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ABSTRACT OF THE DISSERTATION 

Molecular Characterization of Integrase-RNA interactions and their role in the replication of 

HIV-1 and other retroviruses 

by 

Christian Shema Mugisha 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2022 

Professor Sebla B. Kutluay, Chair 

 

HIV-1 integrase (IN) enzyme has an emerging non-catalytic role in particle maturation, which 

involves its binding to the viral genome in virions. Allosteric integrase inhibitors (ALLINIs) and 

class II integrase substitutions inhibit the binding of IN to the viral genome and cause formation 

of eccentric non-infectious HIV-1 particles. These viruses are characterized by the 

mislocalization of the viral ribonucleoprotein complexes between the translucent conical CA 

lattice and the viral lipid envelope. We have previously demonstrated that IN binding to the viral 

genome is mediated by basic residues within the C-terminal domain of IN.  

 

In the first chapter, we show how basic residues of the IN CTD mediate RNA binding. 

We report that we have isolated secondary site suppressors of a class II IN mutant 

(R269A/K273A) which directly inhibits IN binding to the viral genome. Full-genome deep 

sequencing revealed the sequential emergence of D256N and D270N mutations within three 

passages. Reintroduction of these substitutions nearly fully restored the replication defect of the 

R269A/K273A virus, restored the ability of IN to bind RNA and led to the formation of particles 



	viii 

with mature morphology. Furthermore, we found that D256R and D256R/270R substitutions 

also increased the infectivity of R269A/K273A as well as R262A/R263A IN viruses. The nature 

of these suppressor mutations suggests that IN-RNA binding is partly dictated electrostatic 

interactions between IN CTD basic residues and RNA. Though these findings imply some level 

of non-specificity towards gRNA binding, CLIP-seq and in-vitro binding experiments (reported 

in the third chapter) revealed a striking preference of IN for binding to purine-rich sequences on 

the viral genome. Taken together, our findings suggest that a combination of electrostatic 

interactions and semi-specific binding to the viral genome underlies the non-catalytic role of IN 

in virion maturation. Additional preliminary findings reported in the third chapter show that IN-

RNA binding is a conserved property of retroviruses, further reaffirming this characteristic 

would be an archetypical target for new antiretroviral agents.  

In the fourth chapter, we report how we used our expertise of RNA viruses to create an 

assay that has been usefully in screening for antiviral agents for the SARS-Cov-2 virus during 

the COVID-19 pandemic.  

Overall, this dissertation illustrates how the basic molecular properties of integrase and 

viral genomic RNA that underlie their binding. Furthermore, it shows how these properties could 

be potentially targeted by the next generation of antiretroviral agents.  
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1.1 Introduction 

	
The human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, has been one 

of the deadliest viruses of the last four decades. As of 2018, there were about 37 million living 

with HIV worldwide, and there were 1 million HIV-related deaths the same year (8). HIV1 is a 

lentivirus that contains two copies of positive sense single-stranded genomic RNA (gRNA), 9 kb 

in size (10). The viral gRNA forms a ribonucleoprotein (RNP) complex together with the 

nucleocapsid protein (NC), and reverse transcriptase (RT) and integrase (IN) enzymes in virions 

(11). The dense vRNP complex is encased within a conical lattice composed of ~2000 copies of 

capsid (CA) protein, together forming the viral “core” . A defining feature of retroviruses is the 

reverse transcription of the viral RNA genome (gRNA) and integration of the resultant linear 

viral DNA into a host chromosome, which establishes lifelong infection. The integration reaction 

is catalyzed by the viral integrase (IN) enzyme, which possesses 3’ processing and DNA strand 

transfer activities  . This catalytic role of integrase has been efficiently targeted by a group of 

antiretroviral agents known as integrase strand-transfer inhibitors (INSTIs) (16, 17). Currently, 

there are four FDA-approved INSTIs –raltegravir (18-20), elvitegravir , dolutegravir , and 

bictegravir (18, 19, 21-23); they have become essential constituents anti-retroviral therapy 

regimen because of their high potency and  tolerance profiles . Even with the high efficacy of 

INSTIs, mutations that confer resistance to several INSTIs have been observed in patients (24) 

and treatment selects for the drug resistant viruses (24-27). These observations reiterate the need 

for further research and development of novel antiretroviral therapies.  

The integrase enzyme also has a non-catalytic function in HIV-1 virion morphogenesis . 

IN binds to the viral genomic RNA (gRNA), and this binding is essential for proper positioning 

of the gRNA within the capsid lattice during virion maturation. This second function of IN could 
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be targeted by a new generation/class of antiretroviral agents, which would complement existing 

regimens and increase the barrier to INSTI resistance. This introduction chapter briefly reviews 

the HIV-1 life cycle  while expanding on the roles IN’s functions in integration and virion 

morphogenesis. A comprehensive mechanistic understanding of IN’s functions in the HIV-1 life 

cycle would be pivotal to the development of novel and more efficient antiretroviral drugs. 

1.2 Overview of the HIV-1 replication cycle 

The human immunodeficiency virus type 1 (HIV-1) is a lentivirus that contains two copies of 

positive sense single-stranded RNA, 9 kb size (31-33). In their mature form, HIV-1 virions have 

a viral core consisting of a conical capsid (of about of ~2000 copies of capsid (CA) monomers) 

which surrounds the vRNP complex composed of viral RNA, the nucleocapsid protein (NC), 

integrase (IN), and reverse transcriptase (RT)  (Figure 1). The viral core is surrounded by a lipid 

bilayer envelope, derived from the host cell plasma membrane, traversed by glycoprotein spikes 

(Env) that serve as receptors during viral entry (34). During viral entry, the HIV protein envelope 

(Env) binds to the primary cellular receptor CD4 and then to a cellular coreceptor 

(CXCR4/CCR5); these receptors are mostly on CD4+ T cells and monocyte/macrophage lineage 

cells.  Following the binding of Env to the cell receptors, the viral and cellular membranes fuse 

and then the viral core is released into the cytoplasm (33).   

 Subsequent to viral entry, the viral core is then moved towards the nucleus as the RT 

enzymes synthesizes the viral DNA (vDNA) from the HIV-1 RNA genome .  While multiple 

studies have previously concluded that the viral core uncoats during this stage , several new 

studies have shown that the capsid lattice stays almost intact until it is imported into the nucleus . 

After the synthesis of vDNA, the integrase enzyme, which stays associated with the RT complex, 

forms multimers that engage both ends of the  vDNA forming the intasome complex. In the cell 
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nucleus, as part of the intasome complex, IN catalyzes the integration of viral DNA into the host 

cell chromosome .  

 Viral gene expression from the integrated provirus depends on viral and cellular 

transcription factors which lead to the transcription of single full-length viral mRNAs by the host 

RNA polymerase II machinery (46-48). All HIV-1 mRNAs are generated from a single primary 

polycistronic viral transcript that undergoes extensive alternative splicing . The completely 

spliced 1.8kb mRNAs encode Tat, Rev and Nef regulatory proteins, they are shuttled to the 

cytoplasm through the NXF1/NXT1nuclear export complex . The partially spliced 4 kb size class 

encode Vif, Vpr, Env, Vpu and a truncated form of Tat. The unspliced primary transcript 

encodes Gag and Gag-Pol proteins, and serves as genomic RNA that is packaged into progeny 

virions . In contrast to Gag, Gag-Pol has a pol extension which codes for the viral enzymes 

protease (PR), RT, and IN. Gag-Pol is produced as result of programmed ribosomal frame 

shifting of the Gag ORF during translation of the unspliced viral RNA (52, 53). The export of the 

partially spliced and unspliced viral RNA to the cytoplasm is Rev-dependent. Rev is translated in 

the cytoplasm from the fully spliced HIV-1 mRNA. Rev is then translocated to the nucleus, 

binds to the Rev-response-element present in partially and fully spliced viral RNA, and then 

mediates their export through the CRM1 nuclear export complex (54, 55).  

 

The viral envelope protein (Env) is synthesized at the endoplasmic reticulum, glycosylated, and 

cleaved into gp120 and gp41 at the Golgi complex . Cytoplasmic assembly of virions is initiated 

by interaction of NC, a domain of Gag and Gag-Pol, with the packaging signal in the unspliced 

genomic RNA (58-60). The Gag and Gag-Pol proteins are then transported to the plasma 

membrane, where the membrane-bound MA mediates oligomerization and assembly of Gag and 
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Gag-Pol units. MA domain of Gag and Gag-Pol also associates with Env to initiate budding , the 

virions released from cells are initially in an immature state where Gag and Gag-Pol are radially 

arranged across the virion. Shortly after virion release, Gag and Gag-Pol polyproteins are 

cleaved and modified by the viral PR enzyme. This results in the formation of mature infectious 

virions that are spherical with a conical CA lattice that encloses the vRNP complex (Fig. 1), 

forming the viral core . 
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Figure 1: Overview of the HIV-1 life cycle 
HIV-1 virions contain two copies of a single-stranded RNA (vRNA, in black) genome enclosed inside a 
conical capsid lattice. After viral entry the viral core is released inside the cytoplasm and transported 
towards the nucleus. The vRNA is reversed transcribed into double-stranded DNA (vDNA, in black.) 
which is integrated into the host DNA. Following transcription of vDNA, the produced vRNA and viral 
proteina assemble at the plasma membrane and bud of from the cell as immature virions. During virion 
maturation, Gag and Gag-Pol are cleaved leading to formation of mature virions where the capsid lattice 
reforms again around the viral ribonucleoproteins complex. 
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1.3 HIV-1 Integrase and its catalytic Role 

Similarly to other retroviruses, the lentivirus HIV-1 must integrate the DNA copy of its RNA 

genome into the host cell chromosome; it is this step of the virus replication that helps maintain 

lifelong infection in patients. The integration process is mediated by the HIV-1 integrase (IN) 

enzyme. IN is a special recombinase that is incorporated into the virus particles as part of Gag-

Pol. Integration occurs within the context of a large nucleoprotein structure known as the 

preintegration complex (PIC) . During integration, both ends of the linear vDNA are held 

together by a multimer of IN catalyzes integration .  The IN enzyme has three functionally 

distinct domains; an N-terminal domain (NTD) that has conserved HCCH Zn2+-binding motif, 

an RNase H-like catalytic core domain (CCD), and a C-terminal domain (CTD) which has been 

shown to play a role in nucleic acid binding (67).  While the NTD and CTD domains facilitate 

DNA binding and formation of the intasome complex, the CCD possesses a conserved D,D,-35-

E motif essential for IN’s catalytic activity (70). Mutations at these conserved residues block the 

catalytic activity of IN and thus virus replication (72), they are collectively known to as class I 

IN mutations. 

 To perform its catalytic functions, IN multimerizes to different levels forming monomers,  

dimers, and tetramers (75). Furthermore, there had been studies showing that small molecules 

could allosterically block the catalytic function of IN by binding at the interface of IN dimers 

within an IN tetramer, thus disrupting the proper multimerization of IN around vDNA into a 

fully functional nucleoprotein complex (76). Even though the enzymatic functions of IN has 

been studied since the 1980s, a complete understanding of its catalytic functions was only 

recently discovered owing to the detailed high-resolution structure of IN-DNA complexes or 

intasomes for the spumavirus prototype foamy virus (PFV) . Since then, intasome structures of  
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the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus 

(MMTV) have been characterized . While the intasome structures of the spumavirus PFV are 

primarily tetrameric, RSV and MMTV have octameric intasome structures revealing an 

evolutionary diversity among retroviral intasomes  (Figure 2) .  

 Resolving a detailed structure of the HIV-1 intasome has long been hindered by the 

tendency of HIV-1 IN to aggregate in solution. A recent study overcame this hurdle by using 

hyper-active HIV-1 IN mutant protein with improved solubility; using cryo-EM, it was shown 

that HIV-1 intasomes form a range of oligomeric configurations from tetramers to higher order 

dodecameric complexes for integration (84, 85) (Figure 2).  
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Figure 2: Structures of HIV-1 strand transfer complex intasomes (pdb code: 5U1C)	
(A) CryoEM reconstruction of the STC, segmented by IN protomer (red, green, yellow, blue) and product 
DNA component (dark and light grey). (B) Atomic model, similarly, colored as in A. (C) segmented 
cryoEM density and (D) asymmetric subunit of the atomic model colored by IN domain; NTD (green), 
CCD (beige), NTD-CCD linker (cyan), CTD (purple). 

 
 Following the formation of the intasome complex, IN catalyzes integration through two 

biochemically and temporally distinct biomolecular nucleophilic substitution reactions: 3’ 

processing and strand transfer (Figure 3) (86, 87). During the 3’ processing, IN catalyzes the 

hydrolysis of a phosphodiester bond from each 3’ vDNA end which removes two to three 

nucleotides; this step leaves reactive 3’ hydroxyl groups . These free 3’ hydroxyl groups act as 

nucleophiles in the strand transfer reaction where they are covalently inserted into the major 

groove of  the host DNA in staggered fashion . This produces an integration intermediate with 
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unjoined 5’ vDNA overhangs (89, 90). Thereafter, the strand transfer complex (intasome) 

dissembles and DNA polymerase, 5’ flap endonuclease, and DNA ligase enzymes respectively 

fill in the single-stranded regions, excise 5’ vDNA overhangs, and join the vDNA 5’ ends to the 

host DNA strands (21, 24, 91, 92). A characteristic consequence of retoroviral integration and 

the subsequent gap repair is the generation of short target DNA duplications flanking the 

integrated provirus. The size of these target site duplications varies between various retroviruses. 

For example, while the 5 bp target site duplication is the hallmark of HIV-1, spumavirus 

prototype foamy virus integration results in a 4bp target site duplication .  

  

 HIV-1 strongly prefers integration within transcriptionally active units in the nuclear 

periphery . These active transcription units are associated with regions of high G/C content, high 

gene density, high CpG island, short introns, high frequencies of Alu repeats, low frequencies of 

Figure 3: Mechanism of retroviral 
integration 
The integration process has two step-3’ 
processing and strand transfer- both 
catalyzed by integrase. During 3’ 
processing, an IN dimer makes the 
phosphodiester bonds at the site of vDNA 
cleavage susceptible to nucleophilic attach 
by water or other nucleophiles. This leads to 
the removal of a dinucleotide from the 3’ 
ends of the viral DNA (red and brown) to 
expose free 3’ hydroxyls. During strand 
transfer, another IN dimer inserts the 3’ ends 
of the viral DNA into the host DNA (black), 
leaving gaps in the target DNA and the 
loose 5’ ends of viral DNA. The gaps and 
loose ends are subsequentially repaired by 
host cell machinery. 
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LINE repeats, and characteristic epigenetic modifications . HIV takes advantage of different cell 

factors to promote efficient integration and optimize the integration at favored sites. Most 

notably, IN binds to the chromatin-associated cellular protein lens epithelium-derived growth 

factor (LEDGF) through its CTD (76). The PWWP motif within the N-terminus of LEDGF binds 

to the nucleosomes trimethylated at Lys36 of histone 3 (H3K36me3), one of the common 

epigenetic markers for transcriptionally active sites (99). In fact, mapping of integration sites in 

LEDGF/p75 knockdown cells showed that integration targeting to transcription sites was 

significantly reduced; on the contrary, integration targeting to transcriptionally active sites was 

rescued upon restoration of LEDGF/p75 expression (14, 24, 73, 75, 76). Imaging studies have 

showed that LEDGF/p75 binds to condensed chromosomes at mitosis, and IN also colocalizes 

with the chromatin in the presence of LEDGF/p75 . Altogether, the convention is a model where 

LEDGF/p75 guides and tethers IN to chromatin at active transcription units.  

 Some of the most potent available antiretroviral therapies are integrase inhibitors known 

as INSTIs (integrase strand transfer inhibitors). Four INSTIs are part of clinically regimes, 

raltegravir , elvitegravir (96), dolutegravir (97), and bictegravir (98, 101). A fifth INSTI–

cabotegravir - is currently in late-stage clinical trials. INSTIs bind to the catalytic core domain 

(CCD) of IN; this displaces the reactive 3’ end of the viral DNA thus preventing its insertion into 

the host DNA (102). However, treatment with INSTIs can lead to selection of drug resistance 

and resistance is often acquired through mutations within the CCD of IN. Although such 

mutations can affect the fitness of the virus, it has been observed that compensatory mutations 

that increase IN catalytic activity are found in patients on INSTIs.  
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1.4 Virion Morphogenesis 

The infectious virus particles (virions) of HIV-1 is spherical with a diameter of about 120 nm 

with viral glycoproteins protruding from its envelope. Following the release of virions, they 

undergo an interior morphology transformation, named maturation. The maturation process 

changes the virion from an immature form where the Gag and Gag-Pol proteins are radially 

arranged across the viral envelope in a donut-shaped particle to a mature virion particle lined 

with viral matrix proteins (MA) containing a condensed conical core composed of capsid lattice 

that encapsidates the vRNP complex (103).  The maturation process is essential for the formation 

infectious virions.  

 The assembly of HIV-1 virions is driven by the viral major sturctual protein, Gag. The 

precursor proteins Gag (Pr55) and Gag-Pol (Pr160) are expressed from an unspliced full-length 

viral RNA. The N-terminal myristoylation target Gag and Gag-Pol to the plasma membrane and 

the adequate accumulation of precursor proteins leads to their assembly at the host cell 

membrane (108). HIV-1 particle assembly is initiated when the nucleocapsid domain (NC) of 

Gag binds with high specificity to a single dimer of viral genomic RNA (gRNA) (109, 110). NC 

interacts with RNA through electrostatic binding with its positively charged residues and more 

specifically via its zinc finger binding pockets that interact with unpaired guanosine residues . 

HIV-1 RNAs are 5’ capped and 3’ polyadenylated, this makes HIV-1 RNA similar to the host 

cell’s mRNA which is challenging for selective packaging of viral RNA during virion assembly.  

However, the HIV-1 RNA contains a packaging sequence called psi (ψ) which is specifically 

recognized by NC as mentioned above. The packaging sequence is formed by four stem loop 

structures-SL1, SL2, SL3, and SL4; these structures allow viral RNA to dimerize, and they are 
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part of the 5’ untranslated region (5’ UTR) (112).  SL1 initiates the dimerization of viral RNA 

molecules, which is crucial for selective packaging of two copies of full-length vRNA (113). The 

dimer initiation site of SL1 contains a bulge of 9 bases; six of these bases form a palindrome 

which leads to the formation of Watson-Crick base pairs with the second RNA molecule.  

 The main constituents of HIV-1 virions are Gag, Gag-Pol, Env, viral membrane lipids, 

and the two copies of genomic RNA. In addition to these, the virion packages some viral 

accessory proteins which are necessary at different stages of the virus replication. Gag molecules 

have been shown to interact with various components of the intracellular vesicle trafficking 

pathways-AP-1, AP-2, and AP-3 -and the cellular motor protein KIF4 (114). The myristoylation 

of Gag, the basic patch on the MA domain, and the plasma membrane-specific lipid phosphatidyl 

inositol (4,5) biphosphate (PI(4,5)P2) facilitate the targeting of Gag to the plasma membrane (24, 

104, 118). The binding between the MA domain of Gag and PI(4,5)P2 exposes the amino-

terminal myristoyl group enabling the stable anchoring of Gag on the inner leaflet of the cellular 

membrane . Gag molecules arrive at the plasma membrane as small oligomers (dimers or 

monomers) before polymerizing around nucleation sites composed of Gag-RNA complexes (21, 

23, 91, 94, 95, 105, 108, 110, 119-124). Env is an integral membrane protein and is co-

translationally incorporated in the endoplasmic reticulum (ER) membranes. Env is delivered to 

the plasma membrane through vesicular secretory pathways where it is glycosylated, assembled 

into tetrameric complexes, and processed into the trans-membrane (gp41) and surface (gp120) 

subunits by the cellular protease furin .  

 Through a complex combination of Gag–lipid, Gag–Gag, and Gag–RNA interactions, a 

multimeric budding structure forms at the inner leaflet of the plasma membrane. The budding 

virus particle is ultimately released from the cell surface in a process that is promoted by an 
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interaction between the late domain in the p6 region of Gag and host proteins, most notably the 

endosomal sorting factor, TSG101(tumor susceptibility gene 101) .  The released virions are in 

an immature state with 2000-4000 Gag molecules that are radially arranged along the inside of 

the viral envelope in a donut shape; in this form, MA remains anchored to the membrane at one 

end of Gag and NC still binds to vRNA . Following budding, PR enzyme cleaves Gag and Gag-

Pol at multiple sites in a defined sequence to generate mature proteins matrix (MA), capsid (CA), 

nucleocapsid (NC), p6, two spacer peptides (SP1 and SP2) integrase (IN), reverse transcriptase 

(RT), and PR . The cleavage of Gag and Gag-Pol triggers a structural rearrangement called 

maturation, in which the immature virions become mature infectious virion characterized by an 

electron dense, conical core. The core is made of 1000-1500 monomers of CA assembled in a 

conical lattice around two single-stranded HIV-1 RNA molecules bound by the NC and 

associated with IN and RT . This virion maturation process is essential for the released virus 

particles to become infectious and initiate a new round of infection. 

1.5 The role of integrase in virion morphogenesis 

Integrase has long been known for its catalytic function of integrating the vDNA into the host 

chromosome. Several decades ago, it was noticed that IN might have other non-catalytic 

functions in virus replication based on observations from mutation analyses. Most notably, a 

group of pleiotropic mutations known as class II mutations caused defects in virion assembly , 

morphogenesis , and reverse transcription . Most of the class II mutations did not affect the 

catalytic activity of IN in vitro studies . A hallmark of class II IN mutant viruses is a phenotype 

known as “eccentric morphology’, characterized by   the mislocalization of the vRNP outside of 

the conical capsid lattice  (Figure 5). Deletion of IN causes similar morphological defects as 

class II mutations (45, 55, 57, 123, 149-151).  
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 Interestingly, viruses produced from cells treated with allosteric integrase inhibitors 

(ALLINIs) display eccentric morphology like that of class II mutations .  ALLINIs have, 

however, been designed to inhibit integration by blocking the binding of LEDGF/p75 to IN . 

ALLINIs inhibit integration by competing with LEDGF for IN by engaging a V-shaped binding 

pocket which is created by the catalytic core domains of two IN dimers in the intasome complex 

(152) and by causing aberrant IN multimerization in a way that forms catalytically inactive 

multimers that cannot form active intasomes (92, 93). The effect of ALLINIs and class II IN 

mutations on virion morphology suggested that IN plays a crucial role in HIV-1 particle 

morphogenesis. Although it had been shown that most class II mutations and ALLINIs interfered 

with proper IN multimerization, the exact mechanism by which IN was involved in vRNA 

encapsidation remained elusive in the retrovirology community for many years.  

 

Figure 4: HIV-1 virion morphologies 

Immature viral particles consist of 2000-4000 molecules of Gag and Gag-Pol radially arranged along the 
inner leaflet of the viral membrane, the genomic vRNA is bound to Gag’s NC domain. In mature virions, 
the vRNP (vRNA bound by NC and condensed with RT and IN) is enclosed in the conical capsid lattice 
forming the viral core. In eccentric viral particles the vRNA is mislocalized outside of the capsid. 
 

 In 2016, a groundbreaking study from our lab and collaborators discovered that IN binds 

to vRNA in mature virions, this binding is necessary for the proper encapsidation of vRNPs 

inside the CA lattice after virion maturation (94) (Fig. 5). In these studies, the binding between 

IN and gRNA was discovered using a method known as crosslinking immunoprecipitation that is 
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coupled with next generation sequencing (CLIP-seq), a method which captures protein-RNA 

complexes in physiological conditions (1). CLIP-seq revealed that IN binds to gRNA at discrete 

sites that are different from other RNA-binding HIV-1 proteins such NC; in-vitro RNA-binding 

assays revealed that IN had high affinity for structured RNA elements such as TAR (2). IN not 

only binds RNA, but also modulates RNA structure in vitro by bridging multiple RNA molecules 

together (3). Several basic residues of the IN CTD- K264, K266, and K273 - were shown to 

directly bind to viral RNA, mutations in any of these residues blocked IN-gRNA binding (4, 5). 

Later studies by Elliott et al  revealed that class II IN mutations impeded IN-RNA binding 

through three distinct means: 1) reducing packaged IN levels thus precluding formation of IN 

complexes with viral RNA; 2) impairing functional IN multimerization hence disrupting IN-

RNA binding; 3) directly impairing IN-RNA binding without adversely affecting IN levels or 

functional IN multimerization . All class II mutations cause formation of morphologically 

eccentric particles by blocking IN-gRNA binding; following viral infection, the viral genome of 

such particles was degraded in target cells as a result of the mislocalization of the genomic RNA 

outside of the protective capsid lattice . Similarly, IN-gRNA binding is blocked and eccentric 

virions are formed when virions were produced from cells treated with ALLINIs .   

 Overall, IN-gRNA binding permits the encapsidation of the viral genomic RNA into the 

protective capsid lattice. Class II IN mutations and ALLINIs block IN-gRNA binding causing 

formation of virions with eccentric morphology, the resulting degradation of IN and gRNA in 

target cells, as well as spatial separation of reverse transcriptase and gRNA during the early 

stages of viral infection. 
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1.6 Conclusions 

The HIV-1 integrase (IN) is a multifunctional enzyme that plays key roles during the integration 

and virion maturation steps of the virus replication. During integration, IN engages viral and host 

DNA catalyzing the incorporation of viral DNA into the host chromosome, this is the step that 

establishes life-long infection in HIV-1 patients. During virion morphogenesis, IN multimers 

bind to gRNA giving it a nucleation point and allowing it to be packaged inside the protective 

capsid lattice. Class II mutations and allosteric integrase inhibitors (IN) block IN-gRNA binding, 

thus leading to formation of non-infectious virions with an eccentric morphology where the 

gRNA is mislocalized outside of the capsid lattice. 

 IN presents itself as a great target for developing new antiretroviral therapies because 

both its functions in integration and virion maturation are essential for HIV-1 replication. The 

catalytic activity of IN has been successfully targeted by IN strand-transfer inhibitors (INSTIs) 

which are a key component of anti-retroviral therapy regimens today.  The discovery of INSTI-

resistant in clinics has raised concerns and it necessitates the development of novel IN-targeting 

therapies. The secondary function of IN in virion maturations is a great target for developing 

anti-HIV agents; however, there is still much to be understood about IN-RNA binding and it 

regulates virion maturation. There are several ongoing studies on ALLINIs and how they can be 

developed into efficient anti-retroviral therapies. Clear understanding of IN-RNA binding and 

virion maturation will inform the development of new and improved integrase-targeting 

antiretroviral therapies.  
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2.1 Abstract  

Independent of its catalytic activity, HIV-1 integrase (IN) enzyme regulates proper particle 

maturation by binding to and packaging the viral RNA genome (gRNA) inside the mature capsid 

lattice. Allosteric integrase inhibitors (ALLINIs) and class II IN substitutions inhibit the binding 

of IN to the gRNA and cause the formation of non-infectious virions characterized by 

mislocalization of the viral ribonucleoprotein complexes between the translucent conical capsid 

lattice and the viral lipid envelope. To gain insight into the molecular nature of IN-gRNA 

interactions, we have isolated compensatory substitutions in the background of a class II IN 

(R269A/K273A) variant that directly inhibits IN binding to the gRNA. We found that additional 

D256N and D270N substitutions in the C-terminal domain (CTD) of IN restored its ability to 

bind gRNA and led to the formation of infectious particles with correctly matured morphology. 

Furthermore, reinstating the overall positive electrostatic potential of the CTD through individual 

D256R or D256K substitutions was sufficient to restore IN-RNA binding and infectivity for the 

R269A/K273A as well as the R262A/R263A class II IN mutants. The compensatory mutations 

did not impact functional IN oligomerization, suggesting that they directly contributed to IN 

binding to the gRNA. Interestingly, HIV-1 IN R269A/K273A, but not IN R262A/R263A, 

bearing compensatory mutations was more sensitive to ALLINIs providing key genetic evidence 

that specific IN residues required for RNA binding also influence ALLINI activity. Structural 

modeling provided further insight into the molecular nature of IN-gRNA interactions and 

ALLINI mechanism of action. Taken together, our findings highlight an essential role of IN-

gRNA interactions for proper virion maturation and reveal the importance of electrostatic 

interactions between the IN CTD and the gRNA.  
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2.2 Importance 

HIV-1 integrase (IN) binds to the viral RNA genome through basic residues present within its C-

terminal domain (CTD) and regulates proper virion maturation. Inhibition of IN binding to the 

HIV-1 genome through mutations of CTD basic residues results in non-infectious particles in 

which the viral genomes are mislocalized in virions. Here we isolated suppressor mutations that 

restored the ability to bind RNA to an IN-CTD mutant lacking two basic residues. We found that 

mutation of nearby acidic residues (i.e. D256 and D270) and restoring the overall charge of the 

CTD can restore RNA binding, particle maturation and virion infectivity, but sensitize the 

viruses to the inhibitory action of allosteric integrase inhibitors (ALLINIs) that target IN-RNA 

interactions. Taken together, our findings highlight the electrostatic nature of IN-RNA 

interactions mediated by the IN CTD and the gRNA phosphate backbone and provide key 

genetic evidence that the ALLINIs engage the CTD of IN. 
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2.3 Introduction  

A defining feature of retroviruses is the reverse transcription of the viral RNA genome (gRNA) 

and integration of the resultant linear viral DNA into a host chromosome, which establishes 

lifelong infection. The latter reaction is mediated by the viral integrase (IN) enzyme, which 

catalyzes 3’ processing and DNA strand transfer reactions . The catalytic activity of HIV-1 IN 

has been successfully targeted by several  integrase strand-transfer inhibitors (INSTIs)  that have 

become key components of frontline anti-retroviral therapy regimens due to their high efficacy 

and tolerance profiles . In addition, HIV-1 IN has an emerging non-catalytic function in virus 

replication (4, 17). Successful targeting of this second function can complement the existing 

antiviral regimens and substantially increase the barrier to INSTI resistance.  

HIV-1 IN consists of three independently folded protein domains: the N-terminal domain (NTD) 

bears the conserved His and Cys residues (HHCC motif) that coordinate Zn2+ binding for 3-helix 

bundle formation; the catalytic core domain (CCD) adopts an RNase H fold and harbors the 

enzyme active site composed of an invariant DDE motif, and C-terminal domain (CTD) which 

adopts an SH3 fold . Integration is facilitated by a cellular co-factor, lens epithelium-derived 

growth factor (LEDGF/p75), which binds tightly to a site within the CCD dimer interface  and 

guides the preintegration complex to actively transcribed regions of the host chromosome . A 

group of pleotropic IN substitutions distributed throughout IN, collectively known as class II 

mutations, disrupt viral assembly , morphogenesis  and reverse transcription in target cells  often 

without obstructing the catalytic activity of IN in vitro . A hallmark of class II IN mutant viruses 

is the mislocalization of the viral ribonucleoprotein complexes (vRNP) outside of the viral capsid 

(CA) lattice, a deformation which is often referred to as eccentric morphology . Although 

originally designed to inhibit integration through preventing the binding of IN to LEDGF/p75 , 
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allosteric integrase inhibitors (ALLINIs) potently inhibit proper virion maturation (60) and lead 

to the formation of virions that display a similar eccentric morphology observed with class II IN 

mutations .  

We have recently shown that binding of IN to the gRNA in mature virions accounts for the non-

catalytic function of IN in virus replication and is required for proper encapsidation of the viral 

ribonucleoproteins (vRNPs) inside the mature CA lattice (63-65). Class II IN substitutions and 

ALLINIs block IN-gRNA binding, thus causing formation of virions with an eccentric 

morphology . IN binds to multiple distinct locations on the gRNA, including the TAR hairpin 

present within the 5’ and 3’UTRs of the gRNA and constitutes a high affinity binding site (63, 

64, 66). IN preferentially binds to the gRNA in a tetrameric state, and many class II IN mutations 

block IN-gRNA binding by disrupting the functional oligomerization of IN . Mutation of basic 

residues within IN-CTD (i.e. R262, R263, R269 and K273) inhibits IN-gRNA binding without 

altering functional IN oligomerization in virions and in vitro , suggesting that these residues are 

directly involved in binding to the gRNA. On the other hand, the precise mechanism of how 

these residues mediate recognition of specific sequence elements on the gRNA remains 

unknown. For example, it is possible that the positively charged Lys and Arg residues interact 

with the negatively charged RNA phosphate backbone in a non-specific or semi-specific manner, 

depending on the folding and structure of the cognate RNA element, driven by electrostatic 

interactions . Alternatively, these residues can mediate specific interactions with RNA targets 

through H-bonding and van der Waals contacts with individual nucleobases .  

To gain insight into the mode of IN-gRNA interactions, the non-infectious IN R269A/K273A 

class II mutant virus was serially passaged in T-cells until the acquisition of compensatory 

mutations. We found that two compensatory mutations, D256N and D270N, within the IN-CTD 
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restored virion infectivity, IN-RNA interactions and accurate virion morphogenesis. As the D-to-

N mutations resulted in loss of two negative charges, possibly overcoming the loss of two 

positive charges with the R269A/K273A class II substitutions, we tested whether restoring the 

overall charge of CTD through other mutations would restore IN-gRNA binding and virion 

infectivity. Indeed, the D256R substitution alone restored virion infectivity and RNA binding for 

the IN R269A/K273A mutant. We further extended these findings to another class II mutant, 

R262A/R263A, which was similarly suppressed by the D256R as well as D256K substitutions. 

Compensatory mutations did not affect the ability of IN to multimerize in vitro or in virions, 

suggesting that they restored the RNA-binding ability of IN directly. Interestingly, the IN 

R269A/K273A, but not the IN R262A/R263A, mutant viruses bearing the compensatory 

mutations had increased sensitivity to ALLINIs, providing key genetic evidence that specific 

residues within the CTD, which are required for RNA binding, also contribute to ALLINI 

mechanism of action. Together, our findings strongly suggest that IN-RNA interactions are at 

least in part driven by electrostatic interactions between the basic residues within IN-CTD and 

phosphate backbone of the gRNA and highlight that ALLINIs engage CTD residues to inhibit 

RNA binding.  

 

 

2.4 Results 

2.4.1. Compensatory IN D256N/D270N substitutions emerge in the background of the IN 

R269A/K273A class II mutant virus 

The R269A/K273A class II IN substitutions obstruct IN-gRNA binding directly without interfering 

with IN multimerization and result in the formation of particles with eccentric morphology (73). To 
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better understand the molecular basis of how R269 and K273 residues mediate IN-gRNA binding, 

viruses bearing the IN R269A/K273A mutations were serially passaged in MT-4 cells until the 

emergence of compensatory mutations at the end of passage 3, which completely restored virion 

infectivity (Fig. 1A). Deep sequencing of full-length gRNA isolated from virions across the three 

passages revealed that viruses retained the IN R269A/K273A substitutions while sequentially 

acquiring D256N and D270N mutations in IN (Fig. 1B). The D256N substitution emerged at the 

end of passage 1 whereas the D270N mutation emerged later in passage 2 (Fig. 1B). Both 

mutations were fixed by the end of passage 2 and no other mutations were observed elsewhere 

on the viral genome.  

The IN D256N and D270N mutations were introduced into the replication-competent pNL4-3 

molecular clone bearing WT or R269A/K273A IN. Introduction of D256N and D270N substitutions 

in IN had no observable effect on Gag (Pr55) expression or processing in cells or particle release 

(Fig. 1C).  Introduction of D256N and D270N mutations either individually or together (D2N) on 

the WT IN backbone did not affect viral titers (Fig. 1D). Remarkably, while the individual D256N 

and D270N mutations in the R269A/K273A IN backbone increased virus titers by 5-10-fold, the 

D2N substitutions increased virus titers by 100-fold (Fig. 1D). Overall, these results demonstrate 

that the combination of D256N and D270N mutations are sufficient to restore the replication 

competency of the R269A/K273A class II IN mutant virus. 
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Figure 1. D256N and D270N substitutions in HIV-1 IN suppresses the replication defect of 
R269A/K273A class II IN mutant virus. (A) MT4-LTR-GFP cells were infected with equal particle 
numbers of either WT or R269A/K273A IN mutant HIV-1 (NL4-3). The R269A/K273A IN viruses 
were serially passaged for three times until the emergence of compensatory mutations. The graphs 
represent the percentage of GFP positive cells as assessed by FACS over three passages at the 
indicated days post-infection (dpi). (B) HIV-1 genomic RNA was isolated from viruses collected from 
cell culture supernatants over the three passages (i.e. P1, P2, P3) and at the indicated days post-
infection (i.e. D29, D40, etc.). Whole-genome deep sequencing revealed the acquisition of D256N 
and D270N compensatory mutations. Heatmap shows the percentage of mutations at the indicated 
passages and days post-infection (dpi). (C)  HEK293T cells were transfected with full-length pNL4-
3 expression plasmids carrying the D256N, D270N and D256N/D270N (D2N) IN mutations 
introduced on the WT IN and IN R269A/K273A backbones. Cell lysates and virions were purified 
two days post transfection and analyzed by immunoblotting for CA and IN. The image is 
representative of five independent experiments. (D) HEK293T cells were transfected as in C and cell 
culture supernatants containing viruses were titered on TZM-bl indicator cells. The titers are presented 
relative to WT (set to 1). The columns represent the average of five independent experiments and the 
error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparison 
test). 
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2.4.2 D256N/D270N substitutions restore IN-gRNA binding for the R269A/K273A class II 

IN mutant viruses and lead to formation of correctly matured virions  

We next assessed whether D256N and D270N substitutions rendered the R269A/K273A class II 

IN mutant virus replication competent by restoring IN-gRNA binding and proper virion 

maturation. To this end, IN-gRNA complexes were immunoprecipitated from UV-crosslinked 

virions and visualized per CLIP protocol as described previously (75). Equivalent amounts of 

immunoprecipitated IN from WT and R269A/K273A IN viruses, or those additionally bearing 

the IN D256N and D270N substitutions, were analyzed for their ability to bind RNA.  IN-RNA 

complexes were readily visible for WT viruses as well as D256N, D270N and D2N mutants 

(introduced on the WT backbone), but not from the R269A/K273A class II IN mutant viruses 

(Fig. 2A). Introduction of the D256N substitution on R269A/K273A IN backbone modestly 

enhanced the ability of IN to bind RNA, whereas the D270N substitution had no observable 

impact (Fig. 2A). In contrast, the D2N substitution substantially enhanced the ability of 

R269A/K273A IN to bind RNA (Fig. 2A). The virion morphology of WT and IN mutant viruses 

was assessed by transmission electron microscopy (TEM). As expected, more than 80% of WT 

particles had an electron-dense condensate that represents vRNPs inside the CA lattice, whereas 

the majority of R269A/K273A class II IN mutant virions (~68%) had a clear eccentric 

morphology (Fig. 2B). Consistent with effects on virus titers and RNA-binding, the introduction 

of D256N/D270N substitutions restored the ability of the R269A/K273A IN mutant to form 

properly mature virions (Fig. 2B). Cumulatively, these data show that D256N and D270N IN 

substitutions restore infectivity for the R269A/K273A class II IN mutant virus through 

reestablishing RNA binding and subsequently accurate virion maturation. 
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2.4.3 Electrostatic interactions are required for IN-gRNA binding.  

IN-CTD is decorated with several acidic and basic amino acids resulting in a net charge of +3 (Fig. 

3A). The D2N substitutions in effect restored the overall charge of the IN R269A/K273A CTD, 

suggesting that the net electrostatic charge of the IN-CTD may be a key parameter in gRNA 

binding.  To test this hypothesis, we investigated whether restoring the overall charge of IN-CTD 

through other mutations would also restore RNA binding and infectivity for the R269A/K273A 

IN virus.  We focused our analysis on D256 and D270 residues for the following reasons: i) these 

amino acids were amenable to substitutions during virus passaging experiments; ii) D256N and 

D270N substitutions in the context of WT HIV-1 yielded infectious virions, suggesting that these 

	 	
Figure 2. D256N and D270N substitutions restore IN-gRNA binding and accurate virion 
maturation for the R269A/K273A class II IN mutant virus. (A) Autoradiogram of IN-RNA 
adducts immunoprecipitated from virions bearing the indicated substitutions in IN. Immunoblots 
below show the amount of IP’ed IN or CA protein in lysates. Data shown are representative of at 
least three independent experiments. (B) Examination of virion maturation in WT and mutant IN 
viruses by thin section electron microscopy (TEM). The graph quantifies virion morphologies; each 
column is the average of two independent experiments and error bars represent the SEM 
(****p<0.0001, by repeated measures one-way ANOVA). 
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compensatory mutations do not significantly contribute to the catalytic activity of IN thus allowing 

us to specifically probe their roles for IN-RNA interactions and virion maturation. To extend these 

studies we introduced D256R, D270R and D256R/D270R (D2R) substitutions into the HIV-1NL4-3 

IN R269A/K273A backbone and transfected HEK293T cells with the resulting plasmids. Cell lysates and 

cell-free virions were then analyzed for Gag processing, particle release, and infectivity. Overall, 

D-to-R substitutions had no major effect on Gag (Pr55) expression or processing in cells (Fig. 3B).  

Remarkably, the D256R substitution alone increased the titers of the R269A/K273A class II IN 

mutant virus by 100-fold and to a level comparable to that of WT viruses (Fig. 3C). In contrast, 

D270R substitution only had a modest impact on virus titers and the D2R substitution increased 

virion infectivity at a modestly lower level than that of D256R and D2N (Fig. 3C).  Importantly, 

the D256R and the D2R substitutions completely restored IN-gRNA binding (Fig. 3D), 

demonstrating that the increase in viral titers with the D256R and D2R substitutions correlates 

well with enhancement of IN-gRNA binding. Further assessment of these substitutions with Vpr-

IN transcomplementation assays revealed that none of the IN substitutions impacted the catalytic 

activity of IN, except for the D2R substitution (Fig. 3E), suggesting that the inability of the D270R 

mutation to restore infectivity may be due to its adverse effects on the catalytic activity of IN. 

Taken together, these findings indicate that restoring the overall charge of IN-CTD through D256R 

mutation reestablishes virion infectivity and RNA binding for the IN R269A/K273A class II 

mutant. 
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Figure 3. Restoring the net charge of IN-CTD restores RNA binding and infectivity for the R269A/K273A 
class II mutant. (A) Schematic diagram of IN and sequence of CTD residues with basic and acidic amino acids 
highlighted in blue and red, respectively. (B, C) HEK293T cells were transfected with full-length proviral HIV-
1NL4-3 expression plasmids carrying pol mutations encoding for the indicated IN substitutions. (B) Cell lysates 
and purified virions were harvested two days post transfection and analyzed by immunoblotting for CA and IN. 
Representative image of one of five independent experiments is shown. (C) Infectious titers of WT or IN mutant 
HIV-1NL4-3 viruses in cell culture supernatants were determined on TZM-bl indicator cells and normalized 
relative to particle number based on RT activity. Titer values are expressed relative to WT (set to 1). The columns 
represent the average of four independent experiments and the error bars represent SEM (****p<0.0001, by one-
way ANOVA with Dunnett’s multiple comparison test). (D) Autoradiogram of IN-RNA adducts IP’ed from WT 
or IN mutant HIV-1NL4-3 virions. The amount of immunoprecipitated IN protein was assessed by the immunoblot 
below. Results are representative of four independent replicates. (E) A representative growth curve of HIV-1 
NL4-3 IN (D116N) viruses that were trans-complemented with the indicated Vpr-IN mutant proteins in cell culture. Y-
axis indicates fold increase in virion yield over day 0 as measured by RT activity in culture supernatants. Error 
bars show SEM from 3 independent many replicates. 
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2.4.4 D256R substitution fully restores virion infectivity and RNA binding for a separate 

class II IN (R262A/R263A) mutant  

We have previously shown that mutation of other basic residues within the IN-CTD (i.e. 

R262A/R263A) also directly inhibit IN-gRNA binding without compromising functional 

oligomerization of IN (78). We next wanted to extend our observations and test how substitutions 

of D256 and D270 residues affect IN-gRNA binding and infectivity in the background of the IN 

R262A/R263A mutant virus. Introducing the D256N, D270N and D2N compensatory mutations 

on the IN R262A/R263A backbone did not affect Gag expression, processing, and virion release 

(Fig. 4A). While the D256N substitution increased virion infectivity by 10-fold, the D270N 

substitution had no impact and the D2N substitution had an intermediate phenotype (Fig. 4B), 

demonstrating the context dependency of these compensatory mutations. The D256K and D256R 

substitutions introduced in the R262A/R263A IN backbone also had minimal effects on Gag 

expression, processing, and virion release (Fig. 4C). In contrast, the D256K substitution increased 

viral titers at a greater degree than D256N and the D256R substitution completely restored virion 

infectivity (Fig. 4D). In line with the titer data, D256K significantly increased RNA binding 

whereas the D256R completely restored it in the context of the IN R262A/R263A mutant virus 

(Fig 4E). D256N, D256K and D256R IN successfully transcomplemented a class I IN mutant, 

suggesting that they did not distort the catalytic activity of IN (Fig 4F). Taken together, these 

findings indicate that restoring the overall positive charge of IN-CTD through D256R or D256K 

mutations is sufficient to restore virion infectivity and RNA binding to class II IN mutants that 

directly inhibit RNA binding. 
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We next used reported X-ray structure  and molecular modelling to visualize how class II and 

compensatory IN mutations affect electrostatic potential of the CTD surface. Mutation of R269 

and K273 residues expectedly resulted in a substantial loss of a basic patch in IN (Fig. 5A, B). 

Both the D256R and D256N substitutions resulted in more positively charged surface distal from 

	  
Figure 4. D256R and D256K substitutions restore IN-RNA binding and infectivity for the HIV-1NL4-

3 IN(R262A/R263A) virus. (A-E) HEK293T cells were transfected with proviral HIV-1NL4-3 expression plasmids 
carrying pol mutations for the indicated IN substitutions. (A, C) Cell lysates and virions were purified two 
days post transfection and analyzed by immunoblotting for CA and IN. (B, D) WT or IN mutant HIV-1NL4-

3 viruses in cell culture supernatants were titered on TZM-bl indicator cells. The titer values are presented 
relative to WT (set to 1). The columns represent the average of two-three independent experiments, and 
the error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparisons). 
(E) Autoradiogram of IN-RNA adducts immunoprecipitated from WT or IN mutant HIV-1NL4-3 virions. 
The amount of immunoprecipitated IN was assessed by the immunoblot shown below. Immunoblots and 
CLIP autoradiographs are representative of four independent replicates. (F) A representative growth curve 
of HIV-1 NL4-3 IN (D116N) viruses that were trans-complemented with the indicated IN mutant proteins in cell 
culture. Y-axis indicates fold increase in virion yield over day 0 as measured by RT activity in culture 
supernatants. Error bars show SEM from 3 independent many replicates. 
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the R269/K273A residues (Fig. 5C, D), suggesting that compensatory mutations likely created an 

additional interacting interface with gRNA binding. A similar outcome was observed when class 

II R262A/R263A and compensatory D256R changes were introduced in the CTD (Fig. 5E-G). 

While the D256R change is substantially distanced from R262/R263 and R269/K273 residues, we 

note the following. R262, R263, R269, and K273 are positioned within the same highly flexible 

C-terminal tail (aa 261-275), whereas D256 belongs to another, shorter (aa 252-257) loop (Fig. 

5H). The highly pliable nature of the tail and the loop could be crucial for IN to optimally engage 

with cognate RNA as well as allow for emergence of compensatory mutations at alternative sites 

positioned in these IN segments.   

 

 
Figure 5. Electrostatic potential maps of HIV-1 IN bearing class II and compensatory mutations. 
(A-G) Electrostatic potential maps of the indicated HIV-1 IN mutants derived from the crystal structure 
of Gupta et al.  is depicted. Calculation results are displayed as an electrostatic potential molecular 
surface. The low, mid, and high range values are -5, 0, and 5, respectively. (H) A cartoon view of the 
CTD structure  is shown with the C-terminal tail (aa 261-275) and the loop (aa 252-257) colored in cyan 
and orange, respectively. Side chains of indicated residues are shown.    
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2.4.5 Effects of the compensatory mutations on functional oligomerization of IN and IN-

RNA interactions. 

As functional IN oligomerization is a prerequisite for RNA binding (13), we next examined how 

the compensatory substitutions affected IN oligomerization. For in virion analysis, purified HIV-

1NL4-3 virions were treated with ethylene glycol bis (succinimidyl succinate) (EGS) to covalently 

crosslink IN in situ and virus lysates were analyzed by immunoblotting. As in WT virions, IN 

species that migrated at molecular weights consistent with those of monomers, dimers, trimers, 

and tetramers were readily distinguished in R269A/K273A or R262A/R263A viruses with 

additional compensatory mutations (D256N/D270N, D256R, D256K, and D256R/D270R) but not 

with the canonical class II IN mutant V165A that is unable to form functional oligomers (Fig 6A-

C). Complementary in vitro assessment of purified recombinant IN proteins by size exclusion 

chromatography (SEC) revealed that D2N and D256R substitutions in the background of 

R269A/K273A or the R262A/R263A class II mutants did not impact functional IN tetramerization 

(Fig. 6D-H).  

We have previously shown that recombinant IN binds to TAR RNA with high affinity and provides 

a nucleation point to bridge and condense RNA (43). We next examined the ability of class II 

mutant INs bearing compensatory mutations to bind and bridge TAR RNA. Consistent with 

findings from CLIP, the D2N and D256R substitutions also enhanced or restored the ability of 

R269A/K273 and R262A/R263A mutants to bridge between RNA molecules (Fig. 6I). Together, 

these data demonstrate that the compensatory mutations directly restore the ability of IN to bind 

RNA without altering functional IN oligomerization. 
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2.4.6 Sensitivity to ALLINIs is determined by distinct residues within the CTD 

ALLINIs potently disrupt proper virion maturation through inducing aberrant IN multimerization 

and consequently inhibiting IN-gRNA binding (43, 52). Recent structural studies have shown that 

the ALLINI, GSK-1264, can directly engage residues within the IN-CTD through its tert-butoxy 

and carboxylic acid moieties and induce open polymers (53). These findings are in line with 

previous biochemical and modeling studies that also showed the involvement of the IN-CTD, in 

particular residues K264 and K266, in ALLINI-induced aberrant IN multimerization (43, 79-81). 

	  
Figure 6. Assessing multimerization properties of IN in mutant viruses. (A) Purified WT or IN 
mutant HIV-1NL4-3 virions were treated with 1 mM EGS, and virus lysates analyzed by immunoblotting 
using antibodies against IN following separation on 6% Tris-acetate gels. The position of monomers 
(M), dimers (D), and tetramers (T) are indicated by arrows in a representative western blot. (B,C) 
Quantification of IN multimerization in virions from experiments conducted as in A. Error bars show 
the SEM from  three independent experiments. (D-I) Biochemical analysis of IN mutants 
multimerization and their interactions with HIV-1 TAR RNA. (D-H) Representative SEC traces for 
indicated recombinant IN proteins. The X-axis indicates elution volume (mL) and Y-axis indicates the 
intensity of absorbance (mAU). Tetramers (T), dimers (D), and monomers (M) are indicated. (I) 
Summary of mutant INs bridging TAR RNA compared to WT IN. Alpha screen counts at 320 nM for 
each protein is shown. The graphs show average values of three independent experiments and the error 
bars indicate standard deviation. 
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Based on these prior findings, we wanted to test how adjacently positioned IN R262A/R263A and 

R269A/K273A substitutions and the compensatory mutations affected ALLINI activities. 

To this end, we examined effects of representative quinoline-based ALLINIs, BI-D or BI-B2, on 

the viruses bearing the class II and compensatory mutations. While the titers of WT viruses only 

decreased at ALLINI concentrations greater than 1 µM, the titers of IN R269A/K273A viruses 

bearing D2N, D256R and D2R substitutions were significantly reduced by ALLINIs at 

concentrations as low as 0.1 µM (Fig. 7A, B). In contrast, viruses bearing the 

R262A/R263A/D256R IN were less sensitive to low concentrations of ALLINIs (Fig. 7D, E), 

suggesting that the R269A and/or K273A mutations underlie the increased sensitivity to ALLINIs. 

The increased sensitivity to ALLINIs correlated well with inhibition of RNA binding. While 0.1 

µM of the ALLINI, BI-D, did affect the level of IN-gRNA binding in WT viruses, it significantly 

reduced IN-gRNA binding in viruses with class II compensatory mutations on the R269A/K273A 

but not R262A/R263A backbone (Fig. 7C,F). Taken together, our findings provide key genetic 

and virological evidence that specific CTD residues required for RNA binding are also crucial for 

the ALLINI mechanism of action.  
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Figure 7. Secondary site suppressors of the IN R269A/K273A mutant increase susceptibility to 
ALLINIs. (A, B, D, E) Titers of viruses bearing the indicated substitutions in IN produced from 
HEK293T cells at different concentrations of ALLINIs, BI-B2 or BI-D. WT or IN mutant HIV-1NL4-3 in 
cell culture supernatants were titered on TZM-bl indicator cells. The titer values are represented relative 
to the mock control of each mutant (set to 1). Data are from two independent biological replicates. (C, 
F) Autoradiogram of IN-RNA adducts immunoprecipitated from WT or IN mutant HIV-1NL4-3 virions 
produced from HEK293T cells in the presence of 0.1µM of BI-D. The amount of immunoprecipitated IN 
protein was visualized by the immunoblot shown below. Immunoblots and CLIP autoradiographs results 
are a representative of three independent replicates. (G) The GSK-1264 binding pocket between CCD-
CCD (brown) and CTD (light blue) from different IN subunits is shown (3) (PDB ID: 5HOT). GSK-1264 
is in green with nitrogen and oxygen atoms colored blue and red, respectively. The side chain of R269 is 
shown with nitrogen atoms colored in dark blue. Interactions between CTD R269 and CCD Q168 are 
indicated by dashed lines.  
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2.4.7 Characterization of IN mutations present in latently infected cells   

Persistence of HIV-1 in memory CD4+ T-cells as latent proviruses constitutes a major barrier to 

HIV-1 cure. Although the majority of HIV-1 proviruses in these cells are defective , recent 

evidence suggests that defective proviruses can be transcribed into RNAs that are spliced, 

translated and can be recognized by HIV-1-specific cytotoxic T lymphocytes . We decided to 

characterize IN mutations isolated from latently infected cells, given the possibility that class II 

IN mutations existing in latently infected cells can result in the formation of defective particles 

that may subsequently modulate immune responses. Though relatively uncommon, we found the 

presence of R224Q, S230N, E246K and G272R substitutions in IN-CTD (Fig. 8A). Of note, only 

the R224Q substitution resulted in loss of a positive charge, whereas the E246K and G273R 

	  
Figure 8. Characterization of IN mutations present in latently infected CD4+ T-cells. (A) 
Alignment from Gifford- (B) HEK293T cells were transfected with proviral HIV-1NL4-3 expression 
plasmids carrying the R224Q, S230N, E246K, and G272R IN mutations. Cell lysates and virions were 
purified two days post transfection and analyzed by immunoblotting for CA and IN. The image is 
representative of two independent experiments. (C) WT or IN mutant HIV-1L4-3 viruses in cell culture 
supernatants were titered on TZM-bl indicator cells. The titers are presented relative to WT (set to 1). 
The columns represent the average of three independent experiments and the error bars represent SEM 
(****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparison test). (D) Autoradiogram of 
IN-RNA adducts immunoprecipitated from virions bearing the indicated substitutions in IN. 
Immunoblots below show the amount of immunoprecipitated IN. 



	52 

substitutions resulted in gain of positive charge. These mutations were introduced into the NL4-3 

proviral backbone with minimal effects on Gag expression and particle release (Fig. 8B). Although 

the E246K virus was significantly less infectious (Fig. 8C), we did not find any evidence for 

inhibition of IN-gRNA binding (Fig. 8D), suggesting that this mutant likely displays a class I 

phenotype. Thus, we conclude that the class II mutant viruses are rarely present in the latently 

infected cells and therefore unlikely to contribute to chronic immune activation. 

2.5 Discussion  

Class II IN mutations impair virion particle maturation by blocking IN-gRNA binding in virions 

and those within the CTD, including R269A/K273A and R262A/R263A, impede IN-gRNA 

binding without affecting functional oligomerization of IN . During serial passaging experiments 

to identify compensatory mutations of the R269A/K273A class II IN mutant, viruses acquired 

D256N and D270N IN mutations sequentially. We initially anticipated that mutations outside of 

IN, such as CA and NC, could also arise, given that the IN R269A/K273A mutant is still 

catalytically active and a compensatory mutation in CA or NC could presumably allow the proper 

packaging of the gRNA within virions. On the other hand, we did not observe any such 

substitutions showcasing the distinct role of IN:gRNA binding in proper virion maturation. 

Notably, D256N and D270N substitutions each arose through a single mutation (D256N: 

GACàAAC, D270N:GAUàAAU ) and thus likely provided an easier pathway for suppression 

than reverting back to R269 and K273, each of which would require two mutations. Though other 

mutations in IN could in principle restore the ability of IN to bind RNA, rise of such mutations 

was likely constrained in part by the necessity to maintain a catalytically active IN.  

IN CTD has a net positive charge of +3. While R269A/K273A class II mutations reduced the net 

charge to +1, the introduction of D2N substitutions restored the overall charge back to a +3. This 
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observation suggested that the net electrostatic charge of the IN-CTD may be a key parameter for 

IN-gRNA binding. Consistent with this hypothesis, the charge reversal by the D256R substitution 

was sufficient to restore IN-gRNA binding for the R269A/K273A IN mutant. Though these 

findings point to an electrostatic component of IN-RNA interactions, we cannot exclude the 

possibility that the Asn and Arg residues also mediate H-bonding and van der Waals contacts with 

distinct nucleobases in the cognate RNA molecules. Inspection of the available X-ray structure 

(83) indicates that all IN residues implicated in RNA binding by the present study are positioned 

either in the highly flexible C-terminal tail (aa 261-275) or the 252-257 loop (Fig. 5H). The pliable 

nature of these CTD regions could be essential for allowing IN to optimally bind to cognate gRNA.       

These observations extended to another class II mutant, R262A/R263A, whereby the D256R and 

to a lesser extent the D256K substitutions restored RNA binding. In contrast, the D2N substitutions 

did not enhance RNA-binding or infectivity in this setting, demonstrating a degree of context 

dependency. It is possible that the proximity of the D270N to R269A/K273A residues may explain 

why it was more effective in restoring RNA binding for this class II mutant but not for IN 

R262A/R263A. The role of Arg and Lys residues in RNA-binding proteins has been noted (81). 

Interestingly, Arg residues are overall more heavily involved in interactions with all bases, 

contributing with 16%–20% of all contacts while Lys residues only provide 3%–9%, which may 

explain why the D256R substitution restored RNA binding to a greater extent (40, 51, 85). 

Altogether, our findings suggest that IN-gRNA binding is mediated in part by electrostatic 

interactions between the basic residues in IN CTD and the negatively charged RNA backbone.  

Though the electrostatic component of IN-RNA interactions imply a level of non-specificity, IN 

bound to distinct locations on the gRNA and displays high binding affinity to structured elements, 

such as the HIV-1 TAR element . Thus, it is likely that IN-gRNA interactions are mediated by 
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both the non-specific interactions of the basic residues with the RNA phosphate backbone and 

specific interactions with the cognate RNA. For example, recognition of the TAR loop by Tat and 

the super elongation complex is based on a complex set of interactions that results primarily in the 

readout of the structure as opposed to the sequence by SEC, and additional interaction of the Tat 

arginine rich motif (ARM) with the TAR bulge and the major groove through electrostatic 

interactions with the RNA phosphates, H-bonding with specific bases, as well as multiple van der 

Waals contacts of Cyclin T with the flipped-out G32 TAR base to strengthen the TAR complex . 

Structural studies of IN in complex with cognate RNA molecules are needed to tease apart the 

specificity determinants for IN-RNA interactions. 

RNA binding proteins commonly encode modular RNA-binding domains (i.e. RRMs and KH 

domains), which form specific contacts with short degenerate sequences (13, 83, 86-88). 

Utilization of multiple RRMs/KH domains is thought to create a much larger binding interface, 

which allows recognition of longer sequences on and enhanced affinity and specificity for target 

RNAs . IN tetramerization is required for RNA binding in vitro (43, 54, 89-92) and may serve a 

similar purpose through generation of a larger RNA-binding surface possibly for recognition of 

shape, RNA-backbone and base-specific interactions as discussed above. 

IN-gRNA binding is essential for HIV-1 virion morphological maturation and infectivity, thus an 

excellent target for novel antiretroviral compounds. Clinically used HIV-1 IN inhibitors target the 

catalytic activity of IN by blocking the strand transfer step of integration . Despite high barriers to 

resistance with the second-generation INSTIs, treatment continues to select for drug resistant HIV-

1 variants (94, 95). ALLINI-mediated inhibition of the non-catalytic function of IN can 

complement existing INSTI-based therapies and increase the barrier to drug resistance 
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substantially. Although some ALLINIs displayed toxicity in animals, a highly potent and safe 

pyrrolopyridine-based ALLINI, STP0404, has advanced to a human trial (99, 100).  

ALLINIs potently disrupt virion maturation indirectly through inducing aberrant IN 

multimerization resulting in inhibition of IN-gRNA binding . Recent findings have shown that the 

ALLINI, GSK-1264, is buried between the CTD of one IN dimer and the CCD of another dimer 

resulting in the formation of open, inactive IN polymers (101). Mutation of Y226, W235, K264 

and K266 residues within the CTD prevents ALLINI-induced aberrant multimerization of IN (67). 

However, the role of these residues in ALLINI-mediated inhibition cannot be easily assessed in 

relevant infection settings given that their mutation alters the catalytic activity as well as RNA 

binding properties of IN (69). Our findings fill this gap and provide key genetic evidence that 

ALLINI mechanism of action indeed involves the CTD. In particular, introducing the same D256R 

change in the background of different class II substitutions similarly restored their infectivity and 

thus enabled us to compare effects of R262/R263 vs R269A/K273A IN substitutions on ALLINI 

activities. While HIV-1IN(R262A/R263A/D256R) and WT viruses were similarly susceptible to ALLINIs 

(Fig. 7A,B), HIV-1IN(R269A/K273A/D256R) was substantially more sensitive to these inhibitors (Fig. 

7D,E). The X-ray structure of GSK-1264 induced IN polymers (12, 73, 77, 102, 103) reveals that 

R262, R263, K273A as well as D256 are distanced from the inhibitor binding pocket, whereas the 

side chain of R269 points toward the inhibitor bound at the CTD-CCD dimer interface (Fig. 7G). 

The guanidine group of R269 engages with Q168 of the CCD from another IN subunit and is 

positioned within 3 Å of GSK-1264. Yet, there is no interaction between R269 and the inhibitor 

as the positively charged guanidine group faces a hydrophobic part of the benzodihydropyran 

moiety of GSK-1264 (Fig. 7G). Conversely, the R269A substitution could provide more favorable 
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hydrophobic environment for the CTD-ALLINI-CCD interactions that may explain its increased 

sensitivity to ALLINIs.  

Overall, our studies reveal that electrostatic interactions play an important role in mediating IN-

gRNA interactions and demonstrate that CTD is a key determinant of ALLINI sensitivity. 

Structural characterization of IN-gRNA complexes will be crucial to determine the precise 

mechanism of IN-gRNA interactions. Such studies will also help better understand the ALLINI 

mechanism of action and aid in the development of therapeutics that directly target IN-gRNA 

interactions. 

2.6 Materials and methods 

Plasmids 

IN mutations were introduced into the HIV-1NL4-3  full-length proviral plasmid (pNL4-3) by overlap 

extension PCR. Forward and reverse primers containing IN mutations were used in PCR reactions 

with anti-sense (with EcoRI restriction endonuclease site) and sense (with AgeI restriction site) 

outer primers. The resulting fragments containing the desired mutations were mixed at a 1:1 ratio 

and overlapped subsequently using the sense and antisense primer pairs. The overlap fragments 

were digested with Age-I and EcoR-I before cloning into pNL4-3 plasmids. The pLR2P-vprIN 

plasmid expressing a Vpr-IN fusion protein has been previously described . IN mutations were 

introduced in the pLR2P-VprIN plasmid using the QuikChange Site-Directed Mutagenesis kit 

(Agilent Technologies). The presence of the desired mutations and the absence of unwanted 

secondary changes was assessed by Sanger sequencing. 

Cell lines 
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All cell lines were obtained from the American Type Culture Collection and NIH AIDS Reagents 

where STR profiling was performed. MT-4 cells were further STR profiled at Washington 

University School of Medicine Genome Engineering and iPSC center. The cell lines are 

consistently inspected for mycoplasma contamination using MycoAlert mycoplasma detection kit 

(Lonza) and checked for being free of any other contaminations. HEK293T cells (ATCC CRL-

11268) and Hela-derived TZM-bl cells (NIH AIDS Reagent Program) were cultured in Dulbecco’s 

modified Eagle’s medium supplemented with 10% fetal bovine serum. MT-4 cells were cultured 

in in RPMI 1640 medium supplemented with 10% fetal bovine serum.  

Analysis of compensatory mutations 

Compensatory mutations of the R269A/K273A class-II IN mutation were isolated by serial 

passaging. In this experiment, MT4 T-cells that express GFP under the control of HIV-1 LTR 

(MT4-LTR-GFP), were infected with HIV-1pNL4-3 carrying the R269A/K273A class II IN 

mutation. One million cells were infected at an MOI of 2 by WT cells, input of mutant virus was 

normalized relative to particle numbers using a reverse transcriptase (RT) activity assay . 

Infections were monitored by FACS. At the end of each passage, virions were collected and 

wielded to infect cells in the next passage while normalizing virus input before each infection. 

Aliquots of infected and viral particles in the cell culture supernatants were collected over the 

duration of each passage. Virions collected over the three passages were concentrated and gRNA 

was isolated from virions using Trizol per manufacturer’s instructions. Extracted RNA was 

prepared for deep sequencing usingthe Illumina® TruSeq® Stranded Total RNA library prep 

workflow kit omitting the rRNA depletion step. Resulting libraries were sequenced by an Illumina 

HiSeq 2000 platform.  
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Immunoblotting 

Viral and cell lysates were resuspended in sodium dodecyl sulfate (SDS) sample buffer, separated 

by electrophoresis on Bolt 4-12% Bis-Tris Plus gels (Life Technologies) and transferred to 

nitrocellulose membranes. The membranes were then probed overnight at 4°C with a mouse 

monoclonal anti-HIV p24 antibody (183-H12-5C, NIH AIDS reagents) or a mouse monoclonal 

anti-HIV integrase antibody  in Odyssey Blocking Buffer (LI-COR).  Membranes were probed 

with fluorophore-conjugated secondary antibodies (LI-COR) and scanned using an LI-COR 

Odyssey system. IN and CA levels in virions were quantified using Image Studio software (LI-

COR).  

Vpr-IN trans-complementation experiments 

Viruses bearing the class I IN mutation D116N were trans-complemented with class II mutant 

proteins as previously described ; two-hundred thousand HEK293T cells were co-transfected with 

a derivative of pNL4-3-derived plasmid bearing the IN D116N mutation, VSV-G, and derivatives 

of the pLR2P-VprIN plasmids bearing class II IN mutations (or the compensatory mutations 

thereof) at a ratio of 6:1:3. Cell-free virions were collected from cell culture two days post-

transfection. MT-4 cells were infected by the virions and the integration proficiency of trans-

complemented class II IN mutants was measured by the yield of progeny virions in cell culture 

supernatants over a 6-day period as described before (4). Briefly, MT-4 cells were incubated with 

virus inoculum in 96 V-bottom well plates for 4hr at 37°C before washing away the inoculum and 

replacing it with fresh media. Right after the addition of fresh media and over the ensuing 6 days, 

the number of virions in culture supernatant was quantified by measuring RT activity using a Q-

PCR-based assay (15).  



	59 

CLIP experiments 

CLIP experiments were conducted as previously described (10). In short, cells in 15 cm cell culture 

plates were transfected with 30 μg full-length proviral plasmid (pNL4-3) DNA containing the WT 

sequence or indicated IN mutations. 4-thiouridine (4SU) was added to the cell culture media for 

16hr before virus harvest. Cell culture supernatants were filtered through 0.22 μm filters and 

pelleted by ultracentrifugation through a 20% sucrose cushion using a Beckman SW32-Ti rotor at 

28,000rpm for 1.5hr at 4°C. The virus pellets were resuspended in phosphate-buffered saline (PBS) 

and UV-crosslinked. Following lysis in 1X RIPA buffer, IN-RNA complexes were 

immunoprecipitated using a mouse monoclonal anti-IN antibody (106) . Bound RNA was end-

labeled with γ-32P-ATP and T4 polynucleotide kinase. The isolated protein-RNA complexes were 

separated by SDS-PAGE, transferred to nitrocellulose membranes, and exposed to 

autoradiography films to visualize IN-RNA complexes. Lysates and immunoprecipitates were also 

analyzed by immunoblotting using antibodies against IN. 

IN multimerization in virions 

In 10 cm dishes, HEK293T cells were transfected with 10 μg pNL4-3 plasmid DNA containing 

the WT sequence or indicated pol mutations within IN coding sequence. Two days post-

transfection, cell-free virions in cell culture supernatants were pelleted through a 20% sucrose 

gradient using a Beckman SW41-Ti rotor at 28,000 rpm for 1.5hr at 4°C. Pelleted virions were 

resuspended in 1xPBS and treated with a membrane-permeable crosslinker, EGS (ThermoFisher 

Scientific), at a concentration of 1mM for 30 min at room temperature. Crosslinking was stopped 

by the addition of SDS sample buffer. The cross-linked samples were then separated on 3-8% Tris-

acetate gels and analyzed by immunoblotting using a mouse monoclonal anti-IN antibody (107). 
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Virus production and transmission electron microscopy 

HEK293T cells in a 15 cm plate were transfected with 30 μg full-length proviral plasmid (pNL4-

3) DNA containing the WT sequence or indicated pol mutations within IN coding sequence. Two 

days post transfection, cell culture supernatants were filtered through 0.22 μm filters, and pelleted 

by ultracentrifugation using a Beckman SW32-Ti rotor at 28,000 rpm for 1.5 hr at 4°C. Fixative 

(2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc., Warrington, PA) in 100 mM 

sodium cacodylate buffer, pH 7.2) was gently added to resulting pellets, and samples were 

incubated overnight at 4°C. Samples were washed in sodium cacodylate buffer and postfixed in 

1% osmium tetroxide (Polysciences Inc.) for 1 hr.  Samples were then rinsed extensively in dH20 

prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc., Redding, CA) for 1 

hr.  After several rinses in dH20, samples were dehydrated in a graded series of ethanol and 

embedded in Eponate 12 resin (Ted Pella Inc.).  Sections of 95 nm were cut with a Leica Ultracut 

UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, IL), stained with uranyl acetate and 

lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc., 

Peabody, MA) equipped with an AMT 8 megapixel digital camera and AMT Image Capture 

Engine V602 software (Advanced Microscopy Techniques, Woburn, MA).  

Size exclusion chromatography (SEC)  

All of the indicated mutations were introduced into a plasmid backbone expressing His6 tagged 

pNL4-3-derived IN by QuikChange site directed mutagenesis kit (Agilent) (1, 108). His6 tagged 

recombinant pNL4-3 WT and mutant Ins were expressed in BL21 (DE3) E. coli cells followed by 

nickel and heparin column purification as described previously . Recombinant WT and mutant Ins 

were analyzed on Superdex 200 10/300 GL column (GE Healthcare) with running buffer 
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containing 20 mM HEPES (pH 7.5), 1 M NaCl, 10% glycerol and 5 mM BME at 0.3 mL/min flow 

rate. The proteins were diluted to 10 µM with the running buffer and incubated for 1 h at 4°C 

followed by centrifugation at 10,000g for 10 min. Multimeric form determination was based on 

the standards including bovine thyroglobulin (670,000 Da), bovine gamma-globulin (158,000 Da), 

chicken ovalbumin (44,000 Da), horse myoglobin (17,000 Da) and vitamin B12 (1,350 Da). 

Retention volumes for different oligomeric forms of IN were as follows: tetramer ~12.5 mL, dimer 

~14 mL, monomer ~15-16 mL.  

Analysis of IN-RNA binding in vitro 

To monitor IN-RNA interactions we utilized AlphaScreen-based assay (1), which allows to 

monitor the ability of IN to bind and bridge between two TAR RNAs. Briefly, equal concentrations 

(1 nM) of two synthetic TAR RNA oligonucleotides labeled either with biotin or DIG were mixed 

and then streptavidin donor and anti-DIG acceptor beads at 0.02 mg/mL concentration were 

supplied in a buffer containing 100 mM NaCl, 1 mM MgCl2, 1 mM DTT, 1 mg/mL BSA, and 25 

mM Tris (pH 7.4). After 2 hr incubation at 4°C, 320 nM IN was added to the reaction mixture and 

incubated further for 1.5 hr at 4°C. AlphaScreen signals were recorded with a PerkinElmer Life 

Sciences Enspire multimode plate reader. 

Structural modeling of IN 

Electrostatic potential maps of WT and mutant IN CTDs were created by Adaptive Poisson-

Boltzmann Solver (APBS) program (2) with macromolecular electrostatic calculations performed 

in PyMOL. The published crystal structure (3) (PDB ID: 5HOT) was used as a template. The 

calculation results are displayed as an electrostatic potential molecular surface. The low, mid, and 

high range values are -5, 0, and 5, respectively.  
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Analysis of IN mutations from latently infected cells 

Sequences identified from latently infected CD4+ T-cells (4) were downloaded from NCBI 

GenBank based on their accession numbers (KF526120-KF526339). Sequences were imported 

into the GLUE software framework (5) and aligned. Multiple sequence alignments (MSAs) 

containing subtype B and subtype C sequences were constructed using MUSCLE, manually 

inspected in AliView (6) and imported into a GLUE project database. Within GLUE, MSAs were 

constrained to the pNL4-3 reference to establish a standardized coordinate space for the gene being 

analyzed. Amino acid frequencies at each alignment position were summarized using GLUE’s 

amino-acid frequency calculation algorithm, which accounts for contingencies such as missing 

data and incomplete codons. 
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3.1 Introduction 

For decades, the HIV-1 integrase (IN) was solely known for catalyzing the 3’ end processing and 

strand transfer reactions which lead to integration of the newly reverse transcribed viral DNA 

(vDNA) into the host chromosome (5, 7-9). Recent findings from our lab have showed that 

integrase binds to the viral genomic RNA (gRNA) in mature virion particles (10-12). 

Crosslinking immunoprecipitation coupled with next generation sequencing (CLIPseq) show that 

IN binds to multiple distinct regions of the gRNA including TAR, a hairpin within the 5’ and 3’ 

UTRs of the HIV-1gRNA (12). Furthermore, in vitro binding assays showed that IN had 

particularly high binding affinity for TAR (12).  This RNA-binding property of IN is essential 

for maturation of virion particles; class II IN mutations and allosteric integrase inhibitors 

(ALLINIs) cause a virion deformation referred to as eccentric morphology by inhibiting IN-

gRNA binding (10, 12-22). The eccentric morphology of HIV-1 virions is characterized by the 

mislocalization of the viral ribonucleoprotein complex (vRNP) outside of the capsid lattice (10, 

12-22). The gRNA and IN of eccentric virions gets degraded in the earliest stages of the HIV 

replication cycle (11, 23).  

Our previous studies have shown that IN binds to gRNA as a tetramer and the binding is 

mediated by electrostatic affinity between basic residues of the IN C-terminal domain (CTD) and 

the negatively charged phosphodiester RNA backbone (10). This observation led to the question 

of whether IN only specifically binds to the viral gRNA. For instance, although the IN has high 

affinity for the TAR region on 5’ UTR gRNA, it also binds to discrete regions all around the 

length of gRNA. In this chapter, we used CLIPseq (described in 3.2) and in vitro binding assays 
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to show that IN binds to gRNA regions rich in adenosine and guanosine nucleotides (A-G). 

Further, CLIP experiments showed that IN could bind to non-viral RNA packaged by virions. 

Altogether, these observations suggested that the binding of IN to RNA might be semi-specific 

in nature. 

 The RNA-binding property of IN is essential for the formation of replication competent 

virions, which makes it a great target for the future antiretroviral agents. The presence of 

ALLINIs in virion producer cells inhibits IN-gRNA binding by causing aberrant IN 

multimerization (10-12, 23). However, there has been no evidence that IN binds to gRNA in 

producer cells before virion release as gRNA is packaged and condensed by the nucleocapsid 

(NC) protein in virions (12). In this chapter, we describe our investigations and findings on 

whether IN binds to RNA before or after virions release; such information could be very useful 

in designing less toxic and more potent ALLINIs. The development of IN-gRNA binding 

inhibitors will depend on a full understanding of the IN-gRNA complex structures. Nonetheless, 

integrase protein has been virtually impossible to crystallize by standard structural biology 

techniques due to its low solubility (24-28).  This chapter details our new approaches for 

isolating and resolving the structures of IN-gRNA complexes.  

 

3.2 Identifying the RNA targets of RNA binding proteins with CLIP 

Viruses containing RNA genomes as their genetic material (i.e. RNA viruses and retroviruses) 

cause a number of diseases ranging from the common cold to AIDS, and are major contributors 

to the global infectious disease burden. To replicate and propagate their RNA genomes, these 

viruses must efficiently utilize host cell machinery to facilitate a number of processes including 

viral RNA transcription, splicing, transport between subcellular compartments and translation. 
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Viral RNAs also must retain unique sequence and structural features in order for recognition by 

viral RNA binding proteins (RBPs) that mediate RNA polymerization and export, selective 

genome packaging, RNA localization in virions, and RNA stability during early stages of 

infection. While beneficial for virus replication, the distinct features of viral RNAs can also be 

recognized as foreign by several host defense proteins that mount antiviral defenses through the 

production of cytokines upon binding to viral RNAs. In sum, a myriad of protein-RNA 

interactions play crucial roles in the life cycle of viruses, and as such identifying these 

interactions is crucial to understanding their pathogenesis. 

Development of the CLIP approach has revolutionized the study of protein-RNA interactions 

(29-32). Traditionally, RBP-RNA interactions have been studied by methods that required the 

a priori knowledge of the binding site, such as in vitro binding assays or purification of protein-

RNA complexes from cell lysates with downstream analysis of bound RNA by Q-RT-PCR. 

Coupling of protein-RNA complex isolation with microarray analysis, and more recently, high 

throughput sequencing provided a more global picture of the bound RNAs, but suffered from 

high background and low specificity due to purification of non-specific RNAs or multiple RBPs 

in complex with their bound RNAs (33, 34). While in vitro approaches such as SELEX (35, 36), 

RNA-compete (37), RNA-bind-n-Seq (38), and RNA-Map (39) can provide detailed nucleotide 

resolution information of the target site and the biochemical properties of these interactions, they 

cannot determine which sequence the RBP of interest will bind to at physiologically relevant 

concentrations. What makes CLIP a powerful approach is that it addresses all of the 

shortcomings of these previous approaches by yielding nucleotide resolution information of the 

RNA molecules bound by the RBP of interest in physiological settings, ranging from virus 

particles to animal tissues, at a global scale. 
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The key steps of the existing CLIP methodologies are (Figure 1): (1) Protein-RNA complexes 

are covalently crosslinked in live cells/tissues/virions typically by UV crosslinking; (2) 

Cells/tissues/virions are lysed and treated with limited amounts of RNases leaving small 

fragments of RNA molecules (~20–50 nucleotides) protected by the protein of interest; (3) 

Protein-RNA complexes are immunoprecipitated, and non-specific RNAs and proteins are 

removed by stringent washes. Because the protein-RNA complexes are covalently crosslinked, 

these stringent conditions, in principle, do not affect purification of target protein-RNA adducts. 

 
Figure 1. Schematic diagram of steps involved in PAR-CLIP experiments. 
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(4) The purified protein-RNA complexes are radioactively labeled and separated by SDS-PAGE. 

(5) Bound RNA is isolated by Proteinase K treatment. (5) Eluted RNA is ligated to adapters, 

reverse transcribed, and the resulting cDNA is PCR amplified and subjected to sequencing. (6) 

Sequencing reads are processed and mapped to reference genomes. Depending on the method 

used, the resulting library contains nucleotide substitutions or deletions (40) at the site of 

crosslinking, which allows mapping of the site of protein-RNA interactions at nucleotide 

resolution. 

 

Various versions of CLIP have been developed and the details of these alternative 

approaches have been reviewed elsewhere (33, 41). The approach we commonly use depends on 

efficient UV crosslinking mediated by ribonucleoside analogs, including 4-thiouridine (4SU) and 

6-thioguanosine (6SG), as in the original PAR-CLIP protocol (29). In PAR-CLIP experiments, 

cells are grown in the presence of ribonucleoside analogs for up to 16 hours and UV-crosslinked 

at a longer wavelength (365 nm). With the majority of the viral and cellular RNA-binding 

proteins we studied in the past few years, this method significantly enhanced the amount of 

protein-RNA adducts obtained (12, 42-44). In addition, PAR-CLIP allows accurate nucleotide 

resolution mapping of target RNA sites due to mutations introduced by the reverse transcriptase 

enzyme (T-to-C for 4SU and G-to-A for 6SG) precisely at the site of crosslinking during cDNA 

synthesis. On the other hand, use of ribonucleoside analogs may inadvertently enrich RNA 

elements with distinct nucleotide composition or alter RNA structure (45), which may 

subsequently affect protein binding. Thus, we routinely validate our findings with the use of both 

ribonucleoside analogs and HITS CLIP, which utilizes conventional UV-crosslinking. 
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For library generation, we follow a combination of PAR-CLIP and HITS-CLIP protocols (30-

32). As reviewed elsewhere (33, 34, 41), this is the stage where most variant CLIP protocols 

differ. While the HITS-CLIP and many other protocols call for ligation of adapters while the 

protein-RNA complexes are on beads, the solution-phase PAR-CLIP library generation protocol 

was significantly more efficient in our experience with 3’ and 5’ adapter ligations routinely 

functioning at >90% efficiency. Another common alternative is the utilization of a two-part 

cleavable adapter introduced into cDNA during reverse transcription in the iCLIP approach (46). 

This is followed by circularization and restriction enzyme digestion, which allows the recovery 

of a larger fraction of truncated cDNAs a result of reverse transcriptase stalling at crosslinking 

sites. Due to this enrichment, iCLIP can yield higher complexity libraries and has been proposed 

to perform better than previous approaches in identification of the precise site of crosslinking 

(46-48). 

All CLIP approaches are technically challenging with numerous labor-intensive steps. In 

addition, the loss of the starting material at several inefficient steps is a major drawback. This 

problem is further exacerbated if the initial protein-RNA complexes are not abundant due to low 

levels of expression, low crosslinking or immunoprecipitation efficiencies. These problems can 

often lead to a final library with insufficient complexity and over-enrichment of environmental 

contaminating sequences.  

 

3.3 Integrase preferably binds to purine-rich sequences on viral RNA 

Although CLIPseq and in vitro binding assays have shown that IN has high affinity for TAR, a 

hairpin structure within the 5’ UTR of gRNA (12), CLIPseq also shows that IN binds to gRNA 

sequences without distinguishable secondary structure. Altogether, the nature of IN-gRNA 
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binding is poorly understood, and it is not certain whether the binding is specific or IN binds to 

distinct characteristic sequences of viral gRNA. The version of CLIP (PAR-CLIP) that has 

previously been used to study IN-gRNA binding relies on the incorporation of photoreactive 

analogs such as 4-thiouridine (4-SU) into nascent gRNAs in producer cells (12, 49); this 

enhances the efficiency of crosslinking, the amount IN-gRNA adducts that are 

immunoprecipitated, and helps identify IN-gRNA binding sites at nearly nucleotide resolution. 

Although the incorporation of 4-SU is very helpful, it can bias binding site identification towards 

U-rich elements. We used a guanosine analog, 6-thioguanosine (6-SG), in CLIP experiments to 

get a distinct picture of gRNA elements that are bound IN. The 6-SG based CLIPseq identified 

more distinctive binding sites with high frequency (Figure 2A). A deeper analysis of the motifs  

within the binding sites showed that IN binds to A/G rich (Figure 2B) sequences most of which 

contained the 5’-GGAAAGGA-3’ sequence.  

 

	
Figure 2. Purine-rich sequences are preferentially bound by IN. A. CLIP was performed on 
virions generated in the presence of 4-SU and 6-SG. Footprints of IN on the 9kb viral genome is 
shown. B. Meme plot of the most prevalent nucleotides in integrase bound regions. 
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This observation was validated through in-vitro biochemical binding assays in collaboration with 

Dr. Mamuka Kvaratskhelia’s lab at the University of Colorado. IN showed high propensity to  

binding the 5’-GGAAAGGA-3’ consensus sequence, but not its reverse complement or the 

double stranded form (Figure. 3A). Furthermore, the addition of purine nucleotides to the 5’ and  

3’ of the sequence increased the binding affinity to IN (Figure 3B).  

 

 

The observed high binding frequency and affinity of IN to purine-rich sequences might be a 

result of the fact that the HIV-1 genome has a particularly high A-nucleotide content (50, 51). In 

the absence of HIV-1 gRNA, virions can package cellular RNAs (52). To test whether IN can 

bind to non-viral packaged RNA, we generated virus like particles (VLPs) devoid of the viral 

genome but package cellular RNA. These VLPs were made using plasmids bearing a CMV 

promoter driving the expression of a synthetic codon-optimized Gag-Pol (SYNGP) gene. CLIP 

autoradiographs show that IN in VLPs could bind to RNA (Figure 4A). Moreover, the ALLINI 

	
Figure 3. Purine-rich sequences are preferentially bound by IN. A. In vitro assessment of IN binding 
affinity to the 5’-GGAAAGGA-3’ RNA sequences (black), its reverse compliment (red), or its double 
stranded version (blue). B. Similar to A but with addition of several AG nucleotides on both ends of the 
5’-GGAAAGGA-3’ sequence. 
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BI-D and class II mutation R269A/K273A blocked RNA binding (Figure 4B). Although this 

observation suggests that IN can bind to cellular RNAs, it remains unclear whether IN binds to 

purine rich sequences on these RNAs as of now.  CLIP to identify IN-bound sequences from the 

VLPs will be instrumental to distinguish whether the observed RNA-binding specificity of IN is 

a result of AG-rich genome content or specific interaction of IN with purine rich sequence 

elements. 

 

3.4 Conservation of integrase-RNA binding in retroviruses 

IN-gRNA binding is essential for maturation of HIV-1 virions (10-12, 23). Following the release 

of immature virions from cells, the protease domain of Gag-Pol cleaves Gag and Gag-Pol into 

their constituent domains which triggers the reorganization of these proteins into a mature HIV-1 

virion. In mature HIV-1virions, the capsid lattice surrounds the viral ribonucleoprotein complex 

(53, 54). While proteolytic cleavage of Gag and Gag-Pol polyproteins during particle maturation 

 
Figure 4. HIV-1 IN can bind to cellular RNAs in the absence of the genome. A, synGP and NLGP-
derived VLPs were subjected to CLIP analysis alongside with full-length NL4-3. B, synGP-derived 
VLPs bearing the R269A/K273A substitution and grown in the presence of 10 uM BI-D were 
subjected to CLIP. Autorads displaying IN-RNA complexes are shown on top. W.blots of IN and CA 
are shown on the bottom. 
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is common to all retroviruses, virion morphologies vary widely. Looking at different retroviral 

species, the capsids of mature virions adopt a multitude of shapes and sizes (Figure 5)(55). While 

HIV-1 and lentivirus capsid lattices are mostly cone-shaped (56-59), retroviruses such as RSV 

and MLV display polyhedral or nearly spherical capsids (58-62). It has been shown that HTLV-1 

has a poorly defined polyhedral capsid, with angular polygon-like regions and at least one curved 

region in each capsid (63).  

 

 

       
Figure 5. Morphology of mature retrovirus virions. RSV: Rous sarcoma virus (1, 2), MMTV: 
mouse mammary tumor virus (1-3), MoMLV: Moloney murine leukemia virus , HTLV-1: human T-
cell leukemia virus type 1 (4), HIV-1: human immunodeficiency virus type 1(5), FV: Foamy virus (6, 
7). The FV Gag protein is not processed into the classical orthoretroviral MA, CA, and NC subunits 
during particle morphogenesis. The black arrowheads show regular Gag assemblies in the wild type 
virus .  
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It is currently unknown whether IN-gRNA binding is essential for the encapsidation of the vRNP 

of all retroviruses. Using CLIP, we have investigated whether IN binds to the genomic RNA in 

other retroviruses: lentiviruses (HIV-1, MVV, and EIAV), beta-retrovirus (MMTV), delta-

retrovirus (HTLV-1), and gamma-retrovirus (MLV). IN-RNA adducts on our CLIP 

autoradiographs show that IN binds to the genomic RNA of such viruses (Figure 6). 

Furthermore, some of the mutations that were predicted as class II mutations based on alignment 

with HIV-1 IN sequence also inhibited IN-gRNA (Figure 6). The introduction of such mutations 

in some viruses, however, resulted in loss of IN in virions and the mutations were thus not 

interpretable (Figure 6). These initial findings show that IN-gRNA binding is conserved across 

retroviruses, and they suggest that so might the  role of IN in virion morphogenesis. Our future 

experiments will focus on more detailed characterization of class II phenotype with other 

retroviruses using a combination of thin section electron microscopy and CLIP to investigate 

how inhibition of IN-gRNA binding affects retroviral morphology.  

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 

	
Figure 6. Autoradiographs (top) showing IN-RNA adducts and Western blots of IN (bottom) in 
MLV, EIAV, MVV, and MMTV 
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3.5 Discussion 

This chapter provides tools and data that can serve as the basis for further studies into how IN-

RNA binding regulates the morphogenesis of HIV-1 and other retroviruses. CLIP not only 

provides a powerful tool to identify whether a protein of interest binds to RNA in physiologically 

relevant settings, but it also permits to identify protein-bound sequences at nearly nucleotide 

resolution. CLIPseq has revealed that HIV-1 IN preferentially binds to AG-rich sequences on the 

genomic RNA packaged inside virions. Furthermore, in vitro binding assays have shown that IN 

has higher binding affinity for AG-rich sequences. Although IN binds to specific sequences of 

the viral genomic RNA with high affinity, we observed that IN can also bind to packaged 

cellular RNAs in the absence of the viral genome. This observation suggests that the binding of 

IN-gRNA is semi specific. The nature of IN-gRNA will not be completely understood until the 

structure of IN-gRNA complexes is available. Over the years, studying the full structure of IN 

has been nearly impossible with traditional protein isolation methods due to the low solubility of 

integrase. We are building immunoprecipitation-based tools to purify IN-RNA complexes from 

virions, and initial findings show that full length IN is isolated with relatively high efficiency. 

The structure of IN complexes purified in such ways can be resolved using cryo-EM through our 

existing collaborations. Over and above that, we show that IN-RNA binding is conserved in 

other retroviruses. Characterizing the structure and properties of IN-gRNA binding and the 

molecular mechanism through they regulate virion morphology will be crucial in designing a 

new class of integrase-targeting antiretroviral agents. 
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4.1 Abstract  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions within 

just a few months causing severe respiratory disease and mortality. Assays to monitor SARS-

CoV-2 growth in vitro depend on time-consuming and costly RNA extraction steps, hampering 

progress in basic research and drug development efforts. Here we developed a simplified 

quantitative real-time PCR (Q-RT-PCR) assay that bypasses viral RNA extraction steps and can 

monitor SARS-CoV-2 growth from a small amount of cell culture supernatants. In addition, we 

show that this approach is easily adaptable to numerous other RNA and DNA viruses. Using this 

assay, we screened the activities of a number of compounds that were predicted to alter SARS-

CoV-2 entry and replication as well as HIV-1-specific drugs in a proof of concept study. We 

found that E64D (inhibitor of endosomal proteases cathepsin B & L) and apilimod (endosomal 

trafficking inhibitor) potently decreased the amount of SARS-CoV-2 RNA in cell culture 

supernatants with minimal cytotoxicity.,Surprisingly, we found that the macropinocytosis 

inhibitor EIPA similarly decreased SARS-CoV-2 RNA levels in supernatants suggesting that 

entry may additionally be mediated by an alternative pathway. HIV-1-specific inhibitors 

nevirapine (an NNRTI), amprenavir (a protease inhibitor), and ALLINI-2 (an allosteric integrase 

inhibitor) modestly inhibited SARS-CoV-2 replication, albeit the IC50 values were much higher 

than that required for HIV-1. Taken together, this simplified assay will expedite basic SARS-

CoV-2 research, be amenable to mid-throughput screening assays (i.e. drugs, CRISPR, siRNA, 

etc.), and be applicable to a broad number of RNA and DNA viruses. 
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4.2 Importance 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the 

COVID-19 pandemic is continuing to cause immense respiratory disease and social and 

economic disruptions. Conventional assays that monitor SARS-CoV-2 growth in cell culture rely 

on costly and time-consuming RNA extraction procedures, hampering progress in basic SARS-

CoV-2 research and development of effective therapeutics. Here we developed a simple 

quantitative real-time-PCR assay to monitor SARS-CoV-2 growth in cell culture supernatants 

that does not necessitate RNA extraction, and is as accurate and sensitive as existing methods. In 

a proof-of-concept screen, we found that E64D, apilimod, EIPA and remdesivir can substantially 

impede SARS-Cov-2 replication providing novel insight into viral entry and replication 

mechanisms. In addition, we show that this approach is easily adaptable to numerous other RNA 

and DNA viruses. This simplified assay will undoubtedly expedite basic SARS-CoV-2 and 

virology research, and be amenable to drug screening platforms to identify therapeutics against 

SARS-CoV-2. 
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4.3 Observation 

Severe acute respiratory syndrome coronavirus, SARS-CoV-2 is continuing to cause substantial 

morbidity and mortality around the globe (1, 2). Lack of a simple assay to monitor virus growth 

is slowing progress basic SARS-CoV-2 research as well as drug discovery. Current methods to 

quantify SARS-CoV-2 growth in cell culture supernatants rely on time-consuming and costly 

RNA extraction protocols followed by quantitative real-time PCR (Q-RT-PCR) (3). In this study, 

we developed a simplified Q-RT-PCR assay that bypasses the RNA extraction steps, can detect 

viral RNA from as little as 5 μL of cell culture supernatants and works equally well with 

TaqMan and SYBR-Green-based detection methods.  

A widely used assay to measure virus growth in the retrovirology field relies on determining the 

activity of virion-associated reverse transcriptase enzyme collected from a small amount of 

infected cell culture supernatants (4). We reasoned that we could adapt this approach to monitor 

SARS-CoV-2 growth. First, we tested whether the more stringent lysis conditions used to 

inactivate SARS-CoV-2 would interfere with the subsequent Q-RT-PCR step. To do so, 5 μL of 

serially diluted RNA standards prepared by in vitro transcription from a plasmid containing the 

entire SARS-CoV-2 nucleoprotein (N) gene were mixed with 5 μL of 2x RNA lysis buffer (2% 

Triton X-100, 50 mM KCl, 100 mM TrisHCl pH7.4, 40% glycerol, 0.4 U/μL of SuperaseIN 

(Life Technologies)), followed by addition of 90 μL of 1X core buffer (5 mM (NH4)2SO4, 20 

mM KCl and 20 mM Tris–HCl pH 8.3). 8.5 μL of the diluted samples were added to 11.5 μL  of 

a reaction mix consisting of 10 μL of a 2x TaqMan RT-PCR mix, 0.5 μL of a 40x Taqman RT 

enzyme mix (containing ArrayScript™ UP Reverse Transcriptase, RNase Inhibitor), and 1 μL of 

a mixture containing 10 pmoles of forward and reverse primers as well as 2 pmoles of Taqman 

Probe Table S1)  resulting in a final reaction volume of 20 μL. The reactions were run on the 
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ViiA™ 7 Real-Time PCR system (Applied Biosystems) using the following cycling parameters: 

48 oC for 15 min, 95oC for 10 min, 50 cycles of 95oC for 15 sec and 60oC for 1 min of signal 

acquisition. We found that the modified sample preparations did not impact the sensitivity, 

efficiency or the dynamic range of the Q-RT-PCR assay as evident in the virtually identical cycle 

threshold (Ct) values obtained for a given RNA concentration and the similar slopes of linear 

regression curves (Fig. 1A).  

To determine whether this approach would work equally well for virus preparations, 100 μL of 

virus stock (1.4x105 pfu) was lysed via the addition of an equal volume of buffer containing 40 

mM TrisHCl, 300 mM NaCl, 10 mM MgCl2, 2% Triton X-100, 2 mM DTT, 0.4 U/µL 

SuperaseIN RNase Inhibitor, 0.2% NP-40. RNA was then extracted using the Zymo RNA clean 

and concentratorTM-5 kit and was serially diluted afterwards. In parallel, 5 μL of virus stock and 

its serial dilutions prepared in cell culture media were lysed in 2X RNA lysis buffer and 

processed as above. Samples were analyzed by Q-RT-PCR alongside with RNA standards. A 

standard curve was constructed by plotting the cycle threshold (Ct) value against the 

corresponding log2(copy number) of the RNA standards, which was subsequently used to 

determine copy numbers in samples. We then calculated the number of copies per milliliter of 

the original virus stock, assuming 100% recovery for samples subjected to RNA extraction. We 

found that the modified assay performed equivalently well, if not better, with a similarly broad 

dynamic range (Fig. 1B).  

We next used this assay to monitor virus growth on infected Vero cells. Cell culture supernatants 

containing virus collected at various times post infection were either used to extract viral RNA or 

subjected to Q-RT-PCR directly (non-extracted) as above. The modified assay with non-

extracted samples yielded virtually identical number of copies/mL of SARS-CoV-2 RNA in cell 
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culture supernatants even at low concentrations of viral RNAs (Fig. 1C). Collectively, these 

results suggest that RNA extraction from cell culture supernatants can be bypassed without any 

compromise on the sensitivity or the dynamic range of Q-RT-PCR detection. 

Next, we wanted to test whether this assay could work equally well with SYBR-Green-based 

detection methods. In addition to the N primer pair used in the above TaqMan-based assays, we 

utilized the N2 primer set designed by CDC and targeting the N region of the SARS-CoV-2 

genome (Table S1). Serially diluted RNA standards were processed in RNA lysis and core 

buffers, and 7.5 uL of each dilution was used in a 20 uL SYBR-Green Q-RT-PCR reaction 

containing 10μL of a 2X POWERUP SYBR Green mix (Life Technologies ref: A25742), 

1.25units/ μL  of  MultiScribe Reverse Transcriptase (Applied Biosystems), 1X random primers 

and 25 pmoles of forward and reverse primers. Both primer pairs yielded reasonably broad 

dynamic ranges, but were modestly less sensitive than TaqMan-based assays with a detection 

limit of ~3500 RNA copies/mL (Fig. 1D).  

We next tested whether this simplified Q-RT-PCR assay can be adapted to other RNA and DNA 

viruses.  Dilutions of stocks of influenza A virus (IAV/PR8), herpes simplex virus type-2 (HSV-

2), alphaviruses (Ross River virus (RRV), Chikungunya virus (CHIKV), Mayorovirus (MAYV)) 

and flaviviruses (Dengue virus (DENV-4), West Nile virus (WNV NY99) and Zikavirus (ZIKV-

Dakar)) collected from cell culture supernatants were either subjected to RNA/DNA extraction 

or the simplified lysis protocol as above followed by SYBR-Green or Taqman-based Q-RT-PCR 

with the indicated primers (Table S1). For HSV-2, the reaction mixture did not include the 

reverse transcription enzyme and the initial reverse transcription step was skipped. We found that 

for IAV (Fig. 1E), HSV-2 (Fig. 1F) and RRV (Fig. 1G), the non-extracted samples worked 

equally well, and for CHIKV non-extracted samples gave lower Ct values across various virus 
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dilutions (Fig. 1H). For MAYV the dynamic range obtained from non-extracted samples was low 

compared to extracted samples (Fig. 1I), likely due to the incompatibility between lysis and PCR 

conditions. Although the Ct values were generally higher for non-extracted samples of ZIKV 

(Fig. 1J), WNV (Fig. 1K) and DENV (Fig. 1L), the dynamic range was still broad with similar 

PCR efficiencies between extracted and non-extracted samples. Taken together, these results 

demonstrate that the simplified Q-RT-PCR developed here can in principle be easily adapted to a 

large number of viruses provided that the lysis conditions are appropriate and working primer 

sets are present.  

One immediate application of this simplified assay is in mid-throughput drug screening 

platforms (i.e. compound, CRISPR, siRNA screens) given the ease of quantitatively assessing 

viral growth from small quantities of cell culture media containing virions. To demonstrate this, 

we next conducted a proof-of-concept drug screen to validate the antiviral activities of various 

compounds that have been reported to inhibit SARS-CoV-2 and HIV-1 replication as well as 

non-specific entry inhibitors (Table S2). Vero E6 cells plated in 96-well plates were infected in 

the presence of varying concentrations of the indicated compounds. Viral RNA in cell culture 

supernatants was quantified by the SYBR-Green-based Q-RT-PCR assay as above at 6, 24 and 

48 hpi. Compound cytotoxicity was assessed in parallel by the RealTime-Glo™ MT Cell 

Viability Assay (Promega). While viral RNA was at background levels at 6 hpi (data not shown), 

we found that, at 24hpi, remdesivir (inhibitor of RNA-dependent RNA polymerase, (5)), E64D 

(inhibitor of the endosomal protease cathepsin B, K and L), and apilimod (PIKfyve inhibitor 

resulting in endosomal trafficking defects, (6, 7)) substantially decreased SARS-CoV-2 viral 

RNAs in supernatants (Fig. 2). IC50 values of these compounds (2.8 μg/mL (remdesivir), 3.3 μM 

(E64D) and 12nM (apilimod)) were within the same range of published IC50 values of these 
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compounds (6-8) (Fig. 2).  Similar results were obtained at 48 hpi, albeit E64D and apilimod 

appeared to be less potent at this time point either due to virus overgrowth or compound turnover 

(data not shown). We found that EIPA, which inhibits Na+/H+ exchanger and macropinocytosis, 

substantially decreased viral RNA in supernatants at sub-cytotoxic levels (Fig. 2D), suggesting 

that macropinocytosis may contribute to viral entry and/or subsequent steps in virus replication. 

HIV-1 specific inhibitors nevirapine, amprenavir and ALLINI-2 modestly inhibited SARS-CoV-

2 replication without apparent cytotoxicity at high concentrations, albeit the concentrations 

required for this inhibition were much higher than those that inhibit HIV-1 (Fig. S1). Overall, 

these findings demonstrate that this simplified assay can be adapted for screening platforms and 

support previous reports which demonstrated that SARS-CoV-2 entry is dependent on processing 

of the Spike protein by cellular proteases and requires endosomal fusion (7, 9, 10). 

 In conclusion, we have developed a simple Q-RT-PCR assay to monitor the growth of 

SARS-CoV-2 as well as other viruses from cell culture supernatants, bypassing the time 

consuming and costly RNA extraction procedures. This simplified assay will undoubtedly 

expedite basic SARS-CoV-2 research, might be amenable to mid-throughput screens to identify 

chemical inhibitors of SARS-CoV-2 and can be applicable to the study of numerous other RNA 

and DNA viruses. 
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Figure 1. Development of a simplified Q-RT-PCR assay for SARS-CoV-2 viral RNA detection in cell 
culture supernatants. A. Serially diluted RNA standards were either directly subjected to Q-RT-PCR or 
processed as in the modified protocol detailed in the text prior to Q-RT-PCR. Log2 (copies) are plotted 
against the cycle threshold (Ct) values. Linear regression analysis was done to obtain the equations. Data 
show the average of three independent biological replicates. Error bars show the SEM. B. Comparison of 
the efficiency and detection ranges for quantifying SARS-CoV-2 RNA using purified RNA or lysed 
supernatants from virus stocks. Data are derived from three independent replicates. Error bars show the 
SEM. C. Vero E6 cells were infected at an MOI of 0.01 and cell culture supernatants were analyzed for 
SARS-CoV-2 RNA following the conventional RNA extraction protocol vs. the modified protocol 
developed herein at various times post infection. Cell-associated viral RNA was analyzed in parallel 
following RNA extraction for reference. Data are from three independent biological replicates. Error bars 
show the SEM. D. Illustration of the efficiency and detection ranges of Taqman-based and SYBR-Green-
based Q-RT-PCR quantifying known amounts of SARS-CoV-2 RNA. Data is from 2-3 independent 
replicates. Error bars show the SEM. E-L. Indicated viruses were subjected to RNA or DNA extraction 
(extracted) and diluted 10-fold, or used directly following dilution (non-extracted) in the SYBR-Green E-
I. or Taqman-based (J-L) Q-RT-PCR assay as above. Samples were normalized such that equivalent 
amount of the original virus stock was added to PCR reactions for extracted and non-extracted samples. 
Plots show the corresponding cycle threshold (Ct, y-axis) per virus dilution (x-axis). Data are from two 
independent replicates with error bars showing the SEM. 
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Fig 2. A compound screen to validate SARS-CoV-2-specific inhibitors and entry pathways. Vero E6 
cells were infected with SARS-CoV-2 at an MOI of 0.01 and inhibitors were added concomitantly at 
concentrations shown in the figures following virus adsorption. Supernatants from infected cells were lysed 
and used in a SYBR-Green based Q-RT PCR to quantify the viral RNA in cell culture supernatants. 
Compound cytotoxicity was monitored by RealTime-Glo™ MT Cell Viability Assay Kit (Promega) in 
parallel plates. Data show the cumulative data from 2-5 independent biological replicates. Error bars show 
the SEM. 
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Fig S1. A screen to test the antiviral activities of various HIV-1-specific inhibitors. Vero E6 cells were 
infected with SARS-CoV-2 at an MOI of 0.01 and inhibitors were added concomitantly at concentrations 
shown in the figures following virus adsorption. Supernatants from infected cells were lysed and used in a 
SYBR-Green based Q-RT PCR to quantify the viral RNA in cell culture supernatants. Compound 
cytotoxicity was monitored by RealTime-Glo™ MT Cell Viability Assay Kit (Promega) in parallel plates. 
Data show the cumulative data from 2-3 independent biological replicates. Error bars show the SEM. 
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Table S1. Sequences of the primers and probes used in this study 

Virus (Gene) Primer/Probe Sequence (Forward/Reverse) 
SARS-CoV-2 (N)  5’-ATGCTGCAATCGTGCTACAA-3’ (F) 
SARS-CoV-2 (N) 5’-GACTGCCGCCTCTGCTC-3’  (R) 
SARS-Cov-2 (N) 5’-FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3IABkFQ/ 
SARS-CoV-2 (N2)  5’-TTACAAACATTGGCCGCAAA-3’  (F) 
SARS-CoV-2 (N2) 5’-GCGCGACATTCCGAAGAA-3’  (R) 
IAV A/PR8/34 (M)  5’-AAGACCAATCCTGTCACCTCTGA-3’  (F) 
IAV A/PR8/34 (M)  5’-CAAAGCGTCTACGCTGCAGTCC-3’  (R) 
HSV-2 (ICP27) 5’-TGT CGG AGA TCG ACT ACA CG-3’  (F) 
HSV-2 (ICP27) 5’-CGGTGCGTGTCCAGTATTTC-3’  (R) 
 CHIKV (E1)   5’-TCGACGCGCCCTCTTTAA-3’  (F) 
CHIKV (E1)  5’-ATCGAATGCACCGCACAC T-3’  (R) 
RRV (nsP3) 5’-GTGTTCTCCGGAGGTAAAGATAG-3’  (F) 
RRV (nsP3) 5’-TCGCGGCAATAGATGACTAC-3’  (R) 
MAYV (nsp1-3) 5’-AAGCTCTTCCTCTGCATTGC-3’  (F) 
MAYV (nsp1-3) 5’-TGCTGGAAACGCTCTCTGTA-3’  (R) 
ZIKV-Dakar  (pp) 5’-TTCGGACAGCCGTTGTCCAACACAAG-3’  (F) 
ZIKV-Dakar  (pp)  5’-CCACCAATGTTCTCTTGCAGACATATTG-3’  (R) 
ZIKV-Dakar  (pp) 5’-FAM/AGCCTACCT/ZEN/TGACAAGCAGTC/3IABkFQ/ 
WNV-NY99 (pp) 5’-TCAGCGATCTCTCCACCAAAG-3’  (F) 
WNV-NY99 (pp) 5’-GGGTCAGCACGTTTGTCATTG-3’  (R) 
WNV-NY99 (pp) 5’-FAM/TGCCCGACC/ZEN/ATGGGAGAAGCTC/3IABkFQ/ 
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Table S2. Sources and properties of the compounds used in this study. 

Compound 
name 

Source Function Reference 

Camostat 
mesylate 

Tocris Bioscience TMPRSS2 inhibitor (9), (10) 

Bafilomycin A Sigma Aldrich Inhibits receptor mediated 
endocytosis 

(7) 
 

Apilimod A gift of Sean 
Whelan 

Inhibits PIKfyve kinase and 
endosomal trafficking 

(6, 7) 

E64D Sigma Aldrich Inhibits cathepsins B and L (7) 
 

EIPA Sigma Aldrich Inhibits macropinocytosis (11) 
Dynasore Sigma Aldrich inhibits dymanin and clathrin-

mediated endocytosis 
(11) 
 

Latrunculin B Sigma Aldrich Inhibits actin polymerization  
Remdesivir A gift of Gaya 

Amarasinghe 
RNA-dependent RNA polymerase (5) 

Compound 1 Custom synthesis Inhibits HIV-1 capsid stability (12, 13) 
 

Nevirapine NIH AIDS 
Reagents 

HIV-1 non-nucleoside reverse 
transcriptase inhibitor (NNRTI) 

(14) 
 

Azidothymidine 
(AZT) 

NIH AIDS 
Reagents 

HIV-1 nucleoside reverse 
transcriptase inhibitor (NRTI) 

(15, 16) 

Raltegravir NIH AIDS 
Reagents 

Integrase strand transfer inhibitor (17) 

ALLINI-2 Custom synthesis Allosteric integrase inhibitor (18) 
BI-D Custom synthesis Allosteric integrase inhibitor (19) 
Amprenavir NIH AIDS 

Reagents 
HIV-1 protease inhibitor (20) 
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5.1 Summary  

This thesis dissertation presents the findings of several studies on the molecular mechanisms that 

regulate the binding between integrase and the viral genomic RNA in HIV-1 and other 

retroviruses. The second chapter of the dissertation elaborates the findings that integrase binding 

to RNA is mediated by electrostatic interactions. The third chapter provides evidence from CLIP 

showing that integrase has higher binding affinity to purine-rich sequences of RNA and the 

binding is conserved in different retrovirus genera. The fourth chapter demonstrates an assay that 

we have developed at the dawn of the COVID-19 pandemic and its use in screening new 

antiviral agents against the SARS-Cov-2 virus. Altogether, these studies illustrate the molecular 

properties underlying integrase-RNA binding and its role in HIV-1 virion morphogenesis. 

Furthermore, we illustrate how our methods can be used to study different viruses and applied in 

fighting future pandemics.  

 

HIV-1 integrase binding to the genomic RNA is mediated by electrostatic interactions 

The human immunodeficiency virus type 1 (HIV-1) is a retrovirus that has been responsible for 

millions of deaths over the course of the AIDS pandemic (1, 2). HIV-1 contains two copies of 

single stranded genomic RNA (gRNA) that surrounded conical capsid lattice as part of the viral 

ribonucleoprotein complex (vRNP), altogether they form the viral core (1, 3, 4). Similarly to 

other retroviruses, the gRNA of HIV-1 is reverse transcribed by the viral reverse transcriptase 

enzyme in infected cells (5). The viral DNA is then integrated into the host chromosome in a 

reaction catalyzed by the viral enzyme integrase (5). Some of the most efficient anti-HIV-1 

therapies target this catalytic role of integrase (6, 7); these IN-targeting compounds, known as 
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integrase strand-transfer inhibitors (INSTIs), have been essential components of anti-retroviral 

regimens (7-14).   

Over the years, there has been multiple lines of evidence which suggested that IN plays a 

role in the maturation of viral particle maturation. A group of pleotropic mutations, known as 

class II IN mutations, causes defects in virion assembly (15-28) and morphogenesis (17, 18, 24-

26, 29-31) without affecting the catalytic activity of IN in vitro studies. Furthermore, virions 

produced from cells treated with allosteric integrase inhibitors (ALLINIs) showed a similar 

characteristic eccentric morphological defect where the vRNP is mislocalized outside the capsid 

lattice (29, 30, 32). In a groundbreaking study done by our lab and collaborators, it was shown 

that IN binds to gRNA in mature virions, blocking IN-gRNA binding by either ALLINIs or class 

II IN mutations caused formation of eccentric virion particles (31, 33, 34). ALLINIs and most 

class II mutations blocked IN-gRNA binding by disrupting proper IN multimerization (33, 35, 

36).  

The R262, R263, R269 and the K273 are directly involved in the binding of IN to gRNA, 

their mutations (R269A/K273A and R262A/R263A) inhibit IN-gRNA binding without affecting 

IN multimerization (33). To understand how these residues mediate IN-gRNA, we isolated 

secondary site suppressor mutations of the R269A/K273A mutation in an evolution-style serial 

passaging experiment. By acquisition of additional D256N and D270N mutations, the 

R269A/K273A class II mutant virus regained the ability of IN to bind gRNA and led to 

formation of mature virion particles. Moreover, other mutations, such as D256R or D256K, that 

restored the overall positive electrostatic charge of the IN CTD could restore IN-gRNA binding 

and infectivity for the R269A/K273A and the R262A/R263A class II IN mutants. None of these 

compensatory mutations affected the functional multimerization of IN, which suggests that they 
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directly contribute to the binding of IN to gRNA. HIV-1 IN R269A/K273A viruses bearing the 

compensatory mutations were more sensitive to ALLINIs in comparison to WT viruses, 

providing the first key genetic evidence that specific IN residues required for RNA binding also 

influence ALLINI activity. Supplementary structural modeling provides more insights into the 

molecular dynamics underlying IN-gRNA binding and the ALLINI mechanism of action. 

Altogether, this project elucidated the role of electrostatic interactions in IN-gRNA binding and 

how such a property affects virus susceptivity to ALLINIs. 

Molecular characterization of IN-RNA binding in HIV-1 and its conservation in 

retroviruses 

Prior studies have used CLIPseq to show that IN binds to genomic RNA in mature virions, and 

that the binding is essential for the replication of HIV-1 viruses in target cells (31, 33, 37). These 

studies showed that IN has high binding affinity for structured RNA elements of the HIV-1 

genome such TAR (31). Using a modified CLIP approach and in vitro studies, we showed that 

IN also has high affinity for purine-rich sequences, a characteristic feature of the HIV-1 genome. 

In addition, we showed that IN could bind to packaged cellular RNAs in the absence of the viral 

genome.  

 

Although, virion morphologies are different from one retrovirus to another, the 

maturation process is generally conserved (38-42). We have examined whether the IN-RNA 

binding is conserved in other retroviruses and whether its role in virion maturation is conserved. 

Our preliminary findings demonstrates that IN-gRNA binding is conserved in retroviruses such 

as MLV, EIAV, MMTV, and MVV. Moreover, this binding can also be blocked by mutations 

that are similar to HIV-1 class II mutations. In our future studies, we will examine how IN-
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gRNA binding or the lack of it affects the maturation and morphologies of different retroviruses 

by using electron microscopy, CLIP and other biochemical approaches as previously described 

(33). Furthermore, we will investigate what gRNA sequences are bound by IN and whether 

ALLINIs can block IN-gRNA binding in such retroviruses.  

 

Altogether, our studies have improved our understanding of the molecular aspects of IN-

gRNA binding and how they can be targeted by the new generation of IN-targeting antiretroviral 

agents.  In addition, we propose a series of experiments that would reveal key details of IN-

gRNA complex structure. Finally, we have shown how our tools could be modified and deployed 

to study and screen new inhibitors of the SARS-CoV-2 virus during the COVID-19 pandemic.  

4.2 Future Studies 

Temporal assessment of IN-RNA interaction during virion morphogenesis 

After transcription and translation of viral RNAs in the host cells, viral structural proteins and 

enzymes are part of two polyproteins, Gag and Gag-Pol (43-47). Gag and Gag-Pol are assembled 

and released from the cell as part of immature virions, which later mature into virions where the 

vRNP is enclosed a capsid lattice (48, 49). Understanding when IN binds to gRNA during this 

process of virion morphogenesis would help understand how the encapsidation of the vRNP is 

coordinated by IN and other gRNA-binding proteins such as NC.  

 To analyze whether IN-gRNA binding is initiated in producer cells or immature virions, 

we will use an in-vitro PR cleavage assay to separate IN from the rest of Gag-Pol polyprotein. 

We have previously developed a similar in vitro assay to study the cleavage of the host CARD8 

protein by HIV-1 PR (50). Briefly, HEK293T cells will be transfected with proviral plasmids encoding 

a catalytically inactive protease (PR-). Two days post transfection, cells and released immature virions 
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will be UV-crosslinked as detailed in the CLIP protocol (51), then lysed and treated with recombinant 

HIV-1 PR (available from NIH AIDS reagents) to cleave IN from Gag-Pol. The released IN protein will 

then be immunoprecipitated and the γ-P32-ATP labelled RNA complexes will be analyzed for binding to 

IN by autoradiography. Further sequencing could reveal the sequences that are bound by IN prior to 

virion maturation. 

 

Isolation and structural characterization of integrase-RNA complexes 

HIV IN has three domains: N-terminal dimerization domain (NTD) that has a conserved HCCH 

Zn+ binding motif, an RNase H-like catalytic core domain (CCD), and a C-terminal domain that 

aids in DNA binding (18, 52-55). The IN protein has been virtually impossible to crystallize by 

standard structural biology techniques due to its low solubility (54, 56-59). Nonetheless, each of 

the IN domains has been purified, crystallized and characterized individually, in complex with 

other proteins, or as double domain partial structure; but never in complex with RNA (18, 54, 55, 

58). However, crystallization of the full-length HIV-1 IN structure has been elusive and none of 

the HIV-1 double-domain partial structures has been crystallized together with DNA or RNA 

(60). The absence of the integrase-viral RNA structure is not just an obstacle for understanding 

the key role of integrase at virion morphogenesis, but it is also a challenge in the development of 

new integrase-inhibitors.  

 

We are developing a biochemical method that could isolate full-domain integrase with bound 

RNA. This assay is based on immunoprecipitation of IN-gRNA complexes; full length IN and 

bound viral RNA have previously been immunoprecipitated in CLIP assays (31, 33, 37). The 

production and isolation IN-gRNA complexes is done in three steps: 1) Virion production, 2) 
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Separation of the viral core on sucrose density gradients, and 3) isolation of IN-gRNA 

complexes by immunoprecipitation.  

 

1. Virion Production: HIV-1 virions are produced by transfecting 7 million HEK293T with 

30µg of HIV-1 pNL4-3 plasmids. Two days after transfection, virions are concentrated 

by ultracentrifugation at 28000rpm for 90 minutes on an SW32Ti rotor. The virions can 

then be resuspended and lysed in 500uL of 1XPBS containing 0.5% Triton-X.  

2. Separation of virion components by sucrose density sedimentation: In mature HIV-1 

virions, IN-gRNA complexes are surrounded by the capsid lattice as part of the vRNP 

and viral core (61, 62). Being surrounded by the capsid lattice, components of the viral 

core (RT, MA, CA, and IN) move together to denser fractions during density 

sedimentation (33, 63, 64). Some capsid mutations (K203A and P38A) destabilize the 

capsid and lead to the mislocalization of IN-gRNA complexes and other viral core 

outside of the capsid lattice (63-65). During density sedimentation, the CA,  MA, and RT 

of such mutant viruses migrated separately from IN-gRNA complexes (Figure 1A,B).   

3. Isolation of IN-gRNA complexes by immunoprecipitation: Following density 

sedimentation, the fractions containing IN-RNA complexes (7-10) are combined (Figure 

1C) and Triton is added to a final concentration of 0.5% to aid in immunoprecipitation. 

Furthermore, RNase A can be added to fragment RNA that is attached to the integrase. 

IN complexes are then immunoprecipitated using 40µL of Protein G Dynabeads® (Life 

Technologies) conjugated with a monoclonal anti-integrase mouse antibody. Following 

immunoprecipitation, the beads are washed three times with 1XSTE (100 mM NaCl, 10 

mM Tris-Cl (pH 8.0) to remove any contaminating proteins in complex with IN. 
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Immunoblotting (Figure 1C) shows that a vast majority of integrase was 

immunoprecipitated using the above approach, proving the efficiency of 

immunoprecipitation technique. 

	
Figure 1. Isolation of IN-RNA complexes. Components of envelope-stripped virions were 
separated by density segmentation on a linear sucrose gradient. A, B. Migration of Capsid, Matrix, 
and RT as seen in the fraction1-10 (top-bottom). C. Collective IN in fraction 7-10 (top), and 
immunoprecipitated integrase from fractions 7-10 compared to integrase left in the IP solution 
(Unbound)(bottom). D. Immunoprecipitated integrase was separated 
from the IP antibody using immobilized Papain (top left) and Negative staining images of 
integrase complexes eluted from papain beads. 
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To serve as specimen for cryo-EM, the majority of the immunoprecipitated integrase had to be 

removed from the immunoprecipitated beads. Immobilized papain© (Thermo Fisher Scientific 

Inc 20341) fragments apart the Fc and Fab regions of most IgG antibodies and it was used to 

release IN from the IP antibody. Papain was activated in a reaction buffer containing 20mM 

sodium phosphate, 10mM EDTA, 20mM cysteine.HCl; pH 7.0. Cleavage by papain was done in 

a thermomixer at 370C 800rpm overnight. Papain cleaved the majority of integrase away from 

the antibody (Figure 1D). Diagnostic negative staining was done for initial inquiries on whether 

the purified complexes were the size of integrase or met the quantity. Negative staining showed 

that there was a good yield of IN complexes (Figure 1D). RNAseA did not seem to alter the size 

of the complexes (Fig. 1D); however, P38A particles generated slightly smaller and more 

uniform complexes, which are more suitable for mass spectrometry and Cryo EM (Figure 1D). 

Future experiments will make a definitive confirmation on whether the complexes observed by 

negative staining were integrase complexes by using mass spectrometry. The structure of these 

complexes will then be studied by small-particle cryo-EM using facilities at the Washington 

University School of Medicine. 
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