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Nucleation—or the formation of some cluster in a medium undergoing a phase transition—is 

usually the initial step in a phase transition. However, this process is still not fully understood, as 

outstanding questions related to the role of structure, local order, and diffusion remain unanswered. 

Systematic supercooling studies on metallic liquids performed using electrostatic and 

electromagnetic (ESL and EML, respectively) will be presented and discussed within the context 

of several nucleation theories, such as the Classical Nucleation Theory, Diffuse Interface Theory, 

and Coupled-Flux theory. To study the role of diffusion on nucleation, studies on the International 

Space Station using the on-board EML were performed. Initial results suggest that diffusion 

becomes an important factor for nucleation in quiescent liquids, as predicted by the Coupled-Flux 

theory. Initial results on several metallic liquids (Ti-Zr-Ni, Zr-Pt, Zr-Pd, Cu-Zr) using ground-

based ESL techniques suggest that the local order in the liquid, structure of the nucleating phase, 

and number of phases formed are important factors to consider to understand nucleation. 
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Chapter 1: Introduction to Nucleation 

1.1 A Historical Overview of Nucleation 

To nucleate means to form some initial cluster in a medium undergoing a phase transition, 

such as a liquid droplet from a saturated gas or a crystallite from a liquid or glass. One of the 

simplest examples of nucleation is the formation of carbon dioxide bubbles within a glass of 

champagne, where small flecks of dust or cracks within the glass act as nucleation sites for 

dissolved carbon dioxide. When the size of the nucleated clusters of condensed carbon dioxide 

passes a critical size, they are favored to continue growing until the buoyancy force on the droplet 

equals the capillarity force holding the bubble to the crack or dust particle. At this point, the bubble 

will break free and grow as it floats up to the surface.  

A key distinction between nucleation and other aggregation processes is that nucleation is 

stochastic—or random—and relies on small fluctuations within the parent phase to generate the 

new phase. These small fluctuations can sometimes bring particles together and, if enough particles 

come together, a nuclei can form and transform the parent phase into the new phase. However, 

certain requirements on the nuclei’s size must be met before this phase transformation can occur. 

In other words, there exists a nucleation barrier, which is responsible for many of the historical 

examples explained below and for much of the data presented in this dissertation. Therefore, 

nucleation and the nucleation barrier are key to understanding processes that rely on phase 

transitions, from the Czochralski process for nucleating and growing single crystal silicon used in 

computer chips, to the crystallization of glass into a glass-ceramic (known by the brand name 

Corning Ware), to more worldly phenomenon like cloud formation.  
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Some of the earliest recorded scientific literature on nucleation came from Fahrenheit in 

1721, where he discovered that boiled water stored in a clean and sealed glass container could be 

kept outside overnight in temperatures as low as 15 °F and remain a liquid [1]. However, disturbing 

the supercooled liquid by shaking the container, as Fahrenheit discovered when he tripped while 

carrying the glass vial, or introducing a seed crystal, could spur the crystallization of the 

supercooled water into ice. In both cases, Fahrenheit found the temperature of the mixture in the 

container would rise back up to 32 °F, a process now known as recalescence, where the heat of 

fusion is released from the material as it forms the ordered crystal phase.  

Other studies on the supercooling of water, described in the letter Professor Joseph Black’s 

sent to Sir John Pringle in 1775, have confirmed and extended Fahrenheit’s discovery [2]. Since 

then, as outlined in Angell’s 1983 review [3], water has been supercooled to -31 °C (-24 °F) in 

bulk  and -34 °C (-29 °F) in a capillary, while a more recent study has supercooled water to 232 K 

(-42 °F) [4]. In these cases, the nucleation barrier is related to the cleanliness of water and the 

container. The deep supercooling of water, as reported by Angell, requires the removal of 

nucleating impurities through “very laborious and painful procedures… [such as]…prolonged 

distillation of the primary water sample” [3]. As should be clear for the rest of this dissertation, 

minimizing heterogeneous nucleation sites and contamination is key to studying supercooled 

liquids and homogeneous nucleation. 

Studies of nucleation have extended beyond water, like in the experiments on 

supersaturated salt solution reported by Lowitz [5] and later Gay-Lussac [6,7] in the late eighteenth 

and early nineteenth centuries. Lowitz’s studies were some of the first reported observations of 

supersaturation. Lowitz’s work also demonstrated the technique of seeding, whereby a crystal of 

the same salt is introduced into the solution, catalyzing the growth of crystals out of solution and 



3 
 

onto the seed. Today, a similar process is used to make rock candy from supersaturated sugar water 

or highly ordered single-crystal silicon for computer chips with the Czochralski process. Lowitz 

noted that his observations of catalyzed crystallization were analogous to Fahrenheit’s 

observations in supercooled water. Gay-Lussac’s work further supported Fahrenheit’s 

observations that mechanically disturbing the supersaturated liquid by shaking or scratching it 

could induce crystallization. Furthermore, Gay-Lussac showed that supersaturation is a general 

phenomenon.  

These studies were some of the first suggestions of phase metastability, described by 

Kelton and Greer as:  

“[a] state for which the free energy has a local minimum…[where] the system is stable to 
small fluctuations…but will eventually evolve (possibly after an extremely long time) to a 
more stable state.” [8] 

 
A schematic representation of a free-energy curve and the corresponding phase evolution is shown 

in Fig. 1.1, reproduced from [8] with permission from Elsevier.  In this case, the nucleation barrier 

can be understood as the energy required to move from the metastable equilibrium (liquid water 

below its freezing temperature) to the point of unstable equilibrium, where the smallest 

fluctuations will be enough to trigger formation of the stable phase. 

 

 

 

 

 

 

 



4 
 

 
Figure 1.1: A schematic representation of the process by which a metastable state evolves to a stable state. 
As the barrier between metastable and stable equilibriums shrinks (indicated by dashed lines), smaller and 
smaller fluctuations are required to transform to the stable phase. The colors represent water (left) and ice 
(right). Reproduced from [8] with permission from Elsevier. 

 

Gibbs, through a thermodynamic treatment of this problem, first proposed that metastable 

phases transformed by a nucleation and growth process, while unstable phases transformed via a 

spinodal process [9] and that a clear distinction existed between the two mechanisms. In the case 

of nucleation, a system quenched into the metastable region shown in Fig. 1.1 would generally 

show a droplet morphology due to large, short-range chemical fluctuations and phase separation. 

A system quenched to the unstable region, in contrast, would show an interconnected structure due 

to long-range, small-amplitude fluctuations.  However, as reported by Kelton and Greer:  

“Gibbs was primarily concerned with processes occurring near equilibrium where the 
 probability of a significant number of fluctuations leading to the stable phase is 
 infinitesimal, corresponding to a large barrier to the phase transition. When the system is 
 quenched deeply into the metastable region, this barrier decreases until it becomes of the
 same order as the thermal energy.” [8] 
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Far from equilibrium, as shown through density functional calculations, the nucleation barrier 

either exists and is small (on the order of thermal energy) or vanishes [8]. Since spinodal 

transformations are characterized by no nucleation barrier and a regularity in order parameter 

spacing, it would be challenging to positively identify which mechanism is responsible for the 

transformation through structure alone. Some studies of Cu-Co binary alloys may have observed 

spinodal transformations for small concentrations of Co using electron microscopy and small-

angle scattering techniques [10]; however, other studies failed to observe the characteristic 

regularity in particle spacing [8]. 

As will be described in detail later, Volmer and Weber evolved Gibbs’s ideas for liquid 

condensation from a vapor by arguing that the metastability of the supersaturated phase must be 

due to kinetics [11]. These calculations would be revisited by Becker and Döring [12], forming 

the Classical Theory of Nucleation (CNT), which would later be adapted for liquid-to-crystal 

transformations by Turnbull and Fisher [13]. 

Since then, many liquids have been supercooled below their melting temperatures, but it 

wasn’t until the early 1950s when Turnbull and Cech discovered that metallic liquids could be 

supercooled as well [14–16]. At the time, only a few degrees of supercooling could be achieved 

before the metallic liquid crystallized, whereas Turnbull and Cech developed new experimental 

methods that showed that metals could be supercooled anywhere from 18 to over 30% below their 

liquidus temperatures. As outlined in Frank’s 1952 paper, the original belief that metals could not 

be supercooled emerged from ideas that the structures within the metallic liquid must look very 

similar to their crystalline structures [17]. Hence, a small nucleation barrier separated the two 

phases, making crystallization of the liquid easy. Frank argued that this interpretation must be 

wrong, given the observations of Turnbull and Cech. Frank wrote: 
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“Consider the question: ‘In how many different ways can one put twelve billiard balls in 
simultaneous contact with one, counting as different the arrangements which cannot be 
transformed into each other without breaking contact with the centre ball?’ The answer is 
three. Two which come to the mind of any crystallographer occur in the face-centred cubic 
and hexagonal close-packed lattices. The third comes to the mind of any good schoolboy, 
and it is to put one at the center of each face of a regular dodecahedron. That body has five-
fold axes, which are abhorrent to crystal symmetry…this one cannot be continuously 
extended in three dimensions…I infer that this will be a very common grouping in liquids.” 
[17] 

 
As icosahedral order does not fill three-dimensional space completely, it must be rearranged into 

a different order to satisfy crystal periodicity conditions, which could give rise to the large 

supercooling observed by Turnbull and Cech [14]. There are no such requirements for long range 

order in liquids; therefore, short and medium range icosahedral order could be possible in liquids. 

While Frank’s hypothesis is somewhat dated now, given that the 2011 Nobel Prize was awarded 

to Dan Shechtman for the discovery of quasicrystals (regularly ordered crystals without long-range 

periodicity, such as icosahedrally ordered Al-Mn), [18] it still works in the case of the formation 

of periodic crystal phases from supercooled metallic liquids. Frank’s hypothesis did not have 

experimental verification until 2003, when Kelton et. al. observed strong icosahedral order in 

supercooled liquid Ti39.5Zr39.5Ni21, which crystallized to a metastable icosahedral quasicrystal 

instead of the predicted stable C-14 polytetrahedral Laves phase [19].  

 

1.2 Classical Theory of Nucleation (CNT) 

The Classical Theory of Nucleation is one of the most common theories used to understand 

nucleation and the nucleation barrier. The following section will detail the theory’s development 

by Volmer and Weber [11] and Becker and Döring [12].  
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1.2.1  Volmer Weber Treatment 

 Before delving into the kinetic treatment of nucleation, it is informative to first examine 

the case of condensation of droplets from a vapor. The following derivation is reproduced from 

[8,20]. Following the statistical arguments of Gibbs [21], the probability of a fluctuation producing 

a nuclei of size n, Pn, is proportional to a Boltzmann distribution:  

𝑃" ∝ exp '−
𝑊(𝑛)
𝑘.𝑇

0 (1.1) 

where W(n) is the reversible work of cluster formation for a cluster of size n, kB is Boltzmann’s 

constant, and T is the temperature. Thus, the equilibrium cluster distribution per mole, Neq(n), is: 

𝑁45(𝑛) = 𝑁7 exp8−
𝑊(𝑛)
𝑘.𝑇

9 (1.2) 

where NA is Avogadro’s number. 

Assuming that, at constant pressure, spherical clusters with the same composition as the 

original phase are formed by these fluctuations, the reversible work of cluster formation of a cluster 

containing n atoms is: 

𝑊(𝑛) = 𝑛∆𝜇 + (36𝜋)A B⁄ �̅�F B⁄ 𝑛F B⁄ 𝜎	 (1.3) 

where �̅� is the molecular volume and the form of the second term is acquired by expressing the 

surface free energy (4𝜋𝑟F𝜎) in terms of the number of clusters using 𝑛�̅� = (4 3)𝜋𝑟B⁄ . Inherent in 

this equation is the assumption of an isotropic interfacial free energy σ, which will be discussed in 

the following sections. The first term in Eq. 1.3 is a volume term that represents the “strength” of 

the thermodynamic driving free energy, while the second is a surface term and represents an energy 
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penalty for creating an interface in the parent phase. When the phase transition is favored, such as 

at temperatures below the equilibrium liquidus temperature in the case of metallic alloys, the first 

term is negative. The surface term will always be positive, as there is always a penalty associated 

with forming an interface between the liquid and crystal phases. A schematic representation of Eq. 

1.3 is produced below in Fig. 1.2, reproduced with permission from Elsevier from [8]. The 

maximum work of cluster formation can be found by solving 𝑑𝑊(𝑛) 𝑑𝑛⁄ = 0, giving: 

𝑊(𝑛∗) =
16𝜋
3

𝜎B

(∆𝑔)F 	
(1.4) 

where Δg is the Gibbs free energy difference per unit volume (∆𝑔 = ∆𝜇 �̅�⁄ ) and n* corresponds to 

the critical cluster size given by: 

𝑛∗ =
32𝜋
3�̅�

𝜎B

|∆𝑔|B 	
(1.5) 
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Figure 1.2: A schematic representation of Eq. 1.3. Note that there exists a maximum in the work of cluster 
formation, indicated by W*, which occurs at the critical cluster size n*. In metallic systems, n* is usually 
400-800 particles. Reproduced from [8] with permission from Elsevier. 

  

If the cluster exists to the left of n*, then it is stochastically biased towards dissolving back 

into the parent phase, as the surface free energy penalty exceeds the driving volume free energy. 

Consequently, clusters to the right of n* are stochastically biased towards growth, as the volume 

free energy dominates the surface energy penalty. As this is a stochastic process, it is possible for 

a cluster to exist either on the left or right of n* but experience the opposing effect. Near the critical 

size, thermal fluctuations of order kBT are responsible for either growing or dissolving a cluster. 
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 The work of cluster formation can also be expressed in terms of the cluster radius, which 

more clearly shows the competition between the volume and surface free energy contributions. 

For a spherical cluster, the work of cluster formation in terms of cluster radius is: 

𝑊(𝑟) =
4𝜋
3
𝑟BΔ𝑔 + 4𝜋𝑟F𝜎	 (1.6) 

As seen in Fig. 1.3, the volume free energy is negative when below the liquidus temperature and, 

for clusters much smaller than the critical radius 𝑟∗ = 2𝜎 |Δ𝑔|⁄ , the surface free energy will 

dominate and inhibit cluster formation. 

 

Figure 1.3: The work of cluster formation from Eq. 1.6, with the volume and surface free energy 
contributions shown with dashed lines. The critical cluster radius is shown as r*. The units of cluster radius 
typically range from Å to nm, with metallic systems having r* around 1.0-1.5 nm. 
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 The kinetic model proposed by Volmer and Weber [11] assumes that nuclei, instead of 

forming all at once from one large fluctuation, grow or shrink slowly by the addition or loss of 

single particles. The reaction describing this process is: 

𝐸"SA + 𝐸A
𝑘T(𝑛 − 1)

⇄
𝑘S(𝑛)

𝐸"

𝐸" + 𝐸A
𝑘T(𝑛)
⇄

𝑘S(𝑛 + 1)
𝐸"TA (1.7)

 

where k+(n) is the attachment rate of a particle to a cluster of size n and k-(n) is the loss rate. The 

time-dependent cluster size distribution N(n,t) can be determined by solving a system of coupled 

differential equations of the form: 

𝜕𝑁(𝑛, 𝑡)
𝜕𝑡

= 𝑁(𝑛 − 1, 𝑡)𝑘T(𝑛 − 1) − 𝑁(𝑛, 𝑡)Z𝑘T(𝑛) + 𝑘S(𝑛)[ + 𝑁(𝑛 + 1, 𝑡)𝑘S(𝑛 + 1) (1.8) 

which has the form of a master equation. The time-dependent flux of clusters past a cluster of size 

n—also known as the nucleation rate, I(n,t)—is given by: 

𝐼(𝑛, 𝑡) = 𝑁(𝑛, 𝑡)𝑘T(𝑛) − 𝑁(𝑛 + 1, 𝑡)𝑘S(𝑛 + 1) (1.9) 

The evolution of the cluster distribution thus takes a “stair-step” appearance due to the 

decrease in the cluster size distribution. This is schematically represented in Fig. 1.4. As will be 

discussed with other models, the classical theory assumes that nucleation kinetics are controlled 

primarily by interfacial effects, with the extra assumption of a sharp interface between the cluster 

and the parent phase. A cluster size of 10 was taken as the lower limit distinguisher between 

clusters and the equilibrium liquid, which can be justified by considering the close-packed 

structure of many crystalline structures [22].  
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Figure 1.4: A schematic histogram of cluster population at a given cluster size n. Below some limit, it is 
impossible to distinguish clusters from the equilibrium fluctuations in the liquid. Reproduced from [20] 
with permission from Elsevier. 

  

In their derivation, Volmer and Weber assumed an equilibrium distribution of clusters and 

that clusters larger than n* will quickly grow and leave the distribution. For clusters smaller than 

n*, the distribution of cluster sizes is set equal to the equilibrium distribution from Eq. 1.2. 

Therefore, using Eq. 1.9, it is possible to write the Volmer-Weber nucleation rate, IVW, from these 

assumptions as: 

𝐼_` = 𝑁45(𝑛∗)𝑘T(𝑛∗) = 𝑘T(𝑛∗)𝑁7 exp8−
𝑊(𝑛∗)
𝑘.𝑇

9 (1.10) 
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While Eq. 1.10 captures several key features about nucleation, the assumption of an equilibrium 

distribution is inherently flawed. The equilibrium distribution assumed by Volmer and Weber 

predicts an unphysical divergence for cluster sizes much larger than n*. As will be seen in the next 

section, a steady-state distribution is the correct assumption for the behavior of clusters. Further 

discussion of the consequences of assuming an equilibrium distribution may be found elsewhere 

[8].  

1.2.2  Becker Döring Treatment 

 Becker and Döring [12] derived an expression for the steady-state nucleation rate; their 

derivation is reproduced below. A steady-state nucleation rate, IST, must be derived from the 

steady-state distribution of clusters, NST:  

𝐼ab = 𝑁ab(𝑛)𝑘T(𝑛) − 𝑁ab(𝑛 + 1)𝑘S(𝑛 + 1) (1.11) 

To satisfy steady-state conditions, IST must be independent of time and give the same rate for every 

cluster size. The rates must also be computed. If there is no net cluster flux, whereby a nucleation 

rate of zero is obtained for all cluster sizes, the rates can be written in terms of the equilibrium 

distribution: 

𝑁45(𝑛 + 1)𝑘S(𝑛 + 1) = 𝑘T(𝑛)𝑁45(𝑛) (1.12) 

Equation 1.12 can be solved for the backwards nucleation rate, which allows for Eq. 1.11 to be re-

written as: 

𝐼ab = 𝑁45(𝑛)𝑘T(𝑛) c
𝑁ab(𝑛)
𝑁45(𝑛) −

𝑁ab(𝑛 + 1)
𝑁45(𝑛 + 1)

d (1.13) 
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The boundary conditions for Eq. 1.13 are as follows: 

𝑛 → 0,𝑁ab(𝑛) → 𝑁45(𝑛)
𝑎𝑛𝑑

	𝑛 → ∞,𝑁ab(𝑛) → 0
	 (1.14) 

As mentioned elsewhere [20], the solution does not depend strongly on these boundary 

conditions as long as the energies corresponding to the given cluster sizes are at least kBT lower 

than W*, as represented earlier in Fig. 1.2. In practice, values for n are chosen to approximate the 

limits stated in Eq. 1.14 such that for 𝑛 ≤ 𝑖, 𝑁ab(𝑛) = 𝑁45(𝑛) and for 𝑛 ≥ 𝑗, 𝑁ab(𝑛) = 0. By 

dividing Neq(n)k+(n) over to the left in Eq. 1.13, summing over all values of n between i and j, and 

applying the boundary conditions in Eq. 1.14: 

𝐼abl
1

𝑁45(𝑛)𝑘T(𝑛)
=l8

𝑁ab(𝑛)
𝑁45(𝑛)

−
𝑁ab(𝑛 + 1)
𝑁45(𝑛 + 1)

9 =
𝑁ab(𝑖)
𝑁45(𝑖)

−
𝑁ab(𝑗 + 1)
𝑁45(𝑗 + 1)

m

"no

m

"no

= 1	 (1.15) 

The steady-state nucleation rate can be obtained from Eq. 1.15 by following several 

assumptions given in both [8] and [20]. For completeness, the assumptions are briefly outlined 

here. First, terms near n* dominate the sum, as seen in the maximum in Fig. 1.2. Second, k+(n) is 

replaced with k+(n*), as the dependence of the rate on the cluster size for large clusters is small, as 

seen in Fig. 1.3. Third, W* is expanded in a Taylor series around n* and the first two nonzero terms 

are used. Fourth, Neq is taken to be a continuous function of n, allowing for the sum in Eq. 1.15 to 

be replaced by an integral extended from -∞ to ∞, due to the strong peak at n*. Finally, given Eq. 

1.15, IST is equal to the inverse of the sum of 1/Neq. Following all of these approximations and 

defining ξ = n – n* from the Taylor Series expansion gives:	

l
1

𝑁45(𝑛)
=

m

"no

1
𝑁7
exp 8

𝑊(𝑛∗)
𝑘.𝑇

9p 𝑑𝜉	exp 8−
𝜉F𝑊(𝑛∗)
3𝑘.𝑇(𝑛∗)F

9
r

Sr
	 (1.16) 
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The integral in Eq. 1.16 is in the form of an error integral, with a solution of: 

l
1

𝑁45(𝑛)
≅

m

"no

1
𝑁7
exp8

𝑊(𝑛∗)
𝑘.𝑇

9 '
3𝜋𝑘.𝑇
𝑊(𝑛∗)0

A/F

𝑛∗ 	 (1.17) 

Thus, the steady-state homogeneous nucleation rate equation for spherical clusters is: 

𝐼ab = 𝑁45(𝑛∗)𝑘T(𝑛∗)𝑍	 (1.18) 

where Z is the Zeldovich factor, typically 0.01 to 0.1 in value, defined as: 

𝑍 = 8
|∆𝜇|

6𝜋𝑘.𝑇𝑛∗
9

A
F
	 (1.19) 

In the Becker-Döring treatment, the steady-state nucleation rate in Eq. 1.18 is of the same 

form as the Volmer-Weber nucleation rate in Eq. 1.10, except for the additional Zeldovich factor. 

Numerical computations have shown that the nucleation rate calculated from the Volmer-Weber 

treatment is larger than the rate calculated from the Becker-Döring treatment [8]. From Zeldovich 

[23] and Frenkel [24], the forward and backward rates may be defined as: 

𝑘T = 4𝑛F B⁄ 𝛾	exp(−𝛿𝑊(𝑛) 2𝑘.𝑇⁄ )	 (1.20𝑎) 

𝑘S = 4(𝑛 − 1)F B⁄ 𝛾	exp(+𝛿𝑊(𝑛 − 1) 2𝑘.𝑇⁄ )	 (1.20𝑏) 

 

where δW(n) is the difference in the work of cluster formation between a cluster of size n+1 and 

n and γ is the molecular jump frequency at the interface. In practice, γ is usually assumed to be the 

same as the jump frequency for bulk diffusion, D, which gives: 𝛾 = 6𝐷 𝜆F⁄ , where λ is the atomic 

jump distance, typically on the order of an angstrom [13]. Putting the pieces together gives the 

steady-state nucleation rate equation in a condensed system as: 
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𝐼ab =
24𝐷𝑁7(𝑛∗)F B⁄

𝜆F
'

Δ𝜇
6𝜋𝑘.𝑇𝑛∗

0
A F⁄

exp '−
𝑊∗

𝑘.𝑇
0 = 𝐴∗ exp '−

𝑊∗

𝑘.𝑇
0	 (1.21) 

The Stokes-Einstein diffusion coefficient is typically assumed in Eq. 1.21: 𝐷 = 𝑘.𝑇 6𝜋𝑎𝜂⁄ , where 

η is the viscosity and a is a typical atomic distance on the order of an angstrom. All of the terms 

before the exponential are commonly represented by a single pre-factor term A*. The classical 

theory can also be expanded to look at time-dependent nucleation, as was derived by Kashchiev 

[25]. Time-dependent nucleation can be important slow nucleation processes, like the 

crystallization of silicon-oxide glasses, but is not necessary for the quickly crystallizing metallic 

liquids studied here. More detail on this can be found elsewhere [20,25]. 

In addition, Δμ is typically approximated using several different forms, outlined elsewhere 

[20]. In this thesis, the two approximations used for Δμ are the Turnbull approximation and the 

Spaepen-Thompson approximation. The Turnbull Approximation is defined as: 

Δ𝐺 =
Δ𝐻�Δ𝑇
𝑇�

	 (1.22) 

where ΔHf is the enthalpy of fusion, ΔT = Tl – Tu is the supercooling, Tl is the liquidus temperature, 

and Tu is the maximum achieved supercooling temperature. ΔG is converted to Δμ by normalizing 

by NA. Turnbull argued that this approximation should be used if no data on ΔCp, the specific heat, 

exist [16]. In practice, this is a reasonable approximation for most metals because the difference 

in specific heat between liquid and crystal faces is approximately zero. The Spaepen-Thompson 

approximation is a slight extension of the Turnbull approximation, with the specific heat is now 

set equal to the entropy of fusion ΔSf [26], giving: 

Δ𝐺 =
Δ𝐻�Δ𝑇
𝑇�

	
2𝑇

𝑇� + 𝑇
(1.23) 
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1.3 Moving Beyond the Classical Theory 

 The Classical Theory of Nucleation (CNT) is arguably the most popular theory used to 

describe nucleation phenomena. It has been applied to several different types of systems, from 

metallic liquids and solids, to vapor condensation, to silicate glasses and beyond. Within the 

classical theory are a few simplifying approximations, the most notorious of which is capillarity 

approximation. By invoking capillarity, the theory assumes a sharp interface between the cluster 

and parent phase. The CNT uses bulk thermophysical properties to discuss physics occurring at 

the atomic and molecular level, since the clusters can sometimes contain only tens of atoms. 

Additionally, the impact of the structures of the initial and final phases on nucleation are 

completely disregarded. Finally, CNT is inherently an interface-limited kinetics theory and does 

not take proper account of long-range diffusion in nucleation.  

As discussed elsewhere [20], the use of the CNT has resulted in measured pre-factors being 

anywhere from 7 to 25 orders of magnitude larger than predicted. For the experimental values to 

agree with theoretical predictions, σ must increase linearly with temperature, which is opposite of 

the behavior expected for a free energy. At the time, Turnbull [27] and Spaepen et. al.[28,29] 

argued that the positive linear temperature dependence must be due to ordering near the interface 

of the cluster. As will be discussed in the next section, the Diffuse Interface Theory provides an 

explanation for such an observed effect in the Classical Theory. 

1.3.1  Diffuse Interface Theory of Nucleation 

Spaepen [30] and Gránásy [31,32] independently proposed a phenomenological 

thermodynamic approach to nucleation. Gránásy wrote that:  
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“computer simulations [33] and microscopic models [34] imply that nuclei are nearly ‘all 
interface’; thus, the ‘capillarity’ approximation, i.e., the assumption that the thickness of 
the interface region is small compared with the size of nuclei, is probably responsible for 
the failure of the CNT.” [31] 

The discussion on the Diffuse Interface Theory (DIT) below follows the Gránásy treatment [31]. 

Gránásy assumed that clusters had spherical symmetry and that “bulk properties prevail at least at 

the center” [31] of the cluster. Gránásy assumes that the enthalpy and entropy are smooth functions 

of distance that change from one phase to the other (so called “cross-interfacial enthalpy and 

entropy distributions”, see Fig.1.5, reproduced from [31] with permission from Elsevier). Thus, 

the work of cluster formation can be written as: 

𝑊 = p (∆ℎ − 𝑇∆𝑠)4𝜋𝑟F𝑑𝑟
r

�
	 (1.24) 

where ∆ℎ = 𝑁(𝑟)[𝐻(𝑟) − 𝐻A], ∆𝑠 = 𝑁(𝑟)[𝑆(𝑟) − 𝑆A], N(r) is the local number density of 

molecules, H(r) and S(r) are the local enthalpy and entropy per molecule, and the subscript “1” 

indicates the parent phase. By replacing Δh and Δs with the respective “rectangularized” 

distributions  Δℎ4�� = Δℎ�[1 − 𝜃(𝑟 − 𝑅�)] and Δ𝑠4�� = Δ𝑠�[1 − 𝜃(𝑟 − 𝑅a)] , where θ is the step 

function, Δh0 and Δs0 are the enthalpy and entropy differences between the parent and new phase, 

and RH and RS are the locations of the enthalpy and entropy surfaces locations allows Eq. 1.21 to 

be re-written as a simple difference between the enthalpy and entropy surfaces:  

𝑊 = 𝜅(𝑅�BΔℎ� − 𝑅aB𝑇Δ𝑠�)	 (1.25) 

In Eq. 1.25, 𝜅 = 4𝜋 3⁄ . Gránásy, citing Turnbull [27], claims that the area enclosed by the enthalpy 

and entropy curves is proportional to the interfacial free energy and that, for a positive interfacial 

free energy, the enthalpy curve must lie higher than the entropy curve. This is represented 

schematically in Fig. 1.5, which has been reproduced from [31] with permission from Elsevier. 
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Figure 1.5: A schematic representation of the enthalpy and entropy surfaces between two phases in the 
Diffuse Interface Theory. The dashed lines represent the “rectangularized” distributions for both surfaces. 
This figure represents equilibrium distributions, further detail for non-equilibrium distributions may be 
found elsewhere [31] Reprinted with permission from Elsevier. 

 

As noted by Gránásy, δ may be significantly smaller than that the interfacial thickness. For 

clusters significantly larger than δ, Gránásy postulates 𝑅a − 𝑅� = 𝛿. From there, RH may be 

expressed in terms of δ and RS and Eq. 1.25 can be maximized with respect to RS, ultimately 

yielding an expression for the critical work of cluster formation:  

𝑊∗ = −𝜅𝛿BΔ𝑔�𝜓(𝜂)	 (1.26) 
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where Δ𝑔� = Δℎ� − 𝑇Δ𝑠�, 𝜓(𝜂) = 2(1 + 𝑞)𝜂SB − (3 + 2𝑞)𝜂SF + 𝜂SA, 𝑞 = (1 − 𝜂)SA/F, and 

𝜂 = Δ𝑔� Δℎ�⁄ . Finally, Gránásy follows a similar kinetic approach as outlined earlier [20] to arrive 

at the same functional form of the steady-state nucleation rate defined in Eq. 1.19: 𝐼ab =

𝐴∗ exp(−𝑊∗ 𝑘.𝑇⁄ ). As the functional form of the steady-state nucleation rate in DIT is the same 

as CNT, it can be used in the probability density curve fits outlined in later sections.  

 As mentioned earlier, to fit experimental data, the CNT would predict a positive 

temperature dependence in the interfacial free energy. As shown in more detail elsewhere [8], the 

temperature dependence of σ can be approximated with DIT parameters: 

𝑑𝜎
𝑑𝑇 ≈ 𝛿 �Z𝑠�o5�o� − 𝑠o"�4����4[ −

∆𝑠�
2 �	 (1.27) 

where sliquid and sinterface are the entropies of the liquid and interface, respectively, and Δsf is the 

entropy of fusion. As mentioned earlier, the positive temperature dependence in the interfacial free 

energy was thought to be associated with ordering at the interface. From Eq. 1.27, this requires 

𝑠o"�4����4 < 𝑠�o5�o� −
∆��
F

. Since sinterface is smaller, it demonstrates that order must be occurring at 

the cluster interface. The DIT extends the thermodynamic considerations in the CNT, but assumes 

the same kinetics. So like the CNT, it cannot model the cases when diffusion is dominant in 

nucleation. One approach for this case is explained in the next section. 

1.3.2  Coupled Flux Theory of Nucleation 

In general, the classical theory of nucleation applies to cases where the diffusion rates are 

sufficiently fast that the rate-limiting step is interfacial attachment of atoms or molecules onto the 

cluster. Because the classical theory of nucleation is inherently interface-limited, it may fail to 
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fully describe nucleation that relies on slow, long-range diffusion effects, such as solid 

precipitation or nucleation in quiescent liquids. For example, the classical theory was found to be 

inconsistent with its description of oxygen precipitation in single crystal silicon, requiring an 

extension of the classical theory to match the data with theoretical predictions [35–37]. In most 

cases, it is standard to analyze data assuming a steady-state nucleation rate; however, as shown in 

these references, time-dependent nucleation can also be important for diffusion limited nucleation. 

To more fully explore the impact of long-range diffusion on nucleation, a new theory that 

couples interface and diffusion effects has been proposed [38–40]. This theory, known as the 

“Coupled-Flux” theory, broadens the scope of the classical theory by considering both interfacial 

cluster attachment rates and diffusion rates around the neighborhood of the cluster. This is 

represented in Fig 1.6, reproduced with permission from Elsevier from [38].  

 

Figure 1.6: A schematic illustration of the Coupled-Flux model for nucleation, showing the interfacial 
attachment rates in red, the shell-parent exchange rates in blue, and the location of the cluster, shell, and 
parent phase. Reproduced with permission from Elsevier from [38]. 
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The following derivation is a brief summary from the presentation in [38,39]. In the 

classical theory, nucleation is described with bimolecular reactions at each cluster size. However, 

the CNT does not consider changes in composition around the newly formed nuclei. In most cases, 

the nuclei and parent phase do not have the same composition, resulting in size and compositional 

effects on the driving free energy. Therefore, the dynamic changes of cluster and parent phase 

composition must be considered to fully address this problem. However, such a problem is 

currently intractable. The simplified model for this problem is to consider three regions—the 

nuclei, the parent phase, and a shell of the original phase between these two. The shell 

approximates the change in local composition around the cluster by a set of discrete jumps between 

the parent phase and shell. For the Coupled-Flux theory, the equilibrium cluster distribution has 

the form: 

𝑁(𝑛, 𝜌) = 𝑁� exp '
𝑊"
𝑘.𝑇

0𝑃{𝜌}	 (1.28) 

where N0 is the number of solute atoms per unit volume in the initial phase, Wn is the work of 

cluster formation, and P{ρ} is the probability of having ρ solute atoms in the nearest neighbor shell 

around the cluster. As a simplifying approximation, the work of cluster formation is taken to be 

the same as the classical theory, defined earlier in Eq. 1.3. P{ρ} is calculated from the difference 

in entropy for an atom randomly located either in the original phase or in the nearest-neighbor 

shell. The derivation of P{ρ} is discussed in more detail elsewhere [38]. As P{ρ} is dependent on 

entropy configurations, it has the form of the number of available microstates and Eq. 1.28 can be 

re-written as: 

𝑁(𝑛, 𝜌) = 𝛼"𝑁� exp '
𝑊"
𝑘.𝑇

0
𝜌"�!

𝜌! (𝑝"�! − 𝜌)!
'

𝑁�
𝑁� − 𝑁�

0
 

	 (1.29) 
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where αn is a normalization constant determined for each n from the condition ∑ 𝑃{𝜌} = 1 ¢
 n� , 𝜌"� 

is the maximum number of atom sites in the nearest-neighbor shell of a cluster of n atoms, N0 is 

the number of atoms, and Ns are the number of sites (and N0/Ns is the atom fraction). 

For a cluster of size n with ρ particles in the cluster neighborhood, there will be several 

governing rates describing cluster formation and growth, as represented in the figure below, 

reproduced from [38] with permission from Elsevier. From the figure, α(n,ρ) and β(n,ρ) are the 

forward and backward diffusion rates for solute atoms into or out of the shell, while k+ and k- are 

the forward and backward attachment rates for particles onto the cluster. For all rates, an extra 

dependence on ρ is included to account for the depletion of particles from the shell. 

 

 

Figure 1.7: (Left) A schematic of the rates and growth of clusters when interfacial and diffusion rates are 
important. (Right) The set of fluxes describing the growth of a cluster and the exchange of particles within 
the shell. Reproduced with permission from Elsevier from [38]. 
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Like for the classical theory, the Coupled-Flux theory is governed by a general master 

equation of the form: 

𝜕𝑁(𝑛, 𝜌, 𝑡)
𝜕𝑡

= 𝛼(𝑛, 𝜌 − 1)𝑁(𝑛, 𝜌 − 1, 𝑡) − [𝛼(𝑛, 𝜌) + 𝛽(𝑛, 𝜌)]𝑁(𝑛, 𝜌, 𝑡)

+𝛽(𝑛, 𝜌 + 1)𝑁(𝑛, 𝜌 + 1, 𝑡) + 𝑘T(𝑛 − 1, 𝜌 + 1)𝑁(𝑛 − 1, 𝜌 + 1, 𝑡) +

𝑘S(𝑛 + 1, 𝜌 − 1)𝑁(𝑛 + 1, 𝜌 − 1, 𝑡) − [𝑘T(𝑛, 𝜌) + 𝑘S(𝑛, 𝜌)]𝑁(𝑛, 𝜌, 𝑡)	 (1.30)

 

In a similar fashion to the CNT, the rates may be computed by assuming a net-zero flux between 

the shell and parent phase, giving: 

𝑁(𝑛, 𝜌 − 1)𝛼(𝑛, 𝜌 − 1) = 𝑁(𝑛, 𝜌)𝛽(𝑛, 𝜌) (1.31) 

Equation 1.31 can then be used to calculate the rates for α and β by using Eq. 1.29:  

𝛼(𝑛, 𝜌 − 1) = 𝜉𝜌
𝐷
𝜆F
'
𝜌"� − 𝜌 + 1

𝜌
0
A F⁄

'
𝑁�

𝑁� − 𝑁�
0
A F⁄

	 (1.32𝑎) 

𝛽(𝑛, 𝜌) = 𝜉𝜌
𝐷
𝜆F
'
𝜌"� − 𝜌 + 1

𝜌
0
A F⁄

'
𝑁�

𝑁� − 𝑁�
0
A F⁄

		 (1.32𝑏) 

Here, 𝜌𝐷 𝜆F⁄  is proportional to the rate at which a particle leaves the shell and returns to the parent 

phase, with D being the diffusion coefficient in the parent phase and λ is the jump distance. ξ is a 

constant accounting for particles not immediately equilibrating with the parent phase after leaving 

the shell. It will become very small in the limit of a highly dilute solute. Repeating this process for 

the k+ and k- rates yields: 

𝑘T(𝑛, 𝜌) = 𝜌
6𝐷¤

𝜆F
exp '−

𝛿𝑊"
2𝑘.𝑇

0𝐺(𝑛, 𝜌) (1.33𝑎) 

𝑘S(𝑛 + 1, 𝜌 − 1) = 𝜌
6𝐷¤

𝜆F exp '
𝛿𝑊"
2𝑘.𝑇

0 '
1

𝐺(𝑛, 𝜌)0	
(1.33𝑏) 
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Here, D’ reflects the mobility at the interface and G(n,ρ) is a correction factor accounting for 

entropy changes in the shell and parent phase as particles attach to the cluster. The full form of 

G(n,ρ) is outlined elsewhere [38]. Just like the DIT, the Coupled-Flux theory has a steady-state 

nucleation rate of the form: 𝐼ab = 𝐴∗ exp ¥− `∗

¦§b
¨ [8].  

 Numerical solutions for the Coupled-Flux model are challenging with approaches like 

Runge-Kutta, as the differential equations are stiff. Implicit methods [41] can solve the problem 

and estimate the associated time-dependent rates. Earlier, Russell proposed an analytical solution 

to a problem of this type by first introducing the concept of coupled (or linked) flux [40], arguing 

that the steady-state nucleation rate in the Coupled-Flux theory could be expressed as the steady-

state nucleation rate from CNT multiplied by a scaling factor proportional to β, k+, and the 

concentration. Kelton’s approach eliminated many of Russel’s approximations [38] and found that 

scaling the classical theory by the ratio of α(n*,0)/k+(n*,1) resulted in better agreement with 

Coupled-Flux theory predictions. 

As in the time-dependent nucleation case discussed earlier in this section, the Coupled-

Flux theory provides an explanation for the difference in composition around the cluster. In 

general, clusters that are smaller than the critical size are biased towards dissolving [20]. For 

precipitation, this results in a local composition that can be higher in the species nucleating than 

the parent phase. Clusters larger than the critical size are biased towards growth, which (for 

precipitation) reduces the concentration of the species nucleating in the neighborhood of the 

nucleating cluster. These two cases can be understood within the framework of the coupled flux 

theory. In diffusion-limited systems, the processes in the coupled flux model can significantly slow 

down the nucleation and growth of a new phase. In cases where diffusion is not the rate limiting 
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step, such as in highly stirred liquids or where diffusion in the parent phase is fast, the Coupled-

Flux theory recovers the predictions of the classical theory.  

 Studies on the International Space Station (ISS) were proposed to “measure, in the absence 

of gravitationally-induced flow, the effects of alloy composition on nucleation and to compare 

with predictions from the Coupled-Flux model for nucleation [42].” With ground-based ESL 

measurements of liquids, gravitational and Marangoni-induced convection are the two primary 

contributors to stirring [42–44]. Since samples in the ESL are usually heated with a single axial 

laser, large thermal gradients within the liquid will be generated due to the sample’s finite thermal 

conductivity. In practice, these gradients can be reduced by a tetrahedral arrangement of heating 

lasers to more uniformly heat samples [45]; however, this is beyond the scope of this chapter. 

Regardless, the calculated flow velocity of gravitational and Marangoni convection were found to 

be a factor of two larger than the maximum diffusion flow velocity [42]. To study these diffusion 

effects, gravitational and Marangoni convection must be reduced. 

In ground-based EML studies, stirring due to the electromagnetic force is introduced, in 

addition to the already existing Marangoni and gravitational contributions [44]. However, since 

samples are more uniformly heated in EML, the overall impact of Marangoni convection is 

reduced. Processing samples in microgravity environments also further reduces the impact of 

gravitational stirring. More importantly, microgravity conditions mean less force must be applied 

to the sample to heat and position it, further reducing the stirring contributions of Marangoni and 

electromagnetic convection. Models of liquids in the EML have shown that the calculated flow 

velocity from stirring can be upwards of two orders of magnitude smaller than the predicted 

diffusion flow velocity [42]. As such, if diffusion effects are important in nucleation, they should 

be observable within the EML.  
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1.4 Containerless processing 

 Since the focus of this dissertation is the study of crystal nucleation in metallic liquids, the 

question of a container must be addressed. To study homogeneous nucleation in metallic liquids, 

a large supercooling must be achieved. Most metallic liquids have high melting temperatures, 

ranging from approximately 550 °C to upwards of 1900 °C and beyond. This poses several issues, 

as liquid metals are highly reactive and likely to alloy with a metallic container. Even if an inert 

crucible were used, there would still be several issues: (1) liquid metals react strongly with oxygen 

at high temperatures, leading to the formation of oxide layers; (2) containers contribute to the 

scattering intensity in diffraction experiments, which will interfere with any scattering signal from 

the sample; (3) containers introduce heterogeneous nucleation sites for the sample, such as 

microscopic cracks in the container wall, drastically limiting its supercooling ability. To study 

metallic liquids, containerless processing techniques have been developed. This section will briefly 

outline several of the possible techniques and the next chapter will discuss two of these in more 

detail, i.e.Electrostatic Levitation (ESL) and Electromagnetic Levitation (EML), since they were 

the techniques used for these studies discussed in this thesis. Further detail on all of the following 

techniques may also be found elsewhere [8,46,47]. 

 Acoustic levitation [48] uses focused sound plane waves, typically in the ultrasonic regime 

(> 20,000 Hz) to levitate samples. Since ultrasound is used, an elastic medium must be present to 

support ultrasonic wave propagation. Typically, this is an inert, pressurized atmosphere of high 

purity gas like nitrogen or argon. However, acoustic levitation is an aggressive processing 

technique, requiring high radiation force to levitate dense samples and likely leading to their 

deformation and fragmentation, especially when melted [8]. It also has generally poor positioning 
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control, possibly leading to sample instability. Despite that, acoustic levitation can enable the 

processing of lower density, non-conductive samples. 

 Aerodynamic and aero-acoustic [49] levitation techniques use gas flow through several 

nozzles to both levitate and position the sample, enabling the study of metallic, semiconducting, 

and nonconducting materials. In aero-acoustic levitation, ultrasound is also used to help levitate 

the sample, as mentioned earlier. The sample is usually heated via a high-intensity laser, which 

enables the melting of metallic samples and the study of their liquid phases. However, since gas is 

used as the levitation engine, any contaminants present in the gas are likely to be introduced to the 

sample. This can lead to the formation of oxide layers on reactive samples. In addition, high levels 

of gas flow will generate large thermal gradients in the sample. The aero-acoustic method has been 

shown to be useful for nonconductive and inert materials like ceramics.  

 Electromagnetic Levitation (EML) induces eddy currents in the sample via high-frequency 

electromagnetic fields [50]. The eddy currents, in addition to resistively heating the sample, also 

levitate it via Lenz’s law. Ground-based EML studies must apply a high-intensity electromagnetic 

field to the sample to overcome Earth’s gravitational field. For some low melting point samples, 

this either limits or completely blocks the supercooled liquid from being studied. A high purity 

cooling gas may be used to cool the sample below its liquidus temperature, but this may also 

introduce contamination into the sample. In microgravity environments on the ISS, EML requires 

significantly less power to levitate samples. By using a superimposed dipole-quadrupole field, 

where the dipole field heats the sample and the quadrupole field positions the sample, or by using 

two separate coils, positioning and heating of the sample can be somewhat decoupled from each 

other. In microgravity, this further enables exploration of the supercooled liquid. EML also offers 

a high degree of sample stability and control. Compared to the other techniques discussed here, 
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EML also enables the measurement of specific heat and resistivity [51], which are very difficult 

to measure in liquids on Earth. While not necessarily a drawback for this group, only metallic 

samples or samples that become metallic in the liquid (like silicon) can be studied in the EML. 

Further detail on this technique will follow in Chapter 2. 

 Electrostatic Levitation (ESL) [52,53] is the technique used most throughout this 

dissertation and will be discussed in more detail in Chapter 2. As a brief overview, ESL uses a set 

of electrodes and a large negative potential difference to induce a positive surface charge on the 

sample. As levitation is handled through electrostatic fields, heating and levitation are completely 

decoupled in the ESL. This allows for some of the broadest temperature ranges to be explored, 

ranging from the high-temperature liquid down to its maximum supercooling temperature. This 

large temperature range makes ESL an excellent technique for measuring thermophysical 

properties like density and viscosity [54]. In terms of stability, ESL techniques are comparable to 

or better than any other levitation method, including EML. ESL can process any sample that can 

hold a surface charge, thereby extending its usefulness over EML techniques. However, ESL is a 

highly complex technique that requires a large array of instruments and supporting equipment to 

operate.  

 

1.5 Skripov Treatment of the Classical Theory 

 Nucleation is an inherently random event that can be described using Poisson statistics. 

The criteria for Poisson statistics to apply to a random event are as follows: (1) events occur 

independently of each other and (2) they occur with some average frequency. In the case of 

nucleation, each nucleation event is independent of the previous one and occurs at a specific 
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average supercooling temperature. Skripov [55] derived a probability density function using CNT; 

a brief outline of his derivation follows below. A similar derivation is included elsewhere if 

Skripov’s publication cannot be obtained [8,56]. 

 The probability of m accidental events occurring in some time interval τ is defined by 

Poisson’s formula:  

𝜔(𝑚, 𝜏) =
(𝜆𝜏)�

𝑚!
exp(−𝜆𝜏)	 (1.34) 

where λ is the mean rate of occurrence of the events, also known as the Poisson parameter. 

Equation 1.34 has a maximum value for 𝑚 = 𝜆𝜏. In practice, λ is a temperature-dependent 

quantity, which means it also depends on time. Under non-isothermal conditions, the probability 

of m = 1 event occurring in a time interval of τ+δτ is given by: 

𝜔′(1, 𝜏 + 𝛿𝜏) = 𝜆(𝜏)𝛿𝜏 exp 8−p 𝜆(𝑡)𝑑𝑡


�
9	 (1.35) 

Here, a prime (‘) symbol has been introduced to separate this probability equation from the final 

probability density defined at the end of this section. Skripov then takes temperature as an 

independent variable and defines the constant temperature variation rate (also known as the cooling 

rate) as �̇� = 𝑑𝑇 𝑑𝜏⁄ , enabling a transformation of variables giving: 

𝜔′(1, 𝑇 + 𝛿𝑇) = 𝜆(𝑇)Z𝛿𝑇 �̇�⁄ [ exp 8−p 𝜆(𝑇)Z𝑑𝑇 �̇�⁄ [
b

b̄
9	 (1.36) 

The limits of the integral here are general, but for most applications, it is useful to set the lower 

limit as the maximum supercooling temperature achieved before nucleation (Tu) and the upper 

limit as the liquidus temperature (Tl). Skripov then defines the Poisson parameter as: 
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𝜆(𝑇) = 𝐼ab𝑉	 (1.37) 

where IST is the classical steady-state nucleation rate and V is the volume nucleated. This parameter 

emerged from an argument that only a single viable nuclei is required to initiate crystallization in 

a metastable liquid during some amount of time, which can be expressed as: 

𝐼ab𝑉𝑡 = 1	 (1.38) 

where t is a characteristic crystallization time. Substituting Eq. 1.37 into Eq. 1.36, dividing over 

δT and defining the probability density ω(T) as ω’(1,T+ δT )/|δT| yields: 

𝜔(𝑇) =
𝐼ab𝑉
�̇�

exp8−
𝑉
�̇�
p 𝐼ab𝑑𝑇
b±

b²
9	 (1.39) 

The only requirements when using Eq. 1.39 for fitting applications is a knowledge of the 

temperature dependence of A*, W*, and σ based on the choice of the approximation for the driving 

free energy (Eq. 1.22 or 1.23) and whether σ is chosen to be a constant or linearly dependent on 

temperature. No previous knowledge on whether the observed nucleation event was homogeneous 

or heterogeneous is required. In practice, both A* and W* are used as fit parameters, which then 

allows for the direct calculation of σ based on Eq. 1.4. The fit value for A* and the shape of the 

distribution will provide clues as to whether a homogeneous or heterogeneous nucleation 

mechanism was responsible. As described by Turnbull, the value for A* for heterogeneous 

nucleation is typically 10 or more orders of magnitude smaller than the value of A* for 

homogeneous nucleation [15]. Based on laboratory observations, homogeneous nucleation is 

characterized by a small distribution of supercooling temperatures and a sharply defined peak; 

heterogeneous nucleation, in contrast, is characterized by a broad distribution of supercooling. In 

addition, since the form of IST does not change from CNT to DIT, the same probability density 



32 
 

may be fit to a histogram of supercoolings if the correct form of W* (Eq. 1.4 or Eq. 1.26) is used. 

In the case of DIT, δ can be calculated from Eq. 1.26 based on the fit value for W*. More detail on 

the non-linear, least-squares fitting technique used to fit Eq. 1.39 to distributions of supercooling 

may be found in Chapter 2.  

 

1.6 Summary and Roadmap of the Dissertation 

This chapter covered the relevant nucleation theories and general background needed for 

the following chapters in this dissertation. Details on the manufacture of samples, processing with 

containerless techniques, and general overview of analysis techniques are covered in Chapter 2. 

Chapter 3 presents data from the International Space Station analyzed within the context of both 

CNT and DIT to begin exploring the impact of diffusion on nucleation. Chapter 4, a version of 

which was published in the Journal of Chemical Physics, details a set of supercooling experiments 

performed in ESL on three alloys (Ti39.5Zr39.5Ni21, Ti40Zr30Ni30, and Zr80Pt20) to investigate the role 

of structure on nucleation. Chapter 5 is a follow up study based on questions reviewers raised to 

the results in Chapter 4, where two binary alloy families were chosen (Cu-Zr and Zr-Pd) and 

supercooling experiments were performed on several different compositions within each family 

(Cu50Zr50, Cu55Zr45, Cu64Zr36, Zr50Pd50, Zr45Pd55, and Zr75.5Pd24.5) to understand the impact of 

multiple phase formation and structure on nucleation. Chapter 6 will summarize the results of 

previous chapters and present ideas for future projects. 
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Chapter 2: Materials and Methods 
Due to the large number of samples produced, many group members, including A. K. 

Gangopadhyay, C. E. Pueblo, and D. Van Hoesen were involved in the manufacture of samples 

and acquisition and analysis of data. The following chapter describes the relevant methods used 

for (i) sample preparation (2.1), (ii) containerless processing within the Washington University 

Beamline Electrostatic Levitator (WU-BESL) (2.2.1) and the Electromagnetic Levitator (EML) on 

the International Space Station (ISS) (2.2.2), (iii) thermophysical property measurements 

including density (2.3.1) and viscosity (2.3.2), (iv) X-ray diffraction measurements (2.4),  (v) 

nucleation measurements using the EML facility on-board the ISS and on earth using the WU-

BESL (2.5), and (vi) the nonlinear, least-squares fitting routines performed using the Skripov 

probability density function (2.6). 

 

2.1 Sample Preparation 

 Master ingots, typically one gram in mass, were prepared from high-purity (99.95% or 

greater) elemental source material obtained from Alfa Aesar, now part of Thermo Fischer 

Scientific. If possible, material in bar or rod form was used to reduce exposure to oxygen, as form-

factors like metallic sponge, shot, or powder have a larger surface area exposed to ambient air and 

likely contain more oxygen. In addition, Alfa Aesar provides an elemental analysis of its stock to 

further guarantee the purity. The source material was stored in a glovebox filled with a Grade 5 

(99.999%) argon atmosphere and was only removed before weighing and arc-melting. Alloys 

compositions are typically given in atomic percentages instead of weight percentages. The mass 

needed of the source material for element i in the alloy, its mass mi is given by Eq. 2.1: 
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𝑚o =
𝑥o𝑀o

∑ 𝑥m𝑀mµ
m

𝑚o"¶·�	 (2.1) 

where xi and Mi are the atomic percent and the molar mass of the i-th element, N is the number of 

elements composing the alloy, and mingot is the total desired mass of the master ingot. In practice, 

mingot is usually set to one gram for simplicity, since a one-gram ingot can typically yield anywhere 

from 12 to 17 samples for ESL processing. A Mettler Toledo AB54/FACT mass balance, with a 

precision of ±0.1mg, was used to weigh the elemental source material. Some materials, such as the 

99.97% purity crystal Zr bar, were too difficult to cut using bolt cutters, so the crystal bar was 

sliced into thin sections using a Techcut 4 saw with a diamond wafering blade. The slice was 

subsequently cleaned in three steps—first with xylenes, then acetone, and finally methanol— using 

a Branson 2510 ultrasonic cleaner to remove dust, coolant, and residue from the previous washing 

from the surface of the slice. The source materials were manipulated on fresh, clean tissue wipes 

and only using tweezers and bolt cutters that had been wiped clean with acetone and methanol to 

further reduce the introduction of contamination into the ingot. This is seen in Fig. 2.1. 

Figure 2.1: Zirconium cut from a 99.97% pure (nominal 2% hafnium) crystal bar (left) and platinum cut 
from a 99.997% pure wire (right). Large pieces are generally preferred to minimize the surface exposed to 
the atmosphere and to ensure all pieces are melted together. 
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To minimize contamination from the manufacture of other samples, the water-cooled 

copper hearth of the arc-melter was first sanded with 600 grit sandpaper and wiped repeatedly with 

acetone and methanol. The tungsten tip was filed before use to remove any deposition from other 

elements, which could be vaporized and introduced into the ingot during arc-melting. Once the 

required masses for each element had been cut from bar stock, the material was placed on the 

freshly cleaned hearth. The material was stacked such that the element with the highest melting 

temperature is placed on top of the pile, nearest the tungsten electrode, which ensured all material 

would melt when struck with the arc. The chamber was evacuated to 1 – 3.5x10-5 Torr, which 

typically took 15 to 30 minutes, and back-filled with a low-pressure atmosphere of high-purity 

(99.999%) argon. This pumping and refilling process was repeated three to five times to reduce 

the oxygen present within the chamber. After the final cycle, the chamber was filled with argon to 

a pressure of approximately 600 Torr.  
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Figure 2.2: (Left) A top-down view of the copper hearth of the arc-melting facility. The vacuum feedthrough 
and the tungsten tip are positioned in the center of the hearth. At the 10 o’-clock position is a Ti50Zr50 getter, 
while at the 2 o’-clock position is the elemental zirconium crystal bar and platinum wire. (Right) The 
finished ingot of Zr80Pt20 after arc melting. 

 

A Miller Synchrowave 250DX arc-welding power source was connected via a vacuum 

feedthrough to the tungsten tip. The arc-melting facility is pictured in Fig. 2.2. The arc was initially 

struck over the copper hearth and then moved to a Ti50Zr50 getter, which was melted and held in 

its liquid state for approximately 60 seconds to reduce the oxygen concentration. The arc was then 

moved to the ingot material and held until the element with the highest melting point turned into 

a liquid. After the material had coalesced into a spherical ingot, the arc was circled around the 

ingot to further mix the elements together. This process typically took no more than 15 seconds 

since prolonged exposure to the arc could result in significant mass-loss (and a compositional shift) 

in the final ingot. After melting and mixing the ingot, the arc was extinguished and the tungsten 

tip was used to flip the ingot over to further stir the elements together. The process was then 
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repeated two more times to ensure the ingot was well-mixed. The final mass of the ingot was 

measured to determine any mass loss. If mass loss was observed, the ingot composition was 

recalculated assuming the loss was due to a single, preferentially evaporating element. Typically, 

this element had the highest vapor pressure (such as copper or aluminum) of all the components 

in the alloy. After recalculating the composition, if a shift of more than 0.5% atomic percent was 

found, the ingot was rejected.  

For studies within the BESL, a sample mass of approximately 45-75 mg, corresponding to 

a sample 2 – 2.5 mm in diameter, was desired. The ingot was crushed into large (20-60mg) pieces 

and re-melted into spheres using the previously discussed arc-melting procedure. Crushing the 

ingot into a fine metallic powder (pieces approximately 5mg or smaller) typically resulted in 

contaminated samples that are not ideal for supercooling experiments. However, the ESL samples 

were melted only once and for no more than two seconds, since the samples were assumed to have 

the same composition as the master ingot and did not require further mixing. A photo of ESL 

samples after arc-melting is shown in Fig 2.3. 
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Figure 2.3: (Left) A one-gram ingot crushed into smaller pieces for manufacturing ESL samples. Larger 
chunks are preferred to minimize the introduction of contamination. (Right) ESL-sized samples after arc-
melting them into spheres roughly 2mm in diameter. Seven samples were made from approximately half 
of the corresponding master ingot. The remaining half of the ingot was kept inside the glovebox under 
argon for later use. 

 

A similar procedure was followed for the preparation of samples for the ISS. However, due 

to constraints on the amount of dust produced by samples, the surface area and “sphericity” of 

these samples must be well-documented. Further detail on the particularities of manufacturing 

samples for the ISS can be found in Dr. Chris Pueblo’s thesis [1]. 
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2.2 Containerless Processing Techniques 

2.2.1  Electrostatic Levitation 

The BESL facility at Washington University enabled containerless processing of metallic 

liquids in a high-vacuum (1.8 – 8.5 x 10-8 Torr) environment. This pressure was typically achieved 

by pumping on the ESL chamber for a minimum of 1.5 days, although longer evacuation times 

were sometimes needed in especially humid weather. The high-vacuum was achieved using both 

Osaka Vacuum TG420M and Pfeiffer Vacuum Hi-Pace 80 turbo pumps, each backed by a Leybold 

Scrollvac SC15D scroll pump. The ESL room was climate controlled and dehumidifiers were used 

to ensure the coldest environment and lowest humidity possible to maximize the efficiency of the 

scroll and turbo pumps. 

To levitate the sample, the BESL used three sets of orthogonal electrodes (two for each x, 

y, and z Cartesian coordinate) to generate three potential differences. Two sets of horizontal 

electrodes, made of stainless steel, were used to control the lateral (x, y) position of the sample. 

The final set of electrodes, made of copper, controlled the vertical z position of the sample. Each 

set of electrodes consisted of one grounded electrode and one electrode at high potential connected 

via a vacuum feedthrough to one of three high-voltage amplifiers. The two amplifiers for each set 

of horizontal electrodes could vary the potential difference between ± 3 kV, while the amplifier 

for the vertical electrodes could vary the potential difference from 0 to -20 kV. Unlike the flat 

horizontal electrodes, the vertical electrodes consisted of a curved bottom and a hemispherical top. 

The curvature chosen for the vertical electrodes was demonstrated previously to improve the lateral 

stability without a major cost to vertical stability [2,3], as compared to flat top and bottom 

electrodes. The electrodes and a levitating sample are shown in Fig. 2.4.  
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Figure 2.4: (Left) A photo of the bottom electrode after cleaning. Note that the copper bottom electrode is 
slightly curved, like a cup. The dot in the middle of the bottom electrode is the sample post, which can be 
raised up to the top electrode to load a sample. (Right) A levitated sample of aluminum, roughly 3mm in 
diameter for scale, viewed through an open port near the Blue LED on the ESL. The bent metal bar on the 
right is the shutter for the vacuum ultraviolet lamp. Note also the curvature of the top electrode; the gap 
between the top and bottom electrode is approximately 9mm. 

 

A set of high-intensity light emitting diodes (LEDs) and position sensitive detectors (PSDs) 

located opposite of the LEDs allowed the position of the levitated sample to be tracked. The LEDs, 

operating at 455 nm in the x-direction and 530 nm in the y and z-directions, projected a shadow of 

the sample into their corresponding PSDs. Bandpass filters in front of each PSD ensured that only 

light corresponding to the correct LED was measured, greatly reducing crosstalk and interference 

from other light sources. The signal from the PSD was passed to a target PC running a MATLAB-

based active feedback algorithm, which manipulated the voltages sent to the electrodes by the 

corresponding amplifier to both stabilize the sample position and adjust it to a desired location [4]. 
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Active feedback and constant modulation of the voltages were required since the electrodes created 

a 3-dimensional saddle point for the sample. This technique is described in more detail elsewhere 

[4,5]. In practice, this system resulted in a sample stability to within a minimum of 10 μm.  

To melt levitated samples, a fiber-coupled nLight Pearl P2-050-0980-3-R diode laser, 

operating at 980nm with a 50W continuous maximum power output was used. As the temperature 

of the sample increased and it passed through various phase transitions, impurities on the surface 

and gas within the grain boundaries of the crystal phase were evaporated from the sample. This 

process decreased the surface charge of the sample and could result in instability or loss of the 

sample. Previous processing methods involved using the sample post to raise the sample into the 

heating laser to melt it into a sphere. While this did smooth out any flat surfaces left over from arc-

melting and further reduced sample impurities, it also potentially introduced contamination at the 

point of contact between the sample and the post. Therefore, for all the ESL-based nucleation 

experiments described in this thesis, the sample was loaded and launched without processing on 

the post to minimize contamination. While this sometime resulted in sample instability due to non-

spherical geometries and loss of gas and other impurities, it ensured cleaner samples were 

examined. A high-intensity vacuum ultraviolet (VUV) lamp was used to recharge the sample via 

the photoelectric effect to help stabilize the sample during its initial heating and melting. Once a 

sufficiently high temperature was achieved, most impurities had evaporated and thermionic 

emission was sufficient to recharge the samples. After multiple heating and cooling cycles, the 

sample typically achieves its maximum stability.  

A technique called “gain-switching” was used to more reliably levitate and process samples 

within the ESL, thereby greatly improving the success rate for each sample. Dr. Dante Quirinale 

at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) suggested this 
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technique. It was based on his experience using both an ESL that was based on the design of the 

WU-BESL, which is located at AmesLab in Iowa State University, and the Neutron Electrostatic 

Levitator (NESL) built by this group and located permanently at ORNL. To “gain-switch” means 

to modify the gains for the x, y, and z voltages before levitating the sample and, once the sample 

has been launched, to quickly reduce them to a specified value. In practice, this means setting the 

gain for the relevant PSD voltage (labeled in MATLAB as the “Green X”, “Green Y”, and “Blue 

X” parameters) to a value roughly 2.5 to 3 times its starting value (typically changing the gain 

from -0.0029 to -0.01 or -0.012) and then lowering the gain to around half of this value (-0.006) 

once the sample is levitated. The higher gains typically allowed for a smoother launch, much like 

a plane taking off from a runway. Previous sample launch techniques were more like throwing a 

ball into the air and attempting to catch it with a mid-air jump—doable, but inherently unreliable, 

especially for smaller, high density samples. The reasons why gain-switching resulted in more 

reliable launches and processing are not well understood, but it is speculated that the original gain 

values in the algorithm were not well determined, possibly resulting in an algorithm that is overly 

responsive. More discussion of this phenomenon can be found in the Ph.D. thesis of Dr. Gustav 

Rustan from Iowa State University [6]. 

 A Process Sensors Metis MI18 MB8 single-color pyrometer operating at a wavelength of 

1.89μm was used to measure the sample temperature in the range from 160 °C to 800 °C. A Process 

Sensors Metis MQ22 two-color ratio pyrometer, operating at wavelengths of 1.4μm and 1.64μm, 

was used to measure sample temperatures above 600 °C and up to 2300°C. An initial set of 

emissivity values was used to determine the approximate temperatures during processing. A 

known thermal signature specific to the alloy was used to calibrate the ratio pyrometer, which 

provides the ratio of the emissivity at two different wavelengths. In practice this was a solidus or 
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liquidus temperature measured by other techniques or obtained from published literature. If the 

sample supercooling bypassed the range accessible by the ratio pyrometer, then the temperature 

data from the low-temperature pyrometer was matched to that from the high-temperature 

pyrometer within their overlapping temperature range. The details regarding this process and the 

relative uncertainties in temperature calibration can be found elsewhere [1,7]. A photo of the ESL 

and supporting equipment rack is shown in Fig. 2.5. A cross-section schematic of the main ESL 

vacuum chamber, instruments, and sensors is shown in Fig. 2.6.  
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Figure 2.5: A photo of the ESL facility at Washington University. The chamber rests on a table that can be 
raised or lowered to align the levitated sample with the incident X-ray beam during scattering experiments. 
The rack on the right houses (from bottom to top) (i) the high voltage amplifier for the z, y, and x voltages, 
(ii) a readout of the PSDs to check for alignment, (iii) the VUV control panel, (iv) a backup battery for the 
Osaka turbo pump, (v) a Varian ion gauge controller, (vi), controllers for both the (vi) Osaka and (viii) 
Pfeiffer turbo pumps, (vii) a readout for the cold-cathode gauge, and (ix) the levitation algorithm control 
PC.  
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Figure 2.6: A cross section of the ESL chamber. The LEDs cast a shadow on the sample, represented here 
as a lighter hue, into the PSD. For X-ray studies, a beam stop is placed in-line with the incident X-ray beam 
and the high-speed camera is removed. Image reprinted from [8] with permission from Dr. Robert Ashcraft. 

 

2.2.2  Electromagnetic Levitation 

 The Electromagnetic Levitation (EML) facility on-board the International Space Station 

(ISS) was used to perform containerless processing of samples in a microgravity environment. In 

principle, either ESL or EML techniques can be used to levitate samples in space. However, on 

Earth, EML has a distinct disadvantage when compared to ESL. Due to the force of gravity, 

stronger magnetic fields are required to levitate the sample in EML, which in turn heats the sample 

and limits the temperature region that can be explored. In ESL, heating and levitation are 
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decoupled, making it the preferred method for studying supercooled metallic liquids under 

terrestrial conditions. However, in microgravity, EML offers some advantages when compared to 

ESL, namely the ability to measure resistivity directly as an impedance and to potentially measure 

the specific heat without errors due to the unknown emissivity. Further detail on resistivity and 

specific heat measurement techniques may be found elsewhere [9]; this thesis does not cover 

measurements of resistivity and specific heat. Thermophysical property data, like viscosity and 

growth velocity, can be obtained in both EML and ESL. 

To levitate samples in the EML, a high frequency rf current was passed through a set of 

water-cooled copper coils to produce a magnetic field, which induced eddy currents in the sample 

within the coils. The interaction between the imposed magnetic field and resulting eddy currents 

allowed for control of the sample position.  Since the eddy currents were confined to within a small 

thickness near the sample surface, the sample was heated resistively. Because of the microgravity 

conditions, the fields required to levitate a sample were much smaller than those required on earth. 

Therefore, heating and levitation were somewhat more decoupled in this facility, enabling a 

broader temperature range to be probed. The decoupling was further enhanced by using separate 

quadrupole and dipole fields to control sample positioning and heating (see next paragraph). A 

more in-depth description including photos, a schematic overview of the entire EML facility, a 

description of the modules and payload, and the projected life-cycle for the EML, can be found 

elsewhere [10].  
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 In the EML on the ISS, a quadrupole magnetic field operating at 140 kHz controlled the 

positioning field, while a dipole magnetic field operating at 380 kHz controlled the heating of the 

sample. The quadrupole positioning field was not very efficient at heating the sample, while the 

dipole field did not contribute much to sample levitation. A cartoon representation of these coils 

is represented in Fig. 2.6, which has been adapted from Lohofer with permission from AIP 

Publishing [11]. A two-color pyrometer, operating at 1.45 μm and 1.8 μm, with a sampling rate of 

100Hz and a spot size of 0.8mm, was used to measure the sample temperature, much like in the 

ESL. In principle, the pyrometer can measure temperatures from 300 to 2100 °C; however, in 

practice, the pyrometers are more effective starting at 600 °C. Emissivity corrections were 

performed in a similar way to those outlined earlier. 

Figure 2.7: (Left) A schematic representation of the heating and positioning coils with the resulting 
electromagnetic fields superimposed. In the simplest EML facility, only a single coil is used, which 
performs both heating and positioning. Image adapted from Lohofer [11] with permission from AIP 
Publishing. (Top right) A rendering of the EML coil (yellow), with gas flow regulated by the green nozzle. 
(Bottom right) Actual image of the coil and sample environment within the EML. The sample is positioned 
in the middle of the copper coil. Right images courtesy of the DLR [12].  



54 
 

2.3 Thermophysical Property Measurements 

 Arguably one of the greatest strengths of ESL processing is the ability to use non-contact 

measurement techniques to determine thermophysical properties of the liquid samples. In 

principle, these techniques are well-known and have been extensively outlined elsewhere. A brief 

summary is outlined below.  

2.3.1  Density Measurements 

 The shadow technique [13] was used to measure the density of the liquid sample. Before 

measurements were made, the sample was repeatedly heated and cooled to maximize the 

supercooling (also known as sample conditioning). After reaching the maximum supercooling, the 

amber (590 nm) LED was used to illuminate the sample. A Pixelink PLB74IG CMOS camera 

recorded its shadow at 25 frames per second (fps) as the sample cooled radiatively from its liquid 

phase to recalescence. To ensure good contrast between the sample edge and the surrounding 

environment the amber LED was typically set to maximum intensity and the exposure time of the 

Pixelink camera was set to approximately 1 ms. During radiative cooling the liquid droplet is 

assumed to be symmetric about the vertical axis (z) and an edge detection algorithm written in 

LabVIEW was used to determine the radius of the sample as a function of z. The pixels were then 

integrated to determine the total area of the shadow. Known references, in this case being Grade 3 

tungsten carbide spheres with a well-known diameter of 3/32 ± 2 x 10-5 inches, were used to 

convert from pixel area to actual area. The volume was determined by integrating around the z 

axis. The density was obtained by dividing the calculated volume by the measured mass. Video 

data from multiple cooling cycles were averaged to obtain the density as a function of temperature. 
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Further descriptions of this technique, including a description of the Bradshaw edge-finding 

algorithm and relative uncertainties, may be found elsewhere [14,15]. 

2.3.2  Viscosity Measurements 

 The oscillating drop technique was used to measure the viscosity of the liquid samples. In 

1881, Lamb derived the formula describing the decay of the nth surface harmonic of a sphere as:  

𝜏" =
𝜌𝑎F

𝜂(𝑛 − 1)(2𝑛 + 1)	
(2.2) 

where ρ is the density, a is the radius of the sphere, n is the mode of oscillation, and η is the 

viscosity [16]. By overlapping a sinusoidal oscillation onto the vertical voltage signal, the n = 2 

“breathing-mode” harmonic could be excited. Subsequently removing this oscillation caused the 

liquid to behave like an underdamped harmonic oscillator, with a decay constant related to its 

viscosity, η.  

Just as for the density studies, before taking measurements, the sample was conditioned 

until deep supercooling was observed. The induced oscillations and decay of the sample were 

recorded by splitting 50% of the collimated light from the blue LED into another Pixelink PL-

B74IG CMOS camera operating at 1500fps. The recorded oscillations and decay in sample surface 

area were fit to an equation of the form: 

𝑆(𝑡) = 𝐴 sin(2𝜋𝑓�𝑡 + 𝜑) exp '−
𝑡
𝜏0	

(2.3) 

where A is the initial amplitude of the oscillation, f0 is the frequency, φ is the phase shift, and τ is 

the decay time, as described earlier. The temperature was gradually changed and the sinusoidal 

driving frequency was manually adjusted until the breathing-mode resonance was found. Once the 
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resonance was found, automated measurements could be made, allowing multiple data points to 

be acquired in a short period of time across a range of temperatures. Further discussion of this 

technique, especially involving the reduction of viscosity video and analysis of data, can be found 

elsewhere [1,2,14]. Once the data were reduced, they were fit using several different viscosity 

equations [17], principally the KKZNT model [18–20]. The fit parameters were extracted for use 

in the curve fitting program discussed later.  

 

2.4 X-ray Diffraction Measurements   

 Another advantage of ESL processing is the ability to make containerless diffraction 

measurements of liquids. The removal of a container eliminates a major source of noise in the data, 

which allows for a more accurate probing of the liquid structure. This section briefly details Wide-

Angle X-ray Scattering (WAXS) measurements made at the Advanced Photon Source (APS), 

beamline 6-ID-D (located at Argonne National Lab, ANL) during the BESL2016 run. The data 

analysis techniques used are also briefly discussed.  

 Before a scattering run at the APS, the ESL and all supporting components were 

dismantled, packaged into crates, and transported up to ANL. Many samples were studied, 

including bulk-cast metallic glasses, pure elements, and other alloys of interest. To maximize the 

data acquisition time, three 8-hour shifts were run during the time between June 13th, 2016 and 

July 5th, 2016.  Each shift contained a minimum of three people, allowing one person to control 

sample levitation and heating, a second person to control the X-ray shutter, and a third person to 

run the data acquisition programs for the detector. Due to the high flux (~ 1011 photons/sec) of 

high-energy X-rays (131.737 keV, λ = 0.0941149Å) the scattering measurements could be 
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performed very quickly with sufficient statistics to obtain accurate structural information. In 

contrast, inelastic neutron scattering measurements performed at the Spallation Neutron Source 

(SNS) using the Neutron Electrostatic Levitation (NESL) at Oak Ridge National Lab can take 

upwards of 2 hours to gather sufficient statistics [8]. Further information about the BESL2016 run 

is detailed in Dr. Robert Ashcraft’s thesis [8].  

 Upon arrival at the APS, the ESL was re-constructed and aligned vertically and laterally 

with the X-ray beam via the movable stage. The front and rear ports were replaced with beryllium 

windows to allow the incident X-rays and scattered X-rays to both enter and leave the chamber. 

Beryllium windows were chosen because of their smaller scattering cross section, which increased 

the intensity on the sample and reduced unnecessary background scattering.  

 A GE Revolution 41-RT amorphous Si flat panel area detector was used to detect the 

scattered X-rays from samples. The area detector could operate with a sampling rate of 1 – 2Hz 

and with a resolution of 2048 x 2048 pixels, where each pixel was a 200 μm square. The working 

distance, tilt angle, and rotation angle between the sample and the detector was calibrated by fitting 

the diffraction rings from polycrystalline Si NIST standards levitated in the same position as the 

sample. A beam stop, as represented earlier in Fig. 2.6, was installed outside the beryllium window 

located downstream from the sample to protect the detector from exposure to the incident X-ray 

beam. However, because the X-ray beam was nominally the same size as the studied samples, 

misalignment of the sample with the beam could produce anisotropic scattering intensity. A bad 

pixel map was also applied to the data to minimize errors associated with malfunctioning pixels 

on the detector. 
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 The scattering intensity data were analyzed using an in-house LabVIEW software program 

written by Dr. James Bendert [2,21] and further modified by Dr. Mark Johnson [22]. The goal was 

to obtain the static structure factor, S(q), and the pair-distribution function, g(r), for the liquids and 

crystals studied. A brief overview of the analysis of X-ray scattering data is discussed below; 

further detail is available elsewhere [2,22–24].  

 Before measuring the X-ray scattering from a sample, a dark frame measurement made. 

The X-ray shutter was closed and the detector signal recorded (Idark), which allowed the inherent 

noise of the detector to be acquired. Additionally, an empty chamber measurement was made to 

determine the amount of secondary scattering from the ESL chamber (Iempty). Afterwards, the X-

ray scattering intensity from the sample was measured (Isample) and the intensity was corrected by 

subtracting the measured background (Eq. 2.4): 

𝐼�·��4��4� = 𝛤Z𝐼���¾�4 − 𝐼¿��¦¶�·�"�[	 (2.4) 

where Γ is the gain map of the detector, 𝐼¿��¦¶�·�"� = 𝐼���¦ − (𝐼4�¾�À − 𝐼4�¾�À,���¦), and 

Iempty,dark is the measured intensity with no sample in the beam and the X-ray shutter closed. As the 

liquids were isotropic, homogeneous, and azimuthally symmetric, an average was taken over the 

azimuthal angle φ to reduce the error in the diffraction measurements. The averaged corrected 

intensity was then converted to momentum transfer, q, via: 

𝒒 = 𝒌o − 𝒌�; |𝒒| = 	
4𝜋 sin 𝜃

𝜆 	 (2.5) 

where ki and kf are the incident and scattered photons vectors, λ is the incident X-ray wavelength 

and θ is the scattered angle. As illustrated in Fig. 2.8, the measured intensity is in polar coordinates; 

however, the intensity must be corrected to solid angle units to arrive at the coherent scattering 
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cross section, which will allow for S(q) and g(r) to be determined. The tilt correction, performed 

by calibrating the detector with a silicon standard, also maps the polar coordinates to the respective 

solid angle coordinates.  

 

Figure 2.8: A cartoon representation of the transmission geometry for scattering experiments. Overlaid on 
the right is scattering data acquired during BESL2016 for Zr75.5Pd24.5. 

 

Several other corrections must be made to the measured intensity. To account for 

polarization of the X-rays scattered from the sample, a polarization correction function P, 

containing both the angle of polarization of the incident beam and the fraction of polarization at 

that angle, was applied to the measured intensity. To account for the attenuation by the sample—

also known as the self-absorption, V/V’—another correction accounting for the radius of the 

incident beam, the sample attenuation coefficient, and the sample size, was also applied. Self-

scattering of the sample was considered by calculating the ratio of the secondary scattering to the 

primary scattering, I2/I1, which is related to the atomic numbers of the elements composing the 

alloy. Other corrections, such as the Compton scattering (ninc), oblique incidence (O), sample 
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fluorescence (F), and geometric corrections accounting for the difference between polar and solid 

angle units (dA/dΩ) were applied as well. The coherent scattering cross section can be calculated 

by integrating the corrected intensity and accounting for the corrections detailed above: 

𝑑𝜎�
𝑑Ω = 𝑁Å𝑑𝜙

𝐼�·��4��4� ×
𝑑𝐴
𝑑Ω

𝑉¤
𝑉 𝑂𝑃 × ¥1 +

𝐼F
𝐼A
¨
− 𝑛o"� − 𝐹	 (2.6) 

These correction factors are discussed in detail elsewhere [2,22]. Once the scattering cross section 

has been calculated, the structure factor S(q) is obtained from: 

𝑆(𝑞) =
𝑑𝜎
𝑑Ω + 〈𝑓(𝑞)〉

F − 〈𝑓(𝑞)F〉
〈𝑓(𝑞)〉F 	 (2.7) 

where f(q) is the atomic form factor and 〈𝑓(𝑞)〉 is the average atomic form factor over all atomic 

species, which are outlined elsewhere [25]. The pair distribution function can then be obtained via 

a Fourier transform of S(q): 

𝑔(𝑟) = 1 +
1

2𝜋F𝑟𝜌�
p 𝑞(𝑆(𝑞) − 1) sin(𝑞𝑟) 𝑑𝑞
r

�
	 (2.8) 

Dr. Mark Johnson wrote an in-house LabVIEW program to correct for excess curvature in S(q) 

that prevented it from oscillating smoothly around a value of one at high-q. Further descriptions 

of those corrections are discussed elsewhere [22]. 
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2.5 Nucleation Measurements in ESL and EML 

2.5.1  Maximum supercooling studies in ESL 

 To generate a statistical distribution of supercooling measurements for use with the Skripov 

method, several hundred thermal cycles were performed. Samples were loaded into a stainless-

steel carousel, which was an improvement over the previously used brass carousel. With the brass 

carousel, a minimum pressure of approximately 2-4x10-7 Torr was achievable due to the emission 

of zinc from brass in high-vacuum. With the stainless-steel carousel, and the removal of all brass 

components from the chamber, a minimum pressure of 10-8 Torr was easily achievable. This 

pressure was chosen to minimize oxygen contamination in the sample. It was found that 

performing these experiments at higher pressures (10-7 Torr) resulted in a decay in the 

supercooling, indicating contamination, as will be outlined later in Section 2.6.  

The samples were levitated and heated above the liquidus temperature as many times as 

possible—at least 200 times for a single sample—to generate a distribution of maximum 

supercooling temperatures. In practice, the first 25-50 cycles of the run were ignored due to sample 

conditioning, whereby contamination at the surface and gas in the grain boundaries was gradually 

evaporated. Once a consistently achievable maximum supercooling was reached, at least 200 

cycles were performed. The target heating temperature was typically 150 °C above the liquidus 

temperature once the sample had been properly conditioned. Depending on the sample, its cooling 

rate, and how deeply it supercooled, gathering enough supercooling data could take between 2.5 

to 6 hours. While Skripov proposed 100 cycles would be sufficient for his technique [26], more 

data were taken to ensure the best statistics possible, especially since significant time was devoted 

to the initial slow heating of the sample. Care was taken to ensure samples with higher vapor 
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pressures, like Cu or Pd based alloys, were not heated more than necessary to prevent mass loss 

and compositional shift in the alloy.  

A laser power was chosen to minimize both cycle time and sample distortion. If the heating 

laser is not aimed perfectly at the center of the sample, then the radiation pressure will cause the 

sample to spin like a frictionless bearing. Over the course of every supercooling experiment, the 

originally nearly spherical samples were observed to stretch out slightly into ellipsoids. As an 

example, pure zirconium was the first sample studied as a proof of concept for this technique. 

Zirconium requires almost the entire 50W of laser power to melt. It was observed that, after 

roughly 75 cycles, the once spherical sample transformed into an ellipsoid with a significant semi-

major axis to semi-minor axis ratio, much like a football. It was found that the sample could no 

longer be heated and supercooled reliably in this shape, likely due to both misalignment with the 

laser and the large thermal gradient in the sample. The zirconium case represents the extreme; 

every sample studied in this dissertation did not demonstrate such significant distortion that its 

supercooling behavior was impacted.  

If the maximum supercooling for a sample decreased during the experiment, or if there was 

concern about sample evaporation and compositional shift, another sample from the same master 

ingot was loaded and processed. The supercooling measurements from multiple samples could be 

normalized together to account for small variations in their volume, as will be demonstrated later 

in the case of Ti39.5Zr39.5Ni21 [27]. This enabled a larger distribution of measurements to be studied, 

while simultaneously ensuring every cycle was repeatable and free of contamination and other 

artifacts. 
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2.5.2  Nucleation measurements using the Electromagnetic Levitation facility 

on-board the International Space Station 

The primary reason for studying nucleation in a microgravity environment is to understand 

the role of diffusion on nucleation. Under terrestrial conditions, liquids undergo gravitational 

stirring, thus masking characteristic diffusion effects. However, even on the EML-ISS, a small 

positioner voltage is required to maintain the sample position, which induces a small amount of 

stirring. In addition, when the EML payload was launched to the ISS, some distortion occurred to 

the rf-coil, requiring higher positioner voltages than expected to be used to maintain sample 

position. However, even though stirring cannot be eliminated, the EML can still be used to control 

stirring in the liquid based on the chosen positioner and heater parameters. Future studies on the 

EML will gradually increase the amount of stirring to identify the effects of diffusion on 

nucleation. While the idealized case cannot be achieved, an approximately “minimally-stirred” 

case is feasible, which can then be compared to the “highly-stirred” case.  

Nucleation measurements can be performed under high vacuum conditions (10-7 Torr) or 

in high-purity gas environments. Due to potential contamination in the gas, which can introduce 

heterogeneous nucleation sites in the sample, high vacuum conditions are preferred for nucleation 

measurements. However, processing under high vacuum conditions also leads to more deposition 

onto the coil, limiting its lifetime. As such, some nucleation studies in high purity argon and helium 

atmospheres were performed. While nucleation in a gas environment is likely heterogeneous, the 

kinetic processes are the same as for homogeneous nucleation. It is possible that diffusion effects 

on the nucleation rate for minimally and maximally stirred cycles can still be observed.  
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In the ISS experiments, the sample was quickly heated to a target temperature, typically 

200 °C above the liquidus temperature. Then, the heater current was reduced to zero and the 

positioning voltage was reduced to a designated minimum value, which allowed the liquid to cool 

until it crystallized. In some cases, the heater voltage remained on at a small value. While this does 

slow the cooling rate down, the experiments and analysis discussed later have shown that the 

cooling rate does not necessarily impact the maximum achievable supercooling for clean samples.  

 

2.6 Non-linear, least-squares fitting of supercooling data 

 As discussed earlier, the probability density function derived by Skripov [26] can be 

applied via a non-linear, least-squares fitting routine to the distribution of supercooling 

measurements. The routine of choice is the Levenberg-Marquart [28,29] algorithm, which is 

implemented within Python’s “scipy.optimize curve_fit” routine. The general purpose of the 

algorithm is to iteratively reduce the sum of the squares of the error between the function being fit 

and the measured data. While other publications in the literature do not discuss the specifics of the 

fitting routine [30–32], the general consensus is to use the probability density function derived in 

Chapter 1 (Eq. 1.39). The procedure followed is to (i) let A* and W* be the fit parameters, (ii) 

assume a standard approximation for the temperature dependence of the driving free energy, and 

(iii) assume a temperature dependence of the interfacial free energy.  

The Python fitting algorithm was checked for both mathematical and computational 

accuracy using published data on supercooled zirconium (Klein et. al. [33]). Following Klein et. 

al., a linear temperature dependence was assumed for σ and the Spaepen-Thompson approximation 

[34] for the driving free energy was used. The value of A* and W* obtained from the fitting 
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algorithm were 1042 (m3s)-1 and 74 kBT respectively, within error the values reported by Klein et. 

al., 1042 (m3s)-1 and 75 kBT [33]. In addition, the algorithm gave a fit distribution curve (Fig. 2.9) 

that was in agreement with that obtained by Klein et. al.  

Figure 2.9: A reproduced distribution of Zr supercooling temperatures with the fitted probability density 
function calculated using the in-house curve fitting Python program. Comparing with [33] shows that the 
curve fitting program produces similar results and a similar best-fit curve as reported in the literature. 

 

As a further check, the temperature achieved during each supercooling cycle was examined 

as a function of the cycle number, which is a proxy for time since the cycles were obtained 

consecutively. The first 25 to 50 cycles of the experiment were excluded from the analysis since 

the measured supercooling generally improved during these cycles until reaching the maximum 
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value. As already mentioned, the effects of this conditioning have been observed and documented 

in other ESL studies [14]. Once the sample reached the maximum supercooling, the remaining 

cycles were scrutinized for deviations from the mean by fitting a line to the distribution of 

supercoolings and examining the R-value of the fit. If the sample became contaminated during 

processing, either by poor vacuum conditions or by dropping onto the bottom electrode while 

liquid, subsequent cycles would show a decrease in the amount of supercooling, giving a time-

dependent supercooling and resulting in a larger R-value (nominally 0.15 or greater). This led to a 

less-sharply peaked supercooling distribution and resulted in fitted nucleation parameters that are 

more representative of heterogeneous nucleation. Ideally, the supercooling behavior should not 

change at all during the entirety of the experiment, which results in a R-value close to zero and a 

narrow, sharply peaked supercooling distribution. However, even a R-value close to zero must be 

checked for statistical significance by calculating the p-value and comparing it against a pre-

determined significance level, typically 0.05. Since the dataset typically contained more than 200 

measurements, even small R-values could result in a statistically significant relationship between 

supercooling and cycle number (p < 0.05). These points are illustrated in Fig. 2.10 using 

supercooling data from Ti40Zr30Ni30, which will be discussed in further detail in Chapter 4. The 

two distributions shown correspond to the actual data (Fig. 2.10.b) and to the case where a small 

decay was applied to artificially induce a relationship between supercooling and cycle number 

(Fig. 2.10.c). The artificial decay in (c) resulted in a larger R-value and a calculated p-value < 

0.0001, indicating a statistically significant relationship. In contrast, the original data in (b) yields 

a calculated p-value = 0.35, which is larger than the preset significance level of 0.05 and suggests 

no significant statistical relationship between the two quantities.  For the case where the decay was 

applied, the resulting probability density curve was shifted to the left and was less sharply peaked 
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(Fig. 2.10.a). While introduced artificially for illustration, a similar decay was observed in the 

proof-of-concept studies on pure zirconium, likely due to poor vacuum conditions caused by the 

presence of brass within the ESL chamber. 

 

Figure 2.10: (a) A representation of the impact of contamination on the probability density function and 
(b,c) the time-temperature data, with (b) being original data and (c) having an artificial decay applied. For 
this reason, the data were checked to ensure reproducibility; otherwise, the experiment is repeated with 
cleaner samples and a better sample processing environment. 

 

Since Eq. 1.39 represents a probability density function, the histogram of supercooling 

measurements must be normalized so that the total probability equals one. As shown in the 

dissertation of Dr. Melissa Wert [35], a bin-width of 1.0 K was used to minimize the error in the 

calculated nucleation parameters. This was found by performing a curve fitting routine on two 

unique zirconium supercooling datasets with very similar distributions and nucleation parameters. 

It was found that performing curve fitting routines with bin-widths larger or smaller than 1.0 K 

resulted in systematically larger differences between the nucleation parameters of the two sets. As 

such, a bin width of 1.0 K was chosen to ensure fair comparison of parameters and minimize 
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systematic differences between datasets. Also, as nucleation obeys Poisson statistics, the standard 

error was defined as the square root of the normalized frequency for the respective bin. This meant 

data further from the mean of the distribution was less important in the fitting. As a result, the 

contribution of one or a few scattered data points far away from the mean of the distribution were 

typically ignored or heavily discounted by the algorithm due to their higher relative error. This 

follows the procedure outlined in the thesis of Dr. Melissa Wert from Vanderbilt University [35]. 

Choosing a bin-width of 1.0 K sometimes resulted in bins with zero counts; a filter was applied to 

remove these bins from the fit. Since these bins typically occurred in the left-hand tail of the 

distribution far from the mean, they did not significantly impact the accuracy of the fit. 

 Numerical overflows often occurred when fitting to the regular form of the supercooling 

distribution, which either delayed or outright prevented convergence of the fit. The natural 

logarithm of the probability density was instead fit to the distribution of supercooling using the 

definition of the steady-state nucleation rate (Eq. 1.21): 

ln(𝜔) = ln '
𝐴∗𝑉
�̇�
0 −

𝑊∗

𝑘.𝑇
−
𝑉
�̇�
p 𝐴∗ exp '−

𝑊∗

𝑘.𝑇
0𝑑𝑇

b±

b²
	 (2.9) 

where A* is the nucleation pre-term normalized by the viscosity, V is the volume nucleated, �̇� is 

the cooling rate, W* is the critical work of cluster formation, Tu is the maximum supercooling 

temperature achieved, Tl is the liquidus temperature, and kB is Boltzmann’s constant. It is important 

to note that the integral must be performed at every supercooling temperature measured.  Equation 

2.9 contains three parts; the probability density was obtained by taking the exponential of the sum 

of these parts. Finally, following Skripov, a constant cooling rate was assumed (i.e., temperature 

is linearly related to time). While the accuracy of the assumption can be argued, it significantly 
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simplified the calculation of the probability density. Future work could explore the effects of a 

nonlinear cooling rate on the fits to the supercooling distribution.  
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Chapter 3: Nucleation and Stirring 

Measurements on-board the International 

Space Station 
 The data presented in this chapter were collected from the German Aerospace Center 

(Deutsches Zentrum für Luft- und Raumfahrt; DLR) in Cologne Germany by Mark Sellers, Daniel 

Van Hoesen, Anup Gangopadhyay, and Julianna Schmitz. Data reduction was performed by both 

Mark Sellers and Daniel Van Hoesen while stirring calculations were performed by Gwendolyn 

Bracker and Robert Hyers at the University of Massachusetts, Amherst. 

 

3.1 Introduction 

In most experimental studies of supercooled liquids, it is assumed diffusion rates are 

sufficiently fast such that only the interfacial attachment rate needs to be considered. As such, the 

steady-state solution for both the Classical Nucleation Theory (CNT) and Diffuse Interface Theory 

(DIT) should reasonably describe the nucleation kinetics between the liquid and crystal phases. 

However, a diffusion-influenced nucleation rate has been predicted [1]. With the removal of 

gravitational and Marangoni convection in the liquid, the diffusion rate may become comparable 

to the interfacial attachment rate. Because the classical theory of nucleation is inherently interface-

limited, it fails to fully describe nucleation that relies on slow, long-range diffusion effects, as 

demonstrated in studies of oxygen precipitation in silicon [2–4]. It may also be possible to detect 

diffusion-limited crystal nucleation in quiescent liquids. Further exploration of a theory coupling 

diffusion and interfacial attachment rates may provide more insight into nucleation. 
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To further probe the new “Coupled-Flux” theory of nucleation, studies of metallic alloys 

using the Electromagnetic Levitator (EML) on-board the International Space Station (ISS) were 

proposed. As reported in the proposal’s Science Requirement Document (SRD):  

“convection in the ground-based electrostatic levitation (ESL) experiments contaminates 
 the diffusion profile near nucleation clusters…possible studies of diffusion-induced 
 nucleation on earth are restricted by convective flow.” [5] 

In ESL processed liquids under terrestrial conditions, gravitational and Marangoni-induced 

convection contribute to stirring [5–7]. Gravitational convection is an unavoidable fact for ground-

based studies of liquids. Marangoni-induced convection occurs due to surface tension gradients in 

the liquid induced by temperature variations across the sample [6]. In ESL, samples are usually 

heated with a single axial laser, generating large thermal gradients within the liquid due to the 

sample’s finite thermal conductivity. In practice, these gradients can be reduced by a tetrahedral 

arrangement of heating lasers to more uniformly heat samples [8]; however, this is beyond the 

scope of this research. Regardless, the calculated flow velocity of gravitational and Marangoni 

convection were found to be a factor of two larger than the maximum diffusion flow velocity [5]. 

To study these diffusion effects, gravitational and Marangoni convection must be reduced by 

modifying the sample processing environment. 

In ground-based EML studies, stirring due to the electromagnetic force is introduced, in 

addition to the already existing Marangoni and gravitational contributions [7]. However, since 

samples are more uniformly heated in EML, the overall impact of Marangoni convection is 

reduced. Processing on earth requires overcoming the sample’s gravitational attraction, which can 

maintain the sample above its liquidus temperature and prohibit deep probing of the supercooled 

liquid. However, processing in microgravity environments with EML allows smaller heating and 

positioning currents to be used in the experiments, which enables deeper supercooling to be 
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achieved. Supercooling is further enhanced by using separate dipole and quadrupole fields for 

heating and positioning the sample. The smaller currents used in microgravity and more uniform 

heating within EML also reduce the stirring contributions of Marangoni, gravitational, and 

electromagnetic convection. With these improved processing conditions, computational fluid 

dynamic models of liquids undergoing EML processing have shown that the calculated flow 

velocity from stirring can be nearly two orders of magnitude smaller than the predicted diffusion 

flow velocity [5]. As such, if diffusion effects are important in nucleation, they should be 

observable within the EML.  

The data were analyzed and interpreted within several of the theories outlined earlier, but 

the main purpose of the ISS experiments is to “measure, in the absence of gravitationally-induced 

flow, the effects of alloy composition on nucleation and to compare with predictions from the 

Coupled-Flux model for nucleation [5].” Since the CNT applies to cases where the rate-limiting 

step is interfacial attachment to the cluster, a deviation between its predictions and those from the 

Coupled-Flux theory is expected. Analysis of the results from ground-based ESL maximum 

supercooling experiments performed using a statistical treatment of the classical theory [9] have 

shown that the nucleation parameters A* and W* negligibly change with maximum supercooling 

temperature. Therefore, a significant temperature dependence in nucleation parameters under 

different stirring conditions may serve as a signal of departure from the classical theory and as a 

signature for the effects predicted by the Coupled-Flux theory.  

To more fully explore the impact of long-range diffusion on nucleation, the Coupled-Flux 

theory was proposed, which considers both interfacial cluster attachment rates and diffusion rates 

around the neighborhood of the cluster [10–12]. This is represented in Fig. 3.1, which has been 

reproduced from [10] with permission from Elsevier.  
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Figure 3.1: A schematic illustration of the Coupled-Flux model for nucleation, showing the interfacial 
attachment rates in red, the shell-parent exchange rates in blue, and the location of the cluster, shell, and 
parent phase. Reproduced with permission from Elsevier from [10]. 

 

In general, clusters that are smaller than the critical size are biased towards dissolving [1]. 

Because of this, the Coupled-Flux model predicts that the local composition around a sub-critical 

cluster can be higher in the species nucleating than in the parent phase. Clusters larger than the 

critical size are biased towards growth, which causes the concentration of the species nucleating 

to be depleted in the neighborhood of the nucleating cluster. In diffusion-limited systems, the 

processes in the Coupled-Flux model can significantly slow down the nucleation and growth of a 

new phase. In cases where diffusion is not the rate limiting step, such as in highly stirred liquids, 

the Coupled-Flux theory recovers the predictions of the CNT [13].  

The calculations performed within the classical theory can be interpreted by the Coupled-

Flux theory as well. Russel and Kelton [10,12] have shown that the steady-state nucleation rate 

equation from the Coupled-Flux theory has the same general form as that of the classical theory. 

Kelton further showed that a simple scaling of the classical theory by the ratio of the minimal 
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forward diffusion and growth rates at n* can result in a good approximation of the steady-state 

nucleation rate predicted by the Coupled-Flux theory, as outlined in Eq. 3.1. In general:  

𝐼ÍÎab ≈
𝛼(𝑛∗, 0)
𝑘T(𝑛∗, 1)

𝐼�����ab 	 (3.1) 

where 𝐼ÍÎab is the steady-state nucleation rate for the Coupled-Flux theory, 𝐼�����ab  is the 

corresponding steady-state nucleation rate for the classical theory, α(n*, 0) is the rate at which one 

atom or molecule diffuses into the nearest neighbor shell (since α is a function of ρ – 1, where ρ is 

defined below) of a cluster of size n* from the surrounding material, and k+(n*,1) is the forward 

rate of attachment of one atom from the shell onto the cluster of size n* [10,12]. From [13], the 

rates have the following forms (Eq. 3.2a, 3.2b):  

𝛼(𝑛, 𝜌 − 1) = 𝜉𝜌
𝐷
𝜆F
'
𝜌"� − 𝜌 + 1

𝜌
0
A F⁄

'
𝑁�

𝑁� − 𝑁�
0
A F⁄

	 (3.2𝑎) 

𝑘T(𝑛, 𝜌) = 𝜌
6𝐷¤

𝜆F
exp '−

𝛿𝑊"
2𝑘.𝑇

0𝐺(𝑛, 𝜌) (3.2𝑏) 

where D is the diffusion coefficient in the parent phase, D’ is an effective diffusion rate governing 

interfacial attachment, N0 is the number of molecules, Ns is the number of sites, �̅� is the molecular 

volume, λ is the jump distance (on the order of an Angstrom), δW(n*) is the difference in the work 

of cluster formation between a cluster of size n* and n*+1, ρ is the number of solute molecules, 

G(n,ρ) is a correction factor accounting for entropy changes in the shell and parent phase as 

particles attach to the cluster, and ξ is a constant accounting for atoms not immediately 

equilibrating to the randomly dispersed parent phase after leaving the shell. ξ scales with dilution 

and has the form (Eq. 3.3): 

𝜉 =
(4𝜋)F B⁄

2
(3�̅�)A B⁄ 𝜆F𝑁�

A F⁄ 	 (3.3) 
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Reasonable choices of parameters in Eq. 3.2a, 3.2b, and 3.3 such as taking N0 to be on the order 

of Avogadro’s number, Ns is a multiple of N0, and δW(n*) is 0, in addition to already published 

results [10], suggest that the difference in steady-state nucleation rate between the CNT and 

Coupled-Flux theory is on the order of 5 to 10 orders of magnitude. Scaling by α allows the slower 

kinetics to be factored into the nucleation rate because it contains terms relating to diffusion and 

concentration. While the Coupled-Flux model was first developed for the case of precipitation 

from a dilute system, it should apply in all cases where diffusion becomes dominant, although the 

deviation from the predictions of the classical theory may be significantly smaller.   

To quantify whether diffusion impacted the observed nucleation events, the shear rate must 

be determined from computational fluid dynamics simulations. These calculations were performed 

by our collaborators Gwendolyn Bracker and Bob Hyers at the University of Massachusetts, 

Amherst. The details of the simulation will follow in the methods section below. In practice, a 

predicted shear rate between 0.05 and 0.5 sec-1 is required to prevent critical nuclei and their 

diffusion fields from colliding within the liquid [5]. Under these conditions, it can be expected that 

the experiment probed the diffusion-limited nucleation regime in a quiescent liquid. Otherwise, 

particle collision or impingement of diffusion profiles inferred from higher shear rates may imply 

nucleation dominated by stirring. 

 

3.2 Methods 

Spherical samples with a diameter 6 – 6.5 mm of Cu50Zr50 and Zr57Nb5Cu15.4Ni12.6Al10 

(Vit106) were prepared according to the procedures outlined in Chapter 2. These samples were 
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packaged and shipped to the European Space Agency (ESA) to be launched to the International 

Space Station and loaded into the batch-specific carousel.  

Nucleation and stirring experiments in the EML can be performed in vacuum or in gas, 

either high-purity argon or helium; however, the best sample processing conditions are observed 

in high-vacuum, as even the highest purity gas can potentially contaminate the liquid samples. In 

a typical cycle, the positioner voltage was set to some value between 2.49 and 6.66 V, while the 

heater was typically set to a value around 5.00 V to heat the sample to a target temperature (usually 

Tl + 200 to 300 K). Upon reaching that temperature, the heater and positioner were set to minimum 

values to allow the sample to cool. The maximum supercooling temperature achieved before 

crystallization was recorded. The heater and positioner parameters at the onset of crystallization 

were also recorded. For some of the cycles shown below, the heater remained at a low value for 

the duration of the cooling process, which increased the stirring in the sample.  

More recent nucleation studies on-board the ISS have slowly increased the positioner and 

heater currents to induce higher amounts of stirring. It should be noted that the EML is not 

performing at full capacity due to off-axis distortions in the coil during the launch of the facility 

to the ISS. As such, larger positioner and heater values are required to position and heat samples. 

Thus, the maximally quiescent conditions likely cannot be achieved. However, by systematically 

modifying the heater and positioner voltages, information about the impact of stirring on 

nucleation can be extracted. When only the position current is on as the liquid cools, stirring is 

minimized. However, when the heater and positioner are active during cooling, the liquid 

experiences more turbulent flow. A representation of these two cycles is shown in Fig. 3.2, where 

time, temperature, positioner current, and heater current are shown on the same plot. 
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Figure 3.2: A representation of two cycles performed on Cu50Zr50. The top plot is a cycle where only the 
positioner was active during cooling, while the bottom plot is a cycle where the heater and positioner are 
both active during cooling. Simulations have shown that the data represented in the bottom plot result in 
more stirring of the liquid. 

 

To model the flow inside these samples, simulations of stirring were performed by 

Gwendolyn Bracker of the Robert Hyers group at the University of Massachusetts, Amherst. The 

model setup is detailed in reports of the results of the simulations:  

“Models were run in ANSYS Fluent to calculate the velocity and shear-strain rate of the 
flow in the samples during cooling to the recalescence temperature for a variety of different 
experimental conditions. For each simulation, the electromagnetic force field was 
calculated based on the applied current, coil geometry, sample size, and sample 
conductivity. Computational fluid dynamics (CFD) simulations were used with the 
properties of the melt to calculate parameters of the flow.” [14]  
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Further information on the ANSYS Software may be found in the User Guide [15]. For these 

simulations, viscosity and density data were obtained from ground-based ESL thermophysical 

property measurements. The temperature, coil settings, and electrical resistivity data were acquired 

from the EML on-board the ISS. In general, when only the positioner was active during cooling, 

two loose vortices are observed in a hemispherical region of the sample. When the heater is turned 

on and left on during the cooling, four tight vortices are observed in the same hemispherical region. 

These points are illustrated in Fig. 3.3, which is a cartoon representation of the stirring calculation 

results performed on the entire liquid droplet.  

 

Figure 3.3: A cartoon representation of the results from the stirring calculations performed by Gwendolyn 
Bracker and Bob Hyers. Note that fewer and looser vortices are typically observed when only the positioner 
is active during sample cooling. When the heater is active, as seen on the right, more and tighter vortices 
are observed. 

 

3.3 Analysis 

 The data were analyzed using the CNT and the DIT. By assuming that a single nucleation 

event will crystalize the entire liquid, we can define the following relation (Eq. 3.4):  
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𝐼ab𝑣𝑡 = 1	 (3.4) 

where IST is the steady-state nucleation rate, v is the volume nucleated, and t is the time to nucleate. 

To account for the different cooling rates, a basic relation was defined as 𝑡 = 	𝑇� �̇�⁄ , where Tu is 

the maximum supercooling temperature and �̇� is the cooling rate near the recalescence event. The 

cooling rate was measured close to the crystallization event by fitting a line to the time-temperature 

data. By substituting this relation into Eq. 3.4, together with the steady-state nucleation rate 

equation, the Turnbull approximation for the driving free energy, and assuming the nucleation pre-

factor A* to be 1039 (m3s)-1 (the criterion proposed by Turnbull for homogeneous nucleation [16]) 

and the definition of W*, the interfacial free energy σ can be written as (Eq. 3.5): 

Ï'
3𝑘.𝑇�
16𝜋 0∆𝑔F ln '

𝐴∗𝑣𝑇�
�̇�

0
Ð

= 𝜎	 (3.5) 

where NA is Avogadro’s Number, kB is Boltzmann’s Constant, Δg is the Gibbs free energy 

difference per unit volume (∆𝜇 �̅�⁄ , where Δμ is the change in chemical potential per atom and �̅� is 

the atomic volume), and σ is the interfacial free energy. The Turnbull approximation [17] (∆𝐺 =

	∆𝐻�∆𝑇 𝑇�⁄ ) was assumed as the definition of Δμ. To explore the dependence of σ on �̇�, the other 

quantities in Eq. 3.5 were held constant. Figure 3.5 is a representative plot of σ versus �̇� for some 

of the important cooling rates observed in these experiments. As seen in Fig. 3.4, the impact of 

cooling rate on σ decreases as the cooling rate increases. For larger and larger cooling rates, ranging 

from 20 K/s to 100 K/s, σ decreases by less than 0.001 J/m2, indicating that the cooling rate has a 

minimal impact. In vacuum measurements, the measured cooling rates typically fall within the 1 

K/s to 3 K/s range, which yields approximately a 0.5% decrease in σ. Similarly, changing the 

assumed value for A* only changes the relative magnitude calculated for σ, it does not impact the 
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overall temperature dependence. Other factors, such as the sample volume, maximum 

supercooling, and enthalpy of fusion have a stronger impact on the calculation of σ.   

 

Figure 3.4: The calculated dependence between σ and cooling rate. As seen in the plot, the impact of cooling 
rate on σ is minimal. As cooling rate increases, the variation in σ becomes almost negligible. 

 

As discussed earlier, the Coupled-Flux theory predicts a smaller magnitude of A* for 

diffusion-limited nucleation.  While there is no direct prediction of the impact of stirring on σ from 

the Coupled-Flux theory, it is still a pertinent nucleation parameter to investigate. Regardless, a 

calculation of σ will allow for reasonable values to be used in the calculation of A* and to further 

investigate its dependence on the maximum supercooling and stirring. Choosing a different value 

of σ only changes the order of magnitude of A*, it was not observed to change the temperature 

dependence or the scale of discrepancies outlined below. Using Eq. 3.4, the dependence of A* on 

Tu (Eq. 3.6) is:  
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�̇�
𝑣𝑇�

exp 8
16𝜋
3𝑘.𝑇�

𝜎B

∆𝑔F9 = 𝐴∗	 (3.6) 

The dependence of δ on the maximum supercooling can be evaluated from the definition 

of W* from the DIT and Eq. 3.4. Much like Eq. 3.5, δ can be written as (Eq. 3.7): 

Ï'
𝑘.𝑇�

𝜅Δ𝑔�𝜓(𝜂)
0 ln '

𝐴∗𝑣𝑇�
�̇�

0
Ð

= 𝛿	 (3.7) 

where 𝜅 = 4𝜋 3⁄ , Δ𝑔� = Δℎ� − 𝑇Δ𝑠�, 𝜓(𝜂) = 2(1 + 𝑞)𝜂SB − (3 + 2𝑞)𝜂SF + 𝜂SA, 𝑞 = (1 −

𝜂)SA/F, and 𝜂 = Δ𝑔� Δℎ�⁄ . The Turnbull Approximation was used for the definition of Δg0. As 

described earlier, the definition of A* in the Diffuse Interface Theory is the same as in the classical 

theory. 

 

3.4 Results  

Measurements on Cu50Zr50 were performed under high vacuum conditions across two 

nights. To account for day-to-day variation in maximum supercooling in the sample, the data from 

different days were analyzed separately. This is partly due to standard operating procedures for the 

EML since it must be refilled with an atmosphere of helium during the day when not in use. On 

Day 1, four cycles were performed with the heater set to a value of 1.25 A during cooling. The 

heater was turned off for the remaining four cycles while the positioner was varied slightly. On 

Day 2, the heater was not used, but the positioner was varied from a value of 3.88 to 6.66 volts. 

As can be seen in Fig. 3.5, the value of σ changes as a function of temperature, with larger 

maximum supercooling temperatures yielding a smaller value of σ. While the observed trends in 
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σ may be due to other effects and not kinetics, the calculation was useful to arrive at a reasonable 

value to calculate A*. For Cu50Zr50, σ = 0.132 J/m2 was chosen.  

The data shown in Fig. 3.5 are tabulated at the end of this section in Table 3.1 and 3.2 for 

Day 1 and Day 2, respectively. Calculated stirring parameters from Bracker [18,19], such as the 

maximum flow velocity (vmf) and shear-rate, along with voltage settings active during cooling are 

included to further quantify the flow within the liquids close to recalescence.  

Figure 3.5: Plots of σ and A* as a function of maximum supercooling temperature (Tu) for Cu50Zr50 cycles 
performed in high vacuum conditions across two different days. The plots are separated by day due to the 
refilling of the EML with helium when not in use.  
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A similar set of data was acquired and analyzed from Vitreloy 106. However, an 

atmosphere of high-purity helium was used and the data from one night of measurements were 

analyzed. During these experiments, the positioner voltage was set to a fixed value while the heater 

was either left on at 1.25A during cooling or turned off. Like Cu50Zr50, the value of σ is smaller 

when the heater is kept on during cooling, compared to cycles where only the positioner is left on, 

as seen in Fig. 3.6. A value of σ = 0.103 J/m2 was used to calculate the value of A*. The data shown 

in Fig. 3.6 are tabulated at the end of the section in Table 3.3 with parameters from Bracker [20]. 

 

Figure 3.6: Plots of σ and A* as a function of maximum supercooling temperature (Tu) for Vit106. These 
cycles were performed in a high-purity helium atmosphere, which drastically increased the cooling rate. 
Thus, these results should be even less affected by any cooling rate effects. 
 

Since σ does not contain information about the kinetics of nucleation and the overall 

observed decrease is likely due to kinetic effects, the data were reanalyzed using the DIT through 

Eq. 3.7. Interestingly, turning the heater on resulted in a reduction of the value of δ, much like 

what was found from the CNT. This could suggest stirring brings atoms closer to the liquid-crystal 

interface and reduces the overall difference in entropy and enthalpy curves between these two 

phases, further implying a kinetic effect. It may also indicate that the DIT, while accounting for a 
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more diffuse interface between the liquid and crystal, may not fully describe the kinetics of the 

system when diffusion becomes a dominant effect. The data are shown in Fig. 3.7. 

 

Figure 3.7: Re-analysis of data from Cu50Zr50 and Vit106 using the DIT. The calculation on A* was not 
performed again, as the CNT and DIT have the same form. 
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TABLE 3.1. Calculated nucleation and stirring parameters for Cu50Zr50 at the maximum supercooling 
temperature for Day 1.  
Cycle  Heater On? a Tu (K) A* (m3s)-1 b σ (J/m2) c δ (Å) d vmf (m/s) e Shear-Rate (s-1) f 
9 Yes 975 5.75x1034 0.138 1.29 4.09x10-4 0.778 
10 Yes 988 9.89x1038 0.132 1.23 5.87x10-4 1.19 
16 No 956 5.27x1030 0.144 1.37 2.99x10-4 0.724 
18 No 951 5.12x1029 0.146 1.39 2.14x10-4 0.519 

a Indicates if the heater was active during the cooling of the sample. 
b Calculated value of A* from Eq. 3.6 at the maximum supercooling Tu and assuming σ = 0.132 J/m2. 
c The value of σ calculated from Eq. 3.5 assuming A*=1039 (m3s)-1, and calculated at Tu.  
d The value of δ calculated at Tu from Eq. 3.7, assuming A*=1039 (m3s)-1 and calculated Tu. 
e The maximum flow velocity from Bracker [19] calculated from simulations at Tu. 
f The shear-rate from Bracker [19] calculated from simulations at Tu. 

 
 
 
TABLE 3.2. Calculated nucleation and stirring parameters for Cu50Zr50 at the maximum supercooling 
temperature for Day 2.  
Cycle  Positioner (V) a Tu (K) A* (m3s)-1 b σ (J/m2) c δ (Å) d vmf (m/s) e Shear-Rate (s-1) f 
3 6.66 963 1.42x1032 0.142 1.34 3.34x10-4 0.913 
4 6.66 970 7.21x1033 0.139 1.30 5.09x10-4 1.39 
28 3.88 948 1.60x1029 0.147 1.40 2.41x10-4 0.547 
29 3.88 955 4.84x1030 0.145 1.37 3.31x10-4 0.752 

a The value of the positioner voltage at recalescence. The heater was not active during cooling this day. 
b Calculated value of A* from Eq. 3.6 at the maximum supercooling Tu and assuming σ = 0.132 J/m2. 
c The value of σ calculated from Eq. 3.5 assuming A*=1039 (m3s)-1, and calculated at Tu.  
d The value of δ calculated at Tu from Eq. 3.7, assuming A*=1039 (m3s)-1 and calculated Tu. 
e The maximum flow velocity from Bracker [18,19] calculated from simulations at Tu. 
f The shear-rate from Bracker [18,19] calculated from simulations at Tu. 

 

 

TABLE 3.3. Calculated nucleation and stirring parameters for Vit106 at the maximum supercooling 
temperature.  
Cycle  Heater On? a Tu (K) A* (m3s)-1 b σ (J/m2) c δ (Å) d vmf (m/s) e Shear-Rate (s-1) f 
72 No 914 7.39x1028 0.116 1.41 7.36x10-5 0.134 
78 No 923 7.69x1030 0.113 1.36 8.99x10-5 0.166 
81 Yes 947 2.76x1037 0.105 1.25 6.52x10-4 1.08 
84 Yes 950 4.48x1038 0.103 1.23 7.15x10-4 1.27 

a Indicates if the heater was active during the cooling of the sample. 
b Calculated value of A* from Eq. 3.6 at the maximum supercooling Tu and assuming σ = 0.103 J/m2. 
c The value of σ calculated from Eq. 3.5 assuming A*=1039 (m3s)-1, and calculated at Tu.  
d The value of δ calculated at Tu from Eq. 3.7, assuming A*=1039 (m3s)-1 and calculated Tu. 
e The maximum flow velocity from Bracker [20] calculated from simulations at Tu. 
f The shear-rate from Bracker [20] calculated from simulations at Tu. 
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3.5 Discussion  

The observed difference in the magnitude of A* between the minimally stirred and highly 

stirred cycles appears to agree with the scaling between CNT and Coupled-Flux described in Eq. 

3.1. The value of A* from the minimally stirred cycles, where only the positioner was used during 

cooling, appear to be smaller than the highly stirred cycles by anywhere from 5 to 10 orders of 

magnitude. On the Day 2 measurements of Cu50Zr50, since only the positioner was used, a smaller 

difference in the magnitude of A* is observed between minimally and maximally stirred cycles. 

However, despite the smaller difference in the magnitude of A*, the overall range in values is still 

in-line with predictions from Eq. 3.1. Thus, it is possible diffusion-limited nucleation was observed 

in the positioner-only cycles. The same can be said about the Vit106 cycles, despite their 

performance in helium. Even if helium introduced heterogeneous nucleation sites, which may be 

responsible for the smaller maximum supercooling observed in Fig. 3.6, the addition or removal 

of stirring should have an observable effect on the nucleation kinetics. The only likely impact 

heterogeneous nucleation may have on the data is a systematic reduction in the maximum 

supercooling for all cycles performed during that night.  

Ground-based studies explored the impact of cooling rate on the maximum supercooling 

achieved by several samples of Ti40Zr30Ni30. For these experiments, a sample of Ti40Zr30Ni30 was 

levitated in ESL, melted, and allowed to cool freely until crystallization. This process was repeated 

approximately 150 times. Another sample of Ti40Zr30Ni30 was levitated and melted, but the heating 

laser was left on and reduced to a small value for the duration of the cooling cycle. As seen in Fig. 

3.8, no significant impact on maximum supercooling was detected. Another sample of Ti40Zr30Ni30 

was studied for the statistical analysis outlined elsewhere [9] and its distribution of supercoolings, 

which were gathered from a freely cooling sample, do not show any deviation from the other 
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distributions. Only a minor shift in the fitted curve of Ti40Zr30Ni30 supercooling measurements was 

found and the maximum of subsequent free cools on sample m6376 lies directly between the two 

curves; this could indicate sample-to-sample variation was the cause of the discrepancy and not 

different cooling rates. It also implies that minimally and maximally stirred cycles in ground-based 

ESL studies likely cannot reach the diffusion-limited nucleation regime, as suggested in the SRD 

[5]. The differences in maximum supercooling seen from the EML studies above are on the order 

of 10-30 Kelvin, while ground-based ESL supercooling measurements saw only a 1-2 Kelvin 

difference despite the slower cooling rate. Therefore, the differences in cooling rate are likely not 

completely responsible for the different nucleation parameters presented in Section 3.4. 

Figure 3.8: Three fitted probability density curves for three different samples of Ti40Zr30Ni30. Note that the 
maximum of the m6376 free cool curve lies in between the free cool and laser cool curves of the other two 
samples, indicating that cooling rate likely had a minimal impact on the maximum achievable supercooling. 

 

The minimally stirred cycles for Cu50Zr50, such as Cycle 18, 28, and 29, are already pushing 

or slightly exceeding the upper shear rate limit (0.5 sec-1) for diffusion-limited nucleation. Despite 

this, the data from the minimally stirred Cu50Zr50 cycles may still suggest diffusion-limited 
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kinetics, or that the kinetic contribution due to stirring is nearly equal to that of diffusion. This 

may be seen in the calculated maximum flow velocity from Bracker [18,19]. Using the viscosity 

of Cu50Zr50 at the maximum supercooling temperature, the diffusion velocity can be predicted from 

a simple relation 𝑣 = 𝐷 𝐿⁄ , where D is the Stokes-Einstein diffusion relation and a value of the 

diffusion length L is approximately 10nm [5]. As reported in the SRD, “[t]o observe the effects of 

diffusion on nucleation, [the diffusion velocity] must be larger than any stirring effects” [5]. The 

predicted diffusion velocity is 4.8x10-4 m/s, using 1.40 Pa·s at 950 K for Cu50Zr50. The diffusion 

velocity is larger than the maximum flow velocity for Cycle 18, 28, and 29. Therefore, the flow in 

these cycles may be slow enough to allow for diffusion to influence nucleation; otherwise, a larger 

maximum flow velocity would likely mask out any kinetic contribution from diffusion. However, 

these values are close enough that small stirring contributions from the EML may be included. 

Simulations of Vit106 cycles appear to reinforce inferences acquired from Cu50Zr50 data. 

Cycle 72 and 78 show a shear rate well within the outlined parameters for diffusion-limited 

nucleation. These two cycles show the deepest supercooling and slowest maximum flow velocity, 

coinciding with no heater active during cooling. Meanwhile, Cycle 81 and 84, which had the heater 

active during cooling, show a calculated shear rate that easily exceeds the limit of diffusion-limited 

nucleation. Using the viscosity reported for Vit106 (3.54 Pa·s at 915 K) and following the 

calculations performed in the SRD [5] suggest that the predicted diffusion velocity for Vit106 is 

1.9x10-4 m/s. The maximum flow calculated for Cycle 72 and 78 is significantly smaller than the 

maximum diffusion velocity, further suggesting diffusion-limited nucleation was observed. 

Meanwhile, the maximum flow velocity for Cycle 81 and 84 is significantly larger, further 

suggesting that stirring influenced nucleation.  
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However, the predicted shear range for diffusion-limited nucleation was calculated for 

Ti39.5Zr39.5Ni21 and there may be systematic variation from that range based on alloy composition. 

As an example, consider the differences in viscosity—a thermophysical property related to 

kinetics—between Ti39.5Zr39.5Ni21 and Vit106. The viscosity at the maximum supercooling 

temperature for Ti39.5Zr39.5Ni21 (0.26 Pa·s at 950K) is almost 14 times smaller than the viscosity 

of Vit106. Therefore, the maximum diffusion velocity is larger for Ti39.5Zr39.5Ni21 at 3.1x10-3 m/s, 

since the viscosity is inversely related to D. Four cycles on Vit106 not shown above—1, 8, 60, and 

68—were examined with CFD, with Cycle 1 and Cycle 8 being performed in vacuum and Cycle 

60 and Cycle 68 being performed in helium. The calculated shear rates range from 0.03 to 0.27 

sec-1 [20], with Cycle 60 yielding the largest shear rate. The smaller shear rates typically emerged 

from cycles where only the positioner was active during cooling and was between 2.5 and 6 volts. 

The larger shear rate, while still within the predicted diffusion-limited regime, resulted from a 

cycle where the heater was active during cooling and set to a value of 1.25 volts. The predicted 

maximum diffusion velocity for Cycle 60, using Bracker’s parameters (8.37 Pa·s at 875 K) [20], 

is 7.7x10-5 m/s, while the maximum flow velocity was calculated to be 1.54x10-4 m/s. Despite the 

shear-rate falling within the previously outlined range for diffusion-limited nucleation, the 

maximum flow velocity is larger than the diffusion velocity, which could imply a stirring 

contribution. The other cycles performed that night, where only the minimum positioner voltage 

was used during cooling, achieved a maximum supercooling anywhere from 20 to 50 degrees 

deeper than Cycle 60 and a shear rate 7 times smaller. In addition, their maximum flow velocities 

were always smaller than the predicted maximum diffusion velocity, suggesting that diffusion 

likely impacted the nucleation.  
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The heater clearly makes an impact on the maximum supercooling and in the calculated 

shear rate, possibly due to more stirring relative to positioner-only cycles. Published 

magnetohydrodynamics simulations by Xiao et. al. using data from the EML-ISS further support 

this point by showing the heater can induce stronger flow within the droplet [21]. Xiao et. al. found 

that the shear rate in modeled Fe-19Cr-21Ni (atomic %) at 1500K (Tl – 200K) was almost 400 

times larger for a cycle with an applied heater voltage of 5.70 volts versus a cycle with a heater 

voltage of 0.01 volts. In practice, such a large heater voltage is not feasible for experimental 

studies. However, even with a more reasonable heater setting of 1.0 volts, the models from Xiao 

et. al. show a shear rate at 1500K between 50 and 100 times larger than the shear rate from a cycle 

with a heater voltage of 0.01. The range of shear rates in Tables 3.1 through 3.3 do not show such 

extreme differences; however, a difference in shear rate between two and ten times is observable 

between cycles with the heater active during cooling and those without it.  

The magnitude of observed supercooling also decreases with increased stirring. With high 

levels of stirring, stronger convection currents may bring atoms into the shell and expedite cluster 

growth. Thus, the more rapid kinetics in highly stirred liquids may limit the amount of time the 

metallic liquid can cool before a critical nucleus is formed. In contrast, diffusion-limited nucleation 

will slow down the kinetics and force the cluster to wait for atoms to move into the shell. The 

slower kinetics, and thus slower growth of the cluster, may allow the metallic liquid to cool more 

deeply before the nuclei grows large enough to initiate crystallization. 

There is no theoretical prediction on the impact on the interfacial free energy in diffusion-

limited nucleation. However, as described by Kelton and Greer [13], “the depletion of the original 

phase immediately surrounding the cluster will locally shift the driving free energy and hence the 

critical size.” The interfacial free energy only applies to the interaction between the cluster and 
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shell; however, the interfacial free energy is related to the cluster size. A shift in the driving free 

energy would change the critical cluster size needed to form a viable nuclei [22–24]. This may be 

related to the overall deeper supercooling observed in more quiescent liquids when compared to 

highly stirred liquids. However, since there is no theoretical prediction of this effect, the observed 

trends may simply be due to circumstance.  

The results from the DIT appear to support the interpretation of the data within the 

Coupled-Flux theory. In the diffusion-limited case, the cluster and the surrounding parent phase 

will have a higher difference between the enthalpy and entropy curves due to the different solute 

concentration around the cluster. However, when stirring is introduced, the solute concentration 

may be modulated to more closely mirror the composition of the cluster, thereby reducing δ. 

However, this interpretation relies on key concepts from the Coupled-Flux theory, indicating that 

the DIT on its own is likely insufficient to describe the nucleation kinetics here. While the DIT 

does account for a more diffuse interface between the crystal and parent phase, it does not account 

for the effects of compositional change around the cluster during diffusion-limited nucleation.  

 

3.6 Conclusion  

 The results from studies of Cu50Zr50 and Vit106 using the EML on-board the ISS were 

reported and discussed using the CNT, DIT, and Coupled-Flux theories. Calculations performed 

on Cu50Zr50 and Vit106 suggest that nucleation may be limited by diffusion during cycles where 

only the positioner was active. When the heater was active during cooling, a sharp change in the 

calculated nucleation parameters was observed, likely due to the introduction of stirring.  Due to 

time constraints with launching samples into orbit, sharing the facility with other investigators, 
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and unforeseen problems occurring with the EML, only two samples were shown in this chapter. 

Future studies are planned on several other samples to more fully explore the initial results 

presented in this chapter. 
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Chapter 4: Maximum Supercooling Studies 
in Ti39.5Zr39.5Ni21, Ti40Zr30Ni30, and Zr80Pt20 
Liquids – Connecting Liquid Structure and 

the Nucleation Barrier  
 

Portions of this chapter were originally published in the Journal of Chemical Physics, 150, 

204510 (2019). It is reproduced here with permission from AIP Publishing with minor revisions 

to include a discussion and analysis of data within the Diffuse Interface Theory of Nucleation. 

Almost three quarters of a century ago, Charles Frank proposed that the deep supercooling 

observed in metallic liquids is due to icosahedral short-range order (ISRO), which is incompatible 

with the long-range order of crystal phases. Some evidence in support of this hypothesis has been 

published previously.  However, those studies were based on a small population of maximum 

supercooling measurements before the onset of crystallization. Here, the results of a systematic 

statistical study of several hundred maximum supercooling measurements on Ti39.5Zr39.5Ni21, 

Ti40Zr30Ni30, and Zr80Pt20 liquids are presented. Previous X-Ray and neutron scattering studies 

have shown that the structures of these liquid alloys contain significant amounts of ISRO. The 

results presented here show a small work of critical cluster formation (W* = 31 – 40 kBT) from the 

analysis of the supercooling data for the Ti39.5Zr39.5Ni21 liquid, which crystallizes to a metastable 

icosahedral quasicrystal.  A much larger value (W* = 54 – 79 kBT and W* = 60 – 99 kBT) was 

obtained for the Ti40Zr30Ni30 and Zr80Pt20 liquids respectively, which do not crystallize to an 

icosahedral quasicrystal. Taken together, these results significantly strengthen the validity of 

Frank’s hypothesis.  
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4.1 Introduction 

Fahrenheit first noticed the tendency for liquids to exist in the liquid phase below the 

equilibrium melting temperature [1], also known as supercooling, which indicated the existence of 

a barrier to the phase transition. This barrier is now recognized as an essential ingredient to crystal 

nucleation—the formation of the first ordered regions in the liquid. The process of nucleation is 

typically understood within the framework of Classical Nucleation Theory (CNT), where the 

nucleation barrier arises from a competition between the thermodynamic driving free energy and 

the energy cost for creating an interface between the nucleating phase and the liquid. The CNT 

was developed by Gibbs [2], Volmer & Weber [3], and Becker & Döring [4] for gas condensation 

and was later extended to describe crystal nucleation in a liquid by Turnbull and Fisher [5]. Within 

CNT, the steady-state rate for forming crystal nuclei is expressed in terms of the atomic mobility 

at the crystal-liquid interface (contained in the pre-term A*), the work required to form the initial 

critical cluster W*, and the temperature T, as outlined in Eq. 4.1.  

𝐼ab =
24𝐷𝑛∗

F
B𝑁7

𝜆F 8
|Δ𝜇|

6𝜋𝑘.𝑇𝑛∗
9

A
F
exp '−

𝑊∗

𝑘.𝑇
0 = 𝐴∗ exp '−

𝑊∗

𝑘.𝑇
0 (4.1) 

Here, λ is the atomic jump distance, D is the diffusion coefficient, n* is the number of atoms in the 

critical nucleus, NA is Avogadro’s number, Δμ is the change in chemical potential per atom, and 

kB is the Boltzmann constant. From CNT, the work to form the critical nucleus, W*, for a spherical 

nucleus is given in Eq. 4.2:  

𝑊∗ =
16𝜋
3

𝜎B

Δ𝑔F 	
(4.2) 
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where Δg is the Gibbs free energy difference per unit volume (Δ𝑔 = Δ𝜇 �̅�⁄ , where �̅� is the atomic 

volume) and σ is the interfacial free energy. Turnbull and Fisher assumed that the attachment 

mobility at the interface was related to the diffusion coefficient in the liquid, D. This is generally 

obtained from the viscosity, η, assuming the Stokes-Einstein relation (𝐷 = 𝑘.𝑇 6𝜋𝜂𝑎⁄ ), where a 

is a length that corresponds approximately to the atomic diameter.  

An extension of CNT was developed independently by both Spaepen [6] and Gránásy to 

account for extended (or diffuse) interfaces [7,8], as first-principles calculations implied that the 

CNT failed to accurately describe ordering at the interface. Gránásy parameterized the cross-

interfacial enthalpy and entropy distributions, arriving at a definition of the critical work of cluster 

formation (Eq. 4.3): 

𝑊∗ = −𝜅𝛿BΔ𝑔�𝜓(𝜂) (4.3) 

where 𝜅	 = 4𝜋 3⁄ , Δ𝑔� = Δℎ� − 𝑇Δ𝑠�, 𝜓(𝜂) = 2(1 + 𝑞)𝜂SB − (3 + 2𝑞)𝜂SF + 𝜂SA, 𝑞 = (1 −

𝜂)SA/F, 𝜂 = Δ𝑔� Δℎ�⁄ , Δh0 and Δs0 are the enthalpy and entropy differences between the parent 

and new phase, and δ is the interfacial thickness defined by the difference in location between the 

enthalpy and entropy surfaces (𝛿 = 𝑅a − 𝑅�). Following the kinetic approach, the nucleation rate 

can be calculated as 𝐼ab = 𝐼�	exp	(−𝑊∗ 𝑘.𝑇⁄ ), arriving at the same steady-state form as CNT. 

Since CNT was originally developed for gas condensation, it does not explicitly consider 

the short- and medium-range order within the liquid. Frank proposed that the presence of such 

order, specifically icosahedral short-range order (ISRO), gives rise to the nucleation barrier in 

metallic liquids [9]. However, such a barrier is not limited to ISRO, any type of order that is 

incompatible with the long-range order in the underlying crystal phase may give rise to the 

nucleation barrier. Previous experimental studies have confirmed the presence of ISRO in metallic 
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liquids [10] which was further corroborated by linking ISRO to the nucleation barrier in a 

Ti39.5Zr39.5Ni21 supercooled liquid [11,12], providing strong support for Frank’s hypothesis. 

However, the analysis of the supercooling data in the framework of CNT in the previous study of 

Ti-Zr-Ni liquids [13] was based on a small number of maximum supercooling cycles. Since 

nucleation is a stochastic process, as explained in section III, a quantitative analysis requires the 

collection of a large population of maximum supercooling temperatures. Such extensive studies 

are presented here for the Ti39.5Zr39.5Ni21, Ti40Zr30Ni30, and Zr80Pt20 liquids. These alloys were 

chosen because the Ti39.5Zr39.5Ni21 liquid has strong ISRO and crystallizes first to a metastable 

quasicrystal phase [11–13]. The Ti40Zr30Ni30 liquid contains distorted ISRO [13] and crystallizes 

to the C14 Laves phase [12] and the Zr80Pt20 liquid contains moderate ISRO and crystallizes to a 

phase mixture of Zr5Pt3 and βZr [14–16]. In agreement with Frank’s hypothesis, W* is found to be 

much larger for the nucleation of the ordered phases from the Ti40Zr30Ni30 and Zr80Pt20 liquids than 

it is for nucleating the quasicrystal phase from the Ti39.5Zr39.5Ni21 liquid. 

 

4.2 Methods 

Master ingots were prepared by arc-melting high purity Zr (Smart Elements, Vienna, 99.97 

at.%), Ni (Alfa Aesar 99.999 at.%), Ti (Alfa Aesar 99.999 at.%), and Pt (Alfa Aesar 99.997 at.%) 

on a water-cooled Cu hearth in a high purity (99.999 at.%) Ar atmosphere. A Ti50Zr50 getter located 

close to the sample was melted for 60 seconds prior to melting the sample to further reduce residual 

oxygen inside the chamber. The master ingots were melted and flipped three times to ensure 

chemical homogeneity, with each melting cycle lasting approximately 15 seconds to reduce mass 

loss due to evaporation and any residual oxygen contamination. Upon verification of negligible 
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mass-loss (less than 0.1%), the master ingots were broken and portions were re-melted to obtain 

small spherical samples approximately 2.5mm in diameter, with masses ranging from 45mg to 

75mg.   

Nucleation can either be homogeneous or heterogeneous. Homogeneous nucleation is of 

most interest for these studies since it is characteristic of the thermodynamic and kinetic factors of 

the liquid and nucleating phases, while heterogeneous nucleation is catalyzed at specific sites, 

particularly by containers or sample impurities. Since metallic liquids are sensitive to oxygen and 

prone to heterogeneous nucleation, the studies were conducted in the high-vacuum and 

containerless processing environment of the Washington University Beamline Electrostatic 

Levitator (WU-BESL) [17,18]. The Ti39.5Zr39.5Ni21 samples were processed at pressures ranging 

from 4.5x10-8 Torr to 8x10-8 Torr, the Ti40Zr30Ni30 samples were processed at 5.7x10-8 Torr, and 

the Zr80Pt20 samples were processed at 8x10-8 Torr. The spherical sample was first levitated and 

then melted using a high-intensity 980nm 50-Watt diode laser. A Process Sensors Metis MI18 

MB8 single-color pyrometer, operating at a wavelength of 1.89μm, was used to measure the 

sample temperature in the 160 °C to 800 °C range. A Process Sensors Metis MQ22 two-color ratio 

pyrometer, operating at wavelengths of 1.4μm and 1.64μm, was used to measure sample 

temperatures above 600 °C. The melting plateau at 820 °C for Ti39.5Zr39.5Ni21, 868 °C for 

Ti40Zr30Ni30, and 1177 °C for Zr80Pt20 served as references for the calibration of the pyrometers. 

The temperature measurement error was corrected by assuming a constant emissivity ratio in the 

pyrometers; further discussion of this technique is outlined elsewhere [19]. The shear viscosity 

was also obtained for the liquids through the oscillating drop technique by modulating the vertical 

voltage to induce an oscillation in the liquid and measuring the decay time upon removing the 
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perturbation. A detailed discussion of the density and viscosity measurement techniques can be 

found elsewhere [15,20]. 

 

4.3 Analysis and Results 

Solid spherical samples were levitated, melted, and heated to several hundred degrees 

above the liquidus temperature to achieve maximum supercooling. The laser was then turned off 

and the sample cooled by radiative loss. The nucleation and growth of the crystal phase was 

marked by a rapid rise in the sample’s temperature due to the release of the heat of fusion during 

crystallization, a process termed recalescence. The temperature profile during a typical heating and 

cooling cycle of a Ti39.5Zr39.5Ni21 sample is illustrated in Fig. 4.1.   
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Figure 4.1: A representative heating and cooling cycle for Ti39.5Zr39.5Ni21. In this liquid, two recalescence 
events are observed.  The first corresponds to the transformation of the liquid to a metastable icosahedral 
quasicrystal phase and the second to the stable phase mixture of C14 polytetrahedral Laves phase and solid 
solution [12].  

 

Such thermal cycles were repeated many times in both liquid alloys to generate a 

distribution of maximum supercooling temperatures (Tu). The first 25 cycles were excluded from 

the analysis because the supercooling temperatures gradually improved and stabilized around the 

maximum supercooling temperature with repeated processing. When consistent supercooling 

behavior was observed, at least 100 cycles were run and Tu was measured. 

To make sure that the sample quality did not change after many thermal cycles due to 

thermal evaporation or contamination from the residual oxygen in the BESL chamber, a 

consistency check was made. As seen in Fig. 4.2, the maximum supercooling was plotted against 

cycle number—a proxy for time, as each cycle happened sequentially—to check for any 
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deterioration in supercooling. The supercooling is the difference between the liquidus temperature 

(Tl) and the maximum supercooling temperature (Tu), i.e. Δ𝑇 = 𝑇� − 𝑇�. Since the icosahedral 

quasicrystal was the primary crystallizing phase in Ti39.5Zr39.5Ni21, the supercooling for each cycle 

was calculated with respect to the metastable liquidus temperature of this phase (790 °C). For 

Ti40Zr30Ni30 and Zr80Pt20, the equilibrium liquidus temperatures (892 °C and 1177 °C, respectively) 

were used. A linear regression analysis was performed and the R value showed no significant 

evidence of a dependence of supercooling on cycle number (p > 0.05). The supercooling values 

are scattered evenly around the linear fit, providing evidence that the supercooling was limited by 

the inherent randomness of homogeneous nucleation. The introduction of contamination into the 

sample, such as residual oxygen in the chamber or a change in composition due to evaporation, 

would lead to a significant change in supercooling with time, producing a higher R value, 

suggesting a heterogeneous nucleation mechanism.   
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Figure 4.2: Maximum supercooling as a function of cycle number.  No significant dependence between 
supercooling and cycle number is observed, indicating that the nucleation was reproducible.   

 

The pre-factor and work of cluster formation for nucleation were obtained from these data 

using a statistical treatment developed by Skripov [21]. Since each nucleation event is random and 

occurs independently of the previous one, within a certain range of supercooling temperatures and 

with an average value, Poisson statistics can be used to describe the nucleation events. The general 

form of the probability density of nucleation events shown in Eq. 4.4 is:  

𝜔(𝑇) =
𝐼ab𝑉
�̇�

exp8−
𝑉
�̇�
p 𝐼ab𝑑𝑇
b±

b²
9	 (4.4) 
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where IST is the steady-state nucleation rate 𝐼ab = 𝐴∗exp(−𝑊∗ 𝑘.𝑇⁄ ), A* is the classical 

nucleation pre-term divided by the viscosity as indicated in Eq. 4.1, V is the volume of the droplet, 

and �̇� is the cooling rate, dT/dt.  

To fit the distribution of supercooling temperatures to Eq. 4.4 and extract A*, W*, and σ, 

the driving free energy is needed as an input parameter. It was calculated by two different methods, 

once using the Turnbull approximation (Eq. 4.5.1) and again assuming the Thompson-Spaepen 

[22] approximation (Eq. 4.5.2):   

Δ𝐺 =
Δ𝐻�Δ𝑇	
𝑇�

(4.5.1) 

Δ𝐺 =
Δ𝐻�Δ𝑇	
𝑇�

2𝑇
𝑇� + 𝑇

(4.5.2) 

where ΔHf is the enthalpy of fusion. The driving free energy per atom, Δμ, is obtained by 

normalizing ΔG by NA. The enthalpy of fusion was obtained from previously reported results for 

Ti39.5Zr39.5Ni21 (ΔHf = 8.48 kJ/mol) and Ti40Zr30Ni30 (ΔHf = 11.2 kJ/mol) [12], and estimated using 

Richard’s Rule [23] for Zr80Pt20 (ΔHf = 12.0 kJ/mol). The interfacial free-energy σ was also 

calculated twice, assuming it to be temperature independent (σ) or assuming a linear temperature 

dependence (𝜎 = 	𝜎�𝑇). Turnbull suggested that the linear temperature dependence arose from an 

overestimate of the entropy change at the crystal nucleus-liquid interface due to the assumption of 

a sharp interface in the classical theory of nucleation [24,25]. The results from theoretical models 

that are based on the assumption of a diffuse interface support this conclusion [6,7]. The viscosity 

was used as an input parameter. Equation 4.5 was then fit to the histogram of measured ΔT values 

with A* and W* as fit parameters, assuming the temperature dependences of the different 

approximation for Δμ and σ. Since the different temperature dependence assumptions for Δμ and 
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σ do not change the overall shape of the fitted curve, a representative plot for each alloy is 

reproduced in Fig. 4.3 and Fig. 4.4. Finally, σ was calculated from Eq. 4.2 and the corresponding 

driving free energy.  

For DIT calculations, a similar procedure was followed. As the steady-state nucleation rate 

has the same form [7,8], it can be substituted into Eq. 4.4 with the definition of W* from Eq. 4.3. 

The non-linear least-squares fitting routine was then performed again. The enthalpy and viscosity 

were used as input parameters. δ was calculated from the best-fit parameter to Eq. 4.3. 

A total of 686 supercooling cycles were collected from six different Ti39.5Zr39.5Ni21 

samples, with masses ranging from 49.7mg to 57.5mg. The slight differences in sample volume 

were considered by normalizing for the different masses. A consistent supercooling temperature 

with an average value of 110°C (10.3% supercooling) was observed (Fig. 4.3) for all six samples 

studied; the width of the distribution is approximately 11°C. It is important to note that the 

distribution is asymmetric, dropping faster on the deeper supercooling side. This is typically 

considered to be a characteristic of homogeneous nucleation [26,27]. The average supercooling 

temperature was used to obtain the values for A*, W* and σ as listed in Table 4.1.   
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Figure 4.3: The histogram of maximum supercooling measurements for Ti39.5Zr39.5Ni21. The average 
supercooling was 110 °C (10.3%). The curve is the fitted probability density (Eq. 4.3), with a p-value > 
0.999, indicating a good fit. 
 

TABLE 4.1. Calculated nucleation parameters for Ti39.5Zr39.5Ni21 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 2.74x1025 37.18 0.057   
Turnbull, σ ∝ T 7.60x1022 31.29 0.054 5.68x10-5  
Thompson-Spaepen, σ = constant 3.72x1026 39.79 0.057   
Thompson-Spaepen, σ ∝ T 2.02x1023 33.15 0.053 5.58x10-5  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
 

For Ti40Zr30Ni30, the data from 191 nucleation cycles for a 63.8mg sample gave an average 

supercooling of 177 °C (15.2% supercooling), as shown in Fig. 4.4. The supercooling is slightly 

deeper and the distribution is narrower (8 °C) than observed for Ti39.5Zr39.5Ni21. Like 
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Ti39.5Zr39.5Ni21, the overall shape of the fit curve does not change with the approximation assumed 

for Δμ and σ. The fit parameters from the distribution curve and the extracted nucleation properties 

calculated at the average supercooling temperature using different approximations are listed in 

Table 4.2. 

Figure 4.4: The histogram of maximum supercooling measurements for Ti40Zr30Ni30. The average 
supercooling was 177 °C (15.2%). The curve is the fitted probability density (Eq. 4.3), with a p-value > 
0.999, indicating a good fit. 
 

TABLE 4.2. Calculated nucleation parameters for Ti40Zr30Ni30 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 4.85x1039 70.54 0.114   
Turnbull, σ ∝ T 4.39x1032 54.32 0.104 1.05x10-4  
Thompson-Spaepen, σ = constant 2.28x1043 79.00 0.111   
Thompson-Spaepen, σ ∝ T 6.14x1034 59.26 0.101 1.02x10-4  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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The data from 274 nucleation cycles for a 72.7mg sample of Zr80Pt20 gave an average 

supercooling of 279 °C (19.2% supercooling), as shown in Fig. 4.5. Compared with the 

measurements for Ti39.5Zr39.5Ni21, the supercooling is almost two times larger and the distribution 

of supercooling temperatures is slightly narrower, with a width of approximately 10°C. Again, the 

overall shape of the fit curve does not change with the approximation assumed for Δμ and σ. The 

fit parameters from the distribution curve and the extracted nucleation properties calculated at the 

average supercooling temperature using different approximations are listed in Table 4.3. 

Figure 4.5: The histogram of maximum supercooling measurements for Zr80Pt20. The average supercooling 
was 279 °C (19.2%). The curve is the fitted probability density, with a p-value > 0.999, indicating a good 
fit. 
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TABLE 4.3. Calculated nucleation parameters for Zr80Pt20 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 8.76x1045 84.17 0.134   
Turnbull, σ ∝ T 2.19x1035 59.75 0.119 1.02x10-4  
Thompson-Spaepen, σ = constant 2.44x1052 99.01 0.132   
Thompson-Spaepen, σ ∝ T 2.91x1038 66.95 0.116 9.87x10-5  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
 

The results of the fitted probability distribution using the Diffuse Interface Theory are 

tabulated below in Table 4.4. As previously discussed, the shape of the fitted curve did not change 

with the theory or approximation used; as such, the histograms and fitted curves are not 

reproduced. The results are tabulated below for the three compositions studied and for the two 

approximations of ΔG outlined earlier (Eq. 4.5.1 and 4.5.2).  

TABLE 4.4. Calculated nucleation parameters for all compositions using the Diffuse Interface Theory  
Sample Approximation a A* (m3s)-1 W*/kBT δ (Å) b 
Ti39.5Zr39.5Ni21 Turnbull 1.15x1024 30.4 0.76  
Ti39.5Zr39.5Ni21 Thompson-Spaepen 1.50x1025 36.6 0.74 
Ti40Zr30Ni30 Turnbull 5.68x1035 61.5 1.12  
Ti40Zr30Ni30 Thompson-Spaepen 1.95x1039 69.6 1.10 
Zr80Pt20 Turnbull 6.81x1039 70.1 1.57 
Zr80Pt20 Thompson-Spaepen 7.44x1045 84.0 1.52 

a The approximation used for the driving free energy. 
b The value of δ calculated at the maximum supercooling temperature Tu.  
 
 

4.4 Discussion  

The general trend for σ for the alloy liquids is consistent with previous studies [28]. When 

σ is assumed to be temperature independent, it has values ranging from 0.1 to 0.4 J/m2. When σ is 

assumed to be linearly dependent on temperature (𝜎 = 	𝜎�𝑇), 𝜎� has a value near 10-5 J/m2K. From 
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the results of the present experiments, W* and σ appear to be insensitive to the approximation 

(Turnbull or Thompson-Spaepen) used to estimate the driving free energy. This is also true when 

σ is taken as temperature-independent or linearly temperature dependent (Tables 4.1, 4.2, and 4.3). 

However, some difference in A* is noticed under different approximations. The most important 

finding is that the maximum supercooling, W*, and σ are approximately a factor of two larger for 

Ti40Zr30Ni30 and Zr80Pt20 than Ti39.5Zr39.5Ni21 for all of the different approximations for ΔG.  

These results are consistent with Frank’s hypothesis. As reported earlier [11,13], the 

supercooled Ti39.5Zr39.5Ni21 liquid has significant local icosahedral order, which correlates with the 

nucleation of the metastable icosahedral quasicrystal in the first recalescence event (Figure 4.1). 

In the second recalescence, the metastable quasicrystal transforms into a phase mixture of the 

polytetrahedral C14 Laves and solid solution phases [12]. While the Ti40Zr30Ni30 and Zr80Pt20 

liquids also contain significant amounts of icosahedral and distorted-icosahedral order 

[13,15,29,30], the primary nucleating phases are the C14 Laves phase for the former and a 

simultaneous mixture of Zr5Pt3 and βZr [14–16] for the latter. Although both the C14 Laves [13] 

and the intermetallic Zr5Pt3 [15,16] phases contain some degree of tetrahedral and distorted 

icosahedral order, they are structurally more different from the liquid than the quasicrystal is to 

the Ti39.5Zr39.5Ni21 liquid. Following Frank, this difference in structural order raises the energy 

barrier for nucleation, manifest as an increase in the interfacial free energy. Interestingly, the 

interfacial free energy for Ti40Zr30Ni30 is larger than that for Ti39.5Zr39.5Ni21, but smaller than that 

for Zr80Pt20. This could arise because the degree of icosahedral and distorted icosahedral order in 

the Ti40Zr30Ni30 and Zr80Pt20 liquids is different and/or because the structures of the primary 

nucleating phases are different. The tetrahedral Laves phases are known to have a small nucleation 

barrier because the local tetrahedral order in the icosahedral structure of the liquid is similar to that 
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in the Laves phase. However, due to the simultaneous nucleation of the solid solution phase and 

Zr5Pt3 [14] (deduced from in-situ synchrotron X-ray measurements [15]) other factors, both kinetic 

and thermodynamic, could also contribute [31,32]. These would also be manifest as a larger 

interfacial free energy for Zr80Pt20 compared to Ti40Zr30Ni30. Clearly, however, the results for the 

Ti39.5Zr39.5Ni21 and Ti40Zr30Ni30 liquids show that a lower interfacial free energy correlates with a 

greater structural similarity between the liquid and the nucleating phase, which is consistent with 

Frank’s hypothesis.  

Using a different technique, Lee et. al. studied the nucleation of Ti39.5Zr39.5Ni21 [12], and 

observed similar values for the maximum undercooling. Since then, the method for calculating 

sample density has improved [20] and the statistical method outlined in this paper requires fewer 

assumptions for IST and A* to calculate σ. As a check, the method proposed by Lee et. al. was also 

used to calculate σ. The density was first corrected, the value for A* obtained from fitting the 

undercooling distribution was used, the Turnbull approximation was assumed for the free energy, 

and a temperature-independent σ was assumed. The values obtained for W*/kBT and σ were 34.5 

and 0.055 (J/m2) respectively, which are in closer agreement with those results found from the 

statistical method used here. These values are smaller than those found in other alloy liquids, such 

as Zr-Ni [33]. This is reasonable because of the structural similarity between the liquid and primary 

nucleation phase in Ti39.5Zr39.5Ni21. As discussed, the structures are more different in Ti40Zr30Ni30, 

Zr-Ni, and Zr80Pt20. It should also be noted that a larger maximum supercooling was observed for 

Ti40Zr30Ni30 in this study than in the previous reported results [12]. Using our improved 

measurements of the density, the calculated values for W* and σ are larger than those reported by 

Lee et. al, likely indicating a cleaner processing environment in the present study.   
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The values for δ obtained by fitting the data assuming the Diffuse Interface Theory agree 

with the results calculated using the Classical Theory. The smallest value of δ corresponds to 

nucleation in the Ti39.5Zr39.5Ni21 liquid, which implies a small difference between the enthalpy and 

entropy curves for the liquid and quasicrystal phases. Since the local order in supercooled 

Ti39.5Zr39.5Ni21 is icosahedral, the small difference reflects a similar structural and chemical order 

in the quasicrystal phase. Interestingly, Ti40Zr30Ni30 has a somewhat larger value for δ than 

Ti39.5Zr39.5Ni21, yet not as large as the δ for Zr80Pt20. In Ti-Zr-Ni alloys, the C14 Laves phase is a 

common crystal structure that has some icosahedral-like motifs. Thus, local icosahedral order may 

slightly reduce the free energy difference between the two phases in Ti40Zr30Ni30; however, the 

local icosahedral order in the supercooled Ti40Zr30Ni30 contributes to a larger barrier to nucleation 

when compared against Ti39.5Zr39.5Ni21. Therefore, the slightly larger δ implies a larger barrier to 

the nucleation of the crystal phase due to a larger difference between the enthalpy and entropy 

curves. Meanwhile, the large value for δ in Zr80Pt20 indicates a large difference between the 

enthalpy and entropy curves for the liquid and crystal. As described earlier, this could imply a 

significant difference in the local order between the liquid and crystal, increasing the barrier for 

rearranging the liquid atoms into the crystal lattice.  

Finally, the different magnitudes of A* need to be addressed. Based on previous studies of 

elemental metallic liquids performed by Turnbull, a value approximately 1039 (m3s)-1 for A* was 

proposed as a benchmark for homogeneous nucleation; smaller values (1029 (m3s)-1) were 

considered indicative of heterogeneous nucleation [34]. More recent levitation studies of pure 

zirconium are also consistent with this criterion [26,27,35].  For both Ti40Zr30Ni30 and Zr80Pt20 

liquids, the magnitudes of A* are consistent with homogeneous nucleation, although they are 

somewhat smaller when σ is taken to be linearly temperature dependent. As previously noted, 



117 
 

Turnbull noted that A* became smaller when a temperature-dependent σ was used, as observed in 

this study [25].  In contrast, the value of A* for Ti39.5Zr39.5Ni21 might appear to indicate 

heterogeneous nucleation, since it is 13 to 17 orders of magnitude smaller. This would be 

surprising for several reasons. As shown in Fig. 4.2, like the case for Ti40Zr30Ni30 and Zr80Pt20, 

there was no hint of degradation of supercooling with time/cycling for Ti39.5Zr39.5Ni21 during 

processing. The distribution of maximum supercooling temperatures is similarly asymmetric for 

all liquids. Finally, the samples were processed in similar high-vacuum conditions and created 

from the same high-purity elements. All of these observations suggest homogeneous nucleation. 

As pointed out in an earlier study [11], the nucleation of the i-phase in Ti39.5Zr39.5Ni21 is favored 

in regions of the liquid that develop significant ISRO. The icosahedral-ordered regions in the liquid 

catalyze the nucleation of the icosahedral phase, much like the case of heterogeneous nucleation. 

The limited number of these favored regions in Ti39.5Zr39.5Ni21 gives a smaller nucleation pre-

factor than for the cases of Ti40Zr30Ni30 and Zr80Pt20, which follow a more normal interpretation of 

homogeneous nucleation within the Classical Theory. More extensive studies in other alloy liquids 

are planned in the future to investigate this further.  

 

4.5 Conclusions 

A systematic statistical study of hundreds of maximum supercooling measurements for 

Ti39.5Zr39.5Ni21, Ti40Zr30Ni30, and Zr80Pt20 was performed and nucleation parameters were 

calculated using the Classical Nucleation Theory, Diffuse Interface Theory, and the Skripov 

method. The resulting nucleation parameters were found to provide additional support for Frank’s 

hypothesis, since the smaller values for A* and W* found in Ti39.5Zr39.5Ni21 are likely due to ISRO 
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in the liquid facilitating nucleation of the metastable quasicrystal. Meanwhile, the larger values for 

A* and W* found in Ti40Zr30Ni30 and Zr80Pt20 indicate that the structure of the liquid is different 

from that of the primary crystallizing phases, inhibiting their nucleation. Since the Zr80Pt20 

simultaneously nucleates two crystal phases, in contrast with primary nucleation to a single phase 

in the Ti-Zr-Ni liquids, there could be other additional thermodynamic and/or kinetic contributions 

to nucleation that would be manifest as a larger value of the interfacial free energy in these 

measurements. In addition to their inherent interest for supporting Frank’s hypothesis, these data 

will serve as a comparison for ongoing nucleation studies on the International Space Station, 

investigating the role of diffusion and convective stirring on nucleation, and to further understand 

nucleation in more complex metallic liquids. 
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Chapter 5: Maximum Supercooling Studies 

in Zr-Pd and Cu-Zr Binary Alloy Families 
  

5.1 Introduction 

  Frank’s hypothesis establishes a connection between the nucleation barrier and local 

atomic order in the supercooled liquid. However, questions remain about how the nucleation of 

multiple phases impacts the nucleation barrier. The Classical Theory of Nucleation (CNT) does 

not explicitly consider the role of local order in the supercooled liquid on the nucleation barrier; 

however, a systematic study of several different compositions within the same alloy family may 

shed light on the role of multiple phase formation in nucleation. The Diffuse Interface Theory 

(DIT) can be used to provide insight into the entropy surface between the liquid and crystal phases. 

As discussed earlier in Section 1.2, within the CNT the steady-state rate for forming crystal 

nuclei is expressed in terms of the atomic mobility at the crystal-liquid interface (contained in the 

pre-term A*), the work required to form the initial critical cluster W*, and the temperature T (Eq. 

5.1).  

𝐼ab = 𝐴∗ exp '−
𝑊∗

𝑘.𝑇
0 (5.1) 

Within CNT, the work to form the critical nucleus, W*, for a spherical nucleus is (Eq. 5.2):  

𝑊∗ =
16𝜋
3

𝜎B

Δ𝑔F 	
(5.2) 
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where Δg is the Gibbs free energy difference per unit volume (Δ𝑔 = Δ𝜇 �̅�⁄ , where �̅� is the atomic 

volume) and σ is the interfacial free energy. Turnbull and Fisher [1] assumed that the attachment 

mobility at the interface, contained within the pre-term A*, was related to the diffusion coefficient 

in the liquid, D. This is generally obtained from the viscosity, η, assuming the Stokes-Einstein 

relation (𝐷 = 𝑘.𝑇 6𝜋𝜂𝑎⁄ ), where a is a length that corresponds approximately to the atomic 

diameter.  

 The critical radius r*, typically in units of nanometers, is (Eq. 5.3): 

𝑟∗ =
2𝜎
|∆𝑔|

	 (5.3) 

However, CNT assumes a sharp interface between the liquid and crystal, which can fail to 

accurately describe ordering in the liquid at the interface of the nuclei. An extension of CNT was 

developed independently by both Spaepen [2] and Gránásy to account for extended (or diffuse) 

interfaces [3,4]. Within DIT, the critical work of cluster formation is (Eq. 5.4): 

𝑊∗ = −𝜅𝛿BΔ𝑔�𝜓(𝜂) (5.4) 

where 𝜅	 = 4𝜋 3⁄ , Δ𝑔� = Δℎ� − 𝑇Δ𝑠�, 𝜓(𝜂) = 2(1 + 𝑞)𝜂SB − (3 + 2𝑞)𝜂SF + 𝜂SA, 𝑞 = (1 −

𝜂)SA/F, 𝜂 = Δ𝑔� Δℎ�⁄ , Δh0 and Δs0 are the enthalpy and entropy differences between the parent 

and new phase, and δ is the interfacial thickness defined by the difference in location between the 

enthalpy and entropy surfaces (𝛿 = 𝑅a − 𝑅�). Within DIT, the critical radius is defined as (Eq. 

5.5):  

𝑟∗ = 𝛿(1 + 𝑞)𝜂SA	 (5.5) 

The steady-state nucleation rate within DIT has the same form as Eq. 5.1. 
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 The Cu-Zr and Zr-Pd binary alloy families were chosen partially based on previous studies. 

Cu-Zr is a well-studied system in both experimental and simulation settings and has been shown 

to be a bulk metallic-glass former [5]. Zr-Pd was chosen since Pd is in the same noble-metal family 

as Pt yet melts at significantly lower temperatures. This last point is key for future studies of this 

system using the Electromagnetic Levitation (EML) on-board the International Space Station 

(ISS), as the liquidus temperature for intermetallic Zr-Pt exceeds the maximum temperature 

threshold of the EML. Finally, the three different compositions within each family were chosen 

because intermetallic alloys typically nucleate a single phase, while eutectic and other 

compositions typically nucleate multiple phases. This can be seen in the phase diagrams for both 

Cu-Zr and Zr-Pd [6–10]. By comparing the nucleation parameters within each family and 

examining the overall trend, it may be possible to understand the impact of multiple phase 

formation and local order on nucleation. 

 

5.2 Methods 

 Master ingots of Zr50Pd50, Pd55Zr45, Zr75.5Pd24.5, Cu50Zr50, Cu55Zr45, and Cu64Zr36 were 

prepared similarly to previously outlined methods and experiments. High purity Zr (Smart 

Elements, Vienna, 99.97 at.%), Pd (Alfa Aesar, 99.95 at.%), and Cu (Alfa Aesar, 99.999 at. %) 

were arc-melted together under a high purity Ar (99.999 at.%) atmosphere. The master ingots were 

melted and flipped three times with each melt cycle lasting approximately 15 seconds to ensure 

chemical homogeneity and minimize mass loss due to evaporation. The mass of the ingot after arc-

melting was verified to ensure a negligible change (less than 0.1%) and subsequently broken into 

pieces, which were then remelted into spherical samples approximately 2.5mm in diameter.  



126 
 

The Washington University Beamline Electrostatic Levitator (WU-BESL) [11,12] was 

used to containerlessly process these samples under high vacuum conditions. Zr50Pd50 samples 

were processed at 7.0x10-8 Torr, Pd55Zr45 samples were processed at 6.8x10-8 Torr, and Zr75.5Pd24.5 

samples were processed at 6.4x10-8 Torr. The Cu50Zr50 sample was processed at 8.0x10-8 Torr, 

Cu55Zr45 was processed at 6.4x10-8 Torr, and Cu64Zr36 was processed at 6.0x10-8 Torr. To calibrate 

the Process Sensors Metis MI18 MB8 single-color pyrometer and MQ22 two-color ratio 

pyrometer, the melting plateau of 1600 °C for Zr50Pd50, 1560 °C for Pd55Zr45, 1053 °C for 

Zr75.5Pd24.5, 904 °C for Cu50Zr50 and Cu55Zr45, and 933 °C for Cu64Zr36 were used. The density and 

viscosity were obtained by the shadow method and oscillating drop technique respectively, as 

outlined earlier [13–15].  

 

5.3 Analysis 

 The solid spherical samples were levitated, melted, and heated above the liquidus 

temperature several times to achieve maximum supercooling. In some cases, like for Zr50Pd50, the 

liquid was heated no more than 50 to 100 degrees above the liquidus, since the high melting 

temperature assisted in sample conditioning but could also result in significant mass loss due to 

the high vapor pressure of palladium. This can be seen below in Fig. 5.1. For samples in the Cu-

Zr family, the liquid was typically heated 100 to 150 degrees above the liquidus. Due to the 

prolonged experiments, it is important to prevent as much mass loss as possible since these alloys 

typically have high vapor pressures. The maximum supercooling achieved occurred immediately 

before recalescence, the characteristic jump in sample temperature that followed the release of the 

heat of fusion.  
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Figure 5.1: A representative heating and cooling cycle for Zr50Pd50. Note that, almost immediately after the 
sample has transformed from solid to liquid, the heating laser is turned off to prevent overheating of the 
sample and potential mass loss due to evaporation. 

 

The first 25 to 50 cycles were excluded from analysis until a deep and consistent maximum 

supercooling temperature was achieved. As discussed earlier, this was due to sample conditioning, 

whereby impurities and gas trapped in the grain boundaries were gradually evaporated from the 

sample with each successive thermal cycle. In Fig. 5.2, the maximum supercooling is plotted 

against cycle number to check the consistency of each supercooling cycle. The R-value calculated 

from the linear regression showed no significant evidence of a dependence between supercooling 

and cycle number (p > 0.05). To calculate the maximum supercooling (Δ𝑇 = 𝑇� − 𝑇�), the liquidus 

temperature must be known. For Zr50Pd50 and Pd55Zr45, the liquidus temperatures (1873 K and 

1833K) were measured from the phase diagram for Pd-Zr [9,10] and verified from other published 

data [8]. For Zr75.5Pd24.5, an equilibrium liquidus temperature of 1326 K was determined from DTA 
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measurements. For the Cu-Zr family, the 2012 phase diagram by Okamoto served as the first 

reference for the equilibrium liquidus temperatures [6], which were then verified from other 

published data. For Cu50Zr50, Cu55Zr45, and Cu64Zr36, the equilibrium liquidus temperatures were 

used (1208 K [6,7], 1193K [16], and 1250 K [17] respectively).  

 

Figure 5.2: Maximum supercooling as a function of cycle number for both Zr-Pd (left) and Cu-Zr (right) 
binary alloy families. No significant dependence between supercooling and cycle number is observed, 
indicating the nucleation was reproducible for each sample studied; 1,641 measurements are represented. 

  

The Skripov method [18] was used to obtain values for the nucleation pre-factor and work 

of cluster formation. The probability density is given below (Eq. 5.6): 

𝜔(𝑇) =
𝐼ab𝑉
�̇�

exp8−
𝑉
�̇�
p 𝐼ab𝑑𝑇
b±

b²
9	 (5.6) 
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where 𝐼ab = 𝐴∗exp(−𝑊∗ 𝑘.𝑇⁄ ) is the steady-state nucleation rate, A* is the classical nucleation 

pre-term divided by the viscosity, V is the volume of the droplet, and �̇� is the cooling rate (dT/dt). 

Equation 5.6 was fit to the histogram of supercooling measurements by a non-linear, least squares 

fitting routine. The definitions of IST from both the CNT and DIT were used to calculate values for 

the pre-factor and work of cluster formation. This required the use of approximations for the 

driving free energy. As explained earlier in Section 1.2, the two approximations used were the 

Turnbull approximation [19] and Thompson-Spaepen [20] approximation: 

Δ𝐺 =
Δ𝐻�Δ𝑇	
𝑇�

(5.7.1) 

Δ𝐺 =
Δ𝐻�Δ𝑇	
𝑇�

2𝑇
𝑇� + 𝑇

(5.7.2) 

where ΔHf is the enthalpy of fusion. The driving free energy per atom, Δμ, is obtained by 

normalizing ΔG by NA. The enthalpy of fusion was obtained from previously reported results for 

Cu50Zr50 (ΔHf = 7.51 kJ/mol) [21] and Cu64Zr36 (ΔHf = 9.96 kJ/mol) [22]. The enthalpy of fusion 

for Cu55Zr45 was assumed to be very similar to that of Cu50Zr50, given their similar liquidus and 

solidus temperatures. For the Zr-Pd family, Richard’s Rule [23] was used to estimate the enthalpy 

of fusion for Zr50Pd50 (ΔHf = 15.0 kJ/mol), Pd55Zr45 (ΔHf = 14.7 kJ/mol), and Zr75.5Pd24.5 (ΔHf = 

10.6 kJ/mol). The viscosity was used as an input parameter after it had been fit with the KKZNT 

form [24]. The interfacial free energy σ was also calculated twice, assuming it to be temperature 

independent (σ) or assuming a linear temperature dependence (𝜎 = 	𝜎�𝑇). A* and W* were used as 

fit parameters, assuming the temperature dependence based on the choice of approximation for the 

driving free energy and interfacial free energy. From the fit parameters, σ and r* may be calculated 
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directly from Eq. 5.2 and 5.3. Within the DIT, δ and r* were calculated from the fit parameters 

using Eq. 5.4 and 5.5.    

 X-ray scattering data on Cu-Zr and Zr75.5Pd24.5 were obtained from the BESL2013 and 

BESL2016 runs, as outlined elsewhere [25]. Other studies on Zr50Pd50 and Pd55Zr45 have explored 

the crystal structure of these compositions at various temperatures [8]. The X-ray data was reduced 

in the same way outlined in Chapter 2. Using published lattice parameters for Cu-Zr [7] and Zr-Pd 

[26] and using the reflection conditions for the respective space groups, [27] the Bragg scattering 

for each Miller plane was calculated and mapped onto the structure factor S(q).  

 Finally, the mass of the sample after processing was checked to ensure minimal mass loss. 

For every sample studied here, the difference in mass before and after processing was typically 

0.1% and no larger than 0.3%. As such, any compositional change was marginal and negligible.   

  

5.4 Results  

A total of 274 supercooling measurements were obtained for a 59.32mg sample of Zr50Pd50, 

with an average supercooling temperature of 393°C (21.0% supercooling). As seen in previous 

publications [28], the shape of the distribution is asymmetric, as proscribed by Poisson statistics. 

The sharp decrease in supercooling above the average is typically characteristic of homogeneous 

nucleation, as the maximum supercooling temperature was achieved [29,30]. The average 

supercooling was used to calculate the values in Table 5.1 below.  



131 
 

Figure 5.3: The histogram of maximum supercooling measurements for Zr50Pd50. The average supercooling 
was 393°C (21.0%). The curve is the fitted probability density with a p-value > 0.999, indicating a good 
fit. 

 
TABLE 5.1. Calculated nucleation parameters for Zr50Pd50 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 4.30x1036 62.65 1.30 0.182   
Turnbull, σ ∝ T 1.08x1028 42.84 1.14 0.160 1.08x10-4  
Thompson-Spaepen, σ = constant 1.68x1042 75.52 1.44 0.178   
Thompson-Spaepen, σ ∝ T 3.43x1030 48.60 1.24 0.154 1.04x10-4  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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A total of 271 supercooling measurements were obtained for a 52.52mg sample of Pd55Zr45, 

giving an average supercooling temperature of 313°C (17.1% supercooling). The average 

supercooling is smaller than that of Zr50Pd50 despite the proximity in composition and liquidus 

temperatures. The fit parameters from the distribution calculated at the average supercooling and 

the extracted nucleation values using the classical theory are listed below in Table 5.2. 

Figure 5.4: The histogram of maximum supercooling measurements for Pd55Zr45. The average supercooling 
was 313°C (17.1%). The curve is the fitted probability density with a p-value > 0.999, indicating a good 
fit. 
TABLE 5.2. Calculated nucleation parameters for Pd55Zr45 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 2.23x1031 50.25 1.30 0.149   
Turnbull, σ ∝ T 5.59x1025 37.35 1.18 0.135 8.89x10-5  
Thompson-Spaepen, σ = constant 3.04x1034 57.47 1.40 0.146   
Thompson-Spaepen, σ ∝ T 2.70x1027 41.23 1.26 0.131 8.60x10-5  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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A total of 221 measurements were obtained for a 55.89mg sample of Zr75.5Pd24.5, with an 

average supercooling of 283°C (21.3% supercooling). While the overall magnitude of 

supercooling for this composition is the smallest within the studied Zr-Pd family, the percentage 

supercooling is the largest. However, the calculated parameters at the average supercooling in 

Table 5.3 are still the smallest of the Zr-Pd alloys studied here. 

Figure 5.5: The histogram of maximum supercooling measurements for Zr75.5Pd24.5. The average 
supercooling was 283°C (21.3%). The curve is the fitted probability density with a p-value > 0.999, 
indicating a good fit. 
TABLE 5.3. Calculated nucleation parameters for Zr75.5Pd24.5 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 1.63x1026 40.15 1.15 0.104  
Turnbull, σ ∝ T 3.97x1020 27.22 1.01 0.092 8.79x10-5  
Thompson-Spaepen, σ = constant 8.27x1029 48.68 1.28 0.102   
Thompson-Spaepen, σ ∝ T 1.70x1022 30.98 1.10 0.088 8.43x10-5  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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Using the DIT to fit the probability density to the histogram of supercoolings did not result 

in a change in the overall shape of the fitted curve. The histograms for Zr-Pd using the DIT are 

thus not reproduced. The best fit values calculated at the average supercooling and the 

corresponding driving free energy approximation are listed in Table 5.4.  

TABLE 5.4. Calculated nucleation parameters for Zr-Pd family using the Diffuse Interface Theory  
Sample Approximation a A* (m3s)-1 W*/kBT r* (nm) δ (Å) b 
Zr50Pd50 Turnbull 4.07x1031 51.08 1.29 1.43 
Zr50Pd50 Thompson-Spaepen 5.99x1036 62.98 1.43 1.39 
Pd55Zr45 Turnbull 1.49x1028 42.94 1.29 1.15  
Pd55Zr45 Thompson-Spaepen 1.43x1039 49.80 1.40 1.13 
Zr75.5Pd24.5 Turnbull 8.32x1022 32.57 1.14 1.29 
Zr75.5Pd24.5 Thompson-Spaepen 2.16x1026 40.43 1.27 1.25 

a The approximation used for the driving free energy. 
b The value of δ calculated at the maximum supercooling temperature Tu.  

 

A total of 355 measurements were acquired from three different samples of Cu50Zr50, 

ranging in mass from 55.91mg to 57.92mg. The slight differences in sample volume were 

considered by normalizing for the different masses. The average supercooling was found to be 

322°C (27.0% supercooling), which was typically accompanied by significant hypercooling during 

recalescence. The average supercooling was used to calculate the parameters obtained from the fit 

curve, which are listed in Table 5.5. 
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Figure 5.6: The histogram of maximum supercooling measurements for Cu50Zr50. The average supercooling 
was 322°C (27.0%). The curve is the fitted probability density with a p-value > 0.999, indicating a good 
fit. 

 
TABLE 5.5. Calculated nucleation parameters for Cu50Zr50 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 2.47x1031 52.85 1.17 0.113   
Turnbull, σ ∝ T 1.56x1022 31.66 0.98 0.092 1.08x10-4  
Thompson-Spaepen, σ = constant 1.86x1039 70.99 1.21 0.141  
Thompson-Spaepen, σ ∝ T 5.24x1024 37.48 1.10 0.087 1.02x10-4  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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For Cu55Zr45, a total of 310 measurements from two samples of mass 55.91mg and 60.42mg 

were obtained. Like for Cu50Zr50, the slight difference in sample volume was normalized. The 

average supercooling was found to be 295°C (24.7% supercooling), which was used to calculate 

the fit parameters listed in Table 5.6.    

Figure 5.7: The histogram of maximum supercooling measurements for Cu55Zr45. The average supercooling 
was 295°C (24.7%). The curve is the fitted probability density with a p-value > 0.999, indicating a good 
fit. 
 
TABLE 5.6. Calculated nucleation parameters for Cu55Zr45 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 7.42x1027 44.82 1.12 0.105   
Turnbull, σ ∝ T 3.97x1020 28.07 0.96 0.088 1.00x10-4  
Thompson-Spaepen, σ = constant 2.92x1033 57.70 1.28 0.104  
Thompson-Spaepen, σ ∝ T 4.40x1022 32.78 1.06 0.084 9.54x10-5  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
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 Finally, 210 measurements were obtained from three samples, ranging in mass from 

54.79mg to 65.38mg, with the slight difference in sample volume normalized out. The average 

observed supercooling was 233°C (18.6% supercooling), representing both the lowest magnitude 

of supercooling and lowest supercooling percentage. The best fit parameters calculated at the 

average supercooling are listed in Table 5.7. The distribution of supercoolings for Cu64Zr36 are 

more sharply peaked than the others. Interestingly, Cu64Zr36 required the most conditioning before 

reproducible supercooling measurements could be performed; however, once the sample was 

conditioned, the supercooling varied little from the average, as seen in the sharper peak. While the 

percentage supercooling measured here is slightly smaller than reported elsewhere, the interfacial 

free energy is still in agreement with other published data [31]. 

Figure 5.8: The histogram of maximum supercooling measurements for Cu64Zr36. The average supercooling 
was 233°C (18.6%). The curve is the fitted probability density with a p-value > 0.999, indicating a good 
fit. 
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TABLE 5.7. Calculated nucleation parameters for Cu64Zr36 at the average supercooling for different 
approximations of ΔG and the assumed temperature dependence of σ.  

Approximation a A* (m3s)-1 W*/kBT r* (nm) σ (J/m2) b 𝜎� (J/m2K) c 
Turnbull, σ = constant 1.98x1037 65.47 1.30 0.130   
Turnbull, σ ∝ T 1.75x1029 46.94 1.17 0.116 1.14x10-4  
Thompson-Spaepen, σ = constant 4.64x1041 75.54 1.42 0.126  
Thompson-Spaepen, σ ∝ T 2.49x1031 51.89 1.25 0.112 1.10x10-4  

a The approximation used for the driving free energy and assumption made about the dependence of σ on 
 temperature. 

b The value of σ, when assumed to be a constant, or calculated at Tu, the average supercooling temperature, 
 when assumed to be linearly temperature dependent.  

c The temperature coefficient (σ0) for  𝜎 =	𝜎·𝑇 . 
 

Just like for Zr-Pd, the DIT was used to fit the probability density to the histogram of 

supercoolings for Cu-Zr. The histograms are not reproduced here, as the overall shape did not 

change. The best fit values calculated at the respective average supercooling temperatures and the 

corresponding driving free energy approximation are listed in Table 5.8.  

TABLE 5.8. Calculated nucleation parameters for Cu-Zr family using the Diffuse Interface Theory  
Sample Approximation a A* (m3s)-1 W*/kBT r* (nm) δ (Å) b 
Cu50Zr50 Turnbull 5.57x1025 39.85 1.15 1.65 
Cu50Zr50 Thompson-Spaepen 3.64x1032 55.54 1.34 1.61 
Cu55Zr45 Turnbull 3.06x1023 34.72 1.11 1.47  
Cu55Zr45 Thompson-Spaepen 2.89x1028 46.18 1.27 1.43 
Cu64Zr36 Turnbull 4.88x1032 54.87 1.29 1.26 
Cu64Zr36 Thompson-Spaepen 1.39x1037 65.13 1.41 1.23 

a The approximation used for the driving free energy. 
b The value of δ calculated at the maximum supercooling temperature Tu.  
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5.5 Discussion  

The general magnitude in σ appears to be consistent with previous studies [28,32,33], with 

a temperature independent σ typically 0.1 J/m2 to 0.2 J/m2 and a linearly-temperature dependent 

coefficient σ0 from 8x10-5 J/m2K to 1.1x10-4 J/m2K. Similar to previous studies, W* and σ appear 

relatively insensitive to the approximation of the driving free energy. Large differences are still 

observed in the values of A* between alloys both within the same binary family and out to other 

compositions. However, the values for σ calculated for the Cu-Zr family appear to agree with other 

published data [31]. 

As outlined elsewhere [34], the difference in r* between the CNT and DIT is of order 𝛿/2. 

The difference in the calculated values of r* between CNT and DIT here are smaller 

(approximately 0.1 Å) than 𝛿/2, which is between 0.6 to 0.8 Å. However, they are of the same 

order-of-magnitude. The relative difference between the prediction and experimental data may be 

due to a first-order expansion used to arrive at the relatively simple 𝛿/2 term. 
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(a) (b) 

(c) (d)  

 

Figure 5.9: The collection of static structure factors S(q) for (a) Zr75.5Pd24.5, (b) Cu50Zr50, (c) Cu55Zr45, and 
(d) Cu64Zr36. The top plot of S(q) for each composition represents the liquid immediately before 
crystallization at the indicated maximum supercooling temperature, while the plot below represents the 
crystal phase formed shortly after. The Miller indices characteristic of the crystal structure of that phase are 
indicated. For (c) and (d), the lattice parameters are quite large, resulting in lower-order Miller Index peaks 
(i.e. 110, 200, etc.) that are below the lowest resolution in q. 
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In the Zr-Pd family, a steady increase in σ is observed from Zr75.5Pd24.5 to Zr50Pd50. Studies 

of zirconium-noble metal binary alloys [35] and Zr75.5Pd24.5 [36] have shown that medium range 

order is established in these supercooled liquids and that, for Zr75.5Pd24.5, there is a general increase 

in “icosahedral-like” clusters with supercooling temperature. The S(q) for Zr75.5Pd24.5 is shown in 

Fig. 5.9 (a), obtained from X-ray scattering measurements made at the Advanced Photon Source 

(APS) at Argonne National Laboratory (ANL). As reported by Waterstrat and Okamoto [8–10], 

the crystal structure for Zr75.5Pd24.5 is a phase mixture of bcc β-Zr and tetragonal PdZr2. The Miller 

indices corresponding to this phase mixture are labeled on the S(q). The crystal structures for (i) 

(i) Zr50Pd50 and (ii) Pd55Zr45 are reported to be (i) a cubic B2 structure with tendencies to develop 

martensite orthorhombic features upon cooling and (ii) a distorted and stressed A-B alternating B2 

type structure [8]. With the propensity of this alloy family to develop significant medium-range 

order in the supercooled liquid, the increase in σ may indicate an increasing nucleation barrier, 

consistent with Frank’s hypothesis [37]. Especially in the cases of Zr50Pd50 and Pd55Zr45, a 

significant rearrangement and breaking of this medium-range order must occur to form the cubic 

lattice.  

The smallest σ and A* for the Zr-Pd family is observed in Zr75.5Pd24.5, which may indicate 

it has a smaller nucleation barrier. Studies on PdZr2 performed by Herlach et. al. in ESL and EML 

were reportedly limited by heterogeneous nucleation [38], as the maximum supercooling could not 

be achieved. The PdZr2 studied by Herlach et. al. is not the same composition as Zr75.5Pd24.5; 

however, PdZr2 forms part of the solid phase mixture observed in Zr75.5Pd24.5. It is possible that 

Zr75.5Pd24.5’s  tendency of solute-solute avoidance [36] may lead to the clustering of zirconium and 

facilitation of the crystallization of the β-Zr phase. While PdZr2 is tetragonal, it can be regarded as 

a stretched bcc phase. β-Zr, which is also bcc ordered, could act like a heterogeneous nucleation 
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site that could catalyze formation of the PdZr2 phase. X-ray observations of crystallization suggest 

that either both phases form at the same time or form separately on a timescale faster than 0.5 

seconds. As indicated from the supercooling data for Zr75.5Pd24.5 in Fig. 5.9, a consistent maximum 

supercooling temperature was achieved, suggesting heterogeneous nucleation was likely not 

present. Turnbull noted that, in the case of heterogeneous nucleation, the magnitude of A* should 

be smaller [39]. However, other metallic systems, such as Ti39.5Zr39.5Ni21 [28], have shown both 

reproducible maximum supercooling and smaller values of A*. It should be noted that Herlach et. 

al. report a value of A* of approximately 1016 (m3s)-1, clearly suggesting a heterogeneous 

nucleation mechanism. The A* presented here for Zr75.5Pd24.5 is ten orders of magnitude larger. 

Future studies could attempt to reproduce these results using higher purity Pd bar stock to further 

minimize the possibility of heterogeneous nucleation. 

For the Cu-Zr family, the values of σ are much closer to each other and are smaller than 

those found in the Zr-Pd family. As reported by Holland-Moritz et. al. from X-ray and neutron 

scattering experiments, the Cu-Zr supercooled liquids are not dominated by short and medium 

range icosahedral order [40]. Instead, the local order in Cu-Zr liquids is likely a combination of 

multiple motifs and higher order structures. While this may appear in contradiction with [31], 

which reports significant icosahedral order in Cu64Zr36 metallic glass, it should be noted that the 

two studies examined different cases for Cu-Zr, with the former studying electrostatically levitated 

supercooled liquids and the latter studying a quenched Cu64Zr36 metallic glass at ambient 

temperatures. The lack of icosahedral order in the supercooled liquid could mean less competing 

structure must be broken to form the crystal, which could lower the nucleation barrier and the 

value of σ. The calculated values of σ are also in agreement with [31].  
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The crystal structures of the Cu-Zr alloys studied here are (i) primitive cubic for Cu50Zr50, 

(ii) a phase mixture of primitive cubic and orthorhombic Cu10Zr7 for Cu55Zr45, and (iii) a phase 

mixture of orthorhombic Cu8Zr3 and Cu10Zr7 for Cu64Zr36 [6,7]. Like for Zr-Pd, the corresponding 

liquid and crystal X-ray S(q)’s obtained from the APS are produced in Fig. 5.9, with the predicted 

Miller indices indicated. For Cu50Zr50, the predicted Bragg scattering from a primitive cubic 

structure trivially maps onto the S(q), while the more complicated orthorhombic Cu10Zr7 (C2ca 

space group) [27] and orthorhombic Cu8Zr3 (Pnma space group) [27] structures show more peaks 

and oscillations in the crystal S(q). In each case, lattice parameters from [7] were used to calculate 

the predicted scattering peak locations.  

The largest σ corresponds to Cu64Zr36, which would suggest the phase mixture of two 

orthorhombic structures was more difficult to nucleate. It is also the most sharply peaked 

supercooling distribution presented here, suggesting that the supercooling limit may have been 

reached. The higher supercooling percentage reported elsewhere [31] may be due to discrepancies 

in the value of Tl used in the calculation of the maximum supercooling temperature. 

The DIT can provide more insight into the relative order between the liquid and crystal 

phases. For example, Ti39.5Zr39.5Ni21 has a small value for δ (0.76 Å) since the liquid and crystal 

share similar order [28], while Gránásy [4] found the value of δ for supercooled mercury to be 

2.12 Å. In the case of mercury, the liquid and crystal are structurally different [41], possibly due 

to the presence of icosahedral clusters in the liquid [19,37]. In contrast to the trends observed with 

σ from CNT, the Cu-Zr alloys have larger magnitudes of δ compared to those from Zr-Pd. δ gives 

information about the difference between entropy and enthalpy surfaces. From a statistical 

mechanics argument, the highest entropy configuration of a system occurs with maximum 

disorder. Based on the results from Holland-Moritz [40], a lack of short and medium range 
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icosahedral order in Cu-Zr supercooled liquids, implying a higher entropy configuration, could 

explain the systematically larger δ, compared to the smaller δ found in more ordered Zr-Pd 

supercooled liquids. Molecular dynamics studies of Cu-Zr in the same temperature region appear 

to reinforce these ideas [42,43]. 

The calculated values of δ also appear to depend on the number of phases formed. In both 

alloy families studied, the single-phase forming intermetallic compositions have the largest δ for 

their respective families, followed by the eutectic and the off-intermetallic compositions. The 

intermetallic compositions studied here nucleate to γPdZr in the case of Zr50Pd50 [9] or cubic Cu-

Zr for Cu50Zr50 [6]. Both of these cubic phases would require a significant rearrangement of the 

liquid into a single crystal lattice. Meanwhile, the eutectic compositions, which have middle-range 

values of δ, and off-intermetallic compositions, which have the smallest values of δ, generally 

nucleate two-phase mixtures. For these alloys, the splitting of the main peak in the crystal S(q) is 

observable in section (a), (c), and (d) of Fig. 5.9. In these cases, the first peak in the liquid S(q) 

appears to contain multiple characteristic Miller indices of both crystal phases. This could explain 

the smaller δ, as the primary order in the liquid could more closely mirror the complex structural 

motifs found in multiple phase forming alloys. Through a simple comparison between the S(q) 

from Cu50Zr50 to the S(q) of Cu64Zr36, it appears as though multiple phase formation—especially 

with lower symmetry orthorhombic crystal phases—leads to a relatively more disordered crystal. 

Again, this likely decreases the difference between entropy and enthalpy surfaces when compared 

to a system that forms a higher symmetry, more-ordered crystal. 
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5.6 Conclusion 

A study of over 1,500 supercooling measurements from Zr50Pd50, Pd55Zr45, Zr75.5Pd24.5, 

Cu50Zr50, Cu55Zr45, and Cu64Zr36 was performed and the nucleation parameters were calculated 

using the Classical Theory and Diffuse Interface Theory with the Skripov Method. Comparing the 

nucleation parameters within the Zr-Pd and Cu-Zr alloy families using the CNT suggests that 

Zr50Pd50 and Cu64Zr36 have the largest nucleation barriers, while the eutectics Zr75.5Pd24.5 and 

Cu55Zr45 have the smallest nucleation barriers. This appears to contradict results from the DIT, 

whereby the intermetallics show the largest δ and the off-intermetallics show the smallest δ. 

However, a pattern appears to have emerged on the impact of multiple phase formation in the 

nucleation of crystals from the supercooled liquid. Further broad studies of alloys from the same 

family are required to more fully understand these results. It may be the combination of structural 

differences, number of phases formed, crystal composition, number of alloy components, and other 

kinetic and thermodynamic considerations are all required to arrive at a full picture describing the 

nucleation of these phases from the liquid.  
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Chapter 6: Summary and Future Work 
 

This dissertation was primarily focused on studies of nucleation, either through a statistical 

analysis of hundreds of maximum supercooling measurements or by studying a few nucleation 

measurements made under different stirring conditions. Throughout this dissertation, several 

nucleation theories were used to analyze and interpret results, including the Classical Nucleation 

Theory (CNT), Diffuse Interface Theory (DIT), and Coupled-Flux Theory. The Skripov 

probability density was used in conjunction with the CNT and DIT to fit distributions of 

supercooling measurements to extract the relevant nucleation parameters A*, W*, σ, and δ.  

Chapter 3 analyzed data from Cu50Zr50 and Vit106 liquids acquired in the microgravity 

environment of the International Space Station to explore the Coupled-Flux theory’s predictions 

regarding the role of stirring and diffusion on nucleation. Initial results from calculations using the 

CNT and DIT and computational fluid dynamics calculations suggest that highly stirred liquids 

are likely not diffusion-limited; thus, the CNT and DIT likely describe the nucleation kinetics. 

Meanwhile, the quiescent liquids studied in microgravity may have nucleation processes limited 

by diffusion, as they were shown to have smaller values of A* than the highly stirred cycles and 

smaller shear-rates from stirring calculations, in agreement with predictions from the Coupled-

Flux theory. This study served as a first pass at probing the nucleation data from the ISS and to 

begin applying the Coupled-Flux theory to experiments.  

Chapter 4, which was slightly modified from a publication in the Journal of Chemical 

Physics, explored the role of local structure on the nucleation barrier in Ti39.5Zr39.5Ni21, 

Ti40Zr30Ni30, and Zr80Pt20. Over 1000 supercooling measurements were gathered using the 
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Electrostatic Levitation processing techniques, with 686 from Ti39.5Zr39.5Ni21, 191 from 

Ti40Zr30Ni30, and 274 from Zr80Pt20. Using the Skripov method, the data were analyzed using the 

CNT and DIT to understand the potential impact of local order on the nucleation barrier. Results 

from Ti39.5Zr39.5Ni21 suggest that comparable local icosahedral order in the supercooled liquid 

reduces the nucleation barrier for the icosahedral quasicrystal. Meanwhile, conflicting liquid and 

crystal order in the case of Ti40Zr30Ni30 and Zr80Pt20 likely increase the nucleation barrier. This can 

be seen in σ from the CNT and δ from the DIT. The data from Ti39.5Zr39.5Ni21 yielded the smallest 

values for these two parameters, suggesting a small nucleation barrier and a small entropy 

difference between the liquid and quasicrystal phase, while the values for σ and δ from Zr80Pt20 

are at least a factor of two larger, suggesting a large nucleation barrier and significant differences 

in the structures and entropy. 

Chapter 5 was an extension of the studies performed in Chapter 4 to further explore the 

role of local order and number of phases formed on nucleation. The Cu-Zr and Zr-Pd binary alloy 

families were picked because these alloys are of interest in upcoming ISS experiments and because 

of their relevance for metallic glass formation. Three alloys from each family were studied 

(Zr50Pd50, Pd55Zr45, Zr75.5Pd24.5, Cu50Zr50, Cu55Zr45, and Cu64Zr36) by performing over 200 

maximum supercooling measurements for each, giving a total over 1,600 measurements. The data 

were analyzed with the Skripov method, using both CNT and DIT. X-ray scattering measurements 

for both the liquid and crystal phases were analyzed to explore any similarities in their structures. 

The findings from this study further imply that the order between the liquid and crystal phase has 

an impact on the nucleation barrier, with the results from DIT suggesting that highly complex 

crystal structures are entropically more like the liquid than simple crystal structures. Furthermore, 

the number of phases formed appears to have some relation to the nucleation barrier as well, where 
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intermetallic alloys forming one phase typically gave the larger nucleation parameters of the 

family. 

Future studies should continue to explore maximum supercooling measurements in several 

different liquid alloys, such as Zr-Ni, Zr-Rh, Cu-Zr-Al, Vit106/106a, Cu-Zr-Ti-Al, and others to 

both support continuing experiments on the International Space Station and answer questions 

about the impact of multiple phase formation, local order, and number of components on 

nucleation. Future ISS studies should also continue experiments outlined in Chapter 3, where the 

heater and positioner settings of the EML are systematically varied to extract information related 

to the impact of stirring on nucleation. Continued collaboration with the Bob Hyers group at the 

University of Massachusetts, Amherst will improve the understanding of stirring on nucleation 

and could provide information to implement simulations and modeling of nucleation from the 

coupled flux theory. Other smaller computational projects could explore the impact of a non-

constant cooling rate on the Skripov analysis of supercooling measurements or apply other 

nucleation theories to the Skripov method as demonstrated in earlier chapters. 
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Appendix A: ESL Operating Procedure  

This appendix covers routine ESL operation and documents some of the more common fixes 

required to keep the ESL operational.  

Initial Setup (Cleaning, Loading, and Running Programs) 

a) If there is significant deposition on the top and bottom electrodes, clean them with 

sandpaper, acetone, and methanol, then blow dry with compressed air to remove particles. 

If you must remove the top and bottom electrode, turn on the ESL computers and open the 

Capture OEM for the visualization camera (PC1) and ESL program (PC2), (see later in 

appendix). Mark the position of the bottom electrode on the monitor with a sticky note so 

you know how much to screw it in. The top electrode should be able to fit two glass slides 

between it and the top macor block. Make sure that all glass slides in front of the optical 

windows are clean (no visible gray deposition) and electrical connections to the electrodes 

are firmly attached.  

b) Screw in the bottom electrode. The top of the bottom electrode should be just a tad below 

the top of the side electrodes. Reference figures later in the manual for approximate bottom 

electrode position (Fig. A.5). 

c) Load the carousel with samples. The carousel should contain a WC standard after every 

two samples. On the other end, some Al and WC samples should be loaded, in case the 

ESL optics need to be realigned. All sample masses and positions must be recorded in the 

carousel spreadsheet. 

d) If using the stainless-steel carousel, the “zero” position is located at 18. Thus, your samples 

should start at position 19. The back Al and WC samples should start at position 17. 
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e) The two pins that engage with the carousel need to be in elevated positions. Otherwise, the 

carousel cannot be engaged to the drive mechanism. Place the carousel in position and 

tighten the set screw. Make sure that the anchoring screw is removed before closing the 

chamber. There is a drilled and tapped hole for the anchoring screw directly below the 

carousel mechanism. If the anchoring screw is not removed, the carousel cannot be 

operated. 

f) If using the stainless-steel carousel, do not screw in the set screw all the way. Before 

placing the carousel onto the mechanism, rotate the set screw until it is flush with the 

interior bore. Place the carousel onto the drive mechanism; the set screw should be facing 

you. Insert the hex key into the set screw and keep track of your starting position. Rotate 

the hex key 1.5 revolutions to engage the carousel with the drive mechanism. Before 

removing the anchoring screw, gently lift the carousel up to test if is engaged with the 

mechanism. Overtightening the carousel will cause the upper plate to lift up and samples 

to spill out. 



156 
 

Figure A.1: The stainless-steel carousel. (Left) the set screw is flush with the wall of the interior 
bore. (Right) After 1.5 turns, the set screw should engage with the carousel mechanism. Do not 
overtighten. 

 

g) Make sure that the copper spacer is sitting in the right position on the vacuum flange. It 

should be just inside the knife edge. Check the O-ring around the spacer for dirt and 

lubrication. Clean with methanol as needed and reapply a thin layer of silicone vacuum 

grease. The channel for the O-ring, copper spacer, and upper knife edge should be gently 

cleaned with acetone and methanol as needed. The O-ring should rest in the channel 

between the copper gasket and the wall of the flange.  

h) Close the ESL chamber. Turn on both scroll pumps. Open the gate valve to the chamber 

slowly. Open the valves that connect to the UV lamp. They are at the back of the 

instrument. One valve is a rotary, hand-tightened one, located to the left when facing the 

instrument from the back side. The other is a hand-tightened screw that is on the right side, 
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while facing the instrument from the rear side. The final one is a Swagelok-branded valve 

that supplies helium to the UV, located to the left of the UV. Turn on the main turbo pump 

(Osaka) after the chamber pressure goes below 100 mTorr. Turn on the small turbo pump 

(Pfeiffer) with the Osaka turbo. 

i) Depending on the exposure time to the ambient, it will take 1-3 days to bring the vacuum 

to 10-8 Torr. The ESL can be operated at higher pressures (not exceeding 5x10-6); however, 

due to higher oxygen concentrations, samples will likely become contaminated more 

quickly. 

j) Turn on PC1 (viscosity computer) and PC2 (ESL computer), if not already on. 

k) Turn on Target PC (on the rack), PSD readout box, green and blue LEDs, and the power 

amplifiers for x-, y-, and z-electrodes. Do not switch the z-high voltage until you are 

ready to launch. This voltage must be off during sample transfer from the carousel to 

avoid arcing. 

l) Open the He-tank valves that feed the UV lamp. Do not change the middle knob on the 

regulator. Turn on the power supply that feeds the UV lamp. Set voltage to 800 V and 

current to 130 mA. Wait about 10 minutes so the helium has a chance to flow through the 

needle valve and into the ignition chamber. Attempting to ignite the UV immediately after 

opening the helium tank valves will result in the UV shutting itself off from lack of helium.  

After approximately 10 minutes, ignite the UV. The voltage should start around 700-750 

and then gradually come down near 600 V. The pressure indicated on the UV control panel 

must be maintained at around 1.1x10-1 mbar. This pressure may be adjusted by turning the 

needle valve located directly above the helium tank. Ensure the pressure stays around this 

level. Otherwise, adjust the regulator and needle valve until a constant pressure is achieved.  
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m) Open Matlab 2011b on PC2. Connect to the Target PC by typing and running “xpcexplr” 

from the front console. The TargetPC interface will appear at left of the window. Right 

click on TargetPC1 and then click on connect to connect to the TargetPC. Download the 

program “WC_m1100_20180726” (or some other algorithm that is displayed at the top 

left) to the target PC by dragging it to PC1. Typing “ControlGUI” on the Matlab command 

line allows for new algorithms to be generated. However, this usually isn’t necessary since 

the algorithms are fairly robust. You can use the WC algorithm for almost all samples using 

the gain switching technique and setting the saturation z voltages to the appropriate levels. 
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Figure A.2: Screenshot of the command prompt screen for MATLAB. Type in xpcexplr to open 
the TargetPC interface. 

 

n) Click on “Model Hierarchy” to modify the necessary levitation parameters. 
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Figure A.3: The xPC Target Explorer GUI, after connecting to TargetPC1. Note that an algorithm 
has already been downloaded. If the TargetPC was recently turned on, a fresh algorithm will need 
to be downloaded. 

 

a. Set initial launch gains by changing “Blue X” and “Green X” to -0.01 and “Green 

Y’ to -0.012. Be sure to click the “update parameter” button after changing each 

one. All three of these parameters will be reduced to -0.006 (see 15e)) after 

launching the sample as it gives better stability. The sign is important. Setting a 

positive value will result in sample instability. 
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b. Check that “x position” and “y position” are 0, and set “z position” to 0.0043. After 

launching, if the x, y, voltages appear large, these positions need to be adjusted to 

reduce x,y voltages to near zero so that the sample floats near the center (see step 

15h) below). The z-position needs to be adjusted if the sample appears to be floating 

high/low in the visualization/density camera. If levitating Al samples, the z-pos 

may need to be reduced to as low as 0.0035-0.0038 (see step 15g)). 

c. Click on “z-voltage saturation” setting. Change the “upper limit” to 0 and “lower 

limit” to between -13000 to -15000 to launch metallic alloys, -18000 for WC, and 

-10000 for Al.  

d. If a sample needs to be kicked out after launch or after completion of the 

experiment, set the Saturation Z upper limit to match the sign and magnitude of 

Saturation Z lower limit. Upon updating the upper limit, the sample will fly away. 

After kicking the sample out, stop the algorithm. 
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Figure A.4: All of the parameters available for change in the algorithm. Note that Saturations are 
located under “Voltage Conversion” and the gains and positions are located under “Model 
Hierarchy”. 

 

o) The x, y voltage upper and lower saturation limit is set by default to +/- 3000. This does 

not need to be changed.   

p) Open the LabVIEW ESL program, labeled as “ESL_20181204 shortcut” and located at the 

top left corner of the desktop. Start this program by clicking the arrow button at the top left 

corner. This window contains all necessary controls for sample heating and measurements. 

The image of the bottom electrodes will appear at the bottom right corner as seen by the 

“density camera”. 
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q) Run the motor control program. At the top left corner of the desktop, click on “TMC for 

labview shortcut”. A window with a list of options will appear. Go to the bottom of this 

list and double click on “TMCM_310_testapplication.vi”. The motor control window will 

appear as a separate window. Turn on the black motor control box to the right of the 

monitor by flipping the toggle switch to “on”. Then start the 

“TMCM_310_testapplication.vi” program by clicking on the arrow in the upper left corner. 

This will enable movement of the a) sample post, b) UV shutter, and c) carousel. 

r) Open the “capture OEM” program on the desktop of PC1 monitor. The visualization 

camera should already be selected from the drop-down menu at the upper left of the OEM 

program. Start play. Note that there are separate mice for PC1 and PC2. The images of 

the electrodes will appear, as seen by the visualization camera. If a black and white image 

appears, it means you are looking through the viscosity camera. Go to the drop-down menu 

and select the other option to view the visualization camera. 

Optical Alignment Check Before Sample Launch 

Figure A.5: The three post positions to use for alignment. (Left) post down (middle) post nub 
(right) post full. 
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Note: Only attempt this method of alignment with a straight sample post. Attempting this 

method of alignment with a bent post will drastically reduce its effectiveness, as the 

anisotropy in the post requires you to keep track of how it was inserted into the bottom 

electrode.  

a)  Usually, the system is near alignment unless the optical system was disturbed, the ESL 

chamber was recently opened, the electrodes were cleaned and repositioned. The optical 

system check should be done when No Sample is Present. The post should be moved to 

three distinct positions: a) down until not visible in the camera, b) slightly above the side 

electrodes (also called the “nub” in the notebooks), c) up all the way slightly above the 

typical sample position (the red circle in the density camera, also labeled as “full” in the 

notebooks). At each position, the optical tables for the Green and Blue LEDs need to be 

adjusted using the translation and tilt knobs for xlocal values and the vertical knob for 

ylocal values. 

The following settings were found to be best as of November 6, 2019. Note that these values shift 

over time and you should reference the ESL Notebook for more up-to-date values. After a 

successful batch of ESL measurements, it is good form to record the X and Y values for the Green 

and Blue PSDs at the three positions indicated below. Doing so will save you time and headaches 

later if you are unable to launch a sample because of poor starting alignment. 
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 Post Down Post Nub Post Full 

Green xlocal 0.10 0.09 -0.04 

Green ylocal 0.17 0.12 -0.14 

Blue xlocal -0.17 -0.10 0.23 

Blue ylocal -0.03 -0.07 -0.27 

 

When adjusted properly, a symmetric image of the post will be seen entering the lenses in front of 

be the PSD detectors. 

Old method for optical alignment 

Note: This method is reproduced here for records. Attempting this method of alignment can 

cause either one or both of the lateral voltages to saturate. Try at your own risk if other alignment 

methods aren’t working. 

a) Bring the post down until it is visible a little above the side electrodes. 

b) Set the xlocal reading for the green LED to zero by moving the tilt Vernier (small horizontal 

one) for the optical table. Bring the ylocal reading for the green LED to zero by moving 

the table along z-direction by adjusting the Vertical Vernier. 

c) Set the xlocal reading for the blue LED to zero by moving the large horizontal Vernier 

attached to the optical table. Bring the ylocal reading for the blue LED to zero by moving 

the table along z-direction by adjusting the Vertical Vernier. 
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d) Move the post up above the red circle (region within which the sample floats) in the density 

camera. 

e) Set the xlocal reading for the green LED reading to zero by moving the large horizontal 

Vernier.  

f) Set the xlocal reading for the blue LED to zero by moving the tilt Vernier (the small 

horizontal one). 

Iterate steps a) to f) until no change of the PSD readings occur when the post is moved up and 

down. 

 

Sample Loading 

a) Make sure that the z-voltage amplifier has been turned off. 

b) Move the post upward toward the top electrode by clicking on motor control for the post 

in the “TMCM_310_testapplication.vi” program. Set the velocity to 1000-1200. When the 

post approaches the top electrode, this velocity may be reduced to 300-500 for finer 

movement. Bring the post close to the top, but don’t allow it to go into the hole in the top 

electrode. Stop the post to leave a small gap between the top electrode and the post. When 

a sample is loaded from the carousel, you should see the bottom of it sticking through the 

top electrode. 

If there is no response from the sample post, check that the master power is on for the black 

motor control box to the right of the computer monitors. Also check that power is on to the 

motor controlling the post. 
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Figure A.6: The motor control LabVIEW program. The first row (labeled Motor 0-Post) is for the 
sample post. The middle row (labeled Motor 1-UV Shutter) should not be used unless necessary. 
Moving the UV shutter can cause it to clip into a PSD. It is also recommended to turn the motor 
off on the black box, as poor grounding lets the shutter move when other motors run. The last row 
(Motor 2-Carousel) controls the carousel. To load samples, rotate in the positive direction. 

 

c) Click on the “carousel motor” in the “TMCM_310_testapplication.vi” program. Set the 

velocity to 300. Click on “positive” (counterclockwise rotation) to select a sample that is 

down in the list for the carousel samples from the present position. If a sample listed 

upward from the present position needs to be retrieved, click on “negative” (clockwise 

rotation). Some numbers will appear to show the progress of the rotation. Typically, it takes 

the counter reading to change by about 15000 (more, if there is some backlash in the 

movement) to go from one sample position to the next in the carousel. The first sample of 

the carousel usually takes awhile to load. 

If no sample is loaded after waiting a long time, check that the power to the carousel motor 

is on. Also check that the gearbox is meshed to the gear controlling carousel rotation. It is 

located to the left of the main gate valve for the Osaka (large) turbo. If the gear box has 

shifted away from the gear, gently move it back into place, taking care to not rotate the large 
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gear. Moving this gear can cause a sample to drop and you can lose track of your carousel 

position. Tighten the gear box down with a hex key. 

d) Keep on looking in the visualization camera in PC2. As soon as the sample drops onto the 

post, stop the carousel motor. Lower the post, you can use any speed (1200 is usually what 

I use). After some time, the sample will drop from the post onto the Cu bottom electrode. 

Bring the post down below the bottom electrode. The sample should sit at the center hole 

of the bottom electrode. 

e) If the sample drops on a flat edge (arc melted samples always have one), it does not usually 

roll over to the center of the bottom electrode. If that happens, we will use the voltage 

settings in the levitation algorithm to push the sample to the center. Turn on the z-voltage 

amplifier. Set the z-saturation upper limit to -10000 and lower limit to -15000. Note that 

the upper and lower limits may have to increase if the sample is not moving. Click on the 

play button for the Matlab algorithm and then immediately turn the algorithm off (“stop 

button”). Depending on the size and location of the sample on the bottom electrode, this 

may be enough to push the sample to the center. If the sample did not move, stop the 

levitation algorithm and change the saturation z upper limit in increments of -1000 (from -

10000 to -11000 to -12000, etc). Start the algorithm again. If the sample moved to the 

center, change the upper limit back to 0. If not, continue to gently raise the saturation until 

the sample moves to the center. If the lower saturation limit is reached, increase it by 1000 

as well. Be careful with this step, as increasing the saturation too much may cause the 

sample to fly away.  
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Launching a Sample 

a) Open the “HV_readout_shortcut” in PC1. This program displays x, y, and z voltages 

continuously as a function of time with a history of 500 seconds. These voltages are direct 

indicators of sample stability. Keep an eye on these voltages throughout the experiment. 

The green and blue voltages should be kept as close to zero as possible. 

Figure A.7: Screenshot of HV_Readout. Note that the green and blue voltages are read from the 
left y-axis, while the red vertical voltage is read from the right y-axis. The program will auto-
update the x-axis as a function of time after 500 seconds have passed. 

 

b) Make sure that the z-saturation voltages are correct for the sample. Make sure that all x, y, 

z voltage amplifiers are on. Make sure that the UV source has been turned on and working 

(the glow can be observed from the window at the back of the instrument and the operating 

voltage is stable). 

c) Raise the sample to the launch position using the post. The post should be flush with the 

lateral electrodes and you should be able to see almost the entire perimeter of the sample 



170 
 

in the density camera. If you only see 50-75% of the perimeter, the sample is too low. If 

you can clearly see a distinction between the post and lateral electrodes, the sample is likely 

too high.  

Figure A.8: Launching position for a sample. You may have to go a bit higher or lower depending 
on the sample and launch stability. 

 

d) Click on the play button in the Matlab xPC Target window to start the algorithm and launch 

the sample. Immediately after launch, click on “Green y” and change its setting to -0.006. 

This gives a good stable levitation, however you may need to play with this value. Change 

the “Blue X” and “Green X” values to -0.006 as well to improve lateral stability. Remember 

to save these changes for each setting by clicking on the “update parameter” button. If you 

are launching a WC, you may need to wait for the sample to float higher up before changing 

Green Y. Switching its value from -0.012 to -0.006 too quickly may cause the sample to 

drop. 

e) Bring the post down below the hole in the bottom electrode so that the post becomes 

invisible in either of the two cameras. 
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f) Monitor x, y, and z voltages in PC1. Usually, the z-voltage is between, -4 and -5 KV for 

most of the samples at room temperature. If higher, the optical alignment may not be good, 

the UV may be misaligned, malfunctioning, or off, or the sample is very dense (i.e. WC). 

To check UV functionality, launch a sample with the UV off. Then, when the sample has 

reached its final levitation position, turn the UV on. You should see a characteristic jump 

of approximately 0.5 to 1 volts in the vertical voltage trace. 

g) Usually, the x and y voltages attain a small non-zero value after launch. If they start rising, 

you must perform some alignment. You have two options for this. The first is to manually 

adjust the PSDs using the translation and tilt knobs until the Green and Blue voltages are 

close to zero. The other option is to slowly modify the “x pos” and “y pos” values within 

the algorithm. Be extremely careful with this second option, as seemingly small values in 

either of these parameters can cause the respective voltage to saturate (0.001). Regarding 

the sign necessary for these adjustments, the rule of thumb is to match the sign of the 

current voltage readout. For example, if the green voltage is hovering around +3, you 

should enter a positive value into “x pos”. Similarly, a value of -3, you should entire a 

negative value into “x pos”. Slowly change the x and y positions from 0 to either positive 

or negative values in steps of 0.0001-0.0002 until the x and y voltages approach zero and 

stays constant. You may also reduce/increase the z-position from 0.0043 to center the 

sample image in the density camera. Be aware that changing the z-position may change the 

x and y alignment, requiring you to make a few more adjustments. 

If the sample drops, immediately stop the algorithm by pressing the square “stop” button on 

the TargetPC interface. 
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Figure A.9: Full screenshot of the ESL program. Refer back to this figure on later steps for general 
regions of interest within the program. 

 

Processing a Sample 

a)  To turn on the heating later, go inside the ESL room and close the door behind you. Turn 

on the key on the console on the left wall that is used for laser safety. Check that the 

interlock was engaged, indicated by the “entryway closed” light on the console. First press 

the “press to start” button and then press the “press to exit” button. The alarm will start 

beeping. Come out of the room and close the door behind you. The beep will stop. The 

safety light to the upper right of the door should now indicate that the laser is operational 
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and ready for use. At this point, entry into the room will disengage the laser through the 

tripping of the interlock. The laser must then be turned on by repeating this procedure. 

Figure A.10: Laser query tab. Click on the dark green “send query” button to check for any laser 
faults (like the interlock, etc). If the “Laser Fault” window reads “No Fault” then the laser can be 
turned on with the “Laser Control” button. It will turn red and the “Laser enabled” light next to it 
will turn on. The laser current is controlled on the far-right slider or through direct input of values 
in the top dialogue box. 

 

b)  From the front panel of the ESL program, specify save path for our data. The sample file 

name and save path are indicated at the top of the program, along the same line as the big 

red rectangular stop button. First, select the data path. It will take you to a separate window. 

Usually, data are stored in folders with the name of the month and year (e.g. 

December2019). Open this folder and then create a sub-folder with a name by date 

(12122019). Within this sub-folder create a folder with the sample name and keep this 

folder open before exiting this window. In the “ESL_20181204 shortcut” program 

window, give a name for the data file. We usually include the sample composition and 

sample mass, e.g. Cu50Zr50_m4523. DO NOT PRESS ENTER AFTER TYPING THE 

SAMPLE NAME. Doing so will result in a LabVIEW crash after you click the “Save 

Data” button. Simply click anywhere on the screen after entering the filename and it will 
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be saved in the program. Then select 0 or 1 in the “increment” path for the data. This is 

done because sometime the data file becomes too big. Up to about 66500 lines can be 

accepted. Therefore, we first store data during the first melt and superheat in one increment, 

say “increment 0”. All subsequent processing data are stored in “increment 1”, and so on.  

c) Once the data file name and path has been selected, click on “save data”, located towards 

the far left of the panel, below the numerical readouts for the pyrometers. When you stop 

saving time-temperature data, ALWAYS raise the increment by 1. Clicking on save data 

without raising the increment will cause all of the previous data to be overwritten. Select 

the pyrometer (low temp for start from room temperature). The time-temperature graph 

will appear. The low-temperature pyrometer works between 150 and 800 C. 

d) We are now well set to heat up the sample. Click on the “query” tab for the laser near the 

right top corner of the ESL LabVIEW program (Fig. A. 9, Fig. A. 10). Then, press the dark 

green “send query” button. This will check for any fault in the laser, such as the interlock 

being tripped. If the send query button gives an “interlock” fault, then make sure the door 

is completely closed and the main laser control console has power. If everything is working 

properly, this will enable to turn on the laser. Select a small current for the laser control, 

typically 0.4 A and click “laser on”. The sample will start to heat as will be visible in the 

time-temperature data. 

e) In the lab notebook start recording the “laser current” (I), “temperature” (T) and “z-

voltage” (V) as the sample heats up. Usually, the sample heats up to about 500-550 C 

quickly with 0.4 A laser current. Not much instability is observed in this temperature range, 

unless there is a glass-crystal or other type of solid-solid transformation. The z-voltage may 

show a small rise. Thereafter, increase the current in the increments of 0.01 or 0.02 Amp., 
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depending on the stability of the sample; z-voltage should not change quickly. If it does, 

slow down on heating. In some cases, long waits and even smaller heater current 

increments (0.005 A) may be necessary. 

If the sample drops, immediately turn off the laser and the high voltage (click on the stop 

button within the xPC Target Explorer window). 

f) Above about 700 C, switch to the high temperature pyrometer; use the ratio reading. If 

your sample has an oxide layer such that the ratio is not providing an accurate reading (like 

in the case of Al-based samples), try switching on K1 or K2 for single color pyrometry. 

Continue until it starts to melt. This is another temperature zone where care has to be taken. 

When it starts to melt, the pyrometer reading does not change even when laser current is 

increased. Go slowly and watch for any instability. At the end of melting, temperature starts 

to shoot up. If it rises too fast, sample may become unstable. For incongruent melting, the 

sample often shows instability between the solidus and liquidus. Some samples (e.g. CuZr 

alloys) show some instability even up to 50 C above the liquidus. Heat slowly in this 

temperature region.  

g) Superheat to at least 100 C above the liquidus, before the first cooling. Repeat heating and 

cooling as necessary to reach the maximum supercooling temperature. 

h) Stop data saving for a moment. Go to “Increment 1” and then start data recording again. If 

the increment is switched without stopping data saving, new data will overwrite on 

the old data. Progressively, superheat and watch supercooling. Usually, after a few cycles, 

the maximum supercooling is achieved, unless the sample is dirty. For good quality 

samples, no more than 150-200 C superheat is necessary to achieve a maximum supercool. 

Once the maximum supercooling is achieved, you should not have to heat as high again. 
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To preserve the sample, heat by only 150-200 C. If the maximum supercooling temperature 

is not achieved with that degree of heating, return back to heating it 250-300 C above the 

liquidus. 

i) When finished with all experiments, let the sample cool below about 300 C. It can be kicked 

out either by changing the “upper limit of the z-saturation” to -10000, or by moving the 

post towards the sample. 

If ever it is necessary to drop (not kick out) the sample onto the bottom electrode, gradually reduce 

the z-position from 0.0043 to about half (0.0025). Be sure to stop the algorithm before the 

levitation becomes unstable. It has approximately a 90% success rate and is typically a more 

reliable way to drop a sample for later processing than simply stopping the levitation algorithm. 

 

What to do when the program crashes 

Although not very frequent, sometime the LabVIEW program crashes. If that happens, the sample 

will still float, since the levitation algorithm is controlled by the target PC.  

If the laser was on when the LabVIEW ESL program crashed, it can be turned off by tripping the 

interlock. On top of the black motor control box are laser goggles with side-shields rated for OD5 

at the operating wavelength. Put them on. If anyone else is in the room, have them wear laser 

goggles or leave the room. Open the door to the ESL room; the interlock should trip and stop the 

laser’s operation. To ensure this, turn the key on the laser control box to the off position; you can 

turn it on later after regaining control of levitation and data acquisition. 
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Familiarize yourself with this procedure before it happens. Speed is critical in order to 

maintain control of your sample. 

a) If you are able (i.e., where the computer did not blue screen), disconnect the target PC from 

PC1 from the Matlab program. This is a precaution so that no unwanted command goes to 

the target PC. Close all running programs (including Matlab) in both PC1 And PC2 and 

restart the computers.  

b) Reconnect with the target PC. It is critically important to regain full control of the sample 

and levitation. Do this step first. 

c) Before starting data acquisition, type in the old data file name and flight paths before the 

crash. Change the “increment” to be one larger than the previous file; otherwise old data 

will be lost. 

If the visualization or viscosity camera freezes / is not available 

 

In rare occasions, the visualization camera freezes or crashes. If that happens, close this program 

in PC1. Turn off the power to this camera for a few seconds and turn power back on. The power 

plugs for the camera are labeled and are located on a power strip directly below the Green PSD. 

Also gently disconnect the camera USB cable and re-connect it. Even if the power is disconnected, 

there is still a small amount of power coming from the USB; thus, both need to be disconnected to 

perform a full restart. Open the “capture OEM” program in PC1. If the camera link is not 

automatically established, check the settings. Open the IPManager program for CaptureOEM on 

PC1—it has the same desktop icon. They should be: 

IP address: 192.168.5.11 
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Subnet Mask: 255.255.255.0 

MAC: 00-11-1C-F3-02-A8 

IP Engine Version: 2.3.5  

Viscosity camera settings are the following: 

IP address: 192.168.5.8 or 192.168.5.9.   

Subnet Mask: 255.255.0.0 

MAC: 00-11-1C-F3-01-83 

IP Engine Version: 2.1.9 

If you have issues with the viscosity camera not showing up in CaptureOEM, try increasing the IP 

address by 1 (192.168.5.8 to 192.168.5.9, for example). You will likely need to adjust ROI settings 

if you lose communication with the viscosity camera. Ensure you have a 64x64 pixel ROI that is 

centered on the sample and that the exposure time is short enough to allow for 1500fps. 

 

Sample fell into gap between lateral and bottom electrodes 

In this case, your only option is to get rid of the sample. Otherwise, the chamber must be opened. 

To get rid of the sample, turn off the lateral voltage amplifiers. The sample may have tripped one 

of the amplifiers anyway, due to making a connection between the lateral electrode and bottom 

electrode.  
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Follow the same procedure for removing the sample if it was levitating. Try raising the post to the 

launch position or slightly higher, even if the sample is stuck on one of the lateral electrodes. This 

way, the PSDs see an object and will attempt to levitate it. Run the algorithm with the saturation 

settings for kicking out a sample (Saturation Z Upper Limit = Saturation Z Lower Limit). You 

may have to visually inspect the bottom electrode assembly through one of the open ESL ports. 

Otherwise, you will need to open the chamber and manually remove the sample. If you are quick, 

you can quickly pump back down to 10-8 Torr after a night.  

If this happens regularly, consider screwing in the bottom electrode a bit more to minimize the 

shelf available for samples to fall onto. 

 

Issues related to TargetPC communication 

If you are unable to connect to the TargetPC because of a communication error, there may be 

several causes. It is not possible to list all problems, as some of them are related to specific IP 

address, Mask, protocols, or other computer settings. If that is the problem, enlist the help of Rich 

Schmaeng to help you. It will require significant use of the Windows DOS console to ping PCs on 

the local network to pinpoint the exact communication setting. 

It is possible the control algorithm CD was corrupted. It is unlikely this occurred but burning a 

fresh disk may fix the problem. The instructions may be found on page 10 of the 06/28/2018 

notebook. Be sure to use the echtgain ending in “20180726” if you are building any new 

algorithms, although this is not necessary since gain-switching is robust against sample size. 
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Previous versions of echtgain have flipped the blue and green PSDs, making it impossible to 

levitate at all. Steps to burn the CD are reproduced here: 

To create a burn disk—format the CD first, default settings are fine. Burn the algorithm to CD 

using the built-in Matlab “burn to CD” function. Move copy of cdboot.iso to folder on the 

computer. Load in a new CD. Burn the .iso file to the new CD. Load this CD into the TargetPC.  

One possible cause of this problem is related to peculiarities of the algorithm. The TargetPC has a 

built-in floppy drive, yet the control algorithm runs through CDs. Matlab attempts to run 

algorithms through the floppy drive. As such, it may be necessary to enter the BIOS for the 

TargetPC and check if the floppy drive is active.  

 

Unstable levitation or completely unable to levitate samples. 

The A->D or D->A cards may need to be recalibrated. Log into Windows (password phys2day) 

on the TargetPC and run the built-in LabVIEW card calibration software (NIMAX). The cables 

will need to be unplugged from the PSD router box, which maps the pins on the new cards to the 

old PSD setup. Run the self-test and self-calibration options. You may have to do this several times 

if you receive a failure notice. If the failure persists, take down the error code. If calibration fails, 

the cards may need to be replaced. We have purchased one set of replacement cards that live in 

Compton 150/152 on the workbench. They are next to the gray filing cabinet that is against the 

window facing the door to 152, unless they’ve been moved by someone else. 
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Figure A.11: The NIMAX window on the TargetPC for recalibrating and testing the A to D and D 
to A cards. Note that these options are on the top ribbon, in-line with the “Refresh” icon. 

 

For other troubleshooting and operating procedures, read the dissertations of James Bendert and 

Matt Blodgett. 

Density Measurement 

Whenever, density measurements are planned, before levitating the sample, a WC standard should 

be floated and video data for this calibration standard should be taken. In case that is forgotten, 

video data for a WC standard may be taken after sample measurements are completed.  
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a. After the sample/WC standard is floated, check that the “link” button in the density 

measurement menu (at the bottom right corner) is activated. It will turn green and 

the density video will be linked to the time-temperature measurements. You can 

check this by watching the timestamp update itself on the “Full Video Name” 

string. 

b. Select the region of interest (ROI). This is done to reduce the file sizes of the video 

images. This can be done by clicking on the tightening ROI and then selecting an 

area of interest around the sample. Or, the ROI can be selected by entering the 

following numbers (corresponding to left, top, width, and height): 225/75/745/600. 

b)  And then click “change settings”. A smaller area around the sample will be visible in the 

density camera image. Whatever ROI settings you use for WC should be replicated for 

your other samples.  

Figure A.12: The Density Camera “Camera Save” tab. Note the “Link to Save Data” button is on. 
To stop saving video, click that button off. You can also change the seconds of video saved in this 
tab. To save video, click on the yellow “Save Video” button. 
 
 

a. Usually, the video recording is made for 60s at 10 fps for the WC standard and 20s 

at 25 fps for the sample. Exposure time is typically set at 1s. After making these 

changes, click again on “change settings”. 
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b. Begin saving temperature data if not already. For WC, you do not need to heat the 

sample at all. At the bottom of the ESL LabVIEW program is a tab for saving 

density video. Click on “save video”, which will move to the next screen. Make 

sure that the “link” button is green. Start recording. To save only one video, click 

on the “link” button after recording has started. This will finish saving video at the 

end of the current timeframe. Otherwise, it will start a new 60s or 20s video 

immediately after the completion of the first run. Multiple videos may be needed 

for samples with prolonged supercooling cycles. Make sure that you activate the 

“link” after completion of this run so that the system stays ready for the next density 

recording session. 

c. For WC, we normally take 2-3 recordings for 60s each. For the sample, it is first 

heated to the desired temperature, then video recording is started just before the 

laser is turned off. Data are collected until crystallization. Density of the solid may 

also be measured. However, because of the surface roughness and slightly irregular 

shape of the sample, the density data are noisy.  

Viscosity Measurement 

Note: If you have already taken time-temperature or density data without the viscosity 

acquisition program running, you must restart the PC2 computer before acquiring viscosity 

data. 
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Figure A.13: Screenshot of the main viscosity acquisition program. The ROI of the video can be 
changed towards the bottom of the program, much like the density capture program. Adjust the 
ROI first and minimize the exposure time before slowly increasing the FPS to 1500. 

 

a) Open the “surface tension viscosity shortcut” program in PC1 and click the “run” arrow. 

a. Establish a link to the viscosity computer (PC1) from the 

“ESL_20181204_shortcut” program that records all experimental data from the 

ESL runs. Within the ESL LabVIEW program, click the button at the top of the 

window before running the ESL_20181204 program. If the button is pressed while 

the ESL program is running, LabVIEW will crash. If the button is pressed before 
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running the ESL program and then you run the ESL program without the viscosity 

data program running on PC1, LabVIEW will crash.  

 

The correct order is to open the surface tension and viscosity program, run it, open the 

ESL_20181204 program, click the link button, and then run the ESL program.  

 

b. Make sure that the “data socket server” and “synergy” in PC1 are active. Usually, 

they are turned on when PC1 is started. If by any chance they are deactivated (it 

happened to me once while minimizing these icons), link between PC2 and PC1 

cannot be established. When they are connected, the data socket program will show 

activities like number of “data packets received”, etc. If you are having issues with 

the Data Socket Server, in the words of the wise Dr. Robert Ashcraft “change things 

until it works” within the Data Socket Server Manager program. 

c. If the two computers are properly connected, the same sample ID from PC2 will 

appear in the viscosity program. The sample oscillations may be induced by “sine”, 

“square”, “triangular” waves from the “Function Generator” menu. Usually, 

sinewave excitations are suitable. Sometimes, it is easier to excite oscillations with 

“triangular” or “square” voltages. 

d. Keep the sample heated above the liquidus. Since it takes some time to probe the 

oscillation frequency, this temperature should not be kept too high to avoid 

evaporation loss from the sample. When performing measurements, try to acquire 

supercooled viscosity data first, as high temperature viscosity measurements for 
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prolonged periods of time can result in significant mass loss and compositional 

changes. 

e. Several parameters within the program much be changed to perform viscosity 

measurements.  

 

Figure A.14: The Experiments tab from the viscosity program. The box to the right of the Center 
Frequency knob allows for specific frequencies to be inputted. The repeat time can be changed to 
any integer value or -1 for constant pulses. 

 

b) Choose an oscillation frequency in the “experiments” menu. The resonance frequency of 

most of the samples lie between 100 and 150 Hz. 

c) Select a region of interest, typically 740/535/64/64. A smaller image around the sample 

will appear. You may play with the above numbers to change the area of interest. Make 

sure you can see the entire perimeter of the sample clearly against the background 

d) Select an exposure time of 0.04s. If it does not give good contrast, you may need to change 

it. However, the program may crash if you chose too high a value. Slowly modify the 

exposure time in increments from 0.05 to 0.1 seconds until a clear distinction is made 

between the sample and background. 

e) With the exposure time and ROI set, slowly raise the frame rate to 1500. If you change this 

first, LabVIEW will likely have a memory full crash.  

f) Excite the liquid drop once by clicking on the “Start Measurement”. The voltage profile 

and sample area profiles will appear in two graphical forms at the top right corner of this 
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window. Some sample movement will also be noticeable in the density camera image in 

PC2. 

g) Keep changing the frequency until a nice oscillation pattern is established. The area change 

will show a very nice smooth exponential decay. Reference James Bendert’s, Matt 

Blodgett’s, and Chris Pueblo’s Ph.D. theses for images on “good” oscillations. 

a. Continue taking measurements once good oscillations have been found by changing 

the “repeat time” to -1. With this setting, when the “start measurement” button is 

clicked, the program will take data by continuously exciting the sample every 1s. 

This can be stopped by either clicking on the “start measurement” or changing the 

“repeat time” to 1. 

b. Change the sample temperature either manually by slowly reducing/increasing the 

heater voltage. The laser current may also be reduced at a certain rate automatically 

from the “Mod Specific Heat” menu in the main ESL program (located in the family 

of tabs controlling the laser query). From the “Mod Specific Heat” section, you can 

choose to either raise or lower the laser power in designated increments over a 

number of steps each lasting a set amount of time. This is useful to automatically 

change the laser power, enabling the user to focus on finding good viscosity 

oscillations. Continue taking oscillation measurements as you change the 

temperature. 

c. As the sample cools down, its viscosity and surface tension increases, which will 

change the resonance frequency. Below a certain temperature when the viscosity 

exceeds about 0.1 Pa·s, the damping becomes so fast that further measurements 
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become impossible. If you cannot reliably attain good oscillations anymore, the 

liquid is either too viscous or too fluid. 

 

Further information about density and viscosity data acquisition can be found in James Bendert’s 

thesis and information about data analysis can be found in the thesis of Chris Pueblo.  
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