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 The overall goal of this dissertation is to gain a better understanding of how Alzheimer 

disease relates to normal aging and cerebrovascular disease to impact neuroimaging measures in a 

clinically meaningful way. Both aging and cerebrovascular disease are known to influence 

measures of Alzheimer disease, making it difficult to separate what changes are attributable 

specifically to Alzheimer disease. We hypothesize that a better understanding of these 

relationships will allow future studies to appropriately take these factors into account. In Chapters 

2 and 3 we attempt to separate out the influences of normal aging and Alzheimer disease on 

measures of atrophy. In Chapter 2 we show that non-linear, region-specific patterns of atrophy 

occur with aging, but we are not able to detect additional atrophy occurring in preclinical 

Alzheimer disease. Thus, preclinical Alzheimer disease is likely not confounding aging research 

so long as careful cognitive screening of the participants is done. In Chapter 3 we show that 

controlling for the age-related atrophy we describe in Chapter 2 does not improve volumetric 



xv 

prediction of symptomatic Alzheimer disease, likely because age-related atrophy contributes to 

symptoms. Despite this, volumetric predictions were still useful in detecting symptomatic 

Alzheimer disease in research cohorts and in patient populations. In Chapters 4 and 5 we change 

focus to vascular dementia, examining if cerebrovascular disease develops independently or 

synergistically with Alzheimer disease. In Chapter 4 we find that preclinical Alzheimer disease is 

not more prevalent, and thus is not a risk factor, in stroke nor in post-stroke dementia. Finally, in 

Chapter 5 we find that patterns of white matter hyperintensities, as a reflection of small vessel 

disease, have greater volumes in symptomatic Alzheimer disease relative to normal aging and 

preclinical Alzheimer disease. However, white matter hyperintensities could not distinguish 

normal aging from preclinical Alzheimer disease, leaving it unclear if white matter 

hyperintensities develop as a later part of Alzheimer disease or simply co-occur and have an 

additive effect on cognition. 
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Chapter 1: Introduction 

1.1 Alzheimer Disease Continuum 
It was around a century ago that Alzheimer disease (AD) was first discussed as a distinct 

form of dementia. Alois Alzheimer used recent developments in histological techniques to 

visualize the pathologies in the brain of the recently deceased Auguste Deter. The buildup of 

amyloid and tau he described are still used today to define and characterize AD. Other post 

mortem studies were done to follow up on Alzheimer’s work, such as Robert Katzman’s work in 

1976 that clarified that the early-onset (presenile) dementia that Alzheimer specifically saw had 

the same histopathological characteristics as the more common senile AD (Bondi et al., 2017), 

However, much of the early research on AD instead focused on studying the symptomatic 

presentation of the disease. This type of research improved our understanding of the cognitive 

impacts of AD and allowed diagnostic criteria for AD dementia to be revised and standardized. 

Even after these improvements, clinical diagnosis of AD remains challenging; symptom 

presentation in AD can vary widely and overlaps with other disorders. Current diagnostic criteria 

allow at best a clinical diagnosis of AD dementia to match histopathologic diagnosis in 80% of 

cases (Beach et al., 2012). 

This problem is compounded in the prodromal stages of AD. Studies had found that 

people with apolipoprotein E ε4 (APOE4) alleles were not only at an increased risk for 

developing AD (Katzman and Kawas, 1994; Strittmatter et al., 1993), but also showed greater 

cognitive decline in those who did not meet clinical diagnostic criteria for dementia (Bondi et al., 

1999, 1995; Reed et al., 1994). While some researchers had previously argued the importance of 

studying the early stages of AD, the fact that APOE4 impacted cognition in people before they 
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were at the level considered ‘dementia’ emphasized this point. This prodromal stage of AD was 

termed mild cognitive impairment (MCI). MCI was originally used as a distinct diagnosis of 

mild dementia; it was not specific to AD as it did not specify etiology. As more research was 

done on MCI in the 2000s, it was demonstrated that amnestic MCI indicates prodromal AD in 

most cases and so is part of AD (Petersen and Morris, 2005).  

Even as MCI became the hot topic in AD research, others argued we should be looking 

even earlier in the disease course. In contrast to prodromal AD where there is some impairment 

but not enough to qualify as dementia, preclinical AD refers to the period where an individual 

does not express cognitive symptoms but does show molecular changes in the brain. Preclinical 

AD is indicated by the buildup of amyloid, and was originally reported in neuropathology studies 

(Morris et al., 1996). As biomarkers continued to be refined and developed, we became able to 

detect preclinical AD in living people. Amyloid can now be detected with positron emission 

tomography (PET) imaging or cerebrospinal fluid (CSF) analysis. Other biomarkers have been 

developed that complement these. Similar to amyloid, tau proteins can now also be measured 

with PET imaging or CSF analysis. [18F]-fluorodeoxyglucose (FDG) PET can measure 

metabolic changes, while magnetic resonance imaging (MRI) can measure tissue atrophy, 

changes in neural response, and vascular pathology.  

Unlike the prior post mortem studies, these biomarkers can be used at any time in the 

disease course, not just at time of death. These biomarkers made longitudinal studies of 

pathology possible, and also led to a large increase in the amount of cross-sectional data 

available. This increase in data substantially increased the support for the amyloid cascade 

hypothesis of AD (Hardy and Higgins, 1992). The amyloid cascade hypothesis lays out a series 
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of pathologic changes in AD, proposing that brain amyloidosis leads to tau tangles, which in turn 

leads to neurodegeneration, which then finally causes cognitive impairment (Jack et al., 2010). 

This model has been updated over the years and expanded with new biomarkers (Figure 1.1) 

(Jack et al., 2013). While the original cascade model was a hypothesis based on disparate data, 

longitudinal studies from the Dominantly Inherited Alzheimer Network (DIAN) have shown data 

in autosomal dominant AD supporting this serial change in biomarkers (Figure 1.2) (Bateman et 

al., 2012; McDade et al., 2018).  
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Figure 1.1: Revised AD Cascade Model (Jack et al., 2013)

 

Figure 1.2: AD Cascade in DIAN (Bateman et al., 2012)
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 In 2011, the National Institute on Aging (NIA) codified the preclinical stage of AD, 

included biomarker data as part of the diagnostic criteria (McKhann et al., 2011). This was a 

fairly new step as the first outline of biomarkers to diagnose AD was seen just a few years earlier 

(Dubois et al., 2007). By incorporating biomarkers and not just relying on symptom presentation, 

a shift began towards a more biological definition of AD. This was outlined most clearly in 2018 

through the now widespread A/T/N framework (Jack et al., 2018). While this framework was 

specifically described as a research definition of AD and not a clinical definition, it used amyloid 

and tau pathology to clearly define what should be considered part of AD (Figure 1.3). 

This new A/T/N framework did not go against the biomarker cascade hypothesis, but 

shifts it into language describing the ‘AD continuum’ and emphasizes how multimodal 

biomarkers should be used to best diagnose AD. By describing AD as a ‘continuum’ it also 

reinforced that the cutoffs we use to define the various stages of AD are artificial. This is less 

problematic in some biomarkers that increase quickly at a certain point in the disease, but makes 

defining amyloid positivity difficult as it gradually rises over a decade. It is important to note 

that amyloid is used to determine who is on the AD continuum, but is not necessarily credited as 

the primary cause of the disease. It is seen as an early marker but not necessarily causal to the 

changes that follow. 

While imperfect, the AD continuum framework allows us to use amyloid biomarkers to 

separate those with and without Alzheimer pathology. Throughout the work in this dissertation, 

amyloid is used in this way to define those who are in the Alzheimer continuum, with cognitive 

impairment further splitting those with amyloid into those who are in the preclinical AD stage 

and those who are in the symptomatic AD stage. This is done with the acknowledgement that 
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both of these groups are heterogeneous, and that cross-sectional data does not indicate which 

preclinical AD participants will become symptomatic in the near future.  
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Figure 1.3: A/T/N Framework (Jack et al., 2018)
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1.2 Atrophy in Aging and Preclinical AD 
 The developments described in the previous section have led to broad impacts not just 

in Alzheimer research, but in the field of aging. Due to the newness of our understanding of 

preclinical AD and the limited tools available to detect it, many prior studies of aging did not 

take preclinical AD into account. While preclinical AD does not have as extensive an impact on 

the brain as later stages of AD, it can have an inordinate impact on normal aging studies. This is 

due to the high prevalence of preclinical AD in elderly populations; we now know that over a 

third of adults develop preclinical AD by age 70 (Jack et al., 2018, 2014). The confounding 

effects of preclinical AD on normal brain aging have previously been shown in resting-state 

functional MRI and neuropsychological measures: increasing standard deviations and clouding 

the difference between symptomatic AD and cognitively normal controls (Brier et al., 2014b; 

Hassenstab et al., 2016; Jack et al., 2014). Figure 1.4 shows how functional connectivity, a 

measure derived from resting state functional MRI, can appear to have age-related changes when 

the changes are actually driven by the preclinical AD participants (red line) as opposed to the 

amyloid negative participants (black line).  
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Figure 1.4: Impact of Preclinical AD on Functional Connectivity Measures (Brier et al., 2014b)
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Extensive prior work has shown atrophy associated with normal aging, along with 

regional variability and inter-individual differences in trajectories (Irwin et al., 2018; Lockhart 

and DeCarli, 2014; Raz et al., 2010, 2005). However, there is limited understanding of the 

impact of undetected Alzheimer pathology on studies of age-related atrophy. These studies have 

used either measures of amyloid pathology or longitudinal tracking to ensure no cognitive 

impairment develops (Armstrong et al., 2019b; Fjell et al., 2014a, 2014b, 2013a; Knopman et al., 

2013). However, sample sizes were small in these studies and studies could not screen for 

preclinical AD using both measures of amyloid and longitudinal tracking simultaneously. As 

such, it has not yet been established how age-related atrophy behaves in a cohort not confounded 

by preclinical AD, limiting our understanding of how aging impacts the brain. It is important we 

understand how these measures of cerebral atrophy relate to aging due to the strong association 

of atrophy with cognitive decline, even in the context of no known neurodegenerative disease 

(Armstrong et al., 2020; Fletcher et al., 2018b).  

 In Chapter 2, we use cognitively normal controls from AD studies to screen for 

preclinical AD. Using this screened cohort, we describe the spatial pattern of age-related atrophy 

without preclinical AD’s confounding effect, furthering our understanding of aging. In addition 

to examining the amount of atrophy, we also examine the pattern across the lifespan in order to 

take into account the non-linearity in atrophy that some previous studies have reported (Irwin et 

al., 2018; Lockhart and DeCarli, 2014). We will also assess the need to control for other factors 

that may confound measures of atrophy such as sex (Armstrong et al., 2019b; Chételat et al., 

2010; Jack et al., 2015; Lockhart and DeCarli, 2014; Wang et al., 2019) and APOE4 status 

(Armstrong et al., 2019a; Erten-Lyons et al., 2013; Irwin et al., 2018; Kelly et al., 2018; Mishra 

et al., 2018; Raz et al., 2010; Smith et al., 2012). Finally, we directly assess how our normal 



11 

aging cohort differs from preclinical AD, determining to what extent prior volumetric studies of 

aging are confounded by this undetected preclinical AD.  

1.3 Atrophy in Clinical Diagnosis of AD 
 While atrophy differences between normal aging and preclinical AD has not been 

established, atrophy in symptomatic AD has been well characterized. Despite the extensive 

research in this area, the use of quantitative biomarkers of atrophy in clinical practice is still 

limited. Typical AD-specific biomarkers rely on in vivo detection and quantification of amyloid-

β and tau, AD’s hallmark proteins. This molecular analysis requires CSF analyses or PET 

imaging, which are limited by expense and inaccessibility. Additionally, PET imaging has risks 

associated with radioactivity, while lumbar punctures include risks of back pain, post-dural 

puncture headache, and bleeding (Duits et al., 2016). In comparison MRI is non-invasive, well 

tolerated by patients, and is already included as standard of care in the United States for 

diagnostic evaluation of patients with new cognitive complaints (Knopman et al., 2001). 

However, the numerous benefits of MRI are offset by the fact that current volumetric MRI 

measures do not reach the same level of specificity as amyloid and tau biomarkers. Current MRI 

biomarkers approach the accuracy of PET and CSF biomarkers in separating AD from 

unimpaired individuals (Frisoni et al., 2010; Morris et al., 2016), but cannot maintain this 

accuracy in cohorts comprising patients with various causes of dementia (Wollman and 

Prohovnik, 2003) in the same way amyloid biomarkers can (Figure 1.5) (Ossenkoppele et al., 

2018b).  
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Figure 1.5: Receiver Operating Characteristic Analyses for Distinguishing Alzheimer 

Disease (AD) Dementia and Mild Cognitive Impairment (MCI) Due to AD From Non-AD 

Neurodegenerative Disorders (Ossenkoppele et al., 2018a)
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 Biomarkers are useful in clinical practice, helping to narrow the differential diagnosis 

and refine the treatment of dementia patients (Rabinovici et al., 2019). In AD clinical trials, 

biomarkers can improve accuracy, utility, and cost effectiveness of screening, and can assess 

response to investigational therapies (Jack et al., 2018; Sevigny et al., 2016; Sperling et al., 

2014). The value of AD biomarkers is expected to further increase as AD-modifying therapies 

are realized, such as the recent approval of Aducanumab by the United States Food and Drug 

Administration, which will create a need and rationale for population level screening and an 

influx of patients requiring timely diagnosis and treatment (Dunn et al., 2021; Liu et al., 2017). If 

MRI-based biomarkers could be improved, it would be of immense clinical benefit as it would 

fulfill the need for an accessible, AD-specific biomarker that can be applied in broad clinical 

populations.  

 It is likely that MRI-based biomarkers are confounded by age-related brain atrophy or 

other undetected co-pathologies attributed to aging such as vascular disease (Fotenos et al., 

2005). Controlling for these confounds may be one method to improve MRI-based biomarkers of 

AD. In Chapter 3 we investigate if controlling for the age-related atrophy we describe in Chapter 

2 can be used to improve a volumetric classification model of symptomatic AD. Previous studies 

on volumetric classification of AD have indicated the hippocampus, temporal lobes, amygdala, 

parahippocampal gyrus, middle temporal gyrus, entorhinal cortex and insula as the most 

important gray matter regions for the classification of AD (Mateos-Pérez et al., 2018a). 

However, we use an unbiased, data-driven approach to determine which regions are most 

important to classifying AD so that our model is optimized for our intended use. Many previous 

studies have used machine learning for similar imaging-based AD diagnostic problems, but 

simpler regression models have matched them in accuracy (Mateos-Pérez et al., 2018a). As such, 
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we focus on validating a simple to understand and freely available algorithm that is easier for 

doctors and patients to trust and to implement. We then compare models that have and have not 

been adjusted for age-related atrophy in both a research cohort and a cohort of patients from a 

local dementia clinic with a variety of diagnoses. By using these differing cohorts, we will get a 

better idea of how the algorithm performs in different environments. 

1.4 Interplay of AD, Stroke, and Race 
 Chapters 2 and 3 focus on the interplay of AD and normal aging, but other factors are 

also able to confound our understanding of AD. Outside of AD, the most common pathology 

seen in the aging brain is cerebrovascular disease. Part of what we described as age-related 

atrophy in previous chapters may in fact be caused by undetected cerebrovascular disease. It is 

still unclear to what extent pathologies in AD and in vascular dementia (dementia resulting from 

cerebrovascular disease) are interacting, but the prevalence of combined AD and vascular 

dementia is greater than it should be if AD and cerebrovascular disease are fully independent 

(Armstrong, 2019). It is possible that mild AD and vascular dementia are independent but their 

additive pathologies make it more likely for the patient to be diagnosed. Alternatively, they could 

be interacting more directly, such as if vascular disease accelerates the development of AD. This 

second theory is a variation on the two-hit vascular hypothesis of AD, which posits that an initial 

cerebrovascular ‘hit’ leads to a second amyloid ‘hit’ which then causes AD dementia (Nelson et 

al., 2016; Sweeney et al., 2015; Zlokovic, 2011). 

 One type of vascular dementia where this debate plays out is post-stroke dementia. 

Many older adults who have had a stroke develop dementia within a year of their stroke, with a 

hazard ratio for patients with prevalent strokes of 1.69 (Heiss et al., 2016). Diagnosis of this 

post-stroke dementia is correlative, based on the temporal relation to stroke, with many possible 
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etiologies (Skrobot et al., 2018). One of those many possible etiologies is AD. It has been 

hypothesized that post-stroke dementia is caused by a stroke accelerating the development of AD 

in those who already had preclinical AD.  

 In Chapter 4 we determine the interplay of stroke and pre-existing preclinical AD 

using amyloid biomarkers in a cohort of acute stroke patients. Due to our community-based 

sampling of stroke patients, our cohort is diverse enough to also investigate racial disparities in 

stroke. It is important to examine racial differences in this cohort as both AD and stroke have 

known racial disparities, but their interaction is unclear. Past abuses have led to an 

understandable hesitance for minorities to participate in research, making it difficult to rectify 

our lack of understanding in these areas (Hooper et al., 2019). The studies that have begun to 

address racial disparities have found a higher incidence of AD and of stroke in the Black 

population relative to the non-Hispanic White (NHW) population.  

 Black individuals are not only twice as likely to have a stroke (Benjamin et al., 2017), 

but are more likely to die from their stroke (Yang et al., 2017). These racial differences have 

primarily been explained by differences in stroke risk factors such as higher rates of hypertension 

and diabetes, and lower socio-economic status and education. Similar disparities are seen in AD, 

with most studies showing higher rates of dementia, and specifically higher rates of pathology-

confirmed AD, in Black individuals (Neill R. Graff-Radford et al., 2016; Green, 2002; Mayeda 

et al., 2016, p. 201; Tang et al., 2001). These differences have also been explained by higher 

rates of risk factors, especially APOE4 as the most prevalent genetic risk factor for AD (Neill R. 

Graff-Radford et al., 2016). Papers reporting no racial differences in AD are often those that 

have controlled for baseline racial differences in education, cognitive scores, and APOE4 

(Brickman et al., 2008; Fillenbaum et al., 1998; Annette L. Fitzpatrick et al., 2004; John C. 
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Morris et al., 2019; Riudavets et al., 2006a). In Chapter 4 we will investigate the relationship 

between preclinical AD and post-stroke dementia, as well as how any racial differences impact 

this relationship.  

1.5 White Matter Hyperintensities in AD 
 Other types of vascular pathology, such as the white matter hyperintensities (WMH) 

seen in small vessel disease can also lead to vascular dementia (Bos et al., 2018; Wardlaw et al., 

2019). However, WMHs are common in old age even without accompanying symptoms (Alber 

et al., 2019), and have a complicated relationship to cognitive symptoms (van den Berg et al., 

2018; Vargas-González and Hachinski, 2019). Similar to the two-hit hypothesis described in 

section 1.4, it is unclear if WMHs are an aspect of AD or if they simply co-occur and have an 

additive effect on the brain (Koncz and Sachdev, 2018). With this second possibility, WMHs 

below the level of vascular dementia may still impact the expression of AD – worsening the 

impairment from what would have been experienced in the absence of cerebrovascular disease.  

 With the addition of vascular pathology, preclinical AD or very mild AD may have 

symptoms exacerbated enough to be considered symptomatic AD. This would explain the 

association of WMHs with other types of dementia, including AD (Bos et al., 2018; Joki et al., 

2018). This is supported by studies showing that WMHs do not impact cognitive progression in 

AD (Eldholm et al., 2018), but do associate with conversion from normal cognition to MCI 

(Bangen et al., 2018a). A 2017 review suggests amyloid and WMHs are independent yet additive 

(Roseborough et al., 2017), but a more recent paper showed amyloid PET correlated with a 

periventricular pattern of WMHs in non-demented older adults, and that part of this relationship 

is due to cerebral amyloid angiopathy (CAA) (Graff-Radford et al., 2019). 
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There is even greater evidence of a direct interaction in dominantly inherited AD, where 

WMH volumes have been shown to begin increasing approximately 6 years before expected 

symptom onset (Joseph-Mathurin et al., 2021; Lee et al., 2016). This suggests that WMHs arise 

as a part of dominantly inherited AD and not through a comorbid disease. This type of 

longitudinal study has not been replicated in sporadic AD, and it is still unclear if WMHs are 

different in the preclinical stage. If WMHs are developing even in the preclinical stage of AD, 

this would support the idea that the greater volume of WMHs in AD is directly caused by AD 

even in sporadic cases of AD. It would disprove the theory that the higher prevalence of WMHs 

in symptomatic AD is fully explained by the fact that co-occurring pathologies are more likely to 

be diagnosed.  

 In Chapter 5, we will use machine learning to examine if WMHs in preclinical AD 

participants are distinct from cognitively normal controls in amount or pattern. As part of this 

study, we will use machine learning. Machine learning has been used extensively in the field of 

radiology and allows more complex patterns and relationships to be examined (Mateos-Pérez et 

al., 2018a). As shown in Figure 1.6, classification algorithms can detect group differences, 

especially in heterogeneous groups, that are missed by traditional statistics. By combining 

statistics with machine learning we will have the greatest chance of uncovering a relationship if 

it does exist. To otherwise increase the likelihood of us detecting this relationship, we will 

examine patterns of WMHs within pre-determined white matter regions that previous work has 

associated with amyloid (Phuah et al., 2019). By looking at these specific regions in the brain, 

we will have fewer ‘noise’ voxels that could obscure group differences. We will also be able to 

better assess if specific patterns of WMHs differ in AD, as opposed to simply the overall WMH 

volume. Prior studies have suggested spatial patterns of WMHs are important, especially on the 
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difference between periventricular and subcortical WMHs, but there is not yet a consensus 

(Alber et al., 2019). 

 If we are able to separate preclinical AD from controls, it would suggest that the 

pathological processes of AD are directly causing the increase in WMHs, advancing our 

scientific understanding of these two disease processes. Conversely, if the difference in WMHs 

is only seen at the level of symptomatic AD, it may be that the two pathologies are simply co-

occurring and their combined impact on the brain is leading to dementia. In the chapters that 

follow, we will explore measures of atrophy and cerebrovascular disease in both preclinical and 

symptomatic AD. We will determine the specific spatial patterns these different pathologies 

show in these different contexts, and search for evidence supporting or rejecting the 

independence of vascular pathology and AD.  
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Figure 1.6: Statistical Group Differences vs. Classification Ability (Arbabshirani et al., 

2017)
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Chapter 2: Regional Age-Related Atrophy 

After Screening for Preclinical Alzheimer 

Disease (Koenig et al., 2022) 
Brain atrophy occurs in aging even in the absence of dementia, but it is unclear to what 

extent this is due to undetected preclinical Alzheimer disease. Here we examine a cross-sectional 

cohort (ages 18-88) free from confounding influence of preclinical Alzheimer disease, as 

determined by amyloid PET scans and three years of clinical evaluation post-imaging. We 

determine the regional strength of age-related atrophy using linear modeling of brain volumes 

and cortical thicknesses with age. Age-related atrophy was seen in nearly all regions, with 

greatest effects in the temporal lobe and subcortical regions. When modeling age with the 

estimated derivative of smoothed aging curves, we found that the temporal lobe declined linearly 

with age, subcortical regions declined faster at later ages, and frontal regions declined slower at 

later ages than during midlife. This age-derivative pattern was distinct from the linear measure of 

age-related atrophy and significantly associated with a measure of myelin. Atrophy did not 

detectably differ from a preclinical Alzheimer disease cohort when age ranges were matched. 

2.1 Introduction 
Older adults constitute an increasingly large fraction of our society, making research on 

brain aging important for public health. Cerebral atrophy associated with aging is in particular a 

concern due to its association with cognitive decline, independent of known neurodegenerative 

diseases (Armstrong et al., 2020; Fletcher et al., 2018b). Previous studies have shown regional 

variability and non-linear changes in this atrophy occurring with age. In general, these studies 

show the strongest atrophy in frontal and temporal regions, and a pattern of accelerated atrophy 

in temporal regions (Irwin et al., 2018; Lockhart and DeCarli, 2014). It has been hypothesized 
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that these non-linear regional patterns may in part be due to mid-life increases in cerebral 

myelination causing the appearance of reduced gray matter density (Irwin et al., 2018). However, 

myelin may also be acting as a proxy for other regional properties of the brain such as 

intracortical circuit complexity and aerobic glycolysis levels (Glasser et al., 2014). 

Measures of age-related atrophy are complicated by abundant confounding factors 

inherent within studies of aging. One major factor is cardiovascular disease, with atrophy 

correlating with WMHs (Coutu et al., 2017; Habes et al., 2021), high blood pressure (Armstrong 

et al., 2019a; Lockhart and DeCarli, 2014), and diabetes (Hamed, 2017; Suzuki et al., 2019). 

Some studies indicate sex or gender differences in age-related atrophy, with greater atrophy in 

men for select regions (Armstrong et al., 2019b; Chételat et al., 2010; Jack et al., 2015; Lockhart 

and DeCarli, 2014; Wang et al., 2019). Additionally, apolipoprotein E ε4 (APOE4) – the greatest 

genetic risk factor for sporadic Alzheimer disease (AD) – has also been associated with greater 

rates of atrophy even in the unimpaired (Armstrong et al., 2019a; Erten-Lyons et al., 2013; Irwin 

et al., 2018; Kelly et al., 2018; Mishra et al., 2018; Raz et al., 2010; Smith et al., 2012). A 

previous study has shown that this effect of APOE4 is linked to increasing amyloid levels, 

indicative of preclinical AD (Mishra et al., 2018).  

Preclinical AD is characterized by the absence of cognitive symptoms and the presence 

of parenchymal deposits of amyloid-β peptide, one of the hallmarks of AD. Despite its 

association with atrophy (Becker et al., 2011; Chételat et al., 2012; Dickerson et al., 2009; Fagan 

et al., 2009; Fjell et al., 2010; Fletcher et al., 2018a, 2016; Oh et al., 2014; Pettigrew et al., 2017; 

Schott et al., 2010; Storandt et al., 2009; Xie et al., 2020), preclinical AD can only be detected on 

an individual basis using measures of amyloid. As such, it often goes undetected in studies of 

aging populations and may be contaminating results. For example, screening out participants 
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with preclinical AD has been shown to reduce variability and age-related decline in 

neuropsychological tests (Hassenstab et al., 2016) and resting-state functional connectivity 

measures (Brier et al., 2014b). However, it is unclear if this confound extends to measures of 

atrophy.  

Prior studies have assessed the impact of undetected Alzheimer pathology (Armstrong et 

al., 2019b; Fjell et al., 2014a, 2014b, 2013a; Knopman et al., 2013), using either measures of 

amyloid pathology or longitudinal tracking to ensure no cognitive impairment develops. 

However, sample sizes were small in these studies and screening used longitudinal tracking or 

amyloid measures separately. In this study we use cognitively normal participants from 

longitudinal AD studies, allowing us to screen a large cohort for preclinical AD using both 

amyloid positron emission tomography (PET) and longitudinal tracking of cognition in the same 

individuals. Using this screened cohort, we measure age-related volumetric changes across the 

brain that occur independent of preclinical AD. 

2.2 Methods 

2.2.1 Participants 

The n = 383 participants in the Normal Aging cohort came from two open-source 

databases: Open Access Series of Imaging Studies (OASIS) (LaMontagne et al., 2019) and the 

Dominantly Inherited Alzheimer Network (DIAN). The n = 115 participants in the Preclinical 

AD cohort were all from OASIS. All procedures in this retrospective study were Health 

Insurance Portability and Accountability Act (HIPAA) compliant and approved by the 

Washington University Institutional Review Board; informed consent was gained for all 

participants. 
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Both the Normal Aging and the Preclinical AD cohorts only included participants who 

were evaluated as ‘cognitively normal’ or ‘no dementia’ in their clinical assessment and who had 

a global Clinical Dementia Rating™ (CDR™) (Morris, 1993) of 0 within 1 year of magnetic 

resonance imaging (MRI). The Normal Aging cohort, which has been previously described 

(Koenig et al., 2020), only included participants who remained CDR = 0 for a minimum of 3 

years after MRI. Participants over age 45 were only included if they additionally had a negative 

amyloid PET scan (defined in section 2.2.4) within 1 year of their MRI. The longitudinal CDR 

and negative amyloid PET scan limited the possibility that the participants in the Normal Aging 

cohort were in the preclinical stage of AD. The Preclinical AD cohort differed from the Normal 

Aging cohort in that it required a positive amyloid PET scan and did not require longitudinal 

CDR assessment. 

While the Normal Aging cohort included participants from DIAN, a study on autosomal 

dominant AD caused by rare mutations, only non-mutation carriers (control group) were 

included. DIAN was used due to its similarity to studies in the OASIS database and because 

DIAN has amyloid PET data available in the 45-60 age range. When compared to OASIS 

participants in the overlapping age range (age 42-59), there were no differences in volumetric 

data after multiple comparisons (see section 2.2.6 and Supplemental Table S2.1). Both OASIS 

and DIAN include self-reported race and gender. We use the term gender and not sex to match 

the terminology of the questionnaire used, but participants were offered only ‘Male’ and 

‘Female’ as options and sex was not assessed separately. 

2.2.2 Clinical Assessment 

Experienced clinicians, blinded to amyloid status, evaluated each participant for the 

possibility of a clinical diagnosis of dementia, and only those considered to be cognitively 
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normal were included in this study. Their assessment, outlined previously (Morris et al., 2006), 

integrated results from a semi-structured interview conducted with the participant and a 

knowledgeable collateral source, a thorough neurological examination, and bedside measures of 

cognitive function (including Mini Mental State Exam (MMSE) (Folstein et al., 1975) among 

others). 

2.2.3 MR Imaging 

The MR imaging parameters for OASIS are approximate due to the variety of studies 

included. Scanner strength was primarily 3T (n = 19 were 1.5T) within OASIS, while DIAN was 

3T. OASIS T1-weighted magnetization-prepared, rapid gradient-echo (MPRAGE) images 

primarily had 2 set of parameters. The first used TR = 2.3 s, TE = 3.16 ms, TI = 1 s, a flip angle 

of 8 degrees, and a spatial resolution of 1 × 1 × 1 mm3. The second used TR = 2.3 s, TE = 2.95 

ms, TI = 0.9 s, a flip angle of 9 degrees, and a spatial resolution of 1 × 1 × 1 mm3 or 1 × 1 × 1.2 

mm3. DIAN T1 scans had TR = 2.3 s, TE = 2.95 ms, TI = 0.9 s, a flip angle of 9 degrees, and a 

spatial resolution of 1 × 1 × 1.2 mm3.  

Volumetric T1-weighted images underwent regional tissue segmentation with FreeSurfer 

(version 5.0 or 5.1 for 1.5T scans and version 5.3 for 3T scans) (Fischl, 2012). Regional volumes 

(cortical and subcortical) were adjusted for head size with a regression approach using 

intracranial volume (Buckner et al., 2004). Left and right hemispheric data were combined by 

summing volumes and averaging cortical thicknesses. 

2.2.4 PET Imaging 

[11C]-Pittsburgh compound B (PIB) was used as the amyloid tracer in DIAN participants, 

with a dosage of ~15 mCi, and data collected 40-70 minutes post-injection. Within OASIS, 287 

participants were imaging using PIB, with a dosage of ~13 mCi and data collected 30-60 minutes 
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post-injection. The remaining 75 participants were imaged using Florbetapir ([18F]-AV45), with 

a dosage of ~10 mCi and data collected 50-70 minutes post-injection.  

 PET images were processed with an in-house pipeline (Su, 2021) using FreeSurfer-

derived regions and a cerebellar cortex reference region. Signal spillover was addressed with 

partial volume correction, specifically with a regional spread function (geometric transfer matrix) 

technique based on the scanner point spread function and the relative distance between regions 

(Su et al., 2015, 2013). The mean cortical standard uptake value ratio with regional spread 

function applied (SUVR RSF) was defined as the average SUVR RSF from the precuneus, 

prefrontal cortex, gyrus rectus, and lateral temporal regions (Su et al., 2019). 

A negative amyloid PET scan was defined as having a mean cortical SUVR RSF < 1.42 

(Centiloid < 16.4) for PIB PET or SUVR RSF < 1.19 (Centiloid < 20.6) for Florbetapir PET. The 

Centiloid conversion process, used to more easily compare the two amyloid tracers, is 

documented in detail in the initial Centiloid paper (Klunk et al., 2015), with specific equations in 

follow-up papers (Su et al., 2019, 2018). Harmonization procedures such as this are imperfect, 

and so to remain as accurate as possible we used cutoffs determined individually for each tracer 

and then converted into Centiloid, as opposed to a unified Centiloid cutoff. 

2.2.5 T1w/T2w Myelin Maps 

 This study uses a spatial map of the ratio of T1w/T2w image intensities in a cohort of 

1071 healthy young adults (ages 22-37, mean 29) from the Human Connectome Project (Glasser 

and Van Essen, 2011; Glasser et al., 2014, 2016b). The original map was averaged within each 

region of the Desikan-Killiany atlas used by FreeSurfer to allow comparison. Prior work has 

shown that this ratio correlates with cerebral cortical myelin content due to differences in lipids, 

free and myelin-bound water, and iron content (Glasser and Van Essen, 2011). 



26 

2.2.6 Statistics 

We first examined if gender, MMSE, APOE4, race, and education influenced linear 

models of each regional volume (after normalization for intracranial volume) and each cortical 

thickness in the Normal Aging cohort. A separate linear model was run for every factor and 

regional volume/thickness pairing, with a Bonferroni-Holm corrected p < 0.05 considered 

significant. Bonferroni-Holm, which progressively adapts the significance threshold, was done 

separately for each of the five factors, and across the 101 examined brain regions. Race in this 

study was self-reported and binarized to whether or not a person is non-Hispanic White (NHW) 

due to the strong skew towards NHW participants. As few significant correlations were observed 

for any of these factors, we did not include these as covariates in the remaining analyses.  

We next modeled each regional volume and thickness by age. We used the resulting 

standardized coefficients (β-weights) to compare the strength and directionality of age-related 

atrophy across regions. We then addressed non-linear changes that occur with age using the 

estimated derivative of normal aging curves. Normal aging curves were determined by 

smoothing the Normal Aging cohort’s data for each FreeSurfer region with a locally weighted 

scatter-plot smoother regression, resulting in a non-linear estimate of age-related atrophy. By 

correlating age with the estimated derivative at each age, we estimate the pattern of age-related 

atrophy across the lifespan. We display examples of these normal aging curves and their 

estimated derivatives in Figure 1. As these are cross-sectional data, the estimated derivative is 

the change in the region’s smoothed average by age, not an individual participant’s trajectory 

over time. As with the previous analysis, we again corrected each set of p-values for multiple 

comparisons across the 101 regions using Bonferroni-Holm. 



27 

The 34 β-values for each of the four resulting cortical maps (from linear models of 

cortical volumes or thicknesses; as predicted by age or the age-derivative) were correlated with 

the myelin map described above. As this is a spatial correlation, Spearman’s rank correlation was 

used. To maintain consistency, these p-values were also corrected for multiple comparisons 

across the 4 pairings using Bonferroni-Holm. 

Finally, we used linear models to assess the impact of amyloid on regional volumes and 

thicknesses. The Preclinical AD cohort (amyloid positive) and the participants above age 60 in 

the Normal Aging cohort (amyloid negative) were combined, and a linear model was run for 

each region using age, amyloid positivity, and their interaction. This process was also repeated 

by replacing the dichotomous amyloid positivity with a continuous measure of amyloid 

(Centiloid). Each set of p-values was corrected for multiple comparisons across the 101 regions 

using Bonferroni-Holm.  
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Figure 2.1: Example Regions in the Normal Aging Cohort 

 

Figure 2.1 displays example normal aging curves and estimated derivative graphs. Figure 2.1a-d 

displays in blue the linear model whose β-weight is graphed in Figure 2.2a. In red is the loess 

regression, used to calculate the estimated derivative graphed in Figure 2.1e and 2.1f (for Figure 

2.1a and 2.1d, respectively). The blue line in Figure 2.1e and 2.1f represents the linear model 

whose β-weight is graphed in Figure 2.2b.  
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2.3 Results 

2.3.1 Demographics 

 Demographics for both cohorts and the subset of the Normal Aging cohort above age 60 

are listed in Table 2.1. As expected, the Normal Aging cohort had a lower frequency of APOE4 

alleles and lower amyloid levels than the Preclinical AD cohort. No regions in the Normal Aging 

cohort showed significant associations with APOE4 status, MMSE, or years of education, and 

few regions showed significant associations with gender or race after correction for multiple 

comparisons (Supplemental Table S2.1). As such, the later analyses did not adjust for these 

factors.  

Significant differences by gender were observed in intracranial volume (β = 0.601, 

corrected p < 0.001), fusiform volume (β = 0.200, corrected p = 0.008), frontal pole volume (β = 

0.182, corrected p = 0.03), lateral occipital volume (β = 0.178, p = 0.04), amygdala volume (β = 

0.230, corrected p < 0.001), and lateral ventricle volume (β = -0.197, p = 0.01). Significant 

differences by race were in cuneus volume (β = 0.186, p = 0.03), inferior temporal volume (β = 

0.182, p = 0.04), lateral occipital volume (β = 0.198, p = 0.01), middle temporal volume (β = 

0.220, p = 0.001), and optic chiasm volume (β = -0.195, p = 0.01). In these models, a positive β 

weight indicates larger volumes/thicknesses in men or NHWs, respectively.  
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Table 2.1: Demographics 

 Normal Aging 

Cohort 

Normal Aging 

Cohort (Age > 60) 

Preclinical AD 

Cohort 

n 383 192 115 

n by Data Source    

      DIAN 134 0 0 

      OASIS 249 192 115 

Age (median) 18-88 (60) 60-88 (70) 61-89 (74) 

Gender (% M) 35.8 33.9 47.8 

MMSE (median) 24-30 (30)* 26-30 (30) 23-30 (29) 

APOE4 (% with an ε4 allele) 24.8 22.4 55.6 

Race (% non-Hispanic White) 89.8* 89.1 90.4 

Education (years) (median) 9-22 (16) 10-20 (16) 8-20 (16) 

Amyloid** (median) -9.34-19.0 (-0.880)* -9.34-19.0 (-0.453) 16.4-141 (63.4) 

* indicates missing data: 2 MMSEs, 6 Races, and 124 Amyloid (all from those under age 45) 

from the Normal Aging cohort  

** Mean Cortical SUVR RSF in Centiloids 

APOE4: Apolipoprotein E ε4; DIAN: Dominantly Inherited Alzheimer Network; MMSE: Mini 

Mental State Exam; OASIS: Open Access Series of Neuroimaging Studies; SUVR RSF: 

Standard uptake value ratio (regional spread function applied)  
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2.3.2 Regional Variation in Strength of Age-Related Atrophy 

Almost all regions showed a significant association between atrophy and age in the 

Normal Aging cohort (Supplemental Table S2.2). The only non-significant regional measures 

were caudal anterior cingulate thickness, entorhinal volume, temporal pole volume, corpus 

callosum posterior volume, intracranial volume, total subcortical gray matter volume, and fifth 

ventricle (cavum septum pallucidum) volume. While volumetric measures of the remaining 

regions were significantly associated with age, the strength of that relationship varied. The 

strongest age effects were seen in the temporal lobe and subcortical regions (Figure 2.2a). Of the 

regions and composites not pictured in Figure 2.2a, summary measures such as total cortex 

volume and total gray matter volume also showed some of the strongest age effects 

(Supplemental Table S2.2).  

2.3.3 Regional Variation in Non-Linear Patterns of Age-Related Atrophy 

 The previous section, 2.3.3, used standardized β-weights from linear models to compare 

the strength of the relationship between age and regional volumetrics. Select regions declined in 

a linear fashion. Many regions showed non-linear patterns, with atrophy appearing to accelerate 

or decelerate at older ages. We assessed the non-linear pattern of each region by smoothing our 

data to create normal aging curves and then estimating the derivative of that curve at each age. 

Figure 2.2.1 displays examples of these normal aging curves and the corresponding estimated 

derivatives, and the normal aging curves for all examined regions can be viewed interactively at 

https://lnkoenig.shinyapps.io/NormalAgingVolumetrics_ShinyApp/.  

Almost all regions’ age-derivative showed a significant association with age 

(Supplemental Table S2.2). The regions showing non-significant correlations of age were banks 

of the superior temporal sulcus thickness, fusiform thickness, and pars opercularis volume. Non-

https://lnkoenig.shinyapps.io/NormalAgingVolumetrics_ShinyApp/
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significance in this case indicates no relationship, i.e., rate of atrophy did not change across the 

age range suggesting either linear decline or no atrophy with age. The strength of the association 

between age and the age-derivative, again represented using β-weights, is displayed spatially in 

Figure 2.2b and appears distinct from the age-association pattern in Figure 2.2a. Of those regions 

that showed the most age-related atrophy, the temporal cortex showed an overall linear decline 

with age, while atrophy in subcortical regions appears to accelerate with age. In contrast, frontal 

regions appear to show higher rates of atrophy at midlife as opposed to late life. Of the regions 

not pictured in Figure 2.2b, the corpus callosum stood out as a region stable at younger ages that 

atrophies rapidly in old age.   
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Figure 2.2: Regional Maps of Age-Related Atrophy
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Figure 2.2 displays regional maps of the standardized β-weights from the linear models used to assess age-related atrophy. 

Figure 2.2a displays the overall age-effect, taken from a direct comparison of participants’ ages and regional volume/thickness (blue 

line in Figure 2.1a-d). A darker purple indicates more atrophy with age, while yellow indicates a lack of atrophy. Figure 2.2b displays 

the pattern of atrophy with age, taken from the association of the age-derivative with age (blue line in Figure 2.1e-f). Blue in Figure 

2.2b indicates regions whose rate of atrophy becomes less severe as age increases, while red indicates regions whose atrophy 

accelerates at later ages. To maintain the color schemes, the lateral ventricles are displayed with a reversed sign.   
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2.3.4 Relationship of T1w/T2w Myelin Content and Slope of Age-Related 

Atrophy 

 To quantify if the spatial patterns we observed in Figure 2 related to myelin levels, we 

correlated each set of 34 cortical β-weights in Figure 2 to an average T1w/T2w myelin map. This 

myelin map was generated on a separate cohort of healthy young adults (ages 22-37, mean 29) 

and was and is displayed in Figure 3. The regional pattern of the strength of age-related atrophy 

was not significantly associated with the regional map of myelin (rho = -0.060, corrected p = 

0.74 for cortical volumes; rho = -0.348, corrected p = 0.09 for cortical thicknesses). However, 

the regional pattern of the estimated derivative βs was significantly associated with the regional 

map of myelin (rho = -0.640, corrected p < 0.001 for cortical volumes; rho = -0.546, corrected p 

= 0.003 for cortical thicknesses). The directionality of the correlation is such that regions with 

higher myelin content are more likely to follow the pattern shown in Figure 1C, with atrophy that 

accelerates in late life. Conversely, lower myelin regions were more likely to show the pattern in 

Figure 1D: atrophy greatest in midlife that tapered at older ages. While this result emphasizes the 

distinctness of the two patterns, the moderate correlation suggests other factors are also at play.  

2.3.5 Atrophy in Preclinical AD vs. Normal Aging 

 The impact of amyloid was assessed using those over age 60 in the Normal Aging cohort 

(amyloid negative) and the Preclinical AD cohort (amyloid positive). Linear models used age, 

amyloid, and age × amyloid to predict regional volumes/thicknesses. No significant effects of 

amyloid or age × amyloid were found after accounting for age and correcting for multiple 

comparisons (Supplemental Table S2.3, with examples in Figure 2.4).
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Figure 2.3: T1w/T2w Myelin Map in Healthy Younger Adults 

Figure 2.3 displays the cerebral cortical myelin map that was correlated with each of the four 

regional maps in Figure 2.2. Myelin content was measured by the ratio of T1w/T2w image 

intensities in a separate cohort of healthy adults. 
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Figure 2.4: Example Regions for Normal Aging Cohort vs. Preclinical AD Cohort 

 

Figure 2.4 displays the overlap of the Normal Aging cohort (Amyloid Negative, black) and the Preclinical AD cohort (Amyloid 

Positive, red), indicating our non-significant findings for amyloid and age × amyloid.  

AD: Alzheimer disease  
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2.4 Discussion 
In this paper we report regional variation in age-related atrophy, with different spatial 

patterns for the effect size of age-related atrophy and in the non-linear pattern observed across 

the lifespan. Temporal regions showed the greatest association with age, while frontal and 

cingulate areas showed a deceleration of atrophy with age (i.e., higher atrophy in mid-life than 

late-life). This reduced rate of atrophy in late life contrasted to most regions which showed an 

acceleration of atrophy in late life. This pattern of non-linearity was spatially related to myelin 

levels determined by T1w/T2w intensity ratio. As this ratio was determined in a separate cohort 

of healthy adults, this suggests that the observed pattern is the end result of a fundamental 

organizational property of the brain. The lack of correlation between myelin and the direct 

association with age further supports that the two observed patterns are unique. The direction of 

the myelin and age-derivative correlation suggests that regions that characteristically have higher 

myelin content in midlife are more vulnerable to accelerated atrophy in later life. While causality 

is not clear, this could in part be due to the greater vulnerability of myelinating cells to oxidative 

stress (Nasrabady et al., 2018). No differences were detected between our Normal Aging cohort 

and our Preclinical AD cohort, though a larger sample may reveal subtle differences. 

Limitations of this study include its cross-sectional design, the lack of diversity in our 

participants, and our inability to control for vascular influences on structural brain measures in 

these analyses. Group averages in aging volumetrics have been shown to be commensurate 

across cross-sectional and longitudinal designs (Fjell et al., 2013b; Fotenos et al., 2005). 

However, by looking only at a single time-point per participant, we were unable to assess 

possible subtypes of patterns of aging in individuals. Our Normal Aging cohort, collated from 

several studies of aging and AD, is predominantly highly educated and non-Hispanic White. A 
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more representative cohort may show greater age-related atrophy due to the association of social 

inequities with chronic health conditions and other social determinants of health. As such, our 

study may be closer to a measure of ‘healthy aging’ than the ‘normal aging’ an average 

individual in our society experiences.  

While our cohort may not be representative of the broader population, it does reduce the 

probability that some unmeasured factors are confounding our measures of aging. Vascular 

disease is one such unmeasured factor that is common within the population represented in this 

study and likely impacts our results. Differences in blood pressure, even in non-hypertensive 

individuals, have correlated with volumetric differences (Lockhart and DeCarli, 2014). 

Additionally, regional volumetrics may be influenced by other non-AD neurodegenerative 

pathologic processes that are less common and more difficult to detect (e.g., argyrophilic grain 

disease, primary aging-related tauopathy, hippocampal sclerosis of aging, limbic-predominant 

aging-related TDP-43 encephalopathy neuropathologic change, aging related tau astrogliopathy, 

frontotemporal lobar degeneration, Lewy body disease). For our detected pathology, amyloid, we 

are limited in that we did not follow our preclinical AD participants longitudinally. We would 

expect some but not all of these participants to develop AD in the near future, and these two 

subgroups would likely have different rates and patterns of atrophy. One final limitation is that 

the FreeSurfer regions used in this study were relatively coarse regions defined based on gyral 

and sulcal landmarks that contain significant structural and functional heterogeneity. This limits 

the neurobiological interpretability of regional effects as compared to cortical areas based on 

multiple modalities (Glasser et al., 2016a) or more homogeneous functional regions (Gordon et 

al., 2016). 
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Despite these limitations, our results indicate that age-related atrophy is a regionally 

heterogeneous process, with severity of atrophy and lifespan pattern of atrophy varying 

independently across regions. We also showed that age-related atrophy is not significantly 

associated with amyloid positivity in the absence of cognitive symptoms. This suggests that 

volumetric studies in older adults do not need to include amyloid PET scans to screen for 

preclinical AD or track their participants longitudinally for dementia if they instead use the same 

rigorous dementia screening that we used at baseline (integrating a comprehensive history with a 

trusted collateral source and neurological examination). Similar studies done previously had 

smaller sample sizes and were unable to screen by both longitudinal cognition and amyloid 

levels. That we were able to do so gives additional weight to our negative findings. Future 

studies should further investigate the association we saw between myelin and the lifespan pattern 

of atrophy, as well as the potential influence of non-AD neurodegenerative pathologies. 
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2.6 Supplemental 
Supplemental Table S2.1: Relationship of Demographics to Volumes and Thicknesses 

FreeSurfer Region 
Data Source 

p-value 

Gender 

p-value 

APOE4 

p-value 

MMSE 

p-value 

Race 

p-value 

Education 

p-value 

Region 

Type 

Banks Superior Temporal Sulcus Thickness 1 1 1 1 1 1 T 

Caudal Anterior Cingulate Thickness 1 0.20 1 1 1 1 T 

Caudal Middle Frontal Thickness 1 1 1 1 1 1 T 

Cuneus Thickness 1 1 1 1 0.43 1 T 

Entorhinal Thickness 1 1 0.65 1 1 1 T 

Frontal Pole Thickness 1 1 1 1 1 1 T 

Fusiform Thickness 1 1 1 1 1 1 T 

Inferior Parietal Thickness 1 1 1 1 1 1 T 

Inferior Temporal Thickness 1 1 1 1 1 1 T 

Insula Thickness 1 1 1 1 1 1 T 

Isthmus Cingulate Thickness 0.42 1 1 1 1 1 T 

Lateral Occipital Thickness 1 1 1 1 0.88 1 T 

Lateral Orbitofrontal Thickness 1 1 1 1 1 1 T 

Lingual Thickness 1 1 1 1 1 1 T 

Medial Orbitofrontal Thickness 1 1 1 1 1 1 T 

Middle Temporal Thickness 1 1 1 1 1 1 T 

Paracentral Thickness 1 1 1 1 1 1 T 

Parahippocampal Thickness 1 1 1 0.53 1 1 T 

Pars Opercularis Thickness 1 1 1 1 1 1 T 

Pars Orbitalis Thickness 1 0.23 1 1 1 1 T 

Pars Triangularis Thickness 1 1 1 1 1 1 T 

Pericalcarine Thickness 1 1 1 1 1 1 T 

Postcentral Thickness 1 1 1 1 0.31 1 T 

Posterior Cingulate Thickness 1 1 1 1 1 1 T 

Precentral Thickness 1 1 1 1 1 1 T 
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FreeSurfer Region 
Data Source 

p-value 

Gender 

p-value 

APOE4 

p-value 

MMSE 

p-value 

Race 

p-value 

Education 

p-value 

Region 

Type 

Precuneus Thickness 1 1 1 1 1 1 T 

Rostral Anterior Cingulate Thickness 1 1 1 1 1 1 T 

Rostral Middle Frontal Thickness 1 1 1 1 1 1 T 

Superior Frontal Thickness 1 1 1 1 1 1 T 

Superior Parietal Thickness 1 1 1 1 1 1 T 

Superior Temporal Thickness 0.50 1 1 1 1 1 T 

Supramarginal Thickness 1 1 1 1 1 1 T 

Temporal Pole Thickness 1 1 1 1 0.28 1 T 

Transverse Temporal Thickness 1 1 1 0.30 1 1 T 

Banks Superior Temporal Sulcus Volume 1 1 1 1 0.14 1 CV 

Caudal Anterior Cingulate Volume 1 1 1 1 1 1 CV 

Caudal Middle Frontal Volume 1 1 1 1 1 1 CV 

Cuneus Volume 1 1 1 1 0.03 1 CV 

Entorhinal Volume 1 1 1 0.16 1 1 CV 

Frontal Pole Volume 1 0.03 1 1 1 1 CV 

Fusiform Volume 1 0.008 1 1 1 1 CV 

Inferior Parietal Volume 1 0.67 1 1 1 1 CV 

Inferior Temporal Volume 1 0.33 1 1 0.04 1 CV 

Insula Volume 1 1 1 1 1 1 CV 

Isthmus Cingulate Volume 1 1 1 1 1 1 CV 

Lateral Occipital Volume 1 0.04 1 1 0.01 1 CV 

Lateral Orbitofrontal Volume 1 1 1 1 0.51 1 CV 

Lingual Volume 1 0.28 1 1 1 1 CV 

Medial Orbitofrontal Volume 1 0.21 1 1 1 1 CV 

Middle Temporal Volume 1 1 1 1 0.002 1 CV 

Paracentral Volume 1 1 1 1 1 1 CV 

Parahippocampal Volume 1 1 1 1 1 1 CV 

Pars Opercularis Volume 1 1 1 1 1 1 CV 
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FreeSurfer Region 
Data Source 

p-value 

Gender 

p-value 

APOE4 

p-value 

MMSE 

p-value 

Race 

p-value 

Education 

p-value 

Region 

Type 

Pars Orbitalis Volume 1 1 1 1 1 1 CV 

Pars Triangularis Volume 1 1 1 1 1 1 CV 

Pericalcarine Volume 1 1 1 1 1 1 CV 

Postcentral Volume 1 1 1 1 1 1 CV 

Posterior Cingulate Volume 1 1 1 1 1 1 CV 

Precentral Volume 1 1 1 1 1 1 CV 

Precuneus Volume 1 1 1 1 0.06 1 CV 

Rostral Anterior Cingulate Volume 1 1 1 1 1 1 CV 

Rostral Middle Frontal Volume 1 1 1 1 1 1 CV 

Superior Frontal Volume 1 1 1 1 1 1 CV 

Superior Parietal Volume 1 1 1 1 0.19 1 CV 

Superior Temporal Volume 1 1 1 1 1 1 CV 

Supramarginal Volume 0.11 1 1 1 0.14 1 CV 

Temporal Pole Volume 1 0.95 1 1 1 1 CV 

Transverse Temporal Volume 1 1 1 1 1 1 CV 

Amygdala Volume 0.08 < 0.001 1 1 1 1 SV 

Caudate Volume 1 1 1 1 1 1 SV 

Hippocampus Volume 1 0.48 1 1 1 1 SV 

Lateral Ventricle Volume 1 0.01 1 1 1 1 SV 

Pallidum Volume 1 1 1 1 1 1 SV 

Putamen Volume 1 1 1 1 1 1 SV 

Thalamus Proper Volume* 1 0.57 1 1 1 1 SV 

Ventral DC Volume* 1 0.54 1 1 1 1 SV 

Accumbens Area Volume* 0.77 0.07 1 1 1 1 Other 

Brain Stem Volume 1 0.33 1 1 1 1 Other 

Corpus Callosum Anterior Volume 1 1 1 1 1 1 Other 

Corpus Callosum Central Volume 1 1 1 1 1 1 Other 

Corpus Callosum Mid Anterior Volume 1 1 1 1 1 1 Other 
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FreeSurfer Region 
Data Source 

p-value 

Gender 

p-value 

APOE4 

p-value 

MMSE 

p-value 

Race 

p-value 

Education 

p-value 

Region 

Type 

Corpus Callosum Mid Posterior Volume 1 1 1 1 1 1 Other 

Corpus Callosum Posterior Volume 1 1 1 0.23 1 1 Other 

Cerebellum Cortex Volume 1 1 1 1 0.06 1 Other 

Cerebellum White Matter Volume 1 1 1 1 1 1 Other 

Choroid Plexus Volume* 1 1 1 1 1 1 Other 

Cortex Volume 1 0.61 1 1 0.19 1 Other 

Cortical White Matter Volume 1 1 1 1 1 1 Other 

Cerebrospinal fluid (CSF) Volume 1 1 1 1 1 1 Other 

Inferior Lateral Ventricle Volume 1 0.58 1 1 1 1 Other 

Intracranial Volume 1 < 0.001 1 1 0.12 1 Other 

Non-White Matter Hypointensities 

Volume* 
1 1 1 1 1 1 Other 

Optic Chiasm Volume* 1 1 1 1 0.01 1 Other 

Subcortical Gray Matter Volume 1 1 1 1 1 1 Other 

Supratentorial Volume 1 1 1 1 0.37 1 Other 

Total Gray Matter Volume 1 0.59 1 1 0.08 1 Other 

Vessel Volume* 1 1 1 1 1 1 Other 

White Matter Hypointensities Volume* 1 1 1 1 1 1 Other 

3rd Ventricle Volume 1 1 1 1 1 1 Other 

4th Ventricle Volume 0.08 1 1 1 1 1 Other 

5th Ventricle Volume 1 1 1 1 1 1 Other 

P-values are post-correction for multiple comparisons, and are from individual simple linear regression models. The ‘Data Source’ 

results included only the n = 27 DIAN participants and n = 55 OASIS participants that overlapped in age (age 42-59). 

*The indicated regions are known to have low measurement accuracy with FreeSurfer and so should be interpreted with caution. 

APOE4: Apolipoprotein E ε4; CV: Cortical volume; DIAN: Dominantly Inherited Alzheimer Network; MMSE: Mini Mental State 

Exam; OASIS: Open Access Series of Neuroimaging Studies; T: Cortical thickness measure  
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Supplemental Table S2.2: Relationship of Age to Volumes and Thicknesses 

FreeSurfer Region 
Age 

β 

Age 

p-value 

Estimated 

Derivative β 

Estimated 

Derivative 

p-value 

Region 

Type 

Banks Superior Temporal Sulcus Thickness -0.629 < 0.001 -0.141 0.50 T 

Caudal Anterior Cingulate Thickness -0.081 0.57 0.974 < 0.001 T 

Caudal Middle Frontal Thickness -0.372 < 0.001 -0.368 0.02 T 

Cuneus Thickness -0.409 < 0.001 -0.697 < 0.001 T 

Entorhinal Thickness -0.200 0.001 -0.874 < 0.001 T 

Frontal Pole Thickness -0.225 < 0.001 0.947 < 0.001 T 

Fusiform Thickness -0.564 < 0.001 -0.094 0.50 T 

Inferior Parietal Thickness -0.527 < 0.001 -0.63 < 0.001 T 

Inferior Temporal Thickness -0.531 < 0.001 0.532 < 0.001 T 

Insula Thickness -0.564 < 0.001 0.769 < 0.001 T 

Isthmus Cingulate Thickness -0.529 < 0.001 0.713 < 0.001 T 

Lateral Occipital Thickness -0.508 < 0.001 -0.838 < 0.001 T 

Lateral Orbitofrontal Thickness -0.459 < 0.001 0.95 < 0.001 T 

Lingual Thickness -0.589 < 0.001 -0.443 0.002 T 

Medial Orbitofrontal Thickness -0.264 < 0.001 0.947 < 0.001 T 

Middle Temporal Thickness -0.648 < 0.001 0.525 < 0.001 T 

Paracentral Thickness -0.384 < 0.001 -0.389 0.009 T 

Parahippocampal Thickness -0.364 < 0.001 -0.407 0.006 T 

Pars Opercularis Thickness -0.581 < 0.001 0.652 < 0.001 T 

Pars Orbitalis Thickness -0.324 < 0.001 0.841 < 0.001 T 

Pars Triangularis Thickness -0.55 < 0.001 0.799 < 0.001 T 

Pericalcarine Thickness -0.329 < 0.001 -0.921 < 0.001 T 

Postcentral Thickness -0.442 < 0.001 -0.736 < 0.001 T 

Posterior Cingulate Thickness -0.437 < 0.001 0.978 < 0.001 T 

Precentral Thickness -0.509 < 0.001 -0.715 < 0.001 T 
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FreeSurfer Region 
Age 

β 

Age 

p-value 

Estimated 

Derivative β 

Estimated 

Derivative 

p-value 

Region 

Type 

Precuneus Thickness -0.535 < 0.001 -0.431 0.003 T 

Rostral Anterior Cingulate Thickness -0.168 0.009 0.953 < 0.001 T 

Rostral Middle Frontal Thickness -0.192 0.002 0.848 < 0.001 T 

Superior Frontal Thickness -0.480 < 0.001 0.307 0.05 T 

Superior Parietal Thickness -0.344 < 0.001 -0.602 < 0.001 T 

Superior Temporal Thickness -0.700 < 0.001 -0.643 < 0.001 T 

Supramarginal Thickness -0.622 < 0.001 -0.346 0.02 T 

Temporal Pole Thickness -0.184 0.003 -0.689 < 0.001 T 

Transverse Temporal Thickness -0.411 < 0.001 -0.529 < 0.001 T 

Banks Superior Temporal Sulcus Volume -0.512 < 0.001 -0.754 < 0.001 CV 

Caudal Anterior Cingulate Volume -0.382 < 0.001 0.687 < 0.001 CV 

Caudal Middle Frontal Volume -0.454 < 0.001 -0.964 < 0.001 CV 

Cuneus Volume -0.487 < 0.001 -0.966 < 0.001 CV 

Entorhinal Volume 0.074 0.60 -0.911 < 0.001 CV 

Frontal Pole Volume -0.293 < 0.001 0.972 < 0.001 CV 

Fusiform Volume -0.557 < 0.001 -0.482 < 0.001 CV 

Inferior Parietal Volume -0.585 < 0.001 -0.947 < 0.001 CV 

Inferior Temporal Volume -0.586 < 0.001 -0.489 < 0.001 CV 

Insula Volume -0.291 < 0.001 0.356 0.02 CV 

Isthmus Cingulate Volume -0.507 < 0.001 -0.805 < 0.001 CV 

Lateral Occipital Volume -0.590 < 0.001 -0.949 < 0.001 CV 

Lateral Orbitofrontal Volume -0.640 < 0.001 0.502 < 0.001 CV 

Lingual Volume -0.539 < 0.001 -0.861 < 0.001 CV 

Medial Orbitofrontal Volume -0.385 < 0.001 0.689 < 0.001 CV 

Middle Temporal Volume -0.693 < 0.001 -0.311 0.05 CV 

Paracentral Volume -0.408 < 0.001 -0.862 < 0.001 CV 

Parahippocampal Volume -0.525 < 0.001 -0.778 < 0.001 CV 
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FreeSurfer Region 
Age 

β 

Age 

p-value 

Estimated 

Derivative β 

Estimated 

Derivative 

p-value 

Region 

Type 

Pars Opercularis Volume -0.562 < 0.001 -0.266 0.08 CV 

Pars Orbitalis Volume -0.536 < 0.001 0.530 < 0.001 CV 

Pars Triangularis Volume -0.595 < 0.001 -0.615 < 0.001 CV 

Pericalcarine Volume -0.280 < 0.001 -0.941 < 0.001 CV 

Postcentral Volume -0.442 < 0.001 -0.905 < 0.001 CV 

Posterior Cingulate Volume -0.549 < 0.001 0.868 < 0.001 CV 

Precentral Volume -0.522 < 0.001 -0.741 < 0.001 CV 

Precuneus Volume -0.584 < 0.001 -0.878 < 0.001 CV 

Rostral Anterior Cingulate Volume -0.431 < 0.001 0.870 < 0.001 CV 

Rostral Middle Frontal Volume -0.565 < 0.001 0.743 < 0.001 CV 

Superior Frontal Volume -0.643 < 0.001 -0.876 < 0.001 CV 

Superior Parietal Volume -0.471 < 0.001 -0.852 < 0.001 CV 

Superior Temporal Volume -0.666 < 0.001 -0.894 < 0.001 CV 

Supramarginal Volume -0.557 < 0.001 -0.335 0.03 CV 

Temporal Pole Volume 0.004 1 -0.733 < 0.001 CV 

Transverse Temporal Volume -0.416 < 0.001 -0.913 < 0.001 CV 

Amygdala Volume -0.618 < 0.001 -0.972 < 0.001 SV 

Caudate Volume -0.371 < 0.001 0.847 < 0.001 SV 

Hippocampus Volume -0.652 < 0.001 -0.965 < 0.001 SV 

Lateral Ventricle Volume 0.601 < 0.001 0.769 < 0.001 SV 

Pallidum Volume -0.409 < 0.001 -0.936 < 0.001 SV 

Putamen Volume -0.670 < 0.001 -0.949 < 0.001 SV 

Thalamus Proper Volume* -0.706 < 0.001 -0.974 < 0.001 SV 

Ventral DC Volume* -0.621 < 0.001 -0.987 < 0.001 SV 

Accumbens Area Volume* -0.690 < 0.001 -0.964 < 0.001 Other 

Brain Stem Volume -0.292 < 0.001 -0.971 < 0.001 Other 

Corpus Callosum Anterior Volume -0.358 < 0.001 -0.976 < 0.001 Other 
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FreeSurfer Region 
Age 

β 

Age 

p-value 

Estimated 

Derivative β 

Estimated 

Derivative 

p-value 

Region 

Type 

Corpus Callosum Central Volume -0.416 < 0.001 -0.970 < 0.001 Other 

Corpus Callosum Mid Anterior Volume -0.429 < 0.001 -0.965 < 0.001 Other 

Corpus Callosum Mid Posterior Volume -0.439 < 0.001 -0.967 < 0.001 Other 

Corpus Callosum Posterior Volume -0.070 0.60 -0.967 < 0.001 Other 

Cerebellum Cortex Volume -0.568 < 0.001 -0.731 < 0.001 Other 

Cerebellum White Matter Volume -0.445 < 0.001 -0.973 < 0.001 Other 

Choroid Plexus Volume* 0.378 < 0.001 0.861 < 0.001 Other 

Cortex Volume -0.752 < 0.001 -0.751 < 0.001 Other 

Cortical White Matter Volume -0.475 < 0.001 -0.972 < 0.001 Other 

Cerebrospinal fluid (CSF) Volume 0.357 < 0.001 0.971 < 0.001 Other 

Inferior Lateral Ventricle Volume 0.502 < 0.001 0.754 < 0.001 Other 

Intracranial Volume -0.019 1 0.895 < 0.001 Other 

Non-White Matter Hypointensities Volume* 0.442 < 0.001 0.766 < 0.001 Other 

Optic Chiasm Volume* 0.294 < 0.001 -0.936 < 0.001 Other 

Subcortical Gray Matter Volume -0.105 0.28 -0.625 < 0.001 Other 

Supratentorial Volume -0.692 < 0.001 -0.973 < 0.001 Other 

Total Gray Matter Volume -0.789 < 0.001 -0.861 < 0.001 Other 

Vessel Volume* 0.191 0.002 -0.975 < 0.001 Other 

White Matter Hypointensities Volume* 0.439 < 0.001 0.811 < 0.001 Other 

3rd Ventricle Volume 0.637 < 0.001 0.842 < 0.001 Other 

4th Ventricle Volume 0.153 0.02 0.872 < 0.001 Other 

5th Ventricle Volume 0.104 0.28 0.869 < 0.001 Other 

P-values are post-correction for multiple comparisons, and are from individual simple linear regression models. 

*The indicated regions are known to have low measurement accuracy with FreeSurfer and so should be interpreted with caution. 

CV: Cortical volume; T: Cortical thickness measure  
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Supplemental Table S2.3: Impact of Preclinical AD Results 

FreeSurfer Region 
Age 

p-value 

Amyloid Status 

p-value 

Age × Amyloid 

Status p-value 

Region 

Type 

Banks Superior Temporal Sulcus Thickness < 0.001 1 1 T 

Caudal Anterior Cingulate Thickness 0.23 1 1 T 

Caudal Middle Frontal Thickness 0.01 1 1 T 

Cuneus Thickness 0.23 1 1 T 

Entorhinal Thickness 0.15 1 1 T 

Frontal Pole Thickness 1 1 1 T 

Fusiform Thickness < 0.001 1 1 T 

Inferior Parietal Thickness < 0.001 1 1 T 

Inferior Temporal Thickness 0.05 1 1 T 

Insula Thickness 0.67 1 1 T 

Isthmus Cingulate Thickness 0.25 1 1 T 

Lateral Occipital Thickness < 0.001 1 1 T 

Lateral Orbitofrontal Thickness 1 1 1 T 

Lingual Thickness < 0.001 1 1 T 

Medial Orbitofrontal Thickness 1 1 1 T 

Middle Temporal Thickness < 0.001 1 1 T 

Paracentral Thickness 0.07 1 1 T 

Parahippocampal Thickness 0.02 1 1 T 

Pars Opercularis Thickness 0.03 1 1 T 

Pars Orbitalis Thickness 1 1 1 T 

Pars Triangularis Thickness 0.25 1 1 T 

Pericalcarine Thickness 0.18 1 1 T 

Postcentral Thickness < 0.001 1 1 T 

Posterior Cingulate Thickness 1 1 1 T 

Precentral Thickness 0.002 1 1 T 

Precuneus Thickness < 0.001 1 1 T 
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FreeSurfer Region 
Age 

p-value 

Amyloid Status 

p-value 

Age × Amyloid 

Status p-value 

Region 

Type 

Rostral Anterior Cingulate Thickness 1 1 1 T 

Rostral Middle Frontal Thickness 1 1 1 T 

Superior Frontal Thickness 0.006 1 1 T 

Superior Parietal Thickness 0.005 1 1 T 

Superior Temporal Thickness < 0.001 1 1 T 

Supramarginal Thickness < 0.001 1 1 T 

Temporal Pole Thickness 1 1 1 T 

Transverse Temporal Thickness < 0.001 1 1 T 

Banks Superior Temporal Sulcus Volume 0.02 1 1 CV 

Caudal Anterior Cingulate Volume 1 1 1 CV 

Caudal Middle Frontal Volume 0.03 1 1 CV 

Cuneus Volume < 0.001 1 1 CV 

Entorhinal Volume 1 1 1 CV 

Frontal Pole Volume 1 1 1 CV 

Fusiform Volume < 0.001 1 1 CV 

Inferior Parietal Volume < 0.001 1 1 CV 

Inferior Temporal Volume < 0.001 1 1 CV 

Insula Volume 1 1 1 CV 

Isthmus Cingulate Volume < 0.001 1 1 CV 

Lateral Occipital Volume < 0.001 1 1 CV 

Lateral Orbitofrontal Volume 0.02 1 1 CV 

Lingual Volume < 0.001 1 1 CV 

Medial Orbitofrontal Volume 1 1 1 CV 

Middle Temporal Volume < 0.001 1 1 CV 

Paracentral Volume 0.23 1 1 CV 

Parahippocampal Volume < 0.001 1 1 CV 

Pars Opercularis Volume 0.02 1 1 CV 

Pars Orbitalis Volume 0.05 1 1 CV 
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FreeSurfer Region 
Age 

p-value 

Amyloid Status 

p-value 

Age × Amyloid 

Status p-value 

Region 

Type 

Pars Triangularis Volume < 0.001 1 1 CV 

Pericalcarine Volume 0.03 1 1 CV 

Postcentral Volume < 0.001 1 1 CV 

Posterior Cingulate Volume 0.07 1 1 CV 

Precentral Volume < 0.001 1 1 CV 

Precuneus Volume < 0.001 1 1 CV 

Rostral Anterior Cingulate Volume 1 1 1 CV 

Rostral Middle Frontal Volume 0.16 1 1 CV 

Superior Frontal Volume < 0.001 1 1 CV 

Superior Parietal Volume < 0.001 1 1 CV 

Superior Temporal Volume < 0.001 1 1 CV 

Supramarginal Volume 0.004 1 1 CV 

Temporal Pole Volume 1 1 1 CV 

Transverse Temporal Volume 0.001 1 1 CV 

Amygdala Volume < 0.001 1 1 SV 

Caudate Volume 1 1 1 SV 

Hippocampus Volume < 0.001 1 1 SV 

Lateral Ventricle Volume < 0.001 1 1 SV 

Pallidum Volume 0.004 1 1 SV 

Putamen Volume < 0.001 1 1 SV 

Thalamus Proper Volume* < 0.001 1 1 SV 

Ventral DC Volume* < 0.001 1 1 SV 

Accumbens Area Volume* < 0.001 1 1 Other 

Brain Stem Volume < 0.001 1 1 Other 

Corpus Callosum Anterior Volume < 0.001 1 1 Other 

Corpus Callosum Central Volume < 0.001 1 1 Other 

Corpus Callosum Mid Anterior Volume < 0.001 1 1 Other 

Corpus Callosum Mid Posterior Volume < 0.001 1 1 Other 
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FreeSurfer Region 
Age 

p-value 

Amyloid Status 

p-value 

Age × Amyloid 

Status p-value 

Region 

Type 

Corpus Callosum Posterior Volume 0.05 1 1 Other 

Cerebellum Cortex Volume 0.07 1 1 Other 

Cerebellum White Matter Volume < 0.001 1 1 Other 

Choroid Plexus Volume* 0.04 1 1 Other 

Cortex Volume < 0.001 1 1 Other 

Cortical White Matter Volume < 0.001 1 1 Other 

Cerebrospinal fluid (CSF) Volume 0.003 1 1 Other 

Inferior Lateral Ventricle Volume < 0.001 1 1 Other 

Intracranial Volume 1 1 1 Other 

Non-White Matter Hypointensities Volume* < 0.001 1 1 Other 

Optic Chiasm Volume* 1 1 1 Other 

Subcortical Gray Matter Volume 1 1 1 Other 

Supratentorial Volume < 0.001 1 1 Other 

Total Gray Matter Volume < 0.001 1 1 Other 

Vessel Volume* 1 1 1 Other 

White Matter Hypointensities Volume* < 0.001 1 1 Other 

3rd Ventricle Volume* < 0.001 1 1 Other 

4th Ventricle Volume* 1 1 1 Other 

5th Ventricle Volume* 1 1 1 Other 

P-values are post-correction for multiple comparisons, and are from multiple linear regression models. 

*The indicated regions are known to have low measurement accuracy with FreeSurfer and so should be interpreted with caution. 

AD: Alzheimer disease; CV: Cortical volume; T: Cortical thickness measure 
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Chapter 3: Improving Volumetric Models for 

Symptomatic Alzheimer Disease (Koenig et 

al., 2020) 
Volumetric biomarkers for Alzheimer disease are attractive due to their wide availability 

and ease of administration, but have traditionally shown lower diagnostic accuracy than 

measures of neuropathological contributors to Alzheimer disease. Our purpose was to optimize 

the diagnostic specificity of structural MRIs for Alzheimer disease using quantitative, data-

driven techniques. This retrospective study assembled several non-overlapping cohorts (total n = 

1287) with publicly available data and clinical patients from Barnes-Jewish Hospital (data 

gathered 1990-2018). The Normal Aging cohort (n = 383) contained amyloid biomarker 

negative, cognitively normal participants, and provided a basis for determining age-related 

atrophy in other cohorts. The Training (n = 216) and Test (n = 109) cohorts contained 

participants with symptomatic Alzheimer disease and cognitively normal controls. Classification 

models were developed in the Training cohort and compared in the Test cohort using the receiver 

operating characteristics’ areas under the curve. Additional model comparisons were done in the 

Clinical cohort (n = 579), which contained patients who were diagnosed with dementia due to 

various etiologies in a tertiary care outpatient memory clinic. While the Normal Aging cohort 

showed regional age-related atrophy, classification models were not improved by including age 

as a predictor or by using volumetrics adjusted for age-related atrophy. The optimal model used 

multiple regions (hippocampal volume, inferior lateral ventricle volume, amygdala volume, 

entorhinal thickness, and inferior parietal thickness) and was able to separate Alzheimer disease 

and cognitively normal controls in the Test cohort with an area under the curve of 0.961. In the 

Clinical cohort, this model separated Alzheimer disease from non-Alzheimer disease diagnoses 
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with an area under the curve of 0.820, an incrementally greater separation of the cohort than by 

hippocampal volume alone (area under the curve of 0.801, p = 0.06). Greatest separation was 

seen for Alzheimer disease vs. frontotemporal dementia and for Alzheimer disease vs. non-

neurodegenerative diagnoses. Volumetric biomarkers distinguished individuals with 

symptomatic Alzheimer disease from cognitively normal controls and other dementia types but 

were not improved by controlling for normal aging. 

3.1 Introduction 
Typical Alzheimer disease (AD)-specific biomarkers rely on in vivo detection and 

quantification of amyloid-β and tau, AD’s hallmark proteins. These biomarkers are increasingly 

used to narrow the differential diagnosis and refine the treatment of symptomatic patients in 

clinical practice (Rabinovici et al., 2019) based upon their appropriate use criteria (Johnson et al., 

2013; Shaw et al., 2018). Despite this increased use, histological confirmation (the diagnostic 

reference standard) currently confirms an AD diagnosis for only 83% of AD patients at autopsy 

(Beach et al., 2012). In clinical trials, biomarkers can improve accuracy, utility, and cost 

effectiveness of screening, and can assess response to investigational therapies (Jack et al., 2018; 

Sevigny et al., 2016; Sperling et al., 2014). Their value is expected to further increase as AD-

modifying therapies are realized, creating a need and rationale for population-level screening and 

an influx of patients requiring timely diagnosis and treatment (Liu et al., 2017).  

Established AD biomarkers require cerebrospinal fluid (CSF) analyses or positron 

emission tomography (PET) imaging, which are limited by expense and inaccessibility. In 

addition, PET imaging exposes patients to radioactivity and lumbar punctures may cause back 

pain, headache, and bleeding (Duits et al., 2016). These issues highlight the need for accessible, 

AD-specific biomarkers that can be applied to broad clinical populations. The solution may lie in 
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brain magnetic resonance imaging (MRI), which is already standard of care in the United States 

for diagnostic evaluation of patients with new cognitive complaints (Knopman et al., 2001). 

Current MRI biomarkers match the high accuracy of PET and CSF markers in separating 

AD from unimpaired individuals (Frisoni et al., 2010; Morris et al., 2016). However, MRI 

biomarkers cannot maintain the high accuracy of amyloid biomarkers in cohorts of patients with 

various causes of dementia (Ossenkoppele et al., 2018b; Wollman and Prohovnik, 2003). One 

thing likely impairing MRI-based biomarkers is the confounding influence of age-related brain 

atrophy or other undetected co-pathologies attributed to aging (Fotenos et al., 2005). For 

example, the confounding influence of preclinical AD in cohorts of cognitively normal (CN) 

older adults for other neuroimaging and cognitive measures has been shown previously (Brier et 

al., 2014a; Hassenstab et al., 2016; Jack et al., 2014).  

Taking this into account, we sought to optimize the diagnostic specificity of structural 

MRIs for AD using quantitative, data-driven techniques. Specifically, we considered whether 

individually adjusting volumetric measures for age-related atrophy would improve volumetric-

based AD biomarkers. We compared unadjusted AD classification models to those using normal 

aging curves generated from cognitively normal participants free from biomarker evidence of 

AD. These models were validated in a research cohort with biomarker-confirmed AD and 

cognitively normal individuals and in a large clinical cohort containing patients with various 

neurodegenerative dementing diseases (including AD) who underwent MRI as part of their 

diagnostic evaluation for the cause of dementia.  
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3.2 Methods 

3.2.1 Participants 

 The 1287 participants in the Normal Aging (n = 383), Training (n = 216), Test (n = 109), 

and Clinical (n = 579) cohorts were composed from research studies or clinical patient records 

(collected 1990-2018). All procedures in this retrospective study were Health Insurance 

Portability and Accountability Act (HIPAA) compliant and approved by the Washington 

University Institutional Review Board. Informed consent was waived for the Clinical cohort and 

gained for all others. Those not in the Clinical cohort were from open-source datasets and have 

been reported in various previous publications; the analyses of this paper and the inclusion of the 

participants in the Clinical cohort are unique. All participants are described in Table 3.1, and 

Supplemental Table S3.1 gives these demographics separated by data source and diagnosis. All 

participants met the inclusion criteria described in Supplemental Table S3.2, which at minimum 

included a clinical assessment. 

 The Normal Aging cohort was restricted to cognitively normal participants who had a 

global Clinical Dementia Rating™ (CDR™) (Morris, 1993) of 0 stable across longitudinal 

follow-up, and were free of substantial AD pathology as determined by a negative amyloid PET 

scan (defined in section 3.2.2 Imaging). See Supplemental Table S3.2 for full inclusion criteria 

and Supplemental Figure S3.1 for distribution of ages. These participants were sourced from 

Open Access Series of Imaging Studies 3 (OASIS) and the Dominantly Inherited Alzheimer 

Network (DIAN). OASIS is an open-source dataset that is a retrospective compilation of data for 

> 1000 participants. OASIS data was collected across several ongoing projects through the 

Knight Alzheimer Disease Research Center (ADRC) over the course of 30 years and includes 

cognitively normal controls and AD patients at various stages of impairment (LaMontagne et al., 
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2019). DIAN is a similar open-source dataset that includes a greater number of younger controls 

due to its focus on dominantly inherited AD. 

 The Training and Test cohorts contained cognitively normal and amyloid negative 

controls as well as cognitively impaired (CDR > 0) participants with a clinical diagnosis of AD 

and a PET scan indicating cerebral amyloidosis (full inclusion criteria in Supplemental Table 

S3.2). Participants were sourced from OASIS and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). ADNI is another open-source dataset that includes several hundred healthy 

controls and AD patients at various stages of impairment from multiple sites across the United 

States. Two-thirds of the cognitively normal and symptomatic AD participants from these 

sources (not overlapping with the controls in the Normal Aging cohort) were randomly assigned 

to the Training cohort with the remaining one-third becoming the Test cohort. Random 

assignment was done separately for the cognitively normal and AD participants to maintain 

equal distributions of AD diagnoses. 

 The Clinical cohort drew from patients seen at the Washington University Memory 

Diagnostic Center (MDC) outpatient clinic in Saint Louis, MO. Patients were split into 

symptomatic AD diagnoses and various non-AD diagnoses (including cognitively normal). See 

Supplemental Table S3.2 for full inclusion criteria. Patients listed separately as ‘Uncertain’ 

(153/579) did not have an etiologic cause of dementia indicated; without this, they could not be 

used to test the classification models. The AD and non-AD groups were also split into groups of 

more specific diagnoses (Supplemental Table S3.3). 

 All participants underwent a clinical assessment conducted by experienced clinicians 

including a semi-structured interview with the participant and a knowledgeable collateral source 
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as well as a thorough neurological examination (see Supplemental Table S3.2 for full inclusion 

criteria). A clinical diagnosis of dementia was considered at the conclusion of each assessment, 

integrating results from the clinical assessment and bedside measures of cognitive function (Day 

et al., 2017). Dementia severity was classified using the participant’s CDR in accordance with 

established scoring rules (Morris, 1993). Etiologic diagnoses of dementia conformed to 

diagnostic criteria in use in clinical and research practices for AD (McKhann et al., 2011), 

dementia with Lewy bodies (McKeith et al., 2017), frontotemporal dementia (Rascovsky et al., 

2011), and vascular cognitive impairment (Skrobot et al., 2018). See Supplemental Table S3.3 

for a breakdown of specific diagnoses in the Clinical cohort. Clinical diagnosis was made 

blinded to amyloid status in the OASIS participants, but not in the ADNI participants.  

All CDRs and Mini Mental State Exams (MMSEs) (Folstein et al., 1975) used in this 

study occurred within a year of MRI, and those sourced from DIAN and ADNI all had a time 

difference of 0 days. Participants sourced from OASIS had an average time difference of 99 days 

and the Clinical cohort had an average time difference of 118 days. 
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Table 3.1: Demographics 

 Normal Aging 

Cohort 

Training 

Cohort 

Test 

Cohort 

Clinical Cohort – 

Defined Diagnosis 

Clinical Cohort – 

Uncertain Diagnosis 

N 383 216 109 426 153 

n by Data Source      

DIAN 134 0 0 0 0 

OASIS 249 136 77 0 0 

ADNI 0 80 32 0 0 

MDC 0 0 0 426 153 

Diagnosis (% with symptomatic AD) 0 43.5 43.1 61.5 N/A 

Age (median) 18-88 (60) 57-88 (75) 57-86 (74) 46-88 (73) 55-87 (73) 

Sex (% Men) 35.8 49.1 52.3 48.1 49.0 

CDR [0,0.5,1,2,3] 383,0,0,0,0 122,43,44,5,2 62,17,26,4,0 50,235,97,26,0* 8,122,10,3,0* 

MMSE (median) 24-30 (30)* 7-30 (28) 9-30 (28) 1-30 (20)* 1-30 (21)* 

APOE4 (% with an ε4 allele) 27.9 51.6* 39.4 N/A N/A 

Amyloid Mean Cortical SUVR RSF – 

Centiloid (median) 

-9.34-19.0 

(-0.880)* 

-8.40-154 

(14.0) 

-14.0-142 

(11.4) 
N/A N/A 

Race (% non-Hispanic White) 91.2* 90.3 79.8 86.9 84.3 

Education (years) (median) 9-22 (16)* 7-24 (16) 8-22 (16) 
Median Completed 

College* 

Median Completed 

College* 

Table 3.1 presents the demographic information for all cohorts. The Clinical cohort has been separated into those given either an AD 

or non-AD diagnosis vs. those whose diagnosis was uncertain (and thus were not used to measure model accuracy).  

A ‘*’ indicates missing data: 2 MMSEs, 124 Amyloids (all under age 45), and 6 Races from the Normal Aging cohort; 1 APOE4 from 

the Training cohort; 4 MMSEs, 18 CDRs, and 40 Educations from the Clinical cohort – Defined Diagnosis; 1 MMSE, 10 CDRs, and 

11 Educations from the Clinical cohort – Uncertain Diagnosis 

AD: Alzheimer disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative; APOE4: Apolipoprotein E ε4; CDR: Clinical Dementia 

Rating; DIAN: Dominantly Inherited Alzheimer Network; MDC: Memory Diagnostic Center; MMSE: Mini Mental State Exam; 

OASIS: Open Access Series of Neuroimaging Studies; SUVR RSF: Standard uptake value ratio (regional spread function applied) 
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3.2.2 Imaging 

 All volumetric T1-weighted images underwent regional tissue segmentation with 

FreeSurfer 5.3 (freesurfer.net) using the Desikan-Killiany atlas (Desikan et al., 2006). Regional 

volumes (cortical and subcortical) underwent intracranial volume adjustment using a regression 

approach (Buckner et al., 2004), which fits a line to each region and the intracranial volume 

calculated by FreeSurfer. While studies typically fit this line to their entire cohort, we used the 

Normal Aging cohort alone to mimic the conditions that would be used if the tool were to be 

implemented into clinical practice, enabling reproducibility at the single-subject level. Volumes 

after intracranial volume correction were summed across hemispheres and cortical thicknesses 

(not corrected for intracranial volume per standard practice) were averaged across hemispheres. 

For more specific imaging details see Supplemental Table S3.4. 

 Amyloid PET imaging used Florbetapir ([18F]-AV45) or [11C]-Pittsburgh compound B 

(PIB) and was processed with an in-house pipeline (Su, 2021) using FreeSurfer-derived regions  

with a cerebellar cortex reference region. Partial volume correction in order to address signal 

spillover was done with a regional spread function (geometric transfer matrix) technique based 

on the scanner point spread function (determined at each imaging site) and the relative distance 

between regions (Su et al., 2015, 2013). We defined a negative amyloid PET scan as having a 

mean cortical standard uptake value ratio with regional spread function applied (SUVR RSF) < 

1.42 (Centiloid < 16.4) for PIB PET or SUVR RSF < 1.19 (Centiloid < 20.6) for Florbetapir-

PET. The mean cortical SUVR RSF was defined as the average SUVR RSF from the precuneus, 

prefrontal cortex, gyrus rectus, and lateral temporal regions (Su et al., 2019). We used cutoffs 

determined individually for each tracer, as opposed to a unified Centiloid cutoff, since these 

individually established cutoffs are likely more accurate due to the imperfect nature of 



65 

harmonization procedures such as Centiloid conversion (see Supplemental Table S3.5 for 

Centiloid conversion details). Further imaging details varied by cohort (Supplemental Table 

S3.4).  

3.2.3 Normal Aging Curves 

 To describe age-related atrophy, normal aging curves were generated for each FreeSurfer 

region using the Normal Aging cohort data. For each cortical thickness and intracranial-corrected 

volume at each age, the mean for each cortical thickness and intracranial-corrected volume was 

calculated using a locally weighted scatter-plot smoother regression and a smoothed sliding 

window of two years for standard deviation. The Training, Test, and Clinical cohorts were then 

adjusted for age-related atrophy by transforming the volumes and cortical thicknesses into z-

scores using these age-specific means and standard deviations (Figure 3.1). The hemisphere-

combined volumes and thicknesses, with volumes adjusted for intracranial volume, are referred 

to as ‘unadjusted for age-related atrophy’. The unadjusted dataset that has undergone the z-score 

adjusted described above is referred to as ‘adjusted for age-related atrophy’. This adjustment for 

age-related atrophy greatly reduced the correlation of volumetric data with age (examples in 

Supplemental Table S3.6).  
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Figure 3.1: Examples of Region-Specific Atrophy Observed in Normal Aging 

 

Figure 3.1 shows Hippocampal Volume (3.1a) and Superior Temporal Thickness (3.1b) as 

representatives of the normal aging curves used to adjust other participants’ volumes and cortical 

thicknesses for age-related atrophy. The red line displays the estimated average volumes. The red 

ribbon and blue line display the first and second standard deviations from that average, which is 

calculated locally. Figure 3.1a additionally displays two black dots representing how two 

hypothetical participants at different ages could have different volumes but the same z-score 

after adjustment for age-related atrophy. Standard deviation is fairly consistent across the adult 

lifespan for both regions, but the averages suggest increasingly rapid atrophy at later ages for 

Hippocampal Volume vs. a steady decline for Superior Temporal Thickness.  

a.  

b.  
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3.2.4 Region Selection for AD Classification 

 Volumetric measures that optimally predicted symptomatic AD relative to cognitively 

normal controls were selected using the Training cohort. For 1000 iterations, a random 50% 

sample of the Training cohort was fit to a least absolute shrinkage and selection operator logistic 

regression. All regional volumes and cortical thicknesses, as measured by FreeSurfer, participant 

age, sex, and scanner strength (1.5 or 3T), were included as predictors (see Supplemental Figure 

S3.2 for entire list). This regression minimizes the sum of squared errors and has a bound on the 

sum of the absolute values of the coefficients, which sets many coefficients to zero. The 

variables not set to zero within each iteration were recorded, determining the frequency each 

variable was selected. This process was done using data adjusted with the normal aging curves 

and separately using unadjusted data (volumes still corrected by intracranial volume). The final 

region set included regions selected in over half the iterations for both sets of data. 

3.2.5 Development of Classification Models 

 All classification models in this study used a logistic regression model (R package ‘stats’ 

(Bolar, 2019)) fit to the Training cohort to predict an AD diagnosis. The Age model included 

only chronological age as a predictor. The Hippocampal Volume (HCV) model used only 

hippocampal volume. The Select Atrophied Regions in Alzheimer disease (SARA) model used 

the regions selected in the region selection process described in section 3.2.4. The HCVadj and 

SARAadj models differ from HCV and SARA in that they use data that has undergone the z-score 

adjustment to remove age-related atrophy, as described in section 3.2.3, while the HCV and 

SARA models use the unadjusted data (volumes still corrected by intracranial volume). The 

models HCV+Age, SARA+Age, HCVadj+Age, and SARAadj+Age added chronological age as an 

additional predictor. In this way, the HCVadj+Age and SARAadj+Age models used age as a risk 
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factor for AD, and separately to determine age-specific means and standard deviations when 

normalizing age-related changes in brain volumes and cortical thicknesses. 

 Models’ receiver operating characteristics’ area under the curve (AUCs) were compared 

using the Delong method (DeLong et al., 1988) with significance set to p < 0.003 (Bonferroni-

corrected p < 0.05), and confidence intervals (CI) computed using 2000 stratified bootstrap 

replicates. Accuracy statistics, when reported, used thresholds determined by the maximal 

Youden’s J statistic within the Training cohort (Youden, 1950). 

3.3 Results 

3.3.1 Participants 

 Table 3.1 details the demographics for each cohort, while Supplemental Table S3.1 

breaks down demographics by data source and AD/non-AD diagnosis. 

3.3.2 Normal Aging Curves 

 Figure 3.1 displays the age-related atrophy observed in the Normal Aging cohort, which 

is free of biomarker evidence of AD. Graphs of other regions can be accessed at 

https://github.com/benzinger-icl/SARA.  

3.3.3 Region Selection for AD Classification 

 The hippocampal volume, inferior lateral ventricle volume, amygdala volume, entorhinal 

cortical thickness, and inferior parietal cortical thickness were selected in over half of the 

iterations in both the adjusted and unadjusted data and were thus used in all multi-region 

(SARA) models. Unadjusted coefficients for all models are in Table S3.7. Age and nucleus 

accumbens were additionally selected when using data adjusted for age-related atrophy, while 

inferior parietal volume and banks of the superior temporal sulcus volume were selected only 

https://github.com/benzinger-icl/SARA
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when using unadjusted data. Frequency of selection for all regions can be found in Supplemental 

Figure S3.2. 

3.3.4 Classification Models: Impact of Adjusting for Age-Related Atrophy 

 AUCs for each model within the Test and Clinical cohorts are shown in Table 3.2; p-

values for all comparisons are in Table 3.3. In the Test cohort, no significant differences were 

found between models using adjusted and unadjusted data. In the Clinical cohort, HCV+Age vs. 

HCVadj+Age, and SARA+Age vs. SARAadj+Age similarly showed no statistical difference in 

their AUCs, but HCV and SARA had higher AUCs than their counterparts HCVadj (0.801 vs. 

0.743, p < 0.001) and SARAadj (0.820 vs. 0.764, p < 0.001). Thus, our adjustment for age-related 

atrophy did not improve classification ability within our cohorts and instead lowered 

classification ability in models that did not include age. Without reason to pursue the more 

complex processing required to adjust for age-related atrophy, further analyses were limited to 

unadjusted models. 
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Table 3.2: AUCs for All Classification Models in Test and Clinical Cohorts 

Model: 

Test Cohort 

AUCs (95% 

CI) 

Clinical 

Cohort AUCs 

(95% CI) 

Age 
0.675 

(0.572-0.778) 

0.742 

(0.694-0.790) 

HCV 
0.944 

(0.902-0.987) 

0.801 

(0.756-0.846) 

SARA 
0.961 

(0.925-0.997) 

0.820 

(0.776-0.864) 

HCV + Age 
0.950 

(0.909-0.991) 

0.792 

(0.747-0.838) 

SARA + Age 
0.962 

(0.924-0.999) 

0.799 

(0.753-0.845) 

HCVadj 
0.948 

(0.905-0.992) 

0.743 

(0.693-0.792) 

SARAadj 
0.952 

(0.911-0.993) 

0.764 

(0.714-0.813) 

HCVadj + Age 
0.949 

(0.908-0.991) 

0.793 

(0.748-0.840) 

SARAadj + Age 
0.961 

(0.925-0.997) 

0.799 

(0.752-0.845) 

Table 3.2 displays each model’s AUC (for AD vs. non-AD diagnoses) in the Test cohort and 

Clinical cohort along with its associated 95% CI. The AUC of a receiver operating characteristic 

plot (not displayed) gives a measure of model performance that does not depend on a specific 

cut-off or threshold. The various SARA models include hippocampal volume, inferior lateral 

ventricle volume, entorhinal thickness, amygdala volume, and inferior parietal thickness. X + 

Age indicates model X with age added as a covariate; Xadj indicates Model X using volumes and 

cortical thicknesses that have been adjusted for age-related atrophy. 

AD: Alzheimer disease; Adj: Adjusted for age-related atrophy; AUC: Receiver operating 

characteristic’s area under the curve; CI: Confidence interval; HCV: Hippocampal volume; 

SARA: Select Atrophied Regions in Alzheimer disease
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Table 3.3: Comparisons of Classification Models’ AUCs 

 
Test 

Cohort p-

value 

Clinical 

Cohort p-

value 

Impact of Adjusting for Age-Related 

Atrophy 
  

HCV vs. HCVadj 0.77 < 0.001 

SARA vs. SARAadj 0.32 < 0.001 

HCV+Age vs. HCVadj+Age 0.45 0.48 

SARA+Age vs. SARAadj+Age 0.87 0.88 

Impact of Age as a Predictor   

HCV vs. HCV+Age 0.20 0.001 

SARA vs. SARA+Age 0.87 < 0.001 

HCV vs. Age < 0.001 0.02 

SARA vs. Age < 0.001 0.002 

Single vs. Multi Region Model   

HCV vs. SARA 0.18 0.06 

Table 3.3 states the p-values for the Delong tests comparing AUCs in order to select the optimal 

classification model. Significant differences (after accounting for multiple comparisons) are 

bolded. The SARA models include hippocampal volume, inferior lateral ventricle volume, 

entorhinal thickness, amygdala volume, and inferior parietal thickness. X + Age indicates model 

X with age added as a covariate; Xadj indicates Model X using volumes and cortical thicknesses 

that have been adjusted for age-related atrophy. 

Adj: Adjusted for age-related atrophy; AUC: Receiver operating characteristic’s area under the 

curve; HCV: Hippocampal volume; SARA: Select Atrophied Regions in Alzheimer disease 
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3.3.5 Classification Models: Impact of Age as a Predictor 

 In the Test cohort, HCV and SARA models showed no statistical differences from their 

counterparts HCV+Age and SARA+Age (Table 3.3), but did outperform the Age model (0.944 

vs. 0.675, p < 0.001; and 0.961 vs. 0.675, p < 0.001). In the Clinical cohort, HCV and SARA 

had higher AUCs than their counterparts HCV+Age and SARA+Age (0.801 vs. 0.792, p = 0.001 

and 0.820 vs. 0.799, p < 0.001), but only SARA maintained a significantly higher AUC than the 

Age model (0.820 vs. 0.742, p = 0.002). 

3.3.6 Classification Models: Selecting a Model 

 The AUCs of HCV and SARA were not significantly different from each other within the 

Test or Clinical cohorts (Table 3.3), but SARA’s AUC was numerically higher than HCV’s AUC 

in both cohorts (Table 3.2). SARA was selected as the optimal model for this reason in addition 

to being the only model significantly better than age alone in the Clinical cohort. Figure 3.2 

provides more detail on the probabilities of AD predicted by SARA for the participants in the 

Test and Clinical cohorts, as well as accuracy measures such as sensitivity and specificity. The x-

axes represent the possible output from the SARA model, where a 1.00 indicates a predicted 

100% probability of a symptomatic AD diagnosis. The y-axes indicate the probability density 

function, which is a smoothed histogram normalized to an area of 1 and allows comparison of 

different sized groups. An example of how to read Figure 3.2a is to take the area under the curve 

of the cognitively normal line from x = 0 to 0.25. This is approximately 0.62, indicating that 62% 

of the cognitively normal controls in the Test cohort had a probability between 0-25%.  



73 

Figure 3.2: Distribution of Predicted Probabilities and Accuracy Statistics for the SARA 

Model  

 
 

c.  Test Cohort Clinical Cohort 

Accuracy (95 % CI) 85.3 (78.9-91.7); 93/109 77.9 (73.9-81.7); 332/426 

Sensitivity (95 % CI) 97.9 (93.6-100); 46/47 83.6 (79.0-87.8); 219/262 

Specificity (95 % CI) 75.8 (64.5-85.5); 47/62 68.9 (62.2-75.6); 113/164 

Positive Predictive Value (95 % CI) 75.4 (67.7-83.9); 46/61 81.1 (77.6-84.7); 219/270 

Negative Predictive Value (95 % CI) 97.9 (93.6-100); 47/48 72.4 (66.7-78.3); 113/156 

Figure 3.2a and 3.2b display the distribution of the SARA model’s output for the Test cohort and 

Clinical cohort, respectively. Both 3.2a and 3.2b show good separation between the AD and non-

AD groups. 3.2b has slightly less separation and additionally displays the Uncertain Diagnoses 

b.  

a.  



74 

group – those that were unable to be classified into the AD or non-AD groups. 3.2c displays 

more traditional diagnostic test measures for SARA using a cutoff of 0.381 (derived using the 

maximal Youden’s J statistic in the Training cohort) along with the 95% CI.  

AD: Alzheimer disease; CI: Confidence interval; SARA: Select Atrophied Regions in Alzheimer 

disease  
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3.3.7 Classification Models: Specific Diagnoses in the Clinical Cohort 

 While models were compared using their ability to separate AD from non-AD diagnoses, 

the heterogeneity of the Clinical cohort allowed us to examine more specific clinical diagnoses 

(groups defined in Supplemental Table S3.3). For non-AD diagnoses, these included other 

dementia types and non-dementia diagnoses that explained the cognitive complaints of the 

patient. For AD diagnoses, this included sub-groups of AD to test how the model behaved in 

atypical AD patients. Figure 3.3 displays the unique probability density functions for each of the 

more specific etiologic diagnoses in the Clinical cohort, with the AD and non-AD diagnoses 

groups included for comparison. The AUCs for each sub-group are in Supplemental Table S3.8, 

but small group sizes prevented robust statistical analyses. Thus, the following is qualitative 

rather than an assessment of p-values. 

 Figure 3.3a, with more detail in Supplemental Table S3.8, demonstrates that AD sub-

groups have a high classification accuracy with only slightly lower predicted probabilities in the 

early-onset AD (age < 65) and AD variant (such as Posterior Cortical Atrophy) groups as 

compared to typical (amnestic, late onset) AD. Figure 3.3b indicates SARA was good at 

distinguishing AD from the non-neurodegenerative diagnoses, including mood and sleep 

disorders; in total AD vs. non-neurodegenerative diagnoses had an AUC of 0.877 (95% 

confidence interval (CI): 0.833-0.922). Figure 3.3c shows SARA was less able to separate AD 

from other neurodegenerative diagnoses and had a combined AUC of 0.719 (95% CI: 0.640-

0.799). Only frontotemporal dementia participants (subtypes combined due to small n) 

approached the same level of separation from AD as the non-neurodegenerative diagnoses.  

 The impact of using the multi-region SARA over the simple HCV model also varied by 

diagnosis (Supplemental Table S3.8). SARA had only a marginally larger AUC than HCV for 
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separating Typical AD from non-AD diagnoses (0.827 vs. 0.819), but substantial improvements 

were seen for separating AD variants from non-AD diagnoses (0.795 vs. 0.697).  
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Figure 3.3: Distribution of Predicted Probabilities for the SARA Model for Specific 

Diagnoses in the Clinical Cohort 

 

 

a.  

b.  
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Figure 3.3 displays the distribution of the SARA model’s output in the Clinical cohort using 

more specific diagnoses than the AD and non-AD binary from Figure 3.1b. Figure 3.3a displays 

the specific AD diagnoses along with the combined non-AD Diagnoses line taken from Figure 

3.2b. Figure 3.3b displays the specific non-AD diagnoses that are non-neurodegenerative in 

nature and overlays the combined AD Diagnoses line. 3.3c displays the specific non-AD 

diagnoses that are neurodegenerative in nature and overlays the combined AD Diagnoses line. 

Note the change in y-axes scale from Figure 3.2 due to the tight distribution of cognitively 

normal patients in 3.3b. 

AD: Alzheimer disease; SARA: Select Atrophied Regions in Alzheimer disease  

c.  
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3.3.8 Classification Models: MMSE and CDR in the Clinical Cohort 

 Figure 3.4a shows the probability density plot of the Clinical cohort separated by 

participants’ MMSE, while Supplemental Figure S3.3a separates by CDR. MMSEs and CDRs 

were collected within one year of the MRI (average time difference of 118 days). The strong 

relationship between level of impairment and SARA’s predicted probability of symptomatic AD 

reflects an alignment between an individual’s level of impairment and atrophy in the regions 

used in SARA (atrophy indicated by a model output closer to one). Despite this strong 

relationship, SARA maintained a fairly high AUC (0.773) within the group of participants with 

MMSEs 26-29 (n = 154, Figure 3.4b). This indicates the SARA model had good classification 

ability beyond predicting level of impairment. This was similarly true for participants with a 

global CDR of 0.5, which had an AUC of 0.782 (n = 235, Supplemental Figure S3.3b). This 

pattern persisted even when considering only those whose MMSE and CDR occurred within 30 

days of their MRI, with AUCs of 0.806 (n = 63) and 0.771 (n = 101), respectively.  



80 

Figure 3. 4: MMSE Aligns, but is Not Equivalent, to Predicted Probability in SARA

 

 

Figure 3.4a displays the distributions of the SARA model’s predicted probability of AD for all 

participants (including Uncertain Diagnoses) in the Clinical cohort, grouped by MMSE score 

instead of by diagnosis. Note the change in y-axes scale due to the tight distribution of MMSE = 

30 participants. 3.4b displays the distribution of SARA model’s predicted probability of AD as in 

Figure 3.2b, but only includes patients with MMSE scores of 26-29 (n = 154). 

a.  

b.  
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AD: Alzheimer disease; MMSE: Mini Mental State Exam; SARA: Select Atrophied Regions in 

Alzheimer disease  



82 

3.3.9 SARA as a Possible Clinical Tool 

 To create an example of how SARA could be used in clinical practice, we developed 

multiple thresholds reflecting 80% and 90% sensitivities and specificities. Figure 3.5a shows the 

readout a clinician might be given for an individual patient and Figure 3.5b lists the percent of 

the Clinical cohort that fell into each category. Over half of the participants who had uncertain 

diagnoses were given a score within the 90% sensitivity/specificity ranges for AD or non-AD 

diagnoses, indicating it would be a valuable tool to support clinical decision making.
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Figure 3.5: Possible Use of SARA in a Clinical Setting 

a.  

 

b. 

Predicted 

Probability 
Model Output 

% Of Clinical Cohort 

with Known 

Diagnosis (n = 429) 

% Of Clinical Cohort 

with Uncertain 

Diagnosis (n = 154) 

[0.0-0.29) < 10% of those with AD 30.8% 37.9% 

[0.29-.45) < 20% of those with AD 8.9% 12.4% 

[0.45-0.61] Equivocal 13.8% 10.4% 

(0.61-0.82] < 20% of those with non-AD 17.4% 21.6% 

(0.82-1.0] < 10% of those with non-AD 29.1% 17.6% 

Figure 3.5a displays how the SARA model might be used by a clinician for a single patient, 

including a description of the model and multiple thresholds. The patient’s specific probability of 

having AD as predicted by SARA is given (4%), as well as a statement reflecting that the 

sensitivity at that threshold is > 90%, indicating both a measure of atrophy and the reliability of 

that measure. Figure 3.5b displays the proportion of participants in the Clinical cohort that fell 

into each bin of ranges of scores output from SARA. The next column shows the Clinical cohort 

participants with uncertain diagnoses, with the distribution of scores suggesting that SARA 

would have helped provide a more certain diagnoses for the majority of the participants. 

AD: Alzheimer disease; SARA: Select Atrophied Regions in Alzheimer disease  
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3.4 Discussion 
 We demonstrated that volumetric models have excellent classification abilities that would 

aid in diagnosing symptomatic AD in various circumstances. We did observe region-specific 

atrophy even in our unique cohort of cognitively normal participants known to be without 

preclinical AD. However, controlling for this age-related atrophy did not improve classification. 

Doing so actually lowered accuracy within the Clinical cohort if age was not included as an 

additional predictor. This reinforces the idea that age is a strong predictor of AD dementia and 

implies that these models require age or age-related atrophy to maintain the highest levels of 

accuracy. Thus, age-related atrophy may either convey increased risk for development of a 

neurodegenerative dementing illness, or, more likely, age-related atrophy may act as a proxy for 

age. Either way, total atrophy appears to be more predictive than atrophy specifically attributable 

to AD. 

 Our data-driven region selection approach, optimized to FreeSurfer, saw a specific 

pattern of atrophy in AD that overlapped with the medial temporal lobe regions reported in many 

previous papers. We evaluated if using these regions would improve classification of AD. While 

the single region HCV and multi-region SARA models did not show statistically different AUCs, 

other evidence suggested SARA was the stronger classifier. First, in both the Test and Clinical 

cohorts, the value of the AUC was higher in SARA than HCV. Second, in the Clinical cohort, it 

was only SARA that had an AUC statistically higher than the model using age alone, without 

any volumetric measures. Third, the pattern of higher AUCs in SARA than in HCV was seen for 

most specific diagnostic groups within the Clinical cohort. 

 Our results suggest SARA has the greatest diagnostic specificity when distinguishing AD 

from frontotemporal dementia or from non-neurodegenerative diagnoses (e.g., mood disorders, 
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sleep disorders, cognitively normal individuals). The high performance in frontotemporal 

dementia is especially noteworthy. [18F]-fluorodeoxyglucose (FDG) PET is recommended for 

patients with AD vs. frontotemporal dementia diagnoses (Silverman et al., 2001), but PET scans 

are limited in diagnostic sensitivity and by insurance coverage (Medicare will cover it, but often 

private insurance will not), availability, and cost. This AD vs. frontotemporal dementia 

differential is often considered, especially in younger patients, and highly available biomarkers 

would help identify the correct prognosis and treatment for these patients. The Clinical cohort 

had the lowest diagnostic specificity when distinguishing AD from other neurodegenerative 

disorders. This was likely due to the disorders impacting overlapping regions and patients having 

co-incident diagnoses. Comorbidities increase with age and can include multiple 

neurodegenerative conditions, such as concurrent AD and dementia with Lewy bodies (Irwin and 

Hurtig, 2018).  

 Another way SARA reflects clinical reality is the correlation between atrophy and level 

of impairment measured by MMSE and global CDR. With this in mind, we evaluated the 

diagnostic utility of SARA beyond predicting impairment and found high classification ability in 

the Clinical cohort even when limited to early symptomatic participants (CDR = 0.5 or MMSE 

26-29). These patients are also the ones for whom additional biomarkers would likely be most 

useful. These findings indicate SARA is not simply acting as a proxy for MMSE or CDR, but 

provides additional diagnostic information. 

 Strengths of this study include the large overall sample size of almost 1300 participants. 

We benefited from having research cohorts with participants diagnosed with the highest possible 

accuracy outside of postmortem testing, as well as a heterogeneous group of real-world patients 

seen at a dementia clinic. By using these cohorts in combination, we were able to demonstrate 
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that our model approaches the sensitivity and specificity of amyloid PET and CSF biomarkers. 

Strengths of the SARA algorithm include that it is fairly simple and transparent (unlike machine-

learning algorithms), making it easier for doctors and patients to trust, will be freely available, 

uses MRI scans that are non-invasive and often already collected for dementia patients, and has 

been shown to work in both research and clinical populations. SARA and the Clinical cohort’s 

data will be made available online at https://github.com/benzinger-icl/SARA and 

https://www.oasis-brains.org/. 

 While our results indicate the potential usefulness of quantitative volumetric biomarkers, 

there are some limitations of this study. Though our cohorts had fairly good representation of 

African Americans, the general lack racial and socioeconomic diversity may bias our models. 

Volumetric classification may be further improved if models, including the regions used, are 

optimized to specific non-AD diagnoses and/or incorporate longitudinal scanning. Our use of a 

single set of normal aging curves and a binary AD/non-AD prediction model was due to our 

limited numbers, despite surpassing the sample size of many neuroimaging studies. The 

threshold used in the reported accuracy statistics was based upon the Training cohort and has not 

been optimized to a clinical setting. This optimization would need to be validated in a separate 

cohort, ideally with histopathologically confirmed diagnoses. This confirmation was not 

available for the Clinical cohort and misdiagnosis may have caused an under-estimation of 

model accuracy. An important question for future work to address is the overlap of AD and 

vascular disease, which we were unable to address due to the diagnostic difficulty and limited 

presence of vascular problems in our research cohorts.  

https://github.com/benzinger-icl/SARA
https://www.oasis-brains.org/
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3.6 Supplemental 
Supplemental Table S3.1: Demographics by Data Source and Diagnosis 

 

 Normal Aging Cohort Training Cohort 
Test 

Cohort 

Clinical Cohort 

– Defined 

Diagnosis 

Clinical Cohort 

– Uncertain 

Diagnosis 

n 383 216 109 426 153 

n by Data Source      

DIAN 134 0 0 0 0 

OASIS 249 136 77 0 0 

ADNI 0 80 32 0 0 

MDC 0 0 0 426 153 

Diagnosis (% with 

symptomatic AD) 
0 43.5 43.1 61.5 N/A 

By Data Source 
OASIS: 0 

DIAN: 0 

OASIS: 22.1 

ADNI: 80.0 

OASIS: 24.7 

ADNI: 87.5 
  

Age (median) 18-88 (60) 57-88 (75) 57-86 (74) 46-88 (73) 55-87 (73) 

By Data Source 
OASIS: 42-88 (68) 

DIAN: 18-58 (34) 

OASIS: 57-88 (72) 

ADNI: 57-88 (76) 

OASIS: 57-86 (73) 

ADNI: 59-86 (74) 
  

By Diagnosis  
AD: 57-88 (77) 

Non-AD: 57-87 (71) 

AD: 59-86 (76) 

Non-AD: 57-85 (70) 

AD: 50-88 (76) 

Non-AD: 46-85 

(68) 

 

Sex (% Men) 35.8 49.1 52.3 48.1 49.0 

By Data Source 
OASIS: 31.7 

ADNI: 43.3 

OASIS: 46.3 

ADNI: 53.8 

OASIS: 46.8 

ADNI: 65.6 
  

By Diagnosis  
AD: 50.0 

Non-AD: 48.4 

AD: 68.1 

Non-AD: 40.3 

AD: 44.7 

Non-AD: 53.7 
 

CDR [0,0.5,1,2,3] 383,0,0,0,0 122,43,44,5,2 62,17,26,4,0 50,235,97,26,0* 8,122,10,3,0* 

By Data Source 
OASIS: 249,0,0,0,0 

ADNI: 134,0,0,0,0 

OASIS: 106,24,6,0,0 

ADNI: 16,19,38,5,2 

OASIS: 58,8,10,1,0 

ADNI: 4,9,16,3,0 
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 Normal Aging Cohort Training Cohort 
Test 

Cohort 

Clinical Cohort 

– Defined 

Diagnosis 

Clinical Cohort 

– Uncertain 

Diagnosis 

By Diagnosis  
AD: 0,43,44,5,2 

Non-AD: 

AD: 0,17,26,4,0 

Non-AD: 62,0,0,0,0 

AD: 

2,155,78,20,0* 

Non-AD: 

48,80,19,6,0* 

 

MMSE (median) 24-30 (30)* 7-30 (28) 9-30 (28) 1-30 (20)* 1-30 (21)* 

By Data Source 
OASIS: 26-30 (30) 

DIAN: 24-30 (30)* 

OASIS: 14-30 (29) 

ADNI: 7-30 (24) 

OASIS: 19-30 (29) 

ADNI: 9-30 (24) 
  

By Diagnosis  
AD: 7-30 (24) 

Non-AD: 26-30 (30) 

AD: 9-29 (24) 

Non-AD: 25-30 (29) 

AD: 1-30 (18) * 

Non-AD: 3-30 

(23)* 

 

APOE4 (% with an 

ε4 allele)  
27.9 51.6* 39.4 N/A N/A 

By Data Source 
OASIS: 51.5 

DIAN: 28.4 

OASIS: 40.7* 

ADNI: 70.0 

OASIS: 26.8 

ADNI: 65.6 
  

By Diagnosis  
AD: 83.0 

Non-AD: 27.3* 

AD: 74.5 

Non-AD: 12.9 
N/A  

Amyloid** 

(median) 
-9.34-19.0 (-0.880)* -8.40-154 (14.0) -14.0-142 (11.4) N/A N/A 

By Data Source 

OASIS: -9.34-19.0  

(-0.880)* 

DIAN: -5.42-6.84 (-

0.246)* 

OASIS: -8.40-140 

(3.13) 

ADNI: -6.22-154 

(66.0) 

OASIS: -14.0-142 

(4.21) 

ADNI: -5.73-113 

(61.5) 

  

By Diagnosis  

AD: 21.1-154 (73.7) 

Non-AD: -8.40-20.4 

(2.10) 

AD: 43.0-142 (73.1) 

Non-AD: -14.0-18.3 

(0.181) 

N/A  

Race (% non-

Hispanic White) 
91.2* 90.3 79.8 86.9 84.3 

By Data Source 
OASIS: 88.4 

ADNI: 96.9 

OASIS: 86.8 

ADNI: 96.3 

OASIS: 71.4 

ADNI: 100 
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 Normal Aging Cohort Training Cohort 
Test 

Cohort 

Clinical Cohort 

– Defined 

Diagnosis 

Clinical Cohort 

– Uncertain 

Diagnosis 

By Diagnosis  
AD: 97.9 

Non-AD: 84.4 

AD: 93.6 

Non-AD: 69.4 

AD: 87.8 

Non-AD: 85.4 
 

Education (years) 

(median) 
9-22 (16)* 7-24 (16) 8-22 (16) 

Median 

Completed 

College* 

Median 

Completed 

College* 

By Data Source 
OASIS: 10-20 (16) 

DIAN: 9-22 (16) 

OASIS: 7-24 (16) 

ADNI: 8-20 (16) 

OASIS: 8-22 (16) 

ADNI: 8-20 (16) 
  

By Diagnosis  
AD: 7-20 (16) 

Non-AD: 8-24 (16) 

AD: 8-20 (16) 

Non-AD: 10-22 (15) 

AD: Median 

Completed 

College* 

Non-AD: 

Median 

Completed 

College* 

 

Supplemental Table S3.1 presents the demographic information for all cohorts separated by data source and diagnosis. The Clinical 

cohort has been separated into those given either an AD or non-AD diagnosis vs. those whose diagnosis was uncertain (and thus were 

not used to measure model accuracy).  

A ‘*’ indicates missing data: 2 MMSEs (DIAN), 124 Amyloid (3 OASIS, 121 DIAN – all under age 45), and 6 Races (DIAN) from 

the Normal Aging cohort; 1 APOE4 (OASIS, non-AD) from the Training cohort; 4 MMSEs (3 AD, 1 non-AD), 18 CDRs (7 AD, 11 

non-AD), and 40 Educations (25 AD, 15 non-AD) from the Clinical cohort – Defined Diagnosis; 1 MMSE, 10 CDRs, and 11 

Educations from the Clinical cohort – Uncertain Diagnosis 

** Mean Cortical SUVR RSF in Centiloids 

AD: Alzheimer disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative; APOE4: Apolipoprotein E ε4; CDR: Clinical Dementia 

Rating; DIAN: Dominantly Inherited Alzheimer Network; MDC: Memory Diagnostic Center; MMSE: Mini Mental State Exam; 

OASIS: Open Access Series of Neuroimaging Studies; SUVR RSF: Standard uptake value ratio (regional spread function applied) 
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Supplemental Table S3.2: Inclusion Criteria for All Cohorts 

 Normal Aging Cohort Training and Test Cohorts Clinical Cohort 

Sources 
-OASIS 

-DIAN 

-OASIS 

-ADNI 
MDC 

Inclusion 

Criteria – AD 

 

 

-Structural MRI 

-CDR > 0 within 1 year of MRI 

-Positive Amyloid PET scan within 1 

year of MRI 

-Clinical evaluation with a diagnosis of 

‘Alzheimer disease’ or ‘Dementia of 

Alzheimer Type’* 

-Structural MRI 

-Clinician visit between January 

25, 2015 and June 01, 2018 

-Age over 45 

-Clinical assessment supports an 

AD diagnosis* 

 

Inclusion 

Criteria – Non-

AD 

-Structural MRI 

-CDR = 0 within 1 year of MRI 

If over age 45: 

-CDR remained 0 at least 3 years 

after MRI 

-Negative amyloid PET scan 

within 1 year of MRI 

If from DIAN: 

-non-mutation carrier 

-Structural MRI 

-CDR = 0 within 1 year of MRI 

-Amyloid negative scan within 1 year of 

MRI 

-Clinical evaluation with a diagnosis of 

‘cognitively normal’ or ‘not demented’ 

-Age ≥ 56 (age of the youngest AD 

participant included in the Training and 

Test cohorts) 

-Structural MRI 

-Clinician visit between January 

25, 2015 and June 01, 2018 

-Age over 45 

-Clinical assessment supports a 

non-AD diagnosis* 

 

 

Supplemental Table S3.2 describes the data sources and inclusion criteria that defined the AD and non-AD participants for each 

cohort. 

*Participants in the Clinical cohort not given a diagnosis that clearly supported or rejected AD formed a third ‘Uncertain’ category. 

AD: Alzheimer disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative; CDR: Clinical Dementia Rating; DIAN: Dominantly 

Inherited Alzheimer Network; MDC: Memory Diagnostic Center; MRI: Magnetic resonance imaging; OASIS: Open Access Series of 

Neuroimaging Studies; PET: Positron emission tomography 
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Supplemental Table S3.3: Specific Diagnostic Groups in the Clinical Cohort – Definitions 

and Group Size 

 N Description 

AD Diagnoses   

AD Variant 11 
Includes Posterior Cortical Atrophy and other less common 

presentations of AD 

AD with Additional Non-

Neurodegenerative Condition 
10 

Patients with AD where other factors such as mood 

disorders, medications, and sleep disorders were thought to 

be contributing to symptoms 

Early-Onset AD 26 
Early onset indicated either in physician notes or by patient 

age at time of diagnosis being less than 65 

Typical AD 215 

AD diagnoses given without any other indications and so 

assumed to be amnestic, late-onset AD. Does not rule out 

the possibility of atypical presentation or other non-

neurodegenerative conditions. 

Neurodegenerative Non-AD 

Diagnoses 
  

Dementia with Lewy Bodies 10 Dementia with Lewy bodies 

Frontotemporal Dementia 20 

Includes those with behavioral variant, those that overlap 

with amyotrophic lateral sclerosis or motor neuron disease, 

and those with unspecified subtypes. Those with Primary 

Progressive Aphasia are not included and are instead in the 

‘Other Neurodegenerative Disorders’ group. 

Other Neurodegenerative 

Disorders 
15 

Less common neurodegenerative disorders (including 

Primary Progressive Aphasia, Parkinson’s, and 

Corticobasal Degeneration), as well as patients with 

multiple possible non-AD neurodegenerative disorders 

listed 

Vascular Cognitive 

Impairment 
14 Vascular Cognitive Impairment 

Non-Neurodegenerative Non-

AD Diagnoses 
  

Cognitively Normal 45 
Includes diagnoses of cognitively normal, subjective 

impairment only, or age-related cognitive changes 

Miscellaneous 15 

All other patients that did not fit into any of the other seven 

non-AD groups but whose diagnoses nonetheless indicate a 

non-AD etiology 

Mood/Pharmacy/Sleep 27 

Symptoms were attributed singularly or to a combination 

of mood disorders, medications (polypharmacy in some 

cases), and sleep disorders 

Neurologic Disease 18 
Broad range of (non-neurodegenerative) neurological 

problems such as traumatic brain injury or seizures 
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Supplemental Table S3.3 describes the more specific AD and non-AD diagnostic groups the 

Clinical cohort was split into, and the number of patients in each group. 

AD: Alzheimer disease 
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Supplemental Figure S3.1: Histogram of Ages in the Normal Aging Cohort 

 
Supplemental Figure S3.1 shows the number of participants present by age in the Normal Aging 

cohort. 
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Supplemental Table S3.4: Imaging Acquisition Details 

Supplemental Table S3.4 describes the details of the MRI and PET imaging acquisition for each cohort. Numbers are often 

approximate due to the large number of studies used. 

ADNI: Alzheimer’s Disease Neuroimaging Initiative; DIAN: Dominantly Inherited Alzheimer Network; MDC: Memory Diagnostic 

Center; MRI: Magnetic resonance imaging; OASIS: Open Access Series of Neuroimaging Studies; PET: Positron emission 

tomography; PIB: [11C]-Pittsburgh Compound B 

 OASIS DIAN ADNI MDC 

MRI     

Scanners 

Primarily Siemens 

Biograph mMR 

PET/MR and Siemens 

Trio MR 

Siemens BioGraph 

mMR PET/MR 

Mix of Siemens, GE, 

and Philips MR 
Mix of Siemens MR 

Scanner Strength (T) 
3 (n = 440) 

1.5 (n = 22) 
3 

1.5 (n = 23) 

3 (n = 89) 

1.5 (n = 30) 

3 (n = 549) 

Repetition Time (s) 
Primarily 2.3 and 

2.4 
2.3 2.3-10.4 Primarily 2.3 and 2.4 

Echo time (ms) Primarily 2.95 3.16 2.95 2.98-4.1 Primarily 2.95 and 3.05 

Flip Angle (degrees) 
Primarily 8 and 

9 
9 8-11 Primarily 8 and 9 

Slice Thickness (mm) 1 or 1.2 1.1 1 or 1.2 1 or 1.1 

FreeSurfer Version Primarily 5.3 5.3 5.3 5.3 

PET     

Scanners 
Mix of Siemens 

PET/MR and PET/CT 

Siemens BioGraph 

mMR PET/MR 

Mix of Siemens, 

Phillips, and GE 

PET/CT 

 

Tracer 
PIB (n = 337) and 

Florbetapir (n = 122) 
PIB Florbetapir  

Tracer Dosage (mCi) 
PIB: ~13 

Florbetapir: ~10 
PIB: ~15 Florbetapir: ~10  

Data collection post-

injection (minutes) 

PIB: 30-60 

Florbetapir: 50-70 
PIB: 40-70 Florbetapir: 50-70  
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Supplemental Table S3.5: Detailed Description of Centiloid Conversion 

a.  

PIB Calibration Cohort Young Controls Clinically Diagnosed AD 

N 34 45 

Age (SD) years 31.5 (6.3) 67.5 (10.5) 

Male (%) Unknown Unknown 

APOE4 (% with an ε4 allele) 8 (25) 28 (64) 

CDR > 0 (%) 0 (0) 45 (100) 

b.  

Florbetapir Calibration 

Cohort 
DIAN Non-carrier DIAN Carrier 

N 15 22 

Age (SD) years 39.3 (4.6) 54.5 (6.3) 

Male (%) 7 (46.7) 14 (63.6) 

APOE4 (% with an ε4 allele) 4 (26.7) 9 (40.9) 

CDR > 0 (%) 0 (0.0) 16 (72.7) 

c. 

Florbetapir PET data: 

Centiloid = 53.6 × SUVR_RSF – 43.2 

PIB data from OASIS (processed in the 30-60 minute time window): 

Centiloid = 45.0 × SUVR_RSF – 47.5 

PIB data from DIAN (processed in the 40-70 minute time window): 

Centiloid = 40.7 × SUVR_RSF – 42.9 

Supplemental Table S3.5 describes the Centiloid conversion process in detail. The procedure and 

requirements to define the Centiloid scale are documented in the initial Centiloid paper (Klunk et 

al., 2015). The Centiloid scale is defined by two anchor points: the mean amyloid burden 

measurement of a young control group with no amyloid pathology in their brain, represented as 0 

in the Centiloid scale, and the mean amyloid burden of an AD group, represented as 100 in the 

Centiloid scale (level 1 calibration). Subsequently, a Deming regression and a linear 

transformation are performed to calibrate the tracer and the local processing methods to the 

Centiloid scale (i.e., level 2 calibration). The PIB-Centiloid equations were defined using a 

subset of the Global Alzheimer’s Association Information Network dataset 

(http://www.gaain.org), described in Supplemental Table S5a. The Florbetapir Centiloid 

conversion equations were obtained using linear regression performed between Florbetapir mean 

cortical standard uptake value ratios with regional spread function applied (SUVRs) and PIB 

Centiloid SUVRs for a subset of DIAN-TU 

(https://www.clinicaltrials.gov/ct2/show/study/NCT01760005), again, using the level-2 (Klunk 

http://www.gaain.org/
https://www.clinicaltrials.gov/ct2/show/study/NCT01760005
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et al., 2015), described in Supplemental Table S3.5b. The specific equations used, as listed in Su 

et al. 2019, are in Supplemental Table S3.5c. 

AD: Alzheimer disease; APOE4: Apolipoprotein E ε4; CDR: Clinical Dementia Rating; DIAN: 

Dominantly Inherited Alzheimer Network; OASIS: Open Access Series of Neuroimaging 

Studies; PET: Positron emission tomography; PIB: [11C]-Pittsburgh Compound B; SD: Standard 

deviation; SUVR RSF: Standard uptake value ratio (regional spread function applied)  
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Supplemental Table S3.6: Age-Related Atrophy Adjustment Reduces Volumetric 

Correlation with Age 

 Unadjusted for Age-Related 

Atrophy 

Adjusted for Age-Related 

Atrophy 

 R p-value R p-value 

Hippocampal Volume -0.602 < 0.001 -0.177 0.0163 

Inferior Lateral Ventricle 

Volume 
0.580 < 0.001 0.186 0.0115 

Entorhinal Thickness -0.428 < 0.001 -0.227 0.00193 

Amygdala Volume -0.505 < 0.001 -0.144 0.0510 

Inferior Parietal Thickness -0.474 < 0.001 -0.150 0.0423 

Supplemental Table S3.6 provides the correlation between the regions used in the optimal model 

and age for the cognitively normal controls in the combined Training and Test cohorts. While 

correlations are not entirely removed, they are strongly reduced by the z-score procedure we 

used to adjust for age-related atrophy.
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Supplemental Figure S3.2: Frequency of Region Selection for AD Classification

 

Supplemental Figure S3.2 graphs the frequency each region was selected in the 1000 iterations of random sampling and least absolute 

shrinkage and selection operator logistic regressions during the region selection process for both the unadjusted and adjusted for age-

related atrophy data. The green line indicates the 50% frequency threshold that both datasets needed to meet for a region to be 

included in the SARA model. 

AD: Alzheimer disease; SARA: Select Atrophied Regions in Alzheimer disease  
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Supplemental Table S3.7: Coefficients for All Classification Models 

Model Intercept Age 
Hippocampal 

Volume 

Inferior 

Lateral 

Ventricle 

Volume 

Entorhinal 

Thickness 

Amygdala 

Volume 

Inferior 

Parietal 

Thickness 

Age -5.51 0.0714 N/A N/A N/A N/A N/A 

HCV 9.03 N/A -0.00142 N/A N/A N/A N/A 

SARA 14.5 N/A -0.00067 0.000247 -0.68 -0.00056 -3.28 

HCV + Age 11.1 -0.0227 -0.00149 N/A N/A N/A N/A 

SARA + Age 19.7 -0.0523 -0.0007 0.000329 -0.628 -0.00072 -3.78 

HCVadj -1.42 N/A -1.06 N/A N/A N/A N/A 

SARAadj -1.7 N/A -0.411 0.253 -0.296 -0.261 -0.415 

HCVadj + Age -7.3 0.079 -1.08 N/A N/A N/A N/A 

SARAadj + 

Age 
-6.65 0.0667 -0.502 0.24 -0.21 -0.203 -0.426 

Supplemental Table S3.7 displays the rounded coefficients (unstandardized B values) for each of the classification models. Volumes 

are input into the models as ml (cm3), while cortical thicknesses are input in mm. The SARA models include hippocampal volume, 

inferior lateral ventricle volume, entorhinal thickness, amygdala volume, and inferior parietal thickness. X + Age indicates model X 

with age added as a covariate; Xadj indicates Model X using volumes and cortical thicknesses that have been adjusted for age-related 

atrophy. 

Adj: Adjusted for age-related atrophy; HCV: Hippocampal volume; N/A: Not applicable; SARA: Select Atrophied Regions in 

Alzheimer disease  
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Supplemental Table S3.8: Select Models’ AUCs for the Specific Diagnoses in the Clinical 

Cohort  

Supplemental Table S3.8 displays the AUCs for the Age, HCV, and SARA models when the AD 

or non-AD Diagnoses are restricted to each of the more specific diagnoses along with the 

associated 95% CI. For example, the AD Variant AUC is the AUC calculated using participants 

with AD Variant diagnosis and all non-AD Diagnoses participants, but excludes participants 

with an AD with Additional Non-Neurodegenerative Condition, Early-Onset AD diagnosis, or 

Typical AD.  

Specific Diagnosis 

Age Model’s 

AUCs 

 (95% CI) 

HCV Model’s 

AUCs 

 (95% CI) 

SARA Model’s 

AUCs 

 (95% CI) 

AD Diagnoses    

AD Variant 
0.502 

 (0.342-0.663) 

0.697 

 (0.566-0.829) 

0.795 

 (0.689-0.901) 

AD with Additional Non-

Neurodegenerative Condition 

0.686 

 (0.526-0.846) 

0.781 

 (0.707-0.855) 

0.852 

 (0.786-0.917) 

Early-Onset AD 
0.680 

 (0.563-0.798) 

0.701 

 (0.596-0.806) 

0.767 

 (0.668-0.866) 

Typical AD 
0.808 

 (0.763-0.852) 

0.819 

 (0.775-0.863) 

0.827 

 (0.783-0.871) 

Non-Neurodegenerative Non-AD 

Diagnoses 
   

Cognitively Normal 
0.748 

 (0.671-0.826) 

0.893 

 (0.838-0.948) 

0.914 

 (0.856-0.971) 

Miscellaneous 
0.755 

 (0.631-0.878) 

0.813 

 (0.686-0.940) 

0.852 

 (0.731-0.973) 

Mood/Pharmacy/Sleep 
0.798 

 (0.710-0.885) 

0.828 

 (0.729-0.926) 

0.862 

 (0.772-0.952) 

Neurologic Disease 
0.883 

 (0.801-0.965) 

0.794 

 (0.680-0.910) 

0.830 

 (0.717-0.943) 

Neurodegenerative Non-AD 

Diagnoses 
   

Dementia with Lewy Bodies 
0.537 

 (0.366-0.708) 

0.581 

 (0.396-0.765) 

0.467 

 (0.242-0.692) 

Frontotemporal Dementia 
0.780 

 (0.690-0.871) 

0.805 

 (0.688-0.923) 

0.818 

 (0.707-0.929) 

Other Neurodegenerative 

Disorders 

0.712 

 (0.595-0.830) 

0.720 

 (0.563-0.877) 

0.735 

 (0.589-0.882) 

Vascular Cognitive Impairment 
0.592 

 (0.445-0.738) 

0.686 

 (0.532-0.841) 

0.694 

 (0.544-0.845) 
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AD: Alzheimer disease; AUC: Receiver operating characteristic’s area under the curve; CI: 

Confidence interval; HCV: Hippocampal volume; SARA: Select Atrophied Regions in 

Alzheimer disease  
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Supplemental Figure S3.3: CDR Aligns, but is Not Equivalent, to Predicted Probability in 

SARA 

 

Supplemental Figure S3.3a displays the distributions of the SARA model’s predicted probability 

of AD, grouped by global CDR instead of by diagnosis. This includes the AD, non-AD, and 

Uncertain diagnoses. Note the change in y-axis scale from previous figures due to the tight 

distribution of CDR = 2 participants. S3b displays the distribution of SARA model’s predicted 

probability of AD as in Figure 3.2b, but shows only patients with CDR = 0.5 (n = 101). 

AD: Alzheimer disease; CDR: Clinical Dementia Rating; SARA: Select Atrophied Regions in 

Alzheimer disease  

a.  

b.  
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Chapter 4: Interaction of Stroke, Race, and 

Amyloid (Koenig et al., 2021) 
Stroke and Alzheimer disease share risk factors and often co-occur, and both have been 

reported to have a higher prevalence in African Americans as compared to non-Hispanic Whites. 

However, their interaction has not been established. The objective of this study was to determine 

if preclinical Alzheimer disease is a risk factor for stroke and post-stroke dementia and whether 

racial differences moderate this relationship. This case-control study was analyzed in 2019 using 

retrospective data from 2007-2013. Participants were adults age 65 and older with and without 

acute ischemic stroke. Recruitment included word of mouth and referrals in Saint Louis, 

Missouri, with stroke participants recruited from acutely hospitalized patients and non-stroke 

participants from community living older adults who were research volunteers. Our assessment 

included radiologic reads of infarcts, microbleeds, and white matter hyperintensities; a [11C]-

Pittsburgh Compound B PET measure of cortical β-amyloid binding; quantitative measures of 

hippocampal and white matter hyperintensities volume; longitudinal Mini Mental State Exam 

scores; and Clinical Dementia Rating™ 1-year post-stroke. A total of 243 participants were 

enrolled, 81 of which had a recent ischemic stroke. Participants had a mean age of 75, 57% were 

women, and 52% were African American. Cortical amyloid did not differ significantly by race, 

stroke status, or Clinical Dementia Rating post-stroke. There were racial differences in Mini 

Mental State Exam scores at baseline (mean 26.8 for African Americans, 27.9 for non-Hispanic 

Whites, p = 0.03), but not longitudinally. African Americans were more likely to have 

microbleeds (32.8% vs. 22.6%, p = 0.04), and within the acute stroke group, African Americans 

were more likely to have small infarcts (75.6% vs. 56.8%, p = 0.049). preclinical AD did not 

show evidence of being a risk factor for stroke nor predictive of post-stroke dementia. We did 
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not observe racial differences in β-amyloid levels. However, even after controlling for several 

vascular risk factors, African Americans with clinical stroke presentations had greater levels of 

vascular pathology on magnetic resonance imaging (MRI).  

4.1 Introduction 
Medical research on African Americans (AAs) has a fraught history that has resulted in 

limited knowledge of racial differences in various pathologies, as well as an understandable 

hesitance for minorities to participate in research (Hooper et al., 2019). Several studies 

addressing racial disparities in Alzheimer disease (AD) and stroke have found higher incidence 

rates in the Black population for both diseases as compared with the non-Hispanic White (NHW) 

population (Benjamin et al., 2017; Manly and Mayeux, 2019). Note that we use both the broader 

term ‘Black’ and the more specific term ‘African American’ depending on the language used in 

each previously published study. Our use of ‘African American’ reflects how our participants 

identify themselves, but this may not be the appropriate term for studies in other regions or 

outside the United States. 

 The impact of stroke is severe, with over 140,000 deaths per year caused by stroke in the 

United States (Yang et al., 2017). Stroke leads to long-term consequences even for those who 

survive: almost 40% of stroke survivors develop long-term disabilities (Luengo-Fernandez et al., 

2013), and stroke is associated with cognitive decline before and after the stroke event (Zheng et 

al., 2019). Black individuals are twice as likely to have a stroke (Benjamin et al., 2017), and are 

more likely to die from that stroke (Yang et al., 2017). These racial differences have been 

attributed to stroke risk factors such as higher rates of hypertension and diabetes, and lower 

socio-economic status and education (Benjamin et al., 2017).  
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 Similarly, many publications report higher rates of dementia and AD for Black persons 

compared with NHWs (Neill R Graff-Radford et al., 2016; Green, 2002; Manly and Mayeux, 

2019; Mayeda et al., 2016; Tang et al., 2001). While there is little doubt of the racial disparities 

seen in dementia, most of these studies are based on a clinical diagnosis of AD, which 

corresponds to neuropathological diagnosis in only 83% of cases at best (Beach et al., 2012) and 

neuropathological studies are often lacking in racial minorities. Racial differences in AD have 

been largely attributed to AD risk factors, many of which overlap with stroke risk factors. Higher 

rates of cardiovascular disease and of apolipoprotein E ε4 (APOE4) alleles, and fewer years of 

education are just a few examples (Neill R Graff-Radford et al., 2016), but the story of APOE4 is 

of particular interest. While some papers suggest higher rates of APOE4 explain the majority of 

the racial differences in AD, others have found that APOE4 alleles in AAs have less associated 

risk for AD compared to APOE4 in NHW populations (John C Morris et al., 2019). Additionally, 

some reports show no racial differences in AD (Fillenbaum et al., 1998; Annette L Fitzpatrick et 

al., 2004; Riudavets et al., 2006b; Xiong et al., 2020), but many of these papers have controlled 

for baseline racial differences in education, cognitive scores, and APOE4.  

 In addition to racial differences, stroke and AD have a complex and poorly understood 

relationship with each other. Both diseases are highly prevalent and are strongly associated with 

age, leading to frequent co-occurrence in older adults. Additionally, one possible direct 

interaction is post-stroke dementia – wherein older adults develop dementia within a year of 

having a stroke (Pendlebury and Rothwell, 2009). While post-stroke dementia is correlative 

based on recent history of stroke, it suggests an interaction of AD and stroke. It is possible that 

preclinical AD predisposes people to have a stroke, or that stroke accelerates the development of 

dementia when it occurs in persons with preclinical AD. Previous studies have generally found 



108 

greater amyloid pathology in post-stroke dementia (Chi et al., 2019; Gamaldo et al., 2006; 

Hagberg et al., 2020; Liu Wenyan et al., 2015; Mok et al., 2016; Thiel et al., 2014; Yang et al., 

2015). However, these studies measure amyloid pathology months to years after stroke, and do 

not contrast with the high incidence of Alzheimer pathology in the general population. The only 

study to examine amyloid within a month of stroke found only a small, highly localized area of 

higher amyloid deposition in the precuneus (Yasuno et al., 2019). Several recent studies showed 

that various vascular factors did not directly impact amyloid deposition (Bennett et al., 2020; Bos 

et al., 2019; Gottesman et al., 2020), suggesting pre-existing preclinical AD may be the 

important factor in the development of post-stroke dementia.  

In this study, we examined AA and NHW older adults who were admitted with acute stroke 

to the stroke service of a tertiary care facility. For comparison, we used participants without 

acute or subacute stroke from the Knight Alzheimer Disease Research Center (ADRC) at 

Washington University in St. Louis. We examined whether pre-existing cortical amyloid 

positivity is a risk factor for stroke and if it increases the likelihood of dementia at 1-year post-

stroke. Additionally, we examined the possibility of racial differences in the frequency of 

preclinical AD, vascular pathology, and in longitudinal cognitive change.  

4.2 Methods 

4.2.1 Participants 

 This study includes acute stroke patients and retrospectively selected non-stroke 

participants used as a comparison group. All procedures were approved by Washington 

University’s Human Research Protection Office. Written informed consent was obtained from all 

participants and a stipend was provided.  
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Acute stroke participants were recruited from the Barnes-Jewish Hospital Stroke Registry 

and from St. John’s Mercy Medical Center between 2009-2012. Persons were eligible to enroll if 

they were 65 years or older, had a recent ischemic stroke of embolic or occlusive origin, and a 

National Institutes of Health Stroke Scale (NIHSS) (Ortiz and L. Sacco, 2014) score of 2-18. 

Participants were excluded if they had moderate-severe aphasia or pre-stroke cognitive decline, 

as determined by an informant-reported AD8 (Galvin et al., 2005) score > 2 the week prior to the 

acute stroke. 

Non-stroke participants, referred to as the ADRC group, were volunteers in the 

longitudinal clinical studies at the Knight ADRC from 2007-2013. Details of recruitment at the 

ADRC have been outlined previously (John C Morris et al., 2019). Due to low enrollment of 

AAs in the Knight ADRC, the ADRC cohort was not matched 1-to-1 to the stroke cohort. 

Instead, all AA participants who were 65 years or older, had no known deterministic mutation 

for AD, and had an MRI were included. The NHW participants from the Knight ADRC who also 

met these criteria were then matched to the AA ADRC cohort as much as possible on the basis of 

age and sex. 

4.2.2 Demographics 

Self-reported race, age at time of MRI, biological sex at birth, years of education, self-

reported family history of dementia in first-degree relatives, body mass index (BMI), 

hemoglobin A1c (HbA1c), APOE4 allele status, blood pressure, history of stroke, and history of 

diabetes were assessed. The stroke group was further classified by stroke type using The Trial of 

Org 10172 in Acute Stroke Treatment (TOAST) and severity using the NIHSS. All of these 

measures, along with Mini Mental State Exam (MMSE) (Folstein et al., 1975) discussed below, 

were collected within the stroke group 1-40 (median 10.5) days from stroke occurrence, except 
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for blood pressure which was collected 1-50 (median 4) days from stroke occurrence. Within the 

ADRC group, HbA1c was collected 0-3110 (median 365) days from the rest of the clinical 

assessment. Hypertension was defined as having systolic blood pressure of at least 140 or 

diastolic blood pressure of at least 90 mm Hg (Whelton et al., 2018).  

4.2.3 Imaging Measures 

Participants had a structural, T1-weighted magnetization-prepared, rapid gradient-echo 

(MPRAGE) MRI collected using either a 1.5-T or 3-T Siemens scanner and a resolution of either 

1 × 1 × 1.25 mm or 1 × 1 × 1 mm. Most participants additionally had a T2w and T2* scan. MR 

imaging was acquired 0-385 (median 78) days from clinical assessment for the ADRC group, 

and 0-592 (median 1) days for the stroke group. Trained radiologists read each set of scans and 

completed a radiologic report on: A. the number of large infarcts (0, 1, 2, 3+), B. small infarcts 

(0, 1, 2, 3+), C. microbleeds (0, 1-4, 5-10, 11+), and D. the severity of leukoaraiosis (0 = none, 1 

= mild, 2 = moderate, or 3 = severe) according to Fazekas scoring of white matter 

hyperintensities (WMH) (Fazekas et al., 1987). Scans which passed QC also had hippocampal 

volumes obtained using FreeSurfer 5.3 (Fischl, 2012) and WMH volumes with the Lesion 

Segmentation Tool (Schmidt et al., 2012). Hippocampal volumes were adjusted for head size 

using a regression scaling approach with total intracranial volume (Buckner et al., 2004). 

All acute stroke and many ADRC participants underwent [11C]-Pittsburgh compound B 

(PIB) positron emission tomography (PET) imaging to assess the level of amyloid plaques in 

their brain. PET imaging was acquired 2-442 (median 112) days from clinical assessment for the 

ADRC group. For the stroke group, this interval was 0-29 (median 0) days from clinical 

assessment and 1-50 (median 14.5) days from stroke occurrence. Data from the 30- to 60-minute 

post-injection window was processed with an in-house pipeline (Su, 2021) using FreeSurfer-
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derived regions and a cerebellar cortex reference region. The mean cortical binding potential 

from the precuneus, prefrontal cortex, gyrus rectus, and lateral temporal regions was used both as 

a continuous variable and as a marker of amyloid positivity (mean cortical binding potential > 

0.18) (Su et al., 2019, 2013). 

4.2.4 Clinical and Cognitive Measures 

The MMSE was a general measure of cognition collected at the same time as the clinical 

assessment described in section 3.2.2. Some participants (108 AA and 101 NHW) also had 

longitudinal MMSE assessed 1-14 (median 4.6) years after the original.  

Clinical Dementia Rating™ (CDR™) (Morris, 1993) at 1 year follow-up for a subset of 

acute stroke participants assessed possible decline in cognitive and functional abilities relative to 

the participant’s previously attained levels. It was determined by experienced clinicians using 

independent, semi-structured interviews with the participant and a collateral source, and a CDR 

> 0 was used as an indicator of post-stroke dementia (Jack, 2020; Morris, 2012; Storandt et al., 

2006). Baseline CDR was not available for the stroke group. 

4.2.5 Statistical Analysis 

All analyses were performed on SAS 9.4 or R 4.0.2. Each variable was assessed for 

cross-sectional racial differences and for differences between the acute stroke and ADRC groups. 

This was accomplished by modeling race, stroke status, and their interaction with logistic 

regression for categorical variables (binaries used: presence of large infarcts, presence of small 

infarcts, moderate-severe WMHs, presence of microbleeds, and 5 or more microbleeds) and 

general linear models for continuous. The imaging measures and baseline MMSE were 

additionally analyzed by an adjusted model that included the covariates age (centered), family 

history, APOE4, education, sex, hypertension, and the first order interactions of these variables 



112 

with race. The included covariates were selected by first individually testing each of the 

covariates in Table 4.1 with each of the outcomes. Those shown to be significant with most of 

the outcomes were included in the full model. If it was significant with only one outcome but 

then not significant in the full model it was dropped from the list. 

Longitudinal MMSE data were examined using linear mixed effects models with random 

slope and random intercept (Laird and Ware, 1982), and the unstructured correlation matrix 

between the random intercept and slope. Linear mixed models, an extension of simple linear 

models, were chosen to allow both fixed and random effects. They are used when there is non-

independence in the data, such as arises from a hierarchical structure where there are multiple 

observations per subject, or participants do not enter the study at the same time point or have 

different length of follow-up. The longitudinal models were adjusted for baseline age and 

education. 

Due to the infarcts observed in MRIs of the ADRC group, analyses were also repeated 

with participants re-grouped as stroke and comparison group based upon an infarct definition of 

stroke. The presence of a small or large infarct on MRI defined the infarct stroke group, while 

lack of small or large infarct defined the new comparison group. These results are reported 

separately in section 4.3.8. 

To examine the possibility of post-stroke dementia, a logistic regression was used to predict 

acute stroke participants with CDR = 0 vs. CDR > 0 at the 1-year follow-up using baseline 

demographics and outcome variables. This was not repeated with the infarct definition of stroke.  
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4.3 Results 

4.3.1 Participants 

A total of 243 participants were included: 84 AA ADRC, 78 NHW ADRC, 42 AA stroke, 

and 39 NHW stroke. At Barnes-Jewish Hospital, 3880 ischemic stroke patients were examined 

for eligibility, 226 were found eligible, and 72 were enrolled and completed the study. At St. 

John’s Mercy Medical Center, 9 participants were enrolled, but we do not have access to detailed 

information on their total patient pool. The 162 ADRC participants included were those eligible 

from the pool of 1368 ADRC participants.  

4.3.2 Demographics 

Demographic data are summarized in Table 4.1, and boxplots of the continuous 

demographics are in Supplemental Figure S4.1 in the supplemental material. The stroke 

participants had fewer years of education and a more frequent history of stroke than the ADRC 

group, and the NHW ADRC group had a family history of dementia significantly higher than the 

other three groups.  

Overall, there was a high incidence of diabetes and hypertension. HbA1c and 

hypertension were significantly worse in AA stroke group than in AA ADRC group, with a 

similar but non-significant pattern seen in NHW group. History of diabetes was more severe only 

within the AA stroke group as compared to the AA ADRC group. Higher rate of APOE4 alleles 

in AAs was observed within the stroke group only (Table 4.1). No differences in APOE4 were 

seen by race in the ADRC group, or across stroke status, but APOE4 frequencies (30-60%) were 

higher than the ~14% that has previously been reported for the general population (Liu et al., 

2013).  
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 All demographic variables in Table 4.1 were used as covariates when modeling our 

outcome variables, except HbA1c and BMI. Additional demographics specific to the stroke 

participants indicated that 28.4% had coronary artery disease, 28.4% had prior stroke, and 52.4% 

were taking statins (missing data n = 4). The TOAST classification (Adams et al., 1993) 

indicated stroke types were 12.1% large artery atherosclerosis, 27.0% cardioembolism, 36.5% 

small artery occlusion, and 24.3% undetermined etiology.  
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Table 4.1: Demographics  

 

AA NHW 

Race 

Difference 

(p) 

Stroke p-value 

Within 

AAs 

Within 

NHWs 

Participants, n     N/A N/A 

ADRC Group 84 78 0.64   

Stroke Group 42 39 0.74   

Age (y), mean (SD)a    > 0.99 0.008 

ADRC Group 74.7 (7.38) 73.1 (5.96) 0.42   

Stroke Group 75.0 (6.85) 77.4 (6.88) 0.40   

Male, n (%)a    0.30 0.12 

ADRC Group 30 (35.7) 34 (43.6) 0.31   

Stroke Group 19 (45.2) 23 (59.0) 0.22   

Education (years), mean (SD)a    < 0.001 < 0.001 

ADRC Group 14.5 (2.76) 15.3 (2.66) 0.24   

Stroke Group 11.9 (1.66) 12.8 (3.11) 0.43   

Family history of dementia, n (%)b    0.15 < 0.001 

ADRC Group 25 (29.8) 43 (55.1) 0.001   

Stroke Group 4 (15.4) 4 (14.8) 0.95   

APOE4 (n, % with an ε4 allele)c    0.19 0.20 

ADRC Group 38 (46.3) 33 (42.3) 0.61   

Stroke Group 22 (59.5) 11 (29.7) 0.01   

BMI (kg/m2), mean (SD)d     > 0.99 0.99 

ADRC Group 29.2 (5.24) 26.9 (5.55) 0.03   

Stroke Group 29.3 (5.20) 27.2 (4.24) 0.27   

Hemoglobin A1c (%), mean (SD)e    < 0.001 0.06 

ADRC Group 5.87 (0.80) 5.68 (0.49) 0.82   

Stroke Group 6.77 (1.67) 6.31 (1.35) 0.30   

Mean Arterial Pressure (mm Hg), mean (SD)f    0.09 0.13 

ADRC Group 93.9 (11.7) 92.2 (10.2) 0.81   
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AA NHW 

Race 

Difference 

(p) 

Stroke p-value 

Within 

AAs 

Within 

NHWs 

Stroke Group 99.2 (15.8) 93.0 (15.9) 0.93   

Hypertension, n (%)f    < 0.001 0.09 

ADRC Group 24 (28.6) 27 (35.5) 0.35   

Stroke Group 27 (64.3) 19 (52.8) 0.30   

Reported Previous Stroke, n (%)g    0.006 < 0.001 

ADRC Group 5 (6.0) 2 (2.6) 0.31   

Stroke Group 10 (24.4) 11 (30.6) 0.55   

History of Diabetes, n (%)h    0.002 0.15 

ADRC Group 14 (16.9) 9 (3.8) 0.35   

Stroke Group 18 (43.9) 8 (3.4) 0.05   

a. Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

b. Missing data: 0 AA ADRC, 16 AA Stroke, 0 NHW ADRC, 12 NHW Stroke  

c. Missing data: 2 AA ADRC, 5 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

d. Missing data: 1 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 2 NHW Stroke 

e. Missing data: 36 AA ADRC, 3 AA Stroke, 22 NHW ADRC, 9 NHW Stroke 

f. Missing data: 0 AA ADRC, 0 AA Stroke, 3 NHW ADRC, 3 NHW Stroke 

g. Missing data: 1 AA ADRC, 0 AA Stroke, 1 NHW ADRC, 3 NHW Stroke 

h. Missing data: 1 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 3 NHW Stroke 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; APOE4: Apolipoprotein E ε4; BMI: Body 

mass index; NHW: Non-Hispanic White; SD: Standard deviation  
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4.3.3 Amyloid PET Outcome Measures 

Table 4.2 lists the results from the statistical models and Figure 4.1 displays the amyloid 

PET results for each group. Amyloid PET, both as a continuous variable and as a binary of 

amyloid positive and amyloid negative, did not show differences by race or by stroke status. This 

indicates that preclinical AD was not more common in AAs in our cohort, and that preclinical 

AD does not appear to be a risk factor for stroke. The overall percentage of amyloid positive 

participants was high relative to other reports, indicating a high rate of preclinical AD both in the 

community and in the ADRC research volunteers, who may volunteer because they are at higher 

risk for AD due to family history.  

4.3.4 Quantitative MRI Outcome Measures 

Quantitative MRI measures of hippocampal volume and WMH volume (Figure 4.1) did 

not show an overall effect of race or stroke status (Table 4.2). Quantitative MRI measures were 

possible only on a subsample of the participants and so may not be representative of our entire 

cohort. These results did not differ when left and right hippocampal volumes were assessed 

separately, nor when amyloid positive and negative participants were assessed separately.  

4.3.5 Radiologic MRI Outcome Measures 

The acute stroke group was more likely to have large infarcts, small infarcts, moderate-

severe leukoaraiosis, and microbleeds than the ADRC group (Figure 4.2, Table 4.2). An 

interaction of race and APOE4 was observed for large infarcts, such that AA APOE4 carriers and 

AA APOE4 non-carriers were significantly different, but NHWs were not. Within the acute 

stroke group, AAs were more likely to have small infarcts than NHWs after adjusting for 

covariates. Before adjusting for covariates, the combined AA group was more likely to have 

more severe Fazekas stage 3/4 than the NHW group. The presence of microbleeds was more 
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common in AA in the adjusted model. The cutoff of 5+ microbleeds, used as exclusion criteria in 

many clinical trials, showed no significant differences.  

4.3.6 Cognitive Outcome Measures 

AA participants had lower baseline MMSE scores (Figure 4.1) in both unadjusted and 

adjusted models (Table 4.2). Models of longitudinal MMSE included baseline data for all 

participants and at least one follow-up exam for 108 AAs and 101 NHWs (average follow-up 

time 4.1 and 5.2 years, respectively). Estimated change in MMSE per year did not differ 

significantly by race or stroke status: AA ADRC: -0.68 (standard error (SE) = 0.15), AA Stroke: 

-1.08 (SE = 0.34), NHW ADRC: -0.58 (SE = 0.15), NHW Stroke: -0.53 (SE = 0.32) 

(Supplemental Figure S4.1). None of these results differed significantly when controlling for 

baseline age and education, nor when amyloid positive and negative participants were assessed 

separately.  
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Figure 4.1: Continuous Outcome Measures 

A      B  

  

C      D 

  

Figure 4.1 displays boxplots of the participants’ amyloid PET, hippocampal volume, white 

matter hyperintensity volume, and Mini Mental State Exam score, with data separated by race 

(AA or NHW) and cohort (acute stroke or ADRC comparison). 

A. Missing data: 52 AA ADRC, 3 AA Stroke, 47 NHW ADRC, 2 NHW Stroke 

B. Missing data: 3 AA ADRC, 11 AA Stroke, 0 NHW ADRC, 15 NHW Stroke 

C. Missing data: 76 AA ADRC, 6 AA Stroke, 72 NHW ADRC, 11 NHW Stroke 
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D. Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; NHW: 

Non-Hispanic White; PIB: [11C]-Pittsburgh Compound B  
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Figure 4.2: Categorical Outcome Measures  

A      B 

  

C       D  

  

Figure 4.2 displays the participants’ radiologic data results for number of large infarcts, small 

infarcts, leukoaraiosis, and microbleeds, with data separated by race (AA or NHW) and cohort 

(acute stroke or ADRC comparison). 

A-D Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke  

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; NHW: 

Non-Hispanic White  
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Table 4.2: Group Differences by Race and Stroke Status  

 

 

AA NHW 

Race p-value 

Unadjusted 

Models 

Adjusted 

Modelse 

A
m

y
lo

id
 P

E
T

 PIB Mean Cortical Binding Potential, mean (SE)a 0.11 (0.04) 0.11 (0.03) 0.57 0.96 

ADRC Group 0.20 (0.05) 0.13 (0.05)  > 0.99 0.68 

Stroke Group 0.05 (0.06) 0.10 (0.05) 0.98 0.90 

PIB Positive, n (%)a 16 (22.5) 17 (25.0) 0.90 0.67 

ADRC Group 10 (31.3) 5 (16.1) 0.92 0.34 

Stroke Group 6 (15.4) 12 (32.4) 0.09 0.94 

Q
u

a
n

ti
ta

ti
v
e 

M
R

I 

Total Hippocampal Volume (normalized), mean (SE)b 6720 (132) 6730 (143) 0.57 0.97 

ADRC Group 6610 (128) 6780 (117) 0.60 0.76 

Stroke Group 6480 (230) 6450 (247)  > 0.99  > 0.99 

WMH Volume, mean (SE)c 28400 (10200) 49200 (14500) 0.32 0.25 

ADRC Group 27900 (17600) 55100 (25000) 0.85 0.81 

Stroke Group 31500 (9760) 52100 (12100) 0.91 0.56 

R
a
d

io
lo

g
ic

 R
ea

d
 o

f 
M

R
I 

Presence of Large Infarcts, n (%)d 34 (27.2) 27 (23.5) 0.30 0.86 

ADRC Group 3 (3.6) 1 (1.3) 0.37 0.69 

Stroke Group 31 (75.6) 26 (70.3) 0.60 0.91 

Presence of Small Infarcts, n (%)d 34 (27.2) 29 (25.2) 0.75 0.48 

ADRC Group 3 (3.6) 8 (10.3) 0.11 0.12 

Stroke Group 31 (75.6) 21 (56.8) 0.08 0.047 

Leukoaraiosis Moderate-Severe, n (%)d 46 (36.8) 26 (22.6) 0.01 0.14 

ADRC Group 21 (25.0) 11 (14.1) 0.09 0.28 

Stroke Group 25 (61.0) 15 (40.5) 0.07 0.24 

Presence of Microbleeds, n (%)d 41 (32.8) 26 (22.6) 0.07 0.04 

ADRC Group 17 (20.2) 8 (10.3) 0.08 0.07 

Stroke Group 24 (58.5) 18 (48.7) 0.38 0.37 

Microbleeds ≥ 5, n (%)d 19 (15.2) 11 (9.6) 0.10 0.93 

ADRC Group 6 (7.1) 1 (1.3) 0.10 0.93 
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AA NHW 

Race p-value 

Unadjusted 

Models 

Adjusted 

Modelse 

Stroke Group 13 (31.7) 10 (27.0) 0.65 0.54 

 

MMSE, mean (SE)d 26.8 (0.37) 27.9 (0.37)  < 0.001 0.03 

ADRC Group 26 (0.38) 27.4 (0.35) 0.03 0.07 

Stroke Group 26.8 (0.64) 28.1 (0.63) 0.06 0.46 

a. Missing data: 52 AA ADRC, 3 AA Stroke, 47 NHW ADRC, 2 NHW Stroke 

b. Missing data: 3 AA ADRC, 11 AA Stroke, 0 NHW ADRC, 15 NHW Stroke 

c. Missing data: 76 AA ADRC, 6 AA Stroke, 72 NHW ADRC, 11 NHW Stroke 

d. Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

e. Adjusted models have controlled for baseline age, family history, APOE4, education, sex, and hypertension 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; APOE4: Apolipoprotein E ε4; MMSE: Mini 

Mental State Exam; MRI: Magnetic resonance imaging; NHW: Non-Hispanic White; PET: Positron emission tomography; PIB: [11C]-

Pittsburgh Compound B; SE: Standard error; WMH: White matter hyperintensities  
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4.3.7 Model Covariates 

While many covariates were included in the adjusted models for the outcome variables, 

the only ones commonly found to be significant were age and APOE4 status. Both were 

significant for PIB mean cortical binding potential, PIB positivity, and hippocampal volume; age 

was additionally significant for Leukoaraiosis and MMSE. No significant interactions of 

race*age were observed, but WMH volume and large infarcts had a significant race*APOE4 

interaction.  

4.3.8 Models Using Infarct Definition of Stroke 

Demographics when using the infarct definition of stroke are in Supplemental Table S4.1, 

while Supplemental Table S4.2 lists the results from the statistical models created for each 

outcome variable. Few differences were observed. The higher rate of APOE4 alleles in AAs 

observed within the stroke group lost significance. The adjusted model for continuous amyloid 

showed significantly lower amyloid in the stroke group (p-value changes from 0.10 to 0.02 in the 

adjusted model; mean cortical binding potential = 0.180 for ADRC group, 0.067 for stroke 

group). The presence of microbleeds gained significant racial differences in the unadjusted 

model and within the ADRC group in the adjusted model. The presence of 5 or more 

microbleeds gained significance such that the combined AA group had higher rates than the 

combined NHW group. 

4.3.9 CDR At One Year Follow-Up 

Another measure examined only within the acute stroke participants was CDR at 1-year 

follow-up (mean 394 days), for which 55 of the 81 stroke participants returned. As shown in 

Supplemental Table S4.3, those without follow up data were more likely to be male (69.6% vs. 

41.8%, p = 0.03), have an APOE4 allele (81.3% vs. 34.6%, p = 0.003), and have a higher NIHSS 
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(7.15 vs. 4.58, p = 0.01). Individuals with CDR > 0 at follow-up did not have statistically 

different levels of baseline amyloid than those with CDR = 0 (mean cortical binding potential of 

0.14 vs. 0.05, p = 0.14, Supplemental Table S4.4), indicating that preclinical AD did not predict 

post-stroke dementia. This finding was not impacted by stroke TOAST subtype. CDR at follow-

up also did not differ significantly by race (57.7% of AA with stroke vs. 42.3% NHW with 

stroke had CDR > 0, p = 0.35). The only significant predictors of a CDR greater than 0 at the 1-

year follow-up were a prior history of stroke (43.2% vs. 7.41%, p = 0.008) and having more than 

5 microbleeds (p = 0.046). When all factors in Supplemental Table S4.4 were assessed in a 

single model, none significantly predicted CDR > 0. When history of stroke and 5+ microbleeds 

were combined into a single model, only history of stroke remained significant (p = 0.01). 

4.4 Discussion 
We examined how MRI measures of stroke and AD biomarkers differed by race and 

presence of acute stroke. We did not see evidence that preclinical AD is a risk factor for stroke or 

predicts post-stroke dementia, supporting the idea that vascular disease and amyloid pathology 

are separate disease mechanisms that each may lead to dementia. However, we found that AAs 

are more likely to have vascular pathology observable on MRI than NHWs. While outside our 

original aims, our finding that AAs were more likely to have 5 or more microbleeds suggests 

clinical trials are likely turning away larger numbers of AA volunteers due to this cutoff.  

We did not see a higher risk of post-stroke dementia in AAs, in contradistinction to what 

previous studies have reported (Desmond et al., 2000; Douiri et al., 2013; Levine et al., 2015; 

Pendlebury and Rothwell, 2009; Stansbury et al., 2005), but this may be due to the sample size 

and localized recruitment (St. Louis) of this study. Our results also differed from a previous 

paper (John C Morris et al., 2019) which observed racial differences in hippocampal volume and 
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used a sample independent from the acute stroke participants in this study. The previously 

observed lack of racial difference in amyloid PET, however, was replicated in this study (John C 

Morris et al., 2019). Previous studies have also strongly suggested that AAs are more likely to be 

APOE4 carriers (Neill R Graff-Radford et al., 2016; Green, 2002; Manly and Mayeux, 2019; 

Mayeda et al., 2016; Tang et al., 2001). The ADRC group was not representative of this, and the 

acute stroke group replicated only the racial difference in APOE4. As such, we were unable to 

test for racial difference mediated by these factors. Similarly, the acute stroke group that had 1-

year follow-up had a lower frequency of APOE4 than the original group, which may have 

impacted the lack of association we saw between preclinical AD and post-stroke dementia. 

While we have related APOE4 and race in this paper, this is not meant to suggest that genetics as 

opposed to racism is the main driver of racial disparities in health (Boyd et al., 2020). Structural, 

interpersonal, and internalized racism can be attributed to all of the other risk factors we adjusted 

for as well as the racial differences that persisted even after this adjustment was made (Williams 

and Ovbiagele, 2020). 

One limitation of this study is the limited statistical power driven by the small number of 

participants, though our enrollment matched or surpassed similar studies. Another limitation of 

this study is that we were unable to assess a cardiovascular risk score; all established 

cardiovascular risk scores require a cholesterol reading, which was not collected at time of the 

study. We instead examined HbA1c and blood pressure individually. Finally, differences by 

stroke status, especially in regards to demographic variables, may be due to differences in cohort 

selection. The acute stroke group came from a community sampling at two local hospitals, while 

the ADRC group includes volunteers from AD research studies. The low historical inclusion of 

AAs in research studies means they are particularly pursued as volunteers in the Knight ADRC, 
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and so may better represent the general community than their NHW counterparts who may be 

self-selecting from a family history of dementia. This idea is supported by the unusually high 

rate of family history of dementia seen in the NHW ADRC group but not the AA ADRC group.  

 While the community sampling of stroke patients makes it more difficult to interpret 

differences by stroke status, it makes our racial comparisons within the acute stroke group more 

likely to generalize. This analysis is unique as the intersection of stroke and race in biomarkers 

of preclinical AD has not been previously explored. Our data supports the idea that preclinical 

AD does not increase the risk for a stroke nor increase the likelihood developing post-stroke 

dementia. Future studies should attempt to replicate this in a larger cohort. It would be 

particularly important to assess regional information of the vascular pathologies, which were not 

examined in this study but have been shown to impact risk of post-stroke dementia (Zhao et al., 

2018). Future work should also examine proteinopathies other than amyloid which may be 

affecting the development of post-stroke dementia.  
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4.6 Supplemental 
Supplemental Figure S4.1: Continuous Demographic Measures 

A        B  

   

C        D 

  

Supplemental Figure S4.1 displays boxplots of the participants’ age, years of education, body 

mass index, and hemoglobin A1c, with data separated by race (AA or NHW) and cohort (acute 

stroke or ADRC comparison). 

A. Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 
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B. Missing data: 0 AA ADRC, 1 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

C. Missing data: 1 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 2 NHW Stroke 

D. Missing data: 36 AA ADRC, 3 AA Stroke, 22 NHW ADRC, 9 NHW Stroke 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; NHW: 

Non-Hispanic White  
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Supplemental Figure S4.2: Longitudinal MMSE Models by Stroke and Race 

 

Supplemental Figure S4.2 displays the linear mixed effects models fit to the longitudinal MMSE 

data, with separate models by race (AA or NHW) and cohort (acute stroke or ADRC 

comparison). The shading around each line represents the standard error associated with the 

estimated line from the model. 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; MMSE: 

Mini Mental State Exam; NHW: Non-Hispanic White  
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Supplemental Table S4.1: Demographics When Stroke is Defined by Radiologic Presence of Infarct 

 

AA NHW 

Race 

Difference 

(p) 

Stroke p-value 

Within 

AAs 

Within 

NHWs 

Participants, n    N/A N/A 

ADRC Group 80 73 0.57   

Stroke Group 45 42 0.75   

Age (y), mean (SD)     0.99 0.01 

ADRC Group 74.6 (7.25) 73.0 (5.85) 0.53   

Stroke Group 75.0 (7.14) 77.0 (7.01) 0.43   

Male, n (%)    0.30 0.06 

ADRC Group 28 (35.0) 30 (41.1) 0.44   

Stroke Group 20 (44.4) 25 (59.5) 0.16   

Education (years), mean (SD)      < 0.001  < 0.001 

ADRC Group 14.4 (2.75) 15.4 (2.89) 0.14   

Stroke Group 12.2 (2.12) 12.8 (2.64) 0.80   

Family history of dementia, n (%)a    0.34 0.003 

ADRC Group 23 (29.1) 40 (55.6) 0.001   

Stroke Group 6 (20.0) 7 (22.6) 0.81   

APOE4 (n, % with an ε4 allele)b    0.24 0.82 

ADRC Group 36 (46.2) 29 (39.7) 0.43   

Stroke Group 23 (57.5) 15 (37.5) 0.08   

BMI (kg/m2), mean (SD)c      > 0.99 0.96 

ADRC Group 29.2 (5.13) 26.8 (5.72) 0.02   

Stroke Group 29.3 (5.39) 27.3 (4.02) 0.29   

Hemoglobin A1c (%), mean (SD d    0.002 0.18 

ADRC Group 5.87 (0.82) 5.70 (0.51) 0.88   

Stroke Group 6.73 (1.64) 6.20 (1.30) 0.17   

Mean Arterial Pressure (mm Hg), mean (SD)e    0.12 0.10 

ADRC Group 93.8 (11.5) 91.7 (9.68) 0.73   
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AA NHW 

Race 

Difference 

(p) 

Stroke p-value 

Within 

AAs 

Within 

NHWs 

Stroke Group 98.7 (14.2) 97.3 (14.5) 0.94   

Hypertension, n (%)e     < 0.001 0.17 

ADRC Group 22 (27.5) 25 (35.2) 0.31   

Stroke Group 28 (62.2) 19 (48.7) 0.22   

Reported Previous Stroke, n (%)f    0.04 0.67 

ADRC Group 15 (19.0) 9 (12.5) 0.28   

Stroke Group 16 (36.4) 6 (15.4) 0.04   

History of Diabetes, n (%)g     < 0.001 0.001 

ADRC Group 3 (3.8) 2 (2.8) 0.74   

Stroke Group 12 (27.3) 11 (28.2) 0.92   

a) Missing data: 0 AA ADRC, 16 AA Stroke, 0 NHW ADRC, 12 NHW Stroke 

b) Missing data: 2 AA ADRC, 5 AA Stroke, 0 NHW ADRC, 2 NHW Stroke 

c) Missing data: 1 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 2 NHW Stroke 

d) Missing data: 36 AA ADRC, 3 AA Stroke, 22 NHW ADRC, 9 NHW Stroke 

e) Missing data: 0 AA ADRC, 0 AA Stroke, 3 NHW ADRC, 3 NHW Stroke 

f) Missing data: 0 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 3 NHW Stroke 

g) Missing data: 1 AA ADRC, 1 AA Stroke, 1 NHW ADRC, 3 NHW Stroke 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; APOE4: Apolipoprotein E ε4; BMI: Body 

mass index; NHW: Non-Hispanic White; SD: Standard deviation 
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Supplemental Table S4.2: Group Differences by Race and Stroke Status When Stroke is Defined by Radiologic Presence of 

Infarct 

  

AA NHW 

Race p-value 

Unadjusted 

Models 

Adjusted 

Modelsd 

A
m

y
lo

id
 P

E
T

 PIB Mean Cortical Binding Potential, mean (SE)a 0.12 (0.04) 0.11 (0.03) 0.55 0.87 

ADRC Group 0.20 (0.05) 0.16 (0.05) 0.90 0.91 

Stroke Group 0.06 (0.05) 0.07 (0.05) 0.37  > 0.99 

PIB Positive, n (%)a 16 (22.5) 17 (25.0) 0.80 0.51 

ADRC Group 10 (31.3) 6 (18.8) 0.25 0.68 

Stroke Group 6 (15.4) 11 (30.6) 0.12 0.57 

Q
u

a
n

ti
ta

ti
v
e 

M
R

I 

Total Hippocampal Volume (normalized), mean (SE)b 6750 (122) 6740 (126) 0.57 0.94 

ADRC Group 6590 (132) 6830 (123) 0.46 0.54 

Stroke Group 6560 (197) 6420 (205) 0.99 0.96 

WMH Volume, mean (SE)c 28400 (10100) 51600 (13700) 0.33 0.18 

ADRC Group 27900 (17500) 62200 (23400) 0.80 0.65 

Stroke Group 31500 (9700) 51800 (12100) 0.98 0.56 

R
a
d

io
lo

g
ic

 R
ea

d
 o

f 
M

R
I 

Presence of Large Infarcts, n (%) 34 (14.2) 27 (11.3) 0.51 0.86 

ADRC Group 0 (0.0) 0 (0.0) e e 

Stroke Group 34 (75.6) 27 (64.3) e e 

Presence of Small Infarcts, n (%) 34 (14.2) 29 (12.1) 0.73 0.90 

ADRC Group 0 (0.0) 0 (0.0) e e 

Stroke Group 34 (75.6) 29 (69.1) e e 

Leukoaraiosis Moderate-Severe, n (%) 46 (19.2) 26 (10.8) 0.01 0.13 

ADRC Group 19 (23.8) 9 (12.3) 0.07 0.18 

Stroke Group 27 (60.0) 17 (40.5) 0.07 0.33 

Presence of Microbleeds, n (%) 41 (17.1) 26 (10.8) 0.04 0.03 

ADRC Group 15 (18.8) 6 (8.2) 0.07 0.047 

Stroke Group 26 (57.8) 20 (47.6) 0.34 0.40 

Microbleeds ≥ 5, n (%) 19 (7.9) 11 (4.6) 0.09 0.04 

ADRC Group 6 (7.5) 1 (1.4) 0.11 0.05 
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a) Missing data: 48 AA ADRC, 6 AA Stroke, 41 NHW ADRC, 6 NHW Stroke 

b) Missing data: 3 AA ADRC, 10 AA Stroke, 0 NHW ADRC, 13 NHW Stroke 

c) Missing data: 71 AA ADRC, 10 AA Stroke, 64 NHW ADRC, 17 NHW Stroke 

d) Adjusted models have controlled for baseline age, family history of dementia, APOE4, education, sex, and hypertension 

e) Model does not include stroke status variable because it is defined by the outcome 

AA: African American; ADRC: Alzheimer Disease Research Center comparison cohort; APOE4: Apolipoprotein E ε4; MMSE: Mini 

Mental State Exam; MRI: Magnetic resonance imaging; NHW: Non-Hispanic White; PET: Positron emission tomography; PIB: [11C]-

Pittsburgh Compound B; SE: Standard error; WMH: White matter hyperintensities  

Stroke Group 13 (28.9) 10 (23.8) 0.59 0.37 
 

MMSE, mean (SE) 26.6 (0.35) 27.9 (0.34)  < 0.001 0.008 

ADRC Group 26.3 (0.39) 27.3 (0.37) 0.05 0.23 

Stroke Group 26.4 (0.56) 28.2 (0.55) 0.03 0.09 
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Supplemental Table S4.3: Baseline Data of Acute Stroke Participants with and without Follow-Up 

 
With Follow-Up Without Follow-Up p-value 

Participants, n (by Race) 55 

(27 AA, 28 NHW) 

26 

(15 AA, 11 NHW) 0.34 

Age (y), mean (SD)a 75.6 (7.06) 77.4 (6.57) 0.32 

Male, n (%)a 23 (41.8) 16 (69.6) 0.03 

Education (years), mean (SD)a 12.2 (2.66) 12.2 (1.85) 0.94 

Family history of dementia, n (%)b 8 (16.7) 0 (0) 1.00 

APOE4 (n, % with an ε4 allele)c 19 (34.6) 13 (81.3) 0.003 

BMI (kg/m2), mean (SD) a 28.8 (4.86) 27.2 (4.76) 0.18 

Hemoglobin A1c (%), mean (SD)d 6.67 (1.79) 6.36 (0.82) 0.45 

Mean Arterial Pressure (mm Hg), mean (SD)e 97.8 (14.4) 98.9 (14.0) 0.75 

Hypertension, n (%)e 31 (58.49) 12 (54.55) 0.75 

PIB Mean Cortical Binding Potential, mean (SE)f 0.09 (0.21) 0.07 (0.16) 0.62 

PIB Positive, n (%)f 13 (23.6) 5 (23.8) 0.99 

Total Hippocampal Volume (normalized), mean (SD)g 6500 (804) 6210 (914) 0.25 

WMH Volume, mean (SD)h 37200 (33200) 46000 (28000) 0.31 

Presence of Large Infarcts, n (%)a 40 (72.7) 17 (73.9) 0.91 

Presence of Small Infarcts, n (%)a 36 (65.5) 16 (69.6) 0.73 

Leukoaraiosis Moderate-Severe, n (%)a 29 (52.7) 11 (47.8) 0.69 

Presence of Microbleeds, n (%)a 30 (54.6) 12 (52.2) 0.85 

Microbleeds ≥ 5, n (%)a 16 (29.1) 7 (30.4) 0.91 

MMSE, mean (SD)a 26.9 (2.91) 25.6 (3.27) 0.10 

Coronary Artery Disease, n (%)i 15 (28.3) 6 (28.6) 0.98 

Statin Use, n (%)i 28 (52.8) 10 (47.6) 0.68 

Reported Previous Stroke, n (%)i 13 (24.5) 8 (38.1) 0.25 

History of Diabetes, n (%)i 14 (26.4) 9 (42.9) 0.17 

NIHSS, mean (SD)j 4.58 (3.12) 7.15 (4.37) 0.01 

TOAST Classification, n (%)i    
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With Follow-Up Without Follow-Up p-value 

Large artery atherosclerosis 4 (7.55) 5 (23.8) Ref 

Cardioembolism 14 (26.4) 6 (28.6) 0.20 

Small artery occlusion 22 (41.5) 5 (23.8) 0.04 

Undetermined etiology 13 (24.5) 5 (23.8) 0.17 

a) Missing data: 0 With Follow-up, 3 Without Follow-up 

b) Missing data: 7 With Follow-up, 24 Without Follow-up 

c) Missing data: 0 With Follow-up, 10 Without Follow-up 

d) Missing data: 8 With Follow-up, 4 Without Follow-up 

e) Missing data: 2 With Follow-up, 4 Without Follow-up 

f) Missing data: 0 With Follow-up, 5 Without Follow-up 

g) Missing data: 16 With Follow-up, 10 Without Follow-up 

h) Missing data: 11 With Follow-up, 6 Without Follow-up 

i) Missing data: 2 With Follow-up, 5 Without Follow-up 

j) Missing data: 3 With Follow-up, 6 Without Follow-up 

AA: African American; APOE4: Apolipoprotein E ε4; BMI: Body mass index; MMSE: Mini Mental State Exam; NHW: Non-

Hispanic White; NIHSS: National Institutes of Health Stroke Scale; PIB: [11C]-Pittsburgh Compound B; SD: Standard deviation; 

TOAST: Trial of Org 10172 in Acute Stroke Treatment; WMH: White matter hyperintensities  
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Supplemental Table S4.4: Baseline Data of Acute Stroke Participants By CDR at 1 Year Follow-Up 

 
CDR = 0 CDR > 0 p-value 

Participants, n (by Race) 29 

(12 AA, 17 NHW) 

26 

(15 AA, 11 NHW) 
0.23 

Age (y), mean (SD) 76.6 (8.11) 74.61 (5.66) 0.30 

Male, n (%) 12 (41.4) 11 (42.3) 0.94 

Education (years), mean (SD)  12.0 (2.74) 12.5 (2.6) 0.46 

Family history of dementia, n (%)a 2 (8.7) 6 (24.0) 0.17 

APOE4 (n, % with an ε4 allele) 8 (27.6) 11 (42.3) 0.25 

BMI (kg/m2), mean (SD)  28.8 (4.76) 28.7 (5.07) 0.92 

Hemoglobin A1c (%), mean (SD)b 6.51 (1.54) 6.83 (2.03) 0.53 

Mean Arterial Pressure (mm Hg), mean (SD)c 97.9 (15.6) 97.6 (13.2) 0.93 

Hypertension, n (%)c 16 (57.1) 15 (60) 0.83 

PIB Mean Cortical Binding Potential, mean (SE) 0.05 (0.15) 0.14 (0.25) 0.14 

PIB Positive, n (%) 5 (17.2) 8 (30.8) 0.24 

Total Hippocampal Volume (normalized), mean (SD)d 6420 (781) 6580 (842) 0.54 

WMH Volume, mean (SD)e 34700 (38500) 40000 (26900) 0.60 

Large Infarcts Positive, n (%) 21 (72.4) 19 (73.1) 0.96 

Small Infarcts Positive, n (%) 17 (58.6) 19 (73.1) 0.26 

Leukoaraiosis Positive, n (%) 13 (44.8) 16 (61.5) 0.22 

Presence of Microbleeds, n (%) 15 (51.7) 15 (57.7) 0.66 

Microbleeds ≥ 5, n (%) 5 (17.2) 11 (42.3) 0.046 

MMSE, mean (SD) 26.7 (3.09) 27.1 (2.73) 0.62 

Coronary Artery Disease, n (%)f 6 (22.2) 9 (34.6) 0.32 

Statin Use, n (%)f 14 (51.9) 14 (53.9) 0.88 

Reported Previous Stroke, n (%)f 2 (7.41) 11 (42.3) 0.008 

History of Diabetes, n (%)f  5 (18.52) 9 (34.62) 0.19 

NIHSS, mean (SD)g  4.23 (2.72) 4.92 (3.5) 0.42 

TOAST Classification, n (%)f    
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CDR = 0 CDR > 0 p-value 

Large artery atherosclerosis 1 (3.7) 3 (11.5) Ref 

Cardioembolism 7 (25.9) 7 (26.9) 0.39 

Small artery occlusion 11 (40.7) 11 (42.3) 0.37 

Undetermined etiology 8 (29.6) 5 (19.2) 0.22 

a) Missing data: 6 CDR = 0, 1 CDR > 0 

b) Missing data: 5 CDR = 0, 3 CDR > 0 

c) Missing data: 1 CDR = 0, 1 CDR > 0 

d) Missing data: 9 CDR = 0, 7 CDR > 0 

e) Missing data: 6 CDR = 0, 5 CDR > 0 

f) Missing data: 2 CDR = 0, 0 CDR > 0 

g) Missing data: 3 CDR = 0, 0 CDR > 0 

AA: African American; APOE4: Apolipoprotein E ε4; BMI: Body mass index; CDR: Clinical Dementia Rating; MMSE: Mini Mental 

State Exam; NHW: Non-Hispanic White; NIHSS: National Institutes of Health Stroke Scale; PIB: [11C]-Pittsburgh Compound B; SD: 

Standard deviation; TOAST: Trial of Org 10172 in Acute Stroke Treatment; WMH: White matter hyperintensities  
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Chapter 5: White Matter Hyperintensities in 

Preclinical Alzheimer Disease 
Cerebral white matter hyperintensities in older adults are primarily attributed to small 

vessel ischemic disease. However, white matter hyperintensities are more prevalent in Alzheimer 

disease dementia and it is unclear if they are from co-morbid cerebrovascular disease or an 

aspect of Alzheimer disease itself, potentially related to β-amyloid deposition in arterial walls. If 

white matter hyperintensities are increased in the preclinical AD stage, it would support the 

hypothesis that they are caused directly by Alzheimer disease. In this study we examine if white 

matter hyperintensities are different in both the preclinical Alzheimer disease stage and in 

Alzheimer disease dementia using data from 489 participants in the Knight Alzheimer Disease 

Research Center. These participants were classified as cognitively normal (amyloid negative and 

non-demented), preclinical Alzheimer disease (amyloid positive and non-demented), or 

Alzheimer disease dementia (amyloid positive and demented), with groups matched in age. We 

use machine learning algorithms to classify participants into their diagnostic categories using 

only white matter hyperintensity data either from the entire white matter or from predefined 

regions of the white matter that may be associated with Alzheimer disease. The resulting 

algorithms were able to separate Alzheimer disease dementia from preclinical Alzheimer disease, 

even when only voxels from the dorsal parietal or posterior regions were used as input. The 

algorithms could not separate preclinical Alzheimer disease from the amyloid negative controls, 

suggesting that white matter hyperintensities are not different in the preclinical stage of 

Alzheimer disease. These results suggest that white matter hyperintensities may be independent 

from Alzheimer disease or may not develop until later stages in the disease.  



140 

5.1 Introduction 
White matter hyperintensities (WMH) of presumed vascular origin are seen as markers of 

small vessel disease, but the specific pathologies involved are numerous and not well understood 

(Alber et al., 2019; Hase et al., 2018; Park and Moon, 2016; Wardlaw et al., 2019). Many things 

influence the volume of WMHs, including modifiable factors such as blood pressure (Alber et 

al., 2019; Salvadó et al., 2019) as well as non-modifiable factors such as Black race, female sex, 

and apolipoprotein E ε4 (APOE4) allele presence. WMH lesions by themselves can lead to 

vascular dementia with a slow continuous progression as the lesion count builds (Alber et al., 

2019). Additionally, WMHs are also associated with other types of dementia including 

Alzheimer disease (AD) (Alosco et al., 2018; Bos et al., 2018; Gordon et al., 2015; Joki et al., 

2018), as well as normal aging in unimpaired older adults (Alber et al., 2019; Salvadó et al., 

2019). 

To date, there is little consensus as to whether WMHs are an aspect of AD or if they 

simply co-occur and have an additive effect on the brain (Koncz and Sachdev, 2018). A prior 

review of the literature suggests amyloid and WMHs are independent yet additive (Roseborough 

et al., 2017). WMH’s independence from AD would help explain WMH’s complex relationship 

with cognition. More specifically, WMH volume does not impact cognitive progression in AD 

patients (Eldholm et al., 2018), but it does predict conversion from normal cognition to mild 

cognitive impairment (MCI) (Bangen et al., 2018b). Furthermore, WMHs have also been linked 

to perceptual speed in unimpaired older adults (Arvanitakis et al., 2016). In those who are 

cognitively unimpaired or have MCI, one study reported that amyloid and WMHs have an 

individual but not an additive effect on cognitive decline (Bos et al., 2017), while another did 

report an additive effect of amyloid and Framingham risk scores (Rabin et al., 2018).  
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Conversely, there is some evidence for a direct interaction between WMHs and AD. This 

is strongest in autosomal dominant AD, which showed that WMHs increase in the preclinical 

stage of the disease, six years before dementia onset (Lee et al., 2018). This result was shown to 

be partly due to increased cerebral amyloid angiopathy (CAA) (Lee et al., 2018), which is a 

specific type of cerebral small vessel disease that involves amyloid build up in the vasculature 

and is distinct but related to AD (Charidimou et al., 2017). Even in non-demented older adults, 

amyloid positron emission tomography (PET) correlated with a periventricular pattern of WMHs 

and was associated with microbleeds in a way that suggests the relationship is due to CAA 

(Graff-Radford et al., 2019). Other studies have shown an association of amyloid and WMHs, in 

particular periventricular regions (Marnane et al., 2016), and an association of baseline WMHs 

and an increase in amyloid load around two years later (Grimmer et al., 2012). 

 Unlike in autosomal dominant AD, it is not yet clear if WMHs are different in the 

preclinical stage of sporadic AD. If they are changed in this preclinical stage, it would provide 

evidence that WMHs are a core aspect of AD. The opposing theory that the WMHs seen in AD 

are a completely separate pathology that adds to cognitive impairment would not explain a 

change in the preclinical stage where there is no cognitive impairment.  

5.2 Methods 

5.2.1 Participants 

The 489 participants in this study were collated from Knight Alzheimer Disease Research 

Center (ADRC) studies (collected 2009-2020) using the 17th Knight ADRC data freeze. Details 

of recruitment at the ADRC have been outlined previously (John C Morris et al., 2019). All 

procedures in this study were Health Insurance Portability and Accountability Act (HIPAA) 

compliant, approved by the Washington University Institutional Review Board, and gained 
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informed consent for all participants. Participants were included if they had an MR scan with 

both a T1 and a Fluid Attenuated Inversion Recovery (FLAIR) image (needed for WMH 

processing), an amyloid PET scan within 1 year of the MR, and a Clinical Dementia Rating™ 

(CDR™) (Morris, 1993) within 1 year of the MR.  

 Participants were placed in the AD dementia group if they had an amyloid positive PET 

scan (see section 5.2.2 below), had a CDR > 0, and were evaluated by a clinician as having 

dementia. Participants who were amyloid positive, had a CDR = 0, and evaluated clinically as 

cognitively normal were placed in the preclinical AD group. Finally, participants who were 

amyloid negative, had a CDR = 0, and evaluated clinically as cognitively normal were placed in 

the cognitively normal (CN) group. Participants who had a CDR > 0 and amyloid negative (non-

AD dementia) were excluded, as were participants with discordant CDR status and clinical 

evaluation of impairment. While the Knight ADRC data contains longitudinal data, the 

assembled dataset uses only cross-sectional data, resulting in only one MRI used per participant. 

 Participants were also split into a ‘Training’ cohort used to train the machine learning 

algorithms, and a ‘Test’ cohort used to independently evaluate the algorithm’s performance. The 

AD dementia group was split in half randomly, with one group of 41 assigned to the ‘Training’ 

cohort and the other group of 40 to the ‘Test’ cohort. The Test cohort was completed by 

matching the AD dementia Test cohort 1-to-1 by age to participants from the preclinical AD and 

cognitively normal groups, for a total of 120 participants. The Training cohort was similarly 

completed, but used 5-to-1 matching for the cognitively normal group and 3-to-1 matching for 

the preclinical AD group for a total of 369.  
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5.2.2 Clinical Assessment and Demographics 

Experienced clinicians, blinded to amyloid status, evaluated each participant for the 

possibility of a clinical diagnosis of dementia. Their assessment, outlined previously (Morris et 

al., 2006), integrated results from a semi-structured interview conducted with the participant and 

a knowledgeable collateral source, a thorough neurological examination, and bedside measures 

of cognitive function. Included in this was the CDR (Morris, 1993), which assessed possible 

decline in cognitive and functional abilities relative to the participant’s previously attained 

levels, and the Mini Mental State Exam (MMSE) (Folstein et al., 1975).  

Demographic and clinical data such as age, gender, APOE4 status (defined as having one 

or more ε4 alleles), self-reported race, years of education, Hachinski score, blood pressure, body 

mass index (BMI), smoking status, and self-reported history of diabetes and hypertension were 

also collected. Hachinski score is a clinical tool used to separate vascular and AD dementia 

based on a variety of factors such as history of stroke and focal neurologic signs and symptoms, 

(Hachinski et al., 1975; Moroney et al., 1997). We use the term ‘gender’ to match the 

terminology of the questionnaire used in the study, but participants were offered only ‘Male’ and 

‘Female’ as options and sex was not assessed separately. All the clinical and demographic data 

listed above were collected within 365 days from the magnetic resonance imaging (MRI) 

session. Median time difference from MRI was 85 days for most measures, was 82 days for 

Hachinski, and was 78 days for smoking status, history of hypertension, and history of diabetes. 

Some of this data was not available for all patients: 9 participants are missing APOE4 status, 320 

are missing Hachinski scores, 1 participant is missing blood pressure, 2 are missing BMI, 130 are 

missing smoking status, 131 are missing history of diabetes, and 133 are missing history of 

hypertension.  
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5.2.3 MR Imaging 

The MR imaging occurred on 3T Siemens scanners: n = 318 on Siemens Biograph mMR 

(PET/MR), n = 99 on Siemens Magnetom Vida, and n = 72 on Siemens 3T Trio Tim. 

Participants had a structural, T1-weighted magnetization-prepared, rapid gradient-echo 

(MPRAGE) MRI collected with a resolution of either 1 × 1 × 1.25 mm or 1 × 1 × 1 mm, as well 

as a FLAIR image. The T1-weighted images underwent regional tissue segmentation with 

FreeSurfer (version 5.3) (Fischl, 2012). Regional volumes (cortical and subcortical) were 

adjusted for head size with a regression scaling approach using intracranial volume (Buckner et 

al., 2004). Left and right hemispheric data were combined by summing volumes and averaging 

cortical thicknesses. 

WMHs were segmented using the Lesion Segmentation Tool (Schmidt et al., 2012) in 

SPM8. This segmentation tool was selected as it has been previously evaluated in populations of 

normal aging with the WMHs being of presumed vascular origin (Heinen et al., 2019; Ribaldi et 

al., 2021; Tubi et al., 2020; Waymont et al., 2020). WMH maps were registered to 2mm 

Montreal Neurosciences Institute 152 (MNI152) space in FSL. This resulted in each voxel being 

assigned a probability from 0 to 1 of being a WMH. This probability data, as well as the data 

binarized at a threshold of 0.5 were used. Whenever counts of WMHs in units of voxels are 

mentioned, it is using this 0.5 threshold binary. The specific threshold used likely is not 

important as there were few values in the 0.2-0.8 range. This is evidenced when summing the 

binarized voxel counts and summing the raw probabilities gave almost the same result within 

individual participants, with an overall correlation R of 0.99 (p < 0.001).  

The white matter voxels were then separated into 5 predefined regions (displayed in 

Figure 5.1) (Phuah et al., 2019). These regions of interest (ROIs) were developed from voxel-
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level WMH maps from 1,046 participants in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database with a mix of diagnoses (cognitively normal to AD dementia) through a k-

means clustering unsupervised machine learning algorithm. The relative WMH burden in each 

resulting regions was then linked to Alzheimer-related factors. The Juxtacortical pattern was 

linked to a diagnosis of probable CAA, while the Dorsal Parietal pattern associated with amyloid 

PET levels and APOE4 status. By looking specifically within these regions, we hoped to assess 

the WMHs at a medium level of detail, between the very rough measure of total WMH volume, 

and the extremely detailed measure of examining all white matter voxels in the brain.  
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Figure 5.1: Predefined Regions of White Matter Hyperintensities Clusters (Phuah et al., 

2019) 
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5.2.3 PET Imaging 

Amyloid PET imaging on 200 participants was done using [11C]-Pittsburgh compound B 

(PIB), with a dosage of ~13 mCi and data collected 30-60 minutes post-injection. The remaining 

289 participants were imaged using Florbetapir ([18F]-AV45), with a dosage of ~10 mCi and data 

collected 50-70 minutes post-injection.  

 PET images were processed with an in-house pipeline (Su, 2021) using FreeSurfer-

derived regions and a cerebellar cortex reference region. Signal spillover was addressed with 

partial volume correction, specifically with a regional spread function (geometric transfer matrix) 

technique based on the scanner point spread function and the relative distance between regions 

(Su et al., 2015, 2013). The mean cortical standard uptake value ratio with regional spread 

function applied (SUVR RSF) was defined as the average SUVR RSF from the precuneus, 

prefrontal cortex, gyrus rectus, and lateral temporal regions (Su et al., 2019). 

A negative amyloid PET scan was defined as having a mean cortical SUVR RSF < 1.42 

(Centiloid < 16.4) for PIB PET or SUVR RSF < 1.19 (Centiloid < 20.6) for Florbetapir PET. The 

Centiloid conversion process, used to more easily compare the two amyloid tracers, is 

documented in detail in the initial Centiloid paper (Klunk et al., 2015), with specific equations in 

follow-up papers (Su et al., 2019, 2018). Harmonization procedures such as this are imperfect, 

and so to remain as accurate as possible we used cutoffs determined individually for each tracer 

and then converted into Centiloid, as opposed to a unified Centiloid cutoff. PET imaging 

occurred 0-349 (median 0) days from MRI. 
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5.2.3 Statistics 

All analyses were done in R version 3.5.3. The demographic variables listed in Table 5.1 

were compared across diagnostic groups using analyses of variance (ANOVAs). Significant 

ANOVAs were further examined pairwise using student’s t-tests for continuous variables and 

Chi-square tests for categorical variables. A Bonferroni-Holm corrected p-value of < 0.05 was 

considered significant. The total number of WMH voxels were similarly evaluated with 

ANOVAs and follow-up t-tests or chi-squared tests for significant associations, as were the total 

WMH voxels within each of the five previously defined white matter ROIs.  

The primary group differences found – amyloid, APOE4, and MMSE, were explored 

further with linear models in order to assess their ability to predict WMH volumes. Each factor 

was assessed separately and included age as a covariate. These linear models were first run on all 

participants, and then explored further by considering them within each diagnostic group 

separately, and on all participants except the AD dementia group. 

5.2.4 Machine Learning 

 To probe for more complex patterns of WMHs, we used several machine learning 

classification algorithms within R’s ‘caret’ package (Kuhn et al., 2021). The data was 

preprocessed by removing the voxels with near zero variance across the Training cohort and z-

scoring the remaining voxels. Near zero variance was defined using the default settings in R, 

such that variables are removed if they have one unique value (zero variance), or the variable has 

both few unique values as well as a high ratio of the most common value to the second most 

common value. Specifically, the ratio of the most common variable to the second most common 

variable is above 95/5, and the number of unique values divided by the total number of 

participants is below 10. The end result of this process is the removal of voxels for which nearly 
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every participant had a 0% probability of that voxel being a WMH. All the preprocessing was 

run on the Training cohort, and then applied identically to the Test cohort to prevent data 

leakage.  

The Training cohort was then used to run 3 different algorithms: Support Vector Machine 

(method = ‘svmLinearWeights’), random forest (method = ranger), and stochastic gradient 

boosting (method = ‘gbm’). Each model used 10-fold cross-validation with five repeats and a 

tuning grid to optimize parameters. The optimal model (as determined by the receiver operating 

characteristic’s area under the curve (AUC)) from the tuning grid is then automatically selected 

and applied to the Test cohort.  

Additional consideration was given to the problem of class imbalance – the cognitively 

normal group was much larger than the preclinical AD group, which was much larger than the 

AD dementia group. As such, we evaluated several methods known to improve machine learning 

models in the case of class imbalance. In total, we tested whether models could be improved by 

adding case weights of three different strengths, binning the voxels at a threshold of 0.5, up-

sampling the smaller group, or applying principal component analysis (keeping components that 

in total explained 95% of variance) to the data before training. The lightest, 1x case weights 

equalized the groups, while the 2x weights doubled the smaller group, and the 3x weights tripled 

it. As the 2x case weights were found to improve models more than using the 1x, 3x, or no 

weights, the other methods were done in addition to the 2x case weights (i.e., 2x weights and 

binning, 2x weights and up-sampling, 2x weights and PCA).  

Based on the Test cohort accuracy, we determined the optimal preprocessing steps given 

the class imbalance and provide detailed metrics from the models run in this optimal manner. 
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Test cohort accuracy p-values are calculated by determining if the accuracy is above the no 

information rate using a binomial exact test; no information gives a 50% accuracy in our case as 

the Test cohort has equal group sizes. To ensure the same criteria is applied to all models, we 

used a Bonferroni correction instead of a Bonferroni-Holm. As we trained three different 

algorithms and used 6 different sets of white matter voxels (all white matter voxels and ROIs 1-

5), our Bonferroni correction was for 18 tests, resulting in a significance level of p < 0.0028 for 

each. Given our sample size, this meant models with a Test cohort accuracy of at least 66% are 

considered statistically significant.  

5.3 Results 

5.3.1 Demographic and Clinical Measures 

Of the 489 participants in this study, 245 were assigned to the cognitively normal group, 

163 were assigned to the preclinical AD group, and 81 were assigned to the AD dementia group. 

The demographics for these three groups are presented in Table 5.1. Comparing the cognitively 

normal group to the preclinical AD group showed that the cognitively normal group had lower 

rates of APOE4 alleles (22.0% vs. 53.8%, corrected p < 0.001), lower amyloid (by definition, 

3.36 vs. 52.1 Centiloids, corrected p < 0.001), and higher BMI (28.6 vs. 26.4, corrected p < 

0.001).  

All of these differences except for the difference in BMI were also seen when comparing 

the cognitively normal group to the AD dementia group; the cognitively normal group had lower 

rates of APOE4 alleles (22.0% vs. 74.7%, corrected p < 0.001) and lower amyloid levels (by 

definition, 3.36 vs. 85.1 Centiloids, corrected p < 0.001). In addition, the cognitively normal 

group had higher average MMSE than the AD dementia group (29.2 vs. 25.0, corrected p < 

0.001).  
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Comparing the preclinical AD group to the AD dementia group showed similar findings; 

the preclinical AD group had lower rates of APOE4 alleles (53.8% vs. 74.7%, corrected p = 

0.006), higher MMSE scores (29.0 vs. 25.0, corrected p < 0.001), and lower amyloid levels (52.1 

vs. 85.1 Centiloids, corrected p < 0.001). In summary, APOE4 rates and amyloid levels 

increased stepwise between the three groups, and MMSE was lowered within the AD dementia 

group.  

These same summary measures within just the Training cohort are in Supplemental Table 

S5.1, while measures within the Test cohort are in Supplemental Table S5.2. No significant 

differences were found when the cognitively normal, preclinical AD, and AD dementia groups in 

the Training cohort were compared to their Test cohort counterparts using ANOVAs.  

5.3.2 WMH Summary Measures 

 Within Table 5.1, Supplemental Table S5.1, and Supplemental Table S5.2 are the means 

and standard deviations for each of the WMH summary measures. This includes the total number 

of voxels classified as WMHs in the entire brain, as well as the number of voxels within each of 

the 5 predefined ROIs. The violin plots in Figure 5.2 show WMHs in each region split by 

diagnosis in order to give a more complete picture of each of these measures. These same plots 

within the Training and Test cohort can be seen in Supplemental Figure S5.1 and Supplemental 

Figure S5.2. Comparing the cognitively normal and preclinical AD groups yielded no significant 

differences. However, several measures indicated that the AD dementia group had higher WMHs 

than the cognitively normal group and preclinical AD group. The cognitively normal group had 

lower WMHs than the AD dementia group for total WMH voxels (1760 vs. 2690, corrected p = 

0.001), voxels in the Periventricular ROI (701 vs. 1050, corrected p < 0.001), voxels in the 

Dorsal Parietal ROI (209 vs. 313, corrected p = 0.007), and voxels in the Posterior ROI (193 vs. 
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320, corrected p < 0.001). Similarly, the preclinical AD group had lower WMHs than the AD 

dementia group for total WMH voxels (1690 vs. 2690, corrected p = 0.001), voxels in the 

Periventricular ROI (687 vs. 1050, corrected p < 0.001), voxels in the Dorsal Parietal ROI (195 

vs. 313, corrected p = 0.003), and voxels in the Posterior ROI (188 vs. 320, corrected p < 0.001). 

 We next used linear models to assess how the main factors differentiating the three 

diagnostic groups – amyloid, APOE4, and MMSE – relate to these group differences in WMHs. 

As we are now looking within groups our age-matching no longer controls for age, so age was 

included as a covariate for all models. When modeling WMHs using amyloid within all 

participants, WMH volumes in the Periventricular ROI (corrected p = 0.002) and in the Posterior 

ROI (corrected p = 0.002) were associated with amyloid. WMHs in the Periventricular ROI also 

significantly associated with APOE4 (corrected p = 0.02), while total WMHs (corrected p < 

0.001), the Juxtacortical ROI (corrected p = 0.03), the Deep White Matter ROI (corrected p = 

0.03), the Periventricular ROI (corrected p < 0.001), the Dorsal Parietal ROI (corrected p = 

0.01), and the Posterior ROI (corrected p < 0.001) all associated with MMSE. None of these 

relationships persisted in the combined cognitively normal and preclinical AD groups, or in the 

cognitively normal group, preclinical AD group, or AD dementia group by themselves (see 

Supplemental Table S5.3. This indicates that the originally observed relationships between 

WMHs and these factors is driven by group differences in the AD group and not necessarily the 

factors themselves.  
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Table 5.1: Demographics and WMH Summary Measures 

All 
Cognitively 

Normal 
Preclinical AD AD Dementia 

n 245 163 81 

CDR [0,0.5,1,2] 245,0,0,0 163,0,0,0 0,57,23,1 

Gender (% M) 42.9% 43.6% 51.9% 

Age, years (mean) 61.0-92.2 (73.5) 60.7-89.4 (74.2) 61.0-88.4 (74.0) 

MMSE (mean) 25-30 (29.2) 23-30 (29.0) 14-30 (25.0) 

APOE4, % with ε4 allele 22.0% 53.8% 74.7% 

Amyloid* – Centiloid (mean) -10.2-20.0 (3.36) 16.4-154 (52.1) 21.1-159 (85.1) 

Race, % non-Hispanic White 81.6% 90.2% 90.1% 

Education, years (mean) 11-20 (16.1) 8-22 (16.2) 6-20 (15.2) 

Mean Arterial Pressure (mean) 68-126 (93.4) 70-120 (92.5) 65-125 (94.3) 

Hypertensive Blood Pressure, % 62.3% 58.9% 66.7% 

History of Hypertension, % 51.4% 41.4% 45.8% 

Hachinski Score (mean) 0-4 (0.58) 0-1 (0.45) 0-3 (0.50) 

BMI (mean) 13-49 (28.6) 18-45 (26.4) 17-40 (27.4) 

History of Diabetes, % 14.4% 4.46% 6.94% 

Smoker, % 6.90% 2.65% 1.39% 

Total WMH voxels, mean (SD) 1760 (1780) 1690 (1890) 2690 (2140) 

Juxtacortical ROI  

WMH voxels, mean (SD) 
187 (296) 188 (373) 302 (532) 

Deep White Matter ROI  

WMH voxels, mean (SD) 
347 (543) 322 (615) 505 (640) 

Periventricular ROI 

WMH voxels, mean (SD) 
701 (535) 687 (518) 1050 (514) 

Dorsal Parietal ROI 

WMH voxels, mean (SD) 
209 (284) 195 (269) 313 (301) 

Posterior ROI 

WMH voxels, mean (SD) 
193 (178) 188 (168) 320 (214) 

* Mean Cortical SUVR RSF 

AD: Alzheimer disease; APOE4: Apolipoprotein E ε4; BMI: Body mass index; CDR: Clinical 

Dementia Rating; MMSE: Mini Mental State Exam; ROI: Region of interest; SD: Standard 

deviation; SUVR RSF: Standard uptake value ratio (regional spread function applied); WMH: 

White matter hyperintensities  
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Figure 5.2: White Matter Hyperintensity Volumes by Diagnosis 

  

Figure 5.2 shows the distribution of WMHs within the whole brain and within each of the 5 

predefined ROIs, shown separately for each diagnostic group. Note the y-axis is different in A, 

and that voxels are 2mm x 2mm.  
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ROI 1: Juxtacortical; ROI 2: Deep White Matter; ROI 3: Periventricular; ROI 4: Dorsal Parietal; 

ROI 5: Posterior  

AD: Alzheimer disease; CN: Cognitively normal; PCAD: Preclinical Alzheimer disease; ROI: 

Region of interest; WMH: White matter hyperintensities   
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5.3.3 WMH Machine Learning – Optimization 

 We next used machine learning to assess if subtler patterns existed between diagnostic 

groups. For this we used the continuous data from the Lesion Segmentation Tool used to 

segment WMHs, where each voxel is assigned a probability from 0-1 of being a WMH. By using 

this richer dataset, we may be able to detect group differences that our prior tests could not. 

Figure 5.3 displays a heat map of the voxel-level WMH data for the cognitively normal, 

preclinical AD, and AD dementia groups. The color indicates the average probability each voxel 

is a WMH in that group, with values from 5%-100% displayed. 

 As part of the preprocessing done before training the machine learning models, voxels 

with near zero variance were removed. This resulted in the Juxtacortical ROI keeping 799 of 

16071 voxels (5%), the Deep White Matter ROI keeping 2614 of 5518 voxels (47%), the 

Periventricular ROI keeping 2436 of 2623 voxels (93%), the Dorsal Parietal ROI keeping 1402 

of 2220 voxels (63%), and the Posterior ROI keeping 1078 of 3135 voxels (34%); overall this 

was 8329 of 29567 voxels (28%).  

The remaining voxels in the Training cohort were then used to train the support vector 

machine, random forest, and stochastic gradient boosting algorithms, with the resulting 

algorithms then applied to the Test cohort. The maximum accuracy of the three algorithms in the 

Training cohort is displayed in Table 5.2. with the statistically significant (above random chance) 

models in bold. With no additional preprocessing, none of our models were significant (first 

column in Table 5.2). Adding case weights improved some model’s accuracy but not enough to 

make any models significant. Adding stronger (2x) case weights did make some models 

significant but increasing the case weights even further to 3x negatively impacted accuracy. As 

such, the up-sampling of the data, binning the voxels at 0.5, and applying PCA before training 
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were all tested in tandem with the 2x case weights. Binning the voxel probabilities gave similar 

results to not binning the data, while up-sampling and applying PCA lowered accuracy such that 

no models were significant.  

5.3.4 WMH Machine Learning – Description of Optimal Models 

We next focused more closely on the results from the optimized models (those run with 

the 2x case weights). The accuracy measures in the Test cohort displayed in Table 5.2 show that 

we were unable to create a model that used WMHs to separate the cognitively normal group 

from the preclinical AD group; thus, we do not show evidence to support our original hypothesis. 

We were able to separate the AD dementia group from the preclinical AD group. This supports 

our earlier results in section 5.3.2 that WMHs relate to cognitive impairment in our participants, 

but not to amyloid in the absence of impairment. Even in our models able to significantly 

separate symptomatic AD WMHs from preclinical AD WMHs, the low model accuracies 

suggest that the difference in WMHs is small.  

To further investigate the models that were successfully able to separate the AD dementia 

group from the preclinical AD group, we computed a measure of variable importance for each 

voxel. Specifically, we found the Gini index for the random forest models (the model type that 

reached significance) that used all white matter voxels to separate the AD dementia group from 

the preclinical AD group. The results, shown in Figure 5.4, show that no particular region 

appears to be more important in the separation of the AD dementia group from the preclinical 

AD group or the cognitively normal group. Instead, it appears to replicate the voxel-level 

frequency maps in Figure 5.3, indicating the model broadly is looking for greater WMHs in AD 

dementia and not any particular pattern of WMHs. 
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Supplemental Table S5.4 describes additional metrics of the models with the 2x case 

weights: Training and Test cohort sensitivities and specificities, along with Test cohort 

accuracies and p-values are shown for all three model types. While we trained each iteration 

using support vector machines, Random Forests, and Gradient Boosting, all of our significant 

models came from the Random Forest algorithm. There was not an appreciable drop in 

sensitivities and specificities from the Training cohort to the Test cohort, indicating that the 

models are not overfitting the data. Often models’ sensitivities are similar in size to their 

specificities, indicating that the case weights have appropriately adjusted the model to give 

similar weight to both diagnostic groups in the model.
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Figure 5.3: Voxel-level Frequency Maps of White Matter Hyperintensities

 

AD: Alzheimer disease  
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Table 5.2: Model Preprocessing Optimization 

Groups Data Original 
Case 

Weights 

Case 

Weights 2x 

Case 

Weights 3x 

Case 

Weights 2x 

and binned 

at 0.5 

Case 

Weights 2x 

and up-

sampling 

Case 

Weights 2x 

and principal 

component 

analysis 

CN 

vs. 

PCAD 

ROI 1 46 44 44 46 46 40 51 

ROI 2 50 46 51 46 51 45 55 

ROI 3 51 50 48 48 48 46 51 

ROI 4 50 55 51 51 51 42 51 

ROI 5 59 60 55 55 55 54 59 

All white 

matter voxels 
50 50 50 50 50 51 44 

CN 

vs. 

AD 

ROI 1 52 54 61 64 62 50 56 

ROI 2 52 59 56 62 57 51 54 

ROI 3 52 55 56 60 57 52 55 

ROI 4 52 52 57 57 57 50 54 

ROI 5 56 56 61 59 61 51 56 

All white 

matter voxels 
52 54 60 62 60 52 52 

PCAD 

vs. 

AD 

ROI 1 60 56 59 54 57 52 64 

ROI 2 60 59 60 59 59 56 64 

ROI 3 56 59 65 66 65 55 62 

ROI 4 57 57 68 56 68 56 65 

ROI 5 60 65 68 65 68 62 56 

All white 

matter voxels 
56 64 69 62 68 57 55 

Significant models are in bold. ROI 1: Juxtacortical; ROI 2: Deep White Matter; ROI 3: Periventricular; ROI 4: Dorsal Parietal; ROI 

5: Posterior  
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AD: Alzheimer disease dementia; CN: Cognitively normal; PCAD: Preclinical Alzheimer disease; ROI: Region of interest 
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Figure 5.4: Voxel-level Variable Importance in the Random Forest Model with All Voxels 

 

Figure 5.4 shows the variable importance of individual voxels in the Random Forest model that used all white matter voxels to 

separate preclinical AD from AD dementia. No obvious pattern is observed, with voxels evenly distributed in areas that are likely to 

have WMHs (see Figure 5.3).  

AD: Alzheimer disease; WMH: White matter hyperintensities  
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5.4 Discussion 
In this study we have shown that WMH volumes are larger in AD dementia than in 

amyloid negative controls or in the preclinical stage of sporadic AD. We did not see evidence of 

group difference in WMHs between unimpaired participants who were amyloid positive vs. 

amyloid negative. We further saw relationships between WMH volumes and amyloid levels, 

APOE4 status, and MMSE scores, but only at the level of group differences between our 

unimpaired and impaired participants. These relationships were not seen within the unimpaired 

or within the impaired groups by themselves, making causality less clear. Our machine learning 

algorithms were unable to pick out patterns of WMHs that differed between our preclinical AD 

group and our cognitively normal group. However, they were able to separate preclinical AD 

from AD dementia, even when only using WMH data from within the Dorsal Parietal or the 

Posterior ROIs. As this was not possible using data from the Juxtacortical, Deep White Matter, 

or Periventricular ROIs, the greater WMH volume in AD dementia appears to have specific 

regional patterns.  

Our results match prior literature, which reported WMHs associated with AD (Alosco et 

al., 2018; Bos et al., 2018; Gordon et al., 2015; Joki et al., 2018) as well as normal aging in 

unimpaired older adults (Alber et al., 2019; Salvadó et al., 2019). We also saw the previously 

reported correlation between APOE4 and WMH volume (Alber et al., 2019; Salvadó et al., 

2019). Our results in sporadic AD did differ from studies in dominantly inherited AD, where 

WMHs increases six years before dementia onset (Lee et al., 2018). However, this study was 

longitudinal in design and so had more power to detect a preclinical increase in WMHs. 

With no differences detected in the WMHs of preclinical AD, there is no evidence that 

WMHs are a part of the sporadic AD pathologic process. The higher volumes of WMHs seen in 
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AD dementia either are separate from the AD process, and/or do not develop until after symptom 

onset. To detect this second scenario, we would need longitudinal data of participants with AD 

dementia to measure if they develop WMHs at an increased rate. In either case, the low 

accuracies shown in our results suggests that WMHs as measured in this study would not be 

particularly useful for clinical diagnosis of AD. WMHs may still be of use in determining 

balance of comorbid AD and vascular dementia clinically, but this was not directly explored. 

One limitation of this study was our ability to assess vascular factors. We measured blood 

pressure only at one time-point, which is imperfect for diagnosing hypertension. We also did not 

have the requisite blood tests to measure cholesterol and determine participants’ Framingham 

Risk Scores. While we had participants’ history of diabetes and hypertension, we do not know 

the full scope of how these comorbidities affected participants. There likely is variability in how 

long participants have had these diseases, the severity/stage, and how well controlled they are. 

Future directions should assess WMHs along with other vascular pathologies such as 

microbleeds and lacunes in a cohort with better characterized vascular factors. 

 Another major limitation is that this study was not able to address CAA, which is 

amyloid in the vasculature. Amyloid in AD is primarily parenchymal, but most AD patients also 

have some degree of CAA. The amyloid we are detecting in amyloid PET is the combination of 

these two and is unable to be separated. This separation gains additional importance as anti-

amyloid therapies for AD are finally realized. Amyloid-related imaging abnormalities (ARIA) 

are a common complication from anti-amyloid medications. One type is caused when a patient 

also has CAA and the drug targets the amyloid built up in blood vessels. This leads to leaky 

blood vessels that also appear as WMHs on MRI. Studies like this one are important because 

they help pick apart these various etiologies that can look similar on MRI. This concept can also 
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be applied more broadly as there are many different ways for a person to develop dementia that 

are pathologically distinct but present the same way clinically. Cerebrovascular disease can 

impact the brain through an intense acute lesion such as what occurs in stroke, or can be chronic 

and slowly build up over time as is seen in cerebral small vessel disease. Being able to determine 

the specific etiology helps us realize therapies to treat these different diseases.   
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5.5 Supplemental 
Supplemental Table S5.1: Demographics and WMH Summary Measures in the Training 

Cohort 

All 
Cognitively 

Normal 
Preclinical AD AD Dementia 

n 205 123 41 

CDR [0,0.5,1,2] 205,0,0,0 123,0,0,0 0,28,12,1 

Gender (% M) 42.4% 44.7% 51.2% 

Age, years (mean) 61.7-92.2 (73.3) 61.7-89.4 (74.2) 61.8-88.4 (73.7) 

MMSE (mean) 25-30 (29.2) 25-30 (29.1) 14-30 (24.5) 

APOE4, % with ε4 allele 22.3% 54.1% 77.5% 

Amyloid* – Centiloid (mean) -10.2-20.0 (3.52) 16.4-139 (51.6) 21.1-154 (81.4) 

Race, % non-Hispanic White 81.0% 90.2% 85.4% 

Education, years (mean) 11-20 (16.2) 8-22 (16.2) 6-20 (14.9) 

Mean Arterial Pressure (mean) 68-126 (93.3) 70-120 (92.7) 65-112 (92.5) 

Hypertensive Blood Pressure, % 62.3% 59.3% 63.4% 

History of Hypertension, % 51.4% 40.4% 45.7% 

Hachinski Score (mean) 0-4 (0.536) 0-1 (0.451) 0-1 (0.231) 

BMI (mean) 13-49 (28.3) 18-45 (26.4) 20-39 (27.5) 

History of Diabetes, % 15.9% 4.49% 2.86% 

Smoker, % 6.90% 3.33% 2.86% 

WMH voxels, mean (SD) 1780 (1800) 1790 (2090) 2810 (2580) 

Juxtacortical ROI 

WMH voxels, mean (SD) 
183 (292) 215 (423) 344 (716) 

Deep White Matter ROI 

WMH voxels, mean (SD) 
349 (553) 371 (695) 558 (787) 

Periventricular ROI 

WMH voxels, mean (SD) 
711 (542) 693 (535) 1050 (508) 

Dorsal Parietal ROI 

WMH voxels, mean (SD) 
212 (289) 198 (280) 311 (330) 

Posterior ROI 

WMH voxels, mean (SD) 
197 (179) 192 (177) 337 (234) 

* Mean Cortical SUVR RSF 

AD: Alzheimer disease; APOE4: Apolipoprotein E ε4; BMI: Body mass index; CDR: Clinical 

Dementia Rating; MMSE: Mini Mental State Exam; ROI: Region of interest; SD: Standard 

deviation; SUVR RSF: Standard uptake value ratio (regional spread function applied); WMH: 

White matter hyperintensities   
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Supplemental Table S5.2: Demographics and WMH Summary Measures in the Test 

Cohort 

All 
Cognitively 

Normal 
Preclinical AD AD Dementia 

n 40 40 40 

CDR [0,0.5,1,2] 40,0,0,0 40,0,0,0 0,29,11,0 

Gender (% M) 45.0% 40.0% 52.5% 

Age, years (mean) 61.0-88.4 (74.2) 60.7-88.0 (74.1) 61.0-88.0 (74.2) 

MMSE (mean) 28-30 (29.4) 23-30 (28.7) 17-30 (25.6) 

APOE4, % with ε4 allele 20.5% 52.6% 71.8% 

Amyloid* – Centiloid (mean) -6.91-19.5 (2.56) 18.7-154 (53.6) 30.1-159 (88.8) 

Race, % non-Hispanic White 85.0% 90.0% 95.0% 

Education, years (mean) 12-20 (15.9) 12-20 (16.4) 12-19 (15.6) 

Mean Arterial Pressure (mean) 68-117 (94.1) 76-113 (91.9) 72-125 (96.2) 

Hypertensive Blood Pressure, % 62.5% 57.5% 70.0% 

History of Hypertension, % 51.7% 45.5% 45.9% 

Hachinski Score (mean) 0-3 (0.833) 0-1 (0.455) 0-3 (0.769) 

BMI (mean) 21-41 (30.0) 18-37 (26.4) 17-40 (27.2) 

History of Diabetes, % 6.90% 4.35% 10.80% 

Smoker, % 6.90% 0% 0% 

WMH voxels, mean (SD) 1690 (1730) 1390 (994) 2570 (1590) 

Juxtacortical ROI 

WMH voxels, mean (SD) 
204 (316) 103 (90.1) 259 (225) 

Deep White Matter ROI 

WMH voxels, mean (SD) 
338 (498) 173 (177) 451 (446) 

Periventricular ROI 

WMH voxels, mean (SD) 
653 (504) 670 (468) 1050 (526) 

Dorsal Parietal ROI 

WMH voxels, mean (SD) 
196 (263) 186 (233) 314 (272) 

Posterior ROI 

WMH voxels, mean (SD) 
176 (171) 175 (138) 304 (194) 

* Mean Cortical SUVR RSF 

AD: Alzheimer disease; APOE4: Apolipoprotein E ε4; BMI: Body mass index; CDR: Clinical 

Dementia Rating; MMSE: Mini Mental State Exam; ROI: Region of interest; SD: Standard 

deviation; SUVR RSF: Standard uptake value ratio (regional spread function applied); WMH: 

White matter hyperintensities 
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Supplemental Figure S5.1: WMH by Diagnosis in the Training Cohort 

 
Supplemental Figure S5.1 shows the distribution of WMHs within the whole brain and within 

each of the 5 predefined ROIs within the Training cohort, with measures shown separately for 

each diagnostic group. ROI 1: Juxtacortical; ROI 2: Deep White Matter; ROI 3: Periventricular; 

ROI 4: Dorsal Parietal; ROI 5: Posterior  
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AD: Alzheimer disease; CN: Cognitively normal; PCAD: Preclinical Alzheimer disease; ROI: 

Region of interest; WMH: White matter hyperintensities   
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Supplemental Figure S5.2: WMH by Diagnosis in the Test Cohort 

  

Supplemental Figure S5.2 shows the distribution of WMHs within the whole brain and within 

each of the 5 predefined ROIs within the Test cohort, with measures shown separately for each 

diagnostic group. ROI 1: Juxtacortical; ROI 2: Deep White Matter; ROI 3: Periventricular; ROI 

4: Dorsal Parietal; ROI 5: Posterior  
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AD: Alzheimer disease; CN: Cognitively normal; PCAD: Preclinical Alzheimer disease; ROI: 

Region of interest; WMH: White matter hyperintensities  
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Supplemental Table S5.3: WMH Linear Models with Amyloid, APOE4, and MMSE 

Amyloid 

 Corrected p-values B-values 

  Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 

All 0.07 0.21 0.43 0.002 0.21 0.002 4.77 0.66 0.50 2.04 0.57 0.71 

CN and PCAD 1 1 1 1 1 1 -2.10 -0.17 -0.96 -0.16 -0.25 -0.23 

CN only 1 1 1 1 0.66 1 9.19 0.65 0.07 5.55 4.05 0.54 

PCAD only 1 1 1 1 1 1 -0.19 -0.05 -0.78 0.78 -0.09 -0.10 

AD only 1 1 1 1 1 1 3.05 1.12 0.62 0.02 0.63 0.54 

APOE4 

 Corrected p-values B-values 

  Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 

All 0.62 1 1 0.02 0.90 0.16 220.87 3.68 23.18 132.05 25.39 33.72 

CN and PCAD 1 1 1 0.66 1 1 91.90 -0.03 5.40 75.47 10.70 13.58 

CN only 0.98 0.98 0.98 0.46 0.98 0.98 311.63 41.99 73.17 127.91 46.29 28.60 

PCAD only 1 1 1 1 1 1 29.33 -33.73 -21.28 81.17 -1.51 13.24 

AD only 1 1 1 1 1 1 -567.93 -166.02 -136.23 -97.07 -67.88 -67.31 

MMSE 

 Corrected p-values B-values 

  Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 Total ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 

All  < 0.001 0.03 0.03  < 0.001 0.01  < 0.001 -129.34 -16.13 -21.27 -45.46 -14.46 -19.63 

CN and PCAD 0.49 0.69 0.69 0.48 0.57 0.40 -105.50 -9.45 -21.04 -32.35 -14.54 -12.06 

CN only 0.39 0.62 0.39 0.62 0.62 0.22 -169.80 -18.80 -50.57 -35.52 -20.94 -20.26 

PCAD only 1 1 1 1 1 1 -58.30 -1.33 3.11 -32.74 -10.10 -6.09 

AD only 1 1 1 1 1 0.64 -31.02 -7.50 -1.33 -7.12 -1.42 -10.64 
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ROI 1: Juxtacortical; ROI 2: Deep White Matter; ROI 3: Periventricular; ROI 4: Dorsal Parietal; ROI 5: Posterior  

AD: Alzheimer disease; APOE4: Apolipoprotein E ε4; CN: Cognitively normal; MMSE: Mini Mental State Exam; PCAD: Preclinical 

Alzheimer disease; ROI: Region of interest; WMH: White matter hyperintensities   
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Supplemental Table S5.4: Accuracy Metrics for All Models with the 2x Case Weights 

Data Groups Classification Algorithm 
Training 

Sensitivity 

Training 

Specificity 

Test 

Sensitivity 

Test 

Specificity 

Test 

Accuracy 

Test 

Accuracy p-

value 

Juxtacortical 

ROI 

CN vs. 

PCAD 

Support Vector Machine 55 50 52 35 44 0.89 

Random Forest 56 55 45 40 42 0.93 

Gradient Boosting 62 47 57 30 44 0.89 

CN vs. AD 

Support Vector Machine 21 89 5 95 50 0.54 

Random Forest 52 74 50 72 61 0.03 

Gradient Boosting 40 75 38 78 57 0.11 

PCAD vs. 

AD 

Support Vector Machine 34 83 12 95 54 0.29 

Random Forest 72 60 75 42 59 0.07 

Gradient Boosting 52 70 55 42 49 0.63 

Deep White 

Matter ROI 

CN vs. 

PCAD 

Support Vector Machine 41 65 32 57 45 0.84 

Random Forest 60 52 42 40 41 0.95 

Gradient Boosting 84 16 90 12 51 0.46 

CN vs. AD 

Support Vector Machine 16 87 10 90 50 0.54 

Random Forest 61 65 48 65 56 0.16 

Gradient Boosting 53 67 32 70 51 0.46 

PCAD vs. 

AD 

Support Vector Machine 32 83 25 92 59 0.07 

Random Forest 79 56 72 42 57 0.11 

Gradient Boosting 57 75 40 80 60 0.05 
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Data Groups Classification Algorithm 
Training 

Sensitivity 

Training 

Specificity 

Test 

Sensitivity 

Test 

Specificity 

Test 

Accuracy 

Test 

Accuracy p-

value 

Periventricular 

ROI 

CN vs. 

PCAD 

Support Vector Machine 43 66 22 72 48 0.71 

Random Forest 65 44 40 25 32 1.00 

Gradient Boosting 55 55 35 32 34 1.00 

CN vs. AD 

Support Vector Machine 26 83 12 90 51 0.46 

Random Forest 47 81 30 82 56 0.16 

Gradient Boosting 33 89 22 82 52 0.37 

PCAD vs. 

AD 

Support Vector Machine 41 78 25 82 54 0.29 

Random Forest 71 62 57 72 65 0.005 

Gradient Boosting 48 80 25 78 51 0.46 

Dorsal 

Parietal ROI 

CN vs. 

PCAD 

Support Vector Machine 57 47 50 42 46 0.78 

Random Forest 93 9 82 5 44 0.89 

Gradient Boosting 86 14 85 18 51 0.46 

CN vs. AD 

Support Vector Machine 21 90 12 90 51 0.46 

Random Forest 40 77 28 68 48 0.71 

Gradient Boosting 49 81 35 80 57 0.11 

PCAD vs. 

AD 

Support Vector Machine 33 85 20 92 56 0.16 

Random Forest 81 50 85 50 68 0.001 

Gradient Boosting 46 77 35 88 61 0.03 
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Data Groups Classification Algorithm 
Training 

Sensitivity 

Training 

Specificity 

Test 

Sensitivity 

Test 

Specificity 

Test 

Accuracy 

Test 

Accuracy p-

value 

Posterior ROI 

CN vs. 

PCAD 

Support Vector Machine 42 68 42 68 55 0.22 

Random Forest 59 44 65 45 55 0.22 

Gradient Boosting 51 55 50 52 51 0.46 

CN vs. AD 

Support Vector Machine 29 90 18 95 56 0.16 

Random Forest 36 82 35 88 61 0.03 

Gradient Boosting 39 78 30 72 51 0.46 

PCAD vs. 

AD 

Support Vector Machine 36 81 30 90 60 0.05 

Random Forest 66 64 65 70 68 0.001 

Gradient Boosting 32 78 25 95 60 0.05 

All White 

Matter Voxels 

CN vs. 

PCAD 

Support Vector Machine 43 70 32 68 50 0.54 

Random Forest 66 45 40 32 36 1.00 

Gradient Boosting 47 61 38 48 42 0.93 

CN vs. AD 

Support Vector Machine 18 83 20 82 51 0.46 

Random Forest 47 81 38 82 60 0.05 

Gradient Boosting 33 88 22 82 52 0.37 

PCAD vs. 

AD 

Support Vector Machine 38 78 22 85 54 0.29 

Random Forest 77 56 75 62 69 0.0005 

Gradient Boosting 48 80 30 75 52 0.37 

AD: Alzheimer disease; CN: Cognitively normal; PCAD: Preclinical Alzheimer disease; ROI: Region of interest 
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Chapter 6: Conclusions 

6.1 Overall Summary 
As stated at the beginning of this dissertation, the overall goal of these studies was to gain a 

better understanding of how Alzheimer disease (AD) interacts with normal aging and 

cerebrovascular disease, and how this interaction impacts neuroimaging measures in a clinically 

meaningful way. In Chapter 2, we found that the amount of atrophy that occurs with age and the 

pattern of that atrophy across the lifespan exhibit two unique spatial patterns. This first spatial 

pattern broadly indicated greatest atrophy in the temporal lobe and subcortical regions. The 

second pattern, which associated with regional myelination, indicated a linear pattern of decline 

in temporal lobe regions, accelerating declines in subcortical regions, and decelerating declines 

in frontal regions. Despite screening our Normal Aging cohort with measures of amyloid 

positron emission tomography (PET) and longitudinal measures of Clinical Dementia Rating™ 

(CDR™), we did not show measurable differences in atrophy between our Normal Aging cohort 

and a cohort of preclinical AD. 

In Chapter 3, we showed that Select Atrophied Regions in Alzheimer disease (SARA), 

our magnetic resonance imaging (MRI)-based volumetric classification model, can be used to 

separate AD from cognitively normal controls and other dementia types. Our results indicate 

SARA may be useful as a first step for selecting symptomatic AD participants for entrance into 

clinical trials or as an adjunct to the diagnostic algorithm when a clinical differential diagnosis 

includes AD vs. frontotemporal dementia or AD vs. non-neurodegenerative conditions. 

However, our method for controlling for age-related atrophy did not improve model 

performance, and lowered performance if age was not also included as a predictor. As such, 
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SARA, our final model, looks at total atrophy instead of separating out AD-related and age-

related atrophy.  

In Chapter 4 we were unable to show evidence that preclinical AD is a risk factor for stroke 

or predicts post-stroke dementia. This supports the concept that stroke and amyloid pathology are 

separate disease mechanisms that independently can lead to dementia. We also found that 

African Americans (AAs) are more likely to have vascular pathology observable on MRI than 

non-Hispanic Whites (NHWs), indicating racial disparities at the neuropathological level within 

stroke. As part of this finding, we noted that AAs were more likely to have 5 or more 

microbleeds. This is a common exclusion criterion in AD clinical trials, and so suggests that this 

racial difference is leading to clinical trials turning away a larger proportion of AA volunteers.  

Finally, in Chapter 5 we did not find evidence that white matter hyperintensities (WMH) 

are different in the preclinical stages of AD, even when looking for more detailed patterns than 

the traditional total WMH volume measurements. However, we did see a higher volume of 

WMHs in symptomatic AD, and that there were certain regions in the white matter where this 

difference allowed separation of AD dementia from healthy controls.  

6.2 Comments on Chapter 2: Regional Age-Related Atrophy 

After Screening for Preclinical Alzheimer Disease 
In Chapter 2 we report one spatial pattern describing the amount of age-related atrophy 

occurring in regions in the brain, and a second spatial pattern describing how the rate of that 

atrophy changes across the lifespan. The greatest amount of atrophy was seen in temporal 

regions, which declined in an accelerated pattern such that more atrophy was seen in late life 

relative to mid-life. This same acceleration of atrophy with age was seen in subcortical regions. 

In contrast, frontal and cingulate areas showed higher atrophy in mid-life than late-life (a 
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deceleration of atrophy with age). These non-linear patterns spatially correlated with the 

T1w/T2w intensity ratio, which is used as a rough correlate of myelin levels. This demonstrates 

that the spatial pattern we observed for strength of age-related atrophy and the spatial pattern we 

observed for pattern across the lifespan are two distinct spatial patterns. By correlating with a 

biologically-based measure, it also suggests that the patterns of atrophy seen in different regions 

across the lifespan reflects a fundamental property of how the brain is organized. This 

interpretation is further strengthened because the measure of myelin used in the spatial 

correlation is not from the same individuals whose atrophy we measured, but from a separate 

cohort of healthy adults. That these patterns from separate cohorts relate to each other indicates 

they reflect fundamental organizational properties of the brain. The direction of the correlation 

suggests that regions that characteristically have higher myelin content are more vulnerable to 

accelerated atrophy in late life. This could be a direct vulnerability of myelinating cells, or due to 

other tissue properties of brain regions that tend to have higher levels of myelin. It is possible 

that this pattern directly links to myelin as myelinating cells have been reported to have a greater 

vulnerability to oxidative stress, which could then lead to accelerated atrophy in later years as 

oxidative stress builds up (Nasrabady et al., 2018).  

One of the more surprising findings in this study was the lack of difference we saw in 

atrophy between our Normal Aging cohort and our Preclinical AD cohort. AD is a 

neurodegenerative disorder, and as such atrophy is a key biomarker of the disease. At first 

glance, our results appear to disagree with the general consensus that even the earliest stages of 

AD include atrophy. One explanation for our results is that prior studies that reported atrophy 

have focused on groups with mild impairment, while our participants can confidently be 

considered unimpaired. Atrophy ties closely with impairment, both in AD and outside of it, so it 
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may be that any distinguishable atrophy in AD would lead to enough impairment that a 

participant would be excluded from our study. The second possibility is that there truly is 

atrophy in unimpaired preclinical AD and we, for several possible reasons, were unable to detect 

it. If there is only a small amount of atrophy, detecting it may require more statistical power. We 

could increase our power by using an even larger sample size than what was used in this study or 

a more sensitive measure of atrophy. The scans used in this study were primarily 3T with some 

1.5T, and the FreeSurfer regions we used to divide the brain into different regions were quite 

large and heterogeneous. These regions are based on gyral and sulcal landmarks, not necessarily 

differences in the underlying tissue. Differences in the preclinical AD stage may be revealed if 

we use a higher magnetic field scanner to give more accurate and precise volumetric measures, 

and/or if we use smaller regions or voxel-level data in our analysis.  

Our definition of preclinical AD in this study was imperfect. At the cross-sectional stage 

we are only able to define preclinical AD as those with amyloid deposits in their brain but no 

cognitive impairment. The assumption (which in itself is contested) is that all of these people 

will eventually develop AD dementia, but we do not know if that will be in the near future or in 

20 years. Those with highly resilient brains may never convert to AD dementia before they die. 

Regardless of these possibilities, our results indicate that studies of older adults done in a similar 

context to ours do not need to worry overly much about preclinical AD confounding their 

measures of atrophy, so long as they do careful cognitive screening.  

One aspect of this study that was not addressed directly was the inter-individual 

variability within regions. When individual regions are examined, the majority of them appear to 

have variability that is relatively stable across the lifespan. The most obvious exception to this 

pattern is FreeSurfer’s measure of WMHs. While in general this measure has low accuracy, it 
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does demonstrate a nice contrast to the majority of regions in that it shows an increasing 

variability with age. At older ages the mean volume of WMHs increases, but also the standard 

deviations for those means increases rapidly. While the journal articles on these studies do not 

address this directly, our creation of an R Shiny app (an interactive web app built in R) 

(https://lnkoenig.shinyapps.io/NormalAgingVolumetrics_ShinyApp/) that shows all data for all 

regions allows us to share this insight. By adding the R Shiny app to this study, we were able to 

share a more information and data with researchers in an easily digestible format. Scientists will 

be able to go and look at whichever regions and the specific demographics they are interested in, 

possibly to compare with their own results or to notice interesting patterns that were not part of 

the original study.  

Even researchers not directly interested in our results on aging may be impacted by our 

results. Many neuroimaging studies are occurring in older adults for a variety of pathologies 

other than AD, or occur across a large age range. When these studies look at measures of 

atrophy, or even other measures that are impacted by atrophy such as PET imaging or resting-

state functional connectivity, they often need to control for age. This study shows that controlling 

for age-related atrophy using age by itself does not account for the diverse and complex impact 

that age has on the brain. Studies that have inadequately controlled for the non-linear and region-

specific impact of age-related atrophy may misinterpret their results.  

Future studies looking to build upon our understanding of atrophy in normal aging and in 

preclinical AD should ideally use longitudinal data in a diverse cohort. This would enable 

tracking of specific trajectories in individuals as opposed to our study which assumes atrophy 

based on group averages at each age. Tracking volumetric measures longitudinally within 

individuals would also give a more specific measure of atrophy and may be enough to allow us 

https://lnkoenig.shinyapps.io/NormalAgingVolumetrics_ShinyApp/
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to detect differences in normal aging and preclinical AD if they exist. Longitudinal studies would 

also allow us to refine our definition of preclinical AD to those who do eventually convert to AD 

dementia. Additionally, longitudinal data would be safe from survivorship bias in a way our 

study is not. Regions that show less (decelerating) atrophy at older ages in our study may 

actually be a reflection of low resiliency and not true differences in atrophy. Atrophy in these 

regions may be more likely to lead to cognitive impairment, which would cause someone to be 

excluded from this study.  

By using a diverse, longitudinal cohort we would also be able to examine more fully the 

factors that impact inter-individual variability in the trajectories of age-related atrophy. In our 

study, we are using the term ‘normal aging’ to look at atrophy that occurs in synchrony with 

increasing age in people who are generally healthy. But that does not mean that the atrophy itself 

is healthy or that it cannot be prevented. By examining these factors, which likely include things 

such as demographic, socioeconomic, and genetic components, we will get a better sense of what 

leads to the atrophy seen in normal aging. For this type of study, it is even more important to 

have a cohort diverse in all ways; without variability in the factors you are assessing, the impact 

they have on atrophy cannot be measured.  

6.3 Comments on Chapter 3: Improving Volumetric Models 

for Symptomatic Alzheimer Disease 
In Chapter 3, we found that models using volumetric measures of atrophy can be used to 

diagnose symptomatic AD in a variety of circumstances. Our final model, SARA, had good 

diagnostic accuracy in research cohorts of AD and healthy controls, and in a more realistic 

clinical setting with a variety of diagnoses. We saw the greatest diagnostic specificity when 

differentiating AD from frontotemporal dementia or from non-neurodegenerative diagnoses (e.g., 
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mood disorders, sleep disorders, cognitively normal individuals). We also found that that our 

model related to measures of impairment such as CDR, but was still useful in distinguishing 

diagnoses in those with similar levels of impairment.  

While our final model had these strengths, our hypothesis that classification would be 

improved by controlling for the age-related atrophy described in Chapter 2 was not supported by 

our data. Instead, the opposite was the case; controlling for the age-related atrophy lowered the 

accuracy in our Clinical cohort for the models that did not include age. As age and age-related 

atrophy are linked in this paradigm, this indicates that either age or age-related atrophy are an 

integral factor in determining which clinical patients received a diagnosis of AD. This could be 

because age-related atrophy increases cognitive impairment, and greater impairment increases 

the likelihood of someone being seen by a clinician and getting diagnosed with AD. Age is well 

known as a strong risk factor for AD, and so it is also possible that age is contributing to the 

model even without direct influence of age-related atrophy. No matter the specific interpretation, 

our study indicates that total atrophy (the combination of age-related and AD-related atrophy) is 

more predictive of a clinical diagnosis of AD than atrophy specifically attributable to AD. 

One of the first steps in this study was to select which FreeSurfer regions to include in 

our models. While we also tested the more traditional route of using Hippocampal volume alone, 

we also wanted to include a multi-region model that is expected to be more robust to different 

presentations of AD and to measurement error. This did appear to be the case in our study; while 

our multi-region model was not an improvement in the research cohort, it outperformed the 

model using hippocampal volume alone when looking at AD variants in the Clinical cohort. We 

alternatively could have included every brain region in our algorithm, but this overlooks the time 

and effort it takes to obtain these volumetric measures. Even FreeSurfer’s automated volumetric 
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processing requires quality checking to ensure regions are segmented properly. This is less of a 

concern in healthy young adults where FreeSurfer tends to be most accurate, but older adults and 

especially those with neurodegenerative disorders have more variable brain structures that can be 

more challenging to automatically segment. As the models we trained in this study were intended 

for use in dementia clinics or for clinical trials, it is important to reduce the amount of time and 

manpower they require. By using only a few brain regions in our model, quality checking of the 

FreeSurfer segmentation in a clinical setting can focus on the specific regions needed instead of 

the entire brain. 

This intention for our algorithm to be used as a clinical tool also led us to use simple 

logistic regressions, when many similar studies using MRI to classify AD skip straight to using 

complex machine learning algorithms. While effective, machine learning algorithms are not 

always necessary – in AD classification they have often achieved the same accuracy as a simpler 

regression models (Mateos-Pérez et al., 2018b). The disadvantage to using more complex 

algorithms is that they are much more difficult to train and interpret, resulting in a ‘black box’ 

that is more difficult for a clinician to trust. We chose to keep our model simple, easy to 

implement, and transparent in the hope that others will be encouraged to try it. This was also 

why we focused on measures taken from structural MRI, as this scan is already obtained as part 

of the standard of care for those presenting with dementia symptoms. As such, our algorithm 

places no additional burden on the patient; it extracts additional information from a test that is 

already occurring.  

One concern from this study is the lower classification ability of our model in the Clinical 

cohort relative to the Test cohort. This is likely due to several reasons. One reason is that the Test 

cohort compares AD dementia to healthy controls, while the Clinical cohort compares AD to a 
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variety of disorders. It is to be expected that the non-AD patients in the Clinical cohort have 

more atrophy overall in their brain than healthy controls. A second reason is that the criteria for 

who is considered to have AD dementia is very different between the two cohorts. In the 

research cohort, we get as close to the gold-standard, neuropathological diagnosis as is possible 

in living participants by using amyloid PET, CDR, and a clinical evaluation of AD dementia. In 

the Clinical cohort, the standards are much more variable. These are real patients in a clinical 

setting. Their diagnosis is restricted much more by which tests the patients are willing to undergo 

(which often does not include lumbar puncture), and which tests their health insurance is willing 

to cover (which does not include amyloid PET). With limited treatments for AD, patients also 

have limited incentive to undergo additional testing to make their diagnosis more definitive. A 

final reason is that research studies are more likely to select the ‘purest’ AD patients, excluding 

those with other neurodegenerative conditions or major health problems in a way that does not 

occur in a clinical setting. The self-selection of those who participate in research studies also 

skews research cohorts towards those with high socioeconomic status – those who have the time 

and ability to participate in studies – which also likely correlates with fewer comorbidities 

associated with atrophy. These factors all likely lead to the labels of AD and non-AD in the 

Clinical cohort being less accurate than in the Test cohort, which would explain the lowered 

model performance that we observed. 

A major strength of this study is that we made use of these different types of cohorts – 

both research and clinical. The research cohorts are better characterized but less diverse, while 

the Clinical cohort may be less diagnostically accurate but gives us important insights on how 

the algorithm would perform in a realistic clinical setting. By using them in combination we get 

a more comprehensive understanding of our model. An additional strength of research cohorts is 
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that they are possible to harmonize. The research participants in this study came from multiple 

different research studies that made their data open to other researchers and used similar 

protocols to allow harmonization. Because of this, we were able to combine the datasets to form 

a cohort with a large enough group of participants with AD dementia to train our models. It is 

following this example of open science that we have made both our algorithm and the data from 

the Clinical cohort available online at https://github.com/benzinger-icl/SARA and 

https://www.oasis-brains.org/. 

6.4 Comments on Chapter 4: Interaction of Stroke, Race, 

and Amyloid 
In Chapter 4 we examined how race and amyloid burden impact several MRI measures in 

an acute stroke population. We had hypothesized that post-stroke dementia could be explained 

by people in the preclinical stages of AD having a stroke which then accelerated the 

development of AD. However, in our study the amyloid levels at the time of stroke did not 

predict who in the study went on to develop post-stroke dementia one year later. We also did not 

see a difference when comparing amyloid levels in the stroke cohort to healthy controls. This 

means that amyloid accumulation also did not predispose the brain to having a stroke. If post-

stroke dementia is related to AD at all, the remaining possibility is that the stroke event itself 

leads to rapid amyloid accumulation and dementia onset. We were unable to collect amyloid in 

our follow-up and so we could not address this possibility. Other studies have shown amyloid 

deposition in the brains of those with post-stroke dementia (Mok et al., 2016; Yang et al., 2015), 

but these have been at rates similar to what is seen in otherwise healthy older adults. Thus, it is 

not evident that AD is contributing to the dementia of the amyloid positive participants with 

post-stroke dementia. They may have developed dementia completely independently from AD 

https://github.com/benzinger-icl/SARA
https://www.oasis-brains.org/
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and amyloid, but concurrently happened to be one of the many older adults in the preclinical 

stage of AD.  

While not designed originally to examine racial disparities, the unique recruitment of our 

participants from two local hospitals’ stroke services in St. Louis resulted in a cohort diverse 

enough that we had enough statistical power to compare NHWs to AAs. Research cohorts are 

often self-selected in a way that biases the populations heavily towards NHWs, making it 

difficult for studies to examine race even when it is known to be relevant. This is the case in both 

AD and in stroke, where there are known racial disparities that would benefit from more research 

to uncover the underlying causes (Benjamin et al., 2017; Neill R Graff-Radford et al., 2016; 

Green, 2002; Manly and Mayeux, 2019; Mayeda et al., 2016; John C Morris et al., 2019; Tang et 

al., 2001; Yang et al., 2017).  

With both the motive and the ability to examine racial differences in this study, we were 

thus convinced it needed to be added as a component. As expected, we did uncover some 

differences, with NHWs less likely to have vascular pathology than AAs. What we could not 

measure was the cause of these differences. While we discuss racial differences in this study, 

race itself is a social construct that we are using as a proxy for a variety of other factors including 

differences in socioeconomic status, quality of education, comorbid health issues, and racial 

discrimination (Williams and Ovbiagele, 2020). There may be some impact of genetics, such as 

the finding that AAs have higher rates of apolipoprotein E ε4 (APOE4) alleles, but historically 

genetic factors have been overestimated – assumed to be the cause of racial disparities without 

evidence (Boyd et al., 2020). While some of these assumptions are driven by racial biases among 

researchers, any study that reports racial differences can be misused for racist agendas. Because 
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of this, it is essential that studies that involve race such as this one are not just unbiased, but 

explicitly anti-racist.  

This study allowed us to assess racial differences and the impact of baseline amyloid in a 

unique cohort of patients. The benefit of these sorts of specialized cohorts is that they allow us to 

ask important questions that most studies cannot address. However, their uniqueness can also be 

a limitation. In this case, it made it difficult to compare our stroke patients to our non-stroke 

participants; many differences we found could be interpreted as due to differences in recruitment. 

The more unique a cohort is, the more difficult it is to compare to other studies’ cohorts. 

Additionally, our stroke patients had to have the unique requirements of a recent stroke and a 

willingness to immediately undergo amyloid PET imaging; this resulting in our cohort being 

quite small. This makes our negative results more difficult to trust as we did not have the power 

to detect smaller effects.  

6.5 Comments on Chapter 5: White Matter Hyperintensities 

in Alzheimer Disease 
In Chapter 5 we examined WMHs in both preclinical and symptomatic AD. We 

replicated prior findings that WMH volumes are higher in AD dementia. However, we did not 

find evidence for our hypothesis that WMHs are different in the preclinical stage of AD. If we 

had seen differences in the preclinical stage of AD, it would have been evidence that WMHs 

develop as part of the AD process and would explain the higher volume of WMHs seen in 

symptomatic AD. However, WMHs that develop separate from AD could also lead to these 

results; WMHs may impact cognition such that a person having both WMHs and AD is more 

likely to exhibit symptoms and to be diagnosed than someone without the additional WMHs. 
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However, the lack of differences we saw in the preclinical stage does not disprove the direct 

linkage of WMHs and AD; WMHs could still develop as part of AD in later disease stages. Our 

results mean that longitudinal studies will be necessary to determine if WMHs are directly part 

of AD. Whether or not this is found to be the case, it does not preclude WMHs from also 

developing separately from AD and contributing to cognition.  

In Chapter 3, we argued against using machine learning because of its black box 

approach. Our use of it in Chapter 5 may sound like a contradiction, but this choice is explained 

by the differences in motivation and design of the two studies. Our goal in Chapter 5 was to 

answer a simple yes/no question: are WMHs in cognitively normal, amyloid negative 

participants different from WMHs in cognitively normal, amyloid positive participants. Our 

primary aim was not to interpret how the model separated the groups, but to determine with as 

much certainty as possible if the groups could be separated in the first place. As such, we leaned 

towards the more powerful and less interpretable machine learning models. In Chapter 3 we were 

creating a model intended to be used in a clinical setting, so we made the opposite choice and 

used simpler but more interpretable models. 

 It is this lack of interpretability, along with the more complex implementation, that make 

machine learning models more common in industry than in science. Traditional machine learning 

was used for tasks like automatically detecting numbers on an image or determining if an email 

was spam or not. It did not matter how it was accomplished, it just needed to work. While this is 

understandable, it can lead to biased models if biased data is used to train the model (Obermeyer 

et al., 2019). Since all data is biased in some way, it’s important to understand how and why your 

model is working even in these circumstances where the ‘why’ does not explicitly matter – in 

case your model does something unexpected.  
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 Our interpretations from this study came from the yes/no answer we got from the 

machine learning models, along with the specifics of what data and whose data we gave the 

algorithms. For instance, we restricted the models to only using WMH data and had carefully 

matched cohorts that allowed us to control for age and other factors. By restricting which areas 

of the brain were included in the model, we were able to find that WMH data from within our 

Dorsal Parietal region of interest (ROI) or our Posterior ROI are sufficient to separate out 

symptomatic AD from controls. Conversely, the other ROIs – Juxtacortical, Deep White Matter, 

and Periventricular – were unable to separate symptomatic AD from controls. This indicates a 

regional specificity in the higher volume of WMHs seen in symptomatic AD. Those ROIs may 

be where AD-specific WMHs develop, or they may be regions that are more likely to lead to 

cognitive decline. With this sort of careful planning, and in combination with more traditional 

statistical analysis, we showed that machine learning can be used for hypothesis testing. 

6.6 Overall Conclusions 
 Taken together, these studies have shown patterns of grey matter atrophy and of white 

matter hyperintensities that are seen in symptomatic AD and distinguishable from normal aging. 

With our cross-sectional definition of preclinical AD, we were not able to distinguish atrophy 

and WMHs in preclinical AD from normal aging. In other words, we did not see AD-associated 

atrophy and WMHs in the absence of impairment. While our WMH study saw overlap between 

AD and vascular dementia, our study of post-stroke dementia did not see a relationship with AD. 

This shows the complexity of cerebrovascular disease, which comprises multiple subtypes with 

various etiologies. In these studies, we also discuss the various algorithms that can be used for 

group classification. There is invariably a trade-off between a model’s complexity and 

transparency. For models that plan to be implemented clinically, transparency is key. In more 
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restricted experiments where there are limited possible interpretations, more complex models 

may be able to detect group differences that otherwise would be overlooked. With these studies, 

we have contributed to the understanding of how aging and cerebrovascular disease are 

interacting with neuroimaging measures of AD. We show that pathologies can be separated out 

by their etiology through the spatial patterns in which those pathologies occur.  

 Separating these etiologies is important clinically – they may all result in dementia, but 

the specific medications and treatments depend on the etiology. Historically, this has been about 

determining when a patient has something other than AD, as there was little treatment available 

for AD. With the recent approval of Aducanumab by the United States Food and Drug 

Administration (Dunn et al., 2021), there is renewed hope for amyloid-targeting therapies to 

improve treatment options for AD. However, the amyloid-targeting therapies being developed 

will be helpful only for AD so accurate diagnosis is essential. Similarly, these treatments 

themselves can cause non-specific imaging findings, such as amyloid-related imaging 

abnormalities (ARIA). As such, it is important to know when and to what extent pathologies 

such as atrophy and WMHs are caused by AD, normal aging, and cerebrovascular disease so that 

we can attribute these findings in patients to their correct causes. 

 Conversely, when evaluating a person as a whole it is not always appropriate to separate 

these pathologies by etiology. In Chapter 3 we found that separating out age-related atrophy 

made it more difficult to classify AD dementia instead of less. While not all atrophy measured 

was caused by AD, this reflects the fact that the brain is still a single organ. All of these 

pathologies are affecting the brain in parallel, and so their impact on individuals must also be 

evaluated together. While we may focus on studying a single disease at a time, we can never 

forget the broader context of what else is happening in the brain.    
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