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reaction, the intasome binds the target host DNA and uses the 3’ hydroxyls at either end of the viral DNA 

as nucleophiles to cut the host DNA in a staggered fashion, at the same time joining the viral DNA to the 

5’ ends of the cut host DNA69-71. Finally, the intasome dissembles, leaving loose 5’ overhangs on the viral 

DNA and a pair of single-stranded gaps on either side of the integrated viral DNA which are subsequently 

repaired by host cell machinery72. As a result of integration and subsequent gap repair a short segment of 

the target DNA sequence is duplicated, and flanks the integrated provirus. The length of the duplicated 

sequence varies between retroviruses, with HIV-1 generating 5-bp duplications73,74. 

 
 
 
Figure 3: Mechanism of retroviral integration 
IN catalyzes integration in two steps: 3’ 
processing and strand transfer. During 3’ 
processing IN removes a dinucleotide from the 
3’ ends of the viral DNA (red) to expose free 3’ 
hydroxyls. During strand transfer IN inserts the 
3’ ends of the viral DNA into the host DNA 
(gray), leaving gaps in the target DNA and the 
loose 5’ ends of viral DNA. The gaps and loose 
ends are subsequentially repaired by host cell 
machinery. 
 

 

 

 

 

 

 

 

HIV-1 does not integrate randomly but rather preferentially targets transcriptionally active genes 

in the nuclear periphery75-77. The pre-integration complex (PIC) is guided to its integration site by the 

chromatin-associated cellular protein lens epithelium-derived growth factor (LEDGF), also called 

transcriptional coactivator p75, which interacts with IN at its C-terminal integrase-binding domain78-81. 
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The LEDGF/p75 N-terminus consists of a PWWP domain, which binds nucleosomes trimethylated at 

Lys36 of histone 3 (H3K36me3), an epigenetic mark associated with transcriptionally active sites82,83. 

Stringent knockdown or knockout of LEDGF/p75 significantly diminishes HIV-1 titers by specifically 

inhibiting integration, and also changes integration site-selection84-86. Additionally, replacing the PWWP 

domain of LEDGF/p75 with a heterologous chromatin binding domain redirects HIV-1 integration to 

chromatin regions bound by the alternative domain87, further supporting the conclusion that LEDGF/p75 

is responsible for guiding and tethering the HIV-1 PIC to its integration site. 

Integrase strand-transfer inhibitors (INSTIs) prevent the integration reaction by targeting the 

strand transfer step3. These drugs bind to the active site of the IN CCD, displacing the reactive 3’ end of 

the viral DNA and preventing its insertion into the host DNA59. Mutations in the IN active site can confer 

resistance to INSTIs by directly or indirectly inhibiting drug binding, albeit at a viral fitness cost15,88,89. As 

a result, other compensatory mutations which increase the catalytic activity of IN are additionally found 

in patients undergoing INSTI therapy88,89. Emergence of resistance and cross-resistance is commonly 

observed for the two first-generation INSTIs, raltegravir and elvitegravir90. In spite of the improved 

potency and higher barriers for resistance, second-generation inhibitors also do select for viral 

resistance88,91 highlighting the need for antiretroviral compounds that inhibit IN by a different mode of 

action.  
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1.4 Virion morphogenesis 

Virion assembly, release, and maturation is a multistep process involving coordinated protein-protein, 

RNA-RNA, and protein-RNA interactions92. Like all retroviruses, HIV-1 selectively packages two copies 

of full-length vRNA genome93, which are non-covalently dimerized at their 5’ untranslated region (5’ 

UTR). The HIV-1 5’ UTR is highly structured and forms six stem-loops with various roles in 

transcriptional regulation, reverse transcription, dimerization, RNA splicing, and packaging (Fig. 4)94. 

The regions responsible for RNA dimerization and packaging overlap, and contains four stem loop 

structures- SL1, SL2, SL3, and SL4, which are often collectively referred to as the packaging sequence, 

or psi (y). Dimerization of the RNA molecules is required for packaging and infectivity, and is initiated 

by a region termed the dimer initiation site in SL1. This site contains an apical bulge of nine bases, six of 

which form a palindrome, allowing the formation of classic Watson-Crick base pairs with the 

complementary sequence on the other RNA molecule, resulting in a “kissing-loop” structure42,94-96. The 

dimer initiation site is able to mediate dimerization of RNA molecules both in vitro97-100 and in vivo101-103, 

and is a major determinant in partner selection and copackaging101,102. 
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Figure 4: Structure of the HIV-1 RNA 5’ UTR 
The HIV-1 RNA 5’ UTR is highly structured and contains six stem loop structures, including SL1 (dimer 
initiation site or DIS), SL2 (splice donor site or SD), SL3, and SL4, which are collectively referred to as 
the packaging sequence or psi (y). 
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Early biochemical studies have found that the viral Gag polyprotein first interacts with vRNA in 

the cytoplasm as a monomer or low-order multimers, and brings the genome to the plasma membrane104. 

Further Gag molecules are then recruited to the nucleation site and Gag forms high-order multimers 

through interactions mediated by CA-CA interactions with neighboring Gag molecules. Many of these 

findings were later corroborated by total internal reflection fluorescence (TIRF) microscopy studies105-107. 

In these experiments, vRNA was observed reaching the plasma membrane first, followed by recruitment 

of further Gag molecules soon after. In the absence of Gag, vRNA moved rapidly towards and away the 

plasma membrane, suggesting that Gag is responsible for docking vRNA at the plasma membrane. Over 

time the amount of Gag at the nucleation site increased, consistent with many Gag molecules 

polymerizing around the initial Gag-RNA complexes 105-107.  

The main contact point with vRNA within Gag is its NC domain, which is later cleaved to form 

mature NC protein during virion maturation. The RNA 5’ UTR SL2 and SL3 structures appear to be 

recognized by NC, which adopts distinct conformations to bind either stem loop 108,109. In addition to 

recognizing structured elements on the HIV-1 RNA, there is also evidence that Gag recognizes dimerized 

RNA110. While a minimal sequence both necessary and sufficient for the packaging of the HIV-1 genome 

has not been defined, a RNA sequence containing SL1, SL2, and SL3 can both dimerize and bind NC in 

vitro111, and mutations within the 5’ packaging sequence prevent RNA being packaged into viral 

particles112. Likewise, deletion of NC prevents RNA from being packaged and generates particles devoid 

of the HIV-1 genome 113. NC binding to RNA is mediated by two CCHC-type zinc knuckle motifs 114-116, 

and swapping the NC domain of HIV-1 Gag with that of murine leukemia virus (MLV) Gag allows the 

chimeric HIV-1 Gag protein to package the MLV genome117,118, further demonstrating the importance of 

NC in genome packaging. Interestingly, replacing the HIV-1 Gag NC domain with the mouse mammary 

tumor virus (MMTV) NC domain does not change Gag’s preference for packaging HIV-1 RNA119, 

suggesting that NC alone does not account for the specificity of HIV-1 genome packaging. Gag-RNA 

binding is dynamic, and changes as virions assemble, bud, and mature. In the cytosol the Gag NC domain 

preferentially binds structured elements of the HIV-1 genome and displays a preference for G- and U-rich 
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elements on cellular mRNAs, while the matrix domain (MA) selectively binds cellular tRNAs120. In 

contrast, during virion assembly at the plasma membrane NC preferentially binds A-rich sequences on the 

viral genome as well as on cellular mRNAs, while MA dissociates from tRNAs and binds the plasma 

membrane, facilitating budding of the virion120.  

After assembling at the plasma membrane spherical immature virions bud off from the infected 

cell (Fig. 5). In immature particles approximately 2000-4000 Gag molecules121 are radially arranged 

along the inside of the viral envelope, with MA anchored to the membrane at one end and NC, still bound 

to vRNA, projecting towards the interior. Immediately after or during budding, the virion undergoes a 

maturation process in which the viral protease enzyme (PR) cleaves Gag and Gag-Pol at multiple sites in 

a defined sequence to produce independent viral structural and replicative proteins. Gag is cleaved to 

produce MA, CA, NC, p6, and two spacer peptides (SP1 and SP2) while Pol is cleaved to yield the viral 

enzymes, PR, RT, and IN42,43,122. The processed proteins then rearrange to form the structure of the mature 

virion. MA remains associated with the inner side of the viral membrane and forms a discontinuous shell 

immediately under the membrane. Approximately 1000-1500 monomers of CA assemble to form the 

capsid lattice121. In HIV-1 the capsid takes on a characteristic conical shape, and is composed of 

approximately 250 hexameric and 12 pentameric rings of CA that are stabilized by interactions within and 

between subunits123-128. Enclosed inside the viral capsid are the two single-stranded HIV-1 RNA 

molecules bound by NC, and associated with IN and RT, together forming the vRNP42,43,122. 
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Figure 5: Virion morphogenesis and maturation 
(A) The Gag and Gag-Pol polyproteins assemble with vRNA at the plasma membrane, bud from the 
surface of the cell as immature virions, and then undergo a maturation process. (B) During maturation PR 
cleaves Gag and Gag-Pol into independent structural and replicative proteins. 
 

 Thus, virion morphogenesis is a highly complex process that requires coordinated interaction 

between the Gag polyprotein and viral RNA, as well as regulated cleavage of Gag into separate mature 

proteins. While the process has long been thought to be driven solely by Gag, there is emerging evidence 

that IN plays an unexpected role in proper placement of the viral RNA genome inside the capsid during 

maturation. 
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1.5 Integrase in virion maturation 

While integration is the canonical function of IN, early mutagenesis studies indicated that IN may 

also play other roles in virus replication. In particular, a group of IN substitutions referred to as class II IN 

mutations, lead to pleiotropic effects in HIV-1 replication, including defects in particle assembly52,129-141, 

morphogenesis18,52,131,137-139,142,143 and reverse transcription in target cells18,51,52,133,135-137,139,141-159, in some 

cases without impacting IN catalytic function in vitro50,131,132,135,136,145,146,149,151,160,161. When visualized 

using electron microscopy, viral particles of class II IN mutant viruses contain vRNP complexes 

mislocalized outside the capsid lattice 18,52,131,137-139,142,143. A similar phenotype was noted in IN-deleted 

viruses138, again suggesting that IN is necessary for proper virion morphogenesis. Such aberrant viral 

particles are generally referred to as “eccentric particles,” due to the mislocalization of the vRNPs outside 

the capsid lattice, and are morphologically distinct from immature virions (Fig. 6).  

 

Figure 6: Virion morphologies 
Immature viral particles consist of many molecules of Gag and Gag-Pol concentrically arranged along the 
inner leaflet of the viral membrane and bound to vRNA at the NC domain. In mature viral particles the 
vRNA is bound by NC and condensed with RT and IN to form the vRNP, which is enclosed in the conical 
capsid lattice made up of CA monomers. In eccentric viral particles the vRNP is mislocalized outside of 
the capsid. 
 

Surprisingly, it was recently discovered that treatment of virus producing cells with a class of 2-

(quinolin-3-yl) acetic acid derivatives known as allosteric IN inhibitors (ALLINIs) (also called 

noncatalytic IN inhibitors (NCINIs), lens epithelium-derived growth factor (LEDGF)/p75-IN inhibitors 

(LEDGINs), IN-LEDGF/p75 allosteric inhibitors (INLAIs), or multimeric IN inhibitors (MINIs)) results 

in generation of particles with eccentric morphologies142,143,162,163. ALLINIs were originally designed to 
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prevent integration by interfering with IN binding to the cellular cofactor, lens epithelium–derived growth 

factor (LEDGF/p75), important for targeting the viral preintegration complex to the host chromosome164. 

The compounds compete with LEDGF binding to IN by engaging the V-shaped binding pocket created by 

the catalytic core domain of two IN dimers in the intasome complex143,164-169. In addition to preventing IN-

LEDGF interaction, ALLINIs also prevent integration in a LEDGF-independent manner by inducing 

aberrant IN multimerization, locking IN in catalytically inactive multimers which are unable to assemble 

on viral DNA and carry out the integration reaction165,169. However, subsequent studies found that many 

ALLINIs are more potent when added to producer cells, and inhibit viral replication at the later stages of 

the viral life cycle143,162,163,166-168. Specifically, treatment with ALLINIs interferes with virion 

morphogenesis and leads to the generation of eccentric viral particles with vRNPs mislocalized outside 

the capsid lattice, strikingly similar to those generated by class II IN mutations143,162,163,167. Similar to the 

mechanism by which they can prevent integration, ALLINIs are proposed to interfere with virion 

morphogenesis by inducing aberrant IN multimerization, and mutations that confer resistance to ALLINIs 

also prevent ALLINI-induced IN multimerization162,170. Many class II IN mutations also alter IN 

multimerization62,160,171,172, suggesting that proper multimerization is important for IN’s function during 

virion morphogenesis. However, a defined mechanism by which IN ensures viral RNA is correctly 

packaged inside the capsid lattice remained elusive for many years. 

A seminal study in 2016 revealed that IN binds viral genomic RNA in mature virions, and that 

IN-RNA binding is necessary for viral replication18. Crosslinking immunoprecipitation sequencing 

(CLIP-seq), an approach that captures protein-RNA interactions in relevant physiological settings120, was 

instrumental in this discovery and demonstrated that IN binds the HIV-1 genome at discrete sites with a 

distinct binding pattern from that of NC. IN not only binds RNA, but also modulates RNA structure in 

vitro by bridging multiple RNA molecules together18. Several basic residues in the IN CTD- K264, K266, 

and K273- directly interact with RNA, and substitutions at these positions abolish IN-RNA binding in 

virions. Importantly, virus production in the presence of ALLINIs, BI-D and BI-B2, also prevented IN-

RNA binding, likely through aberrant IN multimerization as detailed below18. Finally, inhibiting IN 
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interaction with RNA, either by introducing mutations at the CTD binding site or by ALLINI-treatment, 

leads to the generation of eccentric, non-infectious viral particles with vRNPs mislocalized outside of the 

core18. 

 

1.6 Concluding remarks 

HIV-1 IN is a multifunctional protein with an essential role in at least two stages of the viral life cycle. 

During integration, IN binds both viral and host DNA and orchestrates the insertion of the viral DNA into 

the host chromosome, fulfilling a critical step in retroviral replication. During virion morphogenesis, IN 

binds viral RNA and ensures its proper placement within the capsid. Both integration and virion 

morphogenesis are essential for virus replication, and inhibiting the role of IN in either of these processes 

is an attractive therapeutic strategy. IN’s catalytic function in integration has already been successfully 

targeted by a number of antiretroviral drugs, but viral mutations that confer resistance to these compounds 

have been reported in clinical settings. Importantly, because all clinically approved IN inhibitors target 

the same function of IN, the emergence of resistance mutations can often preclude the use of multiple 

drugs. Therefore, compounds that target the novel role of IN in virion maturation could be valuable 

additions to the current antiretroviral arsenal. The discovery that IN-RNA binding is critical to proper 

placement of viral RNA in virions offers a glimpse into the role IN plays in the late stage of the viral life 

cycle, but much is still unknown about how IN functions in virion morphogenesis. A better understanding 

of this function of IN will illuminate an important step in the life cycle of HIV-1, and perhaps other 

retroviruses, and can inform the development of both new and improved drugs for the treatment of HIV. 
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