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Molecular oxygen (O2) is vital for efficient energy production and improper oxygenation is 

a hallmark of disease or metabolic dysfunction. In many pathologies, knowledge of tissue 

oxygen levels (pO2) could aid in diagnosis and treatment planning. The gold standard for 

pO2 measures in tissue are implantable probes, which are invasive, require surgery for 

placement, and are inaccessible to certain regions of the body. Methods for determining 

pO2 both non-invasively and quantitatively are lacking.  

The slight paramagnetic nature of O2 provides opportunities to non-invasively 

characterize pO2 in tissue via magnetic resonance (MR) techniques. As such, O2 can be 

treated as a weak endogenous contrast agent for longitudinal relaxation and, therefore, 

the measured longitudinal relaxation rate constant (R1) is directly proportional to pO2. 

Precise characterization of R1 in the absence of oxygen (R1,0) and the relaxivity of O2 (r1) 

would allow for an R1-based pO2 measurement.  
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Additionally, the effective transverse relaxation rate constant (R2*) in tissue is strongly 

affected by the magnetic susceptibility effects of deoxyhemoglobin within the vasculature. 

Many forms of placental dysfunction, e.g., pre-eclampsia and intrauterine growth 

restriction, are proposed to be caused by altered vasculature development within the 

placenta, potentially leading to adverse outcomes for both mother and fetus. Improved 

biomarkers of placental function would aide in optimal timing for early delivery once the 

placenta can no longer support fetal development. 

The objectives of this dissertation were to: 1) investigate the efficacy of an R1-based 

method of pO2 quantification in a tissue surrogate; and 2) apply MR methods of monitoring 

pO2 in tissue and O2 within the vasculature in mouse models of disease and insufficiency 

to assess placental development and function. For the first goal, Bayesian probability 

theory-based model selection was used to evaluate potential models of longitudinal 

relaxation in in vivo tissue and an in vitro tissue surrogate, crosslinked bovine serum 

albumin (xBSA). xBSA was then used to investigate physiologic confounds to an R1-

based method of pO2 quantification, including temperature, pH, and protein 

concentration, and R1,0 and r1 were determined. For the second goal, mouse models of 

both placental insufficiency and Zika virus infection during pregnancy were monitored in 

late gestation for changes in volume, R1, and R2* at baseline and with a gas challenge to 

assess the placental response to an altered environment. 

It was found that 1) both in vivo and xBSA relaxation data are best fit with a biexponential 

model and, therefore, xBSA is a good surrogate for tissue, in terms of longitudinal 

relaxation; 2) physiologic confounds to an R1-based method of pO2 quantification exert 

considerable affects upon measured R1 and must, therefore, be precisely controlled or 
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accounted for; 3) placental volume, R2*, and change in R2* due to a breathing gas 

challenge hold promise as biomarkers of placental development and dysfunction. 

These findings suggest that an R1-based method for pO2 quantification in vivo is likely not 

feasible on a routine basis due to the small water relaxivity of pO2 and confounds to the 

analysis due to relaxation effects of tissue pH, temperature, and protein concentration, 

but MR methods could provide much needed information regarding placental function in 

high risk pregnancies and warrants further investigation. 
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Chapter 1: Introduction 
 

1.1 Motivation: 
Improper oxygenation is a hallmark of many diseases or dysfunctions and knowledge of 

molecular oxygen (O2) levels within the body (pO2) could aid in diagnosis and treatment 

planning. Tumors characterized by hypoxia are known to have increased angiogenesis 

and propensity for metastasis[1], as well as increased resistance to chemotherapy[2] and 

radiation therapy[3] treatments. Hypoxia in adipose tissue has been proposed to drive 

insulin resistance, leading to type II diabetes[4]. Exchange of respiratory gases is a major 

role of the placenta, with insufficient exchange of O2 potentially inducing long-term 

adverse effects for both mother and fetus[5, 6]. 

Implantable probes are considered the gold standard for measuring tissue pO2[7] but are 

invasive in nature, requiring surgery for placement. Methods of determining tissue pO2 

non-invasively and quantitatively are lacking. Optical imaging techniques are sensitive to 

levels of oxy- and deoxyhemoglobin[8], which can be modeled to yield information about 

oxygen saturation[9-11] and metabolic rate of oxygen consumption[12]. While non-

invasive, these techniques are limited to a depth of penetration on the order of a few 

millimeters to a centimeter. Positron emission tomography (PET) can detect even low 

levels of hypoxic tumor cells[13] but is limited by spatial resolution of a millimeter or more 

and requires exposure to radioactive materials. Magnetic resonance (MR) techniques can 

non-invasively probe the entirety of the body with sub-millimeter spatial resolution. Blood-

oxygen-level dependent (BOLD) MR imaging (MRI) utilizes the magnetic susceptibility 
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differences in the vasculature due to oxy- and deoxyhemoglobin levels[14]. However, 

quantitative BOLD experiments are quite challenging[15] and therefore results are often 

expressed as relative changes with respect to baseline measurements. O2 is slightly 

paramagnetic and can therefore be regarded as a weak, endogenous longitudinal 

relaxation rate constant (R1) contrast agent for MR. Therefore, measured R1 is in principle 

directly proportional to tissue pO2. 

The goal of this dissertation is twofold: 1) investigate efficacy of R1-based pO2 

quantification and 2) use MRI with a breathing gas challenge to investigate non-invasive 

biomarkers of placental development and function in mouse models of insufficiency or 

disease.  

 

1.2 State of Research: 

1.2.1 Basics of Nuclear Magnetic Resonance 

Classically, a rotating object possesses the property of angular momentum which can be 

visualized as a vector pointing along the axis of rotation. The quantum mechanical 

counterpart to this property is quantized and inherent to elementary particles, i.e. protons, 

neutrons, electrons, as well as composite particles and whole nuclei. Nuclear spin angular 

momentum describes the spin state of the superposition of protons and neutrons within 

the atomic nucleus, which can be described by a magnitude L of the form: 

𝐿 =
ℎ

2
[𝐼(𝐼 + 1)]1/2 
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where h is Planck’s constant and I is the nuclear spin quantum number, which takes the 

form N/2, with N any non-negative integer. Nuclei with spin I are (2I+1)-fold degenerate, 

with sublevels described by the quantity m which is of the form: 

𝑚 =  −𝐼, 𝐼 + 1, … ,0, … , 𝐼 − 1, 𝐼 

The projection of this angular momentum upon an arbitrary axis (choose z-axis) is then 

given by 𝑚 ℎ 2⁄ . If a magnetic field B is applied, this degeneracy is broken due to nuclear 

Zeeman splitting. The most common nuclide for nuclear magnetic resonance (NMR) is 

1H which has a nuclear spin quantum number of 1/2 and subsequently two levels: m = 

+1/2 or -1/2. In the case where B is aligned with the z-axis, the energy gap resulting from 

this Zeeman splitting is 

∆𝐸 =
𝛾ℎ𝐵

2𝜋
 

where  is the gyromagnetic ratio, which is 42.58 MHz/T for 1H. Most nuclei have a positive 

gyromagnetic ratio ( > 0) while electrons and a few nuclei (e.g., 15N) have a negative 

gyromagnetic ratio ( < 0). A depiction of this splitting is shown in figure 1.1 for both 1H 

and 15N, which are both spin 1/2 nuclei, though the gyromagnetic ratio of 1H is ~10x 

greater than that of 15N.  
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Figure 1.1. Zeeman splitting for two example nuclei. The gyromagnetic ratio of 1H is ~10x 

greater than that of 15N, resulting is ~10x splitting in energy for the same magnetic field 

strength.  

 

For a system at thermal equilibrium with  > 0, the relative populations for the high and 

low energy conformations can be described by the ratio 

𝑁𝑎𝑙𝑖𝑔𝑛𝑒𝑑

𝑁𝑎𝑛𝑡𝑖−𝑎𝑙𝑖𝑔𝑛𝑒𝑑
=  𝑒

∆𝐸
𝑘𝑇⁄  

where Naligned and Nanti-aligned refer to the populations of spins in each state, k is the 

Boltzmann constant, and T is the absolute temperature. There are more spins in the lower 

energy state (aligned) than in the higher energy state (anti-aligned) and this population 

difference results in a net magnetization that is parallel to the applied magnetic field. This 

is the source of MR signal and is extremely small (on the order of ppm) at biologically 

relevant temperatures and currently accessible magnetic field strengths. 

The resonance energy can also be expressed as a function of frequency of precession 



5 

 

𝐸 = 2𝜋ℎ𝜔0 

where 0 is the Larmor frequency, which is then proportional to the magnetic field by the 

relationship 0 =- B0. If a radiofrequency (RF) pulse is applied at the Larmor frequency 

for an appropriate length of time, oriented perpendicular to the applied magnetic field (B0), 

the net magnetization will nutate into the transverse plane, as shown in figure 1.2 A.  Once 

the RF pulse is turned off, the ensemble of spins representing the net magnetization will 

then precess in the transverse plane. However, microscopic fluctuations in the local 

magnetic fields will result in the ensemble of precessing spins gradually losing their phase 

coherence such that the net transverse magnetization will decay. If a detector or receiver 

coil is placed in the transverse plane, the precessing magnetization will induce a voltage 

in this coil of the form shown in figure 1.2 B. This time-domain oscillating voltage signal, 

known as the free induction decay (FID), is then digitized and Fourier transformed to 

obtain the MR signal. 
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Figure 1.2. Illustration of free induction decay. Effective transverse relaxation can be 

characterized by A) nutating the equilibrium net magnetization into the xy-plane wherein 

the spins precess about the applied magnetic field (B0) and dephase. Placement of a 

receiver coil in the xy-plane generates an MR signal of the form in B) which is 

characterized by the effective transverse relaxation rate constant, R2*. 

 

The signal decay of the FID can be characterized by the effective transverse relaxation 

rate constant (R2*) which is the superposition of two mechanisms, homogeneous and 

inhomogeneous broadening. Homogeneous broadening is due to high frequency 

microscopic fluctuations within the magnetic field and is characterized by the transverse 

relaxation rate constant (R2), whereas inhomogeneous broadening is due to low 

frequency macroscopic variations in the magnetic field due to magnetic susceptibility 

effects or inhomogeneity in the static magnetic field.  
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Longitudinal relaxation describes the process by which the perturbed net magnetization 

will return to thermal equilibrium via stochastic spin flips (-1/2  +1/2) due to thermal-

energy-driven molecular motion. The applied magnetic field, B0, biases these otherwise 

random fluctuations so that over time the net magnetization returns to the equilibrium 

condition where it is aligned with the applied field. To visualize this relaxation process, we 

can iteratively invert the net magnetization with an RF pulse, wait some delay period t, 

and then rotate the net magnetization into the transverse plane with another RF pulse to 

generate an MR signal. Before the next iteration, an additional delay follows signal 

collection to allow the sample to return to thermal equilibrium. This iterative process is 

known as the Inversion Recovery (IR) experiment and is shown in figure 1.3 A. Plotting 

the collected MR signal amplitude against the delay time between RF pulses yields a 

recovery curve, shown in figure 1.3 B, which is characterized by the longitudinal relaxation 

rate constant (R1).  
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Figure 1.3. Illustration of longitudinal relaxation. Longitudinal relaxation can be 

characterized by A) perturbing the equilibrium net magnetization and measuring the 

amplitude of the net magnetization after a delay period (t). The inversion recovery 

experiment, shown here, is one method for characterizing longitudinal relaxation, which 

generates an MR signal of the form shown in B) which is characterized by the longitudinal 

relaxation rate constant, R1. 
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1.2.2 Oxygen MR Effects 

The measured R1 of a sample can be affected by contrast agents, both endogenous and 

exogenous. Exogenous MR contrasts are usually gadolinium-based complexes in which 

the strongly paramagnetic gadolinium atom, with its 7 unpaired electrons, interacts with 

nearby water molecules via dipole-dipole interactions, enhancing the longitudinal 

relaxation (increased R1) of the protons. Similarly, O2 is an endogenous contrast agent, 

though a much weaker agent due to its being only slightly paramagnetic. A heavily 

exaggerated illustration of the relaxation enhancement effect due to the presence of O2 

upon longitudinal relaxation is shown in figure 1.4. This relaxation enhancement effect 

upon the measured R1 can then be expressed with the following relationship 

R1=R1,0+r1*pO2 

in which R1,0 is the longitudinal relaxation rate constant in the absence of O2, r1 is the 

longitudinal relaxivity of O2, and pO2 is the partial pressure of oxygen. The relaxivity of 

any contrast agent is a complex factor, dependent upon dipolar and scalar interactions 

(which, in turn, are magnetic field strength dependent) and correlation times (dependent 

upon motion factors, e.g., rotation and exchange rates)[16, 17]. Precise determination of 

R1,0 and r1 would enable pO2 to be directly quantified from R1 measurements.  
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Figure 1.4. Illustration of 1H longitudinal relaxation of water without oxygen (solid blue) 

and with oxygen (dashed red). The relaxation enhancement due to O2 is heavily 

exaggerated in this example. 

 

Even without precise knowledge of these constants in vivo, R1-based methods can be 

used in conjunction with inhaled breathing gases having variable O2 content to drive 

tissue pO2 changes[18, 19]. Variations in measured R1 are then interpreted as changes 

in tissue pO2.  

As stated previously, BOLD MRI derives contrast from changing concentrations of oxy- 

and deoxyhemoglobin within the vasculature[14, 20]. Oxyhemoglobin has no unpaired 

electrons and is weakly diamagnetic whereas deoxyhemoglobin has 4 unpaired electrons 

and is paramagnetic[21]. The presence of deoxyhemoglobin therefore induces local 

magnetic field distortions, creating magnetic susceptibility differences between the 

vasculature and the surrounding tissue. These local field distortions induce more rapid 

dephasing of spins in the transverse plane, thereby increasing R2* (and also R2) in the 

surrounding region. BOLD MRI, therefore, is another method for mapping variations of in 
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vivo oxygenation, with changes in R2* directly proportional to changes in 

deoxyhemoglobin. 

1.2.3 Placenta 

The placenta, despite playing an extremely vital role in maintaining the health of both 

mother[22, 23] and fetus[24-26], remains a poorly characterized organ. This is, in part, 

due to the temporary nature of the placenta and ethical barriers to studying pregnant 

women. Murine placenta is a good model for the human placenta, with an analogous 

layered structure and method for exchange of constituents between maternal and fetal 

blood supplies[27, 28]. 

The placenta is responsible for maintaining fetal homeostasis through functions such as 

facilitating exchange of nutrients, respiratory gases, and wastes; creation and distribution 

of numerous hormones; and providing an immunological barrier between mother and 

fetus. Placental dysfunction can manifest in many forms including pre-eclampsia (PE)[29, 

30], intrauterine growth restriction (IUGR)[31], and infection with TORCH pathogens[32] 

- which are characterized by the ability to cross and infect the placenta. In general, the 

best place for a developing fetus to be is in utero. However, in cases of placental 

dysfunction, wherein the most common form of treatment is early delivery, information 

regarding the level of placental function could help to determine optimal timing. MR 

methods could potentially provide non-invasive and reliable biomarkers of placental 

function towards this end. 
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1.3 Dissertation Overview 

In this dissertation, Chapters 2 – 3 focus on quantitative longitudinal relaxation methods, 

using both preclinical in vivo and in vitro data to investigate the optimal signal model and 

probe physiologic confounds to an R1-based tool for pO2 quantification. 

Chapter 2 focuses on the problem of proper signal model selection and the use of 

Bayesian probability theory-based methods to determine the optimal choice for 

quantitative measurements. Longitudinal relaxation measurements collected in both in 

vivo rat brain and in vitro crosslinked bovine serum albumin (xBSA) samples were used 

to determine the most probable model from a pool of five potential signal models.  

Chapter 3 deals with physiologic confounds to an R1-based pO2 quantification method 

using xBSA as a tissue surrogate. Sample temperature, pH, and protein concentration 

were varied to determine their affects upon R1 and the direct relationship between pO2 

and R1 is quantified.  

Chapters 4 – 5 then focus on investigating placental development and function in mouse 

models of insufficiency and infection with MRI. Placental volume, R1, and R2* were 

measured at two time points in late gestation to assess placental growth and function. 

Furthermore, a gas challenge was employed at each time point to assess the placental 

response to environmental changes.  

Chapter 4 employs two established mouse models of common placental disorders in 

human pregnancy, PE and IUGR, to investigate how these disorders affect placental 

development and function in late gestation, with respect to healthy controls.  
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Chapter 5 investigates the effects of Zika virus (ZIKV) infection and hydroxychloroquine 

(HCQ) treatment upon murine placental development and function in late gestation. This 

work was performed in collaboration with Dr Indira U Mysorekar and Brooke Liang at 

Washington University in St Louis School of Medicine.  

Finally, chapter 6 closes the dissertation with a summary of the specific accomplishments 

of these studies and a brief discussion of future studies which are beyond the scope of 

this work.  
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Chapter 2: Bayesian Modeling of MR 

Data Determines the Most Probable 

Model1 

2.1 Introduction 
Essentially all data analysis employs a data model (or data representation), either 

explicitly or implicitly. Generally, the data are considered to be the sum of the signal plus 

noise and it is the estimated signal model parameters that are of primary interest. In the 

ideal case, the underlying principles governing the measurement protocol and the signal 

response are known and form the basis of the signal model. Often, however, this is not 

the case and there exists a cohort of competing signal models from which to choose. This 

may be because the underlying principles are not fully known or because the underlying 

principles dictate a signal model that is too complex for meaningful comparison to data 

that are insufficiently informative and, thus, simplified models based on the full complex 

model must be considered. In either case, the analyst is faced with the model selection 

problem, specifically, choosing which of a cohort of competing signal models best 

represents the data, without “over fitting” (i.e., fitting the noise). 

Bayesian probability theory based model selection provides the optimal answer to this 

challenge. Bayesian analysis is “optimal” in the sense that other methods can approach, 

but not surpass, the Bayesian result. To determine the optimal model amongst a cohort 

 

1All contents in this chapter have been published in Meinerz K, Beeman SC, Duan C, Bretthorst GL, 

Garbow JR, Ackerman JJH. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in 
Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin). Appl Magn 
Reson. 49(1):3-24. (2018). doi: https://doi.org/10.1007/s00723-017-0964-z  

https://doi.org/10.1007/s00723-017-0964-z
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of competing models, it is necessary to balance the degree of accuracy to which the 

model recapitulates the data (the goodness of fit, characterized by the residuals) against 

the number of free parameters in each model (the complexity). Conceptually, the law of 

parsimony, or Occam’s razor, achieves such balance, to wit, “Plurality must not be posited 

without necessity”, i.e., amongst competing hypotheses, the simplest is best. Occam’s 

razor is implicit in Bayesian probability theory. Indeed, Cox’s theorem [1] and its further 

elaboration by Jaynes [2, 3] states that Bayesian probability theory is the optimal method 

for making quantitative inference about data (i.e., optimally balancing model goodness of 

fit against model complexity).  

In brief, Bayesian probability theory quantifies the probability for a model/hypothesis, 

described by a posterior probability distribution, given the evidence (data) and all prior 

information about the system. In a qualitative sense, the posterior probability for a model 

is inversely related to the aggregate calculated uncertainty over all parameter estimates 

in a given model. (A more quantitative description of posterior probabilities is provided in 

Methods.) This qualitative description is useful, in that it highlights the intrinsic penalties 

associated with: (i) the evidence – uncertainty in the evidence, in the form of noisy and/or 

sparse data, propagates into calculated posterior probability distributions, and (ii) the 

model/hypothesis – increased parameterization/complexity must result in substantially 

reduced aggregate uncertainty for a more complex model to be favored (satisfaction of 

Occam’s razor). 

MRI pulse sequences that leverage relaxation properties (e.g., T1, T2, T2*) of the tissue 

water 1H magnetization, i.e., that yield a relaxation-dependent signal-intensity (relaxation-

dependent “contrast”), form the foundation of a wide range of important research and 
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clinical MRI protocols. Recently, a number of MRI protocols have been reported that seek 

to exploit the effect of dissolved oxygen (O2, paramagnetic) on the longitudinal relaxation 

of tissue water, thereby providing image contrast related to tissue oxygen content [4-7]. 

However, water relaxation in tissue is complicated by competing mechanisms (e.g., 

magnetization transfer) [8-11] and confounds (e.g., blood flow) [4] and, while the MRI 

literature is dominated by monoexponential relaxation modeling, such an approach is 

oversimplified. 

Our interest in quantifying tissue water longitudinal relaxation stems from the possibility 

of creating images in which voxel intensities reflect the dissolved O2 content. Molecular 

oxygen, O2, is slightly paramagnetic and, thus, acts as a relaxation agent, albeit with a 

small relaxivity (mM-1sec-1). The underlying question is then, “Can we make tissue water 

longitudinal relaxation measurements of sufficient accuracy and precision so as to 

quantify the content of dissolved O2”? The two principal tissue water relaxation 

mechanisms that compete with dissolved paramagnetic O2 are: (i) magnetization transfer 

(through-space and chemical exchange) with the tissue’s “macromolecular matrix” and 

(ii) blood flow, which can bring equilibrium magnetization into the selected image slice. 

The “apparent” relaxation effects of blood flow can be largely mitigated by appropriate 

choice of pulse-sequence and are not dealt with here. However, to explore the effects of 

magnetization transfer on tissue water relaxation data and modeling thereof, we have 

employed cross-linked BSA (x-BSA) as a tissue mimic, one that exhibits strong 

magnetization transfer effects but, of course, none of the confounds introduced by blood 

flow. Given this tissue mimic, the question is then how to best model the relaxation data, 

the model selection challenge. 
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Biophysical modeling of tissue water longitudinal relaxation has been a topic of 

investigation for decades. A monoexponential function is the simplest and most 

commonly used relaxation model [4, 12, 13]. Use of this model assumes that there 

effectively exists a single, uniform population of water molecules (extreme narrowing) that 

can be characterized by a single longitudinal relaxation rate constant. Some have 

modeled tissue water longitudinal relaxation as a biexponential function, with two distinct 

(“slow” and “fast”) relaxation populations [8, 10]. However, the assumption of two 

relaxation populations is undoubtedly a simplification and the heterogeneity of tissue 

microstructure has led others to model relaxation based on a pseudo-continuous 

distribution of relaxation populations, each with a unique relaxation rate constant [14]. 

The stretched exponential characterizes such a system with a single relaxation rate 

constant and a “stretching” parameter, , which describes, empirically, the unknown 

distribution of relaxation populations. Alternatively, the distribution can be explicitly 

assumed in the model, with Gaussian [15] and gamma [15] functions serving as the most 

common distributions. 

Bayesian model selection is broadly applicable to a wide range of NMR data-analysis 

problems when a selection from amongst a cohort of competing signal models must be 

made. In the present paper, we illustrate the use of Bayesian probability theory for data-

driven model selection using longitudinal relaxation data obtained in vivo (mouse brain 

white matter) and in vitro with a tissue surrogate (xBSA). Water 1H magnetization 

relaxation data were acquired with a high signal-to-noise ratio (SNR) and high sampling 

density (regarding post inversion delay times, TIs) to compare amongst a cohort of 

competing, semi-empirical relaxation models under near ideal circumstances. SNR and 
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sampling density were degraded in these same datasets to examine the impact of data 

quality on “optimal” (most probable) relaxation model selection and derived parameter 

estimates. As the data quality decreases, becoming less informative, complex models 

become less probable and simpler models are preferred, a quantitative, statistical 

(probabilistic) manifestation of Occam’s razor.  

2.2 Methods 

2.2.1 Phantom Preparation and Data Acquisition 

Samples of cross-linked 15% (by weight) bovine serum albumin (xBSA) were prepared 

by diluting a 30% BSA solution (Sigma Aldrich, St. Louis, MO, USA) using phosphate 

buffered saline (PBS, pH 7.4). Samples were cross-linked using a 2.5% (by volume) 

solution of 50% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, USA). 

Samples were stirred with a spatula for one minute and then placed in the refrigerator 

(~4oC) for two days. Four cylindrical pieces of xBSA were then extruded and each was 

placed into a 5 mm, susceptibility-matched, symmetrical NMR microtube (Shigemi Inc, 

Allison Park, PA, USA) and maintained at 37C for ~24 hours prior to data acquisition. 

1H NMR relaxation experiments were performed on a 500-MHz (11.74 T) Agilent/Varian 

high-resolution NMR spectrometer. Most longitudinal relaxation data were collected using 

a Modified Fast Inversion Recovery (MFIR) pulse sequence [16], as shown in Figure 2.1A. 

Acquisition parameters were: 10,000 Hz bandwidth, 2,500 complex data points, water 1H 

linewidth ~60 Hz, 96 exponentially spaced inversion delay times (TI) ranging from 5 ms 

to 7.5 s, and 96 exponentially spaced wait times (W) ranging from 8.495 s to 1 s. Values 

of TI and W were chosen such that the total repetition time (TR = W + TI) was a constant 

value of 8.5 s. Four phase-cycled transients were collected for each TI; short, square, RF 
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pulses were employed for inversion (1 ~22 s; 180 degrees) and readout (2 ~1.5 s; 10 

degrees); and two steady-state (‘dummy scan’) acquisitions were utilized. A 1-ms crusher 

gradient was applied following the inversion pulse to suppress any residual transverse 

magnetization arising from imperfect inversion. Relaxation data for each of the four 

samples were acquired in triplicate, resulting in twelve total datasets. 

A separate set of experiments was performed to compare data acquired with the MFIR 

pulse sequence to data acquired with the standard Inversion Recovery (IR) pulse 

sequence under two different conditions. Acquisition parameters for the MFIR experiment 

were: 10,000 Hz bandwidth, 2,500 complex data points, water 1H linewidth ~150 Hz, 64 

exponentially spaced inversion delay times (TI) ranging from 5 ms to 7.5 s, and 64 

exponentially spaced wait times (W) ranging from 8.495 s to 1 s. Values of TI and W were 

chosen such that the total repetition time (TR = W + TI) was a constant value of 8.5 s. 

Four phase-cycled transients were collected for each TI; square, RF pulses were 

employed for inversion and readout; and five steady-state (‘dummy scan’) acquisitions 

were utilized. Acquisition parameters for the IR experiment were: 64 exponentially spaced 

inversion delay times (TI) ranging from 5 ms to 7.5 s, and a relaxation delay time (time 

following the 2 readout pulse) of 10 s. All other parameters were the same as the MFIR 

experiment. 

For these comparative experiments, two sets of square, RF pulse widths were utilized, 

designated as either “short” (broad excitation bandwidth) or “long” (narrow excitation 

bandwidth). For the short pulse width condition, the inversion pulse 1 ~22 s (180 

degrees) and the observation pulse 2 ~11 s (90 degrees). For the long pulse width 
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condition, the inversion pulse 1 ~1.3 ms (180 degrees) and the observation pulse 2 ~650 

s (90 degrees). All relaxation data (MFIR vs. IR; short vs. long pulses) were acquired in 

interleaved fashion in triplicate on a single sample, resulting in three replicate datasets 

for each of the four protocols. 

 

Figure 2.1. A) Schematic illustration of the Modified Fast Inversion Recovery (MFIR) 

pulse sequence [16]. RF refers to the radio frequency output and signal acquisition: 1 is 

a 180 degree (π) inversion pulse, 2 is a 10 degree magnetization sampling pulse. Gcrush 

represents the magnetic field gradient pulse applied to destroy (crush) any transverse 

magnetization coherence produced following a non-ideal 1 inversion pulse. TI is the 

variable time from the inversion pulse to the magnetization sampling pulse, W is the 

waiting time, and TR is the time to repetition. TR is the sum of TI and W and is a constant 

value. B) Schematic illustration of the Inversion Recovery Point Resolved Spectroscopy 

(IR-PRESS) pulse sequence. A non-slice-selective inversion pulse is followed by a 

PRESS readout sequence, employing weak diffusion sensitizing gradients to destroy 
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transverse magnetization coherence within the vasculature (i.e., to suppress signal from 

flowing blood). 

 

2.2.2 In Vivo Subject Preparation and Data Acquisition 

All animal experiments were approved by the Washington University Institutional Animal 

Care and Use Committee. In vivo 1H relaxation data were collected on a 4.7-T small-

animal MRI system (Agilent Technologies, Santa Clara, CA, USA) using a laboratory-

built, actively decoupled, volume-transmit/surface-receive coil pair. One 200 g female 

Sprague Dawley Rat was anesthetized with 1% isoflurane in 100% O2, and body 

temperature was monitored with a rectal thermometer and maintained at 37oC via the 

combination of circulating warm water and warm air. An Inversion Recovery Point 

RESolved Spectroscopy (IR-PRESS) sequence selecting a 1.6 x 1.6 x 1.6 mm3 voxel was 

modified to minimize apparent relaxation contributions from blood flow, as shown in 

Figure 2.1B. Specifically, the sequence employed: (i) a non-slice-selective inversion 

pulse, followed by 8-gauss/cm crusher gradients applied along all three axes to destroy 

any transverse magnetization created by an imperfect inversion pulse, and (ii) weak, 

diffusion-sensitizing gradients applied along all three axes (total b = 100 s/mm2) to destroy 

any transverse coherence of blood-water 1H magnetization flowing into the PRESS voxel 

via the vasculature. Acquisition parameters were: 4006 Hz bandwidth, 2048 complex data 

points, water 1H linewidth ~11 Hz, 128 exponentially spaced inversion delay times (TI), 

ranging from 0.0075 sec to 4.25 sec, effective echo time (TE) of 20 ms and a repetition 

time (TR) of 5 sec. Relaxation data were collected in triplicate from the corpus callosum 

(white matter). 
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2.3 Mathematical Models 

The monoexponential relaxation model is given by: 

 𝑀𝑧 (𝑡) =  𝐴 ∗ exp(−𝑡 ∗ 𝑅1) + 𝐶, [2.1] 

in which Mz(t) is the net longitudinal magnetization, A is a constant amplitude, t is time 

(corresponding to the inversion delay time, TI, in our experiments), R1 is the longitudinal 

relaxation decay rate constant, and C is a constant offset. Similarly, the biexponential 

model can be written as: 

 𝑀𝑧(𝑡) = 𝐴 ∗ [𝐹 ∗ exp(−𝑡 ∗ 𝑅1,𝑓𝑎𝑠𝑡) + (1 − 𝐹) ∗ exp(−𝑡 ∗ 𝑅1,𝑠𝑙𝑜𝑤)] + 𝐶, [2.2] 

in which F is the fraction of the total amplitude of the “fast” relaxation component and (1-

F) is the fraction of the “slow” relaxation component. The stretched monoexponential 

relaxation model is described by inserting a fractional power law into the monoexponential 

function: 

 𝑀𝑧(𝑡) =  𝐴 ∗ exp(−𝑡 ∗ 𝑅1) + 𝐶, [2.3] 

in which  is the stretching exponent. 

 

Two additional models were considered: A Gaussian-type (normal) distribution function 

for R1 [15] and an R1 distribution function based on the gamma distribution [15]. The 

Gaussian-type function is given by: 

 𝑃(𝑅1) = {
𝐴 ∗ exp (−

(𝑅1−𝑅1,𝑚𝑎𝑥)
2

22
) + 𝐶, 𝑅1 > 0

0, 𝑅1 < 0
 , [2.4] 
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in which A is a normalization constant: 

 𝐴−1 = √


2
[1 +  (

𝑅1,𝑚𝑎𝑥

√2
)] . [2.5] 

R1,max corresponds to the peak of the distribution,  is the standard deviation of the 

distribution (2 is the variance),  is the error function, and C is constant offset. The 

modified gamma-type distribution is of the form: 

 𝑀𝑧(𝑡) = 𝑀𝑧(𝑡 = 0) ∗ (
𝑎

𝑎+𝑡∗𝑅1,𝑚𝑎𝑥
)

(𝑎+1)

+ 𝐶, [2.6] 

in which Mz(t=0) is the initial net longitudinal magnetization, a is a shape parameter, and 

C is a constant offset.  

2.2.4 Bayesian-Based Model Selection 

The posterior probability for each of the relaxation models was calculated using Bayes’ 

theorem [2, 3]: 

 𝑃(𝑀|𝐷𝐼) =
𝑃(𝑀|𝐼)𝑃(𝐷|𝑀𝐼)

𝑃(𝐷|𝐼)
, [2.7] 

in which P(M|DI) is the posterior probability for a model M, given data D, and prior 

information I; P(M|I) is the prior probability for a model given the prior information; P(D|MI) 

is the probability for the data, given the model and the prior information; and P(D|I) is the 

direct probability for the data, given the prior information. To calculate the posterior 

probability for a model given the data and the prior information, the direct probability for 

the data, given the model and the prior information, must first be calculated. As an 



26 

 

example, the stretched exponential model has two calculated parameters,  and R1, such 

that the expansion of P(D|MI) is of the form: 

 𝑃(𝐷|𝑀𝐼) =  ∫ 𝑑𝛼𝑑𝑅1𝑃(𝛼𝑅1|𝑀𝐼)𝑃(𝐷|𝛼𝑅1𝑀𝐼), [2.8] 

in which P(R1|MI) is the joint prior probability for  and R1, given the model and the prior 

information, and P(D|R1MI) is the direct probability, given the parameters, model, and 

prior information. 

In Bayesian probability theory, the entire multidimensional integral or “hypervolume” 

covering the full range of possible parameter values must be computed and contributes 

directly to P(M|DI). Every hypervolume is computed by integrating the joint prior 

probability for the parameters weighted by the direct probability of the data, given the 

parameters. Using in-house developed Bayesian analysis software (available for free 

download at bayes.wustl.edu) that utilizes Markov-chain Monte Carlo simulations to 

approximate the high-dimensional integrals, the posterior probabilities for each of the 

models, and their associated parameters, were calculated.  

In each case, the results shown are from the joint analysis of either three (in vivo) or 

twelve (xBSA) replicate datasets. Generally, in a joint analysis, some of the model 

parameters are assigned as common (common valued) to all members of the full set of 

replicate datasets and some are assigned as unique (uniquely valued) to each member 

of the full set of replicate datasets. In the joint analysis employed herein, the reported 

model parameters (e.g., relaxation rate constants) were taken as common to all members 

of the full set of replicate datasets. The values of each of the model’s common parameters 

that best represented the full set of replicate datasets were taken as optimal (most 
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probable). We note that Bayesian joint analysis is distinct from averaging either the 

datasets or the parameters estimated from each dataset. In Bayesian joint analysis, the 

probability distributions weight the parameter estimates toward those favored by the more 

informative (e.g., higher signal-to-noise, fewer artifacts) members of the full set of 

replicate datasets. Herein, data quality was relatively uniform (equally informative) across 

all replicate datasets. 

Within the Markov-chain Monte Carlo simulation, 50 parallel simulations were performed 

to sample the posterior probabilities for the model and its parameters. Simulated 

annealing brought the 50 simulations into steady-state equilibrium, at which time 50 

samples from each of the 50 simulations were drawn. Thus, in total, 2,500 parameter 

samples were used to characterize the posterior probability density distributions for the 

models and their parameters. 

Herein, the peak (maximum) of the relevant posterior probability density distributions are 

taken as the optimal (most probable) parameter estimates. Alternatively, one could 

choose the mean of the distribution.  For symmetrical distributions, these choices are, 

obviously, equivalent. Uncertainty in a given parameter estimate is taken as ± the 

standard deviation (square root of the variance) of the distribution. More precise 

parameter estimates are characterized by narrower posterior probability density 

distributions. 

2.2.5 Data Truncation, Sampling Density Reduction, and Noise 

Addition 

As will be described, Bayesian model selection heavily favored the biexponential model 

for the xBSA longitudinal relaxation data (vide infra). In this case, the fast relaxation 
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component is characterized by a rate constant that is two orders of magnitude greater 

than that of the slow relaxation component, but has an amplitude that is only 2% that of 

the slow component. As a consequence, the available dynamic range and sampling 

density is limited, until the slow component dominates the signal. In practice, accurate 

characterization of this small-amplitude fast component will often be impractical due to 

time constraints and/or insufficient SNR and further, might be uninteresting for some 

experiments (e.g., contrast agent quantification, when it is expected that the relaxation 

modulating effects of the agent will only be observable on the slow rate constant). To 

simulate a potential time saving inversion recovery experiment, we truncated our datasets 

to include only data points associated with the slow component. Based on estimation of 

the relaxation rate constant for the fast relaxation component (R1,fast = 1/T1,fast) from the 

joint analysis of twelve full, 96-TI-value datasets, the first 45 TIs were removed, obviating 

information on relaxation occurring during the period of 5 x T1,fast, and the smallest TI was 

then approximately 160 ms.  

To more accurately mimic the in vivo case, in which both acquisition time and SNR may 

be limited, these twelve truncated xBSA relaxation datasets (i.e., minimum TI ~160 ms, 

data reflecting only the slow relaxation component) were further modified. (i) To simulate 

the acquisition-time-limited case, the sampling density was made increasingly sparse by 

iteratively removing every other data point, until only seven TIs remained. Bayesian joint 

analysis was then performed on the full datasets (51 TIs), intermediate-size datasets (26 

TIs), and small-size datasets (7 TIs). (ii) To explore the effect of limited SNR, Gaussian-

distributed noise (zero mean, standard deviation of one) was added to each of the twelve 

full (51 TI values) datasets. Prior to the addition of noise, these in vitro xBSA samples 
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exhibit very high SNR (SNR = 600), defined throughout as the signal amplitude at the 

longest TI value divided by the root mean square noise value. Added Gaussian-

distributed noise reduced the SNR to an intermediate value (SNR = 100) and a lower 

value (SNR = 25) typical of in vivo relaxation datasets. Bayesian joint analysis was then 

performed on the full datasets (51 TIs) at each of the three SNRs. (iii) To determine the 

combined effects of limited data sampling density and limited SNR on parameter 

estimation, Gaussian-distributed noise was added to reduce the SNR to an intermediate 

value (SNR = 100) followed by the reduction of the sampling density to achieve the full 

datasets (51 TIs), intermediate-size datasets (26 TIs), and small-size datasets (7 TIs). 

Bayesian joint analysis was then performed on the twelve, intermediate SNR valued 

datasets at each of the three sampling densities. 

2.3 Results 
As shown in Figure 2.2, Bayesian joint analysis of the twelve full (96 TIs) relaxation 

datasets, collected using the xBSA sample, selected the biexponential as the heavily 

favored model. However, residuals from both biexponential and monoexponential models 

display clear, smooth oscillations, characteristic of under-parameterization, suggesting 

that the biexponential model does not fully represent xBSA relaxation data characterized 

by both high signal-to-noise, SNR = 600, and high sampling density, 96 TIs (Figure 2.2B). 

The root mean squared (RMS) of the residuals of the biexponential model (0.002) was 

substantially less than that of the monoexponential model (0.011). The resulting 

parameter estimates from this model are R1,slow = 0.4164 ± 0.0003 s-1 and R1,fast = 33.6 ± 

1.1 s-1 (Figure 2.2C). The fractions of the total amplitude corresponding to the slow and 

fast relaxation components are 0.9801 ± 0.0003 and 0.0199 ± 0.0003, respectively. (Note, 
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the amplitude and the rate constant of the fast relaxation component will depend upon 

the extent of magnetization transfer produced by the relaxation measurement protocol 

(vide infra).) When the monoexponential model is used, R1 is calculated to be 0.4290 ± 

0.0008 s-1. For comparison, parameter estimates from both the favored biexponential 

model and the monoexponential model can be found in Table 2.1.  

 

 

Figure 2.2. A) Representative full, 96 TI relaxation dataset (black diamonds: signal 

intensity vs. TI) from the xBSA phantom, fit with the heavily favored biexponential model 

(gray line). B) The resulting residuals from both the biexponential model (solid black line) 

and the monoexponential model (dashed black line) are plotted against the “inversion 

number” (i.e., the 96 TI increments arranged linearly by increment number). The 

biexponential fit has a resulting root mean square (RMS) residual of 0.002, whereas the 

monoexponential fit has an RMS residual of 0.011. C) Bayesian-estimated posterior 

probability densities from joint analysis of all twelve xBSA relaxation datasets for (i) the 

rate constant for the slow component from the biexponential fit (solid black line), peaking 

at R1,slow = 0.4164  0.0003 s-1 and (ii) the rate constant from the monoexponential fit 

(dashed black line), peaking at R1,mono = 0.4290  0.0008 s-1; inlaid is the rate constant 

for the fast component from the biexponential fit (dotted black line), peaking at R1,fast = 

33.6  1.1 s-1. 

 

The biexponential model was also heavily favored by Bayesian joint analysis of three full 

(128 TIs) in vivo datasets collected within the corpus callosum (white matter) of rat brain. 

The residuals from both the favored biexponential fit and the monoexponential fit show 
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oscillations (Figure 2.3B) that are similar to those seen with the xBSA sample. Similar to 

the xBSA sample, the RMS of the residuals of the biexponential model (0.007) was less 

than that of the monoexponential model (0.008), a difference of ~15%, and the resulting 

parameter estimates for the favored model are R1,slow = 0.681 ± 0.003 s-1 and R1,fast = 28.5 

± 2.9 s-1 (Figure 2.3C). The fractions of the total amplitude associated with the slow and 

fast relaxation components are 0.973 ± 0.001 and 0.027 ± 0.001, respectively. By 

comparison, when the monoexponential model is used, the derived rate constant is R1 = 

0.708 ± 0.003 s-1. Parameter estimates from both models can be found in Table 2.1.  

 

 

Figure 2.3. A) Representative full, 128 TI dataset (black diamonds) from in vivo corpus 

callosum in rat brain, fit with the heavily favored biexponential model (gray line), plotted 

against the time from the inversion pulse. B) Resulting residuals from the favored 

biexponential fit (solid black line) and the monoexponential model (dashed black line) are 

plotted against the “inversion number” (i.e., the 128 TI increments arranged linearly by 

increment number). The biexponential fit achieves an RMS residual value of 0.007, 

whereas the monoexponential fit achieves a value of 0.008. C) Bayesian-estimated 

posterior probability densities from joint analysis of all three in vivo corpus callosum 

relaxation datasets for (i) the rate constant corresponding to the “slow” relaxation 

component from the favored biexponential fit (solid black line), peaking at R1,slow = 0.681 

 0.003 s-1 and (ii) the rate constant from the monoexponential model (dashed black line), 

peaking a R1,mono = 0.708  0.003 s-1; inlaid is the rate constant corresponding to the “fast” 

component from the favored biexponential model (dotted black line), peaking at R1,fast = 

28.5  3.0 s-1. 
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Table 2.1: Rate Constants and RMS Residuals from xBSA Phantom and in Vivo Joint 

Analyses  

 

 

Following truncation of the xBSA datasets as described in Methods, twelve datasets, 

corresponding to the slow relaxation component (51 Tis; Figure 2.4), were analyzed jointly 

and the stretched exponential model was found to be heavily favored. Residuals from the 

stretched exponential model and the monoexponential model (Figure 2.4B) show similar 

oscillatory patterns as in the full xBSA relaxation dataset, suggesting that neither model 

is able to characterize fully the longitudinal relaxation of the sample. However, it is evident 

from the RMS residuals that the stretched exponential model (0.0007) achieves a better 

goodness of fit than the monoexponential model (0.0021). The resulting parameter 

estimates from this model are R1 = 0.4197 s-1 ± 0.0002 s-1 (Figure 2.4C) with  = 0.9759 

± 0.0004. When the monoexponential model is used, the derived rate constant R1 is found 

to be 0.4157 ± 0.0003 s-1. 
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Figure 2.4. A) Representative truncated dataset from xBSA phantom illustrating the 

“slow” relaxation component (black diamonds), fit with the heavily favored stretched 

exponential model (gray line), plotted against the time from the inversion pulse. B) The 

resulting residuals from the heavily favored stretched exponential model (solid black line) 

and the monoexponential model (dashed black line) are shown against the “inversion 

number” (i.e., the 51 TI increments arranged linearly by increment number). The stretched 

exponential fit achieves an RMS residual value of 0.0007, whereas the monoexponential 

fit achieves an RMS residual value of 0.0021. C) Bayesian-estimated posterior probability 

densities from joint analysis of all twelve truncated datasets for the rate constants from (i) 

the favored stretched exponential (solid black line), peaking at R1 = 0.4197  0.0002 s-1 

and (ii) the monoexponential model (dashed black line), peaking at R1 = 0.4157  0.0003 

s-1. 

 

Modification of the truncated (slow relaxation component only) xBSA datasets to more 

closely approach the in vivo case with respect to either limited sampling density, SNR, or 

the combination thereof, leads to Bayesian-estimated posterior probability densities for 

the stretched exponential with respect to the number of TIs (Figure 2.5A, Table 2.2), the 

SNR (Figure 2.6), and the number of TIs at decreased SNR (Figure 2.5B). In the case of 

high SNR with decreasing sampling density, the resulting parameter estimates are 

(Figure 2.5A) R1 = 0.4197 ± 0.0002 s-1 and  = 0.9760 ± 0.0004 for 51 TIs; R1 = 0.4197 

± 0.0002 s-1 and  = 0.9759 ± 0.0006 for 26 TIs; and R1 = 0.4195 ± 0.0004 s-1 and  = 

0.9769 ± 0.0013 for 7 TIs. The stretched exponential is favored in all cases.  The resulting  

parameter  estimates in  the case of high sampling density, 51 TIs, with decreasing SNR 
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(Figure 2.6, Table 2.3) are R1 = 0.4197 ± 0.0002 s-1 and  = 0.9759 ± 0.0004 for SNR = 

600; R1 = 0.4187 ± 0.0011 s-1 and  = 0.9746 ± 0.0035 for SNR = 100; and R1 = 0.4228 

± 0.0041 s-1 with  = 0.9733 ± 0.0130 for SNR = 25. The stretched exponential model is 

heavily favored for the SNR = 600 and SNR = 100 datasets, as denoted by the asterisk 

(*) in the figure. For the monoexponential model (Figure 2.6C) the resulting parameter 

estimates are R1 = 0.4157 ± 0.0003 s-1 for SNR = 600; R1 = 0.4145 ± 0.0010 s-1 for SNR 

= 100; and R1 = 0.4185 ± 0.0035 s-1 for SNR = 25 (for which the monoexponential model 

was favored). In the case of intermediate signal (SNR = 100) with decreasing sampling 

density, the resulting parameter estimates are (Figure 2.5B, Table 2.2) R1 = 0.4187 ± 

0.0011 s-1 and  = 0.9746 ± 0.0035 for 51 TIs; R1 = 0.4183 ± 0.0014 s-1 and  = 0.9696 

± 0.0043 for 26 TIs; and R1 = 0.4179 ± 0.0015 s-1 and  = 0.9631 ± 0.0045 for 7 TIs. The 

stretched exponential is favored in all cases. 

 

Figure 2.5. Bayesian-estimated posterior probability density of the heavily favored, 

stretched exponential model’s decay-rate constant, R1, (A) for the case of 51 TIs (solid 

black line) peaking at R1 = 0.4197  0.0002 s-1, 26 TIs (solid gray line) peaking at R1 = 

0.4197  0.0002 s-1, and 7 TIs (dotted black line) peaking at R1 = 0.4195  0.0004 s-1 
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following truncation of the original 96 TI datasets. B) The same culled datasets as in (A) 

following the addition of Gaussian-distributed noise to reduce the SNR to approximately 

100. For each case, the heavily favored model is the stretched exponential and the R1 is 

found to be 0.419  0.001 s-1 for 51 TIs, 0.418  0.001 s-1 for 26 TIs, and 0.418  0.002 

s-1 for 7 TIs. Each posterior probability density curve is the result of twelve jointly analyzed 

xBSA relaxation datasets. 

 

Table 2.2: Sparsity & SNR Reduction Effects Upon Parameter Estimates in xBSA 

Phantom 

 

 

 

Figure 2.6. Bayesian-estimated posterior probability densities for the cases of SNR = 600 

(solid black line), SNR = 100 (solid gray line), and SNR = 25 (dotted black line) for the 

“slow” relaxation component (51 TIs) following the addition of Gaussian-distributed noise. 

A) The posterior probability densities for the R1 determination, using the stretched 

exponential model. The case of SNR = 600 peaks at R1 = 0.4197  0.0002 s-1, SNR = 

100 peaks at R1 = 0.419  0.001 s-1, and SNR = 25 peaks at R1 = 0.423  0.004 s-1. B) 

The corresponding posterior probability densities for  in each of the three cases. When 

SNR = 600,  peaks at 0.9759  0.0004; for SNR = 100,  peaks at 0.975  0.004; for 

SNR = 25,  peaks at 0.97  0.01. C) The posterior probability densities for the R1 

determination using the monoexponential model. The case of SNR = 600 peaks at R1 = 

0.4157  0.0003 s-1, SNR = 100 peaks at R1 = 0.415  0.001 s-1, and SNR = 25 peaks at 
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R1 = 0.419  0.004 s-1. In each case, if the model used was the favored model, an asterisk 

(*) accompanies the label. The heavily favored model for the SNR = 600 and SNR = 100 

was found to be the stretched exponential and for the case of SNR = 25 the heavily 

favored model was found to be the monoexponential. 

 

Table 2.3: Parameter Estimates for xBSA Phantom Following SNR Reduction 

 

* denotes favored model. 

 

To validate methodology employed herein for quantifying relaxation, data acquired with 

the MFIR protocol were compared to data acquired with the standard inversion recovery 

(IR) protocol under two conditions: (i) short 90 and180 degree RF-pulses (2 and 1, 

respectively), as are commonly employed with high resolution (analytical) NMR 

spectrometers, herein ~10 and 20 µs, respectively; and (ii) long 90 and 180 degree RF-

pulses as are commonly employed with MRI scanners, herein ~650 and 1,300 µs, 

respectively. Data were acquired in triplicate on a single xBSA sample, interleaving the 

MFIR and IR protocols. When short pulses yielding broad excitation bandwidths were 

employed, the MFIR and IR protocols resulted in essentially identical parameter estimates 

for the most probable model, biexponential. When long pulses yielding narrow excitation 

bandwidths were employed, the MFIR and IR protocols again resulted in essentially 

identical parameter estimates for the most probable model, biexponential. Of particular 
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note, however, the estimated fractional amplitude of the fast relaxation component (F) 

increased markedly from ~3% with short (broadband) pulses to ~20% with long (narrow 

band) pulses. Consistent with the signal-to-noise increase for the fast relaxation 

component, and corresponding decrease for the slow component, the uncertainly in the 

estimated R1,fast decreased and that for the estimated R1,slow increased [17]. These results 

are summarized in Table 2.4. 

Table 2.4: Summary of Parameter Estimates for xBSA Phantom Comparing MFIR & IR 

vs. Pulse Width 

 

 

2.4 Discussion 
The biexponential model is heavily favored for the high SNR, high sampling density, 

relaxation datasets from both the xBSA phantom and mouse brain (white matter) in vivo, 

supporting the conclusion that the xBSA phantom is a good in vitro longitudinal relaxation 

surrogate for tissue [8, 10]. In addition, both samples (xBSA, in vivo brain) yield derived 

model parameters that have similar characteristics: (i) the relaxation rate constants 

associated with the fast and slow relaxation components are well-resolved, separated by 

two orders of magnitude, and (ii) the fractions of the total amplitude attributable to the fast 

and slow relaxation components from the xBSA phantom and the in vivo results are 

comparable. Though the in vivo and in vitro data were collected at different magnetic field 

strengths – 200 MHz and 500 MHz, respectively – and, thus, the R1 values cannot be 

directly compared, as expected, relaxation of the dominant component (R1,slow) at 11.74 
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T vs. 4.7 T is less efficient due to reduced spectral density at the higher resonance 

frequency. Finally, the residuals from the biexponential modeling of both the xBSA and in 

vivo datasets show the same systematic oscillatory feature, indicating that, while the 

model captures well the principal features of the signal, it does not fully characterize the 

data. However, when tested against a triexponential function, Bayesian model selection 

still heavily favored the biexponential model in both the in vitro and in vivo cases (data 

not shown). In Bayesian analysis, each additional parameter added to a model naturally 

incurs a penalty related to the posterior probability distribution of that parameter, so that 

more complex models (models with more parameters) must markedly improve the 

goodness of fit (e.g., chi squared) or be rejected, a manifestation of Occam’s razor. 

The failure of a triexponential function to improve the modeling indicates that the penalty 

associated with adding two additional parameters (a third rate constant and associated 

fractional amplitude) more than offsets any resulting improvement in the goodness of fit. 

The failure of the triexponential model, of course, does not preclude the use of other 

models that might better describe the system. Having demonstrated that the xBSA 

phantom mimics in vivo tissue longitudinal relaxation will allow us to utilize this phantom 

in future experiments as a tissue surrogate to further probe the R1 measurement as 

regards modifiers of interest, e.g., pH, protein content, pO2. 

As the monoexponential model is used frequently to fit longitudinal relaxation data, the 

residuals and the Bayesian-estimated posterior probability distributions from the favored 

model were compared with those from the monoexponential model for the full, 96 TIs, 

and truncated, 51 TIs, xBSA relaxation datasets, and the in vivo datasets, 128 TIs. In all 

cases, we observe a clear shift in the location of the peak (maximum probability) of the 
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posterior probability distribution for the slow decay-rate constant derived with the favored 

model vs. the rate constant posterior probability distribution derived from a 

monoexponential fit. The monoexponential model is a relatively poor representation of 

the system, lacking sufficient parameters to accurately characterize the longitudinal 

relaxation, especially for the early time points (short TI values). For both the full xBSA 

and in vivo datasets, the monoexponential model attempts to characterize both the fast 

and slow components with a single rate constant, resulting in a skewed parameter 

estimation. Attempting to fit a dataset with a model that lacks sufficient complexity may 

yield a precise parameter estimate(s) that is not accurate, as seen in Figures 2.2C (full 

xBSA dataset), 2.3C (in vivo dataset), and 2.4C (truncated xBSA dataset). In each case, 

however, the change in the uncertainty of the estimated rate constant from the preferred 

rate-constant model is insignificant compared to that derived from the less probable, 

simple monoexponential model. 

As noted, given its rapid decay and small fractional amplitude, it is difficult to characterize 

accurately the fast relaxation component. This will be especially true in relaxation 

experiments in vivo, in which acquisition time and SNR are limiting. Consequently, it is 

worth considering how to collect data corresponding only to the slow component, and to 

consider how doing so may affect the derived parameters. Using the resulting T1,fast from 

the joint analysis of twelve full xBSA datasets with 96 TIs, the time t = 5 x T1,fast was 

calculated and the data points collected at shorter TI values were dropped (truncated) 

from the dataset. In principle, at TI = 5 x T1,fast, >99% of the fast relaxation component will 

have returned (decayed) to thermal equilibrium polarization so that, in effect, all of the 

relaxation signal derives from the slow relaxation component. Therefore, it would seem 
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logical that the favored (most probable) relaxation model describing the truncated data 

would be monoexponential. Instead, however, these data were best described by the 

stretched exponential model. As illustrated by the estimated parameter values shown in 

Results, the stretching parameter () is very close to 1 and, therefore, the stretched model 

is not far removed from a pure monoexponential. However, as shown in Figure 2.4B, even 

a small change in  is enough to produce significant changes in the resulting residuals. 

The RMS residual from the monoexponential fit is three times greater than that of the 

stretched exponential, illustrating that the added complexity results in significantly 

improved modeling of the data. In addition, the peak in the posterior probability density 

for the R1 relaxation rate constant (Figure 2.4C) for the monoexponential (R1 = 0.4157 s-

1) is shifted with respect to the peak of the distribution corresponding to the stretched 

exponential (R1 = 0.4197 s-1). This shift is significant enough that the distributions are well 

resolved, demonstrating that the choice of model does affect the accuracy of parameter 

estimation. (If only the relative differences in parameter values between tissue types, and 

not their true values, are important, this introduction of bias into parameter estimation may 

not matter.) Thus, when attempting to quantify R1 accurately and precisely, model 

selection is necessary. When applied to a cohort of competing signal models, Bayesian 

model selection can provide: (i) an avenue to make quantitative biophysical inferences 

and (ii) a check against over-interpretation/over-parameterization of data. Of the five 

models we tested, the biexponential and stretched exponential models best represent the 

full TI datasets and the truncated datasets, respectively. However, systematic smooth 

oscillations in the residuals demonstrate that these functions do not fully model the data.  
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The existence of these systemic oscillations, even from the favored choice among our 

cohort of five signal models, is not a limitation of Bayesian-based model selection but, 

instead, is a limitation in the ability of the models used to represent the data. As described 

previously, even when a more complex exponential model --a triexponential model – was 

included, the biexponential model was still favored. This means the increase in 

parameterization did not result in a sufficiently decreased residual so as to favor the more 

complex model. To further reduce or eliminate those systemic oscillations, other signal 

models will have to be explored. A model that accounts for exchange between water-

relaxation-populations, such as the Bloch-McConnell exchange model [18] or perhaps a 

multi-modal R1 distribution model, such as those based on the work of Brownstein and 

Tarr [19, 20] may result in a substantially improved data representation. 

To select the “best” (most probable) model, Mopt, from the cohort of competing models, M 

= {Mi}, the Bayesian-based algorithm seeks the highest valued posterior probability 

P(M|DI), Eq. [7]. Assuming relatively uninformative model prior probabilities, P(M|I), as 

employed herein, P(M|DI) is principally determined by the marginal direct probability for 

the data, P(D|MI), given model M, which is inversely proportional to the aggregate 

calculated uncertainty over all parameters (more formally, integration over all probability 

distributions); see Eq. [8] for an example. A more complex model must result in a 

significant decrease in the aggregate uncertainty to be favored over a model with fewer 

free parameters, a manifestation of Occam’s razor. Examples of this are given by the 

modeling residuals described in Results, as well as the RMS residual values for the 

favored and monoexponential models shown in Table 2.1. 



42 

 

Often, experiments are acquisition-time- or signal-to-noise-limited. To better understand 

the effect of such limitations, the data corresponding to the xBSA slow relaxation 

component were modified. To mimic time constraints, the xBSA datasets with 51 TIs were 

truncated to reduce the sampling density within each dataset. Collecting data with all 51 

TI values, which requires 20 or more minutes, represents the case of no significant time 

constraints, as in, for example, the study of ex vivo tissue samples. 26 TIs, requiring 

perhaps 10 minutes of data collection, represents a typical small-animal scan. Finally, the 

relaxation experiment employing only 7 TIs, represents a short data-collection period, as 

might be required for a clinical scan. For each of these cases, Bayesian-based model 

selection was performed jointly on twelve datasets and, in each case, the stretched 

exponential model was heavily favored. 

The effect of decreasing sampling density, mimicking increasingly limited data-acquisition 

time, on the Bayesian-estimated posterior probability distribution for the decay-rate 

constant is illustrated in Figure 2.5A. As the number of TIs decreases, the posterior 

probability distribution becomes broader, demonstrating that certainty in the parameter 

estimation decreases with decreasing sampling density. We note that as the original 

xBSA datasets were acquired under very high SNR conditions and the preferred model, 

the stretched exponential, has only four parameters, the Bayesian-estimated posterior 

probability distributions are narrow, even for the case of 7 TIs. 

To see this effect more clearly, Gaussian-distributed noise was added to the twelve xBSA 

datasets with 51 TIs to reduce the SNR to the intermediate case of SNR = 100, which 

can be achieved in a single voxel in vivo MR spectroscopy (MRS) relaxation experiment, 

and subsequently truncated to reduce the sampling density to 26 TIs and further 7 TIs. 
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For each of these cases, Bayesian-based model selection was performed jointly on 

twelve datasets and, in each case, the stretched exponential model was heavily favored. 

The resulting posterior probability distributions for the rate constants are shown in Figure 

2.5B. We see the same general trend as that of the high SNR case (Figure 2.5A), 

broadening of the distributions as the sampling density decreases. Here, the effect is 

exacerbated by the decreased SNR (SNR = 600 vs. 100). 

To simulate the case in which signal-to-noise is the limiting factor, Gaussian-distributed 

noise was added to the 51 TI datasets so that the SNR decreased from its original value 

of 600, to an intermediate value of 100, and further down to 25, typical of an in vivo MR 

imaging relaxation experiment. For the SNR = 25 case, the monoexponential model was 

heavily favored, whereas the stretched exponential model was heavily favored for both 

the cases of SNR = 600 and SNR = 100. The resulting Bayesian-estimated posterior 

probability distributions for the decay-rate constant and alpha parameters from the 

stretched exponential model are shown in Figures 2.6A and 2.6B, respectively. Figure 

2.6C shows the resulting parameter estimates when the monoexponential model is used. 

As the SNR decreased, the resulting posterior probability distributions become much 

broader, with the standard deviation for the R1 estimation increasing by a factor of 

approximately 5. It is important to note that in this case, the standard deviation is not a 

measure of the spread of measured rate constants within our population. Here, the 

standard deviation is a Bayesian-derived measure of the uncertainty in the calculated 

parameter estimate. The added noise can be thought of as uncertainty within the data, 

which is propagated through, and reflected in, the increased uncertainty of the parameter 
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estimates. This means that with increased noise, the precision of the parameter 

estimation decreases. 

There is also a shift in the peak of the posterior probability distribution for the case of SNR 

= 25 with respect to the high and intermediate SNR cases (Figures 2.6A & 2.6B, Table 

2.3). This can be explained by the change in the favored model, as the result of fitting the 

data with a different model introduces bias into the parameter estimation. While the 

variations in the parameter estimates (shifts in positions of the peaks of the posterior 

probability distributions) and uncertainties therein (changes in widths of the posterior 

probability distributions) are modest as SNR and sampling density are degraded, the 

trends are informative and consistent with what would be observed under more severe 

degradation of data quality. 

An important consideration regarding this result is that, while a SNR = 25 can be 

considered low, the joint analysis of three (in vivo) and twelve (xBSA) replicate datasets, 

each with different additive noise elements but the same noise power, greatly increases 

the statistical power of Bayesian inference. From a frequentist point of view, assuming all 

dataset members are of equal quality (i.e., equally informative), the full dataset SNR is 

proportional to the square root of the number of replicate members in the dataset. Thus, 

while each of the twelve replicate members of the xBSA dataset had SNR = 25, the full 

dataset can be considered to have a SNR = 25 x (12)1/2 = 87. Thus, even under conditions 

in which each xBSA dataset member had SNR = 25, the joint analysis of twelve replicate 

members yielded quite precise parameter estimates. 
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The tissue-mimicking xBSA phantom possesses both a narrow water 1H resonance, 

characteristic of a small, highly mobile, randomly reorienting molecule and a very broad 

crosslinked-protein 1H resonance feature, characteristic of semi-solid macromolecules. A 

short, 180-degree pulse will invert magnetization over a broad range of resonance 

frequencies (e.g., 20 µs → ~5,000 Hz), thus, to first approximation, inverting both the 

water and the crosslinked protein 1H magnetization. In this case, 1H magnetization 

transfer between water and protein pools does not act as an efficient longitudinal 

relaxation mechanism for water. A long, 180-degree pulse will invert magnetization over 

a narrow range of resonance frequencies (e.g., 1.6 ms → ~600 Hz), thus, to first 

approximation, inverting the water 1H magnetization while leaving the majority of the 

protein 1H magnetization in the thermally equilibrated (Boltzmann) polarized state. In this 

case, 1H magnetization transfer between water and protein pools acts as an efficient 

longitudinal relaxation mechanism for water. The data summarized in Table 2.4 bear this 

out. In the case of short (broadband) RF pulses, the fractional amplitude of the fast 

relaxation component, which reflects the population of water molecules that relax via 

magnetization transfer with the crosslinked protein pool, is near zero (~3%), but increases 

markedly to 20% in the case of long (narrowband) RF pulses. Long RF pulses (1 - 4 ms) 

are typical of in vivo MRI protocols and, thus, magnetization transfer effects will manifest 

significantly in longitudinal relaxation experiments in vivo [10]. 

In conclusion, we have shown that xBSA displays similar longitudinal relaxation 

characteristics to that of in vivo brain tissue, allowing for future characterization of the 

effects of likely important endogenous modifiers of R1 in tissue, such as pO2, pH, and 

protein content. We have also shown that the MFIR pulse sequence yields very similar 
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results to the standard IR pulse sequence but that, in the presence 1H magnetization 

transfer between water and cross-linked protein, pulse widths can have a substantial 

effect upon relaxation characteristics and, thus, parameter estimates. Finally, we have 

shown the utility of Bayesian-based model selection (and related parameter estimation) 

for selecting amongst a cohort of competing signal models. As data become less 

informative (e.g., sparser, lower SNR), simpler models (e.g., those with fewer parameters) 

are preferred, in the Bayesian sense of being more probable, given the data and the prior 

information. 
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Chapter 3: Elucidating Challenges to 1H 

Longitudinal Relaxation Quantification 

of pO2 with a Tissue Mimic2 

 

3.1 Introduction 
Molecular oxygen (O2) is a vital component of energy production within the body, and 

impaired delivery or consumption of oxygen is a recognized hallmark of metabolic 

dysfunction and disease. Knowledge of tissue oxygen partial pressure (pO2) can aid in 

diagnosis and treatment planning. For example, hypoxic tumors exhibit increased 

resistance to chemotherapy[1] and radiation therapy[2], and increased angiogenesis[3]. 

Recent studies suggest that hypoxia in adipose tissue drives insulin resistance[4]. 

Impaired delivery of O2 is also a potential biomarker for placental dysfunction, inducing 

long-term adverse outcomes for both mother and fetus[5, 6].  

Robust methods for the non-invasive quantification of tissue pO2 are lacking. Optical 

imaging techniques are sensitive to blood oxy- and deoxy-hemoglobin levels[7], which 

can be modeled to yield, for example, the tissue metabolic rate of oxygen consumption[8] 

and hemoglobin oxygen saturation[9-11]. Optical imaging has limited depth of 

penetration, however, typically on the order of a few millimeters to a centimeter. Positron 

Emission Tomography (PET) utilizes hypoxia-sensitive radiotracers to detect hypoxic 

 
2 This chapter largely reflects a manuscript that has been submitted to Magnetic Resonance in Medicine 
and is under revision, with minor additions relevant to the thesis. 
(Kelsey Meinerz, Scott C Beeman, James D Quirk, G Larry Bretthorst, Joel R Garbow, and Joseph JH 
Ackerman). 
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cells[12-14]. However, PET spatial resolution is typically a millimeter or larger and 

requires administration of radioactive isotopes. 

Magnetic Resonance (MR) techniques are non-invasive, can probe the entire body, and 

provide sub-millimeter spatial resolution. Blood-oxygen-level dependent (BOLD) MR 

contrast results from alterations in the magnetic susceptibility of blood arising from 

changes in the oxy-hemoglobin to deoxy-hemoglobin ratio[15]. An increase in the relative 

amount of diamagnetic oxy-hemoglobin vs paramagnetic deoxy-hemoglobin decreases 

the susceptibility difference between intra- and extra-vascular spaces. This increases the 

magnetic field homogeneity over the affected tissue, leading to a decrease in the tissue 

water 1H transverse relaxation rate constants (principally R2* but also R2). In essence, 

BOLD MRI leverages the magnetic state of hemoglobin to provide endogenous contrast 

reflecting the oxygen content of blood. However, quantitative BOLD experiments are quite 

challenging[16] and BOLD results are often expressed simply as signal change relative 

to a baseline measurement. 

A related technique, termed Tissue Oxygen Level Dependent (TOLD) MR, recognizes 

that O2 is weakly paramagnetic and thus that dissolved oxygen affects the 1H longitudinal 

relaxation rate constant (R1) of tissue water (see Ding, et al.[17], and references therein). 

In principle, R1 is directly proportional to tissue pO2 via the relationship 

 R1=R1,0+r1∙pO2, [1] 

in which R1,0 is the longitudinal relaxation rate constant in the absence of oxygen and r1 

is the “relaxivity” of oxygen. TOLD protocols employ inhaled gas mixtures of varying 
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oxygen content to change tissue pO2 while collecting R1-weighted images. Changes in 

R1 are interpreted as resulting from changes in tissue pO2. 

Knowledge of R1,0 and r1 would potentially allow for an R1-based method for true 

quantification of pO2. However, as the solubility of O2 in water is limited (~1.1 mM or ~34 

mg/L at 37 C and 1 atmosphere partial pressure of 100% O2[18]) and the O2 magnetic 

relaxivity is weak (~14% that of Gd-DTPA[18, 19]), the effect of dissolved O2 on tissue 

water relaxation is expected to be quite small[20, 21]. Indeed, we have previously 

reported the oxygen r1 for in vivo mouse brain to be ~ 9 x 10-4 mmHg-1s-1[22]. Thus, 

substantial MR measurement and analysis challenges need to be addressed to account 

for and/or mitigate other relaxation dependencies, e.g., blood flow[22], which compete 

with the direct effect of oxygen on longitudinal relaxation in vivo. 

Of specific relevance to this study, longitudinal relaxation of tissue water is better 

approximated in practice by a biexponential model rather than a monoexponential 

model[23-25]. This reflects, to first approximation, the presence of two apparent distinct 

populations of 1H spins. The rapidly relaxing population, characterized by rate constant 

R1,fast and fraction F, describes the minority population of water molecules that relax 

quickly via magnetization transfer (MT) with the semi-solid macromolecular matrix. The 

immobile protons associated with the macromolecular matrix have very large R2 values 

(very short T2; < 1 ms) such that direct detection via MR is unfeasible[26]. However, 

through either direct chemical exchange, where the hydrogen nuclei themselves are 

exchanged, or indirect dipole-dipole cross-relaxation, where the spin states between pairs 

of nuclei are exchanged, magnetization is transferred and the water protons are aided in 
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their return to thermal equilibrium[27]. This MT effect is likely driven by direct chemical 

exchange with solvent (water) accessible amides on the surface of proteins. The slowly 

relaxing population, characterized by rate constant R1,slow and fraction 1-F, describes the 

majority population of water molecules. This slowly relaxing majority population is referred 

to herein as “non-MT” although it is recognized that MT through mechanisms other than 

rapid chemical exchange can affect relaxation at longer timescales[28]. The biexponential 

function can be written as 

 Mz(t)= A+B[F* exp(-R1,fast*t) +(1-F)* exp(-R1,slow*t)]. [2] 

in which A is a constant representing the signal intensity at equilibrium (t = ∞) and A + B 

is the signal intensity at t = 0. Since the relaxivity of O2 is small and MT dominates the 

R1,fast spin population, we expect R1,fast will be relatively insensitive to oxygen 

concentration. Indeed, data acquired on brain and muscle in mouse in vivo show that, 

while R1,fast is insensitive to pO2 changes (Figure 3.1, B & E), R1,slow is linearly dependent 

on pO2 (Figure 3.1, A & D). Therefore, the relationship from eq.[1] becomes  

 R1,slow=R1,0,slow+r1,slow*pO2, [3] 

where R1,0,slow is the background relaxation rate constant describing the slowly relaxing 

component in the absence of dissolved tissue oxygen, and r1,slow is the relaxivity of oxygen 

pertaining to the slow component. 
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Figure 3.1. Biexponential Modeling of Longitudinal Relaxation in Vivo vs Tissue 

pO2 in the Mouse. A) R1,slow, B) R1,fast, and C) (1-F) as a function of pO2 in the thalamus 

and D) R1,slow, E) R1,fast, and F) (1-F) as a function of pO2 in the gastrocnemius muscle. 

Relaxation data were collected with the voxel placed directly beneath the OxyLite® probe 

tip and tissue pO2 was modulated by administering varying breathing gas mixtures of O2 

and N2. All animal experiments were approved by the Washington University Institutional 

Animal Care and Use Committee. Each point is the result of a single PRESS-IR 

experiment as described previously[24] at 4.7 T, selecting a (2 mm)3 voxel, with 64 TIs 

ranging from 0.0075 s to 6 s, echo time (TE) of 14 ms, and a relaxation delay of 4 s (total 

scan time 9 min 4 s). Relaxation data were fit to a biexponential model using Bayesian 

probability theory-based methods[29]. Vertical error bars show ± a calculated standard 

deviation, reflecting the uncertainty in the parameter estimation. Horizontal error bars 

show ± a standard deviation of the directly measured pO2 values in the tissue over the 

course of each PRESS-IR experiment. The relaxivity values for R1,slow vs pO2 were 

determined via the Errors in Variables package in the Bayesian analysis toolbox[30] and 

are inlaid in A) and D). 

 

In addition to blood flow, physiologic parameters such as temperature, pH, and protein 

concentration also likely affect R1,slow, thereby confounding quantitative measurements of 
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pO2. To understand the magnitude of these effects, cross-linked bovine serum albumin 

(xBSA) was employed as an experimentally tractable phantom that mimics relaxation in 

tissue[23, 24, 31]. Cross-linked bovine serum albumin exhibits a substantial MT effect 

such that the longitudinal relaxation is better modeled as biexponential vs 

monoexponential (Figure 3.2). As an in vitro tissue surrogate, its pH, temperature, and 

protein content can be varied. Herein, we use xBSA phantoms to investigate and quantify 

the relationship between R1 and pO2, and investigate the effects of potential physiologic 

confounds on an R1-based pO2 measurement.  

 

Figure 3.2. Longitudinal Relaxation in xBSA is Biexponential. A) Representative 128 

TI relaxation time dataset (open diamonds) from the xBSA phantom, fit with the heavily 

favored biexponential model (blue line) and the monoexponential model (red line). Early 

time points are inlaid to show where the monoexponential model deviates most 

significantly. B) Resulting residual amplitudes from fitting with both models. The 

biexponential fit has a normalized root mean square (RMS) residual of 0.002, while the 

monoexponential fit has a resulting RMS residual of 0.686.  
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3.2 Methods 

3.2.1 Phantom Preparation and Data Acquisition 

xBSA samples were prepared by dissolving lyophilized bovine serum albumin (BSA) 

powder (Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffered saline (PBS, pH 7.4) 

solution. The solution was prepared to be 30% (w/v) BSA for all experiments, except 

those varying protein concentration. Samples were cross-linked using 2.5% (v/v) of a 50% 

glutaraldehyde solution (Electron Microscopy Sciences, Hatfield, PA, USA) in a 35-mm 

diameter polystyrene petri dish. Following the addition of glutaraldehyde, samples were 

stirred by hand with a spatula for approximately one minute, covered in parafilm, and 

placed into a sealed container in the refrigerator (~4C) for five days. Cylindrical pieces 

of xBSA were then cored out and placed into a 5-mm, susceptibility-matched, NMR 

microtube (Shigemi Inc, Allison Park, PA, USA) (Figure 3.3, A & B), sealed with parafilm, 

and maintained at 37C for ~24 hours prior to data acquisition. Unless otherwise noted, 

all MR experiments were performed with samples maintained at 37C. 
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Figure 3.3. xBSA sample preparation. A) Full Shigemi tube with susceptibility matched 

insert and B) zoomed-in image of Shigemi tube combination with cylindrical piece of xBSA 

sample inside, for temperature, pH, and protein concentration modulation experiments. 

C) Cylindrical xBSA sample with OxyLite® and temperature sensor embedded within it 

for pO2 modulation experiment and D) xBSA sample and sensors placed in glass vial and 

plastic bag prior to placement within the RF coil. 

 

In experiments examining the dependence of xBSA relaxation on temperature, the 

sample temperature was varied by initially equilibrating the samples at 40C overnight 

using a heating block and acquiring data using an NMR probe maintained at 40C. This 

overnight heating was dual purpose: 1) xBSA samples exhibited color and opacity 

changes following crosslinking and heating and 2) was a matter of convenience. The color 

and opacity changes occurred within a few hours of heating and it was unknown if the 

A B C 

D 
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root of these changes would also affect the MR results, driving the decision to wait until 

the samples had stabilized. Following data acquisition at 40C, the probe temperature 

was lowered to 37C and samples were allowed to equilibrate prior to data collection at 

that temperature. The probe temperature was then lowered to 34C, followed by another 

equilibration period prior to data acquisition.  

In experiments examining the dependence of xBSA relaxation on protein content, the 

sample protein concentration was varied by initially dissolving lyophilized BSA powder 

into PBS to create a solution that was 40% protein (w/v) and subsequently diluting this 

sample to create solutions that were 30%, 20%, and 10% protein (w/v). Crosslinking and 

subsequent sample preparation were as described above. 

In experiments examining the dependence of xBSA relaxation on pH, the sample pH was 

varied through the addition of either sodium hydroxide (NaOH) or hydrochloric acid (HCl) 

to the 30% BSA solution before crosslinking. The pH of the solution prior to crosslinking 

was measured using an Orion PerpHecT ROSS Comb Micro pH electrode probe (Thermo 

Fischer Scientific Inc, Waltham, MA, USA). Crosslinking and subsequent sample 

preparation were as described above. The pH of the crosslinked material was measured 

by two different methods: (i) the electrode probe used in solution and (ii) NMR via 31P 

measurements of the pH sensitive inorganic phosphate resonance[32]. The two methods 

provided similar results; herein the reported values resulted from measurements via the 

pH electrode. 

In experiments examining the dependence of xBSA relaxation on pO2, the sample pO2 

was varied by blowing humidified O2 gas over a small xBSA cylindrical sample placed in 
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an open glass vial contained in a partially sealed plastic bag under positive pressure 

(Figure 3.3, C & D). Sample pO2 was measured in real time via an implantable OxyLite® 

(Oxford Optronix, Abingdon, Oxford, UK) O2-sensing optical microprobe at a rate of one 

measurement per minute. Reported values are the averages of all measurements 

performed over the course of each relaxation experiment and the error bars reflect the 

calculated standard deviation of those values. 

Agar gel samples were prepared by initially dissolving agar powder (Sigma-Aldrich, St. 

Louis, MO, USA) in PBS at a concentration of 0.6% (w/v) agar. The agar solution was 

heated in a boiling water bath, with occasional stirring, until the solution became 

transparent. The solution was then removed from the bath, poured into polystyrene weigh 

boats (Thermo Fischer Scientific Inc, Waltham, MA, USA) and allowed to cool overnight 

at room temperature. Modulation of sample pO2 was varied by blowing humidified gas 

mixtures over a small sample of this agar gel in an open glass vial contained in a partially 

sealed plastic bag under positive pressure. The humidified gas was created by combining 

N2 gas, O2 gas, and medical air (~20% O2) via a gas mixer (Matheson Tri-Gas, Irving, TX, 

USA) and bubbling the subsequent gas mixture through a sealed flask of water. Sample 

pO2 was monitored in real time as stated above. 

1H NMR relaxation experiments were performed on either (i) a 500-MHz (11.74 T) Agilent 

(Agilent Technologies, Santa Clara, CA, USA) high-resolution (“analytical”) NMR 

spectrometer in a standard 5-mm RF probe or (ii) a 11.74 T small-animal Agilent MRI 

system using a 1.6 cm ID birdcage coil (Stark Contrast MRI Coils Research, Erlangen, 

Germany). The former instrument was employed to quantify the relaxation dependence 

upon temperature, pH, and protein concentration while the latter was employed to 
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quantify the relaxation dependence upon pO2. Data acquisition on the analytical NMR 

spectrometer employed a Modified Fast Inversion Recovery (MFIR) pulse sequence[33] 

with acquisition parameters: 10,000 Hz bandwidth, 2,500 complex data points, water 1H 

linewidth ~100 Hz, 128 exponentially spaced inversion delay times (TI) ranging from 5 ms 

to 7.5 s. Total repetition time (TR = W + TI), where W is the relaxation delay, was 8.5 s. 

Square radiofrequency (RF) pulses were employed for inversion and observation with a 

typical 180 degree pulse ~1400 s (i.e., approximating the in vivo MR situation, which 

maximizes the MT R1,fast component), and five discarded acquisitions were utilized to 

achieve steady-state. A 1 ms crusher gradient was applied following the inversion pulse 

to suppress any residual transverse magnetization arising from imperfect inversion. 

Data acquisition on the MRI scanner also employed the MFIR pulse sequence in 

combination with IR-PRESS single-voxel localization. Measurements on each sample 

were acquired in triplicate with a (1.5 mm)3 voxel that included the tip of the OxyLite® 

sensor. MRS acquisition parameters were 4,000 Hz bandwidth, 2048 complex data 

points, water 1H linewidth ~100 Hz, 64 exponentially spaced TIs ranging from 5 ms to 7.5 

s. Total repetition time (TR = W + TI) was 8.5 s. Optimized RF pulses were employed for 

inversion and observation[34], and five discarded acquisitions were utilized to achieve 

steady-state. A 1 ms crusher gradient was applied following the inversion pulse to 

suppress any residual transverse magnetization arising from imperfect inversion. 

 



60 

 

3.2.2 Bayesian-Based Parameter Estimation 

Relaxation parameters were estimated using Bayesian probability theory-based methods, 

as described previously[24, 29, 30]. For these calculations, 400 parallel simulations were 

performed within the Markov-chain Monte Carlo algorithm to sample the posterior 

probabilities for the models and their associated parameters. A minimum of 400 annealing 

steps brought the 400 simulations into a steady-state, at which point 30 samples were 

drawn from each of the 400 simulations. Therefore, 12,000 parameter samples were 

incorporated into the posterior probability density distributions for the models and their 

parameters. The peak of the posterior probability distribution is the most probable 

parameter estimate and the uncertainty for each parameter estimate is taken as the 

standard deviation of the distribution. 

In many cases, the results were calculated from a joint analysis of multiple replicate 

datasets, where some model parameters are considered common for all included 

datasets, while others are dataset specific. For the experiments that varied temperature, 

pH, and BSA concentration, in which relaxation data was obtained in triplicate for two 

samples from the same bulk material and relaxation data were collected in triplicate on 

each, all reported model parameters (R1,slow, R1,fast, and (1-F)) were considered common 

for the six replicate datasets while the initial and equilibrium magnetizations were 

independent for each dataset. The optimal value for each of the common parameters was 

that which best represented all six replicate datasets. For the experiments in which pO2 

was varied, each relaxation dataset was collected on a sample from a different bulk 

material and optimal model parameters were determined for each dataset individually due 

to potential variability between bulk materials. Thereafter, the resulting relaxation 
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parameters vs pO2 datasets were fit jointly with a common slope (r1) but a unique intercept 

(R1,0). The background relaxation rate constant (R1,0) was allowed to vary between 

datasets to reflect small potential variations in bulk material preparation. For comparison, 

these individual datasets were also combined into a single dataset and modeled with both 

a common slope (r1) and common intercept (R1,0), incorporating information about the 

uncertainty in the relaxation parameters and the standard deviation of the pO2 

measurement at each point into the fit. 

3.2.3 Data Truncation 

To simulate the in vivo situation in which scan time is limited and accurate determination 

of the rapidly relaxing component is impractical (and likely unnecessary, vide infra), the 

xBSA relaxation data were truncated to include only the longer half of the TI values. 

Therefore, the data remaining only include those associated with the slowly relaxing 

component such that the shortest TI was approximately 200 ms.  

 

3.3 Results 

3.3.1 Temperature Dependence 

Within the range 34 to 40 oC (physiologic normal ± 3 oC), both the fast and slow 

longitudinal relaxation rate constants depend linearly on temperature (Figure 3.4, A & B). 

In these figures, each data point represents the parameter estimation resulting from 

Bayesian joint analysis of six replicate datasets. Across this range, R1,slow decreases with 

increasing temperature with a slope of -0.011  0.003 C-1s-1 and a y-intercept of 0.9  

0.1 s-1 (R2 = 0.97), while R1,fast increases with a slope of 0.8  0.2 C-1s-1 and a y-intercept 
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of 21  6 s-1 (R2 = 0.99). The fraction of the amplitude reflecting the slow component is 

insensitive to temperature changes (Figure 3.4C). 

 

Figure 3.4. Longitudinal Relaxation in xBSA is Temperature Dependent. A) R1,slow, 

B) R1,fast, and C) (1-F) as a function of temperature variations about physiologic normal. 

Each point in the plot is the result of Bayesian joint analysis of six replicate datasets, with 

vertical error bars reflecting the uncertainty in the joint parameter estimation, and 

horizontal error bars reflecting uncertainly in the temperature maintenance of the 

spectrometer. R1,slow and R1,fast both depend linearly on temperature, (1-F) is unchanged 

with temperature. The trendline for R1,slow is described by the equation y = (-0.011  0.003 

C-1s-1)x + (0.9  0.1 s-1) with an R2 coefficient of 0.97, the trendline for R1,fast is y = (0.8  

0.2 C-1s-1)x + (21  6 s-1) with an R2 coefficient of 0.99, and the trendline for (1-F) is y = 

(0.001  0.001 C-1)x + (0.84  0.05) with an R2 coefficient of 0.15. 

 

3.3.2 Protein Content Dependence 

For the range of protein concentrations studied, both the fast and slow relaxation 

components and the fractional amplitude of those components depend linearly on BSA 

concentration, i.e., protein density (Figure 3.5). In this figure, each point represents the 

parameter estimation resulting from Bayesian joint analysis of six replicate datasets. As 

the protein concentration increases, R1,slow increases with a slope of 0.010  0.005 (w/v)-

1s-1 and a y-intercept of 0.2  0.1 s-1 (R2 = 0.82) and R1,fast increases with a slope of 0.4  
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0.1 (w/v)-1s-1 and a y-intercept of 41  4 s-1 (R2 = 0.89). The fraction of the total amplitude 

describing the slow component also shows a linear relationship with BSA concentration, 

decreasing with a slope of -0.0034  0.0009 (w/v)-1 and a y-intercept of 0.98  0.02 (R2 = 

0.95).  

 

Figure 3.5. Longitudinal Relaxation in xBSA is Protein Concentration Dependent. 

A) R1,slow, B) R1,fast, and C) (1-F) as a function of BSA concentration. Each point in the 

plot results from Bayesian joint analysis of six replicate datasets, with vertical error bars 

reflecting the uncertainty in the parameter estimation and horizontal error bars reflecting 

the estimated uncertainty in concentration determination. R1,slow, R1,fast, and (1-F) are 

linearly related to macromolecule concentration. The trendline for R1,slow is described by 

the equation y = (0.010  0.005 (%w/v)-1s-1)x + (0.2  0.1 s-1) with an R2 coefficient of 

0.82, the trendline for R1,fast is y = (0.4  0.1 (%w/v)-1s-1)x + (41  4 s-1) with an R2 

coefficient of 0.89, and the trendline for (1-F) is y = (-0.0034  0.0009 (%w/v)-1)x + (0.98 

 0.02) with an R2 coefficient of 0.95. 

 

3.3.3 pH Dependence 

Over the range of pH 6.0 to 7.0, both the fast and slow relaxation rate constants are 

linearly related to pH (Figure 3.6). In this figure, each point represents the parameter 

estimation resulting from Bayesian joint analysis of six replicate datasets. As pH 

increases, R1,slow decreases with a slope of -0.08  0.01 s-1 and a y-intercept of 1.18  
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0.09 s-1 (R2 = 0.97), while R1,fast decreases with a slope of -11  4 s-1 and a y-intercept of 

130  30 s-1 (R2 = 0.83). The fractional amplitude of the slow component shows a slight 

increase with pH with a slope of 0.03  0.01 and a y-intercept of 0.68  0.07 (R2 = 0.85). 

Note that at the lowest pH value, relaxation does not fit the trend observed over the pH 

range of 6.0 – 7.0. At low pH, serum albumin is known to undergo reversible 

conformational changes that can lead to differences in the final crosslinked product [35].  

 

Figure 3.6. Longitudinal Relaxation in xBSA is pH Dependent. A) R1,slow, B) R1,fast, 

and C) (1-F) as a function of pH. Each point in the plot is the result of Bayesian joint 

analysis of six replicate datasets, with vertical error bars reflecting the uncertainty in the 

joint parameter estimation and horizontal error bars reflecting the calculated standard 

deviation of the measured pH. R1,slow and R1,fast are sensitive to changes in pH. The 

trendline for R1,slow is described by the equation y = (-0.08  0.01 s-1)x + (1.18  0.09 s-1) 

with an R2 coefficient of 0.97, the trendline for R1,fast is y = (-11  4 s-1)x + (130  30 s-1) 

with an R2 coefficient of 0.83, and the trendline for (1-F) is y = (0.03  0.01)x + (0.68  

0.07) with an R2 coefficient of 0.85. Note that at the lowest pH value, relaxation does not 

reflect the trend observed over the pH range of 6.0 – 7.0 and was therefore excluded from 

the linear fit. At low pH, serum albumin undergoes reversible conformational changes that 

can lead to differences in the final product following crosslinking[35]. 
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3.3.4 pO2 Dependence 

Over the range of 20 to 80 mmHg, we observed a linear relationship between pO2 and 

R1,slow in xBSA tissue mimics (Figure 3.7A) and the relative insensitivity of R1,fast and the 

fractional amplitude to changes in pO2 changes (Figure 3.7, B & C), as predicted. When 

the four experiments were analyzed jointly with a common-valued slope but unique y-

intercepts, r1,slow was found to be 0.00212  0.00005 mmHg-1s-1. 

 

Figure 3.7. Longitudinal Relaxation in xBSA is pO2 Dependent. A) R1,slow, B) R1,fast, 

and C) (1-F) as a function of pO2 in multiple xBSA samples. Each color represents a 

separate sample preparation, the solid lines for each of the four colors represent the fit 

from a joint analysis in which the slope had a common value while the y-intercept was 

unique for each dataset. The dotted gray line represents the fit that results if all the data 

from the four experiments are combined into a single dataset and fit with a linear model. 

In A), the joint and combined relaxivities for the slow component are 2.12 x 10-3  5 x 10-

5 mmHg-1s-1 and 1.23 x 10-3  8 x 10-5 mmHg-1s-1, respectively. In B), the joint and 

combined relaxivities for the fast component are 0.07  0.01 mmHg-1s-1 and 0.03  0.01 

mmHg-1s-1, respectively. In C), the joint and combined slopes for the fractional amplitude 

are -3.1 x 10-4  3 x 10-5 mmHg-1 and -2.2 x 10-4  2 x 10-5 mmHg-1, respectively. 
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Table 3.1. Effects of temperature, pH, protein concentration, and pO2 on relaxivities 

and volume fraction of xBSA 

Parameter r1 Units r1,slow r1,fast (1-F) slope Truncated r1 

(Monoexponential) 

Temperature °C-1s-1 -0.011 

(0.003)a 

0.8 (0.2)a 0.001 (0.001)a 

[°C-1] 

-0.010 (0.003)a 

pH [6.0-7.0] s-1 -0.08 

(0.01)a 

-11 (4)a 0.03 (0.01)a -0.08 (0.02)a 

BSA 

Concentration 

(%w/v) -1s-1 0.010 

(0.005)a 

0.4 (0.1)a -3.4E-3 (9E-

4)a [(%w/v) -1] 

0.010 (0.005)a 

pO2 mmHg-1s-1 2.12E-3 

(5E-5)b 

0.07 (0.01)b -3.1E-4 (3E-

5)b [mmHg-1] 

2.05E-3 (6E-5)b 

Values reported as mean (calculated parameter uncertainty) 

a Resulting from Given Polynomial Order package in the Bayesian analysis toolbox. 

b Resulting from joint linear model from the Enter Ascii Model package in the Bayesian 

analysis toolbox in which slope is common valued while y-intercepts are allowed to vary 

across datasets. 

 

Over the range of 0 to 150 mmHg, the linear relationship between pO2 and R1 in agar is 

additionally confirmed (Figure 3.8) with considerably higher inter-sample precision 

compared to xBSA samples. However, this agar sample does not exhibit the full 

characteristics of a tissue mimic as it does not show a fast relaxing MT component (i.e., 

its longitudinal relaxation is monoexponential). When the three experiments were jointly 

analyzed with a common-valued slope but unique y-intercepts, r1 in agar was found to be 

0.00019  0.00006 mmHg-1s-1. 
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Figure 3.8. Longitudinal Relaxation in Agar Gel is pO2 Dependent. R1 as a function 

of pO2 in multiple 0.6% (w/v) agar samples with each color denoting a separate sample 

preparation. The solid lines for each of the three colors represent the resulting fit from a 

joint analysis in which the slope had a common value, while the y-intercept was unique 

for each of the three datasets. The dotted gray line represents the fit that results if all the 

data from the three experiments are combined into a single dataset and fit with a linear 

model. The joint and combined relaxivities for the rate constant are 0.00019  0.00006 

mmHg-1s-1 and 0.00018  0.00002 mmHg-1s-1, respectively. 

 

 

3.4 Discussion 
3.4.1 The Two-Component Relaxation (Biexponential) Model 

Modeling the 1H longitudinal relaxation of water in xBSA as reflecting two, idealized, 

monoexponentially-relaxing, water populations (MT and non-MT) is, of course, an 

approximation. There is exchange between the two populations, although this exchange 

is sufficiently slow such that the two-component relaxation character is clearly evident 

and the two orders of magnitude difference between observed rate constants implies that 
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the system lies close to the slow exchange limit. Therefore, the observed rate constants 

and amplitudes should approximate the true population amplitudes and rate constants. 

Additionally, exchangeable 1H in proteins exhibit a range of exchange rate constants 

(inverse of pre-exchange lifetimes)[36, 37], thus, R1,fast is an “apparent” or “effective” rate 

constant. While the fast relaxing water 1H MT population is likely dominated by solvent 

(water) accessible primary amide groups, e.g., amide moieties on the peptide surface, it 

is unrealistic to assume a single pre-exchange lifetime for all “fast” exchange sites. Similar 

considerations apply to R1,slow; it is an apparent or effective rate constant, one that best 

captures the slow relaxation character of the non-MT pool. 

3.4.2 Temperature Dependence 

While 37.0 C  0.5 C is considered the normal human body temperature, interpersonal 

and intrapersonal temperature variations are expected due to a number of factors, 

including a person’s circadian rhythm[38]. xBSA phantom measurements described 

herein found a linear dependence of R1,fast (increasing) and R1,slow (decreasing) over a 34-

40 C temperature range.  

While the effect is modest, it is consistent with a temperature-driven (i) increase in the 

rate of 1H magnetization exchange (magnetization transfer) between the semi-solid-like 

macromolecular matrix and highly mobile tissue water and (ii) an increase in the 

correlation time of the highly mobile tissue water. These data imply that modest changes 

in tissue temperature will affect measured values of R1,slow, thereby confounding 

quantification of tissue pO2. Therefore, the accuracy of an R1,slow-based method for 

quantifying pO2 in vivo will depend on knowledge of tissue temperature. 
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In some cases, the use of minimally invasive, MR-compatible, implantable probes, i.e., 

fiber optic sensors, will allow measurement of tissue temperature. However, some regions 

of the body, i.e., brain tissue, are inaccessible via such methods. Magnetic Resonance 

Spectroscopy (MRS) techniques can in some cases be used to determine tissue 

temperature via the temperature-sensitive 1H chemical shift of water relative to a 

reference resonance. For example, in the brain, the chemical shift of water relative to 

NAA can provide precise measurements of tissue temperature[39]. 

3.4.3 Protein Content Dependence  

As expected from the simple two-population model (MT and non-MT), both the measured 

R1,fast and R1,slow increase (linearly) with BSA concentration. This is consistent with (i) an 

increase in sites for MT as the concentration (density) of the semi-solid-like 

macromolecular matrix increases with an increase in protein concentration and (ii) the 

presence of slow exchange between the two water populations. Note that F, the 

population fraction of the fast relaxing (MT pool) also increases (1-F decreases) with 

protein concentration, consistent with the two-population model. 

Protein concentration varies across tissue types in vivo[40] and will need to be considered 

in development of R1,slow-based pO2 quantification. Fortunately, protein concentration in 

various tissues has been studied, with results reported in the literature[41, 42]. For 

example, it has been reported that muscle cells are approximately 23% protein by weight, 

and actively growing cells approximately 17-26% protein by weight[40].  

3.4.4 pH Dependence 

1H exchange between amide groups in proteins and solvent (water) is acid, base, and ion 
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catalyzed. Principal sites for the chemical-exchange-driven MT that results in the fast 

relaxing component in the xBSA phantom are solvent accessible primary amides. Given 

their weak acidity, pKa > 15, a pH change from 6 to 7 is expected to produce a negligible 

shift in amide protonation state. However, the number of fast exchanging 1H sites has 

been shown to increase as the pH increases from 5 to 8. This has been proposed[36] to 

be due to subtle changes in the protein’s equilibrium conformational ensemble, resulting 

in an increase in the population of solvent accessible 1H exchange sites. Nevertheless, 

irrespective of the underlying mechanism that changes some of the slow 1H exchange 

sites into fast 1H exchange sites, it is likely that a substantial fraction of these new fast 

exchange sites are only partially solvent accessible, compared to fast exchange sites on 

the protein surface. Thus, these new 1H exchange sites are characterized by “fast” rate 

constants that are somewhat slower than those of the fully solvent accessible 1H 

exchange sites. The addition of these “slower” fast exchange sites with increasing pH 

could cause a decrease in R1,fast and, due to exchange between the two relaxation 

populations, MT and non-MT, a decrease in R1,slow. Amide exchange has been reported 

to decrease with decreases in pH[43, 44]. Therefore, as pH increases - driving faster 

exchange - the observed population fraction of the slow component (1-F) is increasingly 

weighted by the dominant slow component.  

Tissue pH is known to vary across tissue types, with some evidence suggesting variability 

even within an extended region of similar tissue, i.e., variation across regions of the 

brain[45]. Additionally, studies have shown significant changes in tissue pH following 

incision[46], development of arthritis[47], and in tumor vs healthy tissue[48]. Precise 

characterization of pH in vivo is challenging, as most implantable probes are invasive and 
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not MR-compatible. Alternatively, a variety of MR-detectable molecules, both 

endogenous and exogenous, have been employed to determine pH in vivo[49]. 

Endogenous phosphorus metabolites[32, 50] and histidine[51] have pH-dependent 31P 

and 1H chemical shifts, respectively. Administration of exogenous 3-

aminopropylphosphonate (3-APP)[52] or (±) 2-imidazole-1-yl-3-ethoxycarbonyl propionic 

acid (IEPA)[53], also yield detectable agents with pH-dependent 31P and 1H chemical 

shifts, respectively. Recently, chemical exchange saturation transfer has been exploited 

to yield measures of tissue pH[49]. The use of MR to accurately determine tissue pH 

remains an area of active interest and will be important in quantifying pO2 via tissue water 

1H relaxation. 

3.4.5 pO2 Dependence 

One of the motivating aims underlying this phantom study was to elucidate the factors 

that would affect the use of 1H longitudinal relaxation of tissue water to derive tissue pO2. 

Thus, the effects of temperature, protein concentration, and pH were examined. However, 

central to the use of 1H longitudinal relaxation of tissue water to derive tissue pO2 is 

defining the 1H water relaxivity of O2 in a tissue-like environment. Toward this end, 1H 

water relaxation in xBSA was measured under conditions of variable pO2. The r1,slow 

determined for xBSA at 11.7 T is ~ 2 to 3 fold larger than those determined in our 

preliminary in vivo results at 4.7 T, possibly a manifestation of magnetic-field-strength-

dependent relaxation. 

Normal tissue pO2, otherwise referred to as physioxia[54], has been characterized using 

invasive probes in various tissues, including 33.8  2.6 mmHg in brain tissue, 57.6  2.3 
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mmHg in intestinal tissue, 40.6  5.4 mmHg in the liver, and 29.2  1.8 mmHg in muscle 

tissue[55]. The range of pO2 values investigated in the xBSA phantom study greatly 

exceeded the range of pO2 values characteristic of in vivo tissue. This increased dynamic 

range was designed to provide improved characterization of the relationship between pO2 

and R1,slow. The reduced dynamic range in vivo is an additional challenge for tissue pO2 

studies, further emphasizing the importance of a more precise signal model that accounts 

for the additional physiologic confounds explored in this work. 

The difficulty in reproducibly determining the relationship between R1,slow and pO2 in xBSA 

phantoms, which we speculate was due to internal variations in the individual sample 

preparations, led us to verify our methodology in additional media, including agar gel 

(Figure 3.8). A gel made with 0.6% (w/v) agar solution was chosen, as this concentration 

has been shown to be a good in vitro surrogate for brain tissue[56]. While the agar gel 

does not mimic tissue’s biexponential longitudinal relaxation characteristic[57], the 

reproducibility of the linear relationship between R1 and pO2 from our measurements is 

greatly improved compared with the variations seen in the xBSA samples. The r1 of 

oxygen in the agar gel is very close to reported r1 values in aqueous liquids[20, 21, 58] 

as the concentration of agar in this gel is only 0.6% w/v and the MT effect is absent. These 

results confirmed that our experimental design was capable of reproducibly determining 

the linear relationship between R1 and pO2. 

A number of difficulties or surprising anomalies arose from using xBSA. For instance, a 

change in color and opacity was noticed as the sample aged over the course of a few 

days, suggesting some internal changes occurring during that time. This led to the 
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decision to age all xBSA samples for 5 days prior to experiments to improve sample 

consistency. Another surprising result was that the initial pO2 measurement for xBSA was 

consistently on the order of a few mmHg or less, regardless of the time following chemical 

crosslinking. Additionally, the apparent diffusivity of O2 through xBSA was significantly 

slower than that of the agar gel, taking tens of hours to increase by 60 mmHg in xBSA 

with pure O2 gas as opposed to tens of minutes to increase by more than 100 mmHg in 

the agar gel with medical air (~20% O2). Other works have focused on developing tissue 

mimics which have similar T1 and T2 properties as various tissues[59, 60]. However, these 

studies only employed a monoexponential model when determining relaxation 

parameters and therefore do not entirely capture the underlying biophysics. Lamellar 

liquid crystals[61] have been shown to display biexponential relaxation, however the 

composition of this sample deviates from that of in vivo tissue. Development of a phantom 

that mimics in vivo tissue both in composition and in relaxation characteristics remains an 

open field of study. 

In moving from phantom to in vivo measurements of pO2, the effects of blood flow provide 

an additional confounding factor that must be mitigated or modeled. For example, in 2D 

slice-selective protocols the blood-flow-driven inflow of ~ Boltzmann-equilibrium polarized 

1H spins from outside the slice produces an increase in the tissue’s apparent R1 (reduced 

apparent T1) within the selected slice. Employing a non-slice-selective inversion pulse in 

inversion-recovery-type relaxation protocols substantially mitigates this effect. Further, 

employing weak diffusion sensitizing gradients prior to readout markedly reduces any 

transverse magnetization coherence within the vasculature, thus mitigating confounding 

signals from blood. 
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Additionally, the relaxation experiments in xBSA phantoms were all performed at 11.74 T 

and while preclinical in vivo experiments can be performed at this field strength, clinical 

scanners currently operate at lower fields. Clinical translation of the phantom results, as 

well as preclinical measurements at other field strengths, will require a careful 

characterization of field-strength-dependent effects for incorporation into a combined 

signal model. Further, in vivo experiments place constraints upon the time allotted for the 

R1 measurement. R1,slow is more readily/accurately quantified than R1,fast and, therefore, 

requires significantly fewer inversion recovery delay times to determine precisely. A faster 

acquisition could then be utilized that contains a smaller array of TI values necessary to 

characterize the slowly relaxing component. Table 3.1, showing the results of using only 

the latter/longer half of the set of TI values collected in the analysis fit with a 

monoexponential, demonstrates that these truncated relaxivity results are essentially 

identical to the slow component relaxivities for each varied parameter. 

Given the challenges in utilizing 1H longitudinal relaxation to quantify tissue pO2 in vivo, 

additional applications should also be considered. Tissue engineering and in vitro 

organogenesis show promise as potential solutions to the worldwide shortage of donor 

tissues for transplantation[62, 63]. However, these techniques are not yet widely available 

in the clinic because methods for providing proper oxygen supply to the tissue scaffolds 

are still being investigated. Our R1,slow-based technique for non-invasively monitoring 

tissue pO2 could be used to aid in the development of best practices for oxygen delivery 

to facilitate proper tissue growth and development.  

In conclusion, we have investigated physiologic confounds to an R1,slow-based method for 

pO2 quantification in tissue using xBSA phantoms. As observed with in vivo tissue, R1 
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relaxation in these phantoms is well modeled as biexponential, with the slower 

component, R1,slow, demonstrating a linear dependence on sample pO2. Experiments in 

which temperature, BSA concentration, and pH were varied independently demonstrate 

clearly that R1 relaxation depends upon each of these factors. Applications of R1,slow-

based methods for pO2 quantification must properly account for their effects.  
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Chapter 4: MRI-Derived Biomarkers 

Assess Placental Function & 

Development in Mouse Models of 

Placental Insufficiency3 
 

4.1 Introduction 

Placental dysfunction can lead to life threatening situations for both mother[1, 2] and 

fetus[3-6]. Pre-eclampsia (PE), estimated to affect 2-8% of pregnancies worldwide, is the 

leading cause of maternal and perinatal morbidity and mortality[7, 8],  and involves altered 

vascular development within the placenta[9]. Intrauterine growth restriction (IUGR), 

characterized by a fetus that is small for gestational age, is estimated to affect 3-7% of 

pregnancies worldwide[10], and can lead to an increased risk of perinatal mortality and 

morbidity[11]. There are many potential causes for IUGR, including insufficient delivery 

of nutrients or oxygen, infection with TORCH pathogens[12] which are able to cross the 

placenta, genetic predisposition, and various maternal disorders or stress factors[13]. 

Often, the treatment protocol for mothers diagnosed with severe PE or IUGR is early 

delivery, though determining optimal timing for delivery to ensure the best outcome for 

both fetus and mother remains a challenge[7, 11]. Establishing quantitative biomarkers 

of placental development and function could provide a means for determining when fetal 

development is no longer being properly supported, a trigger for early delivery. Magnetic 

 
3 This chapter largely reflects a manuscript that is in preparation, with minor additions relevant to the 

thesis. 
(Kelsey Meinerz, James D Quirk, and Joel R Garbow). 
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resonance imaging (MRI) is a non-invasive modality for generating high-resolution, in vivo 

images having outstanding soft-tissue contrast that are sensitive to tissue microstructure 

and physiology. MRI is, therefore, an excellent tool for probing placental function and 

development during gestation. 

While placental shapes and structural designs vary wildly across mammals[14], humans, 

many primates, and rodents have discoid hemochorial placentas with a distinct layer 

structure [15, 16]. With respect to the fetus, the most proximal layer, the labyrinth zone in 

mice and the ‘fetal placenta’ in humans, is characterized by both maternal and fetal blood 

supplies and is the main site of exchange between these systems[15]. The middle layer, 

the junctional zone in mice and the basal plate in humans, contains only maternal blood 

that flows in and out of the most proximal layer. The most distal layer is significantly 

different between mice and  humans[15].  As a consequence, we focused on the two 

murine layers that are analogous to the human placenta, the labyrinth and junctional 

zones. 

The strains of mice we studied typically deliver at embryonic day 19.5 (E19.5) [17] and in 

contrast to humans, the murine uterus is composed of two horns, each associated with 

an ovary[18], which is designed to accommodate large litters of fetoplacental units. Blood 

flow within the uterine loop is bidirectional[18] and while having multiple fetoplacental 

units per dam increases imaging efficiency, movement of the uterus within the abdominal 

cavity over time makes it challenging to uniquely track individual fetoplacental units 

across gestation. Techniques to non-invasively determine the order of fetoplacental units 

within a uterine horn via MRI exist[19], but are challenging and would have added 

significant time to an already lengthy imaging protocol. 
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Numerous murine models of abnormal pregnancy have been established, including 

models of PE[20, 21] and IUGR[22-24]. Interleukin 10 knock-out (IL-10 KO) mice display 

increased inflammatory reactions[25] and when pregnant and treated with polyinosinic-

polycytidylic acid (Poly(I:C)) develop symptoms characteristic of PE[20], including 

hypertension and proteinuria. Herein we employed the “crowded uterine horn” model of 

IUGR[22] wherein super ovulation is induced via removal of a single ovary prior to mating. 

As each horn has its own cervix, the eggs released from one ovary are confined to that 

horn, resulting in the entire litter being located within a single horn. Blood enters the 

uterine horn from both the ovarian and uterine arteries and fetoplacental units located 

within the middle of the horn receive diminished blood flow and reduced nutrient and 

oxygen content, resulting in fetuses characterized by fetal growth restriction (FGR) [22]. 

For the purposes of this study, fetoplacental units from the middle third of the total litter in 

each dam were deemed IUGR. 

MRI can non-invasively probe the entirety of the abdomen with sub-millimeter resolution, 

allowing placental volume measurements at multiple time points across gestation in the 

same animals. Additionally, the MRI longitudinal relaxation rate constant (R1) and the 

effective transverse relaxation rate constant (R2*) can be measured and used to infer 

information about the amounts of oxygen within the tissue and vasculature, respectively. 

As molecular oxygen (O2) is weakly paramagnetic, R1 is, in principle, directly proportional 

to local tissue pO2  [26-28] and has been used as a measure of placental 

oxygenation/hypoxia[29, 30]. R2* has been shown to be linearly proportional to the 

concentration of deoxyhemoglobin within the vasculature[31, 32]. Measuring these rate 

constants while the mother is breathing medical air (20% O2) and during a gas challenge 
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with 100% O2 probes the level of placental function and its response to environmental 

changes. 

The purpose of this study is to use MRI to non-invasively probe placental development 

and investigate biomarkers of placental function in late gestation for established mouse 

models of common placental dysfunctions. 

 

4.2 Methods 

4.2.1 Mouse Models of Placental Insufficiency 

All animal experiments were approved by the Washington University Institutional Animal 

Care and Use Committee. An overview of the protocol for these experiments is shown in 

Fig. 4.1 A. Pregnant, healthy C57BL/6 dams were received E11.5 in gestation from 

Charles River Laboratories (Wilmington, MA, USA). Non-pregnant C57BL/6 females and 

males were ordered from Charles River Laboratories and bred to generate the IUGR 

cohort. Prior to breeding, a left hemi-ovariectomy was performed on the female mice, 

which were allowed a minimum of two weeks to recover before breeding. A colony of IL-

10 KO mice was established with mice purchased from Jackson Laboratory (Bar Harbor, 

ME, USA; stock #002251)[25]. All in-house breeding was managed by the Mouse 

Genetics Core facility at Washington University in St Louis. 

To intensify PE-like symptoms in pregnant IL-10 KO dams, each received a 2.5 mg/kg 

intraperitoneal (IP) injection of 1 mg/mL Poly(I:C) high molecular weight solution 

(InvivoGen US, San Diego, CA, USA) on days E12.5, E14.5, and E16.5. IP injections 
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were administered carefully, restricting the needle’s depth of penetration to just below the 

peritoneum, to avoid injury to fetoplacental units in the abdomen.  

 

Figure 4.1. Overview of the experimental and imaging protocols. A) Experimental 

protocol: Poly(I:C) IP injections were administered only to IL-10 knockout mice (PE 

model). B) Imaging protocol: The minimum equilibration period after switching breathing 

gases was 2 minutes. Identical regions of T2-weighted anatomic images in the same 

E14.5 IUGR dam breathing C) 100% O2 and D) medical air (20% O2). Three placentas 

are indicated with yellow arrows. One complete placenta is outlined in green, while a 

second placenta, segmented into labyrinth (yellow outline) and junctional (blue outline) 

zones by our automated algorithm is shown in C).  Image contrast within the placenta 

between the labyrinth and junctional zones is lost when breathing medical air. 

 

4.2.2 MRI Protocol and Analysis 

An overview of the imaging protocol is shown in Fig. 4.1 B. MRI experiments were 

performed on a 11.74-T small-animal MRI system (Agilent Technologies, Santa Clara, 
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CA, USA) using a 5-cm ID birdcage coil (Extend MR LLC, San Francisco, CA, USA) at 

gestational days E14.5 and E17.5. In this study, 11 Healthy dams, 14 IUGR dams, and 

18 PE dams were imaged. Mice were anesthetized with isoflurane (3% for induction, 1-

2% for maintenance) mixed with oxygen (1 L/min), delivered through a nose cone. Once 

anesthetized, animals were placed in the supine position on a custom-built imaging cradle 

and taped across the abdomen to restrict respiratory motion. Respiration rate and body 

temperature were monitored using an MR-compatible monitoring and gating system (SA 

Instruments, Inc., Stony Brook, NY, USA). Body temperature was maintained at 37C via 

circulation of warm air and the respiration rate was maintained at ~50 breaths per minute 

through modulation of anesthesia. Halfway through the MRI study, the anesthesia 

delivery gas was switched to medical air (20% O2) and the mice were allowed to 

equilibrate for a minimum of two minutes prior to additional imaging. 

The volumes of all placentas (5-10/mouse) were calculated by manual segmentation of 

respiratory-gated, T2-weighted, multi-slice spin-echo images (SEMS). Each placenta was 

automatically divided into labyrinth and junctional zones based on the relative intensities 

of each voxel using Otsu’s method[33]. The SEMS parameters were: time to repetition 

(TR) = 1500 ms; echo time (TE) = 30 ms; field of view, 4.8 x 6.4 cm2; matrix, 96 x 256, 

zero-filled to 192 x 256 to yield in-plane resolution of 0.25 mm; 0.5 mm slice thickness; 1 

average; scan time ~ 15 minutes. High resolution images were collected with a data 

matrix of 512 x 192, zero-filled to 512 x 384 to yield in-plane resolution of 0.125 mm. For 

R1 mapping, a 3D gradient-echo variable flip angle (VFA) imaging sequence with TR/TE 

= 50/2.1 ms, utilizing five flip angles (5, 10, 15, 30, and 50 degrees) was acquired[34]. 

The flip angles used were optimized for characterizing the following signal model[34] 
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𝑆𝐼𝑉𝐹𝐴(𝜃) =
M0sin(𝜃) (1 − 𝑒−𝑅1∗𝑇𝑅)

1 − cos(𝜃) 𝑒−𝑅1∗𝑇𝑅
 

in which SIVFA is the VFA signal as a function of flip angle, , and M0 incorporates the 

proton density. Using R1 values from preliminary experiments and normalizing M0 to one, 

the expected range of SIVFA curves is shown in Fig 4.2. Five flip angles were then chosen 

to accurately characterize the SIVFA curve and stratify curves for differing R1 values within 

the expected range.  

 

Figure 4.2. SIVFA curves as a function of  (in radians) for the expected range of R1 values: 

R1 = 0.25 s-1 [solid blue]; R1 = 0.3 s-1 [dashed orange]; and R1 = 0.2 s-1 [dashed yellow]. 

Each SIVFA curve is overlaid with the chosen flip angles [pink stars]. 

 

The flip angle that is most sensitive to R1 differences over the expected range was 

determined by calculating the derivative of the difference between the SIVFA curves for R1 

= 0.3 s-1 and R1 = 0.2 s-1 and solving for , which was approximately 0.28 radians or 16. 
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This calculated flip angle represents the optimum value for this expected R1 range for a 

single flip angle. As we were using five flip angles, we selected a range of flip angles 

about the optimum flip angle, as shown in Fig. 4.3. 

 

Figure 4.3. SIVFA curves as a function of R1 showing the optimal flip angle ( = 16) [solid 

purple] and the middle three flip angles ( = 10 [dashed blue],  = 15 [dashed orange], 

and  = 30 [dashed yellow]) from the chosen range of 5 flip angles for the expected range 

of R1 = 0.2 s-1 to 0.3 s-1.  

 

For R2* mapping, a 3D multi-echo, gradient-echo imaging sequence was acquired with 

TR = 50 ms, flip angle = 15 degrees, six echoes starting at 2.1 ms, and an echo spacing 

of 4 ms. The echo times used were optimized for the following signal model: 

𝑆𝐼𝑇𝐸(𝑡) = 𝑆𝐼0𝑒−𝑡∗𝑅2
∗
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where SITE is the signal intensity as a function of time, t, and SI0 is the baseline signal 

intensity. Using R2* values from preliminary experiments and normalizing SI0 to one, the 

expected range of SITE curves as a function of time are shown in figure 4.4 A. The echo 

time that is most sensitive to R2* differences over the expected range was determined by 

calculating the derivative of the difference between the SITE curves when R2* = 100 s-1 

and R2* = 40 s-1 and solving for t to find the optimum TE, which was approximately 15.3 

ms. The minimum TE of 2.1 ms was dictated by the scanner hardware and the echo 

spacing was chosen to be 4 ms such that the final array of 6 echoes was distributed about 

the optimum TE, as shown in figure 4.4 B.  

 

Figure 4.4. A) SITE curves as a function of t in seconds for the expected range of R2* 

values: R2* = 40 s-1 [dashed blue]; R2* = 70 s-1 [solid orange]; and R2* = 100 s-1 [dashed 

yellow]. B) The SITE curves as a function of R2* for the optimum TE = 15.3 ms [solid blue 

line] and the array of chosen TEs for the acquisition [dashed lines]. 

 

R1 and R2* maps were acquired both while the dams were freely breathing medical air 

(20% O2) and 100% O2 to modulate tissue and vasculature oxygenation. Optimal 

relaxation rate constants were determined via Bayesian probability theory based 
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software[35] on a voxel-wise basis. Herein, the data points reflect the average across all 

voxels within a segmented region and the reported values represent the median of each 

distribution of points.  

Placentas that were not fully covered by the anatomical scans were excluded from the 

volume results, but were included for R1 and R2* mapping. The numbers of full placentas 

at E14.5 were 95 (PE), 66 (healthy), and 21 (IUGR), while at E17.5, the numbers were 

78 (PE), 63 (healthy), and 31 (IUGR), respectively. The combined numbers of full and 

partial placentas at E14.5 were 101 (PE), 82 (healthy), and 44 (IUGR), while at E17.5, 

the numbers were 88 (PE), 62 (healthy), and 44 (IUGR). Midway into the study, we 

determined that the T2 contrast between the labyrinth and junctional zones was improved 

in anatomic images acquired while the mother was breathing 100% O2 (Figs. 4.1 C and 

4.1 D). Overall volume determinations were unaffected by breathing gas. The zone-

specific analysis was only applied to images collected under 100% O2; the numbers of 

such placentas at E14.5 were 18 (PE), 14 (healthy), and 44 (IUGR), while at E17.5, these 

numbers were 15 (PE), 14 (healthy), and 41(IUGR). 

Following imaging on E17.5, IL-10 KO and healthy control mice were euthanized via 

cervical dislocation and an autopsy was performed to determine the size of the litter, note 

the number and location of unhealthy or resorbing fetuses, and weigh each placenta. For 

IUGR dams, euthanasia was performed with an IP injection of pentobarbital without 

disturbing the dam from the supine position in the imaging cradle. The autopsy was 

performed carefully and video-recorded so that the order of fetoplacental units from the 

ovary to the cervix could be determined and later matched to the anatomic images.  
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Manual segmentation was performed on the SEMS images and the resulting regions of 

interests were translated to the R1 and R2* maps using VOXA (VOXel based image 

Analysis toolset) custom image processing tools implemented in MATLAB (Mathworks, 

Natick, MA, USA) and co-developed by Pfizer, Inc. and the Mallinckrodt Institute of 

Radiology. Statistical analysis was performed using Origin (OriginLab Corporation, 

Northhampton, MA, USA) and the free and open source Jamovi Project software (The 

Jamovi Project, www.jamovi.org) using ANOVA and post hoc Tukey tests, in which p < 

0.05 was regarded as statistically significant. 

Herein, quantitative results are reported in the form of box and whisker plots to visualize 

the summary statistics, overlaid with the individual data points. The mean of each 

distribution is represented by an open square and the median is represented by the 

midline of the box. The top and bottom edges of the box represent the 75th and 25th 

percentiles, respectively, and the range which they cover is referred to as the interquartile 

range. The top and bottom whiskers represent the 95th and 5th percentiles, respectively 

and the dashes above the edge of the 95th percentile whisker and below the 5th percentile 

whisker denote the maximum and minimum values, respectively.  

4.3 Results 

4.3.1 Placental Volume 

The placental volumes, shown in Fig. 4.5 A illustrate the differences between healthy, PE, 

and IUGR placentas at both gestational ages. Median placental volumes for each group 

can be found in Table 1. Significant differences in placental volumes are seen across 

cohorts (p < 0.001) and with gestational age (p < 0.001), specifically that healthy 

http://www.jamovi.org)/
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placentas are smaller than those of PE dams (p < 0.001), but larger than those 

characterized by IUGR (p = 0.012) and that PE placentas are larger than IUGR placentas 

(p < 0.001). A representative, high-resolution image of a PE mouse at E17.5 with two 

placentas indicated is shown in Fig. 4.5 B.  

 

Figure 4.5. Placental Volume. A) Placental volumes across cohorts at gestational ages 

E14.5 and E17.5. Each data point represents a single placenta. Significant differences in 

placental volumes are seen across cohorts and with gestational age. Average placental 

volume in healthy dams is significantly smaller than in PE and greater than in IUGR, while 

average placental volume in PE is significantly larger than in IUGR. B) Representative 

high resolution T2-weighted anatomic image within the mouse abdomen at E17.5 with 

yellow arrows indicating placentas. 
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Table 4.1. Summary of median parameter values across each cohort of mice 
 

 
E14.5 E17.5 

PE Healthy IUGR PE Healthy IUGR 

Volume [cm3] 0.056 0.051 0.049 0.065 0.061 0.055 

R
1
 (air) [s-1] 0.26 0.25 0.31 0.23 0.24 0.28 

R
1
 (100% O

2
) 

[s-1] 

0.26 0.24 0.30 0.24 0.24 0.29 

ΔR
1
 [s-1] 0 0 0.01 0 -0.01 -0.01 

R
2
* (air) [s-1] 115 130 122 136 139 144 

R
2
* (100% O

2
) 

[s-1] 

99 93 92 131 137 146 

 ΔR
2
* [s-1] 6 31 12 6 11 -3 

Junctional R
2
* 

(air) [s-1] 

133 167 142 132 146 147 

Junctional R
2
* 

(100% O
2
) [s-1] 

120 111 115 132 141 151 

Junctional ΔR
2
* 

[s-1] 

7 63 8 6 3 -2 

Labyrinth R
2
* 

(air) [s-1] 

117 120 86 130 153 134 

Labyrinth R
2
* 

(100% O
2
) [s-1] 

114 70 70 112 124 130 

Labyrinth ΔR
2
* 

[s-1] 

12 50 19 9 32 -3 
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4.3.2 Placental R1 and R1 

The average R1 for all voxels within each placenta across cohorts, at both Gas, and with 

the breathing gas challenge is shown in figure 4.6 A and median R1 values for each group 

can be found in Table 1. Significant differences are seen across cohorts (p < 0.001) and 

with GA (p < 0.001) but not due to the breathing gas challenge. R1 of placentas in healthy 

dams is significantly less than that of PE placentas (p < 0.001) and IUGR placentas (p < 

0.001) and, furthermore, IUGR R1 is greater than that of PE (p < 0.001).  

The change in average R1 (R1 = R1[air] – R1[oxygen])  between breathing air and oxygen 

across all voxels within each placenta across cohorts and at both Gas is shown in Fig. 

4.6 B and median R1 values for each group are listed in Table 1. R1 is significantly 

different with GA (p = 0.015), but not with cohort. The color map of voxel wise R1 values 

in Fig. 4.6 C for all placentas within a single image from a representative IUGR dam shows 

the heterogeneity of R1 across and within the placentas. 

 

Figure 4.6. Placental R1 and R1. A) Placental R
1
 across cohorts, with the breathing gas 

challenge, at each GA. Significant differences in placental R
1
 are seen across cohorts 

and with GA. Average placental R1 in healthy dams is less than in PE or IUGR; average 

R
1
 in PE is less than in IUGR. B) Placental ΔR

1
 [R

1,Air
 – R

1,Oxygen
] due to the breathing gas 

challenge across cohorts, at each GA. ΔR
1
 is significantly different with GA. Each point 

in A) and B) represents a single placenta. C) Representative color map of R
1
 values at 
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E17.5 in an IUGR dam shows the heterogeneity of R1 rate constants across and within 

each placenta. 

 

4.3.3 Placental R2* and R2* 

The average R2* for all voxels within each placenta across cohorts, at both GAs, and with 

the breathing gas challenge is shown in figure 4.7 A and median R2* values for each 

group are listed in Table 1. Significant differences are seen across cohorts (p = 0.001), 

with GA (p < 0.001), and in response to the breathing gas challenge (p < 0.001). R2* 

values of placentas in healthy dams are greater than those of PE placentas (p = 0.002), 

but not different from IUGR placentas. R2* values in placentas of PE and IUGR dams are 

not different from one another. The change in average R2* (R2* = R2*[air] - R2*[oxygen]) 

between breathing air and oxygen for all voxels within each placenta across cohorts and 

at both GAs is shown in figure 4.7 B and median R2* values for each group are listed in 

Table 1. R2* is significantly different with GA (p < 0.001) and cohort (p < 0.001). Placental 

R2* values in healthy dams are greater than those in either PE placentas (p < 0.001) or 

IUGR placentas (p < 0.001),  though R2*values in PE vs. IUGR placentas are not 

significantly different. The color map in Fig 4.7 C showing voxel-wise R2* values for all 

placentas within a single image from a representative IUGR dam shows the intra- and 

inter-placental heterogeneity of R2*. 
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Figure 4.7. Placental R2* and R2*. A) Placental R
2
* across cohorts, with the breathing 

gas challenge, at each GA. Significant differences in R
2
* are seen across cohorts, GA, 

and due to the breathing gas challenge. Average R
2
* in healthy dams is greater than in 

PE. B) Placental ΔR
2
* [R

2
*

Air
 – R

2
*

Oxygen
] due to the breathing gas challenge is significantly 

different with GA and cohort. Average placental ΔR
2
* in healthy dams is significantly 

greater than in PE or IUGR. Each point in A) and B) represents a single placenta. C) 

Representative color map of R
2
* values at E17.5 in an IUGR dam shows the 

heterogeneity of R
2
* rate constants across and within each placenta. 

 

4.3.4 Zone-Specific R1 and R1 

The average R1 values for all voxels within each junctional and labyrinth zone across 

cohorts, at both GAs, and with the breathing gas challenge is shown in Figs. 4.8 A and 

4.8 B, respectively. Significant differences are seen in both the junctional (Fig. 4.8 A) and 

labyrinth (Fig. 4.8 B) zones with GA (junctional: p < 0.001; labyrinth: p = 0.003) and 

breathing gas challenge (p < 0.001). The change in average R1 value between breathing 

air and oxygen for all voxels within each junctional and labyrinth zones across cohorts 

and at both GAs is shown in Figs. 4.8 C and 4.8 D, respectively. No statistically significant 

differences in either junctional and labyrinth zone ΔR1 due to the gas challenge are seen 

with cohorts or GA. 
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Figure 4.8. Zone-specific R1 and R1. Placental R1 in the A) Junctional and B) Labyrinth 

zones and ΔR1 in the C) Junctional and D) Labyrinth zones. Each point represents a 

single placental zone. A) Statistically significant differences in junctional zone R1 seen 

with GA. B) Statistically significant differences in labyrinth zone R1 seen with GA. C) & D) 

No statistically significant differences in either junctional and labyrinth zone ΔR1 due to 

the gas challenge are seen with cohorts or GA. 

 

4.3.5 Zone-Specific R2* and R2* 

The average R2* values for all voxels within each junctional and labyrinth zone across 

cohorts, at both GAs, and with the breathing gas challenge is shown in Figs. 4.9 A and 

4.9 B, respectively. Median R2* values for each distribution are listed in Table 1. 

Significant differences are seen in both the junctional (Fig. 4.9 A) and labyrinth (Fig. 4.9 
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B) zones with GA (junctional: p = 0.005; labyrinth: p < 0.001) and breathing gas challenge 

(p < 0.001). The change in average R2* value between breathing air and oxygen for all 

voxels within each junctional and labyrinth zones across cohorts and at both GAs is 

shown in Figs. 4.9 C and 4.9 D, respectively. Median R2* values for each group are 

listed in Table 1. Significant differences are seen in both the junctional and labyrinth zones 

across cohorts (p < 0.001) and with GA (p < 0.001). Junctional zone R2* in response to 

the gas challenge is greater in placentas in healthy dams than in PE (p = 0.029) or IUGR 

(p < 0.001) placentas. R2* in junctional zones in PE and IUGR placentas are not 

significantly different from one another. Labyrinth zone R2* in response to the gas 

challenge is greater in placentas in healthy dams than in IUGR placentas (p < 0.001), but 

not in PE placentas. Labyrinth R2* values in PE placentas are greater than in IUGR 

placentas (p = 0.036).  
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Figure 4.9. Zone-specific R2* and R2*. Placental R2* in the A) Junctional and B) 

Labyrinth zones and ΔR2* in the C) Junctional and D) Labyrinth zones. Each point 

represents a single placental zone. A) Statistically significant differences in junctional 

zone R2* are seen with GA and breathing gas challenge. B) Statistically significant 

differences in labyrinth zone R2* are seen with GA and breathing gas challenge. C) 

Statistically significant differences in junctional zone ΔR2* due to the gas challenge are 

seen across cohorts and with GA, with the response in placentas in healthy dams being 

greater than in PE or IUGR. D) Statistically significant differences in labyrinth zone ΔR2* 

due to the gas challenge are seen across cohorts and with GA, with the response in 

placentas in healthy dams greater than in IUGR and the response in PE greater than in 

IUGR. 
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4.4 Discussion 

Optimal timing of early delivery in cases of placental dysfunction is critical. Biomarkers 

which can report whether suboptimal placental function supports continued fetal growth 

and guide the decision to deliver early are needed. Clinical cases of placental dysfunction 

can have many potential causes[36] further complicated by non-uniform classification and 

nomenclature[37], increasing the difficulty of establishing reliable biomarkers. Pre-clinical 

experiments allow for greater control of external variables in cases of pregnancy 

complications and could provide useful direction for future clinical studies. 

4.4.1 Placental Volume 

Median placental volumes for the healthy cohort at each GA agree well with reported 

stereological determinations of murine placental volumes at similar stages of 

gestation[38]. Clinical studies have shown that placental volume increases with GA[39, 

40], similar to our results. Additionally, differences in placental volume across cohorts are 

supported by ultrasound (US) based clinical investigations that postulate abnormal 

placental volume is related to low birth weight[40, 41]. However, these 2D and 3D US-

based volume techniques have their limitations and are generally restricted to first and 

second trimester determinations with conflicting reports of reproducibility[42]. Recent 

advances in 3D US techniques which manually combine multiple images allow for whole 

placenta imaging with improved reproducibility, but as yet are still restricted to only 

second trimester capabilities[43]. MRI’s superior ability to probe the entire abdomen 

eliminates this gestational limitation such that placental volumes can be tracked 

accurately across gestation, including during the third trimester. We have shown that 

murine placental volumes differ across cohorts; placentas in the PE model are relatively 
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larger and IUGR placentas are relatively smaller compared with healthy controls. These 

volume differences are likely explained by differences in blood flow altering the total blood 

volume, as blood volume makes up approximately 50% of the placental volume[44]. 

Maternal hypertension and improper development of the maternal spiral arteries in PE 

placentas have been proposed to result in increased branching and capillary volume 

fraction[36], resulting in larger placental volumes. The bidirectional blood flow and multi-

fetus litter in the murine uterus naturally creates a gradient of blood flow to each 

fetoplacental unit[45]. The blood flow in the crowded uterine horn is insufficient to 

adequately perfuse all of the placentas, an effect that results in smaller placental volumes 

in the central fetoplacental units[22]. Clinical studies of placental perfusion and diffusion-

based techniques assessed by MRI have shown decreased perfusion and diffusion in 

placentas characterized by IUGR[29, 46], supporting the hypothesis that the volume 

differences seen are due to differences in blood volume. 

4.4.2 Placental R1 and R1 

Clinical studies comparing healthy pregnancies with dysfunctional placentas found 

significantly higher baseline R1 in placentas complicated by severe FGR[47] and 

increased R1 generally in compromised pregnancies[48], similar to our results in IUGR 

mice. The unknown causes of FGR in humans complicates interpretation of this increased 

baseline R1, however, in mice this could be due to hormonal differences resulting from 

the hemiovariectomy. Studies have shown that hemiovariectomy increases follicle 

stimulating hormone and decreases progesterone, inducing hyperplasia in the remaining 

ovary[49], and could feasibly affect other organs.   Bovine studies showed that reduction 

of serum progesterone coincided with decreased partial pressure of oxygen within the 
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ovarian vein[50].  The increased R1 in IUGR placentas could be due to these systemic 

hormonal changes resulting from the hemiovariectomy. The ovaries produce estrogen, 

testosterone, and progesterone[51, 52] and removal of one or both can induce systemic 

effects[49, 53, 54]. Retrospective R1 measurements within the maternal spinal muscle 

visible in our anatomic images also showed increased R1 in IUGR dams compared to 

healthy (Fig 4.10), supporting the hypothesis of systemic differences. The placenta is 

responsible for the creation and secretion of certain hormones and signaling molecules 

during pregnancy that are known to enter the maternal circulation[55]. Therefore, it is 

possible that the dysfunctional placenta is driving the increased R1 seen clinically via 

similar systemic effects.  

 

Figure 4.10. Maternal spinal muscle R1. Each point represents a dam measurement. 

Maternal spinal muscle R1 across cohorts, with the breathing gas challenge, at each GA. 

Significant differences in maternal R1 are seen across cohorts (p < 0.001) and with GA (p 

< 0.001). A post hoc Tukey test shows that the healthy R1 is less than the IUGR (p < 

0.001) but not different from PE and also the PE R1 is less than the IUGR (p = 0.047). 
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The breathing gas challenge was expected to induce small changes in R1, due to the weak 

paramagnetic nature of O2[26]. Herein, the R1 response to the gas challenge is near zero 

for all cohorts at both gestational ages. Others have reported measurable R1 differences 

in murine placentas in response to variations in breathing gas from 20% to 100% O2[56]. 

One possibility for the lack of measured R1 response to the gas challenge is that the VFA 

sequence lacks the necessary sensitivity to detect the expected small differences. 

Studies in healthy human pregnancies have shown that baseline R1 values decrease with 

GA[57, 58] and the change in R1 with gas challenge also decreases with GA[59], with 

term-equivalent change in R1 values near zero. A similar decrease in R1 with increasing 

GA have also been observed in cases of severe FGR[47]. The necessary precision and 

the small anticipated effect make R1 measurements with a gas challenge unlikely to 

provide clinically useful results at near-term or term, although it may provide useful results 

earlier in gestation when R1 is greater.  

4.4.3 Placental R2* and R2* 

As R2* is proportional to the concentration of deoxyhemoglobin within the vasculature, 

baseline R2* values increasing with GA are likely due to the significant oxygen 

requirements of the growing, developing fetus that drive greater exchange of O2 across 

the placenta. Placental hemoglobin saturation of O2 has been reported to decrease with 

GA[59], resulting in increased baseline R2*. A similar result was previously shown where 

the true transverse relaxation rate constant (R2) also increased with GA[57]. Additionally, 

in a study comparing R2 values in healthy and FGR pregnancies in conjunction with 

Doppler US, it was shown that R2 values in placentas that yielded FGR fetuses were 

significantly higher than healthy controls and were correlated with impedance to flow in 
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the uterine arteries as measured by US[60]. We also found significant differences in 

baseline R2* across cohorts, however with R2* decreased in IUGR placentas with respect 

to healthy controls. As R2* is the combination of R2 (microscopic fluctuations in the 

magnetic field) and inhomogeneous broadening due to magnetic susceptibility effects 

(macroscopic fluctuations in the magnetic field), the inhomogeneous component may be 

masking the changes seen in only R2 had that been measured directly in this experiment. 

It is also possible that our particular model for IUGR result from different underlying 

causes than the severe cases of FGR in that study.  

The decrease in R2* when the mother is breathing 100% O2 is expected due to the 

decrease in deoxygenated hemoglobin. This has been shown to occur clinically in healthy 

pregnancies[59, 61] and cases of dysfunction[61]. The R2* response to gas challenge 

varies across cohorts at E14.5, suggesting this may be a good biomarker of placental 

function for pre-term pregnancies, but is diminished at E17.5 to nearly no change. Clinical 

reports of R2* response to gas challenge vary greatly with GA[59, 61, 62] and across 

cohorts[47, 61].  

4.4.4 Zone-Specific R1 and R1 

Zone specific analysis of R1 recapitulated the lack of response to the gas challenge seen 

in the whole placenta.  

4.4.5 Zone-Specific R2* and R2* 

To our knowledge, there have been no previously reported R2* and R2* in zone-specific 

regions of the murine placenta. R2* measurements within the junctional and labyrinth 

zones show subtle differences. In the junctional zone, both R2* and R2* show very similar 
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trends as those seen in the whole placenta (very little differences in baseline R2* and R2* 

with the gas challenge at E17.5), whereas in the labyrinth zone, baseline R2* and R2* 

response to gas challenge show differences at both E14.5 and E17.5. Using our 

segmentation and layer determination protocol, the junctional zone makes up more than 

50% of the placental volume, which explains the similarity of trends. R2* measurements 

within the labyrinth zone at baseline and R2* with the gas challenge show promise as a 

potential biomarker for placental function at both pre-term and term.  

Historically, MRI in pregnancy has been used clinically to evaluate abnormal 

implantation[63], with more recent studies highlighting MRI’s capability to assess 

placental function[29, 47, 64, 65]. Herein, we have used MRI to demonstrate differences 

in placental developmental between healthy and models of PE and IUGR with respect to 

placental volume. We have also shown that R2* and R2* responses to gas challenge can 

distinguish healthy placentas from PE and IUGR placentas and is a promising biomarker 

of placental function at near-term and term. Additional studies to confirm these results in 

human placentas are needed. Improved markers of placental development and function 

could aid in optimal timing of delivery in cases of placental dysfunction. 
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Chapter 5: Functional and 

Developmental Effects of Zika Virus 

Infection and Hydroxychloroquine 

Treatment in Murine Placenta 
 

5.1 Introduction 

Zika virus (ZIKV) is a mosquito-borne flavivirus which was first documented in monkeys 

in Uganda in 1947 and later in humans in other regions of sub-Saharan Africa. ZIKV is 

related to other human pathogens such as dengue, yellow fever, West Nile, Japanese 

encephalitis, and tick-borne encephalitis viruses[1]. Until recent outbreaks in Micronesia, 

French Polynesia, and South and Central America[2], ZIKV was a relatively obscure 

pathogen and was largely neglected due to the low numbers of infections in humans and 

fairly benign nature of infection. Symptoms of ZIKV infection, historically, range from no 

signs or symptoms to influenza-like symptoms which mimic that of dengue and 

chikungunya infections, including a characteristic rash[1]. More severe neurological 

symptoms have been reported, including Guillain-Barre syndrome[3] and 

meningoencephalitis[4]. In 2015, an epidemic of ZIKV infection and a concurrent drastic 

rise in pregnancy-associated microcephaly in Brazil were deemed to be causally linked. 

Evidence suggested that ZIKV infection in pregnant women caused congenital 

abnormalities, central nervous system abnormalities, fetal growth restriction, and fetal 

demise, despite mild symptoms for the mother[5-7]. 
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Development of animals models of ZIKV infection during pregnancy enabled research 

into the causal relationship between maternal ZIKV infection and fetal pathology and 

routes of viral transmission[8-10]. One important role of the placenta is to provide an 

immunological barrier between mother and fetus and research suggested that a potential 

route of ZIKV infection was trans-placental vertical transmission (from mother to fetus)[8] 

for which two mouse models of ZIKV infection during pregnancy were established by the 

Diamond and Mysorekar labs[9]. Each model required disrupting the normal immune 

response. The first achieved this via transgenic female mice (Ifnar1-/-) bred with wild type 

male mice to produce heterozygous offspring (Ifnar1+/-) that have a mostly intact immune 

response. The second model utilized wild type females bred with wild type males, and the 

pregnant females received an injection of an anti-ifnar antibody (anti-Ifnar1 mAb) one day 

before exposure to ZIKV to make the dams transiently immunocompromised. Both 

models resulted in significant levels of ZIKV in the placentas and fetal heads at embryonic 

day 13.5 (E13.5), but the transgenic model also resulted in significant numbers of 

spontaneous fetal abortions and resorptions at E13.5[9]. 

Using these established mouse models of ZIKV infection, potential interventions to 

attenuate or prevent vertical transmission of ZIKV were investigated[11-13]. Inhibition of 

autophagy in human trophoblasts was shown to reduce ZIKV replication and in pregnant 

mice, similarly, inhibition of autophagy resulted in reduced placental viral titers[11]. 

Hydroxychloroquine (HCQ) is an FDA approved antimalarial drug regularly administered 

to pregnant women with chronic autoimmune disorders[14] and is a known autophagy 

inhibitor[15, 16]. The Mysorekar lab reported that when ZIKV infected pregnant dams 

were treated with HCQ, fetal sizes were increased, placental and fetal viral titer numbers 
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were reduced, and ZIKV-induced damage to placental tissue was prevented at E14.5[11]. 

These results were quite promising; however, a typical gestational period for the chosen 

breed of mouse is 19 days[17] so further investigations focusing later in gestation were 

needed. Additionally, utilizing non-invasive imaging techniques in conjunction with post 

mortem tissue analysis would enable investigations into how ZIKV infection and HCQ 

treatment affect placental development and function during late gestation. Towards this 

goal, the “gentler” transiently immunocompromised model using anti-ifnar antibody 

injection was used to increase the likelihood of fetuses going to near term following ZIKV 

infection. 

Magnetic resonance imaging (MRI) techniques are non-invasive and can probe the 

entirety of the body, providing sub-millimeter spatial resolution, such that placental 

development across late gestation can be monitored. The longitudinal relaxation rate 

constant (R1) has been shown to be directly proportional to dissolved oxygen content 

within tissue[18] and the effective transverse relaxation rate constant (R2*) has been 

shown to be proportional to the concentration of deoxyhemoglobin within the 

vasculature[19, 20]. By measuring these rate constants at baseline conditions, during 

which the mother is breathing air (20% O2), and during a gas challenge, during which the 

mother is breathing carbogen (95% O2/5% CO2), the level of placental function and 

response to environmental changes can be inferred. Carbogen, with its increased CO2 

content, is believed to counteract the vasoconstrictive effect of increased O2[21].  

A discoid, hemochorial shape is common to both human and murine placentas; each 

displaying three main layers[22], as shown in figure 5.1. The layer most proximal to the 

fetus is known as the labyrinth zone in mice and as the ‘fetal placenta’ in humans. This 
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layer contains both fetal and maternal blood supply and allows for physiologic exchange 

between the two[22]. The middle layer is referred to as the junctional zone in mice and 

the basal plate in humans. This region is characterized by maternal blood only, which 

flows into and out of the fetal placenta or labyrinth zone in humans and mice, respectively. 

The layer furthest from the fetus differs slightly in humans and mice. In murine placentas, 

trophoblast invasion extends throughout the decidua basalis, whereas in humans this 

invasion continues into the underlying myometrium. Therefore, the third layer of the 

placenta in mice is considered to be the decidua basalis and in humans the outermost 

region is referred to as the placental bed, encompassing both the decidua basalis and the 

myometrium[22]. For the purposes of this study, we focused our attention on the murine 

layers that are functionally analogous with the human anatomy and therefore strived to 

only segment the labyrinth and junctional zones in our MR images. 

As mice have a typical litter size of about 8 fetoplacental units, a difficulty arises in linking 

fetoplacental units within a dam across gestation. MRI methods such as bidirectional 

arterial spin labeling can be used to non-invasively identify the order of fetoplacental units 

within a dam[23]. However, this technique is challenging and requires significant scan 

time. As the MRI protocol already included approximately one hour of scan time per 

animal per gestational age (GA), we decided to forgo such measures knowing that unique 

identification across gestation would not be possible. Furthermore, due to the design and 

vasculature of the murine uterus, each fetoplacental unit is exposed to a slightly different 

amount of blood flow and delivery of nutrients, respiratory gases, etc. which, are subject 

to change with gestation[24]. Thus small differences are expected across fetoplacental 
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units within a litter. To counteract this, MRI results are reported as the average value per 

dam. 

 

 

Figure 5.1. A) H&E stained histological image of murine placenta with each layer 

annotated and the junctional and labyrinth zones outlined in black. B) Same image 

without the labels, with a blue box which indicates the field of view shown in C) magnified 

10x. C) Zoomed-in region showing: junctional and labyrinth zones. 

 

The goals of this collaboration with the Mysorekar lab were twofold: investigate the effects 

of 1) ZIKV infection and 2) HCQ treatment during late gestation using established mouse 

models, non-invasive MRI techniques, and standard biological techniques. Unfortunately, 

the standard biological tests on post mortem tissue did not confirm previously published 

results and arrived too late to rescue the study. 
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5.2 Methods 

All animal experiments were approved by the Washington University Institutional Animal 

Care and Use Committee and were completed in collaboration with the Mysorekar lab. 

All studies were conducted under biosafety level II containment. A pictorial representation 

of the protocol is seen in figure 5.2. With the exception of animal handling for the purposes 

of MRI, all pre- and post-mortem animal handling was performed by members of the 

Mysorekar lab. Pregnant, wild-type mice lacking an intact interferon response due to an 

injection of 2 mg anti-ifnar-blocking antibody (anti-Ifnar1 mAb) on E8.5 were infected 

subcutaneously in the footpad with 103 focus-forming units (FFU) of ZIKV (n=17) or 

phosphate buffered saline (PBS) (n=13) at E9.5. Six animals from each cohort were 

treated with 40 mg/kg of HCQ while the remainder received placebo PBS intraperitoneally 

daily from E10.5 to E17.5.  

 
Figure 5.2. Schematic depiction of experimental design of infection, treatment, and 

imaging protocols for pregnant mice. All animals received an injection of anti-ifnar-

blocking antibody at E8.5 to transiently disrupt the interferon response. At E9.5, all 

animals received either ZIKV or sham injection. Half of each group then received HCQ 

treatment daily from E10.5 to E17.5. All animals were imaged at E15.5 and E18.5 and 

animals were sacrificed and maternal and fetoplacental tissues harvested immediately 

following sacrifice. 
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To measure placental volume and function, MRI experiments were performed in a 4.7-T 

small-animal MRI system (Agilent Technologies, Santa Clara, CA, USA) using a 5 cm ID 

quadrature transmit/receive coil with a 9 cm resonator length (RAPID Biomedical GmbH, 

Rimpar, Germany) at gestational days E15.5 and E18.5. During the MRI scan, mice were 

anesthetized with isoflurane (3% for induction, 1-2% for maintenance) in oxygen (1 

L/min), delivered through a nose cone. Once anesthetized, animals were placed in the 

supine position in a custom cradle and taped across the abdomen to restrict respiratory 

motion. Respiration rate and body temperature were monitored using an MR-compatible 

monitoring and gating system (SA Instruments, Inc., Stony Brook, NY, USA). Body 

temperature was maintained at 37C via circulation of warm air and the respiration rate 

was maintained at ~50 breaths per minute through modulation of anesthesia.  

The volume of all placentas (5-10/mouse) were calculated by manual segmentation of 

respiratory-gated, T2-weighted, multi-slice fast-spin-echo (FSEMS) images. Figure 5.3 

shows a representative example of a manually segmented placenta. The combined 

junctional and labyrinth zones were segmented by hand, and then this region was 

automatically divided into the two layers based on the relative intensities of each voxel 

using Otsu’s method[25]. 
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Figure 5.3. Representative murine abdominal MR images at 4.7T and H&E stained 

placenta. A) high resolution T2-weighted FSEMS anatomic MR image (125 um x 125 um 

in plane resolution) at E18.5 and a B) T2-weighted FSEMS anatomic MR image (250 um 

x 250 um in plane resolution) at E15.5 of a single slice within the abdomen of a different 

pregnant dam than in A). A single placenta is outlined, with green outlining the labyrinth 

zone and yellow the junctional zone. C) H&E stained histological image of murine 
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placenta with each of the three layers annotated and the junctional and labyrinth zones 

outlined in black. 

 

The FSEMS parameters were: time to repetition (TR) = 2000 ms; initial echo time (TE) = 

12 ms; 4 refocused echoes; effective TE = 48 ms; field of view, 4.8 x 6.4 cm2; matrix, 96 

x 256, zero filled to 192 x 256 such that in-plane resolution was 0.25 mm; 0.5 mm slice 

thickness; 3 averages; scan time ~ 15 minutes. A series of 3D gradient-echo (3DGE) 

variable flip angle (VFA) images with TR/TE = 50 ms/1.74 ms, utilizing five flip angles (5, 

10, 15, 30, and 50 degrees) was acquired for R1 mapping[26]. The flip angles were 

optimized for characterizing the following signal intensity model[26] 

𝑆𝐼𝑉𝐹𝐴(𝜃) =
M0sin(𝜃) (1 − 𝑒−𝑅1∗𝑇𝑅)

1 − cos(𝜃) 𝑒−𝑅1∗𝑇𝑅
 

in which SIVFA is the VFA signal as a function of flip angle, , and M0 incorporates the 

proton density. Using R1 values from preliminary experiments and normalizing M0 to one, 

the expected range of SIVFA curves is shown in Figure 5.4 A. Five flip angles were then 

chosen to accurately characterize the SIVFA curve and stratify curves for differing R1 

values within the expected range. The chosen flip angles overlaid upon the SIVFA curve 

for R1 = 0.5 s-1 are shown in Figure 5.4 B. The flip angle that is most sensitive to R1 

differences over the expected range was determined by calculating the derivative of the 

difference between the SIVFA curves for R1 = 0.6 s-1 and R1 = 0.4 s-1 and solving for , 

which was approximately 0.4 radians or 22. This calculated flip angle represents the 

optimum value for this expected R1 range for a single flip angle. As we were using five 

flip angles, we selected a range of flip angles about the optimum flip angle. Furthermore, 

in Figure 5.5 we show that the SIVFA curves for the 15 and 30 flip angles have similar 
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slopes, and therefore similar sensitivities, as that of the optimum flip angle over the 

expected range of R1 values. 

 
Figure 5.4. A) SIVFA curves as a function of  (in radians) for the expected range of R1 

values: R1 = 0.4 s-1 [dashed blue]; R1 = 0.5 s-1 [solid orange]; and R1 = 0.6 s-1 [dashed 

yellow]. B) The SIVFA curve for the expected R1 = 0.5 s-1 [solid blue line] overlaid with the 

chosen flip angles [orange stars]. 

 

 
Figure 5.5. SIVFA curves as a function of R1 showing the optimal flip angle ( = 22) [solid 

purple] and the middle three flip angles ( = 10 [dashed blue],  = 15 [dashed orange], 
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and  = 30 [dashed yellow]) from the chosen range of 5 flip angles for the range of R1 = 

0.4 s-1 to 0.6 s-1.  

 

A 3D multi-echo, gradient-echo (3DMGE) image with TR = 50 ms, flip angle = 15 degrees, 

and six echoes starting at 1.74 ms with echo spacing of 4 ms was acquired for R2* 

mapping. The echo times used were optimized for the following signal model: 

𝑆𝐼𝑇𝐸(𝑡) = 𝑆𝐼0𝑒−𝑡∗𝑅2
∗
 

where SITE is the signal intensity as a function of time, t, and SI0 is the baseline signal 

intensity. Using R2* values from preliminary experiments and normalizing SI0 to one, the 

expected range of SITE curves as a function of time are shown in figure 5.6 A. The echo 

time that is most sensitive to R2* differences over the expected range was determined by 

calculating the derivative of the difference between the SITE curves when R2* = 130 s-1 

and R2* = 70 s-1 and solving for t to find the optimum TE, which was approximately 10.3 

ms. The minimum TE of 1.7 ms was dictated by the scanner hardware and the echo 

spacing was chosen to be 4 ms such that the final array of 6 echoes was distributed about 

the optimum TE, as shown in figure 5.6 B.  
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Figure 5.6. A) SITE curves as a function of t in seconds for the expected range of R2* 

values: R2* = 70 s-1 [dashed blue]; R2* = 100 s-1 [solid orange]; and R2* = 130 s-1 [dashed 

yellow]. B) The SITE curves as a function of R2* for the optimum TE = 10.3 ms [solid blue 

line] and the array of chosen TEs for the acquisition [dashed lines]. 

 

Both R1 and R2* mapping images were acquired while the mice were freely breathing 

medical air (20% O2) followed by carbogen (95% O2/5% CO2) to modulate tissue and 

vasculature oxygenation. Both the 3DGE and 3DMGE sequences were acquired with a 

field of view of 4.8 x 6.4 x 1.8 cm3; matrix 96 x 128 x 48 such that the resolution was 0.5 

mm, isotropic; 1 average; scan time 3 minutes and 50 seconds, each. Optimal relaxation 

rate constants were determined for each voxel via Bayesian probability theory based 

software[27]. Following imaging on E18.5, members of the Mysorekar lab collected the 

animals for tissue harvesting and biological tests. The mice were euthanized, a subset of 

fetal sizes were measured, a subset of placentas were weighed, and the remaining 

placental and fetal tissues were harvested for ZIKV titering and histopathological analysis. 

The Mysorekar lab also prepared additional animals which received the same infection 

and treatment protocol but were sacrificed at E15.5 (n=20) without undergoing any 
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imaging. Following euthanasia, a subset of these fetal sizes were also measured and 

placental and fetal tissues were harvested for ZIKV titering and histopathological analysis. 

Segmentation of MR images was performed on the FSEMS anatomic images and the 

regions of interest (ROIs) were then transferred onto the R1 and R2* maps using VOXA 

(VOXel based image Analysis toolset), a suite of custom image processing tools 

implemented in MATLAB[28] and co-developed by Pfizer, Inc. and the Mallinckrodt 

Institute of Radiology. The statistical significance of reported results was assessed via 

ANOVA and two sample t-tests using Origin[29] and the free and open source Jamovi 

Project software[30]. 

Herein, quantitative results are reported in the form of box and whisker plots to visualize 

the summary statistics, overlaid with the individual data points. The mean of each 

distribution is represented by an open square and the median is represented by the 

midline of the box. The top and bottom edges of the box represent the 75th and 25th 

percentiles, respectively, and the range which they cover is referred to as the interquartile 

range. The top and bottom whiskers represent the 95th and 5th percentiles, respectively 

and the dashes above the edge of the 95th percentile whisker and below the 5th percentile 

whisker denote the maximum and minimum values, respectively.  
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5.3 Results 

5.3.1 MRI Results 

MRI-derived Placental Volume 

The average MRI-derived placental volumes for each dam, shown in Figure 5.7, illustrate 

the developmental effects of both ZIKV infection and HCQ treatment. In ZIKV infected 

dams, the resulting placental volumes are significantly different (p = 0.004) by ANOVA. 

At E15.5, the median placental volume of the healthy control dams was 0.065 cm3 

whereas the median volume for ZIKV infected, untreated dams was 0.059 cm3. 

Surprisingly, HCQ treatment had an even greater impact upon placental volume (p < 

0.001) by ANOVA with uninfected, HCQ treated dams having a median placental volume 

of 0.056 cm3 at E15.5. ZIKV infected, HCQ dams showed the smallest overall median 

placental volume which was 0.048 cm3 at E15.5. Healthy control dams show a modest 

increase in placental volume with increased GA, with a median placental volume of 0.066 

cm3 at E18.5. ZIKV infected, untreated dams show no change in median placental volume 

and uninfected, HCQ treated dams show a modest decrease with increased GA, with a 

median placental volume of 0.054 cm3 at E18.5. The ZIKV infected, HCQ treated cohort 

shows a large increase in placental volume with increasing GA such that the median 

placental volume is 0.057 cm3 at E18.5. 
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Figure 5.7. Average MRI-derived placental volumes per dam show reduction due to ZIKV 

infection and HCQ treatment. Open boxes represent GA E15.5 and diagonally lined boxes 

represent E18.5. White boxes represent untreated animals and gray boxes denote treated 

dams. Each filled point is the average placental volume of all fully segmented placentas 

within a single dam. Differences as a function of GA are not statistically significant, 

whereas ZIKV infection (p = 0.004) and HCQ treatment (p < 0.001) result in significantly 

smaller placental volumes by ANOVA. 

 

Placental R1 

Average placental R1 per dam, shown in figure 5.8A, in insensitive to maternal gas 

challenge, with no statistically significant difference due to the gas challenge, presence 

of ZIKV infection, HCQ treatment, or with aging. Median average placental R1 values for 

each cohort while breathing air and carbogen at both E15.5 and E18.5 are shown in Table 

5.1. 
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Table 5.1 

Placental R1 (s-1) Healthy ZIKV ZIKV+HCQ* Healthy+HCQ* 

 

E15.5 

Air 0.55 0.53 0.51 0.52 

Carbogen 0.58 0.54 0.52 0.52 

 

E18.5 

Air 0.55 0.54 0.55 0.51 

Carbogen 0.53 0.51 0.55 0.53 

 

The average change in placental R1 upon switching from breathing air to carbogen, as 

shown in figure 5.8B, is nearly zero for all cohorts and there is no statistically significant 

difference due to the presence of ZIKV infection, HCQ treatment, or the GA of the 

fetoplacental units by ANOVA. All median changes in R1 with gas challenge are less than 

0.01 s-1 with the exception of ZIKV infected, untreated dams only at E18.5 when the 

median change is 0.014 s-1. Figure 5.8C shows a color map of R1 values for each voxel 

within all placentas contained within a single slice from a representative dam.  
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Figure 5.8. Placental R1 show little response to gas challenge and no change with ZIKV 

infection, HCQ treatment, or aging. A) Average placental R1 per dam for each cohort, at 

both GAs, and on both air and carbogen breathing gas conditions. There is no significant 

change in placental R1 due to the presence of infection or treatment nor as a function of 

GA or the breathing gas challenge by ANOVA B) Average change in R1 due to the gas 

challenge (R1[air] – R1[carbogen]) at both GAs. There is no significantly different change 

in R1 in response to the gas challenge due to the presence of ZIKV infection, presence of 

HCQ treatment, or the GA of the fetoplacental units. Each point in A) and B) is the 

average R1 value of all placentas within a single dam, excluding any fetoplacental units 

that showed signs of undergoing spontaneous abortion and resorption. C) Representative 

color map depicting the range of R1 values on a voxel wise basis seen within and across 

placentas in a single imaging slice for a single dam. Inlaid color bar shows corresponding 

R1 values.  
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Placental R2* 

Average placental R2* per dam, shown in figure 5.9A, is sensitive to GA (p < 0.001) and 

the gas challenge (p < 0.001), but there is no statistical significance of ZIKV infection or 

HCQ treatment by ANOVA. All cohorts show an increase in R2* on air with increased GA 

and a decrease in R2* when breathing carbogen at both GAs. Median average placental 

R2* values for each cohort while breathing air and carbogen at both E15.5 and E18.5 are 

shown in Table 5.2. 

Table 5.2 

Placental R2* (s-1) Healthy ZIKV ZIKV+HCQ* Healthy+HCQ* 

 

E15.5 

Air 96 95 82 91 

Carbogen 64 67 63 80 

 

E18.5 

Air 118 108 112 115 

Carbogen 99 90 99 87 

 

The average change in placental R2* upon switching from breathing air to breathing 

carbogen, shown in figure 5.9B, is statistically different at different GA (p < 0.001) and 

with HCQ treatment (p < 0.001), but not due to ZIKV infection by ANOVA. The median 

change in average placental R2* for the healthy control dams was 25.0 s-1 and 15.6 s-1 at 

E15.5 and E18.5, respectively. ZIKV infected, untreated dams showed a median change 

in average placental R2* of 18.9 s-1 and 17.8 s-1 at E15.5 and E18.5, respectively. For 

ZIKV infected, HCQ treated dams, the median change in R2* was 10.7 s-1 and 13.0 s-1 at 

E15.5 and E18.5, respectively. And finally, uninfected, HCQ treated dams showed a 
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median change in average placental R2* of 8.8 s-1 and 28.5 s-1 at E15.5 and E18.5, 

respectively. Figure 5.9C shows a color map of R2* values for each voxel within all 

placentas contained within a single slice from a representative dam. 

 

 
 

Figure 5.9. Placental R2* responds to gas challenge differently due to HCQ treatment, 

but not ZIKV infection. A) Average placental R2* per dam for each cohort, at both GAs, 

and under both air and carbogen breathing gas conditions. ZIKV infection and/or HCQ 

treatment do not induce a significant difference by ANOVA, whereas the increase with 

aging and the decrease with the breathing gas challenge were both significantly different 

by ANOVA, (p < 0.001, for both). B) Average change in R2* due to the gas challenge 

(R2*[air] – R2*[carbogen]) at both GAs. There is no significant difference in the change in 

R2* due to the breathing gas challenge due to the presence of ZIKV infection. However, 

changes resulting from HCQ treatment and as a function of GA are both statistically 
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significant (p < 0.001). Each point in A) and B) is the average R2* value of all placentas 

within a single dam, excluding any fetoplacental units that showed signs of undergoing 

spontaneous abortion and resorption. C) Representative color map depicting the range 

of R2* values on a voxel wise basis seen within and across placentas in a single imaging 

slice for a single dam. Inlaid color bar shows corresponding R2* values.  

 
 

5.3.2 Biological Results via Mysorekar Lab 

Placental Weights 

Placental weights at E18.5, shown in Figure 5.10, were not significantly different due to 

ZIKV infection or HCQ treatment by ANOVA. The median placental weight at E18.5 for 

healthy control dams was 0.091 g. The median placental weight from ZIKV infected dams 

at E18.5 was 0.095 g. Both ZIKV infected and uninfected dams that received HCQ 

treatment had median placental weights of 0.096 g at E18.5. 

 
Figure 5.10. Individual placental weights at E18.5 for each cohort. Placental weights 

reported in grams. White boxes represent placentas from untreated animals and gray 

boxes represent placentas from HCQ treated animals. Neither ZIKV infection nor HCQ 

treatment resulted in significant differences in placental weights by ANOVA.  
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Fetal Sizes 

Figure 5.11A shows fetal sizes reported as the product of the crown to rump length (CRL) 

and the occipital lobe to frontal lobe diameter (OF) of the skull at both GAs. A loss of 

tissue samples due to contamination during storage resulted in no viable samples from 

the untreated healthy or ZIKV cohorts at E18.5. The only factor found to be statistically 

significant by ANOVA was GA (p < 0.001), while the presence of ZIKV infection and HCQ 

treatment did not result in significant differences. Figure 5.11B shows only those fetal size 

results from E15.5 and further ANOVA on just these results once again show no statistical 

significance of the presence of ZIKV infection or HCQ treatment. Healthy control fetuses 

were on average 89.7 mm2 and ZIKV infected, untreated fetuses were on average 82.3 

mm2 at E15.5. Fetuses from ZIKV infected, HCQ treated dams were on average 89.3 

mm2 and 151.1 mm2 at E15.5 and E18.5, respectively. Finally, fetuses from uninfected, 

HCQ treated dams were on average 88.8 mm2 and 147.6 mm2 at E15.5 and E18.5, 

respectively.  
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Figure 5.11. Fetal sizes measured as the product of the crown to rump length (CRL) and 

the occipital to frontal diameter (OF) of the skull. A) All fetal sizes measured following 

tissue harvest and fixation in formalin. Fetuses measured at E15.5 are from dams that 

were sacrificed at E15.5 and did not undergo any imaging. Fetal sizes at E18.5 were from 

dams that were imaged at both GAs. Loss of tissue samples due to contamination 

resulted in no viable samples from the untreated healthy or ZIKV cohorts at E18.5. The 

only statistically significant factor by ANOVA is GA; presence of infection and/or treatment 

do not result in statistically significant differences. B) The same results from E15.5 shown 

in A) without the E18.5 results, allowing for a reduced range of fetal sizes. The ZIKV 

infected, untreated fetal sizes appear to be trending downward, however neither the 

presence of infection nor treatment show statistically significant differences at E15.5. 

 

Fetal and Placental Viral Titers 

Figure 5.12A shows viral titer results from fetal heads. Only tissue samples collected from 

ZIKV infected animals were used in viral titer analysis, as uninfected samples would all 

result in zero FFU. The mean value at E18.5 for ZIKV infected, untreated animals was 

90.7 FFU equivalent per gram and ZIKV infected, HCQ treated animals was 59.4 FFU 

equivalent per gram. A two sample t-test found the two groups were not significantly 

different. Figure 5.12B shows viral titer results from placental tissue. The mean value at 

E18.5 for ZIKV infected, untreated animals was 1.35 x 107 FFU equivalent per gram and 

the mean value for ZIKV infected, HCQ treated animals was 1.24 x 107 FFU equivalent 
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per gram. A two sample t-test found the two groups were not significantly different. Figure 

5.12C shows the ratio of the fetal head to placental viral titer results. The mean value for 

the ZIKV infected, untreated animals was 1.15 x 10-5 and the mean value for the ZIKV 

infected, HCQ treated animals was 5.38 x 10-6. A two sample t-test found the two groups 

were not significantly different. 

 

 
Figure 5.12. Fetal and Placental viral titer results show no difference with HCQ treatment. 

A) Fetal head and B) placental viral titer results at E18.5 from the ZIKV infected, untreated 

and ZIKV infected, HCQ treated cohorts. While ZIKV in some fetal heads and placentas 

was present at reduced levels, the inhomogeneous response to HCQ treatment results in 

no significant difference as determined by a two sample t-test in either the fetal head or 

the placental results.  

 

5.4 Discussion 

5.4.1 MRI Results 

MRI-derived Placental Volume 

Decreased placental size with the presence of ZIKV infection suggest that the Zika virus 

interferes with proper development of murine placenta across gestation. Previous studies 

have shown that ZIKV invades trophoblast cells and induces apoptosis, increased 
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nucleation of fetal erythrocytes, and abnormal fetal vasculature[9]. Surprisingly, placental 

volume was similarly smaller than those in healthy control dams when treated with HCQ 

and smaller still when both ZIKV infection and HCQ treatment were present. One potential 

explanation for this effect is that HCQ alters the delivery of oxygen. Chloroquine (CQ), 

the precursor to HCQ, has been shown in multiple cases to induce 

methemoglobinemia[31-33] wherein the relative amount of hemoglobin in an oxidized 

ferric form (Fe3+) is increased. Methemoglobin has a very high affinity for oxygen such 

that virtually no oxygen is delivered to the tissue via these ferrihemoglobin carriers. Given 

the similarities of the two drugs, it is possible that HCQ could also induce an increase in 

methemoglobin concentrations and that the resulting smaller placentas are due to 

decreased oxygen transfer to the developing placenta. However, the effects of HCQ on 

the placental are not well understood, with very few studies having been conducted thus 

far[34]. One such study found that HCQ had no negative effects upon cell turnover, 

nutrient transport, or cytokine release but increased anti-inflammatory protection and 

promoted regeneration or syncytiotrophoblasts in human placental explants[34]. The anti-

inflammatory protection may explain why the ZIKV infected, HCQ treated placentas 

increased significantly in size later in gestation. Whereas the ZIKV infected, untreated 

placentas did not show any increase in size from E15.5 to E18.5, placentas from ZIKV 

infected, HCQ treated dams greatly increased in size. The end result is much smaller 

than that of the healthy controls, but the increase in placental volume seems to suggest 

a positive influence of the HCQ treatment.  
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Placental R1 

The lack of differences in R1 across cohorts or with GAs suggests no major differences 

in the amount of dissolved oxygen within the tissue. Due to the slight paramagnetic nature 

of molecular oxygen (O2), R1 is linearly proportional to the concentration of dissolved O2 

in tissue. It acts, in effect, as a weak, endogenous contrast agent. The use of a gas 

challenge to induce higher tissue oxygenation was intended to elucidate any differential 

responses to altered metabolic states. However, the lack of apparent R1 response to ZIKV 

infection, HCQ treatment, GA, or the gas challenge is not entirely surprising or indicative, 

as the pO2 effect upon R1 in tissue is known to be quite small[18, 35, 36]. Furthermore, 

the inhomogeneity of R1 values within the placenta complicates the situation further and 

could be masking any response to the gas challenge or the infection and treatment 

protocol. It is possible that changes are occurring within the placenta to which we are not 

sensitive using this particular MRI protocol and that these changes are being further 

diluted by first averaging across all voxels within each placenta and then averaging across 

all placentas within each dam. While Avni, et al. showed a difference in placental R1 of 

about 0.15 s-1 between 100% O2 and 20% O2 maternal breathing gas[37], studies in 

human placentas show that R1 response to gas challenge decreases with gestation and 

is nearly zero at term equivalent of E14.5[38]. Therefore, it is also possible that we do not 

see a response to the gas challenge because our study focused only on late gestation. 

Placental R2* 

Contrast in R2* is the basis of BOLD MRI, or fMRI, wherein changes in the magnetic 

susceptibility of blood due to variations in the ratio of oxyhemoglobin to deoxyhemoglobin 

lead to changes in R2*. Oxyhemoglobin is diamagnetic whereas deoxyhemoglobin is 
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paramagnetic and an increase in the oxyhemoglobin to deoxyhemoglobin ratio decreases 

the magnetic susceptibility differences between the intravascular and extravascular 

spaces. This increased homogeneity in the local magnetic field results in a decrease in 

R2*. Therefore, when the dams breathe carbogen, the increased oxygen content within 

the breathing gas drives an increase in the proportion of oxyhemoglobin and R2* should 

decrease. This expected result is seen for all four cohorts at both gestational days. 

Furthermore, the baseline R2* (or R2* on air) is shown to increase for all cohorts with an 

increase in GA. This can be explained by the fetal demand for oxygen increasing as the 

fetus continues to grow and develop across gestation. 

Given the differences in placental volumes, the lack of a difference in R2* with ZIKV 

infection was unexpected and suggests that the volume difference is not due to altered 

vasculature. However, studies in ZIKV infected pregnant rhesus macaques have shown 

extensive damage to the maternal-fetal interface wherein oxygen transport from mother 

to fetus was significantly impeded[39]. HCQ treatment does not appear to greatly affect 

the baseline R2*, as a slight, but not statistically significant, decrease in the median R2* 

is seen by ANOVA. However, the change in R2* due to the gas challenge is significantly 

affected by HCQ treatment. Delta R2* is generally smaller with the presence of HCQ, 

which could be due to the presence of increased levels of methemoglobin reducing the 

amount of deoxyhemoglobin in the blood supply before the gas challenge and therefore 

the response to the gas challenge. The exception to this trend is that of the uninfected, 

HCQ treated dams at E18.5, which show increased change in R2* due to the gas 

challenge. This result is quite puzzling and a better understanding of the effect of HCQ 

on healthy tissue is required to determine the cause. 
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5.4.2 Biological Results via Mysorekar Lab 

Placental Weight & Fetal Size 

As noted previously, differences in placental volume across cohorts were found via MRI 

methods. However, the wet weights of individual placentas were found to not be 

significantly different due to ZIKV infection or HCQ treatment. This suggests that the 

placentas of ZIKV infected and/or HCQ treated dams are denser than those of healthy 

control dams. ZIKV infection could potentially disrupt normal development of placental 

structures, resulting in a denser placenta. HCQ is used to treat inflammatory conditions 

such as rheumatoid arthritis and lupus as it inhibits receptors involved in inflammatory 

pathways[34]. Many developmental processes are a finely tuned balance between 

anabolic and catabolic factors and the decrease in inflammation resulting from HCQ 

treatment could disturb this balance, resulting in denser tissue.  

HCQ is known to cross the human placenta, as studies have shown similar concentrations 

in maternal and umbilical cord blood samples concomitantly collected at the time of 

delivery[40]. However, multiple studies focusing on the safety and efficacy of HCQ 

treatment for autoimmune diseases, such as lupus or rheumatoid arthritis, have shown 

that HCQ exposure during pregnancy does not appear to increase the risk of adverse 

outcomes or congenital defects[14, 41-43]. A minority of published works reference 

instances of treatment with HCQ and other malarial drugs in the event of malaria 

outbreak, prescribed either prophylactically or therapeutically, and stressed cautious use 

of the drug in the case of pregnancy due to increased rates of stillbirths, spontaneous 

abortions, and congenital birth defects[44]. However, the lack of an effect upon placental 
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weight or fetal size herein supports the argument that HCQ in pregnancy does not pose 

a threat to normal fetal development.  

Potentially the most surprising and concerning result from this study is the lack of a 

difference in fetal size due to the presence of ZIKV infection. Previously published results, 

in part by our collaborators, using similar infection protocols resulted in significantly 

decreased fetal size at GA E13.5[9]. While it is possible that this difference is due to the 

fact that our results herein were collected at GA E15.5, that seems highly improbable. In 

fact, it was hypothesized that the difference between ZIKV infected and healthy control 

fetal sizes would be more pronounced later in gestation as the growth of the ZIKV infected 

fetuses would have continued to be retarded. Furthermore, using nearly the exact same 

infection and treatment protocol, our collaborators saw a significant increase in fetal size 

in ZIKV infected, HCQ treated animals in comparison to ZIKV infected, untreated animals 

at E14.5[11] whereas we saw no difference at E15.5. Once again, it is possible, but 

improbable, that this loss of differentiation between the groups is due to the increase in 

GA by one day. This inability to reproduce previous findings is quite concerning and raises 

questions regarding the viability of this study. Unfortunately, fetal size data were among 

the last to be collected and analyzed and were not available until after the remainder of 

the study was completed. Further experiments would need to be done to understand 

where the biology of our animals deviated from that of previously published results. 

Unfortunately, this is impossible as most of the tissue samples collected were lost to 

contamination.  
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Viral Titers 

No significant effect is seen in terms of viral titer results assessed within either the 

placenta or the fetal head. It is true that both the fetal head and placental viral titer results 

show downward trends with HCQ treatment, however this effect is too small to be 

statistically significant. Both of these results deviate from previously published results 

determined at E14.5[11, 15]. From the viral titer results, we observed a wide range of 

ZIKV infection in the placentas and fetuses within a single dam. It is possible that the 

HCQ treatment, which was administered via an IP injection, may not homogeneously 

disperse to all placentas. Perhaps a more likely explanation is that the daily injections 

were not all identically administered, which caused deviations in the response to HCQ 

treatments.  

The failure to reproduce the biological measures from previous ZIKV studies diminishes 

the significance of the MR findings. It is certainly possible that the decision to study ZIKV 

infection and HCQ treatment later in gestation led to our investigating only healthier 

fetoplacental units, as mice are able to undergo spontaneous abortion and resorption of 

unhealthy fetoplacental units. However, the lack of tissue sample precludes further 

investigation of these differences. Finally, we did see significant differences in placental 

volume across gestation with ZIKV infection and HCQ treatment and R2* differences with 

HCQ treatment via MRI which are reasonable and warrant further investigation once the 

biological model is further refined. 
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Chapter 6: Conclusion 

6.1 Summary 

Knowledge of tissue oxygenation and oxygen transport could provide improved diagnosis 

and treatment planning for a multitude of pathologies. In this dissertation, we have 

investigated MR techniques to non-invasively quantify tissue pO2. In Chapter 2, a 

Bayesian probability theory-based, data-driven approach to model selection resulted in 

the biexponential signal model providing the most probable of five signal models 

compared for both in vivo and crosslinked bovine serum albumin (xBSA) longitudinal 

relaxation data. However, when the data are sparse or the SNR is lower, simpler models, 

which utilize fewer free parameters, are favored. Furthermore, xBSA displays similar 

longitudinal relaxation characteristics as in vivo tissue, and can be used as a tissue 

surrogate for further investigations of endogenous modifiers of R1 measurements in 

tissue. 

In Chapter 3, xBSA was employed to explore select endogenous confounds to R1 

measurements – temperature, pH, and protein concentration – and to quantify the direct 

relationship between measured R1,slow and tissue pO2. Variations in temperature, pH, and 

protein concentration exert a relatively larger effect upon R1,slow than the paramagnetic 

relaxation induced by dissolved O2 and must, therefore, be considered when applying 

R1,slow-based methods of pO2 quantification. Additionally, significant challenges in 

modifying the xBSA sample pO2 and apparent variations in the relationship between 

R1,slow and pO2 across xBSA samples, the latter due to likely cross-sample 
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microstructural/microenvironmental variability (i.e., variable sample preparations), limit 

the feasibility of using xBSA as an R1,slow vs. pO2 reference material. 

In this dissertation, we have also investigated MRI methods for monitoring tissue 

oxygenation and exchange of oxygen in the placenta. The placenta is vital in maintaining 

the health of both mother and fetus, with facilitation of oxygen exchange prominent among 

its various roles. MRI biomarkers of placental function would aid in determining the 

optimal timing of early delivery in cases of infection or placental insufficiency, wherein 

knowledge of whether sub-optimal placenta performance can support continued fetal 

development or not is needed. 

In Chapter 4, we employed mouse models of common pregnancy pathologies, including 

pre-eclampsia (PE) and intrauterine growth restriction (IUGR), which are proposed to be 

caused by abnormalities in placental vasculature. It was shown that placental volume and 

R2* measures at baseline and with a gas challenge can stratify healthy placentas from 

those characterized by PE or IUGR. In particular, R2* changes due to the gas challenge 

in the labyrinth zone show promise as a biomarker of placental function at both near-term 

and term, and warrant further investigation. 

In Chapter 5, in a collaboration with Indira Mysorekar’s lab, we investigated Zika virus 

(ZIKV) infection and hydroxychloroquine (HCQ) treatment effects upon placental 

development and function using MRI and biological methods. Volume differences were 

found across gestation with ZIKV infection and HCQ treatment and R2* differences with 

HCQ treatment were found that warrant further investigation. However, the biological 
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methods failed to reproduce results from previous ZIKV studies, diminishing the 

significance of our MR findings.  

6.2 Future Research 

6.2.1 Viable Application of R1,slow-based pO2 Quantification Method 

Donor tissues for transplantation are in short supply worldwide, with techniques such as 

tissue engineering or in vitro organogenesis providing potential solutions[1, 2]. Lab grown 

tissues or organs are not yet widely available due to a lack of tissue scaffolds that can 

adequately provide the appropriate oxygen supply for tissue growth. Our R1,slow-based 

method for pO2 quantification could provide a valuable tool for non-invasively monitoring 

tissue development in various media to determine the optimal method of delivery of 

oxygen to facilitate proper tissue growth and development. 

6.2.2 ZIKV Infection and HCQ Treatment Effects Upon Placental 

Development and Function 

Investigation into the differences seen in biological results of our cohort of mice from those 

published previously would be required to interpret our MRI results. However, 

unanticipated loss of tissue samples from the current study precludes such investigation. 

It has been shown in non-human primates that ZIKV infection causes severe placental 

damage and abnormal oxygen transport[3]. HCQ reduces transmission or ZIKV across 

the placenta early in gestation and could be a viable treatment during pregnancy[4]. 

Repeating this study following refinement of the biological model would enhance our 

understanding of the placental effects of both ZIKV infection and HCQ treatment. 

Furthermore, dose-response studies of HCQ treatment in cases of ZIKV infection for 
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preventing transmission of the virus without retarding fetal development could guide 

future clinical studies. 

6.2.3 R2* and R2* as Biomarkers of Placental Function 

Further investigation into the efficacy of R2* and R2* as biomarkers of placental function, 

specifically within the region of the placenta most proximal to the fetus, are warranted. 

Studies of healthy human placenta have shown that changes in placental R2* (R2*) in 

response to a gas challenge decrease with gestation[5], as we observed for murine 

placenta. Additionally, our measurements of R2* with gas challenge within the labyrinth 

zone stratified healthy placentas from those of PE or IUGR, at both near term and term. 

This could be further investigated pre-clinically, wherein more severe placental 

dysfunction can be induced via i) increased dosage of Poly(I:C) in the PE dams; ii) ligation 

or occlusion of the ovarian or uterine artery to restrict blood flow into the uterine horn; iii) 

maternal nutrient restriction; or iv) housing under hypoxic conditions. Furthermore, 

measurements of R2*  could be investigated clinically in mothers to determine if similar 

trends are seen within the fetal placenta in healthy term pregnancies and those 

characterized by placental dysfunction. 
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