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Carriers of the R47H allele of the microglia-specific lipid receptor TREM2 have a greatly 

increased risk of developing Alzheimer’s disease. The objective of this dissertation is to develop 

further mechanistic knowledge about how TREM2 is regulated and how TREM2 mutations affect 

microglia and neurodegeneration. Using an in vitro reporter assay, we find that several AD risk-

associated TREM2 mutations decrease ligand-dependent activation. Using humanized TREM2 

mice, we find that in vivo, the R47H mutation leads to reduced microglia activation and response 

to Aβ, as well as decreased shedding of soluble TREM2. These results suggest that TREM2 is 

protective during disease. We find that TREM2-deficient macrophages in vitro are more 

susceptible to stress-induced loss of mTOR signaling, increased autophagy, and low-energy status. 

In vivo, microglia similarly fail to maintain mTOR signaling and increase autophagy in an Aβ 

mouse model, which could be rescued by enhancing energy utilization with long-term 

cyclocreatine supplementation. These results suggest that TREM2 is playing a fundamental role 

in maintaining microglia health and survival rather than triggering a specific activation signature. 

Finally,  we  perform  an  unbiased  CRISPR-Cas9  knockout  screen  to  identify  and  characterize 
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pathways that regulate TREM2 surface expression, identifying TMEM131 as a suppressor of 

TREM2 surface expression. We further demonstrate that TMEM131 regulation of TREM2 does 

not involve cleavage or degradation of TREM2 from the cell surface or require the unique 

intramembranous charge of TREM2. These results provide a stepping stone for identifying novel 

therapeutic targets related to TREM2. 
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Chapter 1: Introduction 

1.1 Microglia at rest 

Studies of the role of the immune system in neurological diseases have long been confined 

to grossly neuroinflammatory conditions such as infection, stroke, and certain autoimmune 

diseases. However, emerging evidence implicates immune function in a variety of chronic 

neurodegenerative diseases1–5. In these cases, immune responses do not feature profuse 

inflammatory infiltrates but rather local responses by resident cells. While neurons and astrocytes 

do respond to various cytokines, the primary dedicated immune cell and most likely coordinator 

of immune responses in the central nervous system (CNS) is the microglia, an embryonically 

derived6, self-renewing7–9 tissue macrophage. In addition to other common myeloid lineage factors 

such as PU.110, microglia maturation requires the lineage-specific transcription factors Irf811 and 

Sall112 and input from the gut microbiota13,14 and CNS microenvironment. The confluence of these 

factors generates a unique transcriptional signature, including surface receptors such as P2ry12, 

Fcrls, Siglec H, Tmem119, and Trem2; and transcription factors such as Sall1, Sall3, Zfp691, and 

Smad7. As with other tissue macrophages, microglia also express CX3CR1, Mer, and Fcgr115. 

Recent studies examining isolated live human microglia for the first time revealed overall 

similarity between mouse and human microglia, with higher expression of some immune 

activation-associated genes such as MHCII, which may reflect genetically encoded or experiential 

differences16,17. 

To maintain their unique transcriptional identity, microglia require continuous signals  

from the microenvironment, as evidenced by the observation that culturing primary adult  
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microglia rapidly downregulates key microglia genes on the transcriptional and protein level17–19. 

One of the brain-derived signals required for the microglia signature is TGFβ, as demonstrated by 

genetic TGFβ deficiency studies, and supplementing cultured microglia with TGFβ can partially 

restore microglia-specific gene expression12,18. Recent attempts to differentiate microglia from 

pluripotent stem cells found that coculturing stem cell-derived microglia with neurons and 

astrocytes could achieve greater similarity to microglia in situ20–22, suggesting that a complex 

mixture of cell-cell interactions and paracrine signaling shapes the microglia identity. Notably, the 

brain microenvironment is also not sufficient to fully recapitulate microglia gene expression, as 

peripherally monocytes forced to enter the brain do not fully adopt the homeostatic microglia 

signature23,24. During homeostatic conditions, the tight dependence on microenvironment leads to 

subtle differences between microglia in different brain regions25. However, in settings of 

neuropathology, the brain microenvironment becomes highly perturbed locally, and this could  

lead both to positive and negative signals that activate microglia. TGFβ is classically thought of 

as an anti-inflammatory cytokine, and loss of TGFβ signaling would be expected not only to 

disrupt the resting microglia signature but also to promote inflammatory responses by microglia. 

The enhanced understanding of fundamental microglia biology during development and 

homeostasis over the past few years has helped to contextualize microglia responses to 

pathological insults. Thus, while “microgliosis” has long been noted as a component of 

neuropathology, more mechanistic models of microglia function during disease are only now being 

fleshed out. 
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1.2 A common microglial response to neuropathology 

Microglia proliferate and change morphology in response to neurodegenerative disease, a 

process referred to as “microgliosis”. In post-mortem Alzheimer’s disease (AD) specimens, 

reactive microglia are found in abundance surrounding amyloid beta (Aβ) plaques26, and recent - 

omics studies in human brain have revealed that microglial changes constitute the strongest 

transcriptional and epigenetic signal of AD and normal aging27–30. Reactive microglia also increase 

in Parkinson’s disease31 (PD) and Huntington’s disease (HD) brains32,33. Accordingly, animal 

models of both amyloid accumulation and tauopathy, the two pathological hallmarks of AD, 

feature similar changes in the microglia population34,35, as do MPTP-induced parkinsonism36 and 

amyotrophic lateral sclerosis (ALS)37 models. For many years, these degeneration- or disease-

associated microglia (DAM) were vaguely described as having less ramified, more amoeboid 

morphology and expressing general macrophage activation markers such as MHCII and CD11c. 

The development of techniques to isolate microglia and perform genome-wide transcriptomic 

analysis has allowed finer characterization of DAM38. Remarkably, DAM have a conserved 

transcriptional signature across standard neurodegeneration mouse models including Aβ-driven 

APP-Swe/PS1dE9 and 5XFAD mice39–41, the P301S model of tauopathy42, the SOD1G93A model 

of ALS43, and the CK-p25 AD model44. This signature includes both classical M1 and M2 genes, 

as well as interferon response, stress response, lysosome, and lipid metabolism modules. 

Upregulated genes include Axl, Clec7a, Cst7, Spp1, Gpnmb, Lgals3, Apoe, and Trem2, among 

many others. Surface proteins such as CD11c, MHCII, CD44, CD14, CD86, CD39, CD90, and 

CD274 (PD-L1) are also upregulated in DAM and have been validated on the protein level by 

mass cytometry45,46. Conversely, homeostatic microglia signature genes are downregulated. 
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Although shared between neurodegeneration models, the DAM signature is not simply a 

generalized response to any stimulus. Microglia populations during experimental autoimmune 

encephalitis, which involves profuse inflammatory infiltrates, have distinct surface marker, 

cytokine, and signaling profiles compared to neurodegeneration models45,46; and systemic 

lipopolysaccharide (LPS) injection, which causes acute neuroinflammation, leads to an overall 

different signature47. Several meta-analyses of microglia gene expression datasets have also 

pointed out distinctions between neuroinflammatory and neurodegenerative microglia 

responses42,47. 

One important question is whether the DAM compartment consists of a single cell state or 

of multiple distinct populations of M1, M2, and other subsets. Single-cell RNA-seq analysis of 

microglia in 5XFAD and CK-p25 mice showed that DAM coordinately acquire the entire DAM 

signature and form a heterogeneous but nonetheless singular population by unbiased clustering 

analysis44,48. Subset analysis of DAM has also been informed by several large-scale mass 

cytometry studies. While these studies were powerful enough to distinguish meningeal 

macrophages, perivascular macrophages, and peripheral monocytes in addition to microglia, they 

also failed to identify multiple subsets of DAM45,46. One study did distinguish relatively minor 

subsets of CD44+ and CXCR4+ DAMs by flow cytometry, arguing for segregation of at least some 

DAM modules49. Moreover, in the CK-p25 study, within the DAM cluster certain type I interferon- 

and type II interferon-induced genes were inversely correlated, hinting at subtle differences due  

to local signals. Thus, DAM likely comprise a single population with some heterogeneity. It 

remains to be seen whether the most dissimilar DAM have consequential differences in function 

in vivo. 
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While the DAM signature has been best defined using AD and ALS models, it appears in 

non-neurodegenerative states. Some examples include cuprizone-induced demyelination50; aged 

mice47 and the Ercc1-deficiency model of DNA damage-accelerated aging51; and acute facial 

nucleus degeneration after facial nerve axotomy8. The DAM signature is found 16 hours after 

intracranial injection of apoptotic neurons52. Perhaps most surprisingly, a DAM-like population is 

found in myelin-rich brain regions during the first postnatal week in wild-type mice53. Thus, the 

DAM state may represent a relatively rapid response to a set of stimuli that happen to accrue in 

aging and chronic disease and transiently during development. But what might these stimuli be? 

Tau, SOD1, and axotomy models cause widespread neuron-intrinsic cell death. Cuprizone 

treatment induces oligodendrocyte death and accumulation of myelin debris. Both aging and 

development present a combination of apoptotic cells and disordered myelin. DAM may be 

responding to apoptotic cells specifically; more generally to certain lipidic structures including 

apoptotic cells but also myelin or protein aggregate-associated apolipoproteins; or even more 

generally to phagocytosis of any endogenous materials via lysosomal signaling. Either way, the 

DAM signature seems to be induced by various brain-intrinsic injuries in the absence of massive 

peripheral infiltrates and can occur on acute to chronic timescales. 

 

TREM2 and downstream targets are required for DAM induction 

The pathway that has been most directly linked to DAM activation is the triggering receptor 

expressed on myeloid cells 2 (TREM2) pathway. Naive TREM2-deficient mice have only very 

mild differences in microglia transcriptome, morphology, and frequency; however, TREM2-

deficient 5XFAD microglia fail to upregulate most DAM genes in response to Aβ50. On a single-
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cell level, very few TREM2-deficient microglia activate to the full extent of wild-type DAM, 

suggesting that TREM2 deficient cells are inherently limited in activation capacity48. A similar 

dependence of DAM induction on TREM2 was found with cuprizone-induced demyelination50, 

P301S54, SODG93A 52, and apoptotic neuron injection models52. To the contrary, TREM2 deficiency 

does not block the inflammatory response to endotoxin in vivo55 and enhances NFκB responses in 

vitro56. Thus, TREM2 function seems to be significant specifically in the context of DAM 

induction. Microglia in kainate-induced acute neurodegeneration57 and prion disease58 are also 

affected by TREM2 deficiency, suggesting that these models also induce DAM. 

Once the DAM signature has been engaged, certain upregulated molecules may form an 

autocrine or paracrine loop to sustain it. ApoE is one of the most highly-expressed DAM genes. 

Total ApoE deficiency reduces the DAM signature in Aβ models52,59, and total knockout or 

conditional knockout in microglia reduces the DAM signature after acute apoptotic neuron 

injection52, although not as strongly as TREM2 deficiency. These results are consistent with 

reports that ApoE and clusterin, or ApoJ, are ligands for TREM260–62, and may hint that ApoE is 

one of the primary TREM2 ligands in the brain during neurodegeneration. TREM2 is also 

upregulated in DAM, furthering an ApoE-TREM2 positive feedback loop. Another potential 

source of positive feedback is CSF-1 upregulation in DAM. This may locally boost CSF1R 

signaling, which overlaps with and interacts with TREM2 signaling63. The secreted DAM 

molecule Spp1 is a ligand for the DAM-expressed receptor CD4464, representing another potential 

loop. Another DAM gene that shapes the DAM signature is miR-15565, which is upregulated in 

SOD1G93A microglia dependent on both TREM2 and ApoE and promotes loss of homeostatic 

microglia gene expression. 
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1.3 Functions of DAM during neurodegenerative disease 

Given the emerging consensus that microglia respond robustly to neurodegenerative 

disease, much effort has been expended attempting to determine whether microglia are “good” or 

“bad” in different diseases. Despite some contradictory reports, several mechanisms have been 

delineated by which microglia can impact disease progression in both positive and negative ways. 

Because of the conserved nature of the microglia activation signature, it is highly likely that 

microglia perform similar functions in diverse disease states, with different outcomes depending 

on the model. 

 

Modulation of pathological protein aggregates 

Countless studies have been conducted with amyloid burden as an endpoint in AD models. 

Increased production of Aβ is a likely driver of familial forms of early-onset AD66,67. On the other 

hand, Aβ accumulation in late-onset AD appears to be driven by decreased clearance of Aβ. In the 

PS1-APP mouse model, microglia decreased expression of scavenger receptors (SRs) and Aβ-

degrading proteinases with age68. More significantly, metabolic labeling of Aβ and Aβ1-42 in a 

small cohort of human AD and control subjects revealed that the production to clearance ratio was 

imbalanced in AD but not control subjects, and this imbalance was driven by a relative decrease 

in clearance69. Mechanisms of microglia-mediated Aβ clearance have been extensively reviewed, 

and only select studies will be discussed here70–72. Early studies identified the scavenger receptor 

CD36 and various TLRs as putative Aβ receptors on microglia that could direct phagocytosis of 

fibrillar plaques and demonstrated that deficiency of CD36 increased Aβ accumulation73–75. 
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TREM2 has also been proposed as a receptor for Aβ/lipoprotein complexes that can directly 

promote phagocytosis and degradation of Aβ60, although the effect of modulating TREM2 on Aβ 

levels in vitro and in vivo is not consistent. Interestingly, several studies have called into question 

whether physiological microglia function leads to a net decrease in amyloid, at least in the setting 

of commonly used mouse models. In two similar studies, resident microglia were eliminated using 

genetic ablation systems that resulted in influx of peripherally-derived myeloid cells. These 

infiltrating cells could partially but not fully recapitulate features of resident microglia. Neither 

study found a significant effect on Aβ levels of replacing resident microglia with peripherally-

derived microglia76,77. Even near-complete depletion of microglia using a small molecule inhibitor 

of CSF1R did not alter Aβ levels in 10-month old 5XFAD mice after a month of treatment78. 

Lower-dose CSF1R inhibition over a longer period of time gave similar results79, and one study 

found that depletion starting from an early age dramatically reduced Aβ accumulation80. 

Despite these findings, other reports suggest that microglia have a latent ability to clear Aβ 

when inhibitory signals are removed or exogenous activating signals are applied. Viral 

overexpression of pro-inflammatory cytokines IFNγ, TNFα, or IL-6 could drive microglia 

proliferation and activation with concomitant Aβ reduction81–83. Consistent with general microglia 

activation reducing Aβ loads, deficiency of the anti-inflammatory cytokine IL-10 decreased Aβ 

level while overexpression increased Aβ level84,85. Several recent translational studies have also 

highlighted the potential of boosting microglia function as a therapeutic option to reduce Aβ loads. 

A promising clinical study demonstrated that monthly systemic administration of the novel anti-

Aβ antibody aducanumab could reduce Aβ levels in early AD patients, as detected by amyloid 

PET scan. Parallel experiments in an Aβ-driven mouse model showed that aducanumab-treated 

mice had fewer plaques as well as more microglia around plaques, suggesting that the Aβ reduction 
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was mediated by microglial Fc receptor engagement of the antibody86. A few more exotic 

therapeutic options have been explored for reducing Aβ levels via microglia activation. Repeated 

scanning ultrasound treatments of the brain could reduce Aβ loads, hypothetically by making 

microbubbles that disrupt the blood-brain barrier and subsequently change the microglia 

phenotype. This treatment increased the amount of Aβ colocalized with microglia lysosomes, 

suggesting that increased phagocytosis was responsible for the differences87. In another unusual 

approach, Aβ-bearing mice were optogenetically stimulated in the hippocampus with a 40 Hz 

signal, within the frequency range that appears most disrupted in AD patients. Stimulation at this 

frequency altered microglia morphology and increased microglia volume in the hippocampus, 

which corresponded to increased colocalization of plaques and microglia and decreased overall 

plaque load. Similar results were obtained in the visual cortex when mice were exposed 

noninvasively to 40 Hz light flickering88. While 40 Hz entrainment signals reduced Aβ, other 

frequencies increased Aβ, so these results should be applied with caution, even if the 40 Hz 

frequency was chosen a priori. 

Another way microglia may interact with Aβ is by forming a barrier around Aβ plaques 

that reduces exposure of nearby neurons and astrocytes to soluble and insoluble Aβ and thereby 

protects them. Plaque-associated microglia show polarization of phosphotyrosine and microglia 

receptor staining to the plaque-adjacent surface, and microglia processes cover much of the plaque. 

In models of deficient plaque-associated microglia such as TREM2 and DAP12 knockout mice, 

fibrillar Aβ plaques are looser and have higher surface area by confocal and super-resolution 

microscopy. Correspondingly, dystrophic neurites are more frequent surrounding these less tightly 

condensed plaques both in mouse and human AD89. A similar phenotype has been observed in 

ApoE-deficient APPPS1-21 and APP-Swe/PS1-dE9 mice, which also have a diminished DAM 
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response and decreased microglia localization to plaques. While the total number of fibrillar 

plaques is dramatically decreased, which is consistent with prior work on ApoE deficiency, the 

remaining plaques are morphologically less compact, have fewer adjacent microglia, and have 

correspondingly more surrounding dystrophic neurites on a per-plaque basis59. Further 

experimental manipulations of microglia, such as depletion, are required to pin down whether 

plaque compaction is a general feature of microglia localization to plaques. 

 

Elimination of synapses and neurons 

During development, microglia are essential both for proper pruning of neuronal synapses 

and for efferocytosis of normally occurring apoptotic neurons. However, both of these functions 

may go into overdrive during neurodegeneration, leading to excessive loss of neurons and synapses 

that precipitates or worsens cognitive decline. Synaptic pruning by microglia is dependent on 

classical complement components90–92 and is modulated by both neuronal activity and CX3CR1-

CX3CL1 interaction93,94. In the J20 AD mouse model, this pruning process was shown to be 

overactive at an early time point preceding plaque deposition and microglia proliferation, with 

increased presence of complement component C1q and decreased overall numbers of synapses in 

the hippocampus. Abrogating new production of soluble Aβ with a γ-secretase inhibitor 

dramatically decreased the amount of C1q, suggesting that the presence of complement tracks with 

that of soluble Aβ. These findings were repeated using an oligomeric Aβ injection model, and with 

this system the authors showed that mice deficient in either C1q or the microglia receptor 

CR3/CD11b did not lose synapses in response to oligomeric Aβ95. 
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Complement-dependent loss of synapses has also been reported in various other 

neuropathological models. Another study observed pronounced synapse loss in CA3 of the 

hippocampus along with some neuron loss in aged mice compared to young mice. These age-

related changes were largely absent in C3-deficient mice. Furthermore, C3-deficient aged mice 

showed lower anxiety and better learning by behavioral testing than wild-type aged mice96. A 

histological examination of Huntington’s disease brain specimens found that complement 

components are also significantly elevated in this disease relative to control brains, and by in-situ 

hybridization these components seemed to be produced by microglia, suggesting that a similar 

phenomenon may occur in Huntington’s disease97. Clearly, in a variety of settings, activation of 

the complement cascade can lead to synapse loss. One aspect of this pathway that remains to be 

clarified is whether increased complement activity on synapses in the diseased state results solely 

from higher concentrations of complement components overall or also results from increased 

affinity of synapses for complement. The former is supported by upregulation of complement on 

the transcriptional level in microglia, and indeed, complement components are prominently 

expressed in DAM. 

Along these lines, microglia activation in general has been linked to heightened neuron 

loss or cognitive impairment in several studies, although in many cases it is unclear which 

microglia functions are responsible. Broad inhibition of microglia function can be protective of 

neuronal function in certain settings. Pharmacological depletion of microglia with a CSF1R 

antagonist somewhat recovered performance in different behavioral tests in 3xTg and 5XFAD AD 

mice78,79 and decreased neuron and dendritic spine loss in 5XFAD mice. Treatment with the same 

CSF1R antagonist in a model of cranial irradiation rescued memory deficits associated with 

irradiation98. Analogous results have been obtained with manipulations that do not ablate microglia 
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but prevent full microglia activation and may represent a specific block of DAM function. In one 

study, DAP12 deficiency led to recovery of electrophysiological measures and cognitive function 

in APP/PS1 mice99, and TREM2 deficiency dramatically reduced hippocampal atrophy and neuron 

loss in the P301S model of tauopathy54. 

In addition to pruning synapses, microglia engulf apoptotic neurons during development 

via the TAM receptors (Tyro3, Axl, and Mer) that recognize phosphatidylserine directly or 

indirectly. While Mer is expressed in homeostatic microglia, Axl is upregulated during pathology, 

including in DAM. In the absence of these receptors apoptotic cells accumulate in the brain. 

Surprisingly, TAM receptor-deficient mice also accumulate additional live neurons in the olfactory 

bulb, suggesting that microglia can also engulf certain live neurons with exposed 

phosphatidylserine, such as stressed neurons. The authors of this study proposed that phagocytosis 

of stressed neurons could accelerate neurodegeneration, and to support this hypothesis, they 

demonstrated that mice deficient in both Axl and Mer had a modest increase in survival in the 

Thy1-SynhA53Ttg model of Parkinson’s disease100. This mechanism has also been supported by live 

imaging of microglia and neurons in 3xTg mice, which found that microglia tended to colocalize 

with neurons that subsequently disappeared, hinting that they had been phagocytosed or killed by 

those microglia. Taken together, an abundance of studies have showed that blocking microglia 

function during disease can reduce synapse and neuron loss and cognitive decline. 

The ability of microglia to exacerbate neurodegeneration was reinforced by several 

fascinating studies showing spontaneous neurodegeneration attributed to microglia-intrinsic 

disturbances. These studies demonstrate that microglia overactivity is sufficient to cause 

neurodegeneration. Microglia deficiency of NRROS, a gene that is thought to negatively regulate 
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ROS production, leads to loss of the homeostatic microglia signature, including the master 

regulator Sall1. In NRROS-deficient mice, the predominant myeloid cells in the brain instead 

express many markers of perivascular macrophages. Temporally controlled conditional knockout 

experiments established that NRROS is required during development and its absence leads to 

sustained alterations in microglia identity. Starting at around 3-4 months of age, these mice 

develop a progressive, lethal neurodegenerative disease with motor deficits101. In a completely 

different system, constitutive activation of the MAPK pathway in microglia was established by 

inducible expression of constitutively active Braf V600E. This manipulation causes microglia 

proliferation and activation in various regions of the brain and, as with NRROS deficiency, leads 

to a neurodegenerative phenotype characterized by synapse and neuron loss, motor deficits, and 

death with approximately the same time course102. Finally, a model of CNS TGFβ deficiency that 

disrupts the homeostatic microglia signature also led to motor deficits starting, once again, at 

around 4 months of age18. However, this particular result is confounded by presumably decreased 

TGFβ signaling in neurons, which is important for neuron survival103; in addition, microglia were 

relatively depleted, even though remaining microglia did lack the homeostatic microglia signature 

and appeared more activated. Other examples of microglia activation possibly being sufficient to 

cause neurodegeneration are the interferonopathies discussed in the previous section. Thus, 

microglia strongly activated in certain ways can initiate neuron loss and neurodegeneration without 

other pathological inputs. 
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1.4 Genetic implication of microglia in neurodegeneration 

Rare neurological diseases driven by loss of microglia 

The most striking genetic implication of microglia in neurodegenerative disease was the 

identification of homozygous loss-of-function mutations in TREM2, or its required adaptor for 

trafficking and signaling DAP12, as the cause of Nasu-Hakola disease104,105. This condition is an 

extremely rare, lethal autosomal recessive disease involving formation of bone cysts and then 

neurodegeneration of white matter that resembles frontotemporal dementia beginning in middle 

age106. While DAP12 is expressed in a variety of innate immune cells, TREM2 is exclusive to the 

myeloid lineage, and within the brain, to microglia. Thus, a microglia-specific defect can drive 

early-onset neurodegenerative disease. Impaired clearance of myelin debris was observed in 

TREM2-deficient mice fed the demyelinating compound cuprizone, partially reproducing the 

pathology in mice50,107. A similar neurodegenerative phenotype also featuring white matter 

dysfunction, known as hereditary diffuse leukoencephalopathy, is found in patients carrying rare 

heterozygous loss of function mutations in the essential myeloid lineage growth factor receptor 

CSF1R108–110, pointing to a common mechanism. Indeed, CSF1R and DAP12 have been reported 

to signal via common downstream pathways63. However, one key difference is that at least in 

mouse models, TREM2/DAP12 signaling are not essential for microglia survival in young adult 

mice and TREM2-deficient brains do not show obvious histological differences, whereas CSF1R-

deficient mice lack microglia and have other brain abnormalities111,112. With TREM2/DAP12 

deficiency, functional differences only manifest during disease or aging and are associated with 

impaired microglia activation as opposed to resting microglia function. Thus, it is possible that in 

Nasu-Hakola disease, a specific loss of DAM leads to the neurodegenerative phenotype. 
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Alzheimer’s disease 

Despite these findings, microglia did not feature in mainstream theories of sporadic forms 

of neurodegeneration until recently. The past decade has seen a dramatic shift in the estimation of 

the immune component of AD, in particular. Large-scale human studies have revealed a multitude 

of microglia-enriched loci and pathways linked to AD, and unbiased bioinformatics studies have 

implicated the microglia response as the strongest transcriptional signal in AD pathogenesis by 

different approaches27. Utilizing human brain transcriptomic data to construct gene interaction 

networks revealed changes in immune genes in human AD28 and specifically modules centered on 

TREM2113. Epigenetic analysis of a mouse model of AD and human data found widespread 

changes in genes regulated by PU.1, a master transcription factor for microglia and other myeloid 

cells114. Most of these studies are correlative and performed on whole tissue, so they principally 

indicate that microglia proliferate and change during AD, without necessarily allowing causal 

inferences to be made. 

The first hints of a causal, genetic link between microglia and AD were the identification 

of common variants in immune system-specific genes CR1115, CD33116, and INPP5D117 that had 

very modest effects on AD risk, on the scale of 5-10% differences in odds ratio. CD33 deficiency 

has been studied in a mouse model of AD, showing effects on Aβ that mirror the effects of AD 

risk118. These exciting findings lent support to a role for microglia in AD as modifiers of disease 

and not just bystanders, but the small effect sizes suggested that microglia were not central players. 

Much more revealing from a pathogenetic standpoint was the discovery of a several-fold increase 

in AD risk associated with the rare R47H allele of TREM2119,120. This discovery was even more 

striking because of the previously known link between TREM2 and Nasu-Hakola disease. 
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Subsequent studies of R47H and AD risk confirmed a strong association, although with variable 

odds ratios121–126. In addition to R47H, other TREM2 variants have been investigated in relation  

to AD risk. The R62H variant occurs relatively frequently in Caucasian populations and 

substantially increases AD risk, albeit less than R47H123,124. Among African Americans, the tightly 

linked T96K and L211P variants are fairly common and lead to a moderate increase in AD risk of 

around 25%127. The R47H variant is extremely rare in the Japanese128 and Han Chinese129 

populations; however, the H157Y variant did increase AD risk by several fold in a Han Chinese 

cohort, on a similar scale as R47H130. 

Other significant risk alleles for AD and other neurodegenerative diseases occur in genes 

that are not conventionally thought of as microglia genes but which may nonetheless exert their 

effects partially through microglia. The APOE ε4 risk allele, which makes the greatest single-locus 

contribution to genetic risk for late-onset AD131,132, appears to boost microglia activation and 

worsen pathology in a P301S tauopathy mouse model. At least some of the neurotoxic effects of 

ApoE ε4 could be reproduced in vitro with microglia-specific modulation of ApoE isoform. The 

authors hypothesized that ApoE ε4 drives microglia activation and the AD risk associated with 

ApoE ε4 could be partially through effects on microglia and further downstream, through 

neurotoxic astrocytes133. However, they could not definitively demonstrate that this deleterious 

effect of ApoE ε4 requires microglia using in vivo microglia-specific manipulations; given the 

widespread effects of ApoE on different CNS cell types, an alternative explanation is that the 

increased neurodegeneration caused by ApoE ε4 independent of microglia secondarily boosts 

microglia activation. Another gene linked to AD risk is clusterin115, or ApoJ, which was recently 

shown to be a ligand for TREM2 and may have similar effects as ApoE on microglia. 
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Other neurodegenerative diseases 

In other neurodegenerative diseases caused by known pathogenic mutations, some 

evidence also points to primary microglia involvement. Mutations in SOD1 have long been known 

to drive a small subset of familial ALS cases134. Based on the normal function of SOD1 in 

generating ROS, which could be neurotoxic, a role for microglia was suspected; however, the 

discovery of motoneuron aggregates of mutant SOD1 proteins and a lack of dependence of the 

phenotype on endogenous SOD1 made a strong case that the mutant forms cause motoneuron-

intrinsic cell death135. However, overexpression of mutant SOD1 exclusively in motoneurons136 or 

even all neurons137 was not sufficient to drive loss of motoneurons and motor deficits. 

Furthermore, deletion of mutant SOD1 from either neurons or microglia could extend lifespan in 

mice138, as could transplantation of mutant SOD1 mice with wild-type bone marrow139, suggesting 

that the expression of SOD1 in microglia somehow affects disease. Notably, the mechanism for 

microglia involvement in this form of ALS may be entirely different from the typical DAM 

response; indeed, microglia numbers and morphology appeared to be similar between microglia-

deleted and non-microglia-deleted mutant SOD1 mice. A very limited clinical trial of bone marrow 

transplantation for sporadic ALS did not have any clinical benefit despite successful engraftment 

of some patients140, but sporadic ALS is likely to be fundamentally different from mutant SOD1-

driven ALS. A recently appreciated driver of familial autosomal dominant ALS and FTD is 

intronic repeat expansions in C9orf72. While many studies have now discovered dramatic gain-

of-function toxic effects of these repeats both from the transcribed RNA as well as from the 

unconventionally translated dipeptide repeats141–147, and these effects appear to be sufficient to 

cause neurodegeneration, the repeats also lead to decreased C9orf72 expression. A study of 

C9orf72-deficient mice found that while there was no overt neurodegeneration due to C9orf72 
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deficiency, aged mice had severe immune dysregulation that was traced to macrophage and 

microglia function. Without C9orf72, macrophages accumulate lysosomes and have altered 

inflammatory responses148. Overall, the clearest sources of pathogenicity with C9orf72 repeat 

expansion are neuron-intrinsic, and the effects of C9orf72 deficiency are not seen in heterozygous 

mice, which would be analogous to human disease. Still, hampered microglia function might have 

a minor contribution for this form of ALS/FTD. Another genetic analysis found that rare loss of 

function mutations in TBK1, a gene that is important for interferon production as well as 

autophagy, could cause familial ALS/FTD. The clear role of TBK1 in immune function is 

interesting, but this study found that several of the implicated mutations impact binding of TBK1 

to optineurin but not phosphorylation of targets associated with interferon production149. Thus, 

these mutations may affect neuronal pathways independent of microglia or inflammation. 

Other neurodegenerative diseases have less clear genetic evidence for microglia 

involvement. While an expression quantitative trait locus for MHCII has been linked to a 15-30% 

increased risk for sporadic Parkinson’s disease, which suggests that adaptive immunity may have 

a role in the disease, other early-onset and sporadic Parkinson’s disease polymorphisms are not 

clearly linked to microglia150,151. Huntington’s disease, as with certain familial forms of AD, 

ALS/FTD, and Parkinson’s disease, has a clear cause: autosomal dominant repeat expansions in 

the huntingtin protein152. These repeats are known to lead to abnormal RNA and protein species 

that can interfere with cellular function153. Huntingtin is expressed in various cell types in the brain 

and could theoretically act in microglia. While neuron-intrinsic cell death through these 

mechanisms is a simple and appealing model for the neuron loss seen in Huntington’s disease, a 

few studies have hinted at neuron-extrinsic mechanisms. Peripheral blood from mutant huntingtin 

carriers had abnormal inflammatory signatures well before predicted disease onset. Inflammatory 
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cytokines, especially IL-6, were elevated in plasma of these premanifest individuals, and their 

peripheral blood monocytes produced more cytokines in response to LPS + IFNγ stimulation. 

Microglia and macrophages from several mutant huntingtin-expressing mouse models had a 

similarly exaggerated inflammatory response154. These findings were strengthened by a later study 

using novel cell lines and mouse models. In the BV2 myeloid cell line, in which mutant huntingtin 

expression increased expression of the key myeloid lineage factors PU.1 and C/EBP and target 

genes IRF1 and TLR2, in addition to IL-6 and TNFα. Direct binding of these transcription factors 

to target gene loci was confirmed by chromatin immunoprecipitation, and the upregulation of these 

genes was confirmed in primary microglia from mutant huntingtin-expressing mice as well as brain 

specimens from Huntington’s disease patients. The most significant finding was that in mice that 

conditionally express mutant huntingtin in CX3CR1-positive microglia, expression of these same 

genes was elevated. Mutant huntingtin-expressing microglia promoted neuron death in a co-culture 

system as well as in their microglia-specific mouse model in vivo in the presence of LPS155. 

Therefore, in Huntington’s disease, as in SOD1-linked ALS, expression of the mutant protein in 

microglia could be causing microglia dysregulation that causes or contributes to disease. 

 

1.5 Rationale for TREM2 study 

The many confounds and ambiguity that arise when interpreting the effect on microglia of 

the mutations just described have led to increased attention being paid to the R47H TREM2 

variant. Due to specific expression of TREM2 in microglia, the linkage between TREM2 mutation 

and disease is mechanistically constrained to microglia-dependent processes. Overall, the most 

clearly microglia-related pathogenic mutations in TREM2/DAP12 and CSF1R all seem to reduce 
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microglia function while promoting neurodegenerative disease, whereas other pathogenic 

mutations may affect microglia but not necessarily in a cell-intrinsic way, making them harder to 

interpret. To better understand whether microglia are beneficial or harmful for AD, many 

investigators have seized on the TREM2 lead and attempted to answer two essential questions: 

what is the effect of TREM2 variants on TREM2, and what is the effect of TREM2 on microglia? 

This thesis also broadly adopts this approach. Chapter 2 examines the in vitro and in vivo effects 

of AD-associated TREM2 variants and is largely adapted from two studies published as a result of 

this work156,157. Chapter 3 examines the mechanism by which TREM2 acts in microglia, and is 

derived partially from an additional study published as a result of this work158. As TREM2 variants 

modify AD risk in heterozygosity and gene dose-dependent effects are also observed in mouse 

models, regulation of TREM2 expression likely plays an important role in disease progression. 

Thus, Chapter 4 will describe an unbiased screen for genes that regulate TREM2 surface levels. A 

better understanding of the basic biology of TREM2 regulation, function in microglia, and effect 

of mutations will pave the road for future therapeutic efforts. This introductory chapter (Chapter 

1) was derived in part from a review written as part of this thesis159. 
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 Chapter 2: Impact of TREM2 variants on 

TREM2 function in vitro and in vivo 

Given the strong, consistent association of R47H with increased AD risk, and the 

identification of additional variants with weaker associations with AD, whether and how these 

variants affect TREM2 function is of utmost importance to understand and target TREM2 in AD. 

If risk is associated with loss of function, this would favor TREM2-enhancing therapies, whereas 

if risk is associated with gain of function, this would favor TREM2-inhibiting therapies. 

Correlating genetic risk with functional impact in vitro can help to address this question, an 

approach taken in the first part of this chapter. Regarding the best-established R47H variant, in 

vitro experiments and study of cross-sectional human specimens have suggested the R47H 

variant decreases TREM2 function, but both approaches have caveats. In vitro studies may not 

pinpoint a physiologically relevant readout. On the other hand, AD cases partially driven by 

microglia dysfunction may have a different natural history than other sporadic cases, 

complicating cross-sectional analysis. A mouse model of AD can strictly control timing and 

genetic background to isolate the effect of the variant. In addition, the human and mouse genes 

only share about 77% sequence identity, meaning that non-conserved regions could potentially 

modulate the repertoire of ligands, overall binding affinity, and the effects of variants. To 

address both issues, we generated two mouse lines with either common variant (CV) or R47H 

human TREM2 (hTREM2) in place of murine TREM2 (mTREM2) in the 5XFAD AD mouse 

model to investigate the effect of the R47H variant in a controlled in vivo setting. 
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2.1 In vitro characterization of TREM2 variants 

 We generated a retroviral construct overexpressing human TREM2 and human DAP12 

under control of the CMV promotor and separated by an internal ribosomal entry sequence 

(IRES). This construct was used to generate the corresponding point mutations by site-directed 

mutagenesis. Once the panel of constructs was obtained, we packaged retroviral particles by 

transfecting 293T cells with equal amounts of construct DNA and harvesting viral particles in 

parallel. To assay TREM2 signaling, we started with the 2B4 NFAT-GFP cell line, which is a T 

cell hybridoma that expresses EGFP in response to calcium signaling. After transducing 

TREM2/DAP12 into these cells, we sorted transduced cells by two rounds of fluorescence-

activated cell sorting (FACS) for TREM2 expression to select stable expressers. The common 

variant of TREM2 (TREM2-CV) and non-transduced reporter cells served as positive and 

negative controls, respectively. By flow cytometry, surface expression ranged from about 50% to 

120% of TREM2-CV (Fig. 1A). The T66M variant had no detectable surface expression, as 

previously shown, and did not show any activation in our assay (data not shown). On the other 

hand, the R52H, R62C, and T96K mutations demonstrated somewhat lower surface expression 

despite their higher RNA expression, which may reflect a true defect in protein trafficking or 

simply technical variation. Using these reporter lines, we analyzed TREM2 activation in 

response to a variety of known lipid ligands. Each ligand was coated on a 96–well plate at 

different concentrations, and reporter cells containing each TREM2 variant were subsequently 

plated in duplicate. After 12 hours, the percentage of GFP+ cells at each concentration was 

determined by flow cytometry. Then, the baseline activation with no ligand was subtracted from 

each respective activation curve and area under the curve (AUC) relative to TREM2-CV was 

used to compare overall activation. An example of a full activation curve is shown in Fig. 1B. 
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Because of the correlation between surface expression and activation seen with antibody 

stimulation, we used the activation/expression ratio to determine functional impact. Fig. 1C 

shows activation versus surface expression plots for the purified lipid ligands phosphatidylserine 

(PS), sulfatide (Sulf), and phosphatidylcholine (PC). As lipoproteins contain a variety of 

phospholipids, we tested whether abundant serum lipoproteins such as high density lipoprotein 

(HDL) and low-density lipoprotein (LDL) could activate TREM2 in our reporter system. Indeed, 

both HDL and LDL activated TREM2 variants in a similar pattern as seen for purified 

phospholipids (Fig. 1D). These results extend the range of TREM2 ligands and are consistent 

with the recent observation that lipoprotein particles containing the apolipoprotein E (ApoE) also 

bind TREM261,62, which is notable given the association of ApoE polymorphisms with AD. 

As previously shown40, the R47H polymorphism has a profound negative impact on 

signaling in response to all tested ligands except PC, which in turn elicited a normal response 

from all variants. The R62C polymorphism showed a similarly dramatic reduction in activation. 

The H157Y and R62H variants demonstrated a lesser defect. To the contrary, T96K and D87N 

had consistently higher activation. R52H, R136W, L211P, and E151K were neutral overall. The 

percentage deviations of each variant from TREM2-CV across ligands are summarized in Fig. 

1E. As Q33X leads to truncation of nearly the entire protein, it presumably leads to complete 

loss of function and thus was not assayed.  

To correlate these variants to human genetics, we analyzed data on these variants in the 

NIMH AD Genetics Initiative Study and AD Sequencing Project (Table 1). Family-based 

association analysis (FBAT) in the NIMH AD families yielded a p-value of 0.004 for R47H, 

consistent with our previous report in the same NIMH families (11) and confirmed in ADSP 

(p<3.45e-12; OR=4.5). Other rare variants in TREM2 were not present in more than ten 
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statistically informative families, thereby preventing the computation of reliable p-values. 

However, several variants were frequent enough to be suggestive between both datasets. R62H 

had an odds ratio (OR) of 1.7 in NIMH families, confirmed in ADSP (p=0.006; OR=1.4). The 

related R62C was found in two affected individuals from one NIMH family and had an OR of 

0.58 in ADSP, but numbers were too small to draw conclusions. T96K and L211P, which were 

almost completely linked in both datasets, had OR around 10 in NIMH families, but this was not 

supported by the replication sample (p=0.85; OR=1.04; p=0.59; OR=1.13, respectively). On the 

other hand, D87N had an OR of 0.89 in NIMH families but was significantly associated with risk 

in ADSP (p=0.017; OR=2.3). Both of these variants showed conflicted results in other cohorts, 

so their contribution to AD risk is still questionable. The stop gain Q33X was biased toward 

affected individuals in NIMH families and statistically significant for increased risk in ADSP 

(p=0.025). Finally, H157Y was found in 5/8 affected individuals, but no unaffected individuals 

were available for comparison; however, it significantly increased risk in ADSP (p=0.01; 

OR=4.7), and additional studies have replicated this risk. Overall, in addition to R47H, which 

already had strong evidence for increased AD risk and decreased in vitro function, we provide 

evidence that R62H, H157Y, and Q33X also show this same correlation. On the other hand, 

D87N and T96K/L211P showed dramatic gain-of-function effects in our assay but the genetics is 

not established conclusively. 

 

2.2 In vivo characterization of R47H variant 

 To understand the in vivo properties of hTREM2 and the R47H polymorphism, we 

generated several BAC transgenic lines expressing either the common hTREM2 variant (CV) or 



25 

 

the R47H polymorphism (R47H). A BAC clone was selected that contained abundant flanking 

sequence of the TREM2 gene to allow endogenous expression of TREM2. We first assessed cell 

surface expression of hTREM2 in each of these lines to ensure that both CV and R47H 

transgenic mice generated using this strategy express hTREM2 on the cell surface in a pattern 

paralleling that of murine TREM2, i.e. on myeloid cell populations previously shown to express 

TREM2.  We selected two lines - one carrying CV and one carrying R47H - that expressed 

similar levels of hTREM2 on the cell surface. Thioglycolate-elicited peritoneal macrophages 

were collected on day 3 post-injection and stained for hTREM2, revealing expression of both 

transgenes at similar levels in these lines (Fig. 2A). Bone marrow-derived macrophages 

(BMDMs) were stained for hTREM2 after 2 days of culture, showing hTREM2 specifically on 

F4/80+ differentiated cells, again at similar levels in both transgenic lines (Fig. 2B). hTREM2 

mRNA in the cortex was quantified by qPCR, revealing slightly lower mRNA in R47H 

compared to CV brains (Fig. 2C). However, quantification of hTREM2 protein in the brain by 

immunoblotting the PBS-insoluble fraction of hippocampal homogenates (including membrane-

bound protein) showed similar levels between transgenic lines on the protein level (Fig. 2D). 

These mice were bred with mTREM2–/– (KO) mice to obtain CV and R47H transgenic mice 

lacking endogenous TREM2. Next, we crossed CV and R47H to 5XFAD mice, in which 

amyloid pathology is driven by overexpression of mutant human APP and PS1, and compared 

these CV+ mTREM2-/- 5XFAD (CV-KO-5xFAD) and R47H+ mTREM2-/- 5XFAD (R47H-KO-

5XFAD) mice to mTREM2-/- 5XFAD (KO-5XFAD) mice at 8 months of age. hTREM2 was 

visualized by immunofluorescence microscopy in steady-state microglia but not in other CNS 

cells (Fig. 2E). Quantification of staining intensity showed that microglia had similar hTREM2 
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levels between transgenic lines on a per-voxel basis, and staining intensity increased in 5XFAD 

brains (Fig. 2F).  

To understand the effect of CV and R47H on microglia, we started by examining 

microglial numbers throughout the cortex and hippocampus (Fig. 3A), as well as specifically 

adjacent to plaques (Fig. 3B). By both measures, microglial numbers were enhanced by both CV 

and R47H transgenes compared to KO, with CV having a larger effect. Since microglia 

clustering around plaques has been proposed to promote A  clearance, we also measured Aβ 

levels by both imaging and ELISA. Total fibrillar plaque area in the cortex, subiculum, and 

hippocampus (excluding subiculum) was determined by manual selection of the relevant regions 

followed by automated determination of threshold and calculation of percent area covered (Fig. 

4A). As a complementary measurement, flash-frozen cortical tissue was homogenized 

sequentially in PBS and guanidine solutions to obtain PBS-soluble and -insoluble fractions. Aβ1-

40 and Aβ1-42 levels were measured in both fractions by ELISA in the hippocampus (Fig. 4B) and 

cortex (Fig. 4C). By either modality, Aβ was generally unaltered by CV and R47H, excepting a 

slightly decrease in hippocampal PBS-soluble Aβ species. Thus, while R47H affects 

microgliosis, the decreased number of microglia in R47H-KO-5XFAD compared to CV-KO-

5XFAD was not sufficient to affect plaque coverage, or to cause a detectable difference in 

accumulation of Aβ plaques in our model. 

To more clearly understand the microglia-intrinsic effect of the R47H variant, we 

performed qRT-PCR analysis of whole cortex for microglia activation-related transcripts. The 

microglia-specific genes Spp1, Gpnmb, and Cst7, encoding osteopontin, osteoactivin, and 

cystatin F, respectively, are among the most upregulated in AD models39,40. All three activation 



27 

 

markers were much more upregulated in CV-KO-5XFAD than in other genotypes, suggesting 

that the R47H variants exhibit a defect in promoting microglia activation (Fig. 5A). 

To acquire a global snapshot of transcriptional differences between microglia in different 

conditions, we performed microarray analysis of sorted microglia from brains of 8.5-month-old 

5XFAD animals. A gene list of microglial activation markers was compiled from our previous 

data using the same platform by selecting genes upregulated at least 2-fold between 5XFAD and 

non-5XFAD microglia and ordering them based on their upregulation in TREM2-deficient 

microglia. Genes that were more highly upregulated in TREM2-sufficient compared to TREM2-

deficient microglia were deemed TREM2-dependent, and genes with similar upregulation were 

deemed TREM2-independent. Unsupervised clustering of samples based on this microglia 

activation signature grouped KO-5XFAD and R47H-KO-5XFAD together, distinct from CV-

KO-5XFAD, and revealed a stepwise increase in activation from KO-5XFAD to R47H-KO-

5XFAD to CV-KO-5XFAD (Fig. 5B). Furthermore, differences between the groups were more 

pronounced among TREM2-dependent than TREM2-independent genes. We verified that Spp1 

was upregulated on the protein level in a TREM2-dependent manner by confocal microscopy 

(Fig. 5C). A large proportion of CV-KO-5XFAD microglia in cortex and hippocampus were 

positive for Spp1 staining, whereas few positive microglia were observed in R47H-KO-5XFAD 

and virtually none in KO-5XFAD (Fig. 5D). We conclude that CV mediates activation of 

microglia, which is partially affected by R47H, and Spp1 is a sensitive marker of TREM2-

dependent activation on the mRNA and protein level. 

Given recent studies on TREM2 polarization during Aβ accumulation, we sought to shed 

light on localization of CV and R47H hTREM2. While hTREM2 is exclusively detected in Iba-

1+ microglia using an antibody directed against its intracellular C-terminus (Fig. 2), brain 
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sections stained with an antibody against hTREM2 extracellular domain (ECD) showed diffuse 

distribution of hTREM2 outside of Iba-1+ voxels (Fig. 6A) and hTREM2 C-terminus+ voxels in 

CV-KO-5XFAD mice (Fig. 6B), suggesting the presence of soluble TREM2. The intensity of 

hTREM2 ECD staining was quantified both within Iba-1+ voxels and within Iba-1- voxels in the 

cortex (Fig. 6C) and hippocampus (Fig. 6D). While hTREM2 ECD intensity within microglia 

remained relatively constant between non-5XFAD and 5XFAD images, hTREM2 intensity 

outside microglia dramatically increased in CV-KO-5XFAD images and slightly increased in 

R47H-KO-5XFAD images. This non-microglial staining was absent in KO-5XFAD.  

 A particularly intense hTREM2 ECD staining was observed on a fraction of non-

microglial cells and Aβ plaques. Co-staining for NeuN and hTREM2 ECD demonstrated that the 

hTREM2 ECD+ cells are neurons (Fig. 6E). Quantification of hTREM2 intensity specifically in 

NeuN+ neuronal soma showed that CV-KO-5XFAD mice had higher frequency of hTREM2+ 

neurons (Fig. 6F) and higher hTREM2 intensity in neuronal soma (Fig. 6G) than R47H-KO-

5XFAD mice in both cortex and hippocampus. Similarly, hTREM2 intensity in Aβ plaques was 

higher in CV-KO-5XFAD mice than R47H-KO-5XFAD mice in both cortex and hippocampus 

(Fig. 6H). While TREM2 has been reported to bind damage-associated phospholipids such as 

phosphatidylserine, hTREM2 ECD did not colocalize to APP+ dystrophic neurites (Fig. 6I), and 

nuclei of hTREM2+ neurons did not show morphological abnormalities such as pyknosis or 

fragmentation (Fig. 6J). To verify that the unique distribution of hTREM2 ECD reflected soluble 

TREM2, we performed immunoblots on the PBS-soluble fraction of hippocampal tissue 

homogenates for TREM2 (Fig. 6K). A low molecular weight hTREM2 smear was detected, with 

the lower range of the smear corresponding to the predicted soluble hTREM2 size of 20 kDa. 

Densitometry confirmed higher soluble TREM2 levels in CV-KO-5XFAD compared to R47H-
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KO-5XFAD. Overall our results show for the first time that soluble TREM2 production 

markedly increases during Aβ accumulation in a mouse model and associates directly with 

neurons and plaques in vivo. The increase of soluble TREM2 and its broad distribution are both 

impaired by the R47H variant. 

We sought to shed light on the differences in soluble TREM2 observed between 

genotypes. To that end, we generated RAW264.7 macrophage-like cell lines that overexpress 

either CV or R47H. Previous work had indicated that diverse immunostimulatory molecules such 

as LPS, TNFα, and IFNγ could lead to downregulation of cell-surface TREM2. We found that in 

our system, surface expression of both CV and R47H, as measured by flow cytometry, could 

indeed be downregulated by these molecules within two hours of stimulation (Fig. 7A). While 

LPS and TNFα led to a rapid down-regulation of surface hTREM2 at 30 minutes and partial 

recovery by 2 hours, IFNγ had no detectable effect at 30 minutes but decreased surface hTREM2 

by 2 hours. To determine whether these changes were due to cleavage, we lentivirally transduced 

cells with Cas9 and a guide RNA against Adam17, which was previously shown to cleave 

TREM2. Unlike non-transduced cells, a fraction of transduced cells retained TREM2 surface 

expression upon LPS treatment (Fig. 7B); this seemingly cleavage-resistant fraction (+) was 

purified from the remainder of cleavage-sensitive transduced cells (-) by fluorescence-activated 

cell sorting and both populations were analyzed by immunoblot for Adam17 protein levels (Fig. 

7C). The (-) population showed only a slight decrease in Adam17 protein relative to non-

transduced cells, possibly reflecting the presence of heterozygous Adam17 knockout, whereas 

the (+) population showed virtually no residual Adam17 expression and were considered 

Adam17 KO. LPS, TNFα, and IFNγ treatment all failed to decrease TREM2 surface expression 

in CV-Adam17 KO and R47H-Adam17 KO (Fig. 7D). These results suggest that various 
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myeloid cell signaling pathways that may be activated in neuropathology can induce Adam17-

dependent release of soluble TREM2 and that R47H polymorphism does not directly impact this 

process.  

Our study provides conclusive evidence that the R47H polymorphism reduces TREM2-

dependent phenotypes in microglia in vivo, in the setting of endogenous ligands of TREM2 in the 

mouse brain. Compared to CV-expressing brains, R47H-expressing brains had decreased 

microglia numbers, slightly increased soluble Aβ, and dramatic reductions in activation markers 

and soluble TREM2. We further suggest that soluble TREM2 differences between the two lines 

are due to differences in microglial activation rather than intrinsic differences in cleavability 

between CV and R47H TREM2. Future studies should examine some of the other established 

TREM2 variants, such as R62H or H157Y, in vivo. More importantly, better powered genetic 

data on rare TREM2 variants such as D87N and T96K/L211P, along with additional functional 

studies, will help to clarify whether TREM2 gain-of-function is detrimental in AD. 
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Figure 1. TREM2 variants affect ligand binding in a reporter cell assay.  

A panel of TREM2 variant-expressing reporter cells were generated by retroviral TREM2 

overexpression and sorted for TREM2 surface expression. (A) TREM2 gMFI of different 

variants compared to common variant (CV). (B) Activation of different reporter lines in response 

to different concentrations of plate-coated phosphatidylserine. (C) Activation AUC vs. surface 

expression of different variants in response to phosphatidylserine, sulfatides, and 

phosphatidylcholine. Black line represents a relative activation/surface expression ratio of 1 

compared to CV. Red points are significantly higher than CV, while blue points are significantly 

lower. (D) Similar plots as (C) for plate-coated HDL and LDL. (E) Summary of variants for 

different ligands compared to CV. 
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Table 1. TREM2 gene variants found in the NIMH family-based WGS data and tested for 

replication in the ADSP case-control samples.  

 

#Aff Carr: affected carriers over total affected subjects. Med. AAO: median age of onset in 

affected carriers. #Unaff Carr: unaffected carriers over total unaffected subjects. Med. Age: 

median of last known ages of the unaffected carriers. MAF: minor allele frequency. CI: 

confidence interval. 

Codon 

change 

#Fam-

ilies 

#Aff 

Carr 

Med. 

AAO 

#Unaff 

Carr 

Med. 

Age 

MAF OR NIMH 

(P-val) 

ADSP-WES P-val; OR(CI); 

MAF 

R62C 1 2/2 78 0/0 -- 0.00068 NA -- 0.65; 0.58(0.05~6.43); 0.0001 

Q33* 2 4/4 71 1/3 73 0.00170 NA -- 0.025; (NA); 0.0001 

R47H 20 35/53 72.5 2/14 72 0.01390 11.7 0.004 3.45E-12; 4.5(2.7~7.4); 0.005 

T96K 9 11/16 71 1/6 79 0.00475 11 -- 0.85; 1.04(0.65~1.67); 0.003 

R62H 11 12/23 73 7/18 72 0.00746 1.7 -- 0.006; 1.44(1.1~1.88); 0.01 

H157Y 4 5/8 74 0/0 -- 0.00203 NA -- 0.01; 4.7(1.04~21.33); 0.0006 

L211P 10 12/18 71 1/6 79 0.00509 10 -- 0.59; 1.13(0.71~1.81); 0.003 

D87N 5 4/13 76 2/6 76 0.002 0.89 -- 0.017; 2.3(1.1~5.1); 0.0015 
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Figure 2. CV and R47H transgenes are specifically expressed in myeloid cell populations at 

comparable levels.  

(A) Thioglycolate-elicited peritoneal macrophages were stained for macrophage marker F4/80 

and hTREM2, showing similar level of hTREM2 in F4/80+ cells from both CV and R47H mice. 

(B) Bone marrow-derived macrophages were stained after 2 days in culture and gated on 

CD11b+ cells. (C) hTREM2 mRNA expression in KO, CV-KO and R47H-KO whole cortical 

tissue. (D) Immunoblot of hTREM2 and actin in the PBS-insoluble fraction of hippocampal 

tissue homogenates. (E) Confocal microscopy of cortex of CV-KO, R47H-KO, or KO 5XFAD 

or non-5XFAD mice shows colocalization of hTREM2 C-terminus (green) and microglial 

marker Iba-1 (red); methoxy-X04 staining for plaques is shown in blue. (F) Quantification of 

staining intensity of hTREM2 in the cortex and hippocampus. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 by one-way ANOVA with Holm-Sidak multiple comparisons testing. 
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Figure 3. R47H exhibits reduced microglia numbers relative to CV.  

(A) Representative images and quantification of Iba-1+ pixels. (B) Representative images of 

plaque-associated microglia and quantification of microglial density in a 15 or 30 μm shell 

around the plaque. 
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Figure 4. CV and R47H transgenes do not affect Aβ accumulation in the cortex or hippocampus.  

(A) Quantification of plaques by fluorescence microscopy of methoxy-X04 fibrillar plaques. 

(B,C) Quantification of Aβ1-40 and Aβ1-42 species in PBS-soluble and guanidine-soluble 

fractions of hippocampal (B) or cortical (C) homogenates. 
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Figure 5. CV-KO-5XFAD mice have increased microglia activation compared to R47H-KO-

5XFAD and KO-5XFAD mice.  

(A) Quantitative RT-PCR on whole cortical tissue for neurodegeneration-associated microglial 

activation markers Cst7, Spp1, and Gpnmb, as well as classical inflammatory cytokines Tnf, Il6, 

and Il1b, showing dramatically higher microglial activation markers but not inflammatory 

cytokine transcripts in CV-KO-5XFAD compared to other groups. (B) Microarray analysis of 

activation markers in sorted microglia shows that KO-5XFAD and R47H-KO-5XFAD cluster 

together and separately from CV-KO-5XFAD. (C) Spp1 protein is detected by confocal 

microscopy in CV-KO-5XFAD brains and largely absent from R47H-KO-5XFAD, KO-5XFAD, 

and non-5XFAD brains. (D) The percent of Iba-1+ (microglia) pixels that were also Spp1+ was 

quantified in cortex and hippocampus. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-

way ANOVA with Holm-Sidak multiple comparisons testing. 
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Figure 6. CV-KO-5XFAD shows unique localization of soluble hTREM2 to neurons, plaques, 

and other non-microglial spaces.  

(A) Representative confocal images showing plaques (methoxy-X04, blue), microglia (Iba-1, 

red), and hTREM2 extracellular domain (ECD) (green) in the cortex. (B) Representative 

confocal images showing plaques (blue), hTREM2 C-terminus (red), and hTREM2 ECD (green). 

In CV-KO-5XFAD brains, hTREM2 ECD is present in voxels that lack either Iba-1 or hTREM2 

C-terminus staining, whereas in R47H-KO-5XFAD, hTREM2 ECD largely colocalizes with Iba-

1 and hTREM2 C-terminus. (C, D) Mean intensity of hTREM2 ECD staining was quantified in 

Iba-1-positive (microglial) voxels and Iba-1-negative (non-microglial) voxels in (C) cortex and 

(D) hippocampus, showing similar expression levels in microglia but a significant increase 

outside of microglia in CV-KO-5XFAD brains only. (E) Representative confocal images 

showing plaques (methoxy-X04, blue), neuronal soma (NeuN, orange), and hTREM2 (green). 

(F) Frequency of hTREM2+ neurons and (G) mean hTREM2 intensity in neuronal soma was 

quantified in cortex and hippocampus. (H) Mean intensity of hTREM2 staining was quantified in 

methoxy-X04+ plaques in cortex and hippocampus. hTREM2 ECD staining on plaques and 

neuronal soma was significantly higher in CV-KO-5XFAD compared to R47H-KO-5XFAD. (I) 

Representative confocal image of plaques (blue), APP+ dystrophic neurites (red), and hTREM2 

ECD (green), showing a relative lack of soluble TREM2 on dystrophic neurites. (J) 

Representative confocal slice showing nuclei (ToPro-3, red) and hTREM2 ECD (green) within 

NeuN+ neuronal soma. hTREM2+ neurons do not show nuclear abnormalities characteristic of 

apoptosis. (K) Immunoblot of PBS-soluble fraction of hippocampal homogenates for hTREM2, 

showing a hTREM2 smear at lower molecular weight than full-length hTREM2, indicating 

soluble TREM2. Densitometric analysis normalized to actin was performed, showing that CV-

KO-5XFAD mice had more soluble TREM2 than CV-KO and R47H-KO-5XFAD mice. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with Holm-Sidak multiple 

comparisons testing. 
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Figure 7. Various immunostimulatory signals induce similar CV and R47H hTREM2 cleavage 

from the cell surface.  

(A) Representative flow cytometry plots demonstrating that both CV and R47H hTREM2 are 

lost from the cell surface of RAW264.7 upon treatment with LPS, TNFα, or IFNγ (untreated, 

gray shaded; 30 min., blue dashed line; 2 hr., red solid line). (B) Quantification of gMFI of LPS, 

TNFα, and IFNγ treated cells relative to untreated cells. Shown is mean ± SEM for three 

independent experiments. (C) Adam17 was knocked out in CV- and R47H-expressing 

RAW264.7 cells. Non-transduced cells (ctrl; gray shaded) uniformly lost hTREM2 surface 

expression. Transduced cells (solid red line) had two populations, one that retained hTREM2 

surface expression (+) and one that lost hTREM2 surface expression (-), and these two 

populations were sorted by FACS. (D) Immunoblot for Adam17. (E) Experiments conducted as 

in (a, b) using Adam17 KO. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way 

ANOVA with Holm-Sidak multiple comparisons testing. 
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Chapter 3: TREM2-dependent pathways in 

activated microglia 

 A key outstanding question is how TREM2 facilitates microglial activation. While 

TREM2-deficient mice show defects in proliferation, survival, and plaque localization, the 

mechanistic basis for these defects is unknown. Understanding the mechanism of TREM2 

function would shed light on potential therapeutic options targeting microglia in AD. 

Furthermore, the microglial response to neuropathology has often been viewed from the lens of 

M1 vs. M2 polarization, but the value of this paradigm for neurodegenerative disease has been 

challenged by recent studies of microglia acutely isolated from various models of 

neurodegeneration that suggest a common neurodegeneration-associated activation signature 

distinct from M1 or M2. As part of this activation signature, the most highly upregulated 

transcription factor is Bhlhe40, which is known to promote inflammatory responses in 

experimental autoimmune encephalitis. Most of this signature, including Bhlhe40, is ablated in 

TREM2-deficient animals in both the 5xFAD amyloid plaque model and the cuprizone-induced 

demyelination model. Thus, Bhlhe40 is a candidate on-switch that may contribute to microglial 

activation downstream of TREM2.  
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3.1 The role of TREM2 in microglia energy metabolism 

 To understand the mechanism by which TREM2 facilitates microglial activation in 

neurodegenerative states, we have expanded upon our recent findings that Dap12- or TREM2-

deficient primary microglia and BMDMs show greater susceptibility to CSF-1 withdrawal. 

Previous studies had indicated that TREM2 can activate MAPK and calcium signaling; however, 

given the significant effect of growth factor signaling on the PI3K-Akt-mTOR pathway, we 

chose to quantify the effect of TREM2 deficiency on this pathway by Western blot. After 

culturing WT and TREM2-deficient BMDMs in standard or low CSF-1 conditions, we noted that 

CSF-1-deprived TREM2-deficient BMDMs showed a dramatic reduction in both mTORC1 and 

mTORC2 signaling, as measured by S6K phosphorylation, 4EBP phosphorylation, Akt S473 

phosphorylation, and NDRG1 phosphorylation (Fig. 8A). Interestingly, CSF-1 deprived WT 

BMDMs showed a modest and variable reduction in these signaling events, suggesting to us that 

in this time frame, WT BMDMs could compensate for decreased CSF1R signaling through 

TREM2. To test this hypothesis, we cultured TREM2 reporter cells (as described in Aim 1.1) 

under normal culture conditions or with serum starvation to mimic CSF-1 deprivation. While 

reporter cells had a low level of activation under normal culture conditions, they robustly 

activated under starvation conditions, and this activation could be blocked by adding anti-

TREM2 antibody (Fig. 8B). From these data, we conclude that TREM2 activity may increase 

during stressful conditions to compensate for decreases in mTOR signaling. 

Given the essential role of mTOR in coordinating cellular metabolism and energy state, 

we decided to examine key cellular functions regulated by mTOR, namely autophagy and ATP 

production. We utilized the same experimental setup as before, using WT and TREM2-deficient 
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BMDMs cultured with standard or low CSF-1 overnight. Using the Seahorse analyzer, we 

measured baseline and glycolytic flux and oxidative phosphorylation at baseline and with stimuli 

that elicit maximum activity. Concordant with the exaggerated decrease in mTOR activity in 

CSF-1-deprived TREM2-deficient cells, baseline and maximal flux were relatively similar 

between WT and TREM2-deficient cells cultured in standard CSF-1 concentration, but TREM2-

deficient cells progressively dropped below WT cells as CSF-1 concentration was lowered (Fig. 

8C). ATP concentrations in cells cultured this way showed a similar pattern, with CSF-1-

deprived TREM2-deficient having dramatically less ATP (Fig. 8D). Next, we measured 

autophagic flux in these cells by comparing the LC3-II/LC3-I ratio with or without the addition 

of bafilomycin, an inhibitor of lysosomal acidification. We found that indeed, LC3-II/LC3-I ratio 

was greatly increased specifically in CSF-1-deprived TREM2-deficient cells (Fig. 8E). 

Furthermore, when these cells were pelleted and examined by transmission electron microscopy, 

we noticed an accumulation of multilamellar vesicles consistent with autophagosomes (Fig. 8F). 

These findings show that TREM2-deficient cells are more susceptible to stress-induced low-

energy state.   

To elucidate the in vivo significance of these findings, we isolated microglia from WT 

and TREM2-deficient mice that were either on the 5XFAD mouse model or littermate controls. 

We performed Western blot and TEM analysis as described for BMDMs. Surprisingly, we found 

that microglia from non-5XFAD WT and TREM2-deficient mice, as well as from 5XFAD WT 

mice, had similar levels of phosphorylation of mTORC1 and mTORC2 target proteins, as well as 

similar LC3-II/LC3-I ratio, whereas 5XFAD TREM2-deficient microglia had dramatically 

reduced mTOR activity and increased LC3-II/LC3-I ratio (Fig. 9A). In addition, 5XFAD 

TREM2-deficient microglia had large numbers of multilamellar vesicles by TEM (Fig. 9B). 
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These results mirror our in vitro results with Aβ deposition substituting for CSF-1 deprivation, 

and strongly suggest that microglia exposed to amyloid pathology experience stress conditions 

that mimic CSF-1 deprivation in terms of mTOR suppression and induction of autophagy. 

Previously, it had been thought that TREM2-deficient microglia simply do not respond to Aβ 

pathology and resemble homeostatic microglia; however, our findings indicate that signaling 

pathways in Aβ-exposed TREM2-deficient microglia are dramatically altered compared to 

steady state. More generally, neurodegenerative disease appears to release cytotoxic signals that 

are normally counterbalanced by increased TREM2 signaling and reinforcement of the mTOR 

pathway. 

 To determine whether these in vivo defects are responsible for the reported phenotypes of 

TREM2-deficient mice in the 5XFAD model, we sought to restore mTOR signaling by 

stimulating pathways that bypass TREM2. We turned to our in vitro model of CSF-1-deprivation 

of BMDMs, in which we tried adding several candidate compounds into the culture during CSF-

1 deprivation, using viability and metabolic measures as readouts of rescue. Many pattern 

recognition receptors initiate signaling cascades linked to mTOR. We found that addition of TLR 

agonists such as LPS, PAM3CSK4, and CpG could entirely rescue viability with CSF-1 

deprivation in both WT and TREM2-deficient BMDMs (Fig. 10A). This was also true for TLR 

agonist-depleted zymosan, which activates Dectin-1 (Fig. 10B). Thus, alternative activating 

receptors could compensate for TREM2 in vitro. We also tested whether directly modulating 

metabolic parameters, even further downstream, could provide benefit in this system. Adding the 

creatine analog cyclocreatine led to a striking increase in viability in both WT and TREM2-

deficient cells (Fig. 10C). Interestingly, while zymosan promoted ATP generation in cells, 
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cyclocreatine appeared rather to stabilize levels, significantly reducing ATP level in all groups 

except CSF-1-deprived TREM2-deficient cells, where it increased ATP level (Fig. 10D).  

 Because of previously reports utilizing cyclocreatine treatment in the brain, and the likely 

dramatic off-target effects of using TLR agonists in vivo, we administered cyclocreatine to WT 

and TREM2-deficient 5XFAD mice from the beginning of plaque formation at 2 months to the 

previously examined timepoint of 8 months as a microglial rescue experiment. Immunoblotting 

of sorted microglia from these groups showed that cyclocreatine-fed TREM2-/-5XFAD mice had 

restored mTORC1 and mTORC2 activity and decreased autophagic flux by LC3II/LC3I ratio 

(Fig. 11A). In addition, microglia clustering around plaques was partially restored (Fig. 11B), as 

well as expression of the microglial activation marker Spp1 (Fig. 11C). Overall, these results 

demonstrate that TREM2 signaling impacts mTOR signaling and global microglia metabolism 

and downstream metabolic compensation can rescue the TREM2 phenotype. These findings 

provide a unifying mechanism for the diverse microglial functions affected by TREM2 

deficiency. Importantly, cyclocreatine did not boost mTOR activity or Spp1 expression by itself 

but only in the TREM2-/-5XFAD background, hinting that TREM2 downstream pathways are 

necessary but not sufficient to activate microglia. 

 

3.2 Role of Bhlhe40 upregulation in microglial activation 

We and others have previously defined a transcriptomic signature characteristic of 

microglial activation, part of which is dependent on TREM2. Among these genes, the most 

highly upregulated transcription factor, in multiple datasets, is Bhlhe40. In particular, Bhlhe40 is 

strongly upregulated in the 5XFAD model compared to other genes (Table 2). This gene has 
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been linked to pro-inflammatory responses in other immune cells160 and is not expressed in 

steady-state microglia, suggesting that it could be an on-switch that controls part of the activation 

signature. 

First, we attempted to directly visualize the pattern of Bhlhe40 expression by crossing 

Bhlhe40-EGFP mice to 5XFAD mice. Unfortunately, we found by confocal microscopy that 

while other cells such as some neurons and astrocytes express EGFP at detectable levels at 

steady state and in the 5XFAD model, microglia do not, even surrounding plaques (Fig. 12). 

These results suggest that while Bhlhe40 may be upregulated during disease, the final expression 

level is still far less than other cells that express Bhlhe40. Even so, Bhlhe40 could be controlling 

some microglial activation genes. Therefore, we bred Bhlhe40-deficient mice to 5XFAD mice 

and analyzed mice with abundant pathology, around 9 months old. 

The most direct measure of Bhlhe40 function, given that Bhlhe40 is a transcription 

factor, would be to analyze transcriptional changes in microglia during disease. Therefore, we 

sorted microglia from Bhlhe40+/+ and Bhlhe40-/- 5XFAD brains and performed microarray 

analysis. In accordance with the low expression seen in Bhlhe40-EGFP microglia, few 

significant differences were detected between the two genotypes (Fig. 13A), and genes that were 

altered did not have any obvious relationship or large fold changes. Examination of microglial 

genes known to be altered in the 5XFAD model showed that activation genes such Spp1, 

Gpnmb, and Cst7 were indeed expressed in all samples, but equally between genotypes (Fig. 

13B). Interestingly, microglia clustering around plaques was more pronounced in the Bhlhe40-/- 

mice. (Fig. 14A). Furthermore, astrocyte clustering around plaques, which is affected by 

microglial clustering, was also increased, but not significantly (Fig. 14B). Thus, we conclude 

that Bhlhe40 is not expressed highly in microglia and is dispensable for the microglia response to 
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Aβ plaques, but it may serve to dampen inflammatory responses through effects in other cell 

types. Based on lists of genes upregulated in activated microglia, there do not seem to be other 

transcription factors that “switch on” during disease, suggesting that perhaps the transcriptional 

program of activated microglia is mediated instead by post-translational effects or 

downregulation of transcription factors. 
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Figure 8. TREM2-deficient BMDMs show increased sensitivity of mTOR-dependent cell 

functions to growth factor deprivation.  

(A) CSF-1 deprived (0.5% L-cell conditioned medium) TREM2-deficient BMDMs have 

significantly lower mTORC1 and mTORC2 activity as measured by Akt, NDRG1, S6K, and 

4EBP1 phosphorylation. (B) Serum-starved TREM2 reporter cells increase activation of TREM2 

relative to 10% serum conditions. (C) ECAR is lower in TREM2-deficient BMDMs compared to 

WT BMDMs and becomes progressively lower with decreasing CSF-1 concentration. (D) ATP 

levels are dramatically decreased in CSF-1 deprived TREM2-deficient BMDMs. (E) LC3-

II/LC3-I increases dramatically in CSF-1 deprived TREM2-deficient BMDMs and reflects 

increased autophagic flux as shown by addition of bafilomycin. (F) TEM images of BMDMs 

reveals presence of multilamellar vesicles in TREM2-deficient BMDMs, characteristic of 

autophagosomes. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with 

Holm-Sidak multiple comparisons testing. 
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Figure 9. TREM2-deficient microglia exhibit suppressed mTOR activity and increased 

autophagy in vivo in the 5xFAD model.  

(A) Western blot of sorted microglia from WT or TREM2-deficient mice with or without the 

5xFAD transgene shows similar phosphorylation of mTOR effector genes in all groups except 

TREM2-deficient 5xFAD, which has much lower activity. On the other hand, LC3-II/LC3-1 

ratio is greatly increased in this group. (B) TEM of pelleted sorted microglia from these groups. 
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Figure 10. Alternative pathways can compensate for sensitivity to CSF-1 deprivation associated 

with TREM2 deficiency.  

(A) TLR agonists, (B) cyclocreatine, and (C) depleted zymosan can fully restore viability in 

CSF-1 deprived WT and TREM2-deficient BMDMs. (D) Cyclocreatine normalizes ATP 

concentration for all conditions, while zymosan greatly boosts ATP concentration in all 

conditions. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with Holm-

Sidak multiple comparisons testing. 
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Figure 11. Cyclocreatine treatment partially restores microglia function in TREM2-deficient 

5XFAD mice.  

(A) Immunoblotting for mTOR targets Akt S473 and NDRG1, as well as LC3-I and LC3-II in 

non-treated and cyclocreatine-treated 5XFAD. (B) Microglia number in TREM2-deficient 

5XFAD is partially restored to 5XFAD levels with cyclocreatine treatment. (C) The percentage 

of microglia expressing activation marker Spp1 is rescued by cyclocreatine treatment. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA with Holm-Sidak multiple 

comparisons testing. 
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Table 2. Genes upregulated in 8 month 5xFAD microglia compared to controls. 

 

 WT 5xFAD/ctrl TREM2 5xFAD/ctrl 

Gpnmb 51.1348009 5.844581907 

Spp1 32.80583834 2.161398446 

Fabp3 29.91093348 3.927947952 

Mamdc2 28.38995648 1.401424397 

Cst7 27.18838572 14.19932165 

Fabp5 26.92798746 4.081234505 

Hpse 22.57314185 5.228671278 

Lpl 22.56346182 4.988805449 

Egln3 22.37373468 2.73306839 

Bhlhe40 19.62798126 1.67423832 

Igf1 18.77155118 4.381045471 

Itgax 17.85544881 3.226909598 

Atp6v0d2 14.944863 1.166452117 

Actr3b 12.5927362 2.205279913 

Ch25h 12.15845162 2.044315642 

Tnfsf9 12.01862098 2.574841367 

Clec7a 11.66986089 4.614432883 

Etl4 11.3741753 1.903113427 

Axl 10.93860924 2.525070146 

Cd200r4 10.9067322 3.005780224 

Cox6a2 10.36107115 3.434451054 

Cd69 10.20685209 3.07515763 

 

Fold change was calculated for both WT and TREM2-deficient mice, and genes are sorted by 

greatest fold change. Bhlhe40 is highlighted in red. 
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Figure 12. Bhlhe40-EGFP reporter mice have little Bhlhe40 expression in microglia.  

The left side shows GFP and Iba-1 co-staining, and the right side shows only the GFP signal 

colocalized to microglia. While some colocalization of GFP and Iba-1 is present, it is likely 

artifactual as it corresponds to regions of GFP+ neurons. 
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Figure 13. Bhlhe40 deficiency does not affect activation state of sorted microglia on the 

transcriptional level.  

(A) Volcano plot showing Bhlhe40-/-/WT fold change and p-value, with thresholds of differential 

expression set at 1.5 fold-change and p<0.05. Only a handful of genes are differentially 

expressed with these criteria, including Bhlhe40. (B) Quantile-normalized values of a panel of 

genes altered during microglial activation, color-coded within each row (red is higher 

expression). Homeostatic and activated microglia genes are expressed in both genotypes at 

similar levels. 
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Figure 14. Microglia and astrocyte clustering around plaques is altered by Bhlhe40 deficiency. 

(A) Representative images of microglia, astrocytes, and Aβ plaques in 5XFAD and Bhlhe40-/- 

5XFAD mice, showing microglia and astrocytes surrounding plaques in both genotypes. (B) The 

density of microglia within 20 µm of plaques is higher in Bhlhe40-/- mice. (C) A similar trend is 

observed with astrocytes but is more variable. 
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Chapter 4: Unbiased screen for TREM2 

expression-modifying genes  

Given that dose-dependent effects of TREM2 deficiency have been observed in mouse 

models of AD40,161,162 and that heterozygosity for TREM2 mutations can increase AD risk, 

disease progression appears to be quite sensitive to changes in TREM2 expression. Thus, 

modulation of TREM2 expression levels may offer an alternative strategy for harnessing 

protective functions of TREM2. Increasing TREM2 expression has the advantage of preserving 

the spatiotemporal activation profile of TREM2. For instance, if TREM2 specifically recognizes 

amyloid plaque components, then increased TREM2 expression would sensitize plaque-adjacent 

microglia to activation while limiting unnecessary inflammation elsewhere. Early work on 

TREM2 reported that IL-4 can increase TREM2 surface expression, while LPS or IFNγ can 

cause complete loss of expression56. As previously mentioned, the extracellular domain of 

TREM2 can be shed by ADAM10 and ADAM17 during steady state, reducing the surface 

TREM2 available for intracellular signaling. However, beyond these relatively isolated 

mechanisms, little is known about regulation of TREM2 surface expression. 

 

4.1 Design and execution of CRISPR-Cas9 knockout screen 

CRISPR-Cas9 knockout library screening has emerged as a powerful, versatile tool for 

identifying causal genes and pathways important for various processes. By performing a gene 
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knockout screen for TREM2 surface expression, we can obtain a global snapshot of pathways 

that regulate TREM2 synthesis, trafficking, and degradation, which has not previously been 

attempted. These results would allow us and others to pursue better-targeted therapeutics to boost 

TREM2 expression. Furthermore, some of these pathways likely regulate other proteins in 

different cell types, and mechanistic understanding of the effect of these genes or pathways on 

TREM2 will help to elucidate their effect in general in other systems. 

To identify genes that modulate TREM2 surface expression, we used the microglia-

derived BV2 cell line, which expresses abundant surface TREM2. We took advantage of a 

previously generated set of four independent BV2 CRISPR-Cas9 lentiviral knockout libraries, 

each containing one single-guide RNA (sgRNA) per gene targeting a total of 20,077 genes. 

These libraries are each subpools of the published Asiago library163. Each clone in this library 

contains Cas9, a unique sgRNA, and the corresponding gene ablation. Clones can be isolated 

according to phenotypic enrichment, then assayed for genotypic enrichment by amplification and 

sequencing of the lentivirally integrated sgRNA. Since surface expression is a cell-intrinsic 

phenotype that can be assessed by flow cytometry, we performed a pooled screen whereby cells 

staining for relatively higher or lower levels of TREM2 were sorted from the starting library by 

FACS to identify enriched sgRNAs. After sorting the 20% highest and 20% lowest TREM2-

expressing cells, we cultured TREM2-high and TREM2-low cells to equilibrate them and sorted 

either the 20% highest or 20% lowest. This process was repeated one additional time, for a total 

of three sequential sorts. A portion of cells from each step was harvested for genomic DNA, and 

all samples were submitted for amplification and sequencing at the Genomic Perturbation 

Platform at the Broad Institute. The master list of hits was assembled in three steps. First, we 

calculated fold enrichment of each gene within each subpool as follows: read count values were 
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averaged for singly, doubly, and triply sorted TREM2-high or TREM2-low samples, and the 

ratio of TREM2-high : TREM2-low was calculated. This method favors sgRNAs that enrich 

strongly after multiple sorts but also those that are consistently enriched after each step. Second, 

we calculated a modified rank mean for each gene across the four subpools by dropping the 

worst rank and averaging the other three. Third, we determined statistical significance by 

simulating random rank lists and empirically calculating the chance that a randomly generated 

rank list would produce a modified rank mean as good or better than the given modified rank 

mean. A cut-off of p < 0.05 was used to select genes for follow-up. 

As expected, TREM2 and DAP12 sgRNAs were among the top three most enriched in 

TREM2-low populations, while ADAM17 sgRNAs were the most enriched in TREM2-high 

populations. Thus, our screen easily detected known modulators of TREM2 surface expression, 

and an additional 25 genes had statistically significant rank sums (Table 3). These genes were 

validated by lentiviral expression of individual sgRNAs and staining for surface TREM2. The 

top-scoring sgRNA for each gene was selected from the four pools and inserted into the 

lentiGuide-puro construct, and lentivirus was packaged and transduced into Cas9-expressing 

BV2 cells. Due to generation of a heterozygous cell population by CRISPR knockout, each 

transduced population, including vehicle-transduced controls, were sorted once for either the 

highest or lowest 20% of TREM2 expressers, depending on the direction of change predicted by 

the screen, to enrich for clones with the largest effects (presumably homozygous knockouts). For 

example, the TREM2 and DAP12 knockout lines were sorted for low expressers, and the 

ADAM17 knockout line was sorted for high expressers. These once-sorted lines were then used 

to quantify mean fluorescence intensity (MFI) relative to once-sorted empty vector cells. Several 

sgRNAs caused statistically significant differences in MFI in the expected direction (TREM2, 
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DAP12, DOK1, SLC35A3, NMT1, CRKL, TMEM131), but effect sizes were generally small for 

novel genes (Fig. 15). Further validation of these genes with a second, independent sgRNA 

confirmed only DAP12, ADAM17, and TMEM131 (Fig. 16A). 

 

4.2 In vitro characterization of TMEM131 effect on 

TREM2 

We decided, for practical purposes, to focus specifically on the most promising hit, 

TMEM131. First, to confirm the specificity of TMEM131 knockout, we used another 

independent sgRNA against TMEM131 and demonstrated again increased TREM2 surface 

expression. We cloned out TMEM131 cDNA from murine brain tissue and overexpressed a 

3xFLAG-tagged version in BV2; TREM2 surface expression decreased, confirming the 

specificity of TMEM131 (Fig. 16B). We sought to interrogate the dependence of the TMEM131-

TREM2 interaction on transcriptional regulation, on species, and on cleavage. First, we treated 

various CRISPR-Cas9 knockout lines with the broad metalloproteinase inhibitor GM6001. If 

TMEM131 functions by modulating ADAM family metalloproteinases, then in the presence of 

GM6001, the difference between TMEM131 knockout and parental BV2 should be reduced. 

This treatment increased the TREM2 surface expression in all cell lines, including TMEM131 

knockout to a similar extent, making this mechanism less likely (Fig. 16C). Next, we replaced 

the stem region of human TREM2 with the stem region of human CD8, which is not cleaved by 

ADAM family members. This construct was overexpressed in BV2 cells under control of the 

CMV promoter and demonstrated relatively homogeneous and abundant surface expression. 

After lentiviral transduction with two independent sgRNAs targeting TMEM131 or empty 
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vector, TMEM131 knockout cell lines expressed significantly higher levels of CMV-driven, 

cleavage-resistant human TREM2 (Fig. 16D), demonstrating that TMEM131 cross-reacts with 

both human and mouse TREM2 and likely does not function through transcriptional regulation 

or cleavage of the stem region. Because of the robust expression of the cleavage-resistant 

construct and the availability of reagents against human TREM2, we used these cell lines for 

subsequent experiments. 

Given these results, we hypothesized that TMEM131 likely regulates TREM2 in a post-

translational fashion. First, we investigated if TMEM131 affects the half-life of surface TREM2 

by performing a cycloheximide chase. While TMEM131 knockout cells express higher surface 

TREM2 at baseline, they lose expression at a similar rate over the course of a two hour chase, 

suggesting that TMEM131 does not directly promote degradation of mature surface TREM2 

(Fig. 17A).  

Because of the unique presence of intramembranous charged residues in TREM2 and 

Dap12 that are important for TREM2 trafficking, we investigated whether this feature was 

important for TMEM131-TREM2 interaction by generating a TREM2 mutant with a K→A 

substitution that ablates the intramembranous charge. This mutation is also expected to abolish 

interaction of TREM2 with DAP12. We found that TREM2 K186A surface expression increased 

upon TMEM131 knockout similarly to non-mutated TREM2 (Fig. 17B). This demonstrates that 

the K186 residue is not required for TMEM131 effect, and most likely, TMEM131 interacts 

directly with TREM2 rather than indirectly through Dap12. We performed additional 

experiments testing the specificity of TMEM131 effect by measuring surface expression of other 

myeloid markers such as CD11b, CD33, CD44, and CD45 with or without TMEM131 knockout. 

None of these surface markers were affected, showing that the effect on TREM2 is relatively 
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specific (Fig. 17C). These results provide a rough idea of the role of TMEM131 in regulating 

TREM2 surface expression and set the stage for future in vivo studies. 



61 

 

Table 3. List of genes and modified rank mean for statistically significant genes enriched in 

TREM2-low or TREM2-high fractions. 

sgRNA enriched in 

TREM2-low 

   sgRNA enriched in 

TREM2-high 

Gene Rank 

mean 

Gene Rank 

mean 

Gene Rank 

mean 

Gene Rank 

mean 

Trem2 1 Pten 10.33 1110025L11Rik 54 Adam17 22 

Dok1 2 Ptpn6 16 Krtap6-5 57.33 Tecr 22.33 

Tyrobp 2.67 Pitpnb 18.67 Nadk 74.67 Gne 57.67 

Ric8 5.33 Son 20 Nmt1 76.33 Tmem131 66.67 

Kctd5 6.33 Ggnbp2 30 Krtap19-2 81.67 Slc35a1 98 

Slc35a3 6.67 Dnttip1 32.5 Tec 84.33   

Crkl 7.67 Inpp5d 41.67 Fasn 94   

Tfap4 8.33 Ppp2r4 44.33     
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Figure 15. Statistically significant genes were validated by generating sgRNA knockouts using 

the top-ranking sgRNA from the screen.  

As expected, TREM2 sgRNA effectively ablates TREM2 surface expression, while DAP12 and 

ADAM17 knockout decreases and increases TREM2 surface expression, as expected. Of novel 

genes, DOK1 knockout has the largest effect in reducing TREM2 surface expression, while 

TMEM131 knockout has the largest effect in increasing it. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 by one-way ANOVA with Holm-Sidak multiple comparisons testing. 
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Figure 16. TMEM131 suppresses surface levels of TREM2 through a metalloproteinase-

independent mechanism.  

(A) Lentiviral CRISPR-Cas9 knockout of genes passing first-round validation with a second, 

independent sgRNA further validates TMEM131 suppression of surface TREM2 level. (B) 

Retroviral overexpression of TMEM131-3XFLAG in TMEM131-KO BV2 cells restores normal 

TREM2 levels and reduces TREM2 levels further in WT BV2 cells. (C) Treatment of CRISPR 

KO BV2 lines with broad metalloproteinase inhibitor GM6001 boosts surface TREM2 levels 

across cell lines but preserves the higher relative expression in TMEM131-KO cells. (D) 

Cleavage-resistant human TREM2 expressed under CMV promoter in BV2 cells can be 

increased by TMEM131-KO with two independent sgRNAs. 
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Figure 17. TMEM131 suppression of TREM2 does not involve faster degradation rate or require 

the intramembranous charge interactions of TREM2 and DAP12.  

(A) Cycloheximide chase shows that surface TREM2 levels fall at a similar relative rate in 

control and TMEM131-KO BV2 cells. (B) TMEM131-KO increases expression of cleavage-

resistant human TREM2 as well as the same construct with the intramembranous charged residue 

mutated. (C) Surface levels of other myeloid cell markers are not consistently altered by 

TMEM131 modulation, suggesting that the TREM2 effect is somewhat specific. 
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Chapter 5: Materials and methods 

5.1 Methods for Chapter 2 

Family cohort 

 The National Institute of Mental Health (NIMH) Alzheimer’s Disease Genetics Initiative 

Study (1) originally ascertained for the study of genetic risk factors in AD with family-based 

methods, was used in the WGS analyses in this study. The basis for ascertainment in the NIMH 

collection was the existence of at least two affected individuals within a family, typically 

siblings. The complete NIMH study cohort contains a total of 1,536 subjects from 457 families. 

For the purpose of this analysis, only subjects of self-reported European ancestry were included, 

consisting of 1,376 participants (941 definitely affected and 404 definitely unaffected and the 

remainder could not be determined as definitely unaffected or definitely affected) from 410 

families.  

 

ADSP Whole-exome replication samples 

 The whole-exome variant calls (limited to SNVs only) were obtained from the 

Alzheimer's Disease Sequencing Project (ADSP) study (Study Accession: phs000572.v6.p4) by 

requesting accession authorization through dbGaP. The entire study data consists of whole 

exome sequencing data on 5096 cases 4965 controls, and an additional 853 (682 Cases [510 

Non-Hispanic, 172 Hispanic]), and 171 Hispanic Control subjects from families that are multiply 
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affected with AD. For the purpose of this study, only the subjects with the self-reported 

Caucasian ethnicity were included in the replication analysis (n=10449). 

 

Family-based Association Testing 

 Association analyses of the TREM2 variants in the NIMH-WGS dataset were performed 

using the family-based association test (FBAT (4) as implemented in PBAT (v3.6 (5). To 

maximize statistical power, we tested AD affection status and age of onset jointly, using the 

multivariate extension of the FBAT-approach, FBAT-GEE (6). In order to minimize the multiple 

testing problems, we applied the weighted Bonferroni-testing strategy (7), which is an extension 

of the VanSteen algorithm (8). 

 

Logistical Regression in Case-Control Whole-exome dataset 

 Logistical Regression using the binary affection status was performed using PLINK 

v1.90 (9). We used the additive model to assess allelic effects of SNPs given by the direction of 

the regression coefficient showing the effect of each extra minor allele, i.e. a positive regression 

coefficient means that the minor allele increases risk/phenotype mean. 

 

Retroviral transduction.  

 Wild-type TREM2 and DAP12 were cloned into a pMX vector (10), and the QuikChange 

II XL Site-Directed Mutagenesis kit (Agilent) was used to generate variants. Lipofectamine 2000 
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(Thermo Fisher Scientific) was used to transfect Platinum E cells (Cell Biolabs) with 2.5 μg of 

each plasmid per 10 μL Lipofectamine 2000 to generate retroviral supernatants, per manufacturer 

instructions. After 48 hours and 72 hours, medium from 2B4 NFAT-GFP cultures was replaced 

with 0.45μm filtered fresh virus and the cells were spun for 1 hour minutes at 800 x g, after 

which additional medium was added. Successfully transduced cells were sorted after 1 week and 

again after 2 weeks based on TREM2 staining using a FACSAria II. 

 

Quantitative RT-PCR  

 RNA was isolated from the indicated cells using TRIzol reagent (Thermo Fisher 

Scientific) according to manufacturer’s instructions and concentration was determined using a 

Nanodrop (Thermo Fisher Scientific). Reverse transcription was performed using the 

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen), and q-PCR was 

performed using iTaq Universal SYBR Green Supermix (Bio-Rad) on a Roche LightCycler 96. 

Primers used were as follows from 5’ to 3’: human TREM2 isoform 1 

GCATCTCCAGGAGCCTCTTG and TGAGAAAGATGCAGGCCAGG; human TREM2 

isoform 2 CGGGATGCTGGAGATCTCTG and TCTCAGCCCTGGAGATGCT; human 

DAP12 CCCGGAAACAGCGTATCACT and CGCTGTAGACATCCGACCTC; GAPDH 

CCTGGTATGACAACGAATTT and AGTGAGGGTCTCTCTCTTCC; HPRT 

GCAGTACAGCCCCAAAAT and AACAAAGTCTGGCCTGTATCCAA; Actb 

GGAGGGGGTTGAGGTGTT and TGTGCACTTTTATTGGTCTCAAG;  murine DAP12 

GAGTGACACTTTCCCAAGATGC and CCTTGACCTCGGGAGACCA; Spp1 

CACTCCAATCGTCCCTACAGT and CTGGAAACTCCTAGACTTTGACC; Gpnmb 
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CATTCCCATCTCGAAGGTGAAA and AAATGGCAGAGTCGTTGAGGA; Cst7 

GGAGCTGTACTTGCCGAGC and CATGGGTGTCAGAAGTTAGGC. The delta delta Ct 

method was used to calculate expression relative to HPRT, GAPDH, or Actb. 

 

Flow cytometry  

 The indicated cells were washed in FACS buffer (2% bovine calf serum, 0.01% sodium 

azide in PBS), then stained with either isotype control, unconjugated anti-human TREM2 

antibody (clones 29E3 and 10B11, hybridoma supernatant), or biotinylated anti-human TREM2 

antibody (clone 21E10) in FACS buffer for 15 minutes on ice. After washing 3 times with FACS 

buffer, cells were incubated with PE-conjugated goat F(ab’)2 anti-mouse IgG1 (Southern 

Biotech cat. no. 1072-09, 1:20) or APC-conjugated streptavidin (Life Technologies cat. no. 

S868, 1:20) for 15 minutes on ice. Staining for myeloid cells was performed using BV421-anti-

CD45 (30-F11, Biolegend, 1:200), FITC-anti-CD11b (M1/70, eBioscience, 1:200), and APC-

anti-F4/80 (BM8, eBioscience, 1:100). After washing 3 times with FACS buffer, cells were 

resuspended in FACS buffer, propidium iodide was added (Sigma-Aldrich, final concentration 

5μg/mL), and cells were read on a FACSCalibur. Cells were gated based on forward and side 

scatter and propidium iodide negativity. 

 

Reporter assay 

 Phosphatidylcholine (Avanti, #840051P), phosphatidylserine (Avanti, #840032P), and 

sulfatides (Avanti, #131305P) were reconstituted in methanol, methanol, and chloroform : 
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methanol : water 2 : 1 : 0.1, respectively. For each experiment, two Nunc-Immuno MicroWell 96 

well solid plates (Sigma) were coated with the purified lipid ligands phosphatidylcholine, 

phosphatidylserine, or sulfatide by diluting to the indicated concentration in methanol and adding 

50μL of the resulting solution to each well, with each condition performed in duplicate. Plates 

were allowed to dry by evaporation, leaving the ligands coated on the well bottom. For human 

HDL (Millipore) and human LDL (Millipore), stock solution was diluted to the proper 

concentration in carbonate buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) and 50μL of the 

resulting solution was added to each well, with each condition performed in duplicate. The plates 

were transferred to 4°C overnight. The next day, solution was aspirated from each well, and each 

well was washed once with 150μL of PBS. For plate-bound antibody, goat (Fab’)2 anti-mouse 

IgG (Southern Biotech, cat no. 1012-01) was diluted 1:100 in carbonate buffer, and 50μL of the 

resulting solution was added to wells in triplicate. The plate was placed at 4°C for 12 hours. 

Then, solution was aspirated and each well was washed once with 150μL of PBS. 29E3 

hybridoma supernatant was plated in each well at 4°C. After 12 hours, the supernatant was 

aspirated and wells were washed once with 150μL of PBS. 

 After preparation of the plate, 50,000 cells in 75μL of complete media were added to 

each well. After 12 hours, the cells were transferred to FACS tube and read on a FACSCalibur. 

Cells were gated based on forward and side scatter and propidium iodide negativity. The 

nontransduced control was used to draw the gate for GFP positivity, and this gate was used to 

determine the %GFP+ for each variant and ligand concentration. The average %GFP+ at the 

lowest two concentrations for each variant were assumed to be baseline activation, and this value 

was subtracted from the curve for each respective variant. The values for all concentrations were 

summed to approximate the area under the curve, which was used for analysis. 
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Mice 

 Trem2-/- 5XFAD mice were generated as previously described(Wang et al. 2015). The 

CTD-2210D2 bacterial artificial chromosome (BAC) clone was purchased from Thermo Fisher, 

and the R47H polymorphism was introduced by recombination using the Quick and Easy BAC 

Modification Kit (Gene Bridges). The entire BAC was injected into the nucleus of fertilized eggs 

from C57BL/6 x CBA mice, and CV and R47H founders were obtained. The two lines selected 

for further work were subsequently backcrossed onto the C57BL/6 background for at least four 

generations (some done in the process of crossing to Trem2-/- and 5XFAD mice, both of which 

are on a C57BL/6 background). All mice were bred and housed in specific pathogen free 

conditions. Animals were sacrificed between the ages of 245-260 days (8.5 months), with each 

experimental group containing both transgenic and non-transgenic mice.  

 

Cell culture and biochemical assays 

 To obtain thioglycollate-elicited peritoneal macrophages, mice were injected 

intraperitoneally with 1 mL of 3% thioglycollate medium (Sigma, prepared in water and 

autoclaved), and cells were harvested by peritoneal lavage after 3 days. Cells were subsequently 

stained for flow cytometry. To prepare bone marrow-derived macrophages, femurs and tibias 

were removed and flushed with PBS. Cells were counted and plated at 2 x 106 cells/100 mm 

petri dish in RPMI supplemented with Glutamax, penicillin/streptomycin, nonessential amino 

acids, pyruvate, and 10% heat inactivated fetal bovine serum and 10% L-cell conditioned 

medium (LCCM) as a source of colony stimulating factor 1 (CSF1). Cells were cultured for 4-6 

days before use. Human HDL (Millipore) was supplemented at a concentration of 50 μg/mL. 
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RAW264.7 cells were cultured on non-tissue culture treated 12-well plates in RPMI 

supplemented with Glutamax, penicillin/streptomycin, pyruvate, and 5% fetal bovine serum. 

 RAW264.7 cells were transduced with Cas9 overexpression lentivirus and transfected 

with plasmid expressing guide RNA against murine TREM2. TREM2-negative cells were sorted 

by FACS. lentiCas9-Blast and lentiGuide-Puro were gifts from Feng Zhang (Addgene plasmids 

# 52962, #52963, respectively). These TREM2-deficient RAW264.7 were retrovirally 

transduced with either CV or R47H driven under the CMV promoter and cells were sorted for 

hTREM2 expression by FACS. Cells were stimulated for 30 minutes or 2 hours with 10 ng/mL 

LPS (K12, Invivogen), 20 ng/mL recombinant TNFα (Peprotech), or 20 ng/mL recombinant 

IFNγ (Peprotech). For sorting Adam17-KO populations, cell were stimulated for 30 minutes with 

10 ng/mL LPS and then stained for hTREM2. 

 

Preparation of brain samples 

 Mice were anesthetized with ketamine/xylazine and perfused with ice-cold PBS 

containing 1 U/ml of heparin. Right brain hemispheres were fixed in 4% PFA overnight at 4°C 

rinsed in PBS and incubated overnight at 4°C in 30% sucrose before freezing in a 2:1 mixture of 

30% sucrose and optimal cutting temperature compound. Serial 40 µm coronal sections were cut 

on a cryo-sliding microtome. Cortices and hippocampi of the left-brain hemispheres were 

carefully dissected out and flash frozen for biochemical analysis. A portion of cortex was 

preserved in RNAlater (Ambion) until all samples were collected. 
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Confocal microscopy 

 Floating sections were blocked with 3% bovine serum albumin and 0.25% Triton X-100 

in PBS, and then stained with anti-Iba-1 (rabbit polyclonal, Wako, 1:5000; or goat polyclonal, 

Abcam 1:1000), anti-human TREM2 ECD (goat polyclonal, R&D, 1:500), anti-human TREM2 

C-terminus (D814C rabbit mAb, Cell Signaling, 1:500), anti-Spp1 (goat polyclonal, R&D, 

1:500), anti-APP (22C11 mouse mAb, Millipore, 1:1000) and/or anti-NeuN (D3S3I rabbit mAb, 

Cell Signaling, 1:500) overnight at 4°C followed by staining with anti-rabbit IgG DyLight 549 

(Vector, 1:2000), anti-goat IgG AlexaFluor-488 (Abcam, 1:2000), anti-rabbit IgG AlexaFluor-

647 (goat polyclonal, Invitrogen, 1:1000), anti-goat IgG-biotin (donkey polyclonal, Invitrogen, 

1:2000), streptavidin AlexaFluor-647 (Invitrogen, 1:2000), methoxy-X04 (Tocris, 3 μg/mL), 

and/or TO-PRO-3 iodide (Thermo-Fisher, 300 nM) for 1 hour at RT. All antibodies were used in 

blocking buffer, and between all incubations, sections were washed for ten minutes in PBS three 

times. Images were collected using a Nikon A1Rsi+ confocal microscope. 3D image 

segmentation of microglia, plaques, and neurons, and extraction of parameters were performed in 

Imaris 8.1 (Bitplane), and further processing was performed using automated scripts in Matlab 

(Mathworks). For detailed image analysis procedures, see Supplementary Methods. 

 

Immunoblot 

 Samples were prepared from PBS-soluble or PBS-insoluble guanidine-soluble fractions 

of brain homogenates (as described above), or from cell lysates, by adding 1X NuPAGE LDS 

sample buffer (Invitrogen) and 10% β-mercaptoethanol and boiling for 5 minutes. Samples were 

run on NuPAGE 4-12% Bis-Tris pre-cast gels (Invitrogen), transferred to nitrocellulose 
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membranes, and blocked with 5% milk in PBS+0.05% Tween-20 (PBS-T) for 1 hour at room 

temperature. Membranes were incubated with in-house generated 29E3 anti-human TREM2 

antibody (mouse IgG1, 4 μg/mL), anti-TACE/ADAM17 (rabbit polyclonal, Novus, 1:1000), or 

anti-pan-actin (rabbit polyclonal, Cell Signaling, 1:4000) in 0.5% milk/PBS-T overnight at 4°C, 

and incubated in HRP-conjugated anti-rabbit Ig (goat polyclonal, Southern, 1:1000) or HRP-

conjugated anti-mouse IgG1 (goat polyclonal, Southern, 1:1000) at room temperature for 1 hour, 

with 3 washes of PBS-T between steps. Blots were detected by SuperSignal West Pico 

Chemiluminescent Substrate or SuperSignal West Femto Maximum Sensitivity Subtrate 

(Thermo) with autoradiographic film. Developed films were scanned using an Epson Perfection 

V370 Photo scanner and analyzed using Image Studio Lite (LI-COR). 

 

qRT-PCR and microarray analysis 

 For microarray analysis of sorted microglia, perfused brains were homogenized using the 

Neural Dissociation Kit (T) (Miltenyi) per manufacturer instructions. The homogenized tissue 

was run through a 70μm cell strainer and resuspended and centrifuged in 30% Percoll (GE). The 

resulting pellet was stained for CD11b and CD45, and CD11b+CD45+ cells were sorted using a 

FACSAriaII. RNA was extracted from sorted cells using the RNeasy Micro Plus kit (Qiagen) per 

manufacturer instructions and submitted for microarray analysis at the Genome Technology 

Access Center at Washington University. Samples were amplified using the Nugen Ovation Pico 

SL and run on the Affymetrix Gene 1.0 ST platform. 
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Statistics 

 Data in figures are presented as mean ± SEM. Unless otherwise stated, statistical analysis 

was performed using Prism (GraphPad). Statistical analysis to compare the mean values for 

multiple groups was performed using a one-way or two-way ANOVA, as appropriate, with 

Holm-Sidak multiple comparisons testing. 

 

5.2 Methods for Chapter 3 

Mice 

 The generation of Trem2–/– and Trem2–/– 5XFAD mice has been described previously 

(Oakley et al., 2006; Turnbull et al., 2006; Wang et al., 2015). All mice were on a C57BL/6 

background. Age and sex matched mice were used for all experiments; experimental cohorts of 

mice were cohoused from birth to control for the microbiota.. For in vivo cyclocreatine treatment 

10-week old mice were put on cyclocreatine-containing water, treatment was continued until 

mice reached 8 months of age (Santa Cruz SC-217964 S). Desired intake of cyclocreatine was 

approximately 0.28 mg/g of body weight/day, which is approximately the same as the standard 

creatine dose used in humans of 285 mg/kg of body weight/day164. Cyclocreatine was 

administered in drinking water at a final concentration of 2.33 mg/ml. Bhlhe40-EGFP and 

Bhlhe40-deficient mice have previously been described165. The Institutional Animal Care and 

Use Committee at Washington University in St. Louis approved all protocols used in this study. 

 

Cell culture and biochemical assays 
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 To prepare bone marrow-derived macrophages, femurs and tibias were removed and 

flushed with PBS. Cells were counted and plated at 2.5 x 106 cells/100 mm petri dish in RPMI 

supplemented with Glutamax, penicillin/streptomycin, nonessential amino acids, pyruvate, and 

10% heat inactivated fetal bovine serum (complete RPMI) and 10% L-cell conditioned medium 

(LCCM). Cells were cultured for 4-5 days before use. ATP concentrations were determined with 

an ATP Determination Kit (Invitrogen).  

 

Microglia sorting 

 Microglia were isolated from the indicated animals as previously described (Wang et al., 

2015). CD45+, CD11b+, F4/80+ (Biolegend Cat. Number 103134, eBioscience Cat. Numbers 

11-0112 and 17-4801) cells in the brain were fluorescence-activated cell-sorted (FACS) directly 

into RLT-plus lysis buffer for microarray or 2% FBS in PBS for TEM or immunoblot lysates. 

For microarray RNA extraction was performed using a RNeasy micro kit (QIAGEN). 

Microarray hybridization (Affymetrix MoGene 1.0 ST array) and data processing were 

performed at the Washington University Genome Center.  

 

Immunoblotting 

 BMDM or microglia were lysed in RIPA buffer (50 mM Tris, 150mM NaCl, 1% SDS, 

and 1% Triton X100) containing PMSF, leupeptin, activated sodium orthovanadate, apoprotinin, 

and phosphatase inhibitor cocktail 3 (Sigma Aldrich Cat. Number P0044). Lysates were flash 

frozen on dry ice and stored at -80o C until use. Lysates were thawed and 4x LDS running buffer 
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and 10% β-mercaptoethanol were added. Lysates were heated to 95o C for 10 minutes and run 

on either a 15 % polyacrylamide gel with a 4% stacking gel, a 12% bis-tris gel (Nupage), or a 4-

12% bis-tris gel (Nupage). Proteins were transferred to nitrocellulose and blocked for 1 hour at 

RT in 5% milk in Tris buffered saline with 0.05% Tween 20 (TBST). Membranes were 

incubated in primary antibody overnight at 4o C (Supplemental Table 2). Membranes were 

subsequently washed and incubated in Leinco anti-rabbit HRP for 1 hour at RT, washed, and 

developed using either SuperSignal West Pico Chemiluminescent Substrate or a combination of 

SuperSignal West Pico Chemiluminescent Substrate and SuperSignal West Femto 

Chemiluminescent Substrate.  

 

Metabolism assays 

 For real-time analysis of extracellular acidification rates (ECAR) macrophages were 

analyzed using an XF96 Extracellular Flux Analyzer (Agilent Technologies). Cells were 

incubated overnight in complete RPMI in the indicated concentration of LCCM with or without 

cyclocreatine (10 mM). Measurements were taken under basal conditions and following the 

sequential addition of 1 μM oligomycin and 1.5 μM fluoro-carbonyl cyanide phenylhydrazone 

(FCCP) (purchased from Sigma-Aldrich). 

 

Transmission electron microscopy 

 For ultrastructural analyses, cells were fixed in 2% paraformaldehyde/2.5% 

glutaraldehyde in 100 mM sodium cacodylate buffer, pH 7.2 for 1 hr at RT (Polysciences Inc., 
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Warrington, PA). Samples were washed in sodium cacodylate buffer and postfixed in 1% 

osmium tetroxide for 1 hr (Polysciences Inc.). Samples were then rinsed extensively in deionized 

water prior to en bloc staining with 1% aqueous uranyl acetate for 1 hr (Ted Pella Inc., Redding, 

CA). Following several rinses in dH20, samples were dehydrated in a graded series of ethanol 

and embedded in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were cut with a Leica 

Ultracut UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, IL), stained with uranyl 

acetate and lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope 

(JEOL USA Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera and AMT 

Image Capture Engine V602 software (Advanced Microscopy Techniques, Woburn, MA). For 

quantitation of multivesicular/multilamellar structures, 30 cells that were cross-sectioned through 

the nucleus (indicating cross-section through the middle of cell) were randomly chosen, and 

images of each cell were taken at 6,000X and 20,000X magnification. The cross-sectional area of 

each of the multivesicular structures were determined using Image J 1.38g (National Institutes of 

Health, USA, customized for AMT images). Data is expressed as the 1) total number of a 

multivesicular/multilammelar structures per cross sectional area of cytosol and 2) the total cross-

sectional area of multivesicular/multilamellar structures per area of cytosol.  

 

Preparation of brain samples and confocal microscopy 

 Confocal microscopy analysis was preformed as previously described (Wang et al., 

2015). Briefly, mice were anesthetized with ketamine/xylazine and perfused with ice-cold PBS 

containing 1 U/ml of heparin. Brains were fixed in 4% PFA overnight at 4o C rinsed in PBS and 

incubated overnight at 4o C in 30% sucrose before freezing in a 2:1 mixture of 30% sucrose and 
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optimal cutting temperature compound. Serial 40 μm coronal sections were cut on a cryo-sliding 

microtome. Floating sections from 1.1 mm Bregma to 0.8 mm Bregma for cortical imaging were 

stained with Iba-1 (Waco Chemicals Cat. Number 019-19741) overnight at 4o C followed by 

staining with anti-rabbit IgG DyLight 549 (Vector Laboratories Cat. Number DI-1549) and 

methoxy-X04 (Tocris Cat. Number 4920) for 1 hour at RT. Images were collected using a Nikon 

A1Rsi+ confocal microscope. Images were then processed with Imaris 7.7 (Bitplane).  

 

Microglia clustering analysis 

 Positions of microglia and positions and volumes of plaques within z-stacks were derived 

from analysis in Imaris, and microglia-plaque association was determined using automated 

scripts in Matlab. Briefly, each plaque in the z-stack was modeled as an idealized sphere with the 

same volume and center of mass. Microglia density within 15 or 20 μm of the plaque surface was 

determined by isolating the voxels of the image that fall within 15 or 20 μm of the edge of the 

idealized plaque. The number of microglia contained in these voxels was divided by the total 

volume of those voxels to obtain density for a single plaque. Densities of all plaques in a z-stack 

were averaged together, and the resulting values were averaged together for all z-stacks 

corresponding to a single animal. 

 

Reporter cell assay 

 The 2B4 T cell hybridoma cell line was retrovirally transduced with an NFAT-GFP 

reporter construct, and TREM2 reporter cells were generated by a second retroviral transduction 
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with a TREM2 overexpression construct and selected by puromycin resistance, as previously 

described (Wang et al., 2015). Cells were cultured routinely in complete media (10% FBS in 

RPMI-1640 supplemented with sodium pyruvate, GlutaMAX, and penicillin/streptomycin). For 

serum starvation, cells were plated at a density of 25,000 cells/well in a 96-well plate in either 

complete media or RPMI-1640 in the presence of 20% anti-TREM2 hybridoma supernatant 

(clone M178, generated in house) or 20% isotype control hybridoma supernatant (Wang et al., 

2015). After 16 hours, the percent of GFP+ cells among live cells was measured by flow 

cytometry. 

 

5.3 Methods for Chapter 4 

Library preparation and screening 

 BV2 cells were transduced with Cas9 overexpression lentivirus lentiCas9-Blast, selected 

by blasticidin treatment to obtain BV2-Cas9 cells. These cells were subsequently transduced 

with lentiGuide-Puro Asiago library subpools 1, 2, 5, or 6163 and selected by puromycin 

treatment to generate 4 independent genome-wide knockout libraries. Each library was divided 

into two batches as technical replicates. Three sequential sorts were performed for each library 

by sorting the top or bottom 20% of TREM2-expressing cells multiple times with two days of 

equilibration in culture between sorts. Specifically, TREM2-high cells were sorted again for the 

top 20% to generate TREM2-high-high cells, while TREM2-low cells were sorted again for the 

bottom 20% to generate TREM2-low-low cells, etc. After each sort, a portion of the cells was 

harvested for DNA extraction, such that we assayed all combinations of different libraries and 

different numbers of sorts. A fraction of cells was maintained in culture for the same duration of 
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time without sorting to serve as a control. These samples were submitted to the Genetic 

Perturbation Platform at the Broad Institute for amplification and deep sequencing. 

 

Cell culture 

 All BV2-derived cell lines were cultured in 5% FBS in RPMI supplemented with 

GlutaMAX, sodium pyruvate, and penicillin/streptomycin. BV2-Trem2-KO cells were 

previously generated by CRISPR-Cas9 followed by sorting of TREM2-negative cells. These 

TREM2-deficient BV2 were retrovirally transduced with pMX vectors carrying cleavage-

resistant hTREM2 (hTREM2-CD8, residues 133-174 of hTREM2 replaced with the sequence 

TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD from CD8 stem region) 

or hTREM-CD8 with an additional point mutation (K186A), followed by IRES and human 

DAP12. Lentivirally-mediated CRISPR-Cas9 knockout was performed by cloning the 

appropriate sgRNA sequence into either the lentiGuide-Puro or lentiCRISPRv2-Blast vectors. 

TMEM131 was cloned from cDNA derived from mouse brain, and the obtained sequence 

corresponded to the predicted isoform X2. This fragment was inserted into the pMX-IRES-puro 

vector with a C-terminal 3XFLAG tag. Cycloheximide was used at a concentration of 25 µg/mL. 

GM6001 was used at a concentration of 10 µg/mL. 

 

Flow cytometry 

 Cells were washed in FACS buffer (2% bovine calf serum, 0.01% sodium azide in PBS), 

then stained with either isotype control, unconjugated anti-human TREM2 antibody (clones 
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29E3 or 21E10, hybridoma supernatant), or in FACS buffer for 15 minutes on ice. After washing 

3 times with FACS buffer, cells were incubated with PE-conjugated goat F(ab’)2 anti-mouse 

IgG1 (Southern Biotech cat. no. 1072-09, 1:20) or PE-conjugated goat anti-rat IgG (Southern 

Biotech cat. no. 3030-09) for 15 minutes on ice. Staining for other myeloid markers was 

performed using FITC-anti-CD44 (eBioscience, 1:200), PE-anti-CD64 (eBioscience, 1:200), 

FITC-anti-CD45 (30-F11, eBioscience, 1:200), FITC-anti-CD11b (M1/70, eBioscience, 1:200), 

and PE-anti-F4/80 (BM8, eBioscience, 1:100). After washing 3 times with FACS buffer, cells 

were resuspended in FACS buffer, propidium iodide was added (Sigma-Aldrich, final 

concentration 5μg/mL), and cells were read on a FACSCalibur. Cells were gated based on 

forward and side scatter. 



82 

 

References 

1. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer’s disease. Nat. 

Immunol. 16, 229–236 (2015). 

2. Cohen, M. et al. Chronic exposure to TGFβ1 regulates myeloid cell inflammatory 

response in an IRF7-dependent manner. EMBO J. 33, 2906–21 (2014). 

3. Colonna, M. & Butovsky, O. Microglia Function in the Central Nervous System During 

Health and Neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017). 

4. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: The role of inflammation 

in Alzheimer disease. Nature Reviews Neuroscience 16, 358–372 (2015). 

5. Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid 

cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011). 

6. Ginhoux, F. et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from 

Primitive Macrophages. Science (80-. ). 330, (2010). 

7. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. V. Local self-renewal 

can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 

10, 1538–1543 (2007). 

8. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal 

expansion of microglia. Nat. Neurosci. 20, (2017). 

9. Askew, K. et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of 

Microglia in the Adult Brain. Cell Rep. 18, 391–405 (2017). 

10. Zhang, D. E., Hetherington, C. J., Chen, H. M. & Tenen, D. G. The macrophage 

transcription factor PU.1 directs tissue-specific expression of the macrophage colony-

stimulating factor receptor. Mol. Cell. Biol. 14, 373–81 (1994). 

11. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-

dependent pathways. Nat. Neurosci. 16, 273–80 (2013). 

12. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and 

function. Nat. Immunol. 17, 1397–1406 (2016). 

13. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in 

the CNS. Nat. Neurosci. 18, 965–77 (2015). 

14. Thion, M. S. et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific 

Manner. Cell 172, 500–516.e16 (2018). 



83 

 

15. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that 

underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–

28 (2012). 

16. Galatro, T. F. et al. Transcriptomic analysis of purified human cortical microglia reveals 

age-associated changes. Nat. Neurosci. 20, 1162–1171 (2017). 

17. Gosselin, D. et al. An environment-dependent transcriptional network specifies human 

microglia identity. Science (80-. ). 356, 1248–1259 (2017). 

18. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional 

signature in microglia. Nat. Neurosci. 17, 131–43 (2014). 

19. Bohlen, C. J. et al. Diverse Requirements for Microglial Survival, Specification, and 

Function Revealed by Defined-Medium Cultures. Neuron 94, 759–773.e8 (2017). 

20. Abud, E. M. et al. iPSC-Derived Human Microglia-like Cells to Study Neurological 

Diseases. Neuron 94, 278–293.e9 (2017). 

21. Haenseler, W. et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model 

Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. 

Stem Cell Reports 8, 1727–1742 (2017). 

22. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to 

microglia-like cells. Nat. Neurosci. 20, 753–759 (2017). 

23. Bennett, F. C. et al. A Combination of Ontogeny and CNS Environment Establishes 

Microglial Identity. Neuron 98, 1170–1183.e8 (2018). 

24. Cronk, J. C. et al. Peripherally derived macrophages can engraft the brain independent of 

irradiation and maintain an identity distinct from microglia. J. Exp. Med. jem.20180247 

(2018). doi:10.1084/jem.20180247 

25. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional 

sensitivities to aging. Nat. Neurosci. 19, 504–16 (2016). 

26. Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S. & Selkoe, D. Relationship of microglia 

and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–82 

(1989). 

27. Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates 

microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017). 

28. Zhang, B. et al. Integrated Systems Approach Identifies Genetic Nodes and Networks in 

Late-Onset Alzheimer’s Disease. Cell 153, 707–720 (2013). 

29. Huang, K. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays 

onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017). 



84 

 

30. Soreq, L. et al. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of 

Human Brain Aging. Cell Rep. 18, 557–570 (2017). 

31. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive 

for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. 

Neurology 38, 1285–91 (1988). 

32. Sapp, E. et al. Early and Progressive Accumulation of Reactive Microglia in the 

Huntington Disease Brain. J. Neuropathol. Exp. Neurol. 60, 161–172 (2001). 

33. Pavese, N. et al. Microglial activation correlates with severity in Huntington disease: a 

clinical and PET study. Neurology 66, 1638–43 (2006). 

34. Oakley, H. et al. Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron 

Loss in Transgenic Mice with Five Familial Alzheimer’s Disease Mutations: Potential 

Factors in Amyloid Plaque Formation. J. Neurosci. 26, 10129–10140 (2006). 

35. Yoshiyama, Y. et al. Synapse Loss and Microglial Activation Precede Tangles in a P301S 

Tauopathy Mouse Model. Neuron 53, 337–351 (2007). 

36. Francis, J. W., Von Visger, J., Markelonis, G. J. & Oh, T. H. Neuroglial responses to the 

dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse 

striatum. Neurotoxicol. Teratol. 17, 7–12 (1995). 

37. Hall, E. D., Oostveen, J. A. & Gurney, M. E. Relationship of microglial and astrocytic 

activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 

249–56 (1998). 

38. Deczkowska, A. et al. Disease-Associated Microglia: A Universal Immune Sensor of 

Neurodegeneration. Cell 173, 1073–1081 (2018). 

39. Orre, M. et al. Isolation of glia from Alzheimer’s mice reveals inflammation 

and dysfunction. Neurobiol. Aging 35, 2746–2760 (2014). 

40. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s 

disease model. Cell 160, 1061–1071 (2015). 

41. Kamphuis, W., Kooijman, L., Schetters, S., Orre, M. & Hol, E. M. Transcriptional 

profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse 

model for Alzheimer’s disease. Biochim. Biophys. Acta - Mol. Basis Dis. 1862, 1847–

1860 (2016). 

42. Friedman, B. A. et al. Diverse Brain Myeloid Expression Profiles Reveal Distinct 

Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse 

Models. Cell Rep. 22, 832–847 (2018). 

43. Chiu, I. M. et al. A neurodegeneration-specific gene-expression signature of acutely 

isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 4, 385–



85 

 

401 (2013). 

44. Mathys, H. et al. Temporal Tracking of Microglia Activation in Neurodegeneration at 

Single-Cell Resolution. Cell Rep. 21, 366–380 (2017). 

45. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid 

cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–

551 (2018). 

46. Mrdjen, D. et al. High-Dimensional Single-Cell Mapping of Central Nervous System 

Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity 

48, 380–395.e6 (2018). 

47. Holtman, I. R. et al. Induction of a common microglia gene expression signature by aging 

and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol. 

Commun. 3, 31 (2015). 

48. Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting 

Development of Alzheimer’s Disease. Cell 169, 1276–1290.e17 (2017). 

49. Rangaraju, S. et al. Identification and therapeutic modulation of a pro-inflammatory 

subset of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener. 13, 24 

(2018). 

50. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to 

demyelination. J. Clin. Invest. 125, 2161–2170 (2015). 

51. Raj, D. D. A. et al. Priming of microglia in a DNA-repair deficient model of accelerated 

aging. Neurobiol. Aging 35, 2147–2160 (2014). 

52. Krasemann, S. et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype 

of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 47, 566–581.e9 

(2017). 

53. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in 

developing brain. EMBO J. 36, 3292–3308 (2017). 

54. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects 

against neurodegeneration in a mouse model of tauopathy. Proc. Natl. Acad. Sci. 114, 

11524–11529 (2017). 

55. Kang, S. S. et al. Behavioral and transcriptomic analysis of Trem2-null mice: not all 

knockout mice are created equal. Hum. Mol. Genet. 27, 211–223 (2018). 

56. Turnbull, I. R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. 

Immunol. 177, 3520–4 (2006). 

57. Zheng, H. et al. TREM2 promotes microglial survival by activating Wnt/#-catenin 



86 

 

pathway. (2017). doi:10.1523/JNEUROSCI.2459-16.2017 

58. Zhu, C. et al. Triggering receptor expressed on myeloid cells-2 is involved in prion-

induced microglial activation but does not contribute to prion pathogenesis in mouse 

brains. Neurobiol. Aging 36, 1994–2003 (2015). 

59. Ulrich, J. D. et al. ApoE facilitates the microglial response to amyloid plaque pathology. 

J. Exp. Med. jem.20171265 (2018). doi:10.1084/jem.20171265 

60. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C. & Sheng, M. TREM2 Binds to 

Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of 

Amyloid-Beta by Microglia. Neuron 91, 328–340 (2016). 

61. Bailey, C. C., DeVaux, L. B. & Farzan, M. The Triggering Receptor Expressed on 

Myeloid Cells 2 Binds Apolipoprotein E. J. Biol. Chem. 290, 26033–42 (2015). 

62. Atagi, Y. et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on 

Myeloid Cells 2 (TREM2). J. Biol. Chem. 290, 26043–26050 (2015). 

63. Otero, K. et al. Macrophage colony-stimulating factor induces the proliferation and 

survival of macrophages via a pathway involving DAP12 and β-catenin. Nat. Immunol. 

10, 734–743 (2009). 

64. Weber, G. F., Ashkar, S., Glimcher, M. J. & Cantor, H. Receptor-ligand interaction 

between CD44 and osteopontin (Eta-1). Science 271, 509–12 (1996). 

65. Butovsky, O. et al. Targeting miR-155 restores abnormal microglia and attenuates disease 

in SOD1 mice. Ann. Neurol. 77, 75–99 (2015). 

66. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and 

problems on the road to therapeutics. Science 297, 353–6 (2002). 

67. Hardy, J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–

159 (1997). 

68. Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective beta-

amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–60 

(2008). 

69. Mawuenyega, K. G. et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s 

disease. Science 330, 1774 (2010). 

70. Lee, C. Y. D. & Landreth, G. E. The role of microglia in amyloid clearance from the AD 

brain. J. Neural Transm. 117, 949–60 (2010). 

71. Bates, K. A. et al. Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications 

for therapeutic design and diagnostic tests. Mol. Psychiatry 14, 469–486 (2009). 



87 

 

72. Baranello, R. J. et al. Amyloid-beta protein clearance and degradation (ABCD) pathways 

and their role in Alzheimer’s disease. Curr. Alzheimer Res. 12, 32–46 (2015). 

73. Liu, S. et al. TLR2 Is a Primary Receptor for Alzheimer’s Amyloid   Peptide To Trigger 

Neuroinflammatory Activation. J. Immunol. 188, 1098–1107 (2012). 

74. El Khoury, J. B. et al. CD36 mediates the innate host response to beta-amyloid. J. Exp. 

Med. 197, 1657–1666 (2003). 

75. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a 

Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010). 

76. Prokop, S. et al. Impact of peripheral myeloid cells on amyloid-β pathology in 

Alzheimer’s disease-like mice. J. Exp. Med. 212, 1811–8 (2015). 

77. Varvel, N. H. et al. Replacement of brain-resident myeloid cells does not alter cerebral 

amyloid-β deposition in mouse models of Alzheimer’s disease. J. Exp. Med. 212, 1803–9 

(2015). 

78. Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal 

loss without modulating amyloid-β pathology. Brain 139, 1265–1281 (2016). 

79. Dagher, N. N. et al. Colony-stimulating factor 1 receptor inhibition prevents microglial 

plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflammation 12, 

139 (2015). 

80. Sosna, J. et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates 

microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition 

and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol. 

Neurodegener. 13, 11 (2018). 

81. Chakrabarty, P. et al. IFN-γ Promotes Complement Expression and Attenuates Amyloid 

Plaque Deposition in Amyloid β Precursor Protein Transgenic Mice. J. Immunol. 184, 

(2010). 

82. Chakrabarty, P. et al. Massive gliosis induced by interleukin-6 suppresses A  deposition in 

vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 

24, 548–559 (2010). 

83. Chakrabarty, P., Herring, A., Ceballos-Diaz, C., Das, P. & Golde, T. E. Hippocampal 

expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol. 

Neurodegener. 6, 16 (2011). 

84. Guillot-Sestier, M.-V. et al. Il10 Deficiency Rebalances Innate Immunity to Mitigate 

Alzheimer-Like Pathology. Neuron 85, 534–548 (2015). 

85. Chakrabarty, P. et al. IL-10 Alters Immunoproteostasis in APP Mice, Increasing Plaque 

Burden and Worsening Cognitive Behavior. Neuron 85, 519–533 (2015). 



88 

 

86. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. 

Nature 537, 50–56 (2016). 

87. Leinenga, G. & Götz, J. Scanning ultrasound removes amyloid-β and restores memory in 

an Alzheimer’s disease mouse model. Sci. Transl. Med. 7, 278ra33 (2015). 

88. Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and 

modifies microglia. Nature 540, 230–235 (2016). 

89. Yuan, P. et al. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia 

Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal 

Dystrophy. Neuron 90, 724–739 (2016). 

90. Stevens, B. et al. The Classical Complement Cascade Mediates CNS Synapse 

Elimination. Cell 131, 1164–1178 (2007). 

91. Stephan, A. H., Barres, B. A. & Stevens, B. The Complement System: An Unexpected 

Role in Synaptic Pruning During Development and Disease. Annu. Rev. Neurosci. 35, 

369–389 (2012). 

92. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and 

complement-dependent manner. Neuron 74, 691–705 (2012). 

93. Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions 

between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. 95, 10896–

10901 (1998). 

94. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the 

microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical 

synapses in the barrel cortex. J. Neurosci. 32, 15106–11 (2012). 

95. Hong, S. et al. Complement and Microglia Mediate Early Synapse Loss in Alzheimer 

Mouse Models. Science 33, 395–401 (2015). 

96. Shi, Q. et al. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal 

Decline. J. Neurosci. 35, 13029–42 (2015). 

97. Singhrao, S. ., Neal, J. ., Morgan, B. . & Gasque, P. Increased Complement Biosynthesis 

By Microglia and Complement Activation on Neurons in Huntington’s Disease. Exp. 

Neurol. 159, 362–376 (1999). 

98. Acharya, M. M. et al. Elimination of microglia improves cognitive function following 

cranial irradiation. Sci. Rep. 6, 31545 (2016). 

99. Haure-Mirande, J.-V. et al. Deficiency of TYROBP, an adapter protein for TREM2 and 

CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta 

Neuropathol. 134, 769–788 (2017). 



89 

 

100. Fourgeaud, L. et al. TAM receptors regulate multiple features of microglial physiology. 

Nature 532, 240–244 (2016). 

101. Wong, K. et al. Mice deficient in NRROS show abnormal microglial development and 

neurological disorders. Nat. Immunol. 18, 633–641 (2017). 

102. Mass, E. et al. A somatic mutation in erythro-myeloid progenitors causes 

neurodegenerative disease. Nature 549, 389–393 (2017). 

103. Brionne, T. C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-beta 1 leads to 

increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–45 

(2003). 

104. Paloneva, J. et al. Mutations in Two Genes Encoding Different Subunits of a Receptor 

Signaling Complex Result in an Identical Disease Phenotype. Am. J. Hum. Genet. 71, 

656–662 (2002). 

105. Cella, M. et al. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J. 

Exp. Med. 198, 645–51 (2003). 

106. Xing, J., Titus, A. R. & Humphrey, M. B. The TREM2-DAP12 signaling pathway in 

Nasu-Hakola disease: a molecular genetics perspective. Res. reports Biochem. 5, 89–100 

(2015). 

107. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination 

in vivo. Acta Neuropathol. 129, 429–447 (2015). 

108. Nicholson, A. M. et al. CSF1R mutations link POLD and HDLS as a single disease entity. 

Neurology 80, 1033–1040 (2013). 

109. Pridans, C., Sauter, K. A., Baer, K., Kissel, H. & Hume, D. A. CSF1R mutations in 

hereditary diffuse leukoencephalopathy with spheroids are loss of function. Sci. Rep. 3, 

3013 (2013). 

110. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene 

cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 

(2012). 

111. Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor 

gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive 

progenitor cell frequencies, and reproductive defects. Blood 99, 111–20 (2002). 

112. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of Colony 

Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain 

Development and Olfactory Deficits. PLoS One 6, e26317 (2011). 

113. Forabosco, P. et al. Insights into TREM2 biology by network analysis of human brain 

gene expression data. Neurobiol. Aging 34, 2699–2714 (2013). 



90 

 

114. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune 

basis of Alzheimer’s disease. Nature 518, 365–369 (2015). 

115. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 

associated with Alzheimer’s disease. Nat. Genet. 41, 1094–9 (2009). 

116. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 

and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43, 429–435 (2011). 

117. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 

loci for Alzheimer’s disease. Nat. Genet. 45, 1452–8 (2013). 

118. Griciuc, A. et al. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of 

Amyloid Beta. Neuron 78, 631–643 (2013). 

119. Guerreiro, R. et al. TREM2 Variants in Alzheimer’s Disease. N. Engl. J. Med. 368, 117–

127 (2013). 

120. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N 

Engl J Med 368, 107–116 (2013). 

121. Rosenthal, S. L. et al. More evidence for association of a rare TREM2 mutation (R47H) 

with Alzheimer’s disease risk. Neurobiol. Aging 36, 2443.e21-2443.e26 (2015). 

122. Slattery, C. F. et al. R47H TREM2 variant increases risk of typical early-onset 

Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimer’s Dement. 10, 

602–608.e4 (2014). 

123. Jin, S. C. et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. 

Mol. Genet. 23, 5838–5846 (2014). 

124. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-

mediated innate immunity in Alzheimer’s disease. Nat. Genet. (2017). 

doi:10.1038/ng.3916 

125. Bellenguez, C. et al. Contribution to Alzheimer’s disease risk of rare variants in TREM2, 

SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol. Aging (2017). 

doi:10.1016/j.neurobiolaging.2017.07.001 

126. Hooli, B. V. et al. The rare TREM2 R47H variant exerts only a modest effect on 

Alzheimer disease risk. Neurology 83, 1353–1358 (2014). 

127. Jin, S. C. et al. TREM2 is associated with increased risk for Alzheimer’s disease in 

African Americans. Mol. Neurodegener. 10, 19 (2015). 

128. Miyashita, A. et al. Lack of genetic association between TREM2 and late-onset 

Alzheimer’s disease in a Japanese population. J. Alzheimers. Dis. 41, 1031–8 (2014). 



91 

 

129. Yu, J.-T. et al. Triggering receptor expressed on myeloid cells 2 variant is rare in late-

onset Alzheimer’s disease in Han Chinese individuals. Neurobiol. Aging 35, 937.e1-

937.e3 (2014). 

130. Jiang, T. et al. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in 

Han Chinese. Neurobiol. Aging 42, 217.e1-217.e3 (2016). 

131. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of 

Alzheimer’s disease in late onset families. Science 261, 921–923 (1993). 

132. Rebeck, G. W., Reiter, J. S., Strickland, D. K. & Hyman, B. T. Apolipoprotein E in 

sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron 11, 575–

580 (1993). 

133. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse 

model of tauopathy. Nature 549, 523–527 (2017). 

134. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with 

familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). 

135. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant 

independent from wild-type SOD1. Science 281, 1851–4 (1998). 

136. Lino, M. M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal 

motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 

22, 4825–32 (2002). 

137. Pramatarova, A., Laganière, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-

specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to 

motor impairment. J. Neurosci. 21, 3369–74 (2001). 

138. Boillée, S. et al. Onset and progression in inherited ALS determined by motor neurons 

and microglia. Science 312, 1389–92 (2006). 

139. Beers, D. R. et al. Wild-type microglia extend survival in PU.1 knockout mice with 

familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U. S. A. 103, 16021–6 (2006). 

140. Appel, S. H. et al. Hematopoietic stem cell transplantation in patients with sporadic 

amyotrophic lateral sclerosis. Neurology 71, 1326–34 (2008). 

141. Zu, T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and 

frontotemporal dementia. Proc. Natl. Acad. Sci. 110, E4968–E4977 (2013). 

142. Liu, Y. et al. C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative 

Features of ALS/FTD. Neuron 90, 521–534 (2016). 

143. Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of 

disease. Nature 507, 195–200 (2014). 



92 

 

144. Donnelly, C. J. et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated 

by Antisense Intervention. Neuron 80, 415–428 (2013). 

145. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-

repeat proteins in FTLD/ALS. Science 339, 1335–8 (2013). 

146. DeJesus-Hernandez, M. et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding 

Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 72, 245–256 

(2011). 

147. Renton, A. E. et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of 

Chromosome 9p21-Linked ALS-FTD. Neuron 72, 257–268 (2011). 

148. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function 

in mice. Science 351, 1324–9 (2016). 

149. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-

temporal dementia. Nat. Neurosci. 18, 631–636 (2015). 

150. Dzamko, N., Geczy, C. . & Halliday, G. . Inflammation is genetically implicated in 

Parkinson’s disease. Neuroscience 302, 89–102 (2015). 

151. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-

onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010). 

152. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded 

and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993). 

153. Ross, C. A. & Tabrizi, S. J. Huntington’s disease: from molecular pathogenesis to clinical 

treatment. Lancet Neurol. 10, 83–98 (2011). 

154. Björkqvist, M. et al. A novel pathogenic pathway of immune activation detectable before 

clinical onset in Huntington’s disease. J. Exp. Med. 205, 1869–77 (2008). 

155. Crotti, A. et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid 

lineage-determining factors. Nat. Neurosci. 17, 513–521 (2014). 

156. Song, W. et al. Alzheimer’s disease-associated TREM2 variants exhibit either decreased 

or increased ligand-dependent activation. Alzheimer’s Dement. 1–7 (2016). 

doi:10.1016/j.jalz.2016.07.004 

157. Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic 

effects of R47H polymorphism. J. Exp. Med. jem.20171529 (2018). 

doi:10.1084/jem.20171529 

158. Ulland, T. K. et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s 

Disease. Cell 170, 649–663.e13 (2017). 



93 

 

159. Song, W. M. & Colonna, M. The Microglial Response to Neurodegenerative Disease. 

Adv. Immunol. (2018). doi:10.1016/BS.AI.2018.04.002 

160. Lin, C.-C. et al. Bhlhe40 controls cytokine production by T cells and is essential for 

pathogenicity in autoimmune neuroinflammation. Nat. Commun. 5, 3551 (2014). 

161. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity 

of amyloid plaques. J. Exp. Med. jem.20151948 (2016). doi:10.1084/jem.20151948 

162. Ulrich, J. D. et al. Altered microglial response to Aβ plaques in APPPS1-21 mice 

heterozygous for TREM2. Mol. Neurodegener. 9, 20 (2014). 

163. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-

target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). 

164. Kurosawa, Y. et al. Cyclocreatine treatment improves cognition in mice with creatine 

transporter deficiency. J. Clin. Invest. 122, 2837–2846 (2012). 

165. Lin, C.-C. et al. IL-1–induced Bhlhe40 identifies pathogenic T helper cells in a model of 

autoimmune neuroinflammation. J. Exp. Med. 213, 251–271 (2016). 

 


