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ABSTRACT 

Applications of Nonlinear Dynamics and Critical Phenomena to  

Measure Neural Populations using Inputs to Single Neurons 

by 

James Kenneth Johnson 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2020 

Professor Ralf Wessel, Chair 

 

A compelling vision for the future of neuroscience is the ability to sense neural activity 

throughout the bulk of the brain with exquisite resolution. Popular visions usually include 

intricate electrode technology intruding into the neuropil, meandering along nerve tracts, and 

sensing the whole brain. These popular visions stem from the belief that we must always have an 

outsider’s perspective of neural activity. According to this belief the closest thing neuroscientists 

can achieve to an insider’s perspective is to shadow every neuron (or almost every neuron) with 

an electrical or optical recording device. Yet, the brain naturally has an expansive sensor 

network. The brain already aggregates and organizes neural activity according to computational 

function. The brain does this through the operation of single neurons, which have arrays of many 

dendrites to process inputs arriving from far and wide. These processed inputs are concentrated 

at the soma of the neuron where they drive rich dynamics, and where the neuron translates these 

inputs into outputs.  One of the most venerable methods in neuroscience, the patch-clamp 

intracellular recording technique, can record these rich input driven dynamics. Neuroscience has 



xi 

long held the goal of patching into the full network dynamics with patch-clamp, but it is difficult 

to reconstruct network dynamics information. Fortunately, the neural criticality hypothesis 

provides a justification for expecting to find network dynamics information, and the modern field 

of nonlinear dynamics provides tools for reconstructing full dynamics from scant information. 

The neural criticality hypothesis is the idea that the brain can exhibit phase transitions, but tunes 

itself to sit at a point (called a “critical point”) between two phases where the most dynamical 

complexity arises. One of the key phenomena of critical systems is “scale-freeness” which is 

widely observed in the brain. One implication of Scale-freeness is that some statistics are always 

the same whether observed at very small scales or very large. For critical phenomena scale-

freeness is both extensive and precise, if scale-freeness is limited in a system then it suggests that 

system is not a critical system. We adopt condensed matter physics’ rigorous standards for 

experimentally identifying critical systems. We show that we can meet these standards with long 

intracellular recordings. We also show that our findings agree with large scale population 

recordings. After establishing this proof-of-concept, we then use new methods for modeling 

nonlinear dynamical systems to extract small details about visual stimulus from short 

intracellular recordings. These details were too small to be reliably detected in the output of 

neurons. We use models of nonlinear dynamics because of their relationship to a neural coding 

paradigm: Attractor network theory.  Thus, we also have novel evidence of dynamical attractor 

based neural code in primary visual cortex.  Therefore, we have advanced both the neural 

criticality hypothesis and the attractor network theory of neural coding while demonstrating that 

we can patch into in-situ neural communication networks and get information that previously 

required electrode arrays or other population recording methods.



1 

Chapter 1:  

Introduction to Intracellular Investigations of 

Population Neural Code 

Throughout the last thirty years of innovation, reported breakthroughs, and real-world 

applications the study of neural code has continued to face an epistemological challenge 

familiar to science (Stanley, 2013). The term neural code is very general and refers to a 

hitherto undiscovered set of rules relating arbitrary behaviors and stimuli to a well-defined 

(though likely infinite) set of spatiotemporal patterns of brain activity for any organism. 

Given the profound complexity and fragility of vertebrate nervous systems, observing, 

characterizing, and validating any putative neural code is one of the most difficult problems 

in science.  The core dilemma of this, and many research programs is: when an 

experimenter finds patterns of neural activity that allow them to predict external 

observables (e.g. stimulus, behavior), how can they know whether the patterns are causal 

or coincidental? To make things simpler researchers focus on limited versions of neural 

code. Plausible limited neural code concepts such as rate-coding have been revised and 

limited as new technologies and experiments provide counterexamples or alternatives. For 

the rate coding example: each neuron exhibits selectivity (i.e. they “stand for something”) 

and thus fire more action-potentials when they become relevant to an organism objective 

(Georgopoulos et al., 1986; Bialek et al., 1991; Butts and Goldman, 2006). There are newer 

discoveries about the sensitivity to the precise timing of action potentials (Desbordes et al., 

2008) and the finding that selectivity is context dependent, a neuron responds to visual 

https://paperpile.com/c/wMUO2t/kzgY
https://paperpile.com/c/wMUO2t/YBaT+8fsi+IZ82
https://paperpile.com/c/wMUO2t/Bzj1
https://paperpile.com/c/wMUO2t/Bzj1
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stimuli differently when an animal is locomoting than when still (Vinck et al., 2015). These 

new findings proved that although rate coding is very successful as a paradigm for 

predicting external observables from neural activity, firing rate may not be a fundamental 

quantity, but rather a side-effect of or a single element of a more fundamental 

computational paradigm. A core reason for this epistemological dilemma is that 

experimenters are forced to observe neural activity with an outsider’s perspective that 

misses structural and contextual information. The lack of ability to gain an insider’s 

perspective on brain operations and the combinatorial explosion of possible patterns that 

can be observed in neural activity is one of the principal reasons cracking the neural code 

has been nominated as the hardest problem in science (Horgan, n.d.).  

The simultaneous activity of many neurons is primarily recorded using two methods, 

electrode arrays which sense electrotonic fluctuations (Spira and Hai, 2013), or imaging 

methods that observe changes in the fluorescence of molecules that label anatomical 

elements and are modulated by electrotonic variables (Yang and Yuste, 2017). Neither 

method is privy to the connections between neurons, they primarily sense activity at the 

point of action potential generation or are not localizable at the resolution needed to 

control for the myriad of factors that actively participate in a healthy brain. These factors 

can influence the timing of action potentials, communicate context, or alter the way that 

neurons pass information among each other.  

1.1 Cellular Factors Influencing Neural Activity 

https://paperpile.com/c/wMUO2t/c4Pi
https://paperpile.com/c/wMUO2t/8YL2
https://paperpile.com/c/wMUO2t/e07V
https://paperpile.com/c/wMUO2t/zKOZ
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We will quickly recount a few functional and anatomical details (Squire et al., 2012) before 

articulating how they thwart efforts to define neural code. The physical shape of a single 

neuron is typically modeled as something like a tree, with an exquisite dendritic 

arborization collecting inputs and a meandering tap-root-like axonal process sending 

information far and wide. The fastest and most easily observed carrier of information is the 

action-potential which is a self-propagating electrotonic impulse. These can be generated at 

a few key sites in the dendritic arborization of some neuron types, but historically the most 

important site for action potential generation has been near the cell-nucleus (i.e. the soma), 

at the “axon-hillock” which would be analogous to the root-bulge at the base of a tree. 

Action potentials must travel along narrow fibers and they rely on ion-channels embedded 

in those fibers to create or eliminate a separation of charges from inside the fiber to 

outside. Because this separation of charges sets up a fast-changing electric field, 

electrodynamic interactions play a large role in governing the propagation of action-

potentials. However, because propagation also relies on ion channels, metabolic and 

biomolecule signaling factors play a role. Perhaps the most crucial part of action-potential 

propagation is its encounter with synapses. As an action potential propagates through the 

axonal processes the wave will pass across sites where the end-output organs of neurons 

are located. At a synapse the membrane of an axonal fiber comes very close to the 

membrane of a dendritic fiber. Sometimes synapses form between two dendritic fibers, or 

two axonal fibers but axon to dendrite synapses are the canonical model. A synapse also 

has a distinct shape, like a cup and saucer where a protrusion of the axonal membrane, 

called the presynaptic terminal, is convex (the cup) and a protrusion of the dendritic 

membrane, called the postsynaptic terminal is concave (the saucer). Membranes do not 

https://paperpile.com/c/wMUO2t/fGMY
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touch but are separated by a narrow “synaptic cleft”. There are other, highly variable, 

details about the shapes of synaptic structures which are less relevant to our recitation of 

factors complicating experimental observations of neural code. More relevant are 

electronic and biomolecule signaling features. Ion channels are especially concentrated at 

synapses. For synapses called “gap-junctions”, the passing wave of electric-potential is felt 

on both sides and is enough to trigger the ion-channels on the postsynaptic side to induce a 

new wave in the dendritic fibers. In “chemical synapses” the passing wave induces the 

release of signaling molecules to trigger a similar wave. In both cases, this post-synaptic 

wave is not self-propagating and will decay to negligibility unless it constructively 

interferes with other post-synaptic waves or contributes to the generation of a dendritic 

action potential. Some kinds of synapses are inhibitory, others are excitatory. The waves 

induced by excitatory synapses increase the likelihood of somatic action potential 

generation and are usually associated with presynaptic neurons whose axonal processes 

feature almost exclusively excitatory synapses. An inhibitory synapse produces waves 

which decrease the likelihood of action potential generation and are usually associated 

with presynaptic neurons whose axonal processes feature almost exclusively inhibitory 

synapses. This brief anatomical description highlights the opportunities for mechanisms 

that electrode arrays and fluorescence imaging methods may miss. 

There are three mechanisms relevant to the above details that are missed by most 

population recording methods, and which we aim to include in neural code investigations 

by using whole-cell recordings. The first is recurrent dynamics within the neural network 

being partially observed. Because axons can project far and wide a large amount of any 
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brain system occurs outside the imaging field or bounds of an electrode array. Axons can 

project from one brain hemisphere to the other, to neighboring neurons, or just across 

layers. Therefore, a single functional subgraph (a collection of interconnected neurons 

cooperatively performing an operation) can extend beyond any reach of current cellular 

resolution imaging and array recording methods (Levina and Priesemann, 2017). Even for 

the neurons which are in the imaging field, the synapses and fibers are almost always 

resolved too poorly to create a map of interconnections using anatomical evidence. Though 

this is changing (Viventi et al., 2011; Steinmetz et al., 2018). Thus, limited coverage and 

poor resolution together mean that electrode array recordings and fluorescence imagine 

methods do not give enough information for an experimenter to efficiently discover natural 

groupings of neurons and look for neural code within only those groupings and the 

complete grouping.  

The second mechanism which is important but not well resolved in electrode arrays or 

imaging fields are biomolecule signaling effects. The structure of synapses provides 

imperfect isolation, consequently enabling the important process of “neuromodulation” 

(Marder, 2012). Regions of neural tissue can show altered function by any process altering 

the concentrations of neurotransmitters available at the synaptic cleft and other molecules 

facilitating signaling and/or cell metabolism. These effects can be selective for certain 

synapse types or localized to certain regions. Thus, for the largest imaging fields and 

arrays, these effects can be heterogeneously distributed, affecting some neurons under 

observation more than others. Since effects on action potentials are observed, but not the 

biomolecule signaling itself, neuromodulation and related phenomena are difficult to 

https://paperpile.com/c/wMUO2t/c7Yw
https://paperpile.com/c/wMUO2t/HV3W+hajm
https://paperpile.com/c/wMUO2t/1Oyp
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properly account for. Neuromodulation and other biomolecule signaling events are much 

slower than action potential generation and propagation but may still play a role in 

computation, especially with regards to altering apparent connectivity (Elsegai et al., 

2015). Furthermore, neurons have complex internal signaling networks which can alter the 

behavior of their membranes. These dynamics are unobserved and unique for each cell. 

The third mechanism is dynamical complexity. The proximate cause for action potential 

generation is when a neuron depolarizes (the separation of charges across membrane 

decreases) to the point that it triggers a reaction in certain ion channels. Put more simply, 

the proximate cause of action potential generation is when transmembrane potential 

crosses a threshold. However, a feature of the Hodgkin-Huxley model of action potential 

generation is that the mechanisms governing separation of charges has momentum. If a 

neuron is held in a hyperpolarized state and is rapidly released the restoring mechanism 

can overshoot the point of equilibrium and reach the point of action potential generation. 

In this situation, called “rebound spiking”, the (Izhikevich, 2007) ultimate cause can be 

something typically associated with inhibition and occurs well before it crosses the action 

potential generation threshold. The Hodgkin-Huxley model is quite simple and does not 

include neuromodulatory or intracellular signaling effects. Therefore, other ultimate causes 

for action potential generation may occur in the tissue under observation, but not be 

observable using current methods. This is because electrode arrays and fluorescence 

imaging methods are primarily designed to record action potentials and aren’t intended to 

extract the upstream population spiking or biomolecular signaling events which may 

ultimately cause action potentials and influence neural code. These three factors, 

https://paperpile.com/c/wMUO2t/hvKR
https://paperpile.com/c/wMUO2t/hvKR
https://paperpile.com/c/wMUO2t/8Lby
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incomplete coverage of neural groups and unknown connectivity, unobserved modulatory 

mechanisms altering activity and connectivity, and dynamical complexity all have 

something in common. Their effects all ultimately govern the electronic fluctuations that 

wash over each neuron’s cell body to reach the axon hillock.  

1.2 Advantages of Whole Cell Recordings 

A single whole-cell recording of membrane potential yields a summative record of these 

factors, while recordings of transmembrane current can separate them to some extent. The 

signal recorded from a patch electrode located at a neuron’s cell body is not unlike 

recording the sum of neurons under observation with an electrode array or calcium 

imaging field. However, it is also congruent with the intrinsic neural network in four 

important ways. First, it is no longer a presumption to say that a neuron has a well-defined 

effect on brain operations. Since an array or imaging field can happen to sit at the boundary 

of two functional subgraphs, this a presumption with those methods. A single neuron is a 

single computational element, the experimenter may not know its well-defined function or 

how reliably the neuron performs it, but they may trust that it has one.  

Second,  the superposition of excitatory and inhibitory postsynaptic potentials 

(postsynaptic waves) that an experimenter observes as fluctuations in whole-cell 

membrane potential recordings amounts to a way of subsampling neurons. Imaging fields 

and electrode arrays capture the individual activity of many neurons, but analysis 

frequently involves combining them in some manner. With whole-cell membrane potential 



8 

recordings they come pre-combined but can be separated with voltage-clamp recording 

modalities or with advanced computational data analysis. Many of the same conclusions 

about populations can be reached. Even better, we can count on the fact that the subsample 

of neurons summarized with a whole-cell recording is also a single intrinsically defined 

anatomical group that has a well-defined function.  

Third, because we have only one cell under observation then we have only one set of 

neuromodulatory and intracellular signaling effects. While still not directly observed we no 

longer have the complication that comes from having different dimensions subjected to 

different factors.  

Fourth, any events that ultimately cause action potentials are reflected in, though not easily 

recovered from, the fluctuations of transmembrane current or membrane potential. Action 

potential triggering events may occur among the inputs or within the components of the 

dendritic arborization.  

These four elements of whole-cell recordings motivates careful comparison of analysis on 

whole-cell recordings to similar analyses performed on recordings of populations of 

neurons. By making this comparison and carefully choosing what type of neuron to record 

from we can gauge whether neural code findings are robust to more naturalistic 

observation methods. 

1.3 Assessing the potential of whole cell recordings for 

facilitating neural code investigations 
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We assessed the potential of using whole-cell recordings to co-opt single neurons as useful 

naturally in-situ observers of brain operations by making two intensive comparisons to 

prior knowledge about brain operations obtained from recordings of neural populations. 

The first, covered in chapter two is a powerful test of the precision with which we can 

measure subtle properties of neural populations. What’s more, the investigation of chapter 

two is rooted in a theoretical principle which also lends plausibility to measuring neural 

populations through single intracellular recordings. This theory, neural criticality (Plenz 

and Niebur, 2014), is the proposal that the brain operates at a fine point of balance, known 

as the critical point of a phase transition. This point optimizes many important properties 

relevant to information processing but is also a possible explanation for the widespread 

observation of scale freeness in brain signals. Scale-freeness is the finding that some 

statistics of brain operation are the same no matter what scale they are recorded from (He, 

2014). Criticality provides a set of statistics predicted to be scale free but also requires that 

the match across scales be very precise; deviation is inconsistent with criticality (Taylor et 

al., 2013; Hartley et al., 2014). This is elaborated on more completely in chapter two, but it 

is important to understand that the concept of scale-freeness provides a broad justification 

for expecting to find evidence of a population neural code in intracellular recordings. 

What’s more, demonstrating consistency with criticality is a difficult challenge and thus a 

useful proof of concept. We found that the geometry of membrane potential fluctuations 

provided close agreement to the geometry of spurts of population activity called neuronal 

avalanches. This agreement provided evidence for criticality at the smallest possible scale 

of neural activity observation and justified further explorations of the ability to measure 

neural populations with single whole-cell recordings.  

https://paperpile.com/c/wMUO2t/eiHw
https://paperpile.com/c/wMUO2t/eiHw
https://paperpile.com/c/wMUO2t/9muC
https://paperpile.com/c/wMUO2t/9muC
https://paperpile.com/c/wMUO2t/a0Wu+J72b
https://paperpile.com/c/wMUO2t/a0Wu+J72b
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The second intensive comparison to prior knowledge about brain operations obtained from 

recordings of neural populations aims to find a version of neural code directly in whole-cell 

recordings and is covered in chapter three. The basis of this code is provided by the 

attractor network paradigm for neural computation (Amit and Amit, 1992; Wu and Amari, 

2005; Wu et al., 2008). Identification of this kind of neural code is enabled by 

dimensionality expansion and the automated discovery of differential equations (Brunton 

et al., 2016); both of which are novel methods to neuroscience. The attractor network 

paradigm takes as its premise that brain operation is stereotyped to a certain extent. If a 

memory is recalled twice, or a motion made twice, or image seen twice, then a pattern of 

neural activity is approximately repeated twice in each instance. However, it allows for a 

great deal of abstraction. With the attractor network paradigm, it is possible that none of 

the same neurons are active in each instance. It models high-dimensional population 

activity as an embedding of a moderate dimension dynamical system. It then associates 

regions or trajectories within this moderate dimension space with certain brain operations. 

Just as high dimensional neural data can be subjected to dimensionality reduction to find 

moderate dimension trajectories (Cunningham and Yu, 2014), one-dimensional whole cell 

recordings can be subjected to dimensionality expansion to obtain moderate dimension 

trajectories (Sauer et al., 1991). We characterized these moderate dimension trajectories 

with systems of ordinary differential equations (ODEs) to look for equation parameters 

that are different under different stimulus conditions and tried to predict what stimulus 

was presented concurrent with each recording. The neurons were in mouse primary visual 

cortex and are already stimulus tuned, the most and least preferred stimulus (which differ 

greatly) can be easily discriminated by looking at deflection from baseline. Thus, in order to 

https://paperpile.com/c/wMUO2t/KSlr+R0mO+eLlw
https://paperpile.com/c/wMUO2t/KSlr+R0mO+eLlw
https://paperpile.com/c/wMUO2t/s3IY
https://paperpile.com/c/wMUO2t/s3IY
https://paperpile.com/c/wMUO2t/vcYc
https://paperpile.com/c/wMUO2t/pgyH
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evince the discovery of neural population code from single neurons we must demonstrate 

the ability to discriminate finer changes in stimulus than can be recovered from deflection 

from baseline. It would also advance the case if the results recapitulated other findings 

about stimulus representation in neural data. We found that we could discriminate fine 

distinctions in drifting gratings by summarizing whole-cell recordings with fitted ODEs 

rather than by deflection from baseline. Furthermore, we found that we could discriminate 

orientation when fitting ODEs to excitation but not to inhibition. This recapitulates the 

finding that orientation information arrives in excitatory thalamocortical projections to 

mouse primary visual cortex (Sun et al., 2016). With these two findings we can establish 

that whole-cell recordings are amenable to analyses aiming to recover details about neural 

populations. Furthermore, by looking for findings conserved between population 

recordings and whole-cell recordings researchers can better constrain and corroborate 

theories about the neural code.   

https://paperpile.com/c/wMUO2t/3lR7
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Chapter 2:  

Single-cell membrane potential fluctuations 

evince network scale-freeness  

and quasicriticality 

What information single neurons receive about general neural circuit activity is a 

fundamental question for neuroscience. Somatic membrane potential fluctuations are 

driven by the convergence of synaptic inputs from a diverse cross-section of upstream 

neurons. Furthermore, neural activity is often scale-free implying that some measurements 

should be the same, whether taken at large or small scales. Together, convergence and 

scale-freeness support the hypothesis that single membrane potential recordings carry 

useful information about high-dimensional cortical activity. Conveniently, the theory of 

“critical branching networks” (one purported explanation for scale-freeness) provides 

testable predictions about scale-free measurements which are readily applied to 

membrane potential fluctuations. To investigate, we obtained whole-cell current clamp 

recordings of pyramidal neurons in visual cortex of turtles with unknown genders. We 

isolated fluctuations in membrane potential below the firing threshold and analyzed them 

by adapting the definition of “neuronal avalanches” (spurts of population spiking). The 

membrane potential fluctuations we analyzed were scale-free and consistent with critical 

branching. These findings recapitulated results from large-scale cortical population data 

obtained separately in complementary experiments using microelectrode arrays 

(previously published (Shew et al., 2015)). Simultaneously recorded single-unit local field 
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potential did not provide a good match, demonstrating the specific utility of membrane 

potential. Modeling shows that estimation of dynamical network properties from neuronal 

inputs is most accurate when networks are structured as critical branching networks. In 

conclusion, these findings extend evidence of critical phenomena while also establishing 

subthreshold pyramidal neuron membrane potential fluctuations as an informative gauge 

of high-dimensional cortical population activity. 

2.1 Introduction 

How do cortical population dynamics impact single neurons? What can we learn about 

cortical population dynamics from single neurons? These questions are central to 

neuroscience. Uncovering the functional significance of multiscale organization within 

cerebral cortex requires knowing the relationship between the dynamics of networks and 

individual neurons within them (Nunez et al., 2013). 

For pyramidal neurons in the visual cortex, somatic spike generation is ambiguously 

related to presynaptic firing (Tsodyks and Markram, 1997; Brunel et al., 2014; Gatys et al., 

2015; Stuart and Spruston, 2015; Moore et al., 2017). Such neurons pass spiking 

information to many postsynaptic neurons (Lee et al., 2016). However, a presynaptic pool 

with multifarious neighboring and distant neurons (Hellwig, 2000; Wertz et al., 2015) 

provides excitatory and inhibitory synaptic inputs throughout the soma and complex 

dendritic architecture (Magee, 2000; Larkum et al., 2008; Moore et al., 2017). Input 

propagation to the axon hillock has both active and passive features (London and Häusser, 
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2005), and the membrane potential (Vm) response is increasingly non-linear near the 

action potential threshold. Thus, such details of network propagation give membrane 

potential more utility than focusing solely on spiking.(Johnson et al., 2019) 

Most computational neuroscientists use spiking data because spikes are “the currency of 

the brain” (Wolfe et al., 2010), and extracellular recording is straightforward compared to 

whole-cell recording. Yet, the paucity of single-neuron spiking (Shoham et al., 2006), and 

limited foreknowledge about connections (Helmstaedter, 2013) makes extracellular single-

unit observation an impoverished means of studying neuronal circuits. In contrast, 

subthreshold Vm fluctuations contain rich information about the circuits containing each 

neuron (Sachidhanandam et al., 2013; Petersen, 2017). Integral to gaining a neuron’s view 

of the brain is uncovering relationships between the statistics of Vm fluctuations and 

fluctuations of local spiking; then contrasting against other plausible one-dimensional 

signals.  

We look for such relationships in the strict predictions and rigorous measurements of 

scale-freeness used to identify a fragile network connectivity pattern known as “critical 

branching”. This pattern exhibits emergent properties valuable for information processing, 

such as higher susceptibility and dynamic range (Haldeman and Beggs, 2005; Beggs, 2008; 

Shew and Plenz, 2012; Shriki and Yellin, 2016; Timme et al., 2016), but omits some 

neuronal dynamics (Poil et al., 2008, 2012) without extension (Porta and Copelli, 2018). 

The pattern is as follows: on average over all neuronal avalanches (spiking above baseline 

(Friedman et al., 2012)), one spike leads to exactly one other spike. In most arbitrary 

https://paperpile.com/c/XEqrlC/rxJ9
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networks there is less or more than one; these are “subcritical” and “supercritical” 

respectively. Among the dazzling emergent properties of “criticality” are universality, self-

similarity, and scale-free correlations (Stanley, 1999). 

These are as follows: A “universality class” is a set of incongruous systems exhibiting 

identical statistics only at their “critical points”. “Self-similarity” includes fractal patterns 

and power-laws in geometrical analysis of avalanches (power-laws are “scale-invariant”, 

popularly called “scale-free”). Avalanches of any duration have identical average shapes 

after normalization (Shaukat and Thivierge, 2016). Avalanche areas grow with duration as 

another power-law (Sethna et al., 2001). However, observation methods must be 

consistent with event propagation (Priesemann et al., 2009; Yu et al., 2014; Levina and 

Priesemann, 2017). Additionally, pairwise correlation vs length or time are also power-

laws (Chialvo, 2010) meaning any input has a nonzero chance of propagating forever or 

anywhere.  

In summary, the theory of critical branching networks offers superb standards of 

comparison for three reasons: neuronal avalanche analysis applies to membrane 

potentials, offers promising insights, and makes precise predictions about fluctuation 

geometry. We study both Vm fluctuations and criticality with one simple question: Do Vm 

fluctuations match the scale-free statistics of cortical populations (Figure 2.1)?  

To address this question, we simultaneously recorded somatic Vm from pyramidal neurons 

and local field potential (LFP) in visual cortex and performed avalanche analysis on 
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fluctuations. We found that subthreshold Vm fluctuation statistics match published 

microelectrode array (MEA) data. We used surrogate testing to show why negative LFP 

fluctuations don’t match and modeling to demonstrate dependence on critical branching. 

 

Figure 2.1 | Will fluctuations in somatic membrane potential and comparable signals reflect the scale-free nature 
of neuronal avalanches from microelectrode array data? A recurrent network with excitatory (teal) and 
inhibitory (purple) neurons is measured in three ways: microelectrode array (MEA)(green/upper), whole-cell 
recording (red/middle), LFP (blue/bottom). Neuronal avalanches (highlighted in gold) are inferred from the 
population raster and fluctuations are analyzed like avalanches for the Vm and inverted LFP signals. Neuronal 
avalanches are defined as spurts of activity with quiet periods between them for MEA or excursions above the 
25th percentile for continuous non-zero data. The ultimate question is whether membrane potential fluctuations 
will recapitulate the entire neuronal avalanche analysis previously conducted on MEA data, including power-
laws in size and duration as well as a universal avalanche shape. This is abridged in the right most column which 
illustrates power-law distributions. 

2.2 Methods 

2.2.1 Surgery and Visual Cortex 

All procedures were approved by Washington University’s Institutional Animal Care and 

Use Committees and conform to the guidelines of the National Institutes of Health on the 

Care and Use of Laboratory Animals. Fourteen adult red-eared sliders (Trachemys scripta 

elegans, 150-1000 g) were used for this study, their genders were not recorded. Turtles 



20 

were anesthetized with Propofol (2 mg Propofol/kg), then decapitated. Dissection 

proceeded as described previously (Saha et al., 2011; Crockett et al., 2015; Wright et al., 

2017a).  

To summarize, immediately after decapitation, the brain was excised from the skull, with 

right eye intact, and bathed in cold extracellular saline (in mM, 85 NaCl, 2 KCl, 2 

MgCl2*6H2O, 20 Dextrose, 3 CaCl2-2H2O, 45 NaHCO3). The dura was removed from the left 

cortex and right optic nerve, and the right eye hemisected to expose the retina. The rostral 

tip of the olfactory bulb was removed, exposing the ventricle that spans the olfactory bulb 

and cortex. A cut was made along the midline from the rostral end of the remaining 

olfactory bulb to the caudal end of the cortex. The preparation was then transferred to a 

perfusion chamber (Warner RC-27LD recording chamber mounted to PM-7D platform) and 

placed directly on a glass coverslip surrounded by Sylgard. A final cut was made to the 

cortex (orthogonal to the previous and stopping short of the border between medial and 

lateral cortex) allowing the cortex to be pinned flat, with ventricular surface exposed. 

Multiple perfusion lines delivered extracellular saline to the brain and retina in the 

recording chamber (adjusted to pH 7.4 at room temperature).  

We used a phenomenological approach to identify the visual cortex, described previously 

(Shew et al., 2015). In brief, this region was centered on the anterior lateral cortex, in 

agreement with voltage-sensitive dye studies (Senseman and Robbins, 1999, 2002). 

Anatomical studies identify this as a region of cortex receiving projections from lateral 

geniculate nucleus (Mulligan and Ulinski, 1990). We further identified a region of neurons 



21 

as belonging to the visual cortex when the average LFP response to visual stimulation 

crossed a given threshold and patched within that neighborhood (radius of about 300 µm). 

2.2.2 Intracellular Recordings 

For whole-cell current clamp recordings, patch pipettes (4-8 MΩ) were pulled from 

borosilicate glass and filled with a standard electrode solution (in mM; 124 KMeSO4, 2.3 

CaCl2-2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at room temperature. Cells 

were targeted for patching using a differential interference contrast microscope 

(Olympus). Membrane potential recordings were collected using an Axoclamp 900A 

amplifier, digitized by a data acquisition panel (National Instruments PCIe-6321), and 

recorded using a custom LabVIEW program (National Instruments), sampling at 10 kHz. As 

described in (Crockett et al., 2015; Wright and Wessel, 2017; Wright et al., 2017b, 2017a), 

before recording from a cell after initial patching current was injected to elicit spiking. This 

was also repeated intermittently between recording trials. Recording did not proceed if a 

cell spiked inconsistently (failure to spike, insufficient spike amplitude) in response to 

injected current, or exhibited extreme depolarization in response to small current injection 

amplitudes. If a clog or loss of seal was suggested by unusually erratic membrane potential 

short timescales current the current injection test was performed and upon failure, the 

affected recording was marked for exclusion from analysis.  We excluded cells that did not 

display stable resting membrane potentials for long enough to gather enough avalanches. 

Up to 3 whole-cell recordings were made simultaneously. In total, we obtained recordings 

from 51 neurons from 14 turtles.   
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Recorded Vm fluctuations taken in the dark (no visual stimulation) were interpreted as 

ongoing activity. Such ongoing cortical activity was interrupted by visual stimulation of the 

retina with whole-field flashes and naturalistic movies as described previously (Wright and 

Wessel, 2017; Wright et al., 2017a, 2017b). An uninterrupted recording of ongoing activity 

lasted for 2 to 5 minutes. Periods of visual stimulation were too short and were too 

frequently interrupted by action potentials to yield the great number of avalanches which 

are required for rigorous power-law fitting.  

A sine-wave removal algorithm was used to remove 60 Hz line noise. Action potentials in 

turtle cortical pyramidal neurons are relatively rare. An algorithm was used to detect 

spikes, the Vm recordings between spikes were extracted and filtered from 0 to 100 Hz. 

Membrane potential recordings were detrended by subtracting the 5th percentile in a 

sliding 2 s window. The resulting signal was then shifted to have the same mean value as 

before subtraction. De-trending did not affect the size of membrane potential fluctuations 

(data not shown). 

2.2.3 Extracellular Recordings 

Extracellular recordings were achieved with tungsten microelectrodes (microprobes heat-

treated tapered tip), with approximately 0.5 MΩ impedance. Electrodes were slowly 

advanced through tissue under visual guidance using a manipulator (Narishige), while 

monitoring for activity using custom acquisition software (National Instruments). The 

extracellular recording electrode was located within approximately 300 µm of patched 

neurons. Extracellular activity was collected using an A-M Systems Model 1800 amplifier, 
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band-pass filtered between 1 Hz and 20,000 Hz, digitized (NI PCIe-6231), and processed 

using custom software (National Instruments). Extracellular recordings were down-

sampled to 10,000 Hz and then filtered (100 Hz low-pass), yielding the local field potential 

(LFP). The LFP was filtered and detrended as described above (see Intracellular 

Recordings), except that the mean of the entire signal was subtracted, and the signal was 

multiplied by -1 before it was detrended. This final inverted signal is commonly featured in 

literature as negative LFP or nLFP (Kelly et al., 2010; Kajikawa and Schroeder, 2011; Okun 

et al., 2015; Ness et al., 2016).  

2.2.4 Set-wise Comparisons 

In order to measure differences between sets of statistics we rely on three non-parametric 

measures. We use the MATLAB Statistics and Machine Learning Toolbox implementation of 

Fisher’s exact test (Hammond et al., 2015). This lets us measure the effect size (Odds Ratio 

𝑟𝑂𝑅) and statistical significance (p value) of finding that consistency with criticality is more 

frequent or less frequent in an experimental group than a control group.  

To quantify the similarity between the exponents measured in different sets of data we use 

the MATLAB Statistics and Machine Learning Toolbox implementations of the exact 

Wilcoxon rank sum test (Hammond et al., 2015) and the exact Wilcoxon signed rank test . 

In both cases effect size, 𝑟𝑆𝐷𝐹 is measured by the simple difference formula (Kerby, 2014). 

The rank sum test is used when comparing non-simultaneous recordings, such as 

comparing MEA data with Vm data. The signed rank test is used when comparing data that 
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can be paired, such as Vm data to concurrent LFP. When comparing whether a dataset 

differs from a specific value, we can use the sign test.  

The significance level is set at p=0.05 for all tests. Each set-wise comparison test stands 

alone as its own conclusion. None are combined to assess the significance of any effect 

across sets-of-sets. Thus, we are not making multiple comparisons and no corrections are 

warranted (Bender and Lange, 2001). 

2.2.5 Random Surrogate Testing 

It is possible that scale-free observations have an origin in independent random processes 

of a kind previously demonstrated (Touboul and Destexhe, 2017). To control for this, we 

phase-shuffled the Vm fluctuations using the amplitude adjusted Fourier transform (AAFT) 

algorithm (Theiler et al., 1992). This tests against the null hypothesis that a measure on a 

time series can be reproduced by performing a non-linear rescaling of a linear Gaussian 

process with the same autocorrelation (same Fourier amplitudes) as the original process. 

Phase information is randomized, which removes higher-order correlations but preserves 

the scale-free power-spectrum.  

The AAFT tests only higher-order correlations, but a simpler algorithm tests against the 

null hypothesis that an un-rescaled linear Gaussian process with the same autocorrelation 

as the original process can produce the same results (Theiler et al., 1992). This is known as 

the Unwindowed Fourier Transform (UFT). Once we see what measures depend on the 

higher-order correlations with the AAFT we can use the UFT to see how measures depend 
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on the non-Gaussianity (non-linear rescaling) which is inherent to excitable membranes. 

Using the UFT alone would make it difficult to attribute whether statistically significant 

differences are due to the rescaling or to the higher-order correlations (Rapp et al., 1994). 

We performed AAFT and UFT on each Vm time series once, and then compared how the two 

datasets performed on every metric used in this study. The datasets were compared with a 

matched Wilcoxon sign rank test implemented via MATLAB’s statistics tool box. Doing the 

comparison at a dataset level allowed us to obtain a discrimination statistic for every 

metric we used without repeating the computationally expensive analysis procedure 

hundreds or thousands of times on every Vm trace. With enough individual recordings in 

each dataset the matched Wilcoxon sign rank test is a reliable measure, which empowered 

us to efficiently compare all important metrics. 

2.2.6 Neuronal Avalanche Analysis 

Neuronal avalanches were defined by methods analogous to (Poil et al., 2012), which are 

used for uninterrupted ongoing signals whereas methods based on event detection (Beggs 

and Plenz, 2003) require periods of non-activity. A threshold is defined, and an avalanche 

starts when the signal crosses the threshold from below and ends when the signal crosses 

the threshold from above. The choice of threshold is a free parameter and we set it to the 

25𝑡ℎ percentile before conducting the complete analysis. In similar situations (continuous 

non-zero signals) researchers chose ½ the median (Poil et al., 2012; Larremore et al., 

2014). However, ½ the median cannot work for negative signals or signals with high mean 

but low variance. Before analysis threshold choices between the 15th to 50th percentile 
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were tested on data from the five cells with the most recordings to see how threshold may 

affect the number of avalanches.  The 25th percentile was in keeping with the existing 

literature and gave many avalanches compared to alternatives. Having a large number of 

avalanches is important because it gives the best statistical resolution. An analysis with a 

choice of threshold that yields fewer avalanches (or changing the threshold for each 

recording) would be suspect for selecting serendipitous results. After the analysis was 

conducted eight percentiles between the 15th to 50th were tested and gave similar power-

law exponents.  

We quantified each neuronal avalanche by its size 𝐴 and its duration 𝐷. The avalanche size 

is the area between the processed Vm recording and the baseline. The baseline is another 

free parameter that was set at the second percentile of the processed Vm recording. The 

second percentile was chosen because its value is more stable than the absolute minimum. 

The avalanche duration 𝐷 is the time between threshold crossings.  

The lower limit of avalanche duration is defined by the membrane time constant which has 

been reported to be between 50 and 140 ms for the turtle brain at room temperature 

(Ulinski, 1990; Larkum et al., 2008). We took a conservative approach by setting the limit 

at less than half the lower bound on membrane time constant which was significantly less 

than the lower cut-off from power-law fits. Only avalanches of duration larger than 20 ms 

were included in the analysis. Thus, we avoided artificially retaining only the events most 

likely to be power-law distributed. 
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Following the procedure described above, each processed Vm recording of uninterrupted 

ongoing activity (i.e., a recording of 2 to 5 minutes duration) yielded 327 ± 148 (mean 

± standard deviation) avalanches. This is insufficient for rigorous statistical fitting on 

recordings individually (Clauset et al., 2009). Therefore, we grouped avalanches from 

multiple recordings of ongoing activity of the same cells. Each cell produced between 3 and 

19 recordings of ongoing activity (2 to 5 minutes duration each recording), with trials 

recorded intermittently over a period of 10 to 60 minutes. We grouped recordings based 

on whether they occurred in the first or second 20-minute period since the beginning of 

recording from that neuron. Then all the avalanches from the first or second 20-minute 

period were grouped together with one data object (the group) storing the size, and 

duration of each avalanche. It is rare for neurons to have recordings in the third 20-minute 

periods, so this data was not included. Since there was a slow drift in the mean membrane 

potential over a period of several minutes, we scaled the avalanche sizes from each 

recording to have the same median as other recordings from the same group. Z-scoring was 

not useful for accounting for trial to trial variability because it does affect whether a 

specific time-point is above or below a certain percentile threshold. Therefore, it is not 

useful for removing variability in avalanche duration. Windowed z-scoring introduces 

artifacts near action potentials. On average 4 recordings were possible in each 20-minute 

period. There were 51 neurons with multiple recordings of ongoing activity in the first 20-

minutes of experimentation (thus 51 recording groups). Of these, 18 neurons had an 

additional 20-minute period with more than one recording. This produced a total of 69 

groups with 1346 ± 1018 (mean ± standard deviation) avalanches for each group. Of these 

69 groups, 57% had more than 1000 avalanches. The largest number of avalanches was 
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7495 and the smallest was 313. Only 5 groups had less than 500 avalanches. We report on 

the 51 groups from the first 20-minute period separately from the 18 groups with 

recordings from the second 20-minute period of experimentation. 

For each group, we evaluated the avalanche size and duration distributions with respect to 

power laws. To test whether a distribution followed a power law, we applied the rigorous 

statistical fitting routine described previously (Clauset et al., 2009). We tested three 

power-law forms: 𝑃(𝑥) ∝ 𝑥−𝛼  (with and without truncation) (Deluca and Corral, 2013), as 

well as a power-law with exponential cut-off 𝑃(𝑥) ∝ 𝑥−𝛼𝑒−𝑥/𝑟  . We compared these against 

lognormal and exponential alternative (non-power-law) hypotheses. Distribution 

parameters were estimated using Maximum Likelihood Estimation (MLE) and the best 

model out of those fitted to the data was chosen using the Akaike Information Criterion 

(Bozdogan, 1987). It should be acknowledged that a small power-law region in the 

truncated form would be suspect for false positives, likewise for a strong exponential cut-

off (Deluca and Corral, 2013). Finally, to decide whether a fitted model was plausible, 

pseudo-random datasets were drawn from a distribution with the estimated parameters 

and then the fraction which had a lower fit quality (Kolmogorov-Smirnov distance) than 

the experimental data was calculated. If this fraction, called the comparison quotient 𝑞, was 

greater than 0.10, the best fit model (according to the Akaike Information Criterion) was 

accepted as the best candidate. Otherwise, the next best model was considered.  

We applied several additional steps and strict criteria to control for false positives. One 

such step was assessing whether the scaling relation was obeyed over the whole avalanche 
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distribution for each group (not just the portion above the apparent onset of power-law 

behavior). The scaling relation is another power-law ⟨𝐴⟩(𝐷) ∝ 𝐷𝛾 predicting how the 

measured size of avalanches increase geometrically with increasing duration (on average). 

For any data set which has three power-laws, ⟨𝐴⟩(𝐷) ∝ 𝐷𝛾(scaling relation), 𝑃(𝐴) ∝ 𝐴−𝜏 

(size distribution), and 𝑃(𝐷) ∝ 𝐷−𝛽 (duration distribution), the  scaling relation exponent 

is predicted by the other two exponents by 𝛾 ≈ 𝛾𝑝 =
(𝛽−1)

(𝜏−1)
 (Scarpetta et al., 2018). Note 

that 𝛾𝑝 = 1 is a trivial value because it implies ⟨𝐴⟩(𝐷) ∝ 𝐷 and that would suggest 

individual avalanches were just noise symmetric about a constant value. This would mean 

that the average avalanche shape is just a flat line at some constant of proportionality, 

𝐹 (
𝑡−𝑡0

𝐷
)  = 𝑎, where 𝐹 (

𝑡−𝑡0

𝐷
) is a function describing the shape of an avalanche of duration 

𝐷 and 𝑡0 is the beginning of the avalanche and 𝑎 is a constant.  

Standards for consistency with critical point behavior 

We applied four standardized criteria to provide a transparent and systematic way to 

produce a binary classification, either "no inconsistencies with activity near a critical point 

were detected" or "some inconsistencies with activity near a critical point were detected".  

First, a collection of avalanches must be power-law distributed in both its size and duration 

distributions.  

Second, the collection of avalanches must have a power-law scaling relation as determined 

by 𝑅2 > 0.95 (coefficient of determination) for linear least squares regression to a log-log 



30 

plot of average size vs durations:  𝑙𝑜𝑔 𝑙𝑜𝑔 (⟨𝐴⟩(𝐷)) ~𝛾 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐷) + 𝑏. This 𝑅2 represents 

the best that any linear fit can achieve and must include all the avalanches, not a subset. We 

denote the scaling exponent (slope from linear regression) from this fit as 𝛾𝑓.  

Third, the scaling relation exponent predicted by theory (denoted as 𝛾𝑝)  must correspond 

to a trendline on a log-log scatter plot of ⟨𝐴⟩(𝐷) whose 𝑅2 is within 90% of the best-case 

fitted trendline from the second criterion. Again, the 𝑅2 for the predicted scaling relation is 

calculated across all avalanches, and not just the subset above the inferred lower cut-off of 

power-law behavior (which was found for the first criterion). This cross-validates 

agreement with theory.  

Fourth, the fitted scaling relation exponent must be significantly greater than 1: (𝛾𝑓 − 1) >

𝜎𝛾𝑓
  where 𝜎𝑦𝑓 is the standard error. This last requirement eliminates scaling that might be 

trivial in origin. It is measured after getting the fitted scaling relation exponent for all the 

data so that a dataset standard deviation can be determined. It is necessary to also check 

that the set of scaling relation exponents from the power-law fits to all avalanche sets is 

significantly different from 1 at a dataset level. A scaling relation exponent equal to one 

suggests a linear relationship between mean-size and duration which is not consistent with 

criticality in neural systems (Haldeman and Beggs, 2005).  

Our four-criterion test cannot measure distance from a critical point nor eliminate all risk 

of false positives. To complete our analysis, we also look at three additional factors, 

whether exponent values match exponent values from other experiments as expected from 
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the universality prediction of theory, whether all the exponents within our data set have 

similar scaling relation predictions, and lastly whether the avalanches within our data set 

exhibit shape collapse across all the recordings. 

Applying shape collapse, quantitative and qualitative analysis. 

Shape collapse is a very literal manifestation of scale-invariance (also called “self-

similarity”)(Sethna et al., 2001; Beggs and Plenz, 2003; Friedman et al., 2012; Pruessner, 

2012; Timme et al., 2016). Avalanches of different durations should rise and fall in the 

same way on average. This average avalanche profile is called a scaling function. The 

average avalanche profile for avalanches of duration 𝐷 is predicted to be 𝐴(𝑡, 𝐷) =

𝐷(𝛾−1)𝐹 (
𝑡−𝑡0

𝐷
) where 𝐷(𝛾−1) is the power-law scaling coefficient which modulates the 

height of the profile and 𝐹 (
𝑡−𝑡0

𝐷
) is the universal scaling function itself (normalized in 

time). Shape collapse analysis provides an independent estimate of the scaling relation 

exponent 𝛾𝑆𝐶, which is only expected to be accurate at criticality (Sethna et al., 2001; 

Scarpetta and Candia, 2013; Shaukat and Thivierge, 2016), and a visual test of 

conformation to an empirical scaling function.  

Exponent estimation is very sensitive to the unrelated, intermediate rescaling steps 

involved in combining the avalanches from multiple recordings into one group. To get an 

estimate of the scaling relation exponent for each group, 𝛾𝑆𝐶, we average the scaling 

exponents 𝛾𝑖 found individually for each recording in that group (𝑖 denotes the 𝑖th 

recording, SC for “shape collapse”).  
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Naturally, individual avalanche profiles are vectors of variable length 𝐷. We must first 

“rescale in time” to make them vectors of equal length without losing track of what each 

vector’s original duration was. We do that by linearly interpolation with 20 evenly spaced 

points. So, the 𝑗th avalanche profile of the 𝑖th recording is denoted as a 20-element vector 𝛤𝑖𝑗⃗⃗⃗⃗  

(where the top arrow denotes a vector).  

Next, the set of all profiles from recording 𝑖 with the exact same duration 𝐷, denoted as 𝛤𝐷𝑖 

where bold indicates a set, were averaged and divided by a test scaling factor 𝐷(𝛾𝑖
′−1). We 

define this as  𝛤𝐷𝑖
⃗⃗ ⃗⃗  ⃗(𝛾′) = ⟨𝛤𝐷𝑖⟩

⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗𝐷−(𝛾𝑖
′−1). The prime indicates a test rescaling. The average is 

over all vectors in the set 𝛤𝐷𝑖. The choice of 𝛾𝑖 was optimized using MATLAB’s fminsearch 

function to minimize the mean relative error between the average over all durations 

⟨𝛤𝐷𝑖
⃗⃗ ⃗⃗  ⃗(𝛾′)⟩ and the set members 𝛤𝐷𝑖

⃗⃗ ⃗⃗  ⃗(𝛾′) so that for recording 𝑖: 

𝛾𝑖 = ⟨
|𝛤𝐷𝑖
⃗⃗ ⃗⃗ ⃗⃗  (𝛾′)−⟨𝛤𝐷𝑖

⃗⃗ ⃗⃗ ⃗⃗  (𝛾′)⟩|

⟨𝛤𝐷𝑖
⃗⃗ ⃗⃗ ⃗⃗  (𝛾′)⟩

⟩ .  (2.1) 

This error minimization and applying the rescaling is the “collapse” in “shape-collapse”.  

Once we have the 𝛾𝑖 for the avalanches in each individual recording of ongoing activity we 

compare the average, 𝛾𝑆𝐶 = ⟨𝛾𝑖⟩, to the predicted and fitted scaling relation exponents for 

the group of recordings, 𝛾𝑝 and 𝛾𝑓 (statistical comparison tests are described in a previous 

section). Thus, quantitative analysis of shape collapse was done by comparing 𝛾𝑆𝐶, 𝛾𝑝, and 

𝛾𝑓 for each of the 69 groups individually. 
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Visual assessment of how well avalanche profiles can be described by one universal scaling 

function, 𝐹 (
𝑡−𝑡0

𝐷
)  supports the quantitative exponent estimation. This was carried out by 

averaging all the profiles within specific duration bins (regardless of trial or group) and 

plotting them on top of one another. A very large number of avalanches are needed so we 

combine avalanches from all 69 groups. However, the resting membrane potential differs 

from recording to recording and cell to cell. Therefore, avalanche profiles from different 

recordings are vertically misaligned. To combine avalanches profiles from different 

recordings we divided all the profiles by a scalar value unique to each recording: the time 

average over all the collapsed profiles. This produce rescaled and mean-shifted profiles 

(double prime) 𝛤′′
𝑖𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝛤′
𝑖𝑗

⃗⃗⃗⃗ ⃗⃗  ⃗/⟨𝛤′
𝑖𝑗𝑘⟩  (where 𝑘 ∈ [1,20] denotes the interpolated time point). 

The set of avalanches from each recording were thus aligned, but individual variability was 

preserved and thus profiles from different recordings could be averaged without 

introducing artifacts. This set, 𝛤′′
𝑖𝑗 contained a total of 106,220 shifted and rescaled 

profiles for the Vm data.  

The set of shifted and rescaled profiles falling into a duration bin is denoted 𝛤𝐷
′′. Each 

duration bin then provides its own estimate of the scaling function ⟨𝛤𝐷
′′⟩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ~𝐹 (

𝑡−𝑡0

𝐷
). For each 

bin, 𝐷 was defined as the average duration of all constituent profiles. If less than 700 

avalanches had a particular duration, we included the next longest duration iteratively 

until we met or exceeded 700 avalanches. This only applied to long durations. The choice of 

700 was made because it allowed us smooth averaging and without excessively wide 

duration bin widths.  
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We also assessed the mean curvature of avalanche profiles from the rescaled profile for a 

particular duration ⟨𝛤𝐷
′′⟩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . This allows us to plot how curvature depends on duration. Mean 

curvature ⟨𝜅⟩ is defined like so (𝑘 still denotes time points): 

⟨𝜅⟩(𝐷) = ⟨
�̈�(

𝑡−𝑡0
𝐷

)

(1+�̇�(
𝑡−𝑡0

𝐷
))

3
2

⟩~⟨
⟨𝛤𝐷

′′⟩(𝑘+1)−2⟨𝛤𝐷
′′⟩𝑘+⟨𝛤𝐷

′′⟩(𝑘−1)

(1+⟨𝛤𝐷
′′⟩(𝑘+1)−⟨𝛤𝐷

′′⟩𝑘)
3
2

⟩.  (2.2) 

2.2.7 Model Simulations 

We simulated a model network consisting of 𝑁 = 104 binary probabilistic model neurons. 

The model neurons form a directed random network (Erdős–Rényi random graph), where 

the probability that neuron 𝑗 connects to neuron 𝑖 is 𝑐. In a network of 𝑁 neurons, this 

results in a mean in-degree and out-degree of 𝑐𝑁. We tested nine not quite evenly 

distributed values of connection probabilities 𝑐 ∈ [0.5,1,3,5,7.5,10,15,20,25] × 10−2. As 

discussed in (Kinouchi and Copelli, 2006; Larremore et al., 2011a, 2014)  the impact of 

connectivity on network dynamics is non-linear, so we take a finer look at smaller 

connection probabilities, while maintaining thorough coverage of intermediate connection 

probabilities. 

The strength of the connection from neuron 𝑗 to neuron 𝑖 is quantified in terms of the 

network adjacency or weight matrix 𝑊 with the fortune of having a simple and intuitive 

meaning. For each existing connection from neuron 𝑗 to neuron 𝑖, 𝑊𝑖𝑗 is the direct change in 

the probability that neuron 𝑖 will fire at the next timestep if neuron 𝑗 spikes in the current 

time step.  
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The dynamics of this network is well-characterized by the largest eigenvalue 𝜆 of the 

network weight matrix 𝑊, with criticality occurring at 𝜆 = 1 (Kinouchi and Copelli, 2006; 

Larremore et al., 2011a, 2011b, 2012, 2014). The physical interpretation of 𝜆 is a 

“branching parameter”(Haldeman and Beggs, 2005) that governs expected number of 

spikes immediately caused by the firing of one neuron. If 𝜆 = 1 then one spike causes one 

other spike on average, while if 𝜆 > 1 one spike causes more than one on average and vice 

versa. 

We tested five different values of largest eigenvalue at, near and far from criticality 𝜆 ∈

[0.9,0.95,1,1.015,1.03]. A fraction 𝜒 of the neurons are designated as inhibitory. This is 

done by multiplying all outgoing connections of an inhibitory neuron by -1. We tested nine 

different values of the fraction of inhibitory neurons in the range from 0 to 0.25, thus 

including the value 0.2, corresponding to the fraction of inhibitory neurons in the 

mammalian cortex (Meinecke and Peters, 1987). The magnitudes of non-zero weights are 

independently drawn from a distribution of positive numbers with mean 𝜂, where the 

distribution is uniform on [0,2𝜂], and 𝜂 is given by 𝜂 = 𝜆/(𝑐𝑁(1 − 2𝜒)) . The maximum 

eigenvalue is then fine-tuned by dividing 𝑊 by the current maximum eigenvalue and set to 

the exactly desired value 𝑊 = 𝜆𝑊′/𝜆′ where 𝑊′ and 𝜆′ are the matrices and eigenvalues 

before correction.  

The binary state 𝑆𝑖(𝑡) of neuron 𝑖 at time 𝑡 denotes whether the model neuron spikes 

(𝑆𝑖(𝑡) = 1) or does not spike (𝑆𝑖(𝑡) = 0) at time 𝑡. At each time step, the states of all 

neurons are updated synchronously according to the following update rule: 
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𝑆𝑖(𝑡) = 𝛩(∑ 𝑊𝑖𝑗𝑆𝑗(𝑡 − 1) − 𝜉𝑖(𝑡)
𝑁
𝑗 ),   (2.3) 

where 𝜉𝑖(𝑡) is a random number on [0 1] drawn from a uniform distribution, and 𝛩 is the 

Heaviside step function. In addition to this update rule, a refractory period of one time-step 

(translated to approximately 2 ms) was imposed for certain parameter conditions. A 

simulation begins with initiating the activity of one randomly-chosen excitatory neuron 

and continuing the simulation until overall network activity had ceased. The process was 

then repeated.  

From the simulated binary states of 104 model neurons, we extracted three measures of 

simulated activity. First, the network activity 𝐹(𝑡) = ∑ 𝑆𝑖(𝑡)/𝑁
𝑁
𝑖=1  is the fraction of neurons 

spiking at time 𝑡. Second, the input to model neuron 𝑖 at time 𝑡 is 𝑃𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑆𝑗(𝑡 − 1)𝑁
𝑗 , 

which is almost always positive for our parameters. Note that 𝑃𝑖
′(𝑡) = 𝑃𝑖(𝑡) × 𝛩(𝑃𝑖(𝑡)) 

directly represents the probability for the neuron to spike at time 𝑡. Third, we constructed 

a proxy for the Vm signal, 𝛷𝑖(𝑡) = (𝛼ℎ ∗ 𝑃𝑖)(𝑡), by convolving the input 𝑃𝑖(𝑡) with an alpha 

function: 𝛼ℎ(𝑡) =
𝑡

ℎ𝑚
𝑒𝑥𝑝 (1 −

𝑡

ℎ𝑚
) with ℎ𝑚 = 2 time steps (assumed to be about 4 𝑚𝑠).  

A total of 405 different parameter combinations (connection density, inhibition, maximum 

eigenvalue) were simulated. Each combination was simulated 10 times. Based on the 

connection probability 𝑐 and the fraction of inhibition 𝜒, we distinguish four regions in 

parameter space classified according to the behavior of the critical model, i.e., 𝜆 = 1.  
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The first region is the “positive weights” region. Without inhibition activity increases or 

dies out in accordance with the branching parameter. This region is defined by 𝜒 = 0. With 

moderate inhibition and dense connectivity there is a region of parameter space we call 

“quiet”; activity lasts only slightly longer than in a system with no inhibition. This region is 

defined by the ex-post-facto boundaries 𝑐 ≥ 𝑒11𝜒/25  and 𝜒 > 0. Further increasing 

inhibition relative to connection density produces a behavior like “up and down” states (or 

“telegraph noise”) (Sachdev et al., 2004; Millman et al., 2010). We call this the “switching” 

regime because network activity switches between a low mean and a high mean. This 

region is defined by < 𝑒11𝜒/25  , and 𝑐 ≥ (10𝑒12𝜒 − 13)/100  and 𝜒 > 0. When inhibition is 

high relative to connection density the system enters the “ceaseless” region where 

stimulating one neuron causes activity that effectively never dies out. An especially 

attractive feature of this model is that the “ceaseless” and “switching” regimes exhibit 

sustained self-generated activity. This provides a way to model spontaneous neural activity 

without externally imposed firing patterns. 

Refractoriness was studied in the network without inhibition and it was found that 

dynamic range was inversely proportional to refractory period (Larremore et al., 2011a) 

but the branching parameter (criticality) displayed no dependence on refractory period 

(Kinouchi and Copelli, 2006). In the literature which featured inhibition and introduced 

ceaselessness no refractory was used (Larremore et al., 2014). However, we found that for 

some networks in the switching regime the maximum eigenvalue was a better predictor of 

the empirical branching ratio if the refractory period was one timestep. Because this 

relationship is central to our understanding of criticality in this model, we ran an initial 
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testing cycle before each simulation begins to decide whether to set the refractory period 

to one timestep or zero. Doing so ensures the network displays critical-like phenomena in 

all regimes (the maximum eigenvalue of connectivity) but also ensures the model adheres 

to the practices of the literature.  

We performed avalanche analysis on each of the simulated signals using the methods 

described above for membrane potential recordings. If the network is in the switching 

regime, we only perform analysis on the periods when the network is in the mode (high or 

low mean) in which it spends the majority of its time. As before, the 25th percentile defined 

the avalanche threshold. If the signal had negative values, as in the case of single neuron 

Vm proxies in networks with inhibition, the signal was shifted by subtracting the 2nd 

percentile. To obtain good statistics, we continued stimulating and extracting avalanches 

until a simulation either reached 104 avalanches, or 5 × 103 avalanches and a very large file 

size or a very long computational time. This ensured there were between two and ten 

thousand avalanches per trial. 

2.2.8 Data and Software Accessibility 

 All raw data is available at 

https://github.com/jojker/continuous_signal_avalanche_analysis and the software 

developed for this analysis is available upon request to the author: James Kenneth Johnson. 

2.3 Results 

https://github.com/jojker/continuous_signal_avalanche_analysis
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Single-neuron membrane potential (Vm) fluctuations are thought to be dominated by 

synaptic inputs from multitudes of presynaptic neurons (Stepanyants et al., 2002; Brunel et 

al., 2014; Petersen, 2017). Since the way neurons integrate their diverse inputs is central to 

information processing in the brain, it is important that neuroscience gain a thorough 

understanding of the relationship between subthreshold Vm fluctuations and population 

activity. A basic step is to compare statistical analyses, especially analyses where a 

meaningful relationship is expected. We asked whether an avalanche analysis on Vm 

fluctuations would reveal the same signatures of scale-freeness and critical network 

dynamics found in measures of population activity (Figure 2.1) (Friedman et al., 2012; 

Shew et al., 2015; Marshall et al., 2016). To address this comparison across organizational 

levels, we recorded Vm fluctuations from 51 pyramidal neurons in visual cortex of 14 

turtles and assessed evidence for critical network dynamics from these recordings.  

In a model investigation we corroborated results evaluated the conditions needed to 

enable inferring dynamical network properties from the inputs to single neurons. Finally, 

we extended the analysis to other commonly recorded time series of neural activity for 

comparison with the information content of Vm fluctuations about the dynamical network 

properties.  
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Figure 2.2 | Membrane potential fluctuations reveal signatures of critical point dynamics. Panel a shows the 
whole-brain eye attached joint Vm and LFP recording preparation. Panel b shows that the membrane potential 
(red) is thresholded at the 25th percentile (a dashed line). Avalanches are defined by excursions above this 
threshold. The gold region represents the size of the avalanche, which is the area between the signal and its 2nd 
percentile (a dashed line). The duration of the avalanche is the duration of the excursion. c shows the size (left) 
and duration (right) distributions of Vm inferred avalanches when data is combined from seven recordings 
from the same neuron falling in the same 20-minute period. The comparison quotients (q) are both above 0.10 
(0.878 and 0.874 respectively), indicating that the size and duration distributions were better fits to power-
laws at the given cut-off than 87% of power-laws produced by a random number generator with the same 
parameters (shown as a grey density cloud). N’ indicates the number of avalanches above the lower cut-off of 

the fit (red vertical line) and N indicates the total number of avalanches. Size duration exponent denoted with 𝜏 

while 𝛽 is used for duration. d shows the scaling relation which is a function relating average avalanche size to 
each given duration. The predicted exponent (𝛾

𝑝
)  successfully explains 95.6% of the variance of a log-log 

representation of the data. A linear least squares regression could explain 96.7% and gives the fitted exponent 
(𝛾

𝑓
). Therefore, 𝛾

𝑝
 comes within 1.2% of the best linear explanation despite a 10% difference in exponent 

values. e shows shape collapse. Each line represents the average time-course of an avalanches of a given 
duration. The color indicates the duration according to the scale bar. Durations below 50 ms (the lower bound 
on turtle pyramidal time-constants) are made translucent and slightly thickened. This shape collapse 
represents the global collapse across all recordings in all cells. This confirms that a universal scaling function,  
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𝐹 (
𝑡−𝑡0

𝐷
), is present. For the seven recordings in the group represented in panels C & D, the mean scaling 

relation exponent derived from shape collapse was 𝛾
𝑆𝐶

= 1.23 a disagreement of 2.2% relative to 𝛾
𝑓

. 

2.3.1 Membrane Potential Fluctuations Reveal Signatures of Critical Point 

Dynamics 

We obtained whole-cell recordings from pyramidal neurons in the visual cortex of the 

turtle ex-vivo eye-attached whole-brain preparation (Figure 2.2a). Recorded Vm 

fluctuations taken in the dark (no visual stimulation) were interpreted as ongoing activity. 

We analyzed the recorded ongoing Vm fluctuations employing the concept of “neuronal 

avalanches” (Beggs and Plenz, 2003; Poil et al., 2012; Shew et al., 2015), which are positive 

fluctuations of network activity. For continuous time-series such as the Vm recording, one 

selects a threshold and a baseline. We defined a neuronal avalanche based on the positive 

threshold crossing followed by a negative threshold crossing of the Vm time series (Poil et 

al., 2012; Hartley et al., 2014; Larremore et al., 2014; Karimipanah et al., 2017a). We 

quantified each neuronal avalanche by (i) its size A, i.e., the area between the curve and the 

baseline, and (ii) its duration 𝐷, i.e., the time between threshold crossings (Figure 2.2b). 

To quantify the statistics of avalanche properties, we applied concepts and notations from 

the field of “critical phenomena” in statistical physics (Nishimori and Ortiz, 2011; 

Pruessner, 2012). Because the critical point is such a small target for any naturally 

occurring self-organization (Pruessner, 2012; Hesse and Gross, 2014; Cocchi et al., 2017) 

and there is considerable risk of false positives (Taylor et al., 2013; Hartley et al., 2014; 

Touboul and Destexhe, 2017; Priesemann and Shriki, 2018), asserting criticality in a new 
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system or with a new tool requires extraordinary evidence. Since this is a new tool, we 

created four criteria and set quantifiable standards for concluding a system is consistent 

with criticality based on avalanche power-laws and we completed this exhaustive battery 

of tests with shape collapse, a geometrical analysis of self-similarity in the avalanche 

profiles (see Methods: Experimental Design and Statistical Analysis).  

In brief, we found that both the size and duration distributions of the fluctuations treated 

as avalanches were consistent with power laws  (Figure 2.2c), 𝑃(𝐴) ∝ 𝐴−𝜏 and 𝑃(𝐷) ∝ 𝐷−𝛽 

matching widely reported exponents (Beggs and Plenz, 2003; Priesemann et al., 2009; 

Hahn et al., 2010; Klaus et al., 2011; Friedman et al., 2012; Shriki et al., 2013; Priesemann, 

2014; Arviv et al., 2015; Shew et al., 2015; Karimipanah et al., 2017b, 2017a), obeyed the 

scaling relation (Figure 2.2d), and exhibited shape collapse over an expansive set of 

durations, (Figure 2.2e).  

Specifically, of the 51 recording groups featuring data from the first 20-minute period of 

recording from one cell, 98% had power laws in both size and duration distributions. The 

exponent values for the size distribution were 𝜏 = 1.91 ± 0.38 (median ± standard 

deviation). Exponent values for the duration distribution were 𝛽 = 2.06 ± 0.48. Of the 51 

neurons with a recording group from the first 20-minutes, 18 had an additional 20-minute 

period spanning multiple recordings. All of these 18 groups had power-laws in both size 

and duration, the exponent values for the size distribution were 𝜏 = 1.87 ± 0.29 and the 

exponent values for the duration distribution were 𝛽 = 2.21 ± 0.39.  
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It is also important to confirm that power-law behavior extends across several orders of 

magnitude of avalanche durations. We typically demonstrate a power-law distribution over 

2.45 ± 0.39 orders of magnitude of duration. For the scaling relation we find a larger span 

with 2.62 ± 0.23 orders of magnitude across our whole avalanche duration range. 

Another statistic crucial to signatures of criticality measures the relationship between the 

power-laws describing size and duration of avalanches (Sethna et al., 2001; Beggs and 

Timme, 2012; Friedman et al., 2012). If the average avalanche size also scales with duration 

according to ⟨𝐴⟩(𝐷) ∝ 𝐷𝛾, then the exponent 𝛾 is not independent, but rather depends on 

the exponents 𝜏 and β according to 𝛾 =  (𝛽 −  1)/(𝜏 −  1) irrespective of criticality 

(Scarpetta et al., 2018). For critical systems this condition is enforced because avalanche 

profiles follows the same shape for all durations which means that this prediction is 

believed to be more precise than for non-critical systems and the exact values are 

important (Sethna et al., 2001; Nishimori and Ortiz, 2011). We found that average 

avalanche size scaled with duration ⟨𝐴⟩(𝐷)~𝐷𝛾 according to a power law and that the 

observed values of 𝜏 and β provided a good prediction 𝛾 =  (𝛽 −  1)/(𝜏 −  1) of the fitted 

𝛾 (Figure 2.2d).  

Specifically, of the 51 recording groups from the first 20-minute period, the fitted scaling 

relation exponents were 𝛾𝑓 = 1.19 ± 0.05, and the predicted scaling relation exponents 

were 𝛾𝑝 = 1.17 ± 0.35. For the additional second 20-minute period (18 groups/neurons), 

the fitted scaling relation exponents were 𝛾𝑓 = 1.21 ± 0.05, and the predicted scaling 

relation exponents were 𝛾𝑝 = 1.28 ± 0.21.  
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To affect a more convincing analysis, we defined four stringent criteria that must be 

independently satisfied before any set of avalanches can be deemed consistent with 

network dynamics near a critical point (see Methods: Experimental Design and Statistical 

Analysis). Overall, of the 69 groups of recordings (which includes 18 out of 51 cells twice), 

98.6% had power-laws in both the size and duration distributions of avalanches and 92.8% 

had scaling relations which were well fit by power-laws (𝑅2 > 0.95 ). All were deemed 

non-trivial by the test (𝛾𝑓 − 1) > 𝜎𝛾𝑓
 where 𝜎𝛾𝑓

 is the dataset standard error; 𝜎𝛾𝑓
= 0.051. 

The smallest value was 𝛾𝑓 = 1.094. The fourth constraint, that the 𝑅2 of the predicted 

scaling relation was within 10% of the best fit scaling relation, was satisfied 85.6% of the 

time. Together, this set of criteria cannot measure distance from a critical point nor 

eliminate false positives. However, the take away is that 81% of all recording groups 

examined were judged to be consistent with network activity near a critical point.  

Separating out results: 76% of the 51 recording groups from the first 20-minute period, 

and 94% of the recording groups from the second 20-minute period were judged 

consistent with criticality. The general pattern is that the first 20-minute period and the 

second are both consistent with criticality, but the second group meets our criteria much 

more frequently. This could be an effect related to the length of time we are able to 

maintain a patch, or it could be that a better patching results in both longer stable 

recording ability and better inference of dynamical network properties. 

To further discount the possibility of false positives we investigated whether the 

avalanches within our data set exhibited “shape collapse” (Figure 2.2e). The scaling 
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relation is a consequence of self-similarity (Sethna et al., 2001; Papanikolaou et al., 2011; 

Friedman et al., 2012; Marshall et al., 2016; Shaukat and Thivierge, 2016; Cocchi et al., 

2017). In other words, avalanches all have the same “hump shape” no matter how long they 

last, this shape is called the scaling-function or avalanche profile. The shape collapse also 

provides an independent estimate of the scaling relation exponent 𝛾, if the estimated 

exponent, 𝛾𝑆𝐶, matches the fitted exponent, 𝛾𝑓, it is considered strong evidence of critical 

point behavior. For critical systems, the average avalanche profile of an avalanche of 

duration 𝐷 is given as 𝐴(𝑡, 𝐷) = 𝐷(𝛾−1)𝐹 (
𝑡−𝑡0

𝐷
). Where 𝐷(𝛾−1) is a coefficient governing the 

scaling of height with duration, and 𝐹 (
𝑡−𝑡0

𝐷
) is the scaling-function which describes the 

universal shape of an avalanche at any duration. The similarity of avalanche profiles of 

different durations is qualitatively judged (Sethna et al., 2001; Beggs and Plenz, 2003; 

Friedman et al., 2012; Pruessner, 2012; Timme et al., 2016) by plotting empirically 

estimated scaling functions for several durations on top of one another after they have 

been rescaled as part of the process of estimating 𝛾𝑆𝐶.  

We obtained shape collapse across more than one order of magnitude (between about 50 

ms to 700 ms) of avalanche durations. Below 50 ms distinct peaks arose. Above 700 ms the 

profile height grew faster than the power-law scaling that worked for shorter duration 

avalanches, this is observed as an apparent outlier in Figure 2.2e. This likely marks point 

where avalanches become so long and so large that they begin to weakly activate the non-

linear action potential mechanism of the neuron. When comparing to plausible alternatives 

to Vm in later sections, we included analysis of mean curvature and avalanche profile peak 

height along with visual inspection of shape collapse quality (Figure 2.2e). The shape 
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collapse plots begin with short avalanches (20 ms) that are below the median lower cut-off 

for power-law behavior (which was 256 ms) but are well predicted by the scaling relation.  

The exponents estimated from the shape collapse were a good match for both the predicted 

and fitted scaling relation exponents. The groups of recordings from the first 20 minutes 

yielded 𝛾𝑆𝐶 = 1.1868 ± 0.042. The average matched absolute percent error was 1.3% with 

respect to 𝛾𝑓. A matched signed rank difference of median test revealed that 𝛾𝑓 was not 

significantly different from 𝛾𝑆𝐶, simple difference effect size 𝑟𝑆𝐷𝐹 = 0.089, p-value 𝑝 =

0.063 (𝑝 < 0.05 indicates that they are different).  

This stage of the analysis showed that, when fluctuations of Vm are treated like neuronal 

avalanches, they are consistent with criticality by the standards of power-laws governing 

size and duration. We also showed that Vm avalanches exhibit geometrical self-similarity 

across more than one order of magnitude. These factors showed that the cortical circuits 

driving fluctuations of membrane potential are consistent with activity near a critical point 

according to standards of self-similarity. In our next investigation we compared to 

population data from microelectrode arrays and other results from literature to test 

whether Vm fluctuations are consistent with the universality requirement of behavior near 

critical points, and whether they can be used to measure dynamical network properties. 

2.3.2 Membrane Potential Fluctuations are Consistent with Avalanches from 

Previously Obtained Microelectrode Array LFP Recordings 
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Importantly, we sought to interpret our results from the analysis of single-neuron Vm 

fluctuations in the context of the more commonly used analysis of multi-unit spiking 

activity (Friedman et al., 2012; Shew et al., 2015; Marshall et al., 2016; Karimipanah et al., 

2017a) or multi-site local field potential (LFP) event detection from microelectrode array 

(MEA) data (also known as “multielectrode array”) (Beggs and Plenz, 2003; Shew et al., 

2015).  

In a previous study, avalanche analysis was performed on LFP multi-site MEA recordings 

from the visual cortex of a different set of 13 ex-vivo eye-attached whole-brain 

preparations in turtle (Shew et al., 2015). Avalanches were inferred from the steady state 

(after on response transients but before off response transients) of responses to visual 

presentation of naturalistic movies as opposed to the resting state activity between 

presentations (which is where the Vm data come from). Avalanche size and duration 

distributions followed power laws.  

The median exponents were 𝜏 = 1.94 ± 0.27 for the avalanche size distributions and 𝛽 =

2.14 ± 0.32 for the avalanche duration distributions (Figure 2.3a). A scaling relation 

existed with average exponent  𝛾𝑓 = 1.20 ± 0.06 fitted to the data and 𝛾𝑝 = 1.19 ± 0.07 

from the average of the predicted scaling based on theory. The scaling power-law extended 

over 1-2 orders of magnitude. Critical branching was more firmly established in Shew et al., 

2015 by analyzing the branching ratio. The branching ratio is the average ratio of events 

(i.e. spikes) from one moment in time to the next, but only during identified avalanches. A 

critical branching network has a branching ratio of one, but empirically estimating it 
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requires discrete events and an assiduous choice of time-binning for analysis. Shew et al. 

found that a branching ratio near one that was robust to reasonable choices of time bin and 

varied with choice of time-bin in expectation with critical branching. We are not aware of 

methods for estimating a branching ratio in continuous signals like membrane potential. 

 

Figure 2.3 | Membrane potential fluctuations are consistent with avalanches from previously obtained 
microelectrode array data. A plot of the exponents governing power-law scaling of avalanche duration vs 
the exponents governing avalanche size. Circles indicate data which was best fit to a power-law in both its 
size and duration. Triangle indicates otherwise (the MLE estimation of a would-be power-law fit, the 
“scaling index”, is plotted in that case (Jeżewski, 2004)). Filled circles indicate data that meet all four 
standardized criteria for judging data to be consistent with criticality. a is a reproduction from (Shew et al., 
2015). It shows the results of avalanche analysis on microelectrode array data collected during the steady 
state of stimulus presentation in an otherwise identical experimental preparation. The exponent values 

appear to covary to maintain a stable value of the scaling relation  𝛾
𝑝

=
𝛽−1

𝜏−1
. The correlation between 𝛽 and 

𝜏 was high (see Results: The Predicted Scaling Relation Exponent is More Stable than Avalanche Size or 
Duration Exponents). b shows the results of avalanche analysis performed on fluctuations in subthreshold 
membrane potential. We found power-laws with closely matching exponents and the same scaling relation 

with the similar level of stability. The correlation between 𝛽 and 𝜏 was high (see Results: The Predicted 
Scaling Relation Exponent is More Stable than Avalanche Size or Duration Exponents). 

The set of avalanche size, duration, and scaling relation exponents obtained from 

membrane potential fluctuations (Figure 2.3b) were not distinguishable from the MEA 

obtained set. The fitted scaling relation exponent 𝛾𝑓 had the least variability of all three 
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kinds of exponents so it is the most likely to show a difference. Thus, if a difference is not 

significant it suggests universality more strongly than for the avalanche size 𝜏 or duration 𝛽 

distribution exponents.  

When we limited our analysis to the first twenty-minute period which contained multiple 

recordings (51 cells), neither the fitted scaling relation exponent, nor the predicted scaling 

relation exponent were significantly different from the MEA results. The Wilcoxon rank-

sum difference of medians test against the MEA data yielded (𝑟𝑆𝐷𝐹 = 0.164, 𝑝 = 0.37), and 

(𝑟𝑆𝐷𝐹 = 0.08, 𝑝 = 0.67) respectively. The median exponent values for the size and duration 

distributions were not significantly different from the median of the MEA data (𝑟𝑆𝐷𝐹 =

0.164, 𝑝 = 0.37) and (𝑟𝑆𝐷𝐹 = 204, 𝑝 = 0.265) respectively.  

These results establish Vm fluctuations as an informative gauge of high-dimensional 

information, while also demonstrating that the power-law characteristics are universal 

properties of the brain, by showing a close match between data at different scales and 

under different conditions. Further underscoring universality, our results are also similar 

to the critical exponents measured from other animals such as the 𝜏 = 1.8 result from in-

vivo anesthetized cats (Hahn et al., 2010), though an exhaustive literature search was not 

conducted, others have conducted incomplete surveys (Ribeiro et al., 2010; Priesemann, 

2014).  
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Figure 2.4 | The single-neuron estimate of network dynamics is optimized at the network critical point. a 
illustrates model network consists of 104 excitatory (cyan) and inhibitory (magenta) model neurons with 
sparse connectivity (line tips: arrows = excitation; circles = inhibition). The simulated model activity 
(raster plot) is reresented in terms of the single-neuron spiking (raster plot) and the active fraction of the 
network 𝐹(𝑡) = 𝑆(𝑡)/𝑁 where population spiking is 𝑆(𝑡). Concurrently, the smoothed inputs (orange) to a 
single neuron represents the Vm proxy, 𝛷𝑖(𝑡). The threshold (dashed line) crossings of 𝛷𝑖(𝑡) define 
avalanches (see Methods: Experimental Design and Statistical Analysis). Avalanches of 𝐹(𝑡) and 𝛷𝑖(𝑡) are 
analyzed in terms of their size (shown) and duration (not shown) distributions and their corresponding 

exponents, 𝜏. Avalanche statistics depend on several network parameters including the critical branching 

tuning parameter 𝜆. b shows how the inclusion of inhibition affects the network behavior. The black lines 
mark the boundaries of arbitrarily defined parameter regions roughly corresponding to distinct kinds of 
behavior. The shade of blue indicates what fraction of ten trials at each point met all four of our 
standardized criteria for consistency with expectations of critical branching behavior. c is a stacked area 
chart showing the probability density distribution of size exponent error (between 𝐹(𝑡) and 𝛷𝑖(𝑡)) for 

different 𝜆 and dynamical regimes. The vertical thickness of each color band shows the probability density 
for that subset of the data while the outer envelope shows the over-all probability density. Probability 
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2.3.3 The Single-Neuron Estimate of Network Dynamics is Optimized at the 

Network Critical Point 

To gain a deeper insight into the relation between single-neuron input and network 

activity, we investigated a model network of probabilistic integrate and fire model neurons 

(Kinouchi and Copelli, 2006; Larremore et al., 2011a, 2011b, 2012, 2014, Karimipanah et 

al., 2017a, 2017b). This model network contains fundamental features of cortical 

populations, such as low connectivity, inhibition, and spiking, while being sufficiently 

tractable for mathematical analysis (see Methods: Model Simulations).  

In brief, the model network consists of 𝑁 = 104 binary probabilistic model neurons (Figure 

2.4a). The connection probability 𝑐 results in a mean in-degree and out-degree of 𝑐𝑁. The 

connection strength from neuron 𝑗 to neuron 𝑖 is quantified in terms of the network 

adjacency matrix 𝑊. Each connection strength 𝑊𝑖𝑗 is drawn from a distribution of 

(initially) positive numbers with mean 𝜂, where the distribution is uniform on [0,2𝜂]. A 

fraction 𝜒 of the neurons are designated as inhibitory, i.e., their outgoing connections are 

made negative. The binary state 𝑆𝑖(𝑡) of neuron 𝑖 is updated according to 𝑆𝑖(𝑡) =

density is estimated with a normal kernel smoothing function. In this panel we can see that power-law 
scaling is most similar at criticality despite variability dependent on the parameter regime. d shows a 
complete summary of the tests for criticality when applied to 𝐹(𝑡) (top row) and 𝛷𝑖(𝑡) (bottom row). 
From this we can confirm that the system is consistent with criticality when there is no inhibition. The 
subsampling method 𝛷𝑖(𝑡) demonstrates consistency with criticality but displays a wider dispersion of 

exponent estimates. For experimental Vm and MEA data there was a large correlation between 𝛽 and 𝜏 
showing that the scaling relation (which predicts the slope of the trendline) is much more stable than 
exponent values. This is not the case for the model where for 𝐹(𝑡) the correlation is low (see Results: The 
Predicted Scaling Relation Exponent is More Stable than Avalanche Size or Duration Exponents). 
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𝛩(∑ 𝑊𝑖𝑗𝑆𝑗(𝑡 − 1) − 𝜉𝑖(𝑡)
𝑁
𝑗 ), where 𝜉𝑖(𝑡) is a random number between 0 and 1 drawn from a 

uniform distribution, and𝛩 is the Heaviside step function.  

The largest eigenvalue 𝜆 = 𝜂𝑐𝑁(1 − 2𝜒) of the network adjacency matrix 𝑊, characterizes 

the network dynamics, with critical network dynamics occurring at 𝜆 = 1. This tuning 

parameter 𝜆 controls the degree to which spike propagation “branches”: 𝜆 = 1 means that 

one spike creates one other spike on average, 𝜆 > 1 implies that one spike creates more 

than one other spike while 𝜆 < 1 means that one spike creates less than one other spike  

(Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006; Levina et al., 2007; Larremore et 

al., 2011b, 2012; Kello, 2013). 

The input to model neuron 𝑖, is 𝑃𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑆𝑗(𝑡 − 1)𝑁
𝑗  and provides the link between 

network activity and single-neuron activity. From this we can derive a simple mathematical 

result characterizing how estimation of network properties is optimized at criticality.  

If we let 𝐾𝑖(𝑡 − 1) denote the number of active neurons in the presynaptic population of 

neuron 𝑖, then we can rewrite the input to a model neuron as a sum of independent and 

identically distributed random variables drawn from the non-zero entries of 𝑊: 𝑃𝑖(𝑡) =

∑ 𝑊𝑖𝑗𝑘
𝐾𝑖(𝑡−1)

𝑘 . After implementing inhibition by inverting some elements of 𝑊 the 

distribution of weights is not uniform but piecewise uniform. Weights are drawn uniformly 

from the interval [−2𝜂, 0] with probability 𝜒 and from the interval [0,2𝜂] with probability 

1 − 𝜒. The mean of the nonzero entries of 𝑊 are denoted with a prime so that the mean is 

⟨𝑊𝑖𝑗
′ ⟩ = 𝜂(1 − 2𝜒) and the standard deviation is √⟨𝑊𝑖𝑗

2⟩ − ⟨𝑊𝑖𝑗⟩2 = 𝜂√(1 − 12(𝜒2 − 𝜒))/3. 
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Now we can find the mean behavior of the input integration function as it relates to the 

presynaptic population:  

⟨𝑃𝑖(𝑡)〉 ± 𝜎𝑃𝑖(𝑡)  = 𝜂(1 − 2𝜒)𝐾𝑖(𝑡 − 1) ± 𝜂√(1 − 12(𝜒2 − 𝜒))𝐾𝑖(𝑡 − 1)/3.  (2.4) 

We learn three things by examining the mean behavior of the input integration function. 

First, the mean grows as 𝑂(𝐾𝑖) but the standard deviation grows as the root 𝛰(√𝐾𝑖), so the 

function becomes a more precise estimator of network activity with increasing activity in 

the presynaptic population (increasing 𝐾𝑖). Second, the input integration function 𝑃𝑖(𝑡), is 

rarely negative. At the parameter combination 𝑐 = 0.005 and 𝜒 = 0.25 (which has the 

largest variance relative to the mean) the mean becomes more than one standard deviation 

larger than zero when 𝐾𝑖 > 5. Third, and most importantly, the input integration function is 

an averaging operator and the tuning parameter 𝜆 biases that averaging operation. To 

show this we only need two observations: the instantaneous firing rate averaged over the 

presynaptic population is the number of active neurons divided by the expected total 

number of presynaptic neurons, 𝜔𝑖(𝑡) = 𝐾𝑖(𝑡)/𝑐𝑁. Next, we rearrange the definition of 

lambda to get 𝜆/𝑐𝑁 = 𝜂(1 − 2𝜒). Substituting these two observations into the mean 

behavior of our input integration function we get the key mathematical result:  

𝑃𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑆𝑗(𝑡 − 1)𝑁
𝑗 ~𝜆𝜔𝑖(𝑡 − 1).   (2.5) 

Note that 𝑃𝑖
′(𝑡) = 𝑃𝑖(𝑡) × 𝛩(𝑃𝑖(𝑡)) directly represents the probability for the neuron to 

spike at time 𝑡.  
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These results demonstrate that the inputs to a neuron 𝑃𝑖 , and the instantaneous firing rate 

of that neuron are the result of an averaging operator acting on the presynaptic population, 

which is a subsample of the network. Furthermore, the tuning parameter 𝜆 not only 

modulates the relationship of single neuron firing to downstream events (also known as 

branching), but also governs how the input to a neuron relates to the presynaptic 

population. It biases the averaging operator to either amplify firing rate (𝜆 > 1) or dampen 

it (𝜆 < 1). Therefore, our model implements both critical branching and the inverse of the 

critical branching condition, a critical coarse-graining condition. The model is a network of 

subsampling operators who only capture whole-system statistics when 𝜆 = 1 and the 

operators reflect an unbiased stochastic estimate of mean firing rate among the subsample 

(the presynaptic population). This averaging operation may exist in many kinds of 

networks, including those with structure and those that are not critical branching 

networks, so this result helps establish plausible generalizability. 

To further evaluate the relation between single-neuron input and network activity under 

different conditions, we simulated the described network of 104 model neurons for a total 

of 405 different parameter combinations, including connection probability, inhibition, and 

maximum eigenvalue (Figure 2.4a), each parameter combination was repeated ten times. 

We then compared the avalanche analysis results of simulated network activity 𝐹(𝑡) =

(
1

𝑁
)∑ 𝑆𝑖(𝑡)

𝑁
𝑖=1  and the input to a single neuron (the input integration function). However, 

𝑃𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑆𝑗(𝑡)
𝑁
𝑗  is the probability that neuron 𝑖 will fire at time 𝑡, also known as the 

instantaneous firing rate of neuron 𝑖. 
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Membrane potential is not a direct representation of firing rate, but rather the firing rate is 

related to synaptic input through the F-I curve which is non-linearly related to membrane 

potential. This non-linearity could destroy the correspondence between the simulated 

single neuron signal and network activity. In order to better facilitate comparison of the 

simulated input integration function with the experimentally recorded membrane 

potential, we constructed a proxy for the subthreshold membrane potential, 𝛷𝑖(𝑡), of a 

model neuron by convolving the simulated input 𝑃𝑖(𝑡) with an alpha function (see 

Methods: Model Simulations).  

The parameter space has four distinct patterns of critical network behavior (Figure 2.4b). 

Qualitatively, these were reflected in the network activity. As the presence of these 

paradoxical behaviors may indicate the presence of second phase-transition tuned by the 

balance of excitation to inhibition (Shew et al., 2011; Poil et al., 2012; Kello, 2013; Hesse 

and Gross, 2014; Larremore et al., 2014; Scarpetta et al., 2018) several key results differ 

strongly and thus are reported separately for these regions of parameter space.  

These regions are defined in terms of the connection density and inhibition and shown in 

Figure 2.4b. First is the “positive weights” region, there is no inhibition (𝜒 = 0) and the 

network is a standard critical branching network. The second region, “quiet”, has a small 

increase in the fraction of inhibitory neurons. Activity lasts slightly longer than for the 

classically critical network. The third region is called the “switching” regime because 

network activity switches between a low mean and a high mean (like “up and down states” 

(Destexhe et al., 2003; Millman et al., 2010; Larremore et al., 2014; Scarpetta et al., 2018)). 
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This occurred in the middle portion of the values of connectivity and inhibition. Lastly, we 

have the “ceaseless” region, with a large fraction of inhibition, relative to connection 

density, activity never dies out. This region is defined by 𝑐 < (10𝑒12𝜒 − 13)/100  and 𝜒 >

0. Three of these regimes are displayed in Figure 2.5a, the “quiet” region is mostly 

redundant to the "positive weights" region. The “ceaseless” and “switching” regimes exhibit 

sustained self-generated activity and is included with the intention to model ongoing 

spontaneous activity dynamics without contamination by externally imposed firing 

patterns (Mao et al., 2001).  
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Figure 2.5 | Inputs to a neuron stochastically estimate firing of its presynaptic pool in this critical branching 
model. a shows differences in model activity dynamics with parameter regions (constant connectivity, 𝜆 = 1, but 

inhibition, 𝜒 varies). Each plot shows the active fraction of the network 𝐹(𝑡) in blue, the instantaneous firing 
rate of node, 𝑃𝑖(𝑡), is in gold and the Vm proxy for the same node, 𝛷𝑖(𝑡), is in orange. The node is randomly 
selected from the nodes with degree within 10% of mean degree. The Vm proxy is produced by convolving the 
firing rate of a single neuron with an alpha function with a 4 ms time constant. The top plot shows that with no 
inhibition (or very little inhibition) activity in this parameter region dies away to zero and is unimodally 
distributed about a small value. The middle plot shows that moderate amounts of inhibition results in self-
sustained activity that is bimodally distributed about one high and one low value. The bottom plot shows that 
when the fraction of nodes that are inhibitory is much larger than connection density activity is self-sustaining 
and unimodally distributed about a high value with low variance relative to the mean. b shows the scaling 
relation for the avalanches inferred from  𝛷𝑖(𝑡) at different levels of inhibition, as in panel A. Inhibition 
detrimentally impacts the validity of the scaling relation predictions, which are required for consistency with 
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critical branching. The predicted (𝛾
𝑝

) and fitted (𝛾
𝑝

) scaling exponents are indicated as is the goodness of fit 

(𝑅𝑝
2) for the predicted exponent. c shows how avalanche (fluctuation) statistics vary with the parameter set 

displayed in panels A and B. The top row shows avalanche (fluctuation) sizes, while the bottom row shows the 

duration distributions. Exponents 𝜏 (size distribution) and 𝛽 (duration distribution) as well as comparison 
quotients 𝑞 are annotated on the plot. From these plots, we can see that temporal smoothing (𝛷𝑖(𝑡)) is 
necessary to accurately capture 𝐹(𝑡). Additionally, we see that mismatch between the 𝐹(𝑡) and 𝑃𝑖(𝑡) avalanche 
distributions vary with network parameters. At high levels of inhibition, the 𝑖(𝑡) avalanches are power-law 
distributed over smaller portions of their support. For 𝛷𝑖(𝑡), neither of the networks with less inhibition show 
the cut-offs associated with under sampling a critical branching network. 

We looked at the magnitude of relative error between estimated exponents for the 

avalanche size distribution (Figure 2.4c) to determine how well our proxy neural inputs, 

𝜙𝑖(𝑡), reflected network activity, 𝐹(𝑡), in different parameter regions, and with different 

values for the tuning parameter, 𝜆. Importantly the least error occurred for 𝜆 = 1 with and 

without the presence of inhibitory nodes. This insensitivity to parameter differences 

supports the claim (Larremore et al., 2014) that the system becomes critical when 𝜆 = 1 

even in the presence of inhibition.  

However, the four regions of parameter space perform differently according to our four 

standardized criteria for consistency with criticality. In the “positive weights” region 90% 

of 90 trials (nine points in parameter space with ten trials per point) have network activity 

that meets all four criteria when the tuning parameter is set at criticality (𝜆 = 1) (Figure 

2.4c). Meanwhile 39% meet the criteria in the “ceaseless” region, 19% do in the “quiet” 

region, and 67% do in the “switching” region which may indicate the location of a second 

phase-transition and shows that evidence for precise criticality in this model is limited 

once inhibition is included.  
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As we vary the tuning parameter, we can clearly distinguish critical from non-critical 

systems. Over all 47% percent of trials meet all four criteria when 𝜆 = 1, while 3% do when 

𝜆 = 0.95, 18% do when 𝜆 = 1.015, 1% do when 𝜆 = 0.9, and 1% do when 𝜆 = 1.03 (Figure 

2.4d).  

The estimated power-law exponents show that the avalanche size distributions for 𝐹(𝑡), 

𝑃𝑖(𝑡), and 𝛷𝑖(𝑡) are most alike at criticality. Note that estimated exponents serves as the 

“scaling index”, a measure of the heavy tail even when a power-law is not the statistical 

model that fits best (Jeżewski, 2004). The fact that matching between network activity and 

the input integration function was best at criticality is important because it underscores 

the scale-free nature of critical phenomena and contrasts with the results obtained when 

testing a different relationship between subsampling methods and network structure 

(Priesemann et al., 2009; Yu et al., 2014; Levina and Priesemann, 2017). 

While the system was both critical (𝜆 = 1) and in the positive weights region, our Vm proxy 

𝛷𝑖(𝑡) met all four criteria for consistency with criticality 74% of the time for 90 trials 

(Figure 2.4d) while 𝑃𝑖(𝑡) met all four only 1% of the time. The network activity had 

avalanche size and duration exponent values 𝜏𝐹 = 1.43 ± 0.04, and 𝛽𝐹 = 1.87 ± 0.09, 

(Figure 2.4d) and had a fitted scaling relation exponent, 𝛾𝐹𝑓
= 1.83 ± 0.02, and a predicted 

exponent 𝛾𝐹𝑝
= 1.99 ± 0.23. The membrane potential proxy, 𝛷𝑖(𝑡) had slightly lower 

avalanche size and duration exponent values that fluctuated around the paired network 

values, 𝜏𝛷 = 1.40 ± 0.06 , and 𝛽𝛷 = 1.73 ± 0.17, (Figure 2.4d) and exclusively lower 

scaling relation exponents 𝛾𝛷𝑓
= 1.68 ± 0.02. While the unsmoothed 𝑃𝑖(𝑡) varied 
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considerably more it had size and duration exponents that were almost exclusively higher 

than the paired network values,  𝜏𝑃 = 1.87 ± 0.50, and 𝛽𝑃 = 2.84 ± 1.45, with a fitted 

scaling relation exponent that was exclusively lower 𝛾𝑃𝑓
= 1.68 ± 0.02.  

In Figure 2.5, we compared different population dynamics estimation techniques by 

looking at avalanches inferred from 𝑃𝑖(𝑡) (the inputs to neuron 𝑖), and the Vm proxy 𝛷𝑖(𝑡). 

Both  𝑃𝑖(𝑡) and 𝛷𝑖(𝑡) fluctuate about 𝐹(𝑡) but 𝑃𝑖(𝑡) is much noisier (Figure 2.5a), in the 

ceaseless regime  𝑃𝑖(𝑡) and 𝛷𝑖(𝑡) are systematically offset. Avalanches inferred from 𝛷𝑖(𝑡) 

had average sizes that scaled with duration (Figure 2.5b). Avalanches from 𝛷𝑖(𝑡) 

consistently had duration and size distribution exponents that were closer to network 

avalanches than avalanches from 𝑃𝑖(𝑡). However, 𝑃𝑖(𝑡) performed satisfactorily in the 

sense that its error was systematically offset and best at criticality (Figure 2.5c).  

Including inhibition introduces several important differences. For the ceaseless region with 

𝜆 = 1, far fewer trails meet our criteria, however 𝑃𝑖(𝑡) follows 𝐹(𝑡) much more closely. The 

network activity had avalanche size and duration exponent values 𝜏𝐹 = 1.48 ± 0.09, and 

𝛽𝐹 = 1.53 ± 0.09, and had a fitted scaling relation exponent, 𝛾𝐹𝑓
= 1.23 ± 0.11. The 

membrane potential proxy, 𝛷𝑖(𝑡) had slightly higher avalanche size and duration exponent 

values that fluctuated around the paired network values, 𝜏𝛷 = 1.51 ± 0.19 , and 𝛽𝛷 =

1.57 ± 0.17, but nearly identical scaling relation exponents 𝛾𝛷𝑓
= 1.23 ± 0.11. While the 

unsmoothed 𝑃𝑖(𝑡) varied considerably more, it had size and duration exponents that were 

almost exclusively higher than the paired network values,  𝜏𝑃 = 1.88 ± 0.20, and 𝛽𝑃 =
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2.18 ± 0.34, with a fitted scaling relation exponent that was slightly lower 𝛾𝑃𝑓
= 1.19 ±

0.07.  

When 𝜆 ≠ 1 both 𝛷𝑖(𝑡), and  𝑃𝑖(𝑡) failed to meet all four criteria for criticality at the same 

high rate as 𝐹(𝑡) (to within 1%). This lack of false positives confirms that these signals are 

useful for characterizing critical branching. In Figure 2.4, panel B, we calculated the 

absolute magnitude of relative error between the size exponent from avalanche analysis 

performed on 𝐹(𝑡) and 𝛷𝑖(𝑡). As expected, the avalanches were usually not power-laws 

according to our standards, in this case the exponent is known as the “scaling index” and 

describes the decay of the distribution’s heavy tail (Jeżewski, 2004).  

When we set 𝜆 = 0.95 we see a moderate deterioration in the ability of either 𝛷𝑖(𝑡) or 𝑃𝑖(𝑡) 

to recapitulate network exponent values. The error is no longer systematic; thus, they 

cannot be used to predict network values. The variability of the exponents increases 

greatly for 𝛷𝑖(𝑡) while it decreases for 𝑃𝑖(𝑡). The exponent error increases slightly over the 

𝜆 = 1 and the base of the distribution is much broader.  

Reducing 𝜆 further, to 𝜆 = 0.90, the input integration function, 𝑃𝑖(𝑡)~𝜆𝜔𝑖(𝑡 − 1), rapidly 

dampens impulses (𝜔𝑖 is the instantaneous firing rate over the presynaptic population for 

neuron 𝑖). Variability continues to increase, and a systematic offset does not return. 

Exponent error is now much broader. With branching this low, events often are not able to 

propagate to the randomly selected neuron, an exception is the “ceaseless” regime where 

activity is still long lived.  



62 

When we set 𝜆 = 1.015 we see a dramatic deterioration in the ability of either 𝛷𝑖(𝑡) or 

𝑃𝑖(𝑡) to recapitulate network values. Variability in exponent estimation increases for both 

𝛷𝑖(𝑡) and 𝑃𝑖(𝑡). Exponent error increases rapidly, underscoring the inability to estimate 

network activity from neuron inputs.  

Increasing 𝜆 further to 𝜆 = 1.03 produces an input integration function, 𝑃𝑖(𝑡)~𝜆𝜔𝑖(𝑡 − 1), 

that rapidly amplifies all impulses and the network saturates. The effect is that variability 

in the estimated exponents decreases and a systematic offset returns, with both 𝛷𝑖(𝑡) and 

𝑃𝑖(𝑡) producing exponents that are exclusively and considerably higher than network 

values. Exponent error reveals that estimating network properties from the inputs to a 

neuron is probably not possible for supercriticality in this model.  

The results here show that the Vm proxy represents an effective way of subsampling 

network flow. This is a hallmark of the near-critical region in the PIF model and a 

manifestation of scale-freeness. Criticality in our model corresponds to the point when the 

inputs to a neuron represent an average of the activity of the presynaptic population. 

Importantly we explored why it works, as well as showing that it does work in 

experimental data. This analysis, presented in forthcoming sections, uncovered that proper 

temporal and spatial aggregation is important as is the role of inhibition in membrane 

potential dynamics. This supports both the criticality hypothesis, and tight balance (Barrett 

et al., 2013; Boerlin et al., 2013; Denève and Machens, 2016). Additionally, it has specific 

implications for the information content of membrane potential. 
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2.3.4 The Predicted Scaling Relation Exponent is More Stable than Avalanche 

Size or Duration Exponents 

A key part of the study of criticality in neural systems is the assumption that biological 

systems must self-organize to a critical point. The precise critical point is a very small 

target for a self-organizing mechanism in any natural system. So, a key question is whether 

the self-organizing mechanism of the brain prioritizes efficiently achieving information 

processing advantages of scale-free covariance at the expense of being slightly sub or 

super-critical (which is a larger target) (Priesemann, 2014; Tomen et al., 2014; Williams-

García et al., 2014; Gautam et al., 2015; Clawson et al., 2017).  

Our data offered unexpected insight. It is known that so long as three requirements are met 

the scaling relation will be marginally obeyed: Avalanche size and durations must be 

power-law distributed (with exponents 𝜏 and 𝛽 respectively) and average size must scale 

with duration according to a power-law with exponent 𝛾. Given those three requirements 

one can derive a prediction for the scaling exponent, 𝛾𝑝  =  (𝛽 −  1)/(𝜏 −  1)  without 

needing to assume criticality (Scarpetta et al., 2018). However, without any other 

assumptions one expects 𝛽 and 𝜏 to be independent so plotting one against the other 

should make a point-cloud that is symmetrical, not stretched along a trendline (Figure 2.3).  

We analyzed the independence of 𝜏, 𝛽, and 𝛾 measured from experimental data (where 

self-organization is hypothesized) and compared it to model data (where self-organization 

is impossible, but criticality is guaranteed). We found that 𝛽 and 𝜏 are more independent 
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and the predicted scaling relation is more variable for the model than for experimental data 

in which 𝛽 and 𝜏 covary, apparently in order to maintain a fixed scaling relation prediction. 

The previous multi-site LFP recordings displayed a range of values for the avalanche size 𝜏 

and duration 𝛽 distribution exponents across the tested brain preparations. Interestingly, 

the exponent values were not independent, rather the duration exponent varied linearly 

with the size exponent (Shew et al., 2015) (Figure 2.3a). The single-neuron Vm fluctuations, 

reported here, produced a similar linear relationship between size and duration exponent 

(Figure 2.3b). Algebraic manipulation of the predicted scaling exponent 𝛾𝑝  =  (𝛽 −

 1)/(𝜏 −  1) provides a clue. If the scaling relation (𝛽 − 1) = 𝛾(𝜏 − 1) is obeyed and if 𝛾𝑝 is 

a fixed universal property, then the linear relationship 𝛽𝑗 ∝ ⟨𝛾𝑝⟩𝜏𝑗 holds across different 

cells and animals. 

To demonstrate this important result, variability in the predicted scaling-relation is much 

less than expected, we propagate errors and assume independent 𝛽 and 𝜏. We would 

expect the standard deviation of 𝛾𝑝 to be 𝜎𝛾𝑝
∗ ~

|𝛽−1|

|𝜏−1|
√(

𝜎𝛽

𝛽−1
)
2

+ (
𝜎𝜏

𝜏−1
)
2

~0.72  which is 

roughly twice the real value in Vm data,  𝜎𝛾𝑝
~0.35.  

Pearson correlation, 𝜌, confirms strong dependence between 𝜏 and 𝛽, 𝜌𝜏𝛽 = 0.61, p-value 

𝑝 = 2.57 × 10−6 for the Vm data while for the MEA data 𝜌𝜏𝛽 = 0.96, p-value 𝑝 =

1.01 × 10−7. From this we confirm what Figure 2.3 shows: the variability in 𝜏 and 𝛽 are not 

independent and this implies the existence of an organizing principle connecting 𝜏 to  𝛽. 
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Whatever the principle may turn out to be, one of its effects is the maintenance of low 

variability in 𝛾𝑝 at the expense of greater variability in 𝜏 and 𝛽.  

A principal reason to suspect self-organization is that this trend is not seen in the model 

results. Importantly, 𝜏 and 𝛽 are independent of the scaling-relation exponent function, 

though still weakly correlated. In this model there is no adaptive organizing principle 

driving this network to criticality, instead the structure is fixed and set to be at the critical 

point. This shows how systems behave in the absence of self-organization. No parameter is 

being maintained at low variability at the expense of other parameters.  

Limiting ourselves to simulated network activity for the 𝜆 = 1 case without inhibition 

(Figure 2.4c), propagation of errors leads us to expect the standard deviation of the scaling-

relation prediction to be 𝜎𝛾𝐹𝑝

∗ ~0.27 which is very close to real value 𝜎𝛾𝐹𝑝
~0.23. The 

correlation is statistically significant at the 5% level, but much smaller 𝜌𝜏𝛽 = 0.23, p-value 

𝑝 = 0.027.  

This was noted in the original paper (Shew et al., 2015) where they were able to reproduce 

the linear trend between avalanche size and duration exponents by simulating a network 

with synaptic depression to adaptively restore critical behavior after an increase in 

network drive. They show that the trendline is produced by corrupting their simulated data 

via randomly deleting seventy to ninety percent of spiking events and then changing the 

way they group events in time (adaptive time binning). Our membrane potential 
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fluctuations have no counterpart to the adaptive time binning other than the intrinsic 

membrane time constant which is not manipulated experimentally. 

In conclusion, the linear trend between avalanche size and duration exponents is not a 

universal property of critical systems because it was not found in the model. This suggests 

that the linear trend is enforced by an organizing principle at work in the brain but absent 

in the model. This principle prioritizes maintaining stability in either the scaling of 

avalanche size with duration, or the power-law scaling of autocorrelation which is closely 

related to the scaling relation and scale-free covariance via the power-law governing auto-

correlation (Bak et al., 1987; Sethna et al., 2001). 

2.3.5 Non-Linearity and Temporal Characteristics such as High-Order 

Correlation, Proper Combination of Synaptic Events, and Signal Time-Scale 

are Required to Reproduce Network Measures from Single-Electrode 

Recordings 

In order to demonstrate that subthreshold membrane potential fluctuations can be used as 

an informative gauge of cortical population activity it is necessary to compare against 

alternative signals which have either been used by experimentalists as a measure of 

population activity or that share some key features of membrane potential but are missing 

others. By making these comparisons we can illuminate which features of the membrane 

potential signal are responsible for its ability to preserve properties of cortical network 

activity. Additionally, it is necessary to check whether the statistical properties of 

avalanches can be explained by random processes unrelated to criticality. To address these 

points of the investigation, we analyzed five surrogate signals: single-site LFP recorded 
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concurrently with the Vm recordings, two phase-shuffled versions of Vm recordings, 

computationally inferred excitatory current, and the same inferred excitatory current 

further transformed to match Vm autocorrelation (which tests the role of IPSPs by making a 

Vm-like signal that lacks them). 

2.3.6 Negative Fluctuations of LFP Disagree with Vm and MEA Results and are 

Inconsistent with Avalanches in Critical Systems 

The first alternative hypothesis to test is whether the LFP could yield the same results. We 

used low-pass filtered and inverted single site local field potential (LFP) which is 

commonly believed to measure local population activity. However, in our analysis it did not 

recapitulate the results from either MEA or Vm avalanche analysis. We obtained viable 

single-site LFP recordings (see Methods: Extracellular Recordings), simultaneous and 

adjacent with whole-cell recordings, for 38 of the 51 neurons reported above. We 

performed avalanche analyses on the LFP recordings using a procedure like the one 

described for the Vm recordings (see Methods: Intracellular Recordings) (Figure 2.6). LFP 

recordings were grouped the same way Vm recordings were in order to match them for 

comparison. However, the numbers of recordings are not the same because there were two 

or three cells being patched alongside (within 300 𝜇𝑚) one extracellular electrode and 

there was not always a simultaneous LFP recording. LFP also produced more avalanches 

per 2-5-minute recording 𝑁𝐴𝑉 = 1128 ±  348. The are 23 20-minute periods spanning 

multiple LFP recordings. These recordings were gathered into groups and matched against 

49 Vm recording groups (38 from the first 20-minute period, 11 from the second). 

Additionally, there were 16 20-minute periods spanning only one LFP recording but with 
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more than 500 avalanches. The concurrent Vm recordings did not have enough avalanches. 

This gives us 39 LFP avalanche data sets.  

 

Figure 2.6 | Comparison to surrogate signals reveals the importance of non-linearity and temporal 
characteristics such as high-order correlation, proper combination of synaptic events, and signal time-
scale. a shows alternative signals and surrogate data time synchronized to Figure 2.2b and showing 
thresholds and integration baselines (dashed lines) with avalanche areas marked in yellow. The top row 
shows the inverted LFP signal. The LFP is low-pass filtered (0-100 Hz), inverted, detrended and analyzed 
for avalanches identically to membrane potentials. The second and third rows show the inferred excitatory 
inputs to a neuron. An algorithm reconstructs the timing and shape of ePSPs from Vm. The resultant signal, 
𝑔𝑒𝑥𝑐

∗ , is much faster, making it analogous to the 𝑃𝑖(𝑡) signal from the PIF model. This signal is smoothed 
(third row, see Methods: Model Simulations for details) to produce a signal that is like Vm (Figure 2.2b) 
would be if it lacked IPSPs. The last row provides an example of amplitude matched phase shuffled 
surrogate data (amplitude adjusted Fourier transform algorithm). b shows the scaling relation in the same 
order and dataset as panel A. The dashed line is the predicted scaling relation exponent inferred from 
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power-law fits to the size and duration distributions of positive fluctuations. In cases where a power-law is 
not the best model the exponent nonetheless gives the average slope of a linear regression on a log-log plot, 
a “scaling index” (Jeżewski, 2004). The predicted (𝛾

𝑝
) and fitted (𝛾

𝑓
) scaling exponents are indicated as is 

the goodness of fit (𝑅𝑝
2) for the predicted exponent. Mean size scales with duration for all signals but often 

it is trivial (𝛾
𝑓
~1) or poorly explained by a power-law (𝑅𝑓

2 < 0.95), and it is rarely a good match with the 

prediction from the scaling relation. c shows shape collapse from the total dataset in the same order and 
dataset as panel A. The color indicates the duration according to the scale bar. If self-similarity is present 

each avalanche profile will collapse onto the same curve: 𝐹 (
𝑡−𝑡0

𝐷
). The LFP illustrates a trivial scaling 

relation that is not produced by true self-similarity: limited curvature and the exponents are very close to 
one. The second row shows the reconstructed excitatory inputs, 𝑔𝑒𝑥𝑐

∗  , and lacks shape collapse as expected 
from the lack of a scaling relation power-law in panel B. The third row shows that sensible curvature re-
emerges with smoothing but does not produce a universal scaling function. In the last row the phase 
shuffled Vm shows a shape collapse which is worse than for the original Vm (Figure 2.2e). d shows size and 
duration distributions from each signal compared with the Vm (in solid red). The phase shuffled Vm (dashed 
red) still obeys power-laws but the exponent values disagree, and it less frequently meets our standardized 
criteria. Unsmoothed 𝑔𝑒𝑥𝑐

∗  (solid gold) is more like inverted LFP than anything else. When 𝑔𝑒𝑥𝑐
∗  is smoothed 

(dashed gold) it becomes closer to the original Vm but retains pronounced curvature in the duration 
distribution. We see Vm, AAFT, and smoothed 𝑔𝑒𝑥𝑐

∗  produce distributions which extend over similar orders 
of magnitude (~2). e shows maximum value and curvature of the average profiles after “collapse” as 
functions of duration. Shape collapse quality is a subjective measure, but these give a more quantitative 
perspective. Good shape collapse should have a fixed maximum value and a high but fixed mean curvature. 
For comparison, the UFT (Unwindowed or Unadjusted Fourier Transform) phase shuffled data is also 
shown to provide a comparison to low curvature but a fixed maximum value. By visual inspection of AAFT 
and Vm it is apparent that the asymmetry is gone and that deviation from the collapsed shape begins at 
shorter durations. The max value diverges from a linear trend sooner for AAFT (~0.15 seconds, 0.5) than 
for Vm (~0.7 seconds). Curvature also diverges sooner for the AAFT (0.5 seconds vs 0.7 seconds). 
Curvature does not become appreciable until about 50-70 ms. Between the onset of curvature and 

divergence of max value there are (
0.15

0.05
)~0.48  orders of magnitude for AAFT and (

0.7

0.05
) ~1.15  orders of 

magnitude for the original Vm. 

The LFP recording groups performed poorly according to our four criteria for consistency 

with criticality. Of the 39 LFP recording groups, only 41% percent had acceptable scaling 

relation predictions and only 36% met all four standard criteria for criticality (Figure 2.7a). 

The additional criterion of shape collapse was not observed (Figure 2.6c), there was no 

linear trend among the exponents governed by the scaling relation and the exponents did 

not match MEA data (Figure 2.3a). However, 85% produced power-law fits for size and 

duration, 92% had scaling relations well fit by power-laws and all were non-trivial. We 

expect from (Touboul and Destexhe, 2017) that some fraction of non-critical data will pass 

the four standard criteria by chance, so long as the data have a 1/𝑓 power spectrum.  
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Figure 2.7 | Plausible alternative signals fail to demonstrate consistency with criticality. A plot of the 
exponents governing power-law scaling of avalanche duration vs the exponents governing avalanche size. 
Circles indicate data which was best fit to a power-law in both its size and duration. Triangle indicates 
otherwise (the MLE estimation of a would-be power-law fit, the “scaling index”, is plotted in that case 
(Jeżewski, 2004)). Filled circles indicate data that meet all four standardized criteria for judging data to be 
consistent with criticality. We show the performance summary for the first group of data from each cell 
(the first 20-minute period which contained multiple recordings). The best fit slope is from linear 
regression to the plotted or indicated data, this is compared to the slope predicted by the mean 𝛾

𝑓
 (the 

exponent describing how avalanche size scales with duration). a shows that positive fluctuations of 
inverted LFP were less likely to be power-law distributed and the power-law exponents tended to be 
unstable and not resemble MEA results. All 39 LFP datasets are represented. b shows results from the 
reconstruction of excitatory input conductance 𝑔𝑒𝑥𝑐. Only 12% were power-law distributed. The results do 
not resemble the MEA results. The slope from the trendline matches the scaling relation exponent but the 
regression is bad, 𝑅2 = 0.51. c shows how adding back some temporal smoothing to 𝑔𝑒𝑥𝑐

∗  can improve 
results, 94% have power-laws but the exponents are more variable and generally larger. Most (96%) fail to 

have scaling relations which are well described by power-laws. The exponents 𝛽 and 𝜏 are less 
independent but are not well described by the regression trendlines (𝑅2 = 0.35). The fit is applied only to 
the upper right cluster, excluding the outliers in the region 𝛽 < 1.6 and 𝜏 < 1.6. d shows the summary of 
results from the AAFT phase shuffled Vm. As expected for a shuffling that preserves autocorrelation, power-
laws are also preserved. However, the exponents are shifted down (especially the size distribution 
exponent). Far more fail to meet our criteria for consistency with criticality, as statistically significant 
difference (see Results: Stochastic Surrogates are Distinguishable from Vm or MEA Results, Reveals 
Importance of Non-Linear Filtering). Significantly fewer data sets have scaling relations well described by a 
power-law (75% as opposed to 90%), this is consistent with a slightly worse shape collapse (Figure 2.6c). 

To emphasize that these results are chance we can limit ourselves to just those with the 

best chance of meeting the scaling relation criteria by picking those that have power-laws 

in the size and duration distributions. This is enough to expect the scaling relation to be 
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obeyed if mean size scales geometrically with duration (Scarpetta et al., 2018). It is still the 

case that only 42% of recording groups meet the three remaining standard criteria for 

consistency with criticality. Therefore, having power-laws is statistically independent of 

meeting the other criterion for consistency with criticality.  

Not only does the single-site LFP data differ from MEA and Vm data because it fails to 

demonstrate consistency with criticality, it is also the case that the scale-free properties 

which do exist are not representative of the MEA data or the simultaneous Vm recordings. 

The failure was not because LFP recordings co-occurred with decreased consistency with 

criticality more generally. Eighty-one percent of the matched Vm recordings met all the 

criteria, while 58% of the LFP recordings did, a statistically significant dissimilarity, odds 

ratio (𝑟𝑂𝑅 = 7.65 with 𝑝 = 1.1 × 10−5).  

The estimated exponents from all 39 LFP recording groups were highly variable. The 

duration distribution and scaling relation were most dissimilar to Vm and MEA data. Of the 

33 LFP groups which were power-law distributed, the avalanche size exponent had a 

median value 𝜏 = 1.90 ± 0.63  while the duration exponent was 𝛽 = 1.41 ±  0.9 (very low) 

(Figure 2.7a) and the fitted exponent was 𝛾𝑓 = 1.11 ± 0.02. The predicted scaling-relation 

exponents were inaccurate with 𝛾𝑝 = 0.89 ±  0.76 for the subset of recording groups which 

had power-laws.  

The extreme variability makes it hard to determine whether the size and duration 

exponents match other data, but the fitted scaling relation exponent was much less variable 
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and more clearly separated from MEA or Vm results. The matched difference of median test 

(Wilcoxon signed-rank) between 49 recording groups found that the best fit 𝜏 (𝜏 = 1.90 ±

0.63) was not significantly distinguishable from the Vm data (𝑟𝑆𝐷𝐹 = 0.15, 𝑝 = 0.33),  but 𝛽 

(𝛽 = 1.41 ±  0.9) was dissimilar with a comparable effect size (𝑟𝑆𝐷𝐹 = 0.17, 𝑝 = 0.028), and 

𝛾𝑓 (𝛾𝑓 = 1.11 ± 0.02)  was also dissimilar (𝑟𝑆𝐷𝐹 = 0.25, 𝑝 = 7.1 × 10−15).  

When comparing to the 13 samples of MEA data 𝛾𝑓 was significantly different from the 

MEA data (𝑟𝑆𝐷𝐹 = 0.88, and 𝑝 = 9.21 × 10−08). This contrasts with our comparison 

between Vm and MEA data. In that case the scaling relation was not distinguishable even 

with 51 points of comparison and very low variability making a difference easier to detect. 

However, because of their extreme variability the size and duration exponents fail a 5% 

significance threshold for distinguishing from the MEA data by a Wilcoxon rank-sum result 

(𝑟𝑆𝐷𝐹 = 0.06, 𝑝 = 0.766 for 𝜏 and 𝑟𝑆𝐷𝐹 = 0.29, 𝑝 = 0.123 for 𝛽). This failure of inverted LFP 

to show the same statistical properties as multi-unit activity may add a caveat to the 

assumptions behind the use of inverted LFP as a proxy for population activity (Kelly et al., 

2010; Einevoll et al., 2013; Okun et al., 2015). Specifically, the amplitude of single-electrode 

negative LFP excursions is ambiguously related to the number of spiking neurons, whereas 

the use of electrode arrays as in (Beggs and Plenz, 2003) and in (Shew et al., 2015) is more 

appropriate. 

To summarize, the single-site LFP fluctuation results from the superposition of local 

spiking and extracellular synaptic current of juxtaposed network elements (Kajikawa and 

Schroeder, 2011; Einevoll et al., 2013; Pettersen et al., 2014; Ness et al., 2016). These 



73 

fluctuations were found to be less informative about the network dynamics than single-

neuron Vm fluctuations. Vm fluctuations result from the superposition of EPSPs and IPSPs 

indicating neuronal responses propagating in a manner consistent with the true neural 

network architecture. In other words, synaptic and spiking events driving fluctuations at 

single extracellular electrodes may be too badly out of sequence and distorted to faithfully 

represent neuronal avalanches, whereas the sequence of synaptic and spiking events 

driving somatic membrane potential fluctuations is functionally relevant by definition. 

2.3.7 Stochastic Surrogates are Distinguishable from Vm or MEA Results, 

Reveal Importance of Non-Linear Filtering 

After eliminating inverted LFP as an alternative single-electrode signal, it was important to 

establish whether our results could have been created from a linear combination of 

independent random processes (Touboul and Destexhe, 2017; Priesemann and Shriki, 

2018) , similar to those used when contesting evidence for critical brain dynamics (Bédard 

et al., 2006; Touboul and Destexhe, 2010, 2017). We also wanted to learn what effects non-

linearity (non-Gaussianity) has in signals like the Vm.  

To address these questions, we used both the AAFT and UFT phase shuffling algorithms 

(see Methods: Experimental Design and Statistical Analysis). AAFT (Figure 2.6) preserves 

both the exact power-spectrum (autocorrelation) of the signal and non-linear skew of 

signal values but randomizes the phase (higher-order temporal correlations). UFT is the 

same but forces the distribution of signal values to be Gaussian. Using both allows us to 
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attribute some characteristics to non-linear rescaling and others to precise temporal 

correlation structure.  

Phase shuffling tends to preserve power-laws since it explicitly preserves the 1/f trend of 

the power-spectrum. However, the matched signed-rank test reveals that the values of the 

exponents change in both methods. Under UFT transformation the scaling relation and 

shape collapse became more trivial and like the LFP. This suggests that both the non-linear 

rescaling of input currents by membrane properties and the way that input populations 

interact throughout the intricate dendritic arborization are important.  

For the 51 recording groups from the first 20-minutes the AAFT reshuffled data yield a 

median size exponent of 𝜏 = 1.74 ± 0.29 while the duration exponent was 𝛽 = 2.0 ±  0.34 

(Figure 2.7d). The fitted scaling relation exponent was 𝛾𝑓 = 1.19 ± 0.06 and the predicted 

scaling relation exponent was 𝛾𝑝 = 1.21 ±  0.49.  

Pairing the surrogates to the original Vm data and performing the Wilcoxon signed-rank 

test for difference of medians gives (𝑟𝑆𝐷𝐹 = 0.053, 𝑝 = 2 × 10−4), (𝑟𝑆𝐷𝐹 = 0.091, 𝑝 =

0.08), and (𝑟𝑆𝐷𝐹 = 0.207, 𝑝 = 3 × 10−5) for 𝜏, 𝛽, and 𝛾𝑓 respectively. Thus 𝜏 and 𝛾𝑓 are both 

significantly different, this is supported by the fact that only 55% of the groups meet all 

four standard criteria for criticality, while 76% of meet them for the original Vm time series. 

This difference between success rates is significant by Fisher’s exact test (𝑟𝑂𝑅 = 2.67, 𝑝 =

0.0363).  
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The failure mode for AAFT shuffled data was almost entirely in reduced goodness of fit 

(𝑅2) for a power-law fit to its scaling relation, 17% fewer recording groups met the 

criterion 𝑅2 > 0.95, than for Vm  (𝑟𝑂𝑅 = 4.18, 𝑝 = 0.0093). When the shape collapse is 

examined, we see another clear, if qualitative, difference in the symmetry of any presumed 

scaling function (Figure 2.6c). When taken together can we see that the AAFT shuffled 

dataset is not consistent with critical point behavior. Thus, we show that the exponent 

values and evidence for criticality, especially scaling and shape collapse which we inferred 

from Vm are not likely to come from random processes and are dependent on non-linear 

temporal correlation structure.  

The key feature of the UFT result is that the fitted scaling relation exponent is much 

lower, 𝛾𝑓 = 1.05 ± 0.049, which is significantly less than for AAFT (𝑟𝑆𝐷𝐹 = 0.25, 𝑝 =

1 × 10−13) and less than the LFP (𝑟𝑆𝐷𝐹 = 0.228, 𝑝 = 3 × 10−6). It is very close to trivial 

scaling but is still distinguishable from  𝛾𝑓 =1 at a population level via the sign test (𝑟𝑆𝐷𝐹 =

0.843, 𝑝 = 2 × 10−10). Because the fitted scaling relation exponent and shape collapse were 

similar in both the UFT and LFP data, it suggests that lack of non-linear rescaling (non-

linear filtering) may be a key feature of LFP that explains its failure to accurately reflect 

critical point behavior.  

The UFT was universally poorer performing, 39% do pass the criticality test but given that 

the scaling relation exponent is so low this is simply random chance, and significantly 

worse than the Vm results (𝑟𝑂𝑅 = 5.04, 𝑝 = 3 × 10−4 ). The UFT phase shuffling results 

obtain a median size exponent of 𝜏 = 1.69 ± 0.45 while the duration exponent was 𝛽 =
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1.81 ±  0.49. The predicted scaling relation exponent was 𝛾𝑝 = 1.01 ±  0.72. All are 

significantly different from the Vm results (𝑟𝑆𝐷𝐹 = 0.183, 𝑝 = 0.005), (𝑟𝑆𝐷𝐹 = 0.199, 𝑝 =

2 × 10−4), and (𝑟𝑆𝐷𝐹 = 0.249, 𝑝 = 2 × 10−13) for 𝜏, 𝛽, and 𝛾𝑓 respectively. These results are 

redundant with the AAFT confirming that our results do not have a trivial explanation.  

When the scaling relation was examined, we saw another clear, if qualitative, difference in 

the symmetry of any presumed scaling function (Figure 2.6c). When taken together, our 

four standardized criteria followed by shape-collapse analysis let us distinguish phase-

shuffled Vm fluctuations from the original Vm fluctuations, even limiting ourselves to data 

that meets the four criteria. Thus, the phase-shuffled data showed that the evidence for 

criticality in the original Vm fluctuations are dependent on non-linear temporal 

correlations.  

2.3.8 Excitatory and Inhibitory Synaptic Activity are both Required for Vm 

Fluctuations to Match MEA Avalanches 

Having learned that single-site LFP recordings cannot be used to accurately infer the 

statistics of population activity, and knowing that low-pass filtered and inverted LFP is 

believed to reflect excitatory synaptic activity (Kajikawa and Schroeder, 2011; Buzsáki et 

al., 2012; Einevoll et al., 2013; Ness et al., 2016) it begs the question: to what extent do 

excitatory synaptic events contain evidence for network criticality?  

Somatic Vm fluctuations are the complex result of spatially and temporally distributed 

excitatory and inhibitory synaptic inputs further mangled by active and passive membrane 
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properties in dendrites and soma. There is reason to believe that these features conspire to 

enforce the condition that Vm faithfully represents inputs to the presynaptic network 

(Barrett et al., 2013; Boerlin et al., 2013; Denève and Machens, 2016) similar to how input 

signals relate to presynaptic populations in our model. To address the stated question, we 

estimated the excitatory synaptic conductance changes 𝑔𝑒𝑥𝑐
∗  from the Vm recordings, using 

a previously developed inverse modeling algorithm (Yaşar et al., 2016), and applied the 

avalanche analysis on the inferred 𝑔𝑒𝑥𝑐
∗  time series, (Figure 2.6).  

The inferred excitatory conductance is plausibly related to the presynaptic population, 

however it failed to be a reliable measure of network dynamics (Figure 2.7b). We can’t 

know whether the failure is because excitatory current does not contain enough 

information or because the signal’s time constant is too short. Power laws in the avalanche 

size and duration distributions were observed in only 12% of the 51 groups from the first 

20 minutes of recording. Comparing to Vm this was very different (𝑟𝑂𝑅 = 375, 𝑝 =

6 × 10−14). Shape collapse was absent from the inferred excitatory conductance (Figure 

2.6c) and none passed all four criteria for criticality. From this we conclude that inferred 

excitatory conductances are not a good network measure.  

One of many potential reasons for this failure could be the much shorter time constant of 

the inferred 𝑔𝑒𝑥𝑐
∗  signal compared to the Vm signal. We saw exactly that situation when 

examining model results: 𝑃𝑖(𝑡) failed to reproduce network values as well as its smoothed 

version 𝜙𝑖(𝑡). Therefore, we smoothed the 𝑔𝑒𝑥𝑐
∗  signal with an alpha-function, chosen 

because it should impose a similar non-Gaussian distribution as the Vm signal. The time 
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constant of the alpha function was tuned to minimize the error between the 

autocorrelation of the smoothed 𝑔𝑒𝑥𝑐
∗  signal and the original Vm signal. By doing so we 

create a signal with a 1/𝑓 power-spectrum that should exhibit power-laws and reproduce 

many Vm statistical features, (Figure 2.6).  

Reinstating the autocorrelation does not summon the return of scale-freeness. The 

smoothed signal did demonstrate power-laws (94%) and one serendipitously met the 

standardized criteria for consistency with critical point behavior (Figure 2.6d). However, 

this is chance. The average coefficient of determination for a fitted scaling relation on a log-

log plot was 𝑅2 = 0.84 ± 0.14 so overall average avalanche sizes did not scale with 

duration as a power-law. Nonetheless this is a substantial improvement on the 

unsmoothed version 𝑅2 = 0.68 ± 0.17. This is a statistically significant difference (𝑟𝑆𝐷𝐹  =

0.054, 𝑝 = 3 × 10−4).  

The smoothed inferred 𝑔𝑒𝑥𝑐
∗  signal (Figure 2.6a) is visually more like the original Vm 

(Figure 2.2b) than the AAFT shuffled Vm surrogate (Figure 2.6a), however, it was a worse 

match. This shows that signals dependent only on excitation, even ones with the same non-

Gaussian distribution and power-spectrum trend do not reflect the statistics of population 

activity. Interactions between EPSPs and IPSPs may be needed. 

In conclusion, the single-site local field potential (LFP), the phase-shuffled recorded Vm, 

and the inferred excitatory conductance 𝑔𝑒𝑥𝑐
∗ , including its smoothed version, all failed to 

reveal the critical network dynamics. However, there are either similarities between the 
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signals or some remaining scale-free signatures which reveal the importance of signal 

aspects. In order to faithfully represent population activity statistics a candidate signal 

must: have the right non-Gaussian distribution, the right 1/𝑓 power-spectrum 

characteristics and is sensitively dependent on higher-order temporal correlations such as 

may result from the complex interplay of excitation and inhibition within the dendritic 

arborization of a pyramidal neuron in the visual cortex. 

2.4 Discussion 

Leveraging membrane potential (Vm) and local field potential (LFP) recordings with 

modeling and microelectrode array (MEA) data yielded two principal findings: 

subthreshold Vm are a useful indicator of network activity and this correspondence is 

inherent to critical coarse-graining. Scrutiny revealed that avalanche size and duration 

distribution parameters covary to maintain similar geometrical scaling across different 

experiments, a noteworthy observation. The following discussion emphasizes possible 

significance and research intersections, such as explaining disagreement with theory via 

subsampling effects or quasicriticality, or relating neural computation to a mathematical 

apparatus within critical systems theory.  

While “appropriating the brain’s own subsampling method” is a novel description of whole-

cell recordings, it was inspired by examples. Whole-cell recordings contain information 

about the network (Gasparini and Magee, 2006; Mokeichev et al., 2007; Poulet and 

Petersen, 2008; El Boustani et al., 2009; Okun et al., 2015; Malina et al., 2016; Hulse et al., 
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2017; Lee and Brecht, 2018) and stimulus (Anderson et al., 2000; Sachidhanandam et al., 

2013). Usually the focus is using neural inputs to predict outputs, not measuring 

population dynamics (Destexhe and Paré, 1999; Carandini and Ferster, 2000; Isaacson and 

Scanziani, 2011; Okun et al., 2015). Additionally, long-time or large-population statistics, 

like our avalanche analysis, are useful for understanding neural code (Sachdev et al., 2004; 

Churchland et al., 2010; Crochet et al., 2011; Graupner and Reyes, 2013; McGinley et al., 

2015; Gao et al., 2016) and are robust to noise. Our finding that single Vm recordings reflect 

scale-free network activity is significant as recording stability in behaving animals 

improves (Poulet and Petersen, 2008; Kodandaramaiah et al., 2012; Lee and Brecht, 2018). 

We open the door to using Vm fluctuations as windows into network dynamics. 

Rigorous analysis supports our experimental conclusion: subthreshold Vm fluctuations 

mimic neuronal avalanches and evince critical phenomena but negative LFP deflections 

don’t, despite being purported network indicators (Bédard et al., 2006; Liu and Newsome, 

2006; Kelly et al., 2010; Einevoll et al., 2013; Okun et al., 2015). We invoke network not 

single-neuron criticality (Gal and Marom, 2013; Taillefumier and Magnasco, 2013) because 

the trend between size and duration exponents agrees with MEA data. Our findings 

originate from spontaneous activity of ex-vivo turtle visual cortex which shares many 

connectivity and functional features with mammalian cortex (Ulinski, 1990; Larkum et al., 

2008).  Lastly, the results are not serendipitous noise because the Vm dataset significantly 

differed from a dataset of phase-shuffled and rescaled surrogates (Theiler et al., 1992). 
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Readers keen on critical phenomena may notice our exponents differ from the exact 

theoretical predictions (𝜏 = 1.5, 𝛽 = 2 (Haldeman and Beggs, 2005)). Others observing this 

mismatch have suggested the brain operates slightly off-critical (Hahn et al., 2010; 

Priesemann, 2014; Tomen et al., 2014).  

An extension of this suggestion, quasicriticality (Williams-García et al., 2014), also explains 

the highly stable scaling relation: biological systems blocked from precise critically may 

optimize properties which are maximized only for critical systems, becoming 

“quasicritical”. Correlation time and length are maximized only at criticality and closely 

related to avalanche geometrical scaling (Tang and Bak, 1988; Sethna et al., 2001). If brains 

optimize correlation length, a highly stable scaling relation may result. Furthermore, 

including inhibition (Larremore et al., 2014) makes our otherwise critical model less 

consistent with criticality except that population statistics can still be inferred from input 

fluctuations. The stable-scaling was not in the model, which lacks any plasticity 

mechanisms. Stable-scaling may be a rare observation of self-organization principles such 

as quasicriticality. A contributing explanation is subsampling effects (Priesemann et al., 

2009; Levina and Priesemann, 2017) but it doesn’t explain the stable scaling relation 

unless quasicriticality is also invoked. 

2.4.1 Neuronal Avalanche and Neural Input Fluctuation Similarity is Captured 

by a Critical Recurrent Coarse-Graining Network 

Our main modeling finding, inputs to a neuron reflect network activity best for critical 

branching networks, is supported by a parameter sweep and detailed analysis. Our 
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network had no structure, but structure exists at all scales of brain networks (Song et al., 

2005; Perin et al., 2011; Shimono and Beggs, 2015) and can have profound impacts on 

network dynamics (Litwin-Kumar and Doiron, 2012; Mastrogiuseppe and Ostojic, 2018). 

We derived a relationship showing that the findings may be transferrable to networks 

where neural inputs fluctuate about proportionality to some subsample’s activity. We tune 

proportionality to be one, but that can also emerge from plasticity (Shew et al., 2015; Del 

Papa et al., 2017). Tight-balance suggests a biological mechanism causing subthreshold Vm 

to track excitation into a presynaptic population because IPSPs can have their timing and 

strength “balanced” to truncate EPSPs which would otherwise last longer than spurts of 

presynaptic excitation (Barrett et al., 2013; Boerlin et al., 2013; Gatys et al., 2015; Denève 

and Machens, 2016). We use Vm proxy,  𝜙𝑖(𝑡), an alpha function convolved with a point 

process, 𝑃𝑖(𝑡). This 𝜙𝑖(𝑡),  is more like Vm than  𝑃𝑖(𝑡) and reproduces our experimental 

findings. Lastly, we investigate quasicriticality by including inhibition but tuning the 

maximum eigenvalue to what would be the critical point without inhibition. 

Our model provides insights on network subsampling and renormalization group. Usually 

subsampling means selecting neurons at random or modeling an MEA with an arbitrary 

grid (Priesemann et al., 2009). Our “subsample” is the presynaptic population represented 

by summing weighted inputs from active neurons. This is the first analysis intersecting 

network convergence (i.e. postsynaptic soma).  

Subsampling distorts avalanche size and duration, likely creating differences between 

experimental results and theoretical predictions (Priesemann et al., 2009; Ribeiro et al., 
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2014; Levina and Priesemann, 2017; Wilting and Priesemann, 2018). Subsampling may 

explain disagreement between avalanche analysis on simulated network activity, 𝐹(𝑡), Vm 

proxy 𝜙𝑖(𝑡), and single-neuron firing rate 𝑃𝑖(𝑡). However, Vm and MEA results are off 

theory but match each other. Either their subsampling errors are alike enough to produce 

similar distortions, or subsampling co-occurs with quasicriticality (Priesemann, 2014; 

Williams-García et al., 2014).  

Intriguingly, the Restricted Boltzmann Machine (RBM) (Aggarwal, 2018), (a related model) 

was exactly mapped to a “renormalization group” (RG) operator (Mehta and Schwab, 2014; 

Koch-Janusz and Ringel, 2018). RG is a mathematical apparatus relating bulk properties to 

minute interactions (Maris and Kadanoff, 1978; Nishimori and Ortiz, 2011; Sfondrini, 

2012). It characterizes critical points of phase-transitions (Stanley, 1999; Sethna et al., 

2001) and helps derive neuronal avalanche analysis predictions (Sethna et al., 2001; Le 

Doussal and Wiese, 2009; Papanikolaou et al., 2011; Cowan et al., 2013). RG operators 

coarse-grain and then rescale, like resizing a digital image. Crucially, iterating an 

appropriate operator on a critical system produces statistically identical “copies”, but on 

non-critical systems the iterations diverge. Our model averages (coarse-grains) 

presynaptic pools to get an instantaneous firing probability for each neuron. Then a logical 

operation (rescaling) sets the spiking states for the next iteration, demonstrating an RG-

like operation that reproduces our experimental findings. Denève and Machens (2016) 

proposed a similar relationship between real Vm and presynaptic pools. The finding that a 

similar neural operation emerges in RBMs underscores the relevance of RG and the 

extension of our findings to structured or non-branching networks. The importance is that 
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a recurrent coarse-graining network may be like a scale-free ouroboros, displaying 

widespread scale-freeness if any component is critical or briefly driven by critical or scale-

free inputs (Mehta and Schwab, 2014; Schwab et al., 2014; Aoki and Kobayashi, 2017; 

Koch-Janusz and Ringel, 2018).  

Significantly, associating neuronal processing with critical branching may induce an 

organizing principle, the “Information Bottleneck Principle”. This balances dimensionality 

reduction (compression) against information loss (Tishby and Zaslavsky, 2015) and is 

reminiscent of efficient coding (Friston, 2010; Denève and Machens, 2016), and origins of 

tuning curves (Wilson et al., 2016; Heeger, 2017). Koch-Janusz and Ringel (2018) trained 

their network by maximizing mutual information between many inputs and few outputs. 

This produced nodes with receptive fields matching popular RG operators. They derived 

correct power-laws by iterating the network. Applications of RG to neural computation are 

known: image processing (Gidas, 1989; Mehta and Schwab, 2014; Saremi and Sejnowski, 

2016), brain and behavior (Freeman and Cao, 2008), emergent consciousness (Werner, 

2012; Fingelkurts et al., 2013; Laughlin, 2014), and hierarchical modular networks (Lee et 

al., 1986; Willcox, 1991) important for criticality (Moretti and Munoz, 2013). Furthermore, 

our model’s RG-like features are crucial to reproducing experimental results. It follows that 

elegant RG operators like in the RBM might also capture biological neuronal processing, 

fulfilling the demand for beautiful neuroscience models (Roberts, 2018) while offering 

insights into organizing principles and scale-freeness.  

2.4.2 Conclusion 
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We established that subthreshold fluctuations of Vm in single neurons agree with neuronal 

avalanche statistics and with critical branching but fluctuations in other single-electrode 

signals do not. Computational modeling showed that accurate inference requires critical 

branching like connectivity. Fluctuation size scales with duration more self-consistently in 

experimental than model results, hinting at self-organization. These findings are consistent 

with a nascent reduction of neural computation to coarse-graining operations which may 

explain the prevalence of critical-like behavior during spontaneous neural activity. Fully 

articulating the implications requires more investigation, but we have substantially 

extended the evidence for critical phenomena in neural systems while rigorously 

demonstrating that subthreshold Vm fluctuations of single neurons contain useful 

information about dynamical network properties.   
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Chapter 3: 

Stimulus tuned dynamical trajectories 

underlie synaptically driven  

transmembrane signals in visual cortex 

Cortical neurons are like embedded sensors polling a subnetwork of neurons which spans 

brain regions. Often such neural populations are characterized with non-linear dynamical 

systems paradigms, such as attractor networks. The prospect of obtaining population 

dynamics from a naturally in-situ and fully integrated informant (a single neuron) 

motivates a machine learning algorithm to find attractor-like dynamical rules in 

synaptically driven fluctuations of transmembrane currents and potential. Since the 

population dynamics we seek is largely driven by visual responses, we can validate the 

algorithm by finding stimulus information not evinced by existing methods that average 

out fluctuations. We obtained intracellular recordings of fluctuating transmembrane 

current and potential in visual cortex (V1, L2/3) of mice in response to visual stimulation 

with drifting gratings. We estimated equations governing 3D trajectories produced by time-

delay dimensionality expansion of these recordings. Fine distinctions about orientations of 

drifting gratings existed in the equations governing trajectories from synaptic excitation, a 

finding undiscoverable using older methods. Broadly, governing equations contained more 

fine-grained information about size and contrast than firing rate substitutes and evinced 

distinct regimes of presynaptic population dynamics.  
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3.1 Introduction: 

Pyramidal neurons aggregate population synaptic transmissions and neuromodulatory 

information then pass limited but useful information to downstream neuronal populations 

via action potentials. Experimentally accessing such upstream information would allow 

researchers to analyze the behavior of an intrinsically unambiguous neuroanatomical 

subpopulation: the group of neurons that synapse onto the same neuron (or neurons) 

(Yaşar et al., 2016). Spurts of spiking among interacting populations of upstream neurons 

cause spurts of synaptic input. Synaptic inputs cause propagating pulses that interfere with 

each other and are further transformed by single-neuron biophysical effects, including 

membrane properties (London and Häusser, 2005; Yaşar et al., 2016; Wright et al., 2017). 

These actions throughout dendritic structures result in fluctuations of membrane current 

and membrane potential at the neuronal cell body, i.e., the soma. 

However, network state signatures can be uncovered with long enough recordings 

(Johnson et al., 2019). Thanks to the ongoing revolution in data analysis (Bzdok and Yeo, 

2017) and neuronal recording methods (Kim et al., 2017; Jouhanneau and Poulet, 2019) 

information focused on in-situ presynaptic populations would be uniquely insightful. 

Electrode array or imaging methods record an amalgam of neuron types and may span 

groups with different functions (e.g. tunings). Neuronal population dynamics are often 

characterized by systems of differential equations (Rabinovich et al., 2006; Pandarinath et 

al., 2018). Therefore, time series analysis and latent variable discovery may be the missing 
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elements needed for extracting detailed population information within single trials of 

single-neuron intracellular recordings.  

A dynamical systems perspective provides a hypothesis for how to extract population 

information from postsynaptic fluctuations. The attractor network paradigm (Amit and 

Amit, 1992; Eliasmith, 2005; Wu and Amari, 2005; Chambers and Rumpel, 2017), explains 

representation by stochastic spatiotemporal patterns of spiking through modelling neural 

networks as very high dimensional dynamical systems. This paradigm is novel in primary 

visual cortex (Goldberg et al., 2004; Miconi et al., 2016). Attractor network dynamics 

exhibit attracting sets representing brain operations, i.e. a stimulus evokes a perturbation 

causing network dynamics to either explore state space near a different fixed point, or to 

undergo a bifurcation. Although formal governing equations have fixed parameters, 

approximations and reductions have different parameters near different fixed points. Thus, 

stimuli should modulate the parameters of rudimentary equations fitted to brief snippets 

of evoked activity. This modulation is illustrated in Figure 3.1a by pendulum with physical 

properties which are like stimulus characteristics providing the context for a recording of 

neural activity. Upon change of coordinates, the pendulum's motion is a simple Lorenz 

system (Clerc et al., 2001) (Figure 3.1b) with coefficients modulated by physical properties 

(i.e. context).  

To test our dynamical systems insights we recorded membrane current and potential from 

single neurons in primary visual cortex of awake mice concurrent with visual stimulation 

by drifting gratings of varying orientation, size, and contrast (Figure 3.1c). We applied a 
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Whitney-Takens time-delay based dimensionality expansion (Lainscsek and Sejnowski, 

2015; Oprisan et al., 2015) to one-dimensional intracellular recordings. Thus obtaining 

moderate dimension neural trajectories that represented a projection of the putative high-

dimensional dynamical system onto this lower dimensional space. We then applied a model 

discovery algorithm (Brunton et al., 2016) (Figure 3.1d) modified to interpret the 

coefficients of differential equations as a basis for stimulus representation. We call the 

algorithm “dynamical discrimination”.  

We found that dimensionality expansion of our intracellular recordings followed by 

dynamical discrimination permited better than chance classification of small changes in 

orientation, size, and contrast of drifting gratings. Correct classification rates exceeded 

classifiers using the magnitude of transmembrane current and potential deflection (a firing 

rate substitute).  This is especially significant for grating orientation because neurons 

selectively fire for a more narrow range of orientations in V1 than in the thalamus which 

provides inputs to V1 (Seriès et al., 2004; Li et al., 2012; Sun et al., 2016), but deflection 

failed to reflect small changes in orientation.  In contrast, classification on summaries of 

trajectories failed because trajectory derivatives encoded such stimulus details.  

Ultimately, dynamical discrimination connects model discovery (Daniels and Nemenman, 

2015; Brunton et al., 2016) to latent variable discovery (Gallego et al., 2018; Pandarinath et 

al., 2018; Whiteway and Butts, 2019), and exemplifies machine learning to test scientific 

hypotheses (Bishop, 2013; Butner et al., 2019) because it is premised on an attractor 

network hypothesis. Thus, it enables new methods of quantifying attractor network 
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principles in the primary visual cortex (Goldberg et al., 2004; Miconi et al., 2016) and 

single-neuron intracellular recordings.  

   

Figure 3.1 | The context of a dynamical trajectory is represented in governing equation parameters. a, A 
pendulum governed by Lorenz equations after changing variables from spherical coordinates (θ, ϕ, r) to 
abstract coordinates (X, Y, Z) (Clerc et al., 2001). Our interpretation of “context” is illustrated by the 
parameters: constant torque τ, bob mass M, rod length L, Stoke’s Law coefficient λ, and friction μ. b, A 
chaotic Lorenz attractor (σ=10, β=8/3, ρ=28. c, An illustration of our data source: intracellular recordings 
from single neurons in mouse V1. The context of recorded dynamics is influenced by visual stimulation. We 
have three stimulus categories: eight drifting grating orientations (top), six logarithmically spaced sizes 
(center), and six logarithmic contrast levels (bottom). d, We identify context through modified Sparse 
Identification of Nonlinear Dynamics (SINDy). We illustrate a context modulated sparse dynamical systems 
coefficient matrix, Ξ, with the Lorenz system (see a). V is a time-delay embedding of a single dynamical 
variable (e.g. membrane potential). Θ contains all polynomial combinations of V up to cubic terms. dV is a 
derivative estimate. Ξ, is learned through linear regression to regress Θ onto dV.  Ξ represents our data 
compactly enough to train classifiers to predict context (e.g. stimulus) with few examples. A genetic 
algorithm finds Ξ by picking different sets of nonzero elements at each generation. The best set of nonzero 
elements is chosen based on whether Ξ leads either to the best stimulus classification performance or best 
trajectory reconstruction while maintaining sparseness. 

3.2 Methods and Materials 

https://paperpile.com/c/z1djYk/UHTmu+bVvFk
https://paperpile.com/c/z1djYk/naigH
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The experimental data was originally gathered to support another publication (Adesnik, 

2017). The methods are covered there and relevant details are repeated here (Harriman 

and Patel, 2014).  

All procedures were approved by the University of California, Berkeley ACUC. Wild-type 

(C57;B6 x ICR white), emx1-IRES-Cre, and SOM-IRES-Cre mice were used. Mice of both 

sexes were used equally, and no differences were observed between sexes. For in vivo 

recordings mice were 5-14 weeks old. 

3.2.1 Animals: Surgery and Electrophysiological Recording 

Mice were headplated under isoflurane (1.5%–2%) anesthesia with a small stainless steel 

plate, attached to the skull with Metabond. The skull was protected with cyanoacrylate glue 

and dental cement (Orthojet). 1-7 days post surgery, Mice were habituated to run freely on 

a small, 6”diameter rotating disc during head fixation. On the day of surgery mice were 

anesthetized with 1.5%–2% iso-flurane and a small craniotomy was made over V1 by 

removing the dental cement and slowly thinning the skull until it was transparent with a 

0.25 mm carbide burr. A small stainless steel needle (27G) was used to open a hole 150-

500 um in diameter over V1 with no or minimal bleeding. The dura was always left intact. 

The craniotomy was covered with sterile saline and the animal was allowed to recover 

under fixation for 15-30 min prior to whole-cell recording. Animals typically began running 

on the treadmill immediately upon arousal, and either continuously or intermittently 

thereafter. Under these experimental conditions mouse move their eyes only infrequently, 

https://paperpile.com/c/z1djYk/Q4KSn
https://paperpile.com/c/z1djYk/Q4KSn
https://paperpile.com/c/z1djYk/Pu107
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and most ocular deviations are too small to significantly impact neuronal responses 

(Adesnik et al., 2012), and the pupil was not tracked. 

3.2.2 Electrophysiology 

Prior to intracellular experiments, a patch pipette filled with ACSF (in mM: NaCl 119, KCl 

2.5, MgSO4 1.3, NaH2PO4 1.3, glucose 20, NaHCO3 26, CaCl2 2.5) was lowered slowly into 

the L2/3 under visual guidance (Leica MZ6 stereomicroscope). Using multiunit activity 

and the LFP as a guide, the visual receptive field of the corresponding location for 

subsequent whole cell recording was mapped via a hand-controlled small circle (5 

degrees) of changing contrast on the visual stimulus monitor (more details below). This 

electrode was then removed, and patch pipettes were then inserted in same manner for 

intracellular recording containing: CsMeSO4 (for voltage clamp) or KGluconate (for current 

clamp) 135 mM, NaCl 8 mM, HEPES 10 mM, Na3GTP 0.3 mM, MgATP 4 mM, EGTA 0.3 mM, 

QX-314-Cl 5 mM (voltage clamp only), TEA-Cl 5mM (voltage clamp only). Although the 

cells were patched with the blind approach, the conditions used have been reported to 

strongly bias recording to regular-spiking putative pyramidal cells (Liu et al., 2009). 

Nevertheless, the data reported here is likely to come from a mix of cell types, dominated 

nevertheless by excitatory neurons, which make up the majority of L2/3 cells. 

Under these conditions, in Vclamp, the mean series resistance, prior to any compensation, 

was 18 ± 1 MΩ across the recording sessions, and fairly stable (Adesnik, 2017). It is now 

well established that locomotion and/or brain state influence spontaneous activity and 

sensory responses in V1 (Niell and Stryker, 2008; Ayaz et al., 2013; Reimer et al., 2014; 

https://paperpile.com/c/z1djYk/x49ay
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https://paperpile.com/c/z1djYk/Rx1DJ+hKs2b+bH5bY+wPI0Q
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Vinck et al., 2015), although the exact mechanisms underlying these changes remain a 

matter of debate (Polack et al., 2013; Fu et al., 2014; Pakan et al., 2016). Consistent with 

prior findings, during locomotion (Bennett et al., 2013), visually evoked E and I were 

significantly increased (E: not running: 70 ± 6 pC/s, running: 81 ± 8 pC/s, n = 39 cells, p < 

0.005; I: not running: 114 ± 12 pC/s, running: 159 ± 20 pC/s, n = 39 cells, p < 0 0.005, 

Wilcoxon sign rank test (Adesnik, 2017)). Conversely, spontaneous excitation and 

inhibition, as well as the mean input conductance in the absence of a stimulus showed no 

significant change (E: p = 0.9; I: p = 0.4, input resistance: p = 0.93, n = 39 cells, Wilcoxon 

sign rank test (Adesnik, 2017)). 

Both extracellular and intracellular experiments employed an Axopatch 200B amplifier. All 

data were acquired with custom software written in MATLAB using a National Instruments 

PCIe-6353 card. Glass pipettes (Sutter instruments) containing either a potassium based 

internal (for measurements of membrane potential and spiking) or cesium (with added 

QX-314-Cl, and tetraethy-lammoniaum-Cl) for voltage clamp recording, were used. Pipettes 

were pulled on a Sutter P1000 puller in a two stage pull to a long taper pipette of a 

resistance between 3-5 MOhm. To insert the electrode into the small craniotomy, the ACSF 

on the skull was removed and the craniotomy briefly dried with compressed air. The 

electrode was mounted on a Sutter MP285 manipulator, lowered until it nearly reached the 

brain surface, then the chamber formed by the headplate and cement was re-filled with 

ACSF, all under visual guidance. The pipette resistance was checked via an oscilloscope and 

a constant 5 mV voltage step in voltage clamp. High positive pressure (150 mbar) was 

applied to the pipette, and it was lowered until a brief and rapid increase in pipette 

https://paperpile.com/c/z1djYk/Rx1DJ+hKs2b+bH5bY+wPI0Q
https://paperpile.com/c/z1djYk/qN14i+MReBn+m2bIF
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resistance was observed, indicating contact with the dura. The pipette was zeroed to obtain 

an accurate measurement of recording depth, and then the pipette was advanced quickly 

through dura, and only pipettes that quickly returned to their baseline resistance were 

advanced further, otherwise they were exchanged for a fresh pipette and the process was 

repeated. Once inside the brain the pressure was quickly lowered to 10-30 mBar to search 

for L2/3 neurons via abrupt, ‘bounce’ like changes in pipette resistance indicating contact 

with a plasma membrane, using pulsatile steps of the manipulator (1-2 microns). Upon 

apparent contact, pipette pressure was released, and slight positive pressure was used to 

obtain a gigaohm seal. Pipette capacitance was then neutralized and the membrane 

ruptured by brief suction pulses. Upon rupture the whole cell access was optimized by 

either slow negative or (more typically) positive pressure and locked off. In the first 2-4 

min the receptive field of the cell (either via membrane potential, spiking, or excitatory 

current, command potential =-70 mV) was remapped in the same manner as above, to 

center the stimulus on the recorded cell’s receptive field (almost always aligned with the 

previous measurement from extracellular recording). The orientation of the stimulus was 

also optimized for each cell. After spontaneous and evoked responses stabilized (typically 

2-4 min) experiments were commenced. Membrane potential was obtained in voltage 

following mode (current clamp) with no current injection. For voltage clamped cells, cells 

were clamped either at -70 mV to measure synaptic excitation (approximate reversal 

potential for inhibition), or at +10 mV to measure synaptic inhibition (approximate 

reversal potential for excitation), uncorrected for the junction potential. Series resistance 

was monitored on every trial with a negative voltage step. Cells were only included if their 
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series resistance stayed within 20% of their initial value, passively or by adjusting pipette 

pressure. 

3.2.3 Visual Stimulation 

Visual stimuli were generated with Psychophysics toolbox (Brainard, 1997) using custom 

software in MATLAB (MathWorks) and presented on a gamma corrected 23-inch Eizo 

FORIS FS2333 LCD display with a 60-Hz refresh rate. Stimuli consisted of drifting square 

wave gratings with contrast, size, or orientation varied, while all other parameters 

remained fixed, at 0.04 cycles per degree and 2-2.5 cycles per second. In experiments with 

varying contrast, size was fixed at 12 degrees, and the orientation fixed at the preferred 

orientation of the cell (measured via spike rate, Vm depolarization, or mean synaptic 

excitation). In 7/12 cells contrast was varied in six log increments from 1%–100%, and in 

5/12 cells from 10%–100%. In experiments with varying size, contrast was set at 100% at 

the orientation set as above. The grating drifted immediately upon display, and lasted 0.6-

1.5 s. Inter-trial-intervals (gray screen) lasted from 1.5-3 s. 

3.2.4 Tests and measures 

For making claims about whether one algorithm performed significantly better than 

another set we used the Wilcoxon signed-rank (Wilcoxon, 1992) method implemented 

with MATLAB. This tests whether the median difference between two matched sets is 

significant. When comparing whether synaptic excitation or inhibition performed better for 

the same algorithm while limiting the comparison to just one stimulus variable 

https://paperpile.com/c/z1djYk/0DR4U
https://paperpile.com/c/z1djYk/P1M8I
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(orientation, size, contrast) we used the Wilcoxon signed-rank test because each cell was 

recorded from in both modes. If we were making the same comparison across multiple 

stimulus variables, or comparing membrane potential to other recording modes we used 

the Wilcoxon rank-sum (Wilcoxon, 1992) test because the comparison includes different 

sets of cells.  We used exclusively one-tailed tests chosen based on the difference of 

medians. The significance level was kept at 0.05 for figure annotations. There were 10 data 

categories often including data from the same cell but with a different recording mode 

(voltage clamp at either the excitatory or inhibitory reversal potential). We reinforced 

comparisons across experiments (algorithm versions) by pooling data and assessing the 

discriminating statistic over all. Thus we were interested in the comparisonwise error rate 

and did not need to adjust for multiple comparisons because we did not claim that one 

algorithm was better than another on the basis of an individual category (Bender and 

Lange, 2001). We highlighted individual comparisons on categories across and within 

algorithm versions to make specific claims about those categories. The notion of 

significance being open to interpretation (Bender and Lange, 2001), we elected to simply 

publish the P-value as well as the number of categories and let the reader make the final 

judgment. The effect size is the simple difference formula (Kerby, 2014), chosen because it 

is a normalized measure weighting the median difference between two matched sets 

against the size and frequency of cases that contradict the median difference and helps 

evaluate the meaningfulness of a judgment about significance. 

We used two measures of performance, the fraction of trials for which the co-occurring 

stimulus was correctly predicted, the correct classification rate “CCR” and also the F1 score 

https://paperpile.com/c/z1djYk/P1M8I
https://paperpile.com/c/z1djYk/2uRIN
https://paperpile.com/c/z1djYk/2uRIN
https://paperpile.com/c/z1djYk/2uRIN
https://paperpile.com/c/z1djYk/cx2RJ


110 

(Sokolova and Lapalme, 2009). The correct classification rate is the fraction of data points 

that were assigned the correct label. In our case labels were the ordinal rank, or index, of a 

drifting grating property as the stimulus label. The F1 score is widely used throughout 

machine learning. It applies to binary classification and is useful in cases with skewed class 

sizes. This makes it a useful measure of discriminability for individual stimuli. The F1 score 

is defined with respect to a specific stimulus label.  F1=2⋅TP/ (2⋅TP+FP+FN) where Tp are 

the number of true positives regarding that stimulus label, FP are the false positives, and FN 

are the false negatives. This value ranges between zero and one. We used the average F1 

score across all stimulus labels as the objective function error measure because it penalizes 

cases where the classifier learns to predict one or two stimuli correctly at the expense of 

predicting others. The CCR is not resilient to this error but is familiar to a broader 

audience.  

3.2.5 Characterizing Recorded Responses with Deflection and Definition of 

Epoch 

 All experimental signals were recorded at 20 kHz and downsampled to 1 kHz by means of 

20 ms averaging. When removing spikes from membrane potential recordings the 

downsampled signals were further processed with a median filter with a five millisecond 

window. Simulated data was produced at 10 kHz and downsampled to 1 kHz by 10 ms 

averaging.  

We calculated deflection by obtaining a baseline and subtracting that from the average 

signal during an epoch of choice (Figure 3.2a). The baseline was found for individual trials 

https://paperpile.com/c/z1djYk/ZGfv3
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by identifying a period of minimum variance that was 100 ms long and had a start time 

between 200 and about 100 ms before the onset of stimulus response. No baseline ever 

included a portion of a stimulus response in its estimation. The exact timing that the 

monitor displayed the stimulus was the “on” timing in Fig 2a. It was not recorded, instead 

we made a conservative estimate to mark a time before any stimulus response was likely to 

reach V1 given retina to V1 latencies (see below). For the purpose of stimulus 

discrimination we tested different lengths and positions for interval used to define 

deflection. We used a 166 ms window which contained the peak in average response 

during the epoch of choice (see below) and began either 66 ms before the peak, or halfway 

between the peak and the epoch start time if the peak was within 66 ms of the epoch start 

time. The deflection for each trial was the average value of the baseline subtracted from the 

average value within this window. This formulation gave the highest ability to classify 

stimulus by using the deflection. Therefore this was the fairest definition of deflection to 

use for comparison to dynamical discrimination.  In previous work with this same data, the 

term “response” was used (Adesnik, 2017). The key difference being the length and 

location of the second window. The researchers integrated the difference from baseline 

without dividing by the length (i.e. it was not a mathematical average but proportional). 

This was tested and compared against our use of deflection. The absolute value of 

deflection was used in analysis.  

We identified the timing of stimulus onset as follows. For each cell and type of recording 

(excitatory current, inhibitory current, and membrane potential) we averaged all 

recordings and applied a 50 ms running average to the mean recording. We then identified 

https://paperpile.com/c/z1djYk/Q4KSn
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the largest extrema in the first half of the mean recording. The mean recording was then 

binned by 50 ms intervals and a first order derivative estimate computed. The largest 

derivative immediately prior to the extrema denoted the bin in which the response began 

on average. Because it takes 70 -150 ms for activity to propagate from the retina to V1 L2/3 

neurons (Gao et al., 2010) we subtracted 100 ms and rounded to the nearest half bin-

width, 25 ms. This was finally defined as the “on” timing and occurs well before stimulus 

response. Therefore we captured the full response even allowing for variability in time of 

onset. The length of the stimulus presentation also varied, from 500 ms  to 1000 ms. So the 

“off” timing also varied. 

The response to stimuli is commonly categorized into three distinct epochs with much 

study and debate about their role in sensory processing (Phillips and Singer, 1974; Singer 

and Phillips, 1974; Duysens et al., 1996; Müller et al., 2001; Mazor and Laurent, 2005; 

Maravall et al., 2007; Gutnisky and Dragoi, 2008; Liang et al., 2008; Berens et al., 2012; 

Solomon and Kohn, 2014; Clawson et al., 2017; Bondanelli and Ostojic, 2018): the “on 

response” coinciding with the activation of a stimulus, the “steady-state” response which 

captures what follows the on response while the stimulus is still active, and the “off 

response” which is a widely observed perturbation or lingering effect after the stimulus has 

ceased. We did not know which epoch would allow the best discrimination. Some evidence 

pointed toward fast attractor dynamics in the on response (Berens et al., 2012; Miconi et 

al., 2016), but we treated stimulus response epoch as a hyperparameter and captured 

differences in the performance of our dynamical discrimination algorithm (see appendix 

A.2).  Referencing both the on and off timings as t0 and tf respectively we defined the  “on 

https://paperpile.com/c/z1djYk/RM2Ee
https://paperpile.com/c/z1djYk/yEuh1+6ctCA+f44Jz+5fkXc+77lPe+lSMRr+IFCjM+AK5lH+XQtWu+2JOVm+rxsCJ+MZFxm
https://paperpile.com/c/z1djYk/yEuh1+6ctCA+f44Jz+5fkXc+77lPe+lSMRr+IFCjM+AK5lH+XQtWu+2JOVm+rxsCJ+MZFxm
https://paperpile.com/c/z1djYk/yEuh1+6ctCA+f44Jz+5fkXc+77lPe+lSMRr+IFCjM+AK5lH+XQtWu+2JOVm+rxsCJ+MZFxm
https://paperpile.com/c/z1djYk/yEuh1+6ctCA+f44Jz+5fkXc+77lPe+lSMRr+IFCjM+AK5lH+XQtWu+2JOVm+rxsCJ+MZFxm
https://paperpile.com/c/z1djYk/XQtWu+UHTmu
https://paperpile.com/c/z1djYk/XQtWu+UHTmu
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response” as [t0 ,t0+250 ms], the “full response” as [t0 ,tf +250 ms], and the “off response” 

as [tf  - 70 ms,tf + 250 ms]. The discriminability of trajectories from these three epochs 

have some scientific merit in their own right and are reported in the appendix A.2. These 

choices allow us to examine performance under different circumstances and thereby 

optimize classification performance by using domain specific insights.  

3.2.6 Single Neuron Modeling 

We used models of a single-compartment Hodgkin-Huxely type neuron and a 

morphologically complex pyramidal neuron implemented with the NEURON environment. 

The morphologically complex pyramidal neuron was developed for other research (Palmer 

and Stuart, 2009) and extensively explained. It is available for general use from model dB 

(Anon, n.d.). It was modified to allow experimental manipulations of the number of 

synaptic spines distributed across the various compartments and having one synapses for 

each spine and to allow each synapse to be driven with independent signals. Consult our 

model data generation scripts for model form and parameter details. 

For both neuron types we rescaled and resampled the X dimension of the Lorenz system. 

The Lorenz system (Lorenz, 1963): 

𝑑𝑋

𝑑𝑡
= 𝜎(𝑌 − 𝑋)    

𝑑𝑌

𝑑𝑡
= 𝑋 (𝜌 − 𝑍) − 𝑌         (3.1) 

𝑑𝑍

𝑑𝑡
= 𝑋𝑌 − 𝛽𝑍     

https://paperpile.com/c/z1djYk/QpW1r
https://paperpile.com/c/z1djYk/QpW1r
https://paperpile.com/c/z1djYk/YAlQU
https://paperpile.com/c/z1djYk/ooPRe
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was integrated using MATLAB’s ode45 for 10K time steps with a nominal step size of 

dt=10-4, initial conditions were randomly chosen and uniformly distributed between [-

16,16] for the X and Y dimensions, and [-56,56] for Z. After generating data the X dimension 

was kept and the other dimensions were not. The Hodgkin Huxley equations act as a low-

pass filter and our single-compartment model distorted input current oscillations above 

333 Hz. Therefore if the integral of the squared absolute value of a fast-fourier transform of 

the signal from 0 to 300 Hz accounted for less than 90% of the total integral then the trial 

was resampled 𝑋′ (𝑡) = 𝑋 (𝑡/𝜏). Resampling was done by regenerating new Lorenz data 

with a false time step dt’=dt/τ, where τ (in units of 10-4 s) was chosen such that 90% of the 

signal power was in Fourier modes below 300 Hz. The process was repeated until a set of 

initial conditions and τ were found that satisfy our acceptance criteria. Let 𝒳  be the 

Fourier transform of X in the frequency domain, then: 

𝜏 =
(0.9∫ |𝒳(𝑓)|

2 
𝑑𝑓

∞
0 ) 

(∫ |𝒳(𝑓)|2𝑑𝑓
300
0 )

.   (3.2) 

We treat the ρ parameter as a latent variable we were attempting to identify and vary it 

between the integers [20,40]. This lets us test whether we can predict fine changes in a 

dynamical parameter (ρ) even after transforming the dynamics into the membrane 

potential of two classes of model neuron. Our method of attractor reconstruction, delay 

embedding, is robust to arbitrary projections of a dynamical system onto one dimension. A 

weighted adjacency matrix typical of network model is an example of such a projection, 

except for the additional transformation from a continuous time series to a discrete point 
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process which is often used. Nonetheless it has been shown that a spiking network can 

encode Lorenz attractor dynamics which can then be viewed by projecting high-

dimensional population spiking onto a lower dimensional state-space (Eliasmith, 2005). 

Therefore it was sufficient to project the Lorenz dynamics onto a single dimension and 

stochastically encode that dimension with discrete events if we want to study the 

representation of network attractor dynamics by single neuron inputs. We did this while 

taking the ρ parameter through values on either side of hopf bifurcation at 𝜌 =
𝜎(𝜎+𝛽+3)

(𝜎−𝛽−1)
≈

24.7and into regimes where initial conditions often result in chaotic dynamics. 

For the single-compartment neuron we rescaled X’ (t)  to be within a realistic range for 

current units [-0.15 nA, 0.15 nA], 𝐼 (𝑡) = 𝛼1(𝑋′ (𝑡) − 𝜁1). The scaling factors ζ1 and α1 were 

fine tuned by a loop which adjusts them to produce a desired mean spike rate for a group of 

210 trials (21 values of ρ each with 10 initial conditions unique to each value of ρ). This 

produced a range of spiking values and was repeated until there were at least three trials 

for each ρ value for each desired number of spikes [0,20] per 1 second trial. This gave us 

multiple trials for each value of ρ at each level of spiking we were interested in testing. This 

method for generating the desired amount of spiking was inexact but preferable to search 

algorithms that precisely controlled the spiking in every trial. These algorithms took a long 

time to find solutions and often found undesirable solutions, such as scaling the inputted 

current to have a standard deviation near zero. Consult our model initialization scripts for 

model details.  

https://paperpile.com/c/z1djYk/GCJd3
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For the complex morphological neuron we rescaled  X’ (t) to be consistent with an 

instantaneous event probability for an inhomogeneous Poisson process:𝑃 (𝑡) = 𝛼2(𝑋′ (𝑡) −

𝜁2). The factors ζ2 and α2 were further fine tuned the minimum and maximum value to get a 

desired mean spike rate for a group of 210 trials, as with the single-compartment model. 

Initially we set the range and maximum value to be 3⨉10-3. We vary the number of 

synapses between 80 and 300.  For each synapse the probability of firing at any time was 

𝑃 (𝑡). Thus larger 𝑃 (𝑡) values resulted in greater synchronicity among synaptic events. 

Synaptic transmission was modeled with NEURON’s Exp2Syn function which is a two-state 

synapse with a rise time of 0.2 ms and a fall time of 1 ms. The peak synaptic conductance, 

gmax (units of μS) was a function of the number of synapses Nsyn such that if K% of synapses 

were active the total peak conductance was independent of Nsyn: gmax (Nsyn)=g0 (80/Nsyn) 

where g0=5⨉10-4  μS.    

We employ modeling to test the effect that realistic sources of error may have on the ability 

to infer the dynamics which underlie neural inputs. The two key variables that we 

controlled for were spiking and synapse numerosity in an extended multi-compartment 

model. To that end we defined 15 logarithmically increasing bins to contain model trials 

with similar levels of spiking. These bins started with [0,1), ended with the 14th bin [39,50) 

and the 15th bin [50,∞). Since the single compartment neuron did not feature synapses 

these bins specified all control categories. Not all bins were populated. Each bin contained 

multiple trials for each value of ρ . If there were fewer than three trials for a value of ρ then 

those trials were ignored and not analyzed. If there were fewer than 45 total trials in a 

spiking rate bin after removal of underrepresented ρ values, that bin was ignored and none 
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of the trials in that bin were analyzed. As a result there were 12 spiking categories that 

were analyzed for single-compartment neuron data. The three unfilled bins were for trials 

with more than 20 spikes, which was our minimum standard when generating data. The 

morphologically complex multi-compartment model neuron has two variables to control 

for: spiking and synapse numerosity. For each spiking bin we defined a number of synapse 

bins to categorize trials in two dimensions (spiking and synapse numerosity). There were 

more model trials with low numbers of spiking due to the inexact way we generated the 

desired amount of spiking (by the average spiking rate of 210 trials). Because trials with a 

small amount of spiking were overrepresented it was advantageous to define more synapse 

bins for the spike bins containing fewer than five spikes per trial. Thus there were 19 

synapse bins for each of the first five spike bins going from 80 synapses to less than 125 in 

steps of 10, then 125 to 305 in steps of 15. There were 16 synapse bins for the remaining 

spike bins, going from 80 to 305 in steps of 15. Thus there were 255 possible bins and 83 

were accepted for analysis. Again each bin had to contain more than 45 total trials and each 

ρ value had to have more than two trials to be included. In the main text we plot a sampling 

of these categories, attempting to show how spiking impacts performance while keeping 

synapse numerosity approximately constant (Fig 5e). All the resampled Lorenz dynamics 

inputted to each cell were preserved without rescaling and analyzed together as one group.  

3.2.7 Dimensionality Expansion 

The version of time-delay embedding we perform is described in (Brunton et al., 2016, 

2017), a short summary follows. First we concatenated the epochs of interest from all 

recordings from the same cell to make a time series with length T. Next, we chose a delay 

https://paperpile.com/c/z1djYk/ek5Zb+Uwq1w
https://paperpile.com/c/z1djYk/ek5Zb+Uwq1w
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time below or at the approximate smallest relevant time-scale, dt, (1 ms in our case) and a 

number of times to repeat the delay Nd=100 such that the Ndth delay was longer than or at 

the largest relevant timescale (100 ms) . We then created a data matrix with Nd+1 rows, 

each of which were time shifted copies of the data with length T-dt⋅Nd  (called a Hankel 

matrix). Then we performed singular value decomposition on this Hankel matrix (we 

tested other dimensionality reduction algorithms).  The principal components were now 

the dimensionality expanded version of the data. Thus we simply over-expanded with time-

delays then used dimensionality reduction to go back down to moderate dimension. There 

was no clear cut off in the eigenspectra so we tested keeping between three and seven 

components by running each choice through the analysis program. We did not Z-score the 

rows of the Hankel matrix but did shift the trajectories resulting from dimensionality 

reduction such that the mean point of the entire set of trajectories was at the origin.  A 

delay embedding is guaranteed by the Whitney-Takens delay embedding theorem to be 

able to reconstruct a D dimensional state state space from a one-dimensional recording by 

taking no more than 2D+1 delays of the recording and plotting them against each other 

(Kostelich and Schreiber, 1993). We call this process “dimensionality expansion” to 

provide the intuition that if an analyst can do something after dimensionality reduction of 

high-dimensional data they can at least attempt it on one-dimensional data too.  The 

analyst would simply use SVD on any over-embedding such as a spectrogram or such as a 

Hankel matrix like we have demonstrated. 

3.2.8 Maximum Likelihood Estimation 

https://paperpile.com/c/z1djYk/rDJ0f
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It’s possible that dimensionality expansion alone can improve discriminability between 

stimulus responses without appeal to governing dynamics. This would work because 

different population responses were projected onto somatic responses in a way that 

overlaps. Hence deflection in the original time series confuses these factors but 

dimensionality expansion may re-separate them. We tested measures of deflection in each 

dimension of the expanded trajectories but this did not significantly improve classification. 

An alternative is to examine whether different trajectories prefer to spend time in different 

regions of phase space. We used the performance of a Maximum Likelihood Estimation 

based classifier to quantify this separation  (see appendix A.4).  

Since trajectories in three dimensions tended to form oscillations around a long axis, 

cylindrical coordinates (axial z, radial r, and angular θ) were a natural way to describe 

them. We partitioned axial and radial coordinates into discrete bins and ignored the 

angular coordinate then counted the number of time points that coincided with each bin. 

Thus each trajectory was described by a histogram of its axial cross-section. We collected 

the cross-section histograms associated with each stimulus, using 75% of the examples for 

each stimulus. Then we employed a two dimensional kernel smoothing density to get a two 

dimensional probability density map for each trajectory  Mt (z,r;i) where i is the trajectory 

index (Figure A.9a) and for each stimulus Ms (z,r;j) where j is the stimulus index (Figure 

A.9b). Each point (z, r) identifies an axial-radial bin and was assigned the probability that a 

trajectory time point selecting at random will be in its bin.  This gives a set of probability 

maps that show the probability for a trajectory to occupy a region of phase space (a cross-

section bin) dependent on each stimulus. Thus to test whether one of the 25% of 
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trajectories we held out coincided with the presentation of a particular stimulus we used 

the probability maps to calculate the joint probability of observing all the time points given 

that stimulus (treating each point as independent), 𝑃 (𝑖; 𝑗) = ∏ ∏ 𝑀𝑠(𝑧, 𝑟; 𝑗) ⋅ 𝑀𝑡(𝑧, 𝑟; 𝑖)𝑟𝑧 , 

for practical application we used the log likelihood 𝐿 (𝑖; 𝑗) = ∑ ∑ − (𝑙𝑜𝑔 (𝑀𝑠(𝑧, 𝑟; 𝑗)) +𝑟𝑧

𝑙𝑜𝑔 (𝑀𝑡(𝑧, 𝑟; 𝑖)))  The stimulus whose probability map yields the highest joint probability 

was the stimulus with the highest likelihood of co-occurring with the trajectory and thus 

was the classification, 𝐶𝑗 = argmax
𝑖

𝐿 (𝑖; 𝑗). By repeating this process 510 times with a 

different hold-out set each time we can gather sufficient statistics to gauge whether this 

prediction method was effective.  

A detail essential for reproducibility is that the trajectories co-occurring with each stimulus 

show some displacement between their central axes and central points. Thus in order to 

get joint probabilities one must subtract the central point of each stimulus-associated 

trajectory set before computing Ms (z,r;j).  

3.2.9 Reliability Tuning Curves  

A tuning curve is defined as mean deflection in response to stimulus. Therefore we 

recorded the average evoked deflection for each stimulus, Di, where i is the stimulus index 

out of N stimuli. For a single cell and intracellular recording method, the stimulus that 

evokes the largest deflections on average is the most preferred stimulus, and the one that 

evokes the smallest deflection is the least preferred stimulus. The least preferred stimulus 

is not necessarily the stimulus that is least similar to the preferred stimulus (i.e. not the 
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anti preferred stimuli). Since stimuli were continuously and monotonically varied along 

one parameter (orientation, contrast, size) we used the ordinal number difference between 

two stimuli as a similarity metric. Stimuli were indexed by an ordered ranking. Thus stimuli 

numbers 1 and 6 would be the smallest and largest drifting grating if size were varied and 

they would also be maximally dissimilar, while 5 and 6 would be the largest and second 

largest and maximally similar. We defined reliability as the mean deflection in response to 

the same stimulus divided by the standard deviation of deflections in response to that same 

stimulus, Ri where i is the stimulus index out of N stimuli.  In order to measure the 

correlation between reliability and similarity to either the most or least preferred stimulus 

we defined a least/most similarity function, Si as follows. The ordinal values of the most 

and least preferred stimuli were recorded. For all stimuli, the absolute value of the ordinal 

difference between themselves and the least preferred stimulus was noted, then the same 

was noted for the most preferred stimulus. The smallest of these two absolute ordinal 

differences was kept. Thus for each stimulus we have recorded the absolute ordinal 

difference between itself and either the most or least preferred stimulus (depending on 

which difference was smaller). We then divided by the number of distinct stimuli (either 

six for size or contrast, or eight for orientation). The least/most similarity function was 

then: 𝑆𝑖 = 𝑚𝑖𝑛 ({|𝑖 − argmin
0<𝑗≤𝑁

𝐷𝑗|  , |𝑖 − argmax
0<𝑗≤𝑁

𝐷𝑗|}) /𝑁 .  We also have the reliability 

measure as defined above. We measured the Pearson Correlation between reliability, Ri 

and this least/most similarity score Si. Because this measure was applied individually to 

each cell it quantifies whether the U-shaped trend in Figure 3.4b was a property of cells 

individually. If Di tended to be proportional to Ri for some cells and inversely proportional 
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for other cells then Figure 3.4b may still appear U-shaped but there would be no 

correlation between Ri and Si. 

We also explored possible causes for changes in reliability. These include the coefficient of 

variation of a response and the mean of normalized residuals. The mean of normalized 

residual is a measure of noise. To calculate it, we first calculated the average response of a 

stimulus to all repetitions of a stimulus. We subtracted this mean response from a single 

trial, the result was a residual time series. To normalize the residual time series, we divided 

by the mean response time series from the first step. Therefore each point in the new time 

series was the signed fractional error between the single trial and the mean response. The 

average value of this time series was defined as the mean normalized residual. We also 

examined a variant where we computed the absolute value of the normalized residual time 

series before computing the average. For any given recording we calculated its normalized 

residual by comparing to the other responses to the same stimuli. We compared noise with 

fluctuation size. We defined fluctuation size as the coefficient of variation, which is the 

standard deviation of a timeseries divided by the mean value of the same time series. Thus 

both measures control for average deflection. These measures let us test whether 

decreased noise or decreased fluctuation size was responsible for increased reliability. 

3.2.10 Genetic Modification of SINDy 

We used the SINDy algorithm because it is well supported and amenable to modification 

(Brunton et al., 2016). In short, we pre-computed the derivatives, dV, of a singular value 

decomposition base time-delay embedding (Brunton et al., 2016, 2017) (dimensionality 

https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/Uwq1w+ek5Zb
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expansion),V, of a single time-series. We then pre-computed many polynomial 

combinations of the original data (including a constant term) Θ. A dynamical system was 

therefore captured by a matrix Ξ projecting the polynomial combinations onto the 

derivatives dV=ΞTΘ .The critical insight is to set most of the elements of Ξ to zero so that 

the dynamical system is readable, tractable, and generalizes to the rest of state-space. 

Originally (Brunton et al., 2016), elements of Ξ were chosen to be non-zero by identifying 

thresholds through hand tweaking such that only Ξ elements exceeding the thresholds 

were included in the fit. Instead we used a genetic algorithm to automatically decide which 

elements to set to zero without a threshold. For simplicity we call this “genetic SINDy”.  

Note that if one specifies the locations but not the values of nonzero elements with a 

binary-valued bitmask Ξ matrix, BΞ, then a BΞ is a template which can generate diverse 

kinds of Ξ matrices because fitting the coefficients specified by BΞ to two different 

trajectories would produce two different Ξ.  The original work showed that using time-

delay reconstructions of undersampled systems yields Ξ matrices that are characteristically 

non-sparse in the last dimension (Brunton et al., 2016). The original work also noted that it 

requires long periods of time in diverse situations to capture the best invariant models of 

the system. This is a characteristic we exploited to get local approximations instead of the 

invariant models the original work sought to obtain.  

In order to avoid numerical error one must normalize Θ. A key difference is that the 

original paper (Brunton et al., 2016) divided by the L1 norm but we had better results by Z-

scoring (Hastie et al., 2009a) each variable (row of Θ) and always including a constant term 

in Ξ. This forced information about the average variable value into the constant term, 

making it available for the classifier in later stages. We tested the inclusion of second order 

https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/1NJp2
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derivatives, d2V/dt2, and inclusion of more dimensions, as well as numerous other 

variations but settled on three dimensions and first order derivatives, dV/dt as giving the 

highest utility with the least complexity and compute time (see appendix A.2). Another 

departure from the original implementation of SINDy (Brunton et al., 2016) was the 

addition of a single three time-step smoothing window after estimating derivatives using 

the fourth order method.  We did not rigorously compare the inclusion of non-polynomial 

forms as performance was good enough that we could test our hypothesis without the 

additional complexity. 

A genetic algorithm must be initialized with a very diverse population of individual 

“guesses” at a  solution to the problem. In our case an individual solution was a bitmask 

matrix, BΞ, the same size as Ξ, but consisting only of zeros and ones. Ones marked the 

location of Ξ elements to keep as non-zero when creating an ODE model in later steps. To 

get an initial population we used an unsupervised threshold method to decide which 

elements of BΞ were one and which were zero (included with our software). We treated 

each trajectory individually and used bisection search to find the largest threshold (for 

each column of BΞ) that resulted in at least one non-zero element. This gave a maximally 

sparse representation and largely reproduced the findings reported elsewhere (Brunton et 

al., 2016) when used on a fully sampled Lorenz system. The result was a set of unique BΞ 

that was no larger than the number of trajectories.  

We used a “mating” (crossover) process to create 300 unique individuals. For each BΞ in 

this set we obtained Ξ matrices for each trajectory. Twenty five percent of the trajectories 

https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/ek5Zb
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were held out for testing, the remainder were used to find the coefficients of the system of 

equations. After testing fitness the best 45 BΞ were “mated” and “mutated” to generate 300 

new forms of the equation. A “sexual genetic algorithm” requires a method for combining 

possible solutions, a “mating” process. This involves three steps, selecting individuals to 

combine, deciding which attributes to keep in the “offspring”, and a way to mutate the 

offspring. We kept the best 45 unique BΞ and ranked their performance (worst is 1 best is 

45). We then used 255 tournaments to select parents, mate them, and produce 255 new BΞ 

matrices. One parent was selected by cyclically stepping by one through the best 45, the 

second parent was selected at random with a probability in proportion to its rank. A parent 

was not allowed to mate with itself. The nonzero elements of children were selected by 

keeping elements which were nonzero in both parents and with probability one-half if it 

was nonzero in only one parent. Finally, mutation was implemented by flipping one or 

more randomly selected elements to its opposite value. Each element of the child matrix 

was subject to mutation with a specific probability called the “mutation rate”. The mutation 

rate was 0.15 to produce the initial population. It was set to 0.05 for the first generation 

and was periodically halved until it was set to zero for the last ten percent of generations. 

The number of halvings depends on the initial mutation rate, 𝑟𝑚𝑢𝑡,and the number of 

elements in the Ξ matrix, 𝑁𝛯, according to 𝑁𝑚𝑢𝑡 = ⌈𝑙𝑜𝑔
2
(𝑟𝑚𝑢𝑡 ⋅ 𝑁𝛯) + 1⌉and was not 

allowed to be smaller than 2.  We tested other methods for mating on small fractions of 

original and simulated data, including: transferring columns or rows to the children intact, 

selecting half of the elements from each parent (either at random or in a structured way), 

or simply keeping all elements which occur in any parent. The choice of mutation rate and 
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halving periods, as well as mate selection, mutation methods, the population size, and 

fraction to keep were selected by hand tweaking on fractions of data and simulated data.  

The number of generations to run the algorithm increased by 100 for every three columns 

of the Ξ matrix (which may include second derivatives as well as higher dimensions). If the 

errors of the 45 BΞ matrices were identical or within one one-thousandth of the range of 

errors in the initial population then the algorithm was terminated early. This never 

happened when the objective function for the algorithm was classification ability and 

happened only rarely when the objective function was goodness of fit. The number of 

generations was tested by hand to be long enough to ensure convergence but not long 

enough to produce over fitting. 

In our case different BΞ represented different possible solutions and we had three 

objectives to consider. We desired a Ξ matrix which can be fed into a classifier and perform 

well, we desired that this Ξ matrix be sparse (to avoid overfitting and improve 

interpretability) and last we desired that the Ξ matrix describes a good model of the 

dynamics. The objective function for classification ability was noisy because the hold-out 

set was small for the generation updates, (see below), therefore we retested the best 45 at 

each generation. 

3.2.11 Classifier Objective Function 

An objective function accepts a BΞ matrix and outputs a scalar value which is lower for BΞ 

that are better at satisfying some objective. For predicting the stimulus based on the 
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coefficients of a fitted ODE the genetic algorithm objective function started by fitting Ξ 

matrices to each trajectory using only the coefficients specified in the BΞ matrix it accepted 

as input. Next, For each stimulus, 25% of fitted Ξ matrices were held out for cross 

validation. A random forest (Breiman, 2001; Sokolova and Lapalme, 2009) was then 

trained on the remainder (the 75%) and tested on the cross validation set (the 25%). This 

was repeated 10 times, selecting a different twenty five percent each time (this is 

sometimes called hold-k cross validation with bootstrapping (Arlot and Celisse, 2010)). 

The classification performance was the average F1-score for all stimulus labels (Sokolova 

and Lapalme, 2009). We subtracted this value from one such that good performance was a 

low number that still ranges between zero and one, and constituted 80% of the objective 

function value. The other 20% of the fitness value was a regularization term: the fraction of 

possible terms which were nonzero (i.e. sparseness).  

3.2.12 Goodness of Fit Objective Function 

For finding a set of coefficients (specified with BΞ) that allowed the highest quality ODE 

model, the objective function started by fitting Ξ matrices to each trajectory using only the 

coefficients specified in the BΞ matrix it accepted as input. Next it used all the original 

points on the trajectory as initial conditions to integrate the fitted ODE four timesteps. 

Goodness of fit was 1-R2 (the coefficient of determination) between the derivatives 

predicted by integrating the ODE and the derivatives of the data shifted by five timesteps. A 

sparseness regularizer was used such that goodness of fit was 80% of the objective 

function value and sparseness was 20%. 

https://paperpile.com/c/z1djYk/ZGfv3+iHgZs
https://paperpile.com/c/z1djYk/G9d7C
https://paperpile.com/c/z1djYk/ZGfv3
https://paperpile.com/c/z1djYk/ZGfv3
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3.2.13 Ensemble Classification and Out-of-Sample Generalization 

The genetic algorithm tested one BΞ matrix at a time, however each matrix was pulling out 

a different set of coefficients and therefore might have been highlighting different 

dynamical attributes. It is often found that an ensemble of independently trained classifiers 

can cooperatively vote on a classification and that doing so often cancels out bias that 

cropped up during the training of any individual (Hastie et al., 2009b). We found that 

ensemble methods decreased overfitting tendencies for dynamic discrimination. Therefore, 

the 45 BΞ unique matrices which were best in the final generation of genetic SINDy voted 

on making a final classification to complete our process called “dynamical discrimination”. 

When we were training random forest (Breiman, 2001) regression trees instead of 

classifiers we used the median of the ensemble. For classifiers we used the mode with ties 

broken by choice with the highest ranked BΞ according to final generation fitness. 

Because the cross validation process was repeated once every generation there was 

information leakage and over-fitting effects were possible for the algorithm as described. 

To measure overfitting we re-ran the entire genetic algorithm and ensemble process on 

data where the stimulus labels were scrambled. Performance on random surrogates was 

stable, despite high variability in the performance on the original data (Figure 3.3b). 

Random surrogate performance was indistinguishable from chance for deflection and 

classification based on Ξ that were fitted without regard to classification performance 

(Figure 3.3a, 3c). 

https://paperpile.com/c/z1djYk/tVaG4
https://paperpile.com/c/z1djYk/iHgZs
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In order to report values without confusing overfitting for reproducible (out-of-sample) 

performance we encapsulated the entire genetic algorithm and ensemble process in 

another layer of hold out testing. We held out one example of presentations for each of the 

6-8 stimuli and ran the entire algorithm, then predicted the stimuli for the examples which 

were never used for training. This was repeated twenty times and the final values reported 

in the main text and in Figure 3.3d, are the results of this 20-fold hold-one-out test. Using 

the data from the cell with the most trials, we verified that the final holdout did not 

perform better than chance when trained on random surrogates. Therefore the final 

holdout performance is a valid out-of-sample generalization.  

3.2.14 Hyperparameter Optimization 

Augmenting Sparse Identification of Nonlinear Dynamics (SINDy) with a genetic algorithm 

to provide a representation of time-series suitable for a random forest classifier requires 

many choices which can affect outcomes. Research that makes scientific comparisons but 

does include an account of hyperparameter optimization cannot be adequately reproduced, 

or checked for bias. Hyperparameters are the choices an analysist makes about a machine 

learning algorithm that effect the performance of the algorithm, but which the algorithm 

itself cannot tweak or adjust. For example, a researcher may train a classification algorithm 

to predict one variable called the “class label”. The researcher must provide other variables 

called the “predictive features” which are supposed to serve as the basis of comparison. 

The researcher might access to a great many variables that might serve as predictive 

features and be forced to choose just a few, Thus the choice of which variables to include is 

a hyperparameter. Alternatively, the algorithm may be equipped the ability to choose 
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which variables to include on its own, but must be told how many variables to include. In 

the latter case the number of predictive features is a hyperparameter. Every algorithm has 

a set of hyperparameters, sometimes the choices are obvious but when they are not they 

must be tested in a process called “hyperparameter optimization”. With respect to SINDy 

performed on delay-embedded (dimensionally expanded) data one must decide what size 

of delays, how many delays to include prior to dimensionality reduction, and what 

dimensionality reduction algorithm to include as well as a slew of ODE related choices such 

as what polynomial order to include, whether to include other non-polynomial forms such 

as sinusoids or sigmoids, whether to include a quenched-noise driving term (treating extra 

dimensions as a time-varying input) (Brunton et al., 2016), how many dimensions to 

include, how to get stable numerical estimates of derivatives,  whether to use higher-order 

derivatives, how to normalize the data, and preprocessing steps such as detrending, and 

filtering and what period of the timeseries to fit. A genetic algorithm requires even more 

choices such as methods for mate selection, crossover, mutation, as well as what terms to 

include in the objective function, how to weight those terms, and stopping conditions. Even 

the selection of a classifier algorithm to perform the last step presents a set of choices that 

can alter a scientific comparison. 

Few of these choices can be made a-priori, and there were too many to test completely. 

Choices such as these are known as “hyperparameters”. They must be reported on to 

demonstrate that all effort was made to maximize the performance of machine learning 

algorithms before making claims about comparisons.  Most choices were made by hand 

testing on small fractions of data or on simulated data. Some choices made little difference, 

https://paperpile.com/c/z1djYk/ek5Zb
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some made the algorithm worse, others could not be justified due to the exorbitant 

computational time required.  These choices are important to be aware of for replicating 

results but are not extensively reported on here, except to state them: we chose 100, one 

millisecond delays and chose Singular Value Decomposition (SVD) to reduce from 100 to 

between three and seven dimensions (and extensively tested this narrowed range). We 

included only polynomial terms up to the third order (because it is the same order as a 

FitzHugh-Nagumo ODE), and classification did not benefit from including an additional 

dimension as a quenched-noise driving term. Derivatives were estimated by using a custom 

algorithm based on standard fourth order derivative methods (Brunton et al., 2016) but 

added smoothing (window size three timesteps) as a last step. Derivative estimation 

methods were chosen to ensure the derivatives matched the trajectory when accumulated. 

Data were not detrended but were downsampled to 1 kHz. After dimensionality expansion 

the entire set of embedded trajectories was centered at the origin. The choice of time 

period, number of dimensions and derivative order were tested with a more exhaustive 

optimization approach. For the genetic algorithm, mate selection, crossover method, and 

mutation method, as well as the size of the population and the fraction to keep at each 

generation were all tested on small fractions of the data (and choices stated above). The 

choice of regularization factors and terms to include in the objective function were 

narrowed by hand on a small fraction of data and then a few remaining options were 

exhaustively tested. There were 51 trees in the random forest algorithm for final results 

and 5 trees for evaluating the classifier objective function in intermediate generations of 

the genetic algorithm. Alternative methods of classification, such as fitting ODEs to the 

trajectories co-occurring with a specific stimulus and then assessing which ODE best-fit a 

https://paperpile.com/c/z1djYk/ek5Zb
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test trajectory, yielded such poor performance or additional complexity that they did not 

justify inclusion in this paper. The inclusion of additional constraints such as a goodness-of-

fit constraint in a classifier objective function did not perform well enough to justify the 

testing needed to find the optimum choice. It was found that an early termination stopping 

condition based on convergence to a narrow range of error values achieved the same 

results as a stopping condition based on a lack of diversity among possible solutions. The 

choice of 100 generations for every three columns of BΞ was made by hand testing.  

Some choices were selected for exhaustive testing because they either had scientific value: 

period of stimulus presentation to train on, inclusion of second order derivatives, and how 

many dimensions to include. Others were chosen for exhaustive testing because the effect 

was complexly related to other factors being tested: regularization factor, choice of 

dimensionality reduction (SVD versus independent component analysis), and whether to 

use an ensemble method. These were tested by running genetic SINDy on either all of the 

data or just on I,OI, or I,SI and comparing the cross-validation of the final generation with the 

same for random surrogate data. The parameter set with the best classification ability with 

the least variability and least overfitting was selected. This was three dimensions with a 

regularization weighting factor of 0.2 and only first order derivatives, using an ensemble 

classification method with SVD for dimensionality reduction and the period coinciding with 

the onset of stimulus response was the most informative. These testing results are reported 

in appendix A.2. 

3.2.15 Integration of Ξ Matrices 
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Because we normalized Θ components by Z-scoring (Hastie et al., 2009a) them we had to 

carry out a change of coordinates at each step when integrating the ODE models to assess 

how they captured trajectory details.  Let ℰ be the function that creates polynomial 

combinations of a trajectory, V, such that Θ=ℰ (V). When integrating the ODE to create a 

simulated trajectory, V′ (t)=dV′ (t-1)+V′ (t-1), the derivative term at each timestep 

becomes dV′ (t)=ΞT[ℰ (V′ (t-1))-μΘ]/σΘ, where μΘ and σΘ are the mean and standard 

deviations of each column of the Θ used to estimate Ξ from the experimental data.  

We used points from the initial trajectory and found that our models tend to be difficult to 

integrate. Even with a stiff ODE solver initial conditions frequently “blew up” wherein the 

derivatives became very large, or the derivatives rapidly extinguished. Therefore we tested 

multiple initial conditions and plotted the ones that produce trajectories which remain in 

the neighborhood of the original trajectory for as long as the original trajectory was, and 

that explore a volume similar to the original trajectory. This was done by rejecting initial 

conditions that produce trajectories whose standard deviations (along each dimension) 

were all less than five times the same standard deviations of the original trajectory and 

exceeded one twentieth of the original trajectory.  

3.2.16 Linear Stability Analysis 

For non-linear dynamical systems such as those approximated with SINDy the behavior in 

the vicinity of a fixed point is often analyzed through the eigenvalues of a Jacobian matrix 

evaluated at the fixed point. A Jacobian matrix is the matrix of all partial derivatives with 

respect to the main variables. We can evaluate this using the chain rule and our 

https://paperpile.com/c/z1djYk/1NJp2
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normalization factors. Normalization factors included a translation as well as a rescaling. 

Using Matlab’s symbolic toolbox we solved the ODEs for coordinates where the derivatives 

became zero. The translation did not affect the Jacobian but did need to be accounted for 

when solving for fixed point coordinates the same way it was accounted for when 

integrating (see above). We report on all real-valued fixed-points.  We evaluated the 

Jacobian for the best one of the 45 Ξ matrices according to their fitness values on the final 

generation of the genetic algorithm. We evaluated all fixed points for each trajectory 

individually. If the eigenvalues of a fixed point have an imaginary component the dynamics 

are locally oscillatory, if the real component is positive they diverge away from the fixed 

point, if the real component is negative they converge towards it, if the real component is 

zero the dynamics form a cycle. If the number of fixed points changes when a system 

parameter (such as stimulus label)  is changed then that parameter is said to take the 

system through a bifurcation, likewise if the sign of the real component of the maximum 

eigenvalue of the Jacobian changes. We report on the number of fixed points and the 

eigenvalues as a function of what stimulus was presented in appendix A.3. 

3.2.17 Data and Software Availability  

The data, data analysis software, and modeling software used in this study are available 

from the author, James K Johnson, upon request or by searching for the project titled: 

“Stimulus tuned dynamical trajectories underlie synaptically driven transmembrane 

signals in visual cortex” on the Open Science Framework OSF.io once the companion 

manuscript of the same title has been accepted for publication. 

https://osf.io/
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3.3 Results 

3.3.1 Dimensionality Expansion Captures Dynamically Rich Neural 

Trajectories from Single Neurons 

Synaptically driven transmembrane electrotonic fluctuations contain rich information 

about network activity (Figure 3.1c) but it is not clear how to get that information. If 

behavioral responses to stimuli are consistent then fluctuations of neural activity following 

stimulus presentation should also be consistent at some level of abstraction. The concept of 

attracting sets from non-linear dynamical systems theory is the abstraction proposed by 

the attractor network computational paradigm (Amit and Amit, 1992; Eliasmith, 2005; Wu 

and Amari, 2005; Chambers and Rumpel, 2017). It describes brain activity as trajectories in 

a high-dimensional state-space and maps trajectory characteristics like shape or location to 

specific brain functions (e.g. memory, movement, or recognition (Daelli and Treves, 2010)). 

Near a fixed point most dynamical systems fall into a simple, or at least quasiperiodic, 

dynamical pattern (e.g. limit cycle oscillations, monotonic convergence) (Strogatz, 2018), 

and similar initial conditions produce similar trajectories over short timescales unless a 

dynamical bifurcation has occurred. Thus, if this perspective is valid, brief snippets from 

trajectories co-occurring with different brain functions will be different. 

Classification ability is not epistemologically valuable but using it as a basis for comparison 

can be.  Therefore recordings were placed into 10 categories according to signal type and 

stimulus characteristic (Figure 3.1c). Types of recording and stimulus characteristic are 

denoted with left-superscripts above I for voltage-clamp recordings and V for current-

https://paperpile.com/c/z1djYk/B90QP+HEh8M+DI9ta+GCJd3
https://paperpile.com/c/z1djYk/B90QP+HEh8M+DI9ta+GCJd3
https://paperpile.com/c/z1djYk/RseeS
https://paperpile.com/c/z1djYk/otAqm
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clamp recordings (Figure 3.2a).  The two categories I,OI, and  E,OI feature transmembrane 

current recordings of synaptic inhibition (I) and excitation (E) respectively, and drifting 

grating orientation (O) was varied. The two categories I,SI, and E,SI are the same but size (S) 

was varied. For I,CI, and E,CI, contrast (C) was varied. For the categories R,SV , and K,SV  the 

recording apparatus was in current clamp mode and size was varied and spikes were 

removed (R) or kept (K), respectively. For two more membrane potential categories 

contrast was varied R,CV and K,CV . Figures show only data with spikes removed because of 

minimal difference in outcome. There are 20-121 recordings for each cell (median is 68) 

with 3-21 examples of each stimulus (median is 11).  

To employ attractor networks in intracellular recordings from mouse primary visual cortex 

responding to visual stimulation, we used time-delay dimensionality expansion (Lainscsek 

and Sejnowski, 2015; Oprisan et al., 2015) of 500 ms recording snippets to project 

transmembrane current and potential fluctuations onto intermediate dimension neuronal 

trajectories (Figure 2b). The observed trajectories form oscillations confined to conical, 

cylindrical, or spherical regions (Figure 3.2c,  A.9). Trajectories appear limited to regions of 

phase space according to recording context (Figure 3.2c,  A.9). Patterns include nesting 

conic trajectories inside one-another, and displacement of oscillation centers. As evinced 

by Maximum Likelihood Estimation (MLE) (see methods, appendix A.4), trajectories were 

distinctive but not classifiable. Therefore we eliminated the simpler hypothesis that 

dimensionality expansion without dynamical systems characterization is sufficient for 

stimulus classification.  

https://paperpile.com/c/z1djYk/S9XHF+lyZd8
https://paperpile.com/c/z1djYk/S9XHF+lyZd8
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Figure 3.2 | Time-delay embedding of intracellular recordings reveals varied dynamical trajectories and 
equations are fitted to them. a, Excitatory (red) and inhibitory (blue) transmembrane current, and 
potential (green). Gold bars: stimulus on/off times. Outlined boxes: periods defining on response (early 
box) and off response (late box). Stimulus on time through the end of the off response defines the full 
response. Gray: periods defining deflection as the difference between early and late period means. b, Left 
column: Time-delay embeddings illustrated with every 20th 1 ms delay of recordings from panel a. Right 
column: Neural trajectories visualized after singular value decomposition of 100 1 ms delays. c, Two 
trajectories coinciding with the most (gold) and least (aqua) preferred stimuli (largest/smallest mean 
deflection respectively) for one cell from eight recording categories. Figure A.9b succinctly characterizes all 
trajectories. Central axes (gold/aqua bars) are parallel. Trajectory characteristics include: axial 
displacement of densest regions (see R,SV, I,SI, I,OI), opposed directions of divergence (R,SV), and nesting (I,OI, 
E,OI, I,CI, E,CI, I,SI). Most cell’s trajectories occupy conic regions (see Figure A.9), but some (R,CV, E,SI, R,SV) are 
cylindrical or spheroid when plotted together. d, A Ξ matrix optimal for trajectory modeling. Left: Ξ 
coefficients. Right: A neural trajectory (blue) and reconstructions (magenta/yellow). e, This Ξ optimized 
stimulus discrimination. Same style as panel d. f, Decision tree classification illustrated. Cascading 
true/false tests on Ξ elements produce predictions. A random forest uses multiple trees that “vote” on 
classification. 
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3.3.2 Dynamical Discrimination Reveals Smaller Changes in Stimulus 

Characteristics than Firing Rate Substitutes Reveal 

Differences between trajectories were sensitively quantified by examining the coefficients 

of polynomial Ordinary Differential Equations (ODEs) fitted to trajectories by an 

augmented version of Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 

2016)  (see methods, Figure 3.1d). ODEs are represented as a matrix of coefficients, Ξ 

(Figure 3.2d, 2e). A genetic algorithm decides which coefficients to make nonzero, 

numerosity varied from 7-20 (median is 12). The ODEs usually captured the central axis 

and direction of divergence (Figure 3.2d, 2e). To decode (classify) stimulus features, the 

utility function was the mean cross-validated F1 score of a random forest classifier (Figure 

3.2f) trained on individual Ξ and a regularization penalty (see methods). After the last 

generation an ensemble of Ξ matrices vote on the classification (see methods). Next 

overfitting was directly measured by repeating the entire genetic algorithm with random 

surrogates (Figure 3.3b). If overfitting is minimal (Figure 3a, 3c, but not 3b) the cross-

validation performance is a sufficient discriminating statistic. Stimulus feature 

classification final results (Figure 3.3d) use additional 20-fold holdout out-of-sample 

generalization. Details of our algorithm, stability analysis of ODEs, and hyperparameters 

optimization, including choice of: regularization, epoch, dimensions, derivative order, and 

more is in the appendix A.2. When optimizing for classification (decoding) we call it 

“dynamical discrimination”, when optimizing for ODE goodness of fit (see methods) we call 

it “best-fit Ξ based discrimination”.  

https://paperpile.com/c/z1djYk/ek5Zb
https://paperpile.com/c/z1djYk/ek5Zb
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Our dynamical discrimination results differed by stimulus-recording category (see above): 

Some characteristics were better encoded in Ξ than others and excitatory and inhibitory 

current were different from each other and membrane potential. Random chance would 

yield correct classification rates (CCR) of 1/8=0.125 for classifying orientation and 

1/6≈0.167 for size or contrast. For the set as a whole, dynamical discrimination did 

statistically significantly greater than chance (median CCR: CCRmed=0.288, rsdf=0.239, 

p=5.5x10-27), according to a one-tailed Wilcoxon signed-rank test, where rsdf is the simple-

difference effect size and p is the probability value (see Methods). Individually the 

following categories were also greater than chance with the criterion p<0.05: I,OI 

(CCRmed=0.144, rsdf=0.243, p=0.0313), E,OI (CCRmed=0.256, rsdf=0.20, p=0.0156), I,CI 

(CCRmed=0.292, rsdf=0.258, p=3.05x10-5), E,CI (CCRmed=0.275, rsdf=0.258, p=3.05x10-5), 

R,CV (CCRmed=0.275, rsdf=0.224, p=0.0225) and  K,CV (CCRmed=0.25, rsdf=0.238, p=0.0098), 

I,SI (CCRmed=0.363, rsdf=0.23, p=7.63x10-6), and E,SI (CCRmed=0.283, rsdf=0.257, p=3.81x10-

6). The only data categories which did not meet either criterion for distinguishability are 

R,SV, (CCRmed=0.3), and K,SV, (CCRmed=0.408), despite having the largest group median 

there were only five data points and too much variability to draw a conclusion.  By pooling 

results from the categories I,OI and E,OI  we reinforced our confidence that fine changes in 

orientation can be distinguished (CCRmed=0.216, rsdf=0.218, p=4.9x10-4). 

Since any quality machine learning algorithm should permit better than chance 

classification we needed to contrast dynamical discrimination with methods that either 

ignore fluctuations or are agnostic to a dynamical systems interpretation. For simplicity we 

call all measurements of difference from baseline “deflection” and we used only the 
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absolute value of this difference. To calculate deflection any spikes were always removed. 

Then, a baseline unique to each recording (see methods) was subtracted from the average 

value of a 166 ms window containing the peak of the average response across all trials of 

all stimuli. This is comparable to the methods of the paper the data was collected for 

(Adesnik, 2017) and tested to maximize deflection based discrimination. Thus we can 

compare the results of dynamical discrimination to a random forest classifier trained on 

evoked deflection, which is a typical firing-rate substitute that ignores fluctuations. We also 

compared dynamical discrimination to best-fit Ξ based discrimination.  

We found that all three methods, deflection based discrimination (Figure 3.3a), best-fit Ξ 

based discrimination (Figure 3.3c), and dynamical discrimination (Figure 3d), performed 

better than chance when pooling all data from all categories (see also appendix A.1). 

However, best-fit Ξ allowed higher CCR than deflection (Figure 3.3c), (CCRmed=0.267, 0.228 

respectively), a significant difference (rsdf=0.178, p=1.87x10-4). A one-tailed Wilcoxon 

signed-rank test establishes comparative performance.  Best-fit Ξ based discrimination also 

outperformed deflection based discrimination in a few individual categories while 

deflection based discrimination was never better (see appendix A.1 table A.1). Finally, 

dynamical discrimination yielded the highest CCR for pooled and most individual data 

(best-fit Ξ comparison: rsdf=0.177, p=7.8x10-5, and deflection comparison: rsdf=0.202, 

p=3.60x10-8) and no method outperformed it in individual categories (see appendix A.1 

table A.1). These differences are significant, especially regarding the ability to classify 

orientation, neurons do receive more fine-grained information than they are able to pass 

on through action potentials.  

https://paperpile.com/c/z1djYk/Q4KSn
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One key difference between best-fit Ξ based discrimination (Figure 3.3c) and dynamical 

discrimination (Figure 3.3d) is that best-fit Ξ failed to show greater than chance 

modulation of inhibitory activity trajectories (CCRmed=0.1256, rsdf=0.1619, p=0.344), but 

still showed it for excitatory trajectories (CCRmed=0.1908, rsdf=0.2381, p=0.039). Thus the 

extra fidelity from an algorithm that priortizes stimulus discrimination over ODE fitting 

accuracy was required to find orientation information in inhibitory activity trajectories.  

For more granular analysis of dynamical discrimination comparisons and validation that 

deflection can still reliably discriminate between just the most and least preferred stimului 

see appendix A.1. Performance with different dimensions, types of ODEs, and different 

epochs of visual stimulation are included in appendix A.2.  
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Figure 3.3 | Discrimination performance of multiple methods across categories and compared with 
deflection for individual cells.  a, Red shading shows box and whisker plots of correct classification rates 
(CCR) based on deflection, with red lines indicating medians. Gray shading shows chance level. Columns 
separate all data by categories containing the same recording type and stimulus characteristic. * indicates 
significantly greater than chance performance in that category. Discriminating orientation and size (E,SI) 
fails with deflection.  b, The last generation cross-validation performance of Ξ matrices chosen to optimize 
discrimination (out-of-sample generalization is panel d). Lavender shading shows overfitting effect 
(random surrogate median CCR) and is barely visible in panels a and c. All categories (even surrogates) are 
distinguished from chance. ** indicates distinguishability from random surrogates.  c, Overfitting vanishes 
while permitting better than deflection discrimination when Ξ is chosen to optimize ODE modelling. 
Distinguishability from chance and deflection are indicated with * and † respectively.  d, Dynamical 
discrimination retains superiority after out-of-sample testing.  Distinguishability from chance, deflection, 
and  best fit results are indicated with *, †, and ‡ respectively. Orientation and size (I,SI, E,SI) can be 
discriminated better than with deflection. e, Average deflection (purple, error bars indicate standard 
deviation) and discriminability (dark red, F1 score of dynamical discrimination) as a function of drifting 
grating property. The ordinal label marks the abscissa. The least and most preferred stimuli are indicated 
with * and * respectively. Left: Membrane potential with spikes removed (mV), Center: inhibitory 
transmembrane current (pA). Right excitatory transmembrane current (pA).  

3.3.3 Dynamical Discrimination is Linked to Distinct and Reliable Presynaptic 

Population Dynamics 

The most and least preferred stimuli for a neuron of interest evoke the largest or smallest 

(respectively) deflections on average for that neuron. A plot of average deflection vs 

stimulus characteristic is called a “tuning curve”. In Figure 3.3e we use the F1 score as a 

measure of discriminability and compare it with the tuning curves obtained for each cell. 

Neither the least nor the most preferred stimulus coincides with the largest standard 

deviation of deflection or poorest discriminability.  In Figure 3.4a we show that, for every 

signal source and stimulus type, the most and least preferred stimulus tends to be the most 

discriminable.  

We examined the reliability of a cell’s responses to each stimulus type. Defined as the mean 

deflection divided by the standard deviation, reliability was greater for deflections evoked 

by the most and least preferred stimuli  (Figure 3.4b). To quantify the U-shape of Figure 
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3.4a and 4b we computed the correlation between reliability and the ordinal-number 

distance to either the least preferred stimuli or the most (whichever is smallest, see 

methods).  We calculated the correlation between reliability and distance to most/least 

preferred stimulus to be 0.60 (Pearson correlation coefficient) with p value p=3.45x10-67. 

The same distance value correlated with F1 score of dynamical discrimination according to 

0.26 (Pearson correlation coefficient) with p=5.04x10-12. We know that population 

dynamics evoked by the most and least preferred stimulus are distinct from each other 

because the average deflection is so different (see also Fig S1b).  Because reliability is much 

higher for these stimuli we know they evoke population dynamics distinct from the 

intermediate stimuli.  

The question becomes whether this reliability pattern is best captured by dynamical 

system regimes or by random process variability. Linear stability analysis (Strogatz, 2018) 

defines dynamical systems regimes through analytical properties of real-valued zero-

gradient solutions to the ODE, called “fixed-points” (see methods). We found that the most 

preferred stimulus stood out. Stimuli dissimilar to the preferred stimuli produced a 

dissimilar number of fixed-points (see appendix A.3, Figure A.7). Additionally, the fraction 

of net-convergent fixed-points inversely correlated with dissimilarity to the preferred 

stimulus (Figure A.7). Despite the intentional crudeness of our ODEs (to exaggerate 

differences) they may further evince distinct stimulus tuned population dynamics. This 

complements the observation of heightened discriminability for the most and least 

preferred stimuli.  

https://paperpile.com/c/z1djYk/otAqm
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Crucially, we examined single-trial variability and found increased reliability is not effected 

through smaller fluctuations or less noise. We defined fluctuation size as the coefficient of 

variation for single recordings and defined noise as the mean of fractional response 

residuals (see methods). Fluctuation size and noise both simply decreased with increasing 

average deflection and did not exhibit a U-shaped trend, suggesting neither are responsible 

for increased response reliability, alone or in combination (see appendix A.3, Figure A.8). 

The three observations of dynamical discrimination performance, fluctuation size and 

noise, and linear stability analysis combined suggest that reliability is rooted in 

increasingly coherent dynamical patterns. 

We then devised an even stronger test of the link to dynamic stability. As shown in Figure 

3.4c a plot of reliability versus deflection roughly separates stimuli when labeled according 

to each cell’s preferences. If reliability and average deflection reflect population dynamics 

unique to each stimulus feature then we expect Ξ matrices will have the same information, 

but on a single trial basis.  Therefore we should be able to further reduce Ξ matrices to just 

these two variables and use them to predict stimulus features with minimal performance 

impact.  

We re-analysed ensembles of Ξ matrices with random forest regression (see methods) to 

estimate reliability and average deflection (Figure 3.4d) then fed the estimates to a third 

random forest classifier to predict the stimulus labels (Figure 4e). While there was a small 

decrease in performance overall (CCRmed=0.283, rSDF=0.141, p=0.0061) this was the 

second-best method of classification, retaining most of the key results such as better than 
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chance classification of E,OI and better than deflection performance in E,OI, I,SI, E,SI, and even 

I,CI,.  This regression-then-classification approach demonstrates the extraction of latent 

variables (reliability and average deflection factors) from single trials and relates them to a 

controlled characteristic (stimulus label) (Whiteway and Butts, 2019). The success of using 

reliability and deflection like putative state variables adds to the evidence that most and 

least preferred stimuli are associated with distinct dynamics among the presynaptic 

populations which drive our observed membrane dynamics.  

 

Figure 3.4 | Single trial discriminability depends on dynamical states associated with stimulus selectivity. a, 
The U shape of normalized discriminability vs normalized mean deflection indicates least and most 
preferred stimuli are more discriminable. For each decile of normalized mean evoked deflection it’s median 
is plotted against the median normalized discriminability (F1 score of dynamical discrimination). The 
legend right of panel b maps color and end-point marker to data categories. Dashed line indicates pooling 
of all categories. b, Deflection reliability (inverse coefficient of variation) shows a more prominent U trend 
(same style as a). c, Stimuli are roughly separable on a scatter plot of reliability and mean deflection across 
all data points. Stimuli are re-labeled and colored by their rank of average evoked deflection (color bar is 
right of panel d) d, A plot of trial-by-trial predictions of cross-trial means. Predictions are from random 
forest regressors trained on Ξ matrices  re-appropriated from dynamical discrimination. What separability 
remains now extends to a trial-by-trial basis.  e, Same as in Figure 3.3d except now the context (original 
stimulus label) is inferred using only the predicted state variables (reliability and deflection) from panel d. 
Distinguishability from chance is denoted with *, from deflection with †, and § indicates significantly worse 
performance than Figure 3.3d (the reverse was never true). The key results from Figure 3.3d are 
reproduced despite stripping information down to just two understandable variables: reliability and 

https://paperpile.com/c/z1djYk/N9fRj
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deflection. Furthermore I,CI was distinguishable from deflection which did not occur for Figure 3.3d. 

3.3.4 Dynamical Discrimination is Corroborated by Biologically Plausible 

Modeling 

Because dynamical discrimination is based on estimating the coefficients of ODEs, it is 

incumbent on us to test it with the coefficients of known ODEs. Our overall strategy, 

illustrated in Figure 3.5, is to challenge dynamical discrimination by using resampling and 

neuron models to degrade data generated from a known system. Instead of using Ξ 

matrices to predict a label from a small set of possible labels, the genetic algorithm used 

regression to accurately estimate small changes to a parameter of the Lorenz system, ρ, as 

we varied it between the integers 20 to 40.  

The Lorenz system is: 

𝑑𝑋

𝑑𝑡
= 𝜎(𝑌 − 𝑋)    

𝑑𝑌

𝑑𝑡
= 𝑋 (𝜌 − 𝑍) − 𝑌         (3.1) 

𝑑𝑍

𝑑𝑡
= 𝑋𝑌 − 𝛽𝑍     

We chose ρ to include a Hopf bifurcation at 𝜌 =
𝜎(𝜎+𝛽+3)

(𝜎−𝛽−1)
≈ 24.7and to explore chaotic 

regimes. We used the X dimension of the Lorenz system but resampled each trial 𝑋′ (𝑡) =

𝑋 (𝑡/𝜏)where τ is chosen such that 90% of the signal power was in Fourier modes below 

300 Hz for each trial (see methods, Fig 5b). As seen in Figure 3.5d our approach excels at 
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predicting the value of ρ from a sample of time series data. Median absolute percent error 

between the predicted value of ρ and the real value has a median of 1.79% with a 25th 

percentile, P25= 0.87% and a 75th percentile P75=3.46%, verifying the identification of ρ 

for nearly ideal conditions.  

We followed up by distorting 𝑋′ (𝑡)with successively more complex neuron-like 

transformation. We fed the resampled X dimension from the Lorenz equation into a single-

compartment neuron model by shifting and rescaling to be consistent with injected current 

(no synapses) on the order of nano amps 𝐼 (𝑡) = 𝛼1(𝑋′ (𝑡) − 𝜁1) where ζ1 and α1 are chosen 

to produce the desired amount of spiking (see methods, Figure 3.5b, 5c). Median error was  

5.45% with P25=2.52% and P75=9.18% (Figure 3.5d). All values reported in the text come 

from data where spikes were removed (see methods) which made little difference for any 

model. The still good performance shows that transformation by membrane dynamics does 

little to interfere with our methods.   

In a biologically plausible attractor network, the dynamics actually govern a point process 

with inputs to a neuron arriving as discrete events. Therefore we fed the single resampled 

dimension, X from the Lorenz equation into a morphologically complex multi-compartment 

neuron model (Palmer and Stuart, 2009) by shifting and rescaling it to be consistent with 

the instantaneous event probability of an inhomogeneous Poisson process 𝑃 (𝑡) =

𝛼2(𝑋′ (𝑡) − 𝜁2) where ζ2 and α2 are chosen to produce the desired amount of spiking (see 

methods, Figure 3.5b). Models with fewer (excitatory only) synapses results in a 

membrane potential time series that has large and sporadic synaptic potentials (impulses). 

https://paperpile.com/c/z1djYk/QpW1r
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Initially adding more synapses produces a signal that better visually approximates the 

input time series, but eventually increases dynamical complexity and spiking 

unpredictability (Fig 5c).  This more complex type of model yielded a median error of 

12.02% with P25=8.11% and P75=19.99% (Figure 3.5d). Thus synaptic type distortions 

have degraded ODE fitting approaches but not left them unworkable. 

To directly compare with experimental dynamical discrimination results we treated the ρ 

values [22,25,28,31,34,37] as if they were distinct stimuli labeled one through six and re-

analyzed the corresponding Ξ matrices by training classifiers to predict the labels. Chance 

level is 1/6≈0.167. We also categorize model trials according to the number of spikes and 

synapses because they may be confounding factors. Single-compartment neuron data 

formed 12 categories according to similar spiking levels (see methods). Multi-

compartment models yielded 18 spiking categories (limited to models with 245 to 290 

synapses for Figure 3.5e) and 35 synapse numerosity categories (limited to trials with four 

or fewer spikes for Figure 3.5e). The impact of spike rate and synapse numerosity is shown 

in Figure 3.5e. For single-compartment data (spikes removed) median CCR for the 12 

categories ranged from 0.563 to 0.778. The median CCR was indifferent to the level of 

spiking. By comparison, median CCR was low and inconsistent for the 18 multi-

compartment spiking categories, with values ranging from 0.05 to 0.5. Nonetheless, no 

association with spiking passed statistical muster. However, synapse numerosity 

categories did show a trend. Median CCR values ranged between 0.05 and 0.393. CCR 

increased quickly for increasing numbers of synapses, peaking at around 162 synapses, 

then declined steadily. By comparing Figure 3.5e to Figure 3.3d we can see that the range of 
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CCR values overlaps with the median CCR values for in-vivo dynamical discrimination. 

Median CCR from Figure 3.3d ranged from 0.144 to 0.363 with an overall median of 0.283. 

Thus we see our results for in-vivo data are near the ceiling for this implementation of 

dynamical discrimination and in line with expectations for synaptic impulses that are 

completely governed by a dynamical system being manipulated through a bifurcation and 

chaos.  
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Figure 3.5 | Modeling tests confounding factors for dynamical discrimination and matches experimental 
results. a, Our modeling paradigm, illustrated. Left: We tested regressing Ξ onto integer values of the 
Lorenz system parameter ρ from 20 to 40 (spanning a Hopf bifurcation and chaos). Center: a single-
compartment neuron (X as current injection). Right: a multi-compartment model with dendritic spines 
(NEURON shape plot, X governs synapse transmission probability). b, Simulated membrane potential. Top: 
multi-compartment model (dark green). Middle: single-compartment neuron (medium green). Bottom: X 
from Lorenz system (light green). c, Examples of possible confounds. Top: two traces showing differences 
associated with synapse numerosity. Bottom: two traces showing action potentials dominating Lorenz 
dynamics. d, Regressions of Ξ onto ρ plotted against true ρ values. Left: Fitting Ξ to X performed well (light 
green). Center: Fitting Ξ to membrane potential of single-compartment neurons moderately reduced 
accuracy (medium green). Right: Multi-compartment models significantly degraded regressions (dark 
green). Performance is similar whether spikes are removed (filled) or not (open).  e, Correct classification 
rate (CCR) vs possible confounds. Ξ matrices trained for regression are reappropriated for classification 
and ρ is limited to [22,25,28,32,35,38] (chance 1/6≈0.167). Left: Dynamical discrimination is robust to 
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spiking for single-compartment models (medium green). Center: Spiking also has limited impact for multi-
compartment models (dark green). Right: Synapse numerosity (model complexity) is impactful (dark 
green). Arrow ticks indicating median CCR for data in Figure 3.3d evince modeling and experiment 
agreement but higher potential for dynamical discrimination with continuous dynamics. 

3.4 Discussion 

This work presented compelling observations based on a novel hypothesis-dependent 

machine learning (Bishop, 2013) algorithm. First, membrane potential and transmembrane 

current recorded from neurons in mouse primary visual cortex underwent dimensionality 

expansion. This yielded trajectories of neural activity which appear to be stimulus 

modulated. Second, motivated by attractor network principles (Amit and Amit, 1992; 

Goldberg et al., 2004; Eliasmith, 2005; Wu and Amari, 2005; Miconi et al., 2016; Chambers 

and Rumpel, 2017), ordinary differential equation models (Ξ matrices) were fitted to 

individual trajectories. Ξ matrices compactly describe each trajectory and were used to 

predict what stimulus presentation coincided with each trajectory. Called dynamical 

discrimination, this algorithm more accurately predicted fine changes in orientation, 

contrast, and size of drifting gratings than predictions made from firing rate substitutes 

(deflection) and alternatives. Furthermore, only dynamical discrimination had the fidelity 

to confirm findings about orientation selectivity differences between excitatory and 

inhibitory synaptic mechanisms. Thus dynamical discrimination is an advanced tool for 

sensing population dynamics among the neurons inputting to a neuron subjected to 

intracellular recording. Third, stimuli evoking extremes of average deflection also evoked 

the most reliable deflections but not the smallest fluctuations, or least noise. Dynamical 

discrimination matched reliability patterns, and further analysis of Ξ matrices show that 

https://paperpile.com/c/z1djYk/tZSYC
https://paperpile.com/c/z1djYk/HEh8M+B90QP+DI9ta+bVvFk+GCJd3+UHTmu
https://paperpile.com/c/z1djYk/HEh8M+B90QP+DI9ta+bVvFk+GCJd3+UHTmu
https://paperpile.com/c/z1djYk/HEh8M+B90QP+DI9ta+bVvFk+GCJd3+UHTmu
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the least and most preferred stimuli evoke distinctive and coherent dynamical regimes. If 

the concept of binary feature detectors (Keller and Mrsic-Flogel, 2018) and attractor 

network principles apply then these may be like task-positive and task-negative dynamical 

regimes (Churchland et al., 2010; Gallego et al., 2018) such that intermediate stimuli evoke 

less reliable deflections because they either alternately evoke these two regimes or evoke 

inherently less coherent dynamical regimes in the presynaptic population. Lastly, modeling 

validated the level of accuracy. We showed that dynamical discrimination excels with 

continuous nonlinear transformations of underlying dynamics, but transforming dynamics 

into a point process (like synaptic transmission) degrades performance to the 

experimentally observed levels. These four results show that: i) Dynamical discrimination 

is a powerful method for time series and trajectory classification. ii) Attractor network 

principles can be applied to primary visual cortex and to single neuron recordings, and iii) 

dimensionality expansion and dynamical discrimination lets researchers patch into 

upstream network by intracellularly recording from single neurons. 

The dimensionality expansion of intracellular recordings in this work (Figure 3.2) 

counterpoints the commonly used dimensionality reduction of population activity 

(Cunningham and Yu, 2014). Population recording methods have improved in recent years 

(Greenberg et al., 2008; Viventi et al., 2011; Steinmetz et al., 2018), likewise for efforts to 

isolate and group single units by functional and anatomical relevance (Palmer and Stuart, 

2009; Pachitariu et al., 2016; Bassett and Sporns, 2017). Subsequent analysis usually 

includes dimensionality reduction. In contrast, dimensionality expansion on single neurons 

instead may yield similar insights about neuronal manifolds (Gallego et al., 2018) but the 

https://paperpile.com/c/z1djYk/7LZHB
https://paperpile.com/c/z1djYk/b6d8d+CAUGW
https://paperpile.com/c/z1djYk/wvlvO
https://paperpile.com/c/z1djYk/aQLtW+wJ9pN+4CgEQ
https://paperpile.com/c/z1djYk/QpW1r+X7ImL+N9K1b
https://paperpile.com/c/z1djYk/QpW1r+X7ImL+N9K1b
https://paperpile.com/c/z1djYk/CAUGW
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grouping is naturally defined as: all presynaptic neurons (Kuhn et al., 2003; Ko et al., 2011; 

Yaşar et al., 2016). The general principle of dimensionality expansion is familiar to  

neuroscience (e.g. separating a signal into time-varying oscillatory modes) though not 

usually for reconstructing trajectories. 

Researchers have tried many ways to map synaptic activity recorded at the soma to 

population events and dynamics (Jagadeesh et al., 1992; Baudot et al., 2013; Perks and 

Gentner, 2015; Yaşar et al., 2016; Wright et al., 2017). Machine learning algorithms are 

sensible options but often don’t permit scientific inference beyond their predictions 

themselves (Bzdok and Yeo, 2017; Whiteway and Butts, 2019),. Hypothesis-dependent 

methods (Bishop, 2013; Butner et al., 2019) leverage computational assets to fit a model to 

data and exploit the model for a new purpose (Bishop, 2013; Daniels and Nemenman, 

2015; Brunton et al., 2016; Mangan et al., 2016; Kaiser et al., 2018). If the model is fitted 

poorly or not applicable the algorithm performs poorly, thereby testing the hypothesis 

motivating the choice of model. This is why important earlier works (Lainscsek and 

Sejnowski, 2015; Oprisan et al., 2015; Brunton et al., 2016) inspired us to develop 

dynamical discrimination.   

Dynamical discrimination’s power to identify latent factors (Gallego et al., 2018; 

Pandarinath et al., 2018; Whiteway and Butts, 2019) (i.e. context) may advance traditional 

single-neuron topics like orientation tuning (Seriès et al., 2004; Li et al., 2012) and 

interplay between excitatory and inhibitory populations (Kuhn et al., 2003; Adesnik, 2017) 

. Pairing dynamical discrimination on intracellular recordings with comparisons across 

https://paperpile.com/c/z1djYk/YafPx+z7VXl+gOrlS
https://paperpile.com/c/z1djYk/YafPx+z7VXl+gOrlS
https://paperpile.com/c/z1djYk/YafPx+7ZT9S+4YeCr+AWU5V+WHaiN
https://paperpile.com/c/z1djYk/YafPx+7ZT9S+4YeCr+AWU5V+WHaiN
https://paperpile.com/c/z1djYk/mLnWu+N9fRj
https://paperpile.com/c/z1djYk/8UqVd+tZSYC
https://paperpile.com/c/z1djYk/9UU3b+NMsAW+G9np3+ek5Zb+tZSYC
https://paperpile.com/c/z1djYk/9UU3b+NMsAW+G9np3+ek5Zb+tZSYC
https://paperpile.com/c/z1djYk/S9XHF+lyZd8+ek5Zb
https://paperpile.com/c/z1djYk/S9XHF+lyZd8+ek5Zb
https://paperpile.com/c/z1djYk/N9fRj+VoUPW+CAUGW
https://paperpile.com/c/z1djYk/N9fRj+VoUPW+CAUGW
https://paperpile.com/c/z1djYk/jlDMd+yWnWI
https://paperpile.com/c/z1djYk/Q4KSn+z7VXl
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brain regions, multiple recording and/or stimulation sites, or cell staining and tracing 

promises new insights into functional specificity and connectivity (Mangan et al., 2016; 

Bassett and Sporns, 2017) because intracellular recordings observe in-situ network 

propagation at a natural bottleneck. 

For experimental data the dynamical discrimination algorithm had limited classification 

accuracy. However, this is expected and exceeds all compared methods. Modelling showed 

that synaptic transmissions completely governed by a simple dynamical system produced 

these levels of dynamical discriminability, while validating high accuracy in more ideal 

scenarios.  Dynamical discrimination was further corroborated by recapitulating historical 

findings such as differential tuning among excitatory and inhibitory populations (Priebe 

and Ferster, 2005; Adesnik, 2017), and differences in discriminability between early and 

late epochs (Müller et al., 2001; Wang et al., 2010; Clawson et al., 2017) (see appendix A.2). 

Furthermore, we gained new information regarding patterns of response reliability 

(Churchland et al., 2010). Performance may improve since this was a simplistic version of 

the algorithm. Single cells yielded too few recordings for deep learning alternatives, but 

fitting ODE models reduces the trajectories to fewer characteristics than training points, 

thereby avoiding overfitting. Thus we conclude that limited accuracy is expected for this 

first version of dynamical discrimination and belies its power as an analytical tool. 

This work advances physics and neuroscience in several ways. We must specify and isolate 

relevant parts of the brain before we can elucidate their interactions. The brain has natural 

partitions such as layers, nuclei, and cortical columns, but imaging fields and electrode 

https://paperpile.com/c/z1djYk/N9K1b+G9np3
https://paperpile.com/c/z1djYk/N9K1b+G9np3
https://paperpile.com/c/z1djYk/Q4KSn+Pr1Zw
https://paperpile.com/c/z1djYk/Q4KSn+Pr1Zw
https://paperpile.com/c/z1djYk/5fkXc+u2icG+MZFxm
https://paperpile.com/c/z1djYk/b6d8d
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arrays often overlap or partially cover them. An elementary natural brain partition is the 

neurons synapsing onto a neuron of interest. We applied dimensionality expansion to 

intracellular recordings, yielding trajectories related to those from dimensionality 

reduction on hypothetical high-dimensional recordings of these neurons. We used a 

dynamical discrimination algorithm applicable to trajectories of any provenance. It was 

easier to detect orientation sensitively modulating excitatory activity trajectories than 

inhibitory activity trajectories. Excitatory thalamic projections bring orientation 

information to V1 (Sun et al., 2016), but deflection misses fine distinctions. Thus we 

observed detailed dynamics from a natural partition in the brain. Because this works on a 

trial-by-trial basis (Perks and Gentner, 2015) not an average over trials, we have a versatile 

tool for investigating neural representation. Our machine learning approach incorporates a 

hypothetical paradigm (attractor networks) into its core apparatus.  Consequently it 

demonstrated utility beyond classification by connecting stimulus tuning to attractor 

network principles.  Because of these demonstrations, machine learning has a future in 

science beyond the black-box, decades of single-neuron intracellular recordings can be re-

analyzed for population insights, and the attractor network paradigm has come to primary 

visual cortex.  

https://paperpile.com/c/z1djYk/8jzom
https://paperpile.com/c/z1djYk/WHaiN
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Chapter 4: Summary and Future Work 

Our findings provide a solid framework for investigating neural code through the whole-

cell recordings. In chapter two we carried out a rigorous comparison between the statistics 

of membrane potential fluctuations and the statistics of neuronal avalanches. This not only 

solidified evidence for criticality in neural systems, it demonstrated that scale-freeness 

provides a reason to expect that other properties of neural populations can be studied in 

single whole cell recordings. What’s more, our modeling investigations lead to some 

general insights on criticality models that may strengthen connections between the 

observations of criticality and homeostasis (Ma et al., 2019). In our model the criticality 

condition, critical branching where one action potential triggers one other on average, also 

corresponded to a critical coarse graining condition where the instantaneous firing rate of 

each neuron matched the firing rate of its input population. The general properties of 

critical averaging network models provide fertile ground for future explorations of 

computational principles, connections to homeostatic mechanisms, and the relationship 

between single neuron activity and population activity. Most impactfully, critical averaging 

and scale-freeness motivate investigations of population neural code in single intracellular 

recordings.  

In chapter three we introduced a method rooted in the attractor network paradigm of 

neural computation (Amit and Amit, 1992) for testing neural code hypotheses using single 

whole-cell recordings. By using delay-embedding based dimensionality expansion we were 
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able to fit ODEs to small snippets from single whole-cell recordings by extended existing 

methods (Brunton et al., 2016). The coefficients of these equations evinced stimulus 

tuning, thereby providing a basis for neural code rooted in dynamical systems theory. We 

call this algorithm “dynamical discrimination”. Tested on in-vivo whole cell recordings in 

mouse primary visual cortex, we were able to discriminate fine distinctions in drifting 

grating orientation, size, and contrast. The neurons already evinced stimulus tuning based 

on deflection of recorded signal from baseline, but the distinctions permitted were crude 

compared to dynamical discrimination. Furthermore, we recapitulated results from prior 

population recordings that found orientation tuning in excitatory synapses resulting from 

thalamocortical projections. The correct classification rate was well below deep learning 

state of the art but more than high enough to draw useful conclusions. Modeling revealed 

that the algorithm excels in ideal circumstances (directly on continuous dynamical 

systems).  Modeling showed that the lower performance in experiments is typical for 

signals that approximate continuous dynamics with a point process using a 

morphologically complex neuron model. Our modeling investigation provides useful 

targets for continued improvement of dynamical discrimination. What’s more the ODE fits 

themselves showed consistency across cells despite being intentionally crude and fitted to 

brief snippets. Thus, future investigations into the ODE models themselves and the 

trajectory features they capture are merited. More pressing than improving dynamical 

discrimination itself, is the application of it to diverse situations where the results can be 

compared to population recording methods. By comparing to population recordings we can 

gain powerful new insights into the neural code. 

https://paperpile.com/c/QS2PP1/yZy8
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4.1 The Implications for Scale-Freeness and Criticality, 

Neural Code, and Data Analysis in Neuroscience 

  The work in these chapters was motivated by three complimentary aims. First, we 

aimed to investigate the mysterious ubiquity of scale-free signals in brain systems (He, 

2014). Second, we aimed to gain an insider’s perspective on brain function and be able to 

directly intercept the neural code at a point of convergence and well-defined functionality: 

a single neuron. Third, we aimed to develop generally useful data analysis software and 

demonstrate the effective use of machine learning as part of the scientific inference 

process.  

4.1.1 Aim One: Expand and Clarify the Study of Scale-Freeness and Criticality 

in Neural Systems 

These aims are grounded in neuroscience, physics, and the practice of science. To properly 

motivate the first aim: to study the origins, extent, and implications of scale-freeness; we 

articulate basic features of neural systems and critical systems and the similarities between 

them in the following text. From the earliest days of neuroscience, it has been observed that 

for each neuron there is a group of disparate presynaptic neurons which converge and 

provide input. The term “neural action” refers to the process by which postsynaptic 

neurons aggregate the activity flowing from these inputs (Buice and Cowan, 2009). In 

recent decades evidence has repeatedly emerged that this process is not passive and that 

relatively complex operation can take place within a neuron’s dendritic arborization 

(London and Häusser, 2005; Brunel et al., 2014; Gidon et al., 2020) . However, complex 

https://paperpile.com/c/QS2PP1/nJ8U
https://paperpile.com/c/QS2PP1/nJ8U
https://paperpile.com/c/QS2PP1/qdaz
https://paperpile.com/c/QS2PP1/QGOL+zP68+Bg6J
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actions may still have simple effects. A similar process is known to physicists as coarse 

graining and rescaling: a system, often nodes on a lattice, is partitioned and each partition 

undergoes a rescaling operation. This produces a new smaller system which is distinct 

from the first. In the simplest form a coarse-graining and rescaling operation simply 

computes the average of neighboring lattice sites, like resizing a digital imaging. These 

operators can be much more complex, but their effect is the same: to produce a more 

“concentrated” version of the initial system. Coarse graining and rescaling is usually 

applied to systems that have phase transitions. A phase transition is change in the gross 

physical properties (e.g the water ice phase transition or ferromagnetic phase transition). 

For systems at the critical point of a phase transition there exists some coarse graining and 

rescaling operator that produces statistically identical daughter systems. Thus, the critical 

point is said to be a “fixed point” of the coarse-graining-and-rescaling operation. In cases 

like that, when the coarse-graining-and-rescaling operation is relevant to critical 

phenomena, the operation is known as a renormalization group (RG) operator. When a 

researcher has found an RG operator and applies it to a system that is not at a critical point 

each daughter system becomes a more extreme version of the parent system. In 

ferromagnetic systems this means that the apparent temperature of the new 

“concentrated” system gets closer to zero or infinity. This concentration makes the original 

phase more and more apparent if the RG operation is iterated. Thus, iterating an RG 

operator provides a way to classify systems. These two concepts, neural action and coarse-

graining-and-rescaling bear a superficial resemblance that has only recently been noticed, 

expounded upon, and implemented by others (Mehta and Schwab, 2014; Koch-Janusz and 

Ringel, 2018; Li and Wang, 2018). By hunting for neural code buried in the results of neural 

https://paperpile.com/c/QS2PP1/6yEV+wIxD+aMKl
https://paperpile.com/c/QS2PP1/6yEV+wIxD+aMKl
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action we can better characterize it, and further elucidate the computational roles of neural 

action. As such an investigation proceeds, similarities between RG operators and neural 

action will either become more apparent or be eliminated. In any case the details of neural 

action suggest that whole-cell recordings can be rich sources of information about the 

neural code.  

The historical goal of studying criticality in neural systems is to test the possibility that it 

can explain widespread observations of scale-freeness (Beggs and Plenz, 2003). Often this 

concept is captured by power-law statistics, where a change of scale (i.e. coarse graining 

and rescaling) does not modify the functional form of a probability distribution. A counter 

example would be a model network where the probability of a connection between two 

neurons decays exponentially with the distance between them. The rate of decay is 

controlled by a characteristic length in the exponent, thus if an analyst decides to work in 

different units (e.g. mm instead of um) the value of the decay rate must be updated. If 

connection probability were power-law distributed the rate is controlled by a unitless 

exponent. Therefore, the decay rate depends on the ratio of lengths and is not affected by a 

change of variables. When activity propagates in a scale-free manner any event of any size 

has a non-zero probability to propagate to all parts of the system. In critical systems, but 

not scale-free systems more generally, spurts of activity of any fixed size or duration will 

have the same average temporal profile (Sethna et al., 2001). Thus, some of the dynamical 

details manifest at larger scales should persist at the smallest scales of observation and be 

recoverable. We cannot expect this for every kind of dynamical property in general. 

Accounting for features that can and cannot be recovered from single cell observations 

https://paperpile.com/c/QS2PP1/WJQ9
https://paperpile.com/c/QS2PP1/HbHo
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should be informative about the nature of scale-freeness in brain systems and highlight an 

effective route for testing the criticality hypothesis.  

4.1.2 Aim Two: Articulate Intrinsic Representations of Neural Dynamics and 

Neural Code  

Our second aim is to gain an insider’s perspective on brain function and be able to directly 

intercept the neural code at a point of convergence and well-defined intrinsic functionality: 

a single neuron. Well-defined means that few things essential to the function are un-

observed, and the brain reacts to the observations as the experimenter has observed them. 

Intrinsic means that the function does not depend on any actions or assumptions taken by 

any researcher. For population recording methods identifying the neural code often begins 

with an enumeration of the activity of a large list of individual neurons. It is unlikely that 

this can be reconstructed as the basis for neural code using whole-cell patch-clamp 

techniques at the soma. For this reason, we look to the attractor network paradigm for a 

neural code basis. In order to understand the impact and significance of our freely available 

algorithm for assess attractor network theories of neural code, it is helpful to recount some 

rudiments of the attractor paradigm and how it is currently interpreted. 

The network attractor paradigm arose in the early days of neural network simulation. Even 

today a common variety of artificial neural network classifier functions by defining an 

output layer and is structured such that all inputs activates only one neuron in this output 

layer. Each of these output neurons corresponds to one of the possible classification 

outcomes. Thus, as an input is fed to the network and activity is allowed to propagate 
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through the layers it is “attracted” to one neuron or the other. This is a rudimentary 

attractor network, one which always converges to a point in the same number of steps 

(Hertz, 1995; Eliasmith, 2007). In so far as it models real nervous systems internal layers 

analogize to anatomical regions, and the output layer analogizes to a behavioral observable. 

The attractor network paradigm is for recurrent networks, and activity does not converge 

to a single neuron and extinguish. Instead, the large network is modeled as an embedding 

of dynamics with a much lower intrinsic dimension. The simple feedforward classifier 

suffices for illustration purposes. If the network classifies images of cats and dogs, then all 

correctly classified images of cats creates activity that flows towards the cat neuron. In this 

example the initial neural encoding of the input image can be regarded as an initial 

condition and each attractor neuron has a basin of attraction (set of initial conditions) that 

all flow towards the neuron. Thus, the parameters of the system are fixed and only the 

initial conditions vary. However, consider an observation of a set of intermediate layers 

only. Initial conditions are not included in the observation. Nonetheless, activity will still 

flow towards one particular neuron. By creating a predictive model specific to one 

observation an observer can guess which output neuron will be activated and guess 

whether the initial condition corresponded to a cat or a dog. Even in cases where 

knowledge about the output layer is missing, or the network does not have a simple 

readout mechanism, an appropriate predictive model would nonetheless separate activity 

according to initial conditions because initial conditions must produce distinct trajectories. 

A classifier network with indistinct trajectories in intermediate layers cannot serve its 

purpose. 

https://paperpile.com/c/QS2PP1/Cf09+essX
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Dynamical systems and attractor network interpretations of neural code has seen 

successful application in population recordings for decades (Skarda and Freeman, 1987; 

Ben-Yishai et al., 1995; Seung, 1996; Laurent et al., 2001; Laurent, 2002; Wills et al., 2005; 

Wagenaar et al., 2006; Daelli and Treves, 2010; Gallego et al., 2017, 2020) and new deep 

learning methods provide a means to identify initial conditions (Pandarinath et al., 2017). 

One of the key findings has been that the full enumeration of the activity of a large group of 

neurons is redundant, the actual neural trajectories can be described by accounting for far 

fewer variables. This idea, that population activity can be described with fewer variables is 

known as dimensionality reduction. Dimensionality reduction is common in neuroscience, 

it’s implemented through a change of basis or nonlinear transformation followed by a 

change of basis. In every case the goal is to gain a representation of neural activity in which 

trajectories have distinct features evincing external variables (e.g. an initial condition like 

an image presentation). In the simplest case, or after ideal dimensionality reduction, these 

features would simply be the regions they occupy, a concept called separability. 

Trajectories corresponding to cats would occupy completely separate regions from 

trajectories corresponding to dogs. However, this may be too simplistic. For example, in the 

motor cortex a perfect and complete interpretation of motor neuron activity would 

produce trajectories that correspond to a motion such as a reaching task because reaching 

is itself a trajectory (Georgopoulos et al., 1986). Since different reaching motions can 

intersect, perfectly decoded neural trajectories should be free to intersect and are therefore 

not separable. Furthermore, cortical networks are highly recurrent meaning that an 

external stimulus sets up continuing activity with some degree of reverberation. Thus, it 

can be difficult to unambiguously define an initial condition (Lainscsek et al., 2015). A more 

https://paperpile.com/c/QS2PP1/ZPKn+wPt3+nu8T+0su4+849x+Ccv3+ZvXf+IVDM+guQc+oMno
https://paperpile.com/c/QS2PP1/ZPKn+wPt3+nu8T+0su4+849x+Ccv3+ZvXf+IVDM+guQc+oMno
https://paperpile.com/c/QS2PP1/ZPKn+wPt3+nu8T+0su4+849x+Ccv3+ZvXf+IVDM+guQc+oMno
https://paperpile.com/c/QS2PP1/ydnf
https://paperpile.com/c/QS2PP1/Yrf6
https://paperpile.com/c/QS2PP1/7OJH
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general concept is the context of a recording of neural activity. Context may be defined as 

any external observable such as stimulus or behavior. Because separability and initial 

conditions are not broadly generalizable, alternative interpretations of attractor-based 

encoding are needed. The need for alternative attractor network methods motivated the 

development of dynamical discrimination. As explained in chapter three, even if the true 

parameters of a dynamical system are fixed, approximations will show variability if they 

are fitted to behavior in a small region of state-space or a brief portion of a single 

trajectory. This is the property we exploit to define a basis for examining the neural code of 

attractor networks.  

Scale-Freeness Implies that Large Scale Neural Dynamics may be Efficiently 

Represented in Small-Scale Activity 

Having recounted the attractor network description for unfolding neural activity and the 

neuroscientific realities complicating identification of attractor network based neural code 

we can communicate the significance and impact of current and future work with 

dynamical discrimination. The study of criticality and dynamical systems have an 

important point of intersection. For many nonlinear dynamical systems changes to their 

parameters can cause large changes in their behavior. In particular, a dynamical system 

may contain points in state space where the derivative vanishes, these are called fixed 

points. Behavior near a fixed point can converge towards it (in which case it is an 

attractor), diverge away from in it in all directions, or diverge away in just a few directions 

(called a saddle point) or can oscillate around it. If one or more parameters are changed 

and then the number of fixed points change, or the behavior of a fixed-point changes then 
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those parameter value changes produce a “bifurcation” (Strogatz, 2018). The exact values 

ODE parameters at the point of change defines the critical point of a bifurcation. This 

analogizes to phase transitions. Scale-freeness also emerges at the critical point of a 

dynamical system bifurcation and RG procedures are defined for both bifurcations and 

phase transitions (Sfondrini, 2012; Gurau et al., 2014). 

The attractor network paradigm is the primary application of dynamical systems to neural 

code. Because the origins of criticality are still undetermined possessing the ability to study 

both criticality and attractor networks with the same dataset is unprecedented. With the 

advent of dynamical discrimination this is now possible in whole-cell recordings as well as 

population recordings. Reasons to combine attractor network theory with the study of 

criticality go beyond the superficial. As explained above and in chapter two, an RG 

operator, which analogizes to neural-action, is a basic kind of classifier. Recall that RG 

operators coarse grain and rescale systems and for systems at the critical point they make 

statistically identical copies. For the kinds of systems studied with RG operators physicists 

define an “order parameter” that identifies which side of a phase transition the system is 

on. If a system is not at the critical point of a phase transition but is extremely close it will 

nonetheless be to one side or the other of the phase transition. Iterative applications of an 

RG operator produce systems that are successively more clearly away from the phase 

transition as indicated by the order parameter. Thus, after enough iterations the order 

parameter can act as a label indicating the phase of the original system. If a layer of a neural 

network is RG-like and recurrently connected, then as time passes activity becomes 

successively more distinct and characteristic of the initial conditions or context. 

https://paperpile.com/c/QS2PP1/82yF
https://paperpile.com/c/QS2PP1/oobc+ExNT
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The most motivating element of this comparison between the study of neural criticality and 

attractor networks is the question of what happens if a neural network is provided 

uncertain inputs (e.g. an image of an octopus in a network only trained for cats and dogs). 

The RG paradigm suggests this would be like iterating on a critical system, each time point 

of neural activity would be just as inscrutable as the first but would never repeat. The 

attractor network paradigm would suggest that the activity would never converge to an 

attractor (since there are only cat attractors and dog attractors in this analogy). In more 

complicated systems an attractor network may assign a default attractor. If no default 

attractor is defined, then the only kind of meandering never repeating activity known to 

dynamical systems is chaos, which is also associated with the critical point of a bifurcation. 

This association between ambiguous inputs or context and signatures of criticality has 

evidence to support it. Signatures of criticality may not be universally present. Researchers 

have repeatedly found that these signatures are stronger and easier to detect during 

spontaneous activity (Hahn et al., 2010, 2017; Arviv et al., 2015). Because of the close 

parallels between the properties of RG operations and neural action, and the close parallels 

between phase transitions and bifurcations it seems that criticality and the neural code 

intersect in studies of a single-neuron’s perspective of the neural code. The work presented 

in this dissertation may be incremental in unlocking the mysteries of the neural code.  

4.1.3 Aim Three: Demonstrate the Appropriate Use of Machine-Learning to 

Test Scientific Hypotheses  

Aim three is separate from the scientific questions about criticality and neural code. Our 

third aim is important to the practice of science in general but methods for finding neural 

https://paperpile.com/c/QS2PP1/aHVZ+KxCC+ifgy
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code more specifically. Most studies of neural code involve machine learning to perform 

the actual decoding that links a representation of neural activity to the external variable 

presumed to be encoded in that activity. There are a handful of machine learning 

algorithms used for this purpose, few are intended as models of brain function. Consider 

the popular support vector machine (SVM) algorithm (Cristianini et al., 2000). The SVM 

defines a function relating each point of data inputted to it to a hyperplane. It then varies 

the choice of hyperplane to optimize a function. In the case of binary classification, the 

function is optimum when the hyperplane efficiently separates the two classes. Data points 

that are above the plane are predicted to be of one class, and data points below it are 

predicted to be the other. If the classes are not able to be separated with a flat plane the 

SVM can be extended to include non-linear transformations of the original data to 

represent the data in a way that is linearly separable. The SVM has seen great success when 

applied directly to neural data (Mourão-Miranda et al., 2007). The ability of the SVM to 

perform a quality classification or regression when you provide it one data set, and not 

another data set indicates that the second data set may lack useful information. 

Unfortunately, there are many choices in the SVM algorithm, these choices can reverse the 

situation. What’s more, a different algorithm may perform differently all together, even 

making excellent predictions in both cases. This is a consequence of the famous “no free 

lunch theorem” (Wolpert, 1996). To completely settle whether two data sets differ in their 

information content one would have to test all possible forms of all possible algorithms. 

Even if that were accomplished a core problem remains. Information cannot be created or 

destroyed, but it can be converted to more or less usable forms. Just because a very clever 

algorithm proved that neural activity in a specific neural system has information about 

https://paperpile.com/c/QS2PP1/8H9C
https://paperpile.com/c/QS2PP1/P6uT
https://paperpile.com/c/QS2PP1/nvgu
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some experimental variable does not prove that the information is useful for that system, 

or even for the researcher. For example, a clever enough algorithm might be able to use the 

vibrations on the driver-side headrests of cars to precisely predict speed. Such an 

algorithm tells us nothing about the governing principles of automobiles, even if we 

compare driver-side headrests to passenger-side headrests. When researchers use the 

incredible power of modern machine learning, questions about whether one data source 

can be used to predict another become less useful and potentially misleading. Clearly an 

alternative way to include machine learning in the process of scientific inference is needed. 

We provide an example of this approach, which we call hypothesis-dependent machine 

learning.  

Hypothesis-dependent machine learning prescribes that researchers create bespoke 

algorithms built around a scientific hypothesis such that the success or failure of the 

algorithm depends on the applicability of the hypothesis. This is a microcosm of scientific 

inference itself. In the general practice of science, a hypothesis is proposed then predictions 

are made and then they are tested. If the predictions are wrong, then the hypothesis is 

revised and tested again. This repeats until a test either provides a fundamental flaw with 

the hypothesis, or until the hypothesis evolves into a theory that works. A hypothesis 

dependent machine learning algorithm is limited to tweaking the parameters of a model 

(i.e. a hypothesis) describing raw data and then using the model for a quantifiable purpose 

and using the results to inform the next round of tweaks. This is vastly constrained when 

compared to a non-linear SVM or deep-learning approach which is free to tweak millions, 

or billions of parameters and find any solution to the problem a researcher codes for it. In 
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our case the hypothesis was that neural code is describable with dynamical systems theory 

and the information is contained in the forces governing the evolution of neural activity 

and not necessarily in a snapshot of activity. We compared it to two alternative 

formulations which depend on snapshots of neural activity, deflection from baseline and a 

silhouette method: Maximum Likelihood Estimation given the shape of an inferred neural 

activity trajectory. The complexity of the machine learning algorithm in its entirety was 

separated from the simplistic core element: modeling neural trajectories with ODEs. Thus, 

we were able to test principles of neural code by using carefully crafted and useful 

representations of neural data. These representations (coefficients of ODEs) are certainly 

not useful to the neurons themselves (we showed that the neuron’s presumed function as a 

feature detector is consistent with deflection from baseline). Regardless, the additional 

benefits of hypothesis-dependent machine learning, which we invite explore, stem from its 

utility in revising the hypothesis as the human defines it but with super-human flexibility. 

Our ODE coefficient matrices showed striking similarities across cells which we have only 

begun to investigate and interpret. Therefore, our dynamical discrimination algorithm 

provides an example of leveraging machine learning to meet the unique challenges of data 

analysis in neuroscience while avoiding the pitfalls of over-interpretation. 

4.2 Future directions 

The work presented in this text prepares fertile ground for future investigations. Our 

dynamical discrimination algorithm is ready to be applied to neural data in experiments 

that may illuminate the effects of criticality and sharpen the focus on neural code. There is 
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room for improvement in dynamical discrimination itself that promises to enable deeper 

and more varied insights into dynamical systems perspectives on brain function. While 

critical averaging, an insight emerging from our modeling work, parallels many important 

themes in both the study of neural code and criticality and is ready for additional 

investigations. 

4.2.1 Expanding Neural Code and Criticality Comparisons 

We have established that whole-cell recordings can evince both subtle changes in the 

factors governing neural trajectories and indistinct signatures of cortical state. The next 

course of action is to apply the same methods to more situations. Since the ODE models we 

fitted are amenable to linear stability analysis (Strogatz, 2018), (the main vehicle by which 

bifurcations are detected in analysis of nonlinear dynamics) then it makes sense to 

combine them with studies of criticality. For population recordings where criticality is 

believed to be modulated by an experimental manipulation the side-by-side comparison of 

fitted ODEs to measures of consistency with criticality would be both straightforward and 

informative. Earlier we highlighted similarities between the critical point of bifurcations 

and phase transitions more broadly. In chapter three we showed that the coefficients of 

ODEs may reveal distinct dynamical regimes because the coefficients of ODEs fitted to 

trajectories coinciding the with least and most preferred stimulus led to greater 

discriminability than for trajectories paired with less salient stimuli. Thus, ODE coefficients 

that allow the prediction of the presence of criticality would indicate that criticality in 

https://paperpile.com/c/QS2PP1/82yF
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neural systems has measurable consequences for the attractor network paradigm and may 

even indicate that criticality is dynamical in nature.   

More generally the prospect of applying dynamical discrimination to dimensionality 

reduced population recordings affords a new method for testing the attractor network 

paradigm in situations where it hasn’t been applied before. All applications of dynamical 

discrimination involve the choice of hyperparameters such as the number of dimensions to 

include. This is a time-consuming process, but we show how to do it in chapter three. One 

of these situations is simultaneous or dual recordings. The ODE’s used for dynamical 

discrimination can accept driving terms. Therefore, a population recording in one region 

paired with an LFP recording in a distant region can be used to understand the impact of 

the distant region on the factors governing behavior in the region subject to population 

recording. To do this a research would fit an ODE to intracellular recordings but the ODE 

would have an extra set of variables corresponding to the LFP recording. This is similar to 

how injected current is an additional variable in the two-dimensional Fitzhugh-Nagumo 

ODE.   

Applying dynamical discrimination to population recordings also offers the ability to test 

neural code theories if paired with whole-cell recordings (not necessarily simultaneously). 

If an activity pattern of any kind is observed in a population and believed to be a useful 

component of the brain’s intrinsic neural code, then dynamical discrimination (or other 

approach) should be able to predict the occurrences of that pattern from intracellular 

recordings of neurons that receive most of their inputs from that population. Often these 
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neurons are within that same population, but not necessarily. The format of these 

predictions could be simple labels (e.g. epochs where one community or ensemble 

dominates). Alternatively, a researcher could fit ODEs to population recordings and map 

them to ODEs fitted to intracellular recordings. If done asynchronously (or in different 

animals) researcher would then repeat the experiment with and without the conditions 

designed to elicit the pattern they thought they had observed and use dynamical 

discrimination on whole-cell recordings to predict whether those conditions were present. 

If the relationship between the ability to discriminate conditions matches the presence or 

absence of the pattern, then it suggests that the pattern is strongly represented in intrinsic 

neural representations. If done synchronously a researcher can directly predict the pattern 

from the ODE coefficients. One additional, promising approach is to create a time-series 

variable that summarizes the population activity. This variable could be integers that 

denote which ensemble is present, or a multivariate time-series of the average activity of 

more than one ensemble. The researcher would then use it as an input when fitting ODE 

coefficients (just like the LFP case) and explore how and whether it changes the form and 

accuracy of the fitted ODEs.  

4.2.2 Improving and Extending Dynamical Discrimination Methods 

There are many open questions and areas for improvement with dynamical discrimination. 

Chief among these would be the ability to interpret the ODE equations. We intentionally fit 

to brief snippets to get crude approximations because this led to better variability and 

consequently, discrimination. Thus, there is little expectation that these are universal 

models of neural dynamics. Nonetheless, the trajectories were oscillatory and, when 
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viewed straight down the axis of rotation, looked somewhat like Fitzhugh-Nagumo phase 

portraits (Izhikevich and FitzHugh, 2006). We tried to drive Fitzhugh-Nagumo model 

neurons with known sinusoidal dynamics in the hopes that dimensionality expansion 

would clearly separate them, with two dimensions corresponding to the Fitzhugh-Nagumo 

variables and two dimensions corresponding to the sinusoid variables. We found that the 

dimensions mixed and could not be easily separated. We tried some attempts to learn an 

orthogonal projection matrix as an alternative to PCA that let us project the time-delay 

over-expansion (see chapter three) onto four dimensions. The goal was to have Fitzhugh-

Nagumo equations fit well to the first two dimensions and leave the remaining two free 

while still concentrating the variance. We hoped that this would lets us fit ODEs that 

captured the Fitzhugh-Nagumo and the sinusoid coefficients. These attempts were 

unsuccessful, but if methods could be found to carry out such a transformation then it 

would be the first step to intentionally separating intrinsic neural dynamics from input 

dynamics. The ODEs governing input dynamics would then be suspected to match ODEs 

that might be fitted to the input population. Since we never fitted ODEs to an input 

population this could still be the case.  

Another approach to improving the interpretability of the ODEs is a small change to the 

genetic algorithm that fits them. There are four ways to do this.  Currently we perform 

classification by looking at all ODE coefficients. However, human beings favor analysis of 

dynamical models in which only one or two parameters are related to an experimental 

variable. An example would be a coefficient whose magnitude changes as the sine of the 

orientation of a drifting grating. The first way to produce this effect would be to force the 

https://paperpile.com/c/QS2PP1/8bCv
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genetic algorithm to make predictions using just one or two coefficients. Currently we 

predict drifting gratings from the entire set of coefficients. An experimenter might then plot 

a relationship between the coefficients that the genetic algorithm has isolated and the 

stimulus features that varied. A second way to improve the interpretability of the ODEs 

would be for an experimenter to make a guess about an ODE form and force the genetic 

algorithm to include it in its fits. A third way is to measure the mutual information between 

each coefficient and the stimulus variable. We did his but did not find any coefficients that 

stood out. If we had it would, we would have tried to define a relationship between the 

value of the coefficient and drifting grating variables. Lastly, the fourth way to improve the 

interpretability of the ODEs would be to change how classifications are made. Rather than 

learning one ODE for all recordings for each cell (pooling all the trials) the genetic 

algorithm might learn one ODE for each group of recordings coinciding with each stimulus 

(separating trials by stimulus). After doing this a researcher might use the time-points of 

an unexamined recording (a holdout set) as initial conditions for integrating each of the 

stimulus-matched ODEs. The ODE that makes the best prediction corresponds to the most 

likely stimulus (or other external variable). We tried this using the coefficient of 

determination between real and predicted derivatives but did not get satisfactory results. 

However, it was early in algorithm development and we made other improvements that 

may see this approach work. Additionally, one could use different standards. One could 

modify the measure of goodness of fit to see how well the ODE predicts the actual 

trajectory, rather than trajectory derivatives. One could, see what fraction of initial 

conditions diverged or converged to extinguishing points. If an algorithm based on this 



181 

approach succeeds then the analyst will have uncovered different ODEs for different 

conditions and may be able to discover a relationship between them.  

4.2.3 Critical Averaging Robustness and Relationship to Homeostasis and 

General Computation 

A key aspect of our modeling investigation provided an understanding for why the profiles 

of single cell membrane potential fluctuations would closely match the profiles of neuronal 

avalanches. We demonstrated that the same condition that gives rise to critical branching 

in our model also produced what we called “critical averaging” where each neuron’s 

instantaneous firing rate approximates the population firing rate of its inputs. Importantly 

we found that the critical averaging condition held even when we could not show this for 

the critical branching condition (e.g. in the presence of inhibition). Even though this 

condition is the same as the condition for criticality in models without inhibition it is not 

analytically demonstrated that it is sufficient to produce criticality in models with 

inhibition or with different connectivity structure. Numerical modeling showed that 

networks with inhibition are likely to be critical. Furthermore, critical averaging is by 

definition a self-regulating constraint that parallels models of homeostasis (Hsu and Beggs, 

2006; Pozo and Goda, 2010), and it is also a computational relationship between the inputs 

to a neuron and its output. Therefore, important future work would be to explore four 

important topics. First, whether the critical averaging condition is robust to diverse 

network architectures such as highly clustered, small world and the distribution of 

inhibitory neurons.  Second, whether the critical averaging condition analytically implies 

neuronal avalanches that obey the power-law predictions of criticality. Third, whether 

https://paperpile.com/c/QS2PP1/zNPQ+JNBb
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critical averaging can be a general result of plasticity mechanisms especially those 

associated with homeostasis and criticality. Fourth, analytical and modeling studies into 

whether a network whose neurons are constrained to a critical averaging type neural-

action can serve as universal function approximators and whether these networks have 

universal properties consistent with RG and critical systems theory.  

The first and second additional topics, the robustness of the critical averaging condition to 

diverse network architectures and whether it analytically implies signatures of criticality, 

can be investigated quite efficiently. In chapter two we use elementary mathematical 

statistics to capture the expected values and variability of piecewise uniform distributions. 

These distributions govern connection probability and connection strength. To ascertain 

whether the firing rate of a single neuron approximates its inputs we calculated the 

expected firing probability given these distributions and patterns of spiking. This mirrors 

work that originally established the dual condition (critical branching) and demonstrated it 

yields a directed percolation critical system (Larremore et al., 2011, 2012). Different 

network architectures correspond to different connection probability distributions 

(Newman, 2018). Hence testing network architectures can proceed similarly with 

elementary mathematical statistics (Gubner, 2006). The first step would be to show there 

exists a set of parameter choices that allow critical averaging, this is sufficient to establish 

robustness. The next (and last) step is either to show that these parameter choices results 

in avalanches that have the power law size and duration distributions associated with 

directed percolation, or to show that the critical branching condition is also satisfied. In 

order to demonstrate critical branching in a clustered network one would have to consider 

https://paperpile.com/c/QS2PP1/jvIY+4aiC
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that neurons in the same cluster are more correlated relative neurons in different clusters. 

Having analytical results for these claims would greatly bolster the promising model work 

we have initially conducted.  

The third and fourth topics, connecting critical averaging to plasticity mechanisms and 

computational paradigms permit analytical solutions, but modeling is an ideal strategy for 

investigation. Many plasticity mechanisms such as STDP obey differential equations that 

approach an equilibrium and may permit quasiperiodic solutions (Effenberger et al., 2015; 

Soloduchin and Shamir, 2018). Because they use more complicated neuron functions (LIF, 

Izhikevich, etc.) finding the firing rate relationships implied by the steady state weights 

involves solving high-dimensional dynamical systems that likely do not permit unique 

solutions. Therefore, a modeling approach is prudent. Once a researcher has found 

plasticity mechanisms that produce critical averaging, they would then perturb the 

network and investigate homeostasis. It would be important to test whether critical 

averaging is consistent with multiple homeostatic mechanisms. A popular mechanism is 

synaptic scaling (Turrigiano, 2008), which proposes that synaptic strengths are modulated 

such that the postsynaptic neuron’s firing rate neither greatly exceeds nor falls short of the 

presynaptic population firing rate. This seems likely to produce critical averaging but is not 

the only way. For critical average to produce conditions congruent with critical branching, 

a neuron’s firing rate must only approximate the firing rate of any other group. It is 

reasonable to assume that the group forms direct inputs to that neuron, but this isn’t 

necessarily the case. Because the matter has not been investigated there is no reason to 

discount the possibility that the group governing the firing rate of a given neuron could 

https://paperpile.com/c/QS2PP1/bL20+NI4X
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vary in time. Thus, many homeostatic mechanisms, even those that are not cell-intrinsic 

(Marder and Prinz, 2002; Turrigiano, 2011; Benucci et al., 2013; Hengen et al., 2013) may 

nonetheless result in critical averaging. Should critical averaging prove a useful concept for 

neural computation it would also be advantageous to understand how critical averaging 

could work with groups far removed from the neuron of interest. We just outlined ways to 

investigate the third critical-averaging related topic, next we explore how to investigate the 

computational implications. 

Two computational ideas may play a role in understanding how a seemingly simple effect, 

like critical averaging, could result from rich and complex neural-actions. The first is the 

venerable idea of neurons as feature detectors in the visual system (Martin, 1994). Should 

a group of neurons be more likely to fire when the feature is more likely to be present then 

their individual firing rates may be unreliable, but their average firing rate becomes more 

reliable as the size of the group increases. For more complicated visual features that may 

be composites of rudimentary features an average across multiple simple-feature-

associated neural groups reveals the likelihood of the composite feature. The idea of 

feature detectors has been challenged and elaborated on in the decades since it was first 

proposed resulting in computational paradigms such as predictive coding or efficient 

coding (Friston and Kiebel, 2009; Huang and Rao, 2011; Denève and Machens, 2016) but it 

serves as a basis for understanding how an averaging operation can perform useful tasks 

such as distilling information about a visual scene.  
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The second computational idea that may help understand how a simple effect like critical 

averaging can fill a complex computational need is borrowed from the study of large-scale 

brain networks. The searchlight hypothesis (Crick, 1984; McAlonan et al., 2008) which 

proposes that feature integration does not operate on the entire visual scene at once, but 

rather the visual system directs its energy to important regions. There is not a priori reason 

the concept of time-varying selectivity can’t be applied to smaller scale systems. 

Neuroscience has already discovered that the sensitivity of individual branches of the 

dendritic arborization can be modulated (Branco and Häusser, 2010; Legenstein and 

Maass, 2011). Thus, complex phenomena within the dendritic arborization can shift the 

averaging process between various subgroups. In other words, a neuron’s firing probability 

might match that of one sub-group of its inputs in one moment and then match the firing 

probability of a different sub-group in a different moment. Should the critical averaging 

condition be robust to this kind of time-varying aggregation then it would be plausible as 

both a general computational concept and an origin for the observations of criticality. To 

test whether critical averaging is compatible with general computation a researcher would 

implement it in neural networks designed to perform computations. Since critical average 

has a simple implementation in the models used in chapter one (weights rescaling) it is 

elementary to both enforce this condition and define backpropagation for both 

feedforward and recurrent versions. One simply switches from stochastic firing events to a 

rectified linear neuron activation function which makes our model very similar to the 

Restricted Boltzmann Machine (Nair and Hinton, 2010). Thus, it can be trained to perform 

computations. Then the researcher switches back to stochastic neural activation. Existing 

methods can also be adapted to test time varying aggregation. Current recurrent neural 
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networks exist which can detect sudden changes in their inputs. Researchers can use that 

feature to switch between different classification networks that all have critical averaging 

implemented. Regardless of classification, the idea of switching network connectivity 

structures in the midst of an ongoing simulation is one way to test the robustness of critical 

averaging to time-varying aggregation. Examining the spiking statistics of the combined 

networks for consistency with criticality would be an effective test of the critical averaging 

condition.  

4.3 Conclusion 

In conclusion, we have satisfied our three aims: To expand and clarify the study of scale-

freeness and criticality in neural systems, to articulate intrinsic representations of neural 

dynamics and neural code, and to demonstrate the appropriate use of machine-learning to 

test scientific hypotheses. The work in this dissertation, and the software to reproduce it 

lays a solid foundation for progress. Critical averaging offers a coarse-graining based 

perspective on computation that may allow fruitful insights into the origins of scale-

freeness, homeostasis, and self-organized criticality. Dynamical discrimination offers a 

simple tool for investigating the attractor network paradigm for neural code. With these 

works, and these prospects physics and neuroscience have come together and will continue 

to come together as we investigate criticality in neural systems and dynamical attractor 

based neural codes.  
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Appendix 

A.1 Dynamical Discrimination as Timeseries Classifier: 

Performance and Additional Insights 

We offer a new method for analyzing electrophysiological data that brings neural 

population analysis to single whole-cell recordings. However, the same methods can be 

applied to any single-unit recording and the method can be easily adapted to multi-unit 

recordings. Applying discrete labels to time series of any dimensionality is a form of 

trajectory classification (Maharaj et al., 2019). Examples include predicting the final 

destination of a vehicle based on a small sample of it’s path (Lee et al., 2008), or identifying 

a fundamental particle from its path in a bubble chamber (Hough, 1959). There are as 

many methods as applications. For neural data the goal is often to predict what stimulus 

(Laurent, 2002; Mazor and Laurent, 2005; Saha et al., 2013) or behavior (Churchland et al., 

2012; Gallego et al., 2017; Pandarinath et al., 2018) co-occurred with the neural recording, 

but it could also be used to examine the impact of other experimental manipulations or 

observations. In brief all methods of trajectory classification seek to reduce trajectories to 

small sets of numbers which either correspond to a physical property (e.g. mass) or which 

is still abstract but small enough to train a standard classifier on. Since trajectories contain 

very large amounts of data (one data point for each dimension for each point in time) one 

would require very many examples if they used the whole trajectories as training data for a 

classifier such as a support vector machine, random forest, or neural network. These steps 

https://paperpile.com/c/QTeB8o/C2wJ8
https://paperpile.com/c/QTeB8o/ae5Hd
https://paperpile.com/c/QTeB8o/SIMun
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https://paperpile.com/c/QTeB8o/WWH0j+6jGAf+6A7iJ
https://paperpile.com/c/QTeB8o/WWH0j+6jGAf+6A7iJ
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can be avoided by using recurrent neural networks such as LSTM, where it is known as 

“sequence classification” (Kawakami, 2008). However, this usually requires large amounts 

of data to train on and is not model-dependent, therefore not easily interpreted or 

manipulated to gain additional insights. Attempts to use them for our whole cell recordings 

were not satisfactory. The trajectory classification approach we developed is an exciting 

new process because an experimentalist can test a hypothesized relationship by testing 

whether expected information is “encoded” in the dynamical rules governing the trajectory.  

The method we use is an adaptation of the Sparse Identification of Nonlinear Dynamics 

(SINDy) algorithm (Kawakami, 2008; Kaiser et al., 2018). This is rooted in more than 

convenience but in the attractor network theory of brain function. This framework seeks to 

model the brain as a network of dynamical nodes (a very high dimensional nonlinear 

dynamical system). With this perspective any neural response to stimuli with any degree of 

stereotypy is considered an attractor. The state space actually explored by the attractor is 

usually found to be a small fraction of the possible state-space, if possible state space is 

defined as an N-dimensional space where each dimension corresponds to the firing rate of 

each of the N-neurons. The much smaller subspace which is actually explored is often 

referred to as a neuronal manifold (Kawakami, 2008; Gallego et al., 2017; Kaiser et al., 

2018). Currently the most common way to try to visualize and quantify this low-

dimensional manifold is through dimensionality reduction on high-dimensional recordings. 

The use of nonlinear methods of dimensionality reduction have been able to reduce the 

dimensionality of neural data much further than linear methods such as PCA or SVD, and 

arguments have been made that nonlinear dimensionality reduction is a more faithful 

https://paperpile.com/c/QTeB8o/jHUTJ
https://paperpile.com/c/QTeB8o/jHUTJ+rgqJq
https://paperpile.com/c/QTeB8o/jHUTJ+rgqJq+6jGAf
https://paperpile.com/c/QTeB8o/jHUTJ+rgqJq+6jGAf
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representation of the functionally relevant mechanisms (Gallego et al., 2017). An 

alternative is to expand one-dimensional recordings to a moderate dimensional space 

consistent with neuronal manifolds. The theory of non-linear dynamics offers some 

guarantees that this can be done, through the Whitney and Takens delay embedding 

theorems (Sauer et al., 1991). Delay embedding theorem guarantees that we can capture 

the high dimensional dynamics by observing any single dimension. Nonetheless it is 

unclear what information is lost as the neuron samples upstream populations, thus the 

relationship between dimensionality expansion on whole-cell recordings and the dynamics 

obtained through dimensionality reduction is unclear. Fortunately our core inference 

mechanism is estimation of ordinary differential equations (ODEs) and ODEs can be fit to 

either dimensionally reduced or dimensionally expanded data. Therefore, if an analyst is 

using dimensionality reduction on multi-unit data and already has trajectories in a putative 

state space then the methods that follow apply without modification. 

In the study of nonlinear dynamics it is usually the case that the dynamics near an attractor 

are simpler than the dynamics describing the rest of state space. For example, in a system 

with many dimensions choices of model parameters and/or initial conditions near a limit 

cycle may be well approximated with simple harmonic motion whereas parameters at a 

bifurcation, or initial conditions far from a limit cycle may exhibit complex orbits (Strogatz, 

2018). This last simplification is what we depend on most for our method to work. We 

estimate the derivative of each dimension of our trajectories and we test numerous forms 

of 3rd order polynomial differential equations until we find a system of equations for each 

cell that has few terms but gives us the best ability to predict what stimulus co-occurred 

https://paperpile.com/c/QTeB8o/6jGAf
https://paperpile.com/c/QTeB8o/MDa4v
https://paperpile.com/c/QTeB8o/Jyy3d
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with each recording of a trial. We also explore models that are focused purely on goodness 

of fit and not classification. The fitting procedure is a least squares regression between 

selected polynomial combinations of our trajectory dimensions and the estimated 

derivatives. However the selection of terms is carried out with a genetic algorithm (see 

methods). The result is that by taking the attractor computation perspective and fitting 

crude ODEs to short-duration dynamics we are able to produce a representation (the 

coefficients of ODEs) of single whole cell recordings compact enough with 12±1.5 real 

numbers (median ± half interquartile range) that we can train a classifier with 68 ± 18.75 

total trials per cell and only 11± 2.5 samples of each type of stimulus for each cell with 

either 6 or 8 unique stimuli per cell. This representation is small enough that we can now 

perform classification despite having few trials.  

Because we are performing trajectory classification to identify stimulus by finding systems 

of differential equations we call our process “dynamical discrimination”. However, in order 

to perform the final classification step we need a classifier. Sometimes, (e.g. particle 

detectors) the compact representation are basic physical properties like mass and charge 

(Hough, 1959; Strogatz, 2018), and we need only to look it up in a table. In our case we 

have an abstract compact representation and have to create that look up table ourselves by 

training a random forest classification algorithm (Hough, 1959; Breiman, 2001; Strogatz, 

2018). A random forest is an ensemble of decision trees. Each tree is a straight-forward 

conditional look-up table. The trees in the forest “vote” on the correct label to apply. This is 

among the simplest types of classifiers to use and is able to handle nonlinear problems. The 

trees are trained by taking a subset of the data that has already been labeled and finding 

https://paperpile.com/c/QTeB8o/Jyy3d+SIMun
https://paperpile.com/c/QTeB8o/Jyy3d+SIMun+68Sh2
https://paperpile.com/c/QTeB8o/Jyy3d+SIMun+68Sh2
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patterns between the labels and the compact representations. The random forest is tested 

by seeing if those patterns allow a flow chart of true/false tests that ends with the 

assignment of correct labels for data that was not used for training. 

Traditionally, neuroscientists have sought scalar summaries of intracellular recordings 

with the purpose of predicting a single neuron’s firing rate under the assumption that this 

is the most useful goal of single neuron observation (Wolfe et al., 2010). The membrane 

potential of our neurons fluctuated between -72 mV and -62 mV in the absence of visual 

stimulation. Within 100 ms of activating a stimulus (an image presented on a screen) the 

cell membrane depolarizes by an amount which depends on many factors. The primary 

factor is whether the stimulus is a “preferred stimulus” for a neuron (Butts and Goldman, 

2006). A preferred stimulus is one which is more likely than others to induce action 

potentials from that neuron. So if a neuron happens not to fire an action potential upon 

presentation of a preferred stimulus the amount of depolarization of membrane potential 

should still be greater than for less preferred stimuli. It is well established that the amount 

of depolarization correlates strongly with firing rate and depolarization can be used as a 

proxy for firing rate when estimating feature selectivity (Carandini and Ferster, 2000; 

Butts and Goldman, 2006). This interpretation is frequently carried over into voltage-

clamp recordings of inhibitory or excitatory transmembrane current (Ferster, 1986). In 

these cases the term “deflection” rather than depolarization is more general so for 

simplicity we use deflection when discussing all signals. Deflection captures the difference 

in mean signal value during and not-during stimulus presentation. By using deflection we 

https://paperpile.com/c/QTeB8o/2mr7E
https://paperpile.com/c/QTeB8o/sYVu1
https://paperpile.com/c/QTeB8o/sYVu1
https://paperpile.com/c/QTeB8o/sYVu1+wF677
https://paperpile.com/c/QTeB8o/sYVu1+wF677
https://paperpile.com/c/QTeB8o/XGXgl
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can compare with the previous accomplishments and understanding of whole-cell 

recording analysis which used the same or similar measures (Adesnik, 2017). 

The following table breaks results down the results of our dynamical discrimination 

algorithm by each kind of recording and stimulus. Given the cell -to-cell variability that 

exists it is necessary to judge whether the median value is indicative of the category 

behavior and one can expect to get the same results with other data sets. To that end we 

subtract the chance level of performance and use the Wilcoxon signed rank test (Wilcoxon, 

1992) to judge whether the median is better than chance and report on the effect size rsdf 

(simple difference formula (Kerby, 2014) and its p-value. This table verifies the 

annotations of significance reported in figures 3, 4, and A.9. 

https://paperpile.com/c/QTeB8o/iSwvN
https://paperpile.com/c/QTeB8o/HyEqD
https://paperpile.com/c/QTeB8o/HyEqD
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Table A.1 | Summary of results for all algorithms and all categories. This table supports the claims and data 
summarized in Figure 3 and Figure 4 from the main text and Figure A.9 by summarizing comparative 
algorithm performance broken down by data category. Rows are grouped by data category as named in the 
first column. The next column lists algorithm names. The next two columns give the median correct 
classification rate (CCR) and the number of recordings (N). The next ten columns show either the effect size 
(rsdf) or the p-value for a one-tailed Wilcoxon signed rank test of the hypothesis that CCR was greater for the 
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algorithm named on the row than the algorithm named on the column. The last two columns compare to 
chance performance which was 1/8 for orientation and 1/6 for size or contrast.  

The data categories that we included in table A.1 have scientific interest, but by pooling 

data from related categories we can gain clarity about specific variables. In particular, by 

pooling across recording types but controlling the stimulus variable we can separate 

different aspects of population dynamics. For all pooled orientation categories we get a 

median correct classification rate (CCR) of CCR=0.2156 (greater than chance by Wilcoxon 

signed rank: rsdf=0.218, p=0.488⨉10-4). For contrast we get CCR=0.2875, (rsdf=0.2494, 

p=5.73⨉10-11). For size we get CCR=0.3167, (rsdf=0.2405, p=2.73⨉10-12). This shows that 

while orientation information is less prominent in V1 dynamics than size or contrast, there 

is enough to be detected. By contrast, when we try to classify orientation based on 

deflection we get CCR=0.1392 (does not pass Wilcoxon signed rank, rsdf=0.1453, 

p=0.1879). This is despite the fact that we do find orientation tuning curves that are well 

defined on trial-averages and that the most and least preferred orientations do evoke 

reliable deflection responses (see Figure A.1). There is simply enough trial-to-trial 

variability among the other orientations that deflection does not inform about orientation 

well, but a dynamical perspective is less susceptible to this variability. Crucially for theories 

of neural coding we have shown that neurons do have more information than they pass 

down stream. Therefore if an experimentor wants to “listen in” on upstream populations 

they are better off using a model-based approach like dynamical discrimination than by 

using summative measures like deflection. 
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We can also categorize the data by recording type. There we see that inhibitory current 

dynamics lead to CCR=0.3167, excitatory current dynamics lead to CCR=0.2833, and Vm 

dynamics (spikes removed) lead to CCR=0.275. Interestingly, synaptic inhibition appears 

to have more stimulus related data about contrast and size than excitation (rsdf=0.067, 

p=0.0279, N=33). This underscores our key result that synaptic excitation has more fine-

grained information about orientation than synaptic inhibition, as only synaptic excitation 

passed a Wilcoxon Signed rank test for distinguishability for chance. However the dataset is 

small enough to limit our ability to make distinctions when controlling for both recording 

type and stimulus variable. When instead of comparing to chance we directly compared E,OI 

to I,OI , it did not pass the Wilcoxon signed-rank test for distinguishability. Because we have 

only 7 examples, the variability overwhelmed the relatively large effect size (rsdf=0.0875) 

and reduced confidence in the difference (p=0.1043). It is likely that a larger dataset is 

required to make definitive judgements about narrow cross-category comparisons such as 

this using dynamical discrimination alone. Nonetheless comparisons across algorithms and 

chance are confidently detected. Furthermore we can include information from other 

algorithms to support cross-category insights. For example when best-fit Ξ are used as a 

basis for discrimination we also find that for contrast and size synaptic inhibition leads to 

better discriminability than excitation (rsdf=0.058, p=4.304⨉10-3) and the same was found 

when using deflection based discrimination (rsdf=0.058, p=0.0125). The conclusion that 

inhibition generally has more stimulus information regarding size and contrast seems 

robust and highlights the uniqueness of the finding that only a dynamical interpretation 

and only synaptic excitation can reveal fine grained orientation information. 
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Lastly it is important to check that our spiking proxy (deflection) can function as a stimulus 

detector in accordance with the role that computational neuroscience theorizes for 

individual neurons in V1 that exhibit stimulus tuning. The value of tuning of neural firing is 

often theorized to be the detection of a key type of stimulus, rather than as continuously 

informing about the properties of stimulus (Keller and Mrsic-Flogel, 2018). So we tested 

whether our methods could be used to say whether a stimulus is either the preferred 

stimulus or the least preferred stimulus when presented with one or the other. We used the 

same Ξ matrices obtained before from hold-one-out out-of-sample testing, but retained 

only those fitted to recordings coinciding with presentations of the most and least 

preferred stimuli. We retrained and retested random forest classifiers on these Ξ matrices. 

Next we did the same for deflection. This a discrimination test that is very natural for 

deflection, whereas discriminating between relatively fine variations in stimuli is 

something we expect deflection to be poor at and thus motivated the development of 

dynamical discrimination. We find that deflection exhibits high variability in cell-to-cell 

performance, but generally excels. The only category not greater than chance was 

membrane potential recordings coinciding with variations in size, which had only five cells, 

leading to poor statistical resolution despite a median CCR of 0.7. The data supporting 

claims of significance in Figure A.7 are presented in table A.2. These findings confirm that 

our definition of deflection is a valid basis of comparison. Thus our extension to finer levels 

of comparison with dynamical discrimination are useful. Dynamical discrimination had a 

lower upper limit on performance. Like deflection based discrimination it had only one 

category fail to be distinguishable from chance: inhibitory current recordings coinciding 

with variations in orientation. This was also the worst performing category in our general 

https://paperpile.com/c/QTeB8o/typZt
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findings. Deflection out performs dynamical discrimination at binary discrimination tasks, 

but this not surprising given it is a natural challenge for deflection and the Ξ matrices we 

use for dynamical discrimination were extensively optimized for a different task (fine 

distinctions rather than broad ones). Finally, the usefulness of deflection for binary 

classification underscores the insight that neurons receive more information than they 

pass on to other brain regions. 

 

 

Figure A.1 | Deflection is useful as a binary discriminator in accordance with stimulus selectivity theory. a, 
Same as Figure 3b, except showing the classification ability of using dynamical discrimination when 
limiting to just the data from each cell’s least and most preferred stimulus. Distinguishability from chance 
according to the Wilcoxon signed-rank test is indicated with *. b, Same as Figure 3a except showing 
classification ability of using deflection when limiting to just the data from each cell’s least and most 
preferred stimulus. Distinguishability from chance is indicated with *, and from dynamical discrimination 
with †. 
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Table A.2 | binary discrimination data. This table gives the exact test values summarized in Figure A.1. It is 
the same as table A.1 except that only two algorithms are compared. Rows are grouped by data category, 
indicated in the first column, algorithms identified in the second. The third column contains the median 
correct classification rate (CCR). For the next two columns the Wilcoxon signed rank effect size (rsdf and p-
value) shown are for a test that the algorithm identified on the row outperformed the other algorithms in 
the same category. For example the All - DynDisc row in the rsdf column is the effect size for a comparison to 
All - DefDisc. The last two columns show a comparison to chance (CCR=1/2). 

 

A.2 Hyperparameter Optimization Reveals Epoch 

Dependence of Dynamical Discrimination 

Dynamical discrimination based on genetic SINDy requires choosing a large number of 

hyperparameters. This is discussed in methods. Some of these choices are of scientific 

merit. For example, it may seem intuitive that the steady-state of stimulus response would 
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better represent dynamics because it avoids “transients” and would therefore permit 

better dynamical discrimination. However, we found that a brief period at the beginning of 

the stimulus response allowed the highest levels of dynamical discrimination, perhaps 

supporting the findings of fast attractor dynamics in vision (Miconi et al., 2016) and belying 

the implication of calling these periods “transients” (Müller et al., 2001; Mazor and Laurent, 

2005; Bondanelli and Ostojic, 2018). Additionally, it is important from the standpoint of 

rigor and transparency that all publications which make extensive use of machine learning 

should report on the variations they tried and demonstrate that they optimized for a 

parameter that is independent of the scientific comparisons they see. Figures A.2-A.6 show 

a table of classification performance in various scenarios, including wether or not to use an 

ensemble of BΞ matrices (see methods) for classification, the regularization factor which 

influences how many non-zero elements there are in the BΞ examples, how many 

dimensions to include in the dimensionality expansion, whether to use second order 

differential equations, and finally what stimulus presentation epoch to use for dynamical 

discrimination. The data are from the cross-validation set where overfitting is also 

observed. However overfitting is stable, not contributing greatly to the variability (Figure 

2b). The final holdout performance is lower but large differences in performance are 

preserved.  

Discriminability is an experimental variable familiar to neuroscience which attempts to 

characterize the ability to classify a stimulus given a neural response and a theory about 

how information is encoded in it. It has been found that discriminability is highest at the 

early stages of a neural response, the on-epoch (Müller et al., 2001). Our analysis also 

https://paperpile.com/c/QTeB8o/2fmGg
https://paperpile.com/c/QTeB8o/S5Ddr+0mVb5+NbjLL
https://paperpile.com/c/QTeB8o/S5Ddr+0mVb5+NbjLL
https://paperpile.com/c/QTeB8o/0mVb5
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shows that discriminability is higher in the on-epoch versus the “off-epoch”, assuming our 

hypothesis about stimulus information modulating parameters of the governing dynamical 

system. This is true for all stimulus types and signal types. Importantly we also examined 

the epoch dependence of deflection and found that classification based on deflection is 

completely ineffective for the “off-epoch”. The fact that this analysis reproduces known 

details of neural computation lends credibility to the method and is novel in the sense that 

this has never been demonstrated at the single neuron level.  

We also see that additional dimensions and second order derivatives are generally not 

required. We believe that this is because the first three dimensions represent mixtures of 

variables, not single variables. This was confirmed by running FitzHugh-Nagumo 

(Izhikevich and FitzHugh, 2006) single neuron simulations driven with sine-wave current 

injection. The original dynamics have four dimensions but dimensionality expansion did 

produce two dimensions corresponding to FitzHugh-Nagumo and another two dimensions 

corresponding to a sine wave. Consider the possibility that there are multiple sets of 

subpopulations in upstream neurons and each set is independent of the other sets and each 

set has its own unique dynamics. Our dimensionality expansion method (time delay and 

SVD) is not guaranteed to separate them such that each dimension corresponds to only one 

set of subpopulations. Therefore each dimension may represent a mixture of variables from 

independent systems. Thus, dimensionality expansion would give a maximally compact 

representation and a small number of dimensions would be needed, in our case three. In 

some cases the higher dimension systems allow some improvement in classification, but 

https://paperpile.com/c/QTeB8o/LIcPH
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not a large enough difference to be confident that it would carry into final holdout 

performance, or to justify the additional computational time required.  

Lastly we also test the dimensionality reduction algorithm tried, SVD prioritizes 

orthogonality between the components it estimates. We tested it against independent 

component analysis (ICA) which prioritizes statistical independence instead. It was found 

that ICA did not perform better, though it did produce visually distinct trajectories with 

much faster dynamics.   
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Figure A.2 | Comparisons for hyperparameter optimization part one: weak regularization, SVD compared 
with ICA along with epoch and dimension options. Four 3D barcharts showing the effect of several 
hyperparameters are plotted in a grid. It is evident that the off epoch is least informative and SVD 
outperforms ICA. a, Synaptic inhibition while orientation was varied was tested in combination with ICA 
based time-delay dimensionality expansion and a weak sparseness regularization. The vertical axis is the 
correct classification rate, the color also indicates the correct classification rate to aid visual comparison. 
Fully colored planes show median values. Translucent boxes show the variability (the min and max of the 
cells tested for that hyperparameter combination). The solid colored boxes show the rate of correct 
classification by chance. The horizontal axes are labeled, giving the hyperparameters tested for each bar 
position. There are three stimulus epochs and varying options for the dimensions (columns of Ξ) to include 
when fitting. The subscript of D denotes how many first order dimensions are kept “O2” denotes that the 
fitted ODE model included second order derivatives, hence O2 D3 corresponds to a Ξ matrix with six 
columns. For each combination of hyperparameters the three cells with the greatest number of trials were 
tested. b, The same as in a except that synaptic inhibition was recorded while size varied. c, The same as in 
a except that SVD was used for time-delay based dimensionality expansion. d, The same as in c except that 
synaptic inhibition was recorded while size varied. 
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Figure A.3 | Comparisons for hyperparameter optimization part two: varied regularization and 
dimensionality reduction along with epoch and dimension options. Four 3D barcharts showing the effect of 
several hyperparameters are plotted in a grid. a, Synaptic inhibition while orientation was varied was 
tested in combination with SVD based time-delay dimensionality expansion and a weak sparseness 
regularization. The vertical axis is the correct classification rate, the color also indicates the correct 
classification rate to aid visual comparison. Fully colored planes show median values. Translucent boxes 
show the variability (the min and max of the cells tested for that hyperparameter combination). The solid 
colored boxes show the rate of correct classification by chance. The horizontal axes are labeled, giving the 
hyperparameters tested for each bar position. There are three stimulus epochs and varying options for the 
dimensions (columns of Ξ) to include when fitting. The subscript of D denotes how many first order 
dimensions are kept, while “O2” denotes that the fitted ODE model included second order derivatives, 
hence O2 D3 corresponds to a Ξ matrix with six columns. For each combination of hyperparameters the 
three cells with the greatest number of trials were tested. Comparing to Figure A.2c, and A.4a reveals that 
increased sparseness regularization continues to improve performance. b, The same as in a except that 
synaptic inhibition was recorded while size varied. Comparing to Figure A.2b, and A.4b reveals that 
increased sparseness regularization continues to improve performance. c, The same as in a except that ICA 
was used for time-delay based dimensionality expansion, and sparseness regularization is moderate. 
Comparison with Figure A.4a shows that ICA continues to underperform SVD even with higher sparseness 
regularization. d, The same as in c except that synaptic inhibition was recorded while size varied. 
Comparison with Figure A.5b shows that ICA continues to underperform SVD even with higher sparseness 
regularization. 
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Figure A.4 | Comparisons for hyperparameter optimization part 3: moderate regularization, four categories 
showing epoch and dimension dependence. Four 3D barcharts showing the effect of several 
hyperparameters are plotted in a grid. a, Synaptic inhibition while orientation was varied was tested in 
combination with SVD based time-delay dimensionality expansion and a moderate sparseness 
regularization. The vertical axis is the correct classification rate, the color also indicates the correct 
classification rate to aid visual comparison. Fully colored planes show median values. Translucent boxes 
show the variability (the min and max of the cells tested for that hyperparameter combination). The solid 
colored boxes show the rate of correct classification by chance. The horizontal axes are labeled, giving the 
hyperparameters tested for each bar position. There are three stimulus epochs and varying options for the 
dimensions (columns of Ξ) to include when fitting. The subscript of D denotes how many first order 
dimensions are kept, while “O2” denotes that the fitted ODE model included second order derivatives, 
hence O2 D3 corresponds to a Ξ matrix with six columns, and “+C” denotes that the fitted ODE model 
included a quenched noise term (four column Ξ). For each combination of hyperparameters the three cells 
with the greatest number of trials were tested. The pont D3 & “on” was chosen for final analysis. The 
colormap evinces that no other dimension and epoch choices performed significantly better given the 
variability. The “off” epoch performed poorly. Comparison with Figure A.6a and A.6c shows that sparseness 
regularization has plateaued. b, The same as in a except that synaptic excitation was recorded while 
orientation varied and only two dimension options are tested. We can see that the inclusion of a driving 
noise term did not enable significantly better stimulus discriminability given the variability. c, The same as 
in b except that synaptic inhibition was recorded while contrast varied. d, The same as in b except that 
synaptic excitation was recorded while contrast varied. 
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Figure A.5 | Comparisons for hyperparameter optimization part four: moderate regularization, four 
categories showing epoch and dimension dependence. Four 3D barcharts showing the effect of several 
hyperparameters are plotted in a grid. a, Membrane potential while contrast was varied was recorded and 
spikes were removed. The vertical axis is the correct classification rate, the color also indicates the correct 
classification rate to aid visual comparison. Fully colored planes show median values. Translucent boxes 
show the variability (the min and max of the cells tested for that hyperparameter combination). The solid 
colored boxes show the rate of correct classification by chance. The horizontal axes are labeled, giving the 
hyperparameters tested for each bar position. There are three stimulus epochs and varying options for the 
dimensions (columns of Ξ) to include when fitting. The subscript of D denotes how many first order 
dimensions are kept, while “+C” denotes that the fitted ODE model included a quenched noise term (four 
column Ξ). For each combination of hyperparameters the three cells with the greatest number of trials 
were tested. We can see that the inclusion of a noise term did not significantly improve classification given 
the variability. The pont D3 & “on” was chosen for final analysis. b, The same as in a except that synaptic 
inhibition was recorded while size varied and many more dimension options were tested. The axis mark 
“O2” denotes that the fitted ODE model included second order derivatives, hence O2 D3 corresponds to a Ξ 
matrix with six columns. The pont D3 & “on” was chosen for final analysis. The colormap evinces that no 
other dimension choices performed better given the variability. The “off” epoch performed poorly, but the 
“full” epoch performed well. Comparing to the other plots including those on Figure A.4 shows that the 
“full” response epoch did not generally perform better given the variability. Comparison with Figure A.6b 
and A.6d shows that sparseness regularization has plateaued. c, The same as in a except that synaptic 
excitation was recorded while size varied. d, The same as in a except that membrane potential while size 
was varied was recorded and spikes were removed. 
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Figure A.6 | Comparisons for hyperparameter optimization part five, varied strong regularization along 
with epoch and dimension options. Four 3D barcharts showing the effect of several hyperparameters are 
plotted in a grid. a, Synaptic inhibition while orientation was varied was tested in combination with SVD 
based time-delay dimensionality expansion and strong sparseness regularization. The vertical axis is the 
correct classification rate, the color also indicates the correct classification rate to aid visual comparison. 
Fully colored planes show median values. Translucent boxes show the variability (the min and max of the 
cells tested for that hyperparameter combination). The solid colored boxes show the rate of correct 
classification by chance. The horizontal axes are labeled, giving the hyperparameters tested for each bar 
position. There are three stimulus epochs and varying options for the dimensions (columns of Ξ) to include 
when fitting. The subscript of D denotes how many first order dimensions are kept “O2” denotes that the 
fitted ODE model included second order derivatives, hence O2 D3 corresponds to a Ξ matrix with six 
columns. For each combination of hyperparameters the three cells with the greatest number of trials were 
tested. Through comparison to Figure A.2c, A.3a, A.4a, and panel c here, we see that the impact of 
sparseness regularization is minimal beyond about α=0.2. b, The same as in a except that synaptic 
inhibition was recorded while size varied. Through comparison to Figure A.2d, A.3b, A.4b, and panel d here, 
we see that the impact of sparseness regularization is minimal beyond about α=0.2. c, The same as in a 
except that sparseness regularization is now α=0.8. Data was not collected for D6 and “on”, or any “off” 
epochs. d, The same as in c except that synaptic inhibition was recorded while size varied. 

A.3 Analysis of Dynamical Stability Underscores an Attractor 

Dynamics Interpretation 
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Figure A.7 | Scatter plots summarizing differences between stimulus conditions according to various 
indicators of bifurcations. a, The first row of plots (a and b) shows data from analyzing the fitted ODE 
which modeled the dynamics the best (best-fit Ξ). The horizontal axis is the ordinal distance from the most 
preferred stimulus. The vertical axis plots fixed point numerosity. The solid black line shows the median of 
6 deciles of ordinal distance. The left column shows a single category I,CI, which is not U-shaped and no 
significant trend is present.The right column shows the result of pooling all the data, a U-shaped trend is 
visible but upon further scrutiny it is due to combining data from cells with opposite trends, not a 
fundamental U-shaped trend for individual cells. b, Data from the Ξ matrices (ODE models) that best 
describe the trajectories are plotted. The vertical axis plots the fraction of fixed points (equilibria) whose L2 
norm of negative real-valued parts was smaller than the L2 norm of positive real-valued parts. A trend is 
present but weak. c, Same as in a except showing results from the fitted ODE that permited best 
classification (dynamical discrimination). A significant trend is present for the data from I,CI. Many cells had 
the opposite trend (not always significant). Consequentially pooling the data (plotted on the right) shows 
an inverted U. After aligning cells with opposite trends an overall trend is significant. d, Same as in b except 
showing results from the fitted ODE that permited best classification (dynamical discrimination) . No trend 
is detected. 

 

Figure A.7 shows the results of analysis of Ξ matrices pursuant to stability and bifurcation 

analysis from nonlinear dynamics. Real valued fixed points are found by solving for them 

(equating columns of Ξ to zero) with MATLAB’s symsolve computer algebra system. There 
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is no guarantee that any real-valued fixed points exist, as the system may be 

overdetermined or underdetermined. However this is rare with these data. The best-fit Ξ 

matrices yield real-valued fixed points for 99.2% of recordings, and the Ξ matrices from 

dynamical discrimination yield real-valued fixed points for 87.8% of recordings. In Figure 

A.7, (left and center columns) we see that the number of real-valued fixed points varies 

based on the stimulus coinciding with the data Ξ was fitted to. If the number of fixed points 

change when varying Ξ parameters then a bifurcation is identified. Thus we have additional 

evidence for distinct stimulus-evoked dynamics. The category of inhibitory current 

recordings co-occurring with varied contrast shows the most consistent cell-to-cell pattern. 

There is a trend toward fewer fixed points as the presented stimuli gets further from the 

preferred stimuli when looking at ODEs that permit the best classification performance 

(Spearman correlation r=-0.2372, p=0.0244, Figure A.7c), but not for ODEs that best 

model dynamics (r=-0.1520, p=0.1528, Figure A.7a). 

We also find differences in the convergence/divergence of behavior near fixed points. 

When linearized near a fixed point (where derivatives are very small) the behavior of the 

maximum eigenvalue governs the stability of the dynamics near that fixed point. If multiple 

fixed points exist we linearize around each one. If the real value of the maximum 

eigenvalue passes through zero when changing Ξ parameters then a different kind of 

bifurcation in the dynamics is identified. We plot a related concept “net convergence”, in 

the right most panel of Figure A.7 and show that it weakly depends on Ξ matrices. If the 

three eigenvalues of the Jacobian-linearization at each fixed point have both positive and 

negative real components and the L2 norm of the negative real-valued components is larger 
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than the L2 norm of the positive real-valued components then the fixed point is “net-

convergent”. The slight trend is that the fraction of fixed points that are net divergent tends 

to increase for stimuli a larger ordinal distance from the preferred stimulus. It is not 

necessary to control cell-to-cell variability to observe this effect. It is most detectable for 

best fit ODEs (Spearman Correlation, r=0.1093, p=0.0075) and not significant for ODEs 

that permit the best classification (r=0.0717, p=0.0800). This weak trend is double 

checked by performing the Wilcoxon rank-sum test to compare the median fractions of the 

data above and below the 25th and 75th percentiles of normalized ordinal distance to 

preferred stimulus respectively, (rsdf=0.1506, p=0.0049 for best fit ODEs and rsdf=0.1015, 

p=0.0419 for ODEs that permit the best classification). 

An important consideration for attempting to identify bifurcations by using linear stability 

analysis is cell-to-cell variability. While one cell may have more fixed points for the least 

preferred stimuli than for the most preferred there is no a priori reason why a different cell 

cannot show the opposite trend, or even have the same number of fixed points for the most 

and least preferred stimuli but a different number for the intermediate stimuli. This effect 

is seen in our data, and makes it difficult to gather population statistics. Consider the U-

shaped trend in the central column of Figure A.7 (A.7a and A.7c). In the first case the U-

shape trend exists for individual cells as evinced by a high correlation between reliability 

and distance from the most or least preferred stimulus (which takes the plot and “folds it 

vertically” at an individual level). That correlation showed that there is a non-monotonic 

trend. There is no such correlation for N. When all data from all cells are normalized 

without aligning trends and plotted against the normalized ordinal distance from only the 
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preferred stimulus there is an inverted U appearance. This inverted U-shaped trend is not a 

coincidence, as revealed by affecting the following change of variables on the horizontal 

axis 𝑥 = |𝑥 − 0.5| and then obtaining the Spearman correlation (r=-0.2414, p=2.248⨉10-9 

for best fit ODEs and r=-0.2171, p=8.258⨉10-8 for ODEs that permit the best 

classification). This is similar to but not the same as the ordinal distance from either the 

most or least preferred stimulus. Nonetheless this inverted U-shape is due to the fact that 

some cells have a positive trend while others show a negative trend and not because cell’s 

individually have an inverted U-shaped trend. The existence of two strong but opposite 

trends among different cells is shown to be the cause of the inverted U-shaped trend via the 

following analysis. For each cell we obtain the average number of fixed points for the ODEs 

fitted to each stimulus, denoted by 𝑁𝑖,𝑗 where i denotes the cell index and j denotes the 

stimulus index. Then we subtract out the mean, multiply by the sign of the value at the 

preferred stimulus (which aligns the trends) and add the mean back,𝑁′𝑖,𝑗 = (𝑁𝑖,𝑝/|𝑁𝑖,𝑝|) ⋅

 (𝑁𝑖,𝑗 − ⟨𝑁𝑖,𝑗⟩𝑗) + ⟨𝑁𝑖,𝑗⟩𝑗 , where p denotes the index of the preferred stimulus. Finally, we 

normalize the largest value to one 𝑁′′𝑖,𝑗 = 𝑁′𝑖,𝑗/𝑚𝑎𝑥
𝑗

(𝑁′𝑖,𝑗). Then we measure the 

correlation of these aligned trends and find a Spearman correlation of (r=-0.1907, 

p=2.658⨉10-6 for best fit ODEs and r=-0.2249, p=2.721⨉10-8 for ODEs that permit the 

best classification). Thus the aligned trends explain the correlation with distance from the 

center of the overall inverted U, and consequently evinces a bifurcation-type effect because 

of the number of fixed points changes. For some cells the preferred stimulus has fewer 

fixed points while for other cells it has more. Cell-to-cell variability is not the only factor, a 

similar factor is Ξ to Ξ variability. We independently train 45 different Ξ matrices for each 

cell and let the Ξ matrices “vote” on a correct classification. Hence, each Ξ matrix is a 
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different model of dynamics, akin to a different “perspective”. Hence different Ξ matrices 

also show different trends. For this reason we report on only the Ξ matrix which had the 

most optimal objective function value at the last generation of the genetic algorithm.  

 

Figure A.8 | Scatter plots showing how measures of noise and fluctuation size relate to deflection and 
reliability. a, A normalized measure of noise, the mean residual error after subtracting mean stimulus-
dependent response, is plotted against normalized mean deflection. Colors indicate stimulus labels 
according to deflection rank (color bar right of panels b and d). The black dashed line indicates central 
tendency: the median noise in 10 deciles of mean deflection. Unlike mean reliability, which showed a strong 
U-shaped trend (high reliability for extremes of deflection), noise decays with increasing deflection. b, 
Normalized noise is plotted against reliability. Colors are the same as in a, the dashed line are the median 
noise for 10 deciles of reliability. If reductions in noise alone caused greater reliability we would expect to 
see a trend, and do not. c, A normalized measure of fluctuation size, the coefficient of variation for time-
series points within the recording snippet, is plotted against normalized mean deflection. The pattern is 
very similar to that found in noise (panel a). Neither noise nor fluctuation size recapitulate the U-shape but 
it would be possible that they worked together if they showed opposite trends (e.g. low deflection high-
reliability is due to small fluctuation while high-deflection high-reliability is due to low noise). However, 
both fluctuation size and noise are highest for low-deflection evoking stimuli therefore they do not work in 
combination. d, Normalized fluctuation size is plotted against normalized reliability. No correlation is 
found.  
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In the main text we juxtaposed our limited findings about linear stability analysis of ODE 

fixed points with our finding that extremes of deflection evoked the most reliable 

deflections on average. This has a possible explanation in dynamics, whereby stimuli that 

evoke intermediate deflections do so because the dynamics they evoke is inherently less 

repeatable (e.g. sensitive dependence on initial conditions) or because they sometimes 

evoke the dynamics associated with the lowest deflection values and at other times they 

evoke the dynamics associated with the highest deflection values. Greater reliability would 

be due to attractors following very similar trajectories. The trajectories themselves could 

cover any range of values and start at any point in their paths. Thus one attractor could 

produce trajectories that display larger apparent fluctuations than another attractor, yet a 

path integration measure (e.g. deflection) on two of these trajectories would produce 

similar values (i.e. high reliability). Alternatively two trajectories from the same attracting 

set could have high relative error because they start at different points (e.g. phase-shifted 

sinusoids), yet again in certain situations integration of the trajectory would yield similar 

values. A counter hypothesis is that the reliability is simply due to quenched variability in a 

random process that has similar governing dynamics in any situation. In this paradigm 

greater reliability would arise because either fluctuations are small or noise (relative 

error) is small. Hence we measured fluctuation size and relative error (see methods). If 

either alone explains the reliability patterns we saw then they would anti correlate strongly 

with reliability. Neither did (see Figure A.8b, A.8d), our measure of fluctuation size 

(coefficient of variation), gave a Spearman correlation of r=-0.013, p=0.726, and our 

measure of noise gave r=-0.038, p=0.317. Noise and fluctuation size could work together 

to produce the reliability pattern if one measure was very low for small deflections and the 
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other was very small for large deflections. This was not seen either, both strongly 

anticorrelated with deflection, our measure of fluctuation size (coefficient of variation), 

gave a Spearman correlation of r=-0.5, p=8.179⨉10-45, and our measure of noise gave r=-

215, p=1.252⨉10-8. Because both measures strongly anti-correlated with deflection, 

instead of having a U-shaped trend or opposite trends, and because neither anticorrelated 

with reliability than an understanding founded on random-process origins would predict 

low reliability for small deflections and this was notably contradicted.  

A.4 Maximum Likelihood Estimation of Stimulus Reveals 

Dimensionality Expansion is Not Sufficient 

One way to test whether dimensionality expansion alone (without dynamical systems) is 

enough without the dynamical systems perspective is to simply use the probability of a 

trajectory being limited to a region of state space. By plotting the carefully selected 

example trajectories seen in Figure 2c we can assess whether all the information gleaned 

from dynamical discrimination is evinced more simply as the confinement of trajectories to 

regions of phase space, such as one conic surface nested inside another, or oscillating 

around centers that are displaced from one another. It is natural to describe these shapes 

with cylindrical coordinates. Although these patterns are visible, like deflection, they are 

highly variable and must be carefully assessed.  

To capture the effects of dimensionality expansion without an ODE-based classifier we use 

a general method for trajectory classification, maximum likelihood estimation. This method 

acknowledges that no trajectory explores all of the available state space and that if any 



219 

classification is possible then it must be that some regions of state space are more likely to 

be explored than others. So it uses 75% of the recordings from one cell to learn the 

probability that a given point in state space will be occupied for each stimulus. For the 

remaining 25% of recordings each is assigned a probability that it co-occurred with each 

stimulus. The stimulus with the highest probability of co-occurrence is selected to be the 

prediction. As with dynamical discrimination, hold-out cross validation is repeated 510 

times to get the average performance reported as final and presented in Figure A.9. 

Because the trajectories took the form of orbits confined to conic or cylindrical regions we 

ignore the angular dimension and just using the radial and axial coordinates to create the 

probability density functions. This defines regions of state space that are annuli with 

rectangular radial cross sections.  

The performance of this approach was roughly comparable to deflection based 

classification with overall classification rates exceeding chance (rsdf=0.225, p=2.04⨉10-15) 

and categories I,CI (rsdf=0.258, p=3.05⨉10-5), E,CI (rsdf=0.207, p=0.0206), R,CV (rsdf=0.2476, 

p=0.0049), I,SI (rsdf=0.2538, p=1.14⨉10-5), and E,SI (rsdf=0.1922, p=0.0333) 

distinguishable from random chance (see Figure A.9c). This tells us that dimensionality 

expansion alone can reveal only a limited amount of additional information, and we get no 

additional information about orientation. This is likely due to the fact that regions of high 

density in the probability density maps overlap as seen in Figure A.9b, thus dimensionality 

expanded trajectories often have distinctive features that may be stimulus related they are 

not confined to easily separated regions of state space. 
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Figure A.9 | Trajectories vary by stimulus and occupy different but non-separable regions of state space a, 
A close view of two example trajectories. Aqua is an example of the least preferred stimulus and gold 
denotes the most preferred stimulus for the same cell. Synaptic inhibition was recorded while size varied. 
The reduced axial-radial cross section is shown as a shaded plane amidst the trajectories. This plane is 
most opaque in regions where the color-matched trajectory (aqua top, gold bottom) had a high likelihood 
of intersecting any given axial-radial cross section, this is known as the single trial axial-radial probability 
density map Mt (z,r;i) (z is axial, r is radial, i denotes the trial index). b, The stimulus-dependent axial-radial 
probability density maps for the same two stimuli shown in b. Aqua (bottom) is Ms (z,r;1), gold (top) is Ms 

(z,r;6). This is created using all the trials coinciding with the selected stimuli. The distinctly conic region is 
apparent, as is the stimulus dependent nesting effect and the stimulus dependent axially translation for 
regions of maximal density. Selecting any single trial probability density map and selecting any stimulus-
dependent probability map allows one to compute the likelihood that the single trial coincided with the 
selected stimulus. The method of Maximum Likelihood Estimation (MLE) amounts to trying all stimuli and 
finding the one with the highest likelihood. c, Same as in Figure 3a except it is showing the classification 
results for MLE trajectory classification. Greater than chance performance is indicated with *, and § 
indicates significantly worse performance than dynamical discrimination (Figure 3d). MLE is not better 
than deflection, indicating that the distinctive features seen in Figure 2g do not make trajectories separable.  
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