mediator - response model are generalized linear models

rather than linear models. Just as sure independence screening has an iterated version [8]

that repeatedly screens to further reduce dimension and a conditional version [49] that screens

after conditioning on prior information, these same ideas can be applied to marginal Sobel

screening to improve its versatility. The distributional properties of our marginal screener

can also be used to create marginally valid inference as is sought after in the post-selection

inference literature. Possible correlation structures between mediators can also be considered

to improve screening.

In the distributed optimization and cryptography setting, our cryptosystem provides a

blueprint for training other penalized models under similar privacy constraints. Using the

parallelizability of ADMM or other optimization techniques allows researchers to distribute

the work of an optimization problem, while homomorphic encryption algorithms allow the

agents in the scheme to trade information in a secure manner while still allowing mathemat-
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ical operations to be performed on encrypted data. Differential privacy [95] is another more

recent form of encryption that may work in a similar cryptosystem with the advantage of

improved speed, although more research needs to be done on how to maintain accuracy after

injecting noise into the data.

The proposed methods in this dissertation provide some improvements for methods in

high dimensional statistics. We hope that these methods not only improve the ability to

make better scientific discoveries and policy decisions, but also inspire others who run into

problems when working with high dimensional problems. We further hope that this disser-

tation provides valuable techniques to the field of high dimensional statistics and science as

a whole.
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