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ABSTRACT OF THE DISSERTATION

Weighted Estimates for the Bergman and Szeg® Projections

by

Nathan A. Wagner

Doctor of Philosophy in Mathematics

Washington University in St. Louis, 2022

Professor Brett D. Wick, Chair

This thesis is a study of various weighted estimates for the Bergman and Szeg® projections

on domains in several complex variables. The starting point of our analysis is a bounded,

pseudoconvex domain D ⊂ Cn. The Bergman and Szeg® projections are both orthogonal

projections onto spaces of holomorphic functions associated with D. While it is immediate

that both of these operators are bounded on L2, it has been a topic of substantial interest

to determine their mapping properties on Lp, where the boundary geometry of D plays a

major role.

Given a linear operator T acting on measurable functions that is bounded on L2 or Lp

with respect to Lebesgue measure dµ, it is of substantial interest in harmonic analysis to

determine the absolutely continuous measures σdµ such that T is also bounded on Lp(σdµ).

In the case that T is a Calderón-Zygmund operator, it is known that the correct su�cient

condition for boundedness is the Ap condition. A closely related weight class, called the Bp

class, is known to characterize the weighted Lp boundedness of the Bergman projection on

the unit ball. The goal of this thesis is to establish weighted estimates for the two projection

operators for weights in theAp or (generalized)Bp classes in a much more general context. We

especially focus on strongly pseudoconvex domains with minimal or near-minimal boundary

smoothness.

In Chapter 1, we introduce the spaces of holomorphic functions and related projection

operators, de�ne the relevant weight classes, and discuss the history of unweighted and
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weighted Lp estimates for the projection operators on various classes of domains. We also

establish common notation and state the main results in the thesis.

In Chapter 2, we establish weighted Lp estimates for the Bergman projection when 1 <

p < ∞ and σ ∈ Bp on several classes of smoothly bounded, pseudoconvex domains where

explicit size and smoothness on the Bergman kernel are known. In the case of strongly

pseudoconvex domains, the necessity of the Bp condition is also proved.

Next, in Chapter 3 we shift our focus to strongly pseudoconvex domains with a lower level

of boundary regularity. For such domains, explicit estimates on the kernel functions are not

known, so one must instead use an operator-theoretic technique pioneered by Kerzman and

Stein. This technique involves relating the Bergman or Szeg® projection to a non-orthogonal

projection which has a non-canonical, yet explicitly constructed kernel. In this chapter, we

speci�cally prove weighted Lp estimates for the Szeg® projection for 1 < p <∞ and σ ∈ Ap

on strongly pseudoconvex domains with C2 boundary.

In Chapter 4, we establish weighted Lp estimates for the Bergman projection for 1 <

p < ∞ and σ ∈ Bp on strongly pseudoconvex domains with C4 boundary. These estimates

are obtained using very similar techniques to Chapter 3. At the end of the chapter, we

prove weighted estimates in the minimally smooth (C2) case for the Bergman projection for

a special class of weights that are a power of the distance to the boundary. We also provide

an application of the proof techniques to mapping properties of Toeplitz operators.

Finally, in Chapter 5 we establish some endpoint estimates for both projection operators.

In particular, we prove that on a strongly pseudoconvex domain with C4 boundary, if σ

belongs to B1, the Bergman projection maps L1
σ to L1,∞

σ (a weighted weak-type space). We

also establish that on a strongly pseudoconvex domain with C3 boundary, if σ belongs to

A1, the Szeg® projection is also weighted weak-type (1, 1). Finally, we provide some other

endpoint estimates, including weighted Kolmogorov and Zygmund inequalities, as well as an

estimate for the Bergman projection for p =∞ in terms of the Bloch norm.
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Chapter 1

Introduction

1.1 The Bergman and Szeg® Projections

Let D ⊂ Cn be a bounded domain. Let Hol(D) denote the set of holomorphic functions on

D. For 1 < p <∞, the Bergman space Ap(D) is de�ned to be Hol(D)∩Lp(D), or alternately

Ap(D) :=

f ∈ Hol(D) :

∫
D

|f |p dV <∞

 .

Here, dV represents Lebesgue measure on Cn canonically identi�ed with R2n.

It is straightforward to show, using the mean value property for holomorphic functions

and Hölder's Inequality, that if a sequence {fn} ⊂ Ap(D) converges in Lp(D) to a function

f , then fn → f uniformly on compact sets. We conclude that f is holomorphic and hence

f ∈ Ap(D). It follows that Ap(D) is a Banach space for 1 < p <∞ when equipped with the

Lp norm.

In the special case p = 2, A2(D) is clearly a Hilbert space with the standard L2 inner

product

〈f, g〉 =

∫
D

fg dV.

Since A2(D) is a closed subspace of L2(D), we know from elementary Hilbert space theory

that there exists an orthogonal projection operator B : L2(D)→ A2(D), called the Bergman

projection.

For any �xed z ∈ D, we can show that there exists a constant Cz so that |f(z)| ≤
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Cz‖f‖A2(D) for all f ∈ A2(D). This means that point evaluations are bounded linear func-

tionals on A2(D). Accordingly, by the Riesz Representation Theorem, there exists a function

Kz ∈ A2(D) (called the reproducing kernel at z) so that 〈f,Kz〉 = f(z) for all f ∈ A2(D). Let

KD(z, w) = Kz(w). It is easy to see KD(z, w) = KD(w, z). Then it is immediate KD(z, w)

is holomorphic in the z variable and anti-holomorphic in the w variable and satis�es the

reproducing property

f(z) =

∫
D

KD(z, w)f(w) dV (w)

for all f ∈ A2(D).

We refer to the function KD as the Bergman kernel for the domain D. Notice that

integration against the Bergman kernel is exactly the Bergman projection operator: for any

f ∈ L2(D), we have, using the self-adjointness of the Bergman projection:

Bf(z) = 〈Bf,Kz〉

= 〈f,BKz〉

= 〈f,Kz〉

=

∫
D

KD(z, w)f(w) dV (w).

The Bergman kernel can rarely be calculated explicitly. However, considerable informa-

tion about the behavior of the kernel near the boundary has been obtained for several classes

of domains, some of which we discuss later in this chapter. Let Bn = {z ∈ Cn :
∑n

j=1 |zj|2 <

1} denote the unit ball in Cn. Then it is well-known that

KBn(z, w) =
n!

πn
1

(1− z · w̄)n+1

where z · w̄ =
∑n

j=1 zjw̄j.
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Now let D be a domain with C2 boundary smoothness. This means that there is a C2

function ρ : Cn → R that satis�es D = {z ∈ Cn : ρ(z) < 0} and ∇ρ 6= 0 on bD. The obvious

analogue of this de�nition applies to de�ne domains with Ck boundary, k ≥ 1. We call ρ a

de�ning function for the domain D. We now de�ne the Hardy space H2(bD) as follows:

H2(bD) := {f ∈ L2(bD) : f = F |bD, F ∈ Hol(D) and F ∈ C(D)},

where the closure is taken in L2(bD). This de�nition coincides with more typical de�nitions

in the case D = D, for example. By its very de�nition, H2(bD) is a closed subspace of L2(bD)

and hence a Hilbert space with the L2(bD) inner product. Thus, we know there exists an

orthogonal projection S : L2(bD) → H2(bD), which we call the Cauchy-Szeg®, or simply

Szeg®, projection. We should note it is also possible to de�ne Hp(bD) spaces for p ∈ (1,∞)

using an approach involving non-tangential maximal functions, see [39].

It is a fact that every element of H2(bD) can be associated with a unique holomorphic

function f̃ ∈ Hol(D) via its Poisson integral f̃ = Pf. Moreover, it is a fact that for almost

every ζ ∈ bD, the following holds [33]:

lim
ε→0+

f̃(ζ − εnζ) = f(ζ).

Here, nζ denotes the outward unit normal vector at ζ, which is well-de�ned in light of the C2

boundary of D. Therefore, we say that functions in the Hardy space have radial boundary

limits almost everywhere (actually they have non-tangential boundary limits in a precise

sense [33,39], but this is beyond the scope of the thesis), and it is meaningful to talk about

functions in H2(bD) as boundary values of holomorphic functions .

For z ∈ D, de�ne the linear functional Ez by Ez(f) = Pf(z), f ∈ H2(bD). Then it is

not di�cult to show that |Pf(z)| ≤ Cz‖f‖H2(bD), so this evaluation functional is bounded.

Accordingly, there is a unique function Kz ∈ H2(bD) satisfying 〈f,Kz〉 = Pf(z) for all

3



f ∈ H2(bD). Analogous to the Bergman case, for z ∈ D and w ∈ bD, we will let KD(z, w) =

Kz(w) and refer to this function as the Szeg® kernel. Although we use the same letter to

denote the Bergman and Szeg® kernels, the meaning will be clear from context.

The Szeg® projection is given by integration against the Szeg® kernel in the following

sense:

PSf(z) = 〈Sf,Kz〉

= 〈f,SKz〉

= 〈f,Kz〉

=

∫
bD

KD(z, w)f(w)dS(w).

Of course, we may recover the boundary values of Sf by taking a radial limit in z of the

integral. When z ∈ bD, this integration can be interpreted as a singular integral in certain

cases.

As in the case of the Bergman kernel, the Szeg® kernel can rarely be calculated explicitly,

but relevant estimates have been obtained in a variety of cases. In the case of the unit ball,

one has the following formula for the Szeg® kernel:

KBn(z, w) =
(n− 1)!

2πn
1

(1− z · w̄)n
.

1.2 Calderón-Zygmund Operators

Calderón-Zygmund operators have been extensively studied in harmonic analysis. These

operators are singular integrals whose kernels satisfy certain size and smoothness conditions.

In the past several decades, there has been ample interest in studying Calderón-Zygmund
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operators in a non-Euclidean setting. The most natural setting in which to study these

operators is a space of homogeneous type. This concept was introduced by Coifman and

Weiss in [11,12].

De�nition 1.2.1. Let (X,µ) be a measure space. Suppose there is a function d : X×X → R

that satis�es the following:

1. d(x, y) ≥ 0 for all x, y ∈ X and equals 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. There exists a constant c ≥ 1 so that for all x, y, z ∈ X we have d(x, y) ≤ c(d(x, z) +

d(z, y)).

Then the function d is called a quasi-metric or pseudometric. We also assume that for every

x ∈ X, the ball B(x, r) = {y ∈ X : d(x, y) < r} is µ-measurable. Suppose also that there

exists a constant C > 0 so that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ CµB(x, r).

The triple (X, d, µ) is then called a space of homogeneous type.

Now, we can de�ne Calderón-Zygmund operators (CZOs) on spaces of homogeneous type.

We say a bounded operator T on L2(X,µ) has an associated kernel K : X × X \ {(x, x) :

x ∈ X} → C if for all f ∈ L2(X) and x /∈ supp(f), we have

Tf(x) =

∫
X

K(x, y)f(y) dµ(y).

De�nition 1.2.2. We say a linear operator T is a Calderón-Zygmund operator on (X, d, µ)

if T is bounded on L2(X,µ) and has an associated kernel K that satis�es

5



1. There exists C1 > 0 so for x 6= y, there holds

|K(x, y)| ≤ C1

µ(B(x, d(x, y)))
.

2. There exists C2 > 0 and η > 0 so if d(x, y) > C2d(x, x′), then

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C1

µ(B(x, d(x, y)))

(
d(x, x′)

d(x, y)

)η
.

In the Euclidean setting, the prototypical examples of CZOs are the Hilbert transform

on R and the Riesz transforms on Rn. Many mapping properties of CZOs are well-known.

For example, CZOs are automatically bounded on Lp for 1 < p < ∞. The relevance of

CZOs to this thesis is that in many situations the Bergman and Szeg® projections (or related

operators) can be viewed as CZOs on a space of homogeneous type that re�ects the geometry

of the domain. It should be noted that the Bergman projection is fundamentally di�erent

from typical singular integrals because the Bergman kernel KD(z, w) has �nite modulus for

each pair (z, w) ∈ D×D (so in a sense the integral is not �singular� at all; however the kernel

may blow up as z and w approach the boundary diagonal and this behavior is typical for

many domains). In contrast, the Szeg® projection can be viewed as a �true singular integral.�

A recent theme in harmonic analysis has been to determine the boundedness properties

of integral operators, particular CZOs, on weighted Lebesgue spaces. A weight σ is a locally

integrable function that is positive almost everywhere. We write Lpσ(X) to denote the Lp

space on X with absolutely continuous measure σdµ. The consideration of these problems

goes back to the formulation of the Ap condition for the Hilbert transform by Hunt, Muck-

enhoupt, and Wheeden, see [23]. The following class of weights is fundamental to harmonic

analysis:

De�nition 1.2.3. Let (X, d, µ) be a space of homogeneous type. For 1 < p <∞, we say a

6



weight σ ∈ Ap (or belongs to the Muckenhoupt class) if

[σ]Ap := sup
x∈X
r>0

 1

µ(B(x, r))

∫
B(x,r)

σ dµ


 1

µ(B(x, r))

∫
B(x,r)

σ−
1
p−1 dµ


p−1

<∞.

The relevance of Ap weights to CZOs is clearly illustrated in the following theorem.

Theorem 1.2.1. Let (X, d, µ) be a space of homogeneous type, T a CZO, and 1 < p <∞.

If σ ∈ Ap, then there exists a constant C(T, p, σ) depending on T, p and σ so that for all

f ∈ Lpσ(X),

‖Tf‖Lpσ(X) ≤ C(T, p, σ)‖f‖Lpσ(X).

There is also a relevant endpoint class called A1 weights. These weights are contained in

every Ap class for 1 < p <∞ and can be de�ned as follows:

De�nition 1.2.4. Let (X, d, µ) be a space of homogeneous type. We say a weight σ ∈ A1 if

[σ]A1 := sup
x∈X
r>0

 1

µ(B(x, r))

∫
B(x,r)

σ dµ

 ‖σ−1‖L∞(B(x,r)) <∞.

1.3 Known Lp and Weak-Type Estimates

By their very de�nitions, it is clear that the Bergman and Szeg® projections act boundedly on

L2 (in fact with norm 1). However, it is of interest to determine when the projection operators

extend to bounded operators on Lp(D) for 1 < p < ∞. For example, the boundedness of

the Bergman projection on Lp(D) allows one to conclude that (Ap(D))∗ = Aq(D), where ∗

denotes the dual space in the functional analysis sense and 1
p

+ 1
q

= 1. These problems have a

long history and are intimately connected to the geometry of the domain D. In the simplest
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case D = D (the unit disk, or unit ball with n = 1), it was shown by Zaharjuta and Judovi£

in [68] that the Bergman projection B extends to a bounded operator on Lp(D). Rudin and

Forelli extended this result to multiple dimensions by proving the Lp regularity of B on the

unit ball Bn in [19]. Their method of proof uses Schur's Test for integral operators with

positive kernels. In fact, their argument actually shows that the positive Bergman operator

B+f(z) :=

∫
Bn

|KBn(z, w)|f(w) dV (w)

is bounded on Lp(Bn) for 1 < p <∞. In terms of the Szeg® projection, it is a classical result

of M. Riesz that the Szeg® projection on the unit circle T = bD extends to a bounded operator

on Lp(T) for 1 < p <∞. In fact, the Szeg® projection on the circle is closely connected to the

Hilbert transform/conjugate operator on the circle (see [56]). The corresponding statement

for the unit ball was in fact proven in [32].

Many researchers then studied mapping properties of the Bergman and Szeg® projections

on wider classes of domains in several complex variables. In what follows, we assume that

D ⊂ Cn is a bounded domain with C2 boundary smoothness. The following de�nitions are

fundamental in several complex variables:

De�nition 1.3.1. Let D ⊂ Cn be a bounded domain with C2 de�ning function ρ. Then D

is said to be (strongly) pseudoconvex if for all ζ ∈ bD, the complex Hessian matrix

{
∂2ρ

∂zj∂z̄k
(ζ)

}n
j,k=1

is positive semi-de�nite (positive de�nite) on the complex tangent space

Tζ(bD) =

{
w ∈ Cn :

n∑
j=1

∂ρ

∂zj
(ζ)wj = 0

}
.

One can check that this de�nition is independent of the de�ning function ρ. Pseudocon-

8



vexity can be thought of as an analog of convexity that is invariant under biholomorphic

mappings. It is also a (highly non-obvious) fact that pseudoconvex domains are precisely the

domains of holomorphy [33]. It therefore makes sense to restrict attention to pseudoconvex

domains when studying mapping properties of the projection operators.

The prime example of a strongly pseudoconvex domain is the unit ball. Therefore,

strongly pseudoconvex domains with C∞ (smooth) boundary are a natural class of domains

to consider next, as they have similar boundary geometry. In 1977, Phong and Stein proved

the following [57]:

Theorem 1.3.1. Let D be smoothly bounded and strongly pseudoconvex. Then B and S

extend to bounded operators on Lp for 1 < p <∞.

Their proof used explicit kernel estimates on the Bergman and Szeg® kernels, Schur's

Test (see [70, Theorem 2.9]) for the Bergman projection, and singular integral theory on the

Heisenberg group for the Szeg® projection. It is worth noting that these proofs are made

possible by precise asymptotic expansions of the Bergman and Szeg® kernel in this setting

(the expansion for the Bergman kernel was �rst famously obtained by Fe�erman near the

boundary diagonal in [18], see also [7]).

Smoothly bounded, strongly pseudoconvex domains are an example of a broader class of

domains known as �nite type. Roughly speaking, this means each point on the boundary

of the domain has �nite order of contact with all one-dimensional analytic varieties. Let

φ : D → C be smooth. Fix a point p ∈ D and let k be the least positive integer so that

there exists a (real) derivative Dβ of order |β| = k so that Dβ(φ)(p) is non-vanishing. We

call the integer k the multiplicity of φ at p and write vp(φ) = k. If instead φ maps into Cn,

we de�ne vp(φ) to be the minimum multiplicity of its entries. Below, we assume p = 0 and

simply write v(φ). We provide the precise de�nition of �nite type, which is originally due

to D'Angelo in [14], see also [33, 50] (again, this de�nition is actually independent of the

de�ning function).
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De�nition 1.3.2. Let D be a smoothly bounded domain with de�ning function ρ. We say

a point ζ ∈ bD is �nite type if there exists a positive constant C <∞ so that

sup
φ:D→Cn

φ holomorphic and non-constant
φ(0)=ζ

v(ρ ◦ φ)

v(φ)
≤ C.

The in�mum of all such constants C is denoted ∆(bD, ζ) and is referred to as the type of

bD at ζ. We say that D is �nite type if each point ζ ∈ bD is �nite type.

The �nite type condition is extremely important in several complex variables because it

turns out to be a necessary and su�cient condition for local subelliptic estimates to hold

for the ∂̄-Neumann operator on smoothly bounded, pseudoconvex domains [8]. In addition,

it is known that any biholomorphic mapping from Ω1 to Ω2 extends to a di�eomorphism of

the closures if both domains are �nite type [33].

For several classes of �nite type domains, strong estimates on the singularities of the

Bergman and/or Szeg® kernels have been obtained. These classes of domains include convex

domains of �nite type, domains of �nite type in C2, and decoupled domains. We will not

formally de�ne these domains, but see [45,46,48,49,53] for more details. In these situations,

we can introduce a quasi-distance d on D so that, with respect to the space of homogeneous

type (D, d, V ), the Bergman projection is a Calderón-Zygmund operator in the sense of Def-

inition 1.2.2. In [47, 50], McNeal developed a coherent framework for studying the behavior

of the Bergman kernel on these domains, which he refers to as simple domains (we follow

his terminology in the rest of this thesis). The following theorem in [47] is a consequence of

these estimates:

Theorem 1.3.2. Let D be a simple domain. Then the Bergman projection B extends to a

bounded operator on Lp for 1 < p <∞.

The most di�cult part of this approach is obtaining the actual size and smoothness

estimates on the Bergman kernel KD(z, w). Estimates for the Szeg® kernel have also been
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obtained for these domains [7,9,44,53], and the corresponding mapping properties have also

been studied. The upshot of this approach is that the theory of Calderón-Zygmund operators

can be brought to bear when such estimates are proven for the Bergman or Szeg® kernel, so

the Lp boundedness of the Bergman projection follows from standard methods. It is still an

interesting open question whether a �nite type assumption alone on D is su�cient for Lp(D)

boundedness of the Bergman projection in the re�exive range, see [69].

It should be noted that historically, estimates for the Bergman kernel on strongly pseudo-

convex domains were obtained �rst by Fe�erman and later re�ned by Boutet and Sjöstrand,

using di�erent methods (see [7,18]). Strongly pseudoconvex domains were also not one of the

types considered in [47], as the Lp mapping properties of the Bergman projection on these

domains were already known (see [57]). However, in [50] McNeal demonstrates that strongly

pseudoconvex domains fall into the same paradigm as the other domains considered. This

means that one can use the exact same singular integral machinery as in [47] to prove the Lp

regularity of the Bergman projection on strongly pseudoconvex domains, even though this

was not originally how this result was obtained.

If the domain is Ck smooth rather than C∞, a more indirect approach is needed because

the methods used to obtain precise estimates on the Bergman or Szeg® kernel depend criti-

cally on the C∞ boundary hypothesis and break down if this smoothness is lost. Around the

same time that decisive results were proved for strongly pseudoconvex, smoothly bounded

domains, Kerzman and Stein developed a powerful idea that allowed them to relate the

Szeg® projection S to a �Cauchy� integral operator C via an operator equation (see [28, 29]

for the one variable and several variable cases, respectively). In the case n ≥ 2, there is no

�universal� or canonical integral kernel that reproduces and produces holomorphic functions

on all domains D, while in C the familiar Cauchy kernel satis�es these properties and does

not depend on the domain (see [36, 60] for some excellent reference material on these holo-

morphic integral representations). Instead, the construction of the kernel of C must proceed
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through ad-hoc methods that depend on the domain D.

The construction of Kerzman and Stein in [29] is di�erent but bears some similiarities

to the earlier work of Henkin and Ramirez [22, 59]. The essential idea, exploited in [29] as

well as numerous other papers in the literature, involves constructing an auxiliary operator

C that also produces and reproduces holomorphic functions inside D from boundary data,

and de�ning C to be a restriction of C to the boundary in an appropriate sense, so that

C is a singular integral operator. This operator C is given as a sum, C1 + C2, where C1

is constructed using the theory of Cauchy-Fantappié integrals and C2 is a correction term

obtained by solving a ∂ problem on a strongly pseudoconvex, smoothly bounded domain

that contains D (see, for example, [29, 40, 60]). Importantly, C1 has a completely explicit

kernel. The operator C∗ − C then roughly measures the �error� introduced by considering C

instead of S. A similar trick can be employed for the Bergman projection [42].

If we are to restrict our attention to strongly pseudoconvex domains (which are the

domains on which the above projection operators can be constructed), we must at minimum

assume that the boundary of our domain D is C2 (minimal smoothness). By passing through

these auxiliary operators, it is possible to obtain boundedness properties for the operators

B and S without relying on explicit bounds for the Bergman or Szeg® kernels. This indirect

approach was employed by Lanzani and Stein in [37,40] to study these problems in the case

that D has C2 boundary. In particular, Lanzani and Stein proved the following, which is

the best result possible on strongly pseudoconvex domains:

Theorem 1.3.3. Let D be strongly pseudoconvex with C2 boundary. Then B and S extend

to bounded operators on Lp for 1 < p <∞.

Motivated by weighted results for Calderón-Zygmund operators such as Theorem 1.2.1, it

is natural to determine necessary and su�cient conditions on a weight σ so that B or S map

Lpσ to Lpσ. The main results in the literature pertaining to the boundedness of the Bergman

projection on weighted spaces are due to Békollè and Bonami and consider the underlying
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domain to be the unit ball Bn [3, 4], see also [58]. The correct condition for the weights is

referred to as the Békollè-Bonami, or Bp, condition. We state this condition below as well

as the corresponding theorem in [3].

De�nition 1.3.3. We say a weight σ ∈ Bp(Bn) if

[σ]Bp := sup
B(z,r);r>1−|z|

 1

V (B(z, r))

∫
B(z,r)

σdV


 1

V (B(z, r))

∫
B(z,r)

σ−1/(p−1)dV


p−1

<∞,

where the quasi-balls B are taken in the quasi-metric de�ned by

d(z, w) = ||z| − |w||+
∣∣∣∣1− 〈z, w〉|z||w|

∣∣∣∣ .
Theorem 1.3.4. Let 1 < p < ∞ and σ be a weight. Then the Bergman projection B is

bounded on Lpσ(Bn) if and only if σ ∈ Bp.

Notice this weight class is de�ned using a Muckenhoupt-type condition, but it is slightly

altered to re�ect the fact that the behavior of the weight away from the boundary is not im-

portant. The relevant quasi-metric was mentioned as an example of a space of homogeneous

type in [12].

Considering the Szeg® projection, there appear to be few weighted results that appear

explicitly in the literature. The work of Hunt, Muckenhoupt, and Wheeden in establishing

the necessity and su�ciency of the Ap condition for the Lpσ boundedness of the Hilbert

transform on the unit circle (the conjugate operator) also implies the necessity and su�ciency

of the Ap condition for the Szeg® projection on the unit circle as well, see [23,56]. Note that

in this case, the �balls� in the de�nition of the Ap characteristic are simply intervals on T,

and the measure is simply arc length. We also mention that [52, 54] contain some related

weighted results for the unit disk. From a heuristic point of view, since the Szeg® projection

involves integration on the boundary and is a true singular integral, the correct class of
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weights should be an adaptation of the Ap class in Euclidean harmonic analysis. Therefore,

the correct weight condition for the Szeg® projection to be bounded on Lpσ(bD) should be

for σ to belong to an Ap class on the boundary, where the non-isotropic boundary �balls�

re�ect the boundary geometry of the domain. We remark that analogous weighted results

for the unit ball are likely known to the experts. We will also consider weighted estimates

for the Szeg® projection on certain classes of pseudoconvex domains in this thesis.

It is typical behavior for Calderón-Zygmund operators to fail to map L1 to L1 boundedly.

It is well-known that this is the case for the Hilbert and Riesz transforms, and it is not too

di�cult to see that this also must be the case for the Bergman and Szeg® projections on the

unit disk/circle. This failure can be seen as consequence of the Rudin-Forelli estimates in

the case of the Bergman projection (see [70, Theorem 1.12]), and the fact that the Hilbert

transform/conjugate operator is unbounded on L1 in the case of the Szeg® projection (see

[56]). In fact, a recent result shows that the projections are always unbounded on L1 for any

smoothly bounded domain, even without a pseudoconvexity assumption [13].

However, there is a replacement inequality for the failed L1 boundedness many of these

cases. Recall that we say a measurable function f belongs to weak L1 on D (D any domain),

and write f ∈ L1,∞(D), if

‖f‖L1,∞(D) := sup
λ>0

λV ({z ∈ D : |f(z)| > λ}) <∞.

The quantity ‖ · ‖L1,∞(D) is actually a quasi-norm (the triangle inequality is satis�ed with

a constant), and it is also a fact that L1,∞(D) is a quasi-Banach space. By Chebyshev's

Inequality, L1(D) ⊂ L1,∞(D) with bounded inclusion. We say that a linear operator T

acting on measurable functions is weak-type (1,1) if there exists a constant C > 0 so that

sup
λ>0

λV ({z ∈ D : |Tf(z)| > λ}) ≤ C‖f‖L1(D).
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The in�mum of all such constants C so that the above inequality holds is denoted by

‖T‖L1(D)→L1,∞(D) and is referred to as the weak-type norm of T.

It is well known that the Hilbert and Riesz tranforms are weak-type (1, 1) (in this case,

D = R or Rn). It is also known that the Szeg® projection on the unit circle in weak-type

(1, 1). In terms of the Bergman projection, a result of Békollè states that the Bergman

projection on the unit ball is weak-type (1, 1) [3, 15]. In fact, Békollè actually obtained a

weighted weak-type estimate when σ belongs to an endpoint class of Bp weights called B1

weights. We give the precise de�nition of a B1 weight on the unit ball Bn here:

De�nition 1.3.4. We say a weight σ ∈ B1(Bn) if

[σ]B1 := sup
B(z,r)
r>1−|z|

 1

V (B(z, r))

∫
B(z,r)

σ dV

 ‖σ−1‖L∞(B(z,r)) <∞.

where the quasi-balls B are taken in the quasi-metric de�ned by

d(z, w) = ||z| − |w||+
∣∣∣∣1− 〈z, w〉|z||w|

∣∣∣∣ .
Békollè proved the following theorem:

Theorem 1.3.5. Let σ be a weight on Bn. Then B is bounded from L1
σ(D) to L1,∞(D),

meaning there exists a constant C so that

sup
λ>0

λσ({z ∈ Bn : |Bf(z)| > λ}) ≤ C‖f‖L1
σ(Bn),

if and only if σ ∈ B1.

Notably, even unweighted weak-type (1, 1) estimates for the Bergman and Szeg® projec-

tions have not been previously obtained on general strongly pseuedoconvex domains to the

best of our knowledge.
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1.4 Common Notation

In this section, we �x some common notation that will hold for the rest of the thesis. The

letters z,w, and ζ will be most commonly used to denote complex vectors in Cn. Given a

complex vector z ∈ Cn, we will denote its complex components with respect to the canonical

basis as z1, z2, . . . , zn, although we will sometimes designate components in an alternative

coordinate system in the same way (this will be clear from context). In what follows, D ⊂ Cn

will be a bounded pseudoconvex domain with boundary bD and de�ning function ρ that is

at least class C2. The Bergman projection will be denoted by B while the Szeg® projection

will be denoted by S.We denote the Bergman (or Szeg®) kernel for a domain D by KD(z, w).

For a generic kernel of an integral operator on Cn, we use the notation K(z, w) or k(z, w).

We will write dV to denote Lebesgue measure on D and dS to denote induced Lebesgue

surface measure on bD. The notation Lpσ(D) is used to refer to the Lp space on D with

measure σdV (and Lpσ(bD) has the analogous meaning). We will use the letter σ to represent

a weight and use the notation σ(E) to mean
∫
E
σ dV.We will use the notation 〈f〉E,µ to denote

the average 1
µ(E)

∫
E
f dµ. When this measure µ is Lebesgue measure or induced Lebesgue

surface measure, we will omit the µ subscript and write 〈f〉E to denote the average of f

on E. We use the symbol ∗ to denote the adjoint of an operator on L2. Importantly, the

adjoint is taken on the unweighted Lebesgue space. The letter d is typically reserved for a

metric/quasi-metric that plays the relevant role in the space under consideration. We write

a quasi-ball of center z0 and radius r in this quasi-metric as B(z0, r). For 1 < p < ∞, we

will let q = p
p−1

denote the Hölder conjugate exponent to p.

The letter C is typically used (with some exceptions) to refer to a positive constant, which

can change from line to line. If the constant is important/has a signi�cant interpretation,

we label it with a number in the chapter (i.e. beginning with C1). We will typically use a

lowercase c for the constant in the triangle inequality in De�nition 1.2.1. Sometimes we will
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not explicitly write constants and instead use the notation A . B to mean that there exists

a positive constant C, independent of obvious parameters, so that A ≤ CB. The constant C

can depend on various quantities depending on the context, but these are typically quantities

that are intrinsic to the domain D and not dependent on a choice of base point, for example.

Similarly, we write A & B if there exists a positive constant c so A ≥ cB, and write A ≈ B

if A . B and A & B.

1.5 Main Results in this Thesis

Our �rst major result in this thesis is a signi�cant generalization of Békollè's result in [3] for

simple domains. Recall these were the classes of domains considered by McNeal in [47, 50].

All of these domains admit a quasi-metric d(z, w) that re�ects their geometry and naturally

occurs in the estimation of the Bergman kernel. This quasi-metric will be de�ned more

precisely in Chapter 2. Here we de�ne an appropriate class of weights that will be useful for

the rest of thesis:

De�nition 1.5.1. Let D be a simple domain in the sense of McNeal [50]. For 1 < p < ∞,

we say a weight σ belongs to the Békollè-Bonami (Bp) class associated to the quasi-metric

d if the following quantity is �nite:

[σ]Bp := sup
B(z,r)

r>d(z,bD)

 1

V (B(z, r))

∫
B(z,r)

σdV


 1

V (B(z, r))

∫
B(z,r)

σ−1/(p−1)dV


p−1

.

We can also de�ne an endpoint B1 class of weights on such a domain as follows:

De�nition 1.5.2. We say a weight σ belongs to the B1 class associated to the quasi-metric
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d on a simple domain D if the following quantity is �nite:

[σ]B1 := sup
B(z,r)

r>d(z,bD)

 1

V (B(z, r))

∫
B(z,r)

σ dV

 ‖σ−1‖L∞(B(z,r)) <∞.

Remark 1.5.1. Technically, the quasi-metric d will only be de�ned close to the boundary

(see Chapter 2 for more details). However, the collection of balls in the supremum in both

these de�nitions should be interpreted to also include the entire domain D.

Chapter 2 is concerned with proving the following theorem:

Theorem 1.5.1. Let D be a simple domain and 1 < p < ∞. If σ ∈ Bp, then there exists

C > 0 so that ‖Bf‖Lpσ(D) ≤ C‖f‖Lpσ(D).

The main strategy employed in Chapter 2 is to use Calderón-Zygmund estimates obtained

by McNeal and others combined with some of the techniques used in Bekolle's paper [3],

suitably adapted to more general domains. We remark that a similar result to Theorem

2.1.1 for the special case of convex domains of �nite type appears in [20] using di�erent

methods. In the special case that D is strongly pseudoconvex, this su�cient condition is

also necessary:

Theorem 1.5.2. Let D be a smoothly bounded, strongly pseudoconvex domain, 1 < p <∞,

and σ be a weight. Then B is bounded on Lpσ(D) if and only if σ ∈ Bp.

Next, we turn our attention to strongly pseudoconvex domains with minimal (C2) or near-

minimal smoothness. In Chapter 3, we prove that the familiar Ap condition from harmonic

analysis is su�cient for the boundedness of the Szeg® projection on strongly pseudoconvex

domains with C2 boundary. In particular, we have the following theorem:

Theorem 1.5.3. Let D be strongly pseudoconvex with C2 boundary and 1 < p < ∞. If

σ ∈ Ap, then there exists C > 0 so that ‖Sf‖Lpσ(bD) ≤ C‖f‖Lpσ(bD).
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Of course, the relevant Ap class is de�ned using a quasi-metric on the boundary that

appropriately re�ects its geometry. The class is de�ned precisely in Chapter 3.

In Chapter 4, we consider a similar question for the Bergman projection, and obtain the

following result:

Theorem 1.5.4. Let D be strongly pseudoconvex with C4 boundary and 1 < p < ∞. If

σ ∈ Bp, then there exists C > 0 so that ‖Bf‖Lpσ(D) ≤ C‖f‖Lpσ(D).

These results are signi�cant because methods that involve direct kernel estimation are

unavailable in the minimally smooth setting. The machinery used to prove these theorems

goes back to theory developed by Kerzman, Stein, Ligocka, and Lanzani that relates the

projection operator to a non-canonical, non-orthogonal projection via and operator equation.

We discuss this more precisely in Chapter 3 Section 3.2. We also apply these techniques to

obtain a specialized result for the Bergman projection on minimally smooth domains with

weights that are a power of the distance to the boundary and deduce certain mapping

properties of Toeplitz operators with power-distance symbols.

Finally, in Chapter 5 we discuss some endpoint results for the two projection operators on

near-minimally smooth, strongly pseudoconvex domains. In particular, we obtain weighted

weak-type estimates for the Bergman and Szeg® projections for an appropriate endpoint

class of weights:

Theorem 1.5.5. Let D be strongly pseudoconvex with C4 boundary. If σ ∈ B1, then there

exists C > 0 so that ‖Bf‖L1,∞
σ (D) ≤ C‖f‖L1

σ(D).

Theorem 1.5.6. Let D be strongly pseudoconvex with C3 boundary. If σ ∈ A1, then there

exists C > 0 so that ‖Sf‖L1,∞
σ (bD) ≤ C‖f‖L1

σ(bD).

These results extend the results of Chapter 3 and Chapter 4 to the p = 1 endpoint and

also extend Theorem 1.3.5 to more general domains. The proofs again involve the use of
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the Kerzman-Stein equation, as well as a compactness criterion for integral operators on

L1 and a generalization of the classical Riesz-Kolmogorov theorem. We also obtain some

additional weighted endpoint estimates, such as Kolmogorov and Zygmund inequalities, and

an appropriate (unweighted) estimate at p =∞.
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Chapter 2

The Bergman Projection on Smooth Domains

2.1 Summary of Main Results

A natural question is whether Békollè's result in [3] can be generalized in a suitable sense

to more general classes of pseudoconvex domains. In particular, in this chapter we establish

analogous weighted estimates for several classes of smoothly bounded, pseudoconvex domains

with �reasonable� geometry. This chapter comprises work which appears in [24].

LetD ⊂ Cn be a pseudoconvex domain with C∞ de�ning function ρ. We also assume that

D is a simple domain in the sense of the Introduction (we restate the de�nition in the next

section). The estimates on the Bergman kernel in these cases also facilitate the development

of an appropriate Bp-type class of weights σ (see De�nition 1.5.1) for which the Bergman

projection B is bounded on Lpσ(D), which is the focus of this chapter. The important thing

to keep in mind is that in every case we have a quasi-metric d that re�ects the boundary

geometry of the domain D. The following is our principal result in this chapter:

Theorem 2.1.1. Let D be a simple domain and 1 < p < ∞. If σ ∈ Bp, then there exists

C > 0 so that ‖Bf‖Lpσ(D) ≤ C‖f‖Lpσ(D).

For strongly pseuedoconvex domains, the Bp condition is also necessary.

Theorem 2.1.2. Let D be a smoothly bounded, strongly pseudoconvex domain, 1 < p <∞,

and σ be a weight. Then B is bounded on Lpσ(D) if and only if σ ∈ Bp.

This chapter is organized as follows. Section 2.2 explains how the quasi-metric d is

constructed in all these cases and gives rise to a homogeneous structure, and also states
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some crucial kernel estimates. In Section 2.3, we prove Theorem 2.1.1. Finally, in Section

2.4, we establish the necessity of the Bp condition for strongly pseudoconvex domains and

thus prove Theorem 2.1.2.

2.2 Preliminaries

All of the domains in this paper are pseudoconvex of �nite type in the sense of D'Angelo (see

De�nition 1.3.2, [14,33]). In what follows we assume that D is one of the following types of

pseudoconvex domains:

1. strongly pseudoconvex;

2. convex of �nite type;

3. �nite type in C2;

4. decoupled �nite type in Cn.

Following McNeal in [50], we will refer to such a domain as a simple domain. In [50],

McNeal shows that estimates for the Bergman kernel previously obtained in [45],[48], and [46]

actually fall into a uni�ed framework using a scaling approach which we describe below. This

scaling approach enables one to leverage subelliptic estimates for the ∂̄-Neumann operator

to obtain estimates on the Bergman kernel. Results on the Lp regularity of the Bergman

projection on smooth pseudoconvex domains of �nite type have actually been obtained in a

more general context (see [31]), but in this chapter we focus on these simple domains since

the quasi-metric in each of these cases leads to a space of homogeneous type.

We describe, �rst in qualitative terms, the scaling approach used by McNeal to obtain

kernel estimates on all of these domains. See [50] for a detailed explanation in the strongly

pseudoconvex case and [45, 46, 48, 49] for the other cases, as well as [55] for a correction to
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a statement in McNeal's original construction in the convex case. Let ρ be a �xed smooth

de�ning function for D. Let U be a small neighborhood of a point p ∈ bD and �x a point

q ∈ U . A holomorphic coordinate change z = (z1, · · · , zn) = Φ(w) with Φ(q) = 0 is employed

so that z1 is essentially in the complex normal direction (i.e the complex direction in the

orthogonal complement of Tπ(q), where π denotes the orthogonal projection to the boundary).

In particular, the coordinates can be chosen so ∂ρ
∂z1

is non-vanishing on U . The coordinates

z2, z3, . . . , zn are basically the complex tangential directions. The geometric properties of

the domain dictate the following: how far can one move in each of the complex directions

z1, z2, . . . , zn if one does not want to perturb the de�ning function ρ(z) by more than δ (more

precisely, a universal constant times δ)? Clearly, one can move no more than some constant

multiple of δ in the radial direction, but it is not at all clear for an arbitrary domain what the

answer is for the tangential directions. In fact, roughly speaking, the �nite type property of

the domain is precisely what ensures that the domain is not �too �at� and that the amount we

can move in the tangential directions (and intermediate directions) is somehow appropriately

controlled. We make this notion precise in the following proposition, which can be found in

[50]:

Proposition 2.2.1. Let D be a simple domain. Fix a point p ∈ bD. Then there exists

a small neighborhood U such that for su�ciently small δ > 0 and any point q ∈ U ∩ D,

there exist holomorphic coordinates z = (z1, z2, . . . , zn) centered at q and de�ned on U and

quantities τ1(q, δ), τ2(q, δ), . . . , τn(q, δ) with τ1(q, δ) = δ so that if we consider the polydisc

centered at q:

P (q, δ) = {z : |zj| < τj(q, δ), 1 ≤ j ≤ n},

one has the property that if z ∈ P (q, δ) ∩ D, then |ρ(z) − ρ(q)| . δ, where the implicit

constant is independent of q and δ. Moreover,

∣∣∣∣ ∂ρ∂z1

∣∣∣∣ > C for some C > 0 on U ∩D, where

C is independent of q and δ. In particular,
∂ρ

∂Re z1

> C on U ∩D.
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The coordinates (z1, z2, . . . , zn) can depend on δ, for example in the convex �nite type

case (see [48]), but z1 is always essentially the radial direction. Crucially, the polydiscs also

satisfy a kind of doubling property:

Proposition 2.2.2 ([50],[47]). There exist independent constants C1, C2 so the following

hold for the polydiscs:

1. If P (q1, δ) ∩ P (q2, δ) 6= ∅, then P (q1, δ) ⊂ C1P (q2, δ) and P (q2, δ) ⊂ C1P (q1, δ).

2. There holds P (q1, 2δ) ⊂ C2P (q1, δ).

One can now introduce a local quasi-metric M on U ∩D (see [47]):

De�nition 2.2.1. De�ne the following function on U ∩D × U ∩D:

M(z, w) = inf
ε>0
{ε : w ∈ P (z, ε)}.

Then M de�nes a quasi-metric on U ∩D.

Note that the volume of a polydisc P (q, δ) is comparable to δ2
∏n

j=2 (τj(q, δ))
2. The

constants, of course, are dependent on the Jacobian of the biholomorphism, but can be seen

to be independent of the base point q and δ.Moreover, this polydisc is comparable in measure

to a non-isotropic ball of radius δ centered at q in the local quasi-metric. Let U1, · · · , UN

be a �nite covering of bD by Euclidean balls with radius ε. We can suppose each set 3Uj

is a neighborhood where a local quasi-metric Mj can be constructed. To extend this quasi-

metric Mj to a global quasi-metric d de�ned on a tubular neighborhood of the boundary,

one can just patch the local metrics de�ned on 3Uj ∩D together in an appropriate way. Let

N =
⋃n
j=(3Uj ∩D) denote this relative neighborhood of bD. In particular, let φ ∈ C∞0 (3Uj)
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be a bump function satisfying φi ≡ 1 on 2Uj. For z, w ∈ N , we de�ne

d(z, w) =


∑n

j=1 φj(z)φj(w)Mj(z, w) |z − w| < ε

|z − w| |z − w| ≥ ε.

Here, Mj(z, w) should be interpreted to be 0 if either z /∈ 3Uj or w /∈ 3Uj. The resulting

quasi-metric is not continuous, but it can be checked that satis�es all the relevant properties.

The balls in this quasi-metric still have volume comparable to a polydisc if they have small

radius.

We remark that the construction in [47] is not quite correct in the claim that this con-

struction de�nes a metric onD×D. This metric is evidently only de�ned on N×N . However,

the next lemma shows that this does not present us with any di�culties in bounding the

Bergman projection.

Lemma 2.2.1. Let B|N denote the Bergman projection restricted to N ; that is, for f ∈

L2(D) and z ∈ D,

B(f)(z) := χN(z)

∫
N

KD(z, w)f(w)dV (w),

where KD(z, w) denotes the Bergman kernel for D and χ denotes characteristic function.

Then, if B|N is bounded on Lpσ(D) and σ, σ′ = σ−1/(p−1) are integrable on D, then B is

bounded on Lpσ(D) .

Proof. Take f ∈ Lpσ(D) and write f = f1 + f2, where f1 := fχN and f2 := fχD\N . Then
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write

‖Bf‖Lpσ(D) ≤ ‖Bf1‖Lpσ(D) + ‖Bf2‖Lpσ(D)

≤ ‖Bf1‖Lpσ(N) + ‖Bf2‖Lpσ(N) + ‖Bf1‖Lpσ(D\N) + ‖Bf2‖Lpσ(D\N)

= ‖B|Nf‖Lpσ(D) + ‖Bf2‖Lpσ(N) + ‖Bf1‖Lpσ(D\N) + ‖Bf2‖Lpσ(D\N)

. ‖f‖Lpσ(D) + ‖Bf2‖Lpσ(N) + ‖Bf1‖Lpσ(D\N) + ‖Bf2‖Lpσ(D\N)

where in the last line we used the hypothesis on B|N . Thus, if we can control the last three

terms, we are done. Recall by a result of Kerzman and Boas, the Bergman kernel for simple

domains extends to a C∞ function on D×D \4(bD× bD), where 4(bD× bD) denotes the

boundary diagonal {(z, z) : z ∈ bD}(see [30], [5]). Thus, in particular KD(z, w) is bounded

on compact subsets of D × D that do not intersect the boundary diagonal. We show how

this is applied to the term ‖Bf2‖Lpσ(N), as the other terms can be handled similarly. Then,

using this fact about KD(z, w), Hölder's inequality, and the hypotheses on σ,
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‖Bf2‖pLpσ(N)
=

∫
N

∣∣∣∣∣∣∣
∫

D\N

KD(z, w)f(w)dV (w)

∣∣∣∣∣∣∣
p

σ(z)dV (z)

≤
∫
N

 ∫
D\N

|KD(z, w)||f(w)|dV (w)


p

σ(z)dV (z)

.
∫
D

∫
D

|f(w)|dV (w)

p

σ(z)dV (z)

= σ(D)

∫
D

|f(w)|σ(w)1/pσ(w)−1/pdV (w)

p

≤ σ(D)

∫
D

|f(w)|pσ(w)dV (w)

∫
D

σ′(w)dV (w)

p/q

= ‖f‖p
Lpσ(D)

σ(D) (σ′(D))
p/q

. ‖f‖p
Lpσ(D)

which establishes the result.

This lemma shows that we can reduce to considering N in place of D and B|N in place

of B. Therefore, going forward, we will abuse notation by writing D when we really mean

the neighborhood N .

It is proven in [47] that the triple (D, d, V ) constitutes a space of homogeneous type with

triangle inequality constant c. Note that the measure V is doubling on the non-isotropic balls

essentially because of Proposition 2.2.2. Note if d is not symmetric, we can symmetrize it by

taking d(z, w) + d(w, z) as an equivalent quasi-metric. We denote a ball in the quasi-metric

27



d of center z0 and radius r by

B(z0, r) = {z ∈ D : d(z, z0) < r}.

Since ρ can be taken to be de�ned on Cn, this quasi-metric actually extends to D×D because

a polydisc can be centered at q ∈ bD. Thus, for z ∈ D, de�ne d(z, bD) as follows:

d(z, bD) := inf
w∈bD

d(z, w).

It is trivial to verify that for z, z′ ∈ D,

d(z, bD) . d(z′, bD) + d(z, z′).

One can actually show that the distance to the boundary in this quasi-metric is comparable

to the Euclidean distance. We have the following lemma.

Lemma 2.2.2. Let dist(z, bD) denote the Euclidean distance of z to the boundary of D.

Then we have

d(z, bD) ≈ dist(z, bD).

Proof. We can assume that z is su�ciently close to the boundary. Let π(z) be the normal

projection of z to the boundary, which is uniquely de�ned in a tubular neighborhood of the

boundary [2]. Then d(z, π(z)) . dist(z, π(z)) = dist(z, bD) by the structure of the quasi-

metric (note that the �rst coordinate of the polydisc corresponds to the radial direction).

This shows the bound d(z, bD) . dist(z, bD).

For the other bound, we only need consider the distance of z to points on the boundary

in a local neighborhood U where the local quasi-metric is de�ned (because otherwise the

distances will reduce to Euclidean distance). Let ε = dist(z, bD) ≈ |ρ(z)|. It is clear there is
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a universal constant c > 0 so that the shrunken polydisc P (z, cε) is strictly contained in D.

This implies that d(z, bD) & dist(z, bD), as desired.

The following estimates for the Bergman kernel were obtained by McNeal (see [45,46,48,50]

and also [53] for a slightly di�erent approach due to Nagel, Stein, Rosay, and Wainger):

Theorem 2.2.1. Let D be a simple domain and KD(z, w) denote the Bergman kernel for

D. Then near any p ∈ bD, there exists a coordinate system centered at z = (z1, z2, . . . , zn)

so that if α, β are multi-indices and Dα, Dβ denote holomorphic and anti-holomorphic

derivatives, respectively, taken in these coordinate directions, we have the following:

|DαzD
β

wKD(z, w)| ≤ Cα,βδ
−(2+α1+β1)

n∏
k=2

τk(z, δ)
−(2+αk+βk)

where δ = |ρ(z)|+ |ρ(w)|+M(z, w).

By using the global quasi-metric d, one can obtain global estimates on the Bergman

kernel. The following was proven in [47]:

Theorem 2.2.2. Let D be a simple domain. Then the following hold:

1. (Size) There exists a constant C3 so that for all z, w ∈ D:

|KD(z, w)| ≤ C3

V (B(z, d(z, w)))
.

2. (Smoothness) There exists a constant C4 and ν > 0 so that we have, provided d(z, w) ≥

C4d(z, z′):

|KD(z, w)−KD(z′, w)| ≤ C3

(
d(z, z′)

d(z, w)

)ν
1

V (B(z, d(z, w)))
.
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We actually get another size estimate for free, which will help us in the course of the proof.

This lemma can actually be deduced directly from Theorem 2.2.1, but we provide another

proof here (which actually shows any domain, not necessarily simple, whose Bergman kernel

satis�es the estimates in Theorem 2.2.2 will necessarily satisfy an additional estimate).

Lemma 2.2.3. Suppose KD(z, w) is the Bergman kernel for D and KD satis�es the size

estimate above. Then there exists a constant C5 so uniformly for all z, w ∈ D

|KD(z, w)| ≤ C5 min

{
1

V (B(z, d(z, bD)))
,

1

V (B(w, d(w, bD)))

}
.

Proof. Fix z ∈ D. We �rst claim that given ε > 0, there exists a w′ ∈ D so |KD(z, w)| ≤

|KD(z, w′)| and dist(w′, bD) ≤ ε. The claim follows immediately by applying the Maximum

Principle to the closed domain Dε = {w ∈ D : |ρ(w)| ≥ ε} and function KD(w, z) =

KD(z, w), which is analytic in w.

Now choose w′ ∈ bDε satisfying the above conditions. Then we have, using Lemma 2.2.2:

d(z, bD) ≤ cd(z, w′) + cd(w′, bD) ≤ c′d(z, w′) + c′ε

so we obtain the estimate

d(z, w′) ≥ 1

c′
d(z, bD)− ε.

Thus, applying the known size estimate, we get

|KD(z, w)| ≤ |KD(z, w′)| ≤ C3

V (B(z, d(z, w′)))
≤ C3

V (B(z, 1
c′
d(z, bD)− ε))

.

Since the inequality above holds for all ε > 0 and Lebesgue measure is doubling on these

quasi-balls, we obtain
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|KD(z, w)| ≤ C5

V (B(z, d(z, bD)))

as desired. Note C5 is independent of z. The other inequality follows by symmetry.

Remark 2.2.1. As a clear example of this property, consider the unit ball Bn where the

Bergman kernel is given by KBn(z, w) = n!
πn

1
(1−z·w̄)n+1 . Then |KBn(z, w)| . 1

(1−|z|)n+1 .

It is a well-known fact in harmonic analysis (for example, see [16]) that if B(z, r) is a

ball of radius r, center z in a space of homogeneous type with measure µ, then there exists

uniform constants C6, m so that if λ ≥ 1, we have

µ(B(z, λr)) ≤ C6λ
mµ(B(z, r)). (2.2.1)

Here the parameter m can be thought of as roughly corresponding to the �dimension� of the

space. We will use this fact, referred to as the strong homogeneity property, in a crucial point

in the proof of the main theorem.

To continue with the analysis, we need to de�ne an appropriate maximal function with

respect to the quasi-metric. In analogy with Békollè's result, we will also only consider balls

that touch the boundary of D. We make the following de�nition:

De�nition 2.2.2. For z ∈ D and f ∈ L1(D), de�ne the following maximal function:

Mf(z) := sup
B(w,r)3z
r>d(w,bD)

〈|f |〉B(w,r).

Proving Theorem 2.1.1 can be broken down into the task of proving the following two

results (mimicking the approach taken by Békollè in [3]):
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Theorem 2.2.3. Let 1 < p <∞ and suppose σ ∈ Bp. Then there exists a constant C > 0

so ‖Mf‖Lpσ(D) ≤ C‖f‖Lpσ(D).

Theorem 2.2.4. Let B+ be the positive operator de�ned B+f(z) =
∫
D
|KD(z, w)|f(w) dV (w).

Let 1 < p < ∞ and σ ∈ Bp. Then there exists a constant C > 0 so ‖B+f‖Lpσ(D) ≤

C‖Mf‖Lpσ(D).

We will prove these two theorems in the following section. It is worth pointing out that

Theorem 2.2.3 in conjunction with Theorem 2.2.4 shows that Theorem 2.1.1 actually holds

when B is replaced with B+, as is typical for Bergman-type operators.

2.3 The Su�ciency of the Bp Condition

We begin by proving Theorem 2.2.3. In what follows, we follow the general outline of the

approach taken in [3]. To begin with, we de�ne a regularizing operator Rk for k ∈ (0, 1):

Rk(f)(z) := 〈|f |〉Bk(z)

where Bk(z) = {w ∈ D : d(w, z) < kd(z, bD)}.

Intuitively, this regularizing operator spreads out the mass of the weight. We will ul-

timately show it turns Bp weights into Ap weights. In what follows, we say a ball B(z, r)

touches bD if r > d(z, bD). We begin with a simple proposition.

Proposition 2.3.1. There exists a constant Cd > 1 (depending on the quasi-metric d) so

that if k ∈ (0, 1
2Cd

), then z′ ∈ Bk(z) implies z ∈ Bk′(z
′), where k′ =

Cdk

1− Cdk
.

Proof. This is a trivial consequence of the (quasi)-triangle inequality. In fact, we can take

Cd = c > 1, where c is the implicit constant in the triangle inequality.

It is also routine to verify that the radius of Bk′(z
′) is at most a �xed multiple of the

radius of Bk(z) and the quasi-balls have comparable Lebesgue measure, where the implicit
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constants are independent of k ∈ (0, 1
2c

). We need another simple proposition to furnish the

next lemma.

Proposition 2.3.2. Let B be a quasi-ball of radius r, center z0, that touches the boundary

of D (i.e r > d(z0, bD)). Let k ∈ (0, 1) be �xed. Then there exists an (absolute, independent

of k) constant C so the dilated quasi-ball B̃ with radius Cr and center z0 satis�es B̃ ⊃ Bk(w)

for all w ∈ B.

Proof. Again, the proof is routine. This is also a simple consequence of the triangle inequality.

We are now ready to prove the following signi�cant lemma.

Lemma 2.3.1. There exists C > 0 so that for each k ∈ (0, 1
2c

) and z0 ∈ D, we have

Mf(z0) ≤ CM(Rk(f(z0))).

Proof. Fix k and let B be an arbitrary ball touching bD and centered at z0, B̃ an in�ation

of B with radius chosen as in the previous proposition so that B̃ ⊃ Bk′′(w) for all w ∈ B,

where k′′ = k
c(k+1)

. Then we have the following:

M(Rk(f(z0))) ≥ 1

V (B̃)

∫
B̃

1

V (Bk(z))

∫
Bk(z)

|f(w)|dV (w)dV (z)

=
1

V (B̃)

∫
D

∫
B̃

1

V (Bk(z))
χBk(z)(w)|f(w)|dV (z)dV (w)

&
1

V (B̃)

∫
B

∫
B̃

1

V (Bk′′(w))
χBk′′ (w)(z)|f(w)|dV (z)dV (w)

=
1

V (B̃)

∫
B

|f(w)|dV (w)

≈ 1

V (B)

∫
B

|f(w)|dV (w)
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where we used both propositions and the fact that Lebesgue measure V is doubling on

quasi-balls. Since the following estimate is true for all balls B centered at z0, the conclusion

follows.

We have the additional following lemma which is a straightforward application of Propo-

sition 2.3.1.

Lemma 2.3.2. Let f, g be positive, locally integrable functions. Then there exists C > 0

so for each k ∈ (0, 1
2c

), we have the inequality:

∫
D

fRk(g)dV ≤ C

∫
D

Rk′(f)gdV,

where k′ =
ck

1− ck
.

Proof. We have:

∫
D

fRk(g)dV =

∫
D

f(z)
1

V (Bk(z))

∫
Bk(z)

g(w)dV (w)dV (z)

=

∫
D

∫
D

f(z)

V (Bk(z))
χBk(z)(w)g(w)dV (z)dV (w)

.
∫
D

∫
D

f(z)

V (Bk′(w))
χBk′ (w)(z)g(w)dV (z)dV (w)

=

∫
D

g(w)
1

V (Bk′(w))

∫
Bk′ (w)

f(z)dV (z)dV (w)

=

∫
D

Rk′(f)gdV,

as desired.

The next lemma is fairly straightforward, but does require some care.
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Lemma 2.3.3. Fix k ∈ (0, 1
2c

). Then for any positive, locally integrable function g there

holds

Rk(M(g))(z) ≈M(g)(z),

where the implicit constant is independent of k.

Proof. It su�ces to prove that for any �xed z ∈ D, there holds for w ∈ Bk(z)

M(g)(w) . inf
z′∈Bk(z)

M(g)(z′) ≤M(g)(w),

where the implicit constant is absolute. Assuming the claim, then

Rk(M(g))(z) =
1

V (Bk(z))

∫
Bk(z)

M(g)(w)dV (w)

≈ 1

V (Bk(z))

∫
Bk(z)

inf
z′∈Bk(z)

M(g)(z′)dV (w)

= inf
z′∈Bk(z)

M(g)(z′)

≈ M(g)(z).

Now we prove the claim. The upper bound is trivial. Fix z ∈ D. It is clearly su�cient to

show that for any quasi-ball B centered at w ∈ Bk(z) touching the boundary with radius r,

given any z′ ∈ Bk(z), there is a quasi-ball B̃ centered at z′ with radius Cr so B̃ ⊃ B. First,

note that if B touches bD we must have r ≥ 1
4c
d(z, bD), otherwise

d(z, bD) ≤ cd(z, w) + cd(w, bD) ≤ ck[d(z, bD)] + cr ≤ 1

2
d(z, bD) +

1

4
d(z, bD) < d(z, bD),

which is absurd. Therefore we may conclude d(z, bD) ≤ 4cr.

Thus, if w′ ∈ B, we have
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d(w′, z′) ≤ c2[d(w′, w) + d(w, z) + d(z, z′)]

≤ c2[r + 2kd(z, bD)]

≤ 9c3r

so the claim is established by taking C = 9c3.

We will need the following proposition concerning a kind of doubling property for Bp

weights, which appears to be well-known insofar as it is used implicitly in Békollè's original

paper. The proof is largely the same as the proof for the doubling of Ap weights (see, for

example, [21, Proposition 7.1.5]), so we omit it.

Proposition 2.3.3. Suppose σ ∈ Bp. Let B be a quasi-ball (not necessarily touching bD)

such that λB touches bD, where λ > 1. Then for any λ′ > 1, we have

σ(λ′B) . σ(B),

where the implicit constant depends only on max{λ, λ′}.

We now proceed to the proof of Theorem 2.2.3.

Proof of Theorem 2.2.3. Using the results previously proven, we can make the following

progress to proving the theorem, �xing k ∈ (0, 1
2c

) (some of the following implicit constants

can depend on k, but k is �xed):
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∫
D

[M(f)(z)]pσ dV .
∫
D

[Rk(M(Rk(|f |)))]pσdV

≤
∫
D

Rk[[M(Rk(|f |))]p]σdV

.
∫
D

[M(Rk(|f |))]pRk′(σ)dV

.
∫
D

[M(Rk(|f |))]pRk(σ)dV,

where in the �rst inequality we use Lemmas 2.3.1 and 2.3.3, the second inequality is Hölder,

the penultimate inequality is Lemma 2.3.2, and the last inequality is given by the doubling

property of σ given in Proposition 2.3.3.

Now, if we can prove that the weight Rk(σ) belongs to Ap, by ordinary weighted theory

the last quantity will be controlled by a positive constant depending on p, σ and D times

∫
D

[Rk(|f |)]pRk(σ)dV.

Assuming this, then we have

∫
D

[Rk(|f |)]pRk(σ)dV ≤
∫
D

Rk(|f |pσ)[Rk(σ
−1/(p−1))]p−1Rk(σ)dV

. [σ]Bp

∫
D

Rk(|f |pσ)dV

. [σ]Bp

∫
D

|f |pσdV

where in the �rst inequality we use Hölder, the second inequality comes from the fact that

[Rk(σ
−1/(p−1))]p−1Rk(σ) . [σ]Bp (to see this, in�ate the quasi-balls Bk(z) by at most a �xed
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amount so they touch the boundary), and for the last step use Lemma 2.3.2.

Thus, it remains to prove that Rk(σ) ∈ Ap. To see this we need to consider two cases for

the quasi-ball B(z0, r) over which we take averages: the case where d(z0, bD) < 2cr (we can

in�ate the quasi-ball so it touches the boundary), and the case where d(z0, bD) ≥ 2cr. For

the �rst case, we proceed as follows:

1

V (B)

∫
B

Rk(σ)dV .
1

V (B)

∫
B

σ dV

using Lemma 2.3.2, while the other factor is controlled as follows:

 1

V (B)

∫
B

[Rk(σ)]−1/(p−1)dV

p−1

=

 1

V (B)

∫
B

 1

Bk(z)

∫
Bk(z)

σ(w)dV (w)


−1/(p−1)

dV (z)


p−1

≤

 1

V (B)

∫
B

1

Bk(z)

∫
Bk(z)

σ(w)−1/(p−1)dV (w) dV (z)


p−1

.

 1

V (B)

∫
B

σ−1/(p−1)dV

p−1

where for the �rst inequality we used Hölder and the second inequality we used Lemma 2.3.2.

Thus, we clearly have:

 1

V (B)

∫
B

Rk(σ)dV

 1

V (B)

∫
B

[Rk(σ)]−1/(p−1)dV

p−1

. [σ]Bp ,

in�ating the quasi-balls by a �xed amount so they touch the boundary if necessary.

For the other case, observe d(z0, bD) ≥ 2cr, so r ≤ 1
2c
d(z0, bD). One can verify that given

w ∈ B, the quasi-balls Bk(z0) and Bk(w) have comparable radii. From this it is simple to
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deduce that if CB = Rk(σ)(z0), then the following bounds hold for z ∈ B:

CB . Rk(σ)(z) . CB

where the implicit constants are absolute. It easily follows that Rk(σ) ∈ Ap.

We now state a couple of technical lemmas that will assist us in the proof of Theorem

2.2.4. In particular, they mitigate some di�culties that occur when passing from the proof

for the unit ball to the more general cases we consider.

Lemma 2.3.4. Fix constants γ, α1., α2 Let B0 = B(z0, r0) be a quasi-ball with the property

that if z ∈ B0, then d(z, bD) ≤ α1r0 and B0 ⊂ B(z, α1r0). De�ne

F = {z ∈ B0 : V (B(z, d(z, bD))) ≤ α2γV (B0)}.

Then F ⊂ F̃ , where

F̃ = {z ∈ B0 : d(z, bD) ≤ α′γ
1
m r0}

and α′ = α1(C6α2)
1
m . Here C6 and m are the constants in the strong homogeneity property

(2.2.1).

Proof. Using the strong homogeneity property,

V (B0) ≤ V (B(z, α1r0)) ≤ C6

(
α1r0

d(z, bD)

)m
V (B(z, d(z, bD))).

If we assume z ∈ F , by the de�nition of the set F , we get an upper bound on V (B(z, d(z, bD))),

and arrive at the inequality

V (B0) ≤ C6

(
α1r0

d(z, bD)

)m
α2γV (B0).
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Dividing both sides by V (B0), we obtain

C6

(
α1r0

d(z, bD)

)m
α2γ ≥ 1.

Rearranging this expression, we obtain

d(z, bD) ≤ α′γ
1
m r0,

where α′ = α1(C6α2)
1
m , as required.

Lemma 2.3.5. Let α′ be a �xed constant, γ > 0 a constant to be chosen later. Let B0 =

B(z0, r0) be a quasi-ball that touches the boundary and F = {z ∈ B0 : d(z, bD) ≤ α′γ1/mr0}.

Then, if γ is su�ciently small,

V (F ) . γ
1
mV (B0).

Proof. We need to consider two cases: when r0 is large and when r0 is small. We �rst consider

the case when r0 < RD is small, where RD is some appropriately chosen absolute constant

that depends only on D. We may assume that B0 lies completely in one of the neighborhoods

U where the local quasi-metric was constructed. To obtain a favorable estimate on the

measure of F in this case, it is easiest to consider the local coordinates constructed by

McNeal.

Recall the quasi-metric d is constructed by patching together these local metrics, so it

su�ces to work with the local coordinates on a local level. Recalling z0 denotes the center

of B0, we work with coordinates z = (z1, z2, . . . , zn) centered at z0 and with parameter

δ = r0. Note that B can be taken to be P (z0, r0), or at least some multiple that will

not a�ect the argument. Let zj = xj + iyj, 1 ≤ j ≤ n. For z ∈ P (z0, r0), write z =

(x1, y1, x2, y2, . . . , xn, yn) ∈ R2n and write z′ = (y1, x2, y2, . . . , xn, yn) ∈ R2n−1. For z ∈
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P (z0, r0), we de�ne the function R(z′) = sup{x1 : (x1, z
′) ∈ D}. We need to do this because

the polydisc may �extend� past the domain, but we are only considering the measure of the

portion that lies in D.

One can show using geometric arguments that if z ∈ F then one has the bounds R(z′)−

Cα′γ
1
m ≤ x1 ≤ R(z′), where C is some absolute constant. The upper bound is clear by

de�nition. The lower bound follows from the fact that ∂ρ
∂x1

> 0 on V . Denote by σ1(z, bD)

the distance from a point z to bD along the (real) line in the direction of (positive) x1. We

show d(z, bD) & σ1(z, bD) for all z in this neighborhood. Note if we �x z ∈ P (z0, r0), freezing

all the variables except x1, we can select w with w = (x′1, y1, x2, y2, . . . , xn, yn) by increasing

x1 so w ∈ bD. Then by the Mean Value Theorem (in one real variable), there is a point ζ in

the neighborhood U ∩D so that

d(z, bD) ≈ |ρ(z)|

= |ρ(z)− ρ(w)|

=

∣∣∣∣∂ρ(ζ)

∂x1

∣∣∣∣ |x′1 − x1|

≈ x′1 − x1

= σ1(z, bD)

where the implicit constant is independent of z. Crucially we use the fact that ∂ρ
∂x1

is bounded

away from zero by the coordinate construction. This shows that σ1(z, bD) . d(z, bD) and

establishes the claim.

Thus, we can gain control on the measure of F by integrating in these coordinates, using
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Fubini and noting the function R(z′) will vanish after the �rst variable is integrated:

V (F ) .
∫

|zn|≤τn(z0,r0)

∫
|zn−1|≤τn−1(z0,r0)

· · ·
∫

|y1|≤r0

∫
R(z′)−Cα′γ1/mr0≤|x1|≤R(z′)

dx1 dy1 . . . dyn−1 dyn

≈ γ
1
m r2

0

n∏
j=2

(τj(z, r0))2

≈ γ
1
mV (B0)

which yields the required estimate.

Now suppose that r0 ≥ RD. Since we are assuming γ is small, we can cover F and bD

with �nitely many small (Euclidean balls) so that in each ball, the normal projection to

the boundary is well-de�ned. Then, in each of these balls with center zc we can introduce

a smooth change of coordinates z = (z1, . . . , zn) centered at π(zc), where π denotes the

normal projection to the boundary, so we have x1 is in the real normal direction at π(zc) and

the coordinates y1, x2, y2, . . . , xn, yn lie in the real tangent plane at π(zc). A similar type of

coordinate system is employed in [37, Lemma 4.1]. In each ball, we can perform an integration

very similar to the one above in these coordinates and obtain V (F ) ≤ CDγ
1
m r0, where CD

is a constant depending only on the ambient domain. Since r0 is uniformly bounded above

and below by assumption, we also have V (B0) is bounded above and below by a universal

constant for the domain. Thus, we can deduce that V (F ) . γ
1
mV (B0), as desired.

Next, we proceed to prove Theorem 2.2.4. In what follows, we consider the positive

Bergman operator

B+f(z) =

∫
D

|KD(z, w)|f(w)dV (w).

It is known for the strongly pseudoconvex and convex �nite type cases that the positive

operator B+ is bounded on Lp(D), 1 < p < ∞ (see [43], [57]). We remark that our proof
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obtains the same result for the other cases in addition to the weighted estimates (just take

σ = 1).

Proof of Theorem 2.2.4. We proceed by proving a good-λ inequality as in classical singular

integral theory and Békollè's paper. In particular, we will show that there exist positive

constants C and δ so that given any f ∈ L1(D) and λ, γ > 0 we have

σ
(
{B+f > 2λ andMf ≤ γλ}

)
≤ Cγδσ

(
{B+f > λ}

)
.

By the regularity of σ, it su�ces to prove

σ
(
{z ∈ O : B+f > 2λ andMf ≤ γλ}

)
≤ Cγδσ (O) .

for any open set O containing {z ∈ D : B+f > λ}. Applying a Whitney decomposition to

O, consider a �xed ball B0 in the Whitney decomposition with center z0 and radius r0 (see

[12, Theorem 3.2]) for the existence of Whitney decompositions in a space of homogeneous

type). It su�ces to show

σ
(
{z ∈ B0 : B+f > 2λ andMf ≤ γλ}

)
≤ Cγδσ (B0) .

We may assume that there exists a ζ0 ∈ B0 so thatMf(ζ0) ≤ γλ, otherwise the inequality

is trivial. Also note we are free to take γ su�ciently small as the inequality is trivial for large

γ. By properties of the Whitney decomposition, we know that for some in�ation constant

c1 > 1, the ball B̃0 with radius c1r0 contains a point z′ so that B+f(z′) ≤ λ. Finally, let c2

be chosen large enough so that the ball centered at z′ with radius c2r0 contains B0 and let

B1 be the ball centered at z′ with radius equal to c3 = max{d(z′, bD), c2r0}.

Write f = f1 + f2 where f1 = fχB1 and f2 = fχD\B1 . Without loss of generality, we may

assume f is positive. We �rst show there exists an absolute constant A so that for z ∈ B0,
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B+f2(z) ≤ λ+ Aγλ.

We have, for z ∈ B0,

B+f2(z) =

∫
D\B1

|KD(z, w)|f(w) dV (w)

≤
∫
D

|KD(z′, w)|f(w) dV (w) +

∫
D\B1

|KD(z, w)−KD(z′, w)||f(w)| dV (w).

Obviously, for the �rst term we have

∫
D

|KD(z′, w)|f(w)dV (w) = B+f(z′) < λ.

The second term is handled as follows. First notice that if w ∈ D \B1, we have d(z, w) ≥

C4d(z, z′), where C4 is the smoothness constant in Theorem 2.2.2, provided c2 is taken

appropriately large. Also, it can be shown d(z, w) & c3. For 0 ≤ k <∞, let

Ak = {w ∈ D : 2kc4 ≤ d(z, w) ≤ 2k+1c4}

where c4 = infw∈D\B1 d(z, w) ≈ max{C4d(z, z′), c3}. Then we estimate:
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∫
D\B1

|KD(z, w)−KD(z′, w)||f(w)|dV (w) ≤
∫

D\B1

(
d(z, z′)

d(z, w)

)ν |f(w)|
V (B(z, d(z, w)))

dV (w)

≤
∞∑
k=0

∫
Ak

(
d(z, z′)

d(z, w)

)ν |f(w)|
V (B(z, d(z, w)))

dV (w)

.
∞∑
k=0

∫
Ak

2−kν
|f(w)|

V (B(z, 2kc4))
dV (w)

=
∞∑
k=0

2−kν

V (B(z, 2k+1c4))

∫
Ak

|f(w)|V (B(z, 2k+1c4))

V (B(z, 2kc4))
dV (w)

. Mf(ζ0)

≤ γλ.

Now we must consider some cases. First consider the case when d(z′, bD) ≥ c2r0. We

then have the easy estimate:

B+f1(z) =

∫
B1

|KD(z, w)‖f(w)|dV (w)

≤ 1

V (B(z, d(z, bD)))

∫
B1

|f(w)| dV (w)

. 〈|f |〉B1

. Mf(ζ0)

≤ γλ.

By choosing γ su�ciently small, it is clear we can make the left hand side of the good-λ

inequality equal to 0, so the inequality is trivial in this case.

Now for the other case suppose that d(z′, bD) < c2r0. Note that if B+f(z) > 2λ, then by
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what we have shown above B+f1(z) > bλ where b = 2− (1 + Aγ). We estimate:

bλ < B+f1(z)

≤
∫
B1

|KD(z, w)||f(w)| dV (w)

≤ 1

V (B(z, d(z, bD)))

∫
B1

|f(w)| dV (w)

=
V (B(z′, c2r0))

V (B(z, d(z, bD)))
〈|f |〉B1

.
V (B(z′, c2r0))

V (B(z, d(z, bD)))
Mf(ζ0)

≤ V (B(z′, c2r0))

V (B(z, d(z, bD)))
γλ.

This implies the following:

V (B(z, d(z, bD))) . γV (B(z′, c2r0)) . γV (B(z, c2r0)).

Let

F = {z ∈ B0 : V (B(z, d(z, bD))) ≤ αγV (B(z, c2r0))}

where α is the implicit constant above. By renaming α, we can replace V (B(z, c2r0)) by

V (B0), using the doubling property. Note that by the above we have proven that in this

case

{z ∈ B0 : B+f(z) > 2λ andMf(z) ≤ γλ} ⊂ F.

We need to prove that we have good control over the measure of the set F . In particular,

we claim V (F ) . γ
1
mV (B0) where we recall m is the exponent, characteristic of the domain,

that appears in (2.2.1) By Lemma 2.3.4, we can replace F with F̃ = {z ∈ B0 : d(z, bD) ≤

α′γ
1
m r0}. By in�ating B0 if necessary, we can assume without loss of generality r0 > d(z0, bD)
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so that B0 touches bD. Then Lemma 2.3.5 establishes the claim.

Now we prove that Bp weights satisfy a kind of �fairness� property that is characteristic

of A∞ weights. As in the previous proofs, de�ne a regularized weight as follows:

σ′(z) = R(σ)(z) = 〈σ〉B(z),

where B(z) = {w ∈ D : d(w, z) < k0d(z, bD)} for some appropriately chosen constant k0.

Recall that by previous work, σ′ ∈ Ap. First we show σ′(B0) . σ(B0). Using basically

the arguments of Lemma 2.3.2, we can show that

σ′(B0) .
∫
D

σ(ζ)

 1

V (B′(ζ))

∫
B0∩B′(ζ)

dV (z)

 dV (ζ),

where B′(ζ) is some �xed in�ation of B(ζ). We claim that we can in�ate B0 by a �xed

amount to a ball B̂0 so that ζ /∈ B̂0 implies B′(ζ) ∩B0 = ∅.

Then

σ′(B0) . σ(B̂0) . σ(B0)

using the doubling property of σ. We can use a similar argument to verify that σ(F ) . σ′(F ).

In particular, one can check that

σ(F ) .
∫
D

1

V (B(ζ))

∫
B(ζ)∩F

σ(z)dV (z) dV (ζ) .

One can check there exists a constant β so that if we de�ne the set F̂

F̂ = {z ∈ B̂0 : d(z, bD) ≤ βγ
1
m r0},

then F̂ has the property that if ζ /∈ F̂ , then B(ζ)∩F = ∅. Then σ(F ) . σ′(F̂ ). Note that by
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the reasoning leading to the computation of the Lebesgue measure of F , V (F̂ ) . γ
1
mV (B0).

Then notice we obtain, by the fairness property of Ap weights there exists δ > 0 so that (see

[63, Chapter V])

σ(F ) . σ′(F̂ ) . [V (F̂ )/V (B̂0)]δσ′(B′0) . [V (F̂ )/V (B0)]δσ(B0),

and [V (F̂ )/V (B0)] . γ
1
m . Thus, the good-λ inequality is demonstrated, renaming δ as δ

m
.

The rest of the proof follows from standard relative distribution estimates.

Remark 2.3.1. In principle one could track constants in the proof of su�ciency and obtain

an upper quantitative estimate for the norm of B or B+ on Lpσ(D) in terms of [σ]Bp . However,

such an estimate would almost certainly not be sharp. We resolve this issue in [25] using

modern techniques of dyadic harmonic analysis as in [58].

2.4 The Necessity of the Bp Condition

We would now like to consider whether the condition σ ∈ Bp is necessary for B to be bounded

on Lpσ(D). In what follows we obtain a partial answer to this question, valid for any simple

domain D. In the special case that D is strongly pseudoconvex, we will prove that the Bp

condition is necessary. In general, we require additional hypotheses, in particular a lower

bound on the kernel and the integrability of σ and its dual, for our proof technique. We �rst

prove a lemma which is valid for any simple domain where the Bergman kernel satis�es an

appropriate lower estimate. This lemma is an analogue of [3, Lemma 5] and essentially the

same argument is given.

Lemma 2.4.1. Suppose the Bergman kernel KD(z, w) on a simple domain D satis�es the
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following property: there exists a constant ε0 > 0 so that if

max{d(z, bD), d(w, bD)} ≤ 2cd(z, w)

and d(z, w) ≤ ε0, then we have

|KD(z, w)| & 1

V (B(w, d(z, w)))
,

where the implicit constant is independent of z and w.

Now, let B1(ζ1, ε
′
0) be a ball of small radius ε′0 = ε0

c(2+C4)
touching bD. Then there exists

a ball B2(ζ2, ε
′
0) also touching bD with d(ζ1, ζ2) ≈ ε′0 so that if f ≥ 0 is a function supported

in Bi and z ∈ Bj, with i 6= j and i, j ∈ {1, 2}, then we have

|Bf(z)| & 1

V (Bi)

∫
Bi

f(w)dV (w).

Proof. Without loss of generality, suppose i = 1. Choose B2 also touching bD with d(ζ1, ζ2) =

c(C4 + 1)ε′0, so that if z ∈ B2 and ζ ∈ B1, we have the estimate d(ζ1, z) ≥ C4d(ζ1, ζ), where

C4 is the constant that appears in the smoothness estimate. Also, note that our choice of

ε′0 implies that d(z, ζ1) ≤ ε0. Moreover, calculations show that max{d(z, bD), d(ζ1, bD)} ≤

2cd(z, ζ1) (assuming without loss of generality that C4 ≥ 1). Therefore, we are in a position

to apply the lower bound on the kernel KD(z, ζ1).

Then, estimate as follows (assuming C4 is appropriately large relative to C3):
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|Bf(z)| =

∣∣∣∣∣∣
∫
B1

KD(z, ζ)f(ζ) dV (ζ)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∫
B1

KD(z, ζ1)f(ζ) dV (ζ)

∣∣∣∣∣∣−
∫
B1

|KD(z, ζ1)−KD(z, ζ)|f(ζ) dV (ζ)

≥ |KD(z, ζ1)|
∫
B1

f(ζ) dV (ζ)−C3

∫
B1

(
d(ζ1, ζ)

d(ζ1, z)

)ν
1

V (B(ζ1, d(ζ1, z)))
f(ζ) dV (ζ)

≥ |KD(z, ζ1)|
∫
B1

f(ζ) dV (ζ)− C3

Cν
4V (B(ζ1, d(ζ1, z)))

∫
B1

f(ζ) dV (ζ)

&
1

V (B(ζ1, d(ζ1, z)))

∫
B1

f(ζ) dV (ζ)

≈ 1

V (B1)

∫
B1

f(w)dV (w).

Note in the penultimate estimate we use the hypothesis of the lower bound on the kernel.

Using this lemma we obtain the following theorem, which grants the necessity of the Bp

condition under certain conditions.

Theorem 2.4.1. Suppose the Bergman kernel KD(z, w) on a simple domain D satis�es the

lower bound in Lemma 2.4.1. Then if B maps Lpσ(D) to Lpσ(D) and additionally σ and σ−
1
p−1

are integrable, we must have σ ∈ Bp.

Proof. We follow closely a standard argument in harmonic analysis that is used in proving

the necessity of the Ap condition for the Hilbert/Riesz transforms (see, for example, the

proof of [21, Theorem 7.47])).

First, we note that the assumption that σ and its dual are integrable allows us to consider

only small balls as in the proof of Lemma 2.4.1 when we compute the Bp characteristic. Let

B1 and B2 be two small balls as considered in the lemma, and f a positive function supported

on B1. Note that Lemma 2.4.1 implies:
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B2 ⊆ {B(f)(z) ≥ C〈f〉B1}

where C is the implicit constant in Lemma 2.4.1. Let A = ‖B‖Lpσ(D). Using the fact that B

is bounded on Lpσ(D), we obtain:

σ(B2) .
Ap

(〈f〉B1)p

∫
D

|f |pσdV. (2.4.1)

Note we may interchange the roles of B1 and B2 to obtain

σ(B1) .
Ap

(〈f〉B2)p

∫
D

|f |pσdV. (2.4.2)

Now take f = χB2 to obtain σ(B1) . Apσ(B2). Then substitute this into (2.4.1) to

obtain

σ(B1) .
A2p

(〈f〉B1)p

∫
D

|f |pσdV. (2.4.3)

Finally, take f = σ−
1
p−1χB1 and substitute into (2.4.3) to obtain

〈σ〉B1

(
〈σ−

1
p−1 〉B1

)p−1

. A2p

which completes the proof since B1 was an arbitrary small ball.

We next show that if D is strongly pseudoconvex and B is bounded on Lpσ(D), then it

follows that σ, σ−1/p−1 are integrable on D, making this additional assumption unnecessary.

Lemma 2.4.2. Let D be strongly pseudoconvex with smooth boundary. Suppose B is

bounded on Lpσ(D). Then σ, σ−1/p−1 ∈ L1(D).
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Proof. It su�ces to prove σ−
1
p−1 ∈ L1(D). Then the integrability of σ follows by a duality

argument. Indeed, if B is bounded on Lpσ(D), then since the Bergman projection is self-

adjoint B is also bounded on Lqσ′(D), where q is the dual exponent to p and σ′ = σ−
1
p−1 . The

same arguments then imply that (σ−
1
p−1 )−

1
q−1 = σ is integrable.

We �rst claim that there exists an ε > 0 so that for any w ∈ D, there exists a point

z0 ∈ D (depending on w) so that for all z in a small neighborhood of z0 (call it Nz0)

and w′ ∈ BE(w, ε), we have |KD(z, w′)| ≈ 1 and for any z1, z2 ∈ Nz0 and w′ ∈ BE(w, ε),

arg{KD(z1, w
′), KD(z2, w

′)} ∈ [−1
3
, 1

3
]. Here BE(w, ε) denotes the Euclidean ball of radius ε.

To see this, note that if z0 is chosen so dist(z0, bD) > C, for some �xed C > 0, then

|KD(z, w′)| . 1 by Kerzman's result that the Bergman kernel extends to a C∞ function o�

the boundary diagonal. So it remains to show that there exists an ε > 0 so |KD(z, w′)| & 1

for z, w′ as above, and that the argument condition is satis�ed. The argument condition

again follows from Kerzman's theorem, perhaps by shrinking Nz0 su�ciently small. Suppose

the remainder of the claim is not true. Then there is a sequence of points wn so for each z

satisfying dist(z, bD) > C and n, there is a point w′n ∈ BE(wn,
1
n
) so that |KD(z, w′n)| < εn,

where εn is a sequence that tends to 0. Passing to a subsequence, we have that w′n → w′′ ∈ D

with KD(z, w′′) = 0 for all z with dist(z, bD) > C (note that w′n depends on z but the limit

point w′′ does not). First consider the case when w′′ ∈ D. Then we immediately get a

contradiction, since {z : dist(z, bD) > C} is open in Cn, while the zero set of KD(·, w′′) is a

complex variety of complex codimension one (note KD(·, w′′) is not identically zero).

Note that in fact we can repeat this procedure for each n taking z0 so dist(z0, bD) > 1
n
.

Then in fact we will obtain a sequence of limit points w′′n. Then passing to a subsequence

if necessary, we can assume that w′′n → w∗ ∈ D. By the argument above, we may assume

w∗ ∈ bD. For each n, we can select a zn so dist(w∗, zn) ≤ 2
n
and dist(zn, bD) > 1

n
. Then

clearly zn → w∗ and also KD(zn, w
′′
n) = 0 for all n. Looking at the asymptotic expansion

for the Bergman kernel in the strongly pseudoconvex case obtained in [7], we see that this
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is impossible. In particular, the asymptotic expansion takes the following form:

KD(z, w) = a(z, w)ψ(z, w)−n−1,

where a is continuous on D×D and is non-vanishing on 4(bD×bD), and ψ is C∞ on D×D

with certain additional properties. In particular, ψ vanishes on the boundary diagonal.

Thus, clearly we must have a(w∗, w∗) = 0. But this is impossible as a does not vanish on

the boundary diagonal. This establishes the claim.

We now show that the claim implies the integrability of σ−
1
p−1 . First, let f ∈ Lpσ(D) be a

positive function. We claim f ∈ L1(D). Fix w ∈ D and let ε and z0 be as in the above claim.

Then the function F (w′) := K(z0, w
′)−1f(w′)χBE(w,ε)(w

′) ∈ Lpσ(D) by the claim. Notice

B(F )(z) =

∫
D∩BE(w,ε)

K(z, w′)

K(z0, w′)
f(w′) dV (w′)

is in Lpσ(D) by hypothesis and hence is �nite almost everywhere. Thus in particular there

exists a z′ in Nz0 so |B(f)(z′)| <∞. But then this implies, using the argument condition,

∣∣∣∣∣∣∣
∫

D∩BE(w,ε)

f(w′) dV (w′)

∣∣∣∣∣∣∣ <∞.
It is then possible to choose a �nite covering BE(w1, ε), . . . BE(wn, ε) of D, which thus

implies f ∈ L1(D).

Now, suppose to the contrary that σ−1/p−1 is not integrable. Then there exists a positive

function g ∈ Lp(D) so that
∫
D
gσ−1/p =∞. But then taking f = gσ−1/p, we see f ∈ Lpσ(D).

This implies f ∈ L1(D), a contradiction since we know f /∈ L1(D).

Finally, we show that strongly pseudoconvex domains also satisfy the necessary lower

bound on the Bergman kernel, so the Bp condition is both necessary and su�cient in this
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case.

Theorem 2.4.2. Let D be a smoothly bounded, strongly pseudoconvex domain, 1 < p <∞,

and σ be a weight. Then B is bounded on Lpσ(D) if and only if σ ∈ Bp.

Proof. One direction is given by Theorem 2.1.1, so it su�ces to establish that if B is

bounded on Lpσ(D), then σ ∈ Bp. Throughout the proof, we assume that d(z, w) ≤ ε0

and max{d(z, bD), d(w, bD)} ≤ 2cd(z, w) as in the statement of Lemma 2.4.1. As above,

by a result of Boutet and Sjöstrand ([7]), we have K(z, w) = a(z, w)ψ(z, w)−n−1, where a is

C∞ on D ×D \ 4(bD × bD) and continuous on D ×D, a does not vanish on the diagonal

su�ciently close to the boundary, and ψ is a C∞ function with ψ(z, z) = −ρ(z), and the

additional condition that ∂wψ, ∂zψ are vanishing of in�nite order on the diagonal w = z.

We claim that if we choose d(z, w) small enough then we have |ψ(z, w)| . d(z, w). To see

this, note that Taylor's theorem together with the conditions on ψ imply

|ψ(z, w)| ≤ |ρ(w)|+

∣∣∣∣∣
n∑
j=1

∂ρ(w)

∂zj
(zj − wj) +

1

2

n∑
j,k=1

∂2ρ(w)

∂zj∂zk
(zj − wj)(zk − wk)

∣∣∣∣∣+O(|z − w|2).

On the other hand, the quasi-metric can be explicitly written down (locally) using a biholo-

morphic change of coordinates centered at w (see [50]). First, we may by a unitary rotation

plus normalization and translation assume ∂ρ(w) = dz1 and w = 0. Then in these coordi-

nates,
∑n

j=1
∂ρ(w)
∂zj

(zj − wj) = z1. Then, de�ne holomorphic coordinates ζ = (ζ1, . . . , ζn) as

follows:

ζ1 = z1 +
1

2

n∑
j,k=1

∂2ρ(w)

∂zj∂zk
zjzk, ζj = zj, j = 2, . . . , n.

In particular,

d(z, w) ≈ |z1 − w1|+
n∑
j=2

|zj − wj|2,

where the components of z and w are computed in ζ coordinates. Since |ρ(w)| . d(z, w)

by hypothesis, then it is clear, applying the change of variables, that |ψ(z, w)| . d(z, w).
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Finally, it is easy to verify that in the strongly pseudoconvex case, V (B(z, r)) ≈ rn+1,

because τj(z, δ) = δ1/2 for j = 2, . . . , n (see [50] for instance). Therefore, if d(z, w) is chosen

appropriately small we can obtain the following lower bounds:

|KD(z, w)| & |ψ(z, w)|−n−1

& (d(z, w))−n−1

≈ 1

(B(w, d(z, w)))
.

This concludes the proof.
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Chapter 3

The Szeg® Projection on Minimally Smooth

Domains

3.1 Summary of Main Results

This chapter mainly contains material from the manuscript [67]. The main result of this

chapter is a su�cient condition on a weight σ for the Lpσ boundedness of the Szeg® projection

on domains with minimal smoothness. This condition on the weights is precisely the Ap

condition in the setting of spaces of homogeneous type with the appropriate quasi-metric on

bD. We will precisely de�ne these metric quantities in Sections 3.3.1. We can state the main

theorem as follows:

Theorem 3.1.1. Let D be strongly pseudoconvex with C2 boundary and 1 < p < ∞. If

σ ∈ Ap, then there exists C > 0 so that ‖Sf‖Lpσ(bD) ≤ C‖f‖Lpσ(bD).

We remark that in the case that D has C3 boundary, our results for the Szeg® projection

can be considerably sharpened. In fact, in this case it is possible to explicitly relate the

extension of the Szeg® projection on the weighted space to the auxiliary operator C using an

operator equation. See Theorem 3.3.1 in the beginning of Section 3.3 for more details.

Notably, our methods are only suited to proving the su�ciency of the Ap condition, not

the necessity. To obtain any results concerning the necessity of the Ap condition, it seems

likely one would instead have to study the operator S directly and obtain novel estimates

on the kernel function, or else use special properties of the operators in an ingenious way.
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3.2 An Outline of the Proof

In this section, we provide a broad strokes outline of the method of proof so the reader has

an idea of how the various pieces will �t together. Much of the same strategy will apply

in Chapter 4 as well. Recall that via an idea of Kerzman and Stein, the Szeg® projection

S can be related to a �Cauchy integral� C. It can be shown that the operator C is a (non-

orthogonal) projection from L2(bD) to H2(bD). Thus, we obtain the following two operator

identities relating S and C on L2(bD):

SC = C, CS = S.

Taking adjoints of the second identity, subtracting from the �rst and some further ma-

nipulation yields the following operator identity:

S(I − (C∗ − C)) = C. (3.2.1)

We will subsequently refer to (3.2.1) as the Kerzman-Stein equation. Note that if (I −

(C∗ − C)) is invertible on L2(bD) (this is true and easy to see in the case D is C∞, see [29]),

we arrive at an explicit formula for S in terms of C:

S = C(I − (C∗ − C))−1.

Now perhaps the reader can see the utility of such an approach in proving Lp estimates.

To prove that the Szeg® projection extends to a bounded operator on Lp, one must prove

the following two facts concerning C:

1. The operator C is bounded on Lp;

2. The operator (I − (C∗ − C)) is invertible on Lp.
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The regularity of the domain is crucial in assessing whether the operator (I − (C∗ − C))

is invertible on Lp. If this operator is to be invertible, the �error� C∗ − C must be small in

some appropriate sense (for example, compact, smoothing, and/or with norm less than 1).

In particular, for the Szeg® projection, we will require the domain to be C3 for this method

of inversion.

As mentioned previously, in [37, 40], Lanzani and Stein considered the situation of min-

imal regularity and proved that the Szeg® and Bergman projections are bounded on Lp for

1 < p <∞. In the case of the Szeg® projection they transfer the question of boundedness to

real-variable singular integral theory via the theory of spaces of homogeneous type. Lanzani

and Stein show that the kernel of the operator C satis�es the appropriate size and smooth-

ness estimates with respect to this quasi-metric (more precisely, they consider the kernel of

the �main part" of the operator, C]; there is an error term they also must handle). The

celebrated T (1) Theorem in harmonic analysis is then invoked to establish that the operator

C is bounded on L2(bD). This result together with the kernel estimates of course implies

that C is bounded on Lp(bD) for 1 < p <∞. With appropriate control on the �error term�

C∗ − C, Lanzani and Stein establish that S is bounded on Lp(bD) for 1 < p <∞.

We follow the general program of Lanzani and Stein in the weighted setting in the next

section. In particular, we use the same construction of the auxiliary operator that goes back

to Kerzman and Stein in [29], and we obtain (3.2.1). We obtain weighted Lp bounds on

the auxiliary operator C using the same real-variable singular integral approach in [40]. The

weights belong to an Ap class induced by the quasi-metric on the boundary of D.

In both cases, to show that the operator (I − (C∗ − C)) is invertible on Lpσ when σ ∈ Ap,

we prove that C∗ − C is compact on Lpσ for σ ∈ Ap and also �improves� Lp spaces. Using

equation (3.2.1), this grants the boundedness of S on Lpσ.

Because Lanzani and Stein assume less regularity, our approach entails an application

of their arguments in a simpler setting, so some technical obstructions in their paper can
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be ignored. In particular, Lanzani and Stein consider an entire family of non-orthogonal

projections Cε with parameter ε, while we only need to consider a single auxiliary operator

C (this can be viewed as a special case of the operators in [40] with ε = 0, see also [36]). A

major technical obstruction in their papers is that the operator (I − (C∗ε − Cε)) is no longer

invertible on Lp, so they must split it appropriately. In fact, the proof of our result in the

unweighted case σ = 1 can be viewed as a simpli�cation of the arguments leading to the

main result in [40] in the case that D has C3 boundary.

However, as mentioned previously, we are actually able to obtain the same �top level�

result for the Szeg® projection in the case of minimal (C2) smoothness. We only focus

on p = 2 for simplicity; the general result may be obtained via extrapolation (see [62];

extrapolation still holds in spaces of homogeneous type). Here we follow the approach in

[37] of �partially inverting� (I − (C∗ε − Cε)) by writing

C∗ε − Cε = Aε +Dε,

where Aε has small norm for su�ciently small ε so I − Aε is invertible on L2
σ(bD) using a

Neumann series. The operator Dε may in general be unbounded in norm as ε → 0, but it

does map L2
σ(bD) to L∞(bD), which turns out to be enough. The reverse Hölder property

of Ap weights is the only key property we use in the proof.

This chapter is organized as follows. Section 3.3 focuses on the case where D is C3 and

sharper results can be obtained, while Section 3.4 focuses on the minimal smoothness case

and proves the full strength of Theorem 1.5.3. At the beginning of each section, the �rst

subsection introduces the background material and the construction of the relevant integral

operators. The latter subsections deal with the proofs.
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3.3 The Szeg® Projection on C3 domains

In this section, we assume that D is a strongly pseudoconvex domain of class C3. This

implies that there exists a strictly plurisubharmonic de�ning function ρ, which is of class C3

and will be �xed throughout. We aim to prove the following theorem, which corresponds

to a special case of Theorem 3.1.1 but also provides more detailed information about the

connection between the main and auxiliary operators that is unavailable in the minimal

smoothness case.

Theorem 3.3.1. Let D be strongly pseudoconvex with C3 boundary. Then for 1 < p <∞

and σ ∈ Ap, the following hold:

1. The operator C∗ − C is compact on Lpσ(bD).

2. The operator I − (C∗ − C) is invertible on Lpσ(bD).

3. The Szeg® projection S extends to a bounded operator on Lpσ(bD) and satis�es

S = C(I − (C∗ − C))−1.

3.3.1 Preliminaries for C3 Domains

The �rst step, following the approach of Lanzani and Stein as well as many other authors, is

to construct an integral operator that reproduces and produces holomorphic functions from

integration of their boundary values. To begin with, de�ne the Levi polynomial at w ∈ bD:

Pw(z) :=
n∑
j=1

∂ρ

∂wj
(w)(zj − wj) +

1

2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(zj − wj)(zk − wk).

Using the strict pseudoconvexity of D, it is possible to choose a C∞ cuto� function χ
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and a constant c so that χ ≡ 1 when |z − w| ≤ c/2 and χ ≡ 0 when |z − w| ≥ c so that the

function

g(z, w) := χ(−Pw(z)) + (1− χ)|w − z|2

satis�es

Re(g(z, w)) & −ρ(z) + |w − z|2 (3.3.1)

for z ∈ D (see [37]).

Recall that a generating form η(z, w) is a form of type (1, 0) in w with C1 coe�cient

functions such that 〈η(z, w), w − z〉 = 1 for all z ∈ D and w in a neighborhood of bD [38].

Here 〈·, ·〉 denotes the action of a 1-form on a vector in Cn. The importance of generating

forms lies in the construction of Cauchy-Fantappié integrals. The upshot of (3.3.1) is that

we can construct a generating form as follows: de�ne the following (1, 0) form in w

G(z, w) := χ

(
n∑
j=1

∂ρ

∂wj
(w) dwj −

1

2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(wk − zk) dwj

)
+(1−χ)

n∑
j=1

(wj−zj) dwj .

Then de�ne for w ∈ bD, z ∈ D

η(z, w) :=
G(z, w)

〈G(z, w), w − z〉
=
G(z, w)

g(z, w)
.

Then it is immediate that η is a generating form. As in [40, 60], de�ne the associated

Cauchy-Fantappié integral operator

C1(f)(z) :=
1

(2πı̇)n

∫
w∈bD

f(w)j∗(η∧(∂η)n−1)(z, w) =
1

(2πı̇)n

∫
w∈bD

f(w)j∗
(
G ∧ (∂G)n−1(z, w)

)
(g(z, w))n

,

where j : bD ↪→ Cn is the inclusion map and j∗ denotes the pullback of j. The point is
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that this operator reproduces holomorphic functions that are continuous up the boundary,

as made precise in the following proposition (see [40]):

Proposition 3.3.1. Let F be holomorphic on D and continuous on D, and let f = F |bD.

Then there holds for z ∈ D

C1(f)(z) = F (z).

The problem now is that C1 does not necessarily produce holomorphic functions, as the

form η is not necessarily holomorphic in z. This di�culty can be overcome by solving a

∂ problem on a strongly pseudoconvex, smooth domain Ω that contains D (see [40], or for

more details [60]). One has the following:

Proposition 3.3.2. There exists an (n, n − 1) form (in w) C2(z, w) that is C1 in w and

depends smoothly on the parameter z ∈ D so that the following hold for the operator

C = C1 + C2:

(i) C(f)(z) = F (z) for F holomorphic on D and continuous on D, where f = F |bD;

(ii) C(f)(z) is holomorphic for f ∈ L1(bD).

Here,

C2(f)(z) =

∫
w∈bD

f(w)C2(z, w).

Note that importantly

sup
z∈D,w∈bD

|C2(z, w)| <∞. (3.3.2)

Thus, C is an operator that produces and reproduces holomorphic functions from bound-

ary data.

Next, we proceed to de�ne the relevant quasi-metric on the boundary ofD for our analysis

in this chapter. Let d(z, w) = |g(z, w)|1/2. Then d(z, w) satis�es all the properties of a quasi-

metric or quasi-distance (see [40]). Denote a ball in bD in the quasi-metric with center z
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and radius δ by B(z, δ). It is a fact that

S(B(z, δ)) ≈ δ2n. (3.3.3)

where S denotes induced Lebesgue surface measure on bD.

We also have the important estimates in [40]:

|z − w| . d(z, w) . |z − w|1/2. (3.3.4)

We now introduce the Leray-Levi measure λ on bD. This measure is de�ned

dλ(w) = j∗(∂ρ ∧ (∂∂ρ)n−1)/(2πı̇)n.

The use of this measure is crucial in Lanzani and Stein's paper in the computation of an

adjoint operator that plays a crucial role in the application of the T (1) theorem, but it turns

out to be equivalent to Lebesgue measure in a certain strong sense. In particular, we have

dλ(w) = Λ(w) dS(w), (3.3.5)

where Λ(w) is a real-valued function bounded above and below for all w ∈ bD. More

explicitly, the function Λ is given by

Λ(w) = (n− 1)!(4π)−n| det ρ(w)‖∇ρ(w)|

where det ρ(w) is the determinant of the (n− 1)× (n− 1) matrix of second derivatives taken

in a rotated coordinate system evaluated at w (see [60] or [40] for details):

{
∂2ρ

∂zj∂zk
(w)

}n−1

j,k=1

.
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Crucially, note that Λ is Lipschitz (in fact C1), since ρ is of class C3. The importance of

this fact will become clear in the proof of Lemma 3.3.1.

The following proposition is immediate.

Proposition 3.3.3. The triple (bD, d, dλ) forms a space of homogeneous type in the sense

of De�nition 1.2.1.

Note we could replace the Leray-Levi measure by induced Lebesgue measure and the

above result would still be true, since the function Λ(w) is bounded above and below uni-

formly. Below, for a measurable set A ⊂ bD, when we write S(A), we refer to its Lebesgue

surface measure, but in every case we could replace it by the Leray-Levi measure and the

result would still be true.

We now want to essentially consider the restriction of the operator C to the boundary bD

and obtain a singular integral operator C that maps Lp(bD) to Lp(bD). Explicitly, Lanzani

and Stein de�ne

C(f)(z) = C(f)(z)|bD

when f satis�es a type of Hölder continuity, namely

|f(w1)− f(w2)| . d(w1, w2)α

for some α with 0 < α ≤ 1. In this case one can show C(f) extends to a continuous function

on D, so the above de�nition makes sense. The operator C, while initially de�ned only on

certain functions, actually extends to a bounded linear operator on Lp(bD) (this is proven

in [40] using the T (1) theorem).
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Now, it is useful to break the operator C into a main term and an error term as follows:

C = C] + R,

where

C](f)(z) =

∫
bD

f(w)

g(z, w)n
dλ(w)

and R absorbs the error from replacing the numerator of the Cauchy-Fantappié integral

with the Leray-Levi measure as well as the error from the operator C2, which in fact has

a bounded kernel by (3.3.1). If we let R(z, w) denote the kernel of the operator R, we can

obtain the crucial estimate (see [40] again):

|R(z, w)| . d(z, w)−2n+1. (3.3.6)

Note that it is immediately obvious that the kernel of C] is bounded above by a multiple

of d(z, w)−2n, so we see that the operator R is �less singular� in a sense than the operator

C].

As before, for functions that satisfy the Hölder continuity condition as above, we can

de�ne

C](f) = C](f)|bD

and thus obtain the decomposition for the operator C

C = C] +R.

In what follows, we write σ ∈ Ap to mean that σ is an Ap weight in the sense of De�nition

1.2.3 with respect to the space of homogeneous type (bD, d, S). Additionally, we can de�ne

a standard maximal function with respect to this quasi-metric on bD:
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De�nition 3.3.1. The Hardy-Littlewood Maximal Function is de�ned, for f ∈ L1(bD)

M(f)(z) = sup
B(w,r)3z

1

S(B(w, r))

∫
B(w,r)

|f(w)| dS(w)

We also de�ne A1 weights with respect to the same quasi-metric (the following de�nition

is obviously equivalent to De�nition 1.2.4 and is slightly easier to work with for our purposes):

De�nition 3.3.2. A function σ ∈ L1(bD) that is positive almost everywhere is said to

belong to the class A1 if the following estimate holds for almost every z ∈ bD:

M(σ)(z) . σ(z).

We have now set up all the machinery we need to prove Theorem 3.3.1.

3.3.2 The Main Term

We proceed to analyze the �main term� C]. It should be noted in what follows that in the

C2 case considered in [40], certain implicit constants depend on ε and can even blow up as

ε → 0. This is not the case in the C3 case, as there is only one ε, namely ε = 0, for which

there is no analog in the C2 case. We have the following size and smoothness estimates for

the kernel of C] given in [40]:

Proposition 3.3.4. Let K(z, w) = g(z, w)−n denote the kernel of C] with respect to the

Leray-Levi measure. Then there exist constants C1, C2 so the following holds:

(i) |K(z, w)| ≤ C1d(z, w)−2n;

(ii) |K(z, w)−K(z, w′)| ≤ C1
d(w,w′)

d(z,w)2n+1 for d(z, w) ≥ C2d(w,w′);

(iii) |K(z, w)−K(z′, w)| ≤ C1
d(z,z′)

d(z,w)2n+1 for d(z, w) ≥ C2d(z, z′).
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Lanzani and Stein also prove the following result by invoking the T (1) theorem:

Theorem 3.3.2. The operator C] is bounded on L2(bD).

Theorem 3.3.2 and Proposition 3.3.4 demonstrate that the operator C] is Calderón-

Zygmund in the sense of De�nition 1.2.2, and consequently the weighted theory of real-

variable harmonic analysis applies to this case. Thus, we have the following result using

Theorem 1.2.1:

Theorem 3.3.3. Let 1 < p < ∞. Then if σ ∈ Ap, there exists C > 0 so ‖C]f‖Lpσ(bD) ≤

C‖f‖Lpσ(bD).

Proof. This is an easy consequence of Theorem 1.2.1. The only remark that needs to be

made is that the equivalence of the Leray-Levi measure and Lebesgue measure in (3.3.5) must

be invoked because the kernel above is with respect to Leray-Levi measure, not Lebesgue

measure. In particular, if σ ∈ Ap as we have de�ned it, then σ is in Ap with respect to

the Leray-Levi measure. By Calderón-Zygmund theory on spaces of homogeneous type, the

operator C] is bounded on LpσΛ(bD), and hence bounded on Lpσ(bD) by the equivalence of

the measures.

3.3.3 The Error Terms

Let C∗ denote the adjoint of C with respect to Lebesgue measure. We now proceed to deal

with the error terms R as well as C∗ − C. Both of these terms will play a role in the proof

of the main theorem in the subsequent section. We know from (3.3.6) that the kernel of

the �remainder operator� R is �less singular� than the main operator C]. We proceed to

show that this is also true for the kernel of the �di�erence operator� C∗ − C. First we need a

preliminary proposition, which is similar to an argument that can be found in [60]:
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Proposition 3.3.5. The following estimate holds for w, z ∈ bD:

|g(z, w)− g(w, z)| . |w − z|3.

Proof. It su�ces to prove the estimate when |w − z| ≤ c/2, so we can assume g(z, w) =

−Pw(z) and g(w, z) = −Pz(w). To avoid cumbersome notation, we use the shorthand

∂ρ
∂wj

(w) = ρj(w) and ∂2ρ
∂wj∂wk

(w) = ρj,k(w). Recall the Levi polynomial at w is de�ned as

Pw(z) =
n∑
j=1

ρj(w)(zj − wj) +
1

2

n∑
j,k=1

ρj,k(w)(zj − wj)(zk − wk).

We also de�ne the Levi form

Lw(z) =
n∑

j,k=1

∂2ρ

∂wj∂wk
(w)(zj − wj)(zk − wk).

The Taylor expansion (in w) of ρj(w) about w = z is

ρj(w) = ρj(z) +
n∑
k=1

ρj,k(z)(wk − zk) +
n∑
k=1

∂2ρ

∂zj∂zk
(z)(wk − zk) +O(|w − z|2)

while the Taylor expansion of ρj,k(w) gives

ρj,k(w) = ρj,k(z) +O(|w − z|).

Substituting these Taylor expansions into Pw(z), we obtain

Pw(z) =
n∑
j=1

ρj(z)(zj − wj)−
1

2

n∑
j,k=1

ρj,k(z)(wj − zj)(wk − zk)

−
n∑

j,k=1

∂2ρ

∂zj∂zk
(z)(wj − zj)(wk − zk) +O(|w − z|3).
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On the other hand, we have

Pz(w) =
n∑
j=1

ρj(z)(wj − zj) +
1

2

n∑
j,k=1

ρj,k(z)(wj − zj)(wk − zk).

A computation shows

Pz(w)− Pw(z) = 2RePz(w) + Lz(w) +O(|w − z|3).

Then just use the well-known fact that

ρ(w) = ρ(z) + 2RePz(w) + Lz(w) +O(|w − z|3),

together with the fact that ρ(z) = ρ(w) = 0 as w, z ∈ bD.

This proposition will allow us to prove the following lemma. Again, the argument is

essentially from [60].

Lemma 3.3.1. Let K(z, w) denote the kernel of (C])∗−C] with respect to induced Lebesgue

measure dS. Then the following estimate holds:

|K(z, w)| . d(z, w)−2n+1.

Proof. Here we need to come to grips with the distinction between the Leray-Levi measure

dλ and the induced Lebesgue measure dS. Let (C])† denote the adjoint of C] taken with

respect to the Leray-Levi measure.. Let KL(z, w) denote the kernel, with respect to dλ, of

the operator (C])†−C]. It is immediate that KL(z, w) = g(w, z)
−n
− g(z, w)−n. Compute to
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see

|K(z, w)| =
∣∣∣Λ(z)g(w, z)

−n
− g(z, w)−nΛ(w)

∣∣∣
≤ |Λ(z)− Λ(w)||g(w, z)|−n + |Λ(w)‖KL(w, z)|

. |z − w|d(z, w)−2n + |KL(z, w)|

. d(z, w)−2n+1 + |KL(z, w)|.

Here we use the fact that Λ is Lipschitz. Then, compute to see:

|KL(z, w)| =
∣∣∣g(w, z)

−n
− g(z, w)−n

∣∣∣
=

∣∣∣∣∣g(z, w)n − g(w, z)
n

g(z, w)ng(w, z)
n

∣∣∣∣∣
=

∣∣∣∣∣∣
(
g(z, w)− g(w, z)

)(∑n−1
t=0 (g(z, w))t(g(w, z))n−1−t

)
g(z, w)ng(w, z)

n

∣∣∣∣∣∣
.
|g(z, w)− g(w, z)|d(z, w)2n−2

d(z, w)4n

. d(z, w)−2n+1

where in the last estimation we used Proposition 3.3.5.

One can show using a special coordinate system that

sup
z∈bD

∫
bD

d(z, w)−2n+1 dS(w) <∞ (3.3.7)

(see [40] or [60]). This result can also be obtained by integrating over dyadic �annuli� as we

will later see. Thus, we see that R and (C])∗−C] have integrable kernels, while C] does not.

Now we show the these kernel estimates are not only enough to guarantee boundedness

on weighted Lp spaces; they are actually enough to guarantee compactness which is much
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better. The following proposition allows for good control of the integration of an A1 weight

σ against a kernel K(z, w) which satis�es the size estimate above.

Proposition 3.3.6. Let K(z, w) be a kernel measurable on bD × bD that satis�es the size

estimate |K(z, w)| . d(w, z)−2n+1, and let σ ∈ A1. Then the following estimates hold for all

z, w ∈ bD and δ > 0:

∫
B(z,δ)

|K(z, w)|σ(w) dS(w) . δσ(z)

∫
B(w,δ)

|K(z, w)|σ(z) dS(z) . δσ(w).

Proof. Break the region of integration up into dyadic annuli and estimate the integral as

follows, using the A1 condition on σ in the last step:
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∫
B(z,δ)

|K(z, w)|σ(w) dS(w)

.
∫

B(z,δ)

d(z, w)−2n+1σ(w) dS(w)

=
∞∑
i=0

∫
B(z,2−iδ)\B(z,2−(i+1)δ)

d(z, w)−2n+1σ(w) dS(w)

≤
∞∑
i=0

∫
B(z,2−iδ)\B(z,2−(i+1)δ)

2(−(i+1)(−2n+1))δ(−2n+1)σ(w) dS(w)

≤
∞∑
i=0

2(−(i+1)(−2n+1))δ(−2n+1)S(B(z, 2−iδ))
1

S(B(z, 2−iδ))

∫
B(z,2−iδ)

σ(w) dS(w)

≤
∞∑
i=0

22n−12−iδM(σ)(z)

. δM(σ)(z)

. δσ(z).

Note all implicit equivalences are independent of w and z. The proof of the other state-

ment is completely analogous.

Note if K(z, w) is the kernel of an integral operator satisfying the size estimate of the

previous proposition, then K is �integrable� in the sense that

sup
z∈bD

∫
bD

|K(z, w)| dS(w) <∞, (3.3.8)

and obviously (3.3.8) still holds if the roles of z and w are interchanged. This can be seen by

taking σ = 1 and δ su�ciently large in Proposition 3.3.6. But in fact, we can say something
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slightly better. The proof of the following proposition is essentially a reprise of Proposition

3.3.6 taking σ = 1 with obvious modi�cations.

Proposition 3.3.7. Let K(z, w) be a kernel measurable on bD × bD that satis�es the size

estimate |K(z, w)| . d(z, w)−2n+1, and let ε ∈ [0, 1
2n−1

). Then the following hold:

sup
z∈bD

∫
bD

|K(z, w)|1+ε dS(w) <∞

sup
w∈bD

∫
bD

|K(z, w)|1+ε dS(z) <∞.

As a consequence of this proposition, we can prove that an integral operator K that has

a kernel with the above size estimate �improves� Lp spaces. This was noted before in [29]

using a slightly di�erent approach.

Proposition 3.3.8. Let K be an integral operator on Lp(bD) with a kernel K(z, w) that

satis�es the size estimate |K(z, w)| . d(z, w)−2n+1. ThenKmaps Lp(bD) to Lp+ε(bD) bound-

edly for p ≥ 1 and ε ∈ [0, 1
2n−1

).

Proof. We �rst demonstrate the result for p = 1 and then show how this implies the result

for p > 1. Take f ∈ L1(bD) and ε ∈ [0, 1
2n−1

). Then compute, using Minkowski's integral

inequality and Proposition 3.3.7:

 ∫
bD

∣∣∣∣∣∣
∫
bD

K(z, w)f(w) dS(w)

∣∣∣∣∣∣
1+ε

dS(z)


1

1+ε

≤

 ∫
bD

 ∫
bD

|K(z, w)||f(w)| dS(w)

1+ε

dS(z)


1

1+ε

≤
∫
bD

 ∫
bD

|K(z, w)|1+ε dS(z)

 1
1+ε

|f(w)| dS(w)

. ‖f‖L1(bD).
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To obtain the result for p > 1, proceed as follows, using Hölder's inequality with exponents

p and q:

 ∫
bD

∣∣∣∣∣∣
∫
bD

K(z, w)f(w) dS(w)

∣∣∣∣∣∣
p+ε

dS(z)


1
p+ε

≤

 ∫
bD

 ∫
bD

|K(z, w)|1/p|K(z, w)|1/q|f(w)| dS(w)

p+ε

dS(z)


1
p+ε

≤

 ∫
bD

 ∫
bD

|K(z, w)| dS(w)


p+ε
q
 ∫

bD

|K(z, w)||f(w)|p dS(w)


p+ε
p

dS(z)


1
p+ε

.

 ∫
bD

 ∫
bD

|K(z, w)||f(w)|p dS(w)


p+ε
p

dS(z)


1
p+ε

=


∫
bD

 ∫
bD

|K(z, w)||f(w)|p dS(w)


p+ε
p

dS(z)


p
p+ε


1
p

≤

 ∫
bD

 ∫
bD

|K(z, w)|1+ ε
p dS(z)


p
p+ε

|f(w)|p dS(w)


1
p

. ‖f‖Lp(bD).

In the penultimate line, notice we apply Minkowski's integral inequality with exponent p+ε
p

=

1 + ε
p
and with respect to measures |f(w)|p dS(w) and dS(z).

Thus, we obtain the following important corollary:

Corollary 3.3.1. The operators R, R∗, and (C])∗ − C] map Lp(bD) to Lp+ε(bD) for p ≥ 1

and ε ∈ [0, 1
2n−1

).

74



We now turn to a proof of the major lemma concerning the error terms. This lemma

adapts an argument that can be found in [60] to the weighted setting. It also should be

noted that components of this proof are analogous to a �weighted Schur test.�

Lemma 3.3.2. Let K(z, w) be a measurable function on bD × bD satisfying the following

estimates for all z, w ∈ bD and all weights σ ∈ A1:

(i)
∫
B(z,δ)

|K(z, w)|σ(w) dS(w) . C(δ)σ(z);

(ii)
∫
B(w,δ)

|K(z, w)|σ(z) dS(z) . C(δ)σ(w);

(iii) For any �xed δ > 0, the kernel K(z, w) is bounded on

(bD × bD) \ {(z, w) : d(z, w) < δ}

(with a bound that depends on δ).

Furthermore, suppose C(δ) tends to 0 as δ → 0. Then, for each p ∈ (1,∞), the integral

operator K de�ned by K(f)(z) =
∫
bD
K(z, w)f(w) dS(w) is compact on Lpσ(bD) for all σ ∈

Ap.

Proof. First, consider the case when K is bounded on bD×bD, say ‖K‖L∞(bD×bD) ≤M . Let

σ ∈ Ap. Then note that the kernel of the operator K with respect to the weighted measure

dσ = σdS is K̃(z, w) = K(z, w)σ−1(w). To prove compactness on Lpσ(bD), it su�ces to

show the following double-norm is �nite (it is well-known the �niteness of this double-norm

implies compactness, for example see [17]):

∫
bD

 ∫
bD

|K̃(z, w)|q dσ(w)

p/q

dσ(z),

where q denotes the Hölder exponent conjugate to p. Then we have
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∫
bD

 ∫
bD

|K̃(z, w)|q dσ(w)

p/q

dσ(z) =

∫
bD

 ∫
bD

|K(z, w)|qσ−
1
p−1 dS(w)

p/q

σ(z) dS(z)

≤ Mp‖σ‖L1(bD)‖σ
−1
p−1‖p−1

L1(bD)

< ∞

since σ, σ−
1
p−1 are integrable on bD. Thus the theorem holds in this case.

To pass to the case where K is unbounded, let δj = 1
j
and

Kj(z, w) =


K(z, w) d(z, w) ≥ δj

0 d(z, w) < δj.

Let Kj be the integral operator with kernel Kj. Then, by hypothesis Kj is bounded on

bD×bD and by the argument above, Kj is compact on Lpσ(bD). Since the compact operators

are a closed subspace of the Banach space of bounded linear operators on Lpσ(bD), if we can

show that the operators Kj approach K in operator norm, we will be done.

To this end, let f ∈ Lpσ(bD) with ‖f‖Lpσ(bD) ≤ 1. Note that as σ ∈ Ap, we can write

σ =
σ1

σp−1
2

where σ1, σ2 ∈ A1 by the factorization of Ap weights in the setting of spaces of homogeneous

type (see, for example, [62] for a proof of this well-known fact). By Hölder's Inequality applied

to the functions |K(z, w)−Kj(z, w)|1/qσ2(w)1/q and |K(z, w)−Kj(z, w)|1/pσ2(w)−1/q|f(w)|
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and then applying Proposition 3.3.6, we obtain the estimate:

|(K −Kj)(f)(z)| ≤
∫
bD

|K(z, w)−Kj(z, w)‖f(w)| dS(w)

=

 ∫
B(z,δj)

|K(z, w)|σ2(w) dS(w)


1/q ∫

B(z,δj)

|K(z, w)|(σ2(w))
1−p|f(w)|p dS(w)


1/p

. C(δj)
1/qσ2(z)

1/q

 ∫
B(z,δj)

|K(z, w)|(σ2(w))
1−p|f(w)|p dS(w)


1/p

.

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 3.3.6 again:

‖(K −Kj)f‖pLpσ(bD)
≤

∫
bD

C(δj)
p
q σ2(z)

p
q

 ∫
B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dS(w)

 σ1(z)

σ2(z)p−1
dS(z)

= C(δj)
p
q

∫
bD

∫
B(z,δj)

|K(z, w)|(σ2(w))1−p|f(w)|p dS(w)σ1(z) dS(z)

= C(δj)
p
q

∫
bD

 ∫
B(w,δj)

|K(z, w)|σ1(z) dS(z)

 |f(w)|p(σ2(w))1−p dS(w)

. C(δj)
p

∫
bD

σ1(w)|f(w)|p(σ2(w))1−p dS(w)

= C(δj)
p‖f‖p

Lpσ(bD)

≤ C(δj)
p.

Letting j → ∞, we have δj → 0 and C(δj) → 0. Thus, it immediately follows that the

operators Kj approach K in operator norm and hence K is compact.

The preceding lemma admits the following, very useful corollary:
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Corollary 3.3.2. The operators R, R∗, and (C])∗ − C] are compact on Lpσ(bD) for σ ∈ Ap.

We need one more crucial lemma to conclude our analysis of the error terms and allow

us to present the proof of Theorem 3.3.1 in the next section.

Lemma 3.3.3. Let K be an integral operator with a kernel K(z, w) that satis�es the size

estimate |K(z, w)| . d(z, w)−2n+1. Further suppose that ı̇K is self-adjoint on L2(bD). Then

1 is not in the spectrum of K considered as an operator on Lpσ(bD), where σ is an Ap weight.

Proof. First, note that 1 is not an eigenvalue of K considered as an operator on (unweighted)

L2(bD). So suppose to the contrary that there exists an eigenfunction f ∈ Lpσ(bD) such that

Kf = f . We assert f ∈ L1(bD). To see this, note by Hölder

∫
bD

|f(w)| dS(w) =

∫
bD

|f(w)|σ(w)1/pσ(w)−1/p dS(w)

≤ ‖f‖Lpσ(bD)‖σ−
1
p−1‖1/q

L1(bD)

< ∞.

Fix any ε ∈ (0, 1
2n−1

). Then, by Corollary 3.3.1, f ∈ L1+ε(bD). In particular, we have

‖f‖L1+ε(bD) = ‖Kf‖L1+ε(bD)

. ‖f‖L1(bD)

< ∞.

But since Kf = f , we can repeat this argument to obtain f ∈ L1+2ε. In fact, we can

iterate this argument arbitrarily many times to obtain that f ∈ Lp(bD) for all p ≥ 1! In

particular, f ∈ L2(bD). This contradicts the fact that 1 is not an eigenvalue of K on L2(bD).

Since K is compact on Lpσ(bD) by Corollary 3.3.2 (or rather the arguments leading to this

corollary), this implies 1 is not in the spectrum of K on Lpσ(bD), as required.
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3.3.4 Proof of Theorem 3.3.1

Equipped with these de�nitions and results, we are in a position to prove Theorem 3.3.1.

As discussed, the essential ideas in this proof have been around for a long time and can be

found, for example, in [28,29].

Proof of Theorem 3.3.1. First, note that both S and C essentially produce and reproduce

boundary values of holomorphic functions: they are projections onto H2(bD) (this is proven

precisely in [39]). Consequently, we obtain the following two operator identities on L2(bD):

SC = C and CS = S. Taking adjoints of the second identity and using the fact that the Szeg®

projection is self-adjoint, we get SC∗ = S, and further manipulation yields S(C∗−C) = S−C,

or S(I −A) = C where I denotes the identity operator and A = C∗ − C. By Theorem 3.3.3

and Corollary 3.3.2 and, we know that C = C] +R is bounded on Lpσ(bD) for σ ∈ Ap.

Next, we assert that the operator A is compact on Lpσ(bD). To see this, write

A = (C])∗ − C] + (C] − C) + (C∗ − (C])∗) = ((C])∗ − C])−R+R∗

and appeal to Corollary 3.3.2. Next, an easy computation shows that ı̇A is self-adjoint on

L2(bD). It follows from Lemma 3.3.3 that 1 is not in the spectrum of A considered as an

operator on Lpσ(bD) and hence the operator (I −A) is invertible on Lpσ(bD). Thus, we may

write

S = C(I −A)−1

and conclude that S extends to a bounded operator on Lpσ(bD) since both C and (I −A)−1

are bounded on Lpσ(bD). Thus, we have established all parts of Theorem 3.3.1.
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3.4 The Szeg® Projection on C2 domains

3.4.1 Preliminaries for C2 domains

We now consider what modi�cations are necessary to prove Theorem 3.1.1, as in [40]. From

now on we assume D has boundary of class C2, but all the other assumptions about D and

ρ from before remain in force. We shall be brief, as basically the same setup applies with

one crucial change. This involves uniformly approximating the second derivatives of ρ by

di�erentiable functions. In particular, since that boundary is of class C2, we must replace

the second derivatives ∂2ρ
∂wj∂wk

by an n× n matrix of {τ εj,k} of C1 functions satisfying

sup
w∈bD

∣∣∣∣ ∂ρ

∂wj∂wk
(w)− τ εj,k(w)

∣∣∣∣ ≤ ε 1 ≤ j, k ≤ n.

Now we de�ne the analogs of g(z, w), G(z, w), and η(z, w). In particular, de�ne

gε(z, w) := χ

(
n∑
j=1

∂ρ

∂wj
(w)(wj − zj)−

1

2

n∑
j,k=1

τ εj,k(w)(wj − zj)(wk − zk)

)
+ (1− χ)|w − z|2

where χ is the same C∞ cuto� function as in the C3 case. If ε is taken su�ciently small, we

have the analogous estimate

Re(gε(z, w)) & −ρ(z) + |z − w|2,

where the implicit constant is independent of ε.

In the same way, we de�ne the (1, 0) form in w Gε(z, w) as follows:
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Gε(z, w) := χ

(
n∑
j=1

∂ρ

∂wj
(w)dwj −

1

2

n∑
j,k=1

τ εj,k(w)(wk − zk)dwj

)
+ (1− χ)

n∑
j=1

(w̄j − z̄j)dwj.

As before, we de�ne for w ∈ bD, z ∈ D:

ηε(z, w) :=
Gε(z, w)

gε(z, w)
.

Then of course ηε is again a generating form. Therefore, we can construct the associated

Cauchy-Fantappié integral operator C1
ε in exactly the same way as we constructed C1, with

ηε playing the role of η. In particular, the analog of Proposition 3.3.1 holds for C1
ε.

The issue, again, is that C1
ε reproduces but does not produce holomorphic functions.

Again, we can introduce a correction operator C2
ε and consider the operator C = C1

ε +

C2
ε. Proposition 3.3.2 will hold in this case; the operator Cε will reproduce and produce

holomorphic functions.

The rest of the setup follows basically identical. The de�nition of the Leray-Levi measure

dλ does not change, except now Λ will merely be a continuous rather than a C1 function.

The quasi-metric d will be de�ned in the same way, namely

d(z, w) = |gε(z, w)|1/2

and will satisfy the same properties, including (bD, d, S) being a space of homogeneous type.

We can again consider the operator

Cε(f)(z) = Cε(f)(z)|bD

and this de�nition makes sense when the function f is Hölder continuous with respect to d

as before. We also can obtain the decomposition
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Cε = C]
ε + Rε

where

C]
ε(f)(z) =

∫
bD

f(w)

gε(z, w)n
dλ(w)

and the kernel Rε(w, z) of the operator Rε satis�es

|Rε(z, w)| ≤ cεd(z, w)−2n+1.

Here cε denotes a constant that can depend on ε.

Restricting this decomposition to the boundary, it is possible to obtain the following

operator equation, acting on an appropriate class of functions:

Cε = C]ε +Rε.

The class of Ap weights and the maximal function are de�ned in the exact same manner

as before.

This concludes our reiteration of the preliminaries for the C2 case. The reader is invited

to consult [40] for more details.

3.4.2 Weighted estimates in the C2 case

We now demonstrate how weighted Lp bounds can be obtained in the C2 case. Throughout

we closely follow the arguments in [40]. First, note that we can still obtain the Kerzman-Stein

equation in the same way as before. Thus, we have on L2(bD):

S(I − (C∗ε − Cε)) = Cε. (3.4.1)
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In this case, we will be unable to invert the operator (I − (C∗ε − Cε)). It su�ces to prove

that S is bounded on L2
σ(bD) for all σ ∈ A2; then we can appeal to extrapolation. To begin

with, we have:

Lemma 3.4.1. For σ ∈ A2 the operator Cε extends to a bounded operator on L2
σ(bD) and

in particular satis�es

‖Cεf‖L2
σ(bD) ≤ cε,σ‖f‖L2

σ(bD),

where cε,σ is a constant that depends on ε and the weight σ.

Proof. First, the operator C]ε is Calderón-Zygmund (see the proof of [40, Theorem 7]); how-

ever, the constants in its smoothness estimates do depend on ε. The bound on the kernel

of Rε in fact implies that it is compact on L2
σ(bD) by the arguments in Lemma 3.3.2. This

�nishes the proof.

The dependence of the constant on ε turns out not to be an issue because ultimately in

the course of the proof we will �x ε su�ciently small and do not need to take a limit as

ε→ 0.

Next, we need to break up the operator C∗ε − Cε. Roughly, we break the kernel of Cε

into pieces supported on and o� the diagonal z = w. Let s = s(ε) be a parameter chosen

depending on ε. We write

Cε = Csε +Rs
ε

where

Csε(f) = Cε(fχs)

and χs(z, w) is a symmetrized smooth cuto� function that is 1 when d(z, w) ≤ cs and 0
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when d(z, w) ≥ s (see [40] for details). Thus,

C∗ε − Cε = [(Csε)∗ − Csε ] + [(Rs
ε)
∗ −Rs

ε] := Aε +Dε.

It is immediate from previous discussions that for �xed ε, s, the kernel of Rs
ε (and (Rs

ε)
∗

is bounded. It is then an entirely straightforward exercise using Hölder's inequality and the

integrability of σ that Dε boundedly maps L2
σ(bD) to L∞(bD), with an operator norm that

can depend on s and ε.

We now need to deal with the other term. First, we state a lemma ([40, Lemma 24])

that we will later need. It is a decomposition lemma that partitions Cn = R2n into cubes at

various levels. In particular, let Q1
0 denote unit cube centered at the origin in Cn, and for

k ∈ Zn, let Q1
k = k + Q1

0 be its integer translates. For γ > 0, let Qγ
k = γQ1

k. Note that for

a given cube Qγ
k, there are at most N = 32n cubes Qγ

j that touch it; i.e whose closures have

non-empty intersection. When γ is �xed, we write 1k for the indicator function on the set

Qγ
k ∩ bD.

Lemma 3.4.2. Fix γ > 0 and suppose σ is a weight. Suppose T is a bounded operator on

L2
σ(bD) that satis�es:

1. 1jT1k = 0 if the cubes Qγ
j and Qγ

k do not touch.

2. ‖1jT1k‖L2
σ(bD)→L2

σ(bD) ≤ A otherwise.

Then T satis�es

‖T‖L2
σ(bD)→L2

σ(bD) ≤ AN.

Proof. The proof is identical to the one given in [40]. The underlying measure is now σ dS

as opposed to just Lebesgue measure, but the argument is the same.

We have the following theorem:
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Lemma 3.4.3. Given ε > 0, there exists an s = s(ε) so the following holds:

‖(Csε)∗ − Csε‖L2
σ(bD)→L2

σ(bD) ≤ ε1/2Mσ

where the constant Mσ depends on the weight σ but not ε.

Proof. Here the distinction between the Leray-Levi measure and Lebesgue measure becomes

important. As before, let † denote the adjoint of an operator taken with respect to Leray-Levi

measure, and write

(Csε)∗ − Cε = [(Csε)† − Cε] + [(Csε)∗ − (Csε)†].

We will �rst show

‖(Csε)† − Csε‖L2
σ(bD)→L2

σ(bD) ≤ ε1/2Mσ.

Note as before we decomposed Cε, we can write Csε = C],sε + R],s
ε , where C],sε is the

corresponding truncation of the operator C]ε. Write

(Csε)† − Cε = [(C],sε )† − C],sε ] + [(R],s
ε )† −R],s

ε ] = Asε + Bsε.

Recall that the kernel ofRε is majorized by cεd(w, z)−2n+1. Using basically the arguments

of Proposition 3.3.6, we have, for any σ′ ∈ A1:

R],s
ε (σ′)(z) . sσ′(z)

and

(R],s
ε )∗(σ′)(z) . sσ′(z)

where the implicit constants depend on the weight σ′ and ε. Then, by writing σ ∈ A2
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as a quotient of A1 weights and applying the reasoning in the proof of Lemma 3.3.2, it is

straightforward to show that ‖R],s
ε ‖L2

σ(bD)→L2
σ(bD) ≤ cεsMσ. Choosing s appropriately small

in terms of ε, we obtain the estimate

‖R],s
ε ‖L2

σ(bD)→L2
σ(bD) ≤ ε1/2Mσ,

as desired. The same estimate is easily seen to hold for (R],s
ε )†, proving the estimate for Bsε.

We now turn to Asε. It is proven in [40] that the operators ε−1/2Asε satisfy smoothness and

cancellation conditions that are uniform in ε. Lanzani and Stein apply the T (1) theorem

to show that ‖Asε‖Lp(bD)→Lp(bD) ≤ ε1/2Mp, where Mp is independent of ε. But the same

Calderón-Zygmund theory shows that

‖Asε‖L2
σ(bD)→L2

σ(bD) ≤ ε1/2Mσ,

as we sought to show. We have thus demonstrated the result for (Csε)† − Csε .

We now turn to the operator (Csε)∗ − (Csε)†. Estimating the norm of this operator turns

out to involve estimating the norm of a commutator. In particular, (Csε)∗ − (Csε)† = (Csε)∗ −

Λ−1(Csε)∗Λ, where dλ = Λ dS and Λ is a continuous, positive function that is bounded above

and below. Thus, the L2
σ norm of this operator is controlled by

‖Λ−1‖L∞(bD) ‖[Λ, (Csε)∗]‖L2
σ(bD)→L2

σ(bD) ,

where [A,B] = AB −BA.

Notice by a simple computation,

([Λ, (Csε)∗])
∗ = CsεΛ− ΛCsε = [Csε ,Λ] ,
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so by duality it su�ces to estimate the norm of a commutator [Csε , φ] on L2
σ(bD) for any

σ ∈ A2, where φ is an arbitrary continuous map bD → C. In particular, we claim for �xed

φ:

‖[Csε , φ]‖L2
σ(bD)→L2

σ(bD) ≤ εMσ.

This is exactly proven in [40], but for unweighted Lp. A key ingredient in the proof is con-

tained in [40, Proposition 19], which states that we can get a uniform bound ‖Csε‖Lp(bD)→Lp(bD) ≤

Mp for ε and s chosen su�ciently small. This is proven using the T (1) theorem with estimates

uniform in ε, but then of course the same proof implies

‖Csε‖L2
σ(bD)→L2

σ(bD) ≤Mσ.

Now we provide a short sketch of how Lemma 3.4.2 leads to the desired conclusion

again following the arguments from [40]. In particular, we apply the lemma to the operator

[Csε , φ] with ε and s chosen appropriately. The �rst condition of Lemma 3.4.2 basically

follows because Csε has a kernel that is supported in a small neighborhood of the diagonal

(in particular, we take γ = cs).

The second condition follows from the (uniform) continuity of φ. For a cube Qγ
k, denote

its center by zk. If s is chosen su�ciently small, then by continuity, if z ∈ Qγ
j , where Q

γ
j

touches Qk, we have

|φ(z)− φ(zk)| < ε.

Now write φ = φk + ψk, where φk(z) = φ(z) − φ(zk) and ψk(z) = φ(zk). Obviously,

[Csε , φ] = [Csε , φk] + [Csε , ψk], but [Csε , ψk] = 0 as ψk is constant. Therefore, we have for any
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cube Qγ
j that touches Qγ

k:

‖1j[Csε , φ]1k‖L2
σ(bD) = ‖1j[Csε , φk]1k‖L2

σ(bD)

≤ ‖1jCsεφk1k‖L2
σ(bD) + ‖1jφkCsε1k‖L2

σ(bD)

. 2ε‖Csε‖L2
σ(bD)

≤ 2εMσ.

This completes the proof.

The following proposition is an immediate consequence of the well-known reverse Hölder

property of Ap weights.

Proposition 3.4.1. Let 1 < p < ∞ and suppose σ ∈ Ap. Then there exists a δ > 0 so

σ1+δ ∈ L1(bD).

We are now �nally ready to prove the main theorem.

Proof of Theorem 3.1.1. As noted before, it su�ces to prove the result for p = 2. Recall

Aε = (Csε)∗ − Csε and Dε = (Rs
ε)
∗ −Rs

ε. Thus, the Kerzman-Stein equation takes the form

S(I −Aε)− SDε = Cε.

By Lemma 3.4.3, if ε and s are chosen su�ciently small, then ‖Aε‖L2
σ(bD) < 1. Inverting Aε

using a Neumann series yields:

S = Cε(I −Aε)−1 + SDε(I −Aε)−1.

By Lemma 3.4.1, the operator Cε(I −Aε)−1 maps L2
σ(bD) to itself. Now, by discussions

above Dε(I−Aε)−1 maps L2
σ(bD) to L∞(bD), and hence maps L2

σ(bD) to Lp(bD) boundedly
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for any p, 1 < p <∞. Additionally, by the principle result in [40], S extends to a bounded

operator on Lp. So in particular SDε(I − Aε)−1 maps L2
σ(bD) to Lp for all p, 1 < p < ∞.

We claim that if p is chosen su�ciently large (depending on σ), then ‖g‖L2
σ(bD) . ‖g‖Lp(bD)

for all measurable functions g. Then

‖SDε(I −Aε(f))‖L2
σ(bD) . ‖SDε(I −Aε(f))‖Lp(bD)

for all measurable f , which will then establish the result.

To prove the claim, we use Proposition 3.4.1. In particular, we have, using Hölder's

inequality with exponents p
2
and r =

(
p
2

)′
:

‖g‖2
L2
σ(bD) =

∫
bD

|g|2σ dS

≤

∫
bD

|g|p dS

 2
p
∫
bD

σr dS

 1
r

. ‖g‖2
Lp(bD)

provided p is chosen su�ciently large so r < 1 + δ. This completes the proof.
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Chapter 4

The Bergman Projection on Near Minimally

Smooth Domains

4.1 Summary of Main Results and Outline of Proof

In this chapter, which again mainly consists of material from [67], we prove that the Bp

condition (see De�nition 1.5.1 in Chapter 1) is su�cient for the boundedness of the Bergman

projection B on Lpσ(D) on strongly pseudoconvex domains with C4 boundary smoothness.

In doing so, we generalize some of the results of Chapter 2, in particular Theorem 2.1.1 in

the case of strongly pseudoconvex domains, to domains with substantially less regularity. In

particular, the following is the main result of this chapter:

Theorem 4.1.1. Let D be strongly pseudoconvex with C4 boundary and 1 < p < ∞. If

σ ∈ Bp, then there exists C > 0 so that ‖Bf‖Lpσ(D) ≤ C‖f‖Lpσ(D).

The techniques involved are very similar to those in Chapter 3 for the Szeg® projection on

C3 domains. In this case the relevant non-orthogonal projection, which we denote by T , is

given by a Cauchy-Fantappié intgeral taken over the solid domain rather than the boundary

plus a correction term (this approach was used to prove certain regularity properties of the

Bergman projection; see for example [41, 42]). In particular, we obtain the Kerzman-Stein

equation B(I − (T ∗ − T )) = T . The Lp boundedness of the operator T can be established

using Schur's Test, and it remains to establish the invertibility of (I − (T ∗ − T )) on Lp.

This task with completed by Lanzani and Stein in [37], and in fact their methods extend to
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the minimal smoothness (C2) case by again using a more re�ned truncation argument and

a family {Tε} of projections.

In the case of weighted estimates, Schur's Test is ill-equipped to deal with weights other

than �radial" weights, so a new approach is needed. In particular, to prove the operator T is

bounded on Lpσ(D), we must use a modi�ed singular integral theory and view the projection

T as a kind of Calderón-Zygmund operator with respect to the quasi-metric d introduced

in Chapter 2. Proving the invertibility of the operator (I − (T ∗ − T )) on Lpσ(D) proceeds

via the compactness of T ∗ − T in a very similar manner to the arguments for the Szeg®

projection on C3 domains in Chapter 3. We should also remark that in the unweighted case

that σ = 1, our result can be seen as alternate proof of the main theorem in [37] for domains

with su�cient (C4) regularity.

We also provide some results in the C2 case. In particular, we prove an analog of Theorem

4.1.1 when σ is �radial", and connect regularity properties of the Bergman projection and T

to Toeplitz operators with �radial� symbols.

This chapter is organized as follows. Section 4.2 goes over the relevant background

material, in particular the construction of the non-orthogonal projection T and the form

of the quasi-metric. In Section 4.3, we prove Theorem 4.1.1, and in fact provide a more

precise version of the theorem. In Section 4.4, we establish weighted estimates for the

Bergman projection on minimally smooth strongly pseudoconvex domains for a special class

of weights. Finally, in Section 4.5, we provide an additional application of the Kerzman-Stein

equation to Toeplitz operators.

4.2 Preliminaries

Now we let D be a strongly pseudoconvex domain with C4 de�ning function ρ that is

strictly plurisubharmonic. As in Lanzani-Stein [37], we can construct an integral operator
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T = T1 +T2 that integrates over the interior of the domain D, where T1 is constructed using

Cauchy-Fantappié theory and T2 is obtained by solving a ∂̄ problem. The operator T has

the property that it produces and reproduces holomorphic functions.

We now make several de�nitions that are analogous to our treatment in Chapter 3 of

the Szeg® projection. We will slightly abuse notation by reusing certain letters to represent

analogous objects in the Bergman case. De�ne

g(z, w) := −ρ(w)− χ(Pw(z)) + (1− χ)|z − w|2

where Pw(z) denotes the Levi polynomial at w and χ is an appropriately chosen C∞ cuto�

function. In particular, using the strict pseudoconvexity of D, χ can be chosen so

Re g(z, w) & −ρ(w)− ρ(z) + c|z − w|2.

Now, as before de�ne the (1, 0) form in w

G(z, w) := χ

(
n∑
j=1

∂ρ

∂wj
(w) dwj −

1

2

n∑
j,k=1

∂2ρ

∂wj∂wk
(w)(wk − zk) dwj

)
+(1−χ)

n∑
j=1

(w̄j−z̄j) dwj .

Note that G has the property that if we let

η̂(z, w) =
G(z, w)

g(z, w) + ρ(w)
, (4.2.1)

then

〈η̂(z, w), w − z〉 = 1

for all z ∈ D and w in neighborhood of bD. Note that (4.2.1) indicates η̂ is a generating

form. However, we instead de�ne the (1, 0) form in w:
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η(z, w) =
G(z, w)

g(z, w)

and associated integral operator

T1(f)(z) :=
1

(2πı̇)n

∫
D

(∂̄wη)n(z, w)f(w),

where (∂̄wη)n denotes the wedge product taken n times. We have the following proposition

(see [37, Proposition 3.1]), which uses the C4 regularity of the domain D:

Proposition 4.2.1. Suppose f is holomorphic on D and belongs to L1(D). Then for all

z ∈ D, one has

T1(f)(z) = f(z).

A computation shows the operator T1 has kernel

K1(z, w) =
N(z, w)

(2πı̇)n(g(z, w))n+1
(4.2.2)

where N(z, w) is an (n, n) form of class C1 (in w) and smooth in the parameter z. In

particular, we have:

N(z, w) = −
(
n(∂̄wG)n−1 ∧ ∂̄wg ∧G− g(∂̄wG)n

)
(z, w). (4.2.3)

We write N(z, w) = N (z, w)dV (w), where dV denotes the Euclidean volume form. Notice

the fact that N (z, w) is of class C1 in w is a direct consequence of the fact that D has C4

boundary.

Proposition 4.2.1 guarantees that T1 reproduces holomorphic functions, but as in the

Szeg® case we need to add a correction operator to ensure that it produces holomorphic
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functions. The details can be found in [37], and again involve solving a ∂̄ problem on a

strongly pseudoconvex domain that contains D. We have the following proposition concern-

ing T2 and the operator T = T1 + T2 (see [37, Proposition 3.2]):

Proposition 4.2.2. There is an integral operator T2 de�ned

T2f(z) :=

∫
D

K2(z, w)f(w) dV (w)

with

sup
z,w∈D

|K(z, w)| <∞

that satis�es:

1. If f ∈ L1(D), then T (f) = T1(f) + T2(f) is holomorphic on D.

2. If, in addition, f is holomorphic on D, then T (f)(z) = f(z) for z ∈ D.

We now review the speci�c construction of the quasi-metric d in the strongly pseudocon-

vex case. This metric can be de�ned using polydiscs introduced by McNeal (see [50]) and is

de�ned locally at �rst on a neighborhood U of a point p ∈ bD. Fix a point q ∈ U . First, we

may by a unitary rotation (plus a normalization) and translation assume ∂ρ(q) = dz1 and

q = 0. Then, de�ne holomorphic coordinates ζ = (ζ1, . . . , ζn) as follows:

ζ1 = z1 +
1

2

n∑
j,k=1

∂2ρ(w)

∂zj∂zk
(zj)(zk), ζj = zj, j = 2, . . . n.

Note if Φ : U → Φ(U) denotes this coordinate map, Φ is a biholomorphism if U is chosen

small enough.
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Consider the polydisc:

P (q, δ) = {z : |z1| < δ, |zj| < δ1/2, 2 ≤ j ≤ n},

where again zj denotes the special holomorphic coordinates centered at q.

These polydiscs are precisely those introduced in Chapter 2 in the special case of strongly

pseudoconvex domains. The polydiscs satisfy certain types of doubling properties (see [50]).

We include a proof for completeness, since the result was stated in the smooth case (but in

fact C2 boundary is su�cient).

Proposition 4.2.3. There exist independent constants C1, C2 so the following hold for the

polydiscs:

1. If P (q1, δ) ∩ P (q2, δ) 6= ∅, then P (q1, δ) ⊂ C1P (q2, δ) and P (q2, δ) ⊂ C1P (q1, δ).

2. There holds P (q1, 2δ) ⊂ C2P (q1, δ).

Proof. The second property is essentially immediate from the de�nition of P , so we focus

on the �rst property. Suppose P (q1, δ)∩P (q2, δ) 6= ∅. Let z1, . . . , zn denote the holomorphic

coordinates centered at q1 and ζ1, . . . , ζn denote the holomorphic coordinates centered at q2.

The general idea is that these holomorphic coordinates do not di�er greatly. We need to

take an arbitrary point p ∈ P (q1, δ) and show there exists a constant C1 so p ∈ C1P (q2, δ).

Let r ∈ P (q1, δ) ∩ P (q2, δ). Write the coordinates of p relative to the coordinate system of

the second polydisc as (ζ1(p), . . . , ζn(p)). First observe that the de�nition of the polydiscs

implies

|p− q2| ≤ |p− r|+ |r − q2| . δ1/2
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and the same bound holds for the quantities |q1 − q2| and |p− q1|. Then we have

|ζ1(p)| ≈

∣∣∣∣∣
n∑
j=1

∂ρ

∂zj
(q2)(pj − q2,j)

∣∣∣∣∣+O(|p− q2|2)

. |z1(p)|+

∣∣∣∣∣
n∑
j=1

∂ρ

∂zj
(q2)(pj − q2,j)−

n∑
j=1

∂ρ

∂zj
(q1)(pj − q1,j)

∣∣∣∣∣+ δ

. δ + |〈∂ρ(q2)− ∂ρ(q1), p− q2〉|+ |〈∂ρ(q1), q2 − q1〉|

. δ + |q2 − q1‖p− q2|+ |〈∂ρ(q1), q2 − q1〉|

. δ + |〈∂ρ(q1), q2 − q1〉| .

We control |〈∂ρ(q1), q2 − q1〉| as follows:

|〈∂ρ(q1), q2 − q1〉| ≤ |〈∂ρ(q1), r − q1〉|+ |〈∂ρ(q1), q2 − r〉|

≤ z1(r) + |〈∂ρ(q1)− ∂ρ(q2), q2 − r〉|+ |〈∂ρ(q2), r − q2〉|

. δ + |q1 − q2‖q2 − r|+ ζ1(r)

. δ.

It is easy to verify all the implicit constants are independent of q1, q2. So there exists a

constant C1 so |ζ1(p)| < C1δ.

On the other hand, for 2 ≤ j ≤ n, we have

|ζj(p)| . |p− q2| . δ1/2,

so if C1 is chosen appropriately large, then |ζj(p)| < C1δ
1/2. Then p ∈ C1P (q1, δ), as we

sought to show.

The other conclusion is immediate by symmetry. This completes the proof.

Use these coordinates to construct a global quasi-metric d(z, w) with the construction
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given in Chapter 2, Section 2.2 (thus, we will not repeat it here). Technically, this metric is

only de�ned on a tubular neighborhood of the boundary, but this presents us with no issues

and we abuse notation by writing it to be de�ned on D.

Recall that (D, d, V ) is a space of homogeneous type in the sense of De�nition 1.2.1. It

is also a fact that V (B(z, r)) ≈ rn+1. Note that locally,

d(z, w) ≈ |z1 − w1|+
n∑
j=2

|zj − wj|2

where the components of z and w are computed in the special coordinates at w.

We have the following relation between the quasi-metric d and the Euclidean distance:

Proposition 4.2.4. We have, for z′, z ∈ D:

|z′ − z|2 . d(z′, z) . |z′ − z|.

Proof. It su�ces to work locally, so we may assume d coincides with one of the local quasi-

metrics on a neighborhood U . Let Φ(z) = ζ(z) = (ζ1, . . . , ζn) denote the biholomorphic

coordinate change described in detail above in the construction of d. Because the coordinate

change is biholomorphic with Jacobian uniformly bounded above and below, we have the

following bounds:

|z − z′|2 =
n∑
j=1

|zj − z′j|2

.
n∑
j=1

|ζj − ζ ′j|2

≤ d(z, z′).

The proof of the upper bound is similar.

We now show that when we restrict d to bD × bD, we obtain a quantity comparable
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in size to |g(z, w)|, which establishes a natural connection between the Szeg® and Bergman

cases.

Proposition 4.2.5. If z, w ∈ bD, then we have

d(z, w) ≈ |g(z, w)|.

Proof. Let z = (ζ1, . . . , ζn) in the special holomorphic coordinates centered at w. Note

d(z, w) ≈ |ζ1|+
n∑
j=2

|ζj|2.

Also, we have by [37, Proposition 2.1],

|g(z, w)| ≈ |Im〈∂ρ(w), w − z〉|+ |z − w|2.

But notice that

|〈∂ρ(w), w − z〉| . |ζ1|+ |z − w|2

and moreover

|z − w|2 .
n∑
j=1

|ζj|2 . d(z, w)

since the coordinate change is biholomorphic. This shows |g(z, w)| . d(z, w). To see the

reverse, note that if |z − w| is small enough, then g(z, w) = Pw(z) and

|ζ1| . |Pw(z)|+ |z − w|2

which combined with the estimates above gives d(z, w) . |g(z, w)|.
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We maintain the de�nition for the Bp class from Chapter 1, De�nition 1.5.1, and the

maximal function M given in De�nition 2.2.2. Recall Theorem 2.2.3 states that M is

bounded on Lpσ(D) for σ ∈ Bp (the proof does not depend in any way on the boundary

smoothness).

Recall that B1 weights were de�ned in Chapter 2, De�nition 1.5.2. It is easy to see that

an equivalent de�nition is as follows: we say σ ∈ B1 if σ is integrable and bounded below,

and satis�es

Mσ(z) . σ(z)

for almost every z ∈ D.

4.3 Proofs of Theorems

In this section, we will study the Bergman projection on weighted spaces under the assump-

tion that D is a C4 domain. Our main goal is to prove the following theorem, which is a

more detailed version of Theorem 4.1.1.

Theorem 4.3.1. Let D be strongly pseudoconvex with C4 boundary. Then for 1 < p <∞

and σ ∈ Bp, the following hold:

1. The operator T ∗ − T is compact on Lpσ(D).

2. The operator I − (T ∗ − T ) is invertible on Lpσ(D).

3. The Bergman projection B extends to a bounded operator on Lpσ(D) and satis�es

B = T (I − (T ∗ − T ))−1.
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4.3.1 The Main Term

We follow the following general outline to prove Theorem 4.3.1. First, we obtain size and

smoothness estimates for K1(z, w), the kernel of T1. This enables us to prove that T maps

Lpσ(D) to Lpσ(D). We then proceed to show that T ∗−T is compact on L2
σ(D) and improves

Lp spaces. These properties allow us to use the Kerzman-Stein equation to extract the Lpσ(D)

boundedness of B from the Lpσ(D) boundedness of T .

The following proposition follows immediately from the fact that T2 has a bounded kernel

and D is a bounded domain.

Proposition 4.3.1. Let 1 < p <∞. If σ ∈ Bp, then the operator T2 is bounded on Lpσ(D).

Proof. Take f ∈ Lpσ(D). Then we have

‖T2f‖pLpσ(D)
=

∫
D

∣∣∣∣∣∣
∫
D

K2(z, w)f(w) dV (w)

∣∣∣∣∣∣
p

σ(z) dV (z)

.

∫
D

|f(w)| dV (w)

p∫
D

σ(z) dV (z)


≤ ‖f‖p

Lpσ(D)

∫
D

σ(z) dV (z)

∫
D

σ(w)−
1
p−1 dV (w)

p−1

≤ [σ]Bp‖f‖
p
Lpσ(D)

.

We now work to prove the following theorem:

Theorem 4.3.2. Let 1 < p < ∞. If σ ∈ Bp, then there exists a constant C > 0 so that

‖T f‖Lpσ(D) ≤ C‖f‖Lpσ(D) and ‖T ∗f‖Lpσ(D) ≤ C‖f‖Lpσ(D).

In light of the previous proposition, which clearly also works for T ∗2 , it is su�cient to
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show that T1 and T ∗1 are bounded on Lpσ(D). To this end, we de�ne the following comparison

operator:

Γ(f)(z) =

∫
D

1

|g(z, w)|n+1
f(w) dV (w) .

Note that in light of (4.2.2), we have the pointwise domination:

|T1(f)(z)| . Γ(|f |)(z).

To prove the weighted Lp regularity of Γ, we follow Békollè's approach of using singular

integral theory that was also undertaken in Chapter 2. In particular, we obtain the following

size and smoothness estimates on the kernel of Γ:

Lemma 4.3.1. There exist positive constants C3, C4 so the following hold:

1.

1

|g(z, w)|n+1
≤ C3 min

{
1

V (B(z, d(z, bD)))
,

1

V (B(w, d(w, bD)))

}
.

2. If d(z, w) ≥ C4d(z, z′), then

∣∣∣∣ 1

(g(z, w))n+1
− 1

(g(z′, w))n+1

∣∣∣∣ ≤ C3

(
d(z, z′)

d(z, w)

)1/2
1

V (B(z, d(z, w)))
.

3. If d(z, w) ≥ C4d(w,w′), then

∣∣∣∣ 1

(g(z, w))n+1
− 1

(g(z, w′))n+1

∣∣∣∣ ≤ C3

(
d(w,w′)

d(z, w)

)1/2
1

V (B(w, d(z, w)))
.

Proof. For the �rst statement, it su�ces to prove

1

|g(z, w)|n+1
.

1

V (B(z, d(z, bD)))
,
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since |g(z, w)| ≈ |g(w, z)| by [37, Proposition 2.1]. Since V (B(z, d(z, bD))) ≈ [d(z, bD)]n+1,

it is enough to show d(z, bD) . |g(z, w)|. We have d(z, bD) ≈ dist(z, bD) ≈ |ρ(z)|. On the

other hand, |g(z, w)| & |ρ(z)| by [37, Proposition 2.1]). This proves the size estimate.

For the smoothness estimate, we �rst prove as a preliminary fact that d(z, w) . |g(z, w)|.

We may assume |z − w| is small enough so that g(z, w) = −ρ(w)− Pw(z). By de�nition we

have

d(z, w) ≈ |ζ1|+
n∑
j=2

|ζj|2

where ζ1, . . . , ζn are the components of z in the holomorphic coordinates centered at w. Using

the triangle inequality and the de�nition of the biholomorphic coordinates, we obtain

|ζ1| .

∣∣∣∣∣
n∑
j=1

∂ρ(w)

∂zj
(zj − wj)

∣∣∣∣∣+O(|z − w|2) . |ρ(w)|+ | − ρ(w)− Pw(z)|+O(|z − w|2).

Then, appeal to the fact that |g(z, w)| & |ρ(w)| + |z − w|2 by [37, Proposition 2.1] and

the fact that the coordinate change is biholomorphic to obtain the desired conclusion.

We only prove the �rst smoothness estimate; the second one is proven similarly and is

only slightly more complicated. We use similar ideas as in [40]. We �rst prove the estimate

|g(z, w)− g(z′, w)| . d(z, z′)1/2d(z, w)1,2 + d(z, z′).

To begin with, note that we have

|g(z, w)− g(z′, w)| ≤ |〈∂ρ(w), w − z〉 − 〈∂ρ(w), w − z′〉|

+
1

2

∣∣∣∣∣
n∑

j,k=1

∂2ρ(w)

∂wj∂wk

[
(wj − zj)(wk − zk)− (wj − z′j)(wk − z′k)

]∣∣∣∣∣ .
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We deal with the �rst term, |〈∂ρ(w), w − z〉 − 〈∂ρ(w), w − z′〉| = |〈∂ρ(w), z′ − z〉| . We

then have, using Proposition 4.2.4:

|〈∂ρ(w), z′ − z〉| ≤ |〈∂ρ(z), z′ − z〉|+ |〈∂ρ(w)− ∂ρ(z), z′ − z〉|

. d(z, z′) + |z − w||z − z′|

. d(z, z′) + d(z, w)1/2d(z, z′)1/2.

Now we handle the second term. Notice that we have

|(wj − zj)(wk − zk)− (wj − z′j)(wk − z′k)| ≤ |(wj − zj)(wk − zk)− (wj − z′j)(wk − zk)|

+ |(wj − z′j)(wk − zk)− (wj − z′j)(wk − z′k)|

≤ |wk − zk||zj − z′j |+ |wj − z′j ||zk − z′k|

≤ |w − z||z − z′|+ (|w − z|+ |z − z′|)|z − z′|

. d(z, w)1/2d(z, z′)1/2 + (d(z, w)1/2 + d(z, z′)1/2)d(z, z′)1/2

. d(z, w)1/2d(z, z′)1/2

which proves the required bound for the second piece.

Now, we show |g(z, w)| ≈ |g(z′, w)| if d(z, w) ≥ C4d(z, z′). We estimate, using the work

previously done:

|g(z, w)| ≤ |g(z, w)|+ |g(z′, w)− g(z, w)|

. |g(z′, w)|+ d(z, w)1/2d(z, z′)1/2 + d(z, z′)

. |g(z′, w)|+ (C
−1/2
4 + C−1

4 )d(z, w)

. |g(z′, w)|+ (C
−1/2
4 + C−1

4 )|g(z, w)|.

Thus, if C4 is chosen appropriately large, we can subtract the |g(z, w)| term to the other
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side and obtain |g(z, w)| . |g(z′, w)|. The bound |g(z′, w)| . |g(z, w)| is obtained similarly.

Finally, we obtain, using our assumption d(z, w) ≥ C4d(z, z′):

∣∣∣∣ 1

(g(z, w))n+1
− 1

(g(z′, w))n+1

∣∣∣∣ ≤ |g(z, w)− g(z′, w)| (
∑n

t=0 |g(z, w)|t|g(z′, w)|n−t)
|g(z, w)|n+1|g(z′, w)|n+1

.
|g(z, w)− g(z′, w)|
|g(w, z)|n+2

.
1

d(z, w)n+1

d(z, w)1/2d(z, z′)1/2

d(z, w)

.

(
d(z, z′)

d(z, w)

)1/2
1

V (B(z, d(z, w)))

which establishes the smoothness estimate.

As a consequence of the size and smoothness estimates obtained on the kernel of the

positive operator Γ, we get the following theorem (one can follow the arguments verbatim

contained in Theorem 2.1.1 in Chapter 2).

Theorem 4.3.3. Let 1 < p <∞. If σ ∈ Bp, then the operators Γ,Γ∗ are bounded on Lpσ(D).

Now we can prove Theorem 4.3.2 as follows:

Proof of Theorem 4.3.2. Note that Theorem 4.3.3 implies the operators T1, T ∗1 map Lpσ(D)

to Lpσ(D) boundedly, which together with Proposition 4.3.1 establishes the result.

4.3.2 The Error Term

We now proceed to deal with the �error term� T ∗ − T . In light of the arguments above, we

already know T ∗ − T is bounded on Lpσ(D), but in fact this operator exhibits much better

behavior. In analogy with the approach taken in Chapter 3 for the Szeg® operator, we show

that this operator is compact on Lpσ(D) for σ ∈ Bp and improves Lp spaces. We conclude by

applying the Kerzman-Stein trick to deduce the boundedness of B from this information.
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Lemma 4.3.2. Let K(z, w) denote the kernel of the integral operator T ∗ − T . Then we

have the size estimates:

|K(z, w)| . d(z, w)−(n+ 1
2

)

and

|K(z, w)| . min
{
d(z, bD)−(n+ 1

2
), d(w, bD)−(n+ 1

2
)
}
.

Proof. It is proven in [60, VII, Theorem 7.6] that |K(z, w)| . |g(z, w)|−(n+ 1
2

), so using

the fact, contained in the proof of Lemma 2.2.2, that d(z, w) . |g(z, w)|, we deduce that

|K(z, w)| . d(z, w)−(n+ 1
2

). For completeness, we sketch the argument given in [60].

First, note from (4.2.3) that we can writeN(z, w) = N0(z, w)+N1(z, w), whereN0(z, w) =

−n
(
(∂̄wG)n−1 ∧ ∂̄wg ∧G

)
(z, w) and N1(z, w) = g(z, w)

(
(∂̄wG)n

)
(z, w). Note that

N0(w,w) = −n
(
(∂̄w∂wρ)n−1 ∧ ∂̄wρ ∧ ∂wρ

)
(w).

Write N0(z, w) = N0(z, w)dV (w) and N1(z, w) = N1(z, w)dV (w), so in particular N0(w,w)
(2πı̇)n

is a real-valued function. Moreover, it is clear N0(z, w) = N0(w,w) + O(|z − w|) by our

smoothness assumptions and the same is true of N0(w, z). Thus, we have, using the fact

that |g(z, w)| ≈ |g(w, z)| and that the kernel of T2 is uniformly bounded by a constant C:

|K(z, w)| .

∣∣∣∣∣ 1

(−2πı̇)n

(
N0(w, z)

g(w, z)
n+1 +

N1(w, z)

g(w, z)
n+1

)
− 1

(2πı̇)n

(
N0(z, w)

g(z, w)n+1
+
N1(z, w)

g(z, w)n+1

)∣∣∣∣∣+ C

.

∣∣∣∣∣ 1

(−2πı̇)n

(
N0(z, w)

g(w, z)
n+1

)
− 1

(2πı̇)n

(
N0(w, z)

g(z, w)n+1

)∣∣∣∣∣+ 1

|g(z, w)|n

.

∣∣∣∣∣N0(w,w)

(
1

g(w, z)
n+1 −

1

g(z, w)n+1

)∣∣∣∣∣+ |z − w|
|g(z, w)|n+1

+
1

|g(z, w)|n
.

105



Moreover, [60, Lemma 7.4] gives that |g(z, w)− g(w, z)| = O(|z−w|3) with an argument

very similar to Proposition 3.3.5. Then proceeding as in Lemma 3.3.1 and using the fact

that |z − w| . |g(z, w)|1/2 yields the desired conclusion.

The other estimate is proven in the same way, using the fact that d(z, bD) . |g(z, w)|

and d(w, bD) . |g(z, w)|.

We have the following lemma concerning the behavior of B1 weights when integrated

against this kernel:

Lemma 4.3.3. Let K(z, w) be a kernel measurable on D×D that satis�es the size estimate

|K(z, w)| . d(z, w)−(n+1/2), and let σ ∈ B1. Then the following estimates hold for all

z, w ∈ D and δ > 0:

∫
B(z,δ)

|K(z, w)|σ(w) dV (w) . (δ1/2 + d(z, bD)1/2)σ(z)

and

∫
B(w,δ)

|K(z, w)|σ(z) dV (z) . (δ1/2 + d(w, bD)1/2)σ(w).

Proof. By symmetry, it clearly su�ces to prove the �rst assertion. Let N be the largest

non-negative integer so that 2−Nδ > d(z, bD). If there is no such N , make the obvious

modi�cations. We have, integrating over dyadic �annuli�
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∫
B(z,δ)

|K(z, w)|σ(w) dV (w) =
∞∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

=
N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w)

+
∞∑

j=N+1

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w) .

We deal with the �rst summation �rst. We have

N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w) .
N∑
j=0

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

d(z, w)−(n+1/2)σ(w) dV (w)

≤
N∑
j=0

∫
B(z,2−jδ)

2(j+1)(n+1/2)δ−(n+1/2)σ(w) dV (w)

.
N∑
j=0

δ1/22−j/2
1

V (B(z, 2−jδ))

∫
B(z,2−jδ)

σ(w) dV (w)

≤
N∑
j=0

δ1/22−j/2M(σ)(z)

. δ1/2M(σ)(z)

. δ1/2σ(z).

Note the implicit constant is independent of N . We now proceed to deal with the second

summation:
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∞∑
j=N+1

∫
B(z,2−jδ)\B(z,2−(j+1)δ)

|K(z, w)|σ(w) dV (w) ≤
∫

B(z,d(z,bD))

|K(z, w)|σ(w) dV (w)

.
∫

B(z,d(z,bD))

d(z, bD)−(n+1/2)σ(w) dV (w)

=
d(z, bD)1/2

V (B(z, d(z, bD)))

∫
B(z,d(z,bD))

σ(w) dV (w)

≤ d(z, bD)1/2M(σ)(z)

. d(z, bD)1/2σ(z).

This establishes the result.

Now we will engage in a series of arguments very similar to what is proven in the Szeg®

section. We �rst note that T ∗ − T improves Lp spaces. The proof of this fact is basically

identical to that of Proposition 3.3.8 and stems from the fact that T ∗−T has an �integrable

kernel�, so we omit it.

Proposition 4.3.2. The operator T ∗−T maps Lp(D) to Lp+ε(D) boundedly for p ≥ 1 and

ε ∈ [0, 1
2n+1

).

The exact same reasoning from Lemma 3.3.3 yields the following:

Corollary 4.3.1. If σ ∈ Bp, then 1 is not an eigenvalue of T ∗−T considered as an operator

on Lpσ(D).

It remains to prove that T ∗−T is compact on Lpσ(D) for σ ∈ Bp. The argument is again

a reprise of the reasoning in the preceding chapter, namely Lemma 3.3.2.

Lemma 4.3.4. The operator T ∗ − T is compact on on Lpσ(D) for σ ∈ Bp.
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Proof. We �rst note that an integral operator with kernel K bounded on D×D is automat-

ically compact on Lpσ(D) for σ ∈ Bp; the proof follows as in Theorem 3.3.1.

To pass to the case where K is unbounded, let δj = 1
j
and

Kj(z, w) =


K(z, w) d(z, w) ≥ δj, d(z, bD) ≥ δj or d(w, bD) ≥ δj

0 otherwise.

Let Tj be the integral operator with kernel Kj. Note that Kj is bounded on D × D

because |K(z, w)| . 1
|g(z,w)|n+1/2 and |g(z, w)| & |ρ(w)|+ |ρ(z)|+ |z−w|2 by [37, Proposition

2.1]. Thus Tj is compact on Lpσ(D). To show T is compact, it su�ces to show Tj → T in

operator norm.

To this end, let f ∈ Lpσ(D) with ‖f‖Lpσ(D) ≤ 1. Note that as σ ∈ Bp, we can write

σ =
σ1

σp−1
2

where σ1, σ2 ∈ B1 by the factorization of Bp weights. This factorization of Bp weights holds

by the arguments in [62]. It should also be noted that this factorization appears in the

literature in the context of the unit disk D; see [6]. By Hölder's Inequality applied to the

functions

|K(z, w)−Kj(z, w)|1/qσ2(w)1/q and |K(z, w)−Kj(z, w)|1/pσ2(w)−1/q|f(w)|

and then applying Proposition 4.3.3, we obtain the estimate:
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|(T − Tj)(f)(z)|

≤
∫
bD

|K(z, w)−Kj(z, w)‖f(w)| dV (w)

≤ χd(z,bD)<δj

 ∫
B(z,δj)

|K(z, w)|σ2(w) dV (w)


1
q
 ∫
B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))
1−p|f(w)|p dV (w)


1
p

. δ
1/2q
j σ2(z)

1
q

 ∫
B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))
1−p|f(w)|p dV (w)


1
p

.

Thus, we obtain, applying the proceeding estimate, Fubini, and Proposition 4.3.3 again:

‖(T − Tj)f‖pLpσ(bD)

≤
∫
D

δ
p
2q

j σ2(z)p−1

 ∫
B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)

 σ1(z)

σ2(z)p−1
dV (z)

= δ
p
2q

j

∫
D

∫
B(z,δj)∩{d(w,bD)<δj}

|K(z, w)|(σ2(w))1−p|f(w)|p dV (w)σ1(z) dV (z)

= δ
p
2q

j

∫
D

χd(w,bD)<δj(w)

 ∫
B(w,δj)

|K(z, w)|σ1(z) dV (z)

 |f(w)|p(σ2(w))1−p dV (w)

. δ
p/2
j

∫
D

σ1(w)|f(w)|p(σ2(w))1−p dV (w)

= δ
p/2
j ‖f‖

p
Lpσ(D)

≤ δ
p/2
j .
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Letting j → ∞, we have δj → 0 and thus it immediately follows that the operators Tj

approach T in operator norm and hence T is compact.

4.3.3 Proof of Main Theorem

We now can �nally prove Theorem 4.3.1, using the Kerzman-Stein operator equation trick.

Proof of Theorem 4.3.1. The proof is virtually identical to that of Theorem 3.3.1. Again,

the starting point is the Kerzman-Stein equation, and the invertibility of (I − (T ∗ − T ))

on Lpσ(D) is granted by Corollary 4.3.1 and Lemma 4.3.4 using the spectral theorem. The

boundedness of T on Lpσ(D) is given by Theorem 4.3.2.

4.4 Radial Weights

The lack of a reverse Hölder inequality for Bp weights was an obstruction to obtaining the

full analog of Theorem 4.1.1 for domains with C2 boundary (see the proof of Theorem 3.1.1.

However, we can prove weighted estimates for B in this setting for a special class of weights

that might be called �radial" or �power" weights. In particular, we prove an analog of a

result stated in [70, Theorem 2.10] for the unit ball (at least the su�ciency).

Throughout this section, D is a strongly pseudoconvex domain with C2 boundary. For

t ∈ R we de�ne the weights σt(z) = |ρ(z)|t, where ρ is the (�xed) de�ning function for the

domain D. Note that these weights are pointwise comparable to a power of the distance to

the boundary. In this section, we prove the following theorem:

Theorem 4.4.1. Let D be a strongly pseudoconvex domain with C2 boundary and 1 < p <

∞. Then if −1 < t < p− 1, there exists a constant C > 0 so ‖Bf‖Lpσt (D) ≤ C‖f‖Lpσt (D).
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This result heuristically suggests that Theorem 4.1.1 probably holds in the C2 setting,

since the range of t in Theorem 4.4.1 is precisely the range for which the weight σt belongs

to Bp, as can readily be checked (we omit the details).

To begin with, we de�ne an analog of the function g(z, w) that is suitable for the C2

setting. In particular, as in [37], for ε > 0 we de�ne the modi�ed Levi polynomial

P ε
w(z) :=

n∑
j=1

∂ρ

∂wj
(w)(zj − wj) +

1

2

n∑
j,k=1

τ εj,k(w)(zj − wj)(zk − wk).

where the τ εj,k are C
2 functions satisfying

sup
w∈D

∣∣∣∣ ∂ρ(w)

∂wj∂wk
− τ εj,k(w)

∣∣∣∣ ≤ ε 1 ≤ j, k ≤ n.

Accordingly, we de�ne

gε(z, w) := −ρ(w)− χ(P ε
w(z)) + (1− χ)|z − w|2,

where χ is an appropriately chosen smooth cut-o� function. We invite the reader to consult

[37] for additional details.

We de�ne the corresponding operator Γε as an analog of the operator Γ in Section 4.3 in

the obvious way:

Γε(f)(z) =

∫
D

|gε(z, w)|−n−1f(w) dV (w).

The aim of the next proposition is to provide su�cient conditions on t for the operators

Γ and Γε to be bounded on Lpσt(D).

Proposition 4.4.1. Let 1 < p <∞. If −1 < t < p−1, there exists C > 0 so ‖Γ(f)‖Lpσt (D) ≤

C‖f‖Lpσt (D), and also ‖Γε(f)‖Lpσt (D) ≤ C‖f‖Lpσt (D).
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Proof. By [37, Proposition 2.1], it is clearly su�cient to establish the result for Γ, since the

functions |g(z, w)| and |gε(z, w)| are comparable. Write

Γ(f)(z) =

∫
D

|g(z, w)|−n−1f(w)|ρ(w)|−tσt(w) dV (w).

Let q be the dual exponent to p and consider the intervals
(

0, 1
q

)
and

(
t
p
, t+1

p

)
. The con-

ditions on t imply 0 < t+1
p

and t
p
< 1

q
, so

(
0, 1

q

)
∩
(
t
p
, t+1

p

)
6= ∅ and we may choose

s ∈
(

0, 1
q

)
∩
(
t
p
, t+1

p

)
. We will establish the Lp boundedness of Γ using Schur's Test with

test function |ρ|−s.

Notice

∫
D

|g(z, w)|−n−1(|ρ(w)|−s)q|ρ(w)|−tσt(w) dV (w) =

∫
D

|g(z, w)|−n−1|ρ(w)|−sqdV (w)

≤ c1(|ρ(z)|−s)q

using [37, Lemma 4.1] and the fact that 0 < sq < 1.

On the other hand,

∫
D

|g(z, w)|−n−1(|ρ(z)|−s)p|ρ(w)|−t|ρ(z)|t dV (z) = |ρ(w)|−t
∫
D

|g(z, w)|−n−1|ρ(z)|−sp+tdV (z)

≤ c2|ρ(w)|−t|ρ(w)|−sp+t

= c2|ρ(w)|−sp

again by [37, Lemma 4.1] and the fact that 0 < sp− t < 1.

The boundedness of the operator Γ on Lpσt(D) then follows immediately by Schur's Test.

In particular, ‖Γ‖Lpσt (D)→Lpσt (D) ≤ c
1/q
1 c

1/p
2 .
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Using the function gε, we can analogously construct a non-orthogonal projection operator

Tε = T 1
ε + T 2

ε , where T 1
ε is the corresponding Cauchy-Fantappié integral, and T 2

ε is the

suitable correction operator to make the kernel of Tε holomorphic in the variable z. It is a

fact that |T 1
ε f(z)| . Γε(|f |)(z) and the kernel K2(z, w) of T 2

ε is bounded on D ×D, say by

a positive constant M. We omit the details and refer the interested reader to [37].

We now prove the Lpσt(D) boundedness of the operator T 2
ε .

Proposition 4.4.2. Let 1 < p <∞. Then if −1 < t < p− 1, there exists a constant C > 0

so ‖T 2
ε f‖Lpσt (D) ≤ C‖f‖Lpσt (D).

Proof. We have, for f ∈ Lpσt(D):

∫
D

∣∣∣∣∣∣
∫
D

f(w)K2(z, w)dV (w)

∣∣∣∣∣∣
p

σt(z) dV (z)

1/p

≤ (σt(D))1/p sup
z∈D

∫
D

|f(w)||K2(z, w)| dV (w)


≤ (σt(D))1/pM

∫
D

|f(w)| dV (w)

= (σt(D))1/pM

∫
D

|f(w)||ρ(w)|t/p|ρ(w)|−t/p dV (w)

≤ (σt(D))1/pM‖f‖Lpσt (D)

∫
D

|ρ(w)|−tq/p dV (w)

1/q

< ∞

where we have used Holder's inequality, the fact that −tq/p > −1, and the fact that∫
D
|ρ(w)|αdV (w) < ∞ for α > −1, a fact which is contained in the proof of [37, Lemma

4.1].

Corollary 4.4.1. Let 1 < p < ∞. If −1 < t < p − 1, then there exists C > 0 so that

‖Tεf‖Lpσt (D) ≤ C‖f‖Lpσt (D).

114



Proof. Recall Tε = T 1
ε + T 2

ε . The operator T 1
ε is majorized by Γε, which is bounded on

Lpσt(D) according to Proposition 4.4.1. The operator T 2
ε is bounded in virtue of Proposition

4.4.2, which then grants the boundedness of Tε.

The next lemma allows us to prove the boundedness of B on Lpσt(D).

Lemma 4.4.1. For each ε > 0, we can decompose Tε−T ∗ε = Aε+Dε where the decomposition

satis�es the following properties:

1. For each 1 < p <∞, there exists C > 0 (independent of ε) so ‖Aε‖Lpσt (D)→Lpσt (D) ≤ εC.

2. The operator Dε has a kernel which is continuous on D ×D, and hence maps Lpσt(D)

to C(D) for 1 < p <∞.

Proof. These statements follow more or less directly from [37, Lemma 5.1] and the work done

above. The decomposition proceeds identically. For the �rst part, note that in the proof of

Lemma 5.1, it is established that the operator Aε has a kernel that is controlled in absolute

value by a constant multiple of ε
|g(z,w)|n+1 , and thus the estimate follows directly from the

proof of Proposition 4.4.1. The second part follows by virtue of the fact that Lpσt(D) ⊂ L1(D)

with bounded inclusion, a fact which is contained in the proof of Proposition 4.4.2.

We now proceed to prove Theorem 4.4.1

Proof of Theorem 4.4.1. Fix ε > 0 su�ciently small so that ‖Aε‖Lpσt (D)→Lpσt (D) <
1
2
. We

follow a similar approach as [37]. The Kerzman-Stein equation in this case is

B(I − (T ∗ε − Tε)) = Tε.

Using the decomposition provided in Lemma 4.4.1 and rearranging, we obtain

B(I −Aε) = Tε + BDε
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as an identity on L2(D).

Now, we know that (I − Aε) is invertible on Lpσt(D) using a Neumann series by virtue

of Lemma 4.4.1 and our choice of ε. Thus, to prove that B extends to a bounded operator

on Lpσt(D), we only need to prove that BDε extends to a bounded operator on Lpσt(D), since

we have already proven that Tε does. Choose a large exponent p̃ so that t p̃
p̃−p > −1. This

is clearly possible since the target interval is open, t ∈ (−1, p − 1) by hypothesis, and p̃
p̃−p

tends to 1 as p̃ → ∞. Now, note that Dε maps Lpσt(D) to C(D) by virtue of Lemma 4.4.1,

and hence maps Lpσt(D) to Lp̃(D), since D is a �nite measure space. Then, appeal to the

main theorem in [37] which says B maps Lp(D) to Lp(D) for all 1 < p <∞, so in particular

it follows BDε maps Lpσt(D) to Lp̃(D) boundedly. The result follows by observing that

Lp̃(D) ⊂ Lpσt(D) for this choice of p̃: indeed, for f ∈ Lp̃(D)

∫
D

|f |pσt dV =

∫
D

|f |p|ρ|t dV

≤

∫
D

|f |p̃ dV

p/p̃∫
D

|ρ|t
p̃
p̃−p dV


p(p̃−1)
p̃

. ‖f‖p
Lp̃(D)

since |ρ|α is integrable if α > −1.

4.5 Application to Toeplitz Operators

In this section, we assume D is strongly pseudoconvex with C2 boundary. We give an addi-

tional application of the Kerzman-Stein technique to the boundedness of Toeplitz operators.

We now de�ne Toeplitz operators on the Bergman space A2(D):
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De�nition 4.5.1. Given a symbol function u ∈ L∞(D), de�ne the Toeplitz operator Tu :

A2(D)→ A2(D) by Tu(f) = B(uf).

It is immediate that any Toeplitz operator is bounded on A2(D). There has been an

extensive study of Toeplitz operators on Bergman spaces, particularly the question of when

such operators are compact; we refer the reader to [1, 51, 65] for some important results.

Although Toeplitz operators are typically studied from the operator-theoretic perspective

of their restriction to the Bergman space (or other holomorphic function spaces), it also

makes sense to study their behavior on Lp(D), especially in a context when the operator is

�smoothing� and the symbol improves the behavior of the original projection (similar to the

study of fractional integral operators in harmonic analysis). It is clear, from the main result

in [37], that Toeplitz operators are bounded on Lp for 1 < p <∞.

We consider the special case when u = δη, where η is a positive power and δ(z) =

dist(z, bD). These symbols were considered by McNeal and Cuckovic in [66] and it was

shown that the associated Toeplitz operators have smoothing properties and improve Lp

spaces. The point is that the decay of the symbol near the boundary �cancels out� some of

the singularities of the Bergman kernel on the boundary diagonal in a precise and quantitative

sense. However, their proof depends crucially on estimates for the Bergman kernel available

only in the smooth case.

We show below that their result can be partially recovered in the minimal smoothness case

using the Kerzman-Stein operator theory trick. Let Tε denote the Kerzman Stein operator

introduced in Section 4.4. In particular, the relation TεB = B yields, taking adjoints and

using the fact that the Bergman projection is self-adjoint, the relation BT ∗ε = B on L2(D).

Note that the Toeplitz operator Tu can be written Tu = BMu, whereMu denotes the operator

of multiplication by u. Because the operator T ∗ε can be inserted after B, the Toeplitz operator

Tu can be rewritten (on L2(D)) as BT ∗ε Mu. Then, the operator T ∗ε Mu is much more tractable

than the original Toeplitz operator because more precise information is known about the
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kernel of Tε (and hence T ∗ε ).

For the operator Tε, one can choose any real parameter ε > 0 su�ciently small so that

|g(z, w)| ≈ |gε(z, w)|. In fact, really the only properties of Tε that are important in our

proof are a bound on the size of its kernel and the fact that Tε is bounded on L2(D) and

reproduces holomorphic functions, so that we obtain the identity TεB = B. Therefore, in

what follows, we assume the parameter ε has been �xed once and for all. However, since

we are appealing to the result that B is bounded on Lp(D), we are implicitly using deeper

properties of the operator Tε, including a quasi-cancellation of singularities in T ∗ε − Tε (see

[37] for more details).

The following lemma is the main tool in the proof of the theorem. We note that this

result was given in [66, Proposition 2.1].

Lemma 4.5.1. Let K denote the integral operator on acting on measurable functions on D

with kernel K(z, w); that is

Kf(z) =

∫
D

K(z, w)f(w) dV (w).

Fix 1 < s < ∞ and γ > 0 small. Let p ∈ (1,∞) and denote by q the Hölder conjugate

exponent to p. Suppose there exists a t ∈ (0, 1) and a �nite, positive constant C so that

∫
D

|K(z, w)|tq|ρ(w)|−γ dV (w) ≤ C|ρ(z)|−γ

∫
D

|K(z, w)|(1−t)s|ρ(w)|−γ dV (w) ≤ C|ρ(z)|−γ.

Then the integral operator K is bounded as a map from Lp(D) to Ls(D) with operator norm

at most C.

The following theorem is an extension of [66, Theorem 1.2] to the C2 setting.
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Theorem 4.5.1. Let D be a strongly pseudoconvex domain with C2 boundary. Let Tη

denote the Toeplitz operator with symbol δη. For 0 ≤ η < n + 1, let E = n+1
n+1−η . Then the

following mapping properties hold:

1. If 1 < p <∞ and E < p
p−1

, then Tη : Lp(D)→ Lp+G(D), where G = p2

n+1
η
−p , boundedly.

2. If 1 < p <∞ and E ≥ p
p−1

, then Tη : Lp(Ω)→ Ls(Ω) boundedly for any s <∞.

Proof. To prove this theorem, we will use the following facts:

1. The Toeplitz operator Tη can be written, as a map on Lp

Tη = BT ∗ε Mδη .

2. The operator T ∗ε Mδη has the mapping properties above.

3. The Bergman projection B extends to a bounded map on Lp(D) for 1 < p <∞.

The �rst item was essentially proven in the discussion before the proof, because we already

know the operator T ∗ε is bounded on Lp(D) by the same arguments leading to Corollary 4.4.1;

so the operator relation will extend from L2 to Lp by density. The third item was proven in

[37]. So it remains to show that T ∗ε Mδη has the desired mapping properties.

The major step in proving this result is to prove the analog of Proposition 3.4 in this

case. First, note that we may replace the symbol δη by |ρ|η, where ρ is the (�xed) C2

de�ning function for D since the two functions are uniformly comparable. Write Kη(z, w) =

K(z, w)|ρ(w)|η, where K(z, w) denotes the kernel for T ∗ε . Then we claim that for all 0 ≤

η < n+ 1 and 0 ≤ r ≤ n+1
n+1−η , the following estimate holds for γ ∈ (0, 1) :

∫
D

|Kη(z, w)|r|ρ(w)|−γ dV (w) ≤ Cγ|ρ(z)|−γ.
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This estimate can be shown in straightforward manner by appealing to known facts.

First, we recall that it is possible to decompose Tε = T 1
ε + T 2

ε , where T 2
ε has a kernel that

is bounded on D × D, while T 1
ε has a kernel controlled by a multiple of 1

|g(z,w)|n+1 . Thus,

we can write T ∗ε = (T 1
ε )∗ + (T 2

ε )∗, where the kernel of (T 2
ε )∗ is still bounded and the kernel

of (T 1
ε )∗ is controlled by a multiple of 1

|g(w,z)|n+1 . But the fact that |g(z, w)| ≈ |g(w, z)| by

[37, Proposition 2.1] implies that we can replace g(w, z) by g(z, w) in the kernel bound.

Altogether, we deduce |K(z, w)| . 1
|g(z,w)|n+1 .

We then write

∫
D

|Kη(z, w)|r|ρ(w)|−γ dV (w) .
∫
D

|ρ(w)|ηr|ρ(w)|−γ

|g(z, w)|r(n+1)
dV (w)

=

∫
D

|ρ(w)|−γ

|g(z, w)|n+1

|ρ(w)|ηr

|g(z, w)|(n+1)(r−1)
dV (w) .

If r ≤ 1, then the last display is controlled by an independent constant times

∫
D

|ρ(w)|−γ

|g(z, w)|n+1
dV (w)

since ρ(w) and g(z, w) are both bounded functions. On the other hand, if r > 1, then use

the fact that |ρ(w)| . |g(z, w)| uniformly in z, w ∈ D (see [37, Proposition 2.1]). In this

case, we control the integral by a constant times

∫
D

|ρ(w)|−γ|ρ(w)|ηr−(n+1)(r−1)

|g(z, w)|n+1
dV (w) .

Finally, compute to see
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ηr − (n+ 1)(r − 1) = r(η − (n+ 1)) + (n+ 1)

≥ n+ 1

n+ 1− η
(η − (n+ 1)) + (n+ 1)

= 0

to conclude that in either case, the original integral is dominated by a constant times

∫
D

|ρ(w)|−γ

|g(z, w)|n+1
dV (w) .

By [37, Lemma 4.1], this integral is dominated by Cγρ(z)−γ, which proves the assertion.

The theorem is now a straightforward consequence of the Lemma 4.5.1 above. In partic-

ular, in the case E ≥ p
p−1

, then the above claim holds for r = p
p−1

= q. Then, given any �xed

s ∈ (1,∞) we can choose t arbitrarily close to 1 so that (1−t)s ≤ E, so that both hypotheses

of the lemma are satis�ed. In the other case, note that in order for the hypotheses of the

lemma to hold we need (1− t)s ≤ E and tq ≤ E. Solving for t in the second inequality and

substituting into the �rst, we obtain the correct value for s.
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Chapter 5

Endpoint Estimates

5.1 Summary of Main Results

In this chapter, our main results are weighted weak-type estimates for the Bergman and

Szeg® projections on strongly pseudoconvex domains with near-minimal smoothness as an

additional appliation of the Kerzman-Stein equation. The majority of the material in this

chapter appears in [64]. The �rst main result of this chapter is the weighted weak-type (1, 1)

estimate for the Bergman projection on C4 domains. Recall the de�nition of B1 weights

given in De�nition 1.5.2. The quasi-metric d is constructed using the special coordinate

system discussed in Chapter 4.

Theorem 5.1.1. Let D be strongly pseudoconvex with C4 boundary. If σ ∈ B1, then the

Bergman projection B extends boundedly from L1
σ(D) to L1,∞

σ (D). That is, there exists

C > 0 such that

‖Bf‖L1,∞
σ (D) := sup

λ>0
λσ({z ∈ D : |Bf(z)| > λ}) ≤ C‖f‖L1

σ(D)

for all f ∈ L1
σ(D).

We remark that Theorem 5.1.1 is new even in the unweighted setting (σ = 1). In this

case, Theorem 5.1.1 can be viewed as an extension of McNeal's results of [47] to domains with

near minimal smoothness and also of the work of Lanzani and Stein in [37] to address the

behavior at the p = 1 endpoint. In fact, Theorem 5.1.1 and an interpolation argument imply
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the Lp(D), 1 < p < ∞, boundedness result of [37] in the case of D having C4 boundary.

With B1 weights, Theorem 5.1.1 generalizes Bekollé's endpoint weak-type result of [3] to

domains with near minimal smoothness and extends the work in Chapter 4 to address the

p = 1 endpoint.

The weak-type estimate of Theorem 5.1.1 implies some other useful endpoint bounds,

generalizing results in [15]. Recall that for 0 < p < 1, the space Lpσ(D) is a quasi-Banach

space. In particular, one has the following weighted Kolmogorov inequality:

Corollary 5.1.1. Let D be strongly pseudoconvex with C4 boundary and 0 < p < 1. If

σ ∈ B1, then the Bergman projection B extends boundedly from L1
σ(D) to Lpσ(D). That is,

there exists C > 0 such that

‖Bf‖Lpσ(D) ≤ C‖f‖L1
σ(D)

for all f ∈ L1
σ(D).

Additionally, one also gets the following Zygmund inequality as a corollary:

Corollary 5.1.2. Let D be strongly pseudoconvex with C4 boundary. If σ ∈ B1, then the

Bergman projection B extends boundedly from (L log+ L)σ(D) to L1
σ(D). That is, there

exists C > 0 such that

‖Bf‖L1
σ(D) ≤ C‖f‖(L log+ L)σ(D)

for all f ∈ (L log+ L)σ(D).

Refer to Section 5.4 for a precise de�nition of the Zygmund spaces L log+ L and their norms.

The second main result of this chapter is the weighted weak-type (1, 1) estimate for the

Szeg® projection on domains with near minimal smoothness.

Theorem 5.1.2. Let D be strongly pseudoconvex with C3 boundary. If σ ∈ A1, then the

Szeg® projection S extends boundedly from L1
σ(bD) to L1,∞

σ (bD). That is, there exists C > 0

such that ‖Sf‖L1,∞
σ (bD) ≤ C‖f‖L1

σ(bD) for all f ∈ L1
σ(bD).
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We remark that Theorem 5.1.2 is new even in the unweighted setting. Theorem 5.1.2

can be viewed as a weighted extension of the work of Lanzani and Stein in [37] and of the

results in Chapter 3 to address the behavior at the p = 1 endpoint.

Similar to the case of the Bergman projection, we obtain a weighted Kolmogorov inequal-

ity and a weighted Zygmund inequality for the Szeg® projection.

Corollary 5.1.3. Let D be strongly pseudoconvex with C3 boundary and 0 < p < 1. If

σ ∈ A1, then the Szeg® projection S extends boundedly from L1
σ(bD) to Lpσ(bD). That is,

there exists C > 0 such that

‖Sf‖Lpσ(bD) ≤ C‖f‖L1
σ(bD)

for all f ∈ L1
σ(bD).

Corollary 5.1.4. Let D be strongly pseudoconvex with C3 boundary. If σ ∈ A1, then the

Szeg® projection S extends boundedly from (L logL)σ(bD) to L1
σ(bD). That is, there exists

C > 0 such that

‖Sf‖L1
σ(bD) ≤ C‖f‖(L logL)σ(bD)

for all f ∈ (L logL)σ(bD).

We can also obtain an (unweighted) estimate for the Bergman projection on C4 domains

at the endpoint p =∞. In particular, we prove that the Bergman projection boundedly maps

L∞(D) into a space of holomorphic functions known as the Bloch space, de�ned precisely in

Section 5.5.

Theorem 5.1.3. Let D be strongly pseudoconvex with C4 boundary. The Bergman pro-

jection B maps L∞(D) to the Bloch space B(D). That is, there exists a constant C > 0 so

that ‖Bf‖B(D) ≤ C‖f‖L∞(D).

This chapter is organized as follows. In Section 5.2, we deal with the weighted weak-type

estimates for the Bergman projection on C4 domains with B1 weights. In Section 5.3, we
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deal with the weighted weak-type estimates for the Szeg® projection on C3 domains with

A1 weights. In Section 5.4, we prove the Kolmogorov and Zygmund inequalities. Finally,

in Section 5.5, we prove that the Bergman projection on C4 domains maps L∞(D) to the

Bloch space boundedly.

5.2 The Bergman Projection

5.2.1 Preliminaries

Let D ⊆ Cn be a strongly pseudoconvex bounded domain with C4 boundary. Via the ideas

of Kerzman, Stein, and Ligocka, we construct a non-orthogonal projection operator T using

Cauchy-Fantappié theory. This operator is de�ned exactly the same way as in Section 4.2

in Chapter 4, and the details of its construction are identical. Therefore, we use the same

notation as Chapter 4 and refer the reader to the relevant section and [37] for additional

details without revisiting the construction.

Recall we also have the Kerzman-Stein equation:

B(I − (T ∗ − T )) = T . (5.2.1)

The proof of Theorem 5.1.1 follows easily from the following two facts.

Proposition 5.2.1. If σ is a B1 weight, then the operator I − (T ∗ − T ) is invertible on

L1
σ(D).

Proposition 5.2.2. If σ is a B1 weight, then T maps L1
σ(D) to L1,∞

σ (D) boundedly.

Proof of Theorem 1.5.5. Using Proposition 5.2.1, we may rewrite (5.2.1) as

B = T (I − (T ∗ − T ))−1.
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The bound of B from L1
σ(D) to L1,∞

σ (D) follows from Proposition 5.2.1 and Proposition

5.2.2.

The remainder of this section is devoted to proving Proposition 5.2.1 and Proposition

5.2.2. Proposition 5.2.1 will follow from the spectral theorem for compact operators on

a Banach space. In particular, we will show that T ∗ − T is compact on L1
σ(D) and also

that 1 is not an eigenvalue of T ∗ − T on L1
σ(D). Proposition 5.2.2 relies on methods from

Calderón-Zygmund theory reminiscent of the ideas in [3].

Recall the arguments in Chapter 2 and Chapter 4 as well as [47, 50] make use of an

appropriately constructed quasi-metric d that re�ects the geometry of the boundary. Tech-

nically, the quasi-metric D is only de�ned for points z, w su�ciently close to the boundary,

but we will abuse notation and de�ne objects as if d were de�ned globally. This reduction is

possible because the kernels of all the relevant operators are uniformly continuous on com-

pact subsets of D ×D o� the boundary diagonal and all the necessary properties will hold

for trivial reasons. See Lemma 2.2.1 for an example of how such a reduction works in the

smooth setting (similar reasoning is followed for the operator T ). For relevant properties of

this quasi-metric, including comparability to a �distance-like� quantity in terms of coordi-

nates, homogeneous structure, and doubling, we refer the reader to Chapter 2 Section 2.2

and Chapter 4 Section 4.2 for all the relevant details.

As in Chapter 2 we use the constant c > 0 to denote the implicit constant in the triangle

inequality for d:

d(z, w) ≤ c(d(z, ζ) + d(ζ, w)).

If B is a quasi-ball, then its center and radius are represented by c(B) and r(B) respectively,

meaning B = {w ∈ D : d(c(B), w) < r(B)}. We also write kB to denote the k-fold dilate of

B, that is kB := {w ∈ D : d(c(B), w) < kr(B)}.

Notice that for a B1 weight σ, σ dV also satis�es a particular doubling property for
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quasi-balls close to the boundary:

σ(B(z, 2r)) .

(
inf

w∈B(z,2r)
σ(w)

)
V (B(z, 2r)) . σ(B(z, r))

for any z ∈ D and r > 0 such that r > kd(z, bD) for some absolute k > 0 (the �rst inequality

above depends on [σ]B1 ; this is an analog of Proposition 2.3.3 in Chapter 2 for B1 weights).

For sets E,F ⊆ D, we write d(E,F ) := inf z∈E
w∈F

d(z, w).

We work with the maximal operatorM adapted to our setting. In particular, see Chapter

2 De�nition 2.2.2 for the de�nition ofM.

5.2.2 Inversion of the �mild� operator

To deduce the compactness of T ∗ − T , we use a more general result which follows from

[17, Corollary 4.1]. In the following lemma, K is an integral operator given by

Kf(x) =

∫
X

k(x, y)f(y) dµ(y)

and ky(x) = k(x, y).

Lemma 5.2.1. Let (X,µ) be a positive measure space. Suppose that k : X × X → R

is a measurable function such that ‖
∫
X
k(x, ·) dµ(x)‖L∞(X,µ) < ∞. If the set {ky}y∈X is

relatively compact in L1(X,µ), then K and K∗ are compact operators on L1(X,µ) and

L∞(X,µ) respectively.

To justify the relative compactness of {ky} in our application of Lemma 5.2.1, we use the

following characterization for relatively compact sets, which can be viewed as a generalization

of the classical Riesz-Kolmogorov theorem.

Lemma 5.2.2. Let µ be a �nite Borel measure on X such that infx∈X µ(B(x, r)) > 0 for
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any r > 0 and let 1 ≤ p <∞. If K ⊆ Lp(X,µ) is a bounded set satisfying

lim
r→0+

sup
f∈K

∫
X

|f(x)− 〈f〉B(x,r),µ|p dµ(x) = 0,

then K is relatively compact in Lp(X,µ).

Lemma 5.2.2 was originally stated for the case of metric spaces in [27], but we will need a

version from [26, Lemma 1] in the case where we only have a quasi-metric.

We next apply Lemma 5.2.1 and Lemma 5.2.2 to prove the following result.

Lemma 5.2.3. If σ is a B1 weight, then the operator T ∗ − T is compact on L1
σ(D).

Proof. First, we note that σ dV is a �nite Borel measure on D. Using the B1 condition and

the fact that B(z, R) = D for z ∈ D and su�ciently large R, one has

σ(D) .

(
inf
w∈D

σ(w)

)
V (D).

The in�mum condition on the measure σdV can be veri�ed using a compactness argument

and the fact that B(z, r) contains a Euclidean ball intersected withD with radius comparable

to r1/2, which was proved in Proposition 4.2.4. Let k(z, w) denote the kernel of T ∗−T with

respect to Lebesgue measure. Recall the following key properties of k(z, w) were proved in

Lemma 4.3.2:

|k(z, w)| . |g(z, w)|−(n+ 1
2) . d(z, w)−(n+ 1

2)

as well as

|k(z, w)| . min
{
d(z, bD)−(n+ 1

2), d(w, bD)−(n+ 1
2)
}
.

Here, the assumption that the boundary of D is of class C4 is in fact crucial. Let k̃(z, w)

denote the kernel of T ∗−T with respect to the weighted measure σ dV and notice k̃(z, w) =

k(z, w)σ(w)−1.
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We claim that there exists M > 0 such that supw∈D
∫
D
|k̃(z, w)|σ(z) dV (z) < M. To see

this, �x w ∈ D and integrate over dyadic annuli, choosing R so that B(w,R) = D and

letting N be the largest positive integer such that B(w, 2−NR) meets the boundary of D.

We use the above control of |k(z, w)| and the fact that V (B(z, r)) ≈ rn+1 to obtain

∫
D

|k̃(z, w)|σ(z) dV (z) = σ(w)−1

∫
D

|k(z, w)|σ(z) dV (z)

= σ(w)−1

N∑
j=0

∫
B(w,2−jR)\B(w,2−(j+1)R)

d(z, w)−(n+ 1
2)σ(z) dV (z)

+ σ(w)−1

∫
B(w,2−(N+1)R)

d(w, bD)−(n+ 1
2

)σ(z) dV (z)

. σ(w)−1

N∑
j=0

2−j/2R1/2

V (B(w, 2−jR))

∫
B(w,2−jR)

σ(z) dV (z)

+ σ(w)−1 d(w, bD)1/2

V (B(w, d(w, bD)))

∫
B(w,d(w,bD))

σ(z) dV (z)

≤ σ(w)−1

N∑
j=0

2−j/2R1/2Mσ(w) + σ(w)−1d(w, bD)1/2Mσ(w)

. σ(w)−1(R1/2 + d(w, bD)1/2)Mσ(w)

. R1/2.

Note that we used the B1 condition in the last line above. All the implicit constants are

independent of w, and R is also independent of w since we can just take R to be the diameter

of D in the quasi-metric. This establishes the claim. Notice that this argument also shows

that replacing the region of integration by a quasi-ball B(w, δ) yields

∫
B(w,δ)

|k̃(z, w)|σ(z) dV (z) . δ1/2 + d(w, bD)1/2, (5.2.2)
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where the implicit constant is independent of w (see also Lemma 4.3.3).

Now we must show the crucial condition

lim
r→0+

sup
w∈D

σ(w)−1

∫
D

|kw(z)− 〈kw〉B(z,r),σdV |σ(z) dV (z) = 0,

where kw(z) = k(z, w). Fix ε > 0, w ∈ D, and let δ > 0 and 0 < r < δ be constants to be

�xed later. We emphasize all constants obtained will ultimately be independent of w.

Let G := {z ∈ D : d(z, w) ≥ δ or d(z, bD) ≥ δ}. We will �rst estimate

σ−1(w)

∫
G

|kw(z)− 〈kw〉B(z,r),σdV |σ(z) dV (z).

Recall that the kernel function k(z, w) is uniformly continuous on compact subsets o� the

boundary diagonal, so in particular the function kw(z) is uniformly continuous on G with a

modulus of continuity independent of w. We can choose r su�ciently small relative to δ and

independent of w so that we have |kw(z)− 〈kw〉B(z,r),σdV | < ε for z ∈ G and hence,

σ(w)−1

∫
G

|kw(z)− 〈kw〉B(z,r),σdV |σ(z) dV (z) ≤ εσ(w)−1

∫
D

σ(z) dV (z)

. εσ(w)−1Mσ(w)

. ε

as required. We used the B1 condition of σ in the last inequality above.

Now we need to estimate the integral on D \ G. Note D \ G = B(w, δ) ∩ A, where
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A := {z : d(z, bD) < r}. We have

σ(w)−1

∫
D\G

|kw(z)− 〈kw〉B(z,r),σdV |σ(z) dV (z) ≤ σ(w)−1

 ∫
D\G

|kw(z)|σ(z) dV (z)

+

∫
D\G

|〈kw〉B(z,r),σdV |σ(z) dV (z)

 .

By (5.2.2), it is easy to deduce

σ(w)−1

∫
D\G

|kw(z)|σ(z) dV (z) . δ1/2.

We will also show

σ(w)−1

∫
D\G

|〈kw〉B(z,r),σdV |σ(z) dV (z) . δ1/2

using similar methods. We consider two separate regions of integration based on the relative

positions of z and w. First, suppose that cr < 1
2
d(z, w). One can show that if ζ ∈ B(z, r),

then d(z, w) . d(ζ, w) with an implicit constant independent of z and w. We then estimate

σ(w)−1

∫
(B(w,δ)\B(w,2cr))∩A

|〈kw〉B(z,r),σdV |σ(z) dV (z)

≤ σ(w)−1

∫
(B(w,δ)\B(w,2cr))∩A

1

σ(B(z, r))

∫
B(z,r)

d(ζ, w)−(n+ 1
2)σ(ζ) dV (ζ)σ(z) dV (z)

. σ(w)−1

∫
B(w,δ)∩A

d(z, w)−(n+ 1
2)σ(z) dV (z)

. δ1/2
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as before. We have used the B1 condition of σ in the third inequality above.

On the other hand, if d(z, w) ≤ 2cr, then B(z, r) ⊆ B(w,Cr) and B(w, r) ⊆ B(z, Cr),

where C = 2c2 + c. We �rst consider a further subcase where d(w, bD) < r. In this case,

note d(z, bD) . r on this set as well by the quasi-triangle inequality. Thus, we calculate:

σ(w)−1

∫
B(w,2cr)∩A

1

σ(B(z, r))

∫
B(z,r)

d(ζ, w)−(n+ 1
2)σ(ζ) dV (ζ)σ(z) dV (z)

≤ σ(w)−1 1

σ(B(w, r))

∫
B(w,2cr)∩A

σ(B(z, Cr))

σ(B(z, r))

∫
B(w,Cr)

d(ζ, w)−(n+ 1
2)σ(ζ) dV (ζ)σ(z) dV (z)

. δ1/2 1

σ(B(w, r))

∫
B(w,2cr)∩A

σ(B(z, Cr))

σ(B(z, r))
σ(z) dV (z)

. δ1/2

using the B1 condition in the second inequality and the doubling property of σ in the third

inequality. For the second subcase, suppose d(w, bD) ≥ r and note that we still assume

d(z, w) ≤ 2cr, so we in fact have d(w, bD)−(n+1/2) . d(z, w)−(n+1/2). We estimate

σ(w)−1

∫
B(w,2cr)∩A

|〈kw〉B(z,r),σdV |σ(z) dV (z)

≤ σ(w)−1

∫
B(w,2cr)∩A

1

σ(B(z, r))

∫
B(z,r)

d(w, bD)−(n+ 1
2)σ(ζ) dV (ζ)σ(z) dV (z)

. σ(w)−1

∫
B(w,δ)∩A

d(z, w)−(n+ 1
2)σ(z) dV (z)

. δ1/2,

where we have used the B1 condition in the third inequality.
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Thus, we obtain

σ(w)−1

∫
D\G

|kw(z)− 〈kw〉B(z,r),σdV |σ(z) dV (z) . δ1/2

with an independent implicit constant. This can be made less than ε by making an appro-

priately small choice of δ, completing the proof.

We need the following lemma to conclude that (I − (T ∗ − T )) is invertible on L1
σ(D).

Lemma 5.2.4. If σ ∈ B1, the number 1 is not an eigenvalue of T ∗ − T considered as an

operator on L1
σ(D).

Proof. The proof proceeds in the same way as Corollary 4.3.1 in Chapter 4. In particular,

it was proved in Proposition 4.3.2 in Chapter 4 that there exists ε > 0 so that T ∗ − T

maps Lp(D) to Lp+ε(D) boundedly for p ≥ 1. Thus, if 1 were an eigenvalue for T ∗−T with

eigenvector f ∈ L1
σ(D), then we would have

‖f‖L1+ε(D) = ‖(T ∗ − T )f‖L1+ε(D) . ‖f‖L1(D) . ‖f‖L1
σ(D),

noting that a weight in B1 is bounded below. If we repeat this argument a second time, we

get f ∈ L1+2ε(D). In fact, we can iterate arbitrarily many times to obtain f ∈ Lp(D) for all

p ≥ 1. In particular, f ∈ L2(D). This is a contradiction because 1 is not an eigenvalue of

T ∗ − T on L2(D), since all of these eigenvalues are purely imaginary.

Proof of Proposition 5.2.1. This follows immediately from Lemma 5.2.3 and Lemma 5.2.4

using the spectral theorem for compact operators.
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5.2.3 Weak-type estimate for the auxiliary operator

To show the weighted weak-type (1, 1) property for T , we �rst prove the analogous bound

for our maximal operatorM.

Lemma 5.2.5. If σ is a B1 weight, thenM maps L1
σ(D) into L1,∞

σ (D) boundedly.

Proof. It su�ces to prove the estimate for the centered version ofM,

M̃f(z) := sup
r>d(z,bD)

〈|f |〉B(z,r),

since we have the pointwise equivalence M̃f ≤ Mf . M̃f . Indeed, the �rst inequality is

clear, and the second is justi�ed by the fact that 〈|f |〉B . 〈|f |〉B(z,2cr(B)) for any z ∈ D and

quasi-ball B containing z.

Let f ∈ L1
σ(D), λ > 0, and Eλ := {M̃f > λ}. We show that

σ (Eλ) .
1

λ
‖f‖L1

σ(D).

For each z ∈ Eλ, let Bz be a quasi-ball centered at z such that r(Bz) > d(z, bD) and

〈|f |〉Bz > λ. Apply a Vitali-type lemma to obtain a subcollection {Bj}∞j=1 of {Bz}z∈Eλ

consisting of pairwise disjoint quasi-balls such that there exists R ≥ 1 with Eλ ⊆
⋃∞
j=1RBj.

Use the doubling property of σ, the B1 property of σ, and the selection property of the Bj

to conclude

σ (Eλ) ≤
∞∑
j=1

σ(RBj) .
∞∑
j=1

σ(Bj)

.
∞∑
j=1

(
1

‖σ−1‖L∞(Bj)

)
V (Bj) <

∞∑
j=1

(
inf
w∈Bj

σ(w)

)
1

λ

∫
Bj

|f | dV ≤ 1

λ
‖f‖L1

σ(D).
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Lemma 5.2.6. There exists k > 0 such that |g(z, w)| ≈ |g(z, w′)| for all z, w, w′ ∈ D

satisfying d(w,w′) ≤ kd(w, bD).

Proof. From the proof of Lemma 4.3.1 in Chapter 4, we know |g(z, w)| ≈ |g(z, w′)| whenever

d(w,w′) ≤ Cd(z, w), where C > 0 is an absolute constant. If d(w, bD) < C
k
d(z, w), then

d(w,w′) ≤ kd(w, bD) < Cd(z, w), and hence |g(z, w)| ≈ |g(z, w′)|.

We may now assume that d(z, w) ≤ k
C
d(w, bD). In this case, we use the triangle in-

equality, the fact that |g(z, w)− g(z, w′)| . d(w,w′)
1
2d(z, w)

1
2 + d(w,w′) (which is similar to

arguments in Lemma 4.3.1 as well), and the assumptions to get

|g(z, w)| ≤ |g(z, w)− g(z, w′)|+ |g(z, w′)|

. d(w,w′)
1
2d(z, w)

1
2 + d(w,w′) + |g(z, w′)|

≤
(

k

C1/2
+ k

)
d(w, bD) + |g(z, w′)|.

Now using the triangle inequality and the hypothesis, we have

d(w, bD) ≤ cd(w,w′) + cd(w′, bD) ≤ ckd(w, bD) + cd(w′, bD).

Choosing k su�ciently small, the above line implies d(w, bD) . d(w′, bD), and so

|g(z, w)| . d(w′, bD) + |g(z, w′)|.

Again referring to Lemma 4.3.1, we have d(w′, bD) . |g(z, w′)|, and we conclude

|g(z, w)| . |g(z, w′)|.

A symmetric argument proves the reverse inequality, establishing the lemma.

The following lemma is a modi�ed version of the Calderón-Zygmund decomposition.
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Recall the de�nition of the regularizing operator Rk that was given in Chapter 2, Section

2.3.

Lemma 5.2.7. For any λ > 0, k ∈ (0, 1), and nonnegative f ∈ L1(D), we can write

f ≈ f1 + f2, where

1. Rkf1 . λ,

2. there exists a countable collection of almost disjoint quasi-balls F such that r(B) ≥
1
2
d(B, bD) for each B ∈ F and f2 ≈

∑
B∈F f2,B where the f2,B are supported in B with

〈|f2,B|〉B ≤ λ, and

3.
∑

B∈F σ(B) . 1
λ
‖f‖L1

σ(D).

Proof. Apply a Whitney decomposition to write

{Mf > λ} =
⋃
B∈F ′

B,

where F ′ is a countable collection of almost disjoint quasi-balls for which there exists K > 1

such that KB ∩ {Mf ≤ λ} 6= ∅ for all B ∈ F ′. We take

F :=

{
B ∈ F ′ : r(B) ≥ 1

2
d(B, bD)

}
.

Put

f1 := fχ{Mf≤λ}∪
⋃
B∈F′\F B

and f2 := fχ⋃
B∈F B

.

Clearly, f ≈ f1 + f2.

To show (1), we �rst claim that Rkf1(z) . Mf1(z) for any z ∈ D. Indeed, since the

radius of k+1
k
Bk(z) is greater than d(z, bD) and using the fact that V (B(z, r)) ≈ rn+1, we

have

Rkf1(z) = 〈f1〉Bk(z) . 〈|f1|〉 k+1
k
Bk(z) ≤Mf1(z).
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Therefore it is enough to proveMf1 . λ. To this end, �x z ∈ D and let B0 be a quasi-ball

containing z that intersects bD. If either B0 ∩ {Mf ≤ λ} 6= ∅ or if f ≡ 0 on B0, then

〈|f1|〉B0 ≤ λ. Otherwise, B0 ∩ B 6= ∅ for some B ∈ F ′ \ F . Notice that CB0 ⊇ KB with

C = c3(K + 1) + c, since d(c(B0), bD) < r(B0) and r(B) < 1
2
d(B, bD). Since KB ∩ {Mf ≤

λ} 6= ∅ and using the polynomial growth condition on the quasi-balls, we have

〈|f1|〉B0 . 〈|f1|〉CB0 ≤ λ.

Therefore (1) holds.

For (2), note that the properties of the collection F are satis�ed by construction. Take

f2,B := fχB for B ∈ F . Since KB ∩ {Mf ≤ λ} 6= ∅, we have 〈|f2,B|〉B . λ.

Finally, (3) follows from the almost disjointness of the quasi-balls in F and Lemma 5.2.5

∑
B∈F

σ(B) . σ

(⋃
B∈F

B

)
≤ σ({Mf > λ}) . 1

λ
‖f‖L1

σ(D).

Proof of Proposition 5.2.2. Since T2 has a bounded kernel and σ(D) < ∞ (using the B1

condition), it is immediate that T2 is bounded on L1
σ(D), and hence from L1

σ(D) to L1,∞
σ (D).

It is thus su�cient to prove the estimate for T1.

Recall the comparison operator Γ that was introduced in Chapter 1 Section 4.3:

Γf(z) :=

∫
D

f(w)

|g(z, w)|n+1
dV (w).

Recall it can easily be shown that

|T1f(z)| . Γ|f |(z),
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so it su�ces to prove that Γ maps L1
σ(D) to L1,∞

σ (D).

Let f be a nonnegative and continuous function on D and let λ > 0. We will show that

σ({Γf > λ}) . 1

λ
‖f‖L1

σ(D).

A density argument and doubling the implied constant in the display above yields the result

for general f ∈ L1
σ(D).

Apply Lemma 5.2.7 to write

f ≈ f1 + f2 ≈ f1 +
∑
B∈F

f2,B,

where the properties and notations from the lemma hold. Then

σ({Γf > λ}) ≤ σ

({
Γf1 >

λ

C

})
+ σ

({
Γf2 >

λ

C

})
≤ σ

({
Γf1 >

λ

C

})
+ σ

(⋃
B∈F

RB

)
+ σ

({
z ∈ D \

⋃
B∈F

RB : Γf2(z) >
λ

C

})

for some C > 0 and where R > 1 will be �xed later. Therefore it is enough to bound

I := σ({Γf1 > λ}),

II := σ

(⋃
B∈F

RB

)
, and

III := σ

({
z ∈ D \

⋃
B∈F

RB : Γf2(z) > λ

})

by constants multiplied by 1
λ
‖f‖L1

σ(D).

To address I, we �rst claim that there exists k > 0 such that for all integrable and

nonnegative u, we have

Γu(z) . Γ(Rk′u)(z),
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where k′ = ck
1−ck . Indeed, by Lemma 5.2.6, we have |g(z, w)| ≈ |g(z, w′)| for all z ∈ D and

w′ ∈ Bk(w). Using the above and Lemma 2.3.2 in Chapter 2, we deduce

Γu(z) =

∫
D

1

|g(z, w)|n+1
u(w) dV (w)

≈
∫
D

 1

V (Bk(w))

∫
Bk(w)

1

|g(z, w′)|n+1
dV (w′)

u(w) dV (w)

.
∫
D

1

|g(z, w)|n+1

 1

V (Bk′(w))

∫
Bk′ (w)

u(w′) dV (w′)

 dV (w)

= Γ(Rk′u)(z).

Therefore, using Chebyshev's inequality, the above claim, the L2
σ(D) bound of Γ (see Chapter

4 Theorem 4.3.3), property (1) of Lemma 5.2.7, Lemma 2.3.2, and the B1 condition of σ we

have

I .
1

λ2

∫
D

(Γf1)2σ dV

.
1

λ2

∫
D

(Γ(Rk′f1))2σ dV

.
1

λ2

∫
D

(Rk′f1)2σ dV

.
1

λ

∫
D

(Rk′f1)σ dV

.
1

λ

∫
D

f1(Rk′′σ) dV

.
1

λ

∫
D

f1σ dV

≤ 1

λ
‖f‖L1

σ(D).
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The control of II follows from the doubling property of σ and property (3) of Lemma

5.2.7:

II ≤
∑
B∈F

σ(RB) .
∑
B∈F

σ(B) .
1

λ
‖f‖L1

σ(D).

For III, we claim that if R > 1 is su�ciently large and u is supported on a quasi-ball B,

then

Γu(z) . Γ (〈u〉BχB) (z)

for all z ∈ D \ RB. Indeed, as stated in the proof of Lemma 5.2.6, we have |g(z, w)| ≈

|g(z, w′)| whenever d(w,w′) ≤ Cd(z, w). For z ∈ D \RB and w,w′ ∈ B, we use the triangle

inequality to obtain d(w,w′) < 2cr(B) and R−c
c
r(B) < d(z, w). Thus, if R is chosen large

enough so that 2c ≤ C R−c
c
, we have d(w,w′) ≤ Cd(z, w), and hence |g(z, w)| ≈ |g(z, w′)|.

The claim follows via using Fubini's theorem

Γu(z) =

∫
B

1

|g(z, w)|n+1
u(w) dV (w)

≈
∫
B

 1

V (B)

∫
B

1

|g(z, w′)|n+1
dV (w′)

u(w) dV (w)

=

∫
B

1

|g(z, w′)|n+1

 1

V (B)

∫
B

u(w) dV (w)

 dV (w′)

= Γ (〈u〉BχB) (z).

Using the above claim, we have

Γf2(z) ≈
∑
B∈F

Γf2,B(z) .
∑
B∈F

Γ (〈f2,B〉BχB) (z) = Γf̃2(z)

for z ∈ D \
⋃
B∈F RB, where f̃2 :=

∑
B∈F〈f2,B〉BχB. Therefore, to control III, it su�ces to
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prove

σ({Γf̃2 > λ}) . 1

λ
‖f‖L1

σ(D).

To accomplish this, apply Chebyshev's inequality, the bound of Γ on L2
σ(D), property (2) of

Lemma 5.2.7, the B1 condition of σ, and the almost disjointness of the quasi-balls in F :

σ({Γf̃2 > λ}) . 1

λ2

∫
D

(Γf̃2)2σ dV

.
1

λ2

∫
D

f̃ 2
2σ dV

.
1

λ

∑
B∈F

∫
B

〈f〉Bσ dV

.
1

λ

∑
B∈F

∫
B

fσ dV

.
1

λ
‖f‖L1

σ(D).

5.3 The Szeg® Projection

Throughout this section, we assume that the domain D has class C3 boundary. We recall

that in Chapter 3 Section 3.3, we constructed a �Cauchy-type� non-orthogonal projection C

using Cauchy-Fantappié theory that, roughly speaking, reproduces and produces holomor-

phic functions on the boundary. We maintain all the notation from Section 3.3. It was

proved in [40] that the operator C extends boundedly on Lp(bD) for all 1 < p < ∞, and

weighted bounds for 1 < p < ∞ were established in Section 3.3. Recall the Kerzman-Stein

equation now takes the following form:

S(I − (C∗ − C)) = C.
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To prove that S is weak-type (1, 1) with respect to the A1 weight σ, we proceed in two

steps as before. In particular, we have the following two propositions:

Proposition 5.3.1. If σ is an A1 weight, then the operator I − (C∗ − C) is invertible on

L1
σ(bD).

Proposition 5.3.2. If σ is an A1 weight, then C maps L1
σ(bD) to L1,∞

σ (bD) boundedly.

We can now prove Theorem 1.5.6.

Proof of Theorem 1.5.6. This follows directly from Proposition 5.3.1 and Proposition 5.3.2.

The proof of Proposition 5.3.1 proceeds as in the Bergman case. We again appeal to

Lemma 5.2.1 and Lemma 5.2.2 to prove a compactness result. In this case, the underlying

space is X = bD and the �nite Borel measure is σ dS. Recall we can de�ne the appropriate

quasi-metric:

d(z, w) := |g(z, w)|
1
2 ,

as in Section 3.3. It was proved in [40] that d is indeed a quasi-metric and that (D, d, S) is

a space of homogeneous type. Additionally, we have S(B(z, r)) ≈ r2n.

Lemma 5.3.1. If σ is an A1 weight, then the operator C∗ − C is compact on L1
σ(bD).

Proof. Let k(z, w) denote the kernel of the operator C∗ − C. We consider the family of

functions kw(z) = k(z, w) for w ∈ bD, and let k̃(z, w) = k̃w(z) = k(z, w)σ−1(w). By Lemma

5.2.1, it su�ces to show that {k̃w : w ∈ bD} is relatively compact in L1
σ(bD), which we can

do by verifying the criteria of Lemma 5.2.2. The in�mum condition can be veri�ed as before.

This set is clearly bounded in L1
σ(bD); this follows by observing as in Chapter 3 that

∫
bD

|k(z, w)|σ(z) dS(z) . σ(w).

142



In particular, this is deduced from the bound |k(z, w)| . d(z, w)−2n+1 (which relies on the

domain having boundary of class C3) and a dyadic integration argument similar to the one

presented in Lemma 5.2.3. Similarly, we obtain that

∫
B(w,δ)

|k(z, w)|σ(z) dS(z) . δσ(w).

Notice that this bound does not involve a d(z, bD) term which highlights a key di�erence

from the case of the Bergman projection.

The second conclusion mirrors very closely the argument in Section 5.2, so we only sketch

the ideas. Namely, for a �xed function kw, we excise a small ball about w and integrate the

function |kw(z) − 〈kw〉B(z,r),σdS| over this ball and its complement. The integral on the

complement of the ball can be controlled by uniform continuity, since k(z, w) is continuous

o� the boundary diagonal. The integral over the ball is controlled via the triangle inequality

and splitting into regions as in the proof of Lemma 5.2.3. It should be noted that it is not

necessary to split into subcases based on the distance of points z and w to bD because all

the integration occurs on the boundary and A1 weights satisfy a true doubling property.

The following lemma follows the exact same argument as Lemma 5.2.4.

Lemma 5.3.2. If σ ∈ A1, the number 1 is not an eigenvalue of C∗ − C considered as an

operator on L1
σ(bD).

Therefore, we can prove Proposition 5.3.1:

Proof of Proposition 5.3.1. This proposition follows from Lemma 5.3.1, Lemma 5.3.2, and

the spectral theorem for compact operators on a Banach space.

To complete the proof of Theorem 1.5.6, it remains to prove Proposition 5.3.2.
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Proof of Proposition 5.3.2. As in [40] or Section 3.3, write C = C] + R. It is proven in

[40] that C] is a Calderón-Zygmund operator with respect to the quasi-metric d. Thus, by

standard theory, C] maps L1
σ(bD) to L1,∞

σ (bD) boundedly for σ ∈ A1.

On the other hand, the operator R has a kernel R(z, w) that satis�es

∫
bD

|R(z, w)|σ(w) dS(w) . σ(z)

and ∫
bD

|R(z, w)|σ(z) dS(z) . σ(w)

for σ ∈ A1 (see Section 3.3 and Proposition 3.3.6). A simple argument using Fubini's theorem

shows that R is bounded on L1
σ(bD). This completes the proof.

5.4 Kolmogorov and Zygmund Inequalities

We �rst prove the general fact that the weak-type (1, 1) estimate implies the Kolmogorov

inequality on �nite measure spaces.

Theorem 5.4.1. Let T be a linear operator and (X,µ) a �nite measure space. If T maps

L1(X,µ) to L1,∞(X,µ) boundedly and 0 < p < 1, then T extends boundedly from L1(X,µ)

to Lp(X,µ).

Proof. Using the distribution function and the weak-type (1, 1) assumption, we have for any
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t > 0:

‖Tf‖pLp(X,µ) =

∞∫
0

pλp−1µ({x ∈ X : |Tf(x)| > λ}) dλ

=

t∫
0

pλp−1µ({x ∈ X : |Tf(x)| > λ}) dλ+

∞∫
t

pλp−1µ({x ∈ X : |Tf(x)| > λ}) dλ

≤ tpµ(X) +
p

1− p
tp−1‖f‖L1(X,µ).

Taking t = ‖f‖L1(X,µ) completes the proof.

Proof of Corollary 5.1.1. This follows immediately from Theorem 5.1.1 and Theorem 5.4.1.

Proof of Corollary 5.1.3. This follows immediately from Theorem 5.1.2 and Theorem 5.4.1.

Before proving our Zygmund inequalities, we �rst de�ne the space L log+ L, which falls

within the scope of Orlicz spaces. We call a function Φ : [0,∞]→ [0,∞] a Young function if

Φ is continuous, convex, increasing, and satis�es Φ(0) = 0. Given a measure space (X,µ) and

a Young function Φ, the associated Orlicz space, LΦ(X,µ), is the linear hull of all measurable

functions on X satisfying ∫
X

Φ(|f |) dµ <∞

equipped with the following Luxemburg norm:

‖f‖LΦ(X,µ) := inf

λ > 0 :

∫
X

Φ

(
|f |
λ

)
dµ ≤ 1

 .

The Zygmund space L log+ L(X,µ) is de�ned to be the Orlicz space LΨ(X,µ) associated

with the Young function Ψ(t) = t log+ t, where log+(t) := max{log(t), 0}. We use the
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notation (L log+ L)σ(D) to represent L log+ L(D, σ dV ) for a domain D ⊆ Cn and a weight

σ on D and we similarly write (L log+ L)σ(bD) for L log+ L(bD, σ dS) with σ a weight on

bD. We refer to [35,61] for thorough treatments of Orlicz spaces.

We next prove that the weak-type (1, 1) and L2 bounds imply the Zygmund inequality

on general �nite measure spaces.

Theorem 5.4.2. Let T be a linear operator and (X,µ) a �nite measure space. If T is

bounded on L2(X,µ) and maps L1(X,µ) to L1,∞(X,µ) boundedly, then T extends boundedly

from L log+ L(X,µ) to L1(X,µ).

Proof. Let f ∈ L log+ L(X,µ) be given and normalized to assume ‖f‖L log+ L(X,µ) = 1. Ob-

serve that L1(X,µ) is the Orlicz space LΦ(X,µ) with Young function Φ(t) = t. De�ne Φ1

by

Φ1(t) =


0 if 0 ≤ t < 2

t− 2 if 2 ≤ t ≤ ∞

and notice that Φ and Φ1 are equivalent Young functions in the sense that

Φ1(t) ≤ Φ(t) ≤ Φ1(2t)

for all t ≥ 2. Therefore by [35, Theorem 13.2 and Theorem 13.3], it su�ces to prove

‖Tf‖LΦ1 (X,µ) . 1.

For a �xed λ > 0, write f = f0 + f∞, where f0 := fχ{|f |≤λ} and f∞ := fχ{|f |>λ}. Using
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the assumed bounds of T and the distribution function, we have

µ({|Tf | > 2λ}) ≤ µ({|Tf0| > λ}) + µ({|Tf∞| > λ})

≤ 1

λ2
‖f0‖2

L2(X,µ) +
1

λ
‖f∞‖L1(X,µ)

≈ 1

λ2

λ∫
0

sµ({|f | > s}) ds+
1

λ

∞∫
λ

µ({|f | > s}) ds.

Use the distribution function, a change of variables, the above estimate, and Fubini's Theo-

rem, direct estimates, and the normalization ‖f‖L log+ L(X,µ) = 1 to deduce

∫
X

Φ1(|Tf |) dµ =

∞∫
2

µ({|Tf | > λ}) dλ ≈
∞∫

1

µ({|Tf | > 2λ}) dλ

≤
∞∫

1

1

λ2

λ∫
0

sµ({|f | > s}) dsdλ+

∞∫
1

1

λ

∞∫
λ

µ({|f | > s}) dsdλ

=

1∫
0

sµ({|f | > s})
∞∫

1

1

λ2
dλds+

∞∫
1

sµ({|f | > s})
∞∫
s

1

λ2
dλds

+

∞∫
1

µ({|f | > s})
s∫

1

1

λ
dλds

=

1∫
0

sµ({|f | > s}) ds+

∞∫
1

(1 + log s)µ({|f | > s}) ds

≤ µ(X) +

∫
X

Ψ(|f |) dµ

. 1,

where Ψ(t) = t log+(t). Thus ‖Tf‖LΦ1 (X,µ) . 1 as desired.

Proof of Corollary 5.1.2. This follows immediately from Theorem 5.1.1 and Theorem 5.4.2.
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Proof of Corollary 5.1.4. This follows immediately from Theorem 5.1.2 and Theorem 5.4.2.

5.5 The Bloch Space

In this section, we assume D is a strongly pseudoconvex domain with C4 boundary. Our

goal in this section is to prove Theorem 5.1.3.

We de�ne the Bloch space B(D) as follows (see [34] for many equivalent de�nitions of

the Bloch space in this context).

De�nition 5.5.1. The Bloch space B(D) is de�ned

B(D) :=

{
f ∈ Hol(D) : sup

z∈D
dist(z, bD)|∇νf(z)| <∞

}
,

where ∇ν denotes the complex normal derivative. Note that the quantity ‖f‖B(D) :=

supz∈D dist(z, bD)|∇νf(z)| de�nes a semi-norm on the Bloch space.

We remark that Theorem 5.1.3 is established in [34, Theorem 3.19]. The proof there uses

duality and an appropriate de�nition of BMOA spaces, while we make use of the Kerzman-

Stein equation.

Theorem 5.1.3 will be an immediate consequence of the following two lemmas, together

with 5.2.1.

Lemma 5.5.1. The operator (I − (T ∗ − T )) is invertible on L∞(D).

Proof. It is clear from previous discussions that T and T ∗ are both bounded on L∞(D). It

is immediate that 1 cannot be an eigenvalue of (T ∗ −T ) on L∞(D), since L∞(D) ⊂ L2(D).

Therefore, to prove the invertibility of (I − (T ∗ − T )) on L∞(D), it su�ces to show that

T ∗ − T is compact on L∞(D). This follows easily from Lemma 5.2.1 and Lemma 5.2.2 in
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Section 5.2 by simply interchanging the roles of the variables. Indeed, if k(z, w) denotes

the kernel of T ∗ − T , then k̃(z, w) := k(w, z) is the kernel for T − T ∗. Moreover, since

|k(z, w)| ≈ |k(w, z)| = |k̃(z, w)|, all of the same arguments in Lemma 5.2.3 go through.

Lemma 5.5.2. The operator T maps L∞(D) to B(D) boundedly.

Proof. Write T = T1 + T2, where T1 has kernel K1(z, w) and T2 has kernel K2(z, w). Exam-

ining the construction of T2 in [37, Proposition 3.2] and using regularity properties of the

∂-Neumann operator in [10, 5.2.7], one can verify

sup
z,w∈D

|∇zK2(z, w)| <∞,

a fact which we will use below (here, ∇z denotes the gradient taken in the z variable).

Moreover, the kernel K1 is smooth in the z variable.

It clearly su�ces for us to show

|∇T f(z)| . dist(z, bD)−1‖f‖L∞(D).

We have

|∇T f(z)| .
∫
D

|∇z(K1(z, w)) +∇z(K2(z, w)| |f(w)| dV (w)

≤
∫
D

|∇z(K1(z, w))||f(w)| dV (w) +

∫
D

|∇z(K2(z, w))||f(w)| dV (w)

≤ ‖f‖L∞(D)

∫
D

|∇z(K1(z, w))| dV (w) + sup
z,w∈D

|∇z(K2(z, w))| ‖f‖L∞V (D).

Therefore, it is clear we must show

∫
D

|∇z(K1(z, w))| dV (w) . dist(z, bD)−1.
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Recall from (4.2.2) that K1(z, w) = N (z,w)
(2πı̇)n(g(z,w))n+1 where N (z, w) is a function of class C1

(in w) with coe�cients smooth in z. Moreover, it is easy to see that supz,w∈D |∇zN (z, w)| <

∞. Thus, we compute

∇z(K1(z, w)) =
∇zN (z, w)

(g(z, w))n+1
− (n+ 1)

N (z, w)

(g(z, w))n+2
∇z(g(z, w))

and it is thus clear

|∇z(K1(z, w))| . 1

|g(z, w)|n+2
.

Arguments and several changes of variables given in [37, Lemma 4.1]

∫
D

1

|g(z, w)|n+2
dV (w) .

∫
R

∫
Cn−1

∫
R+

1

(|ρ(z)|+ s+ |un|+ |w′|2)n+2
ds dV (w′) dun .

Thus, we compute, using polar coordinates

∫
R

∫
Cn−1

∫
R+

1

(|ρ(z)|+ s+ |un|+ |w′|2)n+2
ds dV (w) dun .

∫
R

∫
Cn−1

1

(|ρ(z)|+ |un|+ |w′|2)n+1
dV (w′) dun

.
∫
R

∞∫
0

r2n−3

(ρ(z) + |un|+ r2)n+1
dr dun .

Now let X = |ρ(z)| + |un|. Applying a change of variable,we can estimate the inner

integral:
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∞∫
0

r2n−3

(X + r2)n+1
dr =

1

2

∞∫
X

(v −X)n−2

vn+1
dv

. X−2.

And �nally, we are reduced to computing

∫
R

1

(|ρ(z)|+ |un|)2
.

1

|ρ(z)|
. dist(z, bD)−1,

which is exactly what we wanted to show.

Proof of Theorem 5.1.3. This is an immediate consequence of Lemma 5.5.1, Lemma 5.5.2,

and (5.2.1).
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