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ABSTRACT 

Epigenetic and Signaling Pathways Regulating the Maintenance of CD8 T Cell Identity and 

Function  

by 

Daniel Verbaro 

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2020 

Associate Professor Takeshi Egawa, Chair 

 
 

In response to infection, antigen specific CD4 and CD8 T cells rapidly divide to provide help to 

the immune system and promote cytotoxicity of infected cells, respectively. Through this rapid 

division, CD4 and CD8 T cells maintain silencing of the opposing lineage’s genes, which is 

essential to acutely eliminating pathogens. However, not all pathogens are acutely eliminated even 

when silencing is maintained, and the pathogen persists in the presence of activated CD8 T cells. 

CD8 T cells chronically exposed to antigen are phenotypically different than CD8 T cells acutely 

exposed to antigen, but CD8 T cell still exert control over chronic infections and cancers. Two 

unanswered questions regarding the maintenance CD8 T cell responses are: 1. How do CD8 T 

cells maintain the silencing of alternative lineage genes through division in the periphery, and 2. 

How do these cells maintain viral control through chronic stimulation. To shed light on these 

questions, two specific aims were developed for this thesis.  

The first specific aim was to determine whether the epigenetic factor G9a is required to 

maintain silencing of helper lineage genes in proliferating CD8 T cells. To this end, genetic 



 

 ix 

deletion of G9a in CD8 T cells resulted in de-repression of Cd4 and other helper T-related genes 

during lymphopenia- or tumor antigen-induced proliferation. In response to Listeria 

monocytogenes infection, G9a deficient CD8 T cells maintained silencing of Cd4. These data 

highlight that proliferating CD8 T cells employ multiple gene silencing mechanisms including 

G9a–mediated epigenetic modifications to maintain silencing of T helper-associated genes.  

The second specific aim of this study was to determine how increasing PI3K signaling 

affects the maintenance of a functional CD8 T cell pool during chronic viral stimulation. During 

chronic Lymphocytic choriomeningtis virus (LCMV) infection, overexpression of a constitutively 

active form of PI3K in CD8 T cells caused lethal immunopathology reminiscent of chronic 

infection of PDL1 knockout mice. Inducible overexpression of PI3K after CD8 T cell priming 

depleted the memory- and stem-like CD8 T cell pool, which is required to sustain the CD8 T cell 

response. These data highlight an epistatic relationship between PI3K and PD1 in chronic CD8 T 

cells, and inhibitory signals may protect the chronic CD8 T cell progenitors from depletion 

throughout the course of infection. Future work will determine whether the responsiveness of CD8 

T cells to PI3K signaling or PD1 blockade requires the transcription factor AP4. 
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Chapter 1:  

 

Introduction 
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1.1  T lymphocytes 

 T and B lymphocytes constitute the adaptive immune system, which utilizes an extensive 

repertoire of antigen specific receptors for targeting infectious agents. The antigen specific 

receptor expressed by T lymphocytes is the T cell receptor (TCR), which requires a concomitant 

co-receptor, CD4 or CD8, for recognition of foreign antigens (1, 2). While CD4 expressing T cells 

function to provide help to other immune cells such as macrophages, B cells, and CD8 T cells, 

CD8 expressing T cells mainly function as cytotoxic cells (3).  

1.2  T cell development 

Helper T and cytotoxic T cells are derived from a common precursor cell in the thymus. Early 

thymocyte progenitors lack expression of both co-receptors and are designated as double negative 

(DN) cells (4). During this stage of development, the gene for CD4, Cd4, is actively silenced by 

the transcription factor RUNX1, which binds to a silencer cis-element within the first intron of the 

gene (5). As the developing cell successfully rearranges the b chain locus of the T cell receptor 

(TCRb), expression of RUNX1 is decreased and silencing of Cd4 is relieved (5, 6). The cell 

expresses both co-receptors as the locus for the complementary TCR chain, the a chain, undergoes 

rearrangement (7).  

After successful TCRa rearrangement, the co-receptor double positive (DP) cell is 

subjected to positive selection, whereby the TCR is selected for reactivity to major 

histocompatibility complex (MHC) class I and II with self-peptides expressed by thymic medullary 

cells (8). Whereas MHC class II-selected cells differentiate into helper T cells, MHC class I-

selected cells differentiate into cytotoxic T cells. Developing helper T cells upregulate Zbtb7b 

expression and maintain CD4 expression, while developing cytotoxic T cells upregulate Runx3 
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expression and silence Cd4 (9–12). RUNX3 is an orthologue of RUNX1 and binds to the same 

Cd4 silencer cis-element as RUNX1, and silencing of Cd4 during the transition to the single 

positive CD8 T cell requires RUNX3 and the silencer (5, 12, 13). The Cd4 gene remains silenced 

in peripheral CD8 T cells, however, RUNX3 and the silencer cis-element are not required to 

maintain silencing in peripheral CD8 T cells (14). The factors required to maintain silencing of 

Cd4 and other helper related genes such as Zbtb7b and Cd40lg in peripheral CD8 T cells are not 

completely known, and the maintenance of alternative lineage gene silencing may require other 

transcription factors, epigenetic factors, or chromatin remodeling enzymes. The DNA 

methyltransferases DNMT3a, DNMT3b, and DNMT1 are necessary but not sufficient for Cd4 

silencing in peripheral CD8 T cells (15). How these ubiquitously expressed factors are specifically 

recruited to alternative lineage loci remains to be determined. These DNA modifying factors and 

other epigenetic factors may be recruited by the lineage-specific factor RUNX3 during the 

establishment of heritable silencing of helper lineage genes in CD8 T cells.  

1.3  Acute vs chronic viral infections 

Upon viral infection, naive CD4 and CD8 T cells are activated through TCR and co-stimulatory 

signals from professional antigen presenting cells (APCs) (16). These signals induce metabolic 

and transcriptional reprogramming required for differentiation and rapid proliferation, which 

enriches rare antigen specific T cells on the order of tens to hundreds of cells to millions of cells 

(17). The process of metabolic and transcriptional reprogramming requires the transcription factor 

c-Myc, which globally amplifies gene transcription (18–20). This factor is not sustained till the 

completion of amplification process (18, 21), and another transcription factor AP4 is required to 

sustain the transcriptional and metabolic program initiated by c-Myc (22).  
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The clonally expanding T cells compete with the replicating virus, which results in one of 

three outcomes: 1. Death of the host, 2. Acute elimination of the pathogen, or 3. Establishment of 

persistent or chronic infection (23). When the host survives, the immune system may acutely 

eliminate the pathogen as observed in the mouse models for acute infections Lymphocytic 

choriomeningitis virus (LCMV) Armstrong (Arm), or low dose Docile strain (24, 25). After 

elimination, the responding antigen specific T cell population contracts leaving behind a fraction 

of previously activated cells (26, 27). The cells that persist through contraction provide rapid 

protection to subsequent infection of the same pathogen, which is termed a memory response (28–

30).  

 Not all pathogens are acutely eliminated from surviving hosts, and some pathogens may 

persist for months, years, or the lifespan of the host as observed in the mouse models for chronic 

infection LCMV clone 13 (c13), T1b, or high dose Docile (25, 31, 32). The utility of the LCMV 

mouse model of infection is the ability to measure T cell responses with the same TCR specificities 

to different viral outcomes (26). LCMV-specific CD8 T cells are phenotypically different between 

acute and chronic infections. Although the expression of TCR, CD3, and CD8 are similar between 

acute and chronic CD8 T cells, chronic CD8 T cells expand and persist at lower absolute numbers 

than acute CD8 T cells (33, 34). Compared to acute CD8 T cells, chronic CD8 T cells exhibit a 

decrease in vitro killing capacity, a decrease in production of effector cytokines such as IFNg and 

TNFa, and an increased in expression of inhibitory receptors such as PD1, TIM3, LAG3, 2B4, 

and CD160 (32–37). These differences in the CD8 T cell phenotype between acute and chronic 

infections are attributed to an immune tolerance mechanism to overwhelming chronic infections 

known as T cell exhaustion (33, 34). Whether viral persistence causes the phenotypic changes to 

the CD8 T cell or the phenotypic changes to the CD8 T cell allow the virus to persist is not known. 
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The latter is not favored because chronic CD8 T cells after adoptive transfer into T cell deficient 

mice are sufficient to clear acute LCMV-Armstrong infection (38). 

1.4  PD1 signaling in CD8 T cells 

The mechanism that causes the CD8 T cell phenotypic changes in chronic infection compared to 

acute infection remains elusive. Candidate genes required in the development of these phenotypic 

changes were determined by transcriptional profiling of acute and chronic CD8 T cells from 

LCMV infections. One of the most differentially expressed inhibitory receptors is Pdcd1, which 

encodes programmed cell death protein 1 (PD1) (35). PD1 is structurally categorized in the same 

family of receptors as the costimulatory receptor CD28 (39). Instead of containing cytoplasmic 

tail motifs associated with activating signaling pathways, PD1 contains an immunoreceptor 

tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine switch motif (ITSM), 

which dampen or inhibit signaling pathways (40, 41). Beyond the structural differences between 

PD1 and CD28, these receptors exhibit different expression kinetics and ligands. CD28 is 

constitutively expressed by naive and activated T cells, but PD1 is only expressed by activated T 

cells, limiting inhibition to activated T cell states (42–44). Rather than binding to the CD28 ligands, 

CD80 and CD86, PD1 binds to PDL1, which is expressed by hematopoietic and non-hematopoietic 

cells, and PDL2, which is restricted to the hematopoietic compartment (45–47).  

To study the role of PD1 in the development and maintenance of T cell exhaustion, PD1 

signals were inhibited by antibody blockade or by genetic deletion of Cd274, the gene encoding 

PDL1, during LCMV clone 13. Mice deficient for Cd274 succumb to lethal immunopathology 

after infection with LCMV-c13 (35), which caused difficulty for testing the requirement of PD1 

signals in the development of exhaustion. However, blocking PD1 signals in vivo after T cell 

priming was not sufficient to cause lethal immunopathology, and antagonistic antibodies to PD1-
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PDL1 interaction increased the numbers of antigen-specific CD8 T cells that produced effector 

cytokines (35). These changes correlated with an increased rate of viral elimination from the blood, 

spleen, and liver. These results highlighted the benefit of blocking PD1 inhibitory signals in CD8 

T cells, which led to exploring the effects of blocking other inhibitory receptors separately and in 

combination during chronic infections and cancers (48–51). The requirement of PD1 in the 

development of T cell exhaustion was answered by utilizing adoptive transfer of small numbers of 

PD1 deficient LCMV-specific CD8 T cells into wildtype mice and subsequently infecting with 

chronic LCMV (52). PD1 deficient CD8 T cells expanded to numbers much greater than wildtype 

CD8 T cells. However, PD1-deficient CD8 T cells produced less IFNg and TNFa and expressed 

more inhibitory receptors (52). These data implicated that PD1 is not required for the development 

of exhaustion, and unexpectedly, PD1 signals in CD8 T cells reduced the severity of exhaustion.  

 PD1 suppresses proliferation and exhaustion of CD8 T cells during chronic viral infection, 

but how PD1 signals to mediate these effects remains to be completely elucidated. Since PD1 

contains an ITIM and an ITSM, PD1 association with the phosphatases SHP-1, SHP-2 or SHIP 

could mediate inhibition of TCR and co-stimulatory signaling. By utilizing FcgR and PD1 tail 

chimeric receptors, the co-ligation of BCR and the chimeric receptor resulted in preferential 

association with SHP-2 over SHP-1 or SHIP (53). However, using extracellular CD28 receptor 

and PD1 tail chimeric receptors in human CD4 T cells, PD1 associated with SHP-2 and SHP-1 

(54). In both chimeric receptor expressing cells, mutations of the ITSM not the ITIM caused non-

responsiveness to chimeric receptor ligation implicating the inhibitory activity through the ITSM 

not the ITIM.  

More recently, in vitro reconstitution assays determined PD1 preferentially associated with 

SHP-2 compared to SHIP-1 or SHP-1 when measured by Forster resonance energy transfer 
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(FRET) (55). In contrast to in vitro studies, SHP-2 is not required for the development of 

exhaustion and is dispensable for PD1 blockade responsiveness (56). SHP-2 deficient CD8 T cells 

outcompeted wildtype CD8 T cells, which suggests that part of the proliferative effect of PD1 

blockade is mediated by decreased SHP-2 activity (56). These data suggest that other phosphatases 

may compensate for the loss of SHP-2 in CD8 T cells during chronic infection.  

1.5  Sustaining CD8 T cell responses to chronic viral infections 

The responsiveness to PD1 blockade is not equivalent in all chronic CD8 T cells because 

responsiveness correlates with the expression level of PD1. In response to PD1 blockade, chronic 

CD8 T cells expressing intermediate levels of PD1 (PD1int) expand significantly more than cells 

expressing high levels of PD1 (PD1Hi) (57). These data highlight that a subset of chronic CD8 T 

cells are responsive to PD1 blockade.  

  The PD1 responsive and PD1 nonresponsive T cells subsets represent transcriptionally 

distinct CD8 T cell populations. PD1int CD8 T cells express higher levels of the transcription factor 

T-BET than PD1Hi CD8 T cells whereas PD1Hi CD8 T cells express higher levels of the 

transcription factor EOMESODERMIN (Eomes) than PD1int CD8 T cells (58). Through a series 

of transfer experiments, reporters, and knockouts, a progenitor-progeny relationship was 

established in that CD8 T cell progenitors expressing high levels of T-BET give rise to terminally 

differentiated cells expressing high levels of EOMES (58).  

 Recently, an alternative progenitor-progeny relationship of PD1 responsive and 

nonresponsive cells was defined on the expression of the transcription factors TCF-1 and BLIMP-

1 (Figure 1.1). Since the transcription factor TCF-1 is required by CD8 T cells to persist after 

acute infection and proliferate in response to secondary infection (59), TCF-1 was implicated in 
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sustain chronic CD8 T cell responses. Indeed, TCF-1 is required to maintain the CD8 T cell 

numbers throughout the course of chronic viral infection (60–64). The cells expressing TCF-1 give 

rise to BLIMP-1 expressing cells, and TCF-1+ cells expand more greatly than BLIMP-1+ cells in 

response to PD1 blockade (60, 61, 64). These results highlight that transcriptionally distinct 

subsets of chronic CD8 T cells exist in the chronically infected mouse, and these subsets have 

different proliferative capacities in response to PD1 blockade. 

1.6  IL21R signaling in CD8 T cells 

The signals that are required for generating and maintaining the progenitor CD8 T cell subset 

during chronic infections are not completely known. Signals such as IL21R signals are required to 

sustain the chronic CD8 T cell response, and mice deficient for IL21R or IL21 are unable to clear 

chronic LCMV from the blood or spleen as seen in wildtype mice (65–67). Multiple immune cell 

types might require IL21R signals to aid in the clearance of chronic infection, but CD8 T cells 

deficient for IL21R are not able to persist at similar numbers as wildtype CD8 T cells as seen with 

TCF-1 knockout CD8 T cells. These data suggest that IL21R knockout CD8 T cells may provide 

signals for generating or replenishing the TCF-1 population. Alternatively, IL21R signals may be 

required by the BLIMP-1 population for survival or proliferation. Therefore, the mechanism by 

which IL21R signals sustain the CD8 T cell population during chronic infection should be 

determined. 
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Figure 1.1 A schematic of CD8 T cell differentiation in response to chronic infection. 

In response to chronic viral infections, antigen specific CD8 T cells clonally expand, and two 
distinct activated CD8 T cell populations exist in the host. One population expresses the 
transcription factor TCF-1 and proliferates in response to PD1 blockade. The other population 
expresses the transcription factor BLIMP-1 and responds poorly to PD1 blockade.  
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Chapter 2:  
The histone methyltransferase G9a is required for silencing of helper T lineage-associated 

genes in proliferating CD8 T cells 

The contents of this chapter have been published in Journal of Immunology. The full citation is: 

Verbaro, D.J. N. Sakurai, B. Kim, Y. Shinkai, and T. Egawa. 2018. Journal of Immunology. 200: 

3891-3896.  
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2.1  Abstract 

Helper versus cytotoxic T lineage decision in the thymus has been studied as a model for silencing 

of alternative lineage genes. While the transcription factor RUNX3 is required for the initiation of 

Cd4 silencing in developing CD8 T cells, it is unknown how silencing of Cd4 and other helper T 

lineage genes is maintained. We show that the histone methyltransferase G9a is necessary for 

silencing of helper T lineage genes in proliferating mouse CD8 T cells. Despite normal initial Cd4 

downregulation, G9a-deficient CD8 T cells de-repress Cd4 and other helper lineage genes during 

repeated division in lymphopenia or in response to tumor Ag. However, G9a was dispensable for 

continued silencing of those genes in CD8 T cells that respond to infection by L. monocytogenes. 

These results demonstrate that G9a facilitates maintenance of cellular identity of CD8 T cells 

during cell division, which is further reinforced by inflammatory signals. 
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2.2  Introduction 

During a binary fate decision, genes related to the opposing lineage are heritably silenced 

(1, 2). This silencing is achieved through the constitutive activity of transcription factors involved 

in the lineage determining process or by recruitment of epigenetic machinery in a locus-specific 

manner, presumably by those lineage-specific transcription factors. The differentiation of the 

common thymocyte precursor to the helper or the cytotoxic T cell lineage in the thymus has been 

studied to understand the requirements for transcription factors and epigenetic gene regulation for 

stable lineage decisions (1-9). CD4+ CD8+ double positive (DP) thymocytes are subjected to 

positive selection of rearranged TCRab by self-peptides presented on MHC class II or I (MHC-II 

or -I), and differentiate into cells in the helper or cytotoxic T lineages, respectively. MHC-I-

selected thymocytes express the transcription factor RUNX3 that establishes the silencing of 

helper T lineage genes, including Cd4 and Zbtb7b (10-14). 

However, it is poorly understood how helper T lineage-associated genes are heritably 

silenced in mature cytotoxic T cells. During thymocyte development, Cd4 is transiently repressed 

by RUNX1, an orthologue of RUNX3, in CD4–
 CD8– double negative (DN) thymocytes via direct 

binding to the silencer cis-element in the locus (11). This repression is subsequently reversed upon 

selection of a successfully rearranged Tcrb locus (15). Cd4 is expressed uniformly in DP 

thymocytes that give rise to helper and cytotoxic T lineage cells after positive selection. While 

Cd4 continues to be expressed in helper lineage T cells, CD8+ cytotoxic T cells terminate Cd4 

transcription by upregulating RUNX3, which binds the identical cis-element as RUNX1 (11). 

Deletion of the silencer element or disrupting RUNX binding sites in the silencer results in 

continued Cd4 expression in CD8 T cells (16, 17). However, deletion of the silencer or Runx3 in 

differentiated CD8 T cells does not reactivate Cd4, indicating that the initial repression but not 
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maintenance of Cd4 silencing requires RUNX3 (16, 18). RUNX3 may therefore recruit epigenetic 

modifications to the Cd4 locus and loci encoding helper-lineage genes, which are maintained 

independently of RUNX3. Since the Cd4 locus is only reversibly repressed in DN thymocytes but 

irreversibly silenced in CD8 T cells, we hypothesized that the irreversible silencing is mediated by 

epigenetic modifiers that specifically interact with RUNX3 but not RUNX1. 

In this study, we identified the histone methyltransferase (HMT) G9a as an epigenetic modifier 

that preferentially interacts with RUNX3 to RUNX1 and is necessary for continued silencing of 

helper lineage genes in dividing CD8 T cells under non-inflammatory conditions. G9a-deficiency 

resulted in de-repression of several genes, which are otherwise expressed only in CD4 T cells, 

while it was compensated for by the inflammatory cytokine IL-12. These results suggest that G9a 

and inflammatory cues cooperatively maintain the identity of CD8 T cells during their division. 
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2.3  Results and Discussion 

G9a forms a complex with RUNX3 

To identify candidate epigenetic modifiers that are recruited by RUNX3, we analyzed RUNX1- 

and RUNX3-intractomes in 1200M thymoma cells, which have active Cd4 silencing machinery 

(15). Among 71 DNA-binding proteins and epigenetic modifiers identified in RUNX1- or 

RUNX3-interactomes, all three components of the G9a HMT complex, G9a, GLP and WIZ as well 

a known G9a-interacting transcription factor CUX1 (31) were found predominantly in the 

RUNX3-interactome (Fig. 2.1A, 2.1B). Preferential interaction between G9a and RUNX3 

compared to RUNX1 was confirmed by co-immunoprecipitation against FLAG-G9a and 

immunoblotting with anti-pan-RUNX Ab that detects both RUNX1 and RUNX3 (Fig. 2.1C). 

These data show that G9a and RUNX3 form a complex, which may deliver the HMT activity to 

Cd4 and other helper lineage-related genes repressed by RUNX3 in developing CD8 T cells. 

G9a is required for silencing of helper lineage-associated genes in proliferating CD8 T cells 

in vivo under non-inflammatory conditions 

To define the role of G9a in CD8 T cells, we conditionally inactivated Ehmt2, encoding G9a, at 

the DP stage of thymocyte development using Cd4-cre. Ehmt2 mRNA was barely detectable in 

CD8+ mature thymocytes from Ehmt2F/F Cd4-cre mice (data not shown) (referred to as Ehmt2–/– 

CD8 T cells hereafter). As previously reported using pLck-cre (32), numbers and frequencies of 

total thymocytes and CD4+ and CD8+ splenic T cells were comparable between Ehmt2–/– and 

control Ehmt2+/+ mice (data not shown). Different from the reported phenotype in Runx3–/– 

thymocytes (11, 14), CD4 was normally downregulated in mature CD8 thymocytes, and was not 

expressed in splenic naive or memory CD8 T cells under steady state conditions (data not shown).  
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To determine whether G9a is required for maintaining Cd4 silencing during cell division, we 

adoptively transferred Ehmt2–/– or control Ehmt2+/+ naive CD4– CD8+ T cells expressing the OT-I 

TCR transgene into Tcrb–/–Tcrd–/– mice, in which donor-derived CD8 T cells divide under non-

inflammatory conditions. By four weeks after transfer, both Ehmt2–/– CD8 T cells expanded at 

similar rates if not faster than control Ehmt2+/+ cells as determined by CFSE, and repopulated in 

the recipients’ peripheral blood (Fig. 2.2A, data not shown). While Ehmt2+/+ CD8 T cells remained 

CD4-negative, approximately 30% of Ehmt2–/– CD8 T cells that had diluted CFSE beyond the 

limit of detection upregulated CD4 (Fig. 2.2A, 2.2B). Since a similar result was observed with 

transferred Va2+ CD8 T cells from Ehmt2F/F CD8-cre OT-I mice, in which Ehmt2 was deleted 

after positive selection (Fig. 2.2B), it is unlikely that Cd4 de-repression is secondary to deregulated 

thymocyte selection in the absence of G9a. 

To determine whether Ehmt2–/– CD8 T cells de-repressed additional helper lineage genes, 

global gene expression in CD4+ CD8+ and CD4– CD8+ Ehmt2–/– T cells as well as control Ehmt2+/+ 

CD8+ T cells 4 weeks after transfer was profiled by RNA-seq. Approximately 1,100 genes were 

differentially expressed by greater than 2-fold with the majority (637 genes) being upregulated in 

Ehmt2–/– CD8 T cells compared to Ehmt2+/+ CD8 T cells (Fig. 2.2C, 2.2D). Among the genes that 

were differentially expressed between CD4 and CD8 memory T cells in the Immgen datasets 

(>1.8-fold difference), 92 genes that are more highly expressed in CD4 T cells, including Cd4, 

Foxp3, Cd40lg, Rorc, Rora, Zbtb7b and Il21, were de-repressed in the Ehmt2–/– CD4+ CD8+ T 

cells (Fig. 2.2E). We also observed downregulation of 18 genes that are more highly expressed in 

CD8 T cells in the absence of G9a (Fig. 2.2E), suggesting that G9a also contributes to turning-on 

genes in CD8 T cells directly or indirectly. A similar change in gene expression, albeit to lesser 

extent, was also observed in Ehmt2–/– CD4– CD8+ T cells in which we have confirmed Ehmt2 
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deletion was also nearly complete (Fig. 2.2E, data not shown). In Ehmt2–/– CD8 T cells, the level 

of total H3K9me2 was substantially reduced whereas that of H3K9me3 was unchanged (Fig. 

2.3A). In addition, we did not observe a reduction in H3K9me3 deposition near transcriptional 

start sites of the genes that were upregulated in CD4+
 CD8+ Ehmt2–/– T cells compared to Ehmt2+/+ 

CD8 T cells (Fig. 2.3B). Cd4 upregulation was also observed in Ehmt2–/– OT-I T cells in response 

to E.G7-OVA tumor cells transplanted to WT mice (Fig. 2.2F, 2.2G). These results suggest that 

de-repression of helper-lineage genes in proliferating Ehmt2–/– CD8 T cells occurs also in 

lymphocyte-repleted mice although it may not continue once they slow down or stop division, 

such as memory CD8 T cells under steady-state conditions. Collectively, these data indicate that 

the G9a is required for continued silencing of a subset of helper lineage-associated genes in 

dividing CD8 T cells, which appears independent of H3K9me3. Since the G9a/GLP complex 

recruits PRC2 to its repressive target loci in embryonic stem cells (33), these helper lineage-

associated genes may be kept silenced through the G9a-mediated recruitment of PRC2 activity. 

G9a is dispensable for silencing of helper lineage genes in the presence of strong TCR or IL-

12R signals 

To determine whether G9a is required for continued Cd4 silencing in dividing CD8 T cells in 

response to infection, Ehmt2–/– or Ehmt2+/+ OT-I T cells (Thy1.2/CD45.2) mixed with internal 

control congenic OT-I T cells (Thy1.1/CD45.2) were transferred into CD45.1 WT mice, which 

were subsequently infected with Lm-OVA. In contrast to lymphopenia- and tumor-driven 

proliferation, Ehmt2–/– OT-I T cells remained CD4-negative (Fig. 2.4A). In addition, we observed 

comparable expansion and the ability to produce IFN-g of Ehmt2–/– and Ehmt2+/+ OT-I T cells 

relative to control OT-I T cells (Fig. 2.4B, data not shown). These results indicate that G9a is 
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dispensable for CD8 T cells under inflammatory conditions to maintain Cd4 silencing and express 

IFN-g, which is also RUNX3-dependent (34). 

Distinct dependency of silencing of helper lineage genes on G9a of CD8 T cells between 

inflammatory and non-inflammatory conditions suggests that cell extrinsic signals through TCR, 

co-stimulatory molecules or cytokine receptors engage compensatory pathways that reinforce gene 

silencing. To define such cell-extrinsic determinants, we first cultured naive polyclonal CD8 T 

cells with varying concentrations of anti-CD3 and anti-CD28 Abs and determined whether distinct 

intensities of signaling through TCR or CD28 alter Cd4 de-repression in Ehmt2–/– CD8 T cells. As 

seen in the lymphopenic condition, a substantial fraction of Ehmt2–/– CD8 T cells de-repressed 

CD4 when they were cultured with low anti-CD3 and high anti-CD28 Ab concentrations 

(“CD28Hi” condition), whereas CD4 was barely expressed in Ehmt2+/+ CD8 T cells (Fig. 2.4C-E). 

Ehmt2–/– CD8 T cells also upregulated additional helper lineage-related genes, such as Il21 and 

Rorc (Fig. 2.4F). In contrast, when Ehmt2–/– CD8 T cells were stimulated with high anti-CD3 and 

low anti-CD28 Ab concentrations (“CD28Lo” condition), de-repression of the helper lineage genes 

was markedly reduced (Fig. 2.4D-F).  

Furthermore, Cd4 de-repression in Ehmt2–/– CD8 T cells cultured in the CD28Hi condition 

was significantly inhibited by the cytokine IL-12 (Fig. 2.5A, 2.5B). We detected elevated 

H3K9me2 in Ehmt2–/– CD8 T cells cultured in the presence of IL-12 compared to those without 

IL-12 (Fig. 2.5C, 2.5D). The IL-12 treatment upregulated the H3K9me3 demethylase Kdm4c as 

well as GLP/Ehmt1 by 3-fold (Fig 2.5E), thus possibly maintaining H3K9me2-dependent gene 

regulation by increasing demethylation of H3K9me3 by KDM4C or by elevating residual HMT 

activity of GLP. These results suggest that the inflammation-dependent compensation may 
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reinforce stable lineage-specific gene expression signature in CD8 T cells that proliferate in 

response to infection.  

Our study has demonstrated that G9a is required for maintaining silencing of multiple 

helper lineage-associated genes, such as Cd4, in dividing CD8 T cells in response to lymphopenia 

or tumor Ag. In developing CD8 T cells Cd4 is shut-off by RUNX3 in a G9a-independent manner. 

However, the continued silenced state, which is independent of RUNX3, is not maintained in the 

absence of G9a, suggesting that transient RUNX3-dependent recruitment of G9a establishes the 

heritably silenced states of the locus in cooperation with other factors, such as additional 

methyltransferases. Alternatively, G9a is constitutively recruited to the Cd4 locus initially by 

RUNX3 and subsequently by a RUNX3-independent mechanism. All the G9a-dependent 

repression targets are not RUNX3 targets (18, 34), and Ehmt2–/– CD8 T cells are also able to 

proliferate and express IFN-g, which is dependent on RUNX3. Therefore, there are multiple 

distinct RUNX3- or G9a-containing complexes that regulate gene activation or repression in CD8 

T cells, while Cd4 silencing and repression of some of TFH-signature genes(18), including Icos, 

Cxcr5, and Il21, appear to be dependent on a complex containing both.  

The absence of Cd4 de-repression in CD8 T cells responding to Lm-OVA infection may be 

explained by high levels of Ag and IL-12 both of which compensate for G9a-deficiency in CD8 

T cells in vitro. Although the exact mechanism is unknown, our data suggest that IL-12R 

signaling alters the balance between histone methylation and demethylation to increase the levels 

of H3K9me2 independent of G9a, possibly facilitating heritable gene silencing in dividing CD8 

T cells through the compensatory pathways. CD8 T cells may thus engage multiple epigenetic 

pathways in a context-dependent manner to shape their gene expression signature. 
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2.4  Materials and methods 

Mice 

C57BL/6N (B6N) and B6-CD45.1 mice were purchased from Charles River. OT-I mice (19) were 

purchased from Taconic. Cd4-cre (10) and CD8-cre (E8I-cre) (20) mice were obtained from D. 

Littman (New York University). Ehmt2-flox mice were previously described (21). All mice were 

generated in or have been backcrossed more than 8 times to B6. Unless otherwise specified, 

littermate cre+ Ehmt2+/+ or cre– Ehmt2F/F were used as control. All mice were maintained in the 

specific pathogen-free facility at Washington University School of Medicine. All experiments 

were conducted following a protocol approved by the Washington University Animal Studies 

Committee. 

Co-immunoprecipitation 

1200M and AKR1 cell lines were transduced with MSCV-based retrovirus as described (22). For 

interactome analyses, 1200M cells in which endogenous Runx1 expression had been knocked 

down (22), were transduced with FLAG-HA-tagged RUNX1 or RUNX3. RUNX1- and RUNX3-

interacting proteins in nuclear extract were immunoprecipitated with anti-FLAG beads (M2, 

Sigma), eluted with 3xFLAG peptide (GenScript), and analyzed by mass spectrometry at the 

Taplin Mass Spectrometry Facility at Harvard University. For analytical immunoprecipitation, 

nuclear proteins were extracted from AKR1 cells that were transduced with RUNX1, RUNX3, 

RUNX1 and FLAG-tagged G9a retrovirus (FLAG-G9a), or RUNX3 and FLAG-G9a. Immune 

complexes containing FLAG-tagged protein were precipitated with anti-FLAG, followed by 

immunoblotting using anti-FLAG and anti-pan-RUNX Abs (12). 

Flow cytometry 
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The following mAbs were purchased from Biolegend: APC conjugated anti-CD62L (MEL-14); 

APC-Cy7 conjugated CD45.2 (104); FITC conjugated anti-CD62L (MEL-14), -Va2 (B20.1); 

Pacific Blue conjugated anti-CD44 (IM7); PE conjugated anti-Vb5 (MR9-4), -IFN-g (XMG1.2); 

PE-Cy7 conjugated anti-CD8a (53.6.7); PerCP-Cy5.5 conjugated anti-CD4 (GK1.5), -CD90.1 

(OX-7). Cells were analyzed with an LSR II or an LSR Fortessa or sorted with a FACS Aria II 

(BD). Dead cells were excluded by staining with DAPI (Sigma) or Aqua Live/Dead (Life 

Technologies). Data were analyzed on FlowJo software (TreeStar). 

T cell transfer, tumor innoculation, and L. monocytogenes (Lm) infection 

Naive CD8 cells from OT-I TCR transgenic mice were sorted by flow cytometry as Va2+ Vb5+ 

CD62L+ CD44lo/– CD4– CD8+ cells. 2 x 105 cells were transferred i.v. to Tcrb–/–Tcrd–/– mice. 

PBMCs and splenocytes were isolated from the recipient mice 4 weeks after transfer and analyzed 

for surface marker and gene expression. For experiments with transplanted tumors, 1 x 106 E.G7-

OVA (ATCC #CRL-2113) cells were injected s.c. in the flank of B6-CD45.1 mice. 5 days later, 1 

x 106 OT-I cells were transferred i.v. to the tumor bearing mice followed by analysis of T cells 

collected from the draining lymph node 7 days later. For Lm infection, 5 x 103 OT-I cells were 

transferred i.v. into B6-CD45.1 mice, which were infected i.v. with 2 x 104 CFU of Lm expressing 

OVA (Lm-OVA) on the next day as described (23).  

Quantitative RT-PCR. 

Total RNA was purified using Trizol (Life Technologies) and reverse-transcribed using qScript 

(QuantaBio). Gene expression was quantitated using a Luminaris SYBR green reagent (Thermo 

Fisher) and a Roche LightCycler 480. Primer sequences are listed in Table 2.1. 
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RNA-sequencing (RNA-seq) 

RNA-seq was done essentially as described previously (24) using total RNA extracted from 5 x 

104 Ehmt2–/– and Ehmt2+/+ Va2+ CD8+ T cells purified from Tcrb–/–Tcrd–/– recipient mice 4 weeks 

after transfer. Sequenced tags were mapped to the mouse genome mm9 using Tophat (25) with 

default setting, followed by transcript assembly and estimation of expression levels using Cufflinks 

(26-29) on Galaxy (https://usegalaxy.org/). 

Chromatin immunoprecipitation (ChIP) 

Mono nucleosomes were prepared from cultured CD8 T cells by micrococcal nuclease digestion 

as described (30). H3K9me3-modified nucleosomes were immunoprecipitated using anti-

H3K9me3 (Abcam 8898) conjugated with Protein G magnetic beads (Life Technologies). For 

genome-wide analysis, purified DNA from precipitated nucleosomes was sequenced with a HiSeq 

2500 sequencer (Illumina) with a 50-bp single end read option as described (23). 

Statistical Analysis 

All statistics were performed using Graphpad Prism (version 7.0) using non-parametric two-tailed 

student T-tests for comparing 2 groups. Multiple groups were analyzed using two-tailed ANOVA. 

All other statistics were performed as described in the manuscript. Statistical analyses are shown 

with the mean ± SD. p-values smaller than 0.05 were considered significant. 
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FIGURE 2.1. G9a preferentially forms a complex with RUNX3 to RUNX1. 

(A) A heat map showing the 71 DNA-interacting proteins that were co-immunoprecipitated with 
only RUNX3 (cluster 1), RUNX1 and RUNX3 (cluster 2), or only RUNX1 (cluster 3) from 
transduced 1200M cells. (B) A list of the transcription factors, DNA methyltransferases, and 
histone modifying enzymes in (A). (C) Immunoblotting (IB) for RUNX proteins co-
immunoprecipitated with FLAG-G9a from lysates of AKR1 cells transduced with RUNX1, 
RUNX3 or FLAG-G9a. Blots are representative of 2 experiments. 
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FIGURE 2.2. G9a is required to maintain silencing of helper lineage genes in CD8 T cells 
during lymphopenia- or tumor Ag-driven proliferation.  

(A, B) CD4 expression and CFSE dilution of CD8 T cells in PBMC of Tcrb–/–Tcrd–/– mice that 
received Ehmt2–/– or Ehmt2+/+ OT-I T cells 4 weeks prior to the analysis. Data are pooled from 3 
experiments in which one donor of each genotype was transferred into 2-3 recipients. (C, D) RNA-
seq analysis of CD4+

 CD8+ Ehmt2–/–, CD4– CD8+ Ehmt2–/– and CD4– CD8+ Ehmt2+/+ OT-I T cells 
harvested from Tcrb–/–Tcrd–/– mice 4 weeks after transfer. Quantification of genes with ³1 FKPM 
in Ehmt2–/– or Ehmt2+/+ samples and >2-fold difference in expression is indicated for each 
genotype. Dashed red lines: 2-fold change between genotypes. (E) Heat maps showing genes 
differentially expressed between CD4+ CD8+ or CD4– CD8+ Ehmt2–/– and control Ehmt2+/+ CD8 
T cells. Values represent the log2 fold change of the mean of 2-4 mice compared to Ehmt2+/+ CD8 
T cells. (F, G) Expression of CD4 of OT-I T cells in the lymph node draining transplanted E.G7-
OVA tumors. n=6-8 in 2 experiments.  
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FIGURE 2.3. De-repression of the helper lineage-associated genes in Ehmt2–/– cells 
is independent of H3K9 trimethylation. 
(A) Western blots showing amounts of H3K9me2, H3K9me3 or total H3 in CD8 T cells from 
Ehmt2F/F Cd8-E8I-cre mice and control Ehmt2F/F cre– mice. Data are representative of two 
experiments. (B) A heat map displaying the distribution of H3K9me3 ChIP-seq tags at the 637 
genes that were identified from the RNA-sequencing data with at least a 2-fold higher expression 
in the CD4+CD8+ Ehmt2F/F Cd4-cre mice compared to CD8+ cells from control Ehmt2F/F cre– in 
Fig. 2.2C. Fold-changes of expression of those genes are plotted on the right panel. 
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FIGURE 2.4. Increased TCR signaling compensates for G9a-deficiency in silencing of helper 
lineage genes in CD8 T cells.  

(A, B) CD4 and CD8 expression of Ehmt2–/– and Ehmt2+/+ OT-I T cells (Thy1.2/CD45.2) that were 
co-transferred as a 1:1 mixture with Thy1.1/CD45.2 OT-I T cells into CD45.1 mice 4 days after 
Lm-OVA infection. (B) The ratios of Thy1.2+ to Thy1.1+ donor cells 4 days after infection. Data 
points represent individual recipient in three experiments, in which cells from one donor per 
genotype were transferred into 3 recipients. (C, D) Expression of CD4 and CD8 on Ehmt2+/+ (C) 
or Ehmt2–/– (D) T cells cultured in the presence of indicated concentrations of anti-CD3 and anti-
CD28 Abs. Data are representative of 3 experiments (n=2 per genotype per experiment). (E) 
Percentage of CD4+ cells in cultured Ehmt2–/– or Ehmt2+/+ CD8 T cells shown by mean ± SD. (F) 
qPCR analysis of gene expression in Ehmt2–/– and Ehmt2+/+ CD8 T cells cultured in either CD28Hi 
or CD28Lo condition. Ehmt2+/+ Th1 CD4 T cells were used as control (Th1). 
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FIGURE 2.5. Signals through IL-12 receptor compensate for G9a-deficiency in repression 
of helper lineage genes in CD8 T cells. 

(A, B) Percentages of CD4+ cells in Ehmt2–/– or control Ehmt2+/+ CD8 T cells cultured in the 
CD28Lo condition with or without mIL-12 (10 ng/ml). Plots are representative of 2 independent 
experiments (2-3 mice per experiment). (C) Immunoblotting for total H3 and H3K9me2 of lysates 
from Ehmt2–/– or Ehmt2+/+ CD8 T cells cultured in the CD28Hi or CD28Lo condition. Data are 
representative of 2 experiments. (D) Relative expression of Ehmt2 in CD8 T cells from Ehmt2–/– 
and Ehmt2+/+ mice cultured with the CD28Hi condition with or without mIL-12. (E) qPCR analysis 
of expression of H3K9 HMTs and demethylases in Ehmt2–/– CD8 T cells cultured in the CD28Hi 
condition with or without mIL-12. n=3. 
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Gene Forward Primer Reverse Primer 
Cd4 5'-GGGCTGTGGCAGTGTCTACT-3' 5'-GACACAGCAGAGGATGCAGA-3' 
Rorc 5'-TCTACGCTATGAGGAAGGAAGGC-3' 5'-GACTATGGAGGAGAAACAGGTCCC-3' 
Il21 5'-GCTCCACAAGATGTAAAGGGGC-3' 5'-CCACGAGGTCAATGATGAATGTC-3' 
Cd40lg 5'-GTGAGGAGATGAGAAGGCAA-3' 5'-CACTGTAGAACGGATGCTGC-3' 
Foxp3 5'-AGAAGCTGGGAGCTATGCAG-3' 5'-TACTGGTGGCTACGATGCAG-3' 
Ctla4 5'-GGATCCTTGTCGCAGTTAGC-3' 5'-TCACATTCTGGCTCTGTTGG-3' 
Aqp9 5'-TGGGGATTTGAGGTCTTCAC-3' 5'-GTTCGAGTGATGCATTTGGA-3' 
Zbtb7b 5'-TGCTTCCGCATGTGGATC-3' 5'-GTGAGAAGCCCTTTGCCTGT-3' 
Ehmt2 5'-TCATCCCTGTCCGGGTTTTC-3' 5'-TCACCGTAGTCAAAGCCCA-3' 
Ehmt1 5'-AAGCAAGAGACCAAGCAGGA-3' 5'-TGTGGAACCTTCATCAGCAG-3' 
Cd8a 5'-CACAGGAGCCGAAAGCGT-3' 5'-GGGCTTGCCTTCCTGTCTG-3' 
Rora 5'-CGCATTGATGGATTTATGGAG-3' 5'-TCGCATACTTCCCGTCAAAG-3' 
Kdm1a 5'-TGGGATGGATGTCACACTTC-3' 5'-CTCGTCCACCTACTCGATCC-3' 
Kdm1b 5'-GAGTATGCTTGTGGCAGCAG-3' 5'-GGGTATGGTCACCAGCAAAC-3' 
Kdm3a 5'-TGTCGACTATTGAGCCACACA-3' 5'-TCCTTTGACAGCTCGTTTCC-3' 
Kdm3b 5'-TGGAAGGCTCACTTGTTTGG-3' 5'-GGTATTCAACTGGCACCACAG-3' 
Kdm4c 5'-ATGGATTGACTACGGCAAGG-3' 5'-CCATGTCATTCCGACAAGTG-3' 
Kdm7a 5'-CAGCTCTACACGGCTCTTCC-3' 5'-ACAGGTTTGGAGCCATCATC-3' 
Phf8 5'-GTGTGACATGTGCCAGGACT-3' 5'-TCCTCCTCAACACCAACACA-3' 
Setdb1 5'-CACAAAGGCACCCTTATTGC-3' 5'-CGGGAGGGTGGTAATCATAG-3' 
Suv39h1 5'-AGGGGAGGAAGAAGTGGAAC-3' 5'-CAGGTCCTGCAGTTGATTCC-3' 
Prdm2 5'-CTCCACCTCTGCAAACATGA-3' 5'-ACTGCATCCTGGCTTACCAC-3' 
18s rRNA 5'-CGGCTACCACATCCAAGGAA-3' 5'-GCTGGAATTACCGCGGCT-3' 

Table 1. Sequences of primers used for quantitative PCR. 
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Chapter 3:  
PI3K signals mediate proliferation and terminal differentiation of the memory- and stem-

like CD8 T cells during chronic viral infection 
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3.1  Abstract 

Immunotherapy targeting PD1 requires co-stimulatory signals to reinvigorate diminished CD8 T 

cell responses in chronic infections and cancers. PD1 inhibits the co-stimulatory signals from 

activating phosphoinositide 3-kinase (PI3K), which signal activation of cell survival and 

proliferative pathways. Whether enhanced PI3K activity in chronically stimulated CD8 T cells is 

sufficient to restore function or prevent functional exhaustion is not known. In this study, we 

utilized a conditionally and inducibly constitutively active PI3K mouse model to enhance activity 

of PI3K specifically in CD8 T cells during chronic LCMV infection. Although PI3K activity 

caused lethal immunopathology, PI3K signals were sufficient to drive proliferation and 

differentiation of the chronic CD8 T cell progenitor, which these processes required the 

transcription factor AP4. These data demonstrate that the chronic CD8 T cell response is sustained 

by AP4-dependent replenishment of the terminal CD8 T cell population, and dampened PI3K 

signals protect the progenitors from depletion. 
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3.2  Introduction 

In response to viral or intracellular bacterial infections, CD8 T cells proliferate and differentiate 

into effector T cells to promote acutely sterilizing responses (1). However, not all pathogens are 

acutely eliminated, leading to persistent infections. During persistent stimulation, CD8 T cells 

exhibit the loss of effector cytokine production, the loss of killing capacity, the loss of proliferative 

capacity, and the gain of inhibitory receptors compared to acute CD8 T cells (2, 3). The 

constellation of these traits is termed exhaustion or chronic phenotype, which is a stable 

differentiated state (4). The signals that drive or impede the differentiation to the chronic 

phenotype or exhausted state remain to be fully elucidated. Signals from the inhibitory receptors 

such as PD1, Tim3, Lag3, CD160, and 2B4 are implicated in the development or modulation of 

the chronic phenotype because blocking these signals has shown improvement in control of 

chronic infections and other chronic antigen exposures such as in cancers (5–7).  

The inhibitory receptor PD1 is the most extensively studied inhibitory receptor in the 

development and modulation of T cell function during chronic stimulation because blocking PD1 

signals in chronic CD8 T cells increases T cell numbers and increases the rate of chronic viral 

clearance (5). The pathways inhibited by PD1 signaling are hypothesized to be TCR and co-

stimulatory, and indeed, the efficacy of anti-PD1 blockade requires co-stimulatory signals from 

CD28. Co-stimulatory signals through CD28 are inhibited by the PD1 activation of phosphatases. 

SHP-2, which dephosphorylates the CD28 tail is preferentially recruited to PD1 than other 

phosphatases (8–10). However, SHP-2 is dispensable for PD1 signaling and the development of 

exhaustion in CD8 T cells in vivo (11). Other phosphatases such as SHP-1, SHIP-1, and PTEN 

may provide compensatory inhibitory signals.  
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One consequence of CD28 dephosphorylation is the diminished activity of 

phosphoinositide 3-kinase (PI3K)(10). As compared to acute effector CD8 T cells, the 

phosphorylation of PI3K targets such as AKT, S6, FOXO1, and m-TOR is diminished in chronic 

CD8 T cells (12, 13). Phosphorylation of AKT and m-TOR in acute CD8 T cells promotes terminal 

differentiation while nuclear FOXO1 promotes memory differentiation and maintenance through 

transcriptional upregulation of memory related genes such as Il7ra, Klf2, Sell, Tcf7, and Bcl2 (14). 

A memory-like and stem-like population of CD8 T cells that expresses many of these memory 

associated genes maintains the CD8 T cell response to chronic viral infection (15–19). These TCF-

1 expressing CD8 T cells require constitutive FOXO1 expression for maintenance (20). Although 

one target of PI3K has been studied in chronic CD8 T cells, the role of PI3K in chronic CD8 T 

cells remains unknown. Therefore, determining what effects that restoring PI3K activity to chronic 

CD8 T cells will shed light on the development of exhaustion and provide a better understanding 

of the therapeutic effects of PD1 blockade.  

In this study, we have utilized a conditional and inducible constitutively active PI3K mouse 

model to investigate the role of restoring PI3K signaling in CD8 T cells during the chronic 

infection, lymphocytic choriomeningitis virus clone 13 (LCMV-c13). Mice over-expressing a 

constitutively active form of PI3K in CD8 T cells succumbed to immunopathology within two 

weeks of infection, which phenocopies PDL1/PD1 knockout and early blockade. Death correlated 

with an increase in the numbers of low affinity TCR bearing CD8 T cells. While PI3K signaling 

failed to prevent the development of the exhaustion phenotype, cell-intrinsic PI3K signaling drove 

the differentiation and proliferation of chronic CD8 T cells to more terminal states at the expense 

of depleting the memory-like (TCF1+Tim3low). Furthermore, the replenishment of terminally 

differentiated cells through PI3K signals requires the transcription factor AP4. These data support 
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that the chronic CD8 T cell response integrate co-stimulatory and cytokine signals with inhibitory 

signals to balance renewal of chronic CD8 T cell progenitors with replenishment of terminal 

effectors.  
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3.3  Results 

Constitutive activity of PI3K in CD8 T cells is sufficient to cause lethal immunopathology 

in chronically infected mice. 

Previous studies have shown that phosphorylation of PI3K targets, S6, AKT, FoxO1, and mTOR, 

is reduced in LCMV-specific CD8 T cells in chronic infection compared to acute infection (12, 

13). We tested whether restoring PI3K activity in chronically exposed CD8 T cells prevents 

exhaustion and permits faster viral clearance. Therefore, we crossed the R26STOPFLP110* mouse, 

which harbors a constitutively active form of PI3K (CA-PI3K) under the control of the ROSA26 

promoter and a lox flanked STOP cassette, with Cd8-E8I-cre mice to generate CD8 specific 

expression of CA-PI3K. After infection with LCMV-c13, R26STOPFLP110*; CD8-E8I-cre mice 

exhibited a mean survival of 8 days whereas wildtype mice survived and became chronically 

infected as previously reported (Figure 3.1A) (5). The weights of R26STOPFLP110*; CD8-E8I-

cre mice and CD8-E8I-cre mice were not significantly different at any time point before death. 

(Figure 3.1B). On day 6 of infection, the lungs of R26STOPFLP110*; CD8-E8I-cre mice had more 

cellular infiltration and accumulation of hyaline causing reduced air space compared to wildtype 

mice (Figure 3.1C). To determine whether immunopathology correlated with viral replication, we 

measured the viral titers and found no differences between mice expressing CA-PI3K and wildtype 

mice (Figure 3.1D). These data show that PI3K activity in CD8 T cells causes lethal 

immunopathology of lungs and livers, which phenocopies the pathology seen in Pdcd1 or Cd247 

knockout mice infected with LCMV-c13 (5, 21).  

 

Constitutive activity of PI3K in CD8 T cells enables low affinity TCR bearing CD8 T cells 

to accumulate during chronic LCMV infection 
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To determine whether CA-PI3K signals increased the numbers of CD8 T cells during initial clonal 

expansion, we measured the percentage and absolute number of LCMV-specific CD8 T cells at 

day 6 after infection. The percentage and absolute number of GP33, GP276, and NP396 was 

equivalent between CA-PI3K expressing mice or wildtype mice (Figure 3.2A, B) as seen with 

PDL1 knockout mice. Upon ex vivo peptide re-stimulation, the percentage and absolute number of 

IFNg producing cells in response to GP33, GP276, and NP396 peptides was increased in 

R26STOPFLP110*; CD8-E8I-cre mice compared to CD8-E8I-cre mice (Figure 3.2C, D). These 

data suggest that overexpression of CA-PI3K is sufficient to drive expansion of low affinity TCR 

bearing LCMV-specific CD8 T cells. To determine whether this expansion is dependent on antigen 

load, we infected R26STOPFLP110*; CD8-E8I-cre with LCMV-Armstrong, which is causes an 

acute infection with lower antigen burden compared to clone 13. The expansion of LCMV-peptide 

tetramer positive cells and cytokine producing cells was similar between wildtype and CA-PI3K 

expressing mice (Figure 3.2E, F). These data show that initial clonal expansion of high affinity 

TCR bearing LCMV-specific CD8 T cells is unaffected by increasing PI3K activity. Low affinity 

TCR bearing CD8 T cells are recruited to high antigen load responses with increased PI3K activity.  

 

PI3K activity is sufficient to drive differentiation of chronic CD8 T cell progenitors to 

terminal progeny.  

Since overexpression of CA-PI3K in CD8 T cells phenocopied PDL1 knockout, we hypothesized 

that PI3K activity is sufficient to drive differentiation of the chronic CD8 T cell progenitor as 

observed with PD1 blockade. The percent of CA-PI3K expressing progenitors was significantly 

lower than the percentage of wildtype progenitors (Figure 3.3A, B). Consistent with 
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differentiation to terminal progeny, the MFI and percentage of granzyme B were increased in the 

LCMV-specific CD8 T cells expressing CA-PI3K (Figure 3.3C, D). With similar absolute 

LCMV-specific CD8 T cell numbers, these data highlight that PI3K activity drove differentiation 

of chronic CD8 T cell progenitors without renewal to sustain the progenitor population. Although 

PI3K signals drove differentiation to terminal states, the fraction of cells going through cell cycle 

was similar between CA-PI3K expressing CD8 T cells and wildtype CD8 T cells (Figure 3.3E, 

F), which was similarly observed in chronic CD8 T cells receiving or not receiving PD1 signals 

(21). These data show that dampening PI3K signals may protect the chronic CD8 T cell progenitor 

population from terminal differentiation, and PD1 signals may therefore help sustain the chronic 

CD8 T cell response through diminishing PI3K activity.  

 

PI3K signaling intrinsically causes proliferation and differentiation of chronically 

stimulated CD8 T cells beyond the initial activation phase. 

We next tested whether PI3K-mediated differentiation of CD8 T cells is cell intrinsic or extrinsic. 

We crossed the P14 transgenic mice to R26STOPFLP110*; R26-Cre-ERT2 to generate LCMV-

specific inducible CA-PI3K CD8 T cells. We transferred an equivalent amount of P14 

R26STOPFLP110*; R26-Cre-ERT2 (CD45.2, Thy1.1.2) and P14 R26-Cre-ERT2 (CD45.2, Thy1.1) 

to naive CD45.1 mice and subsequently infected with LCMV-c13. To circumvent lethal 

immunopathology, tamoxifen was given on day 7 after infection. After one week from starting 

tamoxifen, CA-PI3K expressing CD8 T cells outcompeted wildtype CD8 T cells (Figure 3.4A, 

B). The competitive advantage could be caused by enhanced proliferation or survival of the CA-

PI3K CD8 T cells, and cell extrinsic mechanisms may repress the total CD8 T cell numbers in 
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R26STOPFLP110*; CD8-E8I-cre mice. Similar percentages of CA-PI3K- or non-expressing CD8 

T cells stained for the proliferation marker protein, Ki67, suggesting a similar percentage of cells 

are cycling (Data not shown). Additionally, PI3K drove differentiation of the chronic CD8 T cell 

in a cell intrinsic manner (Figure 3.4C, D). These findings correlate with an increase in MFI and 

percentage of granzyme B expression in CA-PI3K expressing CD8 T cells compared to wildtype 

cells in the same environment (Figure 3.4E, F). Furthermore, CA-PI3K signaling did not reverse 

the exhaustion characteristic of reduced effector cytokine production, and CA-PI3K expressed less 

IFNg than wildtype CD8 T cells (Figure 3.4 G, H). These data show that PI3K signaling 

intrinsically promotes the proliferation and differentiation of activated CD8 T cells in response to 

LCMV-c13. These data further confirm epistasis between PD1 and PI3K because PD1 deficient 

P14 T cells outcompete and produce less effector cytokines compared to wildtype P14 T cells 

responding to LCMV-c13 . 

 

The transcription factor AP4 is required for PI3K-mediated differentiation of chronic CD8 

T cells progenitors.  

The transcription factors required for PI3K-mediated differentiation of chronic CD8 T cell 

progenitors to terminal progeny are not known. Since the transcription factor AP4 is required for 

sustaining effector differentiation during acute viral infections (22), we hypothesized that PI3K 

mediated differentiation of CD8 T cell progenitors requires AP4. CD8 T cells express AP4 after 

activation, and AP4 expression is reduced by inhibition of PI3K or m-TOR (Figure 3.5A). To 

determine whether AP4 is required for establishment and differentiation of progenitor cells during 

chronic LCMV infection, we chronically infected CD8-specific AP4 knockout mice, Tfap4F/F; 

Cd8-E8I-cre mice. AP4 was dispensable for the generation of chronic CD8 T cell progenitors 
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(Figures 3.5B, C); however, BrdU incorporation by the chronic CD8 T cell progenitors was 

significantly reduced in AP4 deficient CD8 T cells compared to wildtype (Figures 3.5D, E). The 

differentiation block during the chronic phase of LCMV-c13 correlated with impaired viral 

clearance (Figure 3.5F). These data show that AP4 is required by the chronic CD8 T cell 

progenitor to sustain the response to chronic viral infection. These data highlight that activating 

PI3K causes AP4-dependent differentiation of the chronic CD8 T cell progenitor.  
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3.4  Discussion 

During chronic viral infections, CD8 T cells exhibit the loss of effector cytokine production, the 

loss of proliferative capacity, and the gain of inhibitory receptor expression (2, 3, 23, 24). These 

changes constitute an immunological tolerance process known as T cell exhaustion. The 

development of exhaustion is hypothesized to involve signals from inhibitory receptors because 

antibody blockade of inhibitory receptors during chronic phases of infection increases the rate of 

viral clearance and the proliferation of CD8 T cells (5). Of the inhibitory receptors, PD1 is more 

highly expressed in chronic CD8 T cells compared to acute CD8 T cells. Although PD1 and a 

PD1-associated phosphatase SHP-2 are not required for the development of exhaustion (11, 21), 

the mechanism by which PD1 blockade increases chronic CD8 T cell responses is not completely 

understood. We hypothesized that PD1 inhibits PI3K signaling in chronic CD8 T cells, and we 

tested the effects of restoring PI3K activity in chronic CD8 T cells.  

Our work shows that PI3K signals are sufficient to drive the proliferating and 

differentiation of the chronic CD8 T cell progenitor during LCMV-c13 infection. In addition, these 

data establish an epistatic relationship between PD1 and PI3K in chronically activated CD8 T cells. 

Inhibitory receptor signals may act as a rheostat in chronic CD8 T cells to resist positive signals 

from co-stimulatory or cytokine receptors promoting terminal differentiation. Our data suggests 

that PD1 inhibits PI3K-mediated differentiation and proliferation of chronic CD8 T cell 

progenitors. This progenitor population expresses the transcription factor TCF-1 and sustains the 

chronic CD8 T cell response (15–19). Without inhibitory signals, the progenitor population is at 

risk of depletion as observed in CA-PI3K expressing mice. These observations might explain why 

some cancer patients become insensitive to PD1 blockade therapies (25).  
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The transcription factors required for differentiation and proliferation of the chronic CD8 

T cell progenitor during the chronic phase of infection are not completely known, but our work 

shows that the transcription factor AP4 is required for this process. AP4 is required to maintain 

clonal expansion of CD8 T cell effectors responding to acute viral infections. Additionally, acute 

CD8 T cells deficient for AP4 significantly upregulate Tcf7 expression, and AP4 binds within the 

Tcf7 locus. Therefore, co-stimulatory or cytokine signals may increase the expression of AP4 

causing this factor to promote differentiation through direct transcription repression of Tcf7. 

Whether AP4 is sufficient to repress Tcf7 and cause differentiation of chronic CD8 T cell 

progenitors remains to be tested.  

The signals that sustain or induce AP4 expression in chronic CD8 T cells are not known. 

Whether co-stimulatory and cytokine signaling induce AP4 expression in chronically stimulated 

CD8 T cells was not assessed in our study. Co-stimulatory signals from CD28 are required for 

responses to PD1 blockade, and these positive signals may increase AP4 expression in chronically 

activated CD8 T cells. Cytokines such as IL-21 are also required to sustain the chronic CD8 T cell 

response (26–28), but whether these cytokine and co-stimulatory signals are sufficient to increase 

proliferation or differentiation of chronic CD8 T cell progenitors needs to be tested. Furthermore, 

IL-21R signals are sufficient to sustain AP4 expression in B lymphocytes (29), and IL-21R signals 

may increase AP4 expression in chronic CD8 T cells, thus promoting terminal differentiation. 

AP4-dependent proliferation and terminal differentiation are required for clearance of the chronic 

viral infection. Therefore, the turnover of memory-like and terminal CD8 T cells is essential to the 

clearance of chronic viral infection.  
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3.5  Materials and methods 

Mice 

Cd8-E8I-cre, Tfap4F/F, and P14 mice have been previously described (Maekawa et al., 2008; 

Pircher et al., 1989; Chou et al., 2014). R26STOPFLP110* and R26-Cre-ERT2 were purchased from 

the Jackson Laboratories (Srinivasan et al., 2009; Ventura et al., 2007), and C57Bl/6N and B6-

CD45.1 mice were purchased from Charles River Laboratories. All animals studied were between 

the ages of 6-8 weeks with experiments conducted in accordance with an approved protocol from 

the Washington University in St. Louis Animal Studies Committee.  

Infection 

Mice were infected with 2x106 PFU/mouse of LCMV-c13 retro-orbitally or 2x105 PFU/mouse of 

LCMV-Arm intraperitoneally. Mice that received tamoxifen (Sigma) were gavaged daily for 7 

days with 4mg of tamoxifen in corn oil (Sigma).  

Ex vivo peptide stimulation 

Splenocytes were cultured at 1.2x106 cells per well with or without GP33, GP276 or NP396 

peptides were added at a concentration of 10µM for 5hrs. At 3hrs of stimulation, Brefeldin A 

(Sigma) was added.  

Hematoxylin & eosin staining 

Lungs and livers were immediately fixed in 10% formaldehyde. After 2 days of fixation, organs 

were dehydrated in 70% ethanol and were embedded in paraffin before sectioning at 8µm. Then 

slides were stained with hematoxylin and eosin.  



 

 55 

BrdU labeling 

Mice received two intraperitoneal injections of 4mg/mouse BrdU (Sigma, St. Louis) at 24hr and 

12hr before analysis. BrDU FACS staining was carried out using an BD BrdU FACS Flow Kit. 

FACS 

The following antibodies were purchased from Biolegend or BD Bioscience: Peridinin chlorophyll 

protein-cyanin 5.5 conjugated anti-CD4 (GK1.5; Biolegend), anti-CD8a (53-6.7, Biolegend), 

peridinin chlorophyll protein-cyanin-eFluor 710 anti-eomesodermin (Dan11mag, eBioscience), 

fluorescein isothiocyanate-conjugated anti-Ki67 (), allophycocyanin-conjugated anti-Tim3 

(RMT3-23, Biolegend), anti-PD1 (29F.1A12, Biolegend), anti-TNFa, anti-Tbet (4B10, Biolegend) 

phycoerythrin-indotricarbocyanine-conjugated anti-CD8a (53-6.7, Biolegend), anti-PD1 

(29F.1A12, Biolegend), Brilliant Violet 421 conjugated anti-Tim3 (RMT3-23, Biolegend). TCF1 

(C63D9) antibody was purchased from cell signaling, and Alexa Fluor 488 conjugated goat anti-

rabbit IgG (ThermoFisher). Dead cells were excluded by DAPI (4,6-diamidino-2-phenylindole; 

Sigma) or Aqua Live/Dead (Life Technologies). Analysis was performed on a BD Fortessa or BD 

Fortessa X20, and data were analyzed on FlowJo Software (TreeStar).  

Statistics 

All statistics were performed using Graphpad Prism version 7. Nonparametric student T tests were 

performed on 2 group analysis. All other statistics are described in the text above. 
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Figure 3.1. CA-PI3K activity in CD8 T cells is sufficient to cause lethal immunopathology 
during chronic LCMV infection. 

A. Survival of R26STOPFLP110*; Cd8-E8I-cre and Cd8-E8I-cre mice after infection with LCMV-
c13 is graphed. Log-rank (Mantel-Cox) test was used to calculate p-value. Data is pooled from 
three experiments, in which 3-4 mice of each genotype were infected. B. The percent change in 
body weight between indicated day after infection and before infection is illustrated till the day 
before death. C. Representative images of hematoxylin and eosin (H&E) stained lungs and livers 
sections from mice on day 6 of LCMV-c13 infection are displayed. Scale bars represent 100µm 
and images are representative of 4 mice of each genotype. D. The serum LCMV titer was 
determined at day 6 after infection by QPCR of viral GP compared to an RNA spike-in control, 
ERCC108.  
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Figure 3.2. PI3K activity in CD8 T cells enables low affinity LCMV-specific CD8 T cells to 
accumulate early in LCMV-c13 infection. 

A. B. Representative FACS plots and absolute numbers of LCMV-specific tetramer binding within 
CD8+ gated splenocytes from R26STOPFLP110*; Cd8-E8I-cre and Cd8-E8I-cre mice on day 6 of 
infection with LCMV-c13 are illustrated. Numbers on FACS plots indicate the percentage of cells 
within the drawn gate. C. Representative FACS plots of IFNg and TNFa expression within CD8+ 
splenocytes from day 6 after infection with LCMV-c13 upon ex vivo stimulation with indicated 
LCMV-specific peptides. Numbers indicate the percentages within the drawn gates. Plots are 
representative of 5-6 mice of each genotype from two independent experiments. D. The absolute 
number of IFNg expressing CD8+ splenocytes were calculated for individual mice. E, F. 
Representative FACS plots of IFNg and TNFa expression and quantification of IFNg  producing 
CD8 T cells 8 days after infection with LCMV-Armstrong upon ex vivo stimulation with indicated 
LCMV-specific peptides. 
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Figure 3.3. PI3K signaling promotes conversion of TCF1+Tim3low to TCF1–Tim3High CD8 T 
cells. 

A. Representative FACS plots of Tim3 and TCF1 expression on GP33 tetramer+ CD8+ from 
R26STOPFLP110*; Cd8-E8I-cre and Cd8-E8I-cre splenocytes on day 6 of infection with LCMV-
c13. Plots are representative of 5-6 mice of each genotype. B. The percentage of TCF1+ GP33+ 
tetramer CD8+ T cells from the spleens of day 6 infected mice. C-F. Histograms and percentages 
of granzyme B and Ki67 expression in R26STOPFLP110*; Cd8-E8I-cre and Cd8-E8I-cre 
splenocytes on day 6 of infection with LCMV-c13.  
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Figure 3.4. Intrinsic PI3K activity is sufficient to drive CD8 proliferation and differentiation 
of chronic CD8 T cells progenitors.  

Thy1.1 P14 CreER and Thy1.1.2 P14 R26STOPFLP110*; CreER cells (CD45.2+) were transferred 
at ratio of 1:1 into CD45.1 host mice, which were subsequently infected with LCMV-c13. Mice 
received 4µg of tamoxifen daily from day 7 till day 14 of infection. A. Representative FACS plots 
illustrate the percentage of Thy1.2 expressing and non-expressing CD45.2+ splenocytes from day 
14 of LCMV-c13 infection. Plots are representative of 5 recipient mice per experiment. B. The 
ratio of Thy1.1.2 P14 R26STOPFLP110*; CreER to Thy1.1 P14 CreER cells at days 5 and 14 of 
infection is plotted. C, D. Representative FACS plots and quantification of Tim3 and TCF1 
expression on CD8+CD45.2+ Thy1.1+ or Thy1.1.2+ cells from the same recipient mouse at day 
14 of LCMV-c13 infection. E, F. A representative histogram and quantification of the expression 
of granzyme B within Thy1.1 P14 CreER (black) and Thy1.1.2 P14 R26STOPFLP110*; CreER 
(red) cells from the same recipient mouse are displayed. G, H. Representative FACS plots and 
quantification of TNFa and IFNg expression from CD8+CD45.2+ Thy1.1+ or Thy1.1.2+ cells 
from the same recipient mouse at day 14 of LCMV-c13 infection.  
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Figure 3.5 Chronic memory- and stem-like CD8 T cell require AP4 for proliferation and 
sustaining the chronic viral response. 
A. Western blots of AP4, pAKTS473, and HDAC1 from antibody activated CD8 T cells, which 
received increasing concentrations of wortmannin or rapamycin. B, C. Representative FACS plots 
and percentages of GP33+ CD8 T cells expressing TIM3 or TCF-1 from Tfap4F/F; cre– or Tfap4F/F; 
Cd8-E8I-cre mice on day 30 of LCMV-c13 infection. D, E. Representative FACS plots and 
percentages of BrdU+ TCF-1+ GP33+ CD8 T cells at day 30 of LCMV-c13 infection. F. The 
serum viral titers measured from days 7 till 120 after infection by QPCR of viral GP compared to 
an RNA spike-in control, ERCC108.  
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 Chapter 4: 

Discussion and Future Directions 
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4.1  Heritable silencing of helper lineage associated genes in CD8 T cells 

The lineage decision between helper T and cytotoxic T cells has been used as a model system to 

study the requirements of transcription factors and epigenetic factors for establishing and 

maintaining gene expression or repression. The lineage specific transcription factor RUNX3 is 

required for establishment of Cd4 silencing in developing CD8 T cells (1–3), but RUNX3 and the 

silencer cis-element, where this transcription factor binds, are not required for the maintenance of 

Cd4 silencing in proliferating CD8 T cells (4). Therefore, we hypothesized that RUNX3 recruits 

other factors to maintain the silencing of Cd4. Regarding the Cd4 locus, previous studies showed 

that DNA methylation also plays important roles in the maintenance of epigenetic silencing, in 

part through inactivating an enhancer (5–7). Our work showed that RUNX3 associates with 

multiple epigenetic factors such as DNMT1 and DNMT3a, which are required for Cd4 silencing 

in proliferating CD8 T cells (7). The interaction between RUNX3 and DNMT1 and DNMT3a was 

not confirmed by co-immunoprecipitation assays, but these RUNX3 containing complexes could 

explain how lineage nonspecific DNA methyltransferases are recruited to the Cd4 locus.  

We also demonstrated that RUNX3 formed a complex with the histone lysine 

methyltransferase G9a. G9a is required for Cd4 silencing in CD8 T cells proliferating in response 

to lymphopenia or tumor antigens. These data highlight that RUNX3 forms multiple complexes 

such as with G9a or DMNT1 to mediate gene silencing through demethylation of H3K9 or DNA 

methylation, respectively. However, G9a is dispensable for Cd4 silencing in CD8 T cells 

proliferating in response to inflammatory bacterial infection. Signals through the receptor for the 

inflammatory cytokine IL-12 were sufficient to compensate for Cd4 silencing in the absence of 

G9a. The compensatory mechanism is not known, but IL-12R signals increased the total 

dimethylation of histone 3 lysine 9 (H3K9me2). IL-12R signals also increased the expression of 
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H3K9 methylases and demethylases, which may cause the total increase in H3K9me2. Whether 

the compensatory silencing Cd4 are mediated through H3K9me2 dependent or independent 

pathways is not known. Double knockouts of the compensatory histone dimethylases, trimethyl 

demethylases, or DNA methyltransferase and G9a would directly test whether these are the 

required compensatory factors. In addition, whether the H3K9me2 changes with or without IL-12 

in G9a deficient T cells occur at silenced genes is not known. Reliable chromatin 

immunoprecipitation of G9a, RUNX3, and H3K9me2 would assess whether G9a and RUNX3 bind 

to similar regions of genes that coincide with H3K9me2 marks. These data would provide more 

evidence that RUNX3 recruits G9a to the Cd4 locus to mediate H3K9me2 dependent silencing.  

Recent studies also implied that CD8 T cell immune responses require another repressive 

histone methyltransferase EZH2, which is a component of the PRC2 complex and mediates H3K27 

methylation, for effective antigen/inflammation-stimulated responses (8, 9). How EZH2 is 

specifically recruited to genes associated with memory in terminally differentiated CD8 T cells is 

not known. However, the transcription factor FOXO1 restrains H3K27 methylation at memory 

associated genes (8), and FOXO1 may inhibit the binding of the transcription factor that recruits 

PRC2 complex to memory T cell associated genes. Determining the interactomes of transcription 

factors required for memory or terminal CD8 T cell differentiation would shed light on how 

memory CD8 T maintain identity through the lifetime of the host. Thus, CD8+ T cells engage 

multiple epigenetic pathways in a context-dependent manner to shape their gene expression 

signature, which is further supported by our current study.   

4.2  Sustaining the CD8 T cell response during chronic infection 

During chronic viral infections, CD8 T cells exhibit loss of effector cytokine production, 

loss of proliferative potential, and gain in inhibitory receptor expression as compared to acute 
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effector CD8 T cells (10–12). The phenotypic differences between acute and chronic CD8 T cells 

have been attributed to an immune tolerance mechanism known as T cell exhaustion (13, 14). CD8 

T cells examined at late time points of chronic infection produce less effector cytokines and have 

more inhibitory receptor expression than CD8 T cells examined at early time points of chronic 

infection (15). Also, early chronic CD8 T cells retain the ability to convert into memory CD8 T 

cells after adoptive transfer into acutely infected hosts whereas late chronic CD8 T cells do not 

retain the ability to convert into memory CD8 T cells (16). These observations imply that the CD8 

T cell population progressively changes throughout the course of chronic viral infection. However, 

whether the progressive change happens at the population level or at a per cell level is not known. 

The wildtype CD8 T cell population dynamics are still uncertain. Whether CD8 T cells that exist 

at day 8 after LCMV-c13 infection are the same cells at day 30 after infection is not known. 

Therefore, pulsed lineage tracing experiments would shed light on these unknowns.  

Lineage tracing experiments involving a tamoxifen inducible Cre driven by the Tcf7 or 

Prdm1 regulatory elements and a LOX-STOP-LOX-fluorescent protein would allow for pulse 

labeling of the progenitor or progeny CD8 T cells during chronic infection. The terminally 

differentiated cells labeled by Prdm1-CreER at day 8 would be followed over the course of 

infection by peripheral blood analysis of the fluorescent protein. If the percentage of cells remains 

constant, then there would be no death or replenishment of the terminal population over the course 

of infection. If the percentage of labeled cells increases overtime, these data would imply that the 

terminal differentiated cells proliferates and renews the terminal population over the course of 

viral infection. Alternatively, since a progenitor population exist, these cells could give rise to 

terminal cells, which would replenish the terminal CD8 T cells over time. The Tcf7 driven CreER 

would be used to confirm that TCF-1 expressing cells do differentiation into BLIMP-1 expressing 
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cells throughout the course of chronic infection. If BLIMP-1 cells are labeled by fluorescent 

proteins by Tcf7 driven CreER, then these data would directly show that TCF-1 cells differentiate 

into BLIMP-1 cells during chronic infection. Otherwise, these TCF-1 cells may be quiescent while 

BLIMP-1 cells may proliferate as indicated by BrdU experiments (17).  

Despite the progressive loss of effector function, CD8 T cells exert control over persistent 

or chronic viral infections (18, 19). How CD8 T cells sustain viral control over the course of 

chronic infection is not completely understood, but genetic knockouts, antibody blockade, and 

adoptive transfer studies are starting to shed light on how this response is sustained (17, 20–23). 

A prevailing model describing the ability of CD8 T cells to maintain responsiveness to chronic 

viral infections is the establishment of activated stem- and memory-like CD8 T cell population 

that replenishes the terminally differentiated CD8 T cell population (17, 20, 24). This model argues 

in favor of cellular turnover throughout the course of chronic viral infection, but this has yet to be 

rigorously tested as previously discussed.  

The lineage tracing depends on the progenitor-progeny relationship of TCF-1 and BLIMP-

1; however, two separate progenitor-progeny relationships exists for chronic CD8 T cells. Both 

relationships are defined on expression of transcription factors. CD8 T cells expressing high levels 

of T-BET are classified as progenitor cells to terminal CD8 T cells expressing high levels of 

EOMES. The T-BET progenitor and EOMES progeny relationship has not been directly tested 

with adoptive transfer of cells expressing T-BET via a T-BET reporter. Moreover, the requirement 

of T-BET in CD8 T cells is not clear from Tbx21F/F; Cd4-cre mice as these mice have deficient 

CD4 T cell responses, and CD4 T cell help is required to limit the severity of CD8 T cell exhaustion 

(11). The cell intrinsic role of T-BET of should be tested with CD8 specific knockout of T-BET 

and competitive P14 Tbx21F/F CreERT2: P14 Tbx21+/+ CreERT2. In the latter experiments, T-BET 
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can be inducibly deleted after the initial priming phase. During the priming phase in acute 

infections, T-BET is required for short lived effector cell generation (25, 26). The ratio of wildtype 

to T-BET knockout P14 T cells can be measured over the course of infection. These data will 

clarify the cell intrinsic role of T-BET in chronic CD8 T cells, and whether T-BET plays any role 

in maintaining a progenitor cell population in the later phases of chronic infection.  

As previously described, the alternative progenitor-progeny relationship is defined on the 

expression of the transcription factors TCF1 and BLIMP-1. Like the studies with T-BET and 

EOMES, the CD8 intrinsic requirement of TCF-1 during chronic infection is not clear. There is a 

discrepancy as to whether TCF-1 is required by P14 T cells for initial expansion at day 8 (17, 20). 

Additionally, a caveat of the TCF-1 studies is that the role of TCF-1 in chronic CD4 T cells is not 

clear. Therefore, utilization of Tcf7F/F; Cd4-cre or Tcf7 germline knockout mice could impair CD4 

T cell help (20, 27). The intrinsic requirement of TCF-1 in chronic CD8 T cells should be tested 

with Tcf7F/F; Cd8-E8I-cre and Tcf7F/F; CreERT2 P14 transfers. These data will also shed light on 

the requirement of TCF-1 during the maintenance of CD8 T cell responses chronic viral infection.   

  Our work shows that the TCF1+ population is depleted with a cell intrinsic increase in 

PI3K activity, which raises the potential problem that continuous PD1 blockade could deplete the 

CD8 T cell progenitors sustaining the immune response. Similarly, PD1 knockout P14 T cells 

contracted significantly more than wildtype cells in the same host mouse (28), which suggests that 

the Pdcd1–/– CD8 T cell response is not maintained to the same extent as wildtype. Could the stem-

like population be depleted in patients on long term anti-PD1 or anti-PDL1 treatment? This 

observation could explain why some patients can become insensitive to PD1 blockade (29). 

Whether PD1 blockade depletes the TCF-1 population should be directly test by administering 

PD1 blockade and measuring the numbers of TCF-1 expressing cells. 
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The question of how the TCF-1 population is protected from PI3K signals remains 

unanswered. The answer is not simply expression of PD1 because TCF-1+ and TCF-1– cells have 

overlapping PD1 expression, and the TCF-1– cells are not responsive to PD1 blockade. Like PD1 

expression, CD28 and TCR expression is not significantly different between the subsets of CD8 T 

cells that are responsive or nonresponsive to PD1 blockade (17). Besides PD1, CD28, and TCR 

signals, possible modulators of PI3K activity are cytokines signals such as IL21R signals and type 

1 interferon signals, these signals may tip the balance of positive and negative signals in favor of 

active PI3K activity. These signals may increase PI3K activity causing the differentiation to TCF1- 

CD8 T cells that then may replenish the dying terminal cells. The process for turn-over is not 

understood either, and whether competition plays a role in the replenishment of TCF1- cells is not 

known.   

 The signaling pathway of PD1 has been extensively studied in vitro, but only a few studies 

have tried to determine the signaling molecules required in vivo. Our study shows that many of 

the chronic CD8 phenotype changes with PD1 blockade occur with overexpression of PI3K 

establishing an epistatic relationship. The requirement of the phosphatases SHP-1 and SHIP-1 and 

the immunoreceptor tyrosine-based switch motif (ITSM) for mediating PD1 inhibition should be 

determined. The functional roles of the PD1 ITSM and ITIM in chronic CD8 T cells has yet to be 

determined. Developing a mouse model that has genetic mutations in the ITSM or the ITIM is 

essential to understanding potentially two signaling pathways by which PD1 works in chronic CD8 

T cells.    
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