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Predicting variation in complex traits from DNA sequence is a major public health goal, 

but our understanding of the genotype-to-phenotype relationship is incomplete. It will remain so 

unless we can adequately integrate genetic, epigenetic, and environmental information into a 

systems level framework. In a step towards that goal, quantitative trait mapping studies have 

attempted to account for environmental factors such as sex and diet, and epigenetic factors such as 

allelic parent-of-origin effects. Several studies used an advanced intercross of the LG/J and SM/J 

inbred mouse strains to unravel the genetic architecture of multiple metabolic traits. These studies 

found that parent-of-origin effects are surprisingly common, and that they can be mediated by the 

environment. This indicates that our ability to predict variation in metabolic phenotypes from 

genotype alone will be confounded unless environment and allelic parent-of-origin is considered. 

In this thesis, I explore mechanisms that could explain the prevalence of parent-of-origin effects 

on metabolic variation and develop tools to predict these effects more generally. 
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I test the hypothesis that genetic effects can propagate through molecular pathways. I 

propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits 

through interactions with imprinted genes.  I employ data from mouse populations at different 

levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse strains to test this 

hypothesis.  Using multiple populations and incorporating genetic, genomic, and physiological 

data, I leverage orthogonal evidence to identify networks of genes through which parent-of-origin 

effects propagate. I identify a network comprising 3 imprinted and 6 non-imprinted genes that 

show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and 

the genes comprising it jointly serve cellular functions associated with growth. 

While epistatic interactions can explain some of the overabundance of parent-of-origin 

effects on metabolic traits, other biological explanations for these effects should be explored. 

Towards this end, I developed a generalized framework for modeling how genetic effects on 

expression might propagate through a network. I demonstrate that this method detects signatures 

of pathway structure and produces highly interpretable and actionable candidates for subsequent 

experimentation. This work lays the foundation for future studies of not only parent-of-origin 

effects but also other genetic phenomena that can extend to human studies.
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Chapter 1: Background and Introduction 
 

1.1 What is a Parent-of-Origin-Effect? 
Parent-of-Origin effects (POE) are epigenetic phenomena in which genetically identical 

individuals differing only in allelic parent-of-origin are phenotypically different1. At a given 

autosomal locus, there are four genotypic classes given two possible alleles, L and S {LL, LS, SL, 

SS}. By convention, alleles are ordered with the maternal allele followed by the paternal allele. 

An LS genotype indicates the L allele was inherited maternally and the S allele was inherited 

paternally. For a given trait associated with some locus when the two heterozygote classes {LS, 

SL} have unequal genotypic means (mean phenotype for a given genotype), there is a parent-of-

origin effect. 

As geneticists we want to predict phenotype from genotype, but the genotype-to-phenotype 

relationship is immensely complex. Parent-of-origin effects, which are not usually considered, add 

a critical layer to this problem. Parent-of-origin effects can manifest as complex phenotypic 

patterns. We group these patterns into two broad groups: parental expression patterns (Figure 1.1 

A-B) and dominance patterns (Figure 1.1 C-E). Parental expression occurs when progeny take on 

the phenotypic value of one the parents {paternal expression and maternal expression}. For 

example, maternal expression occurs when progeny take on the maternal phenotype regardless of 

the paternal phenotype (Figure 1.1 A). Dominance patterns are more complex and come in three 

forms: polar over-dominance, polar under-dominance, and bipolar dominance. Polar over-

dominance occurs when one heterozygous genotypic class has a larger genotypic mean then all 

other classes, with the other classes having equal phenotypic values (Figure 1.1. C). Similarly, 
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polar under-dominance occurs when one of the heterozygotes has a lower genotypic mean than all 

other classes (Figure 1.1. D). Lastly, bipolar dominance occurs when one heterozygote has a larger 

genotypic mean than the mean phenotype across classes and the reciprocal heterozygote has a 

smaller genotypic mean than the mean phenotype across all classes (Figure 1.1 E). 

 

Figure 1.1. Patterns of parent-of-origin dependent phenotypic (expression) variation. Four 

genotypic classes are shown composed of two alleles {L,S}. These phenomena are classified as 

parental expression (A & B) and dominance (C, D, & E). 

 

1.1.1 Parental Genetic Effects, Random Mono-allelic Expression, and X-

inactivation 

Other phenomena can produce differences in genotypic means between reciprocal heterozygotes 

but are not considered true parent-of-origin effects. Parental effects can be defined as the influence 

of parental phenotype on offspring phenotype 2. Parental effects can be thought of as a kind of 

environmental effect where the parental phenotype shapes the individual’s ‘environment’, which 

influences the offspring’s phenotype. For example, a mother’s nursing behavior dictates the 

nutritional environment of the offspring which clearly effects the offspring’s phenotype. This is a 

maternal effect, because the mother shapes the ‘environment’ of the offspring and alters its 

phenotype through said ‘environment’. Parental effects can be indirect, such as nesting site choice. 

They can also be direct, such as mRNA pre-loaded into unfertilized eggs 3 or tRNA fragments pre-

loaded into sperm 4. Pre-loaded RNAs shape the early cellular ‘environment’ which directly alters 
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an offspring’s phenotype. With parental effects, the parent’s genotype determines its phenotype 

which shapes the offspring’s environment in turn affecting the offspring’s phenotype.  

In an individual cell level both alleles are usually expressed, but as transcription is a 

stochastic process, expression of only one allele occurs at random. This phenomenon is known as 

random mono-allelic expression (RMAE). If one were to look at a small number of cells, RMAE 

could lead to detection of a false Parent-of-origin effect. Sufficient tissue sample size is therefore 

essential to avoiding these artifacts 5. 

X-inactivation is a related epigenetic phenomenon in females where one of the X 

chromosome copies is silenced. This occurs during early development. In placental mammals, 

which parental copy is silenced is random 6 and is therefore a special case of RMAE and not a 

Parent-of-origin effect. 

1.1.2 Known Parent-of-origin effect Machinery 

Which parent an allele came from affects the phenotype that allele produces, but what sort 

of phenotypes are involved and how does that modification occur? The phenotype in question can 

be at any biological level, including total gene expression, individual allele expression, and gross 

phenotype. Quantitative genetics tends to deal with gross phenotypes. Molecular genetics tends to 

deal with the expression of individual alleles, which is the most studied level of Parent-of-origin 

effect. In an individual cell, both alleles are normally transcribed equally, so there is an 

approximately 50:50 mixtures of transcripts of the two alleles. This is referred to as biallelic 

expression. When one allele is more highly expressed than the other you have allele-specific 

expression (ASE). When an alleles’ expression is affected by which parent it came from, leading 

to unequal expression of alleles within an individual, that is a parent-of-origin effect (for example, 

10:90 - ♂:♀). Specifically, this is referred to as parent-of-origin-dependent ASE. This is different 
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from “ancestry” or sequence-dependent ASE, where alleles are unequally expressed based on the 

actual identity of the allele (for example, 10:90 - L:S). Genomic imprinting is a special case of 

ASE where the functional non-equivalence of parental alleles comes from nearly complete 

silencing of one parent’s allele. Genomic imprinting is by far the best understood mechanism 

underlying parent-of-origin effects 7. Genomic imprinting has been observed in therian mammals, 

plants, insects, and filamentous fungi 8–10, where it is plays an important role in the manifestation 

of complex traits.  

The exact mechanisms of genomic imprinting are complex. Imprinted loci must be 

individually evaluated, but there are some common trends. Firstly, genomic imprinting tends to 

occur in clusters. Clusters range in size between 80 kb and 3700 kb in size, containing three to 12 

imprinted genes. In mice it is estimated there are between 100 and 600 imprinted genes. To date 

219 11,12 imprinted genes have been identified and mapped to 17 chromosomes, of which 80% are 

clustered into 16 genomic regions13,14. Of those 16 imprinted regions, seven {Igf2r, KcnqI, Pws, 

Gnas, Grb10, Igf2, Dlk1} are well-characterized. The clustering of imprinted genes hints at some 

shared regulation. Shared genomic features have been found to control genomic imprinting. Such 

genomic features are called imprinting control elements (ICE). In all the well-characterized cases, 

ICE are differentially methylated regions (DMR)15. So far 26 DMR involved in genomic 

imprinting have been positively identified. Another commonality of imprinting clusters is that they 

always have one or more long non-coding RNA (lncRNA). Along with other noncoding RNAs, 

lncRNAs can induce chromatin remodeling16,17 to repress expression of their “targets”. At such 

loci, protein-coding genes tend to be expressed from one parental chromosome and the other 

parental chromosome tends to only the express lncRNAs. Interestingly, when the ICE is deleted 

from one parental chromosome, imprinting is lost only when the deletion occurs on the parental 
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chromosome expressing the lncRNA14,18–21. This supports the idea that lncRNAs are acting in cis 

to repress expression of protein-coding genes. 

Despite how few known imprinted genes and even fewer characterized DMRs there are, a 

significant excess of parent-of-origin effects have been observed in mapping studies22–25. While 

only about 1% of genes are believed to be imprinted, in these studies 65% of quantitative trait loci 

(QTL) associated with variation in metabolic traits showed significant parent-of-origin effects in 

some sex or dietary context. Canonical imprinting mechanisms are not sufficient to explain these 

phenomena at the phenotypic level. 

1.1.3 Detecting parent-of-origin effects 

There are various ways to detect parent-of-origin effects, depending upon what biological 

level one is interested in. Methodologies have been developed to evaluate parent-of-origin effects 

with respect to ASE, total gene expression, gross phenotype, and epigenetic marks/ states. Parent-

of-origin effects at the allele specific expression level can be detected by sequencing (next 

generation, pyrosequencing) 5,11,26–29. At the gross phenotypic level QTL mapping or some method 

of variance partitioning is employed22–25,30–32. Parent-of-origin effects at the level of epigenetic 

marks (i.e. DMR) are detected for either methylation patterns or differences in chromatin. Allele-

specific methylation is detected using bisulfite sequencing (for example, wgbs, targeted-bs)33–35. 

1.1.4 The evolution of parent-of-origin effects 

The evolutionary origins for parent-of-origin effects (namely genomic imprinting) are of 

course unknown, but the best explanation is a combination of the “maternal-offspring co-

adaption”, “kinship”, and “sexual antagonism” theories 11,36–38. The consensus of these theories is 

that genomic imprinting evolved to improve specific matri-/patri-lineal fitness. In a system in 

which resources are limited and multi-paternity litters/communities exist, the management of 
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nutrient allocation/energy has opposing fitness consequences for parents. A mother’s fitness is 

maximized by having many offspring with a variety of healthy males and for those offspring to 

share resources amongst themselves. Limited growth, equal distribution of resources, and effective 

warmth sharing amongst littermates (maternal relatives) improves the mothers fitness. Variants 

promoting those traits passed along the matriline improve the fitness of maternal relatives. Father’s 

benefit from larger offspring that soak up resources. Since a litter can have a mixture of fathers, a 

father’s fitness is improved if he passes variants that benefit only those in his patriline (including 

his children). In this way father’s benefit from passing on pro-growth variants, if the litter is only 

made up of his offspring, then no individual soaks up resources more than any other, so nutrients 

get allocated evenly. If on the other hand, some offspring have a different father with a weaker 

pro-growth variant, then the offspring with the stronger variant will consume more resources than 

those with the weaker variant. As a result, any offspring that inherited the stronger variant from 

their father will have a head start, which improves that father’s fitness. In this way there is a conflict 

between the fathers of a litter. Because the mother’s fitness is improved by equal resource sharing 

(all the offspring are her kin), it creates a conflict of sorts between the mother and the fathers. 

Mothers must share resources with their offspring (in utero) and benefit from sharing amongst the 

offspring, fathers want their offspring to benefit at the cost of unrelated individuals. In summary: 

1) the “maternal-offspring co-adaption” theory asserts that the mother regulates in utero growth to 

balance the nutritional burden she must supply by epigenetically modifying the offspring’s 

genome. 2) The “sexual antagonism” theory asserts that parents have opposed fitness 

consequences, so what is good for the father is not always good for the mother. 3) The “Kinship” 

theory somewhat combines these and asserts that the paternal fitness is improved by competition 
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between the patrilines within a litter and maternal fitness is improved by keeping the benefits of a 

genetically diverse litter without patriline conflict. 

1.2 Affected traits 

1.2.1 Disease 

Parent-of-origin effects are associated with a wide range of human diseases generally related to 

growth/metabolism, neurological function, or some combination of the two.  

Growth and metabolism diseases believe to show parent-of-origin effects include: 

Transient Neonatal Diabetes (ZAC1, HYMAI, ZFP57)7,39–41, Type-1 Diabetes (DLK1-MEG3 

cluster)42, Type-2 Diabetes (GNAS, KLF14, GRB10)43,44, various types of Cancer (IGF2/H19, 

ZAC1)45,46, Metabolic Syndrome (IGF2, PEG3, DLK1, SLC2A10, KCNK9), Beckwith-

Wiedemann Syndrome (IGF2/H19/KCNQ1 cluster), Wilm’s tumors (H19/IGF2 cluster)47, 

Insulinomas (No known genes)45, Silver–Russell syndrome (KLF4, GRB10)48,49, and certain 

variants of Albright’s Hereditary Osteodystrophy (GNAS)50,51.  

Neurological diseases believed to show parent-of-origin effects include: Alzheimers 52–54 

(No known genes), Myoclonus-Dystonia Syndrome (SGCE)55, Jervell and Lange-Nielsen 

Syndrome (KCNQ1, KCNE1)56,57.  

Diseases which are both metabolic and neurological in nature include: Prader Willi 

Syndrome (SNRPN, NECDIN, SNORD64, SNORD107, SNORD18, SNORD109, SNORD116, 

SNORD115) and Angelman Syndrome (UBE3A)20,58. 

1.2.2 Metabolic traits 

It is well established that parent-of-origin effects play an important role in complex traits. To date 

20-60% of phenotypic variance can be explained depending on the trait22,23,25. Outside of their role 
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in fetal development, parent-of-origin effects are also found associated with variation in serum 

lipid levels, adiposity, and diabetes susceptibility. In a F16 advanced intercross of the LG/J and 

SM/J inbred mice, 52% of metabolic QTL (mQTL) for serum lipids (serum cholesterol, free-fatty 

acids, and triglycerides) showed parent-of-origin effects in some context (sex, diet, and/ or sex X 

diet)23. This same model showed that 61% of mQTL for obesity traits (reproductive, renal, 

mesenteric, and inguinal fat, and total depot weights) showed parent-of-origin effects25. For 

diabetes-related traits (glucose tolerance, serum glucose, basal glucose, and serum insulin), 59% 

of mQTL showed parent-of-origin effects24.  

These traits are involved in metabolic syndrome (MetS), which is the co-occurrence of 

obesity, dyslipidemia, high blood pressure, and glucose intolerance. MetS is a major risk factor for 

cardiovascular disease and type-2 diabetes. Significantly, 91% of QTL associated with MetS 

(pleiotropic QTL for multiple metabolic traits) show parent-of-origin effects59. While the exact 

molecular mechanisms involved are not yet known, some imprinted genes in QTL are strong 

candidates with functions relevant to the mapped trait. 

KLF14 (kruppel-like factor 14) is a maternally expressed transcription factor located in the 

PEG1/ MEST imprinting cluster (mouse chromosome 6, human chromosome 7)49. Large scale 

GWAS studies have identified SNP variants (rs4731702 and rs972283) upstream of KLF14 as 

having strong associations with type-2 diabetes and HDL levels60,61. These variants have 

maternally restricted cis-regulatory associations with KLF14 expression in adipose tissue62, 

implying that they fall in a KLF14 cis-regulatory element. Tests for rs4731702 as an expression 

QTL (eQTL) using human gene expression (Illumina Human HT12 array) have found that 

rs4731702 trans-associations are enriched for low-p-values in subcutaneous white adipose tissue, 

indicating that KLF14 may be an adipose master transcriptional regulator43. Furthermore, the top 
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46 associated genes for which rs4731702 is an eQTL show a significant enrichment for KLF family 

transcription factor binding sites. This suggests that KLF14 propagates a parent-of-origin effect in 

biallelic genes, contributing to variation in expression and subsequently to variation in adipose 

phenotypes. 

Perhaps the best classical example of an imprinting cluster associated with variation in 

metabolic traits are the IGF2/ H19 gene pair. IGF2 and H19 are reciprocally imprinted, having a 

functionally antagonistic relationship. The mechanism behind IGF2/ H19 has been identified as a 

CTCF mediated methylation-sensitive insulator/ enhancer system63. IGF2 is upstream of a DMR 

and H19 is down-stream. Within this system the DMR falls on a CTCF binding site. When un-

methylated the DMR can bind CTCF. The bound DMR is then able to interact with downstream 

enhancers, thereby serving as an insulator and blocking IGF2 transcription, but allowing H19 

transcription. Upstream of IGF2 there is another DMR, blocking IGF2 expression. IGF2 is 

paternally expressed and promotes fetal growth. H19 is maternally expressed and limits fetal 

growth. This relationship extends to muscle growth and fat deposition30,64,65. Surprisingly, IGF2 is 

negatively correlated with body weight in adult white adipose tissue66. The functional switch 

between time points and tissue remains unknown.  

1.2.3 Imprinted genes are not enriched in mQTL showing parent-of-origin 

effects 

Metabolic quantitative trait loci (mQTL) showing parent-of-origin effects for multiple metabolic 

traits were previously identified in an F16 advanced intercross between the LG/J and SM/J strains23–

25,59. Enrichment of known imprinted genes in QTL was measured by permutation tests. Parent-

of-origin effect mQTL were randomly shuffled throughout the genome to generate a null 

distribution of parent-of-origin effect genes in mQTL-sized regions. Diabetes, obesity, and serum 
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lipids QTL were not enriched for known imprinted genes (p=0.874, 0.143, and 0.404 respectively). 

This means that the number and location of known imprinted genes alone is not sufficient to 

explain the number of mQTL showing parent-of-origin effects. 

1.3 Why are parent-of-origin effects so common? 
Quantitative trait mapping has found parent-of-origin effects are observed across a wide range of 

complex traits. QTL associated with growth, metabolic traits, anxiety, behavior, wound healing, 

asthma, and immunological function have all shown parent-of-origin effects22–25,59. In fact, parent-

of-origin effects seem fairly common in complex traits. If genomic imprinting alone does not 

account for this overabundance, what might? We consider three explanations for this 

overabundance: 1) Weak and context-specific parent-of-origin dependent ASE is much more 

common than previously considered; 2) Genomic imprinting evolved at genes along pleiotropic 

environmental response pathways; and/or 3) Random parental inheritance biases in mapping 

populations lead to propagated additive genetic effects appearing as parent-of-origin effects. 

1.3.1 Context-specific and weak ASE 

Genomic imprinting produces a strong parent-of-origin dependent ASE (example, a 1:99 allelic 

bias), but weaker forms of ASE (example, a 30:70 allelic bias) exist. It could be the case that some 

of these weaker forms contribute to the overall overabundance of observed parent-of-origin effects. 

Furthermore, sex and environmental contexts are not usually considered when searching for 

signatures of genomic imprinting. Many QTL showing a significant parent-of-origin effect did so 

under specific sex and dietary contexts. So perhaps weak context-specific parent-of-origin 

dependent ASE could explain this overabundance. While weak and context-specific effects are 

more prevalent than previously believed67, I do not think this alone could account for the 

overabundance of parent-of-origin effects. Only 1% of genes show genomic imprinting compared 
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to 65% of mQTL show significant parent-of-origin effects. There must be some other mechanisms 

underlying these effects. 

1.3.2 Imprinting genetic effects propagate through epistasis 

Complex traits are multi-locus by nature. The complexity of parent-of-origin effect patterns on 

complex traits suggests it’s a multi-locus mechanism. It is believed that as a class, imprinted genes 

are highly interactive with each other. Three indirect lines of evidence have been used to argue 

this point: 1) they cluster together in the genome; 2) they are significantly co-expressed68 with 

each other; and 3) the strength of their co-expression has increased over evolutionary time (since 

the appearance of parent-of-origin effects)11,36,69,70.  

Through interactions, complexity manifests. For example, imprinted gene interactions is 

the proposed mechanisms for dominance patterns of imprinting. The callipyge trait (buttock 

hypertrophy first described in sheep) may be caused by two reciprocally imprinted genes 

interacting, producing the polar over-dominance effect at this locus71,72 (Figure 1.2). However, 

this working model has not been experimentally validated. 

 

Figure 1.2. Working model for polar overdominance at callipgye locus. The locus is composed 

of two imprinted genes, one of which is maternally expressed, and the other being paternally 

expressed. Genes repressed by imprinting are denoted by a cross through them. Red denotes 

activity and grey denotes inactivity. The status of genotypic classes is shown Wt/Wt (A), 

CLPG/Wt (B), Wt/CLPG (C), CLPG/CLPG (D). There are three functional elements: a long-range 

control element (LRCE), a paternally expressed pro-growth effector, and a maternally expressed 

trans-acting anti-growth repressor. The LCRE is labeled 1 meaning it is active or 0 meaning it is 
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inactive. In this model the LCRE affects genes in cis, but the repressor acts in trans. The interaction 

of imprinting, LCRE cis effects, and maternal repressor trans effects, means that the paternal pro-

growth effector is only active in Wt/CLPG individuals (C), this generating a polar overdominance 

effect. 

Imprinted genes and biallelic gene interactions may also underlie some of these patterns. 

For example, there is evidence that the maternally expressed transcription factor KLF14 regulates 

the expression of bi-allelic adipose genes43. Such interactions might produce complex parent-of-

origin effect patterns, but experimental validation has not been performed. Unless imprinted genes 

are incredibly insular, interactions with biallelic genes are a given, but exactly how many non-

imprinted genes interact with imprinted genes? How many are co-expressed with imprinted genes? 

Under what contexts do interactions occur? Outside of a handful of examples, the question of 

which non-imprinted genes are interacting with imprinted genes remains largely unanswered. 

This explanation has two assertions. The first was discussed above. It says in essence that 

genetic effects propagate (Imprinted gene → biallelic gene). By propagation, I mean genes 

interacting in such a way that the effects of epi-/genotype on expression of a “Source” gene affects 

expression of some “Target” gene. 

The second assertion is that pathways in which imprinting has evolved are pleiotropic and 

affect a wide range of nutrient/energy management growth, metabolism, and thermogenesis are 

intrinsically tied processes and share pathways. From an evolutionary perspective these processes 

shape how individuals respond to their nutritional environment; that response in turn affects other 

mice in the community/litter and can alter the fitness of others. Parent-of-origin effects evolved to 

maximize the overall fitness of individuals in the same matriline or patriline (section 1.1.3). A 

thrifty way for evolution to introduce a parental fitness bias through growth would be to introduce 

genomic imprinting pathways that regulates many aspects of growth in response to nutritional 
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environment. For example, altering mesenchymal stem cell function in a parent-of-origin 

dependent way would alter growth, metabolism, and thermogenesis. It could affect many cell types 

with vastly different functions, but nonetheless contribute to growth. If this explanation is correct, 

it could explain how pleiotropic mQTL are enriched for parent-of-origin effects.  

1.3.3 Additive genetic effects propagate and create false positives 

Mouse mapping studies are seldom replicated. It would be immensely expensive, and a huge 

number of animals would need to be generated for the purpose. Justifying replication is further 

undermined by the difficulty in interpreting what a lack of replication would mean. The complexity 

of genetic architecture, epistasis, and limited statistical power can mean even a true biological 

association won’t replicate.  

Genetic effects propagate in general. My thesis focuses on parent-of-origin effects 

propagating along epistatic pathways. At a minimum this is a two-locus problem. An imprinted 

gene manifests a parent-of-origin effect, which alters downstream gene expression in its pathway. 

When the two loci are sufficiently linked, the parent-of-origin effect on the imprinted locus can be 

detected at the downstream “Target” locus. How does that detection work? In a mapping study 

detecting a parent-of-origin effect boils down to comparing the genotypic means of reciprocal 

heterozygote classes {LS, SL}. A significant difference means there is a parent-of-origin effect73. 

Consider the locus being tested as a “Target” locus downstream (regulated by) of some 

“Source”. In a mapping study we would compare the “Target” genotypic means. But the “Target” 

genotypic means are a function of the “Source” genotypic means. If the two loci are sufficiently 

independent, the effect of the “Source” locus should appear as unaccounted for variance when 

testing the “Target” locus. However, under a two-locus model it becomes quite difficult to ensure 

groups are sufficiently randomized (Figure 1.3 A&B). 



14 

 

 

Figure 1.3. Simulated parental inheritance bias and how they can create false parent-of-

origin signals in mapping. In this example the mapped trait is controlled by two loci in a pathway 

where the gene at the “Source” locus regulates the gene at the “Target” locus. The two loci are not 

linked. Individual genotypes for the target locus are displayed as a heatmap in part A. Where LL 

individuals are colored in red, SS individuals are colored in blue, and heterozygotes (LS, SL) are 

colors in dark and light tan respectively. Corresponding genotypes at the upstream “Source” locus 

are shown in part B. Because these genes function as a pathway, the effect of the Target genotype 

on the phenotype depends in part on the Source genotype. In part C we show the composition 

between the two loci. The X-axis denotes the genotype at the “Target” locus. The Y-axis shows 

the composition of genotypes at the “Source” locus for a give “Target” genotype. We calculate the 

allele frequency at the “Source” locus given a “Target” genotype and display them as part D. The 
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X-axis is the “Target” genotype, and the Y-axis is the corresponding probability of the L allele. In 

this case individuals with the LS genotype at the mapped “Target” locus are more likely to inherit 

L alleles at the “Source” locus relative to SL individuals (D). In this instance the upstream 

“Source” locus was encoded to show an additive genetic effect (E), where inheriting the L allele 

at the “Source” locus elicits a larger trait value. The “Target” locus was also encoded to show an 

additive genetic effect (F), where the L allele elicits a larger trait value. It is important to 

understand that there is no true parent-of-origin mechanism (i.e. genomic imprinting) present at 

the “Target” locus. However, when mapping at the “Target” locus, a parent-of-origin genetic effect 

is observed. For this to happen two conditions had to be met: 1) there must be a true additive 

genetic effect on the upstream “Source” locus which gets propagated to the downstream “Target” 

locus and 2) there must be a parental inheritance bias on the “Source” locus with respect to the 

“Target” locus. 

 

The more genotypic classes one deals with, the harder it becomes to ensure sufficient 

randomization. As a result, mapping parent-of-origin effects can suffer from this technical 

limitation. When we map parent-of-origin effects, we compare LS and SL genotypic means at the 

“Target” locus. But what happens if the allele frequencies at the associated “Source” locus is 

different between the LS and SL populations (Figure 1.3 C)? It is possible to have a case where 

LS (“Target”) individuals are more likely to have L alleles at the “Source” locus than SL (“Target”) 

individuals are (Figure 1.3 D). We call this a parental inheritance bias. In this case you are more 

likely to have L alleles at the “Source” locus given you inherited the L allele at the “Target” locus 

maternally. This can occur randomly or as a result of pedigree substructure rather than by 

biological mechanism. Consider if the L allele at the “Source” locus gives elevated expression of 

the “Target” gene relative to the S allele (additive genetic effect) (Figure 1.3 E). If one of the 

“Target” heterozygous genotypic classes is more likely to have an L allele at the upstream 

“Source” locus, that class would have a higher genotypic mean. The interaction of an additive 

genetic effect on the “Source” gene with a parental inheritance bias at the “Target” gene would 

produce what appears as a parent-of-origin effect on the “Target” gene (Figure 1.3 F). Unlike the 

epistatic interaction explanation which is constrained by recombination between the 
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“Target”/”Source” pair in a mapping study, this additive propagation false positive is not 

constrained by genomic distance. There is no easy way to control for this possibility but being able 

to model genetic effect networks in general is an important first step. 

1.4 Summary of Aims and Motivation 
The broad goal of my work was to explore possible mechanisms driving the overabundance of 

parent-of-origin effects in mouse mapping studies. I focused on imprinted genes in epistatic 

pathways, but also laid methodological groundwork for future studies. By understanding 

mechanisms underlying observed complex phenotypic patterns, we advance our ability to predict 

phenotypic outcomes and ultimately better understand metabolic disease. My aims were to identify 

and evaluate the role of candidate gene networks underlying the manifestation of parent-of-origin 

effects at mQTL in mice. 

In chapter two, I sought to identify instances in which interactions between imprinted and 

non-imprinted genes contribute to these complex phenotypic patterns. Identifying instances of 

these interactions is a proof of principle. Interrogating the associated mechanisms of candidate 

gene pairs can shed light on the sorts of mechanisms that mediate these phenomena. Stepping back 

and considering the commonalities of gene pairs, evolutionary theories, and the collective 

knowledge of the field, we use the results to speak to the general biology of parent-of-origin effects 

on complex metabolic traits. 

This study was a heuristic approach to find candidate cases wherein a specific genetic effect 

from one gene propagates onto a downstream gene. Chapter three was motivated by the need to 

consider other types of genetic effects and to make the approach generally accessible. In this study, 
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I sought to formalize the process into a general framework for pairwise genetic effect propagation 

at the level of cell types.  

My dissertation was motivated by the desire to find potential mechanisms that could shed 

light on the complex patterns we observe in mapping studies. I was further motivated by potential 

future exploration of these complex phenomena and a need to integrate molecular biology and 

quantitative genetics. 

Chapter 2: Parent-of-origin effects propagate 

through networks to shape metabolic traits 
 

This chapter corresponds to a manuscript, which has been reviewed and revised for publication in 

the journal eLife. 

Juan F. Macias-Velasco, Celine L. St Pierre, Jessica P. Wayhart, Li Yin, Larry Spears, Mario A. 
Miranda, Caryn Carson, Katsuhiko Funai, James M. Cheverud, Clay F. Semenkovich, Heather A. 
Lawson. Parent-of-origin effects propagate through networks to shape metabolic traits. eLife; 
under review  

2.1 Abstract 
Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and 

neurological diseases. Parent-of-origin effects can be modified by the environment, but the 

architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. 

Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on 

metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and 

SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting 



18 

 

another mechanism is needed to explain these parent-of-origin effects phenomena. We propose 

that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through 

interactions with imprinted genes. Here, we employ data from mouse populations at different 

levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this 

hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological 

data, we leverage orthogonal evidence to identify networks of genes through which parent-of-

origin effects propagate. We identify a network comprised of 3 imprinted and 6 non-imprinted 

genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive 

pathway and the genes comprising it jointly serve cellular functions associated with growth. We 

focus on 2 genes, Nnat and F2r, whose interaction associates with serum glucose levels across 

generations in high fat-fed females. Single-cell RNAseq reveals that Nnat expression increases 

and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is 

consistent with our observations in bulk white adipose tissue. 

2.2 Introduction 
Parent-of-origin effects, where the phenotypic effect of an allele depends on whether the allele is 

inherited maternally or paternally, are epigenetic phenomena associated with a wide range of 

complex traits and diseases 74. Thus, the functional impact of a specific genetic variant can depend 

on its parental origin. The best characterized parent-of-origin effect is genomic imprinting, an 

epigenetic process in which either the maternally or paternally inherited allele is silenced, typically 

through DNA methylation. In humans there are 107 verified imprinted genes and in mice there are 

124, of which ~70% overlap 75. Despite the rarity of imprinted genes, parent-of-origin effects on 

complex traits and diseases are relatively common, suggesting that canonical imprinting 

mechanisms are not sufficient to account for these phenomena 76,77. With so few imprinted genes, 
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what mechanisms underlie these parent-of-origin effects? We hypothesize that a small number of 

imprinted genes can generate a large number of parent-of-origin effects through interactions with 

non-imprinted genes. 

In this study, we use four populations at different levels of intercrossing of the LG/J and 

SM/J inbred mouse lines to test the hypothesis that non-imprinted genes can contribute to parent-

of-origin effects on metabolic phenotypes through epistatic interactions with imprinted genes. 

Multiple populations (F0, F1, F2, F16) allow us to refine our search space and provide orthogonal 

evidence supporting putative networks of interacting genes. Metabolic traits were previously 

mapped in a F16 generation of an advanced intercross between LG/J and SM/J 23–25,59. We generated 

visceral white adipose tissue gene expression profiles from 20 week-old F1 animals in order to 

match the age of the F16 LG/J x SM/J advanced intercross population. F1 reciprocal cross (LxS and 

SxL) mice were subjected to the same high and low-fat diets and phenotyping protocols as the 

previously-studied F16 mice to keep environmental contexts consistent. We identified genes 

showing parent-of-origin-dependent allele-specific expression (ASE), characterized interactions 

among these genes and biallelic genes that are differentially expressed by reciprocal cross (DE), 

and correlated interacting ASE and DE gene pairs with metabolic phenotypes in the F1 population. 

Pairs that significantly associated with phenotypic variation were tested for epistasis on correlated 

traits in the F16 population. 

We identify an epistatic network that forms a nutritional environment responsive pathway 

mediated through calcium signaling. This network contributes to metabolic variation by balancing 

proliferation, differentiation, and apoptosis in adipocytes. The genes comprising this network 

jointly serve functions associated with growth in multiple tissues, which is consistent with the 

evolutionary hypothesis that sexual conflict underlies some parent-of-origin effects 69. We focus 
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on two key interacting genes: Nnat (neuronatin), a canonically imprinted gene, and F2r 

(coagulation factor II receptor), a biallelic gene showing significant DE by cross in F1 high fat-fed 

female animals. Co-expression of these two genes associates with variation in basal glucose levels, 

and this association persists across generations. Further, single-cell RNAseq reveals that Nnat 

expression increases and F2r expression decreases in pre-adipocytes along an adipogenic 

trajectory, a pattern consistent both with their expression in bulk white adipose tissue and with 

their respective roles in adipogenesis. Our results demonstrate that incorporating orthogonal lines 

of evidence including genotype, allele specific expression, total gene expression, single-cell 

expression, and phenotype from different populations varying in their degree of intercrossing is a 

powerful way to identify putative mechanisms and test hypotheses underlying parent-of-origin 

effects on phenotype. 

2.3 Results 

2.3.1 Non-imprinted genes interact with imprinted genes and effect metabolic 

phenotypes 

We test the hypothesis that non-imprinted genes can mediate complex parent-of-origin effects on 

phenotypes through genetic interactions with imprinted genes using a F1 reciprocal cross model of 

the LG/J and SM/J inbred mice (LxS and SxL). In this model the effects of parental origin on an 

allele can be tested directly and isolated from sequence dependent cis-regulatory differences. We 

validated our findings in LG/J and SM/J parentals (F0) as well as in F2 and F16 intercrosses of 

LGxSM (Figure 2.1). The parental F0 animals serve to anchor variation in allele-specific 

expression that is a function of allelic identity (L or S). Incorporating the F2 and F16 populations 

into our validations ensures that the interactions we observe are not solely a function of linkage in 

the F1 animals. We generated mRNA expression profiles in white adipose tissue from 20-week-
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old F1 reciprocal cross animals. These animals were subjected to the same high and low-fat diets 

and phenotyping protocols as the previously studied F16 animals 23–25,59,67,78,79. We identified two 

classes of genes: 1) imprinted genes, and 2) non-imprinted genes with parent-of-origin effects on 

total expression. 

 

Figure 2.1: Proposed model for propagation of parent-of-origin effects through gene-gene 

interactions. Parent-of-origin effects should be partitioned into cis mechanisms and trans 

mechanisms A. An example of a cis parent-of-origin effect is a system with three regulatory 

elements: promoter, insulator, and enhancer. Activation of transcription requires the enhancer to 
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act upon the promoter. Enhancer activity is blocked by the insulator when it has been bound by 

CTCF. CTCF cannot be bound when methylated. In this system, the insulator is selectively 

methylated when inherited maternally, so methylation of the maternally inherited insulator blocks 

CTCF binding, allowing the enhancer to activate transcription. Because the paternally inherited 

insulator is not methylated, it is bound by CTCF which blocks enhancer activity, silencing 

transcription. This canonical genomic imprinting mechanism interacts with genetic variation in the 

three regulatory features. For example, if one allele produces stronger enhancer activity (Alt) than 

the other, individuals inheriting the Alt allele maternally would have elevated expression compared 

to those that inherit the same allele paternally. These cis genetic effects do not occur in isolation. 

Due to the highly interconnected nature of biological systems, there are downstream effects. We 

refer to these as trans parent-of-origin effects. B. An example of a trans parent-of-origin effect is 

a system with two genes each having its own promoter. The first gene is canonically imprinted, 

and the activity of the gene promoter is blocked by DNA methylation. The imprinted gene’s 

promoter is methylated when inherited maternally. Consequently, the paternally inherited allele is 

almost exclusively expressed. As before, when genetic variation in a regulatory feature interacts 

with these epigenetic mechanisms, we see parent-of-origin effects on expression of the imprinted 

gene. In this example the imprinted gene regulates expression of a non-imprinted gene. Despite 

the non-imprinted gene being agnostic to parental origin, its expression nonetheless depends on 

the parental origin of alleles at the imprinted locus. C. Summary of our experimental design. 

Expression patterns of genes showing allele specific expression (ASE) such as imprinted genes are 

shaped by parental genotypes and environment (e.g. nutrition). Downstream gene expression is a 

function of their genotype and the expression of upstream ASE genes. Altered parent-of-origin 

dependent total gene expression of ASE genes leads to differential expression of downstream 

genes varying only in allelic parent-of-origin (DE). Phenotype is most directly affected by 

expression of DE genes. Variation in DE gene expression leads to corresponding variation in 

phenotype. Mouse populations used to probe parts of this model are labeled F0 (inbred lines), F1 

(reciprocal cross of inbred lines), F2 (intercross of F1 mice), and F16 (advanced intercross of inbred 

lines). 

 

To test our model, we identified genes showing parent-of-origin dependent allele specific 

expression (ASE). We identified 23 genes showing significant ASE (Figure 2.2 A; Supplemental 

Table 2.1). Of these 23 genes, 17 are canonically imprinted genes, two are not reported as 

imprinted genes but are located in known imprinted domains, and four are novel. Next, we 

identified genes showing differential total expression between individuals varying only in allelic 

parent-of-origin (DE between reciprocal crosses, SxL vs LxS). We identified 33 genes that are 
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significantly DE in at least one sex or dietary context (Figure 2.2 A; Supplemental Table 2.2). A 

larger set of genes show signatures of parent-of-origin effects at the total gene expression level, 

but do not meet the statistical rigor demanded by the massive multiple tests burden incurred by a 

genome-wide scan accounting for sex, diet, and parent-of-origin (see Methods). 

 

Figure 2.2: Genes showing parent-of-origin effects at the allele specific and/or total 

expression levels covary with each other and with metabolic traits. A. Mean POE score across 
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contexts. Effect size of ASE is calculated as the mean allelic bias (L / L+S) of SxL animals minus 

LxS animals. Effect size of DE is measured by log2(Fold Change) between LxS and SxL crosses. 

The single context with largest magnitude fold change is plotted for each gene (n=8). Dashed lines 

represent minimum acceptable effect size cut-offs within a context. Genes showing significant 

ASE and sufficiently large POE score are shown in blue. Genes showing significant DE and 

sufficiently large fold change in some sex or dietary context are shown in lime. Genes showing 

both ASE and DE are shown in teal. Genes not meeting cut-offs are shown in grey. The two genes 

showing significant ASE but falling short of POE score requirements are a case of context 

dependent bipolar POE scores (i.e. paternally expressed in one context and maternally expressed 

in its opposite). B. Parent-of-origin effect network constructed from ASE and DE gene pairs 

(n=32). C. Significantly overrepresented ontologies after multiple tests correction in parent-of-

origin effect network. Terms are color coded by ontology domain. GO biological process (yellow), 

GO cellular component (orange), and Mammalian phenotype (purple). Circle size denotes the 

number of genes with each term. D. Correlation of parent-of-origin effect network genes with 

metabolic traits (n=32). Only genes and phenotypes with at least one significant correlation after 

multiple test corrections are shown. The heatmap is broken up into subnetworks with the ASE 

gene as the first separated row followed by associated DE genes in subsequent rows. Columns 

correspond to metabolic traits. Coloration of each cell denotes the Pearson’s correlation coefficient 

value. 

 

To identify interactions between gene sets, we constructed a network comprised of genes 

that could initiate a parent-of-origin effect on phenotype (ASE) and genes that may mediate the 

effect onto phenotype (DE). Interacting gene pairs were predicted by modeling the expression of 

biallelic genes that are significantly DE by reciprocal cross as a function of the expression of genes 

showing significant parent-of-origin-dependent ASE, their allelic bias (Lbias), diet, sex, and the 

diet-by-sex interaction. Genes showing parent-of-origin effects form a highly interconnected 

network comprised of 52 genes forming 217 gene pairs (Figure 2.2 B)(Supplemental Table 2.3). 

Most of these interactions are trans-chromosomal. We identified two genes that could serve as 

initiation points of propagating parent-of-origin effects through this network. These two genes, 

Nnat (neuronatin) and Cdkn1c (cyclin dependent kinase inhibitor 1C), are both canonically 

imprinted and differentially expressed by cross (Supplemental Table 2.1). 
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Functional over representation analysis was performed and seven terms were significantly 

overrepresented at an 𝐹𝐷𝑅 ≤ 0.05 (Figure 2.2 C) 80.  Enriched terms suggest this network plays 

a role in signaling and genetic imprinting (Supplemental Table 2.4). In order to identify which 

phenotypes might be affected by genes in this network, gene expression was correlated with 

metabolic phenotypes collected for the F1 animals (Figure 2.2 D). Seventy-four 

ASE/DE/phenotype sets were identified as candidates for subsequent testing (Supplemental Table 

2.5). 

2.3.2 Epistasis in an F16 advanced intercross identifies a diet-responsive 

network affecting adipogenesis 

To validate the interactions, we identified in F1 animals, we tested for imprinting-by-imprinting 

epistasis in an F16 population. Imprinting-by-imprinting epistasis occurs when the parent-of-origin 

effect at a locus is dependent on the parent-of-origin of alleles at another locus. This allowed us to 

determine if the effect of parent-of-origin at DE genotype on phenotype is dependent upon the 

parent-of-origin at ASE genotype. This orthogonal approach allows us to connect genotype at these 

loci to phenotype as predicted in the F1 candidates. Nine epistatic interactions replicated in the F16 

population (𝐹𝐷𝑅 ≤ 0.1; Figure 2.3 A; Supplemental Table 2.6). These interactions were 

comprised of three ASE genes showing parent-of-origin (Cdknlc, Nnat, Plcd1), six genes that are 

DE by cross (Car3, F2r, Hexb, Hmger, Srgn, Tnfrsf11a) and four phenotypes (basal glucose level, 

AUC calculated from a glucose tolerance test, serum cholesterol, necropsy weight). Together, 

these 9 genes form a putative diet-responsive network affecting adipogenesis (Figure 2.3 B). 
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Figure 2.3: Candidate epistatic network. There are nine significant imprinting-by-imprinting 

epistatic ASE/DE/phenotype sets in the F16 advanced intercross population (A). Interactions are 

shown as lines connecting ASE (yellow) and DE genes (purple). Chromosome number is shown 

around the plot. The epistatic parent-of-origin effect network is comprised of key steps in a putative 

pathway regulating differentiation and survival of adipocytes (B). This pathway was constructed 

by incorporating previously published cellular functions. The pathway members are color coded 

in blue for ASE genes (Plcd1, Nnat, and Cdkn1c) and green for DE genes (F2r, Hexb, Hmgcr, 

Car3, Tnfrsf11a, and Srgn). The network breaks down into potentiation, transduction, and 

response. Nnat and Hexb potentiate signaling by managing availability and accumulation of 

calcium necessary for signal transduction. Once a signal is received, F2r and Plcd1 transduce it 

by activating second messengers to initiate a response. This response initiates an adipogenesis 

cellular program that affects expression of Cdkn1c, Hmgcr, Car3, Tnfrsf11a, and Srgn. 

 

The network can be broken down into signal potentiation, transduction, and response. Nnat 

(neuronatin) and Hexb (beta-hexosaminidase subunit beta) fall into the potentiation group. These 

genes play a role in managing the availability and accumulation of calcium necessary for signal 

transduction. Nnat is a paternally expressed canonically imprinted gene which encodes a 

proteolipid protein that localizes to the ER 81. Nnat is diet-responsive and its overexpression in 
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3T3L1 pre-adipocytes promotes adipogenesis through increased free cytosolic calcium 82. In pre-

neural stem cells, Nnat binds sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) to block Ca2+ 

uptake into the ER thereby increasing cytosolic Ca2+ levels 83. In addition to Nnat, Hexb regulates 

the uptake and accumulation of Ca2+ in the ER via SERCA (Pelled et al. 2003). Upon the arrival 

of a signal, F2r (coagulation factor II receptor) and Plcd1 (1-phosphatidylinositol 4,5-bisphosphate 

phosphodiesterase delta-1) in the transduction group initiate the adipogenesis cellular program. 

F2r is a G-protein-bound receptor that promotes phosphoinositide hydrolysis 84. Variation in the 

human F2R gene is associated with obesity 85. G-protein coupled receptors transmit external 

signals into the cell where they are then propagated by second messenger systems, one of which 

is mediated by Plcd1 86,87. The downstream effect of PLCD1-mediated signaling is the efflux of 

calcium into the cytosol from the ER, thereby increasing cytosolic Ca2+ levels 88,89. Increased 

cytosolic Ca2+ in pre-adipocytes promotes phosphorylation of cAMP-response element-binding 

protein (CREB), which promotes activity of CCAAT/enhancer-binding protein (C/EBP) 

transcription factors, activating adipogenesis, altering the expression of Cdkn1c (cyclin dependent 

kinase inhibitor 1C), Hmgcr (3-hydroxy-3-methylglutaryl-CoA reductase), Car3 (carbonic 

anhydrase 3), Tnfrsf11a (TNF receptor superfamily member 11a), and Srgn (serglycin). 

Cdkn1c is a canonically imprinted maternally expressed gene that inhibits cell proliferation 

90. Increased expression of Cdkn1c is protective against diet-induced obesity in mice 91, and in 

humans increased caloric intake results in decreased CDKN1C expression 92. Hmgcr is the rate 

limiting enzyme in cholesterol biosynthesis 93,94 and converts HMG-CoA into mevalonate, which 

is essential for adipocyte survival 95. Srgn is an adipocytokine thought to be part of a feedback 

loop with TNFα (tumor necrosis factor alpha), mediating paracrine cross-talk between 

macrophages and adipocytes 96–99. Srgn is known to play a role in osteoblast-mediated bone 
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mineralization 100, which along with osteoclast-driven bone deconstruction drives bone remodeling 

101. Osteoblasts share a lineage with adipocytes, and the quantity of osteoblasts is inversely 

proportional to that of marrow adipose tissue 102–108. TNFRSF11A is a cell surface protein that 

regulates differentiation of osteoclasts 109. Osteoprotegerin (OPG) is a decoy receptor for 

TNFRSF11A thereby inhibiting osteoclastogenesis and bone resorption 110. OPG is expressed 

during differentiation of 3T3L1 adipocytes 111. Expression of OPG is induced by TNFα in 3T3L1 

adipocytes and is associated with obesity in humans 112–114. 

The exact function of OPG/TNFRSF11A outside of osteoclastogenesis is unknown, but the 

function of osteoclasts is to break down bone tissue during bone resorption. Bone resorption 

regulates the level of blood calcium. The bioavailability of calcium in the blood potentially alters 

ER calcium stores, creating cross-talk between bone cells and white adipose tissue calcium 

signaling. Osteoclasts break down bone by acidifying mineralized bone, orchestrated by 

osteoblasts that have become embedded in the matrix they produce (osteocytes). Oxidative stress 

on osteocytes from the bone acidification process is prevented by Car3. Car3 is an enzyme that 

catalyzes the conversion of carbonic acid to CO2 and water. Its expression in white adipose is 

negatively correlated with, and responsive to, long term obesity in mice and humans 115,116. Car3 

does not protect against diet induced obesity and is not necessary for fatty acid synthesis 117. As 

such its exact function in adipocytes is unknown. 

2.3.3 Nnat and F2r covary in white adipose tissue and their interaction 

associates with variation in basal glucose levels across generations 

To better understand how these interactions affect phenotype, we focused on the negative 

correlation of Nnat and F2r in the above network. In white adipose tissue, Nnat expression 

significantly covaries with F2r, a biallelic gene showing significant DE by cross in F1 high fat-fed 
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females (FDR=0.05). Nnat and F2r show significant imprinting-by-imprinting epistasis for basal 

glucose levels in the F16 population (FDR=6.00e-16; Figure 2.4A and B). To validate gene 

expression patterns, we combined F1 biological replicates and F0 high fat-fed female animals (F1 

n=13 and F0 n=12) and again observe that F2r and Nnat are each significantly differentially 

expressed between reciprocal heterozygotes, i.e. by cross (F2r p=0.007 and Nnat p=0.026; Figure 

2.4C and D). Further, the co-expression of Nnat and F2r also persists in the F0/F1 population 

(p=3.00e-4; Figure 2.4 E).   
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Figure 2.4. Nnat and F2r covary across generations. A. Breeding scheme for the F16 Advanced 

Intercross between the LG/J and SM/J inbred strains. B. Significant imprinting-by-imprinting 

epistasis associated with variation in basal glucose (n=993). The parent-of-origin effects of F2r on 

basal glucose depend on the parent-of-origin effects at Nnat. C. Expression of Nnat across 

genotypes in a combined F0/F1 population. D. Expression of F2r across genotypes in a combined 

F0/F1 population. E. Significant correlation between Nnat and F2r expression in the F0/F1 mice (F1 

n=13; F0 n=12). F and G. Correlations between basal glucose and Nnat and F2r in the F0/F1 mice 

(F1 n=13; F0 n=12). H. Significant correlation between Nnat and F2r expression in the F2 mice 

(n=14). I and J. Correlations between basal glucose and Nnat and F2r are not individually 

significant in the F2 mice. However, the product of Nnat and F2r expression (Nnat x F2r) 

significantly correlates with basal glucose in the F2’s (p=0.045), as predicted by our model of 

epistasis. Alleles are ordered maternal | paternal within the genotype classes. 

 

A limitation of identifying covariation patterns in F1 and F0 populations is that all loci are 

linked. This makes it difficult to determine which ASE genes truly co-express with DE genes. 

While incorporation of orthogonal F16 genotypes and phenotypes helps reduce false discoveries, a 

population with randomized genetic background for which we have expression data is needed to 

replicate these results. To that end, F2 animals were generated and Nnat and F2r gene expression 

levels were measured via qPCR (n=14). We found that F2r and Nnat are significantly co-expressed 

in high fat-fed female F2 animals (p= 0.012; Figure 2.4 H). 

F2r expression significantly positively correlates with basal glucose levels in the RNA-

sequenced high fat-fed female F1 animals (r=0.514, FDR=0.01; Supplemental Table 2.5). F2r 

expression is also significantly positively correlated with basal glucose in the combined F0/F1 

population (p=0.005; Figure 2.4 G). A negative trend between Nnat expression and basal glucose 

level is observed but not statistically significant in the F0/F1 animals (p=0.130; Figure 2.4 F). 

Correlation of F2r’s and Nnat’s individual expression with basal glucose in F2 mice follows the 

same pattern as in the F0/F1’s. Bootstrapping to calculate confidence intervals shows that the 
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correlation differences between F0/F1 and F2 are not significant (Figure 2.4 I and J; Supplemental 

Figure 2.1). However, the product of Nnat and F2r expression (Nnat x F2r) is significantly 

predictive of basal glucose (p=0.045, R2=0.29). This indicates that expression of Nnat and F2r, as 

a function of their genotypes and allelic parent-of-origin, are not individually sufficient to explain 

variation in basal glucose levels. But together they are able to explain a significant amount of 

phenotypic variation. This is precisely what our epistatic model would predict. 

Finally, studying the F2 animals allows us to determine if maternal mitochondrial ancestry 

contributes significantly to Nnat or F2r expression or to variation in basal glucose. We find 

mitochondrial genome identity does not significantly covary with F2r expression (p=0.198), Nnat 

expression (p=0.365), or basal glucose (p= 0.388). 

2.3.4 Single-cell RNAseq reveals that Nnat expression increases and F2r 

expression decreases in pre-adipocytes along an adipogenic trajectory 

To determine what cell types express Nnat and F2r and whether the directionality of the Nnat 

imprinted → F2r target correlation persists along the adipogenic trajectory, we turned to single-

cell RNAseq. We used publicly available scRNAseq data collected from stromal vascular cells 

isolated from C57BL/6J epididymal adipose tissue 118. Cell type identity was assigned using 

previously reported markers for this data set (Adipoq = differentiating mesenchymal stem cells; 

Pdgfra = mesenchymal stem cells; Csf1r = macrophage; Cdh5 = vascular endothelial cells; Acta2 

= vascular smooth muscle cells; Cd2 = B cells) (Supplemental Table 2.7; Supplemental Figure 

2.2). The adipogenic trajectory refers to cells transitioning from pre-adipocytes (mesenchymal 

stem cells) to cells differentiating into adipocytes. Clusters along this trajectory were identified by 

the opposing expression patterns of Pdgfra and Adipoq (Figure 2.5 A-D and I). We found that 

Nnat expression increases along the trajectory while F2r expression decreases (Figure 2.5 E-F 
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and H). Further there is a negative association between Nnat and F2r expression within adipocytes 

along the trajectory (Figure 2.5 G). This pattern is consistent with the negative correlation we 

observe between Nnat and F2r in the bulk white adipose tissue. Because available scRNAseq data 

do not match the exact sex/diet/genetic background contexts of the LGxSM mice, there will be 

unaccounted for differences between the data sets. The observed consistent pattern indicates that 

the pathway structure persists across sex/diet/genetic backgrounds. 

 

Figure 2.5: Nnat expression increases and F2r expression decreases in pre-adipocytes along 

an adipogenic trajectory. A. Adipoq is a marker of adipocytes whose expression (purple) 

increases along the trajectory. B. Pdgfra is a marker of mesenchymal stem cells whose expression 

(pink) decreases along the trajectory. C. Cells in clusters expressing one or both Adipoq and Pdgfra 

fall along an adipogenic trajectory. D. Intensity of expression of Adipoq and Pdgfra indicated by 

coloration. E. Nnat expression (blue) increases along the trajectory. F. F2r expression (teal) 

decreases along the trajectory. G. Negative association between Nnat and F2r expression within 

adipocytes along the trajectory. H. Intensity of expression of Nnat and F2r indicated by coloration. 

I. The adipogenic trajectory is broken into subclusters of cells with no Adipoq expression (cluster 

0) to high Adipoq expression (cluster 2). 
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In addition to interrogating Nnat and F2r in single cells along an adipogenic trajectory, we 

found that 8 of the 9 genes comprising the epistatic parent-of-origin effect network described above 

are differentially expressed along the trajectory, and they associate with cell types that are 

consistent with their respective roles in adipose tissue (Supplemental Figure 2.3, Supplemental 

Table 2.8). 

2.4 Discussion 
Epistatic interactions between imprinted and non-imprinted genes can influence complex traits 

when the genotypic effects of one gene depends on the parent-of-origin of alleles at another 1,119. 

Here we examined epistatic interactions associated with parent-of-origin effects on dietary-obesity 

traits in white adipose using a simple yet powerful F1 reciprocal cross mouse model. Although 

these parent-of-origin dependent allele-specific expression biases are consistent with imprinting 

mechanisms, we cannot rule out that maternal and/or paternal effects also contribute to the 

phenomena we observe 2. 

Interactions between imprinted and non-imprinted genes have previously been shown to 

contribute to variation in metabolic phenotypes. For example, the maternally expressed 

transcription factor KLF14 (kruppel-like factor 14) regulates biallelic gene expression related to 

adiposity 43,49. Mapping studies have identified two SNPs (rs4731702, rs972283) upstream of 

KLF14 associated with type II diabetes and cholesterol levels 60,61. Both variants have maternally-

restricted cis-regulatory associations with KLF14 expression in adipose tissue 62. eQTL analysis 

found that rs4731702 is also enriched for trans-associations with KLF family transcription factor 

binding sites in subcutaneous white adipose tissue, suggesting that KLF14 may be a master 

transcriptional regulator in adipose tissue 43. Whether additional pairs of imprinted and biallelic 

genes are similarly co-expressed and associate with phenotypic variation remains an open question 
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that has not been thoroughly investigated in large landmark functional genomics studies including 

ENCODE, GTEx, and GWAS, leaving a significant gap in our knowledge. Interactions between 

imprinted and biallelic genes could explain some of the observed parent-of-origin effect patterns 

associated with regions lacking obvious candidate genes, as described in a recent survey of 97 

complex traits measured in outbred mice 22. 

Our model asserts that parent-of-origin effects start at ASE genes and are transduced 

through DE genes onto phenotype. This is illustrated in the interaction between Nnat and F2r. If a 

cis-regulatory effect interacts with epigenetic modifications (i.e. imprinting) at Nnat, then Nnat 

expression of genotypic classes are affected by paternal allele identity. Between the LG/J and SM/J 

alleles at Nnat, the LG/J allele is more highly expressed. If our model is correct, the downstream 

DE gene should show a corresponding pattern (Figure 2.1 B). In the case of Nnat and F2r, which 

have strong negative correlated expression, when the LG/J allele is inherited paternally at Nnat, 

the higher expression of Nnat should correspond with lower expression of F2r. This is what we 

observe (Figure 2.4). If this relationship is true, we should see persistent co-expression of Nnat 

and F2r across genetic backgrounds (F0, F1, F2), which we do (Figure 2.4). This supports a 

biologically meaningful relationship between Nnat and F2r. Our model further predicts that the 

DE genes should more closely affect phenotype 120–122. In the case of Nnat and F2r, we expect that 

F2r more strongly associates with basal glucose than Nnat, which we observe (Figure 2.4).  

There is a clear relationship between Nnat and F2r in adipogenesis, but the specifics of 

how this relationship extends to glucose homeostasis are unclear. One possibility is that by altering 

SERCA function, Nnat affects not only the formation of new adipocytes, but also the beiging of 

adipocytes. The SERCA channel is uncoupled in beige adipocytes as part of a UCP1-independent 
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form of non-shivering thermogenesis. Non-shivering thermogenesis consumes a significant 

amount of energy, thereby altering glucose homeostasis 78 

We identified a putative network coordinated by interactions between ASE and DE genes, 

and from the literature found that this epistatic network is comprised of key steps in a pathway 

regulating differentiation and survival of adipocytes in response to nutritional environment 

(Figure 2.3 B). Specifically, there is evidence that it plays a critical role in the induction of 

adipogenesis. This alone demonstrates how parent-of-origin effects can move through networks 

along molecular pathways. Beyond proof-of-principle this network provides a clue to the puzzle 

of the prevalence of parent-of-origin effects. 

The constituents of this single network appear to play vastly different physiological roles 

depending on the tissue. In white adipose the network appears to play some role in balancing 

proliferation, differentiation, and apoptosis as we describe above. In pancreatic ß-cells, members 

of this network affect secretion of insulin 123. In bone, members of this network affect the balance 

of cartilage/bone growth and reabsorption. These three physiological processes may at first seem 

unrelated, but they share one key commonality – they are jointly critical to growth. This is 

consistent with the sexual conflict hypothesis attributed to parent-of-origin effects 11,36. The of size 

of progeny in placental mammals can have opposing fitness consequences for mothers/maternal 

relatives and fathers/paternal relatives. The fitness of fathers and paternal relatives, particularly in 

the case of multi-paternity litters, is improved with larger progeny 11,36,38,69,124. This comes at a 

fitness disadvantage to the mother. The fitness of mothers is improved by progeny of a manageable 

size, allowing her to produce multiple litters. 
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According to this model, imprinting evolved in part to allow one parent to hijack parts of 

a nutritional environment response pathway driving growth in a direction favorable to maximize 

the fitness of individuals sharing a parental line. Key processes in such a pathway driving growth 

would include the secretion of growth factors, construction of cartilage and bone, and the 

accumulation of energy stores. We present a network that appears to play a role in all three 

processes. If the sexual conflict hypothesis is true, then the most parsimonious place for imprinting 

to evolve would be in key regulatory points that affect as many aspects of growth as possible. This 

is consistent with the network we identified, a single pathway affecting many aspects of growth. 

This hints at the possibility that parent-of-origin effects are common because of the multi-purpose 

nature of the pathways in which genomic imprinting manifests and parent-of-origin effects 

propagate.  

By leveraging the reciprocal F1 hybrids, we are able to integrate parent-of-origin-dependent 

allele-specific expression and parent-of-origin-dependent differential expression with F16 

phenotypes. By doing so, we identify plausible candidates for functional validation and describe 

discrete molecular networks that may contribute to the observed parent-of-origin effects on 

metabolic phenotypes. The genes and interactions we present here represent a set of actionable 

interacting candidates that can be probed to further identify the machinery driving these 

phenomena and make predictions informed by genomic sequence. The frameworks we have 

developed account for the genetic, epigenetic, and environmental components underlying these 

parent-of-origin effects, thereby improving our ability to predict complex phenotypes from 

genomic sequence. We focused on metabolic phenotypes in this study, but the patterns we 

identified may translate to other complex traits where parent-of-origin effects have been 

implicated. 
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2.5 Methods 

Mouse husbandry and phenotyping 

LG/J and SM/J founders (F0) were obtained from The Jackson Laboratory (Bar Harbor, ME). F1 

reciprocal cross animals were generated by mating LG/J mothers with SM/J fathers (LxS) and the 

inverse (SxL). F2 reciprocal cross animals were generated by mating LxS mothers with SxL fathers 

and the inverse. At three weeks of age, animals were both weaned into same-sex cages of 3-5 

animals and randomly placed on high-fat (42% kcal from fat; Teklad TD88137) or low-fat (15% 

kcal from fat; Research Diets D12284) isocaloric diets. Animals were weighed weekly from three 

weeks until sacrifice. At 19 weeks of age, body composition was determined by MRI and a glucose 

tolerance test was performed after a 4 hour fast. At 20 weeks of age, animals were given an 

overdose of sodium pentobarbital after a 4 hour fast and blood was collected via cardiac puncture. 

Euthanasia was achieved by cardiac perfusion with phosphate-buffered saline. After cardiac 

perfusion, the reproductive fat pad was harvested, flash frozen in liquid nitrogen, and stored at -

80°C. 

Genomes and annotations 

LG/J and SM/J indels and SNVs were leveraged to construct strain-specific genomes using the 

GRC38.72-mm10 reference as a template 125. This was done by replacing reference bases with 

alternative (LG/J | SM/J) bases using custom python scripts. Ensembl R72 annotations were 

adjusted for indel-induced indexing differences for both genomes. 

RNA sequencing 

Total RNA was isolated from adipose tissue using the RNeasy Lipid Tissue Kit (QIAgen) (n = 32, 

4 animals per sex/diet/cross cohort). RNA concentration was measured via NanoDrop and RNA 

quality/integrity was assessed with a BioAnalyzer (Agilent). RNA-Seq libraries were constructed 
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using the RiboZero kit (Illumina) from total RNA samples with RIN scores >8.0. Libraries were 

checked for quality and concentration using the DNA 1000LabChip assay (Agilent) and 

quantitative PCR, according to manufacturer’s protocol. Libraries were sequenced at 2x100 paired 

end reads on an Illumina HiSeq 4000. After sequencing, reads were de-multiplexed and assigned 

to individual samples. RNAseq data are available through the NCBI-SRA, accession: 

PRJNA753198. 

Library complexity 

Complexity was measured by fitting a beta-binomial distribution to the distribution of Lbias values 

using the VGAM package 126. The shape parameters (α, β) of beta-binomial distributions were 

estimated and used to calculate dispersion (ρ). Dispersion values less than 0.05 indicate our 

libraries are sufficiently complex (Supplemental Figure 2.4). One library was found to have 

insufficient complexity and was removed from the analyses. 

𝜌𝑠 =
1

1+𝛼𝑠+𝛽𝑠
 (2.1) 

Allele-specific expression 

FASTQ files were filtered to remove low quality reads and aligned against both LG/J and SM/J 

pseudo-genomes simultaneously using STAR with multimapping disallowed 127. Read counts were 

normalized via upper quartile normalization and a minimum normalized read depth of 20 was 

required. Alignment summaries are provided in Supplemental Table 2.9 and Supplemental Figure 

2.5. 

For each gene in each individual, allelic bias (Lbias) was calculated as the proportion of 

total reads for a given gene with the LG/J haplotype. Parent-of-origin-dependent allele-specific 
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expression was detected by ANOVA using one of a number of models in which Lbias is responsive 

to cross and the interaction of cross with some combination of sex and diet: 

 

𝑀𝑜𝑑𝑒𝑙 {

𝑖𝑓 𝑒𝑎𝑐ℎ 𝐶𝑟𝑜𝑠𝑠 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ℎ𝑎𝑠 ≥ 2 𝑠𝑎𝑚𝑝𝑙𝑒𝑠,  𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 
𝑖𝑓 𝑒𝑎𝑐ℎ 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ℎ𝑎𝑠 ≥ 2 𝑠𝑎𝑚𝑝𝑙𝑒𝑠,  𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 

𝑖𝑓 𝑒𝑎𝑐ℎ 𝐶𝑟𝑜𝑠𝑠:𝐷𝑖𝑒𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ℎ𝑎𝑠 ≥ 2 𝑠𝑎𝑚𝑝𝑙𝑒𝑠,   𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠:𝐷𝑖𝑒𝑡
 𝑖𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ℎ𝑎𝑠 ≥ 2 𝑠𝑎𝑚𝑝𝑙𝑒𝑠,   𝐿𝑏𝑖𝑎𝑠~𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 + 𝐶𝑟𝑜𝑠𝑠: 𝐷𝑖𝑒𝑡 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡 

 (2.2) 

Accurately estimating the significance of these effects and correcting for multiple tests is 

challenging for two reasons: 1) the complexity of the many environmental contexts, and 2) the 

correlation of allelic bias within and between imprinted domains breaks assumptions of 

independence. A permutation approach is an effective way to overcome these challenges. The 

context data was randomly shuffled for each gene independently and analyses were rerun to 

generate a stable null distribution of p-values (Supplemental Figure 2.6). False discovery rates 

were estimated for a given significance threshold as the proportion of significant tests under the 

permutated null model relative to significant tests under the real data model. A value of 1 meaning 

that 100% of tests at a given significance threshold are likely false positives. An 𝐹𝐷𝑅 ≤ 0.1 was 

considered significant (Supplemental Table 2.1, Supplemental Figure 2.7). 

To determine the parental direction and size of expression biases, a POE score was 

calculated as the difference in mean Lbias between reciprocal crosses (LxS or SxL). POE scores 

range from completely maternally-expressed (-1), to biallelic (0), to completely paternally-

expressed (+1). POE score thresholds were calculated from a critical value of α = 0.01, determined 

from a null distribution created by permutation Genes with significant allele-specific expression 

and POE scores beyond the critical value were considered to have significant parent-of-origin-

dependent allele-specific expression (Supplemental Figure 2.8). 
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Differential expression 

Differential expression by reciprocal cross was determined by first aligning reads against the LG/J 

and SM/J genomes simultaneously with multimapping permitted. Reads were normalized by 

Trimmed mean of M-values (TMM) normalization, which estimates scale factors among samples 

to allow for differences in RNA composition 128. A minimum normalized read count of 10 was 

required. Generalized linear models accounting for diet, sex, and diet-by-sex were fit in EdgeR 129. 

Differential expression was detected by a likelihood ratio test. Significance was determined for 

five models for each gene: 

1.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠 (2.3) 

2.   𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 (2.4) 

3.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠:𝐷𝑖𝑒𝑡 (2.5) 

4.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡  (2.6) 

5.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥 + 𝐶𝑟𝑜𝑠𝑠:𝐷𝑖𝑒𝑡 + 𝐶𝑟𝑜𝑠𝑠: 𝑆𝑒𝑥: 𝐷𝑖𝑒𝑡  (2.7) 

Multiple test corrections were performed by implementing the “qvalue” R package to estimate 

false discovery rates (Supplemental Figure 2.9). Genes with a 𝐹𝐷𝑅 ≤  0.1 and a |𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒| ≥

1.5 were considered significantly differentially expressed by reciprocal cross (Supplemental 

Figure 2.10 and Supplemental Table 2.2). 

Gene-gene interactions 

Networks were constructed in each tissue by pairing genes showing parent-of-origin-dependent 

allele-specific expression with biallelic genes that are differentially expressed by cross. Pairs were 

predicted by modeling the expression of biallelic genes as a function of parent-of-origin-dependent 
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allele-specific expression, Lbias, sex, diet, and sex-by-diet. The strength of a prediction was 

measured through model fit, which was estimated as a mean test error with 10-fold cross-validation 

employed to prevent overfitting. Significance was estimated by likelihood ratio test using a chi-

square distribution. Given the complexity of contexts, false discovery rates were determined by 

permuting the context and expression data to generate a stable null-distribution of p-value 

(Supplemental Figure 2.11). Null distribution stability was evaluated by calculating the critical 

value for alpha = 0.05 at each genome wide iteration. The standard deviation of critical values was 

calculated after each iteration for the last 5 iterations. Genome-wide shuffling was done 500 times, 

with 759 independent randomized tests per iteration, meaning the stable null model is composed 

of 379,500 randomized observations. Using the null model, the “qvalue” package estimated a 𝜋0̂. 

This estimate was then used to estimate false discovery rates in the real data.  MTE score thresholds 

were calculated from a critical value of α = 0.01, determined from a null distribution created by 

permutation (Supplemental Figure 2.12). Connections with an 𝐹𝐷𝑅 ≤  0.1 (Supplemental Table 

2.10) and MTE below the critical value were considered significant (Supplemental Figure 2.13). 

Functional enrichment analysis 

Functional enrichment of interacting genes showing parent-of-origin-dependent allele-specific 

expression with biallelic genes that are differentially expressed by cross was tested by over-

representation analysis in the WEB-based Gene Set Analysis Toolkit v2019 80. We performed 

analyses of gene ontologies (biological process, cellular component, and molecular function), 

pathway (KEGG), and phenotype (Mammalian Phenotype Ontology). The list of all unique 

interacting genes was analyzed against the background of all unique genes expressed in white 

adipose. A Benjamini-Hochberg FDR-corrected p-value ≤ 0.01 was considered significant 

(Supplemental Table 2.4). 
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Phenotype correlation 

In order to identify which phenotypes might be affected by genes in the parent-of-origin effect 

network, gene expression was correlated with metabolic phenotypes collected for F1 animals with 

the contexts combined. Phenotypes were log transformed when necessary, as determined by 

Shapiro Wilkes test to approximate normality (Supplemental Figure 2.14). Additionally, the 

effects of sex and diet were residualized out leaving only the effect of cross. This was done to 

mirror later residualizing of phenotypes in the F16 population when testing for epistasis. Multiple 

test corrections were performed by implementing the “qvalue” R package to estimate false 

discovery rates (Supplemental Figure 2.15). The minimum Pearson’s correlation coefficient 

threshold was set to |0.5|. Connections with an 𝐹𝐷𝑅 ≤  0.05 (Supplemental Table 2.5) and MTE 

below the critical value were considered significant (Supplemental Figure 2.16). 

Epistasis testing 

The F16 LxS advanced intercross population, phenotypes, genotypes, genotypic scores, and QTL 

mapping methods are described elsewhere 23–25,59. We tested for epistasis in interacting pairs 

between genes showing parent-of-origin-dependent allele-specific expression and biallelic genes 

that are differentially expressed by cross. We selected F16 genotyped markers that fall within 1.5 

Mb up- and downstream from the geometric center of each gene, defined as the genomic position 

halfway between the transcription start and stop position of that gene (Supplemental Table 2.11). 

For every F16 animal, an “imprinting score” was assigned to each marker based on that animal’s 

genotypic values (LL = 0, LS = 1, SL = -1, SS = 0; maternal allele is depicted first). Non-normally 

distributed phenotypes (as evaluated by a Shapiro-Wilk test) were log10-transformed to 

approximate normality (Supplemental Figure 2.17). Because of the number of epistasis tests 

performed and the number of contexts represented in the data, we removed the effects of sex, diet 
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and their interaction from each F16 phenotype with a covariate screen. We tested for epistasis on 

the residualized data using the following generalized linear model: 

𝑅𝑝ℎ𝑒𝑛𝑜~ 𝐵𝐷𝐸𝐼𝑀𝑃 + 𝐴𝑆𝐸𝐼𝑀𝑃 + 𝐵𝐷𝐸𝐼𝑀𝑃: 𝐴𝑆𝐸𝐼𝑀𝑃   (2.8) 

Where Rpheno is the residual phenotype, BDEIMP is the imprinted genotypic score for the 

biallelic gene that is differentially expressed by cross, ASEIMP is the imprinted genotypic score for 

the gene showing parent-of-origin-dependent allele-specific expression bias, and BDEIMP:ASEIMP 

is the interaction between the two genes’ imprinted genotypic score. We employed a permutation 

approach to accurately estimate significance given the linkage of proximal markers. Imprinted 

genotypic values were randomly shuffled to generate a stable null model of p-values 

(Supplemental Figure 2.18).  False discovery rates were estimated for a given significance 

threshold as the proportion of significant tests under the permutated null model relative to 

significant tests under the real data model (Supplemental Figure 2.19). An 𝐹𝐷𝑅 ≤  0.1 was 

considered significant. Epistasis was considered significant if the BDEIMP:ASEIMP interaction term 

met the significance threshold (Supplemental Table 2.6). 

Validation of Nnat and F2r expression patterns 

Expression patterns of Nnat and F2r in white adipose were validated by qRT-PCR in high fat-fed 

female LG/J and SM/J mice and in biological replicates of high fat-fed female F1 reciprocal cross 

animals (n = 6 LG/J homozygotes, n = 10 LxS and 10 SxL reciprocal heterozygotes, n = 6 SM/J 

homozygotes). Total RNA was extracted from adipose samples using the Qiagen Rneasy Lipid 

Kit. High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher) was used for reverse 

transcription. Quantitative RT-PCR was performed with an Applied Biosystems (USA) 

QuantStudio 6 Flex instrument using SYBR Green reagent. Results were normalized to L32 
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expression using the ∆∆Ct method. Nnat forward primer – CTACCCCAAGAGCTCCCTTT and 

reverse primer – CAGCTTCTGCAGGGAGTACC. F2r forward primer – 

TGAACCCCCGCTCATTCTTTC and reverse primer – CCAGCAGGACGCTTTCATTTTT. L32 

forward primer – TCCACAATGTCAAGGAGCTG and reverse primer – 

GGGATTGGTGACTCTGATGG. Data points were considered outliers if they led to violation of 

normality assumptions or were considered outliers by box and whisker plots. ANOVA was used 

to estimate significance of differential expression by cross (1), paternal allele identity (2), 

mitochondrial ancestry (3). 

1.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝐶𝑟𝑜𝑠𝑠 ∈  {

𝐿𝐿, 0
 𝐿𝑆, −1
 𝑆𝐿, 1
𝑆𝑆, 0

  (2.9) 

2.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑃𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝐴𝑙𝑙𝑒𝑙𝑒 ∈  {

 𝐿𝐿, 0
 𝐿𝑆, 1
𝑆𝐿, 0 
𝑆𝑆, 1

 (2.10) 

3.𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 ∈  {
 𝐿𝑥𝑆 𝑥 𝑆𝑥𝐿, 0
 𝑆𝑥𝐿 𝑥 𝐿𝑥𝑆, 1

 (2.11) 

Expression patterns were also validated by qRT-PCR in high fat-fed female F2 animals (n = 14). 

Co-expression was determined by fitting a general linear model and estimating significance using 

the Wald test approximation of the LR test. Correlation with basal glucose was determined by 

fitting a general linear model and estimating significance using the Wald test approximation of the 

LR test. Pearson’s correlation coefficients were calculated for each gene with basal glucose. To 

test whether patterns in these correlations was significantly different between F0/F1 and F2 

populations, bootstrapping was used to calculate 90% confidence intervals for the Pearson’s 
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correlation coefficients. 5,000 iterations were run with 10 individuals randomly selected with 

replacement. 

scRNA analysis of Nnat and F2r 

scRNAseq data was downloaded from SRA: SRP145475 118.  Data were processed and aligned to 

the C57BL/6J reference (mm10) using Cell Ranger 130. Analysis and cell quality control was 

performed using the Seurat (3.2.2)131package in R (3.6.1)132. Cell quality was controlled using 

three metrics 1331) number of features, 2) number of counts, 3) covariation of features and counts. 

High quality cells were required to have between 500 and 3,000 features and read counts between 

1,000 and 30,000. As sequencing is a process of random sampling, the number of features and the 

number of counts should covary. This relationship was fit to a generalized additive model. 

Deviation from this relationship (residuals) were computed for each cell. High quality cells were 

required to have a residual within 3 standard deviations of the mean residual of all cells 

(Supplemental Figure 2.20). 

Seurat normalization with a scale factor of 10,000 was performed. Dimensionality 

reduction (UMAP) was performed (dims = 1:10, resolution = 0.15). Resolution was chosen using 

the clustree (0.4.3) package 134A range of resolutions from 0.06 to 0.18 were tested, and the highest 

resolution with stable clustering was chosen (Supplemental Figure 2.21). Cell type markers were 

identified by differential expression analysis using the “MAST” hurdle-model test 135. Genes 

overexpressed in a given cell type relative to all other cell types were considered cell type 

“markers”. Cell type identity was assigned using previously reported markers for this data set 

(Supplemental Figure 2.2).  

Cells along the adipogenic trajectory were subset and subjected to dimensionality reduction 

(UMAP, dims=1:10, resolution=0.17). A range of resolutions from 0.01 to 0.25 were tested. Using 
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Adipoq as a marker of differentiation, we sought to identify the set of clusters that would best 

encapsulate the stages of differentiation. To this end for every level of resolution we calculated the 

mean count variance (𝐶𝜎̅̅ ̅). This is done by calculating the standard deviation (𝜎) of Adipoq 

expression I within each cluster (G), referred to as the count variance (𝐶𝜎). Cells with no 

expression of Adipoq were excluded. The mean of count variances for all clusters is calculated. 

This process is similar to k-means clustering, where the goal is to find that parameters which 

minimize the within group variation. 

𝐶𝑜𝑢𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∑ 𝜎(𝐸𝐺)
𝑛
𝐺=1

𝑛
 (2.12) 

We also calculated the percent expressing variance (𝑃𝜎̅̅̅). This was taken as the mean of the standard 

deviation in the percent of cells expressing Adipoq. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∑ 𝜎(%𝐸>0𝐺)
𝑛
𝐺=1

𝑛
 (2.13) 

The resolution 0.17 was chosen as the lowest resolution where variation is minimized and no 

longer significantly changes (Supplemental Figure 2.22). Using Adipoq as a marker of 

adipogenesis, clusters 1 and 2 were identified as pre- and post-differentiated cells, respectively. 

Differential expression was analyzed using the “MAST” test. Expression was compared between 

clusters 1 and 2 only. Multiple tests correction was performed using the Bonferroni method. We 

required changes in expression to show either a sufficiently large fold change ( 

|log2 𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒| ≥ 0.3 ) OR a sufficiently large change in the percent of cells expressing the 

gene in question ( 𝑝𝑐𝑡. ∆≥ 0.4 ). The change in percent of cells expressing a gene was calculated 

as the difference in percent of cells expressing the gene between the clusters and scaled by dividing 

by the larger percentage. 
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𝑝𝑐𝑡. ∆ = 
𝑝𝑐𝑡.2−𝑝𝑐𝑡.1

max (𝑝𝑐𝑡.1,𝑝𝑐𝑡.2)
 (2.14) 

 

Chapter 3: A general framework to model of 

genetic effects within networks 
 

In this chapter, I use ASE to find candidate “Source” genes and total expression to find 

“Target” genes, then incorporate additional data (multiple generations, mapping data, single-cell 

RNAseq) to refine a pairwise network.The results are included in a manuscript to be submitted to 

the journal Molecular Biology and Evolution.  

Juan F Macias-Velasco and Heather A Lawson. Cell Type Specific Genetic Effect Networks 
Reveal Mechanisms Underlying Complex Murine Traits. in preparation  

3.1 Abstract 
Metabolic dysregulation poses serious risks to public health. Understanding the genetic 

underpinning of metabolic traits may aid in the management of metabolic dysregulation. The 

genotype-to-phenotype problem is confounded by our inability to dissect and contextualize genetic 

and epigenetic information. Addressing the genotype-to-phenotype problem requires a paradigm 

shift from a single locus naïve model to a biologically interpretable multi-locus model accounting 

for genetic, parent-of-origin, and environmental effects. Here we present a statistical framework 

and general approach to construct and dissect expression level genetic effects as cell type-specific 

pairwise genetic effects networks. We call the model at the heart of this approach the bridge model. 

With the bridge model, we use total expression to measure total genetic effects on a target gene. 
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By using ASE data, we can isolate the cis effects on a target gene. Any observed genetic effects 

which cannot be accounted for by cis-effects, must be the result of a trans effect from some 

unobserved source gene(s). We construct a pairwise network where the cis-effects of a source gene 

matches the total genetic effects of a target gene. We use the LG/ J and SM/J inbred mouse strains 

to model gene expression in white adipose tissue and found wide-spread evidence of genetic effect 

propagation with 38% of genes showing signatures of additive trans effects. We demonstrated that 

the bridge model captures genetic effects just as effectively as a GEM and effectively uses ASE 

data. We put forth Bridge as a viable model to related total expression, ASE, and genetic effects. 

We identified a genetic effects network with 8,996 gene pairs representing 325 “Source” genes 

and 299 “Target” genes. Integrating single-cell RNAseq we split this network into cell type-

specific networks, representing 199 unique genes. Within this we identified an additive genetic 

effect propagating from Msr1 to Gpnmb in macrophages. Msr1 and Gpnmb are overwhelmingly 

expressed by macrophages. The estimated cis genetic effect on Gpnmb can only account for 13% 

of it’s heritability. Whereas, the cis effect from Msr1 can account for 62% of the heritability of 

Gpnmb. Msr1 is expressed in macrophages and is required for macrophages to take on lipid-laden 

phenotype. Accumulation of lipids in macrophages induces expression Gpnmb. By promoting the 

lipid laden phenotype elevated Msr1 expression promotes expression of Gpnmb, an established 

biomarker of lipid laden macrophages. The exact cascade of events between Msr1 activation and 

Gpnmb expression are unknown, but a there is a clear connection between them. Our model 

showed not only that they are related, but also the causality (Msr1 → Gpnmb) and the directionality 

(positive correlation). All of which is supported by previous studies. 
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3.2 Introduction 
Metabolic dysregulation poses serious risks to public health. Not only in terms of direct health 

consequences, but also as a risk factor for other diseases. Understanding the genetic underpinning 

of metabolic traits may aid in the management of metabolic dysregulation. Improvements in 

sequencing technology have made large amounts of data available. However, utilizing these data 

will be limited until major advances can be made in the prediction/modeling of complex traits. The 

genotype-to-phenotype problem is confounded by our inability to dissect and contextualize genetic 

and epigenetic information. 

The full significance of genetic phenomena can only be tabulated at the level of networks 

and pathways. Addressing the genotype-to-phenotype problem requires a paradigm shift from a 

single locus naïve model to a biologically interpretable multi-locus model accounting for genetic, 

parent-of-origin, and environmental effects. The need to shift to a systems genetics paradigm is 

well accepted, after all biological systems are in fact systems and should be studied as such. 

Single locus frameworks are designed to find reproducible associations between phenotype 

(𝑃) and genotype (𝐺) (Eq. 3.1). However, they have limited interpretability and can only explain 

a small proportion of phenotypic variation. This is in part because biological systems are inherently 

complex, stochastic, and multi-locus in nature. 

𝑃 =  𝛽1𝐺1  +  𝛽0 (3.1) 

With sufficient sample size we could simply expand the single locus paradigm to include many or 

all loci (Eq. 3.2). 

𝑃 = 𝛽1𝐺1+ 𝜷𝟐𝑮𝟐+ 𝜷𝟑𝑮𝟑+ ⋯ + 𝜷𝒊𝑮𝒊+ 𝛽0 (3.2) 
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This approach would increase the amount of phenotypic variation explained. But it would require 

unrealistic sample sizes and overfitting would seriously undermine the generalizability of findings. 

It also wouldn’t be any more interpretable.  Further, such an expansive additive model still has no 

real way to account for genetic interactions. It is possible to include interaction terms (Eq. 3.3). 

𝐸𝑞. 3.    𝑃 = 𝛽1𝐺1+ 𝛽2𝐺2+ 𝛽3𝐺3+ ⋯ + 𝛽𝑖𝐺𝑖+ 𝜷𝟏,𝟐𝑮𝟏,𝟐 +  𝜷𝟏,𝟑𝑮𝟏,𝟑 + ⋯ +  𝜷𝒊,𝒋𝑮𝒊,𝒋 + 𝛽0 (3.3) 

This would capture genetic interactions, but would also dramatically increase the number of terms 

leading to overfitting. We need a framework that is resistant to overfitting, able to explain a greater 

degree of phenotypic variation, and lends itself to interpretation. 

Our goal is to take an incremental step towards addressing the genotype-to-phenotype 

problem by modeling the trait values of a population with a shared genetic background as a 

distribution 𝒩(𝑃). So, while we can’t accurately predict the trait value of an individual (�̂�), we 

may be able to calculate the mean trait value for a population of similar individuals (�̅�). 

Genetic effects 

A classic way to model population traits as a function of genotype is by genetic effects 

models32,73,136 (Figure 3.1 A). Genetic effects models are additive linear models which reliably 

describe traits as a function of genotypic classes (LL, LS, SL, SS) when there are two possible 

alleles (here L and S). By convention, the maternal allele precedes the paternal allele. 

Heterozygotes are subdivided by allelic parent-of-origin, where individuals who inherit the L allele 

maternally and S allele paternally (LS) are treated as a separate class from those with reversed 

allelic origins (SL). This model partitions the effect of genotype on phenotype into genetic effects 

coefficients (Figure 3.1 B): reference (R), Additive (A), Dominance (D), and imprinting (I). These 

four coefficients capture the variance between genotypic classes. These coefficients can be directly 
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calculated from genotypic means and vice versa. For example, additivity is the difference between 

homozygote means divided by two (
𝐿𝐿̅̅ ̅−𝑆𝑆̅̅̅̅

2
). This framework is a robust and established approach 

to measuring genetic effects. It lends itself quite well to mapping studies, which have employed it 

to map quantitative trait loci (QTL) for a variety of complex metabolic traits 23–25,59.  

 

Figure 3.1. Population level phenotypes can be predicted using genetic effects models. A 

classical way to model population traits as a function of genotype is the genetic effects model. 

Genetic effects models describe traits as a function of genotype split into four genotypic class 

populations {LL, LS, SL, SS} when there are two possible alleles {L & S}(A). By convention for 

the nomenclature of genotypes, the maternal allele precedes the paternal allele. Genetic effect 

models partition the effect of genotype on phenotype into genetic effects (B); Reference (R), 

Additivity (A), Dominance (D), and Imprinting (I). These four coefficients accurately capture the 

relationship between genotypic means. Coefficients can be directly calculated from genotypic 
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means {𝐿𝐿̅̅ ̅, 𝐿𝑆̅̅ ̅, 𝑆𝐿̅̅ ̅, 𝑆𝑆̅̅ ̅}. Genotype is encoded using four genetic effects scores: reference (r), 

additive (a), dominance (d), and imprinting (i).  

 

We present a statistical framework to construct and dissect expression level genetic effects 

as pairwise genetic effects networks. Our approach relies on using the bridge model which re-

frames genetic effects as pseudo-molecular parameters (C). Bridge models expression as a 

function of genotype and five “bridge parameters” {𝛽𝐿, 𝛽𝑆, 𝑅♀, 𝑅♂, and 𝛽0}. Genotype is encoded 

using allelic scores {𝐿♀, 𝐿♂, 𝑆♀, 𝑆♂} which take on the value 1 when the corresponding allele is 

inherited from the indicated parent and takes on the value 0 otherwise. An LS individual would 

have the following allelic scores: {𝐿♀ = 1, 𝐿♂ = 0, 𝑆♀ = 0, 𝑆♂ = 1}. Bridge parameters can be used 

to estimate population genotypic means. Genotypic mean estimates can then be used to calculate 

classic genetic effects coefficients (R, A, D, I). In this way bridge parameters can be used to 

calculate genetic effects. 

We showcase an example of how these parameters relate to expression using simulated 

data in which a gene shows strong preferential expression of the paternally inherited allele and 

much stronger expression of the S allele (D). 

 

The LG/ J and SM/J inbred mouse strains are established models in the study of metabolic 

traits. Intercrossed lines of these strains were developed to uncover the genetic architecture of 

metabolic dysregulation. Ultimately, the goal of these studies is to find the molecular 

circuitry/pathways through which genotype influences phenotype. Unfortunately, mapping like 

this has several major limitations: 1) Identified QTL are comprised of vast genomic spaces (~3-6 

Mb) often containing many genes; 2) It reveals little or no mechanistic leads and doesn’t lend itself 

well to mechanistic interpretation by experimentalist; and 3) It provides no information as to what 

tissues or cell types the observed genetic effects are occurring in. 

Our aim is to introduce a complimentary system to better address these specific limitations. 

Here we present a statistical framework and general approach to construct and dissect expression 
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level genetic effects as cell type-specific pairwise genetic effects networks. We call the model at 

the heart of this approach the bridge model (Figure 3.1 C). 

The bridge model attempts to re-frame genetic effects as pseudo-molecular parameters. It 

models expression as a function of genotype and five “bridge parameters” (𝛽𝐿, 𝛽𝑆, 𝑅♀, 𝑅♂, and 𝛽0). 

Genotype is encoded as allelic scores (𝐿♀, 𝐿♂, 𝑆♀, 𝑆♂) which take on the value 1 when the 

corresponding allele is inherited from the indicated parent and takes on the value 0 otherwise. For 

example, an LS individual would have allelic scores as follows: {𝐿♀ = 1, 𝐿♂ = 0, 𝑆♀ = 0, 𝑆♂ = 1}. 

Bridge parameters can be used to calculate population genotypic means (𝐿𝐿̅̅ ̅, 𝐿𝑆̅̅ ̅, 𝑆𝐿̅̅ ̅, 𝑆𝑆̅̅ ̅). Bridge 

captures complex patterns and describes them using bridge parameters. We showcase an example 

of this using simulated data where a gene shows strong preferential expression of the paternally 

inherited allele and strong expression of the S allele (Figure 3.1 D). Like the genetic effects model, 

genotypic mean estimates can be calculated from bridge parameters, which can in turn be used to 

calculate the coefficients of a classic genetic effects model (𝑅, 𝐴, 𝐷, 𝐼). Thus, bridge parameters 

can be used to calculate genetic effects. Bridge parameters are more intuitive than classic genetic 

effects coefficients. 

Most studies employing RNAseq measure the total expression of a gene agnostic to its 

allelic identity or it’s parental origin. By measuring the expression of each allele individually, we 

learn how the identity and parental origin of an allele affects expression (ASE). ASE occurs in two 

forms, sequence dependent and parent-of-origin dependent5,11,67. Sequence dependent ASE 

happens when alleles within an individual are unequally expressed based on the identity of the 

alleles (L vs S). Parent-of-origin dependent ASE happens when alleles are unequally expressed 

based on which parent they were derived from (maternal vs paternal). This form of ASE is an 
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epigenetic phenomenon primarily driven by DNA methylation that marks which parent a 

chromosome came from 11,34. 

Unlike the genetic effects model, the bridge model was designed with ASE in mind. Its 

parameters are meant to be intuitively reflective of ASE machinery. The parental repression 

parameters (𝑅♀, 𝑅♂) correspond to parental epigenetic mechanisms. The allelic expression 

parameters (𝛽𝐿, 𝛽𝑆) correspond to the amount of expression attributable to each allele based on its 

identity. Since bridge parameters can be used to calculate genetic effects, it allows us to “bridge” 

ASE phenomena to genetic effects. 

Genetic effects propagate through systems 

Genetic effects are the effects of genotype on traits. The total genetic effect on a trait at a 

given locus is the sum of all cis and trans effects. The genotype of an autosomal locus is composed 

of two alleles inherited either maternally or paternally. In our F0/F1 model we have four possible 

allele by parental combinations {𝐿♀, 𝐿♂, 𝑆♀, 𝑆♂}. The total expression of a gene is the combined 

expression of these two alleles. We define a cis genetic effect as the effect of an allele’s identity 

and parental origin on its own expression. A cis effect is specific, it acts only on the expression of 

the allele on the same chromosomal copy. This is different from a trans effect which is non-

specific, acting across chromosomal copies and between genes. For example, the effect of allele 

identity on the maternal copy of a promoter that controls expression of its gene on the maternal 

copy would be a cis effect. The effect the same allele has on expression of other genes outside of 

its genomic domain would be a trans effect. In this way genetic effects propagate through 

regulatory pathways in complex ways. 
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We can use quantitative genetics to begin to detect signatures of pathways. In a genetic 

effects model, additivity measures the difference between homozygote genotypic means and can 

be thought of as the difference in expression between alleles (L vs S) and between genotypes (LL 

vs SS)74,137. Additivity is calculated from total gene expression (L+S), which measures the total 

additive genetic effect. ASE measures the difference in expression between alleles within 

heterozygous individuals (L vs S). Crucially, measuring ASE within an individual means that both 

alleles are exposed to the same cellular environment, and therefore both alleles are exposed to the 

same trans genetic effects. This means that differences observed as ASE can only result from cis-

regulatory differences. Thus, sequence dependent ASE is a measure of the cis additive genetic 

effect. 

For example, if there is sequence dependent ASE at a locus within heterozygotes (L > S), 

LL homozygotes should have higher overall expression relative to SS homozygotes (L+L > S+S). 

However, this assumes that genes function in isolation. The network structure of biological 

systems means that genetic effects on one gene affect other genes within its network138. We call 

this genetic effect propagation. Accounting for genetic effect propagation allows us to better 

understand the structure and nature of genetic networks. Resolving genetic network structure is 

the first step to contextualizing genetic information across networks and thereby advancing our 

understanding of the genotype-to-phenotype problem. 

Genetic effect partitioning reveals widespread genetic effect propagation 

How important might genetic effect propagation be? The more interconnected biological systems 

are, the more widespread and important propagation becomes. Total genetic effects are the sum of 

cis genetic effects and trans genetic effects. Genetic effects on total expression measures total 
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genetic effects, whereas ASE measures only the cis genetic effect. Differences between observed 

cis versus total effects indicates the presence of some trans effect(s). By comparing additivity on 

total expression to sequence dependent ASE, we can infer the prevalence of trans effects. 

We measured genetic effects on total gene expression in high fat fed female mice (n=16) 

using a genetic effects model. We considered an additive genetic effect with an 𝐹𝐷𝑅 ≤ 0.1 to be 

significant (Figure 3.2A). We used an F1 hybrid with matching context (n=8) to measure sequence 

dependent ASE. We considered a |Sequence Dependent Allelic Bias| ≥ 0.25 to be significant, 

equating to >75% of expression coming from one allele. 

  

Figure 3.2. Genetic effects propagate within biological networks along molecular pathways. 

We wanted to see how much of the observable genetic effects might arise from network structure 

(trans effects) as opposed to widespread cis-regulatory difference between strains. Differences 

between observed cis and Total genetic effects indicate the presence of trans effects. Additivity in 

a genetic effects model measures the difference between homozygote genotypic means and can be 

taken as the difference in expression between alleles (L vs S) between populations (LL vs SS). 

ASE measures the difference in expression between alleles within heterozygous individuals (L vs 

S). Sequence dependent ASE is a measure of the cis additive genetic effect. Additivity calculated 

from total gene expression (LL vs SS) is a measure of total genetic effects (cis + trans). 
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We measured genetic effects on total gene expression in high fat fed females using a 

genetic effects model. We considered an additive genetic effect with an 𝐹𝐷𝑅 ≤ 0.1 to be 

significant (A). Using F1 hybrids with matching context we measured sequence dependent ASE. 

We considered |Sequence Dependent Allelic Bias| ≥ 0.25 to be significant. Comparing 

Additivity and sequence dependent ASE, we saw four groups. 1] The “Null” group (41.7%) genes 

lack both additivity and sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 = 0, 𝐶𝑖𝑠 = 0]. 2) The “Target” group 

(38.8%) have additivity but lack sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 ≠ 0, 𝐶𝑖𝑠 = 0]. 3) The “Source” 

group (12.5%) have both additivity and sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 ≠ 0, 𝐶𝑖𝑠 ≠ 0]. Lastly 4), 

the “Controlled” group (7.0%) lack additivity but have sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 =

0, 𝐶𝑖𝑠 ≠ 0]. 

We present a representative molecular mechanism to aid in understanding how these 

concepts and parameters interrelate. White adipose is composed of a variety of cell types including, 

Adipocytes, pre-adipocytes/mesenchymal stem cells (MSC), T cells, Macrophages, and cell types 

found in blood vessels (B). For our example there is a hypothetical pathway we will focus on in 

pre-adipocytes (C). It is composed of two genes (Source and Target). The protein product 

SOURCE (dark blue) is a cell surface receptor activated upon binding of an extracellular signal 

(pink). Activated SOURCE promotes activation of kinase K (yellow) via phosphorylation. 

Activated K promotes activation and translocation of the transcription factor TF (light blue) to the 

nucleus. TF binds the Target promoter, initiating transcription and ultimately production of 

TARGET protein (lime green). Under this this mechanism, genetic effects which increase or 

decreasing the amount of available SOURCE affect cellular response to signal in turn increasing 

or decreasing Target expression.  

We focus in further to aid in understanding how bridge parameters relate to cellular 

machinery. We show a model for how genomic machinery can produce cis genetic effects/ASE 

(D). For this mechanism there are three genomic features. An imprinting control element (ICE - 

grey) which is selectively marked via DNA methylation based on which parent that chromosome 

was inherited from. In this example, the maternally inherited ICE is selectively methylated. ICE is 

bound by a co-factor which when bound blocks enhancer function, effectively repressing 

transcription of Source. Methylation prevents co-factor binding, and preserves enhancer activity, 

permitting full expression of Source. Bridge encodes selective repression of transcription based on 

parental origin (genomic imprinting) as 𝑅♀and 𝑅♂. The gene Source and its promoter make up the 

remaining features. In this example, a variant (LG/J - Purple, SM/J - Orange) alters promoter 

activity. How much expression is explained by promoter allele identity is encoded by bridge as 𝛽𝐿 

for the LG/J allele and 𝛽𝑆 for the SM/J allele. SOURCE levels regulate TF activation of the Target 

gene (E). Target has no meaningful epigenetic (𝑅♀ = 𝑅♂) or cis-regulatory differences (𝛽𝐿 = 𝛽𝑆), 

and therefore no cis genetic effect from the Target locus. 

The total genetic effect acting on Target is the sum of its cis effects (lime green), in this 

case zero, and trans effects from upstream genes (F). In this example, the Target cis effect is zero, 
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which means that the observed (total) genetic effects are the result of trans effects which propagate 

from Source. Through this mechanism, Source cis effects would be predictive of the genetic effects 

on Target. 

 

Comparing these two metrics gives are four possible scenarios: 1) The “Null” group 

(41.7%) genes lack both additivity and sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 = 0, 𝐶𝑖𝑠 = 0]; 2) The 

“Target” group (38.8%s additivity but lacks sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 ≠ 0, 𝐶𝑖𝑠 = 0]; 3) 

The “Source” group (12.5%) has both additivity and sequence dependent ASE [𝑇𝑜𝑡𝑎𝑙 ≠ 0, 𝐶𝑖𝑠 ≠

0]; or 4), the “Controlled” group (7.0%) lacks additivity but has sequence dependent ASE 

[𝑇𝑜𝑡𝑎𝑙 = 0, 𝐶𝑖𝑠 ≠ 0]. 

The “Target” group represents a case where cis genetic effects do not account for the total 

observed genetic effects. Total genetic effects are the sum of cis and trans effects, if cis effects 

cannot explain the total, there must be some trans effects at play. We call the process of comparing 

cis and total effects to infer the presence of trans effects “genetic effect partitioning”. These 

“missing” trans effects must come from somewhere. The simplest explanation is that they are 

derived from interactions with genes in the “Source” group. The process of genetic effects 

manifesting at a “Source” gene (cis effect) and in turn affecting the expression of a “Target” gene 

is what we call genetic effect propagation. 

Mechanistically, how might genetic effects propagate? 

Genetic effects and their propagation are abstract and difficult to intuit by nature. It is helpful to 

view these phenomena with a simplistic, but realistic mechanism in mind. We present a mechanism 

using expression data is derived from murine F0 and F1 reproductive white adipose (Figure 3.2 B). 

Adipose is composed of a variety of cell types including adipocytes, mesenchymal stem cells 

(MSC), T cells, macrophages, and various cell types found in blood vessels. Let us say the example 
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cellular mechanisms occurs within a specific cell type, focusing on a hypothetical pre-adipocyte 

(Figure 3.2 C). 

This mechanism is composed of two genes (Source and Target). The protein product 

SOURCE is a cell surface receptor activated when bound by an extracellular signal. Activated 

SOURCE promotes the activation of kinase K via phosphorylation. Activated K promotes 

activation and translocation of the transcription factor TF to the nucleus. TF binds the Target 

promoter, initiating transcription and ultimately production of the TARGET protein. 

We can demonstrate genetic effect propagation using this mechanism. If a genetic effect at 

Source increases or decreases available SOURCE levels, it would enhance or dampen cellular 

response to signal, in turn increasing or decreasing expression of Target. Which means a genetic 

effect on Source expression can produce a genetic effect on Target expression. 

Mechanisms of allele specific expression 

We present an example model for how genomic machinery could produce cis genetic effects/ASE 

and how it relates to the bridge model (Figure 3.2 D) 14. This example has three genomic features. 

First, an imprinting control element (ICE - grey) which is a genomic feature selectively marked 

via DNA methylation based on which parent it was inherited from. For this example, the 

maternally inherited ICE is selectively methylated. ICE function in several different ways 13,139,140, 

but for this example the ICE functions as an insulator such as a CTCF binding site. The ICE is 

bound by a co-factor, which blocks enhancer function, effectively repressing transcription of 

Source. DNA methylation of ICE blocks co-factor binding, which preserves enhancer activity, 

allowing full expression of Source. In the bridge model, we encode the selective repression of 

transcription based on parental origin (genomic imprinting) as 𝑅♀and 𝑅♂. The gene Source and its 
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promoter make up the remaining features. For this example, a variant exists (L - Purple, S - Orange) 

in the promoter and alters promoter activity. In the bridge model, the amount of expression 

explained by (promoter) allele identity is encoded as 𝛽𝐿 for the LG/J -derived allele and 𝛽𝑆 for the 

SM/J – derived allele. In this example, expression of L and S Source alleles combine to produce 

the SOURCE protein. SOURCE levels regulate TF activation of the Target gene (Figure 3.2 E). 

Target has the same type of features as Source. In this example, there is no meaningful epigenetic 

(𝑅♀ = 𝑅♂) or cis regulatory differences (𝛽𝐿 = 𝛽𝑆), and therefore no cis-genetic effect from the 

Target locus. The total genetic effect acting on the Target locus is the sum of its cis effects, in this 

case zero, and trans effects from upstream genes (Figure 3.2 F). In this example, the Target cis-

effect is zero, which means that the observed (total) genetic effects are trans effects coming from 

Source. Therefore, the Source cis-effect produces the Target total effect. 

General approach 

We use total expression to measure total genetic effects on a target gene (Figure 3.3 A). By using 

ASE data, we can isolate the cis effects on a target gene (Figure 3.3 B). Any observed genetic 

effects which cannot be accounted for by cis-effects, must be the result of a trans effect from some 

unobserved source gene(s) (Figure 3.3 C). We construct a pairwise network where the cis-effects 

of a source gene matches the total genetic effects of a target gene (Figure 3. 3D and E). 
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Figure 3.3. General approach for genetic effect partitioning, network construction, and 

detangling cell type specific networks. For some potential target gene, we use total expression 

to measure total genetic effects on the “Target” gene (A1-3). Using ASE data we isolate the cis 

effects on the “Target” gene (B1-3). Observed genetic effects that cannot be accounted for by cis 

effects, must be the result of a trans effect from some unobserved source gene(s) (C1-3). We 

construct a pairwise network where the cis effects of “Source” genes match the total genetic effect 

of “Target” genes. The resulting genetic effects network is a highly tangled composite of the 

networks functioning withing each cell type present in that tissue. By using single cell RNAseq 

we can calculate the cell type specificity of expression for each gene in a network (D). This allows 

us to split the genetic effects network into subnetworks including only the genes expressed within 

a given cell type. In this way we can estimate the genetic effects networks within a cell. This 

methodology integrates bulk total expression, bulk allele specific expression, and single cell 

expression data to identify genetic effects networks within cell types (E). 
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3.3 Results 

Total expression alignment 

We tested three strategies for total expression alignments. The first was to align against just the 

SM/J genome. The second was to align against LG/J and SM/J simultaneously allowing for multi-

mapping and taking the mean expression. The third strategy was to align against SM/J and LG/J 

separately, then align against LG/J and SM/J simultaneously but disallowing multi-mapping. We 

ran a linear model comparing total expression counts to ASE counts for each gene and calculated 

an R2, which quantifies how well Total/ASE counts match. To compare alignment strategies, we 

compare R2 distributions. The most appropriate strategy has the strongest agreement between ASE 

and total counts (Supplemental Figure 3.1 D-F), which translates to the highest proportion of R2 

values close to one. We chose the second alignment strategy, because it had the strongest 

agreement between count types. We saw no relationship between expression magnitude and 

agreement strength (Supplemental Figure 3.1 G) and we see strong agreement between ASE and 

total expression genotypic means (Supplemental Figure 3.1 H). 

Modeling total genetic effects 

 We fit the bridge model using total gene expression data from all four genotypic classes 

(LL = 4, LS = 4, SL = 4, SS = 4). There were 4,995 genes that met our QC requirements to perform 

fitting. 3,780 genes were considered significant (𝐹𝐷𝑅 ≤ 0.1). We evaluated how well the bridge 

model fits using total expression to predict genotypic means by fitting a linear model relating 

estimated to actual genotypic means. The model reliably captures genotypic means (R2=0.77, 

Supplemental Figure 3.3).  

We tested if the bridge model can capture genetic effects as well as an established model73. We 

implemented a classical genetic effects model (GEM) to the same total gene expression data 
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(Supplemental Figure 3.4). There were 3,778 genes fit of which 1,942 showed at least one 

significant effect (imprinting 3.85%, dominance 56.5%, additive 61.5%). To quantify how well 

bridge can recapitulate genetic effects captured by the GEM, we compare GEM coefficients to 

bridge estimates (Supplemental Figure 3.5 A-C). The GEM reference coefficient (R) is reliably 

estimated by the bridge model (R2=0.71) as well as imprinting (R2=0.96) and additive (R2=0.99) 

coefficients. To handle dominance effects the bridge model sums reference and dominance 

coefficients. We determined this by taking the residuals for reference, imprinting, and additive 

coefficients and then compared them to the dominance coefficients. Neither imprinting nor 

additive residuals can account for dominance (R2=0 and 0 respectively, Supplemental Figure 3.5 

E & F). Thus the reference coefficient residuals account for the dominance coefficients (R2=0.93, 

Supplemental Figure 3.5 D). 

Modeling cis genetic effects 

We fit the bridge model to allele specific expression data from the heterozygote genotypic classes 

(LS = 4, SL = 4).  There were 4,856 genes which met our QC requirements to perform fitting, of 

which 4,846 had a significant overall fit (𝐹𝐷𝑅 ≤ 0.1). We are interested in genes with significant 

fits for both total and ASE data. We were able to fit 4,855 genes using both total and allele specific 

expression data, of which 3,778 were significant for both total and ASE. 

Using the bridge model with ASE data requires that we can be sure the bridge model is 

able to reliably capture ASE metrics. We tested this requirement using two established metrics for 

ASE 5,67. We calculated ASE metrics for all genes fit and compared them to the bridge estimates 

(Supplemental Figure 3.7). The bridge model estimates reliably capture POE scores (R2=0.98) and 

ancestry scores (R2=0.95). 
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Construct Genetic Effects Networks 

We identified genes showing a total genetic effect on expression, some of which also show a cis 

genetic effect. Using these genes, we use Pearson’s correlation tests to construct a first pass 

network (Supplemental Figure 3.8). There were 34,758 pairs which met our threshold with 𝜌 ≥

 0.7, representing 1,317 unique genes. Combining first pass network structure, total, and cis genetic 

effects we can refine and improve on the first pass network. By partitioning genetic effects into cis 

and trans we can identify “Source” genes which have a cis effect sufficient to explain the observed 

total effect. In a pathway we would expect that the genetic effects on a “Source” gene should be 

in some way reflected in downstream genes. We might expect that if a gene is truly a downstream 

“Target” gene, it will show a total genetic effect but lack a cis effect. This discrepancy between 

cis and total effects must be the result of some unobserved or “missing” trans effect. Such a trans 

effect would be the result of pathway structure and the presence of a cis effect on an upstream 

regulator (“Source” gene). For a given gene pair, we can test if the total genetic effects on a 

“Target” gene are better explained by its cis effects or if they are better explained by the cis effects 

present in the upstream “Source” gene. Running all pairwise tests from the first pass network, we 

can construct a genetic effects network in which edges represent the flow of genetic effects along 

unobserved pathway structure. We perform pairwise genetic effect partitioning using five models 

and analysis of variance (supplemental Figure 3.9). We tested 34,758 gene pairs representing 1,317 

unique genes. After thresholding we were left with 8,996 gene pairs representing 325 source genes 

and 299 target genes, of which 8,561 genes pairs met our significance thresholds (𝐹𝐷𝑅 ≤ 0.05). 

Identifying cell type specific genetic effects in networks 

Pathways occur within cells, but our genetic effects network represents data from whole tissue, 

which is comprised of a variety of different cell types. We integrate publicly available epididymal 

adipose tissue single cell RNA-seq data to further refine our network. Cell types were defined 
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using marker genes reported previously118 (Figure 3.4 B). The cell single data set is composed of 

23.5% macrophages, 35% ASC, 6.3% Differentiating ASC, 11% VEC, 8.9% VSMC, 8.1% T cell, 

and 7.3% B cell (Figure 3.4 D). We use single cell data to estimate the fraction of a gene’s 

expression that is derived from different cell types. 

To this end we needed to model expression of each gene within each cell type as a beta-

hurdle model. Modeling expression in this way lets us estimate the expected amount of expression 

from a given cell type if we know cell composition (Islet paper). There were 11,837 genes fit 

across 7 cell types. As a quality control, we plot expected values of each gene in each cell type 

against goodness of fit (ks statistic) and colored by dropout rates (Supplemental Figure 3.11). The 

beta models were good fits, given the small ks values. Goodness of fit appears largely to be affected 

by the probability of dropout. The lower the dropout rate, the better the model can be fit. Beta 

hurdle model statistic distributions are shown in supplemental Figure 3.12. Examples of genes this 

approach reports are overwhelmingly expressed by a particular cell type and are listed in in 

supplemental Figure 3.13. 

We took the white adipose tissue genetic effects network we identified in the bulk RNAseq 

data and subset out all genes for which we had single cell data (Figure 3.4 A) to partition the 

network into subnetworks corresponding to the 7 cell types in the single cell data (Figure 3.4 B). 
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Figure 3.4. Genetic effect partitioning, trans-network construction, and integration of cell 

type contribution data reveal cell type specific genetic effects networks. Genetic effects 

network across to cell types (A). Each node represents a gene and each represents a potential trans 

effect between a “Source” and a “Target”. Line color indicates correlation magnitude and 

direction. UMAP representation of single cell RNAseq data showing relevant cell types (B). Cell 

type specific contributions to expression of network genes measured in vitro as well as estimated 

contributions using in vivo cell type composition (C). Cell color denotes the fraction of total 

expression is expected to come from that cell type. Comparison of in vitro versus in vivo cell type 

composition (D). Macrophage additive genetic effects network (E). Node color indicates scaled 

total additive genetic effect magnitude and direction. Adipogenic imprinting genetic effects 

network (F). Node color indicates scaled total Imprinting genetic effect magnitude and direction. 

 

For each gene in each cell type, we estimate the fraction of bulk expression we would 

expect to come from that cell type (Figure 3.4 C). This was done for all genes in the final white 

adipose tissue genetic effects network. The fraction of expression is dependent on cell composition 

expected in the bulk. For this reason, we used two sets of cell compositions; in vitro observed 

composition and estimated in vivo composition (Figure 3.4 D). We do this to get a sense for how 

bulk in vivo data might differ from the in vitro single cell data. Using the in vitro composition, we 

subset the networks into cell type networks. To include a given gene in a cell type-specific network 
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we required that cell type contribute at least 25% of that gene’s in vitro expression. We selected 

0.25 as our cutoff because at that threshold most included genes were expressed in 1-2 cell types 

(supplemental Figure 3.12 E). We found 1,104 gene pairs had sufficient single cell data and could 

be split into cell type-specific networks, representing 199 unique genes. Split networks are as 

follows: Macrophage network = 314 pairs and 73 genes (Figure 3.4 E); Adipogenic network = 

147 pairs and 74 genes (Figure 3.4 F); B cell network = 9 pairs and 10 genes; T cell network = 5 

pairs and 6 genes; VEC network = 6 pairs and7 genes; VSMC network = 6 pairs and 8 genes. 

Cis genetic effects on Msr1 influence Gpnmb expression 

Our approach identifies gene pairs in which a genetic effect on a “Source” gene drives the 

expression pattern we observe on a “Target” gene. For example, Msr1 is a candidate “Source” 

gene. It shows a total (cis + trans) genetic effect (Figure 3.5 A) where the S allele is more highly 

expressed than the L allele. By isolating the cis effect on expression, we see that the cis expression 

pattern (Figure 3.5 B) matches the total expression pattern (Figure 3.5 A). Random sampling from 

fit distributions allows us to compare additive and imprinting genetic effect coefficients from either 

total or cis expression (Figure 3.5 G). The observed Msr1 genetic effects coefficients (dashed 

lines) match the estimated coefficient distributions (boxplot) for both total and cis effects. Together 

this makes Msr1 a candidate “Source” gene because it has a cis effect that matches its total genetic 

effect. 
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Figure 3.5. Additive genetic effect propagates from Msr1 to Gpnmb through macrophage 

lipid accumulation. Total expression of “Source” gene Msr1 (A) and “Target” gene Gpnmb (D). 

Bridge model estimation of total expression distribution for each genotypic class visualized as 

boxplots. Bridge model estimation of cis expression distribution for each genotypic class 

visualized as boxplots (B & E). Msr1 expression is strongly predictive of Gpnmb expression in 

both high fat fed females (C) and across contexts when effects of sex, diet, and genotype are 

removed (F). Msr1 total genetic effect coefficients estimated by Bridge (boxplot) match genetic 

effects model fit coefficients (dashed line) for both additive (purple) and imprinting (yellow) 

effects (G). Cis genetic effect coefficients for Msr1 match total genetic effect estimates, suggesting 

the absence of trans effects. Gpnmb total genetic effect coefficients estimated by Bridge (boxplot) 

match genetic effects model fit coefficients (dashed line) for both additive (purple) and imprinting 

(yellow) effects (H). Cis genetic effect coefficients for Msr1 do not match total genetic effect 

estimates, suggesting the presence of trans effects. Genetic effects partitioning shows Gpnmb has 

a high heritability, but only 13% of heritability can be accounted for by bridge estimated cis effects 

suggesting the presence of some “missing” trans effect(s) (I). Msr1 on the other hand has both a 

high heritability, 62% of which can be accounted for by bridge estimated cis effects (J). Given the 

strong genotype independent co-expression of Msr1 and Gpnmb (F), Msr1 is a candidate that may 

account for missing Gpnmb trans effects. Genetic effects partitioning shows that 62% of Gpnmb 

heritability can be accounted for by bridge estimated Msr1 cis effects (I). Suggesting Msr1 

regulates Gpnmb expression and genetic effects originating from Msr1 propogate onto Gpnmb 
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expression. To further strengthen this candidate pair, co-expression is examined in white adipose 

single-cell RNAseq (L). which shows that Msr1 and Gpnmb are co-expressed in macrophages (M 

& N).  

 

We identified initial “Target” candidates by Pearson’s correlation testing on residualized 

expression of all gene pairs showing total genetic effects. Residualized Gpnmb expression is 

significantly correlated with Msr1 (R2=0.48, Figure 3.5 F). Co-expression of Msr1 and Gpnmb 

persists in unresidualized expression within high fat-fed females (R2=0.41, Figure 3.5 C). Gpnmb 

shows a total genetic effect on its expression (Figure 3.5 D) and its expression pattern matches 

that of Msr1. Unlike Msr1, when we isolate the cis genetic effects on Gpnmb, we see its expression 

pattern does not match its total expression pattern (Figure 3.5 E). While the predicted additive and 

imprinting coefficients match the observed true coefficients (Figure 3.5 H), the cis predicted 

coefficients do not match. In other words, there is a significant additive effect in Gpnmb’s total 

genetic effects, but this cannot be accounted for by a cis effect. This indicates a trans effect on 

Gpnmb expression. We quantify this comparison (Figure 3.5 I) and observe that Gpnmb has a 

sufficiently high 𝐻2. The estimated cis genetic effect on Gpnmb can only account for 13% of 

heritability. For Msr1 (Figure 3.5 J) we find the cis genetic effect can account for 61% of its 

heritability. Can the cis genetic effect on Msr1 be serving as a trans effect on Gpnmb? We test this 

(Figure 3.5 K) and see that the cis effect from Msr1 can account for 62% of the heritability of 

Gpnmb. This makes Gpnmb a candidate “Target” gene of Msr1. Single cell data indicates Msr1 

and Gpnmb are overwhelmingly expressed by macrophages (Figure 3.5 L-N).  

Macrophage network enriched for immune activation 

We wanted to know what this network might reveal about SM/J and LG/J physiology. In the 

macrophage network we see that except for Hspa8, all other genes show an additive effect where 
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the SM/J allele is more highly expressed. We performed over representation analysis on these 

genes and found that leukocyte activation was significantly enriched (FDR=0.003)80. 

3.4 Discussion 
In this study we sought to model genetic effects on expression in the context of networks. We 

demonstrated that genetic effects propagate through networks shaped by molecular pathways. The 

more interconnected biological systems are, the more widespread and important propagation 

becomes. By comparing additivity on total expression to sequence dependent ASE, inferred the 

prevalence of trans effects on white adipose tissue gene expression (Figure 3.2 A). A large 

quantity of genes (~38.8%) showed clear evidence of possible trans genetic effects. The 

implication is that expression regulation in white adipose tissue is highly interconnected and 

complex. 

We demonstrated that the bridge model captures genetic effects just as effectively as a 

GEM and effectively uses ASE data. We put forth Bridge as a viable model to related total 

expression, ASE, and genetic effects. The standard bridge model is very much focused on additive 

and imprinting genetic effects, but we demonstrate how dominance can be captured as well 

(Supplemental 5D-F Figure). 

Interestingly, the adipogenic cell and macrophage networks were much larger than those 

for other cell types. This could mean that genetic difference between SM/J and LG/J affect most 

directly affect these cell types. But macrophages and adipogenic cells also have a higher proportion 

of cell type specific genes in this data set overall (Supplemental figure 3.12), which would increase 

the likelihood of capturing sufficient expression of genes specific to those cell types. This 

highlights a limitation to the viability of the cell type genetic effects network approach in other 
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settings. The methodology is likely to be more informative in samples with moderate cell type 

complexity unless a particularly large number of cells can be sequenced. 

Where candidate gene pairs supported by the literature? We highlighted Msr1 and Gpnmb 

as an example of this method recapitulating previous studies. Our study predicted that Msr1 

regulates Gpnmb expression in macrophages. Msr1 is expressed in macrophages and is required 

for macrophages to take on lipid-laden phenotype 141–144. Accumulation of lipids in macrophages 

induces expression Gpnmb 143. By promoting the lipid laden phenotype elevated Msr1 expression 

promotes expression of Gpnmb, an established biomarker of lipid laden macrophages. The exact 

cascade of events between Msr1 activation and Gpnmb expression are unknown, but a there is a 

clear connection between them. Our model showed not only that they are related, but also the 

causality (Msr1 → Gpnmb) and the directionality (positive correlation). All of which is supported 

by previous studies. 

The enrichment of the macrophage network for leukocyte activation suggests that 

compared to the LG/J mouse line, SM/J animals have elevated expression of genes involved in 

macrophage activation which should translate to stronger activation of macrophages. We turn to a 

study which evaluated macrophage activation across a variety of mouse lines including both LG/J 

and SM/J145. It revealed that SM/J mice have a very strong activation response while LG/J mice 

have a very low response, which is consistent with our observations of the genetic effects in this 

pathway. 

Candidate gene pairs/networks identified in this way are primed for experimental 

validation. Not only does this approach suggest causality/directionality in candidate networks but 

is able to identify the putative cell type(s) of interest. Using these predictions, Trained 
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experimentalists can then isolate the specific cell type(s) and perform over/under expression assays 

for candidate genes to begin to dissect the validity and specific mechanisms underlying 

predictions.  

3.5  Methods 

Mouse husbandry 

LG/J and SM/J founders (F0) were obtained from The Jackson Laboratory (Bar Harbor, ME). F1 

reciprocal cross animals were generated by mating LG/J mothers with SM/J fathers (LxS) and the 

inverse (SxL). At three weeks of age, animals were weaned into same-sex cages and randomly 

placed on high-fat (42% kcal from fat; Teklad TD88137) or low-fat (15% kcal from fat; Research 

Diets D12284) isocaloric diets. At 20 weeks of age, animals were given an overdose of sodium 

pentobarbital after a 4 hour fast and blood was collected via cardiac puncture. Euthanasia was 

achieved by cardiac perfusion with phosphate-buffered saline. After cardiac perfusion, the 

reproductive fat pad was harvested, flash frozen in liquid nitrogen, and stored at -80°C. 

RNA sequencing 

 Total RNA was isolated from adipose tissue using the RNeasy Lipid Tissue Kit (QIAgen) 

(n = 32, 4 animals per sex/diet/cross cohort). RNA concentration was measured via NanoDrop and 

RNA quality/integrity was assessed with a BioAnalyzer (Agilent). RNA-Seq libraries were 

constructed using the RiboZero kit (Illumina) from total RNA samples with RIN scores >8.0. 

Libraries were checked for quality and concentration using the DNA 1000LabChip assay (Agilent) 

and quantitative PCR, according to manufacturer’s protocol. Libraries were sequenced at 2x100 

paired end reads on an Illumina HiSeq 4000. After sequencing, reads were de-multiplexed and 

assigned to individual samples. RNAseq data are available through the NCBI-SRA, accession: 

PRJNA753198 & PRJNA661764 
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.   

Genomes and annotations 

LG/J and SM/J indels and SNVs were leveraged to construct strain-specific genomes using the 

GRC38.72-mm10 reference as a template 125. This was done by replacing reference bases with 

alternative (LG/J | SM/J) bases using custom python scripts. Ensembl R72 annotations were 

adjusted for indel-induced indexing differences for both genomes. 

Alignment 

 We aligned the RNAseq reads against LG/J and SM/J genomes simultaneously allowing 

for multi-mapping and taking the mean expression. The ASE alignment was done as reported in 

67The total gene count (L+S) from the ASE data was compared to count from the three total 

expression alignment strategies (Supplemental Figure 3.1 A-C). 

Modeling expression of genotypic classes 

The bridge model is intended to model genetic effects on expression. We can use maximum 

likelihood estimation to fit bridge model parameters (𝛽0, 𝛽𝐿 , 𝛽𝑆 , 𝑅♀, 𝑅♂) and within genotypic class 

variation (𝜎). We describe the expression distribution for each genotypic class with mean (𝜇𝐺𝐺) 

and standard deviation (𝜎). 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐵𝑟𝑖𝑑𝑔𝑒(𝜷𝟎, 𝜷𝑳, 𝜷𝑺, 𝑹♀ , 𝑹♂ , 𝐿♀, 𝑆♀, 𝐿♂, 𝑆♂) (3.4) 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝐺𝐺 = 𝒩(𝜇𝐺𝐺 , 𝜎) (3.5) 

The MLE procedure directly fits 𝜎. We assume roughly equal variances amongst genotypic 

classes. The mean for each class is calculated using bridge parameters (Figure 3.1 C). 

𝜎𝐿𝐿 ≈ 𝜎𝐿𝑆 ≈ 𝜎𝑆𝐿 ≈ 𝜎𝑆𝑆 (3.6) 
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𝜇𝐿𝐿 = 𝛽0 + 𝛽𝐿𝑅♀ + 𝛽𝐿𝑅♂ (3.7) 

Capturing total genetic effects with bridge 

We implemented the bridge model to capture total genetic effects. We fit the bridge model using 

total gene expression data from all four genotypic classes (LL = 4, LS = 4, SL = 4, SS = 4). For 

each gene, expression is scaled to fall in the range 0 to 1. There are 6 parameters in the bridge 

model. We use maximum likelihood estimation with a grid search to fit parameters. Overall fit 

significance was estimated by likelihood ratio tests assuming wilks theorem. 

𝐻0:   𝑦~𝛽0 (3.7) 

𝐻1:   𝑦~𝛽0 + 𝛽𝐿𝐿𝑚𝑅𝑚 + 𝛽𝐿𝐿𝑝𝑅𝑝 + 𝛽𝑆𝑆𝑚𝑅𝑚 + 𝛽𝑆𝑆𝑝𝑅𝑝 (3.8) 

𝐿𝑅 =
ℒ(𝐻0|𝑋)

ℒ(𝐻1|𝑋)
 (3.9) 

Multiple tests correction was performed by estimating false discovery rate (FDR). We required a 

model to have an 𝐹𝐷𝑅 ≤ 0.1 to consider it significant. We evaluated how well bridge model fits 

using total expression predicts genotypic means, by fitting a linear model relating estimated to 

actual genotypic means (Supplemental Figure 3.3). 

Capturing total genetic effects with classic genetic effects model 

We implemented GEM as an established way to capture genetic effects. We do this because we 

want to be sure that the bridge model can capture genetic effects as well as the more traditional 

approach. We fit the GEM using total gene expression data. Genetic effect coefficients are fit as 

this general linear model. Overall model significance was estimated by LRT. Multiple tests 

corrections were performed using the FDR method. Genetic effects were considered significant if 

their 𝐹𝐷𝑅 ≤ 0.1 (Supplemental Figure 3.4). 
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Compare Bridge model to classic genetic effects model 

To evaluate how well bridge can recapitulate genetic effects captured by the GEM, we compare 

GEM coefficients to bridge estimates (Supplemental Figure 3.5). The GEM reference coefficient 

(R) is estimated by bridge parameters using the following equation. 

�̂� =
2𝛽0+(𝑅𝑝+𝑅𝑚)(𝛽𝐿+𝛽𝑆)

2
 (3.10) 

The GEM imprinting coefficient (I) is estimated by bridge parameters using the following 

equation. 

𝐼 =
(𝑅𝑝−𝑅𝑚)(𝛽𝐿−𝛽𝑆)

2
 (3.11) 

The GEM additive coefficient (A) is estimated by bridge parameters using the following equation. 

�̂� =
(𝑅𝑝+𝑅𝑚)(𝛽𝐿−𝛽𝑆)

2
 (3.12) 

 

Capturing cis genetic effects with bridge model 

We implement the bridge model to capture cis genetic effects. We fit the bridge model to allele 

specific expression data from the heterozygote genotypic classes (LS = 4, SL = 4). For each gene, 

expression is scaled to the range from 0 to 1. Alleles within individuals are treated as separate 

observations, meaning that with 8 individuals we fit the model using 16 observations. We use 

maximum likelihood estimation with a grid search to fit parameters. 

Overall fit significance was estimated by LRT. Multiple tests correction was performed by 

the FDR method. Models were considered significant with an FDR<=0.1.  
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Ancestry and POE scores are useful and established metrics for ASE, but we need to 

capture ASE using metrics that can be directly compared to total expression. The bridge model 

was built for integrating allele specific and total gene expression data for the purpose of 

partitioning genetic effects. We estimate ASE scores from bridge parameters like so: 

𝑃𝑂𝐸 𝑆𝑐𝑜𝑟𝑒 ≈ 𝑅♀ − 𝑅♂ (3.13) 

𝐴𝑛𝑐𝑒𝑠𝑡𝑟𝑦 𝑆𝑐𝑜𝑟𝑒 ≈ 𝛽𝑆 − 𝛽𝐿 (3.14) 

We compare ASE metrics for to bridge estimates for ASE metrics (Supplemental Figure 3.7). We 

fit a linear model comparing the estimated to the actual metrics 67. 

𝑃𝑂𝐸 𝑆𝑐𝑜𝑟𝑒 = (
𝐿𝐿𝑆

𝐿𝐿𝑆+𝑆𝐿𝑆
) − (

𝐿𝑆𝐿

𝐿𝑆𝐿+𝑆𝑆𝐿
) ∈ [−1,1] (3.15) 

𝐴𝑛𝑐𝑒𝑠𝑡𝑟𝑦 𝑆𝑐𝑜𝑟𝑒 = (
𝐿𝐿𝑆

𝐿𝐿𝑆+𝑆𝐿𝑆
) − (

𝑆𝑆𝐿

𝐿𝑆𝐿+𝑆𝑆𝐿
) ∈ [−1,1] (3.16) 

Initial Network Construction 

 We identify genes showing a total genetic effect on expression, some of which also show 

a cis genetic effect. Using these genes, we use Pearson’s correlation tests to construct a first pass 

network. We wanted this initial network to be as robust as possible, so we used RNAseq data from 

all combinations of Sex, Diet, and Genotype (n=64) to construct it. However, Pearson’s correlation 

requires data not have the sort of substructure that Sex, Diet, and Genotype contexts produce. To 

meet this requirement and to yield the strongest gene pairs, we residualized out the effects of Sex, 

Diet, and Genotype. Pearson’s correlation tests were then performed using data with context 

effects removed for all gene pairs. We required a pair to have a correlation value |p|>=0.7 to be 

considered. 
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Modeling expression of genotypic classes 

The bridge model is intended to model genetic effects on expression. We can use maximum 

likelihood estimation to fit bridge model parameters (𝛽0, 𝛽𝐿 , 𝛽𝑆 , 𝑅♀, 𝑅♂) and within genotypic class 

variation (𝜎) to describe the expression distribution for each genotypic class with mean (𝜇𝐺𝐺) and 

standard deviation (𝜎). The MLE procedure directly fits 𝜎. We assume roughly equal variances 

amongst genotypic classes. The mean for each class is calculated using bridge parameters. 

Estimating bridge derived genetic effect coefficient distributions 

By fitting bridge using both ASE and total expression data, we get two theoretical distributions for 

each genotypic class, one shaped by cis + trans effects and a second shaped by cis effects alone: 

with a total of 8 distributions per gene. 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

{
 
 
 
 
 

 
 
 
 
 

𝐶𝑖𝑠 + 𝑇𝑟𝑎𝑛𝑠,

{
 
 

 
 
𝐿𝐿, 𝒩(𝜇𝐿𝐿,𝑇𝑜𝑡𝑎𝑙 , 𝜎𝑇𝑜𝑡𝑎𝑙) 

𝐿𝑆, 𝒩(𝜇𝐿𝐿,𝑇𝑜𝑡𝑎𝑙 , 𝜎𝑇𝑜𝑡𝑎𝑙)

𝑆𝐿, 𝒩(𝜇𝐿𝐿,𝑇𝑜𝑡𝑎𝑙, 𝜎𝑇𝑜𝑡𝑎𝑙)

𝑆𝑆, 𝒩(𝜇𝐿𝐿,𝑇𝑜𝑡𝑎𝑙 , 𝜎𝑇𝑜𝑡𝑎𝑙) 

𝐶𝑖𝑠 𝑜𝑛𝑙𝑦,

{
 
 

 
 
𝐿𝐿, 𝒩(𝜇𝐿𝐿,𝐶𝑖𝑠, 𝜎𝐶𝑖𝑠) 

𝐿𝑆, 𝒩(𝜇𝐿𝐿,𝐶𝑖𝑠, 𝜎𝐶𝑖𝑠)

𝑆𝐿, 𝒩(𝜇𝐿𝐿,𝐶𝑖𝑠, 𝜎𝐶𝑖𝑠)

𝑆𝑆, 𝒩(𝜇𝐿𝐿,𝐶𝑖𝑠, 𝜎𝐶𝑖𝑠)

 (3.17) 

We randomly sample from these theoretical distributions 1,000 times for each genotype (4,000 

total). This allows us to plot the theoretical distributions for each genotypic class. We then 

bootstrap taking subsamples (N=16, fully balanced classes) from these data. At each iteration we 

calculate additivity and imprinting genetic effects (500 iterations). 

Quantifying genetic effect partitioning 

Total expression parameters from bridge are used to calculate the shape parameters of expression 

distributions as described above. Theoretical distributions for each genotypic class can be 
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compared to the observed total expression of individuals. The same procedure is conducted using 

allele specific parameters. This gives us shape parameters for the expression distributions we 

would observe if we could control for trans effects. In other words, we can describe expression 

patterns between genotypic classes as they would be if there were no trans effects at play. 

We can compare genetic effects measured using total expression (cis + trans) to those 

measured using allele specific expression (cis only). If there is a difference, we conclude there 

must be some “missing” trans effect which should account for the difference. But how do we 

quantify comparisons? 

Using MLE, we can estimate the distributions of expression or each genotypic class at both 

the level of cis expression and total expression. For a two-locus system we want to identify cases 

of genetic effects propagating as trans effects from a “Source” gene to a “Target” gene. We use 

analysis of variance to identify and classify pair-wise relationships. Data are generated by 

randomly sampling from the 16 cis and total distributions describing the two genes. 

To describe a pair-wise relationship (“Source” x “Target”), we fit 5 models on either cis or 

total expression. Model 1 and Model 2 are used to calculate the fraction of total expression variance 

that genotype explains (R2) for “Source” and “Target” genes, respectively. This approximates 

heritability (H2). These two measures (𝐻𝑠𝑜𝑢𝑟𝑐𝑒
2 , 𝐻𝑡𝑎𝑟𝑔𝑒𝑡

2 ) are the maximum proportions of 

explainable variance. These serves as references when making classifications. 

Model 3 (“Source”) and Model 4 (“Target”) are used to determine directionality and to 

partition cis/trans effects. Each model is used to calculate the fraction of variation in total 

expression for the response gene that can be accounted for by its own cis expression plus the cis 

expression of the other gene. Model 4 measures what proportion of variation in target gene total 
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expression is explained by its own cis expression (I) versus what proportion is explained by source 

gene cis expression (K). We expect cis expression of the source gene will explain a large 

proportion of its total expression (J), while cis expression of the target gene will explain very little 

of source gene total expression. Cis expression of the source gene should also explain a large 

proportion of target gene total expression (K), while cis expression of the target gene should 

explain less of its own total expression (I). In model 5, we calculate how much “Target” gene Total 

expression variation can be explained by “Source” gene total expression. For co-expressed genes 

this should be quite high. Each of these metrics is represented as R2, which we scale by the H2 of 

the response gene.  We call this scaled percent of variance explained G2. For example, a 

𝐺𝑇𝑎𝑟𝑔𝑒𝑡,𝑆𝑜𝑢𝑟𝑐𝑒
2  of 1 means that 100% of target gene heritability can be accounted for by Source gene 

cis expression. 

Refine network by genetic effect partitioning 

 Combining first pass network structure, total, and cis genetic effects we can refine and 

improve on the first pass network. We are interested in modeling and detecting genetic effects 

within networks. By partitioning genetic effects into cis and trans we can identify “Source” genes 

which have a cis effect sufficient to explain the observed total effect. In a pathway we would expect 

that the genetic effects on a “Source” gene should be in some way reflected in downstream genes. 

We might expect if a gene is truly a downstream “Target” gene, that it will show a total genetic 

effect but lack a cis effect. This discrepancy between cis and total effects must be the result of 

some unobserved or “missing” trans effect. Such a trans effect would be the result of pathway 

structure and the presence of a cis effect on an upstream regulator (“Source” gene). 

 For a given gene pair, we can test if the total genetic effects on a “Target” gene are better 

explained by its cis effects or if they are better explained by the cis effects present in the upstream 
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“Source” gene. Running all pairwise tests from the first pass network, we can construct a genetic 

effects network in which edges represent the flow of genetic effects along unobserved pathway 

structure. We perform pairwise genetic effect partitioning using five models and analysis of 

variance (supplemental Figure 3.9). 

 The first two models serve to determine how much variation in total expression can be 

accounted for by genotype. This represents a rough estimate of heritability (𝐻2) and serves as the 

upper limit of accountable variance. Because we are interested in variation between genotypic 

classes, rather than within them, we scaled the fractions of accountable variance (𝑅2) for each term 

by heritability. As such, terms are evaluated by the fraction of accountable heritability (𝐺2). 

 Model 5 serves to see if the gene pair is significantly co-expressed when genotype is not 

residualized out. Models 3 and 4 are where the pairwise genetic effect partitioning occurs. They 

differ in that the “Source” gene is the response variable for model 3, whereas the “Target” gene is 

the response variable in model 4. The terms of both models are the same. The terms are cis 

expression of the “Source” gene and cis expression of the “Target” gene. Analysis of variance is 

performed for each model and an 𝑅2 is calculated for each term. 

The 𝑅2 from models 3, 4, and 5 are scaled by 𝐻2 for the response variable from models 1 

and 2 to yield 𝐺2 for each term in models 3, 4, and 5. Significance of these 𝐺2 was estimated by 

randomization tests in which expression values are randomly sampled from fit expression 

distributions of the 4 genotypic classes and then genotype is shuffled. The 𝐺2 are calculated for 

this randomized data. The procedure is then repeated 100 times, which produces a null distribution 

of 𝐺2 values generated for each gene pair. 
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 Multiple tests corrections were then performed by estimating a false discovery rate for each 

term. An 𝐹𝐷𝑅 ≤ 0.05 was considered significant (supplemental Figure 3.10). Pairs were 

thresholded by requiring the following. Model 3 source cis 𝐺2 (𝐺3,𝑠𝑜𝑢𝑟𝑐𝑒
2 )≥0.15, 𝐺4,𝑡𝑎𝑟𝑔𝑒𝑡

2 <0.15, 

𝐺5,𝑠𝑜𝑢𝑟𝑐𝑒
2 ≥0.4, 𝐻𝑠𝑜𝑢𝑟𝑐𝑒

2 ≥0.4, and 𝐻𝑡𝑎𝑟𝑔𝑒𝑡
2 ≥0.4 (Supplemental Figure 3.9). We also calculate the 

relative cis contributions for models 3 and 4. We call this ratio the genetic partition coefficient (𝑔). 

𝑔3 =
𝐺3,𝑠𝑜𝑢𝑟𝑐𝑒
2

𝐺3,𝑡𝑎𝑟𝑔𝑒𝑡
2  (3.18) 

𝑔4 =
𝐺4,𝑡𝑎𝑟𝑔𝑒𝑡
2

𝐺4,𝑠𝑜𝑢𝑟𝑐𝑒
2  (3.19) 

This quantifies the relative contribution of cis versus trans effects for each response gene. A value 

greater than 0 means the cis effect is larger than the candidate trans effect. We require 

𝐿𝑜𝑔2( 𝑔3 ) ≥ 1 and 𝐿𝑜𝑔2( 𝑔4 ) ≤ 0. Which means we require a target gene have greater than half 

of its accountable heritability accounted for by the trans effect. We also require a source gene have 

less than 1/3 of it’s accountable heritability accounted for by the trans effect (supplemental Figure 

3.10). By thresholding network edges by significance and partition coefficients we are left with a 

directional genetic effects network for white adipose tissue. 

Integrating single cell RNAseq 

Our goal is to model how genetic effects flow through pathways. Pathways occur within cells, but 

our genetic effects network represents the whole tissue, which is composed of a variety of different 

cell types. We integrate publicly available epididymal adipose tissue single cell RNA-seq data to 

further refine our network. Single cell RNAseq data was processed as reported in. Cell types were 

defined using marker genes reported previously 118. 
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 Our goal was to use single cell data to estimate what fraction of a gene’s expression is 

derived from different cell types. To this end we needed to model expression of each gene within 

each cell type. Expression was scaled to the range of 0 to 1 across all cell types. Scaled expression 

within a subtype is approximately Beta distributed amongst cells expressing the gene. Due to gene 

dropout in the sequencing process and cell to cell variability, some cells have zero expression a 

given gene that is expressed by other cells of the same type. To best deal with this data, we 

implement a beta-hurdle model as reported in 146. Briefly, the model has two parts, it models the 

probability of a cell being a dropout and if it is not a dropout, it models expression as a beta 

distribution. 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑓( Pr(𝐷𝑟𝑜𝑝𝑜𝑢𝑡|0) , 𝐵𝑒𝑡𝑎(𝛼, 𝛽) ) (3.20) 

 For each gene we calculated the Pr(0), then we iterate through all 

possible Pr(𝐷𝑟𝑜𝑝𝑜𝑢𝑡|0). In each iteration we use Pr(𝐷𝑟𝑜𝑝𝑜𝑢𝑡|0) and the ks package to fit 𝛼 and 

𝛽 parameters. This package performs a maximum goodness of fit procedure by minimizing the 

deviation between real and fit cumulative distributions (ks statistic). 

 The lower the ks statistic, the better the fit. The set of  Pr(𝐷𝑟𝑜𝑝𝑜𝑢𝑡|0), 𝛼, and 𝛽 parameters 

that produces the lowest ks statistic was selected as the optimal fit. 𝛼 and 𝛽 parameters were used 

to calculate the expected expression value of a cell given it is not a dropout.  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛: [#𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒𝑠] ∗ Pr(𝐷𝑟𝑜𝑝𝑜𝑢𝑡|0) ∗ E(𝛼𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒 , 𝛽𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒)

 (3.21) 

Splitting genetic effects networks 

We take the white adipose tissue genetic effects network and subset out all genes for which we 

had single cell data. We want to subset this network into subnetworks corresponding to the 6 cell 
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types in the single cell data. For each gene in each cell type, we estimate the fraction of bulk 

expression we would expect to come from that cell type. This was done for all genes in the final 

white adipose tissue genetic effects network. The fraction of expression is dependent on cell 

composition expected in the bulk. For this reason, we used two sets of cell compositions; in vitro 

observed composition and estimated in vivo composition. We do this to get a sense for how bulk 

in vivo data might differ from the in vitro single cell data. Using the in vitro composition, we subset 

the networks into cell type networks. To include a given gene in a cell type of network we simply 

require that cell type contribute at least 25% of that gene’s in vitro expression. We selected 0.25 

as our cutoff because at that threshold most included genes were expressed in 1-2 cell types 

(supplemental Figure 3.12 E). 

Functional enrichment analysis 

 Functional enrichment of interacting genes showing parent-of-origin-dependent allele-

specific expression with biallelic genes that are differentially expressed by cross was tested by 

over-representation analysis in the WEB-based Gene Set Analysis Toolkit v2019 80. We performed 

analyses of gene ontologies (biological process, cellular component, and molecular function), 

pathway (KEGG), and phenotype (Mammalian Phenotype Ontology). The list of all unique 

interacting genes was analyzed against the background of all unique genes expressed in white 

adipose. A Benjamini-Hochberg FDR-corrected p-value  0.01 was considered significant.  

Capturing dominance genetic effects 

In the context of F0/F1 genetics, dominance is a special case trans effect that can occur in two ways. 

At a given locus there are two alleles, one from each parent (on different chromosomes). A trans 

effect between such corresponding alleles can produce a dominance genetic effect. It is a trans 

affect between one copy of a gene and it’s mate. Alternatively, the regulatory feedback of a gene’s 

expression could behave like a sigmoidal dose response curve. If either of the alleles is strong 

enough to illicit a plateaued response, that would produce a dominance genetic effect. While 

interesting and biologically relevant, special care needs to be taken when interpreting dominance. 
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𝑦~𝛽0 + 𝛽𝐿𝐿𝑚𝑅𝑚 + 𝛽𝐿𝐿𝑝𝑅𝑝 + 𝛽𝑆𝑆𝑚𝑅𝑚 + 𝛽𝑆𝑆𝑝𝑅𝑝 + 𝛿(1 − [(𝐿𝑚 − 𝑆𝑝)(𝑆𝑚 − 𝐿𝑝)]
2
) (3.22) 

�̂� = 𝛿 

 

  



85 

 

Chapter 4: Conclusions and future directions 
One day, we would like to build a predictive model of metabolic phenotypes that accounts for 

parent-of-origin effects and is generalizable across tissues. This is a major challenge because 

parent-of-origin effects can depend on genetic, epigenetic, and environmental factors. To unravel 

these intertwined effects, we developed a robust system for quantifying and modeling parent-of-

origin effects on metabolic traits in mice. In line with the pleiotropic pathway explanation, was the 

extent to which non-imprinted genes contribute to parent-of-origin effects through interactions 

with imprinted genes. 

Untangling the genetic, epigenetic, sex, and environmental components of these 

interactions will improve our ability to predict complex phenotypes from genomic sequence and 

will nominate variants for functional testing. The patterns of correlations we observe, in 

conjunction with the supporting mouse QTL, are strong evidence that sequence variants in Nnat 

and/or its non-imprinted interacting genes can result in parent-of-origin expression biases that may 

impact adipose function. But how exactly do these genes interact? how exactly do their interactions 

affect phenotypic variation? If we had a molecular interpretation of these phenomena, we could 

better understand the phenotypic consequences of these interactions and build better predictive 

models. For example, Nnat function enhances or attenuates cellular response to external signals 

by altering Ca2+ kinetics. Could this suggest something about the role imprinted genes fill at the 

molecular level? Perhaps the search for parent-of-origin effects should focus on receptors and 

ligands? 

We identified robust candidates, but this work would benefit greatly from molecular 

validation. Both to validate our predictions and to learn more about the molecular function of 
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candidate genes. An efficient platform should be developed to test candidate pairs and 

mechanisms. Implementing CRISPR technology, gene expression can be altered, promoters can 

be swapped, genetic effects can be isolated. 

Future work will doubtless integrate whole-genome sequence with methylation, 

transcriptomic and phenotypic data. This will hopefully shed light on regulatory features 

underlying parent-of-origin dependent and context specific ASE. In cases where regulatory 

features are known, targeted DNA methylation could be used to introduce or remove parent-of-

origin dependent ASE147. We believe that by understanding how parent-of-origin effects manifest 

at imprinted loci, how they are transduced through interactions with non-imprinted genes and 

propagated to phenotype we will improve our ability to predict phenotype from genotype across a 

wide-range of tissues and complex traits. 

In an age of rampant obesity and diabetes, evolution may have given us a boon in the study 

of these traits. If evolution truly acted through parent-of-origin effects to alter a specific class of 

traits and we are motivated to understand the genetic basis of those same traits, then we can be 

reasonably certain that any cellular machinery showing parent-of-origin effect must be important 

to those traits.  

 We would predict the function of mesenchymal stem cells and their lineage show a parent-

of-origin effect. If this is true in humans, it would have serious implications on human health. I 

would be particularly interested in whether wounding healing shows a parent-of-origin effect. That 

knowledge could give clinicians a stronger estimate of risk when considering intensive surgery. 

Our catalog of genes in networks where genetic effects propagate could provide a focused 

molecular interpretation of genetic interactions that are conserved between mouse and human, as 
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well as a broad systems perspective that can be leveraged to understand parent-of-origin effects in 

general. We believe a fully comprehensive catalogue of such genes and networks in multiple 

mouse metabolic tissues should be generated. We could then correlate their effects with variation 

in metabolic phenotypes. 

Systematically characterizing these patterns in mice is the first step towards developing a 

framework for detecting and characterizing parent-of-origin effects in human studies, particularly 

for complex traits that are deeply homologous between species 148,149. Humans are notably less 

cooperative than mice. Parental genotypes and consequently parental origin of alleles is generally 

unknown. This makes detecting parent-of-origin effects extremely difficult. Expanding on the 

work of others 11,150, I was able to develop a framework to detect parent-of-origin dependent ASE 

when parental origins are unknown. Unlike previous approaches it was designed to jointly estimate 

parent-of-origin and sequence dependent ASE. However, like with previous approaches it is 

unknown how environment might confound the prediction of these effects. Future work should 

use the sex and dietary contexts of our data to evaluate how sensitive this approach might be to 

environmental factors. If sequence and parent-of-origin dependent ASE can be jointly estimated 

in humans without parental information, that would significantly improve the study of these 

phenomena in humans. 

Modeling pairwise genetic effect networks is the first step in evaluating alternative 

explanations for the overabundance of parent-of-origin effects. Re-analyzing F16 mapping data 

with genetic effects networks in mind may have shed light on how parental inheritance biases and 

genetic effect propagation could relate to QTL. For example, how often do we see parental 

inheritance biases? Of the QTL that show a significant parent-of-origin effect how many have a 

parental inheritance bias relationship with other loci? Are any of those loci also QTL and if so do 
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they show a significant additive effect? A complete answer to the overabundance of parent-of-

origin effects will remain unobtainable until a comprehensive map of genetic effect networks has 

been generated and vetted. Until then, we are limited to finding proof-of-principle examples, but 

cannot say whether they explain the overall overabundance. 

Perhaps most importantly, this works takes an incremental step towards bridging the worlds 

of quantitative genetics and molecular biology. While I crafted the bridge model to suit my needs 

and to maximize the chances I would find strong candidates, I also put an emphasis on designing 

it to be useful. Doubtless more advanced machine learning approaches could be implemented that 

would work more efficiently and more effectively. But I wanted the outputs of this work to be as 

interpretable and ready for experimental validation as possible. My approach should identify which 

gene is the source of a genetic effect, which genes are downstream, and what cell type that effect 

is happening in.  

4.4 Parting thoughts 
Parent-of-origin effects are essentially a special case of a more general phenomena. Genetic effects 

flow and blend and negate one another. Parent-of-origin effects can only manifest in the presence 

of some other form of genetic effect (i.e. additivity). Understanding these phenomena and the 

genotype-to-phenotype problem more generally requires that we understand multiple types of 

genetic effects. 

Parent-of-origin effects have not been thoroughly investigated in large landmark functional 

genomics studies including ENCODE, GTEx, and GWAS, leaving a significant gap in our 

knowledge. Future work should leverage the patterns identified in mice to identify similar patterns 

in human data. If classical computational models of gene regulatory networks can be used to 
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capture parent-of-origin effects, an extended model can be trained using comprehensive data 

generated using the mouse and applied to model human data. Such an endeavor would enhance 

the accuracy of phenotype prediction and improve the functional annotation of genetic variation. 
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