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The Standard Model (SM) of Particle Physics provides a self-consistent quantum field

theoretic framework to explain three of the four known fundamental forces (electromagnetic,

weak, strong) along with classifying all known elementary particles. Since its conception in

the 1960s, the SM has been one of the most tested theories of physics and has withstood all

experimental batterings. In spite of these successes, there are compelling indications, both

experimental and theoretical, that require us to expand our understanding of the nature

beyond the SM (BSM). Arguably the most glaring indication of BSM physics is the observa-

tion of neutrino oscillations, which implies that neutrinos are massive. The underlying BSM

physics responsible for neutrino mass must necessarily involve new BSM interactions of neu-

trinos. In this dissertation, we focus on some case studies of the theory and phenomenology

of these new BSM neutrino interactions. On the theoretical side, we consider a class of BSM

scenarios for neutrino masses with extra gauge groups, whose generators contribute to the

electric charge, and studied the effect of perturbativity constraints on these models, assum-

ing them to be valid up to higher energy scales. In particular, we have derived lower bounds

on the new gauge bosons and their couplings from perturbativity considerations, which have

important implications for future searches of these BSM particles. In our second work, we

have developed analytic techniques to study the vacuum stability and spontaneous symmetry

breaking for generic multi-Higgs potential, with application to the well-motivated Left-Right

xvi



Symmetric Model (LRSM) as an example study. We found that requiring vacuum stability

in conjunction with other phenomenological constraints significantly reduces the available

parameter space for low-scale LRSM. On a more phenomenological side, we study the effect

of Non-standard interactions (NSI) of neutrinos with matter mediated by a scalar field. We

develop general techniques to study matter effects and long-range force effects consistently

in all media. We show that observable scalar NSI effects, although precluded in terrestrial

experiments, are still possible in future solar and supernovae neutrino data, and in cos-

mological observations such as cosmic microwave background and big bang nucleosynthesis

data. In another project, we study the experimental prospects for a scenario with neutrino

interactions with right-handed neutrinos νR charged under a hidden U(1) gauge group. We

investigate the loop-induced couplings and find that the νR-philic dark photon is not inac-

cessibly dark and can be of potential importance to future dark photon searches. In our final

project, we explore the production of baryon asymmetry through resonant leptogenesis and

phenomenological signatures of the type-I seesaw scenario with a given flavor and CP sym-

metry group. We find that requiring successful baryon asymmetry generation via resonant

leptogenesis imposes interesting constraints for the detection prospects of heavy neutrinos

at colliders, as well as in future neutrinoless double beta decay experiments.
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Chapter 1

Introduction

“You take the blue pill...the story ends, you wake up in your bed

and believe whatever you want to believe. You take the red

pill...you stay in Wonderland, and I show you how deep the

rabbit hole goes."
- Morpheus, The Matrix (1999)

In ancient times, the world was believed to be composed of four basic elements - fire, earth,

water, air. This understanding of physical world in those times came from the distillation of

direct experiences with nature everyday. This was the ultimate scale that could be probed

in those times. Since then the story has progressed a couple thousand pages. We can now

probe nature at length scales of attometer 1 to billions of light-years2 away.

In our current understanding of the entire observable natural world, simply referred to as

"The Universe", composed of 17 fundamental particles and governed by four natural forces:

electromagnetic force, weak nuclear force, strong nuclear force and gravity3.

1.1 Standard Model of Particle Physics

Standard Model (SM) of Particle Physics governs the physics in everyday life except gravity.

It was brought to life by Steven Weinberg in 1967 in his landmark paper, "A Model of
1 1 am = 10−18 m
2 1 ly = 9.4607× 1015 m
3 The definition of what constitutes a fundamental force has delved into a fuzzy territory. More appropri-

ately, it can be phrased mathematically as 3 fundamental gauge groups with addition of general relativity.

1
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Fig. 1.1: Particle content of the Standard Model,

SU(3)c SU(2)L U(1)Y
Q 3 2 1

3
uR 3 1 4

3
dR 3 1 −2

3
L 1 2 −1
eR 1 1 −2
H 1 2 1

Tab. 1.1: Gauge charge assignments for the particle content of the Standard Model, GSM ≡
SU(3)c × SU(2)L × U(1)Y

Leptons" [14]. Since then SM has been one of the most tested theories of physics and has

withstood all experimental batterings. It can explain three of the four known fundamental

forces (electromagnetic force, weak nuclear force, strong nuclear force) along with classifying

all known elementary particles.

Standard Model is a non-abelian Yang-Mills gauge theory invariant under a local internal

symmetry group :

SU(3)C × SU(2)L × U(1)Y (1.1)

where the conserved charge corresponding to SU(3)c is the color charge, for SU(2) is the

weak isospin and weak hypercharge for U(1)Y . The particle content is detailed in Fig. 1.1.

2



Introduction

1.1.1 Electroweak Sector

The symmetry group for the Electroweak (EW) sector is SU(2)L × U(1)Y , where L denotes

interactions only with left-handed fermions and Y denotes the weak hypercharge.

LEW =
∑
ψ

ψ̄γµDµψ − 1
4W

µν
a W a

µν − 1
4B

µνBµν (1.2)

where the three contributions are the gauge-invariant kinetic terms for fermion field ψ and

the gauge bosons (Wµ, Bµ) and,

Dµ =
(
i∂µ − g′ 12YWBµ − g 1

2~τL.
~Wµ

)
(1.3)

denotes the covariant derivative that handles the gauge transformations of the fermionic

fields. Bµ is the U(1)Y gauge field, W a
µ is the three component SU(2) gauge field (where

a = (1, 2, 3)) , YW and ~τL are the group generators for U(1)Y and SU(2)L with coupling

constants g′ and g respectively. Note that in eq. 1.2 (and further in this section), Einstein

summation convention is being followed and the variable a is summed over.

1.1.2 Quantum Chromodynamics

The symmetry group for the quantum chromodynmics (QCD) sector is SU(3)c, where c

denotes interactions only with particle species carrying the color charge.

LQCD =
∑
ψ

ψi
(
iγµ(∂µδij − igsGa

µT
a
ij)
)
ψj −

1
4G

a
µνG

µν
a (1.4)

where the two contributions are the gauge-invariant kinetic terms for fermion field ψ and

the gauge bosons Ga
µ (which denotes the 8 component SU(3) gauge field) and T aij) are 3× 3

Gell-Mann matrices which are the group generators for SU(3)c with coupling constants gs.

3
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1.1.3 Higgs Mechanism

It is important to note that until now all the degrees of freedom in the gauge theory are

massless, which is in conflict with the observations of the natural world. Therefore, we need

a way to provide masses to particles in the theory, which is exactly what is accomplished by

the addition of the Higgs mechanism4.

The Higgs mechanism is based on addition of a scalar Higgs field which undergoes spon-

taneous symmetry breaking. In the Standard model, the Higgs field is a complex scalar of

the group SU(2)L,

Φ =

 φ+

φ0

 (1.5)

with weak hypercharge Y = +1 and no color charge. The gauge symmetry of the SM and

renormalizability requires the Lagrangian for Φ as follows :

LHiggs = (DµΦ)(DµΦ) + 1
2µ

2ΦΦ− 1
4λh(ΦΦ)2 (1.6)

If µ2 > 0, the scalar field Φ develops a non-zero vacuum expectation value (VEV) which

spontaneously breaks the symmetry. Since the electric charge should be conserved after

breaking, only the neutral scalar field can develop a non-zero VEV.

〈Φ〉 =

 0
1√
2v

 (1.7)

This leads to the breaking of the electroweak sector to electromagnetism, which is now the

only remaining unbroken symmetry of the vacuum.

After SSB, three out of four scalar degrees of freedom acts as the longitudinal polarization
4 More appropriately should be referred as "Anderson-Englert–Brout–Higgs–Guralnik–Hagen–Kibble"

mechanism

4
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for the three linear combinations of the gauge fields, hence making them massive.

W±
µ =

W 1
µ ∓W 1

µ√
2

, Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

(1.8)

with masses given by :

mW± = gv

2 , mZ =
√
g2 + g′2v

2 , mA = 0 (1.9)

The fourth leftover degree of freedom of the scalar Higgs field is identified as the Higgs boson

h5. In the unitary gauge, the scalar doublet is written as :

Φ =

 0
1√
2v + h

 (1.10)

1.1.4 Yukawa sector

Now we can generate the masses for all the fermions with the VEV of a single Higgs doublet

with use of Φ and Φ̃, where

Φ̃i = εijΦ∗j , 〈Φ̃〉 =

 1√
2v

0

 (1.11)

To show how SSB generates fermion masses in the SM, we look at the first generation as an

example :

LYuk = fe L̄Φ eR + fu q̄L Φ̃uR + fd q̄L Φ dR + h.c. (1.12)

After SSB, the Lagrangian takes the form :

LYuk = fe v√
2

(ēLeR + ēReL) + fu v√
2

(ūLuR + ūRuL) + fd v√
2

(d̄LdR + d̄RdL) (1.13)

5 It was Steven Weinberg who correctly incorporated the Higgs mechanism in the electroweak theory by
identifying the Higgs field as a SU(2)L doublet of the electroweak gauge group. For this reason, SM Higgs
boson might also be referred as the "Weinberg" boson.
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from which the fermion masses can be directly read off.

1.2 Motivations for BSM Physics

The successful experimental predictions of the SM places it on a grand pedestal as a powerful

theory of nature. Inspite of these successes, there are indeed few cracks through which we

can gain insight to build further on. In this section, we discuss few of the most motivated

theoretical and experimental hints for looking beyond the Standard Model (BSM). We dis-

cuss experimental motivations, for e.g. explanation for small neutrino masses, neutrino mass

mechanism and generation of matter-antimatter asymmetry of the Universe. Few of the the-

oretical motivations include the issue of vaccum stability in SM and prospects of unification

of the couplings at higher energies, for which we will look and offer theoretical guidance by

analyzing the limits of our most motivated BSM models like Left-Right Symmetric Model

and U(1)B−L model.

1.2.1 Experimental Motivations

1.2.1.1 Neutrino Oscillations and Masses

In the late 1960s, the solar neutrino problem arose from observations in Homestake Exper-

iment led by Ray Davis and John Bahcall, in which there were a lot fewer neutrino events

reported than expected theoretically assuming the standard solar model. This problem was

only resolved later in around 2002 after measurements of other experiments involving solar,

atmospheric and reactor neutrinos, which could be effectively explained if neutrinos of dif-

ferent flavors could change into each other. This mechanism for neutrino flavor conversion

during propagation is now known as "Neutrino oscillations" . An important implication of

neutrino oscillations is that neutrinos can only oscillate in vacuum if they have non-zero

masses. Although the absolute mass scale is still unknown but the associated mass split-

tings have been measured to sub-eV precision along with the mixing angles. In addition, the

6
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absolute sign for one of the mass splitting is unknown and this leads to two possible mass

hierarchy for neutrinos : Normal ordering, NO (m3 > m2 > m1) and Inverted ordering, IO

(m2 > m1 > m3).

For neutrinos following NO, the three masses mi are parametrized as

m1 = m0 , m2 =
√
m2

0 + ∆m2
sol , m3 =

√
m2

0 + ∆m2
atm (1.14)

with m0 denoting the lightest neutrino mass and from the global fit 2020 [15]

∆m2
sol = m2

2 −m2
1 =

(
7.42+0.21

−0.20

)
× 10−5 eV2 , ∆m2

atm = m2
3 −m2

1 =
(
2.517+0.026

−0.028

)
× 10−3 eV2 ,

6.82 × 10−5 eV2 ≤ ∆m2
sol ≤ 8.04 × 10−5 eV2 ,

2.435 × 10−3 eV2 ≤ ∆m2
atm ≤ 2.598 × 10−3 eV2 . (1.15)

at the 3σ level.

For neutrino with IO, the masses mi are written as

m1 =
√
m2

0 + |∆m2
atm| −∆m2

sol , m2 =
√
m2

0 + |∆m2
atm| , m3 = m0 (1.16)

where

∆m2
sol = m2

2 −m2
1 =

(
7.42+0.21

−0.20

)
× 10−5 eV2 , ∆m2

atm = m2
3 −m2

2 =
(
−2.498+0.028

−0.028

)
× 10−3 eV2

6.82 × 10−5 eV2 ≤ ∆m2
sol ≤ 8.04 × 10−5 eV2 ,

−2.581 × 10−3 eV2 ≤ ∆m2
atm ≤ −2.414 × 10−3 eV2 (1.17)

at the 3σ level.

The lepton flavor eigenstates of neutrino νf (f = e, µ, τ) can be written as a linear

combination of the mass eigenstates νi (i = 1, 2, 3),

νf =
∑
i

Ufi νi (1.18)

7
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where U is the 3 × 3 unitary mixing matrix for neutrinos, known as Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix.

As parametrization of the PMNS mixing matrix we take

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα/2, ei(β/2+δ))

(1.19)

and sij = sin θij and cij = cos θij. The mixing angles θij range from 0 to π/2, while the

Majorana phases α, β as well as the Dirac phase δ take values between 0 and 2π. Note one

of the Majorana phases becomes unphysical, if the lightest neutrino mass m0 vanishes.

As experimental constraints on the lepton mixing angles and the CP phase δ we use the

results from the global fit 2020 [15]. These read for NO (IO)

sin2 θ13 = 0.02219(38)+0.00062(3)
−0.00063(2) and 0.02032(52) ≤ sin2 θ13 ≤ 0.02410(28) ,

sin2 θ12 = 0.304+0.012(3)
−0.012 and 0.269 ≤ sin2 θ12 ≤ 0.343 ,

sin2 θ23 = 0.573(5)+0.016(23)
−0.020(19) and 0.415(9) ≤ sin2 θ23 ≤ 0.616(7) ,

δ = 3.43(4.98)+0.47
−0.42 and 2.09(3.36) ≤ δ ≤ 6.44(15) (1.20)

for best fit value, 1σ level and 3σ range, respectively.

To sum up, SM neutrinos do not have a right-handed partner and hence are massless to

all orders in perturbation theory. But the presence of oscillations between different flavors

indicates massive neutrinos and hence directly points to physics beyond the SM.

1.2.1.2 Matter-Antimatter Asymmetry

One of the most important questions in physics is, why there is more matter than antimatter

? This asymmetry between matter and antimatter can be precisely stated in terms of a

ratio ηB defined as the number density of net baryons over photons. This ratio has been
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determined experimentally using the abundance of light elements at the time of Big Bang

Nucleosynthesis. Most recent precise measurement done by Planck Collaboration (2018) [16]

sets the matter-antimatter asymmetry parameter ηB

ηB = nb − nb̄
nγ

= (6.12± 0.08)× 10−10 (1.21)

This can be explained through the dynamical generation of baryon asymmetry for which

required basic ingredients includes the 3 Sakharov conditions for a model: presence of C

& CP violation, baryon number violation and departure from thermal equilibrium for the

baryon number violating processes.

A very closely related idea for baryon asymmetry generation is the leptogenesis mech-

anism. The central idea of leptogenesis is the production of leptonic asymmetry in early

Universe which is then converted to baryonic asymmetry of the Universe (BAU) through

B-L conserving electroweak sphaleron interactions6. More details on the leptogenesis mech-

anism are covered in Chapter 6.

1.2.1.3 Dark Matter

In 1930s while observing the Coma Cluster, Swiss astrophysicist Fritz Zwicky noticed that

the observed luminous mass of the cluster was less than then the mass inferred from the

virial motion of the galaxies near the edge of the cluster7 He inferred that most of the mass

of the cluster is dark and called it “dunkle Materie” (’dark matter’). A turning point in

missing matter problem occurred in 1970-1980s. Vera Rubin along with Ken Ford measured

the galactic rotation curves for numerous spiral galaxies. They found that rotation curves

tend to flattening out at far enough distances from the center of the galaxy compared to the

Newtonian expectation of gradual decrease in radial velocity at larger radii. They showed
6 SM Sphaleron interactions are non-perturbative processes that violate net baryon + lepton B+L number

but conserve the total B − L charge.
7 Zwicky had estimated amount of missing matter to be 400 times more than luminous mass of the cluster.

It is now known that his estimate was off by an order of magnitude mainly due to (then known) value of the
Hubble constant.
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that galaxies must contain six times more dark matter than luminous matter. These ob-

servations were monumental in convincing the larger community for the existence of Dark

Matter (DM).

It has been shown through studies on Big Bang nucleosynthesis and gravitational lensing

that bulk of the DM in the universe cannot be made up of currently known SM particles.

Thus, presence of missing mass constitutes one of the most direct push for BSM physics.

Although the experimental searches for various DM candidates have been done since late

1980s, all of these searches have turned empty handed. One of the most popular earlier

choices for DM called Weakly Interacting Massive Particles (WIMPS) have been ruled out

(although more convoluted models might still survive). For now this has motivated the

search for light dark matter candidates such as axion-like particles (with SM axion being

ruled out).

There is an another interesting class of DM candidates such as Bose-Einstein Condensate

DM, fuzzy DM and Superfluid DM. In these scenarios, the point-particle behaviour of the

DM is lost at short scales and instead manifests in form of a condensate (can be classical or

quantum based on the model) at the galactic scales.

1.2.2 Theoretical Motivations

1.2.2.1 Vacuum Stability

An important problem with the SM is the stability of the scalar Higgs potential at high-

energies. The condition for stability of the scalar potential in the SM is the positivity of

the Higgs quartic coupling λh (see Eq. 1.6. However, renormalization group equation (RGE)

analysis shows that λh becomes negative at a scale of around 1010 GeV for experimentally

measured value of the Higgs mass [17]. Thus, the potential in the SM is unbounded from

below around this scale and makes the theory unstable8. This motivates us to to look beyond
8 Technically, the SM vacuum is metastable i.e. the average time to tunnel to true vacuum state is longer

than the age of the Universe

10



Introduction

the SM and also ensure to ensure the stability of the scalar Higgs potential in these candidate

theories for physics beyond the SM.

1.2.2.2 GUT Unification

Motivated by the unification of electromagnetism and weak force as a two different manifes-

tion of a single electroweak force, points to an obvious question : Can all of the fundamental

forces in the SM be unified into one fundamental force ? This can more concretely be de-

scribed in language of gauge groups : Does there exist a simplified gauge symmetry group

structure that breaks down to SM at lower energies ? The coupling constants in any QFT

depend on the energy scale and termed as "running" couplings. The unification at higher

energies might be reflected indirectly if the gauge couplings of the SM unify at some higher

scale, often dubbed as GUT scale where GUT stands for the Grand Unified Theory. Although

the SM couplings do not unify exactly near GUT scale but this scenario might change with

introduction of new particles/gauge symmetries at between TeV to GUT scale. The system

of equations governing the running of the coupling constants are known as Renormalization

Group Equations (RGEs).

1.3 Towards BSM Physics

In this dissertation, we explore the new physics beyond the SM motivated by the theoretical

and experimental reasoning as described in the previous section.

In Chapter 2, we derive perturbativity constraints on beyond standard model scenarios

with extra gauge groups, such as SU(2) or U(1), whose generators contribute to the elec-

tric charge, and show that there are both upper and lower limits on the additional gauge

couplings, from the requirement that the couplings remain perturbative up to the grand

unification theory (GUT) scale. This leads to stringent constraints on the masses of the

corresponding gauge bosons and their collider phenomenology.
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In Chapter 3, we derive analytic necessary and sufficient conditions for the vacuum

stability of the left-right symmetric model as an example by using the concepts of copositivity

and gauge orbit spaces. We also derive the conditions sufficient for successful symmetry

breaking and the existence of a correct vacuum. We also discuss the renormalization group

analysis of the scalar quartic couplings through an example study that satisfies vacuum

stability, perturbativity, unitarity and experimental bounds on the physical scalar masses.

BSM physics of neutrino masses entail new interactions and thus motivates to carefully

study them for minute effects. In Chapter 4, we study the effect of Nonstandard interactions

(NSI) of neutrinos with matter mediated by a scalar field. We develop general techniques to

study matter effects and long range force effects consistently even in relativistic backgrounds,

and discuss various limiting cases applicable to the neutrino propagation in different media,

such as the Earth, Sun, supernovae and early Universe.

In Chapter 5, We consider a generic dark photon that arises from a hidden U(1) gauge

symmetry imposed on right-handed neutrinos νR. Such a νR-philic dark photon is naturally

dark due to the absence of tree-level couplings to normal matter. However, loop-induced

couplings to charged leptons and quarks are inevitable, provided that νR mix with left-handed

neutrinos via Dirac mass terms. We investigate the loop-induced couplings and find that

the νR-philic dark photon is not inaccessibly dark, which could be of potential importance

to future dark photon searches.

In Chapter 6, we discuss about the production of baryon asymmetry through resonant

leptogenesis and phenomological signatures of type-I seesaw scenario with a flavour and a

CP symmetry that strongly constrain lepton mixing angles, and both low- and high-energy

CP phases. We specially focus on the effect of these symmetries on the collider signals in

minimal U(1)B−L model and effective neutrino mass (mββ) in neutrinoless double beta decay

(0νββ), while also requiring production of the experimentally observed baryon asymmetry

(ηB).

We finally conclude in Chapter. 7.
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Chapter 2

Perturbativity and Unitarity in

U(1)B−L and Left-Right Model
9

“I don’t want to believe. I want to know."

- Carl Sagan

2.1 Introduction

BSM physics could of course be at any scale; however, from an experimental point of view,

it is interesting if it is at the TeV scale so that it could be tested by current and planned

experiments. Many TeV-scale BSM extensions proposed to remedy the above shortcomings

of the SM introduce extended gauge groups, such as extra U(1) or SU(2)× U(1) groups at

the TeV scale, which are usually derived from a higher symmetry group, such as SO(10) [18,

19, 20, 21, 22] at the grand unification theory (GUT) scale. Such extensions broadly fall into

two classes:

(i) The generators of the extra gauge groups contribute to the electric charge [23, 24].

Two widely discussed examples are (a) the models based on the gauge group SU(2)L×

U(1)I3R × U(1)B−L [25, 26] and (b) the left-right symmetric model (LRSM) based on

the gauge group SU(2)L × SU(2)R × U(1)B−L [27, 28, 29], both of which are useful
9 This chapter is based on [10]

13



Chapter 2. Perturbativity and Unitarity in U(1)B−L and Left-Right Model

and motivated in order to understand neutrino masses via the seesaw mechanism [30,

31, 32, 33, 34].

(ii) The extra gauge groups do not contribute to electric charge. Examples of this class are

the dark photon [35, 36, 37], U(1)B−L [38, 39], and more generic U(1)X [40, 41, 42, 43]

models, which have been discussed extensively in connection with dark matter [44] and

collider signatures [45].

In both these classes of models, demanding that gauge couplings remain perturbative i.e.

gi <
√

4π up to the GUT or Planck scale imposes severe constraints on the allowed values of

the extra gauge couplings, as well as on the masses of the additional gauge bosons. In case

(i), where the additional group generators contribute to the electric charge, we find both

upper and lower limits on the gauge couplings, whereas in case (ii), where the additional

gauge couplings are not related to the electric charge, we only get upper limits and no lower

limits. In this chapter, we only focus on the case (i) models and derive the perturbativity

bounds on the gauge couplings gR and gBL, corresponding to the SU(2)R (or U(1)I3R) and

U(1)B−L gauge groups, respectively.

Our results have far-reaching implications for collider searches for extra gauge bosons.

In particular, they have to be taken into consideration, while interpreting the current direct

search constraints on the WR [46, 6] and ZR [1, 2] bosons from the Large Hadron Collider

(LHC) data, or the prospects [7, 47, 8, 5, 48] at the High-Luminosity LHC (HL-LHC) and a

future 100 TeV collider [49, 50]. In particular, if the measured gauge couplings fall outside

the limits derived from perturbativity up to the GUT (or Planck) scale, that would imply

that there is new physics at the TeV or intermediate scale which allows this to happen. That

would have interesting implications for new BSM physics.

There is another important implication of our results for the LRSM. Due to the stringent

flavor-changing neutral current (FCNC) constraints in the high-precision electroweak data

such as K0 −K0, Bd − Bd and Bs − Bs mixings [51], the parity partner of the SM doublet
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scalar is required to be very heavy, i.e. & 10 TeV [52, 53, 54, 55].10 Then one of the quartic

couplings (α3) in the scalar potential [see Eq. (2.17)] is of order one, if the right-handed

(RH) scale vR lies in the few-TeV range. As a result, the perturbativity of the quartic

couplings up to the GUT scale imposes a lower bound on the vR scale, i.e. vR & 10 TeV. The

renormalization group (RG) running of α3 and other quartic couplings involves the gauge

couplings gR and/or gBL. Hence, the perturbativity constraints in the scalar sector of LRSM

do not only narrow down significantly the allowed ranges for the gauge couplings gR and

gBL, but also supersede the current WR and ZR mass limits from the LHC, and even rule

out the possibility of finding them at the HL-LHC (see Fig. 2.7). Therefore, if a heavy WR

and/or ZR boson was to be found at the later stages of LHC, then either it does not belong

to the LRSM, or the minimal LRSM has to be further extended at the TeV-scale or a higher

intermediate scale, such that all the gauge, scalar and Yukawa couplings are perturbative

up to the GUT scale.

Though we focus on the minimal U(1)B−L and LRSM gauge groups in this chapter, the

basic arguments and main results could easily be generalized to other gauge groups at the

TeV scale, such as the SU(3)L × U(1)X [56, 57, 58, 59], SU(3)L × SU(3)R × U(1)X [60, 61,

62, 63, 64], and alternative left-right models with universal seesaw mechanism for the SM

quarks and charged leptons [65, 66, 67, 68, 69, 70, 71, 72, 73, 74] or with a stable right-handed

neutrino (RHN) dark matter [75, 76]. However, our results do not apply to situations where

the extra U(1) groups emerge out of non-Abelian groups at an intermediate scale, since they

will completely alter the ultraviolet (UV) behavior of the TeV scale U(1) gauge couplings.

String theories provide many examples where extra U(1)’s persist till the string scale without

necessarily being embedded in intermediate scale non-Abelian groups [45, 77]. However, if

the extra TeV-scale gauge group in question is valid up to the GUT scale, where it gets

embedded into a non-Abelian GUT group, SO(10) [18, 19, 20, 21, 22] or higher rank groups,

our results will be applicable and give useful information on the particle spectrum at the
10 Due to sizable hadronic uncertainties, the FCNC constraints on the heavy bidoublet scalars might go

up to ∼ 25 TeV.
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TeV scale.

This chapter is organized as follows: In Section 2.2, we sketch the basic theoretical

arguments behind the perturbativity constraints on the gauge couplings that contribute to

the electric charge. The application to the SU(2)L × U(1)I3R × U(1)B−L gauge group is

detailed in Section 2.3, along with the implications for searches of the heavy ZR boson and

the vR scale at the LHC and future 100 TeV colliders. The analogous study for the LRSM

gauge group SU(2)L×SU(2)R×U(1)B−L is performed in Section 2.4, where we also include

the phenomenological implications on the WR, ZR searches at colliders. We conclude in

Section 2.5. The state-of-the-art two-loop RG equations for the gauge, quartic and Yukawa

couplings in the LRSM are collected in Appendix A.

2.2 Theoretical constraints

Our basic strategy is as follows: In the SM, when the electroweak gauge group breaks down

to the electromagnetic group, i.e. GSM ≡ SU(2)L × U(1)Y → U(1)EM, the electric charge is

given by

Q = I3L + Y

2 , (2.1)

and we have the relation among the gauge couplings at the electroweak scale:

1
e2 = 1

g2
L

+ 1
g2
Y

, (2.2)

where gL, gY , e are the gauge couplings for the SU(2)L, U(1)Y and U(1)EM gauge groups,

respectively. Current experiments completely determine these coupling values at the elec-

troweak scale [51]:

e = 0.313± 0.000022 , gL = 0.652± 0.00026 , gY = 0.357± 0.000060 . (2.3)
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When the SM is extended in the gauge sector, to the gauge group SU(2)L×U(1)X ×U(1)Z ,

such that the extra U(1)X,Z ’s both contribute to the electric charge, then the modified

electric charge formula becomes

Q = I3L + IX + IZ . (2.4)

This is also true if we replace one of the U(1)X,Z ’s with an SU(2). The corresponding relation

involving the new gauge couplings become [78]:11

1
g2
Y

= 1
g2
X

+ 1
g2
Z

, (2.5)

where gX and gZ are the gauge couplings for the U(1)X and U(1)Z gauge groups, respectively.

This relation holds at the scale vX , where U(1)X ×U(1)Z breaks down to the SM U(1)Y and

correlates the couplings gX,Z to gY . Since the value of gY is experimentally determined at any

scale vX (with the appropriate SM RG evolution), we must have gX,Z bounded from below in

order to satisfy Eq. (2.5). On the other hand, requiring that the gauge couplings gX,Z remain

perturbative till the GUT or Planck scale implies that gX,Z must also be bounded from above

at any given scale vX . In other words, the couplings gX,Z can neither be arbitrarily large nor

arbitrarily small at the TeV-scale, allowing only a limited range for their values. This in turn

constrains the mass of the extra heavy gauge boson Z ′, which is given byM2
Z′ ∼ (g2

X+g2
Z)v2

X .

Clearly this has implications for the production of Z ′ at colliders.

As an example, when the SM gauge group is extended to SU(2)L × U(1)I3R × U(1)B−L

as in Section 2.3, or to SU(2)L × SU(2)R × U(1)B−L as in Section 2.4, the gauge couplings

gX,Z are respectively gR and gBL, and vR is the scale at which the extended gauge groups

break down to the SM electroweak gauge group GSM. Eq. (2.5) then implies a lower bound
11 Note that we are not using here any GUT normalizations for the U(1) couplings in Eq. (2.5). For

normalized couplings, the relation has to be altered accordingly.
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Tab. 2.1: Particle content of the SU(2)L × U(1)I3R × U(1)B−L model.

SU(2)L U(1)I3R U(1)B−L
Q 2 0 1

3
uR 1 +1

2
1
3

dR 1 −1
2

1
3

L 2 0 −1
N 1 +1

2 −1
eR 1 −1

2 −1
H 2 −1

2 0
∆R 1 −1 2

on the coupling gR [79]:

rg ≡
gR
gL

> tan θw
(

1− 4π
g2
BL

αEM

cos2 θw

)−1/2

, (2.6)

where θw ≡ gY /gL is the weak mixing angle, and αEM ≡ e2/4π is the fine-structure constant.

For a phenomenologically-preferred TeV-scale vR, if gBL is in the perturbative regime, we can

set an absolute theoretical lower bound on rg > tan θw ' 0.55 [79, 80]. One should note that

the lower bound on gR depends on the vR scale. This is before requiring the perturbativity

to persist up to the GUT or Planck scale. When perturbativity constraints are imposed, the

lower limit on gR becomes more stringent, as we show below (see Figs. 2.3, 2.4, 2.7 and 2.8).

2.3 U(1)B−L model

The first case we focus on is the SU(2)L×U(1)I3R ×U(1)B−L model [25, 26] which possesses

two BSM U(1) gauge groups, i.e. U(1)I3R×U(1)B−L, which break down to the SM U(1)Y at

a scale vR. Labeling the gauge couplings for the groups U(1)I3R and U(1)B−L as gR and gBL

respectively, we can set lower bounds on both gR and gBL at the vR scale from the coupling

relation (2.5), as well as upper bounds from the requirement that they remain perturbative

up to the GUT scale, as argued in Section 2.2.

The particle content of this model [81, 82] is presented in Table 2.1. Freedom from
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anomalies requires three RHNs which help to generate the tiny neutrino masses via the

type-I seesaw mechanism [31]. In the scalar sector, one singlet ∆R is used to beak the U(1)

groups and generate the RHN masses, while the doublet H breaks the electroweak group, as

in the SM. The one-loop renormalization group equations (RGEs) for the gauge couplings

of the two U(1)’s are generated by the following β-functions:

16π2β(gI3R) = 9
2 g

3
I3R

, (2.7)

16π2β(gBL) = 3 g3
BL . (2.8)

Note that we have not used GUT renormalized gBL, since we are not considering coupling

unification, but rather the implications for the heavy ZR boson searches at colliders. This

model could be viewed in some sense as an “effective” TeV-scale theory of LRSM with the

SU(2)R-breaking scale and the mass of the heavy WR boson at the GUT scale [81, 82]. The

U(1)B−L model discussed in this section could also be the TeV-scale effective theory of some

GUT that contains U(1)B−L as a subgroup.

As an illustration, we set explicitly the RH scale vR = 5 TeV, and run the SM coupling

gY from the electroweak scale MZ up to the vR scale, at which the couplings gR and gBL

are related to gY as in Eq. (2.5) and can be expressed as functions of the ratio rg ≡ gR/gL.

Then we evolve the two couplings gR and gY from the vR scale up to the GUT scale, based

on the β-functions in Eqs. (2.7) and (2.8). The correlations of gR,BL at the RH scale vR and

GUT scale MGUT = 1016 GeV are presented in Fig. 2.1, as functions of the ratio rg at the

vR scale (as shown by the color coding). The horizontal shaded region is excluded by the

perturbativity limit gR,BL <
√

4π. The vertical dashed lines denote the upper limits on the

gauge couplings, requiring them to stay below the perturbativity limit up to the GUT scale.

On the other hand, the vertical dotted lines denote the lower limits on the gauge couplings,

obtained from Eq. (2.5), which implies there is only one degree of freedom in the U(1)B−L

model, and the values of gR and gBL are correlated at the scale vR, as shown by the red curve
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Fig. 2.1: Correlation of gR,BL(vR) and gR,BL(MGUT) in the U(1)B−L model as functions of
rg ≡ gR/gL at the vR scale (shown by the color coding). The horizontal shaded region is
excluded by the perturbativity limit gR,BL <

√
4π. The vertical dotted and dashed lines

respectively denote the lower and upper limits on the gauge couplings. Here we have chosen
vR = 5 TeV and MGUT = 1016 GeV.

in Fig. 2.2. In other words, a lower bound on gR corresponds to an upper bound on gBL,

and vice versa. Numerically, the gauge couplings are found to be constrained to lie within a

narrow window

0.398 < gR < 0.768 and 0.416 < gBL < 0.931 , with 0.631 < rg < 1.218 (2.9)

at the vR scale, as shown in Fig. 2.1.

The perturbativity constraints on the gauge couplings gR and gBL at the vR scale have

profound implications for the searches of the heavy ZR boson, whose mass is given by

M2
ZR
' 2(g2

R + g2
BL) v2

R . (2.10)

The ZR couplings to the chiral fermions fL,R are respectively [82]

gZRfLfL = e

cos θw
(I3,f −Qf )

sinφ
cosφ , (2.11)

gZRfRfR = e

cos θw
(I3,f −Qf sin2 φ) 1

sinφ cosφ (2.12)
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Fig. 2.2: Correlation of gR and gBL at the scale vR = 5 TeV (red line) and the lower and
upper bounds on the couplings gR and gBL, induced from the requirement of perturbativity
up to the GUT scale in the U(1)B−L model.

Tab. 2.2: The lower bounds on the ZR boson mass MZR and the vR scale in the U(1)B−L
model from the current LHC13 data [1, 2] and the prospects at the HL-LHC 14 TeV with
an integrated luminosity of 3000 fb−1 [3, 4] and future 100 TeV collider FCC-hh with a
luminosity of 30 ab−1 [4, 5]. The range in each case corresponds to the allowed range of rg
from perturbativity constraints, as given in Eq. (2.9).

collider MZR [TeV] vR [TeV]
LHC13 [3.6, 4.2] [3.02, 3.57]
HL-LHC [6.0, 6.6] [4.60, 5.82]
FCC-hh [27.9, 31.8] [19.9, 26.8]

with Qf the electric charge of fermion f , I3,f the third-component of isospin of that particle,

and tanφ ≡ gBL/gR the RH gauge mixing angle.

For a TeV-scale vR, the ZR mass is stringently constrained by the dilepton data pp →

ZR → `+`− (with ` = e, µ) at the LHC [83, 84]. For a sequential Z ′ boson, the current

mass limit is 4.05 TeV at the 95% confidence level (CL) [1, 2]. The dilepton prospects of

a sequential Z ′ boson have also been estimated at the HL-LHC [3, 4] and future 100 TeV

colliders [4, 5], which are respectively 6.4 TeV and 30.7 TeV, for an integrated luminosity

of 3000 fb−1. Given a luminosity of 10 times larger at the 100 TeV collider, the dilepton

prospects could be significantly enhanced, up to 43.7 TeV. The production cross section

σ(pp→ ZR → `+`−) in the U(1)B−L model can be obtained by rescaling that of a sequential
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Fig. 2.3: Current LHC13 constraints on ZR mass in the U(1)B−L model (shaded orange)
as function of rg = gR/gL, and future prospects at the HL-LHC 14 TeV with an integrated
luminosity of 3000 fb−1 (short-dashed red) and the 100 TeV collider FCC-hh with a luminosity
of 30 ab−1 (long-dashed red). The vertical shaded regions are excluded by the perturbativity
constraints given in Eq. (2.9). The pink, green, blue and purple contours show the variation
of the ZR mass with respect to rg, with the RH scale vR = 5, 10, 20, 50 TeV, respectively.

heavy Z ′ boson, as function of rg = gR/gL. The rescaled current mass limit and the expected

limits at the HL-LHC and the future 100 TeV collider FCC-hh are presented in Fig. 2.3, as

a function of rg. The ZR mass contours for vR = 5, 10, 20 and 50 TeV are also shown

in Fig. 2.3 in the colors of pink, green, blue and purple, respectively. The vertical shaded

regions are excluded by the perturbativity constraints given in Eq. (2.9).12 Fig. 2.3 implies

that the LHC13 lower limits, as well as the future HL-LHC and FCC-hh limits, on ZR boson

mass are in a narrow range, depending on the allowed values of rg, as shown in Table 2.2.

Thus, the perturbativity constraints restrict the accessible range ofMZR up to 6.6 TeV at the

HL-LHC and 31.8 TeV at the FCC-hh. For the purpose of concreteness, we have assumed

the decay ZR → NiNi is open, such that the BR(ZR → `+`−) is slightly smaller than the case

without the decaying of ZR into RHNs and the dilepton limits in Fig. 2.3 are comparatively

more conservative [75].

The dilepton constraints on the ZR mass can be traded for the constraints on vR scale
12 When the vR scale changes from 5 TeV, the perturbative constraints on rg in Fig. 2.3 will change

accordingly from those given below Eq. (2.9). However, this change is negligible for vR up to 50 TeV.

22



Chapter 2. Perturbativity and Unitarity in U(1)B−L and Left-Right Model

using Eq. (2.10). This is shown in Fig. 2.4 and Table 2.2. The pink, green, blue and purple

contours here show the variation of vR with respect to rg, with fixed ZR mass of MZR = 5,

10, 20, 50 TeV, respectively. The perturbativity constraints given in Eq. (2.9) restrict the

accessible range of vR up to 5.8 TeV at the HL-LHC and 26.8 TeV at the FCC-hh.
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Fig. 2.4: Current lower bound on the vR scale in the U(1)B−L model, as functions of rg =
gR/gL, from the searches of ZR in the dilepton channel at LHC 13 TeV (shaded orange), as
well as the future limit from HL-LHC 14 TeV with an integrated luminosity of 3000 fb−1

(short-dashed red) and the 100 TeV collider FCC-hh with a luminosity of 30 ab−1 (long-
dashed red). The vertical shaded regions are excluded by the perturbativity constraints
given in Eq. (2.9). The pink, green, blue and purple contours show the variation of vR with
respect to rg, with the ZR mass MZR = 5, 10, 20, 50 TeV, respectively.

2.4 The minimal left-right symmetric model

We now consider the TeV-scale LRSM based on the gauge group SU(2)L × SU(2)R ×

U(1)B−L [27, 28, 29]. Original aim of this model was to explain the asymmetric chiral

structure of electroweak interactions in the SM. It was subsequently pointed out that it

could account for the observed small neutrino masses via the type-I [30, 31, 32, 33, 34]

and/or type-II [85, 86, 31, 87, 88, 89] seesaw mechanisms. In the “canonical” version of

LRSM, it is always assumed that the gauge coupling gR = gL and the scalar content of the

LRSM consists of one bidoublet Φ and the left-handed (∆L) and right-handed (∆R) triplets.
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Tab. 2.3: Particle content of the minimal LRSM based on the gauge group SU(2)L×SU(2)R×
U(1)B−L.

SU(2)L SU(2)R U(1)B−L
QL ≡

(
uL
dL

)
2 1 1

3

QR ≡
(
uR
dR

)
1 2 1

3

ψL ≡
(
νL
eL

)
2 1 −1

ψR ≡
(
N
eR

)
1 2 −1

Φ =
(
φ0

1 φ+
2

φ−1 φ0
2

)
2 2 0

∆R =
( 1√

2∆+
R ∆++

R

∆0
R − 1√

2∆+
R

)
1 3 2

As long as the RH scale vR is at the few-TeV range, the values of gR and gBL and their

RG running up to the GUT scale are almost fixed, at least at the one-loop level. However,

the coupling gR might be different from gL, which generates very rich phenomenology in

the LRSM, see e.g. [79, 75, 90, 80, 91]. Moreover, a free gR not necessarily equal to gL

makes it possible to investigate the whole parameter space of perturbative constraints in

the LRSM. In addition, the parity and SU(2)R breaking scales might also be different such

that the left-handed triplet ∆L decouples from the TeV-scale physics [92]. This also helps

to avoid the unacceptably large type-II seesaw contribution to the neutrino masses and/or

fine-tuning in the scalar sector. Based on these arguments, we will not consider the ∆L field

in the low-energy LRSM. The matter content and the scalar fields in the minimal LRSM

are collected in Table 2.3. Three RHNs N1,2,3 have been naturally introduced to form the

RH lepton doublets ψR and accommodate the type-I seesaw mechanism. The perturbative

constraints from the gauge and scalar sectors follow in the next two subsections.

24



Chapter 2. Perturbativity and Unitarity in U(1)B−L and Left-Right Model

2.4.1 Perturbativity constraints from the gauge sector

The perturbativity limits in the gauge sector are conceptually similar to the U(1)B−L model

in Section 2.3; the difference is mainly due to the β-function coefficients, which in this case

are given by

16π2β(gR) = −7
3 g

3
R , (2.13)

16π2β(gBL) = 11
3 g3

BL . (2.14)

Note the change in sign for β(gR), as compared to Eq. (2.7), which is due to the non-Abelian

nature of SU(2)R. For completeness, we have also computed the two-loop RGEs using the

code PyR@TE [93, 94] and list them in Appendix A, although it turns out that the two-loop

corrections change the results only by a few per cent, as compared to the one-loop results

presented here.

As the RH scale vR = 5 TeV (chosen in Section 2.3) is in tension with the stringent

constraints from the scalar sector in LRSM (see Section 2.4.2 and Fig. 2.8), we set vR = 10

TeV as an illustrative example to evaluate the perturbative constraints on the gauge couplings

gR and gBL. In fact, as long as the vR scale is at the ballpark of few-TeV, the changes in

the running of gR and gBL are mainly due to the initial values of gR,BL at the vR scale, and

are negligibly small. As in the U(1)B−L model in Section 2.3, the couplings gR and gBL are

both functions of the ratio rg = gR/gL. The correlations of gR,BL at the vR scale and the

GUT scale are presented in Fig. 2.5, as functions of rg (as shown by the color coding). The

two stars in Fig. 2.5 correspond to the special case gR = gL at the vR scale. As a result of

non-Abelian nature of the SU(2)R group, gR is asymptotically free, i.e. it becomes smaller at

higher energy scales. Thus gR could go up to the perturbativity limit of
√

4π at the vR scale

(without considering the perturbativity limits from the scalar sector for the moment), which

is very different from the U(1)B−L model, where the gR value is much more restricted at the
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Fig. 2.5: Correlation of gR,BL(vR) and gR,BL(MGUT) in the minimal LRSM as functions of
rg = gR/gL at the vR scale (as shown by the color coding). The shaded regions are excluded
by the perturbativity limits gR,BL <

√
4π. The two stars correspond to the special case

gR = gL at the vR scale. The vertical dotted and dashed lines respectively denote the lower
and upper limits on the gauge couplings. Here we have chosen vR = 10 TeV andMGUT = 1016

GeV.

vR scale [cf. Fig. 2.1]. The allowed ranges of the gauge couplings in the minimal LRSM are

0.406 < gR <
√

4π and 0.369 < gBL < 0.857 , with 0.648 < rg < 5.65 (2.15)

at the scale vR, which is clearly shown in the correlation plot of gR and gBL in Fig. 2.6.

In the LRSM, the couplings of ZR boson to the SM fermions and the heavy RHNs are the

same as in the U(1)B−L model in Section 2.3. Thus, the dilepton limits from current LHC

13 TeV data [1, 2] and the prospects at the HL-LHC [3, 4] and future 100 TeV colliders [4, 5]

are also the same as in U(1)B−L model, up to the different perturbative windows for the

gauge couplings in Eqs. (2.9) and (2.15), respectively. The current LHC 13 TeV dilepton

constraints on the ZR mass in the minimal LRSM and the future prospects are shown in

the right panel of Fig. 2.7, along with the contours for MZR(rg) with the RH scale vR = 5,

10, 20 and 50 TeV. In the plot we have also shown the absolute theoretical lower bound on

rg > tan θw from Eq. (2.6) as the dashed vertical line, which is weaker than the “real” lower

bound from perturbativity up to the GUT scale shown in Figs. 2.5 and 2.6 (the solid vertical
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Fig. 2.6: Correlation of gR and gBL in the minimal LRSM at the scale vR = 10 TeV (red
curve), along with the lower and upper bounds on the couplings gR,BL, induced from the
requirement of perturbativity up to the GUT scale. The shaded region is excluded by the
perturbativity limit gR <

√
4π.
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Fig. 2.7: Current LHC13 constraints on the WR (left) and ZR (right) masses in the minimal
LRSM (shaded orange) as function of rg = gR/gL, and future prospects at the HL-LHC 14
TeV with an integrated luminosity of 3000 fb−1 (short-dashed red) and the 100 TeV collider
FCC-hh with a luminosity of 30 ab−1 (long-dashed red). The pink, green, blue and purple
lines are the WR/ZR mass with the RH scale vR = 5, 10, 20, 50 TeV, respectively. The
shaded gray and brown regions are excluded respectively by the perturbative constraints
from the gauge and scalar sectors up to the GUT scale. The dashed vertical line corresponds
to the absolute theoretical bound in Eq. (2.6).

gray line in Fig. 2.7). The scalar perturbativity limit shown in Fig. 2.7 will be discussed in

Section 2.4.2.

As for the limits on WR boson in the LRSM, due to the Majorana nature of the heavy
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RHNs, the same-sign dilepton plus jets pp → WR → `±N → `±`±jj is the “smoking-gun”

signal from the production and decay of the heavy WR boson at hadron colliders [95]. The

associated searches of WR and RHN have been performed at LHC 13 TeV [46, 6]. To be

concrete, we fix the RHN mass MN = 1 TeV; for such a benchmark scenario, the current

LHC data requires that the WR massMWR
> 4.7 TeV for gR = gL [6]. If gR 6= gL, we have to

re-evaluate the dependence of the production of WR and the subsequent decays WR → `±N

and N → `±`` on the gauge coupling gR.13 Specifically,

• The production of WR at hadron colliders is proportional to the WR couplings to the

SM quarks, i.e. σ(pp→ WR) ∝ g2
R.

• The WR boson decays predominately into the SM quarks and the charged leptons and

heavy RHNs, i.e. WR → q̄Rq
′
R, `RN . All the partial widths are proportional to g2

R, but

not the branching fraction BR(WR → `N).

• In the limit of vanishing W −WR mixing and heavy-light neutrino mixing, N → `jj

is the dominant decay mode (assuming N here is the lightest RHN), whose branching

fraction does not depend on gR.

In short, the gR dependence is only relevant to the production pp → WR. For fixed WR

mass, we need only to rescale the production cross section σ(pp → WR) by a factor of

r2
g = (gR/gL)2. The current LHC constraint on WR mass is presented in the left panel of

Fig. 2.7 as function of rg, along with the contours of MWR
for vR = 5, 10, 20 and 50 TeV.

It is a good approximation in the minimal LRSM that the right-handed quark mixing

matrix is identical to the CKM matrix in the SM, up to some unambiguous signs [98]. Then

the WR-mediated right-handed currents contributes to the K0 − K0 and B − B mixings,

leading to strong constraints on the WR mass, MWR
& 3 TeV [99, 100, 101, 53]. This limit

13 The WR boson might also decay into WZ and Wh, with the branching fractions depending largely on
the VEV κ′/κ [91]. This does not affect the dependence of WR production on the gauge coupling gR. For
simplicity, we have also neglected the effect of the heavy-light neutrino mixing on the WR decay [96], since
this mixing is severely constrained for TeV-scale LRSM with type-I seesaw [97].
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does not depend on the coupling gR, as in the limit of mK,B � MWR
the gR dependence

of WR coupling to the SM quarks is canceled out by the dependence of gR in the W boson

propagator. The WR contribution is effectively suppressed by v2
EW/v

2
R. As the quark flavor

limits on WR mass is significantly lower than that from the direct searches at the LHC for

rg & 0.65, they are not shown in the left panel of Fig. 2.7. The WR contributes also to

neutrinoless double β-decays [102, 103, 104, 105, 106, 107, 108, 109, 110], which however

depends on the masses of heavy RHNs and the doubly-charged scalars, and therefore, not

included in Fig. 2.7.

The WR could be probed up to 5.4 TeV at LHC 14 with a luminosity of 300 fb−1 [7, 111].

By rescaling the production cross section σ(pp→ WR) using CalcHEP [112], theWR prospects

could go up to 6.5 TeV for gR = gL at the HL-LHC where the integrated luminosity is 10

times larger (3000 fb−1). At future 100 TeV hadron colliders, for a relatively light RHN

MN � MWR
, the decay products from the RHN tend to be highly-collimated and form

fat jets. We adopt the analysis in Ref. [8] where MN/MWR
was taken to be 0.1. Given

a luminosity of 30 ab−1 at 100 TeV hadron colliders, the WR mass could be probed up to

38.4 TeV with gR = gL. The projected sensitivity of WR mass for a relatively low MN at

the HL-LHC and future 100 TeV collider FCC-hh could also be generalized to the case with

gR 6= gL, which are depicted in the left panel of Fig. 2.7 respectively as the short-dashed and

long-dashed red curves.

With the heavy gauge boson masses in the minimal LRSM

M2
WR
' g2

Rv
2
R , M2

ZR
' 2(g2

R + g2
BL)v2

R , (2.16)

the current direct search limits of the WR and ZR boson at LHC 13 TeV and the future

prospects at the HL-LHC and FCC-hh can be translated into limits on the vR scale (as in

the U(1)B−L model in Section 2.3), which are presented in Fig. 2.8. For illustration purpose,

we have also shown the contours of MWR
(MZR) = 5, 10, 20 and 50 TeV in the left (right)
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Fig. 2.8: Lower bounds on the vR scale in the minimal LRSM, as functions of rg, from the
direct searches of WR and ZR bosons at LHC 13 TeV (shaded orange), and future prospects
at the HL-LHC 14 TeV with an integrated luminosity of 3000 fb−1 (short-dashed red) and
the 100 TeV collider FCC-hh with a luminosity of 30 ab−1 (long-dashed red). The shaded
gray regions are excluded by the perturbativity constraints up to the GUT scale, with the
vertical dashed line corresponding to the absolute theoretical bound in Eq. (2.6). The shaded
brown regions are excluded by the perturbativity limits from the scalar sector, discussed in
Section 2.4.2.

panel of Fig. 2.8, which are depicted respectively in pink, green, blue and purple. We find

that the RH scale could be probed up to ' 87 TeV in the searches of WR boson and ∼ 25

TeV in the ZR boson channel at the 100 TeV collider.

2.4.2 Perturbativity constraints from the scalar sector

The most general renormalizable scalar potential for the Φ and ∆R fields is given by

V = −µ2
1 Tr(Φ†Φ)− µ2

2

[
Tr(Φ̃Φ†) + Tr(Φ̃†Φ)

]
− µ2

3 Tr(∆R∆†R)

+λ1
[
Tr(Φ†Φ)

]2
+ λ2

{[
Tr(Φ̃Φ†)

]2
+
[
Tr(Φ̃†Φ)

]2}
+λ3 Tr(Φ̃Φ†)Tr(Φ̃†Φ) + λ4 Tr(Φ†Φ)

[
Tr(Φ̃Φ†) + Tr(Φ̃†Φ)

]
(2.17)

+ρ1
[
Tr(∆R∆†R)

]2
+ ρ2 Tr(∆R∆R)Tr(∆†R∆†R)

+α1 Tr(Φ†Φ)Tr(∆R∆†R) +
[
α2e

iδ2Tr(Φ̃†Φ)Tr(∆R∆†R) + H.c.
]

+ α3 Tr(Φ†Φ∆R∆†R) .
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Due to the LR symmetry, all the 12 parameters µ2
1,2,3, λ1,2,3,4, ρ1,2, α1,2,3 are real, and the only

CP-violating phase is δ2 associated with the coupling α2, as explicitly shown in Eq. (2.17).14

The neutral component of the triplet develops a non-vanishing vacuum expectation value

(VEV) 〈∆0
R〉 = vR, which breaks the SU(2)R×U(1)B−L down to the SM U(1)Y , and generates

masses for the heavy scalars, the WR and ZR bosons and the RHNs. The bidoublet VEVs

〈φ0
1〉 = κ and 〈φ0

2〉 = κ′ are responsible for the electroweak symmetry breaking. Neglecting

the CP violation and up to the leading order in the small parameters ε = vEW/vR and

ξ = κ′/κ, the physical scalar masses are respectively [79]

M2
h ' 4λ1v

2
EW , M2

H1, A1, H
±
1
' α3v

2
R ,

M2
H3 ' 4ρ1v

2
R , M2

H±±2
' 4ρ2v

2
R , (2.18)

where h is the SM Higgs, H1, A1 and H±1 respectively the heavy CP-even and CP-odd neutral

components and the singly-charged scalars from the bidoublet Φ, H3 andH±±2 are the neutral

and doubly-charged scalars from the triplet ∆R, following the convention of Ref. [79].

In the minimal LRSM, the heavy neutral scalars H1 and A1 have tree-level FCNC cou-

plings to the SM quarks, which contribute to the K0 −K0, Bd − Bd and Bs − Bd mixings.

Thus their masses are tightly constrained by the high-precision flavor data, i.e. MH & 10

TeV [52, 53, 54]. For a few-TeV scale vR, this implies that the quartic coupling α3 'M2
H1/v

2
R

is pretty large, typically of order one. The RG running of the quartic couplings in Eq. (2.17)

are all entangled together, and a large α3 is the main reason why the LRSM could easily hit

a Landau pole at an energy scale that is much lower than the GUT scale [113, 114, 115, 116].

This could be alleviated if the vR scale is higher and the coupling α3 gets smaller. Therefore,

the perturbativity of the quartic couplings in Eq. (2.17) up to the GUT scale could set a

lower bound on the vR scale, assuming there is no intermediate scales or particles in between
14 This potential stems from the full LRSM at a higher energy scale in presence of the left-handed triplet

∆L. At the high scale, all but one of the couplings are real. At low scales there will be small phases in
some couplings induced by radiative renormalization group effects. We ignore these small phases. Our main
conclusions are not affected by this.
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vR and the GUT scale.

A thorough analysis of the RG running of all the quartic couplings in Eq. (2.17) is rather

complicated and it obfuscates the perturbativity limits on the vR scale. While some of the

quartic couplings could be tuned very small at the vR scale as they only induce mixings

among the scalars such as α1, 2 [79], there are only four quartic couplings, i.e. the λ1, α3, ρ1

and ρ2 appearing in Eq. (2.18), that are responsible for the scalar masses at the tree level.

Therefore, for the purpose of perturbativity limits in the scalar sector, we consider a simple

scenario with only these four non-vanishing quartic couplings λ1, α3, ρ1 and ρ2 at the vR

scale. In particular, we set the scalar masses to the following benchmark values:

Mh = 125 GeV , MH1, A1, H
±
1

= 10 TeV ,

MH3 = 100 GeV , MH±±2
= 1 TeV , (2.19)

from which one could obtain the values of λ1, α3, ρ1 and ρ2 by using Eq. (2.18). All other

quartic couplings λ2, 3, 4, α1,2 are set to zero, and this corresponds to the limits without

any tree-level scalar mixing at the vR scale. In the limit of vanishing mixing between h

and H1, the neutral scalar H3 from the triplet ∆R is hadrophobic and the experimental

constraints on H3 are rather weak [117, 81]. Thus we have set H3 to be light, at the 100

GeV scale, in Eq. (2.19). The smoking-gun signal of a doubly-charged scalar is the same-sign

dilepton pairs H±±2 → `±α `
±
β with α, β = e, µ, τ , which is almost background free. The

current most stringent limits are from the LHC 13 TeV data [118, 119], which requires that

MH±±2
& (271 − 760) GeV, depending largely on the charged lepton flavors involved [120].

To be concrete, we have set the doubly-charged scalar mass at 1 TeV in Eq. (2.19), which

easily satisfies the current LHC constraints. As for the bidoublet massesMH1, A1, H
±
1
, we have

taken the minimum possible value allowed by FCNC constraints [53], whereas for the SM

Higgs, we have taken the current best-fit value [121].

All the RGEs for the gauge couplings gL,R,BL and the quartic couplings in the potential
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in Eq. (2.17) are collected in Appendix A up to the two-loop level. To be self-consistent, we

include also the RGE for the dominant Yukawa coupling ht that is responsible for generation

of the top quark mass at the electroweak scale. The Yukawa couplings for the bottom and

tauon are comparatively much smaller and are neglected here. For a RH scale vR & 10 TeV,

the Yukawa coupling fR of ∆R to the lepton doublets are also small if the masses of the

three RHNs MN ' TeV. For simplicity, the fR terms in the β-functions are also neglected.

See Appendix A for more details.

Given the scalar masses in Eq. (2.19), all the β-functions for the quartic couplings in

Eq. (A.5) to (A.15) are dominated by the α3 terms if the RH scale vR is not too much higher

than the TeV scale, i.e.

16π2β(λ1) = 5
4α

2
3 + 3

8
(
3g4

L + 2g2
Lg

2
R + 3g4

R

)
− 6h4

t + · · · , (2.20)

where the dots stand for the subleading terms. For a few-TeV vR and α3 & O(1), the quartic

couplings rapidly blow up before reaching the GUT scale [113, 114, 115, 116]. An explicit

example is shown in the two upper panels of Fig. 2.9, with rg = gR/gL = 1.1 and vR = 6

TeV, where the quartic couplings become non-perturbative at ∼ 107 GeV. When the RH

scale vR is higher, for a fixed mass MH1 = 10 TeV, the coupling α3 'M2
H1/v

2
R is significantly

smaller. As a result, in a large region of the parameter space, all the quartic couplings are

perturbative up to the GUT scale, as exemplified in the two lower panels of Fig. 2.9 with

rg = gR/gL = 1.1 and vR = 12 TeV. In both examples, the bounded-from-below conditions

in the scalar sector are respected [115, 122]:15

λ1 ≥ 0 , ρ1 ≥ 0 , ρ1 + ρ2 ≥ 0 , ρ1 + 2ρ2 ≥ 0 . (2.21)

One should note that the gR and gBL terms in the β-functions in Eqs. (A.5) to (A.15)

might be unacceptably large. Thus the perturbativity limits in the scalar sector depend
15 More generic vacuum stability criteria can be found, e.g., in Ref. [123].
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Fig. 2.9: RG running of the quartic couplings λ1, 2, 3, 4 (left), and ρ1, 2, α1, 2, 3 (right) in the
scalar potential Eq. (2.17) of minimal LRSM from vR up to the GUT scale, with rg = 1.1
and vR = 6 TeV (upper panels), vR = 12 TeV (lower panels).

also on the gauge couplings gR and gBL, or equivalently the ratio rg = gR/gL. As seen in

Eq. (2.20), when gR & O(1) [or gBL & O(1)], the constraints on the vR scale and α3 tend to

be more stringent. The rg-dependent scalar perturbativity constraints on vR are shown in

Fig. 2.8 as the shaded brown regions. Numerically, we find the requirement in the minimal

LRSM that

vR & 10 TeV for 0.65 . rg . 1.6 , (2.22)

which makes the perturbativity constraints very stringent in the gauge sector (see Figs. 2.5

and 2.6). The quartic couplings blow up very quickly when rg is out of this range unless vR

is much higher than 10 TeV, as gR & O(1) or gBL & O(1).
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Tab. 2.4: Lower bounds on the WR and ZR boson masses and the corresponding vR scale
in the minimal LRSM from the current LHC13 data [6, 1, 2] and the prospects at the HL-
LHC 14 TeV with an integrated luminosity of 3000 fb−1 [7, 3, 4] and future 100 TeV collider
FCC-hh with a luminosity of 30 ab−1 [8, 4, 5], with both the gauge and scalar perturbativity
limits up to the GUT scale taken into consideration. The range in each case corresponds
to the allowed range of rg from perturbativity constraints, as given in Figs. 2.7 and 2.8.
The missing entries mean that the corresponding maximum experimental reach has been
excluded by the scalar perturbativity constraints. See text for more details.

collider WR searches ZR searches
MWR

[TeV] vR [TeV] MZR [TeV] vR [TeV]
LHC13 − − − −
HL-LHC [6.09, 6.47] [10.3, 14.8] − −
FCC-hh [35.6, 42.2] [38.3, 87.5] [27.9, 35.4] [21.8, 26.8]

It is remarkable that the perturbativity constraints from the scalar sector supersede

the current LHC constraints on the WR and ZR bosons in the minimal LRSM, and even the

projected ZR sensitivity at the HL-LHC, leaving only a very narrow window forWR, as shown

in Fig. 2.7. Fortunately, future 100 TeV colliders could probe a much larger parameter space.

All the numerical ranges of the maximum WR and ZR mass reach and the corresponding

vR scales at future hadron colliders are collected in Table 2.4, with both the gauge and

scalar perturbativity constraints taken into consideration. Finding a heavy WR and/or ZR

boson at the HL-LHC, would have strong implications for the interpretation in the minimal

LRSM. For instance, if a ZR boson was to be found at the LHC, then it does not belong to

the minimal LRSM. It could still be accommodated in the LRSM framework by introducing

some exotic particles or an intermediate scale, e.g. at ∼ 106 GeV, to the minimal LRSM to

keep all the gauge, Yukawa and quartic couplings perturbative up to the GUT scale.

It should be emphasized that the perturbative constraints on the WR and ZR masses and

the vR scale from the scalar sector shown in Figs. 2.7 and 2.8 are based on the assumptions of

the scalar masses in Eq. (2.19) and the vanishing quartic couplings λ2, 3, 4, α1,2. In light of the

stringent flavor constraints on the bidoublet scalars H1, A1 and H±1 , the dilepton constraints

on the doubly-charged scalar H±±2 and the flavor constraints on the neutral scalar H3, the

masses in Eq. (2.19) are almost the most optimistic values allowed by the current data that
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could give us the most conservative perturbativity constraints. If the BSM Higgs masses

get larger (especially in the bidoublet sector), the corresponding quartic couplings α3, ρ1

and ρ2 will be accordingly enhanced by M2/v2
R at the vR scale (with M standing for the

generic BSM scalar mass), and the scalar perturbativity limits on the vR scale would be

more stringent. Furthermore, if the couplings λ2, 3, 4, α1,2 are not zero at the vR scale, the

quartic couplings tend to hit the Landau pole at a lower scale.

We have also checked also the two-loop corrections to the scalar perturbativity limits by

deriving all the two-loop RGEs using the code PyR@TE [93, 94], as collected in Eqs. (A.1) to

(A.16). It turns out that the two-loop corrections only amount to less than 3% different for

the scalar perturbativity limits on vR and the heavy gauge boson masses, as compared to

the one-loop results presented in this section.

In the limit of small scalar mixing, just as we have assumed above, λ1 can be identified

as the SM quartic coupling. As a byproduct, the extra scalars in the LRSM contribute

positively to the β(λ1) in Eq. (A.5) in a larger region of parameter space, which helps to

stabilize the SM vacuum up to the GUT scale or even up to the Planck scale. The full

analysis of the stability of the scalar potential is beyond the main scope of this chapter. See

Ref. [122] for a recent analysis in this direction.

2.5 Conclusion

In conclusion, we find that in the extensions of the electroweak gauge group to either

SU(2)L×U(1)I3R×U(1)B−L or the left-right symmetric group SU(2)L×SU(2)R×U(1)B−L,

both of which contribute to the electric charge, there are strong limits on the new gauge

couplings gR and gBL from the requirement that the couplings remain perturbative till the

GUT scale. We obtain those limits for the minimal versions of these models and study their

implications for collider phenomenology. We find in particular that the ratio rg ≡ gR/gL,

or effectively the gauge couplings gR and gBL, are limited to a very narrow range at the
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TeV scale, as seen in Figs. 2.2 and 2.6. Inclusion of the scalar sector in the minimal LRSM

implies that the RH symmetry breaking scale in LRSM must have a lower bound of about

10 TeV for a limited coupling range 0.65 . rg . 1.6. The gauge (and scalar) perturbative

constraints have rich implications for the searches of ZR (and WR) bosons in these models

at the HL-LHC and future 100 TeV colliders. All the direct search constraints on the WR

and ZR masses from LHC 13 TeV, as well as the future prospects at HL-LHC and 100 TeV

colliders, depend on the BSM gauge couplings gR and gBL (or effectively the ratio rg). All

the ZR (and WR) mass ranges and the corresponding vR scales are collected in Figs. 2.3, 2.4

and Table 2.2 for the U(1)B−L model, and Figs. 2.7, 2.8 and Table 2.4 for the LRSM. One

of the most striking results we find is that the perturbativity constraints already exclude

the possibility of finding the ZR boson belonging to the minimal LRSM at the HL-LHC,

and leave only a narrow window for the WR boson. We hope this serves as an additional

motivation for the 100 TeV collider, where a much broader parameter space can be probed.
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Chapter 3

Vacuum Stability and Symmetry

Breaking in Left-Right Model
16

“It is not that I’m so smart. But I stay with the questions much

longer"
- Albert Einstein

3.1 Introduction

Left-Right Symmetric Model (LRSM) is the simplest extension of the SM with modified

electroweak gauge group: SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [27, 28, 29, 124]. It features heavy

Majorana right-handed neutrinos and can naturally explain the small masses of left-handed

neutrinos through see-saw mechanism [30, 125, 32, 33, 34]. It explains the asymmetric chiral

structure of SM through restoration of parity symmetry at high energies.

Scalar sector of LRSM features an SU(2) bi-doublet, left and right-handed weak isospin

triplets. Such an extended scalar sector leads to a complicated form of the potential which

contains 17 free parameters (3 negative mass squares and 14 scalar quartic couplings). An-

alytical study of vacuum stability and desired minimum for the entire scalar potential is an

arduous task. There has been some work in this direction [123, 122] but the results only hold

for a small parameter space with most of the quartic couplings set to zero. Moreover, just
16 This chapter is based on [11]
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ensuring vacuum stability does not yield the desirable vacuum expectation values (VEVs) to

ensure correct spontaneous symmetry breaking to SM [122]. In this work, we have derived

most general conditions sufficient17 to obtain the correct symmetry breaking and ensure vac-

uum stability of the LRSM. As we show later, it is necessary to obtain conditions for vacuum

stability of the general scalar potential before requiring the correct VEV alignment at the

minimum. The procedure outlined here for finding conditions for correct symmetry breaking

is general in nature and can be applied to different theories with varied forms of the scalar

sector.

This chapter is organised as follows. In section 3.2, concepts of copositivity and gauge or-

bit spaces are presented in context of vacuum stability. In section 3.3, we review the model

details of LRSM. In section 3.4, we derive the necessary and sufficient conditions for the

boundedness of scalar potential of the LRSM. In section 3.5, we derive conditions sufficient

for scalar parameters to lead to spontaneous symmetry breaking (SSB) to the correct global

minimum. In section 3.6, we compare the results from numerical minimization of the po-

tential with those from the derived conditions. In section 3.7, we present an example study

to use these conditions and other theoretical constraints (unitarity, scalar mass spectrum,

perturbativity) on the quartic couplings to study the stability of the vacuum at high ener-

gies and agreement with current experimental limits on scalar mass spectrum. Finally, we

conclude in section 3.8.

3.2 Boundedness

For the stability of the vacuum state, the potential should be bounded in all field directions.

In the large-field limit, terms with dimension d < 4 can be ignored as they are negligible

in comparison to the quartic terms ( denoted by V4(φi)) in the potential. Thus, requiring

V4(φi) > 0 as field values φi → ∞ is a strong condition for boundedness. This criterion is

termed as Bounded From Below (BFB) condition.
17 We have set only few of the couplings(α2, βi’s) to zero.
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For obtaining conditions for vacuum stability of a scalar potential using BFB criterion,

concepts of copositivity criteria and gauge orbit spaces can help greatly simplify the analysis.

3.2.1 Copositivity Criteria

Given a condition of the form:

ax2 + bx+ c > 0 (3.1)

where x ∈ R, the conditions for it to be positive-definite are very well known. If x ∈ R+,

then the requirement that eq. (3.1) holds is termed as copositivity. The conditions for

copositivity are given below:

a > 0, c > 0, b+ 2
√
ac > 0

The quartic part of the vacuum potential is bounded from below if it satisfies the copos-

itivity conditions. The criteria of copositivity has been applied to numerous models in

literature to obtain vacuum stability conditions [126, 123, 127, 128]. The difficulty to solve

these conditions based solely on copositive criteria is a formidable task. Usually it involves

checking copositivity in all n-field directions to obtain an exhaustive list of conditions for

vacuum stability .

In sec. 3.4.1 and 3.4.2, copositive criteria is used in conjunction with suitable parametriza-

tion of gauge orbit parameters to yield results easily. In the coupled case (Sec. 3.4.3), when

mixed field terms are present18, we observe that exact values of minima are required and

copositivity isn’t helpful as it yields results only upto a multiplicative constant.

3.2.2 Gauge Orbit Spaces

Due to the gauge freedom of the theory, different values of the fields can lead to same value of

the potential. These field values connected through gauge transformations collectively form
18 i.e α’s 6= 0
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a gauge orbit. Minimization of the Higgs potentials in orbit spaces has been extensively

studied in context of grand unified theories in the 1980’s [129, 130, 131, 132, 133, 134]. Here,

we present the method of orbit spaces for the two higgs fields case [129]. This is an extension

of the one-field treatment as presented in ref.[129, 127].

Consider the scalar potential of a theory with two higgs fields φ and π charged under

non-abelian gauge groups G and G′ respectively, with the following form :

V (φ, π) = −µ2
1(φ∗iφi)− µ2

2(π∗i πi) + λ1(φ∗iφi)2 + λ2fijklφ
∗
iφjφ

∗
kφl + · · · (3.2)

+ρ1(π∗i πi)2 + ρ2gijklπ
∗
i πjπ

∗
kπl + · · ·

+α1(φ∗iφi)(π∗jπj) + · · · (other terms coupling (φ, π))

where V (φ, π) remains invariant under the action of the group elements of G and G′. Field

φ(π) (with components denoted by φi(πi)) live in the representation R(R′) of group G(G′).

The group elements of G rotate a field into other field values on the same orbit space.

It can be shown that all the fields ψi on the orbit respect the same group, called the little

group. If their action on the fields is unitary, the norm of the field value φ∗iφi is preserved.

This similarly holds for field π. Several different orbits respect the same group and form a

set. The set of these orbits is called the stratum of the little group. Thus, we need to find

the gauge orbit that minimizes the potential.

The dimensionless ratios of invariants called orbit space parameters specifies a strata as

follows:

An(φ̂) = fijklφ
∗
iφjφ

∗
kφl

(φ∗iφi)2 Bn(π̂) = gijklπ
∗
i πjπ

∗
kπl

(π∗jπj)2

Similarly, for coupled terms Cn(φ̂, π̂) can be defined but normalized by φ∗iφiπ
∗
jπj. Orbit

space parameters greatly reduce the number of parameters and contain all the directional
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information required for the minimization. Defining orbit space parameters for eq. (3.2),

V (φ, π) = −µ2
1|φ|2 − µ2

2|π|2 + |φ|4(λ1 + λ2A1(φ̂) + λ3A2(φ̂) + · · · )

+|π|4(ρ1 + ρ2B1(π̂) + ρ3B2(π̂) + · · · )

+|φ|2|π|2(α1 + α2C1(φ̂, π̂) + · · · )

≡ −µ2
1|φ|2 − µ2

2|π|2 + |φ|4A(λ, φ̂) + |π|4B(ρ, π̂) + |φ|2|π|2C(α, φ̂, π̂) (3.3)

where

|φ|2 = φ∗iφi, |π|2 = π∗i πi, φ̂ = φ

|φ|
, π̂ = π

|π|

A(λ, φ̂) = λ1 + λ2A1(φ̂) + λ3A2(φ̂) + · · ·

B(ρ, π̂) = ρ1 + ρ2B1(π̂) + ρ3B2(π̂) + · · ·

C(α, φ̂, π̂) = α1 + α2C1(φ̂, π̂) + · · ·

Note that we have assumed terms like |φ|3|π| and |φ||π|3 to be absent from the expression

for V (φ, π). This is particularly true if the higgs potential is invariant under a reflection

symmetry for φ and π. Requiring boundedness and applying copositivity criterion, we get

the following conditions for the stability of the potential,

|φ|4A(λ, φ̂) + |π|4B(ρ, π̂) + |φ|2|π|2C(α, φ̂, π̂) > 0 ∀A(λ, φ̂), B(ρ, π̂), C(α, φ̂, π̂)

=⇒ A > 0, B > 0, C + 2
√
AB > 0 (3.4)

Treatment in ref.[129] assumes the monotonicity of the orbit space parameters in the potential

and thus minimization of these parameters are not required. Our treatment for the left-right

model differs here due to the presence of non-linearity in orbit space parameters. It should

be noted that eq. (3.4) must also be minimized over all orbit space parameters. We also
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study the VEV structure of the scalar fields in the theory. Thus, minimizing V w.r.t to |φ|

and |π| yields,
∂V

∂|φ|
= 2|φ|

(
−µ2

1 + 2|φ|2A+ |π|2C
)

= 0

∂V

∂|π|
= 2|π|

(
−µ2

2 + 2|π|2B + |φ|2C
)

= 0

Since, field value should be non-zero, the minimum occurs at:

|φ0|2 = 2Bµ2
1 − Cµ2

2
4AB − C2 |π0|2 = 2Aµ2

2 − Cµ2
1

4AB − C2 (3.5)

Using second derivative analysis for φ and π, it can be proved that field values in eq. (3.5)

leads to a minimum of the potential if and only if following conditions are satisfied.

2Bµ2
1 − Cµ2

2 > 0 (3.6)

2Aµ2
2 − Cµ2

1 > 0 (3.7)

4AB − C2 > 0 (3.8)

Plugging obtained field values at the minimum in eq. (3.3), we get

V0(φ) = −Bµ
4
1 − Cµ2

1µ
2
2 + Aµ4

2
4AB − C2 (3.9)

It can be shown using conditions obtained above that this minimum is guaranteed to be the

global minimum of the potential.

3.3 Left-Right Symmetric Model

Left-Right Symmetric model (LRSM) is a gauge extension of the Standard Model (SM),

which restores parity symmetry at high-energies [27, 28, 29]. It treats left and right handed
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chiralities of fermions equally prior to spontaneous symmetry breaking. It features heavy

right-handed Majorana neutrinos, and thus explains small masses of left-handed neutrinos via

the see-saw mechanism [30, 125, 32]. The extended gauge group for this model : SU(3)C ⊗

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. The particle content and their irreducible representations

under the gauge group is given in table 3.1. The spontaneous symmetry breaking (SSB)

of LRSM proceeds in two steps. First, the electrically neutral component of ∆R acquires a

VEV vR and breaks the gauge group from SU(2)R ⊗ U(1)B−L to U(1)Y . Finally, the VEV

of bidoublet Φ breaks the symmetry down to U(1)Q [135, 136]. The VEV structure of the

scalar fields is

Φ = 1√
2

 κ1 0

0 κ2e
iθ2

 , ∆L = 1√
2

 0 0

vLe
iθL 0

 , ∆R = 1√
2

 0 0

vR 0


(3.10)

Note that only the neutral components acquire VEV so that U(1)EM does not break. Using

the gauge transformations, two of the phases in κ1 and vR have been rotated away. It is

required that the VEV’s respect the following hierarchy for correct phenomenology:

vL � κ1,2 � vR

The electric charge formula takes the form:

Q = T3L + T3R + B − L
2

where T3X , X = (L,R) is the third generator of the group SU(2)X and B − L is the

baryon minus lepton number, the charge for group U(1)B−L [23, 24]. The most general

renormalizable scalar potential for LRSM contains 17 independent terms [136, 122]:
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SU(3)C SU(2)L SU(2)R U(1)B−L
QL ≡

(
uL
dL

)
3 2 1 1

3

QR ≡
(
uR
dR

)
3 1 2 1

3

ψL ≡
(
νL
eL

)
1 2 1 −1

ψR ≡
(
N
eR

)
1 1 2 −1

Φ =
(
φ0

1 φ+
2

φ−1 φ0
2

)
1 2 2 0

∆L =
( 1√

2∆+
L ∆++

L

∆0
L − 1√

2∆+
L

)
1 3 1 2

∆R =
( 1√

2∆+
R ∆++

R

∆0
R − 1√

2∆+
R

)
1 1 3 2

Tab. 3.1: Particle content of left-right symmetric model based on the gauge group SU(3)C⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L.

V = −µ2
1Tr[Φ†Φ]− µ2

2

(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
− µ2

3

(
Tr[∆L∆†L] + Tr[∆R∆†R]

)
+ λ1Tr[Φ†Φ]2

+λ2
(
Tr[Φ̃Φ†]2 + Tr[Φ̃†Φ]2

)
+ λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ] + λ4Tr[Φ†Φ]

(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
+ρ1

(
Tr[∆L∆†L]2 + Tr[∆R∆†R]2

)
+ ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L] + Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R] + ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R] + Tr[∆†L∆†L]Tr[∆R∆R]

)
(3.11)

+α1Tr[Φ†Φ]
(
Tr[∆L∆†L] + Tr[∆R∆†R]) + α3(Tr[ΦΦ†∆L∆†L] + Tr[Φ†Φ∆R∆†R]

)
+α2

(
Tr[∆L∆†L]Tr[Φ̃Φ†] + Tr[∆R∆†R]Tr[Φ̃†Φ] + H.c.

)
+β1

(
Tr[Φ∆RΦ†∆†L] + Tr[Φ†∆LΦ∆†R]

)
+ β2

(
Tr[Φ̃∆RΦ†∆†L] + Tr[Φ̃†∆LΦ∆†R]

)
+β3

(
Tr[Φ∆RΦ̃†∆†L] + Tr[Φ†∆LΦ̃∆†R]

)

where all couplings are assumed real. Here, Φ̃ = σ2Φ∗σ2, where σ2 is the 2nd Pauli matrix.

Φ̃ transforms the same way as Φ does.

Assume that after the SSB, the vacuum state of the potential is stable and has the form
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of VEV structure eq. (3.10). We can then minimize the potential w.r.t the VEV parameters,

∂V

∂κ1
= ∂V

∂κ2
= ∂V

∂θ2
= ∂V

∂vL
= ∂V

∂θL
= ∂V

∂vR
= 0

This yields a set of 6 equations which can be solved to yield the famous VEV see-saw relation

[122].

β1 cos (θ2 − θL)κ2κ1 + β2κ
2
1 cos θL + β3 cos (2θ2 − θL)κ2

2 = (2ρ1 − ρ3) vLvR (3.12)

Note if β1,2,3 = 0 and since phenomenologically vR 6= 0, this implies vL = 0.

3.4 Vacuum Stability

Quartic terms containing only the scalar bidoublet Higgs field constitutes the λ sector and

those containing only left and right-handed triplet Higgs fields constitutes the ρ sector. It

should be noted that mixing terms (i.e. involving α’s and β’s) complicate the analysis

for boundedness. We first look at bidoublet and triplets part of the potential separately

to understand the procedure of minimization and useful parametrization to obtain BFB

conditions. We then analyze the BFB condition for the potential in presence of non-zero

quartic terms that couple bidoublet and triplet fields together in Sec 3.4.3.

3.4.1 Bidoublet Φ : λ Sector

As the potential should be bounded in all field directions, we first choose to find conditions

for λ sector containing the bidoublet Φ. Considering only the quartic part, we require

V λ
4 = λ1Tr[Φ†Φ]2 + λ2

(
Tr[Φ̃Φ†]2 + Tr[Φ̃†Φ]2

)
+ λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ] (3.13)

+λ4Tr[Φ†Φ]
(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
> 0 ∀Φ
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To obtain the conditions to be BFB, we parametrize V λ
4 as follows:

Tr[Φ†Φ] ≡ r2

Tr[Φ̃Φ†]/Tr[Φ†Φ] ≡ ξeiω

Tr[Φ̃†Φ]/Tr[Φ†Φ] ≡ ξe−iω

where r > 0, ξ ∈ [0, 1] and ω ∈ [0, 2π]. Quartic field terms present in the potential are

normalized with the norm of the bidoublet Φ as discussed in sec 3.2.2 .The complex product

Tr[Φ̃Φ†]/Tr[Φ†Φ] between two unit spinors will be a complex number and hence has been

parametrized accordingly. This approach to parametrization has been earlier used for ob-

taining boundedness criteria in two-Higgs-doublet Model [137, 138] and doublet-triplet-Higgs

Model [139].

Substituting above in eq. (3.13),

V λ
4 = r4

(
λ1 + 2λ2ξ

2 cos 2ω + λ3ξ
2 + 2λ4 ξ cosω

)
≡ r4f(λ, ξ, ω) (3.14)

We know from the extremum value theorem, the minimum of V λ
4 must exist in/on the closed

boundary defined by the disk. Furthermore, it should either exist inside the bounded region

or on the boundary. We first minimize V λ
4 inside the boundary w.r.t ξ and ω.

fξ = ∂f

∂ξ
= 4λ2ξ cos 2ω + 2λ3ξ + 2λ4 cosω = 0

fω = ∂f

∂ω
= −4λ2ξ

2 sin 2ω − 2λ4 ξ sinω = −2ξ sinω(4λ2ξ cosω + λ4) = 0

Here, we denote ∂f
∂x

as fx and continue using this notation for conciseness. Solving the above

two equations simultaneously, we get three critical points. Only the first two critical points

are valid solutions of these pair of equations.
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fω = 0 =⇒ ξ = 0, sinω = 0 or cosω = − λ4

4λ2ξ

Case 1: ξ = 0

fξ = 2λ4 cosω = 0

=⇒ cosω = 0

Using this ξ and cosω in (3.14), we obtain the trivial condition for boundedness

λ1 > 0 (3.15)

Case 2: sinω = 0

Notice, sinω = 0 =⇒ cosω = ±1. From eq. (3.14), we notice this minimum value of cosω

depends on the sign on λ4.

cosω = −sgn(λ4)

Here, sgn(x) is the signum function. Thus, the relevant equation for minimum can be written

as:

fξ = 4λ2ξ + 2λ3ξ − 2|λ4| = 0

=⇒ ξ = |λ4|
2λ2 + λ3

Inserting these values in f requiring V λ
4 > 0, we get

λ1 + (2λ2 + λ3)
(
|λ4|

2λ2 + λ3

)2

− 2|λ4|
|λ4|

2λ2 + λ3
> 0

48



Chapter 3. Vacuum Stability and Symmetry Breaking in Left-Right Model

Thus, we get second condition as requirement:

λ1 −
λ2

4
2λ2 + λ3

> 0 ⇐= 2λ2 + λ3 > |λ4| (3.16)

Case 3: cosω = − λ4
4λ2ξ

4λ2ξ

2
(
λ4

4λ2ξ

)2

− 1
+ 2λ3ξ − 2λ4

(
λ4

4λ2ξ

)
= −2λ3ξ = 0

The solution for above is ξ = 0 but cosω is not defined for this value. Thus, this is not a

valid solution. Now, we try to minimize f on the boundary w.r.t to ω by setting ξ = 1.

fω = −4λ2 sin 2ω − 2λ4 sinω = −2 sinω(4λ2 cosω + λ4) = 0

Case 4: ξ = 1, sinω = 0 =⇒ cosω = −sgn(λ4), cos 2ω = 1 Using this we have the

condition,

λ1 + λ3 + 2(λ2 − |λ4|) > 0 (3.17)

Case 5: ξ = 1, cosω = − λ4
4λ2

λ1 + 2λ2

2
(
λ4

4λ2

)2

− 1
+ λ3 − 2λ4

(
λ4

4λ2ξ

)
> 0

The final condition can be written as:

λ1 + λ3 − 2λ2 −
λ2

4
4λ2

> 0 ⇐=
∣∣∣∣∣ λ4

4λ2

∣∣∣∣∣ < 1 (3.18)

Thus, equations (3.15), (3.16), (3.17) and (3.18) collectively form the required bounded

from below (BFB) conditions for λ sector.
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Now, we’ll remark on the behaviour of these conditions to understand their characteristics

in the plots. The condition with the minimum value dominates the boundedness of the

potential. All conditions dominate in different regions of the parameter space and controls

the boundedness of the potential. For instance, the condition from inside the boundary eq.

(3.16) dominates over other conditions if 2λ2 + λ3 > |λ4| is satisfied. It can also be shown

that eq. (3.18) dominates when λ2 > 0 otherwise eq. (3.17) is valid.

3.4.2 Triplets ∆L and ∆R : ρ sector

The quartic part of the potential with ρi’s is :

V ρ
4 = ρ1

(
Tr[∆L∆†L]2 + Tr[∆R∆†R]2

)
+ ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L] + Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R] + ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R] + Tr[∆†L∆†L]Tr[∆R∆R]

)
(3.19)

To obtain the conditions for BFB, we parametrize V ρ
4 similar to sec 3.4.1 :

Tr[∆L∆†L] + Tr[∆R∆†R] ≡ r2

Tr[∆L∆†L] ≡ r2 sin2 γ

Tr[∆R∆†R] ≡ r2 cos2 γ

Tr[∆L∆L]/Tr[∆L∆†L] ≡ η1e
iθ1

Tr[∆†L∆†L]/Tr[∆L∆†L] ≡ η1e
−iθ1

Tr[∆R∆R]/Tr[∆R∆†R] ≡ η2e
iθ2

Tr[∆†R∆†R]/Tr[∆R∆†R] ≡ η2e
−iθ2

50



Chapter 3. Vacuum Stability and Symmetry Breaking in Left-Right Model

where r > 0 , γ ∈ [0, π2 ], η1, η2 ∈ [0, 1] and θ1, θ2 ∈ [0, 2π]. Substituting above in eq. (3.19),

V ρ
4 = r4(ρ1

(
cos4 γ + sin4 γ

)
+ ρ2

(
η2

1 sin4 γ + η2
2 cos4 γ

)
+ρ3 cos2 γ sin2 γ + 2ρ4η1η2 cos(θ1 − θ2) cos2 γ sin2 γ) ≡ g(ρ, γ, η1,2, θ1,2) (3.20)

For minimum w.r.t to θ1, θ2 and taking in account sign of ρ4, this can be rewritten as:

V ρ
4 = r4

(1 + tan2 γ)2

(
tan4 γ ( ρ1 + ρ2η

2
1

)
+ tan2 γ (ρ3 − 2|ρ4|η1η2) + ρ1 + ρ2η

2
2

)

Requiring the above expression to be positive for all values of tan γ can be translated to

V ρ
4 being copositive for variable tan2 γ. Thus, we have following requirements for V ρ

4 to be

bounded from below :

ρ1 + ρ2η
2
1 > 0 (3.21)

ρ1 + ρ2η
2
2 > 0 (3.22)

G(ρ, η1,2) ≡ ρ3 − 2|ρ4|η1η2 + 2
√

(ρ1 + ρ2η2
1)(ρ1 + ρ2η2

2) > 0 (3.23)

in regions η1, η2 ∈ [0, 1].

Eq. (3.21) is equivalent to (3.22) as they are uncoupled in the constraint variable. Min-

imum value for the expression occurs at the endpoint as its monotonic in the quantity η2
i ,

which ranges from [0, 1]. Plugging the end points of the range of η2
i ,

ρ1 > 0 (3.24)

ρ1 + ρ2 > 0 (3.25)

We can first minimize G inside the boundary of square formed by η1 and η2. By minimizing

51



Chapter 3. Vacuum Stability and Symmetry Breaking in Left-Right Model

the condition w.r.t to η’s,

Gη1 ≡ 2η1ρ2

√
(ρ1 + ρ2η2

2)√
(ρ1 + ρ2η2

1)
− 2η2|ρ4| = 0

Gη2 ≡ 2η2ρ2

√
(ρ1 + ρ2η2

1)√
(ρ1 + ρ2η2

2)
− 2η1|ρ4| = 0

Solving the above two equations, we get

(η1, η2) = (0, 0)

Plugging it back in G,

ρ3 + 2ρ1 > 0 (3.26)

For minimizing G on the boundary, we set η1 = η2 = 1. We obtain the condition

ρ3 − 2|ρ4|+ 2(ρ1 + ρ2) > 0 (3.27)

It can be proved that condition obtained by setting η1 = 0, η2 = 1 or vice-versa, always

lies between the above two conditions and need not be checked for boundedness. Thus,

conditions (3.24), (3.25), (3.26) and (3.27) collectively form the required conditions for BFB

ρ sector.

3.4.3 Dreaded Coupled Case: α1,3 6= 0

This section outlines the procedure to find boundedness in presence of terms that couple

the bidoublet and the triplet Higgs fields. For VEV see-saw relation to work naturally, we

assume βi = 0 [116]. This would imply vL = 0 and a non-zero vR. Also α2 does not explicitly

appears in the expressions for scalar mass spectrum. This gives us the freedom to set it to

0 for our analysis [79]. Thus, only α1 and α3 are assumed to be non-zero as they contribute
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to the scalar masses and have lower bounds on them from experimental constraints. The

quartic part of the potential is given below:

V4 = λ1Tr[Φ†Φ]2 + λ2
(
Tr[Φ̃Φ†]2 + Tr[Φ̃†Φ]2

)
+ λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ] + λ4Tr[Φ†Φ]

(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
+ρ1

(
Tr[∆L∆†L]2 + Tr[∆R∆†R]2

)
+ ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L] + Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R] + ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R] + Tr[∆†L∆†L]Tr[∆R∆R]

)
+α1Tr[Φ†Φ]

(
Tr[∆L∆†L] + Tr[∆R∆†R]

)
+ α3

(
Tr[ΦΦ†∆L∆†L] + Tr[Φ†Φ∆R∆†R]

)
(3.28)

The parametrization in this case follows similarly as before. This has 3 different field direc-

tions and therefore can be parametrized on a sphere.

Tr[Φ†Φ] + Tr[∆L∆†L] + Tr[∆R∆†R] ≡ r2

Tr[Φ†Φ] ≡ r2 cos2 θ

Tr[∆L∆†L] ≡ r2 sin2 γ sin2 θ

Tr[∆R∆†R] ≡ r2 cos2 γ sin2 θ

Tr[Φ̃Φ†]/Tr[Φ†Φ] ≡ ξeiω

Tr[Φ̃†Φ]/Tr[Φ†Φ] ≡ ξe−iω

Tr[∆L∆L]/Tr[∆L∆†L] ≡ η1e
iθ1

Tr[∆†L∆†L]/Tr[∆L∆†L] ≡ η1e
−iθ1

Tr[∆R∆R]/Tr[∆R∆†R] ≡ η2e
iθ2

Tr[∆†R∆†R]/Tr[∆R∆†R] ≡ η2e
−iθ2

Tr[ΦΦ†∆L∆†L]/Tr[Φ†Φ]Tr[∆L∆†L] ≡ ζ1

Tr[Φ†Φ∆R∆†R]/Tr[Φ†Φ]Tr[∆R∆†R] ≡ ζ2

with r > 0, |ξ| ≤ 1, θ ∈ [0, π2 ], γ ∈ [0, π2 ], η1, η2 ∈ [0, 1] , θ1, θ2 ∈ [0, 2π]

Naively, it might be expected that ζ1, ζ2 ∈ [0, 1] [140]. However, as can be seen from the
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Fig. 3.1: Dependence of gauge orbit variable ζi on ξ and ηi. (Left) Scatter plot of ζ with
respect to ξ and η. (Right) Plot of ζ as a function of ξ and η given in eq. (3.29).

scatter plot in Fig 3.1, ζi depends on ξi and ηi. In fact, it can be shown that value of ζi is

bounded from above and below given by,

1
2

(
1−

√
1− ξ2

√
1− η2

i

)
≤ ζi ≤

1
2

(
1 +

√
1− ξ2

√
1− η2

i

)
(3.29)

where i ∈ {1, 2}, |ξ| ≤ 1 and ηi ∈ [0, 1]. As can be seen in Fig 3.1, the dependence of ζi on

ξ and ηi depicted in the scatter plot is captured exactly in eq. (3.29). Substituting the
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above defined gauge orbit variables in eq. (3.28),

V4 = r4 cos4 θ
(
λ1 + 2λ2ξ

2 cos 2ω + λ3ξ
2 + 2λ4 ξ cosω

)
+r4 sin4 θ

(
ρ1
(
cos4 γ + sin4 γ

)
+ ρ2

(
η2

1 sin4 γ + η2
2 cos4 γ

)
+ ρ3 cos2 γ sin2 γ + 2ρ4η1η2 cos(θ1 − θ2) cos2 γ sin2 γ

)
+
(
α1 + α3(ζ1 cos2 γ + ζ2 sin2 γ)

)
r4 cos2 θ sin2 θ

≡ r4
(
cos4 θf(λ, ξ, ω) + sin4 θg(ρ, γ, η1,2, θ1,2) + h(α, γ, ζ1,2) cos2 θ sin2 θ

)
(3.30)

From copositivity criteria, it implies :

f(λ, ξ, ω) > 0

g(ρ, γ, η1,2, θ1,2) > 0

h(α, γ, ζ1,2) + 2
√
f(λ, ξ, ω) g(ρ, γ, η1,2, θ1,2) > 0

These conditions should hold for all values of (ξ, ω, γ, η1,2, θ1,2, ζ1,2). First two conditions are

(3.14) and (3.20), evaluated in previous sections. For 2nd and 3rd condition, minimum of

θ1,2 can again be absorbed in the sign of λ4.

α1 + α3(ζ1 cos2 γ + ζ2 sin2 γ) +
√
f(λ, ξ, ω) g(ρ, γ, η1,2) > 0 (3.31)

where f and g can be written as :

f ≡ λ1 + 2λ2ξ
2 cos 2ω + λ3ξ

2 + 2λ4 ξ cosω

g ≡ 1
(1 + tan2 γ)2

(
tan4 γ ( ρ1 + ρ2η

2
2

)
+ tan2 γ (ρ3 − 2|ρ4|η1η2) + ρ1 + ρ2η

2
1

)
(3.32)

We now turn to symmetries to simplify further and reduce minimizing variables. We first
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try to minimize condition g(ρ, γ, η1,2) again but using symmetry arguments as an example.

Note that g is symmetric under the following operation:

cos γ ↔ sin γ, η1 ↔ η2

Thus, the minimum occurs at cos γ = sin γ and η1 = η2, which yields :

g ≡ ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)η2
1

4

Plugging in the endpoints for η1, we obtain two conditions :

g =
{
ρ3 + 2ρ1

4 ,
ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)

4

}

Previously, we minimized the condition for cos γ = sin γ i.e. tan γ = 1. Now, we will

minimize g for the endpoint, tan γ = 0. Using the symmetry operations used above, it can

be shown that minimizing the condition for other endpoint tan γ =∞ is equivalent to case

for tan γ = 0. For this case, condition takes the form:

g ≡ ρ1 + 2ρ2η
2
1

Again plugging in the endpoints for η1, we obtain two conditions. We obtain a total of 4

conditions for minimizing g, which exactly matches the conditions derived in sec. 3.4.2.

g :
{
ρ1, ρ1 + ρ2,

ρ3 + 2ρ1

4 ,
ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)

4

}
(3.33)

Note that the 3rd condition is symmetric under the following operation:

ζ1 ↔ ζ2, cos γ ↔ sin γ, η1 ↔ η2
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Thus, the function takes its minimum value inside the gauge orbit space when:

ζ1 = ζ2, cos γ = sin γ, η1 = η2

Using the above symmetry arguments, the form of the 3rd condition is :

α1 + α3ζ1 +
√
f(λ, ξ, ω) (ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)η2

1) > 0 (3.34)

For this case, the condition is monotonic in ζ1 & η2
1 and are trivially minimized at endpoints

of their range. This implies for α3 < 0, the most constraining condition corresponds to

ζ1 = ζmax1 and ζ1 = ζmini for α3 > 0.

ζmaxi = 1
2

(
1 +

√
1− ξ2

√
1− η2

i

)
, ζmini = 1

2

(
1−

√
1− ξ2

√
1− η2

i

)

The minimum of f has been evaluated in a previous section. This also yields corresponding

value of ξ and η1 that determines the value of ζmaxi and ζmini . This yields a set of 10 different

conditions.

Consider an example for above discussion. Let us assume f(λ, ξ, ω) minimizes for ξ =
|λ4|

2λ2+λ3
and η1 = 0, then ζ1 is given by :

=⇒ ζ1 = 1
2

1±

√√√√1−
(
|λ4|

2λ2 + λ3

)2


then the required inequality to be checked for vacuum stability becomes :

α1 + α3

2

1±

√√√√1− λ2
4

(2λ2 + λ3)2

+

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
(ρ3 + 2ρ1) > 0

We also need to minimize the 3rd condition for the edge surface of tan γ. For the case
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tan γ = 0, 3rd condition takes the form:

α1 + α3ζ1 + 2
√
f(λ, ξ, ω) (ρ1 + ρ2η2

1) > 0

The above condition can be minimized similarly as in case of tan γ = 1, yielding a total of

another 10 conditions.

Thus, minimizing the 3rd condition yields a set of 20 inequalities to be checked. We have

finally derived all conditions required for the vacuum stability of the LRSM. The complete

set of these necessary and sufficient conditions are collected below :
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Analytic Conditions for Vacuum Stability in LRSM

f > 0 :



λ1(
λ1 − λ2

4
2λ2+λ3

)
⇐= 2λ2 + λ3 > |λ4|

(λ1 + λ3 + 2(λ2 − |λ4|))(
λ1 + λ3 − 2λ2 − λ2

4
4λ2

)
⇐= |4λ2| > |λ4|

g > 0 :
{
ρ1, ρ1 + ρ2,

ρ3 + 2ρ1

4 ,
ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)

4

}

α1 + 2
√
λ1ρ1 > 0

α1 + α3 + 2
√
λ1ρ1 > 0

α1 + α3

2 + 2
√
λ1(ρ1 + ρ2) > 0

α1 +
√
λ1(ρ3 + 2ρ1) > 0

α1 + α3 +
√
λ1(ρ3 + 2ρ1) > 0

α1 + α3

2 +
√
λ1(ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)) > 0

α1 + α3

2

1±

√√√√1− λ2
4

(2λ2 + λ3)2

+ 2

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
ρ1 > 0

α1 + α3

2 + 2

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
(ρ1 + ρ2) > 0

α1 + α3

2

1±

√√√√1− λ2
4

(2λ2 + λ3)2

+

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
(ρ3 + 2ρ1) > 0

α1 + α3

2 +

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
(ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)) > 0

α1 + α3

2 + 2

√√√√(λ1 + λ3 − 2λ2 −
λ2

4
4λ2

)
Min(g) > 0

α1 + α3

2 + 2
√

(λ1 + λ3 + 2(λ2 − |λ4|)) Min(g) > 0

(3.35)

For using these conditions, we first ensure f and g should be strictly positive at all minima.
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For some conditions in f , we have the following structure p ⇐= q. This implies condition

p only needs to be checked if and only if condition q is true. We then check rest of the

conditions based on minimum value of f and g.

3.5 Symmetry Breaking and Desirable Vacuum

A BFB potential does not necessarily leads to correct symmetry breaking yielding the correct

ground state of the Higgs potential. Recently, some useful conditions (though not necessary)

for a good vacuum in the left-right model were derived for a limited parameter space in [122].

Gauge-independent criteria to obtain a good vacuum was also proposed.

〈Φ〉 6= 0

det〈∆R〉 = det〈∆L〉 = 0

〈∆R〉 6= 〈∆L〉

The first condition leads to non-zero expectation for Higgs VEV in the Standard Model. The

second condition is required for U(1)em not to be broken. The third condition is required

for broken parity at low energies. Although reference [122] specifies 4 conditions for a good

vacuum but effectively only 3 conditions are required. As their condition 〈∆R〉 6= 0 or 〈∆L〉 6=

0 for good vacuum is contained in 〈∆R〉 6= 〈∆L〉.

In this section, we derive some useful conditions for scalar potential to exhibit correct

spontaneous symmetry breaking (SSB) and specify the gauge-independent criteria for correct

vacuum in more general form. Using the VEV structure of the scalar fields eq. (3.10) in the
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general scalar potential eq. (3.11),

V = −(κ2
1 + κ2

2)
2 µ2

1 − 2κ1κ2µ
2
2 cos(θ2)− µ2

3

(
v2
L + v2

R

)
+ (κ2

1 + κ2
2)2

4 λ1 (3.36)

+2κ2
1κ

2
2λ2 cos(2θ2) + κ1κ2

(
κ2

1 + κ2
2

)
λ4 cos(θ2) + κ2

1κ
2
2λ3

+ρ1
(
v4
L + v4

R

)
+ ρ3v

2
Lv

2
R

+α1
(κ2

1 + κ2
2)

2
(
v2
L + v2

R

)
+ α3

κ2
2

2
(
v2
L + v2

R

)

For boundedness, the quartic part of the potential can be written as:

V4 ≡ r4
(
fSSB(λ, ξ, ω) cos4 θ + gSSB(ρ, γ, θ1,2) sin4 θ + hSSB(α, γ, ζ1,2) cos2 θ sin2 θ

)
(3.37)

where parametrizing variables are defined in accordance with section 3.4.3. To obtain neces-

sary and sufficient conditions for correct symmetry breaking, the minimum from the potential

VSSB should be deeper than the one obtained from the general potential. Using eq. (3.9),

the required condition can be written as :

− gµ4
1 − hµ2

1µ
2
2 + fµ4

2
4fg − h2 > −gSSBµ

4
1 − hSSBµ2

1µ
2
2 + fSSBµ

4
2

4fSSB gSSB − h2
SSB

(3.38)

The above relation needs to be minimized for the entire gauge orbit parameter space. Due

to the non-linearity of the orbit variables, this is not analytically tractable.

The important observation in this work is that the conditions sufficient for a general

potential to lead to a good vacuum after SSB can be obtained by requiring VEV aligned

scalar potential to dominate the general scalar potential i.e. V ≥ VSSB. This is a stronger

condition than eq. (3.38) and using eq. (3.30), (3.37) can be written as :

(f − fSSB) cos4 θ + (g − gSSB) sin4 θ + (h− hSSB) cos2 θ sin2 θ ≥ 0 (3.39)

Thus, for VEV structure in eq. (3.10) to be the global minima of the theory, following
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conditions are required :

f ≥ fSSB, g ≥ gSSB (3.40)

h− hSSB + 2
√

(f − fSSB) (g − gSSB) ≥ 0 (3.41)

It is also required that VSSB exhibits stable vaccum, which implies :

fSSB > 0, gSSB > 0, hSSB + 2
√
fSSB gSSB > 0 (3.42)

We begin by noticing that in eq. (3.36), fSSB takes the same form as f(λ, ξ, ω) for the

general potential. VEV condition 〈Φ〉 6= 0 translates to r cos θ 6= 0. It is satisfied as long

as λ sector is bounded from below. This implies all the conditions found for λ sector are

required for existence of a good vacuum. It also implies f = fSSB trivially satisfies condition

for correct symmetry breaking. On the other hand, gSSB has η1,2 = 0.

Tr[〈∆L〉〈∆L〉] = 0 =⇒ η1 = 0

Tr[〈∆R〉〈∆R〉] = 0 =⇒ η2 = 0

Therefore, coefficients of ρ2 and ρ4 vanish leading to following form of g (See eq. (3.32)):

gSSB ≡
1

(1 + tan2 γ)2

(
ρ1 tan4 γ + ρ3 tan2 γ + ρ1

)

The minimum for this expression occurs at tan2 γ = 0 or 1. We require 〈∆L〉 < 〈∆R〉 which

can be easily shown equivalent to :

Tr[〈∆L〉〈∆†L〉] < Tr[〈∆R〉〈∆†R〉]
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So according to the chosen parametrization, the preferred minima is tan2 γ = 0. We know

from sec. 3.2.2, condition with less positive value dominates the minima. Thus, this condition

should dominate over the other minima i.e tan2 γ = 1 in gSSB. Thus, we require

ρ3 + 2ρ1

4 ≥ ρ1 =⇒ ρ3 − 2ρ1 ≥ 0

After requiring the internal structure of the VEV alignment, we want eq. (3.40) to hold

i.e. g ≥ gSSB should hold. The minimum of gSSB occurs for ρ1 > 0. This condition should

dominate other possible minima of the general potential. Using minimum conditions from

eq. (3.33),

ρ1 + ρ2 ≥ ρ1 =⇒ ρ2 ≥ 0

ρ3 + 2ρ1

4 ≥ ρ1 =⇒ ρ3 − 2ρ1 ≥ 0

ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)
4 ≥ ρ1 =⇒ |ρ4| ≤

ρ3 − 2ρ1

2 + ρ2

Since f = fSSB, eq. (3.41) implies h ≥ hSSB.

α1 + α3(ζ1 cos2 γ + ζ2 sin2 γ) ≥ α1 + α3(ζSSB1 cos2 γ + ζSSB2 sin2 γ)

Note that since ηi = 0 for VSSB, ζi 6= ζSSBi . The condition above is monotonic in ζ ’s and

the endpoints of their range can be substituted depending on the sign of α3.

α3

2

(
1− Sgn(α3)

√
1− ξ2

√
1− η2

i

)
≥ α3

2

(
1− Sgn(α3)

√
1− ξ2

)

As can be seen directly, the above condition holds true for all ξ, η and α3. Similarly, for

vacuum stability condition to hold true, we require :

α1 + α3

2 ζ + 2
√
f(λ, ξ, ω) ρ1 > 0 (3.43)
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where, ζ =
(
1− Sgn(α3)

√
1− ξ2

∗

)
and ξ∗ equals the value of ξ that minimizes f(λ, ξ, ω).

The minimization of f has been covered in sec. 3.4.1.

For non-zero field values to be the global minimum (refer sec. 3.2.2), we also require eq.

(3.6),(3.7) and (3.8) to hold. For non-zero 〈Φ〉 and 〈∆R〉, we require :

2 Min[fSSB]µ2
3 −Min[hSSB]µ̄2

1 > 0

2 Min[gSSB]µ̄2
1 −Min[hSSB]µ2

3 > 0 (3.44)

where,

µ̄2
1 = µ2

1 + 2σµ2
2, σ = ξ cosω

and

2
√
Min[fSSB] Min[gSSB]− ||Min[hSSB]|| > 0

Here, expression for µ̄2
1 has been obtained by using parametrization from sec. (3.4.1) to

relevant mass-squared terms in the scalar potential. Thus, the complete set of conditions

sufficient to obtain a correct vacuum after SSB in left-right symmetric model are stated

below:
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Analytic Conditions for Symmetry Breaking to Correct Vacuum

fSSB > 0 :



λ1 > 0, ξ = σ = 0 ,(
λ1 − λ2

4
2λ2+λ3

)
> 0 ⇐= 0 < ξ = |λ4|

2λ2+λ3
< 1, σ = − λ4

2λ2+λ3
,

(λ1 + λ3 + 2(λ2 − |λ4|)) > 0, ξ = 1, σ = −Sgn(λ4) ,(
λ1 + λ3 − 2λ2 − λ2

4
4λ2

)
> 0 ⇐= |4λ2| > |λ4|, ξ = 1, σ = − λ4

4λ2
,

ρ1 > 0, ρ2 > 0, ρ3 > 2ρ1, |ρ4| <
ρ3 − 2ρ1

2 + ρ2

α1 + 2
√
λ1ρ1 > 0

α1 + α3 + 2
√
λ1ρ1 > 0

α1 + α3

2

1±

√√√√1− λ2
4

(2λ2 + λ3)2

+ 2

√√√√(λ1 −
λ2

4
2λ2 + λ3

)
ρ1 > 0

α1 + α3

2 + 2

√√√√(λ1 + λ3 − 2λ2 −
λ2

4
4λ2

)
ρ1 > 0

α1 + α3

2 + 2
√

(λ1 + λ3 + 2(λ2 − |λ4|)) ρ1 > 0

µ̄2
1 = µ2

1 + 2σµ2
2

2
√
Min[fSSB] ρ1 −

∣∣∣∣∣∣∣∣α1 + α3

2

(
1− Sgn(α3)

√
1− ξ2

)∣∣∣∣∣∣∣∣ > 0

2 Min[fSSB]µ2
3 −

[
α1 + α3

2

(
1− Sgn(α3)

√
1− ξ2

)]
µ̄2

1 > 0

2ρ1µ̄
2
1 −

[
α1 + α3

2

(
1− Sgn(α3)

√
1− ξ2

)]
µ2

3 > 0
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For using these conditions, we first ensure fSSB should be strictly positive at all minima. For

some conditions in f , we have the following structure p ⇐= q, ξ = value1, σ = value2.

This implies condition p only needs to be checked if and only if condition q is true. It also

yields a corresponding values of ξ and σ to be used in the last three conditions. We then

check rest of the conditions based on minimum value of fSSB.

We would like to assert the usefulness of these conditions. Using the above conditions

not only ensures the boundedness of the potential but also gives the minimum with desired

VEV alignment. The results derived here are general in nature and reduce to those obtained

in [122] for their choice of parameters19. In [122], their derived conditions for good vacuum

are asserted to be only sufficient but not necessary and same holds for our case. Even with

good vacuum conditions, they do not get a correct vacuum in their numerical study at all

times. This possibly happens due to the parameter range of non-zero αi’s in their numerical

analysis that leads to the violation of condition on mass-squares µ2 derived in this work.

Given the treatment here, we can also generalize the gauge-independent conditions for

correct vacuum in the left-right symmetric model as:

Tr[〈Φ〉〈Φ〉] 6= 0

Tr[〈∆L〉〈∆L〉] = Tr[〈∆R〉〈∆R〉] = 0

Tr[〈∆L〉〈∆†L〉] < Tr[〈∆R〉〈∆†R〉]

(3.45)

19 Setting λ2,4, ρ4, αi’s and βi’s to 0
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Fig. 3.2: Numerical minimization of the scalar potential of LRSM. The figures are plotted
for different pair of quartic couplings with values ranging from (−5, 5) and with grid pixel
size of 0.1×0.1, with other quartics being set according to benchmark in Sec 3.6. The yellow
region indicates an unbounded potential. The green region indicates the existence of a global
minimum but not with the required VEV structure. The blue region indicates the existence
of a global minimum with the required VEV structure.
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3.6 Numerical Comparison

We use the following benchmark values to study the numerical minimization of the potential

and its agreement with the conditions obtained in this work.

µ2
1, µ

2
2, µ

2
3 ≡ (1, 0.25, 1)TeV2

λ1, λ2, λ3, λ4 ≡ (1, 0.5, 3,−0.5)

ρ1, ρ2, ρ3, ρ4 ≡ (1, 0.5, 3,−0.5)

α1, α2, α3 ≡ (0.5, 0, 0.5)

β1, β2, β3 ≡ (0, 0, 0)

In fig 3.2, the potential is minimized for a pair of quartics with other couplings set

according to the benchmark values. The minimization was performed with the NMinimize

function with NelderMead, DifferentialEvolution and SimulatedAnnealing method in

Mathematica. The pixel size of the grid is 0.1 × 0.1. With each parameter running from

(−5, 5) yields a 50 × 50 matrix. The yellow region has unbounded minima that violates

the BFB conditions. The green region is bounded and has a global minimum but with

an incorrect VEV alignment. In blue region, the potential undergoes correct sponataneous

symmetry breaking to the desired VEV structure of the vacuum. This vacuum is stable and

is phenomenologically viable.

We would like to assert that the results shown in fig 3.2 are in complete agreement with

the vacuum stability and correct vacuum conditions obtained in this work. It should also

be noted that although conditions to exhibit SSB to correct vaccum were derived using a

stronger condition, they match results from numerical minimization remarkably.
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3.7 Renormalization Group Equations Analysis

In a general case of randomly selected initial values, the evolution of quartic couplings accord-

ing to the renormalization group equations (RGEs) for the model can lead to their running

outside the allowed parameter space. Constraining the running of the quartic couplings to

satisfy the vacuum stability conditions upto a certain high energy scale ensures the bound-

edness of the potential. In this section, we discuss some more constraints on the quartic

couplings before we present an example study to demostrate the usefulness of the conditions

derived earlier.

3.7.1 Mass Spectrum & Unitarity Bounds

Along with BFB conditions and correct symmetry breaking, it’s necessary to check that the

potential exhibits a physical scalar mass spectrum. The scalar mass spectrum of the LRSM

has 14 physical particles. It includes 8 electrically neutral 20, four singly-charged and four

doubly-charged Higgs bosons. The scalar mass spectrum for LRSM is given below[141, 115]:

M2
H0

0
= 2

(
λ1 −

α2
1

4ρ1

)
κ2

+,

M2
H±2
'M2

A0
1
'M2

H0
1

= 1
2α3v

2
R,

M2
H0

2
= 2ρ1v

2
R,

M2
H±±1
'M2

H±1
'M2

A0
2

= M2
H0

3
= 1

2(ρ3 − 2ρ1)v2
R,

M2
H±±2

= 2ρ2v
2
R + 1

2α3κ
2
+

where κ2
+ = κ2

1 + κ2
2. The lightest neutral scalar MH0

0
that only depends on the VEV of

bidoublet Φ is identified as the SM Higgs boson. We have taken the best fit value of MH0
0

=

mh = 125 GeV [121]. H0
1 , A0

1 and H±2 are the CP-even and CP-odd neutral components and

the two singly-charged scalars respectively from the bidoublet Φ. H0
2 , H0

3 , A0
2, H±1 , H±±1

20 It contains two massless neutral degrees of freedom absorbed as the longitudinal polarization modes of
physical gauge bosons.
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and H±±2 are the two CP-even and one CP-odd neutral components, 2 singly-charged and 4

doubly-charged scalars respectively from the triplets ∆L and ∆R.

There are strong experimental bounds on most scalar masses in LRSM. This places lower

bounds on the allowed values of corresponding quartic couplings in the potential as a function

of the breaking scale. The heavy neutral scalarsH0
1 , A0

1 can contribute toBd−Bd, Bs−Bd and

K0 −K0 mixings due to presence of tree-level FCNC couplings to the SM quarks in LRSM.

Thus, there are stringent limits on their masses from the FCNC constraints [52, 53, 54].

MH0
1 ,A

0
1
> 15 TeV

The cleanest detection channel for doubly-charged Higgs bosons is its decay to same-sign

charged dilepton pairs . The current bounds on mass limits are from LHC 13 TeV run data

[118, 142], which largely depends on charged lepton flavors involved in the decay process :

MH±±1
& (770− 870) GeV MH±±2

& (660− 760) GeV

Parameter space for quartic couplings can be further squeezed by requiring tree-level uni-

tarity to be preserved in a variety of scattering process. We consider the unitarity bounds

only from 2-body scalar scattering processes [115], given below :

λ1 < 4π/3, (λ1 + 4λ2 + 2λ3) < 4π,

(λ1 − 4λ2 + 2λ3) < 4π,

λ4 < 4π/3,

α1 < 8π, α2 < 4π, (α1 + α3) < 8π,

ρ1 < 4π/3, (ρ1 + ρ2) < 2π, ρ2 < 2
√

2π,

ρ3 < 8π, ρ4 < 2
√

2π
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Fig. 3.3: RG running of the quartic couplings for the benchmark in sec 3.7.2 from vR = 26.8
TeV, with rg = gR

gL
= 1.2.

3.7.2 Example Study

We use the following benchmark values for RGE running of the quartic couplings.

µ2
1, µ

2
2, µ

2
3 ≡ ((8.48)2, 0, (11.99)2) TeV2

λ1, λ2, λ3, λ4 ≡ (0.0625, 0, 0, 0)

ρ1, ρ2, ρ3, ρ4 ≡ (0.01, 0.0005, 0.0226, 0) (3.46)

α1, α2, α3 ≡ (0.01, 0, 0.64)

β1, β2, β3 ≡ (0, 0, 0)
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The above benchmark is in complete agreement with the current experimental bounds on

the scalar masses at the breaking scale.

κ+ =
√
κ2

1 + κ2
2 = 246 GeV, vL = 0 TeV, vR = 26.8 TeV

Most importantly the ground state of the potential exhibits correct VEV structure of the

theory at the right-handed breaking scale vR. This is evident as the benchmark eq. (3.46)

satifies conditions derived for SSB to correct vaccum.

We now have a complete set of initial values and the system of RGE’s at one-loop level

for the LRSM [143, 115, 10, 144]. We run the system from the breaking scale vR to the

GUT scale while checking vacuum stability, perturbativity and unitarity bounds [114, 10].

The results are shown in fig 3.3. It can be seen that quartic couplings hit the Landau pole

at a scale lower than GUT scale 1012 GeV. Although the quartic couplings respects the

vacuum stability conditions and unitarity bounds nearly upto the scale just before violating

the perturbativity. We observe that most quartic couplings except ρ4 acquire non-zero values

even if set to zero at the breaking scale. ρ2 is the only quartic that is observed to run to

negative values although initialized at a positive value. Also notice that mass-squares µ2

don’t run appreciably once set at the breaking scale.

It should be mentioned that value of rg = gR
gL

is also crucial to the system of RGEs.

Lower values of rg for the benchmark in consideration leads to violation of vacuum stability

conditions and hence an unbounded potential at high-energies.

3.8 Conclusion

We develop a method to extract necessary and sufficient conditions to ensure vacuum stability

in LRSM by using the application of gauge orbit parameters in two-Higgs fields case. We

also show application of copositivity criteria and its usefulness in simplifying the analysis for

vacuum stability.
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As it was asserted earlier, only requiring vacuum stability does not ensure SSB to a

vacuum which reproduces SM at low-energies. For this purpose, we extend the vacuum

stability analysis to help yield conditions sufficient to achieve SSB to the correct vacuum

which should be charge conserving and also parity violating at low-energies. These analytic

techniques can also be extended to analyze metastability of the vacuum and one-loop effective

potentials.

We also compared our analytic results from those generated by numerical minimization

of the potential. It is observed that the derived conditions are in excellent agreement with

the numerical results. We also show that vacuum stability constraints along with other

theoretical constraints (pertubativity, unitarity, scalar mass spectrum) coupled with RGE

analysis can help us narrow down the allowed parameter space for the quartic couplings in

the potential. A comprehensive study is required to explore the existence of sets of quartic

and gauge couplings that obey these combined bounds. This is beyond the scope of this

chapter and can be another viable future direction for investigation.
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Chapter 4

Scalar Non-standard Interations of

Neutrinos
21

Young Monk: “Do not try and bend the spoon—that’s impossible.

Instead, only try to realize the truth.”

Neo: “What truth?”

Young Monk: “There is no spoon.”
- The Matrix (1999)

4.1 Introduction

The discovery of neutrino oscillations implies that at least two of the three neutrinos must

have small but non-zero masses [51]. The global neutrino oscillation program is now entering

a new era, where the known mixing angles and mass-squared differences are being measured

with an ever-increasing accuracy. Next-generation of long-baseline oscillation experiments

like DUNE are poised to resolve the sub-dominant effects in oscillation data sensitive to

the currently unknown oscillation parameters, namely the Dirac CP phase, sign of the at-

mospheric mass-squared difference and the octant of the atmospheric mixing angle. These

analyses are usually performed within the 3×3 neutrino mixing scheme under the assumption

that neutrinos interact with matter only through the weak interactions mediated by Stan-
21 This chapter is based on [12]
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dard Model (SM) W and Z bosons. On the other hand, the origin of neutrino mass clearly

requires some new physics beyond the SM, which often comes with additional non-standard

interactions (NSI) of neutrinos with matter fermions (i.e. electrons and/or nucleons). Al-

lowing for these NSI in neutrino production, propagation and/or detection can in principle

change the whole picture and crucially affect the interpretation of the experimental data in

terms of the relevant 3× 3 oscillation parameters. It is, therefore, of paramount importance

to understand all possible kinds of NSI effects, and to see how large these effects could be,

while being consistent with other theoretical and experimental constraints. The study of NSI

also opens up the possibility of using neutrino oscillations to probe the origin of neutrino

mass.

Following the SM interactions of neutrinos with matter via either charged-current (CC)

or neutral-current (NC), which can be written in the form (ν̄αγµPLνα)(f̄γµPf) after Fierz

transformation (with f, f ′ ∈ {e, u, d} the matter fermions and P ∈ {PL, PR} the chirality

projection operators), NSI induced by either a vector or charged-scalar mediator can be

parametrized in terms of vector and axial-vector currents [145]:

LV,NC
eff = −2

√
2GF

∑
f,P,α,β

εf,Pαβ (ν̄αγµPLνβ)(f̄γµPf) , (4.1)

LV,CC
eff = −2

√
2GF

∑
f,P,α,β

εf,Pαβ (ν̄αγµPL`β)(f̄γµPf ′) , (4.2)

where GF is Fermi’s constant and the ε terms quantify the size of the new interactions. The

vector components of NSI given by Eq. (4.1) and (4.2) affect neutrino oscillations during

propagation in matter by providing a new flavor-dependent matter potential. The size

of vector NSI is governed by the parameter ε ∼ g2
Xm

2
W/(g2m2

X), where gX and mX are

respectively the coupling and mass of the mediator X, and g is the SU(2)L gauge coupling.

There are two possibilities to realize experimentally observable vector NSI, which require

εαβ & 10−2 [146, 147]: (i) heavy mediator case with mX ∼ O(100) GeV and gX ∼ O(1);

and (ii) light mediator case with mX � mW and gX � 1 such that g2
X/m

2
X ∼ GF , while
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evading the low-energy experimental constraints. For concrete ultraviolet (UV)-complete

model realizations, see e.g. Ref. [146] for the heavy mediator case and Refs. [148, 149, 150]

for the light mediator case. For a recent review on different aspects of vector NSI, see

Ref. [151]. For the current global status of the constraints on ε, see Ref. [147].

On the other hand, NSI induced by a neutral scalar mediator is no longer composed of

vector current as in Eq. (4.1) or (4.2), but a scalar interaction for Dirac neutrinos given

by [152]

LS
eff = yfyαβ

m2
φ

(ν̄ανβ)(f̄f) , (4.3)

where yf and yαβ are respectively the Yukawa couplings of the matter fermion and neu-

trinos to the scalar mediator φ. This cannot be converted to vector currents, and hence,

does not contribute to the matter potential.22 Instead, it appears as a medium-dependent

correction to the neutrino mass term, with the correction factor ∆mν,αβ being inversely

proportional to the square of the mediator mass. As we will explicitly show below, large

enough scalar NSI effect is possible only for a sufficiently light scalar mediator,23 since we

need Geff ≡ yfyαβ/m
2
φ ∼ 1010GF to have any observable effect for neutrino propagating in

Earth with ∆mν ∼ O(0.1mν). Nevertheless, this could potentially lead to significantly differ-

ent phenomenological consequences in reactor, solar, atmospheric and accelerator neutrino

oscillations, as well as for supernovae and early-universe neutrino interactions.

In this chapter, we derive a general formula for evaluating the scalar NSI of the neutrinos

which is applicable to different environments. We perform a systematic study of the scalar

NSI in presence of a light scalar mediator φ. We consider both Dirac and Majorana neu-

trino possibilities. The main objective of this chapter is to provide a general field-theoretic

derivation of the scalar NSI effect at finite temperature and density, which can be applied

to different environments, such as Earth, Sun, supernovae and early Universe. Then we go
22 The same is true for tensor NSI of the form (ν̄ασµννβ)(f̄σµνf).
23 Eq. (4.3) is equally applicable for both light and heavy mediator, since we are dealing with coherent

forward scattering of neutrinos with q2 → 0.
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on to derive various constraints on the couplings in Eq. (4.3) as a function of the mediator

mass mφ from fifth force experiments, solar and supernova neutrino data, stellar cooling

constraints from red giants (RG) and horizontal branch (HB) stars, and big bang nucleosyn-

thesis (BBN). We have considered scalar interactions with electrons and nucleons separately

to show the differences in the constraints. We find that the fifth force experiments constrain

masses of φ below 0.1 eV and couplings up to 10−24. RG/HB stars constrain couplings up to

10−12 for nucleons and up to 10−16 for electrons coupling to φ. Bounds from BBN constrain

couplings up to 10−9 for the light scalar mediators. After taking into account all these con-

straints, we conclude that any prospects of observing scalar NSI in Earth matter have been

ruled out, while these effects are still measurable with future solar neutrino data, supernova

neutrino bursts or in cosmological observations of extra relativistic degrees of freedom.

The rest of the chapter is organized as follows: In Sec. 4.2, we present a general field-

theoretic derivation of scalar NSI and discuss various limiting cases that are applicable to

Earth, Sun, supernovae and early Universe. In Sec. 4.3, we discuss the long-range force

effects of a light scalar. In Sec. 4.4, we summarize the current experimental constraints on

the Yukawa couplings relevant for scalar NSI as a function of the mediator mass. In Sec. 4.5,

we discuss the thermal mass of the mediator. In Sec. 4.6, we derive a quantum-mechanical

bound on the effective in-medium mediator mass. In Sec. 4.7, we present our main results

and discussions. In Sec. 4.8, we present a UV-complete model for scalar NSI. Our conclusions

are given in Sec. 4.9. In Appendix B.1, we give the detailed derivation of various limiting

cases for the scalar NSI discussed in Sec. 4.2. In Appendix B.2, we provide details of the

calculation of the neutrino self-energy in neutrino background. In Appendix B.4, we present

the calculation for thermal mass of the scalar mediator.
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4.2 Field theoretic origin of scalar NSI

In this section, we derive expressions for medium-dependent neutrino mass and energy when

the neutrinos have scalar NSI with matter fermions in the propagating medium. The results

derived here are equally applicable for Dirac and Majorana neutrinos. As we will see later,

for observable scalar NSI it will be required that the scalar field is very light, which we

assume here. Consider the interaction of fermions f and Dirac neutrinos ν with a light

scalar φ, with the relevant interaction terms given by the Lagrangian:

L ⊃ −yαβναφνβ − yf f̄φf −mαβνανβ −
m2
φ

2 φ2 . (4.4)

In the case of Majorana neutrinos, the relevant Lagrangian has the form:

L ⊃ −yαβ2 νcαφνβ − yf f̄φf −
mαβ

2 νcανβ −
m2
φ

2 φ2 . (4.5)

We shall focus primarily on the Dirac neutrinos, but essentially all of our results will apply for

Majorana neutrinos as well, provided that the normalization of couplings is as in Eq. (4.5).

We shall comment on differences when they arise between the two cases.

A neutrino with four-momentum pµ propagating through matter obeys the Dirac equation

given by: [
/p− Σ(p)

]
ψ = 0 . (4.6)

In a general medium, the self energy Σ of the neutrino gets modified. We apply real time

formalism of field theory at finite temperature and density in our derivations, which is man-

ifestly Lorentz covariant [153]. With pure scalar interactions of the type given in Eqs. (4.4)

and (4.5), the neutrino self-energy takes the general form

Σ(p) = m− (â/p+ b̂/u+ d̂[/p, /u]), (4.7)

78



Chapter 4. Scalar Non-standard Interations of Neutrinos

where m is the neutrino mass inside the medium, uµ is the four-velocity of the medium and

â, b̂, d̂ are functions of only two Lorentz scalars, viz., p2 and p.u. In a Lorentz covariant

description of field theory at finite temperature and density, one introduces a medium four-

velocity vector uµ as in Eq. (4.7) obeying u2 = 1. In real time formalism of thermal field

theory, the finite temperature and density correction to self-energy of a fermion can be

calculated with the help of finite temperature Green’s function for a free Dirac field [153]

(for applications to neutrino propagation in matter see Refs. [154, 155, 156]):

Sf (p) = (/p+mf )
[

1
p2 −m2

f + iε
+ iΓf (p)

]
(4.8)

where

Γf (p) = 2πδ(p2 −m2
f )[nf (p)Θ(p0) + nf̄ (p)Θ(−p0)] . (4.9)

Here Θ is the Heaviside step function and nf (nf̄ ) is the Fermi-Dirac distribution function

for the fermion (anti-fermion) occupation number of the medium given by

nf (p) = 1
e(|p.u|−µ)/T + 1 , nf̄ (p) = 1

e(|p.u|+µ)/T + 1 , (4.10)

where µ is the chemical potential and T is the temperature. Integrating the occupation

number over all possible momentum states yields the total number density of the fermions

(or anti-fermions) in the medium:

Nf(f̄) = gf

∫ d3p

(2π)3nf(f̄)(p) . (4.11)

Here gf denotes the number of internal degrees of freedom and is equal to two for electrons,

nucleons and neutrinos for the two different spin states.
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f, ν

να νβ

φ

(a)

να νγ νβ

φ

(b)

Fig. 4.1: Neutrino self-energy diagrams: (a) Tadpole with background of f and ν, and (b)
Self-energy in a neutrino background.

4.2.1 Neutrino self-energy from tadpole diagram

The one-loop thermal self energy corrections for the neutrinos arising from Eq. (4.4) or

Eq. (4.5) are shown in Fig. 4.1. We first compute the one-loop neutrino thermal mass

correction induced by the tadpole diagram in Fig. 4.1a. The Lorentz-invariant form of Σ as

given in Eq. (4.7) can be conveniently evaluated by going to the rest frame of the medium,

where the amplitude takes a simple form:

−iΣαβ = iyαβ
i

q2 −m2
φ

∫ d4k

(2π)4 Tr [iyf iSf (k)] . (4.12)

In Eq. (4.12), we can set q2 = 0 for the momentum transfer because we are only interested

in the coherent forward scattering of neutrinos in matter for the NSI effect. Only retaining

the finite temperature and density part of the self-energy, we obtain

Σαβ = yαβyfmf

π2m2
φ

∫ ∞
0

dk0

∫ ∞
0

dk2 k δ(k2 − k2
0 +m2

f )
[
nf (k0) + nf̄ (−k0)

]
. (4.13)

80



Chapter 4. Scalar Non-standard Interations of Neutrinos

Integrating over k2 using the delta function yields the final result:

Σαβ = yαβyfmf

π2m2
φ

∫ ∞
mf

dk0

√
k2

0 −m2
f

[
nf (k0) + nf̄ (k0)

]
≡ ∆mν,αβ . (4.14)

While deriving Eq. (4.14), it has been assumed that the background medium contains both

fermions and anti-fermions. Thus, Eq. (4.14) is the complete expression for scalar NSI of

neutrinos at any finite temperature and density in a background without neutrinos. We

have provided details of evaluating the integral of Eq. (4.14) in various useful limits in

Appendix B.1.

Note that the scalar NSI of Eq. (4.14) appears as a medium-dependent mass of the

neutrino. The relevant integral can be evaluated analytically in the high temperature as well

as low temperature regimes. We find:

∆mν,αβ =



yfyαβ
m2
φ

(
Nf +Nf̄

)
(µ, T � mf) (4.15)

yfyαβ
m2
φ

mf

2

( 3
π

) 2
3 (
N

2/3
f +N

2/3
f̄

)
(µ > mf � T ) (4.16)

yfyαβmf

3m2
φ

(
π2

12 ζ(3)

) 2
3 (
N

2/3
f +N

2/3
f̄

)
(µ < mf � T ) . (4.17)

If the medium does not contain either fermions or anti-fermions of a certain type, the cor-

responding number density should be set to zero in the final result. If the background has

more than one type of fermion, the various contributions should be added. Eq. (4.15) for

µ, T � mf is the non-relativistic limit for the scalar NSI expression and matches the result

stated in Ref. [152]. It is most useful in case of the Earth and Sun. The limiting case

Eq. (4.16) is useful for relativistic medium backgrounds as with electrons in supernovae. For

effect of scalar NSI in the early Universe, Eq. (4.17) is the most relevant. Detailed application

of these results is carried out in Sec. 4.7.
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4.2.2 Neutrino self-energy in a neutrino background

There is another important diagram that might contribute to the effect of neutrino propa-

gation in a medium, as shown in Fig. 4.1b. This diagram contributes to neutrino self-energy

only in media with a neutrino or an anti-neutrino background. This situation is realized in

supernovae and early Universe cosmology. Here we derive the contribution of Fig. 4.1b in

such backgrounds. Again using the real-time formalism of thermal field theory, we can write

this contribution for a Dirac neutrino as:

Σν
αβ = −yβγyγα

∫ d4k

(2π)4

(
/k + /p

2 +mν

) Γφ
(
k − p

2

)
(
k + p

2

)2
−m2

ν

+
Γν
(
k + p

2

)
(
k − p

2

)2
−m2

φ

 , (4.18)

where Γν is defined in Eq. (4.9) and for Γφ, we have used the finite temperature Green’s

function for a free bosonic field given by:

Sb(p) =
[

1
p2 −m2

b + iε
− iΓb(p)

]
(4.19)

where

Γb(p) = 2πδ(p2 −m2
b)nb(p)Θ(p0) , (4.20)

with the Bose-Einstein distribution function given by

nb(p) = 1
e(|p.u|)/T − 1 , (4.21)

noting that the chemical potential of the real scalar field φ is zero. We have carried out the

evaluation of the self energy integral of Eq. (4.18) in Appendix B.2; here we summarize our

main results. The contribution of Eq. (4.18) can be written as

Σν
αβ = −yβγyγα8π2|p|

J , (4.22)
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with J identified as the integral of Eq. (4.18), except for an overall factor, and can be

decomposed as

J = a/p+ b/u+ c+ d[/p, /u] . (4.23)

By taking traces of the integral in Eq. (4.18) multiplied by (1, /p, /u, /p/u), we can solve for the

Lorentz scalars (a, b, c, d). Defining

Jp = Tr(J/p) , Ju = Tr(J/u) , and Jm = Tr(J) , (4.24)

we find

a = Ju (p.u)− Jp
4[(p.u)2 − p2] , b = Jp (p.u)− Jup2

4[(p.u)2 − p2] , c = Jm
4 , and d = 0 . (4.25)

It is clear that the coefficient c contributes to the neutrino mass in the medium [cf. Eq. (4.7)].

But this effect is negligible in our case, because there is no 1/m2
φ enhancement.

There is also a matter potential that is caused by the neutrino self-interactions. To arrive

at it we examine the pole in the neutrino propagator:

iS−1
ν (p) = i(/p− Σν) = i[/p(1− A)−B/u] , (4.26)

where A and B are matrices in flavor-space, with elements given by

Aαβ = −yβγyγα8π2|p|
a , Bαβ = −yβγyγα8π2|p|

b . (4.27)

Since A and B commute, Sν can be obtained in terms of A and B as

iSν(p) = i
[(1− A)/p−B/u]
{(1− A)p−Bu}2 . (4.28)

We define energy and momentum of the neutrino (in the massless limit) in the rest frame of
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the medium as [155]

E = p.u, P =
√
E2 − p2 . (4.29)

The pole in the neutrino propagator of Eq. (4.28) occurs at energy values given by

Ei = Bi

1− Ai
± P . (4.30)

This leads to the modified dispersion relation E = UEiU † (where U is the unitary matrix

that diagonalizes A and B). The energy shift for neutrinos is thus B/(1 − A), while the

shift in antineutrino energy is −B/(1− A), which are both non-diagonal in the flavor basis

[cf. Eq. (4.27)].

For significant regions of the Yukawa couplings yαβ and yf , the scalar φ does not get

thermalized. In this case, there is no φ background and the term proportional to Γφ(k−p/2)

should be set to zero. We present our results here in this case first. The contribution from

Σν
αβ can then be written as:

Σν
αβ = −yαγyγβ

∫ ∞
−p0

2

dk0

∫ d3k

(2π)3
(/k + /p

2 +mν)(
k − p

2

)2
−m2

φ

δ

[(
k + p

2

)2
−m2

ν

]
nν

(
k0 + p0

2

)
. (4.31)

We defer the details of evaluating this integral to Appendix B.2. Here we present the results in

the high temperature limit, assuming that the chemical potential is vanishing. This condition

is generally true in the early Universe when neutrinos propagate in a background of neutrinos.

Furthermore, we set the neutrino mass to be zero, which is a consistent approximation as

the medium-induced mν is proportional to the original mν . In the absence of neutrino mass,

we can set p2
0 − |p|2 = 0. Under these conditions, our results are as follows (see Appendix

B.2 for details):

a = −π
2T 2

24|p|

[
2− 12ζ ′(−1)− ln

(
16π|p|T
m2
φ

)]
− T

4 ln2 ln
(

2
√

2|p|T
m2
φ

)
,

b = π2T 2

12 . (4.32)
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Here ζ ′(−1) = −0.165421 is the derivative of Riemann zeta function evaluated at argu-

ment equal to −1. Using these results along with Eq. (4.30), we arrive at the energy shift

experienced by the neutrino in a background of neutrinos:

∆E+,αβ = − T 2

96|p|

[
yy†

(
1− yy† T 2

192|p|2

{
2− 12ζ ′(−1)− ln

(
16π|p|T
m2
φ

)}

−yy† T

32π2|p|
ln2 ln

(
2
√

2|p|T
m2
φ

))−1
αβ

. (4.33)

Here we have made use of the fact that yy† = UDU †, where D is a diagonal matrix and U is

unitary, obtained the poles in the neutrino propagators in the diagonal basis, and reinserted

the unitary matrix in writing Eq. (4.33). While we do not use these results explicitly in

our analyses, these are part of the neutrino scalar NSI which may find use in early Universe

cosmology where there is a thermal background of neutrinos.

If the scalar field φ is also in thermal equilibrium, a similar analysis goes through albeit

with some replacements, as can be seen from Eq. (4.18): Γν → Γφ, p→ −p, with a change in

sign of /p in the numerator and change of mφ → mν only in the denominator. These thermal

φ contributions will add to the neutrino self-energy contribution to J given in Eq. (4.23). In

particular, the coefficients Jp, Ju, Jm of Eq. (4.24) will become Jp + Jφp , Ju + Jφu , Jm + Jφm,

where the new contributions are given in Appendix B.2.

4.3 Long-range force effects

A light scalar coupling to fermions can lead to long-range forces. This applies to charged

fermions as well as neutrinos propagating through a medium. Even when the neutrino

propagates outside of the medium, such long-range forces can affect its propagation. Thus,

calculating the neutrino energy using point interactions with a very light mediator does not

provide a complete picture. In this section, we sketch a heuristic derivation to account for

these long-range force effects. Long range effects in non-relativistic media have been studied
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in Refs. [157, 158]. Here, we have extended the analysis for all background media, i.e. both

non-relativistic and relativistic cases. This will be especially useful in relativistic media such

as in supernovae and in early Universe.

We use the Euler-Lagrange equations for the Lagrangian in Eq. (4.4) to obtain equations

of motion for ν and φ:

(i/∂ −mαβ − yαβφ)νβ = 0 (4.34)

(∂2 +m2
φ) φ− yαβνανβ − yf f̄f = 0 . (4.35)

As can be seen from Eq. (4.34), the interaction vertex yαβναφνβ leads to an extra contribution

to neutrino mass:

∆mν,αβ = yαβ 〈φ〉medium . (4.36)

To calculate the mass correction for a neutrino propagating in a medium, we will need to

calculate the expectation value of the operators at finite temperature and density, appearing

in Eqs. (4.34) and (4.35).

For a medium in thermal equilibrium with fermion number density Nf and anti-fermion

number density Nf̄ can be represented as a Fock state |Ψ〉. This state contains information

about particle and anti-particle distribution in different momentum states. Since the sys-

tem is assumed to be in thermal equilibrium, the fermion and anti-fermion density in each

momentum state does not change in time. Thus, we can set t = 0 and the state |Ψ〉 is

normalized, i.e, 〈Ψ|Ψ〉 = 1. The field operators for the fermion and anti-fermion fields can

be written as [159]:

f(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

[
asp u

s(p) e−ip.x + bs†p vs(p) eip.x
]
, (4.37)

f̄(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

[
bsp vs(p)e−ip.x + as†p us(p) eip.x

]
. (4.38)
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We need to calculate the expectation value of the operator f̄f . While trying to interpret

these quantities classically, we first need to normal order the product of the quantum fields:

〈: f̄f :〉 = 〈Ψ| : f̄f : |Ψ〉 =
∫ d3p1

(2π)3

∫ d3p2

(2π)3
1√

2Ep1

1√
2Ep2

×
∑
s,s′

[
〈as†p1

as
′

p2
〉 us(p1)us′(p2) e−i(p1−p2)·x + 〈as†p1

bs
′†

p2
〉 us(p1)vs′(p2) e−i(p1+p2)·x

+〈bsp1
as
′

p2
〉 vs(p1)us′(p2) ei(p1+p2)·x + 〈bs′†p2

bsp1
〉 vs(p1)vs′(p2) ei(p1−p2)·x

]
, (4.39)

where we have used 〈A〉 = 〈Ψ|A|Ψ〉 for brevity and the symbol : : signifies normal ordering

of the product. In Eq. (4.39), terms like a†b† and a b vanish, since they cannot be contracted

because they act on different subspaces. It is well known from quantum field theory at

zero temperature that a†a and b†b are the number density operators for fermions and anti-

fermions respectively. This can be generalized to finite temperature and density using the

Fermi-Dirac distribution:

〈Ψ|as†p1
as
′

p2
|Ψ〉 = nf (p1) δ(p1 − p2)δs,s′ , (4.40)

〈Ψ|bs†p1
bs
′

p2
|Ψ〉 = nf̄ (p1) δ(p1 − p2)δs,s′ . (4.41)

Eq. (4.40) can be understood by integrating it over all momentum states which yields the

total number density Nf :

∫ d3p1

(2π)3

∫ d3p2

(2π)3 〈Ψ|a
s†
p1
as
′

p2
|Ψ〉 = Nf . (4.42)

Using the normalization of states us(p)us(p) = 2mf , we obtain:

〈f̄f〉 ≡ 〈Ψ|f̄f |Ψ〉 = gf

∫ d3p

(2π)3
mf

Ep

[
nf (p) + nf̄ (p)

]
. (4.43)
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Converting Eq. (4.43) into an energy integral, we have:

〈f̄f〉 = gfmf

2π

∫ ∞
mf

dk0

√
k2

0 −m2
f

[
nf (k0) + nf̄ (k0)

]
. (4.44)

Notice that the integral form of Eq. (4.44) matches Eq. (4.14) except for the pre-factors.

This implies that generalizing the limiting cases for Eq. (4.44) is straightforward.

Now to calculate ∆mν,αβ in Eq. (4.36), we need to solve Eq. (4.35) for φ. Considering

yf f̄f as a source term and neglecting the second term assuming low neutrino number density,

we can write the solution as:

〈φ〉(x) = −yf
∫
d3x′

〈f̄f〉(x′)
4π|x− x′|

e−mφ(|x−x′|) . (4.45)

Under assumptions of spherical symmetry of the medium, integrating over the angular vari-

ables yields the solution of the form:

∆mν,αβ(r) = yfyαβ
mφ r

(
e−mφr

∫ r

0
x 〈f̄f〉 sinh (mφ x) dx+ sinh (mφ r)

∫ ∞
r

x 〈f̄f〉 e−mφ x dx
)
.

(4.46)

We have worked out Eq. (4.46) in the relativistic limit for two different density profile

distributions in Appendix B.3. While we do not use these analytic results in our numerical

analysis, these special cases can give insight for general situations. We use actual density

profiles of the Sun and supernovae in our numerical calculations, integrating the relevant

integrals exactly.

4.4 Experimental constraints on couplings

In this section we explore two specific scenarios:

(i) scalar φ coupling only to electrons and neutrinos, and

(ii) scalar φ coupling only to nucleons and neutrinos.
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Here neutrinos can be either Dirac or Majorana in nature. In this section, we discuss

experimental constraints on the couplings and mass of φ in the aforementioned scenarios.

In accordance to Eq. (4.4), the scalar coupling to electron is denoted by ye. On the other

hand, the scalar coupling to quark cannot be probed directly but only measurable through

their effect with scalar-nucleon interaction. Thus, we present the experimental constraints

on scalar-nucleon coupling labeled as yN . The conversion from quark level couplings yq to

yN is discussed later in Sec. 4.4.1.4.

4.4.1 Constraints on ye and yN

4.4.1.1 Anomalous electron magnetic moment

A scalar coupling with the electrons will contribute to the electron anomalous magnetic

moment (g − 2)e given by [160]:

∆ae = 1
8π2

∫ 1

0
dx

(1− x)2(1 + x)y2
e

(1− x)2 + x(mφ/me)2 . (4.47)

There is currently a 2.4σ discrepancy between the experimentally inferred value and SM

prediction for ∆ae = aexp
e − aSM

e = (−88 ± 36) × 10−14 [51]. A light scalar can potentially

make this discrepancy worse, as it gives a positive contribution, and thus provides a useful

limit on scalar NSI parameters. Using the 3σ value for the ∆ae, the allowed region in the

ye−mφ plane is obtained. This constraint is shown in Figs. 4.3 and 4.5, labeled as (g− 2)e.

This constraint yields an almost constant upper bound of ye < 3.4 × 10−6 for light scalar

mediators.

4.4.1.2 Fifth force experiments

These experiments measure the presence of fifth forces as deviation from the Newtonian

gravitational potential between a given source mass and a test mass, which is parametrized
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as follows:

V (r) = −Gm1m2

r

(
1 + αe−r/λ

)
. (4.48)

Given an interaction vertex of the form yf f̄φf as in Eqs. (4.4) and (4.5), consider the

scattering of two distinguishable fermions in the non-relativistic limit. The corresponding

Yukawa potential for the interaction is given by (see Sec. 4.7 of Ref. [159]):

V (r) = −
y2
f

4πr e
−mφr , (4.49)

where r is the distance between the scattering particles.

For experiments detailed in Refs. [161, 162, 163, 164, 165, 166] in the range λ = 10−6 to 102

m, the constraints provided on α in Eq. (4.48) are not directly applicable to yf in Eq. (4.49).

Therefore, we will translate the constraints on α to those on yf for our case. Assuming a par-

ticle (e.g. lepton, quark) couples to the scalar mediator with strength q and each interacting

body contains N number of these particles, the potential between two extended bodies can

be written as:

Vφ(r) = −N1q1 N2q2

4πr e−mφr . (4.50)

We identify the inverse of the length scale λ as mass of the scalar particle φ. Thus, we have:

α = N1q1 N2q2

4πGm1m2
= q1 q2

4πGA1A2u2 = 1
4πGu2

q1

A1

q2

A2
, (4.51)

where we have used the relation m = NAu (A= mass number, u = 1 atomic mass unit) and

G is the gravitational constant. For bounds on ye, the coupling strength will be proportional

to the lepton number (L), which is identical to atomic number (Z) for a given material, i.e.,

q = Zye, leading to

α = y2
e

4πGu2
Z1

A1

Z2

A2
. (4.52)

Values for charge to mass number ratio for test and source masses can be obtained from
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Label References Source Mass Composition Test Mass Composition Z1
A1

Z2
A2

I Stanford [164] Gold, Silicon Gold 0.1804
II Colorado [162] Tungsten Tungsten 0.1621
III Eot-Wash’07 [163] Molybdenum, Tantalum Molybdenum 0.1839
IV HUST’12 [165] Tungsten Tungsten 0.1621
V HUST+ ’16 [166] Tungsten Tungsten 0.1621
VI Irvine A [161] Copper Copper 0.2159
VII Irvine B [161] Stainless Steel Copper 0.2116

Tab. 4.1: The compositions of source and test masses used in the experiment listed and the
corresponding values of ratio Z1

A1
Z2
A2
.

the experimental setups as given in Table 4.1. These are shown in Figs. 4.3 and 4.5 by the

labels I to VII. Similar results follow for coupling to the nucleons yN by replacing the atomic

numbers (Z) by mass numbers (A) in Eq. (4.52). This implies that constraints on yN will

be independent of the material used in the experiment. These limits are shown in Figs. 4.4

and 4.6.

Additional constraints on ye and yN can be directly obtained from Ref. [167] which used

experiments in the range λ = 10−1 to 1013 m and the corresponding limits on

α̃ =
y2
e(N)

4πGu2 . (4.53)

This constraint is labeled as “Torsional Balances" in Fig. 4.3, 4.4, 4.5, and 4.6. It can be

seen from these figures that fifth-force experiments constrain both couplings ye and yN with

an upper bound in the range 10−25 − 10−15 for mφ < 0.1 eV.

4.4.1.3 Constraints from Stellar and Supernova Cooling

φ− e coupling: The production of the light scalar φ in stellar bodies can lead to a new

channel for energy loss leading to rapid cooling. This can help severely constrain the inter-

action of a scalar with electrons. The dominant production of this scalar is via its resonant

mixing with the longitudinal component of the photon in the plasma [168]. The extra energy

loss processes in red giants (RG) can delay their onset of helium ignition and can change
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the helium-burning lifetime of the horizontal branch (HB) stars, in disagreement with the

stellar models that match observations. For bounds from supernova, the energy loss from

production of a scalar is required to be less than that of SN1987A neutrino burst. The

energy loss rate from resonant production of a scalar with a plasmon is given by [168, 169]

Qres '
ωL
4π

(
ωL
mφ

ΠφL

)
1

e
ωL
T − 1

, (4.54)

where ωL is the resonant frequency and ΠφL is the mixing of the scalar with the longitudinal

component of the photon in the medium, given by

ΠφL ' yeem
eff
e mφ

π2k

∫ ∞
0

dp v2 [ne(Ep) + ne(Ep)]
[
ωL
vk

log
(
ωL + vk

ωL − vk

)
−

2m2
φ

ω2
L − k2v2

]
, (4.55)

where v = p/Ep is the electron velocity, meff
e is the effective thermal mass of the electron

and k =
√
ω2
L −m2

φ is the 3-momentum of the scalar mediator φ, where Eφ = ωL due to

the resonant production of scalar. Ref. [169] considers the resonant production process as

dominant over the Compton scattering or electron-ion interactions.

For large values of the coupling, the scalar can get trapped inside the star/supernova.

This capture would help alleviate the stringent upper bound on the coupling ye. To derive

the trapping limit, the detailed balance of production and absorption rates is used, i.e.,

Γprod(Eφ) = e−
Eφ
T Γabs(Eφ) . (4.56)

Since we are only interested in ultra-light mediators with mφ < 1 MeV, the absorption

through the decay channel φ→ e+e− is absent for our purposes. Thus, the absorption rate

from the resonant mixing yields a mean free path length λ given by:

λ = 1
Γabs(Eφ) ∼

E4
φ

Qres
. (4.57)
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By requiring the mean free path to be shorter than R = 10 km, which is the typical size of a

supernova core, we derive a bound on the coupling ye, as shown in Figs. 4.3 and 4.5, labeled

“SN1987A".

In case of SN1987A, constraints on ye range from 10−9 to 10−7 for scalar mediators lighter

than the electron. Even stronger constraints are obtained from HB/RG stars with an upper

bound of ye ∼ 10−15 for light scalar mediators.

φ−N coupling : The constraints are similar to the φ − e coupling case. In HB and RG

stars with typical temperatures of 10 keV, the main constraints for scalar coupling to nucleon

in the literature are derived using Compton scattering, γ + He → He + φ, as the dominant

process. It is required that the new energy loss per unit mass should be less than ε < 10

erg/g/s [170]. As shown in Ref. [168], resonant production through φ mixing with a photon

can increase the energy loss for low scalar masses and therefore the φ coupling to nucleon is

highly constrained.

The constraints from a supernova comes from scalar production through bremsstrahlung

process N + N → N + N + φ [171]. Bounds on the coupling can be obtained by requiring

the energy loss to be less than the energy contained in the neutrino burst, i.e., ε < 1019

erg/g/s [170]. Similarly, the trapping regime of the scalar being reabsorbed can be derived

using the detailed balance between the absorption and production rates. Requiring the mean

free path λ ∝ ερ/T 4 to be smaller than 10 km yields the constraint on yN [169], as shown in

Figs. 4.4 and 4.6.

In case of SN1987A, constraints on yN range from 10−10 to 10−7 for scalar mediators

lighter than electron. Similar to ye, stronger constraints are obtained from HB/RG stars

with an upper bound of yN ∼ 10−12 for light scalar mediators.

4.4.1.4 Meson decays

A light scalar coupling to nucleons can be produced in meson decays. The only process of

interest in this case is a charged Kaon decay to a charged pion and the scalar: K+ → π+φ.
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This production cross section is highly constrained from the measurement of branching ratios

from charged Kaon decay : Br (K+ → π+νν) < 1.7× 10−10 [51].

Using the low-energy effective Lagrangian formalism presented in Ref. [172], the branch-

ing ratio for the process in consideration is given by

BR(K+ → π+ φ) = (3yuGFfπfKB)2

32πmK+ΓK+
|VudVus|2 λ1/2

(
1,

m2
φ

m2
K+

,
m2
π+

m2
K+

)
, (4.58)

where B = m2
π

mu+md
and λ(a, b, c) = a2 + b2 + c2− 2ab− 2bc− 2ac. Matching the nucleon level

interaction to the effective Lagrangian:

L ⊃ yNNNφ , (4.59)

where N = p, n, the nucleon coupling yN can be written in terms of fundamental quark

-level couplings yu(yd) as :

yN =
∑
q

yqg
q
S , (4.60)

where gqS is the nucleon scalar charge. We assume that the scalar couples equally to the up

and down quark i.e. yu = yd. The effective nucleon couplings to a scalar is then given by

yN = yu
(
guS + gdS

)
' 9.47 yu , (4.61)

where we have used guS = 5.20 and gdS = 4.27 [173]. This constraint is labeled as “K+ → π+φ"

in Figs. 4.4 and 4.6. It yields an almost constant upper bound of yN ∼ 2.3× 10−5 for light

scalar mediators.

4.4.1.5 Big Bang Nucleosynthesis

φ− e coupling: In early Universe, the scalar mediator φ can be in thermal equilibrium with

the SM particles through annihilation (e+e− → γφ) and Compton scattering (e−γ → e−φ).

94



Chapter 4. Scalar Non-standard Interations of Neutrinos

In the limit s� m2
φ,m

2
e, the cross sections for these processes are [169]

σeγ→eφ ≈
αey

2
e

s

[
log

(
s

m2
e +m2

φ

)
+ 5

2

]
, (4.62)

σee→γφ ≈
2αey2

e

s
log

(
s

4m2
e

)
, (4.63)

where αe ≡ e2/4π is the fine-structure constant. The thermally averaged cross section for

these two processes are given below:

〈σeγ→eφ v〉 = 1
16m2

eT
3K2(me/T )

∫ ∞
m2
e

ds σ(s−m2
e)
√
sK1

(√
s

T

)
, (4.64)

〈σee→γφ v〉 = 1
8m4

eT (K2(me/T ))2

∫ ∞
4m2

e

ds σ(s− 4m2
e)
√
sK1

(√
s

T

)
. (4.65)

If φ enters equilibrium with electrons before T ∼ 1 MeV, it can decrease the deuterium abun-

dance which is in conflict with observations [169]. In our case, the mediator thermalizes if the

thermally averaged cross section exceeds the Hubble expansion rate H(T ) ∼ 1.66√g∗T 2/MPl

(where g∗ is the number of relativistic degrees of freedom and MPl is the Planck mass) at

T = 1 MeV. This yields an upper bound of ye = 5 × 10−10 for ultra-light scalar mediators,

independent of mφ.

Note that LEP measurements of the Bhabha scattering cross-section (e+e− → e+e−) can

also constrain the coupling ye through s and t-channel φ exchange, but we estimate it to be

only at O(0.1) level [174, 146].

φ−N coupling : In this case, we require that the scalar φ thermalizes around the QCD

phase transition temperature. This will help dilute the relativistic degrees of freedom (Neff)

until the nucleosynthesis phase is reached. Otherwise, the scalar φ will be in equilibrium with

SM and will have a significant contribution to relativistic degrees of freedom (∆Neff = 4/7)

at the time of BBN, in tension with the current measurements from Planck [16]. Thus, we

require that the interaction rate should be lower than the Hubble rate at T = 200 MeV.
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We can estimate the rate of φ production from the processes like uū → φ (and dd̄ → φ)

as Γφ ∼ y2
uT . This should be compared with Hubble rate H(T ) ∼ 1.66√g∗T 2/MPl. This

condition leads to a stringent constraint on yu < 2.63× 10−10. Converting the quark-scalar

coupling to nucleon level coupling using Eq. (4.61) , we get yN < 2.49× 10−9.

4.4.2 Experimental Constraints on yν

Dirac ν − φ coupling: The analysis in this case is similar as for the φ−N coupling. If the

scalar φ thermalizes (even partially) in the early Universe, it introduces additional degrees

of freedom that contribute to the total entropy [175]. We require that the scalar φ, as well as

the right-handed neutrinos, should decouple from the thermal plasma at a temperature above

the QCD phase transition temperature which will dilute the ∆Neff = 3+ 4
7 ∼ 3.57 by the time

BBN occurs, in agreement with the currently allowed range from Planck [16]. Thus, requiring

that the interaction rate of processes like νν̄ → φ should be lower than the Hubble rate at

T = 200 MeV yields an upper bound of yν ∼ 2.6× 10−10. Majorana ν − φ coupling:

Presence of NSI can lead to re-thermalization of the neutrinos, which otherwise decouple

at T ∼ 1 MeV in the standard scenario. This can leave a signature in the cosmological

observables. The analysis in Ref. [176] constrains the couplings in the secret interaction of

neutrinos with a light mediator. Assuming model independence, we use the upper bound on

coupling yν from Ref. [176], which yields a stringent limit of yν < 2× 10−7.

The next-generation CMB experiments, such as CMB-S4 [177] which will have better

sensitivity to departures from the ΛCDM paradigm could test such neutrino self-interactions

mediated by light scalars, as discussed here.

Additional constraints on yν exist from neutrino self-interactions within astrophysical

sources like core-collapse supernovae [178] with high neutrino number densities of nν ∼

O(1038) cm−3, where they can lose energy via higher-order processes like 2ν → 4ν and

may be unable to transfer enough energy to the stalled supernova shock wave to revive

it, halting the explosion altogether [179, 178]. Similarly, elastic scattering of astrophysical
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neutrinos off the cosmic neutrino background as they propagate to Earth would distort the

energy spectrum of the astrophysical neutrinos by introducing a deficit at high energies

and a pileup at low energies, potentially falling below the energy threshold for detection,

as well as delaying their arrival time on Earth, compared to their electromagnetic-wave

counterpart [180, 178]. However, these astrophysical constraints on yν turn out to be much

weaker than the cosmological constraints discussed above for light scalars with mφ . 1 MeV.

It should also be pointed out that there are other weaker constraints applicable in our

scenario but not relevant to the scalar NSI discussion here. For example, coherent elastic

neutrino-nucleus scattering data by COHERENT experiment constrains yN only at the O(1)

level for the values of the yν used in this work [181].

4.5 Thermal mass of scalar φ

If the interactions of the scalar φ with the medium are significant enough, then it might get

thermalized with the medium. Since the scalar field in consideration is ultra-light, medium

effects might lead to substantial correction to the vacuummass of the φ. The medium induced

mass at one-loop is shown in the Feynman diagram in Fig. 4.2. The relevant contribution

to the mass of φ at finite density and temperature is given by:

M = 4y2
f

∫ d4k

(2π)4

(
k2 − p2

4 +m2
f

)[
Γ(k + p/2)

(k − p/2)2 −m2
f

+ Γ(k − p/2)
(k + p/2)2 −m2

f

]
. (4.66)

We refer the reader to Appendix B.4 for the evaluation of the scalar mass integral. In the

limit mφ → 0, the mass correction for scalar is found to be:

∆m2
φ =

y2
f

π2

∫ ∞
mf

dk0 nf (k0)
√
k2

0 −m2
f . (4.67)
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Note that the same integral appears in Eq. (4.14). Thus, using the known limiting forms of

the integral (cf. Appendix B.1), we obtain:

∆m2
φ =



y2
f

mf

(
Nf +Nf̄

)
(µ, T � mf) (4.68)

y2
f

2

( 3
π

) 2
3 (
N

2/3
f +N

2/3
f̄

)
(µ > mf � T ) (4.69)

y3
f

3

(
π2

12 ζ(3)

) 2
3 (
N

2/3
f +N

2/3
f̄

)
(µ < mf � T ) . (4.70)

These expressions are also applicable to Majoron (J) propagation in a medium with pseu-

doscalar interactions of the form ν̄γ5Jν. For example, in the early Universe, Majoron propa-

gating in a neutrino background will have a mass given by the high-temperature limit, which

will be approximately mJ ' yνT [cf. Eqs. (4.70) and (B.14)].

Eq. (4.70) will also be relevant to deriving neutrino self-interaction limits from early

Universe cosmology. CMB anisotropies strongly depend on the anisotropy of the neutrino

field. Neutrino self-interactions would isotropize the neutrino field, affecting the CMB. It

has been found that CMB anisotropy data constrain such interactions to be (y2
ν/m

2
φ) ≤

(3 MeV)−2 (for mφ > 1 keV) [182]. If the scalar field indeed thermalizes with the medium,

which occurs for yν ≥ 10−10 or so, then one should use the thermal mass of φ, Eq. (4.70) in

this constraint, which can weaken the constraint significantly. In cosmological simulations

involving a light scalar, the thermal mass effects of Eq. (4.70) should be included. Such

interactions may be testable in future CMB and large-scale structure observations through

the thermally induced mass in such settings.

In the limit when mφ → 0 but acquires a thermal mass, the scalar NSI expression

Eq. (4.14) takes a special form:

∆mν,αβ = yαβ
yf
mf . (4.71)

Note that Eq. (4.71) is independent of the scalar mass mφ in this limit. This scenario may
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φ φ

f, ν

Fig. 4.2: Feynman diagram responsible for the thermal mass of the scalar φ.

be realized in supernovae, provided that φ has significant interactions with matter. From

discussions in Sec. 4.4.1.3, it is clear that for high enough values of ye or yN , the scalar gets

trapped and thermal correction to the mass should be taken into account. Thus, in case

of thermalization of the scalar, Eq. (4.71) should be used in lieu of Eqs. (4.15), (4.16) and

(4.17).

4.6 Quantum-mechanical bound on light scalar mass

Here we show that the uncertainty principle of quantum mechanics sets a lower limit on the

minimum q2 that appears in neutrino forward scattering. This limit applies to a neutrino

propagating through Earth, where it interacts either with electrons in atoms, or with nucleons

inside the nuclei.

Consider να − e elastic scattering. Working in the rest frame of the electron, the initial

and final four-momenta of the electron can be written as

pµ = (me, 0, 0, 0) , p′µ = (
√
p2
e +m2

e, 0, 0, pe) , (4.72)

where pe is the recoil momentum of the electron. The q2 related to coherent forward scat-

tering is then

q2 = (p′ − p)2 = 2me(me −
√
p2
e +m2

e) ' −p2
e, (4.73)
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where in the second step q2 � m2
e is assumed.

Now, the recoil momentum of the electron is subject to the uncertainty relation. Its

position is not precisely known inside the atom, so we have

∆p∆x & ~ . (4.74)

When we set q2 = 0 in the computation of forward scattering, we only know this up to an

uncertainty in q2 given by (setting ~ = 1)

q2 ' p2
e ∼

1
(∆x)2 . (4.75)

Using ∆x = 140 × 10−8 cm, which is the radius of 26Fe – the most abundant element in

Earth’s matter, one obtains for the uncertainty in q2 to be

q2
ye ≈ (14 eV)2 . (4.76)

Thus, when the mediator mass becomes much smaller than 14 eV, one should use this

quantum mechanical cut-off in computing scalar NSI. Similarly for coupling to nucleon, the

cut-off would be given by the inverse of the nuclear radius of 26Fe. Using nuclear diameter

∆x = 9.6 fm, we obtain

q2
yN
≈ (21 MeV)2 . (4.77)

These rough quantum-mechanical bounds can be better motivated by using atomic/nuclear

form factors for coherent forward scattering. In Earth, the expression for scalar NSI will get

modified with the inclusion of a form factor.

∆mν,αβ = yfyαβNf

m2
φ − q2 F (m2

φ) , (4.78)

The original result in Eq. (4.15) was obtained by setting q2 = 0 and F (m2
φ) = 1, but if the
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mass of the scalar mφ → 0 then the denominator is not well-defined. This is remedied by

the atomic form factor F (m2
φ) which is of the form [183]:

F (m2) = m2

m2 + q2
0
, (4.79)

where q0 = 1/4πa0 and a0 is the radius of the first orbit for hydrogen-like atoms. Similar

qualitative results should apply for the outermost-orbit electrons in 26Fe. For high values

of m2
φ � q2

0, F (m2
φ) ∼ 1 as expected. Thus, the vanishing q2 limit is well-defined and

yields the original result in Eq. (4.15). Difference appears in the regime m2
φ � q2

0, where

F (m2
φ) ∼ m2

φ/q
2
0. The form of Eq. (4.78) in the low mφ limit and with q2 → 0 is thus given

by:

∆mν,αβ = yfyαβNf

q2
0

, (4.80)

which is independent of mφ. This result agrees with the quantum-mechanical bound dis-

cussed above based on the uncertainty principle.

When a scalar mediator couples to the electron, from fifth force constraints either the

mass of the mediator should be larger than a keV, or its coupling to the electron should

be extremely weak, of order 10−24. For such tiny couplings, to generate scalar NSI in the

observable range, one could naively make the mediator mass of order 10−8 eV. In this case,

the quantum-mechanical intrinsic bound should be applied for computing forward scattering.

The result is that scalar NSI arising from coupling to electrons cannot be in the observable

range for neutrino propagation in Earth.

These quantum-mechanical limits are not applicable to Sun or supernovae due to the

absence of bound states in them. The major baryonic component in Sun and supernovae

is ionized hydrogen gas (protons) and neutrons respectively. Thus, the neutrinos scatter

off against either free electrons or the protons/neutrons inside these stellar bodies. For the

relevant neutrino energies of O(keV−MeV), the protons/neutrons behave as point particles,

and therefore, the finite-size effect discussed above is not applicable to them.
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4.7 Numerical results

We have discussed the calculation for scalar NSI and the experimental constraints on them

in previous sections. Here we put these constraints together and explore possible tests of

this scenario in future neutrino experiments. We also provide the numerical models for the

density profiles of the earth and supernovae that we adopt to constrain the model parameters.

The results for different cases with scalar coupling to electron/nucleon and in case of

either Dirac or Majorana neutrinos have been presented in Figs. 4.3, 4.4, 4.5, 4.6. Here

we have fixed the value of yν at its maximum allowed value in each case, as discussed in

Sec. 4.4.2, whereas the other Yukawa coupling (either ye or yN) is varied, along with the

scalar mass mφ. These results are also summarized in Table 4.2.

4.7.1 Earth and Sun

In case of Earth and Sun, the background medium of electrons and nucleons are non-

relativistic. Therefore, the expression used for scalar NSI in these media is given by Eq. (4.15)

with Nf̄ = 0:

∆mν,αβ = yfyαβ
m2
φ

Nf . (4.81)

From the discussion in Sec. 4.6, when the mediator mass becomes lower than the quantum

mechanical cut-off of m0 ∼ 14 eV, m2
0 should be used in the denominator of Eq. (4.81) in

lieu of m2
φ for Earth. This leads to the turning of the scalar NSI line in the plots for Earth.

We have used NEarth
e = 5.4NA cm−3 [51] and NEarth

N = 2.9
mN

g cm−3 [184], where the nucleon

mass mN = 931.5 MeV and the Avogadro number NA = 6.022× 1023. As can be seen from

the plots, there are no prospects for observable scalar NSI to be detected on Earth in any

of the four cases (Dirac/Majorana and coupling to electrons/nucleons). It can be seen from

Table. 4.2 that highest allowed value of scalar NSI in case of Earth is around 10−14 eV for

the case of φ coupling to Majorana neutrinos and electrons.

For the case of Sun, there will also be correction to the scalar NSI from finite size of

102



Chapter 4. Scalar Non-standard Interations of Neutrinos

10
-18

10
-14

10
-10

10
-6

10
-2

10
2

10
6

10
-36

10
-32

10
-28

10
-24

10
-20

10
-16

10
-12

10
-8

10
-4

mϕ (eV)

y
e Torsional Balances VI

VII

III
II
I

IV

V

ΔmEarth = 10
-10

eV

Δ
m

S
un
>

7.4
m

eV

Δ
m

S
un
=

10
-5

eV

Δ
m

S
N
=

1
eV

Δ
m

S
N
=

10
-2

eV

(g-2)e

ΔmSN > 5 MeV

SN1987A BBN

yν = 2.6 x 10
-10

Dirac ν

RG/HB Stars

Fig. 4.3: Different experimental constraints on Yukawa coupling of scalar to electron for the
case of Dirac neutrinos. The shaded regions are excluded. Some representative values of
scalar NSI in Earth, Sun and supernova are also shown.
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Fig. 4.4: Same as in Fig. 4.3, but for scalar coupling to nucleons.
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Fig. 4.5: Same as in Fig. 4.3, but for Majorana neutrinos.
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Fig. 4.6: Same as in Fig. 4.4, but for Majorana neutrinos.
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the medium in the case of light mediators masses mφ ' R−1
Sun as discussed in Sec. 4.3 and

Ref. [158]. We calculate the form factor for Sun using Eq. (4.46) and the number density

of electrons/nucleons, which is obtained by fitting the known solar density profile given in

Refs. [185, 186, 187]. We have used the following best fit to the number density profile for

Sun:

N(r)e = 111.61NA e
−(4.81 r+10.21 r2) cm−3 (for electron) , (4.82)

N(r)N = 157.13
mN

e−(6.1 r+5.2 r2) g cm−3 (for nucleon) . (4.83)

As can be seen from the plots, the existing laboratory and astrophysical constraints do

allow for a non-negligible scalar NSI in the Sun, especially for mφ . 1µeV where the NSI can

be as large as 105 eV for the case of φ coupling to Dirac/Majorana neutrinos and electrons.

However, this will lead to a large correction term to the solar neutrino mass, which is

severely constrained by solar neutrino data. Using the χ2-analysis of the Borexino data from

Ref. [152], we find a 3σ upper bound on the scalar NSI in Sun: ∆mSun . 7.4× 10−3 eV, as

shown by the yellow shaded region in Figs. 4.3, 4.4, 4.5, and 4.6. This still leaves some room

for observable scalar NSI effects in future solar neutrino data, especially for ultra-light scalar

mediators. Note that very small coupling values for which y2
f . Gm2

ν = (mν/MPl)2 ∼ 10−30

are disfavored by the weak gravity conjecture [188] which suggests gravity as the weakest

force in nature.

4.7.2 Supernovae

In the case of supernovae with a typical core temperature T ∼ 30 MeV, the electron back-

ground is relativistic while the nucleon background can be essentially treated to be at rest.
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Thus, there are two different expressions to be used [cf. Eqs. (4.15) and (4.16)]:

∆mν,αβ =



yfyαβ
m2
φ

NSN
N (for nucleon) (4.84)

yαβyf
m2
φ

me

2

(
3NSN

e

π

) 2
3

(for electron) . (4.85)

Similar to the case in Sun, there will be correction to the scalar NSI in supernova from the

finite size of the medium. Therefore, we numerically integrate Eq. (4.46) to obtain the form

factor for a realistic supernova density profile. We use the fiducial model parameters from

Ref. [189] given below:

ρ(r) = ρc ×


1 + kρ(1− r/Rc) (r < Rc) (4.86)

(r/Rc)−η (r ≥ Rc) (4.87)

where ρc = 3 × 1014 g cm−3 is the density at core radius Rc = 10 km , kρ = 0.2 and η = 5.

Assuming the medium to be electrically neutral and using a proton fraction Yp = 0.3, we

can obtain the number density for electrons from ρ(r).

An interesting feature emerges for scalar NSI in a supernova. Due to the high tempera-

ture, a light scalar might develop a considerable thermal mass if it has strong enough coupling

to the background as discussed in Sec. 4.5. This leads to Eq. (4.71) which is independent of

mφ. Trapping leads to the thermalization of the scalar in the medium. Thus, we have only

plotted the scalar NSI expression for the supernova as long as it is not trapped inside.

Scalar NSI produced in a supernova cannot be arbitrarily high. If it becomes too

large, then neutrino production would be affected in direct conflict with observations from

SN1987A. For typical supernova core temperature around T ' 30 MeV, we constrain the

scalar NSI to be less than 5 MeV [158], so that neutrinos around 10 MeV could be detected on

Earth from SN1987A. In the plots, this bound is shown as a dashed line marked ∆mSN > 5

MeV. In any case, we find that sizable scalar NSI can still be observed in supernovae, while

being consistent with all other constraints.
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Case Max. NSI (eV) Scalar Mass Range (eV) Range for yf
Dirac ν, φ− e

Earth 3.0× 10−17 0.04 -14 ∼ 7.0× 10−16

Sun 7.4× 10−3 < 10−11 3.3× 10−34 − 10−26

Supernova 5.0× 106 10−11 − 10−9 10−26 − 1.8× 10−23

Dirac ν, φ−N
Earth 10−24 5.3× 103 − 2.1× 107 ∼ 2.4× 10−10

Sun 7.4× 10−3 < 3.3× 10−13 2.4× 10−34 − 7.5× 10−30

Supernova 5.0× 106 3.3× 10−13 − 1.8× 10−7 7.5× 10−30 − 4.9× 10−22

Majorana ν, φ− e
Earth 10−14 0.04 -14 ∼ 6.0× 10−16

Sun 7.4× 10−3 < 10−11 4.4× 10−37 − 8.7× 10−30

Supernova 5.0× 106 10−11 − 7× 10−8 8.7× 10−30 − 9.3× 10−23

Majorana ν, φ−N
Earth 10−21 5.3× 103 − 2.1× 107 ∼ 2.1× 10−10

Sun 7.4× 10−3 < 3.5× 10−13 3.1× 10−37 − 8.4× 10−33

Supernova 5.0× 106 3.5× 10−13 − 1.3× 10−5 8.4× 10−33 − 2.0× 10−21

Tab. 4.2: The maximum allowed value of scalar NSI in different cases and domains with
corresponding ranges for the scalar mass φ and the coupling strength yf , for a fixed yν as
shown in Figures 4.3-4.6.

4.8 UV-complete model for scalar NSI

In this section, we sketch possible ultraviolet completions that would induce interactions of

neutrinos with a light scalar. This discussion is intended only as a proof of principle. We

focus on the case of Dirac neutrinos, with a light scalar φ coupling to the neutrinos and the

electron.

First we construct two effective operators that are invariant under the SM gauge symme-

try. One induces couplings of the scalar φ to neutrinos and the other to the electron. These

operators are

(i) ψLH̃νR
φ

Λν

, (ii) ψLHeR
φ2

Λ2
e

. (4.88)

Here φ is a real scalar field, which is a singlet under SM symmetry, H =
(
H+

H0

)
is the SM

Higgs doublet and ψL =
(
ν
e

)
L
is the left-handed lepton doublet. These effective operators

exhibit a Z2 symmetry (apart from lepton number) under which νR and φ are odd, with other
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fields being even. φ develops a vacuum expectation value, 〈φ〉 = vφ ∼ 10 eV, which breaks

the Z2 symmetry. The neutrino Yukawa coupling yν and the electron Yukawa coupling ye

with the φ field are respectively given by

yν = v

Λν

, ye = 2vvφ
Λ2
e

(4.89)

where v = 174 GeV is the VEV of the SM Higgs doublet. Once φ acquires a VEV, the

operator (i) generates a mass term for the neutrino given by

mν = vφv

Λν

. (4.90)

While this may be the leading contribution, it is not required to be so, as there could be

other contributions as well. In any case, this would imply an upper limit on yν given by

yν <
mν

vφ
. (4.91)

The cut-off scale Λe is expected to be at least a hundred GeV, while Λν may be lower.

Choosing Λe ∼ v, we would have ye ∼ vφ/v. For ye ∼ 10−10, as our analysis requires for

observable scalar NSI, vφ ∼ 10 eV is preferable. This in turn implies from Eq. (4.91) that

yν < 5× 10−3, using mν ≡
√

∆m2
atm ∼ 0.05 eV. yν of course can be smaller than this value,

which would be in the interesting range for observable scalar NSI.

The operators in Eq. (4.88) can be generated by adding new vector-like fermions to the

SM. For example, operator (i) can arise by the addition of SM singlet fermions NL,R with a

lepton number preserving Dirac mass. The relevant Lagrangian is given by

L ⊃ yNψLH̃NR +MNNRNL + yνφNLνRφ+ H.c. (4.92)

These interactions also preserve the Z2 symmetry with NL,R being even under it. The
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ψL

H̃

NR NL

νR

φ

ψL

H

ER EL

φ

E
′
R E

′
L

eR

φ

Fig. 4.7: Explicit models generating operators of Eq. (4.88).

diagram generating operator (i) is shown in Fig. 4.7, left panel.

Operator (ii) is induced by integrating out a pair of vector-like leptons, E, E ′, both being

singlets of SU(2)L and carrying hypercharge Y = −2. Their interaction Lagrangian is given

by

L ⊃ yEψLHER + µEEREL + yEφELE
′

Rφ+ME′E
′

REL + yeφE
′

LeRφ+ H.c. (4.93)

Here EL,R are even and E
′
L,R are odd under Z2. The effective operator involving electron

and φ is generated by Fig. 4.7, right panel.

Integrating out the heavy degrees of freedom we obtain the following effective Lagrangian

terms:

(i)
yNy

ν
φ

MN

ψLH̃νRφ, (ii)
yEy

E
φ y

e
φ

MEME′
ψLHeRφ

2 . (4.94)

These expressions can be mapped to Eq. (4.88) to identify the cut-off scales Λν and Λe,

and the constraints discussed in terms of the cut-off scales will apply to them. We thus

see broad consistency of the model. In particular, the induced neutrino mass from these

interactions is not excessive and the vector-like leptons having mass of order few hundred

GeV is consistent with collider data. Note that breaking the Z2 at a scale of order 10 eV

does not cause cosmological domain wall problem, since the energy density carried by the

walls is quite small. We have ignored here possible mixing between the φ and H fields since

such mixing is small, of order vφ/v and is controlled by a new quartic coupling which may

also be small.
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4.9 Conclusion

We have performed a systematic study of scalar NSI of neutrinos with matter due to a light

scalar mediator. First, a general field-theoretic derivation of the scalar NSI formula is given,

which is valid at arbitrary temperature and density, and hence, applicable in widely different

environments, such as Earth, Sun, supernovae and early Universe. We have also extended

the analysis of long-range force effects for all background media, including both relativistic

and non-relativistic limits. Using these results and applying various experimental and as-

trophysical constraints, we find that observable scalar NSI has been precluded in terrestrial

experiments, primarily due to atomic form factor effects, which can also be understood from

simple quantum-mechanical uncertainty principle. Nevertheless, sizable scalar NSI effects

are still possible in the Sun, supernovae and early Universe environments, which could be

detected in future solar and supernova neutrino data, as well as in the form of extra relativis-

tic species (∆Neff) and neutrino self-interactions in cosmological observations. We have also

presented examples of UV-complete models that could give rise to such scalar NSI effects.
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Chapter 5

Interactions of νR-phillic dark photon
24

“All Men Have Limits. They Learn What They Are And Learn

Not To Exceed Them. I Ignore Mine."
- Batman, (Knightfall)

5.1 Introduction

Right-handed neutrinos (νR), albeit not included in the Standard Model (SM), are a highly

motivated dark sector extension to accommodate neutrino masses [30, 31, 32, 33, 34], dark

matter [190, 191, 192], and baryon asymmetry of the universe [193]. Being intrinsically

dark, νR might have abundant new interactions well hidden from experimental searches. In

particular, it is tempting to consider the possibility that there might be a hidden gauge

symmetry in the νR sector [194, 195, 196, 197, 198, 199, 200, 201]. The new gauge boson

arising from this symmetry does not directly couple to other fermions except for νR and

naturally becomes a dark photon, which we referred to as the νR-philic dark photon.

The νR-philic dark photon is not completely dark. It may interact with normal matter

via kinetic mixing [36], provided that the new gauge symmetry is Abelian; or, in the presence

of mass terms connecting νR and left-handed neutrinos νL, via one-loop diagrams containing

W±/Z and neutrinos [202]. In the former case, the strength of dark photon interactions

with quarks or charged leptons depends on the kinetic mixing parameter ε in L ⊃ ε
2F

µνF ′µν

24 This chapter is based on [13]
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where F µν and F ′µν are the gauge field tensors of the SM hypercharge U(1)Y and the new

U(1), respectively. This case, being essentially independent of the neutrino sector, has been

widely considered in a plethora of dark photon studies—for a review, see [203, 204, 205, 206].

In the latter case, the loop-induced couplings depends on neutrino masses and mixing, and

will be investigated in this work.

The aim of this work is to address the question of how dark the νR-philic dark photon

could be in the regime that dark-photon-matter interactions dominantly arise from νL-νR

mixing instead of kinetic mixing. We note here that the dominance might be merely due

to accidentally small ε, or due to fundamental reasons such as the SM U(1)Y being part

of a unified gauge symmetry [e.g. SU(5)] in grand unified theories. We opt for a maxi-

mally model-independent framework in which generic Dirac and Majorana mass terms are

assumed. The loop-induced couplings are UV finite as a consequence of the orthogonality

between SM gauge-neutrino couplings and the new ones. Compared to our previous study

on loop-induced νR-philic scalar interactions [207], we find that the couplings in the vector

case are not suppressed by light neutrino masses, and might be of potential importance to

ongoing/upcoming collider and beam dump searches for dark photons.

The chapter is organized as follows: In Sec. 5.2, we describe the relevant Lagrangian used

in this work, reformulate neutrino interactions in the mass basis, and discuss generalized

matrix identities for UV divergence cancellation for later use. In Sec. 5.3, we first derive

model-independent expression for effective coupling of Z ′ to charged leptons/quarks through

one-loop diagram involving Z and W bosons, respectively. We then evaluate the coupling

strength in three different examples. In Sec. 5.4, we present a qualitative discussion about

possible connections between the U(1)R gauge coupling and the mass of Z ′. In Sec. 5.5,

we present constraints from a vast array of current and future experiments spanning from

collider searches to astrophysical phenomena. We finally conclude in Sec. 6.8 with details of

one-loop diagram calculations relegated to Appendix C.1.
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5.2 Framework

We consider a hidden U(1) gauge symmetry, denoted by U(1)R, imposed on n right-handed

neutrinos. The gauge boson of U(1)R in this work is denoted by Z ′. The relevant part of

the Lagrangian for the U(1)R extension reads25:

L ⊃ ν†R,jiσµD
µ
j νR,j +

[(MR)ij
2 νRiνR,j + (mD)αj νL,ανR,j + h.c.

]

−1
4F
′
µνF

′µν + 1
2m

2
Z′Z

′
µZ
′µ, (5.1)

where σ ≡ (1,−~σ) with ~σ being three Pauli matrices; α denotes flavor indices; (i, j) =

1, 2, 3, · · · , n; and

Dµ
j = ∂µ − igRQR,jZ

′µ . (5.2)

Here gR is the gauge coupling constant of U(1)R and QR,j is the charge of νR,j under U(1)R.

Note that for most general forms of MR and mD, both the Majorana and Dirac mass terms

in Eq. (5.1) break the U(1)R symmetry. In addition, for arbitrary charge assignments of νR,j

under U(1)R, the model would not be anomaly free. Nevertheless, one can construct complete

models in whichMR andmD arise from spontaneous symmetry breaking and the cancellation

of anomalies can be obtained when several νR,j’s have different charges with ∑j Q
3
R,j = 0—

see the example in Sec. 5.3.2. In this section we neglect these model-dependent details and

focus on the general framework proposed in Eq. (5.1).

The Dirac and Majorana neutrino mass terms in Eq. (5.1) can be framed as

Lνmass = 1
2(νTL , νTR)

 03×3 mD

mT
D MR


 νL

νR

 , (5.3)

where νL = (νL,e, νL,µ, νL,τ )T and νR = (νR,1, νR,2, · · · )T are column vectors. The entire mass
25 Throughout the main text we exclusively use Weyl spinors for conceptual simplicity, while in the Ap-

pendix we use Dirac/Majorana spinors for loop calculations.
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matrix of νL and νR can be diagonalized by a unitary matrix U :

 νL

νR

 = U

 ν1, 2, 3

ν4, 5, ···

 , UT

 03×3 mD

mT
D MR

U =

 m1, 2, 3

m4, 5, ···

 . (5.4)

Here νi (i = 1, 2, · · · , n + 3) denote neutrino mass eigenstates, with mi being the corre-

sponding masses. We refer to the basis after the U transformation as the chiral basis, and

the one before the transformation as the mass basis.

In order to facilitate loop calculations, we need to transform neutrino interaction terms

from the chiral basis to the mass basis. In the chiral basis, we have the following neutrino

interaction terms:

L ⊃
[
g√
2
W−
µ `
†
L,ασ

µνL,α + h.c.
]

+ g

2cW
Zµν

†
L,ασ

µνL,α + gRQR,jZ
′
µν
†
R,jσ

µνR,j, (5.5)

where the first three terms are the SM charged and neutral current interactions, and `L

denotes left-handed charged leptons. Therefore, in the mass basis, after performing the

basis transformation, we obtain:

L ⊃
[
(GW )αjW−

µ `
†
L,ασ

µνj + h.c.
]

+ (GZ)ijZµν†i σµνj + (GR)ijZ ′µν
†
i σ

µνj, (5.6)

where

GZ = g

2cW
U †

 I3×3

0n×n

U, GR = gRU
†

 03×3

QR

U, (5.7)

GW = g√
2

(
I3×3 03×n

)
U. (5.8)

Here QR = diag(QR,1, QR,2, · · · ), I3×3 is an identity matrix, and 0x×y is a zero matrix.
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W±

ℓ

ℓ

νi

νj

Z ′ Z

ℓ, u, d

ℓ, u, d

νj

νi Z ′

W±

ℓ

ℓ

νL

νL

Z ′ Z

ℓ, u, d

ℓ, u, d

νL

νR

Z ′νR

νR νR

νL

mass basis

chiral basis

Fig. 5.1: Loop-induced Z ′ couplings to charged fermions in the mass basis (upper panels)
and in the chiral basis (lower panels).

Notice that some products of the above matrices are zero:

GZGR = GRGZ = 0, (5.9)

GWGR = GRG
†
W = 0. (5.10)

The above results, which will be used in our loop calculations to cancel UV divergences, have

been previously derived in Ref. [202].

5.3 Loop-induced couplings of Z ′

At tree level, the νR-philic Z ′ does not directly couple to charged leptons or quarks. At the

one-loop level, there are loop-induced couplings of Z ′ generated by the diagrams shown in

Fig. 5.1.
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In the upper and lower panels, we present diagrams in the mass and chiral bases, re-

spectively. The two descriptions are physically equivalent. The diagrams in the chiral basis

imply that the loop-induced couplings are proportional tom2
D, due to the two necessary mass

insertions on the neutrino lines. Although in the mass basis this conclusion is not evident,

technically our calculations are performed using the diagrams in the upper panel because of

properly defined propagators.

Throughout this work, we work in the unitarity gauge so that diagrams involving Gold-

stone bosons can be disregarded. The detailed calculations are presented in Appendix C.1.

The result for a single W± diagram with neutrino mass eigenstates νi and νj running in the

loop reads:

iMij
W = i

Gβj
W (Gij

RG
αi
W )∗

16π2 F(mi,mj) u(p1)γµPLu(p2)εµ(q), (5.11)

where u(p1) and u(p2) denote the two external fermion states, εµ(q) is the polarization vector

of Z ′µ, and

F(mi,mj) ≈ 3
2 +

m4
j log

(
m2
j/m

2
W

)
−m4

i log(m2
i /m

2
W )

(m2
i −m2

j) m2
W

+
(m2

i +m2
j)

m2
W

[
1
ε

+ 1 + log
(
µ2

m2
W

)]
. (5.12)

We have adopted dimensional regularization in the loop calculation so the loop integral takes

the generalized measure d4k
(2π)4 → µ2ε ddk

(2π)d with d = 4−2ε, which defines µ and ε in Eq. (5.12).

Note that for each single diagram in the mass basis, the result is UV divergent. However,

when we sum over i and j, the UV divergence cancels out. This can be seen as follows:

∑
ij

1
ε
(m2

i +m2
j)G

βj
W (Gij

RG
αi
W )∗ = 1

ε
GWM

2
dG
†
RG
†
W + 1

ε
GWG

†
RM

2
dG
†
W = 0, (5.13)

where M2
d ≡ diag(m2

1, m
2
2, m

2
3, · · · ) and in the second step we have used Eq. (5.10).

Eq. (5.13) implies that we can safely ignore the second line in Eq. (5.12), as long as Eq. (5.10)

holds. For a similar reason (GWG
†
RG
†
W = 0), the constant term 3

2 can also be ignored.
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f νL eL uL dL eR uR dR

Q
(f)
Z

1
2 −1

2 + s2
W

1
2 −

2
3s

2
W −1

2 + 1
3s

2
W s2

W −2
3s

2
W

1
3s

2
W

Tab. 5.1: The values of Q(f)
Z used in this work.

For the Z diagram, we have a similar amplitude for each single diagram. In the soft-

scattering limit (q → 0), we find

iMij
Z = −igQ

(f)
Z Gij

Z (Gij
R)∗

16π2cWm2
Z

F2(mi,mj)u(p1)γµPL/Ru(p2)εµ(q), (5.14)

where f = `L/R, uL/R, or dL/R; and Q(f)
Z is the Z charge of f , defined in the way that the

Z-f -f coupling can be written as gQ(f)
Z /cW . The specific values of Q(f)

Z used in this work

are listed in Tab. 5.1. The F2 function reads:

F2(mi,mj) ≈
m4
j log

(
m2
j

)
−m4

i log(m2
i )

(m2
i −m2

j)
+ (m2

i +m2
j)
[1
ε

+ 1
2 + log µ2

]
. (5.15)

Once again, we can see that the UV part cancels out during the summation of i and j because

∑
ij

1
ε
(m2

i +m2
j)G

ij
Z (Gij

R)∗ = 1
ε
Tr
[
M2

dGZG
†
R +GZM

2
dG
†
R

]
= 0. (5.16)

Hence only the first term in Eq. (5.15) needs to be taken into account.

Summing over i and j in Eq. (5.11), we obtain the following effective coupling generated

by the loop diagrams:

Leff =
[
geff,W `

†
L,βσ

µ`L,α + geff,Zf
†σµf

]
Z ′µ, (5.17)
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where

geff,W =
∑
ij

Gβj
W (Gij

RG
αi
W )∗

16π2

m4
j log

(
m2
j/m

2
W

)
−m4

i log(m2
i /m

2
W )

(m2
i −m2

j) m2
W

, (5.18)

geff,Z =
∑
ij

gQ
(f)
Z Gij

Z (Gij
R)∗

16π2cW

m4
i log(m2

i )−m4
j log

(
m2
j

)
(m2

i −m2
j)m2

Z

. (5.19)

5.3.1 Example A: 1 νL + 1 νR

First, let us consider the simplest case that there are only one νL and one νR. The neutrino

mass matrix Mν for the case can be diagonalized by a 2× 2 unitary matrix

UT

 0 mD

mD MR

U =

 m1 0

0 m4

 . (5.20)

This unitary matrix can be parametrized as follows

U =

 −icθ sθ

isθ cθ

 , θ = arctan
(√

m1

m4

)
, (5.21)

where cθ = cos θ and sθ = sin θ. Substituting the explicit form of U in Eqs. (5.7) and (5.8),

we obtain

GZ = g

2cW

 c2
θ icθsθ

−icθsθ s2
θ

 , GR = gR

 s2
θ −icθsθ

icθsθ c2
θ

 , (5.22)

GW = g√
2

(
−icθ sθ

)
. (5.23)

We can now perform the summation in Eqs. (5.18)-(5.19). Expanding the result as a Taylor

series in sθ (assuming sθ � 1) and only retaining the dominant contribution, we obtain

geff,W = − g2m2s2
θ

32π2m2
W

gR, (5.24)

geff,Z = Q
(f)
Z

g2m2s2
θ

32π2m2
Zc

2
W

gR , (5.25)
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where

m1 = ms2
θ, m4 = mc2

θ. (5.26)

Note that for m1 � m4,

m2s2
θ ' m1m4 = m2

D. (5.27)

Using GF =
√

2g2

8m2
W
, we can rewrite Eqs. (5.24)-(5.25) as

geff,W = −
√

2GF m
2
D

8π2 gR, (5.28)

geff,Z = Q
(f)
Z

√
2GF m

2
D

8π2 gR. (5.29)

5.3.2 Example B: 1 νL + 2 νR with opposite charges

In this example, we construct a UV-complete model with one νL and two νR which have

opposite U(1)R charges so that the model is anomaly free. The off-diagonal Majorana mass

term does not violate the U(1)R symmetry and the Dirac mass term is generated by a new

Higgs doublet H ′ that is charged under U(1)R. The U(1)R charges are assigned as follows:

QR(νR,1) = +1, QR(νR,2) = −1, QR(H ′) = −1, (5.30)

which leads to the following terms that fully respect the U(1)R symmetry:

L ⊃ yνH̃ ′
†
LνR1 + MR

2 νR1νR2 + h.c., (5.31)

where H̃ ′ ≡ iσ2(H ′)∗. After spontaneous symmetry breaking, H ′ acquires a vacuum expec-

tation value : 〈H ′〉 = (0, v′)T/
√

2, leading to

L ⊃ mDνLνR1 + MR

2 νR1νR2 + h.c. (5.32)
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Here mD = yνv
′/
√

2. The neutrino mass matrix for this case can be diagonalized by a 3× 3

unitary matrix:

UT


0 mD 0

mD 0 MR

0 MR 0

U =


m1 0 0

0 m4 0

0 0 m5

 . (5.33)

The texture of the mass matrix on the left-hand side of Eq. (5.33) leads to m1 = 0 and

m4 = m5, which is evident from its vanishing trace and determinant. This feature has been

often considered in the literature on νR signals at the LHC—see e.g. [208, 97] and references

therein. The 3× 3 unitary matrix can be parametrized as follows

U =


−cθ isθ√

2
sθ√

2

0 −i√
2

1√
2

sθ
icθ√

2
cθ√

2

 , θ = arctan
(
mD

MR

)
. (5.34)

Using this form of U in Eqs. (5.7) and (5.8), we obtain

GZ = g

2cW


c2
θ

−icθsθ√
2

−cθsθ√
2

icθsθ√
2

s2
θ

2
−is2

θ

2

−cθsθ√
2

is2
θ

2
s2
θ

2

 , GR = gR


−s2

θ
−icθsθ√

2
−cθsθ√

2

icθsθ√
2

s2
θ

2
i(1+c2

θ)
2

−cθsθ√
2

−i(1+c2
θ)

2
s2
θ

2

 , (5.35)

GW = g√
2

(
−cθ isθ√

2
sθ√

2

)
. (5.36)

We can now perform the summation in Eqs. (5.18)-(5.19). Expanding the result as a Taylor

series in sθ (assuming sθ � 1) and only retaining the dominant contribution, we obtain

geff,W = g2c2
θm

2s2
θ

32π2m2
W

gR, (5.37)

geff,Z = −Q(f)
Z

g2c2
θm

2s2
θ

32π2m2
Zc

2
W

gR , (5.38)
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where m ≡
√
m2
D +M2

R and

mD = msθ, MR = mcθ. (5.39)

Expressing the results in terms of GF and assuming sθ � 1, we obtain

geff,W =
√

2 GF m2
D

8π2 gR, (5.40)

geff,Z = −Q(f)
Z

√
2 GF m2

D

8π2 gR. (5.41)

We comment here that the above UV-complete and anomaly-free model built on 1 νL + 2 νR

can be straightforwardly generalized to 3 νL+2n νR where half of the right-handed neutrinos

have opposite U(1)R charges to the other half. Such a generalization can accommodate the

realistic three-neutrino mixing measured in neutrino oscillation experiments.

5.3.3 Example C: 3 νL + 3 νR with diagonal MR

The most general case with three νL and an arbitrary number of νR is complicated and often

impossible to be computed analytically. Here we consider an analytically calculable example

with 3 νL + 3 νR and the following form of the neutrino mass matrix:

 03×3 mD

mT
D MR

 =

 U∗L 0

I3×3


 03×3 m

(d)
D

m
(d)
D M

(d)
R


 U †L 0

I3×3

 , (5.42)

m
(d)
D = diag(mD1, mD2, mD3), M (d)

R = diag(MR1, MR2, MR3),

where UL is a 3×3 unitary matrix. Eq. (5.42) is not the most general form, but at least it can

accommodate the realistic low-energy neutrino mixing responsible for neutrino oscillation.

The mass matrix in this case can be diagonalized by a 6× 6 unitary matrix:

U ′T

 03×3 m
(d)
D

m
(d)
D M

(d)
R

U ′ = diag(m1s
2
θ1, m2s

2
θ2, m3s

2
θ3, m1c

2
θ1, m2c

2
θ2, m3c

2
θ3), (5.43)
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where (sθi, cθi) ≡ (sin θi, cos θi) and

mi =
√

4m2
Di +M2

Ri, θi = 1
2 arctan

(2mDi

MRi

)
. (5.44)

The unitary matrix U ′ can be parametrized as follows

U ′ =

 −iCθ Sθ

iSθ Cθ

 , (5.45)

where

Cθ = diag(cθ1, cθ2, cθ3), Sθ = diag(sθ1, sθ2, sθ3). (5.46)

Thus, the final unitary matrix U that diagonalizes the original mass matrix is given by

U =

 UL 0

I3×3


 −iCθ Sθ

iSθ Cθ

 =

 −iULCθ ULSθ

iSθ Cθ

 . (5.47)

Substituting it in Eqs. (5.7) and (5.8), we obtain

GZ = g

2cW

 C2
θ iCθSθ

−iCθSθ S2
θ

 , GR = gRQR

 S2
θ −iCθsθ

iCθSθ C2
θ

 , (5.48)

GW = g√
2
UL

(
−iCθ Sθ

)
, QR = diag(QR1, QR2, QR3). (5.49)

Next, we perform the summation in Eqs. (5.18)-(5.19), expand the result in sθi, and retain

the dominant contribution. The final result reads

gαβeff,W =
∑
i

−Uβi
L (Uαi

L )∗QRi

√
2 GF m2

Di

8π2 gR, (5.50)

geff,Z =
∑
i

Q
(f)
Z QRi

√
2 GF m2

Di

8π2 gR. (5.51)

In the approximation that the νL-νR mixing is small, the 3× 3 unitary matrix UL is almost
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identical to the PMNS matrix. Due to the presence of off-diagonal entries in UL, gαβeff,W is

generally not flavor diagonal and might lead to observable lepton flavor violation, which will

be discussed in Sec. 5.5.

5.4 Dark photon masses and technical naturalness

In this section, we argue that despite being a free parameter, the mass of the νR-philic dark

photon mZ′ is potentially related to the gauge coupling according to ’t Hooft’s technical

naturalness [209]. Generally speaking, from the consideration of model building and the

stability of mZ′ under loop corrections, we expect that mZ′ is related to gR by

mZ′ & gRΛbreaking, (5.52)

where Λbreaking stands for the symmetry breaking scale of U(1)R. Although without UV

completeness we cannot have a more specific interpretation of Eq. (5.52), we would like to

discuss a few examples to show how mZ′ is related to gR.

First, let us consider that both mZ′ and MR arise from a scalar singlet φ charged under

U(1)R with 〈φ〉 = vR 6= 0. This leads tomZ′ ∼ gRvR andMR ∼ yRvR where yR is the Yukawa

coupling of φ to νR. In this case, we consider vR as the symmetry breaking scale Λbreaking so

the tree-level relation mZ′ ∼ gR vR is compatible with Eq. (5.52). The Yukawa coupling has

an upper bound from perturbativity, yR . 4π, which implies that mZ′/MR ∼ gR/yR & 4πgR,

or

m2
Z′ &

g2
R

16π2M
2
R. (5.53)

In the absence of a specific symmetry breaking mechanism, we can also obtain Eq. (5.53)

purely from loop corrections to mZ′ . If MR breaks the U(1)R symmetry, the Z ′-Z ′ vacuum

polarization amplitude generated by a νR loop is Πµν(q2) ∼ g2
R

16π2 [O(M2
R)gµν +O(1)qµqν ],

which implies that the loop correction to m2
Z′ is of the order of g2

R

16π2M
2
R. Therefore, to
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make the theory technically natural, the physical mass should not be lower than the loop

correction.

Note, however, that Eq. (5.53) is based on the assumption that MR breaks the U(1)R

symmetry. If all the Majorana mass terms fully respect U(1)R, such as Example B in Sec. 5.3,

then the symmetry breaking scale can be lower, e.g., determined by mD. Indeed, for the UV

complete model in Example B, the symmetry breaking scale is determined by the VEV of

the new Higgs doublet H ′ so at tree level we have mZ′ ∼ gR〈H ′〉 and mD ∼ yD〈H ′〉. Then

using the perturbativity bound on yD, we obtain

m2
Z′ &

g2
R

16π2m
2
D. (5.54)

Finally, we comment on the possible mass correction from Z-Z ′ mixing. According to the

calculation in Appendix C.1, the vacuum polarization diagram leads to mass mixing between

Z and Z ′:

LZZ′mass = 1
2(Z, Z ′)µ

 m2
Z0 m2

X

m2
X m2

Z′0


 Z

Z ′


µ

, (5.55)

where mZ0 and mZ′0
denote tree-level masses and

m2
X = gRQR g

64π2 cos θW
m2
D. (5.56)

Here m2
X causes Z − Z ′ mixing and the mixing angle is roughly m2

X

|m2
Z0
−m2

Z′0
| , which must

be small. Otherwise, the SM neutral current would be significantly modified and become

inconsistent with electroweak precision data. Taking the approximation m2
X � |m2

Z0−m
2
Z′0
|,

we obtain

m2
Z ' m2

Z0 + m4
X

(m2
Z0 −m2

Z′0
) , m2

Z′ ' m2
Z′0
− m4

X

(m2
Z0 −m2

Z′0
) . (5.57)
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Hence we conclude that the mass correction from Z-Z ′ mixing is

δm2
Z′ ∼

g2
R

(64π2)2
m4
D

|m2
Z0 −m2

Z′0
|
, (5.58)

where we have neglected some O(1) quantities. This mass correction is generally smaller

than the right-hand side of Eq. (5.54) because mD cannot be much above the electroweak

scale.

To summarize, here we draw a less model-dependent conclusion that without fine-tuning,

the νR-philic dark photon mass is expected to be above the lower bound in Eq. (5.53) or

Eq. (5.54), depending on whether MR breaks the U(1)R symmetry or not, respectively.

5.5 Phenomenology

In the previous two sections, we have derived the loop-induced couplings and also argued

that from technical naturalness there is a lower bound on the dark photon mass. The

results indicate the theoretically favored regime of the mass and the couplings. Therefore,

to address the question of how dark the νR-philic dark photon would be, we shall inspect

whether and to what extent the theoretically favored regime could be probed by current and

future experiments.

In our model, there are effective couplings to both leptons and quarks with comparable

strengths. So the experimental constraints on this model are very similar to those on the

B − L model26. Below we discuss a variety of known bounds that could be important for

the νR-philic dark photon. An overview of existing bounds is presented in Fig. 5.2, and the

prospect of upcoming experiments in Fig. 5.3.
26 See e.g. Fig. 8 in [210], Fig. 3 in [211], and Fig. 13 in [205]
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Fig. 5.2: The νR-philic dark photon confronted with known experimental constraints. Here
geff is the loop-induced coupling of Z ′ to electrons. The quark couplings are of the same
order of magnitude as geff and we have ignored the difference between them when recasting
constraints on quark couplings. The theoretically favored values of geff are below the solid
blue, orange, or green lines, assuming U(1)R breaks at the scale ofmD = 246 GeV,MR = 24.6
TeV, orMR ∼ 1014 GeV (Type I seesaw), respectively. The collider bound consists of BaBar,
LHCb, LEP, and LHC 8 TeV limits—see the text or Fig. 5.3 for more details.

5.5.1 Experimental limits

5.5.1.1 Collider searches

With effective couplings to electrons and quarks, dark photons could be produced directly

in e+e− (BaBar, LEP) and hadron colliders (LHC), typically manifesting themselves as

resonances in collider signals. For mZ′ & 175 GeV (t quark resonance), LHC data put

the strongest bound via Drell-Yan production and detection of leptonic final states (pp →

Z ′ → `+`−). At lower masses when mZ′ is close to the Z pole, electroweak precision tests

(EWPT, including LEP measurement and other electroweak precision observables) become

more important. A dedicated analysis on LHC and EWPT bounds and future prospects

can be found in Ref. [212]. For mZ′ below the Z pole but above 10 GeV, according to the

analyses in [205], the most stringent constraint comes from LHCb di-muon (Z ′ → µ+µ−)
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Fig. 5.3: Sensitivity of future experiments (SHiP, FASER, Belle-II) on the νR-philic dark
photon. Here geff is the loop-induced coupling of Z ′ to electrons. The quark couplings are of
the same order of magnitude as geff and we have ignored the difference between them when
recasting constraints on quark couplings. The theoretically favored values of geff is below
the solid blue or orange lines, assuming U(1)R breaks at the scale of mD = 246 GeV or
MR = 24.6 TeV, respectively.

measurements [213]. Below 10 GeV, the BaBar experiment [214] provides more stringent

constraints via e+e− → γZ ′ where Z ′ may or may not decay to visible final states. In

Figs. 5.2 and 5.3, we present all aforementioned constraints (for compactness in Fig. 5.2

they are labeled together as the collider bound). Besides, there is also an indirect LEP

bound on four-fermion effective interactions—see Sec. 3.5.2 in Ref. [215]. We find that

this bound approximately corresponds to geff/mZ′ . (4.4 TeV)−1, which is weaker than the

aforementioned collider bounds and hence not shown in Figs. 5.2 and 5.3.

5.5.1.2 Beam dump and neutrino scattering bounds

For 1 MeV . mZ′ . 100 MeV, beam dump (BD) and neutrino scattering experiments become

important. BD experiments search for dark photons by scattering an electron/proton beam

on fixed targets and looking for dark particles that might be produced and subsequently
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decay after the shield to visible particles such as electrons. A compilation of existing BD

bounds from SLAC E141, SLAC E137, Fermilab E774, Orsay, and KEK experiments can

be found in [216]. Note that these BD bounds relies on Z ′ → e+e− decay, which implies

that such bounds do not apply for mZ′ . 2me. Nonetheless, below 1 MeV there are much

stronger bounds from cosmological and astrophysical observations hence for simplicity we

do not show the invalidity of BD bounds below 1 MeV. The combined BD bound adopted

in this work is taken from [211].

The dark photon in our model could contribute to elastic neutrino scattering by a

new neutral-current-like process. Current data from elastic neutrino-electron (CHARM-

II [217, 218], TEXONO [219], GEMMA [220], Borexino [221], etc.) and neutrino-nucleus

(COHERENT [222]) scattering are all well consistent with the SM predictions. By com-

paring the results in Refs. [223, 181, 224], we find that the COHERENT bound is weaker

than ν + e scattering bounds, among which the most stringent ones come from CHARM-

II, TEXONO, and GEMMA. So the combined result from these experiments is taken from

Ref. [224] and presented in Figs. 5.2 and 5.3. The future DUNE experiment will be able to

further improve the measurement of elastic neutrino scattering [225]. We adopt the DUNE

sensitivity from Ref. [226] and present it in Fig. 5.3.

5.5.1.3 Astrophysical and cosmological bounds

Astrophysical bounds on dark photons are usually derived from energy loss in celestial bodies

such as the sun, red giants, horizontal branch stars, and supernovae. Dark photons may

contribute to stellar energy loss directly via dark photon free streaming or indirectly via

neutrino production. The enhanced energy loss rate could alter stellar evolution on the

horizontal branch in the Hertzsprung-Russell diagram. This sets the strongest limit for sub-

MeV dark photons [227]. For smaller mZ′ , there are also similar bounds from the sun and

red giants [227]. We adopt a combined bound from Ref. [210] with energy loss via neutrinos

taken into account, and refer to it as the stellar cooling bound in Fig. 5.2.
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The observation of SN1987A can be used to set strong limits on the effective coupling

when mZ′ . O(100) MeV [228]. The resulting bound further excludes the space below BD

constraints by about three orders of magnitude.

In Fig. 5.2 we also show two bounds derived from the effect of Z ′ on big bang nucleosyn-

thesis (BBN). The effect of Z ′ on BBN is two-fold: if Z ′ is light and dominantly decays to

invisible states, it would increase the effective number of relativistic dark species Neff . We

refer to the bound derived from this effect as the BBN II bound. If Z ′ is heavy, it decays

before neutrino decoupling and does not contribute to Neff directly but the neutrino decou-

pling temperature could be modified if g2
eff/m

2
Z′ is comparable to GF (referred to as BBN

I). Among various studies on this subject (see e.g. [169, 229, 230, 231, 232]), we adopt the

bounds from [169] for the B − L model and label them as BBN I and BBN II in Fig. 5.2.

5.5.1.4 Charged lepton flavor violation

The loop-induced couplings do not necessarily conserve lepton flavors, as indicated by

Eq. (5.50). Note, however, that neither the W -diagram nor the Z-diagram causes flavor

violation in the quark sector. In the presence of flavor-changing couplings of Z ′ to charged

leptons, there are strong constraints from charged lepton flavor violating (CLFV) decay

such as `α → `βνν̄, µ → 3e [233], π0 → eµ; from µ → e conversion in muonic atoms [234],

and from the non-observation of muonium-antimuonium transitions [235]. Constraints from

`α → `βγ are weaker since they arise only from two-loop contributions. We do not include

CLFV bounds in Figs. 5.2 and 5.3 because such bounds depend on the flavor structure of

mD which in the Casas-Ibarra parametrization [236]: mD = iU∗L
√
mνR

T
√
MR where R is

a complex orthogonal matrix, depends not only on the PMNS matrix UL but also on the

R matrix. The effective flavor-changing couplings in the presence of non-trivial R are more

complicated and we leave them for future work.
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5.5.1.5 Long-range force searches

Below 0.1 eV, laboratory tests of gravity and gravity-like forces provide highly restrictive

constraints, including high precision tests of the inverse-square law (gravity ∝ r−2) [237, 238]

and of the equivalence principle via torsion-balance experiments [239] and lunar laser-ranging

(LLR) measurements [239, 240]. Besides, measurements of the Casimir effect [241] could set

a limit that is slightly stronger than that from the inverse-square law when 0.05 . mZ′/eV .

0.1, which is not presented in Fig. 5.2. Also not presented here is the bound from black hole

superradiance [242], which would only enter the lower left corner in Fig. 5.2. We refer to our

previous work [207] for more detailed discussions on the long-range force searches and present

only the dominant constraints from torsion-balance tests of the inverse-square law and the

equivalence principle. We comment here that neutrino oscillation could also be used to probe

long-range forces [157, 243, 244, 12] but similar to the aforementioned CLFV bounds, the

flavor structure cannot be simply taken into account by the PMNS matrix. Hence we leave

this possibility to future studies.

5.5.1.6 Prospect of upcoming experiments

Future hadron collider searches could significantly improve the experimental limits on heavy

dark photons by almost one order of magnitude, as illustrated in Fig. 5.3 by the LHC 14

TeV and future 100 TeV collider sensitivity [212]. Moreover, several LHC-based experiments

searching for displaced dark photon decays such as FASER [245], MATHUSLA [246, 247],

and CodexB [248] will improve the BD bound in the low-mass regime. And the future SHiP

experiment [249, 250] will substantially broaden the BD bound regarding both the dark

photon mass and coupling. The current BaBar bound may be superseded by future bounds

from Belle-II [251] and a muon run of NA64 [252, 253]. Hence a large part of the space

that is often considered for dark photons (20MeV . mZ′ . 10 GeV and 10−8 . geff . 10−3)

will be probed by future experiments. Here we selectively present the sensitivity curves of

SHiP, FASER, NA64µ, and Belle-II. Most of them are taken from Ref. [205], except for the
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FASER/FASER2 sensitivity which is taken from Ref. [254].

5.5.2 How dark is the νR-philic dark photon?

Since the effective coupling geff is proportional to gR, by tuning down gR one can obtain

arbitrarily small geff to circumvent all constraints presented in Figs. 5.2 and 5.3. On the

other hand, if gR is very small, then the lower bounds of mZ′ discussed in Sec. 5.4 will also

be alleviated, implying that the dark photon could be very light. Taking Eqs. (5.40), (5.41)

and (5.54), we plot the blue lines in Figs. 5.2 and 5.3 with mD = v = 246 GeV and gR

varying from 0 to 4π. The space below the blues lines is the theoretically favored region

if only the Dirac mass term breaks the U(1)R symmetry. This applies to the UV complete

model in Sec. 5.3.2.

If the Majorana mass term also breaks the U(1)R symmetry, then the lower bound of

mZ′ is set by Eq. (5.53) instead of Eq. (5.54). In the standard type I seesaw, we have

MR ∼ m2
D/mν which implies that for mν = 0.1 eV and mD = 246 GeV, the U(1)R symmetry

breaks at a high energy scale around 1014 GeV. For this case, we plot the green curve in

Fig. 5.2. As shown in Fig. 5.2, even though with gR . 10−11 the mass of mZ′ could be below

the electroweak scale or lower, the effective coupling is many orders of magnitude below any

of known experimental limits.

The inaccessibly largemZ′ of the green curve is due to the underlying connection between

mν and MR in the standard type I seesaw. In some alternative neutrino mass models such

as inverse seesaw [255], the scale of MR is decoupled from mν , which allows for a sizable

νL-νR mixing even whenMR is reduced to the TeV scale, and has motivated many studies on

collider searches for right-handed neutrinos—see Ref. [97] for a review. Here for illustration

we simply set MR = mD/ sin θ with mD = 246 GeV and sin θ = 10−2, which ensures that νR

is sufficiently heavy to avoid all current collider bounds. The possibility of collider-accessible

νR involves more complicated phenomenology which is beyond the scope of this work. The

strength of geff and the lower bound of mZ′ in this case is presented by the orange lines in
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Figs. 5.2 and 5.3.

Now confronting the theoretically favored geff and mZ′ of the aforementioned three sce-

narios with the experimental limits, we can see that only when the U(1)R breaking scale is

determined by mD or MR = mD/ sin θ with sizable sin θ, the νR-philic dark photon could be

of phenomenological interest. The former could potentially give rise to observable effects in

long-range force searches, astrophysical observations, beam dump and collider experiments.

The latter, albeit beyond the current collider bounds, might be of importance to future col-

lider searches. In addition, the SHiP experiment will be able to considerably dig into the

parameter space of the latter.

5.6 Conclusion

The νR-phillic dark photon Z ′ which arises from a hidden U(1)R gauge symmetry and at

the tree-level couples only to the right-handed neutrinos, interacts weakly with SM particles

via loop-level processes—see Fig. 5.1. Assuming the most general Dirac and Majorana mass

matrices, we have derived loop-induced couplings of Z ′ to charged leptons and quarks. The

results are given in Eqs. (5.18) and (5.19), which are applied to a few examples including a

UV complete model. For a special case with three νL and three νR, the loop-induced coupling

are given by Eqs.(5.50) and (5.51). We have also discussed potential connections between

the mass m′Z and the gauge coupling gR from the point of view of technical naturalness,

which implies that m′Z should be generally above the lower bound in Eq. (5.53) ifMR breaks

U(1)R, or the bound in Eq. (5.54) if only mD breaks the symmetry.

The theoretically favored values of the loop-induced couplings are confronted with ex-

perimental constraints and prospects in Figs. 5.2 and 5.3. We find that the magnitude of

loop-induced couplings allows current experiments to put noteworthy constraints on it. Fu-

ture beam dump experiments like SHiP and FASER together with upgraded collider searches

will have substantially improved sensitivity on such a dark photon.
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Thus, we conclude that the νR-philic dark photon might not be inaccessibly dark and

could be of importance to a variety of experiments!
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Chapter 6

Resonant Leptogenesis in a Model of

Discrete Flavor and CP Symmetries
27

“Science progresses best when observations force us to alter our

preconceptions."
- Vera Rubin

6.1 Introduction

Most recent precise measurement done by Planck Collaboration (2018) [16] sets the matter-

antimatter asymmetry parameter ηB

ηB = nb − nb̄
nγ

= (6.12± 0.08)× 10−10 (6.1)

This can be explained through the dynamical generation of baryon asymmetry for which

required basic ingredients includes the 3 Sakharov conditions. All these conditions are met

by resonant leptogenesis, which not only lowers the scale of ηB production and predicts

TeV-scale accessible particles but also can be embedded minimally into an extension of SM

through type-I seesaw mechanism for neutrino masses. The central idea of leptogenesis is

the production of leptonic asymmetry in early Universe which is then converted to baryonic
27 This chapter is based on upcoming work : Garv Chauhan and P. S. Bhupal Dev, “Resonant Leptogene-

sis, Neutrinoless Double Beta Decay and Collider Signals in a Model of Discrete Flavor and CP Symmetries”,
(to be submitted).
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asymmetry of the Universe (BAU) through B-L conserving electroweak sphaleron interac-

tions. This mechanism satisfies all 3 Sakharov conditions : presence of CP violation in the

leptonic sector through complex neutrino Yukawa matrix YD and/or lepton mixing matrix

UPMNS phases, lepton number violation (LNV) occurs due to the Majorana nature of the

heavy right-handed (RH) neutrinos and condition for departure from thermal equilibrium is

met, when RH neutrino decay rate falls below the Hubble expansion rate i.e. ΓN ≤ H. Thus,

leptogenesis can connect neutrino mass mechanism and production of matter-antimatter

asymmetry.

Leptogenesis depends on both low-and high- scale neutrino data while current experi-

ments have access only to the low-energy neutrino data. Since, there is no relation between

low-and high- scale neutrino data, this implies high energy neutrino parameters are free pa-

rameters in the leptogenesis mechanism. One way forward can be paved by patterns in the

neutrino mixing matrix, if generated due to the presence of flavor symmetries. If true, this

can lead to connections between high and low energy phenomenology, which can provide

complementary probes for the leptogenesis scenario through low-energy signatures. In this

chapter, we will look at the idea of residual flavor and CP symmetries that determine lepton

mixing angles, low- and high energy CP phases with only one free parameter. This helps

us not only connect the high- and low- energy phenomena but also explains the leptonic

mixing angles along with CP phases. This has a major impact on predictions in low-energy

experiments such as long-lived particle (LLP) searches , 0νββ experiments and colliders.

We consider a type-I seesaw scenario with a flavor Gf and a CP symmetry that strongly

constrain lepton mixing angles, and both low- and high-energy CP phases [256]. The three

right-handed (RH) neutrinos Ni have (almost) degenerate masses. Their decays are respon-

sible for the generation of the baryon asymmetry ηB of the Universe via resonant leptogen-

esis [257, 258]. At points of enhanced residual symmetry (ERS), the RH neutrino N3 can be

long-lived enough in order to be detected with the MATHUSLA detector [246], while N1,2

can be searched for via either prompt or displaced vertex signals at the LHC [259, 260].
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This chapter is organised as follows : In Sec. 6.2, we discuss the embedding of lepton

sector and light neutrinos (with masses arising from the type-I seesaw mechanism) with

three right-handed (RH) neutrino, in a given flavor group Gf and CP symmetry group. In

Sec. 6.3, we discuss the residual symmetries and the form of the corresponding representation

matrices for the different cases, along with additional constraints imposed from light neutrino

masses. In Sec. 6.4, we discuss the CP asymmetries produced in our scenario through out-

of-equilibrium decays of the RH neutrinos. In Sec. 6.5, we study the decay lengths and

branching ratios of the heavy right-handed neutrinos in different cases of lepton mixing. We

also discuss the effects of Enhanced Residual Symmetry (ERS) points. In the next Sec. 6.6,

we discuss the collider signatures in our scenario and probe further to understand their

complementary nature to the prospects of leptogenesis. We probe the collider signatures at

the LHC for the production of RH neutrinos through the low background lepton number

violating (LNV) processes. In Sec. 6.7, we study the correlation of low energy and high

energy CP phases through effective Majorana mass and ηB. Finally we conclude in Sec. 6.8.

6.2 Framework

We focus on the lepton sector and assume that light neutrino masses arise from the type-I

seesaw mechanism [30, 125, 32, 33] with three right-handed neutrinos. The latter have

nearly degenerate masses of the order of 1 TeV. We consider a scenario in which a flavor

and a CP symmetry and their residual groups Gl and Gν determine the form of the mass

matrices of charged leptons and neutrinos, respectively.

For flavor symmetry Gf , we use a group of the form ∆(6n2) with n even and 3 - n [261, 9]

which can be generated by the generators a, b, c and d.28 These are given for the relevant

representations in appendix D.1. The groups ∆(6n2) for n ≥ 2 are interesting, as they

possess at least one irreducible, faithful, complex three-dimensional representation 3.29 In
28 We could also consider a group of the form ∆(3n2). This is, however, contained in the corresponding

group ∆(6n2) so that we can stick, without loss of generality, to the latter only.
29 For n = 2 the irreducible three-dimensional representations are real.
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the following, we assign the three generations of LH leptons lα, α = e, µ, τ , to 3. RH

charged leptons are assigned to the representation 1, the trivial singlet, of Gf , while three

generations of RH neutrinos Ni, i = 1, 2, 3, are unified in an irreducible, in general unfaithful,

real representation 3′ of Gf which requires the index n of the group ∆(6n2) to be even, see

appendix D.1 for details.30 Assigning LH leptons and RH neutrinos to these in general

different three-dimensional representations of Gf is crucial, as the assignment lα ∼ 3 allows

to fully explore the predictive power of Gf (and not only of one of its subgroups), while

Ni ∼ 3′ permits the RH neutrinos to have a flavor-universal mass term without breaking

Gf and the CP symmetry. In addition, we assume the existence of a Z3 symmetry, called

Z
(aux)
3 , which is employed in order to distinguish the three right-handed charged leptons eR,

µR and τR which are assigned to 1, ω and ω2 with ω = e2πi/3, whereas left-handed leptons

and right-handed neutrinos are invariant under Z(aux)
3 .

The CP symmetry imposed on the theory corresponds to an automorphism of Gf [262,

263]. They are represented by the CP transformation X(r) in the different (irreducible)

representations r of Gf and depend on the parameters determining the automorphism. For

completeness, we show the form of the automorphisms and of X(r) for the relevant repre-

sentations in appendix D.3.

The residual symmetries Gl and Gν are chosen as Z(D)
3 , which is the diagonal subgroup

of the group, generated by a of Gf , see appendix D.1, and the auxiliary symmetry Z(aux)
3 ,

and Z2 × CP , where the Z2 symmetry is a subgroup of Gf and the CP symmetry the one

of the underlying theory. In the following, the generator Z of the residual Z2 symmetry in

the different representations r is denoted as Z(r). The Z2 symmetry and CP commute, i.e.

they fulfil

X(r)Z(r)− Z(r)?X(r) = 0 (6.2)

for all representations r of Gf . The mismatch of the residual symmetries Gl and Gν deter-

mines the form of lepton mixing, has been discussed in particular for the groups ∆(3n2)
30 Only for n = 2 this representation is faithful. This, however, does not affect our discussion.
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and ∆(6n2), in [9] as well as in [264]. It has been found that lepton mixing patterns can

be classified according to four types, called Case 1, Case 2, Case 3a and Case 3b.1 in [264],

which have different features. The form of the lepton mixing matrices for the four different

types are shown in section 6.3.

The form of the charged lepton mass matrix ml, the neutrino Yukawa coupling matrix YD

and RH neutrino Majorana mass matrix MR are determined by Gl and Gν . In the chosen

basis, see appendix D.1, the mass matrix ml is diagonal and contains three independent

parameters that correspond to the three different charged lepton masses. As ml is diagonal,

there is no contribution to lepton mixing from the charged lepton sector. As regards the

neutrino sector, we take the neutrino Yukawa coupling matrix YD to be invariant under Gν ,

whereas the matrix MR does neither break Gf nor CP. Being invariant under Z2 ×CP , the

matrix YD, in the basis in which left-handed fields are on the left and right-handed ones on

the right, fulfils the following relations

Z†(3)YD Z(3′) = YD and X?(3)YDX(3′) = Y ?
D . (6.3)

The form of YD is thus31

YD = Ω(3)Rij(θL)


y1 0 0

0 y2 0

0 0 y3

 Rkl(−θR) Ω(3′)† . (6.4)

The matrices Ω(3) and Ω(3′) are unitary and are determined by the form of the CP trans-
31 We can re-write the conditions in Eq. (6.3) using the matrices Ω(s)(3) and Ω(s)(3′), see Eq. (??), and

find
Ω(s)(3)† YD Ω(s)(3′)

is real and can be diagonalized by two rotation matrices from the left and right, respectively,

Ω(s)(3)† YD Ω(s)(3′) = Rij(θL)

 y1 0 0
0 y2 0
0 0 y3

 Rkl(−θR) .
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formations X(3) and X(3′) in the representations of left-handed leptons and right-handed

neutrinos, i.e. they fulfil

X(3) = Ω(3) Ω(3)T and X(3′) = Ω(3′) Ω(3′)T . (6.5)

As the choice of CP symmetry and thus the corresponding CP transformations X(3) is

in general indicated by natural numbers, see e.g. the parameter s in Eq. (6.19), also the

matrices Ω(3) and Ω(3′) (potentially) depend on these parameters. The matrices Rij(θL)

and Rkl(θR) denote rotations in the (ij) and (kl) plane, i, j, k, l = 1, 2, 3 with i < j and k < l,

through the angles θL and θR, respectively.32 These angles are free parameters, i.e. not fixed

by the residual symmetry Gν , and can take values in the range [0, π). The planes, in which

the rotations Rij(θL) and Rkl(θR) act, are determined by the (ij)- and (kl)-subspaces of

degenerate eigenvalues of the generator Z in the representation 3 and 3′, when transformed

with the matrix Ω(3) and Ω(3′), respectively (examples can be found in the discussion of the

different cases). In addition to these two angles, YD contains further three real parameters,

namely the Yukawa couplings yf , f = 1, 2, 3. This has also been pointed out in [264]. The

Dirac neutrino mass matrix mD is in turn given by

mD = YD 〈h〉 (6.6)

where 〈h〉 ≈ 174 GeV is the VEV of the SM Higgs field. As MR leaves Gf and CP invariant,

its form is simply

MR = MN


1 0 0

0 0 1

0 1 0

 (6.7)

32 We define the rotations Rij , i < j, through the angle θ in the (ij)-plane as follows

R12(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , R13(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , R23(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .
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with MN > 0, setting the mass scale of the RH neutrinos. The light neutrino mass matrix

mν follows from the type-I seesaw mechanism

mν = mDM
−1
R mT

D . (6.8)

As the charged lepton mass matrix ml is diagonal, lepton mixing arises from the diagonal-

ization of mν only. In general, the resulting lepton mixing angles involve a combination of

all parameters, appearing in YD. However, if

[Ω(3′)T M−1
R Ω(3′)?, Rkl(θR)] = 0 , (6.9)

see section 6.3 for such cases, the lepton mixing angles only depend on the free parameter θL

and the parameters, describing the flavor and CP symmetry as well as the residual symmetry

Gν , i.e. we find then

UPMNS = Ω(3)Rij(θL)Kν , (6.10)

where Kν is a diagonal matrix with entries equal to ±1 and ±i and is necessary to make

neutrino masses positive. This matrix is generally parametrized in the following form :

Kν =


1 0 0

0 ik1 0

0 0 ik2

 . (6.11)

with k1,2 = 0, 1, 2, 3. We can verify that UPMNS fulfils

U †PMNSmν U
?
PMNS = diag (m1,m2,m3) (6.12)

with the mass spectrum of the light neutrinos being determined by the Yukawa couplings
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yf ,

mf =
y2
f 〈h〉2

MN

for f = 1, 2, 3 . (6.13)

As the Yukawa couplings are not constrained other than being real, the scenario can ac-

commodate both neutrino mass orderings as well as a QD neutrino mass spectrum. The

resulting PMNS mixing matrix in Eq. (6.10) coincides with the lepton mixing matrix, ob-

tained in a scenario with three RH neutrinos [264], in which the mass matrix mD is invariant

under the entire flavor and CP symmetry, while the RH neutrino Majorana mass matrix

MR possesses the residual symmetry Gν . The requirement to accommodate the measured

lepton mixing angles well further constrains the index n of Gf as well as the combination of

residual symmetries Ge and Gν , as discussed in detail in [264].

In order to successfully generate the baryon asymmetry of the Universe via the mechanism

of resonant leptogenesis, the masses of the RH neutrinos have to be, at least partly, (slightly)

different. This can be achieved by corrections δMR to the RH neutrino Majorana mass

matrix. These corrections are expected to arise by (higher order) residual symmetry breaking

effects which are generically present in model realizations. In the following, we consider

corrections to MR which are invariant under the residual symmetry Ge. The generator of

Ge is represented in the representation of the RH neutrinos Ni as

a(3′) =


1 0 0

0 ω 0

0 0 ω2

 , (6.14)

since Ni are not charged under the auxiliary symmetry Z(aux)
3 . The correction δMR must

thus fulfil

a(3′)T δMR a(3′) = δMR , (6.15)
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meaning it is of the form

δMR = κMN


2 0 0

0 0 −1

0 −1 0

 (6.16)

with κ being a small symmetry breaking parameter, κ � 1. The RH neutrino masses Mi,

i = 1, 2, 3 acquire then a small correction

M1 = MN (1 + 2κ) and M2 = M3 = MN (1− κ) . (6.17)

6.3 Different Cases

In the following, we discuss the residual symmetries and the form of the corresponding

representation matrices for the different cases Case 1, Case 2, Case 3a and Case 3b.1. We

discuss additional constraints imposed from light neutrino masses and the constraints on the

neutrino mass spectrum arising from imposing the condition in Eq. (6.3). Furthermore, we

briefly repeat the results for lepton mixing and give numerical examples, as found in [264].

For Case 1, we also comment on special points corresponding to specific choices of the

parameters θL and θR, that lead to enhanced residual symmetries of the Dirac neutrino

Yukawa couplings.

6.3.1 Case 1

6.3.1.1 Residual Symmetries

The residual Z2 symmetry in the neutrino sector is generated by

Z = cn/2 (6.18)

142



Chapter 6. Resonant Leptogenesis in a Model of Discrete Flavor and CP Symmetries

which requires the index n of the flavor group ∆(6n2) to be even. The explicit form of Z in

the irreducible, faithful, complex three-dimensional representation 3 and in the irreducible,

unfaithful, in general real three-dimensional representation 3′ can be found in appendix D.1.

As we see in section 6.3.1.2, due to the form of the generator Z in 3′ for n divisible by four

the Dirac neutrino Yukawa coupling matrix YD becomes singular so that the light neutrino

mass is not viable. For this reason, we focus in the following on n not divisible by four.

The CP symmetry corresponds to the automorphism, given in Eq. (D.14) in appendix D.3,

conjugated with the inner automorphism associated with the group transformation a b cs d2s

with s = 0, 1, ..., n− 1. The corresponding CP transformation X(s) reads in 3

X(s)(3) = a(3) b(3) c(3)s d(3)2sX0(3) (6.19)

and in 3′

X(s)(3′) = a(3′) b(3′) c(3′)s d(3′)2sX0(3′) (6.20)

and the explicit form of X(s)(3) and X(s)(3′) can be found in appendix D.3.

The matrix Ω(s)(3), derived from X(3)(s), given in Eq. (??) in appendix D.3, can be

chosen as

Ω(s)(3) = ei φs UTB


1 0 0

0 e−3 i φs 0

0 0 −1

 (6.21)

with

UTB =



√
2/3

√
1/3 0

−
√

1/6
√

1/3
√

1/2

−
√

1/6
√

1/3 −
√

1/2

 (6.22)

and φs = π s
n
. Based only on theoretical requirements, the form of the matrix Ω(s)(3′)
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depends on whether s is even or odd, i. e.

Ω(s even)(3′) = UTB , (6.23)

and

Ω(s odd)(3′) = UTB


i 0 0

0 1 0

0 0 i

 . (6.24)

Comparing these forms to the form of Ω(s)(3), we observe that they have the same structure

and the crucial difference lies in the phase matrix multiplied from the right (overall phases

are clearly irrelevant).

In order to determine the plane in which the rotation Rij(θL) acts, we look at

Ω(s)(3)† Z(3) Ω(s)(3) =


−1 0 0

0 1 0

0 0 −1

 , (6.25)

implying that the rotation through θL will be in the (13)-plane [9]. Similarly, we can find

the plane in which the rotation Rkl(θR) acts. The representation matrix Z(3′) for n not

divisible by four reads after the transformation with Ω(s)(3′) for both, s even as well as s

odd,

Ω(s)(3′)† Z(3′) Ω(s)(3′) =


−1 0 0

0 1 0

0 0 −1

 , (6.26)

meaning that also Rkl(θR) acts in the (13)-plane.
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6.3.1.2 Constraints from and on light neutrino mass spectrum

First, we discuss constraints on the possible choices of the residual symmetry Gν arising from

the light neutrino mass spectrum. In order to find these we consider the form of the Dirac

neutrino Yukawa coupling matrix YD fulfilling the conditions in Eq. (6.3). For n divisible by

four Z(3′) is given by Eq. (D.7) and we find that the form of YD needs to be

YD =


y11 y12 y13

y11 y12 y13

y11 y12 y13

 (6.27)

with y1i complex, i = 1, 2, 3, showing that the determinant of YD vanishes and that YD has

two zero eigenvalues. As a consequence also the light neutrino mass matrix arising from

the type-I seesaw mechanism, see Eq. (6.8), has two zero eigenvalues.33 Furthermore, we

cna check that the non-zero eigenvalue has to correspond to the second light neutrino mass,

since it is always associated with the eigenvector proportional to (1, 1, 1)T which can only be

identified with the second column of the PMNS mixing matrix. It is, however, experimentally

highly disfavored that such a form can be the dominant contribution to light neutrino masses.

We thus do not discuss this case further.

For n not divisible by four the form of the matrix Z(3′) is shown in Eq. (D.8). Again,

we can compute the constraints on YD, arising from imposing the conditions in Eq. (6.3). In
33 Indeed, we can show that, if Z(3′) is the identity matrix and Z(3) is any generator of a Z2 symmetry,

i.e. it can be represented by a matrix Z(3) that fulfils V † Z(3)V = diag (1,−1,−1) with V being a unitary
matrix, we find

Z(3)† YD = V diag (1,−1,−1)V † YD = YD , (6.28)

meaning we can re-write this condition as

diag (1,−1,−1)
[
V † YD

]
=
[
V † YD

]
. (6.29)

Consequently, the combination V † YD must have two vanishing rows, namely the second and the third one.
In particular, the determinant of V † YD vanishes. From the latter we can conclude for YD itself that its
determinant must vanish, since the determinant of V cannot be zero. In addition, we can also know that YD
must have two vanishing eigenvalues. So, in general knowing that Z(3′) is given by the identity matrix is
sufficient in order to discard this case as realistic without corrections which can induce, at least, one further
non-vanishing neutrino mass.
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particular, we see that the first condition in the latter equation reduces the number of free

(complex) parameters in YD to five, meaning the other four ones can be expressed in these,

e. g.

y23 = y11 + y12 + y13 − y21 − y22 , y31 = y12 + y13 − y21 , (6.30)

y32 = y11 + y13 − y22 and y33 = −y13 + y21 + y22 . (6.31)

The five free complex parameters in YD are further constrained by requiring that also the

second condition in Eq. (6.3) is fulfilled. As a consequence, these parameters have to be

real. This is consistent with the findings in the general case where YD contains three real

Yukawa couplings yf , f = 1, 2, 3 and two angles θL and θR. In general, such a matrix YD has

a non-vanishing determinant and three different eigenvalues, namely (proportional to) yf .

We know in type 1 seesaw mechanism for eventually relating the parameters of YD to the

light neutrino masses, we have to look at the following expression

Ω(s)(3′)†M−1
R Ω(s)(3′)? (6.32)

with MR as in Eq. (6.7). For Ω(s)(3′) as in (6.23) we find

Ω(s even)(3′)†M−1
R Ω(s even)(3′)? = 1

M0


1 0 0

0 1 0

0 0 −1

 (6.33)

and for Ω(s)(3′) as in (6.24) we get

Ω(s odd)(3′)†M−1
R Ω(s odd)(3′)? = 1

M0


−1 0 0

0 1 0

0 0 1

 . (6.34)
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Note that in both cases the resulting structure is simple but does not commute with the

arbitrary rotations R13(θL,R). Hence, this has to be taken into account when computing the

light neutrino masses from the type-1 seesaw formula. Indeed only the light neutrino mass

m2 is related to y2 and M0 in the following simple way

m2 = y2
2 v

2

M0
, (6.35)

while for the full matrix part, we calculate


y1 0 0

0 y2 0

0 0 y3

 R13(−θR) Ω(s)(3′)†M−1
R Ω(s)(3′)?R13(θR)


y1 0 0

0 y2 0

0 0 y3

 (6.36)

with Ω(s even)(3′) as in (6.23) we obtain

1
M0


y2

1 cos 2θR 0 y1y3 sin 2θR

0 y2
2 0

y1y3 sin 2θR 0 −y2
3 cos 2θR

 (6.37)

and for Ω(s odd)(3′) as in (6.24)

1
M0


−y2

1 cos 2θR 0 −y1y3 sin 2θR

0 y2
2 0

−y1y3 sin 2θR 0 y2
3 cos 2θR

 . (6.38)

The difference is just the overall sign so we can nicely treat both cases at once.

We note a few things regarding the matrices in Eqs. (6.37) and (6.38) : if we set y1 = 0,

m1 vanishes, we obtain NO with the matrix being automatically diagonal and does not need

a further rotation; if we set y3 = 0, m3 = 0 follows, we obtain IO and again the matrix is

automatically diagonal with no further rotation required. We can also set sin 2θR = 0 leading
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to no further rotation needed as well, but in this case there are also no constraints on the

neutrino masses. Some values of θR are not admitted, for e.g. cos 2θR = 0 and consequently,

sin 2θR = ±1 (meaning θR = π/4, θR = 3π/4, etc.), since then two of the neutrino masses

are degenerate (for the matrices in Eqs. (6.37) and (6.38), these two are the first and the

third neutrino mass and thus the spectrum is completely unrealistic). Similar statements

hold in the other cases that have matrices like in Eqs. (6.37) and (6.38) as part of the light

neutrino mass matrix, because the combination in (6.32) is not trivial in flavor space. We

present general solution for both cases below :

s even The PMNS lepton mixing matrix is

U = Ω(s)(3) R13 (θL − ψ) diag (1, 1, ±i) , (6.39)

with

tan2 ψ ≡
m1 + m3 −

√
m2

1 + m2
3 + 2m1m3 cos (4 θR)

m1 + m3 +
√
m2

1 + m2
3 + 2m1m3 cos (4 θR)

. (6.40)

The Yukawa matrix YD (ŶD) is constructed from Eq. (6.4), using the expressions of Ω(s)(3)

and Ω(s)(3′) corresponding to s-even. The parameters yk are in this case

y2
1 = M0

2 v2

(
m1 − m3 +

√
m2

1 + m2
3 + 2m1m3 cos (4 θR)

)
sec (2 θR) ,

y2
2 = M0m2

v2 ,

y2
3 = M0

2 v2

(
−m1 + m3 +

√
m2

1 + m2
3 + 2m1m3 cos (4 θR)

)
sec (2 θR) ,

(6.41)

where v ≈ 174 GeV. Notice that yk are real quantities, provided −π/4 < θR < π/4.

s odd The PMNS lepton mixing matrix is

U = Ω(s)(3) R13 (θL − ψ) diag (±i, 1, 1) , (6.42)
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with ψ introduced in (6.95). The Yukawa matrix YD (ŶD) is constructed using the expressions

of Ω(s)(3) and Ω(s)(3′) corresponding to s−odd. The parameters yk are defined as in (6.41).

The smallest group ∆(6n2) which fulfills all constraints on n : n even and not divisible

by 3 and 4 is n = 10. For concreteness, we choose two explicit examples for this choice of

n, namely s = 1 and s = 2. The form of YD is easiest computed from Eq. (6.4), but we can

also explicitly check by applying the conditions in (6.3) to a general complex 3-by-3 matrix

YD that this is the correct form of the Dirac mass matrix of the neutrinos. The expressions

are quite lengthy and thus we do not display them explicitly, but can be easily derived with

the information given above.

We notice that only five real parameters yi, θL and θR appear in YD and that lepton

mixing depends effectively only on one free parameter θ, adjusted to θbf in order to obtain

best-fit with the measured mixing angles. If the expression in Eq. (6.32) is proportional to

the identity matrix, θ is given by θL and yi can be directly matched to the light neutrino

masses mi. If this is not true and we find a situation like in (6.33), there is only one coupling

yi′ directly proportional to one light neutrino mass mi′ , whereas the other two together

with θR determine the other two light neutrino masses. In addition, these three parameters

determine a further mixing angle, called ψ in earlier notes, that together with θL gives θbf.

Hence, in both cases there are four experimentally constrained quantities (three neutrino

masses and θbf) which determine five free parameters, yi, θL and θR. Thus, only one of them

(usually θR) can be chosen freely.

6.3.1.3 Numerical Example

We give here an example which leads to the mixing pattern of case 1, see [9]. The char-

acteristics of this mixing pattern are the following: the mixing angles can always be fitted

well (independent of the choice of the group ∆(6n2) as well as the CP symmetry X(s)), if

we choose the free parameter θ correctly, i.e. we quote as best-fitting values for the mixing
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angles [9]

sin2 θ13 ≈ 0.0219 , sin2 θ12 ≈ 0.341 , sin2 θ23 ≈


0.605

0.395
(6.43)

where the reactor mixing angle has been fitted to its central value. The free parameter θ

is thereby chosen as θ ≈ 0.18 or θ ≈ 2.96. The difference results only in the change of the

octant of the atmospheric mixing angle, for details see [9]. The results of the CP phases are

simple: the Dirac phase as well as the Majorana phase β are trivial,

sin δ = 0 and sin β = 0 , (6.44)

while the Majorana phase α depends on the chosen CP symmetry X(s)

sinα = (−1)k1+1 sin
(6π s

n

)
. (6.45)

The parameter k1 takes values k1 = 0, 1, 2, 3 and is related to the CP parity of the neutrinos,

see for details [9]. For convenience, we show a numerical example in table 6.1 where n = 26

fulfills all constraints (see below) and we only display values of sinα that are different in

magnitude. We always take k1 = 0 for concreteness.

s s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
sinα −0.663 −0.993 −0.823 −0.239 0.465 0.935

Tab. 6.1: Numerical example for mixing pattern of case 1). We choose n = 26 and only
display values of s for which sinα is different in magnitude and different from zero. The
parameter k1 is always set as k1 = 0. The sign of sinα can be changed by taking k1 = 1 or
by choosing a different value of s than the displayed one. Remember s is constrained to be
0 ≤ s ≤ n − 1 = 25. The given values for sinα are approximated. We use the formula in
(6.46) for computing sinα.

In the limit of residual symmetries Gν and Ge, we obtain that the lepton mixing angles

can be accommodated well for ϑL ≈ 0.18 (2.96) [9], i.e. sin2 θ13 ≈ 0.0219, sin2 θ12 ≈ 0.341

and sin2 θ23 ≈ 0.605 (0.395). Regarding the two physical CP phases in the cases of strong NO

150



Chapter 6. Resonant Leptogenesis in a Model of Discrete Flavor and CP Symmetries

and IO, we find that the Dirac phase δ is trivial, whereas the Majorana phase α2 depends

on the chosen CP transformation X(s)

sinα2 = (−1)k+r+s sin 6φs and cosα2 = (−1)k+r+s+1 cos 6φs , with φs = π s

n
, (6.46)

where k = 0 (k = 1) for cos 2ϑR > 0 (cos 2ϑR < 0) and r = 0 (r = 1) for strong NO (IO).

6.3.1.4 Special Points

For particular values of ϑL and ϑR, the residual symmetry Gν = Z2 ×CP can be enhanced.

If ϑL = 0, π, the combination mDm
†
D becomes invariant under a further Z2 subgroup of Gf .

Similarly, for the choices ϑR = 0, π/2, π, 3π/2 the combination m†DmD preserves a symmetry

larger than Gν . This symmetry is also larger than the one of mDm
†
D for ϑL = 0, π, since RH

neutrinos transform as the real representation 3′ of Gf that is unfaithful for n > 2.

These points of ERS are of particular relevance for phenomenology, since ϑL deviating

from ϑL,0 = 0 or π leads to a non-zero value of the reactor mixing angle θ13. ϑR close to

ϑR,0 = 0, π/2, π or 3π/2 makes it possible for the RH neutrino N3 to be long-lived enough

for being detected with the LLP searches (see Eq. (6.106) and Fig. 6.1), while simultaneously

maximizing the CP asymmetries εiα relevant for leptogenesis (see Eqs. (6.102) and (6.103)).

One can argue that the larger the ERS is, the smaller the deviation from points of ERS will

be, i.e. ϑR is expected to deviate from ϑR,0 by δϑR = |ϑR−ϑR,0| . 0.01, while ϑL can deviate

from ϑL,0 up to δϑL = |ϑL − ϑL,0| ∼ 0.2.

In one type of explicit models [265], the flavour and CP symmetry are spontaneously

broken to the residual symmetries Gν and Ge with the help of flavour symmetry breaking

fields and a peculiar alignment of their VEVs, achieved with a potential with a particular

form. Depending on the fields and the form of the potential, an ERS larger than Gν and Ge

can be preserved at leading order. Higher-dimensional operators then induce small deviations

from these points of ERS, thus explaining the particular sizes of ϑL and ϑR. An example
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can be found in Ref. [266], where the correct size of ϑL and thus the reactor mixing angle

θ13 is generated in this way.

Higher-dimensional operators connecting different sectors of the theory are responsible

for the eventual breaking of the residual symmetries Gν and Ge and thus affect the given

form of mD, ml and MM . In particular, they are also the source of corrections leading to a

small splitting in the RH neutrino masses. This splitting is crucial for resonant leptogenesis.

In the following, we focus on contributions to MM that possess the residual symmetry Ge.

These are proportional to κ, a positive power of the symmetry breaking parameter, measured

in units of M . A small splitting of the RH neutrino masses therefore arises:

M1 = M (1 + 2κ) and M2 = M3 = M (1− κ) . (6.47)

6.3.2 Case 2

6.3.2.1 Residual Symmetries

The residual Z2 symmetry in the neutrino sector is generated by the same element

Z = cn/2 , (6.48)

as in Case 1. Thus, all comments made, in particular, the forms of Z(3) and Z(3′) in (D.6)

and (D.7), (D.8), apply respectively.

The CP symmetry is given by the automorphism in (D.14) and the inner automorphism

h = csdt with 0 ≤ s, t ≤ n − 1 and thus depends on two parameters: X(s, t). In the

three-dimensional representations 3 and 3′ X(s, t) is given by

X(s, t)(3) = c(3)s d(3)tX0(3) and X(s, t)(3′) = c(3′)s d(3′)tX0(3′) (6.49)

and the explicit forms can be found in appendix D.3.
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Here we always use s and t as parameters unlike in the analysis of lepton mixing patterns

in [9], where it turned out to be more convenient to use the parameters u and v that are

linearly related to s and t as follows

u = 2 s− t and v = 3 t . (6.50)

According to the findings in [9], a suitable choice of the matrix Ω(s, t)(3) is given by

Ω(s, t)(3) = Ω(u, v)(3) = eiφv/6 UTBR13

(
−φu2

)


1 0 0

0 e−iφv/2 0

0 0 −i

 (6.51)

with φu = π u
n

and φv = π v
n
. The form of the matrix Ω(s, t)(3′), derived from X(3)(s, t),

depends like the latter on whether s and t are even or odd. The explicit form of Ω(s, t)(3′),

however, does neither contain s nor t are parameters. For s and t even, we can use

Ω(s even, t even)(3′) = UTB


1 0 0

0 1 0

0 0 i

 , (6.52)

for s even and t odd, a possible choice is

Ω(s even, t odd)(3′) = e−iπ/4 UTBR13

(
π

4

)

e−iπ/2 0 0

0 e−iπ/4 0

0 0 1

 , (6.53)
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for s odd and t even, we can choose

Ω(s odd, t even)(3′) = UTB


i 0 0

0 1 0

0 0 1

 , (6.54)

and for s and t odd, we use

Ω(s odd, t odd)(3′) = e−3 i π/4 UTBR13

(
π

4

)

e−i π/2 0 0

0 ei π/4 0

0 0 1

 . (6.55)

Similar as in Case 1, the rotation associated with the representation 3 and thus with LH

leptons is always R13(θL). In all these cases, Ω(s, t)(3′) fulfills the two equations (Z(3′)

always like in (D.8))

Ω(s, t)(3′)† Z(3′) Ω(s, t)(3′) =


−1 0 0

0 1 0

0 0 −1

 (6.56)

and, hence also for the representation 3′, i.e. RH neutrinos, the relevant rotation is in the

(13)-plane, namely R13(θR). We observe that for none of the above combinations of X and

Z in 3 and 3′, we find zero eigenvalues for YD as long as we only consider cases in which n

is not divisible by four so that Z(3′) is not the identity matrix, compare (D.7) and (6.27).

6.3.2.2 Constraints from and on light neutrino mass spectrum

As a further step, we present the form of the relevant matrix combination appearing in the

type 1 seesaw formula, involving Ω(s, t)(3′) and MR, see (6.32). We find that
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for s even and t even

Ω(s, t)(3′)†M−1
R Ω(s, t)(3′)? = 1

M0
1 , (6.57)

for s even and t odd

Ω(s, t)(3′)†M−1
R Ω(s, t)(3′)? = − 1

M0


0 0 1

0 1 0

1 0 0

 , (6.58)

for s odd and t even

Ω(s, t)(3′)†M−1
R Ω(s, t)(3′)? = 1

M0


−1 0 0

0 1 0

0 0 −1

 , (6.59)

for s odd and t odd

Ω(s, t)(3′)†M−1
R Ω(s, t)(3′)? = 1

M0


0 0 1

0 −1 0

1 0 0

 . (6.60)

We continue with computing the form of the matrix in (6.36) for the different choices of s

and t being even and odd:

for s even and t even

1
M0


y2

1 0 0

0 y2
2 0

0 0 y2
3

 , (6.61)
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for s even and t odd

1
M0


y2

1 sin 2θR 0 −y1 y3 cos 2θR

0 −y2
2 0

−y1 y3 cos 2θR 0 −y2
3 sin 2θR

 , (6.62)

for s odd and t even

1
M0


−y2

1 0 0

0 y2
2 0

0 0 −y2
3

 , (6.63)

for s odd and t odd

1
M0


−y2

1 sin 2θR 0 y1 y3 cos 2θR

0 −y2
2 0

y1 y3 cos 2θR 0 y2
3 sin 2θR

 . (6.64)

These forms are very similar to those encountered before in Case 1 and thus can be treated

in the same way to obtain PMNS lepton mixing matrix. As an example, we present the

general solution for one of the cases.

s even and t odd The PMNS lepton mixing matrix is in this case

U = Ω(u, v)(3)R13 (θL − η) diag (±i, ±i, 1) , (6.65)

with

tan2 η ≡
m1 + m3 +

√
m2

1 + m2
3 − 2m1m3 cos (4 θR)

m1 + m3 −
√
m2

1 + m2
3 − 2m1m3 cos (4 θR)

. (6.66)
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The Yukawa matrix YD (ŶD) is constructed from Eq. (6.4), using the expressions of Ω(u, v)(3)

and Ω(u, v)(3′) corresponding to s−even and t−even. The parameters yk are defined as

y2
1 = M0

2 v2

(
−m1 + m3 +

√
m2

1 + m2
3 − 2m1m3 cos (4 θR)

)
csc (2 θR) ,

y2
2 = M0m2

v2 ,

y2
3 = M0

2 v2

(
m1 − m3 +

√
m2

1 + m2
3 − 2m1m3 cos (4 θR)

)
csc (2 θR) ,

(6.67)

which are real for 0 < θR < π/2.

6.3.2.3 Numerical Examples

The results for lepton mixing are much richer and indeed in general all CP phases are non-

trivial. We can observe the following approximate dependence of the different CP phases on

the parameters u and v of case 2) (for k1,2 = 0 and no shift in u)

sin δ ≈ ±1∓ 3.3
(
π u

n

)2
, sin β ≈ ∓5.6

(
π u

n

)
± 23

(
π u

n

)3
(6.68)

and most importantly

sinα ≈ − sin
(
π v

n

)
. (6.69)

Detailed numerical results, i.e. tables with examples of n and u as well as v and θ along with

explanations can be found in [9].

In order finish up the discussion of case 2, we present a choice for n and u (a combination

of s and t, see (6.50)) (as well as examples for v) that permit agreement of the three lepton

mixing angles with experimental observations at the 3σ level or better. We take all examples

from the analysis performed in [9]. We consider the two interesting cases with n even, n not

divisible by three and n not divisible by four, that have been analyzed in [9]. For simplicity,

we only take into account “unshifted" cases. So, there are two possible values of n that we
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can use:

n = 10 and n = 14 . (6.70)

For both of these values of n three possible values of the parameter u = 2 s − t allow to

adjust the experimental data of the lepton mixing angles well

u = −1 , u = 0 , u = 1 . (6.71)

In table 6.2, we list the best fitting value of θbf (there is another value of θ that also fits

the experimental data well, but we focus one value only for the moment, see [9] for details),

the results for the lepton mixing angles as well as for the two CP invariants JCP and I2

(for definition of these two see also [9]) and CP phases δ and β. We display the different

n n = 10 n = 14
u u = −1 u = 0 u = +1 u = −1 u = 0 u = +1
θbf 0.0932 2.96 0.0932 0.144 2.96 0.144

sin2 θ12 0.341 0.341 0.341 0.341 0.341 0.341
sin2 θ13 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218
sin2 θ23 0.410 1/2 0.590 0.437 1/2 0.563
JCP −0.0178 0.0342 −0.0178 −0.0274 0.0342 −0.0274
sin δ −0.529 1 −0.529 −0.807 1 −0.807
I2 −0.0121 0 0.0121 −0.0137 0 0.0137

sin β −0.861 0 0.861 −0.976 0 0.976

Tab. 6.2: Two examples for case 2) that fulfill all constraints on the index n and that can
accommodate the lepton mixing angles well for some value of θ, if u = 2 s − t is properly
chosen. Since the CP invariant I1 or better to say the Majorana phase α depends on v = 3 t
only that can take a variety of values we discuss this Majorana phase and its different
admitted values for n and u in the main text. As always we take k1 = 0 and k2 = 0.

combinations s and t that lead to the values of u in (6.71): for n = 10 and n = 14 the value

u = −1 can be produced for

(s, t) = (0, 1), (1, 3), (2, 5), (3, 7), (4, 9) (6.72)
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and for n = 14 we additionally have

(s, t) = (5, 11), (6, 13) ; (6.73)

similarly for n = 10 and n = 14 the value u = 0 can be produced for

(s, t) = (0, 0), (1, 2), (2, 4), (3, 6), (4, 8) (6.74)

and for n = 14 we additionally have

(s, t) = (5, 10), (6, 12) ; (6.75)

and for n = 10 and n = 14 the value u = 1 can be produced for

(s, t) = (1, 1), (2, 3), (3, 5), (4, 7), (5, 9) (6.76)

and for n = 14 we additionally have

(s, t) = (6, 11), (7, 13) . (6.77)

For n = 10 and u = 1 as well as u = −1 we obtain using these combinations of (s, t) the

following values of v and approximate values of sinα, using the formula in (6.69) with k1 = 0

v v = 3 v = 9 v = 15 v = 21 v = 27

sinα −0.809 −0.309 1 −0.309 −0.809

For n = 10 and u = 0 we obtain using these combinations of (s, t) the following values of v

and approximate values of sinα, using the formula in (6.69) with k1 = 0
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v v = 0 v = 6 v = 12 v = 18 v = 24

sinα 0 −0.951 0.588 0.588 −0.951

For n = 14 and u = 1 as well as u = −1 we obtain using these combinations of (s, t) the

following values of v and approximate values of sinα, using the formula in (6.69) with k1 = 0

v v = 3 v = 9 v = 15 v = 21 v = 27 v = 33 v = 39

sinα −0.623 −0.901 0.223 1 0.223 −0.901 −0.623

For n = 14 and u = 0 we obtain using these combinations of (s, t) the following values of v

and approximate values of sinα, using the formula in (6.69) with k1 = 0

v v = 0 v = 6 v = 12 v = 18 v = 24 v = 30 v = 36

sinα 0 −0.975 −0.434 0.782 0.782 −0.434 −0.975

6.3.3 Case 3a and Case 3b.1

6.3.3.1 Residual Symmetries

The residual symmetries in Case 3a and Case 3b.1 are chosen as follows: the Z2 symmetry

in the neutrino sector is generated by

Z = bcmdm with m = 0, ...., n− 1 . (6.78)

Since Z involves the generator b Case 3a and Case 3b.1 can only be achieved with the help

of the flavor groups ∆(6n2). We have in general n different choices for the generator Z.

However, as discussed in [9], preferred values of m are either around m ≈ 0 and m ≈ n for

Case 3 a) or m ≈ n/2 for Case 3 b.1), as long as the charged lepton masses are ordered

canonically. The form of Z in the representations 3 and 3′, Z(3) and Z(3′), can be found

in appendix D.1.
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The CP symmetry, used in Case 3a and Case 3b.1 is induced by the automorphism,

shown in Eq. (D.14) in appendix D.3, conjugated with the inner one, represented by the

group transformation h = b cs dn−s, s = 0, ..., n − 1. The corresponding CP transformation

X(s) in 3 and 3′ is given by

X(s)(3) = b(3)s c(3)s d(3)n−sX0(3) (6.79)

and

X(s)(3′) = b(3′)s c(3′)s d(3′)n−sX0(3′) . (6.80)

The explicit forms of X(s)(3) and X(s)(3′) can be found in appendix D.3.

The form of the matrix Ω(s,m)(3), derived fromX(s,m)(3) in Eq. (6.19) in appendix D.3,

can be chosen as [9]

Ω(s,m)(3) = ei φs


1 0 0

0 ω 0

0 0 ω2

 UTB


1 0 0

0 e−3 i φs 0

0 0 −1

 R13 (φm) (6.81)

with φs = πs
n
, φm = πm

s
and ω = e

2πi
3 . The form of the matrix Ω(s)(3′) only depends on

whether s is even or odd and is also independent of the choice of the parameter m. In

particular, we can use for s even

Ω(s even)(3′) =


1 0 0

0 ω 0

0 0 ω2

 UTB


1 0 0

0 1 0

0 0 −1

 . (6.82)

and for s odd

Ω(s odd)(3′) =


1 0 0

0 ω 0

0 0 ω2

 UTB


i 0 0

0 −1 0

0 0 −i

 . (6.83)
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We note that the form of Ω(s even)(3′) coincides with Ω(s,m)(3) for the special choices s = 0

and m = 0 as well as that Ω(s odd)(3′) coincides with a special form of Ω(s,m)(3), namely

for s = n/2 and m = 0.

We have to compute the form of the matrix Z(m)(3) in the basis rotated via Ω(s,m)(3)

for the representation 3 which means

Ω(s,m)(3)† Z(m)(3) Ω(s,m)(3) =


1 0 0

0 1 0

0 0 −1

 . (6.84)

Note that this holds for all choices of s, m and n. So, we know that LH leptons, being in the

representation 3, are always accompanied with a rotation R12(θL) with θL being an arbitrary

rotation angle, related to the fitting of the lepton mixing angles.

In a next step we consider the form of Z(3′), see (D.12) and (D.13), in the basis rotated

by Ω(s even)(3′) and Ω(s odd)(3′), respectively. The matrix Z(m even)(3′) reads as follows

in the basis rotated by Ω(s even)(3′)

Ω(s even)(3′)† Z(m even)(3′) Ω(s even)(3′) =


1 0 0

0 1 0

0 0 −1

 (6.85)

and in the basis rotated with Ω(s odd)(3′) it reads

Ω(s odd)(3′)† Z(m even)(3′) Ω(s odd)(3′) =


1 0 0

0 1 0

0 0 −1

 . (6.86)

Hence, in both cases we need a rotation R12(θR) for fields in the representation 3′, i.e. RH neu-
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trinos. Doing the same for the matrix Z(m odd)(3′) in the basis rotated with Ω(s even)(3′)

Ω(s even)(3′)† Z(m odd)(3′) Ω(s even)(3′) =


−1 0 0

0 1 0

0 0 1

 (6.87)

and in the basis rotated with Ω(s odd)(3′), we find as well

Ω(s odd)(3′)† Z(m odd)(3′) Ω(s odd)(3′) =


−1 0 0

0 1 0

0 0 1

 . (6.88)

Thus, in both bases the free rotation due to Z(m odd)(3′) is given by R23(θR) among the

RH neutrinos.

6.3.3.2 Constraints from and on light neutrino mass spectrum

A further step is to check the relevant combination in (6.32) for Ω(s even)(3′) for which we

find

Ω(s even)(3′)†M−1
R Ω(s even)(3′)? = 1

M0


1 0 0

0 1 0

0 0 −1

 (6.89)

as well as for Ω(s odd)(3′) which leads to

Ω(s odd)(3′)†M−1
R Ω(s odd)(3′)? = 1

M0


−1 0 0

0 1 0

0 0 1

 . (6.90)

Using these results we see that for the combination analogous to the one shown in (6.36)

(you have to change the rotation plane for Rij(θR)) the following holds
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for m even and s even: the structure of the matrix is trivial, i.e. diagonal.

for m even and s odd:


y1 0 0

0 y2 0

0 0 y3

 R12(−θR) Ω(s odd)(3′)†M−1
R Ω(s odd)(3′)?R12(θR)


y1 0 0

0 y2 0

0 0 y3



= 1
M0


−y2

1 cos 2θR −y1 y2 sin 2θR 0

−y1 y2 sin 2θR y2
2 cos 2θR 0

0 0 y2
3

 (6.91)

for m odd and s even:


y1 0 0

0 y2 0

0 0 y3

 R23(−θR) Ω(s even)(3′)†M−1
R Ω(s even)(3′)?R23(θR)


y1 0 0

0 y2 0

0 0 y3



= 1
M0


y2

1 0 0

0 y2
2 cos 2θR y2 y3 sin 2θR

0 y2 y3 sin 2θR −y2
3 cos 2θR

 (6.92)

for m odd and s odd: the structure of the matrix is trivial, i.e. diagonal.

In conclusion, either the structure is trivial and we obtain a direct relation between the

Yukawa couplings and the light neutrino masses of the form

mi = y2
i v

2

M0
(6.93)

or this holds for only one of the three neutrino generations, whereas the other two belong to

a sub-sector that requires further diagonalization, in a way discussed already for Case 1. We

present one of the cases as an example below m even and s odd The lepton mixing
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matrix is in this case

U = Ω(m, s)(3)R12 (θL − ζ) diag(±i, 1, 1) . (6.94)

with

tan2 ζ ≡
m1 + m2 −

√
m2

1 + m2
2 + 2m1m2 cos (4 θR)

m1 + m3 +
√
m2

1 + m2
3 + 2m1m2 cos (4 θR)

. (6.95)

The Yukawa matrix YD (ŶD) is constructed from (??), using the expressions of Ω(m, s)(3)

and Ω(m, s)(3′) corresponding to s−even and t−odd. The parameters yk are defined in this

case as

y2
1 = M0

2 v2

(
m1 − m2 +

√
m2

1 + m2
2 + 2m1m2 cos (4 θR)

)
sec (2 θR) ,

y2
2 = M0

2 v2

(
−m1 + m2 +

√
m2

1 + m2
2 + 2m1m2 cos (4 θR)

)
sin (2 θR) ,

y2
3 = M0m3

v2 ,

(6.96)

which are real for −π/4 < θR < π/4.

6.3.3.3 Numerical Examples

Here we present two numerical examples for the mixing patterns of Case 3a and Case 3b.1.

The example for case 3a is taken from [9]. It also appears in [264] in the discussion of

neutrinoless double beta decay. The example for Case 3b.1 appears in [9] as well as in [264],

where unflavored leptogenesis in a “classical" type 1 seesaw scenario is analyzed.

Case 3a

For the mixing pattern of Case 3a, we choose

n = 17 and m = 1 . (6.97)
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s θbf sin2 θ12 JCP sin δ I1 sinα I2 sin β
s = 2 2.31 0.304 0.0319 0.969 0.144 0.712 0.0126 0.820
s = 2 3.05 0.304 0.0060 0.184 −0.144 −0.712 0.0018 0.119
s = 3 0.134 0.335 −0.0095 −0.280 0 0 −0.0028 −0.190

Tab. 6.3: Example for mixing pattern of Case 3a. The parameters n and m are chosen as
n = 17 and m = 1. This entails as values for the reactor and the atmospheric mixing angles:
sin2 θ13 ≈ 0.0225 and sin2 θ23 ≈ 0.607. Note there are two different best fitting points for the
choice s = 2 that indeed lead to different results for the CP phases δ and β. The Majorana
phase α only changes sign. The fact that there is only one value for s = 3 is related to the
question whether the solar mixing angle can be fitted to its experimental central value or
not. If it cannot, then there is only one value of θbf and it also entails that sinα vanishes
exactly. For details see [9]. As in all other cases k1 = k2 = 0.

Note this time there is no additional constraint on the choice of the index n apart from

that the resulting lepton mixing angles should match the experimental data well. The only

constraint on the group is the request to use one of the series ∆(6n2), since the generator

b is needed which is not part of the groups ∆(3n2). For m we have chosen the smallest

non-trivial value, as already mentioned above. Effectively a small ratio m/n (or close to

one) is needed for achieving small θ13. Regarding the choice of the CP transformation X(s)

there are, indeed, in total 16 choices and all of them lead to a reasonable agreement of the

lepton mixing angles with experimental data. However, we restrict ourselves to two choices

only. Some of them like s = 0 and s = 8 lead to CP conservation (either due to symmetry

or rather accidentally) and values s > n/2 usually reproduce results like the corresponding

value s′ = n− s < n/2. The two examples for CP transformations are characterized by

s = 2 and s = 3 . (6.98)

In table 6.3, we show the results for the parameter θbf, the mixing angles and the CP

invariants and CP phases.
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s θbf sin2 θ23 sin2 θ12 sin2 θ13 JCP sin δ I1 I2 sinα = sin β
s = 1 1.31 0.579 0.318 0.0220 0.0312 0.936 −0.147 −0.0104 −1/

√
2 ≈ −0.707

s = 1 1.83 0.421 0.318 0.0220 −0.0312 −0.936 −0.147 −0.0104 −1/
√

2 ≈ −0.707
s = 2 1.83 0.645 0.319 0.0216 −0.0237 −0.739 0.208 0.0144 1
s = 4 1.31 1/2 0.318 0.0220 −0.0338 −1 0 0 0
s = 4 1.83 1/2 0.318 0.0220 0.0338 1 0 0 0

Tab. 6.4: Example for mixing pattern of case 3 b.1). The parameters n and m are chosen as
n = 8 and m = 4. Note there are two different best fitting points for the choice s = 1 and
s = 4. As in all other cases k1 = k2 = 0. Due to that sinα and sin β are not only coinciding
in magnitude (coming from the choice m = n/2), but also in sign.

Case 3b.1

For the mixing pattern of Case 3b.1, we choose like in [9] and [264]

n = 8 and m = 4 . (6.99)

This combination fulfills the request m/n = 1/2, see above. And indeed with this choice the

sines of the two Majorana phases α and β have the same magnitude, compare [9]. We select

three choices of the CP symmetry

s = 1 , s = 2 and s = 4 (6.100)

that all lead to at least one non-trivial CP phase. The particular choice s = n/2 = 4 gives

trivial Majorana phases and maximal Dirac phase (as well as maximal atmospheric mixing,

see table 6.4). Again, some values of s like s = 0 lead to no CP violation at all and other

values of s like s′ = n−s > n/2 only produce results equivalent to those of s < n/2. In table

6.4 we display the values for θbf and the results for the mixing parameters. We note that

again we only display the best fitting value of θ and that we – for completeness – display

two such values for the choices s = 1 and s = 4. This example is only one of the simplest

ones, since n is small and thus we need to have m = n/2 in order to accommodate the lepton
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mixing angles well. For richer structures see tables and figures in [9].

A final comment regarding the numerical examples: since these are all taken from [9],

the value of θ is always adjusted in such a way that the χ2 for fitting to the experimentally

measured mixing angles is smallest. However, in principle θ can vary a little and the lepton

mixing angles are still compatible with experiments at the 3σ level or better. This can be

easily taken into account, as indeed done in the analysis of leptogenesis and neutrinoless

double beta decay in [264]. This can also impact the resulting values for CP phases. Thus,

it should be noted that the values given here are only the ones for the best fitting case.

6.4 CP Asymmetries

Including the small mass splitting of the RH neutrinos, their out-of-equilibrium decays can

generate ηB via resonant leptogenesis [257, 258]. The CP asymmetries εiα due to the decay

of Ni and in the lepton flavour α read

εiα ≈
1
v4

∑
j 6=i

Im
(
m̂∗D,αim̂D,αj

)
Re

((
m̂†Dm̂D

)
ij

)
Fij , (6.101)

with m̂D being mD in the RH neutrino mass basis and Fij related to the regulator that is

proportional to the mass splitting of Ni [267].

We find the real part of (m̂†Dm̂D)ij to be zero, if either i = 3 or j = 3. Hence, ε3α = 0

for all α and εiα only has one contribution for i = 1, 2. The imaginary part of m̂∗D,α1m̂D,α2 is

proportional to sin 3φs for even s and to cos 3φs for odd s, independent of the flavour α. If

α is summed over, ε1 and ε2 both vanish. For strong NO and even s, the CP asymmetries

ε1α read

ε1α ≈
y2 y3

9 (−2 y2
2 + y2

3 (1− cos 2ϑR)) sin 3φs sinϑR sinϑL,αF12 , (6.102)
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and for strong IO, we find

ε1α ≈
y1 y2

9 (−2 y2
2 + y2

1 (1 + cos 2ϑR)) sin 3φs cosϑR cosϑL,αF12 , (6.103)

with ϑL,α = ϑL + ρα 4π/3 and ρe = 0, ρµ = 1, ρτ = −1. For strong NO (IO) εiα becomes

very small, if ϑR ≈ 0, π (ϑR ≈ π/2, 3π/2). In addition, Fij vanishes for cos 2ϑR = 0. The

CP asymmetries ε2α are the negative of ε1α with F12 being replaced by F21. We note that

different values of s can lead to the same value of εiα. In particular, we find

εiα(s) = (−1)s εiα(n− s) = εiα(n/2− s) = (−1)s+1 εiα(n/2 + s) for s ≤ n/2 . (6.104)

Eqs. (6.46), (6.102) and (6.103) show the close correlation between CP violation at low and

high energies.

6.5 Decay of Heavy Neutrinos

In this section, we study the decay lengths and branching ratios of the heavy right-handed

neutrinos in different cases of lepton mixing. Firstly, we discuss the decay lengths of the RH

neutrinos using their decay widths and identifying the enhanced residual symmetry (ERS)

points. The decay lengths near the points of ERS tend to be the longest. We discuss the

results in different cases of lepton mixing as well as for different neutrino mass hierarchies.

Secondly, we calculate the branching ratios for the decay of RH neutrinos by using the partial

decay widths for the relevant processes. We then discuss the results for branching ratios for

all RH neutrinos as well as their different decay modes.
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6.5.1 Decay Length

The decay widths Γi of the RH neutrinos Ni are given at the tree level by

Γi ≈
(Ŷ †D ŶD)ii

8π Mi = (m̂†D m̂D)ii
8 π v2 Mi (6.105)

where the form of ŶD is determined by the choice for generator Z of the Z2 symmetry and

the choice of the CP transformation X. Despite this dependence on the generators of Z2

symmetry and CP transformation, we will see that Γi is independent of value of n and

depends only on odd/even behaviour for parameters s, t and m34.

For M in the few hundred GeV range, we expect yi ∼ 10−7 and thus mostly non-prompt

decays at the LHC. To enhance the production cross-section at colliders, we can embed our

minimal scenario in the SM with extended gauge symmetry. If the RH neutrinos Ni are

charged under the new gauge group, they may be produced through the decays of the new

gauge boson(s) (for detailed discussion, see sec. 6.6.1) .

6.5.1.1 Case 1

The expressions for decay widths of the 3 heavy RH neutrinos in this case do not depend on

the values of s, and are given below :

Γ1 ≈ M

24π
(
2 y2

1 cos2 ϑR + y2
2 + 2 y2

3 sin2 ϑR
)
, Γ2 ≈

M

24π
(
y2

1 cos2 ϑR + 2 y2
2 + y2

3 sin2 ϑR
)
,

Γ3 ≈ M

8π
(
y2

1 sin2 ϑR + y2
3 cos2 ϑR

)
. (6.106)

In Case 1, strong NO and strong IO corresponds to y1 = 0 and y3 = 0 respectively, i.e. the

lightest neutrino becomes massless. If ϑR ≈ π/2, 3π/2 (for strong NO) or ϑR ≈ 0, π (for

strong IO), i.e. ϑR close to points of ERS, N3 can have a very long lifetime, since Γ3 tends to

zero. Thus, N3 can be searched for with the long-lived particle detectors.The decay lengths

L for N1,2,3 are shown in Fig. 6.1 for different values of M and mass scale for the lightest
34 It might also happen that Γi is totally independent of values
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Fig. 6.1: Case 1 N1,2,3 decay lengths plotted against θR for different values of RHN mass
scale M (upper Panels) and light neutrino mass m0 (lower panels) for MZ′ = 4 TeV.

neutrino m0. In doing so, we assume that Ni are produced via a new gauge boson Z ′ with

mass MZ′ = 4 TeV, meaning the Lorentz boost factor is given by γ = MZ′/(2M). As M is

increased, there is an enhancement in L for N3 for ϑR around the ERS. The decay lengths

become more sharply peaked with decreasing m0, especially for N3. N3 can be detected with

the MATHUSLA detector or can be probed at the LHC via displaced vertex signatures,

along with N1,2 decays, the latter giving rise to either prompt or displaced vertex signals at

the LHC, depending on the choice of ϑR.
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Fig. 6.2: Case 2 N1,2,3 decay lengths plotted against θR for different values of RHN mass
scale M (upper Panels) and light neutrino mass m0 (lower panels) for MZ′ = 4 TeV.

6.5.1.2 Case 2

The decay widths of the RH neutrinos in this case depends whether t is even/odd and

independent of s.

t even :

Γ1 ≈
M

24π
(
2 y2

1 cos2 ϑR + y2
2 + 2 y2

3 sin2 ϑR
)
, Γ2 ≈

M

24π
(
y2

1 cos2 ϑR + 2 y2
2 + y2

3 sin2 ϑR
)
,

Γ3 ≈
M

8π
(
y2

1 sin2 ϑR + y2
3 cos2 ϑR

)
. (6.107)

t odd :

Γ1 ≈
M

24π
(
y2

1 + y2
2 + y2

3

)
, Γ2 ≈

M

24π
(
y2

1 + 4 y2
2 + y2

3

)
,

Γ3 ≈
M

24π
(
y2

1 + y2
3

)
. (6.108)

As can be seen above, Γ3 is independent of ϑR for odd values of t and non-zero in all cases
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Fig. 6.3: N1,2,3 decay lengths plotted against θR for different values of RHN mass scale M
for Case 3a (left panel) and for Case 3b.1 (right panel) with MZ′ = 4 TeV.

including strong NO and strong IO. Thus in Case 2, the ERS points are present only for

even values of t and lies at the same values of ϑR as in Case 1 for both mass orderings,

irrespective of s values as shown in Fig. 6.2. Note that similar to Case 1, strong NO and

strong IO in this case corresponds to y1 = 0 and y3 = 0 respectively.

6.5.1.3 Case 3a and 3b.1

The decay widths of the RH neutrinos in Case 3a and 3b.1 depends on the combination of

(m, s) being even/odd as well as allowed mass orderings are restricted. There is an important

distinction to be noted that unlike other cases where N3 becomes long-lived, in Case 3a and
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3b.1, it is N1 for which the decay length is the longest near ERS points.

m even, s even :

Γ1 ≈
M

48π
(
3(y2

1 + y2
2) + (y2

1 − y2
2)(cos 2ϑR − 2

√
2 sin 2ϑR)

)
,

Γ2 ≈
M

192π
(
3(y2

1 + y2
2 + 6 y2

3)− (y2
1 − y2

2)(cos 2ϑR − 2
√

2 sin 2ϑR)
)
,

Γ3 ≈
M

64π
(
3(y2

1 + y2
2) + 2 y2

3 − (y2
1 − y2

2)(cos 2ϑR − 2
√

2 sin 2ϑR)
)
. (6.109)

m even, s odd :

Γ1 ≈
M

48π
(
3(y2

1 + y2
2) + (y2

1 − y2
2) cos 2ϑR

)
,

Γ2 ≈
M

192π
(
3(y2

1 + y2
2 + 6 y2

3)− (y2
1 − y2

2) cos 2ϑR
)
,

Γ3 ≈
M

64π
(
3(y2

1 + y2
2) + 2 y2

3 − (y2
1 − y2

2) cos 2ϑR
)
. (6.110)

m odd, s even :

Γ1 ≈
M

48π
(
4y2

1 + y2
2 + y2

3 + (y2
2 − y2

3) cos 2ϑR
)
,

Γ2 ≈
M

192π
(
2 y2

1 + 11(y2
2 + y2

3)− 7(y2
2 − y2

3) cos 2ϑR
)
,

Γ3 ≈
M

64π
(
2 y2

1 + 3(y2
2 + y2

3) + (y2
2 − y2

3) cos 2ϑR
)
. (6.111)

m odd, s odd :

Γ1 ≈
M

48π
(
4y2

1 + y2
2 + y2

3 + (y2
2 − y2

3) cos 2ϑR
)
,

Γ2 ≈
M

192π
(
2 y2

1 + 11(y2
2 + y2

3)− (y2
2 − y2

3)(7 cos 2ϑR + 6
√

2 sin 2ϑR)
)
,

Γ3 ≈
M

64π
(
2 y2

1 + 3(y2
2 + y2

3) + (y2
2 − y2

3)(cos 2ϑR + 2
√

2 sin 2ϑR)
)
. (6.112)

In Case 3a, strong NO and strong IO corresponds to y1 = 0 and y3 = 0 respectively. As can

be verified, ERS points are exhibited only for even values of (m, s) with mass ordering re-

stricted to being normal ordered (NO). These points correspond to values of ϑR ≈ 0.8π, 1.8π,

obtained by setting γ1 = 0. While in Case 3b.1, strong NO and strong IO corresponds to

y3 = 0 and y2 = 0 respectively. In this case, ERS points are also exhibited only for even
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values of (m, s) but with mass ordering being restricted to IO and these points correspond

to values of ϑR ≈ 0.3π, 1.3π.

6.5.2 Branching Ratios and Signals at MATHUSLA

Assuming M > {mH ,mw,mz}, a heavy RH neutrino Ni can decay into lαW, να Z and

ναH, through its mixing with SM leptons. The corresponding partial decay widths for these

channels are

Γ(Ni → lαW ) = g2 v2

64 π
(M2

i −m2
W )2(M2

i + 2m2
W )

M5
i m

2
W

(Ŷ †D ŶD)iα,

Γ(Ni → να Z) = g2 v2

128 π cos2 θW

(M2
i −m2

Z)2(M2
i + 2m2

Z)
M5

i m
2
Z

(Ŷ †D ŶD)iα, (6.113)

Γ(Ni → ναH) = g2 v2

128 π
(M2

i −m2
H)2

M3
i m

2
W

(Ŷ †D ŶD)iα.

The branching ratio for Ni → X, where X refers to any of the three above mentioned final

states

BR(Ni → X) = Γ(Ni → X)
2 [Γ(Ni → lαW ) + Γ(Ni → να Z) + Γ(Ni → ναH)] . (6.114)

A production cross section σprod ≡ σ(pp → Z ′ → NiNi) & 1 fb is needed at the
√
s = 14

TeV LHC with an integrated luminosity of 3 ab−1 for at least 4 signal events at MATHUSLA

[268]. Once the RH neutrinos are produced, the different BRs for Ni → `±α W
∓ are predicted

in terms of the underlying Yukawa structure.

Consider N3 decay at MATHUSLA, for Case 1 we find

BR(N3 → e±W∓) : BR(N3 → µ±W∓) : BR(N3 → τ±W∓) =


1 : 27.7 : 18.1

8.5 : 1 : 3.7
, (6.115)

where the ratios in the upper (lower) line are given for strong NO (IO). These are independent
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of ϑR and s, and almost independent of M , if M � MW . This can also be seen in Fig. 6.6,

where BR(Ni → lαW ) remains constant for all values of s/n with M = 250 GeV, m0 = 0 eV

and ϑR tuned near the ERS. Measuring them at MATHUSLA for at least two charged lepton

flavours α [268], allows a test of the neutrino mass hierarchy at the high-energy frontier. It

could also be tested with prompt or displaced vertex signals from the decays of N1,2 at the

LHC. However, their BRs depend on the chosen CP symmetry X(s) as well as on ϑR. For

instance, for M = 500 GeV, s = 2, n = 26 and δϑR = 0.01 (i.e. ϑR close to a point of ERS),

we get

BR(N1 → e±W∓) : BR(N1 → µ±W∓) : BR(N1 → τ±W∓) =


1 : 4.9 : 6.6

17.3 : 1 : 1.6
,

BR(N2 → e±W∓) : BR(N2 → µ±W∓) : BR(N2 → τ±W∓) =


1 : 17.6 : 3.0

1 : 3.3 : 4.8
. (6.116)

where the ratios in the upper (lower) line are given for strong NO (IO). Note that due to

the Majorana nature of the RH neutrinos in the type-I seesaw scenario, BR(Ni → `+
αW

−)

and BR(Ni → `−αW
+) are the same.

For Case 2, the BRs have been plotted for N1 and N2 for different (s, t) cases that

showcase points of ERS, shown in Fig. 6.7 and Fig. 6.8 respectively. Similar to Case 1,

the BR for N3 decay to `αW is independent of ϑR and s, and almost independent of M , if

M �MW . Moreover, the BRs for (N3 → µW ) and (N3 → τ W ) are equal for both NO and

IO, as can be seen in in Fig. 6.9.

For Case 3a and 3b, the BRs are shown in Fig. 6.10 and Fig. 6.11 respectively. Unlike

previous cases, BR for N3 decay is not constant and depends on the the chosen CP symmetry

X(s,m) as well as on ϑR.
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Fig. 6.4: Case 1 N1 decay branching ratios for N1 → lαW, (α = e, µ, τ) as a function of s/n
for strong NO and strong IO with M = 250 GeV.

6.6 Collider Signals

In this section, we discuss the collider signatures in our scenario and probe further to under-

stand their complementary nature to the prospects of leptogenesis. Firstly, we discuss the

production of heavy RH neutrinos at the colliders and our use of SM extension for enhancing

the production cross section. Next, we discuss the collider signatures at LHC for the pro-

duction of RH neutrinos, specifically the LNV processes with a really low SM background.

Finally, we present the relevant parameter space for the prospects of successful leptogenesis

and its implications for detection at LHC and future 100 TeV collider.

6.6.1 Production of Heavy Neutrinos at Colliders

To observe Ni decays at colliders, an efficient production mechanism is required. In our

scenario, however, Yukawa couplings yi are too small, yi ∼ 10−7, for the production cross
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Fig. 6.5: Case 1 N2 decay branching ratios for N2 → lαW, (α = e, µ, τ) as a function of s/n
for strong NO and strong IO with M = 250 GeV.

section via the Drell-Yan process pp → W ∗ → Ni`α (where `α stands for a charged lepton

with flavour α) to be observable at the LHC [269, 97]. We thus consider a mechanism for RH

neutrino production that does not rely on Yukawa interactions. An example is the extension

of the SM with a gauge symmetry U(1)X that is a linear combination of the symmetries

U(1)Y and U(1)B−L [40, 270]. The charges of the SM particles, the RH neutrinos and one

new scalar under U(1)X are given in terms of two real parameters xH and xΦ. The associated

gauge coupling is gX and the gauge boson Z ′. We assume that the couplings of the latter to

all fermions are flavour-diagonal and -universal. RH neutrinos are pair produced via gauge

interactions pp→ Z ′ → NiNi. This production channel is only kinematically suppressed by

the mass of the new gauge boson, MZ′ . If Mi < MZ′/2, the two RH neutrinos are produced

on-shell. Very similar production cross sections are expected for all Ni, since their masses

are (almost) degenerate, see Eq. (6.47). For some values (xH , xΦ), the branching ratio (BR)

of Z ′ to two RH neutrinos can be enhanced with respect to the other decay modes by up to
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Fig. 6.6: Case 1 N3 decay branching ratios for N3 → lαW, (α = e, µ, τ) as a function of s/n
for strong NO and strong IO with M = 250 GeV.

a factor of 5 [271]. Stringent LHC dilepton limits [1, 2] require MZ′ & 3.7 TeV for gX equal

to the SU(2)L gauge coupling, as in the so-called sequential SM. They can be relaxed for

smaller gX and completely avoided, if Z ′ is leptophobic. The latter necessitates, however,

an extension with new fermions in order to keep U(1)X anomaly-free [272, 273, 274, 275].

In this work, we only consider the special case (xH , xΦ) = (0, 2), which corresponds to the

minimal B − L model [38, 39].

6.6.2 Same-Sign Dilepton Signals at LHC

For decays of N1,2 at the LHC, one can therefore search for the striking lepton number

violating (LNV) process pp → Z ′ → NiNi → `±α `
±
β + 2W∓ → `±α `

±
β + 4j (for α 6= β this

process also violates lepton flavour) [259], which has a much smaller SM background than

the corresponding lepton number conserving process, pp→ Z ′ → NiNi → `±α `
∓
β +W+W− →

`±α `
∓
β + 4j. In the narrow decay width approximation, the cross section for the LNV process
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Fig. 6.7: Case 2 N1 decay branching ratios for N1 → lαW, (α = e, µ, τ) as a function of t/n
for strong NO and strong IO with M = 250 GeV.

can written as

σLNV = σ(pp→ Z ′ → NiNj)× BR(Ni → `±αW
∓)× BR(Nj → `±βW

∓)× [BR(W∓ → jj)]2.

(6.117)

The production cross section for NiNj is generated using the universal FeynRules output

(UFO) file for B-L-SM model [276, 277, 278] along with the MadGraph_aMC@NLO-v2.8.3

- Monte Carlo event generator at parton level as shown in Fig. 6.13. The BRs for N → lW

have been discussed earlier in Sec. 6.5.2 and BR for W∓ → jj is already known from the

SM. The results for σLNV with Yukawa structure from Case 1 as a function of heavy neutrino

mass scale MN for MZ′ = 4 TeV, s = 2, n = 26 and normalized to the coupling strength

gB−L = 1 is shown in Fig. 6.14. For NO, ττ -channel has the highest production cross section

and lowest the ee-channel for IO. For IO, ee-channel has the highest production cross section

and lowest for µµ-channel for IO. These results can be understood from analyzing Eq. (6.117)
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Fig. 6.8: Case 2 N2 decay branching ratios for N2 → lαW, (α = e, µ, τ) as a function of t/n
for strong NO and strong IO with M = 250 GeV.

and Fig. 6.4. For points corresponding to s = 2, n = 26 in Fig. 6.4, the BR for N → lW

is highest for τ -channel and lowest for e-channel in NO, s even case while it is highest for

e-channel and lowest for mu-channel in in IO, s even case.

6.6.3 Correlation with Leptogenesis

Following the formalism developed in Refs. [279, 267], we compute the baryon asymmetry

ηB in our scenario. For the SM extended by U(1)B−L, important washout processes, like

NiNi → Z ′ → ff̄ (f stands for any SM fermion), are mediated by Z ′ [280, 281]. These

affect both washout and dilution factors in the Boltzmann equations for the RH neutrino

and lepton asymmetry number densities. A lower limit on MZ′ follows for a given value of

gB−L, if successful leptogenesis is demanded. This is illustrated in Fig. 6.15 for Case 1 with

gB−L = 0.1, n = 26 and ϑR being a point of ERS for strong NO (IO). In addition, we choose

s = 2 in order to maximize the Majorana phase (see Eq. (6.46)) and generate higher ηB as
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Fig. 6.9: Case 2 N3 decay branching ratios for N3 → lαW, (α = e, µ, τ) as a function of t/n
for strong NO and strong IO with M = 250 GeV.

well as mββ, as discussed in next section. The color graded legend indicates the value of

ηB/η
obs
B , where ηB is the baryon asymmetry produced in the model and ηobsB is the observed

baryon asymmetry of the Universe. We are interested in collider production of N through

the decays of Z ′ and hence do not concern ourselves with the mass range MN > MZ′/2

indicated as the white region. The bounds from dilepton channels data studied by ATLAS

collaboration requires MZ′ ≥ 4.12 TeV for gB−L = 0.1, shown as grayed out region in the

plots. As one can see in Fig. 6.15, successful leptogenesis requires MZ′ & 4.3 (5) TeV for

strong NO (IO) in Case 1. For a U(1)X model with leptophobic Z ′ instead, these limits can

be relaxed to a certain extent.

An important feature to be noted in Fig. 6.15, for a given point in the MN −MZ′ plane,
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Fig. 6.10: Case 3a N1,2,3 decay branching ratios for Ni → lαW, (α = e, µ, τ) as a function of
s/n for strong NO, m even, s even with M = 250 GeV.

ηNOB > ηIOB . This can be qualitatively understood using Eqs. (6.102) and (6.103)35,

ηNOB
ηIOB
∼ εNO

εIO
≈ (y2y3 (−y2

2 + y2
3) sinϑL,α)NO

(y1y2 (−y2
2 + y2

1) cosϑL,α)IO
≈ 2∆m2

atm
∆m2

sol
tanϑL,α � 1 (6.118)

Furthermore, the results for ηB from resonant leptogenesis are compared with the contours

of σprod in Fig. 6.15. It turns out that the region of parameter space in Case 1 allowing

successful leptogenesis yields σprod . 0.1 ab for strong NO at the
√
s = 14 TeV LHC,

which is not sufficient for the detection of decays of N3 at LLP searches. In a future 100

TeV collider, σprod is less than 30 ab but for a fairly low background can lead upto ∼ 900

events. For strong IO, the cross sections are smaller than strong NO case by at least an

order of magnitude. However, these conclusions might change in other models, if, e.g., Z ′

is leptophobic. Since the production cross section strongly depends on g4
B−L, the prospects

35 For a comprehensive quantitative comparison of ηB in both cases, efficiency factor for asymmetry pro-
duction needs to be taken into account.
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Fig. 6.11: Case 3b.1 N1,2,3 decay branching ratios for Ni → lαW, (α = e, µ, τ) as a function
of s/n for strong IO, m even, s even with M = 250 GeV.
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Fig. 6.12: lepton number violating (LNV) process pp → Z ′ → NiNi → `±α `
±
β + 2W∓ →

`±α `
±
β + 4j (for α 6= β also violates lepton flavour)

might be improved for heavy Z ′ due to the relaxed constraints on the maximum allowed

value of gB−L. For instance if MZ′ ∼ 6 TeV, the production cross section at 100 TeV collider

can reach nearly upto 18 fb in Case 1 for strong NO.
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Fig. 6.14: Production cross section for same-sign LNV dilepton signals (see Sec. 6.6.2) as
function of RHN mass scale MN at

√
s = 14 TeV LHC for strong NO and strong IO for

MZ′ = 4 TeV.

For Case 2, successful leptogenesis requiresMZ′ & 4.2 (4.3) TeV for strong NO (IO), with

the results for σprod remaining same as in Case 1. For the parameter space in MZ′ −MN

plane, successful leptogenesis occurs only for Case 3b.1 and absent in Case 3a, and requires

MZ′ & 5.2 TeV for strong IO as shown in Fig. 6.17. The region of parameter space in Case

3b.1 allowing successful leptogenesis yields σprod . 0.01 ab for strong IO at the
√
s = 14

TeV LHC, which is not sufficient for the detection of decays of N3 at LLP searches.
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Fig. 6.15: Case 1 : Prediction of the baryon asymmetry ηB relative to the observed value ηobs
B in

the plane of the RH neutrino mass M and the mass MZ′ at gB−L = 0.1, n = 26 with ϑR being a
point of ERS and s set to 2(17) for strong NO (IO) in the left (right) panel. Red points correspond
to |ηB| in the 5σ interval around ηobs

B . The contours show σprod at the
√
s = 14 TeV LHC (solid)

and and
√
s = 100 TeV future collider (dashed) in ab.
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Fig. 6.16: Case 2 : Prediction of the baryon asymmetry ηB relative to the observed value ηobs
B in

the plane of the RH neutrino mass M and the mass MZ′ at gB−L = 0.1, n = 14, s = 1, t = 2 (i.e.
u = 2s − t = 0) with ϑR being a point of ERS for strong NO (IO) in the left (right) panel. Red
points correspond to |ηB| in the 5σ interval around ηobs

B . The contours show σprod at the
√
s = 14

TeV LHC (solid) and and
√
s = 100 TeV future collider (dashed) in ab.

6.7 Correlation of Low Energy and High Energy CP

Phases

In this section, we discuss about neutrinoless double beta (0νββ) decay, which is one of the

most important theorised LNV process to discern about the Majorana nature of the neu-
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Chapter 6. Resonant Leptogenesis in a Model of Discrete Flavor and CP Symmetries
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Fig. 6.17: Case 3a (left panel) and Case 3b.1 (right panel) : Prediction of the baryon asymmetry
ηB relative to the observed value ηobs

B in the plane of the RH neutrino mass M and the mass MZ′

at gB−L = 0.1, n = 17(20), m = 16(10) with ϑR being a point of ERS and s set to 10(2) for strong
NO (IO) in the left (right) panel. Red points correspond to |ηB| in the 5σ interval around ηobs

B .
The contours show σprod at the

√
s = 14 TeV LHC (solid) and and

√
s = 100 TeV future collider

(dashed) in ab.

trinos. The predictions for this yet unobserved process depends explicitly on the Majorana

phases α and β. We focus on various scenarios of lepton mixing for which leptogenesis has

been studied earlier. A nuclear isotope decaying through 0νββ decay would exhibit a half-life

T 0νββ
1/2 of

Γ0νββ = 1
T 0νββ

1/2
= G0ν |M0ν |2mee

me

(6.119)

where G0ν is the phase-space factor, |M0ν |2 is the matrix element squared for this LNV

transition, mee is the effective Majorana neutrino mass and me is the electron mass. The

values of G0ν and |M0ν |2 cannot be measured independently but can be computed based on

the nuclear isotope, whereas mee is expressed only in terms of neutrino masses and lepton

mixing parameters,

mee =
∣∣∣U2

PMNS,11m1 + U2
PMNS,12m2 + U2

PMNS,13m3

∣∣∣ , (6.120)
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Fig. 6.18: Case 1 : Predictions for ηB as a function of effective neutrino mass mββ for all
values of s for n = 26, MN = 0.8(1.1) TeV with MZ′ = 4.9(5.0) TeV for strong NO(IO) in
the left(right) panel. The shaded region indicates the mββ range accessible to future 0νββ
experiments, LEGEND200 (green) and nEXO (red). The blue shaded bar corresponds to 3σ
interval around ηobs

B .

that, according to the parametrization of UPMNS, given in appendix ??, reads

mee =
∣∣∣cos2 θ12 cos2 θ13m1 + sin2 θ12 cos2 θ13 e

iαm2 + sin2 θ13 e
iβm3

∣∣∣ . (6.121)

An upper bound on the effective Majorana neutrino mass has been set by several experiments,

using different nuclear isotopes: GERDA (76Ge) [282], KamLAND-Zen (136Xe) [283], EXO-

200 (136Xe) [284], CUORE-0 (130Te) [285], and NEMO 3 (100Mo among others) [286]. The

strongest bound on mee is given by the KamLAND-Zen experiment

mee < (61− 165) meV at 90% C.L. (6.122)

with the largest uncertainty arising from the one of the associated nuclear matrix element.

6.7.1 Case 1

mNO
ee ≈

1
3

∣∣∣∣√∆m2
sol + 2(−1)k1+k2 sin2 θ e6iφs

√
∆m2

atm

∣∣∣∣ , (6.123)

mIO
ee ≈

1
3
∣∣∣1 + 2(−1)k1 cos2 θ e6iφs

∣∣∣ √∆m2
atm. (6.124)

188



Chapter 6. Resonant Leptogenesis in a Model of Discrete Flavor and CP Symmetries

■

■
■

■

■

■

■

0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
-10

-5

0

5

10

mββ (eV)

η
B
.1
01
0

NO

0

2
10

8

4

6

12

■

■

■

■

■ ■

■
■

■

■

■

■ ■

■

0.015 0.020 0.025 0.030 0.035 0.040 0.045
-10

-5

0

5

10

mββ (eV)

η
B
.1
01
0

nE
X
O

LE
G
E
N
D
20
0

IO

4

8

2

6

10 0

12

Fig. 6.19: Case 2 : Predictions for ηB as a function of effective neutrino mass mββ for all
values of t for u = 2s − t = 0, n = 14, MN = 0.8(1.1) TeV with MZ′ = 4.3(4.3) TeV for
strong NO(IO) in the left(right) panel. The shaded region indicates the mββ range accessible
to future 0νββ experiments, LEGEND200 (green) and nEXO (red). Red points correspond
to |ηB| in the 5σ interval around ηobs

B .

The value of the effective Majorana neutrino mass mββ, accessible in neutrinoless double

beta decay experiments, crucially depends on the choice of the CP symmetry and is in

this scenario considerably restricted [264]. For n = 26, ϑL ≈ 0.18 and strong NO, we get

0.0018 eV . mββ . 0.0040 eV, while for strong IO, we find 0.015 eV . mββ . 0.048 eV, using

the best fit values for ∆m2
sol and ∆m2

atm [287]. For strong IO, most of the admitted values

of mββ can be tested with the proposed experiment LEGEND [288] and all of them can be

explored with nEXO [289], whereas it is challenging to test the values of mββ predicted for

strong NO with current and future experiments. The corresponding values of ηB have been

generated for MN = 0.8(1.1) TeV for strong NO(IO). For NO, the MZ′ is set to 4.9 TeV and

5.0 TeV for the case of IO. These values of MN and MZ′ have been chosen by analyzing red

points in Fig. 6.15. As can be seen in Fig. 6.18, few values of s like s = 2, 4 can explain

experimentally observed ηB for strong NO. Note that while some values of s like s = 17 can

produce correct magnitude of ηB but the baryon asymmetry has a negative sign implying

an anti-matter dominated Universe. It should also be pointed out that since inclusion of Z ′

only contributes to the washout of generated baryon asymmetry, increasing the value of MZ′

is akin to integrating out the Z ′ from the low-energy effective theory which leads to higher

values of ηB.
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Fig. 6.20: Case 3a (left panel) and Case 3b.1 (right panel) : Predictions for ηB as a function of
effective neutrino massmββ for all even values of s for n = 17(20),m = 16(10),MN = 2.8(1.2)
TeV with MZ′ = 5.8(5.6) TeV for strong NO(IO) in the left(right) panel. The shaded region
indicates the mββ range accessible to future 0νββ experiments, LEGEND200 (green) and
nEXO (red). Red points correspond to |ηB| in the 5σ interval around ηobs

B .

6.7.2 Case 2

mNO
ee ≈

1
3

∣∣∣∣∣∣
√

∆m2
sol − 2(−1)k1+k2eiφv

(
cos θ sin φu2 − i sin θ cos φu2

)2√
∆m2

atm

∣∣∣∣∣∣ , (6.125)

mIO
ee ≈

1
3
∣∣∣1 + (−1)k1eiφv(cosφu + cos 2θ − i sin 2θ sinφu)

∣∣∣√∆m2
atm. (6.126)

In this case, we set n = 14, ϑL ≈ 2.96 and u = 2s − t to 0 implying only even values of t

are allowed. For strong NO, we get 0.0020 eV . mββ . 0.0039 eV, while for strong IO, we

find 0.018 eV . mββ . 0.048 eV. The corresponding values of ηB have been generated for

MZ′ = 4.3 TeV in both cases. For NO, the MN is set to 0.8 TeV and 1.1 TeV for the case of

IO. Similar to case 1, these values of MN and MZ′ have been chosen by analyzing red points

in Fig. 6.16. As can be seen in Fig. 6.19, s = 2 can nearly explain experimentally observed

ηB for both orderings.
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6.7.3 Case 3 a and 3b.1

(mNO
ee )3a ≈

1
3

∣∣∣∣sin2 θ
√

∆m2
sol + (−1)k1 cos2 θ

√
∆m2

atm

∣∣∣∣ , (6.127)

(mIO
ee )3b.1 ≈

1
3
∣∣∣√2 sin θ + cos θ e−3iφs

∣∣∣2√∆m2
atm. (6.128)

In case 3a for a given n, only certain values of m ∼ 0, n reproduce the observed neutrino

mixing angles with allowed ordering restricted to NO. Thus, we set n = 17, m = 16 with

ϑL computed separately for each value of s/n. In case 3b for a given n, values of m which

reproduce the observed neutrino mixing angles are m ∼ n/2 with allowed ordering restricted

to IO. Thus, we set n = 20, m = 10 with ϑL = 1.83. For case 3a with strong NO, we get

0.0013 eV . mββ . 0.0042 eV, while for case 3b with strong IO, we find 0.023 eV . mββ .

0.043 eV.

The corresponding values of ηB have been generated for MN = 2.8(1.2) TeV for Case

3a(3b.1). For case 3a, the MZ′ is set to 5.8 TeV and 5.6 TeV for case 3b. Similar to previous

cases, these values ofMN andMZ′ have been chosen by analyzing red points in Fig. 6.17. As

can be seen in Fig. 6.19, s = 2, 8 can explain experimentally observed ηB for case 3b.1 (right

panel) while none of the s values for case 3a (left panel) satisfy the criteria. The maximum

ηB that can be produced in the case of strong NO Case 3a is only around 2.8× 10−11.

6.8 Conclusion

We have presented a type-I seesaw scenario with a flavour and CP symmetry as well as three

RH neutrinos with almost degenerate masses in the few hundred GeV to TeV range. One

of the RH neutrinos can be long-lived enough in order to be tested with the MATHUSLA

detector, whereas the other two can be searched for at the LHC. Requiring ηB to be generated

via resonant leptogenesis constrains the prospects for detecting RH neutrinos at colliders, if

light neutrino masses follow strong IO. In this case, however, future neutrinoless double beta
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decay experiments can fully probe our scenario and thus provide complementary information

to collider experiments.
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Chapter 7

Conclusions

“The answer is out there, Neo. It’s looking for you. And it will

find you if you want it to."
- Trinity, The Matrix (1999)

SM is a highly successful theory which has been tested to great precision in experiments.

It describes the fundamental particle interactions at the energy scales being probed today

∼ 14 TeV. Although we can predict the outcome for most processes in particle physics with

SM, there have been few theoretical and experimental indications that points us towards

physics beyond the SM. One of the major clear indicator is the non-zero neutrino masses,

which leads to flavor eigenstate conversions during their propogation. The SM only features

left-handed neutrinos interacting only through the weak nuclear force, which renders them

massless. Since, this is in conflict with the observations, we need a BSM paradigm to explain

neutrino masses. All proposed extensions of SM feature new particles species or extended

gauge sector, which leads to new interactions for SM neutrinos. These new interactions might

play a pivotal role in the discovery of BSM physics. Hence, it becomes highly crucial to probe

and quantify the effect of these interaction in the current and future planned experiments.

For this endeavour, even theoretical inconsistencies of the SM can help us point in the right

direction.

In the second chapter, we find that in the extensions of the electroweak gauge group which

contribute to the electric charge, there are strong limits on the new gauge couplings from

the requirement that the couplings remain perturbative till the GUT scale. We obtain those
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limits for the minimal versions of U(1)B-L and LRSM models and study their implications

for collider phenomenology.

In the third chapter, we develop a method to extract necessary and sufficient conditions

to ensure vacuum stability in LRSM by using the application of gauge orbit parameters in

two-Higgs fields case. We also show application of copositivity criteria and its usefulness

in simplifying the analysis for vacuum stability. We show that vacuum stability constraints

along with other theoretical constraints (pertubativity, unitarity, scalar mass spectrum) cou-

pled with RGE analysis can help us narrow down the allowed parameter space for the quartic

couplings in the potential of a BSM candidate.

In the fourth chapter, we perform a general field-theoretic study of scalar NSI of neutri-

nos with matter due to a light scalar mediator, which is valid at arbitrary temperature and

density. We find that sizable scalar NSI effects athough precluded in terrestrial experiments

are still possible in the Sun, supernovae and early Universe environments, which may be de-

tected in future solar and supernova neutrino data, as well as in the form of extra relativistic

species (∆Neff) and neutrino self-interactions in cosmological observations.

In the fifth chapter, we probe the consequences of a hidden U(1) sector which interacts

with the SM neutrinos through mixing with the RH neutrinos. While for other SM particles,

it interacts only through loop effects. Assuming the most general Dirac and Majorana mass

matrices, we have derived loop-induced couplings of Z to charged leptons and quarks. We

find that future beam dump experiments like SHiP and FASER together with upgraded

collider searches will have substantially improved sensitivity on such a dark photon. Thus,

we conclude that hidden sectors might not be totally dark as previously expected.

In the sixth chapter, we present a type-I seesaw scenario embedded with a flavour and

CP symmetry. We study the prospects of baryon asymmetry production through resonant

leptogenesis as well as probe the signatures in colliders (LHC, 100TeV future) and long-

lived particle searches such as MATHUSLA. We find that neutrinoless double beta decay

experiments can fully probe our scenario and thus provide complementary information to

194



Chapter 7. Conclusions

collider experiments.

In summary, we discover that well motivated BSM scenarios with new neutrino inter-

actions - general neutrino interactions with scalar, type-I seesaw scenario, hidden sector

models - have experimentally testable consequences. Most of these scenarios though not

UV-complete models, but can provide the necessary bedrock to probe novel signatures and

future observations to help push our understanding into the unknown.
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Appendix A

Two-loop RGEs for the minimal

LRSM

Here we list the β-functions for the gauge couplings gS,L,R,BL, the quartic couplings λ1, 2, 3, 4,

ρ1, 2 and α1, 2, 3 in the scalar potential (2.17) and the Yukawa coupling ht in the minimal

LRSM up to two-loop level, which are obtained by using PyR@TE [93, 94]:36

β(gS) = 1
16π2

[
−7 g3

S

]
+ 1

(16π2)2

[
1
6g

3
S

(
2g2

BL + 3
(
9g2

L + 9g2
R − 52g2

S − 8h2
t

)) ]
, (A.1)

β(gL) = 1
16π2

[
−3 g3

L

]
+ 1

(16π2)2

[
g3
L

(
g2
BL + 3

(
g2
R + 4g2

S − h2
t

)
+ 8g2

L

) ]
, (A.2)

β(gR) = 1
16π2

[
−7

3 g
3
R

]
+ 1

(16π2)2

[
1
3g

3
R

(
27g2

BL + 9g2
L + 80g2

R + 36g2
S − 9h2

t

) ]
, (A.3)

β(gBL) = 1
16π2

[11
3 g3

BL

]
+ 1

(16π2)2

[
1
9g

3
BL

(
122g2

BL + 3
(
9g2

L + 81g2
R + 8g2

S − 2h2
t

)) ]
,(A.4)

36 Note that some of the one-loop coefficients obtained here are different from those in Refs. [113, 114]. In
particular, the coefficient for gR in these references is −5/2, while, with the same matter and scalar fields
that contribute to the running of gR, we found it is −7/3.
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To see how the fermions get their masses in the LRSM, we write down the Yukawa

Lagrangian:

LY = hqQ̄LΦQR + h̃qQ̄LΦ̃QR + h`ψ̄LΦψR + h̃`ψ̄LΦ̃ψR

+fRψT
RCiτ2∆RψR + H.c. (A.17)

where Φ̃ = σ2Φ∗σ2 (σ2 being the second Pauli matrix) and C = iγ2γ0 is the charge con-

jugation operator (γµ being the Dirac matrices). After symmetry breaking, the quark and

charged lepton masses are given by the generic formulasMu = hqκ+ h̃qκ′ for up-type quarks,

Md = hqκ′+ h̃qκ for down-type quarks, and similarly for the charged leptons, where we have

neglected CP violation in the fermion matrices. To account for the SM fermion hierarchy,

we set κ′/κ ' mb/mt ' 1/60, then the top and bottom quark masses are respectively

mt ' hq33κ ' hq33vEW , mb ' hq33κ
′ + h̃q33κ , (A.18)

with hq33 and h̃q33 the (3, 3) elements of the hq and h̃q matrices. It is expected that for the

bottom quark mass h̃q33 � hq33 ∼ O(1). With the first two generation quarks much lighter

than the third generation in the SM, we consider only the RG running of ht = hq33 in the

quark sector, as shown in Eq. (A.16).

In the lepton sector, the tauon mass mτ ' h`33κ
′ + h̃`33κ (h`33 and h̃`33 are respectively

the (3, 3) elements of the h` and h̃` matrices), which is closely related to the Dirac mass

matrix for neutrinos mD = h`κ + h̃`κ′. The elements h`33 and h̃`33 cannot be very large for

TeV-scale RHNs, or we need fine-tuning or large cancellation in fitting the charged lepton

masses and the tiny neutrino masses. Thus we have neglected also the matrices h` and h̃` in

the β-functions above. For the RH scale vR & 10 TeV, as implied by the scalar perturbativity

constraints in Figs. 2.7 and 2.8, if the RHNs are all the TeV-scale, say MN ' 1 TeV, the

Yukawa coupling fR ∼ MN/vR . 0.1, and we do not include it either in the β-functions

above.

203



Appendix B

Limiting cases for scalar NSI

expression

B.1 Limiting cases for scalar NSI expression

In this Appendix we evaluate the self-energy given in Eq. (4.14) corresponding to the tadpole

diagram of Fig. 4.1. We shall evaluate only the fermionic contribution to Eq. (4.14), from

which it is easy to read of the anti-fermionic background contribution as well. We also

provide an exact expression for the medium-dependent neutrino mass, which can be evaluated

numerically.

B.1.1 Case 1: µ > mf � T

Breaking the integration limits and expanding the occupation number as an infinite series,

we can write Eq. (4.14) as follows:

∆mν,αβ = mfyαβyf
2π2m2

φ

µ√µ2 −m2
f +m2

f ln
 mf

µ+
√
µ2 −m2

f


+
∞∑
n=1

(−1)n
[∫ µ

mf

dE en(E−µ)/T
√
E2 −m2

f +
∫ ∞
µ

dE e−n(E−µ)/T
√
E2 −m2

f

])
.

(B.1)
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As T → 0, the first term in the series dominates the result. We know that sum over all

momentum states weighted by occupation number yields the number density. Inverting the

relation to obtain µ, we get:

µ2 = (3π2Nf )
2
3 +m2

f ' (3π2Nf )
2
3 , (B.2)

where in the second relation we assumed µ2 � m2
f . Thus, for µ� mf we have

∆mν,αβ '
yαβyf
m2
φ

mf

2

(3Nf

π

) 2
3
, (B.3)

as given in Eq. (4.16).

B.1.2 Case 2: T � µ < mf

When µ < mf , the expression for Σ of Eq. (4.14) can be written as a weighted series of

modified Bessel function of the second kind:

∆mν,αβ = mfyαβyf
π2m2

φ

∞∑
n=1

(−1)n+1 mfT

n
enµ/TK1

(
nmf

T

)
. (B.4)

For z →∞, we can use the asymptotic form for Kν (z) :

Kν (z) ' e−z
√
π

2z

(
1 + 4ν2 − 1

8z + ...

)
. (B.5)

Due to the exponential suppression, the n = 1 term in the sum will be dominant in Eq. (B.4).

This yields:

∆mν,αβ '
2yfyαβ
m2
φ

(
mfT

2π

) 3
2
e−(mf−µ)/T . (B.6)
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To relate the above function to the number density Nf , we use

Nf = 2
∫ d3k

(2π)3
1

e(E−µ)/T + 1

= 1
π2

∫ ∞
mf

dE
E
√
E2 −m2

f

e(E−µ)/T + 1

= 1
π2

∞∑
n=1

∫ ∞
mf

dE E
√
E2 −m2

f e
−n(E−µ)/T (−1)n+1

= 1
π2

∞∑
n=1

(−1)n+1 m
2
fT

n
enµ/TK2

(
nmf

T

)
. (B.7)

Using Eq. (B.5) in the expression above and retaining only the dominant n = 1 term, we

have

Nf ' 2
(
mfT

2π

) 3
2
e−(mf−µ)/T . (B.8)

Thus, the medium-induced neutrino mass in the limit T � µ < mf evaluates to:

∆mν,αβ '
yfyαβ
m2
φ

Nf , (B.9)

as given in Eq. (4.15).

B.1.3 Case 3: µ < mf � T

For z → 0, the asymptotic form for Kν (z) is:

Kν (z) ' Γ(ν)
2

(
z

2

)−ν
. (B.10)

Using the above in Eq. (B.4), we can write the mass correction as:

∆mν,αβ '
mfyαβyf
π2m2

φ

∞∑
n=1

(−1)n+1 T
2

n2 e
nµ/T (B.11)

= −mfyαβyfT
2

π2m2
φ

Li2(−eµ/T ) , (B.12)
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where Liν(z) is the polylogarithm. In the case |z| → 0, Lin(−ez) ' −(1− 21−n)ζ(n). Using

this one obtains:

∆mν,αβ '
yfyαβmfT

2

12m2
φ

. (B.13)

Again using Eq. (B.10) in Eq. (B.7) and retaining only the n = 1 term we get:

Nf ' −
2T 3

π2 Li3(−eµ/T ) = 3T 3

2π2 ζ(3) . (B.14)

Thus, the scalar NSI expression for µ < mf � T evaluates to:

∆mν,αβ '
yαβyfmf

3m2
φ

(
π2Nf

12 ζ(3)

) 2
3

, (B.15)

as given in Eq. (4.17).

B.2 Calculation of neutrino self-energy in neutrino

background

Here we evaluate the neutrino self-energy arising from a neutrino background as given in

Eq. (4.31). We can rewrite the delta function in Eq. (4.31) as follows:

δ

[(
k + p

2

)2
−m2

φ

]
= 1
|k||p|

δ(cos θ − cos θ0) , (B.16)

where

cos θ0 =
k2

0 − |k|2 + p2

4 −m
2
φ + k0p0

|k||p|
. (B.17)

Using kinematical arguments and | cos θ0| ≤ 1, we find the range for k0 and |k|2:

k0 :
{−p0

2 +mν ,∞
}
, |k|2 :

{
|k|2− , |k|2+

}
(B.18)
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where

|k|2± = 1
4

(
|(p| ±

√
|(p|)2 + 4k0p0 − 4m2

ν + 4k2
0 + p2

)2

. (B.19)

Changing the integration variables to spherical coordinates and integrating over cos θ we

obtain:

Σν
αβ = − yαγyγβ

16π2|p|

∫ kmax
0

kmin
0

dk0

∫ |k|2+
|k|2−

d|k|2
(/k + /p

2 +mν)

k2
0 − |k|2 + p2

4 −
m2
φ

+m2
ν

2

nν

(
k0 + p0

2

)
. (B.20)

This contribution can be decomposed as given in Eq. (4.22). By defining

I =
∫ ∞
mν

dk0 nν(k0) ln

k0p0 − p2 + m2
φ−m

2
ν

2 + |p|
√
k2

0 −m2
ν

k0p0 − p2 + m2
φ
−m2

ν

2 − |p|
√
k2

0 −m2
ν

 , (B.21)

the quantities Ju, Jm, Jp in Eq. (4.24) can be written succinctly as:

Jm = −2mν I , (B.22)

Jp = −(p2 +m2
ν −m2

φ) I − 2|p|
∫ ∞
mν

dk0 nν(k0)
√
k2

0 −m2
ν , (B.23)

Ju = −2
∫ ∞
mν

dk0 k0 nν(k0) ln

k0p0 − p2 + m2
φ−m

2
ν

2 + |p|
√
k2

0 −m2
ν

k0p0 − p2 + m2
φ
−m2

ν

2 − |p|
√
k2

0 −m2
ν

 . (B.24)

These integrals (Jm, Jp, Ju) cannot be evaluated analytically in general. However, they may

be evaluated in the high temperature limit. For this purpose we set mν to zero and assume

the chemical potential µ is small. This condition should be realized when the results are

applied to early Universe. The integrals in this limit are evaluated to be:

Jm ' −2mνT ln2 ln
(

2
√

2|p|T
m2
φ

)
, (B.25)

Jp ' π2T 2|p|
3 + |p|2T ln2 ln

(
2
√

2|p|T
m2
φ

)
, (B.26)

Ju ' π2T 2

6

(
12ζ ′(−1) + ln

(
16π|p|T
m2
φ

))
. (B.27)
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These results have been applied to derive the energy shift for neutrinos and antineutrinos in

Sec. 4.2.2, see Eq. (4.33).

Similar calculation can be performed for the case of thermalized scalar field φ. By defining

:

Iφ =
∫ ∞
mφ

dk0 nφ(k0) ln
k0p0 + p2 + |p|

√
k2

0 −m2
φ

k0p0 + p2 − |p|
√
k2

0 −m2
φ

 , (B.28)

the contribution from thermal φ to Eq. (4.24) can be labeled as Jφm, Jφp , Jφu and given by:

Jφm = −2mν Iφ , (B.29)

Jφp = −p2 Iφ + 2|p|
∫ ∞
mφ

dk0 nφ(k0)
√
k2

0 −m2
φ , (B.30)

Jφu = −2
∫ ∞
mφ

dk0 (k0 + p0) nφ(k0) ln
k0p0 + p2 + |p|

√
k2

0 −m2
φ

k0p0 + p2 − |p|
√
k2

0 −m2
φ

 . (B.31)

These terms should be added to the terms Jp, Ju, Jm of Eq. (4.24) so that they become

Jp + Jφp , Ju + Jφu , Jm + Jφm. The results of the matter-dependent neutrino mass will go

through with these replacements.

B.3 Examples for finite medium effects in relativistic

cases

Here we work out Eq. (4.46) in the relativistic limit for two different density profile distri-

butions.

B.3.1 Constant density distribution

For a relativistic medium like electron background in supernovae, the quantity 〈f̄f〉 in

Eq. (4.46) takes the form:

〈f̄f〉SN = mf

2

(3Nf

π

) 2
3
. (B.32)
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Consider a constant density distribution such that

Nf (r) = Nf (0) Θ(R− r) , (B.33)

where R is the radius of the constant-density spherical body. Plugging the 〈f̄f〉 in Eq. (4.46)

yields a general form for scalar NSI in relativistic media with µ > mf � T :

∆mν,αβ(r) = yαβ yf
mφ r

mf

2

( 3
π

) 2
3
(
e−mφr

∫ r

0
x N

2/3
f sinh (mφ x) dx

+ sinh (mφ r)
∫ ∞
r

x N
2/3
f e−mφ x dx

)
. (B.34)

For number density profile in consideration, the above equation yields:

∆mν,αβ(r) = yαβ yfmf

2mφ r

(
3Nf (0)
π

) 2
3

×


F< (r ≤ R) , (B.35)

F> (r > R) , (B.36)

where

F< = 1− mφR + 1
mφ r

e−mφ R sinh (mφ r) , (B.37)

F> = e−mφ r

mφ r
[mφ R cosh (mφ R)− sinh (mφ R)] . (B.38)

Note that the pre-factor in Eq. (B.34) matches the scalar NSI contribution calculated in

Eq. (4.16) assuming point contact interaction.

For the non-relativistic case our formalism gives the same result derived in Ref. [158] and

given below:

∆mν,αβ(r) = yαβ yf Nf (0)
m2
φ

×


F< (r ≤ R) (B.39)

F> (r > R) (B.40)

where the functions (F<, F>) are identical to the ones in Eqs. (B.37) and (B.38).

210



Appendix B. Limiting cases for scalar NSI expression

B.3.2 Exponential density distribution

Given a relativistic medium (µ > mf � T ) with the following number density profile:

Nf (r) = Nf (0) e−λ r Θ(R− r) (B.41)

where R is the radius of the spherical body in consideration, Eq. (B.34) yields:

∆mν,αβ(r) = yαβ yf
2mφ r

(
3Nf (0)
π

) 2
3

×


G< (r ≤ R) , (B.42)

G> (r > R) , (B.43)

where

G< = 2λmφ

3

e
mφr

(
3m2

φr

2λ −
2λ r

3 − 2
)

+ 2e 2λ r
3

(m2
φ − 4λ2

9 )2

 e−r( 2λ
3 +mφ)

−
(

sinh(mφr)(mφR + 2λ R
3 + 1)

(mφ + 2λ
3 )2

)
e−R( 2λ

3 +mφ) , (B.44)

G> = sinh(mφR)

m2
φ(2λ R

3 − 1)− 4λ2

9 (2λ R
3 + 1)(

m2
φ − 4λ2

9

)2

 e−(mφr+ 2λ R
3 ) + 4λmφ

3
(
m2
φ − 4λ2

9

)2 e
−mφr

+ cosh(mφR)

m3
φR−

4λ2 Rmφ
9 − 4λ mφ

3(
m2
φ − 4λ2

9

)2

 e−(mφr+ 2λ R
3 ) . (B.45)

Similar analyses can be done for other relativistic cases such as for early Universe cosmology

(µ < mf < T ) albeit with a different pre-factor.

For an exponential density distribution with a cut-off in the non-relativistic case we

obtain:

∆mν,αβ(r) = yαβ yf Nf (0)
mφ r

×


K< (r ≤ R) , (B.46)

K> (r > R) , (B.47)

where we can obtain the functions K< and K> by replacing λ → 3λ
2 in G< and G> respec-

tively, i.e., K(λ)>(<) = G(3λ/2)>(<). This expression is in full agreement with the result of
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Ref. [158].

B.4 Calculation of thermal mass for the scalar field

Here we carry out the evaluation of the self-energy diagram of φ to calculate its thermal

mass. As shown in Sec. 4.5, φ can develop a medium-dependent mass, which is given by

Eq. (4.66). This contribution can be written as:

M = M1 +M2 , (B.48)

where

M1 = 4y2
f

∫ d4p

(2π)4

(
k2 − p2

4 +m2
f

)
Γf (k + p/2)

(k − p/2)2 −m2
f

, (B.49)

M2 = 4y2
f

∫ d4p

(2π)4

(
k2 − p2

4 +m2
f

)
Γf (k − p/2)

(k + p/2)2 −m2
f

. (B.50)

Since M1 → M2 with the replacement p → −p, we will focus only on simplifying the

expression forM1.

M1 = 4y2
f

∫ ∞
−p0

2

dk0

∫ d3p

(2π)3

(
k2 − p2

4 +m2
f

)
δ((k + p/2)2 −m2

f )
(k − p/2)2 −m2

f

nf

(
k0 + p0

2

)
. (B.51)

The delta function can be written as

δ

[(
k + p

2

)2
−m2

f

]
= 1
|k||p|

δ(cos θ − cos θ0) , (B.52)

where

cos θ0 =
k2

0 − |k|2 + p2

4 −m
2
f + k0p0

|k||p|
. (B.53)
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Using kinematical arguments and | cos θ0| ≤ 1, we find the range for k0 and |k|2:

k0 :
{−p0

2 +mf ,∞
}
, |k|2 :

{
|k|2− , |k|2+

}
, (B.54)

where

|k|2± = 1
4

(
|(p| ±

√
|(p|)2 + 4k0p0 − 4m2

f + 4k2
0 + p2

)2

. (B.55)

Thus, changing the integration variables to spherical coordinates and integrating over cos θ

we get:

M1 = −
y2
f

4π2|p|

∫ kmax
0

kmin
0

dk0

∫ |k|2+
|k|2−

d|k|2
k2

0 − |k|2 − p2

4 +m2
f

k2
0 − |k|2 + p2

4 +m2
f

nf

(
k0 + p0

2

)
. (B.56)

Integrating the above integral with respect to |k|2 and adding the contribution from both

M1 andM2 yields:

M =
y2
f

π2

∫ ∞
mf

dk0 nf (k0)
√
k2

0 −m2
f

−
y2
f

2π2|p|

(
m2
f −

m2
φ

4

)∫ ∞
mf

dk0 nf (k0) ln


(
|p|
√
k2

0 −m2
f −

m2
φ

2

)2
− k2

0p
2
0(

|p|
√
k2

0 −m2
f + m2

φ

2

)2
− k2

0p
2
0

 . (B.57)

In the limit mφ → 0, the mass correction for scalar reduces to Eq. (4.67).
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Explicit calculation of loop diagrams

C.1 Explicit calculation of loop diagrams

In this appendix, we compute loop diagrams presented in Fig. 5.1 in the mass basis. In

the main text, we use two-component Weyl spinors for conceptual simplicity. However,

technically it is more convenient to convert them to four-component Dirac/Majorana spinors

so that the standard trace technology can be employed. Following the same convention as

Ref. [207], we rewrite Eq. (5.6) as

L ⊃ (GZ)ijZµψiγµLψj + (GR)ijZ ′µψiγ
µ
Lψj +

[
(GW )αiW−

µ ψαγ
µ
Lψi + h.c.

]
, (C.1)

where PL = 1
2(1− γ5), γµL ≡ γµPL, and

ψα =


`L,α

`†R,α

 , ψi ≡

νi

ν†i

 . (C.2)

For simplicity, we symbolically denote the relevant product of neutrino-gauge couplings by

GX (it may stands for different quantities in different diagrams), which will be replaced by

specific couplings when actually used.
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C.1.1 The Z diagram

The diagram is presented in the upper right panel in Fig. 5.1. We first compute the vacuum

polarization part of the diagram (i.e. without the external fermion lines):

iMµν = GX

∫ d4k

(2π)4Tr [ γµPL∆j(q − k) γνPL∆i(k)] , (C.3)

where q is the momentum of Z ′ and

∆i(p) = i

/p−mi

. (C.4)

Taking into account the Lorentz structure of the amplitude, this can be further decomposed

as :

iMµν = − iGX

16π2

[
F1(mi,mj, q

2) qµqν + F2(mi,mj, q
2) gµν

]
, (C.5)

where

F1(mi,mj, q
2) =

5m4
i − 22m2

im
2
j + 5m4

j

9(m2
i −m2

j)2 +
2m4

j(3m2
i −m2

j)
3(m2

i −m2
j)3 log

(
m2
i

m2
j

)

+ 2
3

[
1
ε

+ log
(
µ2

m2
i

)]
+O(q2) , (C.6)

F2(mi,mj, q
2) =

m2
i +m2

j

2 −
m4
j

(m2
i −m2

j)
log

(
m2
i

m2
j

)

+ (m2
i +m2

j)
[

1
ε

+ log
(
µ2

m2
i

)]
+O(q2) . (C.7)

The full amplitude of the Z diagram can be written as

iMZ = −i GX

∫ d4k

(2π)4Tr [ γµPL∆j(q − k) γρPL∆i(k)] ∆ρν
Z (q) u(p1)γνPL/Ru(p2), (C.8)
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where the most general form of ∆µν
Z (q) in Rξ gauges is

∆µν
Z (q) = −i

q2 −m2
Z

[
gµν − qµqν

q2 − ξm2
Z

(1− ξ)
]
. (C.9)

We proceed with the unitarity gauge corresponding to ξ →∞, and the soft-scattering limit

q � mZ :

∆µν
Z (k) ξ→∞, q�mZ−−−−−−−−→ igµν

m2
Z

. (C.10)

By applying the result of Eq. (C.3) to Eq. (C.8), we obtain

iMZ = −i GX

16π2m2
Z

[
F1(mi,mj, q

2) qµqν + F2(mi,mj, q
2) gµν

]
u(p1)γνPL/Ru(p2), (C.11)

where F1 and F2 were already given in Eqs. (C.6) and (C.7), respectively.

C.1.2 The W diagram

The diagram is presented in the upper left panel in Fig. 5.1. The amplitude reads:

iMW = −i GX

∫ d4k

(2π)4u(p1)γνPL∆j(k − p1)γρPL∆i(p2 − k)γµPLu(p2)∆W
µν(k), (C.12)

where

∆i(p) = i

/p−mi

, (C.13)

∆W
µν(k) = −i

k2 −m2
W

[
gµν −

kµkν
k2 − ξm2

W

(1− ξ)
]
. (C.14)

Similar to the Z diagram, we take the unitarity gauge (ξ →∞) and the soft-scattering limit

(q → 0). The quantity in the loop integral is proportional to

∫ d4k

(2π)4γ
νPL∆j(k − p1)γρPL∆i(p2 − k)γµPL∆W

µν(k) ≡ Caγ
ρPL +CbPLp

ρ
1 +CcPLp

ρ
2. (C.15)
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Here (Ca, Cb, Cc) are functions of scalar invariants p2
1 and p2

2. The last two terms are sup-

pressed when imposing the on-shell conditions. Focusing only on the γρPL term, we obtain

iMW = i
GX

16π2F(mi,mj) u(p1)γρPLu(p2), (C.16)

where

F(mi,mj) =
2m2

i + 2m2
j + 3m2

W

2m2
W

+
m4
j log

(
m2
j/m

2
W

)
−m4

i log (m2
i /m

2
W )

(m2
i −m2

j) m2
W

+
m2
i +m2

j

m2
W

[
1
ε

+ log
(
µ2

m2
W

)]
. (C.17)
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Group Theory of ∆(6n2) and

Representation Matrices

D.1 Group Theory of ∆(6 n2) and Representation

Matrices

As discussed in [290], the discrete groups ∆(3n2), n ≥ 2 integer, can be described in terms

of three generators a, c and d fulfilling the relations

a3 = e , cn = e , dn = e , c d = d c , a c a−1 = c−1d−1 , a d a−1 = c (D.1)

with e being the neutral element of the group. The discrete groups ∆(6n2), n ≥ 2 integer,

are obtained by adding a fourth generator b to the set of a, c and d. The relations involving

b are

b2 = e , (a b)2 = e , b c b−1 = d−1 , b d b−1 = c−1 . (D.2)

In the trivial representation 1 all elements of the group are represented by the character 1.

The explicit representation matrices g(3) for a, b, c and d can be chosen in the irreducible,
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faithful, complex three-dimensional representation 3 as

a(3) =


1 0 0

0 ω 0

0 0 ω2

 , b(3) =


1 0 0

0 0 ω2

0 ω 0

 , (D.3)

c(3) = 1
3


1 + 2 cosφn 1− cosφn −

√
3 sinφn 1− cosφn +

√
3 sinφn

1− cosφn +
√

3 sinφn 1 + 2 cosφn 1− cosφn −
√

3 sinφn

1− cosφn −
√

3 sinφn 1− cosφn +
√

3 sinφn 1 + 2 cosφn



with ω = e2πi/3 and φn = 2π
n

and d can be computed via d(3) = a(3)2c(3)a(3).

The existence of an irreducible, in general unfaithful, real three-dimensional representa-

tion 3′ requires that all its characters are real. This cannot be fulfilled in all groups ∆(6n2),

but only, if the index n is even. In this case the form of the representation matrices g(3′) is

a(3′) = a(3) , b(3′) = b(3) , c(3′) = 1
3


−1 2 2

2 −1 2

2 2 −1

 (D.4)

and d(3′) = a(3′)2c(3′)a(3′). Note that the representation matrices g(3′) do not depend on

the index n of the group and thus lead to the same representation for all groups ∆(6n2)

with even n. Indeed, we can observe that the group generated by the representation matrices

g(3′) has 24 elements and thus corresponds to the group ∆(6 · 22) = ∆(24). This group is

isomorphic to the permutation group S4. This representation together with the one generated

by the representation matrices a(3′), c(3′), d(3′) and −b(3′) (i.e. the representation matrix

b(3′) acquires an overall sign, see [261]) are the only real three-dimensional representations

in a generic group ∆(6n2) with even n and 3 - n. To see this we inspect the characters of the

three-dimensional representations. Following [261] we see that the characters χ(3gen) of a

generic irreducible three-dimensional representation 3gen for a certain type of classes is given
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by η−ρ l with η = e2πi/n, ρ = 0, .., n− 1 (labelling this type of class of the group ∆(6n2)) and

l = 1, .., n− 1 (l labels the different pairs of three-dimensional representations). We have to

require that all η−ρ l for a certain representation labeled by l are real. This is ensured, if η−l

is real for all powers ρ with ρ = 0, .., n − 1, meaning η−l should be real itself. Hence, 2 l/n

must be an integer. With the constraint on l, 1 ≤ l ≤ n− 1, we know that there is a single

solution to 2 l/n being an integer, namely l = n/2, i. e. there is a single pair of irreducible

three-dimensional representations that are real. In this case their characters are real for all

classes, as can be explicitly checked with the help of the character table, shown in [261].

D.2 Form of the Representation Matrices for

Residual Symmetries

In the following, we list the form of the representation matrices in the representations 3 and

3′ for the different residual symmetries, used in the discussion of Case 1, Case 2 and Case

3a and Case 3b.1.

In all these cases, the residual flavor symmetry in the charged lepton sector is generated

by a which corresponds to the representation matrices

a(3) =


1 0 0

0 ω 0

0 0 ω2

 . (D.5)

The residual flavor symmetry in the neutrino sector is generated by Z.

In Case 1 and Case 2, Z is chosen as cn/2 which is in the representation 3 of the form

Z(3) = 1
3


−1 2 2

2 −1 2

2 2 −1

 (D.6)
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independent of the index n, while the form of Z = cn/2 in 3′ reads either

Z(3′) =


1 0 0

0 1 0

0 0 1

 for n/2 even (D.7)

or

Z(3′) = 1
3


−1 2 2

2 −1 2

2 2 −1

 = Z(3) for n/2 odd. (D.8)

In Case 3a and Case 3b.1, Z is chosen as b cmdm with m = 0, ...., n− 1. In the represen-

tation 3 it is of the form [9]

Z(m)(3) = 1
3


1 + 2 cos γm ω2

(
1− cos γm +

√
3 sin γm

)
ω
(
1− cos γm −

√
3 sin γm

)
ω
(
1− cos γm +

√
3 sin γm

)
1− cos γm −

√
3 sin γm ω2 (1 + 2 cos γm)

ω2
(
1− cos γm −

√
3 sin γm

)
ω (1 + 2 cos γm) 1− cos γm +

√
3 sin γm


(D.9)

with γm = 2πm/n. For the special values, m = 0, m = n and m = n/2, the form of Z(m)(3)

simplifies and we find

Z(m = 0)(3) = Z(m = n)(3) =


1 0 0

0 0 ω2

0 ω 0

 , (D.10)

and

Z(m = n/2)(3) = 1
3


−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 . (D.11)

Similarly, we can analyze the form of the representation matrix Z(m)(3′). The decisive cri-

terion for this form is whether m is even or odd and otherwise there is no further dependence
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on the parameter m for Z(m)(3′). So, for m being even we get

Z(m even)(3′) =


1 0 0

0 0 ω2

0 ω 0

 , (D.12)

while for m odd we have

Z(m odd)(3′) = 1
3


−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 . (D.13)

We note that Z(m even)(3′) coincides with Z(m = 0)(3) = Z(m = n)(3) as well as

Z(m odd)(3′) coincides with Z(m = n/2)(3).

D.3 CP symmetries and form of CP transformations

The CP symmetries correspond to automorphisms of the flavor group ∆(6n2), see discussion

in [9]. In the present analysis we employ the ones, as used in [264]. These can be obtained

as follows: consider the automorphism

a → a , c → c−1 , d → d−1 and b → b (D.14)

The automorphism in Eq. (D.14) can be represented by X0(1) = 1 in the trivial representa-

tion 1 and by the matrix

X0(3) = X0(3′) =


1 0 0

0 0 1

0 1 0

 (D.15)
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in both three-dimensional representations 3 and 3′. In Case 1, the CP transformation

X(s)(3) has the explicit form a(3)b(3)c(3)d(3)2s X0. The form of the CP transformation

X(s)(3′) in the representation 3′ depends on whether s is even or odd, i. e.

X(s)(3′) =


1 0 0

0 1 0

0 0 1

 for s even , (D.16)

and

X(s)(3′) = 1
3


−1 2 2

2 −1 2

2 2 −1

 for s odd. (D.17)

In Case 2, the form of the CP transformation X(3)(s, t) in the representation 3 can be chosen

as c(3)sd(3)t X0. and is more conveniently written in terms of the variables u = 2s− t and

v = 3t with φu = π u
n

and φv = π v
n
. For the form of the CP transformation X(s, t)(3′)

depends like the latter on whether s and t are even or odd. The explicit form of X(s, t)(3′),

however, does neither contain s nor t are parameters. For s and t even we have

X(s even, t even)(3′) =


1 0 0

0 0 1

0 1 0

 , (D.18)

for s even and t odd we find

X(s even, t odd)(3′) = 1
3


−1 2ω2 2ω

2ω2 2ω −1

2ω −1 2ω2

 , (D.19)
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for s odd and t even we have

X(s odd, t even)(3′) = 1
3


−1 2 2

2 2 −1

2 −1 2

 , (D.20)

and for s and t odd we find

X(s odd, t odd)(3′)(3′) = 1
3


−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 . (D.21)

For Case 3a and Case 3b.1, the form of the CP transformation X(s,m)(3) is given as [9]

X(s)(3) = 1
3 e
−i δs


3 cos 3 δs + i sin 3 δs −2 i ω sin 3 δs −2 i ω2 sin 3 δs

−2 i ω sin 3 δs ω2 (3 cos 3 δs + i sin 3 δs) −2 i sin 3 δs

−2 i ω2 sin 3 δs −2 i sin 3 δs ω (3 cos 3 δs + i sin 3 δs)


(D.22)

with δs = πs/n and ω = e
2πi

3 . The form of the CP transformation X(s)(3′) only depends on

whether s is even or odd. In particular, we can use for s even

X(s even)(3′) =


1 0 0

0 ω2 0

0 0 ω

 , (D.23)

and for s odd

X(s odd)(3′) = 1
3


−1 2ω 2ω2

2ω −ω2 2

2ω2 2 −ω

 , (D.24)
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