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Deciphering how epigenetic factors, such as DNA methylation and chromatin accessibility, 

shape normal development and disease progression has been an outstanding goal in 

developmental biology. Here, I present multiple branches of my thesis to elucidate the epigenetic 

controls that direct aging in brain, regulate cell fate decision of zebrafish iridophore in pigment 

differentiation, and dysregulate transposable elements (TEs) in cancer. The first branch focuses 

on benchmarking a computational statistic tool to characterize DNA methylation dynamics of 

aging in mouse prefrontal cortex by combining WGBS and TAB-seq to dissect the contribution 

of CpG methylation and hydroxymethylation. For the second branch, we take advantage of the 

elegant zebrafish model system to answer how epigenetic dynamics shape pigment development. 

We developed conditional CRISPR knockout method, which if combined with clonal analysis, 

can provide temporal and cell lineage-specific resolution.  Furthermore, we profiled DNA 

methylation, chromatin accessibility, and gene expression across various biological timepoints of 

neural crest differentiation to pigment cells in zebrafish. Here, I focus on exploring the genetic 

and epigenetic dynamics that drive iridophore cell fate. In the third branch, TEs are an 



 xiv 

underexplored genetic resource that impact both normal development and disease. Especially in 

the context of cancer, recent discoveries exemplify how particular TEs are epigenetically 

reactivated to provide enhancer or promoter regulatory roles, known as onco-exaptation, that 

contribute to oncogenesis. One example is the reactivation of cryptic promoters in TEs that 

provide alternative transcription start sites (TSS) for oncogenes. These alternative TSSs can 

generate chimeric or truncated oncogene transcripts that could accelerate tumorigenesis. 

However, TEs may be a double-edged sword for cancer, as aberrant TE activation can provide 

additional sequences to be translated into novel peptides that can be used as biomarkers or 

targets for immunotherapy through cancer vaccines or enhanced T cell therapy. Recent work has 

revealed that epigenetic therapy (epitherapy) can preferentially activate epigenetically silenced 

TEs, which generates epitherapy-specific transcripts and potential novel cancer-specific antigens 

that can be exploited as therapeutic targets for immunotherapy. I aim to study the prevalence of 

onco-exaptation events across numerous cancer types and explore potential immunotherapeutic 

approaches by exploiting TE-specific transcripts in the glioblastoma in the presence of 

epitherapy. 
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Chapter 1: Introduction 
 Humans share 99.9% of the same genetic code yet are phenotypically diverse in many 

ways, such skin color, body size and facial structure. The genetic code consists of letters (A, C, 

G, T) that represent the four nucleotides, which create the DNA. The context and order of these 

letters is responsible for the species diversity, ranging from simple virus to complex multicellular 

organisms, in the world. Rapid advances in DNA sequencing technologies unraveled the 

complex variations in DNA sequences that differentiate one organism from another. 

Multicellular organisms often arise from a single embryo with one genetic code. For example, in 

humans, once a sperm fertilizes the egg to generate a single cell embryo, the embryo faithfully 

and rapidly divides into three germ layers to further differentiate into various tissue types, such 

as skin, bone and nerves. How a single cell with static genetic code could give rise to 

morphologically and functionally complex cell types has been a question much sought after in 

the field of developmental biology.  

1.1 Early theory on cell fate decision 
 Within the human genome, there are stretches of DNA regions called genes that are 

functional units of heredity and responsible for producing cellular traits. Around 1.5% of the 

human genome has been identified to protein-coding genes. The process of generating protein 

from DNA involves an intermediary RNA transcript that hold information on what amino acids 

should be attached together to generate a peptide. In 1957, Conrad Waddington, a developmental 

biologist and geneticist, proposed a controversial theory that cell fate is determined by series of 

gene expression modules and decisions1–3. Early in development, a cell has the potential to 

become various cell types, a cellular state called pluripotency. However, once a pluripotent cell 

chooses a specific gene expression pathway, it commits to a certain fate and no longer retains its 

ability to become any cell type. He represented this concept in his famous “epigenetic landscape” 
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portrait where a pluripotent cell is depicted as a ball on top of a landscape with multiple paths 

that it can choose (Fig. 1). The valleys are divided with hills that make it impossible for the ball 

to cross over into a different valley once commits to a certain path. This interaction across genes, 

genome and development is what Waddington coined as “epigenetic” forces that regulate cell 

fate decisions.  

 

Figure 1. Waddington’s epigenetic landscape. The path that the pluripotent cell chooses is defined 

by gene expression changes, which is controlled by epigenetic mechanism, to ultimately determine cell 

fate. 

 

1.2 Transcription factors and epigenetic mechanisms 
Unbeknownst to Waddington at the time, there were various mechanisms of epigenetic control 

discovered, beginning from late 1980s, that regulated gene expression. Now, epigenetics has 

been redefined to include any molecular or biochemical modifications that regulate genome 
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activity, sans DNA sequence alterations4. These epigenetic mechanisms activate gene regulatory 

networks, specific to various cell types, through control of transcriptions factors5. Transcription 

factors (TFs) are DNA-binding proteins that recognize particular DNA sequences or motifs to 

bind and recruit transcriptional machinery to create RNA from genes. A single TF can bind to 

multiple genomic regions, including promoters or enhancers, to regulate various genes in a gene 

regulatory network that is essential for cell identity6–10. To minimize promiscuous TF binding in 

genomic regions that shouldn’t be transcribed, the eukaryote genome evolved epigenetic 

mechanisms, such as DNA methylation11, histone modifications12,13 and nuclear organization14, 

to repress TF binding. Therefore, to better understand how cell fate is defined, much effort went 

into defining the epigenetic landscape that determines various tissue and cell fate. Within the 

past decade, huge consortium efforts, such as ENCODE15, Roadmap Epigenome16 and 4DN17, 

have epigenetically profiled numerous tissues in human and mouse. Leveraging epigenetic data 

provided plethora of monumental insights into cell fate decision and the essential TFs that are 

responsible for cell differentiation.  

1.3 Transposable elements in cancer 
A large portion of eukaryotic genomes, including at least 50% of the human genome, is derived 

from TEs18–20. TEs are often deemed parasitic DNA21,22 and can be deleterious when 

transposition events disrupt protein coding sequences or gene regulatory elements23–30. To 

counteract the deleterious effects of TEs, cells use epigenetic mechanisms, including DNA 

methylation and repressive histone modifications, to silence transposon-derived sequences in 

somatic tissues31–33. Recently, a wave of discoveries has demonstrated how TEs alter the gene 

expression landscape during evolution, development, and disease34–39. Although epigenetically 

silenced in somatic tissue, TEs can become transcriptionally active in cancer due to the loss of 

epigenetic constraint via global DNA hypomethylation or other epigenetic deregulation, which 
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can expose regulatory sequences within TEs and lead to functional consequences35–38. Further 

discussions on both how epigenetic mechanisms and TEs impact cancer progression and 

oncogenicity is discussed in Chapter 2 of this dissertation.  

1.4 The rise of antigen-based immunotherapy 
Cancer vaccine therapies are well-studied paradigms of cancer immunotherapy in numerous 

cancer types40–43. Somatic cells express major histocompatibility complex (MHC) proteins on the 

cell surface. These MHC molecules present various antigens (short peptide fragments) to the 

immune system, which allows immune cells to distinguish host cells from foreign cells44. Cancer 

neoantigens are defined as a class of human leukocyte antigen (HLA)-bound peptides that arise 

from tumor-specific mutations. They hold promise as the optimal targets for an anti-tumor 

immune response45–49. An entire research field of cancer neoantigen discovery has been born, 

which takes advantage of the recent availability of next-generation sequencing-based coding 

mutation discovery and machine learning approaches to predict mutated peptides with high-

affinity binding of HLA molecules50–52. However, cancers differ drastically in their mutation 

rate, and only a handful of neoantigens have been identified to exist in more than 5% of patient 

samples53, limiting their universal applicability. The entire expressed coding sequence space, 

albeit vast, still only makes up less than 1% of the genome. Studies have suggested that 

chromosomal rearrangement can result in novel, immunogenic protein junctions54,55, but this 

mechanism has only limited impact on the space of targeted therapy or neoantigen discovery. 

Considering the promising potential of immunotherapy in the war against cancer, a push for 

discovery of novel sources of antigens is necessary to maximize therapeutic potential of antigen-

based immunotherapy.  
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1.5 Crossroad between epigenetic therapy and immunotherapy in 

glioblastoma 

Recent work suggests that transcription of TEs can be modified epigenetically34. The effect can 

be global, as via chemical-based epigenetic therapy; or local, via new technologies of site-

specific epigenetic engineering. Epigenetic therapies have long been used to treat cancer as well 

as other diseases56–58. These therapies include inhibitors of DNA methyltransferases (DNMTi) 

and histone deacetylases (HDACi). In treating cancer, they reactivate epigenetically silenced 

tumor suppressor genes. We and others have shown that in response to DNMTi and HDACi, 

certain TEs become transcriptionally active in cancer cells and result in dsRNA, which triggers 

an anti-viral response34,59,60. Importantly, we also discovered that DNMTi and HDACi activate 

several thousand novel promoters, most of which derive from TEs34. Transcripts initiated from 

these TEs can readthrough and splice into downstream genes, resulting in their overexpression 

and, sometimes, the formation of a chimeric protein product that can be further exploited as a 

source for antigens. Thus, epigenetic therapy might be able to dramatically increase cancer type-

specific production of antigens. Furthermore, recent evidence emerged that viral infections can 

also induce TE expression61,62.  In parallel, we explore the possibility of adapting CRISPR/Cas9-

based epigenetic engineering systems to modify epigenetic control of TEs. In our tested cases, 

we have successfully demethylated a candidate TE and generated a TE-gene fusion protein 

product with precision39. These results suggest that TEs, the vast sequences in our genome 

deemed “junk DNA”, might provide an unprecedented opportunity for the discovery and 

manipulation of cancer-specific antigens. 

We chose glioblastoma (GBM) as our model system to explore epigenetic regulation of TEs in 

producing cancer antigens. GBM remains a disease with a poor prognosis63. Recently, 



 6 

advancements in the field reinvigorated the promise of immunotherapy in treating GBM64,65. The 

systemic immune system can attack multiple targets and has the capacity to penetrate the blood-

brain barrier. Several neoantigens have been characterized as targets in GBM66; however, the 

relatively low mutation rate of GBM combined with its immunosuppressive tumor environment 

have made the discovery of efficacious therapies difficult. Targeting recurrent antigens 

originating from missense/indel mutation, exon skipping, and cancer-enriched genes have been 

shown to increase immune activation and lymphocyte infiltration, but this has not been translated 

over to consistent clinical benefit48,49,66,67. Thus, the discovery and validation of a new source of 

recurrent tumor-specific antigens both before and after epigenetic therapy and virotherapy could 

greatly enhance the current repertoire of immunotherapy targets and lead to the development of 

clinically effective combinatorial therapies.  
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2.1 Introduction to epigenetics 
Epigenetics investigates how the static genetic code of a single organism can be regulated in a 

diverse and dynamic manner to generate distinct phenotypes that can be heritable. In a common 

analogy, the genomic DNA sequence is the computer hardware, while epigenetic mechanisms 

are the software that interprets and displays what the hardware provides. Epigenetics involves 

biochemical modifications to DNA or chromatin, which consequently regulate gene expression 

through the spatial organization of the genome. In this chapter, we briefly introduce well-

established epigenetic marks, illustrated in Figure 1, and how they canonically influence normal 

development as well as cancer initiation and progression. Additionally, we briefly discuss 

epigenetic therapies and their application in cancer.    

2.1.1 DNA methylation 
DNA methylation is one of the most well-studied epigenetic modifications associated with gene 

regulation. In the mammalian genome, DNA methylation is defined by the biochemical addition 

of a methyl group to the 5-carbon position of the cytosine nitrogenous base. The majority of 

DNA methylation occurs in the context of CpG dinucleotides, whose symmetrical arrangement 

preserves the methylation signature on both strands during DNA replication. Recent 

investigations have identified non-CpG methylation in embryonic stem cells and neuronal cell 

types, but the functional consequences of these marks have yet to be fully understood68,69. 

CpGs are disproportionally underrepresented (fewer than expected by chance) in the mammalian 

genome, and most are highly methylated70,71. Methylated CpGs are often associated with a 

repressive role in regulating gene expression, especially in the context of promoters and 

enhancers. At promoters that contain sparse CpGs, gene transcription inversely correlates with 

DNA methylation level, with low methylation levels over active promoters. However, roughly 

70% of gene promoters have regions of high CpG density that span over 1kb71. These CpG-dense 
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regions, known as CpG islands (CGIs), are often unmethylated throughout cell development and 

differentiation regardless of the expression level of the adjacent gene69,70. Notable exceptions 

include various genes essential for early embryonic development, which are silenced through 

promoter methylation during subsequent differentiation stages, reaffirming the importance of 

DNA methylation for proper cellular differentiation68–71. Such examples involve X-chromosome 

inactivation, imprinting, and germ cell-specific pathways.  

Past array-based technology limited the number of genomic regions whose methylation could be 

interrogated, focusing primarily on CGI promoters. However, with the introduction of affordable 

whole genome sequencing technologies and more comprehensive methylation arrays, we can 

now profile DNA methylation across the whole genome. Whole genome methylation analysis 

revealed numerous CGIs and CpGs outside of genes that are differentially methylated depending 

on tissue type, such that methylation pattern alone can serve as a tissue biomarker. These 

intergenic variably methylated regions are predicted to be alternative promoters, enhancers, or 

insulators that regulate gene expression in a tissue-specific manner69–71.  

How DNA methylation regulates gene expression is thought to be two-pronged68,71. First, 

methylation of CpGs in transcription factor (TF) binding sites can directly impede the binding of 

TFs to the DNA in enhancer or promoter regions. Second, methyl-CpG binding domain proteins 

(MBDs), such as CXXC1 and MeCP2, can sterically block TFs from binding to the methylated 

region or can recruit histone modifying enzymes to compact the chromatin68,69. 

In contrast to cis-regulatory regions, CpGs within gene bodies are usually highly methylated, 

with evidence surfacing that higher gene body methylation correlates with higher expression71. 

Furthermore, gene body methylation can suppress intragenic promoters70. Also, exons exhibit 
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slightly higher methylation levels than introns, suggesting that DNA methylation might also play 

a role in gene splicing events70,71.  

DNA methylation is most prevalent over repeat-rich regions of the genome consisting of 

transposable elements (TEs), centromeres, and other features. Some TEs, or “jumping” genes, 

have the ability to copy and reinsert their sequences into the genome, similar to viruses. As these 

insertion events can be deleterious, the host developed epigenetic mechanisms, such as DNA 

methylation, to silence and suppress these TEs. DNA methylation of TEs prevents transposition 

and recombination events that can lead to large deletions or chromosomal translocations, 

preserving chromosomal integrity69–71. 

Epigenetic modifier proteins can be classified into three functional groups: readers, writers and 

erasers. Three core enzymes, called DNA methyltransferases (DNMTs), are responsible for 

biochemically writing DNA methylation throughout the genome. DNMT1 is considered to be the 

maintenance DNA methyltransferase, as it preferentially binds hemimethylated CpGs during 

DNA replication and methylates the unmethylated daughter strand69. DNMT3A and DNMT3B 

are de novo methyltransferases that deposit methylated CpGs in novel locations. These de novo 

DNMTs are responsible for establishing tissue-specific methylation and are critical for 

differentiation69,71. Ten-eleven translocation family proteins (TET1, TET2, TET3) are 

responsible for active demethylation by biochemically oxidizing 5-methyl-cytosine to 5-

hydroxymethyl-cytosine, which is further oxidized by TET enzymes to substrates that are 

removed through base-excision repair by the thymine-DNA glycosylase enzyme70. The role of 

hydroxymethylation in normal development is still a developing field of epigenetic research, 

with implications in cancer progression72. Lastly, there are numerous MBD proteins (e.g., MB1, 

MBD2, MeCP1/2) that act as readers of DNA methylation. These MBD proteins aid in 
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suppressing gene expression as previously described and can also recruit histone-modifying 

enzymes that transform the chromatin configuration surrounding the methylated region70.  

2.1.2 Histone modifications 
Within the nucleus, DNA is organized as chromatin, a complex of DNA and proteins that 

controls the accessibility and activity of the genome. The nucleosome is the fundamental unit of 

chromatin, consisting of 147bp of DNA wrapped around a protein octamer with two copies each 

of the histone proteins H2A, H2B, H3, and H4. The amino-terminal tails of the histones protrude 

from the nucleosome, and post-translational modifications to the tails, including acetylation, 

methylation, and ubiquitylation, influence DNA accessibility and serve as markers of chromatin 

activity that can be read by other enzymes73. Histone variants incorporated into nucleosomes at 

specific genomic locations provide additional functional control.  

Characteristic histone modifications are found over active regulatory elements, transcribed 

genes, and repressed regions74. CGI promoters and active non-CGI promoters are flanked by 

nucleosomes modified with three methyl groups on the fourth lysine of the histone 3 tail  

(H3K4me3)74, which is necessary for promoter activation. Enhancers are demarcated by mono-

methylation of the same residue (H3K4me1).  Nucleosomes flanking active regulatory regions 

also include the histone variants H2A.Z and H3.3, which may influence chromatin 

accessibility74,75. In contrast, actively transcribed gene bodies exhibit H3K36 tri-methylation 

(H3K36me3). Acetylation (ac) of histone 3 and 4 lysines activates regulatory elements: the 

negatively charged acetyl groups neutralize the positively charged histone tails, weakening their 

electrostatic interaction with the DNA phosphate backbone and increasing DNA accessibility76.  

Genes important for development are repressed in embryonic stem cells by the Polycomb 

complex PRC2, which deposits H3K27me3 modifications. This histone mark is recognized by 
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the PRC1 complex, which mono-ubiquitylates histone H2A lysine 119, preventing RNA 

polymerase II transcript elongation74. Regulatory elements that exhibit both active histone 

modifications (H3K4me1 or H3K4me3) and the repressive H3K27me3 mark are considered 

“bivalent” or “poised” for activation. Prior to differentiation, the Trithorax complex removes the 

H3K27me3 mark from genes necessary for that lineage and mono-methylates H3K4 to activate 

those genes74.  

In contrast, heterochromatin is a stably repressed chromatin state characterized by H3K9 

methylation73. It is mostly found over centromeres and silenced genes and is a primary 

mechanism of TE repression in somatic cells77.  

Similar to DNA methylation, histone modifications are regulated by reader, writer and eraser 

enzymes. Histone methyltransferases (writers) and demethylases (erasers) add and remove 

methyl groups from histone tails, respectively, and are generally specific to a particular lysine 

residue73. Histone acetyltransferases and deacetylases (HDACs) add and remove acetyl groups, 

respectively, and have broader specificity compared to histone methylation writers and erasers, 

including non-histone targets74. Many proteins are considered chromatin readers, interpreting 

existing modifications. Mutations in all three classes are prevalent in cancer and are discussed 

below (Table 1). 

2.1.3 Chromatin accessibility 
The accessibility of DNA to transcription factors and other transcriptional machinery is another 

indicator of regulatory activity. Active regulatory regions, including enhancers and promoters, 

have a lower nucleosome density, referred to as “nucleosome-depleted/free regions”74. In 

contrast, repressed regions and transcribed exons have a higher density of nucleosomes. 

Chromatin remodeling complexes (remodelers), including the SWI/SNF, ISWI, INO80, and 
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CHD complex families, are responsible for reorganizing nucleosomes to alter chromatin 

accessibility74. 

DNA methylation, histone modifications, and chromatin accessibility (summarized in Figure 1) 

act cooperatively to define active and repressed genome states. Many epigenetic modifiers 

include domains that recognize their own or correlated epigenetic features, allowing the 

maintenance or spreading of chromatin states through the recruitment of additional epigenetic 

modifications.  

In addition to the epigenetic mechanisms discussed above, the quantity and localization of gene 

transcripts are influenced by a variety of post-transcriptional mechanisms, including non-coding 

RNA interactions and epigenetic modification of RNA. However, a detailed discussion of these 

phenomena is beyond the scope of this chapter and is reviewed elsewhere.  

2.1.4 3D genome organization 
To induce or constrain cooperativity of functional DNA sequences, eukaryotic cells evolved 

epigenetic mechanisms to tightly coil and organize DNA into specific configurations that occupy 

separate physical spaces within the nucleus. At the global level, chromosomes segregate into 

unique compartments. Inter-chromosomal contact has been documented, but the biological 

consequence of these interactions is still largely undefined. These large chromosomal 

compartments are divided into two categories based on activity. The “A” compartment 

represents active domains that have high transcription rates, while the “B” compartment 

represents silenced regions, such as heterochromatin78. The B compartment is primarily located 

at the nuclear lamina and overlaps with lamina-associated domains.  
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Within these large domains, chromosomes are subdivided into highly-conserved topologically 

associating domains (TADs), which shape the 3D chromatin structure to dictate which sequences 

interact with or are insulated from each other79. TADs range from 10kb to several hundred kb in 

length and are highly conserved across cell types and species80. DNA sequences within TADs 

form DNA loops (Figure 1), such that enhancers and promoters in loops have high contact 

frequency with each other but rarely interact with sequences outside the TAD. Furthermore, 

genes within the same TAD display coordinated transcription patterns, implying that these 

higher-order chromatin structures also define co-regulated transcriptional neighborhoods. Within 

these neighborhoods, an enhancer element >500kb upstream of a promoter can physically 

interact with the promoter to initiate transcription by coming into close proximity via loop 

formation81. Cell type-specific promoter-promoter interactions are also thought to create a 

promiscuous transcriptional hub that leads to increased gene expression82.  

DNA loop boundaries within TADs are enriched for binding sites of the insulator protein CTCF 

and cohesin complex proteins, which interact to create physical anchors that insulate one DNA 

loop from another78,79. Genetic experiments have revealed that loss of CTCF binding at the 

border of loops leads to disruption of loop formation and can alter the expression of genes within 

the loops83,84. Although the essential components for TAD boundaries have been identified, the 

mechanism that directs TAD formation and maintenance during differentiation is still under 

debate.  

2.2 Epigenetic dysregulation in cancer 
 

2.2.1 The cancer epigenome  
In comparison to normal tissue, cancer tissue exhibits severe epigenetic dysregulation that 

influences the initiation and progression of the disease. In a normal somatic cell, ~80% of CpGs 
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outside CGIs are methylated, but in many cancer types, this proportion falls to 40-60%75. Global 

levels of histone acetylation can also decrease85. Widespread DNA hypomethylation results in 

increased genomic instability, potentially through destabilization of pericentromeric 

heterochromatin75. DNA hypomethylation in cancer occurs in large blocks (0.05-10Mb) covering 

approximately one third of the genome, which may also exhibit histone acetylation and open 

chromatin75. These regions form early in cancer progression75, apparently due to the 

dysregulation of large repressed regions that are typically sequestered at the nuclear lamina and 

are partially methylated in somatic cells86. In some cases, these lamina-associated regions 

overlap with gene-poor heterochromatin regions (“LOCKs”, large organized chromatin K9 

modifications), and they lose the heterochromatin marks H3K9me2 and H3K9me3 along with 

DNA methylation86. However, in other cases, LOCKs form over the hypomethylated blocks74,75.   

Widespread loss of DNA methylation and histone modification alterations can lead to the de-

repression of silenced genes through promoter or enhancer reactivation (Figure 2a). A hallmark 

of carcinogenesis is the activation of oncogenes that give cancer its proliferative and stem cell-

like characteristics. Epigenetic aberrations, or epimutations, can complement genetic mutations 

to establish a permissive epigenetic state that promotes cancer initiation87,88. Reactivated genes, 

such as cancer-testis genes whose expression is normally restricted to the germline, are often 

associated with pluripotency, proliferation, or germ cell development68. Examples of epigenetic 

reactivation of oncogenes are characterized in detail in numerous reviews68,87,89. 

Approximately 40% of differentially methylated regions in cancer include TEs90, and one 

consequence of global DNA hypomethylation is the revival of TEs’ inherent regulatory abilities. 

Many TEs are rich with transcription factor binding sites that serve as a template for novel 

transcription start sites or enhancers when epigenetically reactivated. Indeed, numerous TEs are 
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exapted in cancer cells to provide alternative promoters for oncogenes, a process called “onco-

exaptation”91.  Furthermore, some TEs have the ability to “jump” or transpose when 

epigenetically reactivated. One example is LINE-1 elements, which are epigenetically silenced 

through DNA methylation in normal somatic cells. In multiple cancer types, epigenetically 

reactivated LINE-1 copies retrotranspose into novel locations in the genome, which can 

potentially lead to gene activation/disruption, splicing defects, and genome instability92. LINE-1 

TEs also encode two open reading frames that are translated into proteins responsible for reverse 

transcription and transposition92. Whether these proteins impact carcinogenesis or can function 

as biomarkers of cancer is being extensively studied.  

In addition to genome-wide hypomethylation, cancer exhibits focal hypermethylation of the CpG 

islands and shores of ~5-10% of CGI gene promoters75,85, which are constitutively unmethylated 

in normal somatic cells (Figure 2b). This alteration is accompanied by a loss of active histone 

modifications and nucleosome positioning over the transcription start site, which reduces or 

eliminates expression from the allele75,85. Epigenetic silencing of tumor suppressor genes, such 

as p16ink4a in lung cancer75, can serve as one of two hits to the gene under Knudsen’s two-hit 

hypothesis, complementing a genetic mutation or deletion that knocks out the other allele. This is 

further supported by the observation that aberrant promoter methylation of tumor suppressor 

genes is mutually exclusive with deactivating mutations of the same gene74. Promoter 

methylation can also silence DNA repair genes, leading to a drastic increase in the number of 

mutations in the genome. For instance, loss of expression of the DNA repair genes MLH1 or 

MGMT through promoter methylation in colorectal cancer causes a microsatellite instability 

phenotype and a greater incidence of G-to-A mutation, respectively74,75. Promoter methylation 
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can also promote tumor metastasis, for instance, through reducing the expression of CDH1, 

which encodes E-cadherin74.  

Genes that undergo promoter hypermethylation in cancer are biased towards those under 

Polycomb repression in stem cells. These genes are important for differentiation and have 

constitutively unmethylated promoters in almost all cell types, even when they are included in 

repressed regions75. Indeed, while some of the aberrantly methylated genes are required in the 

tumor cell-of-origin, most are not74, and they are frequently found in the DNA hypomethylated 

blocks that emerge during the breakdown of repressed domains in cancer74,75.  In contrast to this 

seemingly stochastic dysregulation of the epigenome, mutations impacting cellular and signaling 

pathways can also epigenetically reprogram the cell to a more pluripotent state in a controlled 

manner. For instance, KRAS mutations downregulate TET enzymes, increasing methylation at 

tumor suppressor promoters86.   

Epigenetic dysregulation in cancer may also result from a loss of imprinting (LOI) due to DNA 

methylation changes. Imprinted genes (~1% of all genes) have different expression levels based 

on their parent-of-origin, which is typically mediated by DNA methylation. Many imprinted 

genes are involved in growth and metabolism, and changes in their expression level can result in 

uncontrolled growth and proliferation. Loss of methylation over the promoter or enhancer of an 

imprinted gene could increase its expression level through re-activation of expression. In the case 

of the imprinted gene IGF2 (insulin-like growth factor 2), DNA hypermethylation of the 

maternal allele of the nearby insulator H19-ICR blocks binding of CTCF, allowing the IGF2 

promoter to aberrantly contact an upstream enhancer and doubling the expression level of the 

gene, resulting in increased cellular proliferation75,86.  
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2.2.2 Aberrant chromatin structure  
Disruption of normal TAD formation via deletion or insertion of CTCF binding sites can result 

in a disease phenotype84,93. For example, a subset of gliomas is characterized by gain-of-function 

mutations in the IDH gene, which converts production of α-keto-glutarate, a metabolite essential 

for TET2 function, to 2-hydroxyglutarate, a competitive inhibitor of TET274. This ultimately 

leads to high global levels of CpG methylation due to the suppression of TET enzyme function. 

CTCF is a methylation-sensitive transcription factor, and IDH-mutated glioma cells display 

various CTCF binding abnormalities and deregulated TADs. One particular disruption 

abnormally couples the oncogene PDGFRA’s promoter and a rogue FIP1L1 enhancer (located 

>500kb away) into the same TAD, resulting in a novel promoter-enhancer interaction that up-

regulates PDGFRA expression and consequently increases cell proliferation (Figure 2c)84. This 

provides an example of how genetic and epigenetic alterations can interact to affect higher-order 

chromatin interactions that accelerate the tumorigenic phenotype in cancer.  

2.2.3 Mutations in epigenetic regulators 
Mutations in epigenetic regulators, the readers, writers, erasers, and remodelers discussed above, 

are extremely common across cancers75 and are summarized in Table 1. In many cases, these 

alterations occur early in tumor development and may contribute to disease initiation86. The 

epigenetic implications of the mutation depend on the affected enzyme and the tumor type, as the 

tumor’s cell-of-origin influences its initial epigenetic landscape. 

Mutations to readers and writers of DNA methylation are frequent in hematological 

malignancies. DNMTA mutation leads to widespread DNA hypomethylation94, repeat 

destabilization, and telomere lengthening74, while TET2 mutation leads to hypermethylation of 

lineage-specific enhancers94. Several cancer types, including colorectal cancer and glioma, have 
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well-characterized CIMP (CpG island methylator phenotype) subtypes that exhibit 

hypermethylation of promoter CGIs. In glioma, this phenotype is the result of the IDH1 mutation 

described above. Although the genes affected in colorectal cancer and glioma are different, they 

are frequently involved in developmental regulation74,75. IDH1 and TET mutations are mutually 

exclusive, and in AML, they are sufficient to drive cancer progression75. 

Histone modifying enzymes are also the targets of mutation or chromosomal rearrangements in 

several cancer types. Gain-of-function translocations that fuse histone modifiers to other proteins 

are particularly common in AML and include the histone methyltransferases MLL and NSD1 

and the histone acetyltransferases CREBBP and EP30074,75. Fusion of MLL to recruitment 

proteins incorrectly targets H3K4 methylation to HOX gene promoters and upregulates their 

expression in cancer, particularly HOXA974. NSD1 fused to NUP98 similarly activates the 

HOXA gene cluster via increased gene body H3K36me374. The H3K27 methyltransferase EZH2 

is one of the most commonly disrupted genes in cancer, reflecting the important role 

dysregulation of H3K27me3 plays in tumor progression. In addition to amplification and 

mutation, EZH2 expression can be upregulated by miR101 deletion74. 

Histones themselves can be mutated in a way that prevents or mimics methylation74,75. G34 

mutations in H3F3A, which encodes the histone variant H3.3, are loss-of-function and result in 

DNA hypomethylation, genomic instability, and telomere lengthening74. In contrast, K27M 

mutations are gain-of-function and may mimic H3K27 di-methylation, a mark of Polycomb 

repression74. Mutations to H3F3A are mutually exclusive with mutations in ATRX and DAXX, 

which load H3.3 into nucleosomes74.  
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Epigenetic modifications can in turn influence the tumor mutation rate. LOCKs are associated 

with a higher single nucleotide variant frequency in cancer compared to regions of open 

chromatin74, potentially due to their epigenetic dysregulation. Hydrolytic de-amination of 

methylated cytosines results in a C-to-T mutation75, and this conversion rate is especially high in 

rapidly proliferating tissues, where DNA repair enzymes are unable to keep pace with the rate of 

mutation. In fact, this mechanism results in a quarter of all TP53 mutations74. Methylated 

cytosines are also more likely to form adducts with carcinogens in cigarette smoke and 

pyrimidine dimers in response to UV exposure75, increasing the mutation rate over methylated 

regions.  

While many epigenetic programs are established during embryogenesis, the epigenetic landscape 

continues to be shaped by aging and dynamic interactions between the host and its environment 

throughout our lifespan. Many of the global epigenetic changes observed in cancer, including 

large hypomethylated blocks, are also observed in healthy tissue from elderly individuals, 

suggesting that aging predisposes cells to epigenetic dysregulation86. Environmental exposures 

such as diet, chronic inflammation, and smoking can also influence disease progression through 

epigenetic mechanisms86. Thus, genetic and epigenetic mechanisms interact with each other and 

the environment to promote oncogenic cellular states. 

2.3 Epigenetic cancer therapy 
Epigenetic therapy is currently being explored as a treatment option for a variety of cancers. 

Although only a few compounds are currently FDA-approved as cancer therapeutics (Table 2), 

numerous compounds are undergoing clinical trials. The three major classes of epigenetic 

therapy discussed here are all non-specific, targeting ubiquitous epigenetic pathways to reverse 
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cancer-specific epigenetic alterations. However, targeted epigenetic therapies, which are specific 

to a particular gene or genomic location, are gaining interest as well.  

2.3.1 DNA methyltransferase inhibitors 
DNA methyltransferase inhibitors (DNMTi) decrease the genome-wide level of cytosine 

methylation, reversing the DNA methylation gains that occur at promoters in cancer. The 

currently approved compounds, 5-azacytidine (Vidaza/Mylosar) and decitabine (Dacogen), are 

nucleoside analogues with a modified cytosine C5 ring. They are incorporated into DNA and/or 

RNA and covalently bind all three DNMTs, blocking their methyltransferase activity and 

targeting them for proteasomal degradation73,75. DNMT inhibitors are non-specific, so while they 

reverse promoter hypermethylation, they impact normally methylated and hypomethylated 

regions as well. While this effect could further destabilize the cancer genome, it may also be 

crucial to the drugs’ efficacy, as discussed below.  

Dacogen and Vidaza are currently FDA-approved for the treatment of myelodysplastic 

syndrome95,96. In contrast to many compounds, the drugs are least toxic and maximally effective 

at low doses73,85. Other classes of DNMTi, including non-nucleoside analogues, are currently 

being explored in clinical trials.  

2.3.2 Histone modifier inhibitors 
The discovery that HDACs are overexpressed in cancer and that genetic knockdown of HDAC 

proteins led to decreased viability and proliferation in cancer cells has ignited an extensive 

search for HDAC inhibitors (HDACi) that could be potential cancer therapeutic drugs97–99. 

HDACs in humans are classified into four groups based on homology and molecular mechanism 

of action: zinc-dependent HDACs (Class I, Class II, Class IV) and NAD-dependent HDACs 

(Class III). Several HDACis can act either globally, impacting multiple classes of HDACs, or 
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specifically, suppressing a single class or a particular HDAC enzyme. Only four HDACis are 

FDA-approved: vorinostat (SAHA), belinostat, and romidepsin (depsipeptide) for the treatment 

of refractory cutaneous and peripheral T-cell lymphomas99, and panobinostat for multiple 

myeloma100. Numerous other HDACi agents are currently in Phase II and Phase III trials for 

various hematological cancer and solid tumors and are showing encouraging results of superior 

clinical activity, lower toxicity, and better prognosis relative to conventional HDACi 

treatments99,101. For example, entinostat, a Class I HDACi, is in a Phase III trial for hormone-

receptor-positive breast cancer, while pracinostat, a pan-HDACi, is under Phase III trial for both 

AML and myelodysplastic syndrome102.  

The counterpart of HDACs, histone methyltransferases, have garnered much attention recently as 

a potential therapeutic target in cancer. Histone methyltransferase genes, such as EZH2 and 

MLL, are often hit with mutations or translocations to create fusion proteins that are associated 

with irregular histone methylation levels in cancer68,101.  To modulate increases in histone 

methylation, multiple histone methyltransferase inhibitors are in early-stage clinical trials to 

measure efficacy and viability. Currently, molecular inhibitors targeting the DOT1L, EZH2, and 

LSD1 histone methyltransferases are in Phase I and II trials for numerous hematological cancers, 

such as AML, non-Hodgkin lymphoma, and multiple myeloma101. Furthermore, there is an 

ongoing search for viable molecular inhibitors for histone demethylases, primarily LSD-1 and 

JMJD, but no preclinical trials are currently underway. For more information, molecular 

inhibitors targeting histone modifications is extensively reviewed in Shortt et al. 2017101. 

2.3.3 Bromodomain inhibitors 
Bromodomain inhibitors (BETi) target the BET (bromodomain and extraterminal domain) 

protein family of histone acetyl lysine readers. The BET family proteins, BRD2, BRD3, BRD4, 
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and BRDT, each contain two bromodomains that recognize the acetylated lysines of histones H3 

and H476. The original class of BET inhibitors are the thienodiazepine compounds, which are 

acetyl-lysine mimetics that bind the bromodomains of all BET proteins. JQ1 is the most well-

studied member of this class, targeting both BRD4 and the NMC-specific fusion BRD4-NUT76. 

Although JQ1 is not being investigated in clinical trials, several members of the class are.   

BETi are well-tolerated due to their surprisingly cancer-specific effects76. BETi inhibit the 

activity of BRD4, which is found at active promoters and enhancers and is essential for 

transcriptional elongation76. In cancer, BRD4 is particularly enriched at tumor-specific super-

enhancers that drive oncogene expression, and BETi appears to have the largest effect on the 

oncogenes associated with those enhancers76. Thus, although BETi target a ubiquitously 

expressed protein, they have the largest impact on cancer cells.  

2.3.4 Mechanism of action of epigenetic therapies 
Epigenetic therapies may exert anti-neoplastic properties through several mechanisms. For years, 

the primary mechanism of DNMTi was thought to be the re-activation of epigenetically silenced 

tumor suppressor genes, such as MLH1, RB, and p16, restoring expression to these silenced 

alleles by removing repressive epigenetic marks from their promoters (Figure 3a)73. In contrast, 

HDACi acts through diverse molecular mechanisms to either suppress or activate gene 

expression in multiple biological pathways, which is described in detail in other reviews99,103,104. 

In brief, the addition of HDACi tilts the gene expression pattern to favor expression of pro-

apoptotic genes while suppressing proliferative genes, leading to tumor apoptosis. HDACi 

treatment has also been associated with upregulation of immunomodulatory genes, such as 

expression of MHC class I and II, to make cancer cells more immunogenic105. Furthermore, 

cancer cells treated with HDACis show an accumulation of acetylated non-histone proteins, such 



 24 

as Hsp90, which can impact gene regulation through de/stabilization and de/activation of certain 

proteins104.  

Recently, however, it has been recognized that epigenetic therapies also have epigenetic effects 

outside of silenced promoters. Cryptic or non-canonical promoters can be relieved of repressive 

marks, leading to the upregulation of chimeric or otherwise immune-privileged transcript 

isoforms, such as cancer-testis antigens106. If these transcripts are translated, they can form 

immunogenic neoantigens that trigger an immune response against the tumor107. Many TEs 

harbor cryptic regulatory elements that are upregulated upon combinatorial DNMTi and HDACi 

treatment, leading to the formation of thousands of previously non-annotated transcripts through 

splicing into downstream genes (Figure 3b)108. These novel transcripts can be translated into 

chimeric proteins or completely new peptides. Additionally, loss of epigenetic repression over 

endogenous retroviruses can lead to the production of double-stranded RNA, which can trigger a 

type I interferon anti-viral response against the cell (Figure 3c)59. Large-scale DNA 

hypomethylation also increases genomic instability74, and further reduction of DNA 

hypomethylation by DNMT inhibition may be detrimental to the cell. Thus, rather than directly 

altering the expression of canonical tumor suppressor genes and oncogenes, epigenetic therapies 

may direct the immune system against the tumor.  

2.3.5 Combination therapies 
Although epigenetic therapies are approved for the treatment of hematological malignancies as 

single agents, they have shown lower efficacy in patients with solid tumors75,85. However, more 

recent trials have combined epigenetic therapy with other cancer therapies such as cytotoxic 

chemotherapeutics and immune checkpoint inhibitors in an attempt to harness their synergistic 

effects.  Epigenetic therapy and checkpoint inhibitor immunotherapy show encouraging 
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potential. A clinical trial of advanced, pre-treated non-small cell lung cancer patients suggested 

that epigenetic therapy primes tumors for additional treatment: although few patients responded 

to epigenetic therapy alone (2 of 65), it increased the response rate to subsequent anti-PD-L1 

immunotherapy (3 of 6 responded vs. 16-17% with PD-L1 alone)106. BET inhibitors have also 

been shown to synergize with HDACis in in vivo models76. It is possible that novel transcripts, 

induced by epigenetic therapy, can be translated into peptides to act as neoantigens, which 

increase the immunogenicity of cancer cells.  

In conclusion, dysregulation of the normal epigenetic landscape is a critical step in 

carcinogenesis, influencing and being influenced in turn by genetic abnormalities and the 

environment. Further investigation of the cancer epigenome is being enabled by advances in 

next-generation sequencing technologies, which will enhance our understanding of cancer and 

potentially open new avenues of treatment through epigenetic modification of tumor cells.  

2.4 Figures and tables 
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Figure 1: Common epigenetic modifications in mammalian cells 

A schematic representation of epigenetic control in mammalian cells, with emphasis on DNA 

methylation, histone post-translational modifications, chromatin accessibility, and higher-order 

3D chromatin strucutre.  
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Figure 2: Epigenetic aberrations in cancer 

a) Global hypomethylation and/or loss of repressive histone methylation in regulatory regions 

leads to activation of oncogenes in cancer. b) Focal hypermethylation and/or misregulation of 

histone acetylation represses tumor suppressor gene expression in cancer. c) Methylation of 

CTCF loop anchor sites disrupts proper DNA loop formation to activate oncogene expression 

through rogue enhancer recruitment to oncogene promoters.  
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Figure 3: Molecular mechansims of epigenetic therapy in cancer  

a) Global hypomethylation or gain of active histone modifications can reactivate pro-apoptotic or 

tumor suppressor genes in cancer. b) Revival of cryptic promoter activity generates novel or 

chimeric transcripts that can translate into neoantigens and trigger an immune response. c) 

Epigenetically reactivated transposable elements produce dsRNA, which induces an anti-viral 

pathway that slows proliferation and increases the immunogenicity of cancer cells.  
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Table 1. Epigenetic regulators mutated in cancer 
Category Gene Cancer type Ref 

DNA 

methyltransferase 

DNMT1 Colorectal  2,3 

DNMT3A T-cell lymphoma, AML, myeloid malignancies 1,2,3* 

DNA demethylase TET1 Colorectal, AML 1,2,3 

TET2 Colorectal, bladder, B-lymphoma (FL), T-cell lymphoma, AML, myeloid malignancies 1,2,3* 

TET3  2 

DNA methylation 

reader 

MDB1/MBD2/MBD4 Colorectal, lung adenocarcinoma, breast, melanoma 2,3 

Histone 

methyltransferase 

MLL (KMT2A) 

(H3K4)  

Gastric, bladder, lung, liver, colorectal, breast, ALL, AML 1,2,3 

MLL2 (KMT2B) 

(H3K4) 

Breast, kidney (clear cell), lung, prostate, head and neck, B-lymphoma (DLBCL, FL), non-

Hodgkin lymphoma, medulloblastoma 

1,2,3 

MLL3 (KMT2C) 

(H3K4) 

Gastric, breast, bladder, liver/hepatocellular, pancreas, medulloblastoma 1,2,3* 

MLL4 (KMT2D) 

(H3K4) 

 2* 

SETD1A (KMT2F) 

(H3K4) 

Gastric adenocarcinoma, breast, CLL 2 

PRDM9 

(H3K4) 

Head and neck squamous cell carcinoma 1,2 

MEN1 

(MLL complex) 

Pancreatic neuroendocrine 1* 

EZH2 

(H3K27) 

Colorectal, gastric, breast, bladder, lung, medulloblastoma, melanoma, B-lymphoma (FL, 

DLCBL), Burkitt lymphoma, T-cell leukemia, head and neck squamous cell carcinoma, T-

ALL, AML, myeloid malignancies 

1,2,3* 

SUZ12/EED/ 

JARID2 

(PRC2 complex) 

T-ALL, myeloid malignancies, prostate, meningioma 1 

NSD1 

(H3K36) 

AML, head and neck squamous cell carcinoma, endometrial carcinoma, melanoma, 

colorectal, multiple myeloma 

1,2 

NSD2 (WHSC1/ 

MMSET) 

(H3K36) 

Multiple myeloma, pediatric ALL, colorectal, melanoma 1,2 

SETD2 

(H3K36) 

Clear cell renal cell carcinoma, T-ALL, high-grade glioma 1,2* 
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Histone demethylase KDM1A (LSD1) 

(H3K4/K9) 

Prostate 3 

KDM2B 

(H3K4/K36) 

B-lymphoma (DLBCL) 2 

KDM5C 

(JARID1B/C) 

(H3K4) 

Breast, kidney (clear cell), meningioma 1,2* 

KDM6A (UTX) 

(H3K27) 

Kidney (renal cell carcinoma), bladder (transitional cell), esophageal squamous cell 

carcinoma, multiple myeloma, myeloid malignancies, meningioma, medulloblastoma, 

prostate, breast, lung, pancreas, colon, uterus, brain 

1,2,3* 

Histone methyl 

reader 

ING1 

(H3K4me3) 

Melanoma, esophageal squamous cell, ALL 2 

 PHF6 AML, T-ALL 1,2 

Histone 

acetyltransferase 

CREBBP (CBP) Bladder (transitional cell), lung (SCLC), B-lymphoma (DLBCL, FL), Burkitt lymphoma, 

ovarian, relapsed ALL, medulloblastoma, AML 

1,2,3* 

EP300 Endometrial serous, bladder (transitional cell), lung (SCLC), B-lymphoma (DLBCL, FL), 

T-ALL, pancreatic, breast, colorectal, AML 

1,2,3* 

PCAF (P300/CREBBP 

partner) 

Epithelial 3 

Histone deacetylase HDAC2 Colorectal, gastric, endometrial  2,3 

HDAC4 Breast adenocarcinoma 2 

HDAC9 Prostate adenocarcinoma 2 

SIRD1, HDAC5/7a  3 

P400  

(NuA4 complex) 

 3 

Histone lysine acetyl 

readers 

BRD3/4 NMC 1,2 

BRD4 Burkitt lymphoma 1 

BRD8 Liver/hepatocellular 1,2 

Histone 

deubiquitinase 

BAP1 (H2AK119) Kidney (clear cell), myeloid malignancies, mesothelioma, melanoma 1* 

ASXL1 (PR-DUB 

component) 

Prostate, AML, myeloid malignancies 1* 

Histone HIST1H1B (H1) CLL, B-lymphoma (FL), colorectal 2 

HIST1H1C (H1) B-lymphoma (DLBCL, FL) 1 

HIST1H1E (H1) CLL 1 
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HIST1H3B (H3.1) B-lymphoma (DLBCL), glioma (DIPG), GM, pediatric glioblastoma 1,2* 

H3F3A (H3.3) Pediatric glioblastoma, GBM, glioma (DIPG), CNS primary neuroendocrine, giant cell 

tumor of bone 

1,2* 

H3F3B (H3.3) Chondroblastoma 2* 

HIST1H4B (H4) Liver 1 

Chromatin remodeler ATRX  Pancreatic neuroendocrine, GBM (pediatric glioblastoma), medulloblastoma, 

neuroblastoma 

1,2* 

DAXX  Pancreatic neuroendocrine, GBM (pediatric glioblastoma) 1,2* 

SMARCA2  3 

SMARCA4 Melanoma, Burkitt lymphoma, lung adenocarcinoma, medulloblastoma 1,2,3* 

SMARCB1 Pediatric malignant rhabdoid tumor, mesothelioma, medulloblastoma, CNS primitive, 

meningioma 

1,2,3* 

SMARCD1 Breast 1,2 

SMARCE1 Clear cell meningioma 1,2 

ARID1A Numerous epithelial, Burkitt lymphoma, ovarian (clear cell carcinoma), melanoma, 

medulloblastoma, neuroblastoma, hepatocellular carcinoma, breast, lung adenocarcinoma, 

colorectal 

1,2,3* 

ARID1B Breast, liver (hepatocellular carcinoma), melanoma, medulloblastoma, neuroblastoma 1,2 

ARID2 Breast, lung, liver (hepatocellular carcinoma), pancreatic adenocarcinoma, melanoma 1,2,3* 

BRD7 Bladder TCC 3 

PBRM1 Clear cell renal carcinoma, breast 1,2,3* 

CHD1 Breast, lung, prostate (ETS-negative) 1 

CHD2 CLL 1,2 

CHD4 Serous endometrial 1,3 

CHD5 Neuroblastoma, glioma, breast, lung, colon, ovary, prostate 2,3 

CHD6 Bladder 1 

CHD7 Medulloblastoma, gastric, colorectal 1,3 

CHD8 Lung 1 

CHD1/CHD3/CHD4/

CHD6/CHD7/CHD8 

Gastric, colorectal, prostate, breast, bladder, serous endometrial 2 

PHF23 AML 2 

Insulators CTCF Breast, T-ALL 1 

RAD21  * 

1, Reference 7, Figure 3; 2, Reference 17, Table 2; 3, Reference 8, Table 2 (mutations only); *Confirmed as causal somatic mutation in the 

COSMIC Cancer Gene Census (http://cancer.sanger.ac.uk/census)  
Target or complex is specified in parentheses in italics in the Gene column 
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Table 2. FDA-approved epigenetic therapies for cancer treatment 
Category Compound US brand name Approved indications 

DNA 

methyltransferase 

inhibitor 

(DNMTi) 

Azacitidine (5-azacytidine) Vidaza/Mylosar Myelodysplastic syndrome 

Decitabine (5-aza-2’-

deoxycytidine) 

Dacogen Myelodysplastic syndrome 

Histone 

deacetylase 

inhibitor 

(HDACi) 

Belinostat Beleodaq Relapsed or refractory peripheral 

T-cell lymphoma 

Panobinostat (with 

bortezomib and 

dexamethasone) 

Farydak Multiple myeloma, at least two 

prior treatments 

Romidepsin (depsipeptide) Istodax Cutaneous T-cell lymphoma, at 

least one prior systemic therapy 

Vorinostat (suberoylanilide 

hydroxamic acid) 

Zolinza Relapsed or refractory cutaneous 

T-cell lymphoma 

From the NCI Drug Dictionary95, Human Epigenetic Drug Database, Disease list 

(http://hedds.org/index.jsp)96 

http://hedds.org/index.jsp
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3.1 Abstract  
Motivation: DNA methylation is an epigenetic mechanism that occurs by adding methyl groups 

to the DNA molecule. It is known to play a critical role in gene regulation, development, and 

tumorigenesis. It is thereby very important to study differential methylation patterns between two 

targeted samples for comparison, e.g., adult vs. fetal tissues. Recent advances in next generation 

sequencing technologies make it possible to distinguish between 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC). Considering that 5hmC levels are usually very small and hence 

the difference regarding 5hmC between two samples could rarely be detected, most methods 

identify differentially methylated regions (DMRs) by comparing sum of 5hmC and 5mC levels 

between two samples, e.g., methods only using WGBS (Whole Genome Bisulfite Sequencing) 

data. However, recent study shows the necessity of integrating 5mC and 5hmC signals in 

differential analyses.  

Results: We combine WGBS and TAB-seq (Tet-Assisted Bisulfite Sequencing) data to 

investigate if jointly testing the differences in 5hmC and 5mC levels would be more powerful 

regarding differential methylation analysis. Simulation studies show that our method of jointly 

testing 5hmC and 5mC levels using a likelihood ratio test (mLRT) gains more power to detect 

DMRs compared to methods only using WGBS data. We also compare our mLRT to natural 

alternatives for jointly testing, i.e., mFET (Fisher exact test based on maximum likelihood 

estimators for 5hmC and 5mC levels) and nFET (naive Fisher exact test), at CpG level by 

simulation. It shows that Type I error is controlled by mLRT while mFET could not, though 

mFET gains more power of detection at the CpG level. mLRT also outperforms nFET in terms 

of power. The application to adult and fetal mouse cortex data shows that mLRT from the 

combination of WGBS and TAB-seq data gives much more detections at the region level than 
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Fisher exact test (FET) from WGBS data only. Furthermore, we applied mLRT to young and old 

mouse frontal cortex samples and report novel DMRs with potential biological implications 

related to aging in the brain.  

Availability: mLRT is freely available on the website at https://github.com/nihonoui/mLRT  
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3.2 Introduction  
DNA methylation is a common mechanism of epigenetic regulation in eukaryotic organisms 

ranging from fungi to mammals. Numerous studies have been carried out to locate CpG sites 

where DNA methylation plays a role in gene regulation, development, and tumorigenesis109. 

Differentially methylated regions (DMRs) are groups of adjacent CpG sites that are mostly 

differentially methylated. In mammals, the bulk of DNA methylation in CpG context occurs as 

5-methylcytosine (5mC). The other major epigenetic modification of cytosines is the oxidation 

product of 5mC, 5-hydroxymethylcytosine (5hmC). 5hmC coexists with 5mC in a range of 

mammalian cell populations and was also found to be involved in gene regulation110. 

Understanding the differential methylation patterns requires information of both 5mC and 5hmC 

in the genome.  

Bisulfite sequencing (BS-seq) is a widely used sequencing technology for genome-wide DNA 

methylation profiling. The most popular protocols for BS-seq include Reduced Representation 

Bisulfite Sequencing (RRBS)111 and Whole Genome Bisulfite Sequencing (WGBS)112. The yield 

of methylation from BS-seq is the sum of 5hmC and 5mC levels, hence BS-seq cannot 

distinguish between 5mC and 5hmC113. With recent innovations in next generation sequencing 

technologies, Oxidative Bisulfite Sequencing (oxBS-seq)114  and Tet-Assisted Bisulfite 

Sequencing (TAB-seq)115 could provide high-throughput single-base resolution measurements of 

5mC and 5hmC, respectively. Methods for estimating 5hmC and 5mC levels at CpG sites from 

different combinations of next generation sequencing data are proposed in Quy et al. 2013116 

(combing any two of BS-seq, TAB-seq or oxBS-seq, or all three when available) and Xu et al. 

2016117 (combing BS-seq and oxBS-seq). After obtaining the methylation information of CpG 

sites, the typical downstream analysis is differential methylation analysis. For DMR detection, 
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Sun et al. 2014118 proposed model-based analysis of bisulfite sequencing data, MOABS, in 

which the significance of the differential methylation between two samples is represented by a 

metric named ‘credible methylation difference’. Äijö et al. 2016119 presented an integrative 

hierarchical model (Lux) from various combinations of sequencing data for detection of 

differential methylation based on Bayes factors. Shafi et al. 2017120 provided a survey of the 

approaches for identifying differential methylation using bisulfite sequencing data.  

In this paper, we integrate WGBS and TAB-seq data to investigate if jointly testing the 

differences in 5hmC and 5mC levels would gain more power in the analysis of differential 

methylation. To the best of our knowledge, there is no existing literature analyzing differential 

methylation by jointly testing 5hmC and 5mC levels. When inputs are count values, naive ways 

to jointly test 5hmC and 5mC levels involve Fisher exact test (FET)121. The challenge of 

performing FET in this scenario arises from missing count values in the contingency table 

observed from the mixture of WGBS and TAB-seq data. In order to perform FET, we need two 

steps: imputation for missing counts, and then applying FET to the complete contingency table. 

However, data for methylation analysis usually contain a very small number of replicates, and 

thereby the imputation for missing counts can get highly distorted. Instead, we present a 

likelihood ratio test (mLRT) for simultaneously comparing 5hmC and 5mC levels between two 

samples in CpG sites from WGBS and TAB-seq data. We compare our mLRT at the CpG level 

by simulation to two types of two-step FETs for jointly testing 5hmC and 5mC levels. We also 

compare mLRT with FET using WGBS data only. The simulation results indicate that mLRT 

outperforms the two two-step FETs at CpG level in terms of size and power. We also apply 

mLRT to a real dataset, i.e., adult and fetal mouse cortex data, to investigate biological 

interpretation of differential methylation derived from the four statistical methods.  
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3.3 Methods 
WGBS and TAB-seq were constructed from genomic DNA of frontal cortex tissue of 7-week-

old and 79-week-old male C57BL/6J mouse (Jackson Laboratory, 000664) using 5hmC TAB-seq 

Kit (WiseGene, K001), EZ DNA Methylation-Gold Kit (Zymo, D5005) and Accel-NGS Methyl-

Seq DNA Library Kit (Swift Biosciences, 30024). WGBS and TAB-seq libraries were sequenced 

on Illumina NovaSeq 6000 platform and aligned to the mm9 reference genome using Bismark122. 

5hmC values were adjusted based on the glucosylation protection rate and TET oxidation rate as 

previously described123.  

We assume that WGBS and TAB-seq data at a CpG site are independent and follow binomial 

distributions. Our model at the CpG level is then given by, for the jth replicate,  

𝑀𝑊
𝑔,𝑗

~ 𝐵𝑖𝑛(𝑁𝑊
𝑔  

, 𝑝𝑔
) and 𝑀𝑇

𝑔,𝑗
∼ 𝐵𝑖𝑛(𝑁𝑇

𝑔
, 𝑝𝑔1),  

for j = 1, . . . , ng . 

Notations used in this model are given as follows.  

• The index g ∈ {A,B} denotes two biological conditions, A and B. In the analysis of differential 

methylation, the two samples for comparison usually correspond to two different biological 

conditions, e.g., adult vs fetal.  

• ng is the number of replicates under condition g.  

• Proportions of two different cytosine methylations, i.e., 5hmC and 5mC, are denoted by pg1 and 

pg2 for g ∈ {A, B}, respectively, and pg = pg1 + pg2.  

• The index k denotes the choice of two next generation sequencing technologies WGBS and 

TAB-seq, and k ∈ {W, T} with ‘W’ for WGBS and ‘T’ for TAB-seq.  

• For the jth replicate, 𝑀𝑘
𝑔,𝑗 and 𝑁𝑘

𝑔,𝑗
 are the count of ‘C’ read-outs and the count of total ‘C’ and 

‘T’ read-outs from sequencing technology k under condition g, respectively.  
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We need to point out that for data with applications, our current model does not consider 

biological variations, which are commonly considered in Sun et al. 2014118 and Äijö et al. 

2016119.  

To study differential methylation patterns between Conditions A and B, our approach starts with 

jointly testing 5hmC and 5mC levels, i.e., testing the hypotheses,  

𝐻0 ∶  (𝑝𝐴1, 𝑝𝐴2)  =  (𝑝𝐵1, 𝑝𝐵2)  𝑣𝑠. 𝐻1 ∶  (𝑝𝐴1, 𝑝𝐴2) ≠  (𝑝𝐵1, 𝑝𝐵2). (1)  

Since the inputs are counts, the natural way of testing (1) is performing FET on a contingency 

table. The underlying methylation data for the jth replicate at a CpG site can be expressed as the 

following 2 × 3 contingency table (Table 1), however, combining WGBS and TAB-seq data, we 

are not able to observe all cells in Table 1. For WGBS, we observe the sum of 5hmC and 5mC 

counts, i.e., for 𝑔 ∈ {𝐴, 𝐵}, 𝑚𝑔1
𝑗

+ 𝑚𝑔2
𝑗

= 𝑀𝑊
𝑔,𝑗

. For TAB-seq, we observe 5hmC counts, i.e., 

𝑚𝑔1
𝑗

= 𝑀𝑇
𝑔,𝑗

.  

 

Table 1. The underlying methylation data 

 5hmC 5mC Unmethylated 

Condition A 𝑚𝐴1
𝑗

 𝑚𝐴2
𝑗

 𝑚𝐴3
𝑗

 

Condition B 𝑚𝐵1
𝑗

 𝑚𝐵2
𝑗

 𝑚𝐵3
𝑗

 

 

Instead of performing FET by imputation for missing counts in Table 1, we derive the likelihood 

ratio test124 for testing (1), see Section of Supplementary Data for detailed derivation. For 

convenience, we call this test ‘mLRT’, and will use this name throughout the remaining of this 

paper. The test statistic of mLRT is given by  
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where the estimates are maximum likelihood estimators (MLEs) as follow,  

 

Under the null H0 in (1),  

Λ =  −2log 𝑇 ~ 𝑥2
2 , 

 

which is a Chi-square distribution with the degree of freedom of 2. We reject H0 at level α if Λ > 

𝑥2,α
2 , where 𝑥2,α

2  is the 100(1 − α) percentile point of a Chi-Square distribution with the degree of 

freedom of 2.  
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To apply mLRT to the analysis of differential methylation at the region level, we start with 

applying mLRT to all CpG sites, and thereby obtaining a p-value for each CpG site. It commonly 

occurs that the number of CpG sites of interest is very large. In such a case, the analysis of DMR 

detection leads to a high-dimensional multiple testing problem. We adopt the widely used q-

value method125 under the FDR (false discovery rate) level α.  

3.4 Results 
To evaluate the performance of mLRT in terms of size and power, we first compare it at a 

CpG site with two-step FET tests involving a step of imputation for missing counts in the 

contingency table. We consider two types of such FET tests, mFET (Fisher exact test mFET 

based on maximum likelihood estimators) and nFET (naive Fisher exact test) at the CpG 

level. We also compare mLRT with the usual Fisher exact test (FET) only using WGBS data 

to illustrate the necessity of integrating 5hmC and 5mC information in differential 

methylation analysis. Finally, an illustration at the region level involves the application to a 

real dataset, i.e., the adult and fetal mouse cortex data.  

Note that we do not consider biological variation. Therefore, at a CpG ng j site, data for 

replicates could be aggregated. Define 𝑚𝑔𝑙 =  ∑ 𝑚𝑔𝑙
𝑗𝑛𝑔

𝑗=1
, for g ∈ {A,B} and l = 1,2,3. Data at a 

CpG site can be expressed in the following 2 × 3 contingency table (Table 2). To carry out 

mFET and nFET, we need to first fill in unobserved counts 𝑚𝑔𝑙  in Table 2.  

For mFET, the estimates for cells are given by the total count of each category (5hmC, 5mC 

or unmethylated) multiplied by its corresponding proportion derived from maximum 

likelihood estimation. Since we have two types of sequencing data, WGBS and TAB-seq, the 
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total count is defined as the average of their observed coverage. Explicitly, the estimated 

cells in Table 2 are given by  

 

The indices g and j denote the condition and the replicate, respectively.  

 

Table 2. The underlying methylation data 

 5hmC 5mC Unmethylated 

Condition A 𝑚𝐴1 𝑚𝐴2 𝑚𝐴3 

Condition B 𝑚𝐵1 𝑚𝐵2 𝑚𝐵3 

 

For nFET, we first estimate the counts of three categories (5hmC, 5mC or unmethylated) 

for each replicate. For each replicate, the proportion of 5hmC is simply estimated by the 

ratio of ‘C’ readouts to the coverage from TAB-seq. This estimated proportion of 5hmC is 

then applied to WGBS data to fill in unobserved counts in Table 2. The estimators of these 

counts are given by, for g ∈ {A, B},  
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For FET using WGBS data only, the data observed at a CpG site can be expressed as the 

following 2 × 2 contingency table. Then Fisher exact test is carried out directly based on Table 3.  

Table 3. The underlying methylation data 

 Methylated Unmethylated 

Condition A 
∑ 𝑀𝑊

𝐴,𝑗
𝑛𝐴

𝑗=1
  ∑ 𝑁𝑊

𝐴,𝑗
− 𝑀𝑊

𝐴,𝑗
𝑛𝐴

𝑗=1
 

Condition B 
∑ 𝑀𝑊

𝐵,𝑗
𝑛𝐵

𝑗=1
  ∑ 𝑁𝑊

𝐵,𝑗
− 𝑀𝑊

𝐵,𝑗
𝑛𝐵

𝑗=1
 

 

3.4.1 Power comparison at a single CpG site  
To mimic the counts of methylation in a real-world situation, all the CpG sites in the simulated 

data are uniformly drawn with replacement from the data of Chromosome 1 in the adult and fetal 

mouse cortex dataset. Figure 1 shows the distributions of 5hmC and 5mC levels from 

Chromosome 1 in the adult and fetal mouse cortex dataset. Two cases with the number of 

replicates are considered, nA = nB = 2 and nA = nB = 5. We set 𝑝𝐴1 + 𝑝𝐴2 = 𝑝𝐵1 + 𝑝𝐵2 = 0.8, 

in order to demonstrate the performance of jointly testing 5hmC and 5mC levels. Joint tests are 

also compared to FET using WGBS data only, which does not have the ability to identify 
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differential methylation in such a setting of methylation proportions. We fix 𝑝𝐴1and 𝑝𝐴2 at 0.1 

and 0.7, respectively.  

Table 4 shows the power comparison at significance level 0.05 based on 1000 replicates at the 

CpG level. When (𝑝𝐵1, 𝑝𝐵2) = (0.1, 0.7), results are sizes of tests. As we can see from Table 4, 

the more replicates data have, the higher power all the tests could achieve. Among the three tests 

combining WGBS and TAB-seq data, mFET has the highest power, however, its sizes are 0.084 

and 0.096, which indicates that mFET cannot control Type I error at level 0.05. mLRT can 

control Type I error since its sizes are around 0.05, and meanwhile outperforms nFET in terms of 

power. As expected, the power of FET using WGBS data only is around the nominal level 0.05 

in any setup of proportions in Table 4. This demonstrates the incapability of FET from WGBS 

data in the analysis of differential methylation when the sum of 5hmC and 5mC levels remains 

the same across conditions.  

 

Table 4. Power at significance level 0.5 with 1000 replicates in the setting of 𝒑𝑨𝟏 + 𝒑𝑨𝟐 =
𝒑𝑩𝟏 + 𝒑𝑩𝟐 = 𝟎. 𝟖, and (𝒑𝑨𝟏, 𝒑𝑨𝟐) fixed at (0.1, 0.7). 

 𝒏𝑨 = 𝒏𝑩 = 𝟐 𝒏𝑨 = 𝒏𝑩 = 𝟓 

(𝒑𝑩𝟏, 𝒑𝑩𝟐) mLRT mFET nFET FET mLRT mFET nFET FET 

(0.1,0.7) 0.05 0.084 0.047 0.037 0.052 0.096 0.063 0.045 

(0.12,0.68) 0.061 0.084 0.052 0.026 0.073 0.115 0.08 0.05 

(0.14,0.66) 0.08 0.125 0.076 0.034 0.124 0.174 0.121 0.053 

(0.16,0.64) 0.115 0.165 0.105 0.038 0.189 0.271 0.195 0.04 

(0.18,0.62) 0.174 0.242 0.16 0.035 0.324 0.409 0.312 0.048 

(0.2,0.6) 0.216 0.303 0.19 0.039 0.452 0.535 0.432 0.05 

(0.22,0.58) 0.293 0.384 0.268 0.033 0.561 0.646 0.503 0.043 

(0.24,0.56) 0.358 0.446 0.328 0.042 0.651 0.733 0.599 0.045 
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(0.26,0.54) 0.459 0.559 0.431 0.035 0.777 0.839 0.73 0.039 

(0.28,0.52) 0.523 0.625 0.496 0.039 0.871 0.911 0.816 0.041 

(0.3,0.5) 0.614 0.687 0.564 0.037 0.914 0.948 0.897 0.038 

 

3.4.2 Real data: DNA methylation dynamics of aging in frontal cortex  
To detect DMRs, each chromosome is divided into regions of 500 bp with read counts calculated 

over each region. We apply the four methods considered in the simulation study to each 500 bp 

region and compute the p-values. DMRs are then identified using q-values method after 

adjusting for multiple testing. Figure 2 shows the proportion of identified DMRs by each method 

for each chromosome. While we may further merge these 500 bp regions, we do not perform this 

step here for the ease of evaluating method performance.  

Figure 2 shows the proportion of regions detected as differentially methylated to all regions of 

500 bp in the genome-wide analysis. It indicates that as compared to the mixture of 5mC and 

5hmC signals in WGBS data, jointly testing of 5mC level and 5hmC level from WGBS and 

TAB-seq data are much more capable of capturing differential methylation events. Although 

mFET overwhelms all the other tests in terms of power, our simulation study in previous section 

shows mFET cannot control Type I error. Across all chromosomes, mLRT uniformly 

outperforms nFET.  

Figure 3 illustrates the overlap among DMRs detected by mLRT, mFET, nFET and FET in the 

genome-wide analysis. We observed that mLRT can detect most of the DMRs identified by FET, 

missing only 131 regions (about 2%) over all chromosomes. Next, to more confidently identify 

functionally relevant DMRs, we filtered for DMRs with minimum of 3 CpGs and methylation 

change (WGBS (mC+hmC), mC and hmC) of at least 0.2 (20%) or greater. After filtering, 

mLRT detected 95% and 99% of nFET DMRs and FET DMRs (Fig. 4A), respectively, 
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highlighting the comphrehensive nature of mLRT in detecting differential methylation. mLRT 

method also identified almost double the number of DMRs as nFET method. Since these extra 

DMRs identified by mLRT could be spurious, we performed separate analysis on shared DMRs 

and mLRT-only DMRs to compare. We report that the mLRT-only DMRs share similar 

distribution and characteristics as DMRs identified in both nFET and mLRT methods (shared 

DMRs) (Fig. 4B,C). Furthermore, we report that 97.4% of hmC DMRs and 80.4% of mC DMRs 

detected by mLRT did not pass 20% difference threshold when only analyzing WGBS data due 

to concomitant decrease of mC levels in regions with gain of hmC (Fig. 4C). In traditional 

WGBS studies, these regions would not be detected as DMRs, emphasizing the importance of 

our tool for detecting novel methylation dynamics, especially in tissues with substantial hmC 

levels.  

Next, we evaluated whether the DMRs identified by mLRT are biologically relevant and can 

provide novel insights into the DNA methylation changes that occur during aging in the frontal 

cortex. Since majority of the DMRs are present in intergenic or intronic regions, we utilized 

Genomic Regions Enrichment of Annotations Tool (GREAT131) to discover if DMRs are near 

genes related to brain maturation. Indeed, both shared and mLRT-only mC hypoDMRs and hmC 

hyperDMRs are present near genes responsible for biological processes such as cell shape 

regulation, DNA damage response, synapse maturation and neurodevelopment (Fig. 4D). We 

also report that mC hyperDMRs occur near blood-related genes, which could reflect the age-

associated increase of global mC levels in blood circulating in the frontal cortex tissue132. 

Surprisingly, aging-related mC hypoDMRs and hmC hyperDMRs strongly enrich for exon and 

3’ UTRs (Fig. 5A). In fact, 27-31% of exonic DMRs are located in the last exon of the gene 

further suggesting that 3’ end of the gene might be regulated by DNA mC and hmC in an age-
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related manner. Furthermore, we performed gene ontology enrichment on genes with DMRs in 

3’ UTR using Metascape133 to check if 3’ UTR regulation is occurring in biologically relevant 

genes related to aging in brain. All four categories of 3’ UTR DMRs enrich in genes responsible 

for modulation of chemical synaptic transmission or vesicle mediated transport in synapse 

biological processes (Fig. 5B). The functional mechanism of methylation or hydroxymethylation 

in 3’ UTR is still unclear, especially in context of neurodevelopment or diseases associated with 

aging of the brain. Whether these methylation dynamics directly impact epigenetic and gene 

regulation or is just a bio-marker for aging would be an exciting and unprecedented future 

direction in the field of epigenetics and neuroscience. In conclusion, mLRT is a powerful 

statistical tool that detects biologically meaningful methylation changes and can be source of 

novel discoveries that reveal the intricate dynamic between hydroxymethylation and methylation 

levels.  

3.5 Discussion  
There is a growing appreciation that DNA methylation regulates cell fate decisions and 

demarcates proper neurodevelopment and aging in the brain115,123,126–128. Indeed, aberrant DNA 

methylation is associated with neurological disorders, highlighting the importance of studying 

how the canonical DNA methylation dynamic during aging is disrupted in disease models. 

Monumental studies reported that aging in brain is associated with relatively stable global 

methylation with differential methylation near neurodevelopment-related genes127. The discovery 

of hydroxymethylation reinvigorated the effort of charting both mC and hmC dynamics in 

developing brain, which revealed that global hmC levels positively correlate with aging and that 

regions that gain hmC are often coupled with loss of mC thus these dynamics would not be 

detected using traditional WGBS123,126,128–130. However, due to lack of statistical tools, the 
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differential 5hmC analysis was often performed by classifying large genomic regions as high or 

low 5hmC levels instead of comparing absolute 5hmC levels at single-base resolution. To 

address this issue, we present the mLRT method to detect differentially methylated regions based 

on the integration of WGBS and TAB-seq data. At the CpG level, our method of choice is a 

likelihood ratio test, jointly testing hmC and mC levels. Compared to FET and nFET, mLRT 

outperforms in both size and power at predicting methylation and hydroxymethylation for each 

CpG. Although mFET had higher power than mLRT, mFET suffered from higher Type I error in 

our simulated tests thus potentially introducing more false positive methylation dynamics. In 

conclusion, mLRT provides the highest power with adequate Type I error control compared to 

the other Fisher exact test statistical methods mentioned here. 

One question that arose was whether the new methylation dynamism detected by mLRT was 

meaningful. Here, we evaluated the improved performance and the biological relevance of 

DMRs detected by mLRT from WGBS and TAB-seq data generated from young and old mouse 

frontal cortex tissue. mLRT was comprehensive in discovering differentially hydroxy/methylated 

regions as >95% of DMRs identified by both FET and nFET were also detected by mLRT. 

Furthermore, mLRT doubled the number of DMRs detected compared to nFET. Many of the 

DMRs would not have been detected by standard WGBS as the change in 5mC counter-balanced 

change in 5hmC. Also, these novel DMRs enriched for biologically relevant processes related to 

brain development, showcasing the power and sensitivity of mLRT tool.   

However, there are some caveats to the current mLRT tool. First, these predictions are made by 

low coverage WGBS and TAB-seq data. Whether mLRT improves with deeper coverage could 

be interesting future direction to pursue. Considering the cost-prohibitive nature of generating 

high coverage WGBS and TAB-seq data, we are encouraged by the fact that mLRT is sensitive 
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enough to detect DMRs with low coverage data and hope this tool can provide a financially 

viable way to study DNA methylation and hydroxymethylation dynamics to the scientific 

community. Second, mLRT does not account for biological variation. By incorporating 

biological replicates into mLRT, we can more accurately distinguish biologically meaningful 

changes from technical noise that might be introduced. In conclusion, the application of our 

novel method to the real data of front cortex demonstrated that mLRT is a powerful statistical 

tool that can detect biologically meaningful methylation dynamics. 
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3.9 Figures  

 

Figure 1. 5hmC and 5mC levels from Chromosome 1 in the adult and fetal mouse cortex 

dataset.  
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Figure 2. Proportion of DMRs to all regions of 500 bp in the genome-wide analysis.  

 

Figure 3. Overlap of DMRs detected by mLRT, mFET, nFET and FET. 
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Figure 4. Biologically relevant DMRs detected by FET, nFET and mLRT. (A) Overlap of 

filtered DMRs detected by mLRT, nFET and FET. (B) Number of DMR types detected by each 

method. (C) Distribution of DNA modification of each DMR. Darker colored points represent 

DMRs that pass 0.2 methylation difference threshold (Number of shared DMRs/total DMRs). 

(D) Functional annotation of DMRs predicted by GREAT.  
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Figure 5. Characterizing DMRs from mLRT. (A) Genomic annotation enrichment of DMR 

types. (B) Gene ontology term enrichment of genes with 3’ UTR DMRs.  

 

3.10 Supplementary data 
Derivation of mLRT:  

Our goal is to test 𝐻0 ∶ (𝑝𝐴1, 𝑝𝐴2) =   (𝑝𝐵1, 𝑝𝐵2) vs. 𝐻0 ∶ (𝑝𝐴1, 𝑝𝐴2) ≠   (𝑝𝐵1, 𝑝𝐵2) 
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which is equivalent to 𝐻0 ∶ (𝑝𝐴1, 𝑝𝐴1 +  𝑝𝐴2) =  (𝑝𝐵1, 𝑝𝐵1 + 𝑝𝐵2) vs. 𝐻0 ∶ (𝑝𝐴1, 𝑝𝐴1 +  𝑝𝐴2) ≠

 (𝑝𝐵1, 𝑝𝐵1 + 𝑝𝐵2). 

Let g ∈ {A,B}, and 𝑝𝑔  =  𝑝𝑔1  + 𝑝𝑔2
. Let j = 1,···, 𝑛𝑔 denote replicates under Condition g. The 

overall likelihood with Θ1 = (𝑝𝐴1, 𝑝𝐴, 𝑝𝐵1, 𝑝𝐵) is 

 

The maximum likelihood estimator for 𝑝𝐴1, 𝑝𝐴, 𝑝𝐵1, 𝑝𝐵  are given by  

 

Then, the likelihood ratio is given by 
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where 

 

and 

 

Finally, the likelihood ratio test is given by 

Λ =  −2logTH0 ~ 𝑥2
2, 

Which is a Chi-square distribution with the degree of freedom of 2. 
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4.1 Abstract 
The monumental advances in CRISPR/Cas9 technology in zebrafish model system have 

provided valuable insights on cell developmental pathways at a gene-specific resolution through 

reverse genetic approaches. Here, we introduce a simple and inexpensive alternative to the 

popular Gateway assembly to generate a multiplexed CRISPR guide RNA (gRNA) vector: a 

modified Tol2 transposon vector that includes four paralogous U6 promoters expressing unique 

gRNAs. One potential caveat of CRISPR/Cas9 system is the variable bi-allelic gene inactivation 

frequency of various gene targets, especially in a conditional mutagenesis system. To maximize 

conditional bi-allelic mutations, we target a single gene or exon with multiple gRNAs to improve 

mutagenesis rate, similar to how “carpet bombing” focuses firepower in a designated region. 

Here, we targeted two well-known pigment genes, tyr and slc45a2, with single gRNA or carpet 

bomb vectors to quantify gene inactivation frequency in a conditional mutagenesis system. We 

performed two complementary assays, targeted sequencing and haploid screening, to illustrate 

that carpet bombing generated up to a modest 1.5-fold to 7-fold higher frequency of frame-shift 

mutations and null phenotypes than conventional single gRNA targeting. We report that in carpet 

bomb-mediated mutagenesis, typical small indels do occur independently from each other, but 

large deletions spanning the distance of two gRNA cut sites are abundantly present. Collectively, 

we present a streamlined alternative method to constructing a “carpet bomb” vector that can 

potentially maximize conditional null phenotypes in zebrafish. 

4.2 Introduction 
Forward genetic screens in zebrafish have contributed an invaluable role in identifying candidate 

genes that direct certain developmental pathways 134,135. However, it wasn’t until the recent 

adaptation of morpholino oligonucleotides (MO), zinc finger nucleases (ZFN), transcription 

activator-like effector nucleases (TALEN), and CRISPR/Cas9 technologies that a reverse genetic 
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technique became available to validate and assess those candidate genes in the zebrafish model 

system 136–142. Out of these gene-editing technologies, CRISPR/Cas9 quickly became the method 

of choice in the zebrafish community for its ease of use, simplicity in design, and cost scalability 

for high-throughput screening experiments 143,144. To generate somatic and germline mutations in 

zebrafish, gRNA constructs and Cas9 mRNA or protein are directly injected into the yolk of one 

cell-stage embryos 138,139,145–147. The CRISPR-mediated gene editing can occur as early as at two-

cell stage to generate stable alleles that are propagated through growth and ensuing selective 

breeding 148. However, a limitation to this system is that certain essential genes could not be 

assessed since null phenotype leads to embryonic lethality. Therefore, a need emerged for a 

conditional CRISPR/Cas9 model with spatial and temporal control.  

Currently, limited number of conditional CRISPR techniques are currently available for the 

zebrafish model system. Two aspects of conditional CRISPR design include: 1) presence of 

gRNA in target cells and 2) temporal or spatial control of Cas9 expression. In traditional 

CRISPR knockout design, a synthesized gRNA was directly delivered into embryo where, in the 

presence of Cas9, can be immediately utilized. However, whether the injected gRNA was stable 

enough to propagate through zebrafish’s lifespan was questionable. Instead, Tol2-based 

transgenesis vectors were used to insert gRNA-expressing DNA components into the zebrafish 

genome 147,149. Temporal or spatial control of when the mutagenesis occurred have been achieved 

through the use of heat-shock promoters or tissue-specific promoters that express Cas9 transgene 

150,151. For its ubiquitous use in clonal analysis experiments, we generated a stable transgenic line 

(j940) with Cas9 expressed behind a heatshock promoter (hsp70>Cas9). However, one potential 

challenge is that gRNAs have wide range of efficiency in generating null phenotypes, especially 

in a conditional model 139,147. With the recent discovery of paralogous U6 promoters, a pol III 
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promoter that constitutively transcribes small RNAs, in zebrafish, we have the ability to reliably 

express four to five gRNAs behind tandem U6 promoters 151. We decided to target a single gene 

with four gRNAs to “carpet bomb” the gene with multiple mutagenesis events to maximize 

CRISPR/Cas9-mediated knockout efficiency. Currently, Gateway assembly is indeed the method 

of choice for engineering multiplex CRISPR vectors for its accurate integration of large DNA 

fragments into vectors through the use of site-specific recombination 147,151–155. Here, we present 

a quick and cost-efficient alternative method for generating multi-gRNA targeting vectors, 

through the use of standard PCR amplification and Gibson assembly, for zebrafish genetic 

analysis. For their clear visible null phenotypes (lack of dark pigments), we focused our effort on 

two essential pigment genes, slc45a2 (also known as albino) and tyr, to quantify CRISPR-

mediated gene inactivation frequency 147,156,157. We utilized next-generation sequencing (NGS) 

and haploid screens to show that “carpet bomb” transposon can improve CRISPR-mediated gene 

inactivation frequency up to 7-fold higher than conventional single gRNA system in our 

conditional model.  

4.3 METHODS  

4.3.1 Zebrafish Care 
All zebrafish were used in accordance with the protocols approved by the Washington University 

Animal Studies Committee (Protocol 20140195) and maintained under standard conditions as 

dictated in The Zebrafish Book 158. 

4.3.2 Designing gRNA sequences 
We developed an algorithm that ranks  candidate gRNAs generated by the E-CRISP tool in each 

gene of the Zv9 reference genome  159.  Our algorithm first requires that the candidate gRNA 

targeting sequence falls within an exon, and that the 20 base targeting sequence begins with a G 
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nucleotide, consistent with the G at the transcription initiation site for zebrafish U6 promoters 

160.  Candidate gRNAs for each gene were then placed in 1 of three bins, according to the number 

of potential off-target binding sites in the zebrafish genome (0, 1 or 2+).  They were then ranked 

within each bin using the following formula: 60*[fraction GC content] + 10*[fraction of gene 

transcripts containing gRNA site] - 30*[relative position of target sequence from the 

transcription start site within the gene along the chromosome] + 2 (if position 20 is G) - 3(if 

position 20 is A).  We then selected the best 10 candidate gRNAs, starting with high-scoring 

gRNAs from the “0” off-target bin, following with candidates from the “1” off-target bin, and 

lastly using gRNAs from the “2 or more” off-target bin.  We note that this strategy for gRNA 

rankings is based on the investigators’ intuition of how to balance gene-inactivating gRNAs 

against gRNAs that might result in off-target lesions in other genes.   An excel file with 

candidate gRNAs for each zv9 gene is available at http://genetics.wustl.edu/sjlab/public-data/u6-

grna-database/.  

4.3.2 Construction of CRISPR transgene plasmid 
Here, we present a streamlined method of constructing Tol2-based CRISPR vectors through the 

use of PCR extension and Gibson assembly 161. We provide a user-friendly excel template for 

primer design and also sequences for all plasmids utilized in this experiment at 

http://genetics.wustl.edu/sjlab/lab-protocols/carpet-bombs. The carpet bomb construction 

involves four plasmids: U6-21 (U6 promoter located in chromosome 21) precursor transposon, 

U6-9 Template A plasmid, U6-11 Template B plasmid, and U6-6 Template C plasmid. The U6-

21 gRNA precursor transposon contains a U6 Chr21 promoter followed by gRNA panhandle and 

a Xenopus EF1α promoter driving GFP expression in between Tol2 sequences. We linearized 

U6-21 gRNA precursor transposon by co-digestion with NruI restriction enzyme (NEB R3192S) 

http://genetics.wustl.edu/sjlab/public-data/u6-grna-database/
http://genetics.wustl.edu/sjlab/public-data/u6-grna-database/
http://genetics.wustl.edu/sjlab/lab-protocols/carpet-bombs
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and AClI restriction enzyme (NEB R0598S). For single gRNA vector construction, primers SF 

and SR were annealed and extended to generate a product with flanking sequences that overlap 

the ends of linearized U6-21 gRNA precursor transposon (Fig. 1A). The PCR product was 

cloned into precursor transposon by following standard Gibson Assembly Mastermix protocol 

(NEB, E2611S). The construction of carpet bomb vector includes the assembly of three separate 

PCR products. (Fig. 1B). To minimize potential non-specific amplification during PCR, we 

provide template A, template B, and template C that has U6 Chr9 promoter, U6 Chr11 promoter, 

and U6 Chr6 promoter preceded by gRNA panhandle respectively. The PCR extended products 

will contain different overlapping sequences, derived from unique gRNA sequences, that can be 

properly oriented and inserted into the precursor transposon via Gibson assembly. The carpet 

bomb vector was constructed by following standard Gibson Assembly protocol. In brief, 

linearized U6-21 gRNA precursor transposon was incubated with PCR product A, PCR product 

B, and PCR product C at a molar ratio of 1:3:3:3 for 30 minutes. Gibson-assembled vectors were 

transformed into competent Top10 cells and extracted using High-Speed Plasmid Mini Kit (IBI 

Scientific, IB47102). Since carpet bomb vectors contain novel ApaI and NdeI restriction sites 

that are not present in “U6-21 gRNA precursor transposon”, we performed restriction digest 

screens to identify properly assembled candidates, which were further validated with Sanger 

sequencing. The primers used to generate slc45a2 and tyr CRISPR vectors are listed in Figure 2.  

4.3.3 Microinjection of CRISPR vectors 
All injections were performed in 1 to 2-cell stage zebrafish j940 embryos (Fig. 3A). We injected 

approximately 1nl of 100ng/ul CRISPR transgene vector and 15ng/ul Tol2 capped transposase 

mRNA cocktail into embryos. 
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4.3.4 Heat-shock for induction of Cas9 
To induce expression of Cas9, we first screened for normally developed transgenic embryos with 

GFP expression at 1dpf (Fig. 3A). Approximately 100 embryos placed in 15ml of egg water in 

50ml conical tubes. We then added 15ml of pre-warmed (37°C) egg water. The tubes were 

immediately placed in 37°C water bath for 30 minutes following which embryos and 37°C egg 

water were transferred into petri dishes and allowed to cool to 28°C in incubator. Dead embryos 

were removed the next day. 

4.3.5 Single-cell dissociation and FACS 
We adapted single-cell dissociation protocol to digest 2dpf heat-shocked embryos into single 

cells for FACS 162. First, the embryos were dechorionated in Pronase (Sigma, 10165921001). 

Approximately 150 dechorionated embryos were collected in 1.5ml eppendorf tube. We then 

replaced egg water with 1mL of TrypLE Express (ThermoFisher Scientific, 12605021) and 

incubated the embryos at room temperature for 10 minutes on a rotator. After incubation, 

embryos were mechanically dissociated by triturating with a 1ml pipette tip. Once in single cell 

suspension, the sample was centrifuged at 300g for 8 minutes at 4°C to pellet the cells. We re-

suspended the pellet in 800ul of cold PBS+2%FBS. Resuspended cells were then filtered through 

a 100uM cell filter (Partec, 04-0042-2318) to remove clumped cells. Dissociated single cells 

were analyzed using flow-cytometry (Beckman Coulter MoFlo) and cells positive for GFP 

expression were collected for DNA extraction. 

4.3.6 CRISPR sequencing library generation  
We used targeted PCR and next-generation sequencing to quantitatively calculate mutagenesis 

rates at targeted sites. We first lysed GFP-positive cells with DNA extraction buffer (50mM Tris, 

1mM EDTA, 0.5% SDS, 1mg/ml Proteinase K) by incubating overnight at 55°C. DNA was 

purified by phenol-chloroform extraction followed by ethanol precipitation. We amplified 
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targeted regions of tyr exon 1 and slc45a2 exon 1 using Phusion High-Fidelity Polymerase (NEB 

M0530) following manufacture’s suggestions (Fig. 2 & 3B). Sequencing libraries were 

generated using standard Illumina library preparation as adapted previously 163. Although tyr 

PCR product was ~800bp in size, all four gRNA targets are within 250bp of the PCR ends, 

which we were able to capture using the 250bp paired-end Illumina MiSeq platform.  

4.3.7 Identifying CRISPR induced mutations  
Sequencing reads were aligned to GRCz10 reference genome using BLAT 164. Concordant 

paired reads that mapped to tyr and slc45a2 were greater than 90% of total reads. Since all 

targeted sites were covered by our two paired reads, we can identify multiple combinations of 

indels. Additionally, we analyzed BLAT outputs in R to call insertions or deletions that occur 

within 30bp of predicted break site. For more accurate estimate of gRNA2/gRNA3 indel 

frequency (Fig. S1), we excluded large deletions (between gRNA1 and gRNA4) from our 

calculations since central gRNAs could have generated indels but are not captured. We note that 

this adjustment could slightly overestimate indel frequency to be higher at overlapping gRNA 

locations than what occurs.  

4.3.8 Haploid screen analysis for functional inactivation  
A subset of heat-shocked embryos was reared to maturity at 28°C. Once viable for breeding, 

eggs from founder female fish were in-vitro fertilized with UV-inactivated sperm following the 

published protocol 165. Fertilized embryos were sorted for GFP expression at 1dpf stage and 

scored for loss of pigmentation at 3dpf.  
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4.4 RESULTS 

4.4.1 Simple, cost-efficient approach for multiplex (carpet bomb) CRISPR 

vector construction 
Here, we developed a method for constructing single and multiplex gRNA expressing vectors. 

We refer the multiplex vector, which expresses four gRNAs from four different U6 promoter, as 

carpet bomb. Our method here is a potential alternative to the previously published Golden Gate 

assembly for generating multiplex gRNA vectors. Our motivation for an alternative method 

stems from our experience that Golden Gate assembly could be a challenging and time-

consuming task for the mass production of carpet bomb vectors targeting many genes. We 

highlight the simplicity of our approach, which utilizes commonplace techniques and requires 

minimal reagents and less time. Our approach is cost-efficient as only a pair or three pairs of 

primers are necessary to generate a single gRNA or carpet bomb vector, respectively. The 

inherent disadvantage in Gibson assembly is the need for 20-40bp overlap at ends of DNA 

fragments, which prevents systematic assembly of fragments with same homologous ends. 

However, in our method, we take advantage of the unique gRNA sequences and use them as 

anchors flanking U6 promoter and gRNA panhandle for subsequent Gibson assembly (Fig. 1). 

We designed primers that have terminal sequence of U6 promoters or initial sequence of gRNA 

panhandle, which we extended to include unique gRNA sequence (Fig. 2). This produced PCR 

fragments with unique flanking sequences that can be assembled via Gibson assembly. 

Furthermore, we can construct a carpet bomb vector with a single cloning step thus avoiding the 

time-consuming process of multiple cloning events necessitated in Golden Gate assembly.  

4.4.2 Carpet bomb CRISPR mutagenesis from targeted sequencing 
We sequenced CRISPR-targeted regions of tyr and slc45a2 genes by generating sequence 

libraries for the 250bp paired-end MiSeq platform for each CRISPR experiments. The paired 
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reads encompass all four gRNA target sites allowing us to measure co-occurrence of gRNA 

mutagenesis at individual molecule level (Fig. 3B). First, we asked whether carpet bomb 

technique outperform the conventional single gRNA vector. For each CRISPR vector, we 

quantified the frequency of reads that had an indel (including 1bp insertions and deletions) 

within 30bp of each gRNA target site (Fig. 4). Furthermore, we quantified how often frameshift 

occurred due to the indels generated by CRISPR activity to compare the rate of functional 

inactivation of the gene. For both gene examined, we observed an increase in the mutagenesis 

and frameshift events for carpet bomb vectors respective to the single gRNA counterparts (Fig. 

3C). In tyr context, the carpet bomb vector produced 62.6% of reads (43.7% led to frameshift) 

while the single gRNA vector generated 10.7% of reads (6.2% led to frameshift) that had at least 

one indel in one of the target regions. In slc45a2 context, we observe a modest increase of 33.6% 

to 39.9% of reads showing at least one indel (21.7% to 32.7% for frameshift indels) when 

comparing single gRNA vector to carpet bomb vector.  

Second, with the rise of multiplexing and tiling CRISPR assays, we were curious whether 

overlapping gRNA have synergistic influence in CRISPR mutagenesis. In the carpet bomb 

design, second gRNA and third gRNA overlap where predicted cleavage sites are 1bp apart in 

slc45a2 vector and 7bp apart in tyr vector. We quantified how often an indel was generated in 

these overlapping gRNA positions compared to first and fourth gRNA target regions in the 

carpet bomb condition. We observed no appreciable boost in CRISPR break frequency in the 

overlapping region, which suggests that there is no additive synergy in producing CRISPR-

mediated breaks when gRNAs are tiled or overlapping (Fig. S3). In fact, interestingly, we note a 

slight decrease in indel frequency in the overlapping region, however, further experiments are 

necessary to substantiate the claim that overlapping gRNA are antagonistic. 
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Lastly, we asked what possible CRISPR mutagenesis patterns could be expected by the carpet 

bomb technique. We broadly categorized mutagenesis events of carpet bomb vectors based on: 

1) “no indel” 2) “large deletion” 3) “discrete indel” 4) “complex rearrangement” (Fig. 4). Within 

“no indel” events, we discovered that extremely few reads had mismatch mutations in gRNA or 

PAM sequence, which might render that region untargetable through CRISPR-Cas9 mechanism. 

This could indicate that DNA repair is extremely precise during embryogenesis or that no 

CRISPR activity occurred in the cell.  For carpet bomb vectors, deletions of large regions 

between gRNAs were most common; 30.5% and 50.1% of total reads in slc45a2 carpet bomb 

and tyr carpet bomb respectively. These large deletions represent more than 70% of total 

CRISPR-generated mutations in both gene contexts. Collections of local small indels were also 

present at modest frequencies of 7.4% in slc45a2 carpet bomb and 16.1% in tyr carpet bomb. 

Furthermore, we also captured a small fraction of CRISPR-induced breaks (~2%) that illustrated 

complex rearrangements and inversions, which have also been identified in other model systems 

142,166–170.  

4.4.3 CRISPR-mediated gene inactivation in haploid analysis 
To more accurately quantify how well the carpet bomb CRISPR technique can generate a null 

phenotype, we scored haploids of CRISPR-modified embryos from founder females for loss of 

pigmentation. When characterizing haploids, we separated phenotype into two classes: complete 

loss of pigmentation and normal pigmentation (Fig. 3A). Correlating with targeted sequencing 

results, we observe an increase of pigmentation defect frequency in haploids from carpet bomb-

induced founder than single gRNA-induced founders (65% vs 0% in tyr and 57% vs 25% in 

slc45a2) (Fig. 3C). We noticed that exon 1 in tyr gene encodes important signaling peptide and 

EGF (epidermal growth factor)-like domains that are crucial for the protein’s function 171. 
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Similarly, nonsense mutations in exon 1 of slc45a2 gene have been attributed to albinism in 

humans 172. Large deletions of these functional domains can lead to null-phenotypes, which can 

explain why frequencies of unpigmented haploids were much higher than expected by frameshift 

mutations. 

4.5 Discussion 
In this study, we describe a simple and inexpensive alternative to Gateway assembly for 

constructing multiplex CRISPR vectors. Our lab has developed transposon-based clonal analysis 

in zebrafish to study fate restriction of cell lineages during development and fin regeneration 173–

176. Clonal analysis, using Tol2 constructs, generates a mosaic embryo where only one or two 

cell lineages are labeled with GFP in the caudal fin for lineage-tracing analysis 149,176. We 

modified clonal analysis to incorporate CRISPR technology by designing the Tol2 vector to 

include U6-gRNA constructs. The individually labeled cell lineages provide spatial control on 

which cell populations experience CRISPR-Cas9 activity. For temporal control, the CRISPR 

vector was injected into a stable line with a heat-shock promoter driving Cas9 expression. By 

combining clonal analysis and CRISPR technology, we present a conditional knockout zebrafish 

model to analyze temporal requirements for genes’ function and role in transposon generated 

somatic clones.   

We sought to compare whether targeting a gene with more gRNAs would improve CRISPR 

efficiency in generating indels and in consequence, improve the chance of functionally 

inactivating the target gene. One limitation of single gRNA targeting is that we expect 1/3 of 

CRISPR-induced breaks will repair with no frameshift, and thus, unlikely to cease target gene’s 

function. By targeting a gene with four gRNAs, four possible loci can independently experience 

mutagenesis events thus improving the overall frequency of mutations and the odds that a 
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frameshift will occur in the gene. In both targeting sequence results and haploid results, we do 

observe an appreciable improvement in CRISPR-mediated indel frequency in the carpet bomb 

model. Furthermore, the haploid analysis supports our assumption that carpet bomb technique 

also increases the frequency of generating null alleles of the targeted gene. It was promising that 

a single heat shock induction produced such high rates of gene inactivation. 

The results from these experiments provide a guideline in how to design a more effective carpet 

bomb vector. First, overlapping gRNAs do not provide a noticeable improvement in CRISPR-

induced indel frequency in the target region. Therefore, gRNAs in carpet bomb vectors should be 

selected so that the gRNA target regions that are spaced apart. Further studies should be done to 

elucidate the optimal spacing among gRNA target sites before the gRNAs have redundant 

function. Second, carpet bomb CRISPR events frequently generate large deletions of regions 

between flanking gRNAs. Our NGS results at two albino loci suggest that close to 75% of 

mutations generated by carpet bombs are in fact deletions between targeting sites. These large 

deletions have the increased probability that the mutated chromosome or loci is inactivated for 

targeted gene function. Furthermore, if the function of the gene and the structure of the protein 

are known, one can choose gRNAs that flank important functional elements or structures and 

perform targeted deletion, likely rendering the gene product as nonfunctional. With these 

guidelines, we continue to optimize the carpet bomb conditional CRISPR technique to maximize 

CRISPR-mediated knockouts for transient analysis of gene function.  

The interest in optimizing the carpet bomb conditional CRISPR technique spurs from the 

potential application of combining CRISPR-Cas9 screening and clonal analysis to perform 

reverse genetic screens of important developmental genes. Clonal analysis has been utilized in 

the zebrafish experiments for lineage-tracing and developmental pathway explorations. 
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However, “carpet bomb” CRISPR can be applied to any general conditional KO experiments to 

maximize genetic ablation potential. Coupling carpet bomb conditional CRISPR technology with 

clonal analysis provides numerous advantages when screening for essential developmental 

genes. First, many epigenetic related genes are critical for embryogenesis and are lethal when 

knocked out early in development. The conditional heat shock model allows us to control 

temporally when the CRISPR-mediated knockout is activated. Second, clonal analysis offers a 

cell-lineage specific resolution. Lastly, by maximizing CRISPR efficiency through the use of 

carpet bomb technique, we can perform mutagenesis screens without the need to generate 

homozygous mutant progenies for phenotypic analysis, which demands months of effort. 

However, it’s important to note that the current single heat shock model only increases CRISPR 

efficiency to <70%. We are pursuing conditions to reach close to 99% CRISPR efficiency 

through multi-heat shock conditions.  

We recognize that the increase in gRNA number is accompanied by higher number of potential 

off-target effects. In the scope of this paper, we have not quantified the frequency of off-target 

mutations. We are encouraged by recent literatures revealing minimal off-target frequencies in 

zebrafish CRISPR experiments 138,145,147. We value the importance of off-target effect’s potential 

contribution to CRISPR-mediated knockout phenotype. However, we will utilize this technology 

as a screening tool for important functional genes in fin regeneration, which we will further 

validate using alternative methods such as using other gRNAs or performing a rescue 

experiment. These complementary experiments can validate the target gene, not off-target 

effects, is causal for phenotype. Furthermore, rapid advances in CRISPR/Cas9 technology have 

optimized the system to minimize off-target efficient to undetectable levels 177–179. We look 
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forward to incorporating these exciting advances in CRISPR technology to continually improve 

conditional CRISPR-based assays in zebrafish. 
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Figure 1: Schematic of CRISPR carpet-bomb vector construction. (A) The assembly of 

single gRNA vector includes two components: linearized precursor vector and insert template, 

which encodes the gRNA. The insert template is the product of annealing and extending primers 

SF and SR. The various colors represent unique sequences that are overlapping at the terminal 

ends of DNA fragments. These unique overlapping regions allow for proper assembly during 

Gibson Assembly. (B) Carpet bomb vector construction involves four components with unique 

flanking sequences that can be properly assembled. The primers are color coded where black 

indicates complementary sequence that the primer binds to during PCR while squiggly color 

lines indicate unique sequences that are extended at the ends of the product via primer extension. 
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Figure 2: Primer sequences used in CRISPR vector construction. Here, we provide the 

sequences of all the primers that are used to generate the single gRNA vector and carpet bomb 

vector. We highlighted the parts of the primer sequences based on the sequence context shown in 
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Figure 1 to illustrate overlapping attributes. Furthermore, primers used for Sanger validation and 

targeted sequencing are also specified. 
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Figure 3: Improved CRISPR-induced gene inactivation frequency in carpet bomb context. 

(A) A cocktail of CRISPR transposon vector and transposase is injected into 1- to 2-cell embryos 

and heat shocked at 24hpf to activate Cas9 expression. Mosaic GFP larvae were either 

dissociated to collect GFP-positive cells for targeted sequence analysis or grown up to adulthood 

for subsequent haploid analysis. The adult fish were screened to identify founder females, which 

produced GFP-positive embryos indicating germline transmission of the CRISPR transposon. 

The founders’ eggs were fertilized with UV-inactivated sperm to generate haploid embryos. 

After sorting for GFP-positive haploid embryos, we counted the number of unpigmented 

haploids at 3dpf to quantify the frequency of gene inactivation caused by CRISPR activity. (B) 

Schematic of the locations of gRNA positions on target genes (not scaled). As shown, gRNA2 

and gRNA3 are overlapping in both genes. The curvy lines indicate the targeted sequencing 

regions that are captured with 250bp PE MiSeq platform. (C) The results of both targeted 

sequencing analysis and haploid analysis show appreciable increase in gene inactivation 

frequencies indicated by the increase in frameshift indel frequencies and unpigmented haploid 

frequencies in both genes’ carpet bomb conditions relative to single gRNA conditions. 
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Figure 4: Characterization of indel events generated by “carpet bomb” CRISPR vector. 

Using targeted sequencing results, we were able to identify unique combinations of indels 

generated by carpet bomb technique. We provide a simplified schematic of each possible indel 

permutations and present the percentage of total reads that fit within that category. 

 

4.8 Supporting Information:  

 

Supplemental Figure 1: U6 transcription start site schematic. (A) If the terminal “G” from 

U6 promoter is transcribed, then not including the initial “G” in gRNA should lead to 

conventional 20bp gRNA from being transcribed. 
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Supplemental Figure 2: Alternative CRISPR construction method. (A) Instead of oligo 

annealing and extension, we provide alternative method where primers extend gRNA panhandle 

sequence from precursor vector, which can be combined with NruI-digested precursor vector for 

Gibson Assembly. (B) Here, a single template, any carpet bomb vector, can be used to generate 

PCR products that can be assembled into precursor vector. However, an extra step of size-

selection is necessary to remove products from non-specific amplification. Although this is a 

viable strategy for generating carpet bomb vectors, we highly recommend and support the 

optimized protocol outlined in Figure 1. 

 

Supplemental Figure 3: No synergistic effect between overlapping gRNAs.  
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Supplemental Table 1: Primer sequences for alternative CRISPR vector construction. 

 

 

 

Supplemental Table 1: Primer sequences for alternative CRISPR vector construction

Vector type
Target

Gene
Primer Sequence (5’ to 3’)

Single gRNA vector

Single gRNA vector

Primer Name

Single gRNA vector

Single gRNA vector

slc45a2

slc45a2

tyr

tyr

slc45a2-S2F

slc45a2-S2R

tyr-S2F

tyr-S2R

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

Carpet Bomb vector

slc45a2

slc45a2

slc45a2

slc45a2

slc45a2

slc45a2

Carpet Bomb vector

tyr

tyr

tyr

tyr

tyr

tyr

slc45a2-DF

slc45a2-DR

slc45a2-EF

slc45a2-ER

slc45a2-GF

slc45a2-GR

tyr-DF

tyr-DR

tyr-EF

tyr-ER

tyr-GF
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TCCCTCCAGCTCTTGGTTCGACGCTCTGCTCGGTGGGCCGTTTAAGAGCTATGCTGGAA

GACAGTCCTGCGCGTCCCGCGAACTGGGAGTCTGGAGGA

CGGGACGCGCAGGACTGTCGTTTAAGAGCTATGCTGGAA

AGCAGAGCGTCCCGGGACACGAACTAGGAGCCTGGAGAA

CGGCGTCCAGTCAGGTCGAGTTTAAGAGCTATGCTGGAA

TCTTAAACGTTAATTAATCGCTTGACTGAAAAGCTTAGACTGGAAAATTCTTTGAAAAAG

TCCCTCCAGCTCTTGGTTCGAGCCTCCGAGGCGCTCTAGGTTTAAGAGCTATGCTGGAA

TAGAGCGCCTCGGAGGCTCCGAACTGGGAGTCTGGAGGA

GAGCCTCCGAGGCGCTCTAGTTTAAGAGCTATGCTGGAA

ACAGTAGTCGCTCGCCGAGCGAACTAGGAGCCTGGAG

CCTTGCAGGTTCTCTGCACGTTTAAGAGCTATGCTGGAA

TCTTAAACGTTAATTAATCGCTTGACTGAAAAGCTTAGACTGGAAAATTCTTTGAAAAAG

TCCCTCCAGCTCTTGGTTCGAGCCTCCGAGGCGCTCTAGGTTTAAGAGCTATGCTGGAA

TCTTAAACGTTAATTAATCGCTTGACTGAAAAGCTTAGACTGGAAAATTCTTTGAAAAAG

TCCCTCCAGCTCTTGGTTCGACGCTCTGCTCGGTGGGCCGTTTAAGAGCTATGCTGGAA

TCTTAAACGTTAATTAATCGCTTGACTGAAAAGCTTAGACTGGAAAATTCTTTGAAAAAG

Carpet Bomb vector

Carpet Bomb vector
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slc45a2
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CTCGGCGAGCGACTACTGTGTTTAAGAGCTATGCTGGAA

GTGCAGAGAACCTGCAAGGCGAACTGAGAGCCGGAAGAA

Carpet Bomb vector

Carpet Bomb vector

tyr

tyr

tyr-FF

tyr-FR

TGTCCCGGGACGCTCTGCTGTTTAAGAGCTATGCTGGAA

TCGACCTGACTGGACGCCGCGAACTGAGAGCCGGAAGAA
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5.1 Abstract 
Resolving the genetic and epigenetic determinants that drive specific cell fate decision in 

complex organisms has been a long-standing goal in developmental biology. During zebrafish 

embryogenesis, a population of multipotent embryonic cells, called neural crest, is responsible 

for the migration and production of biologically unique cell types, such as neurons, bones and 

pigment cells. Zebrafish pigment cell differentiation, in particular, provides an attractive model 

for studying cell fate progression as a single neural crest progenitor engenders all three 

morphologically distinct pigment types: black melanophore (also called melanocytes), yellow 

xanthophores and reflective iridophores. Nontrivial classical genetic and transcriptomic 

approaches have revealed essential molecular mechanisms and gene-regulatory circuits that drive 

neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to 

pigment cell differentiation is poorly understood. Here, we chart the global changes in the 

epigenetic landscape during neural crest differentiation into melanocytes and iridophores to 

identify epigenetic determinants of pigment cell fate. Motif enrichment in the epigenetically 

dynamic regions, or potential cis-regulatory elements, revealed putative transcription factors that 

are responsible for driving pigment cell identity. Through this effort, in the relatively 

uncharacterized iridophores, we define a network of transcriptions factors that are predicted to 

bind to regulatory elements directly upstream of genes linked to guanine synthesis cycle, which 

are essential for iridophore function.  

5.2 Introduction 
Development of a multicellular organism is an intricate process of expansion and diversification 

of a pluripotent cell population. Rapidly following embryogenesis, the genome of stem cells 

experiences extensive biochemical and structural changes that allow these multipotent progenitor 

cells to faithfully commit and differentiate into various tissue and cell types. These decisions are 
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often reflected by unique gene expression profiles and are shaped by epigenetic programs180,181. 

Although monumental consortium level efforts, such as ENCODE182 and Roadmap 

Epigenomics183, have significantly advanced the field of developmental epigenetics, these studies 

have mostly focused on profiling human and mouse model systems.  

Zebrafish is one of the organism models that are widely used in biological field for various 

advantageous properties184. Zebrafish can rapidly mature into adulthood and need little space to 

propagate thus are cost-efficient. Numerous genetic-manipulation and cell-labeling technologies 

are available to interrogate how genetic elements impact development and disease. More 

importantly, zebrafish has a transparent embryo, which makes zebrafish an attractive model for 

embryonic development and cell fate dynamic studies. Zebrafish has three main pigment cell 

types185, black melanocyte, reflective iridophore, and yellow xanthophore, which are all derived 

from a multipotent neural crest cell (NCC) population (Fig. 1A). Interestingly, NCCs can also 

differentiate into various morphologically and functionally distinct cell types, such as glia, 

neurons, cartilage, connective tissue and pigment cells186. How a single cell population with the 

same genetic content could generate such diverse cell types has been an active field of research 

in the developmental biology. In the case of pigment cell differentiation, previous work 

established that a subpopulation of NCCs commit to pigment cell fate (called pigment progenitor 

cells), then further differentiate into the mature iridophores or melanocytes187,188.  

Immense mutagenesis experiments in zebrafish provided insights into the genetic regulation and 

gene regulatory networks responsible for pigment cell differentiation189–194. Melanocyte 

development has been extensively studied for its translational potential in tackling melanoma 

cancer. In melanocytes, Sox10195 and Wnt signaling196 are required to activate and maintain 

mitfa transcription, which is an essential transcription factor regulating numerous melanocyte 
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differentiation genes, including those controlling melanin synthesis197.  Although relatively 

understudied, molecular mechanisms governing iridophore cell fate have been discovered in 

forward genetic screens. In iridophore development, pnp4a198 was shown to encode an enzyme 

important in the biosynthesis of guanine, an important molecule responsible for the reflective 

characteristic in iridophores. PKA (Protein Kinase A) signaling199 inhibits iridophore 

differentiation while promoting differentiation of melanophores in zebrafish larvae. Alk 

(Anaplastic lymphoma kinase) and Ltk (leucocyte tyrosine kinase) ligands200 are essential for 

iridophore development. Sox10, which regulates the expression of transcription factor mitfa in 

melanocyte, is continuously expressed throughout development of the iridophore lineage191. 

Foxd3 transcription factor represses mitfa in the iridophore pigment progenitor cells to bias 

differentiation towards iridophore cell fate201,202. Recently, tfec203,204 and gbx2205 have also been 

implicated in iridophore cell fate.  

The epigenetic dynamics that govern pigment cell fate is relatively unexplored in the zebrafish 

model. Here, we aim to fill this gap and provide high quality epigenetic landscape profiles of 

various stages of NCC differentiation into melanocytes and iridophores. Furthermore, 

Comparative epigenetics can be a powerful tool in deciphering both the genetic and epigenetic 

mechanisms that govern cell fate. Here, we characterize and leverage DNA methylation and 

chromatin accessibility dynamics to chart putative gene regulatory networks that govern pigment 

cell fate and reveal that alx4a is necessary and sufficient for iridophore development on the 

zebrafish body.  

5.3 Results 
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5.3.1 Pigment cell differentiation is demarcated by cell-type specific loss of 

DNA methylation. 

To characterize DNA methylation dynamics that govern NCC development and differentiation 

into pigment cells, we generated whole genome bisulfite sequencing (WGBS) libraries of early 

NCC (15-somite), fate-determined NCC (24hpf), and differentiated pigments cells, melanocytes 

and iridophores (Fig. 1B). We generated two biological replicates of each timepoint and 

sequenced to capture ~15 million CpGs with coverage 5 (Fig. 2A). Although there seem to be 

indiscernible difference in methylation distribution (Fig. 2B), global DNA methylation levels 

show slight decrease across NCC differentiation into pigment cells (~85% to ~81%, Fig. 2C). 

However, the variation in DNA methylation across the samples can separate samples based on 

cell identity as represented by CpG methylation correlation (Fig. 2D) and Principal component 

analysis (PCA) (Fig. 2E). To increase confidence in CpG methylation levels, biological 

replicates are combined so that almost 75% of CpGs have 5 coverage (Fig. 3A). The global 

DNA methylation levels remain similar in the combined samples (Fig. 3B) to show modest loss 

of DNA methylation throughout differentiation.  

Since DNA methylation difference across samples can demarcate cell identity, the modest loss of 

DNA methylation could reflect abundant cell type-specific and local DNA methylation gain and 

loss. To better understand the DNA methylation dynamics that determine pigment cell fate, we 

identified differentially methylated regions (DMRs) using DSS206. We identified thousands of 

local DMRs (size ranging from 50 bp to 1000 bp, Fig. 3C) and found that pigment differentiation 

is accompanied with largely local loss of methylation and very minimal gain of methylation. In 

fact, >99% of DMRs between 24hpf NCC and differentiated pigment cells are hypoDMRs in 

differentiated pigment cells (Fig. 3D,E). We also note that melanocytes and iridophores share 
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regions that undergo similar magnitude of methylation change (Fig. 3F) from 24hpf NCC. 

Considering the recent discovery of a bipotent pigment progenitor, melanoiridoblast191,202, that 

can differentiate into both melanocytes and iridophores, these shared DMRs could predict the 

DNA methylation landscape of the intermediate pigment progenitor cell.  

5.3.2 Dynamic transcriptomic landscapes reveal physiologically relevant genes 

and transcription factors responsible for pigment differentiation  

Since loss of DNA methylation is often associated with gene activation207, we asked whether 

gene expression dynamics during pigment differentiation reflected the epigenetic activation 

phenomenon. We have previously characterized the transcriptomic dynamics between 24hpf 

embryos vs melanocytes, retinal pigment cells and iridophores208. However, the transcriptomic 

landscape was generated from whole 24hpf so NCC gene expression could be masked by other 

cell types. To address this issue, we isolated NCC population and generated mRNA-seq libraries 

to provide better resolution in the gene expression dynamics during NCC to pigment cell 

differentiation. Furthermore, we characterized differentially expressed genes using DESeq2209 to 

identify statistically significant differences. As expected, 15-somite and 24hpf NCC cluster 

closely together while the two pigment cell types are dispersed based on gene expression 

variation as represented by hierarchical clustering (Fig. 4A) and PCA analysis (Fig. 4B). Known 

gene markers are differentially expressed in appropriate cell types (Fig. 4C) reflecting robust 

quality of mRNA-seq libraries. Although pigment cell fate is coupled with loss of DNA 

methylation, we report relatively balanced gene expression dynamics where hundreds of genes 

are up- and down-regulated (Fig. 5A). We performed gene ontology (GO) enrichment of the 

DEGs by using Metascape133 and report biologically relevant processes (Fig. 5B). For example, 

the top GO hit for genes downregulated from 15-somite to 24hpf NCC transition is tube 
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development, which can represent neural tube formation that occurs 18-20hpf210. Furthermore, 

GO enrichment for melanocyte-specific genes reflect pigmentation and membrane-transport 

protein while iridophore-specific genes enrich for small molecule biosynthetic process and 

purine synthesis that could be responsible for guanine crystal stacks that give iridophore its 

reflective properties. We also note that genes that are specifically down-regulated specifically in 

iridophores, but not in melanocytes, enrich for neuronal GOs suggesting that iridophore 

progenitor cells might share more similarity to neuronal cells than melanocytes. 

Epigenetic landscape is often intricately tied with transcription factor (TF) presence211. To better 

understand how transcription factors might influence the epigenetic dynamics that govern 

pigment cell fate decisions, we identified differentially expressed transcription factors for each 

cell type (Fig. 6). Since melanocyte development is relatively well-characterized, we focused on 

potential transcription factors that might drive iridophore differentiation. sox10 and tfec have 

already been characterized to be important for iridophore differentiation191,204. As identified in 

previous efforts208, we confirm that alx1, alx3, alx4a, alx4b, ets1, and gbx2 are highly expressed 

in iridophore. Recently, morpholino knockdown of gbx2 have been shown to diminish iridophore 

count in zebrafish larvae suggesting that gbx2 is essential for iridophore differentiation205. We 

report other TFs, such as hsf5, srebf1, foxi3b, nfkb2, tbx2a, and zbtb2a, that are preferentially 

expressed in iridophores. Whether these TFs are important for determining iridophore identity 

warrants further investigation.  

5.3.3 Chromatin accessibility potentially fine-tunes gene expression during 

pigment differentiation 

Since DNA methylation cannot fully explain down-regulation of genes during differentiation, we 

hypothesized that chromatin accessibility must be playing an essential role in epigenetic 



 89 

suppression of gene activity. To explore this hypothesis, we generated Assay for Transposase-

Accessible Chromatin with sequencing (ATAC-seq212) to identify chromatin accessibility 

dynamics across pigment development. We identified >100,000 ATAC peaks (Fig. 7A), which 

represent cell-type specificity as shown by hierarchical clustering (Fig. 7B) and PCA analysis 

(Fig. 7C). We identified differentially accessible regions (DARs) using DiffBind213 and show 

that DARs are similar in size as DMRs (Fig. 7D). We report tens of thousands of regions that are 

closing, but only a few thousand regions opening, in both melanocyte and iridophore during 

pigment differentiation (Fig. 7E). Furthermore, thousands of regions are closing and opening in 

cell type-specific manner. These results suggest that although majority of the DNA methylation 

dynamics favor epigenetic activation, chromatin accessibility fine-tunes the gene regulatory 

network defining cell identity.  

5.3.4 Dynamic DNA methylation and chromatin accessibility regions denote 

potential cis-regulatory element 

DNA methylation and chromatin accessibility dynamics can co-exist to influence epigenetic 

control. Therefore, we characterized various dynamics of differentially methylated and 

accessible regions (DMARs) that can occur (Fig. 8A). If a DMR overlaps a DAR, we combined 

those two regions into one DMAR. There are thousands of regions that are both undergoing 

active DNA demethylation and opening (increasing in chromatin accessibility), which we 

classify as dynamic DMAR (Fig. 8B). The dynamic DMARs don’t increase in size relative to 

DMRs and DARs (Fig. 9A), which suggest that the overlapping DMRs and DARs are similar in 

size and co-occur in the same genomic vicinity. For DMARs that have both DNA methylation 

and chromatin accessibility associated with epigenetic activation (opening hypoDMARs), we 

hypothesize that these are more likely to function as regulatory elements than solo DMRs or 
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DARs, which might have antagonistic epigenetic marks. For example, we report that out of 

~6,000 iridophore-specific solo hypoDMRs, ~4,000 hypoDMRs occur in closed chromatin 

regions (Fig. 9B). Even though the DNA methylation change correlates with epigenetic 

activation, there will be no functional consequence of the loss of DNA methylation since the 

chromatin is closed off and no transcription factor can access that region. Similarly, many solo 

opening DARs occur in regions with relatively high methylation (Fig. 9C). Therefore, we 

decided to focus on characterizing dynamic DMARs to decipher potential cis-regulatory roles 

that regulate cell fate decisions.    

To better understand how epigenetic dynamics might shape gene expression, we explored 

promoter epigenetic status of DEGs. 88-90% of promoters of up-regulated genes are static in 

their epigenetic status from 24hpf NCC to pigment cell differentiation (Fig. 10A). Although a 

small fraction of down-regulated genes might be repressed by loss of promoter accessibility, 

majority of DEGs’ promoters don’t experience any epigenetic change. This result suggests that 

gene expression is more likely to be controlled by DMARs in enhancer context. Indeed, majority 

of the DMARs are present in intergenic or intronic regions (Fig. 10B), which if epigenetically 

active will likely provide a cis-regulatory role. 

Transcription factors bind to enhancer regions to increase transcription of nearby genes5. To see 

if certain transcription factors might be binding to DMARs to provide enhancer-like function that 

regulate pigment differentiation, we identified motif modules that are enriched in melanocyte-

specific opening DMARs and iridophore-specific opening DMARs (Fig. 11A). As expected, in 

melanocytes, we see an enrichment of TFAP-related motifs and MiT motifs, which correspond to 

tfap2a and mitfa TFs that regulate melanocyte differentiation214. Since genetic mechanisms that 

drive iridophore cell fate are relatively underexplored, we leveraged epigenetic information 
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generated in this study to chart how the genetic factors intertwine with epigenetic dynamics to 

define iridophore cell fate. EN2 motif (homeobox-related) was highly enriched specifically in 

iridophore-specific opening DMRs, DARs and DMARs (Fig. 11B, Fig. 12). We asked which 

TFs within EN2 clusters were differentially expressed in iridophores and identified that the 

aristaless homeobox TFs (alx1, alx3, alx4a, alx4b and gbx2) and pax7 paralogs were highly 

expressed. Motif footprinting analysis with CENTIPEDE215 revealed strong footprinting 

signatures in iridophore ATAC peaks, indicative of TF binding (Fig. 11C). Further analysis into 

other motif cluster enriched in iridophores revealed known and novel TFs, such as sox10, tfec, 

ets1, and hey1, with positive motif footprinting signatures (Fig. 13A,B).  

5.3.5 Iridophore-specific TFs putatively regulate genes in guanine synthesis 

cycle. 

With epigenetic landscape data, we can start predicting how TFs might regulate gene regulatory 

networks crucial for cell biology and identity. In iridophores, we reveal that many genes in the 

guanine synthesis cycle are significantly up-regulated. When analyzing iridophore-specific 

DMARs within 50kb of guanine synthesis DEG promoters, we were surprised to find that almost 

all of these DMARs contain at least one instance of alx, sox10, and/or tfec motifs (Fig. 14A). 

Almost all iridophore-specific DEGs responsible for guanine generation and transport have at 

least one DMAR with alx motif (Fig. 14B), suggesting the putative regulatory potential of alx 

TFs for iridophore’s reflective characteristic.  

Furthermore, we asked how these iridophore TFs might be turned on and regulated during NCC 

differentiation into iridophores. When we scanned for activating differentially methylated and/or 

accessible regions (DM/ARs) near iridophore-specific TF promoters, we discovered that alx4a 

promoter had 15 DM/ARs with iridophore-related TF motifs (14 upstream intergenic of promoter 
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and 1 intronic) (Fig. 15A,B). This result could represent the robust activation of alx4a expression 

that is critical for guanine production in iridophores but not melanocytes. By leveraging DMARs 

and motif presence near important iridophore TFs, we can construct a putative transcription 

factor network that drive iridophore cell fate (Fig. 15C), but further work must be done to 

validate which TFs are necessary for iridophore development.     

5.3.6 alx4a is essential for iridophore differentiation in the body, but not the 

eye.  

Since previous work has established that gbx2 impacts iridophore development205, we focused 

our attention on validating the necessity of alx TFs for iridophore differentiation. Currently, very 

little is known about the function of aristaless homeobox TFs in vertebrate development. 

Mutations in Alx3 and Alx4 is known to cause craniofacial abnormalities in humans and mice 

while mutations in alx1 disrupts proper neural crest migration to cause frontonasal dysplasia in 

zebrafish216–218. Since alx TFs has only been studied in context of craniofacial development, we 

utilized CRISPR-Cas9 technology to introduce indels in exon 1 or 2 to create frameshift 

mutations in alx1, alx3, alx4a, and alx4b genes to investigate how knockout of these TFs impact 

iridophore differentiation. We report that iridophores develop normally in alx1, alx3, and alx4b 

KO fish with some instances of pigment pattern defect in the caudal fin (Fig. 16A). However, 

alx4a KO fish revealed complete ablation of iridophores in the body, but not the eye (Fig. 16B). 

We note rare instances of iridophore escape in the alx4a KO fish, but most fish result in 

complete loss of body iridophores in adults and 4dpf larvae (Fig. 16C). The alx4a mutant fish 

looks similar to shady, rse, and tra mutant fish with the exception of preserving eye 

iridophores219,220. The presences of iridophores in the eye suggests that an alternative gene 

regulatory network is responsible for eye iridophore differentiation, analogous to otx TFs’ role in 
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eye pigment development while mitfa regulates melanocyte differentiation in the body221. It’s 

curious to ponder why alx1, alx3, and alx4b is highly expressed in iridophores, but have no 

functional consequence to iridophore development. One hypothesis could be that the trans-acting 

factors that activate alx4a or alx4a TF itself could also lead to transcription of alx genes, which 

can create a robust gene regulatory module that maintains high expression of iridophore-related 

TFs. 

5.3.7 Ectopic expression of alx4a and gbx2 biases pigment cell fate towards 

iridophores 

Since alx4a and gbx2 is necessary for proper iridophore development, we asked whether either 

TF was sufficient to push pigment cell fate towards iridophores. To ectopically express the TFs 

in early pigment progenitor cells, we took advantage of the miniCoopR transgenesis vector222,223. 

The miniCoopR vector consists of two mitfa promoters driving EGFP and mitfa minigene 

expression flanked by tol2 sequences, which allow transgene integration into the zebrafish 

genome. Mitfa is expressed as early as 18hpf and is expressed in bipotent pigment progenitor 

cells called melanoiridoblast202. The balance between foxd3 and mitfa levels are responsible for 

bias towards iridophore or melanocyte cell fate201,202. Similarly, we asked whether early 

expression of alx4a and gbx2 can bias the melanoiridoblast to differentiate into iridophores (Fig. 

17A). Therefore, we replaced the mitfa minigene with alx4a and gbx2 CDS in the miniCoopR 

vector and evaluate how pigment development is impacted (Fig. 17B). In both miniCoopR-alx4a 

and miniCoopR-gbx2 transgenic fish, melanocyte differentiation and migration are diminished 

during embryo development (Fig. 17C).  MiniCoopR-alx4a transgenic 3dpf larvae have 

increased number of iridophores than wild type (WT) larvae indicating that alx4a is sufficient to 

bias pigment cell fate towards iridophores.  MiniCoopR-gbx2 3dpf larvae had significantly 
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higher than WT, but less than miniCoopR-alx4a, iridophore counts suggesting that the role of 

gbx2 is to suppress melanocyte development. Although embryonic melanocytes are present in 

5dpf transgenic larvae, adult transgenic fish present almost complete ablation of melanocytes, 

reminiscent of nacre/mitfa mutant fish (Fig. 17D). Furthermore, we report varying levels of 

melanocyte ablation in various F1 adults from different founders (variable levels of integration 

of miniCoopR vector) suggesting that the TF expression levels could be intricately tied with 

melanocyte development in zebrafish. Considering that adult melanocytes are mostly derived 

from adult melanocyte stem cells, alx4a and gxb2 could be repressing melanocyte differentiation 

or migration in the adult melanocyte stem cells, but have minimal impact on embryonic 

melanocyte development.  

5.4 Discussion 
In this study, we provide one of the first insights into the epigenetic dynamics that shape neural 

crest differentiation into pigment cells in zebrafish. By taking advantage of flow cytometry, we 

isolated enriched populations of NCC from 15somite and 24hpf embryos. We adapted the 

pigment isolation protocol from Higdon et al. 2013208 to isolate melanocytes and iridophores. 

From these samples, we profiled DNA methylation, chromatin accessibility and transcriptomic 

landscapes to create comprehensive epigenetic maps that define pigment cell fate. Surprisingly, 

we found that cell differentiation in zebrafish is characterized by promiscuous loss of DNA 

methylation coupled with dynamic chromatin accessibility. We report that epigenetic status of 

DEG promoters are often static and majority of dynamic epigenetic changes occur in the 

intergenic or intronic regions. This suggests that gene regulatory networks that define pigment 

cell fate are mostly regulated by enhancer-like cis-regulatory elements rather than promoter 

dynamics. There are many shared DMRs, DARs and DMARs between melanocytes and 
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iridophores. Recent clonal tracing studies revealed a bipotent pigment progenitor that have 

potential to differentiate into melanocytes and iridophores188. The shared epigenetic dynamics 

identified could represent the intermediate epigenetic landscape of the bipotent cells and 

warrants further investigation. By charting the intermediate epigenetic landscape, we can identify 

why these progenitor cells are restricted to two pigment cell fates and provide epigenetic 

building blocks behind cell fate logic. 

Here, we also provide first insight into epigenetic dynamics that define iridophore development. 

Our efforts discovered that iridophore-specific DMARs enrich for motifs from homeobox-

containing transcription factors. By pairing differential gene expression data, we provide putative 

gene regulatory network, potentially regulated by aristaless homeobox transcription factors, that 

is important for iridophore physiology. Indeed, loss of alx4a transcription factor ablated 

iridophore presence in zebrafish highlighting the strength that epigenetic-based analysis can 

provide in studying cell fate decisions. Surprisingly, we note that iridophores in the eye are not 

impacted by alx4a KO suggesting a separate differentiation pathway or potential functional 

redundancy for eye iridophore development. Furthermore, ectopic expression of alx4a and gbx2 

in early pigment progenitor cells biases cell fate against melanocyte differentiation and almost 

ablates melanocyte presence in adult transgenic fish. We report that miniCoopR-alx4a transgenic 

larvae have higher iridophore counts at 3dpf compare to wild type, while miniCoopR-gbx2 

transgenic larvae had higher, but less than miniCoopR-alx4a, number of iridophores. These 

results indicate that alx4a and gbx2 are necessary and sufficient for iridophore cell fate. 

It is intriguing that both loss of either alx4a or gbx2 leads to preventing iridophore 

differentiation. This suggests that alx4a and gbx2 have non-redundant function in regulating 

iridophore cell fate. However, both TFs have very similar DNA binding motifs, so investigating 
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where each TFs binds within the iridophore genome would be the up most important next step in 

deciphering how these TFs differentially regulate the epigenome and transcriptome. 

5.5 Materials and Methods 

5.5.1 Zebrafish maintenance and strains. 
All fish procedures for this study were carried out following strict guidelines outlined in protocol 

#20140195 and #20160109 approved by Washington University Animal Use Committee. The 

zebrafish strains utilized in this study were maintained according to standard conditions defined 

previously224. Neural crest cells were collected from Tg(crestinA:EGFP) line, in which 1,200 bp 

of crestin element (crestinA) was cloned upstream of EGFP and integrated into the genome via 

Tol2 transgenesis149. Differentiated melanocytes and iridophores were collected from mlpha 

strain225, a melanophilin mutant strain that displays reduced dispersion of melanosomes in 

melanocytes. We chose mlpha to circumvent residual EGFP expression in Tg(crestin:EGFP) 

lines that might interfere with FACS isolation of pigment cells. For CRISPR and miniCoopR 

experiments, we utilized AB* strain for its availability and wild type-like pigment characteristics 

and development. 

5.5.2 Neural crest cell and pigment cell isolation 
Tg(crestinA:EGFP) labels neural crest cells (NCCs) from 14-15 somite stage (neural crest 

formation) to differentiation into pigment cells.  

For 15-somite and prim-5 (24 hpf) neural crest cell isolation, Tg(crestinA:EGFP)  embryos at 

designated biological time points were dechorionated with 20mg/mL Pronase (Millipore Sigma, 

10165921001), rinsed with egg water to remove chorion, and collected into 1.5ml Eppendorf 

tubes on ice. 15-somite embryos were dissociated into single cells with deyolking buffer (55mM 

NaCl, 1.8mM KCl, and 1.25mM NaHCO3) and gentle pipetting. 24hpf embryos were single-cell 
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dissociated by adding Gibco TrypLE Express enzyme solution (ThermoFisher Scientific, 

12604021) and incubating at 37C for 10 minutes followed by pipetting. To remove dissociation 

buffer, single-cell dissociated samples were pelleted by centrifugation at 300x g for 8 minutes at 

4C and the supernatant was discarded. The cell pellet was resuspended in 1 PBS + 2% FBS 

solution and filtered through 100μM CellTrics filters (Sysmex-Partec, 04-004-2328). Samples 

were pelleted and resuspended and kept on ice for subsequent FACS process. 7-AAD dye 

(ThermoFisher Scientific, A1310) was added to sample 10 minutes prior to flow cytometry to 

label dead cells. Neural crest GFP-positive cells were sorted and collected on Beckman Coulter 

MoFlo using 70μM nozzle. 

For melanocyte and iridophore isolation, we adapted previously published protocol208 developed 

by Johnson lab. In brief, 4-5dpf mlpha larvae were anesthetized with Tricane for 15 minutes and 

collected into 50ml conical tubes on ice. After removing egg water, the larvae were digested with 

Gibco TrypLE Express enzyme solution in 37C shaking incubator (200rpm) for 30 minutes. 

The larvae solution was filtered with 120μM to collect dissociated cells. Melanocytes and 

iridophores were isolated via Percoll (Millipore Sigma, P1644) density centrifugation. Purified 

pigment cell solution was further processed on Beckman Coulter MoFlo (100μM nozzle) to 

separate melanocytes and iridophores as detailed previously208.   

5.5.3 Epigenome and transcriptome sequencing library construction 
Genomic DNA (gDNA) for whole genome bisufilte sequencing (WGBS) was purified from 

NCCs and pigment cells via phenol-chloroform:isoamyl alcohol (PCI) extraction and ethanol 

precipitation method. 500ng of gDNA was bisulfite treated using EZ DNA Methylation-Direct 

kit (Zymo, D5020) and processed with TruSeq DNA Methylation Kit (Illumina, 15066014) to 

generate Illumina-compatible WGBS libraries.  
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Chromatin accessibility maps were generated from 15K-50K NCC and pigment cells by 

following previously published ATAC-seq method212.   

We isolated total RNA via TRIzol Reagent (ThermoFisher Scientific, 15596026) following 

manufacture’s recommendation. Then total RNA was treated with TURBO DNase 

(ThermoFisher Scientific, AM2238) to remove any residual DNA contamination. mRNA-seq 

libraries were constructed with TruSeq RNA Library Prep Kit v2 (Illumina, RS-122-2001) 

following manufacturer’s instructions. 

All libraries were sequenced on the Illumina NextSeq 500 platform (75bp paired-end reads). 

5.5.4 Identification of differentially methylated regions (DMRs) 
Paired-end reads from WGBS libraries were trimmed for adapter sequences with Cutadapt226 and 

mapped to danRer10 reference genome using Bismark122 aligner with the following options: “-N 

1 -L 28 –score_min L,0,-0.6”. Redundant aligned reads were identified and removed using 

Picard227 MarkDuplicates command (http://broadinstitute.github.io/picard/). 

Bismark_methylation_extractor command from Bismark and a custom script were used to 

calculate DNA methylation levels for each CpG. 

To identify DMRs, biological replicates were combined to improve coverage of CpGs and then 

processed using DSS pipeline206 with standard parameters plus “smoothing=TRUE, delta=0.30 

(at least 30% methylation difference), and p.threshold=0.01”. DNA methylation Pearson 

Correlation plot was generated using “corrplot” package in R while other figures were generated 

using custom R scripts. 
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5.5.5 Identification of differentially expressed genes (DEGs) and gene ontology 

enrichments 

mRNA-seq libraries were adapter-trimmed and aligned to the danRer10 using STAR228. Gene 

transcript abundance (RPKM) was calculated with StringTie229 using 

Danio_rerio.GRCz10.85.gtf as reference. Also, we processed aligned reads with HTSeq230 to 

generate a count matrix for each gene, which was subsequently processed using DESeq2209 to 

identify differentially expressed genes. More specifically in DESeq2, we identified significantly 

differentially expressed genes by filtering for only genes with counts >1, fold change >2 and p-

value < 0.01. DEG expression plot was generated using Maplot function in DESeq2. Hierarchical 

clustering based on RNA expression was generated using “pheatmap” package231 in R. 

To identify which gene ontologies are enriched in DEGs across NCC and pigment cells, we 

further filtered the DEGs identified by DESeq2 for genes with RPKM > 5 to remove lowly 

expressed genes. The list of DEGs was processed by Metascape133 for GO term enrichment.  

Since no comprehensive zebrafish transcription factor (TF) list was available at the time of 

analysis, we manually curated a zebrafish TF list with AnimalTFDB 2.0232. Human TFs were 

converted into zebrafish orthologs using OrthoRetriever 

(http://lighthouse.ucsf.edu/orthoretriever/). Human TFs with no zebrafish orthologs detected by 

OrthoRetreiver were manually converted through literature search. Differentially expressed TF 

heatmaps were visualized using “ComplexHeatmap” package233 in R.   

5.5.6 Identification of ATAC peaks and differentially accessible regions 

(DARs) 

ATAC-seq reads were trimmed for adapter sequences and aligned to danRer10 genome using 

bwa (bwa mem)234. Duplicate reads were removed with Picard MarkDuplicates. Then the 
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libraries were downsampled to 35 million aligned reads to minimize artifacts introduced by 

library size difference for peak calling analysis. Since the ends of the reads represent Tn5 

insertion locations, we processed the aligned reads by offsetting + strand reads by +4bp and – 

strand reads by -5bp. The offset position for each read was used as input for calling peaks with 

MACS2235 using the following parameters: “-g 1.4e+9 -B –SPMR –keep-dup all –nomodel -s 75 

–extsize 73 –shift -37 -p 0.01”. With narrowPeak output from MACS2, we utilized 

irreproducible discover rate (IDR) framework236 to generate a consensus peak file from each 

biological time point. To identify differentially accessible regions, we processed ATAC peaks 

with DiffBind213 with a stringent cutoff of FDR <0.001.  

5.5.7 Identification and characterization of differentially methylated and/or 

accessible regions (DMARs) 

Differentially methylated and/or accessible regions were classified by identifying overlapping 

DMRs and DARs with BEDTools237 intersect command. DMARs were annotated for genomic 

location using HOMER238 annotatePeaks.pl. Furthermore, we performed BEDTools intersect to 

detect DMARs located within 50kb of DEG promoters,  

  ll DMRs, DARs and DMARs were processed with HOMER findMotifsGenome.pl to 

discover which known motifs are enriched in these epigenetically dynamic regions. Since Homer 

known motif database could be missing particular TFs expressed in zebrafish, we generalized the 

top 20 hits from HOMER by classifying each as a particular motif cluster/module defined by 

Roadmap Epigenomics Consortium 

(https://egg2.wustl.edu/roadmap/data/byDataType/motifanalysis/pouyak/viewByCluster/bycluste

r.html)239. For example, Phox2a motif is part of the EN2 module along with Lhx1, Lhx2, Lhx3 

and Pax7. By partitioning motifs into modules, we can identify which particular cluster is 

https://egg2.wustl.edu/roadmap/data/byDataType/motifanalysis/pouyak/viewByCluster/bycluster.html
https://egg2.wustl.edu/roadmap/data/byDataType/motifanalysis/pouyak/viewByCluster/bycluster.html
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specific to certain cell type and then analyze the expression pattern of TFs belonging to that 

cluster to potentially identify biologically relevant TFs. The motif enrichment plot was generated 

by averaging the p-values and % of target sequences with motif for each hits of a motif cluster. 

Motif footprinting in DMARs were generated by CENTIPEDE215. For each DMAR, we used 

FIMO240 to scan and detect presence of particular motifs.  

5.5.8 CRISPR-mediated knockout of alx transcription factors in zebrafish 
To design gRNA sequences, we took advantage of CRISPOR241 and CRISPRscan242 algorithms 

to maximize specificity (CRISPOR) and efficacy (CRISPRscan). For each gRNA, a primer was 

ordered with the chosen gRNA sequence preceded by “aattaatacgactcactata” and followed by 

“gttttagagctagaaatagc.” Each gRNA primer was then annealed to the universal primer scaffold, 

“ttttgcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaac”. The sgRNAs 

were then transcribed in vitro using T7 RNA polymerase from the HiScribe™ T7 Quick High 

Yield RNA Synthesis Kit (New England Biolabs, E2050S). Cas9 mRNA was generated via in 

vitro RNA transcription of pCS2-nls-zCas9-nls plasmid (Addgene, 47929) with mMessage 

mMachine SP6 Transcription Kit (ThermoFisher Scientific, AM1340).  

For each target gene, a 5ul injection cocktail was made with 2 µg of Cas9 mRNA, 0.5 µl of 1% 

or 0.5% phenol red dye, 400 ng of each of the two sgRNAs targeting a gene of interest. 0.5 nL of 

the CRISPR cocktail was injected directly into the cell of single cell embryo (AB*). To identify 

founders with indels in target genes, we pair-wise crossed CRISPR-injected adult fish and 

collected embryos to PCR amplify target gene locus and perform T7 endonuclease I (NEB, 

M0302S) assay. All homozygous indels were verified via Sanger sequencing. 
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5.5.9 Ectopic expression of alx4a and gbx2 in pigment progenitor cells 
To ectopically express transcription factors in pigment progenitor cells, we exploited the 

miniCoopR system223,243. We generated alx4a and gbx2 CDS fragment from PCR amplifying 

cDNA from reverse transcribed 24hpf AB* mRNA. Since early pigment progenitor cells express 

mitfa, we cloned in candidate CDS in lieu of mitfa minigene via Gibson Assembly. We injected 

approximately 1nl of 100 ng/µl miniCoopR vector and 15 ng/µl Tol2 capped transposase mRNA 

cocktail into the yolk of single cell AB* embryos. All GFP+ F0 embryos were raised to 

adulthood and screened for founders. F1 stable lines were then established by crossing F0 fish. 
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5.7 Figures 

 

Figure 1. Zebrafish neural crest cell differentiation into pigment cells. A) Zebrafish pigment 

cell types. B) Visual schematic of experimental design for collecting NCC and pigment cells. TF, 

transcription factor. 
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Figure 2. DNA methylation dynamics across zebrafish pigment development. A) Number of 

CpGs that pass coverage cutoff. B) Global DNA methylation distribution of NCC and pigment 

cells. C) Average global methylation levels. D) DNA methylation Pearson’s correlation 

coefficients across samples. E) Principal component analysis (PCA) of DNA methylation. 
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Figure 3. Differentially methylated region (DMR) analysis on combined biological 

replicates. A) Number of CpGs that pass coverage cutoff when biological replicates are 

combined. B) Average global methylation levels. C) DMR size distribution. D) Distribution of 

methylation changes in DMRs between 24 hpf NCC and differentiated pigment cells. E) Number 

of DMRs detected among 24 hpf NCC and pigment cells. F) DNA methylation differences 

between 24 hpf NCC and pigment cells in shared DMRs. 
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Figure 4. Validation of mRNA-seq library quality. A) Hierarchical clustering of samples 

based on gene expression. B) PCA analysis based on gene expression differences. C) MA plot of 

differentially expressed genes (DEGs) with cell type-specific marker genes highlighted. 
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Figure 5. Gene expression dynamics across pigment cell differentiation. A) Number of DEGs 

in pair-wise comparisons among developmental time points. B) Gene ontology enrichment for 

various clusters of DEGs. 
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Figure 6. Differentially expressed transcription factors across pigment differentiation. 
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Figure 7. Chromatin accessibility dynamics captured by ATAC-seq. A) Number of peaks 

identified per sample with fraction of reads in peak (FRiP) value for quality check. B) Clustering 

of samples based on differential chromatin accessibility. C) PCA analysis of chromatin 

accessibility. D) Size distribution of differentially accessible regions (DARs). E) Number of 

DARs identified across pigment cell differentiation. 
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Figure 8. Defining differentially methylation and/or accessible regions. A) Schematic of 

possible types of DMARs. B) Number of DMARs across pigment cell differentiation. 
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Figure 9. Characterization of methylation levels and chromatin accessibility in solo 

DM/ARs. A) Size distribution of DMRs, DARs and DMARs. B) Visualization and frequency of 

methylation or accessibility status in solo DMRs and DARs. C) Heatmap of methylation levels in 

soloDARs identified between 24hpf NCC and pigment cells. 



 112 

 

Figure 10. Potential role of cis-regulatory elements driving gene expression differences. A) 

Epigenetic dynamics of DEG promoters. B) Genome annotation of epigenetically dynamic 

regions. 
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Figure 11. Discovery of transcription factors that shape epigenetic landscape during 

pigment cell differentiation. A) Partitioning HOMER motif enrichment results in dynamic 

DMARs to TF clusters. B) Enrichment of motif clusters in dynamic DMARs. C) Heatmap 

representation of differentially expressed transcription factors (TFs) present in EN2 group. D) 

Motif footprinting signatures of alx TFs and gbx2 in iridophore ATAC-seq peaks. 
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Figure 12. Homer motif enrichment results from dynamic DMR and DARs. 
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Figure 13. Pigment cell-specific TFs identified by motif enrichment and gene expression 

analysis. A) Gene expression heatmap of TFs predicted to bind to dynamic epigenetic regions. 
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B) Motif footprinting signatures of other TF candidates discovered by motif enrichment analysis 

in iridophores. 
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Figure 14. Iridophore-specific TFs predicted to regulate genes in guanine synthesis 

pathway. A) Heatmap profiling motif presence, genome annotation and epigenetic dynamics of 

DMARs within 50kb of DEGs in guanine synthesis pathway. B) Model of guanine synthesis 

cycle. Genes in bold are iridophore-specific DEGs. Color bars above DEGs represent presence of 

DMARs with TF motifs. 
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Figure 15. Putative transcription factor network that drive iridophore cell fate. A) Heatmap 

profiling motif presence, genome annotation and epigenetic dynamics of DMARs within 50kb of 

iridophore-related transcription factors. B) WashU Epigenome browser view of DMAR clusters 

upstream of alx4a promoter. In BS-seq tracks, each bar represents presence of CpG and the blue 

color represents methylation level. Green peaks in ATAC-seq tracks represent accessible 

regions. Gene expression (RPKM) is represented by pink signal in RNA-seq tracks. C) Putative 

transcription factor network that drive iridophore cell fate. 
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Figure 16. alx4a is necessary for iridophore development. A) Genotype and phenotype of 

alx1, alx3 and alx4b KO adults generated via CRISPR-Cas9 technology.  gRNA target sequences 

alx1:  5’-TCTGAGGAGAGCAGCCTGCACGCGATGGAA -------(121bp)--------CACCGCACAACCTTCACGAGCGCTCAGC-3’

alx1KO-1:

5’-TCTGAGGAGAGCAGCCTGCACGCGATGGAA -------(121bp)--------CACCGCA - - - - CTTCACGAGCGCTCAGC-3’ (-4bp)

5’-TCTGAGGAGAGCAGCCTGCACGCGATGGAA -------(121bp)--------CACCGCA - - - - CTTCACGAGCGCTCAGC-3’ (-4bp)

PAM PAM

alx3:  5’-CTGCTGACGCCGTGCGTAAAGTCCGCGGAG -------(114bp)--------GCTCCAAACCCGGTGAATTGTCCGGCGTT-3’

alx3KO-1:  

5’-CTGCTGACGCCGTGCGTAAAGTCCGCGGAG -------(114bp)--------GCT - - AAACCCGGTGAATTGTCCGGCGTT-3’ (-2bp)

5’-CTGCTGACGCCGTGCGTAAAGTCCGCGGAG -------(114bp)--------GCT - - AAACCCGGTGAATTGTCCGGCGTT-3’ (-2bp)

PAMPAM

alx4b: 5’- ATCATGACAGGACCTCCGACTCTAGTGGAC -------(439bp)--------AGTCCATTCCATCAGGATTGTCCGACACT-3’

alx4bKO-1: 

5’- ATCATGACAGGACCTCCGACTCTAGTGGAC -------(439bp)--------AGTCCAT- - - - - CAGGATTGTCCGACACT-3’ (-5bp)

5’- ATCATGACAGGACCTCCGACTCTAGTGGAC -------(439bp)--------AGTCCAT- - - - - CAGGATTGTCCGACACT-3’ (-5bp)

PAM PAM

WT alx4a-KO 

*

*

* Iridophore escape

WT:

B

A

C
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are labeled in color. B) Genotypes and phenotypes of alx4a KO adults. C) Representative picture 

of 4dpf larvae illuminated for iridophore detection. 

 

Figure 17. Ectopic expression of alx4a or gbx2 biases pigment progenitor cells towards 

iridophore cell fate. A) Time course representation of alx4a or gbx2 ectopic expression using 

miniCoopR system.  B) A graphical schematic of the miniCoopR system and experimental 

procedure. C) Delay of melanocyte formation and migration in 1dpf, 2dpf and adult miniCoopR 

transgenic fish. D) Mean number of tail iridophores in AB* (n = 21), miniCoopR-alx4a (n = 20) 
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and miniCoopR-gbx2 (n = 20) at 3dpf larvae. Data is shown as mean ± s.e.m.  P-values were 

derived from two-sided Welch’s t test (compared to AB*). Representative pictures of illuminated 

tail iridophores of wild type and transgenic larvae at 3dpf.  
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6.1 Abstract  
Transposable elements (TEs) are an abundant and rich genetic resource of regulatory 

sequences244–246. Cryptic regulatory elements within TEs can be epigenetically reactivated in 

cancer to influence oncogenesis in a process termed onco-exaptation247. However, the prevalence 

and impact of TE onco-exaptation events across cancer types are poorly characterized. Here, we 

analyzed 7,769 tumors and 625 normal datasets from 15 cancer types, identifying 129 TE cryptic 

promoter activation events involving 106 oncogenes across 3,864 tumors. Furthermore, we 

interrogated the AluJb-LIN28B candidate: the genetic deletion of the TE eliminated oncogene 

expression, while dynamic DNA methylation modulated promoter activity, illustrating the 

necessity and sufficiency of a TE for oncogene activation. Collectively, our results characterize 

the global profile of TE onco-exaptation and highlight this prevalent phenomenon as an 

important mechanism for promiscuous oncogene activation and ultimately tumorigenesis. 

6.2 Main  
The elucidation of mechanisms behind oncogene activation has been a long-standing goal in 

cancer biology. Genetic mutation, gene amplification, and chromosomal rearrangement are three 

classic genetic mechanisms that drive cancer progression and identity248,249, but they provide an 

incomplete explanation for oncogene activation. Recently, a wave of discoveries has 

demonstrated how TEs change the gene expression landscape during evolution, development, 

and disease244–246,250–252. Although epigenetically silenced in somatic tissues, TEs can become 

active in cancer due to DNA hypomethylation, which can expose regulatory sequences and lead 

to functional consequences253–255. Indeed, some TEs are epigenetically reactivated as cryptic 

promoters to drive oncogene expression in cancer, a process known as onco-exaptation247,256–261. 

To our knowledge, no comprehensive study has investigated whether onco-exaptation is a 

widespread mechanism for oncogene activation across multiple cancer types.  
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To globally characterize onco-exaptation events, we canvassed RNA-seq data across 15 cancer 

types from the TCGA Research Network (http://cancergenome.nih.gov/) (Supplementary Fig. 

1a). We constructed a computational pipeline that identifies TE-derived oncogene transcripts that 

are highly tumor-enriched (Supplementary Fig. 1b). A comprehensive list of 702 oncogenes was 

generated from previously annotated onco-exaptation examples247,258 and ONGene262 

(Supplementary Table 1). Considering the technical limitations of RNA-seq data, we set 

stringent filters (Methods) to maximize the specificity for onco-exaptation events. In total, we 

analyzed 7,769 tumor samples and 625 tumor-matched normal samples (Supplementary Fig. 1b), 

which identified 625 TE-oncogene chimeric transcripts; this list includes five previously 

published onco-exaptation examples (Supplementary Table 2). After selecting further for high 

tumor-enrichment and expression contribution, we identified 129 high confidence onco-

exaptation events across 106 oncogenes (Supplementary Table 3). In addition, we detected at 

least one onco-exaptation event in 49.7% of all tumors, with prevalence ranging from 12% to 

87% across cancer types, indicating that onco-exaptation could be a promiscuous mechanism for 

oncogene activation (Fig. 1a). On average, each onco-exaptation event was discovered in 51 

samples and often distributed across multiple cancer types. We report that the onco-exapted TEs 

strongly enrich for the long terminal repeat (LTR) class (Fig. 1b and Supplemental Fig. 2b). 

Examining the cancer-type distribution of onco-exaptation candidates (Fig. 1c) showed both 

cancer-type-specific events, such as THE1A-HMGA2 in SKCM263, and highly prevalent events 

were present across multiple cancer types. Furthermore, for eight oncogenes, we observed 

various TEs activating an in-frame isoform of the same gene (Supplementary Table 4), a 

phenomenon that had only been described for one oncogene259. These additional examples 

support the cancer epigenetic evolution model as previously described247. In summary, we 

http://cancergenome.nih.gov/)
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provide a global profile of onco-exaptation events across 15 cancer types and enumerate TEs’ 

role in driving oncogene activation and upregulation.  

Next, we examined transcript-level information for the top 10 most prevalent onco-exaptation 

candidates that on average accounted for greater than 50% of their target oncogenes expression 

(Fig. 1d). Eight of these candidates were predicted to form in-frame transcripts that conserve 

protein sequence, suggesting preservation of oncogene function. Onco-exaptation candidates 

include isoforms of genes such as SALL4 and LIN28B that have recently emerged as potent 

cancer drivers264–267. Additionally, the L1PA2-derived isoform of SYT1 occurs in more than 10% 

of all tumors, suggesting that it could be an important cancer marker. While investigating 

transcript-level abundance of candidates, we found that many of the onco-exaptation events were 

driving a significant fraction of oncogene expression; some greater than 90% (Fig. 1d & 

Supplementary Fig. 3). Furthermore, we report that half of the top candidates were associated 

with worse survival in at least 1 cancer type (Supplementary Fig. 4). For example, we show that 

the HERVH-SLCO1B3 transcript, a previously characterized onco-exaptation event, is abundant 

across various cancer types, highly expressed, and associated with worse prognosis268. These 

findings imply that TEs are not only associated with oncogene activation but also contribute 

significantly to overall oncogene expression and oncogenic potential.  

For validation, we sought to confirm transcription initiation from a few exapted TEs. We queried 

the FANTOM5 promoter database269 and discovered five out of the ten most prevalent onco-

exaptation candidates show promoter signature. We validated a few FANTOM5 results by 

mapping transcription start sites (TSS) with Cap Analysis of Gene Expression (CAGE)-seq269–271 

in the H727 lung carcinoid cell line. Indeed, SYT1 and ARID3A oncogenes are transcribed from 

alternative promoters located within TEs (Fig. 2a and Supplemental Fig. 5). In addition, we 
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analyzed 27 RNA-seq datasets from lung cancer cell lines272 and detected 5 of the 10 most 

prevalent onco-exaptation candidates (Supplementary Table 5). One of the most highly 

expressed candidates was an AluJb-LIN28B fusion transcript that is present in the H1299, 

RERF-LC-OK, and H838 cell lines. Considering that LIN28B is a well-characterized and potent 

oncogene265,267,273–275, we pursued this candidate for further functional validation. 

The AluJb TE is located 20 kb upstream of the canonical promoter of LIN28B and drives the 

majority of expression of LIN28B in a substantial number of tumors (Fig. 1d). To verify the 

existence of the AluJb-LIN28B isoform in lung cancer cell lines, we profiled TSSs in the H1299 

and H838 cell lines using paired-end CAGE-seq. We confirmed a CAGE peak, composed of 

mate reads that align to LIN28B, that spans ~40 bp in the AluJb element in both cell lines (Fig. 

2b). Next, we profiled DNA methylation levels and chromatin accessibility using WGBS-seq and 

ATAC-seq, respectively (Fig. 2b). The AluJb TE is completely methylated in somatic tissues 

profiled by Roadmap (http://www.roadmapepigenomics.org/) (Supplementary Fig. 6a). In 

H1299, the region surrounding the AluJb promoter (AluJb-P) is unmethylated, whereas in H838, 

it is ~50% methylated. In both cell lines, the region displayed accessibility, indicating an open 

chromatin state. Together, these findings suggest that an AluJb TE is epigenetically reactivated 

as an alternative promoter to drive LIN28B expression in lung cancer cell lines.  

Next, we dissected the genetic determinants behind the AluJb-LIN28B onco-exaptation event. In 

H1299 and H838, we discovered that active epigenetic marks encompassed two TEs, a truncated 

AluJb and MLT1B, upstream of AluJb-P (Fig. 2b). Since various TEs are known to harbor 

transcription factor binding sites that could have cis-regulatory function245, we tested whether 

these upstream TEs impact AluJb-P promoter strength. Luciferase assays using various 

combinations of TEs before a luciferase reporter showed that vectors without AluJb-P displayed 
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minimal activity (Fig. 2c). Furthermore, the luciferase activity did not diminish in the solo 

AluJb-P vector relative to other vectors. These results illustrate that AluJb-P contains all the 

necessary sequences for strong promoter activity, and the upstream TEs have minimal cis-

regulatory effect on AluJb-P transcription.  

AluJb is a primate-specific subfamily within the short interspersed nuclear element (SINE) class 

of TEs. SINE elements are known to recruit RNA polymerase (RNAP) III to generate short 

transcripts that can potentially be retrotransposed276. However, majority of mRNAs are typically 

transcribed by RNAP II. We hypothesized that AluJb-P accumulated mutations through 

evolution that generated novel transcription factor binding sites that recruit RNAP II. To explore 

this hypothesis, we performed pair-wise sequence alignment using EMBOSS Needle277 between 

the AluJb-P sequence and the AluJb consensus sequence from Dfam278. We then identified 

potential novel transcription factor motifs that were generated by mutations specific to AluJb-P 

with FIMO279. Previous work has demonstrated that NFYA binds to AluJb-P and knockdown of 

NFYA reduces promoter activity in Huh-7 cells280. However, the degree of NFYA’s impact on 

AluJb promoter function is still unclear. Our analysis with FIMO detected four other 

transcription factor motifs that potentially arose from mutations: C/EBPD, SP1, SP4, and YY1 

(Fig. 2d). To interrogate the functional importance of these motifs, we cloned AluJb-P sequences 

mutagenized for each motif into a luciferase reporter and assessed the change in promoter 

activity. In both H1299 and H838, mutating SP1, SP4, and YY1 sites significantly diminished 

relative luciferase expression, which is consistent with previous findings that SP transcription 

factors cooperate with YY1 to drive strong promoter expression (Fig. 2d)281. Furthermore, these 

results were recapitulated in the K562 leukemia cell line (Supplementary Fig. 8a,b), which does 

not express the AluJb-LIN28B transcript. This finding suggests that K562 cells have all the 
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transcriptional machinery to transcribe from the AluJb-P, but DNA methylation might be 

suppressing the activity of the promoter (Supplementary Fig. 6a). 

 To evaluate the functional consequences of the AluJb-LIN28B onco-exaptation event, we first 

investigated whether the fusion transcript produces a protein product. Within the AluJb-P 

sequence, we detected a strong start codon 72 bp downstream of the TSS. This results in the 

addition of 22 amino acids at the N-terminus of exon 2 of LIN28B (Supplementary Fig. 6c), for a 

predicted protein size increase of 2.5 kDA compared to normal LIN28B. Western blots verified 

the expected size difference between the onco-exapted AluJB-LIN28B isoform present in H1299 

and H838 cells compared to the canonical LIN28B protein present in K562 and HepG2 

(Supplementary Fig. 6d). To confirm that the larger protein originated from AluJb-P, we 

performed CRISPR-Cas9-mediated deletion of AluJb-P in H1299 and H838 (Fig. 3a). In 

addition, we deleted a 1-kb sequence of the canonical LIN28B promoter (LIN28BP). The 

deletion of AluJb-P abolished the larger LIN28B protein, while the deletion of LIN28BP did not 

(Fig. 3b), verifying that AluJb-P produced the larger LIN28B isoform.  

Since the AluJb-LIN28B protein is identical to canonical LIN28B, aside from the additional N-

terminal amino acids, we examined whether AluJb-LIN28B retained normal LIN28B function. 

LIN28B represses let-7 miRNAs273,274,282–284, ultimately contributing to oncogenesis through the 

upregulation of oncogenes such as MYC and RAS265,267,275. As anticipated, we observed an 

appreciable increase in the levels of let-7a, let-7b and let-7g in the AluJb-P knockout (KO) cells 

but not in LIN28BP KO cells of H1299 and H838 (Fig. 3c). We further assessed how the 

deletion of AluJb-P impacts cancer-specific attributes. In both H1299 and H838, AluJb-P KO 

cells show much slower growth (Fig. 3d) and migration (Fig. 3e) relative to the parental cell lines 

and LIN28BP KO cells. Also, parental H1299 and LIN28BP KO clone established rapidly 
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growing tumors in vivo, whereas AluJb-P KO cells exhibited a marked defect in tumor growth 

during the time of inspection (Fig. 3f), consistent with the necessity of LIN28B for tumor growth 

in murine xenograft models266,280. In contrast, the deletion of AluJb-P in K562 cells did not result 

in elevated let-7 levels (Supplementary Fig. 8e) or loss of proliferation (Supplementary Fig. 8f), 

implying that the loss of AluJb-LIN28B was causal for the decreased oncogenic attributes in 

H1299 and H838 cells and not due to an off-target effect. Additionally, re-expression of 

canonical LIN28B and AluJb-LIN28B in H1299 and H838 AluJb-P KO cells reduced let-7 

miRNA levels and modestly rescued proliferation (Fig. 3g). Altogether, these results indicate 

that TE-induced oncogene expression can retain its canonical function, which contributes to cell 

proliferation, migration, and tumor formation. 

Most tumors exhibit global DNA hypomethylation, which provides cancer cells with an 

opportunity to exploit the regulatory potential of TEs. However, whether the loss of DNA 

methylation is causal for spurring TE’s cryptic promoter activity has been underexplored due to a 

lack of efficient targeted methylation techniques. To directly assess how DNA methylation 

regulates AluJb-P activity, we utilized the CRISPR SUperNova tagging system (SunTag) to 

recruit either DNMT3A or TET1CD for targeted methylation or demethylation, respectively 

(Fig. 4a,b)285–287. This system allowed us to modestly increase DNA methylation of the AluJb TE 

by ~20-30% (Fig. 4c), which led to ~40% decrease in LIN28B expression in the H1299 (Fig. 

4d), suggesting that DNA methylation of the TE is sufficient to decrease oncogene expression. 

Additionally, demethylation of the AluJb TE in K562 (Fig. 4e) led to the production of AluJb-

LIN28B fusion protein (Fig. 4f). These results illustrate that dynamic DNA methylation is a 

driving epigenetic control that act as on-off switch for AluJb-P’s activity and moreover suggests 

that TE onco-exaption events arise in tumors due to the unique epigenetic landscape. 
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6.3 Discussion: 
In conclusion, TEs provide an additional means by which cancer can activate oncogenes. 

Stochastic, global DNA hypomethylation of cancer cells indiscriminately resurrects TEs of 

varying regulatory ability, which, if they confer a fitness advantage, can be epigenetically 

inherited and selectively propagated during tumor progression. Here, we present a global profile 

of tumor-enriched, TE-derived oncogene transcripts across 15 cancer types and show that onco-

exaptation is a highly prevalent and promiscuous mechanism that contributes to oncogene 

activation in close to half of all tumors. By dissecting the mechanisms behind AluJb-derived 

LIN28B expression, we describe how TEs may be epigenetically and transcriptionally activated 

to drive oncogene expression. Recently, this tumor-specific LIN28B alternative promoter usage 

in liver cancer has also been characterized by Guo et al. (2018)280, but not in an onco-exaptation 

context. Our concomitant findings in lung cancer cell lines provide cross-cancer support of the 

robust oncogenic potential of AluJb-LIN28B. Recognizing onco-exaptation events can provide 

additional insights into potential genetic and epigenetic mechanisms that drive promoter activity 

in cancer. For example, we were able to identify additional putative transcription factors that 

might be controlling AluJb promoter activity by exploring the evolution of the SINE element. 

Furthermore, we provide evidence that these onco-exaptation events are potentially reversible 

through targeted epigenetic alterations, which could present a translational avenue for 

personalized epigenetic oncotherapy. In summary, TEs act as double-edged swords for cancer by 

offering additional mechanisms for oncogene activation but also providing a potential target for 

therapeutics. 
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Fig. 1: The TE onco-exaptation landscape across cancer types. a, Frequency of onco-

exaptation events per tumor across cancer types. Donut plot reports the percent of tumor samples 

with at least one event. b, Enrichment of TE class in onco-exapted TEs across cancer types. c,  A 

series of boxplots that highlight the distribution of the total number of tumor samples per 

candidate that is present in a certain number of cancer types. We have zoomed in on 1-11 so that 

the distribution can be more clearly seen. Each box represents the median and interquartile range, 

and the whiskers are 1.5× the IQR. Below each boxplot, we have labeled the number of 

candidates. We have also labeled all the outlier candidates.  d, The top 10 most prevalent onco-

exaptation candidates are presented. The left-most panel gives the TE-oncogene candidate label 

as well as a diagram of the transcript structure of the candidate. The next two panels display the 

number of tumor samples each candidate is present in as well as the distribution of the candidate 

across cancer types. The “Total Expression” panel displays the expression of the oncogene 

across all the tumor samples as grey dots, and the samples with the onco-exaptation candidate are 

highlighted in red. The “Fraction Expression” panel displays a boxplot of the percent of total 

expression of the oncogene contributed by the onco-exaptation candidate across the samples in 

which the candidate is present. Each box represents the median and interquartile range, and the 

whiskers are 1.5× the IQR.  
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Fig. 2: TEs provide bona fide promoters for oncogenes in lung cancer cell lines. a, CAGE-

seq profile of H727 across onco-exaptation candidates (ARID3A & SYT1) visualized on WashU 

Epigenome Browser. Signals in CAGE-seq represent TSS locations. b, CAGE-seq and 

epigenetic profiles of the AluJb TE in the H1299 and H838. Signal in ATAC-seq represent open 

chromatin regions. Grey bars in the BS-seq track represent CpG locations while the height of 

blue bars indicate methylation %. c, Luciferase assays for transcriptional activity of various TE 

arrangements in H1299 (left) and H838 (right) (n = 3 independent experiments). d, Luciferase 

assays for promoter activity in H1299 (left) and H838 (right) with mutagenized transcription 

factor motifs in AluJb-P (n = 3 independent experiments). c, d, P values were derived from two-

tailed Welch t test. All data are represented as means ± standard error (SE). 
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Fig. 3. AluJb drives LIN28B expression and contributes to oncogenesis in lung cancer cell 

lines. a, Schematic describing sgRNA locations and sequence targets within AluJb-P and 

LIN28BP. b, Cropped Western blot for LIN28B protein in H1299 (top) and H838 (bottom) 

CRISPR clones. This experiment was repeated twice with similar results. c, Relative let-7a, let-

7b, and let-7g miRNA levels compared to WT in CRISPR-knockout clones of H1299 (n = 4 

independent experiments) and H838 (n = 3 independent experiments) as measured by qPCR. d, 
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The effect of AluJb-P or LIN28BP deletion on cell growth rate as determined by CCK-8 assay in 

H1299 and H838 cells (n = 3 independent experiments). e, The effect of AluJb-P or LIN28BP 

deletion on cell migration in H1299 (top) and H838 (bottom) as measured by scratch migration 

assay (n = 3 independent experiments). f, Tumor growth of H1299 WT and H1299 CRISPR-

knockout clones injected in nude mouse. Resected tumors of WT and LIN28BP #1 xenografts. g, 

Cropped Western blot (repeated twice with similar results) of re-expression of human FLAG-

LIN28B or AluJb-LIN28B in AluJb KO clones and its effect on relative let-7 miRNA levels 

(number of independent experiments indicated in figure as n) and growth rate (n = 3 independent 

experiments). d,e,g, P values from CCK-8 growth assays and scratch migration assays were 

derived from comparing to WT with two-tailed Welch t test. All data are represented as means ± 

SE. 
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Fig. 4. Targeted DNA methylation dynamics uncover epigenetic control of AluJb promoter 

activity.  a Schematics illustrating CRISPR-SunTag models for targeted de/methylation of 

AluJb. DNMT3A was recruited to AluJb loci in H1299 to increase methylation. b, TET1CD was 

recruited to AluJb in K562 to remove DNA methylation from the TE. c, Methylation levels of 

AluJb in WT and CRISPR-SunTag-DNMT3A clones of H1299 measured by BSPCR-seq. d, 

Relative abundance of LIN28B in H1299 CRISPR-SunTag-DNMT3A Clone #1 (left) and Clone 

#2 (right) compared to WT as measured by qPCR (n = 3 independent experiments) and cropped 

Western blot (repeated twice with similar results). P values were derived from two-tailed Welch 

t test. All data are represented as means ± SE. e, Methylation levels of AluJb in WT and 

CRISPR-SunTag-TET1CD clones of K562. f, Cropped Western blot (repeated twice with similar 
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results) illustrating the presence of larger LIN28B protein, similar size as AluJb-LIN28B in 

H1299 and H838, in K562 CRISPR-SunTag-TET1CD clones.  

6.6 Methods: 
Data download 

All patient sample RNA-seq data analysis was done on the GDC Data Release 9.0 of TGCA data 

(10/24/17). Normal and tumor RNA-seq BAM files for the following 15 cancers were 

downloaded using the gdc-client version 1.3.0: bladder urothelial carincoma (BLCA), breast 

invasive carcinoma (BRCA), colon adenocarcinoma (COAD), head and neck squamous cell 

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), low grade glioma (LGG), liver 

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin 

cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), 

uterine corpus endometrial carcinoma (UCEC). In addition, normalized gene expression data 

(HTSeq-FPKM-Uq) and clinical metadata for all samples were downloaded using the gdc-client 

version 1.3.0. A total of 7,769 tumor samples and 625 matched-normal samples were used for 

analysis. 26 lung adenocarcinoma cancer cell line RNA-seq files were downloaded using sratools 

with the following accession: DRA001846. We included RNA-seq of the H838 lung cancer cell 

line, which has been previously generated in our laboratory and will be publicly available. 

GENCODE Version 25 was used as the transcript reference288. The GTF file of consensus 

transcripts was downloaded from https://www.gencodegenes.org/releases/25.html. Repeatmasker 

annotations were downloaded from the UCSC table browser for hg38289,290. FANTOM5 hg38-

aligned peaks used for annotating the supplementary tables were downloaded from 

http://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/. 698 protein-coding oncogenes 
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obtained from the ONGene database 262. 4 genes from previous publications noting “onco-

exaptation” were included in the list: IRF5, FABP7, SLCO1B3, IL33247,258. More details about 

the software used in our analysis can be found in the Life Sciences Reporting Summary.   

Assembly and annotation of transcripts 

BAM files were sorted and indexed and chr1-22, X, and Y were extracted. Stringtie version 1.3.3 

was used to assemble the BAM files for all the RNA-seq samples (stringtie –m 100 –c 1)291. 

These transcripts were then annotated with features from GENCODE v25 with a custom script. 

Briefly, GENCODE v25 was first processed into a coordinate dictionary based on chromosome, 

start, and end location. Only the transcripts that were considered “appris_principal” were used so 

that alternative transcripts of the gene would not be excluded as potential TE-derived candidates. 

This set of principal transcripts as well as the Repeatmasker TE coordinates were used to 

annotate the transcripts generated from the stringtie assembly for each sample. The starting 

position of the transcript was annotated using the Repeatmasker table to find TE-derived 

transcription start sites. Then, the first exon of the transcript was annotated based on overlap with 

exonic or intronic features of GENCODE v25. If the exon overlapped both an exon and intron, 

then the exon was selected as the annotation for that element. Then, all subsequent exons in the 

transcript were annotated until one overlapped with a protein-coding gene exon; this exon of the 

protein-coding gene was selected as the “splice target” of that transcript. After all transcripts 

were annotated, candidate transcripts were selected based on the following criteria: the start site 

of the transcript being within a TE, the TE being intergenic or intronic, the starting exon not 

overlapping with exon 1 of the canonical gene, and the transcript splicing into a protein-coding 

gene. We further limited our analysis to only include a list of 702 oncogenes to increase 

likelihood of finding candidates with tumorigenic impact.  
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Generating a reference transcriptome including onco-exaptation candidates 

Aggregating annotation data across all tumor and normal RNA-seq data sets, we constructed a 

list of unique onco-exaptation candidates based on the subfamily of the TE, the chromosomal 

coordinates of the TE, and the exon of the gene that the transcript spliced into. To remove 

potential assembly artifacts and genomic contamination, we removed candidates that had an 

average exon 1 length greater than the 99th percentile of all GENCODE v25 transcript first exons 

(2,588 bp). Furthermore, transcripts with first exons that retained an intron were also removed. 

Finally, we only included candidates that were present in at least 2 samples.  

To further increase confidence of promoter activity, we interrogated all reads that uniquely 

mapped to each candidate TE. We subsequently annotated the mate pair of those reads to see if 

any overlapped directly with oncogene exons. For single-end reads, we annotated the portion of 

the read mapping outside the TE to see if it overlapped with an oncogene exon. First, we 

removed candidates that had zero files where there were at least 10 uniquely mapped reads that 

started within the TE. In addition, these events were required to have at least 1 sample with 

uniquely mapped paired-end reads where one of the pairs mapped to the TE and the other to the 

splice target of the candidate. For intronic onco-exaptation events, we also removed candidates 

that had evidence of exonization (there were reads mapping to both an upstream exon and the 

TE) in more than 15% of samples. Finally, candidates that were exclusively in single-end RNA-

seq files were removed. The remaining candidate TE-derived transcripts were then merged with 

the reference GENCODE v25 annotation file using Cuffmerge to create a reference 

transcriptome inclusive of potential onco-exaptation events that have not been previously 

annotated.  

Transcript-level quantification and candidate selection 
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To determine the contribution of candidates to overall gene expression, we used stringtie (-e -b) 

with the merged transcriptome as the reference. For each sample, we labeled a candidate as being 

present if it met the following criteria: (1) the transcript accounted for at least 25% of total gene 

expression, (2) there was at least one read covering the splice junction between the TE and the 

splice target (candidates without unique splice junctions were removed), and (3) the target gene 

had at least 1 FPKM expression. Next, we filtered for candidates that were highly tumor enriched 

(> 10× enrichment in the tumor samples) and present in at least 4 tumor samples. For the two 

cancers where there were no normal samples (OV and LGG), we removed candidates that had > 

75% of their samples in these tumor types to avoid simply enriching for tissue-specific 

alternative promoters. This gave us a master list of 129 tumor-enriched onco-exaptation 

candidates involving 106 oncogenes. We then explored the abundance of these 129 candidates 

across the various cancer types to determine the prevalence of this phenomenon.  

Open-reading-frame (ORF) prediction and FANTOM5 annotation 

After determining the predicted transcript sequences of our candidates, we used CPC2 which 

predicted which candidates were coding or non-coding292. For coding transcripts, we 

subsequently used the start codon identified by CPC2 for the longest open reading frame and 

evaluated if it was in-frame or out-of-frame in relation to the canonical isoform. For FANTOM5 

promoter annotation, we first filtered the FANTOM5 peaks in hg38 for samples that were not 

part of exposure or time-course experiments. Subsequently, we evaluated if there were any peaks 

that overlapped with the onco-exapted TE that were on the same strand as our candidate 

transcript.   

Code Availability 

All custom scripts are available from the authors upon request. 
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Cell culture methods 

All cell lines were grown in a humidified incubator with 95% CO2 at 37C.  H1299, H838, H727 

and K562 cell lines were cultured in RPMI 1640 media (Gibco, 11875-085) supplemented with 

10% fetal bovine serum (Corning, 35-011-CV) and 100U/ml penicillin-streptomycin (Gibco, 

15140-122). HEK293T cell line was cultured in DMEM media (Gibco, 11965-084) 

supplemented with 10% fetal bovine serum and 100U/ml penicillin-streptomycin. Adherent cells 

were passaged at 70-90% confluency with 0.05% Trypsin-EDTA (Gibco, 25300-54). 

Epigenome and transcriptome profiling  

H1299 and K562 whole-genome bisulfite (WGBS)-seq and Cap Analysis of Gene Expression 

(CAGE)-seq were obtained from previously published results270,293. To generate WGBS-seq of 

H838 cell lines, we extracted genomic DNA with Quick-DNA Miniprep Kit (Zymo, D3024) and 

bisulfite converted 200 ng of DNA using EZ DNA Methylation-Direct kit (Zymo, D5020). For 

WGBS-seq, we processed the bisulfite-converted DNA with TruSeq DNA Methylation Kit 

(Illumina, 15066014). To evaluate DNA methylation of targeted regions, we performed bisulfite-

PCR using ZymoTaq PreMix (Zymo, E2003) following manufacturer’s protocol. Illumina 

adapters were ligated onto the BS-PCR product and amplified for sequencing. WGBS-seq and 

targeted BS-PCR libraries were sequenced on Illumina NextSeq and MiSeq platforms, 

respectively. The sequencing reads were aligned to hg19 genome with Bismark and CpG 

methylation values were calculated using bismark_methylation_extractor function294. 

To generate chromatin accessibility profiles for H1299 and H838, we followed the published 

Omni-ATAC-seq protocol295. Omni-ATAC-seq libraries were sequenced on Illumina NextSeq 

platform and reads were mapped to hg19 genome using bwa-mem296.  
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Total RNA was extracted using TRIzol Reagent (ThermoFisher Scientific, 15596026) following 

manufacturer’s protocol with few modifications. We performed an extra chloroform wash after 

transferring the aqueous phase. Furthermore, we added 5 µg of glycogen and 750 µl of 

isopropanol to the aqueous phase and incubated the solution overnight at -20C to precipitate the 

RNA. Total RNA was treated with TURBO Dnase (ThermoFisher Scientific, AM2238). H838 

RNA-seq library was generated using TruSeq RNA Library Prep Kit v2 (Illumina, RS-122-

2001).  

To annotate transcription start site locations, we generated CAGE-seq libraries using CAGE 

Preparation Kit (DNAFORM). In brief, 10 µg of total RNA was reverse transcribed using 

SuperScript III (ThermoFisher Scientific, 18080093) and 5’ cap of mRNA was biotinylated. 

Biotinylated RNA/cDNA hybrid was purified using Dynabeads M-280 Streptavidine beads 

(ThermoFisher Scientific, 11205D) and processed to be sequenced on the Illumina sequencing 

platforms. For H727, we generated nanoCAGE-seq libraries297. In summary, polyA mRNA was 

extracted using Dynabeads™ mRNA DIRECT™ Purification Kit (ThermoFisher Scientific, 

61011). The mRNA was enriched for 5’ capped mRNA via Terminator exonuclease (Lucigen, 

TER51020) digestion. Then we followed standard nanoCAGE protocol to generate the cDNA 

via template-switching technology. H1299 and H838 CAGE-seq reads were aligned to the hg19 

genome while H727 nanoCAGE-seq was aligned to hg38 genome with HISAT and processed 

using CAGEr package in R statistics298. All browser tracks are visualized with the WashU 

Epigenome Browser299. 

Quantitative PCR (qPCR) of let-7 miRNA and LIN28B 

Let-7 miRNA levels were profiled using a published real-time PCR-based platform300. To 

summarize, 500 ng of total RNA was reverse transcribed using SuperScript IV First-Strand 
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Synthesis System (ThermoFisher Scientific, 18091050) with primers specific to let-7a, let-7b, 

let-7g and U6-snRNA transcripts. For LIN28B, GAPDH and -actin qPCR, we processed 500 ng 

of total RNA with iScript Reverse Transcription Supermix (Bio-Rad, 1708840). Afterwards, we 

performed quantitative PCR on 1 µl of cDNA using PerfeCTa SYBR Green SuperMix 

(Quantabio, 95053-100). qPCR primers are listed in Supplemental Table 6. Results from qPCR 

were normalized to house-keeping gene to obtain ∆CT and ∆CT of samples were normalized to 

WT values to obtain ∆∆CT values. Relative fold-change is calculated as 2-∆∆CT. 

Western blot and antibodies 

Whole-cell lysates for Western blots were extracted with Blue Loading Buffer Pack (Cell 

Signaling Technology, 7722S). Protein lysates were loaded into Novex 16% Tris-Glycine Mini 

Gels (Thermo Fisher Scientific, XP99165BOX) and separated by gel electrophoresis at 125V for 

4 hours. LIN28B and -actin were detected using an anti-LIN28B antibody (Cell Signaling 

Technology, #4196) and an anti-ACTB mouse monoclonal antibody (GenScript, A00702), 

respectively. More details about the antibodies can be found in the Life Sciences Reporting 

Summary. The Western blot was imaged with Thermo Scientific myECL Imager (Thermo 

Scientific, 62236). 

Promoter and mutagenesis luciferase assay  

Various promoter sequences derived from TEs were amplified and extended using primers listed 

in Supplementary Table 6 from H1299 genomic DNA. The minimal promoter sequence of 

pGL4.23 luciferase plasmid (Addgene, E8411) was removed with HindIII & NcoI restriction 

enzyme digest and the TE-derived promoters were cloned into pGL4.23 plasmid via Gibson 

Assembly following manufacture’s protocol (New England Biolabs, E2661S). For mutagenesis 
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assay, we mutated specific motifs within the AluJb promoter-luciferase vector with QuikChange 

Lightning Site-Directed Mutagenesis Kit (Agilent, 210518). We used the Neon transfection 

system (MPK5000) to deliver 400 ng of promoter-luciferase vector and 200 ng of pRL-TK 

Renilla vector (Addgene, E2241) into 3 × 104 H1299 cells, 3 × 104 H838 cells or 5 × 104 K562 

cells. Luciferase levels were measured after 24 hours of incubation with Dual-Glo Luciferase 

Assay System (Promega, E2940).  

CRISPR-Cas9-mediated Deletion of AluJb and LIN28B Promoter 

We selected CRISPR-Cas9 sgRNAs by using both CRISPOR301 and CRISPRscan302 to identify 

sequences that have minimal off-targets and are highly efficient. We purchased pU6-

(BbsI)_CBh-Cas9-T2A-BFP plasmid (Addgene, 64323) & pU6-(BbsI)_CBh-Cas9-T2A-

mCherry plasmid (Addgene, 64324) as the CRISPR delivery vectors. For each sgRNA, we 

designed and annealed pairs of oligonucleotides that can be cloned into a BbsI-digested CRISPR 

vector through standard ligation techniques. We constructed BFP-CRISPR vectors that express 

sgRNAs targeting upstream and mCherry-CRISPR vectors that express sgRNAs targeting 

downstream of the region we want to delete. BFP-CRISPR vector and mCherry-CRISPR vector 

are co-transfected into H1299, H838 and K562 cells via Neon transfection system. After 24 

hours of incubation, the transfected cells are analyzed by flow-cytometry (Beckman Coulter 

MoFlo) for BFP-positive and mCherry-positive fluorescence. We sorted double-positive 

fluorescent cells into 96-well plates for single-cell clone expansion. Genomic DNA from 

CRISPR clones was extracted using Quick-DNA Miniprep Kit for genotyping and validated with 

Sanger sequencing. 

Cell proliferation assay  
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We seeded 2,500 wild-type cells or CRISPR-deletion clones in 100 µl of culture media into each 

well of 96-well plates. Ten µl of Cell Counting Kit-8 (Dojindo Molecular Technologies, CK04-

01) were added to each well at appropriate time points. After 1 hour of incubation in humidified 

incubator with 95% CO2 at 37C, we recorded O.D. at 450 nm using BioTek Synergy H1 Hybrid 

Reader.  

In vitro scratch migration assay 

Wild-type cells and CRISPR-deletion clones were seeded into 6-well plates and grown to 100% 

confluency. We made straight scratches in middle of the well using 200-µl pipette tips and gently 

washed the well with culture media twice to remove free floating cells. Then, we imaged the 

scratch with Leica DMIL microscope and measured the width of the scratch using Leica 

Application Suite X software at the time of the scratch and 8 hours after the scratch.  

Mouse xenograft experiment 

All experiments were approved by the Institutional Animal Care and Use Committee of 

Washington University in St. Louis (Protocol #20170204) and conducted in accordance with the 

National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. All 

experiments complied with the ethical regulations and considerations outlined in protocol. For 

H1299 xenografts, 3 × 106 wild-type cells or CRISPR-KO clones were collected and 

resuspended in 75 µl of chilled RPMI1640. Then, 75 µl of Matrigel Basement Membrane Matrix 

(Corning, 354234) was mixed into the cell solution and the sample was kept on ice until 

injection. The samples were injected subcutaneously into the right flank of four nude mice for 

WT and six nude mice for CRISPR KO clones (Jackson Lab, 002019, 4 weeks old homozygous 

NU/J females). Length (longer diameter) and width (shorter diameter) of the tumors were 

recorded and tumor volume was calculated by (Length x Width x Width)/2 equation. 
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CRISPR-SunTag vector construction 

We obtained scFv-sfGFP-DNMT3A1 vector (Addgene, 102278) for targeted methylation vector. 

We purchased pHRdSV40-dCas9-10xGCN4_v4-P2A-BFP plasmid (Addgene, 60903) and 

pLKO5.sgRNA.EFS.tRFP657 plasmid (Addgene, 57824). For targeted demethylation, we 

replaced DNMT3A sequence with TET1 catalytic domain (CD) sequence, which was amplified 

from pPlatTET-gRNA2 plasmid (Addgene, 82559). Recent work revealed that dCas9-SunTag 

with 22aa linkers between GCN4 had higher demethylation efficiency286. In pHRdSV40-dCas9-

10xGCN4_v4-P2A-BFP plasmid, we excised the 10xGCN4 sequence and cloned in GCN4-22aa 

sequence from pPlatTET-gRNA2 via Gibson Assembly. sgRNAs were cloned into 

pLKO5.sgRNA.EFS.tRFP657 plasmid. 

Lentivirus production and transduction of CRISPR-SunTag vectors 

HEK293T cells were seeded in 2 ml of DMEM complete media and grown to 50% confluency in 

6-well plates. We co-transfected CRISPR-SunTag plasmids with pMD2.G and psPAX2 

following polyethylenimine (PEI) transfection protocol. In brief, 6 µg of PEI and 2 µg of 

combined plasmids was added to 200 µl of Opti-MEM (ThermoFisher Scientific, 31985062) and 

incubated at room temperature for 30 minutes. The incubated PEI-vector mixture was added 

directly to HEK293T cells. After 48 hours, the viral supernatant was collected and filtered 

through 0.45-µm PES filter (Sigma-Aldrich, SLHV033RS). Then, polybrene (Sigma-Aldrich, 

TR-1003-G) was supplemented to the viral supernatant to a concentration of 5 µg/ml. The 

polybrene-viral supernatants of dCas9-SunTag-BFP, scFv-sfGFP-DNMT3A1/TET1CD and 

sgRNA.tRFP657 were added directly on top of H1299 and K562 cells in 6-well plates. After 2 

days of incubation, the transduced cells were rinsed with PBS and analyzed by flow-cytometry 

(Beckman Coulter MoFlo) for BFP, GFP and farRFP657 fluorescence. Individual triple-positive 
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fluorescent cells were sorted into 96-well plates and expanded. Once sufficiently expanded, the 

CRISPR-SunTag clones are resorted on the MoFlo for strong fluorescence and collected for 

downstream analysis of DNA methylation, gene expression and peptide expression. 

Human LIN28B and AluJb-LIN28B rescue 

We purchased pBABE-hLin28B plasmid (Addgene, 26358) that expresses FLAG-tagged human 

LIN28B protein267. We generated AluJb-LIN28B CDS from H1299 mRNA and cloned AluJb-

LIN28B CDS in lieu of FLAG-hLIN28B sequence into the pBABE vector.  We co-transfected 

pBABE plasmids with pMD2.G and pUMVC following polyethylenimine (PEI) transfection 

protocol into HEK293T cells. AluJb KO clones were transduced with viral supernatant 

supplemented with polybrene (5 µg/ml) for two days. Successfully infected cells were selected 

by 2 µg/ml puromycin (A.G. Scientific, P-1033-sol) treatment for 5 days before subsequent 

analysis.   

Statistical analysis 

Kaplan-Meier distributions between samples with or without candidate expression were 

compared using the logrank test. All statistics for in vitro experiments were performed using 

two-tailed Welch’s t test. Enrichment for TE class was calculated with this formula: ((# of TE 

family onco-exapted / # of total TEs onco-exapted) / (# of total TE family / # of all TEs)). 

6.7 Data Availability Statement 
Datasets generated and analyzed in this study are available on Gene Expression Omnibus (GEO) 

under accession code GSE113946. 

 



 154 

6.8 Supplementary Data Figures and Tables (tables will be available 

online) 

Supplementary Table 1. Compiled oncogene and onco-exaptation list.  
This table presents the comprehensive list of 702 oncogenes used in our analysis and their 

sources. Protein-coding oncogenes were procured from ONGene DB, a literature-based database 

of oncogenes (http://ongene.bioinfo-minzhao.org/). In addition, 4 oncogenes from previous 

publications focused on onco-exaptation were also included: IRF5, FABP7, SLCO1B3, and 

IL33.  

Supplementary Table 2. All TE-derived alternative isoforms of oncogenes 

For every alternative isoform beginning from a TE that was identified, the subfamily, family, and 

class of the TE as well as its coordinates in the genome are listed. The location of the TE is based 

on GENCODE v25 appris_principal labeled transcripts. If the TE is located in any of the introns, 

the label “intron” with the number of the intron is listed. If it is not found within the transcript 

coordinates of any gene, then it is listed as Intergenic. The Oncogene column has the symbol of 

the gene that the candidate splices into. The splice target is the exon number of the exon that is 

spliced into by the candidate. The Frame column has in-frame, out-of-frame, or noncoding based 

on the prediction from the coding potential calculator (CPC2). For all 15 cancers, there is a 

column for number of tumor samples and number of normal samples that each candidate is 

present in. Subsequently, the overall number of tumor samples is listed. The second to last 

column contains the fraction of total expression of the oncogene that the candidate accounts for 

on average, and the last column indicates whether the TE overlaps with an annotated FANTOM5 

peak. 
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Supplementary Table 3. Tumor-enriched onco-exaptation events and their distribution 

across 15 TCGA cancers. 

After filtering for 10x tumor-enrichment and presence in >=4 tumor samples, there were 129 

onco-exaptation candidates found which were subsequently used in our analysis of this 

mechanism. These candidates have been detailed in this table. The format is the same as 

Supplementary Table 2, except the normal sample columns have been removed.  

Supplementary Table 4. Multiple TE-derived oncogene activation. 

Oncogenes that had multiple in-frame isoforms originating from different transposable elements 

are listed in this table.  

Supplementary Table 5. Top candidates in lung adenocarcinoma cell lines.  

27 lung adenocarcinoma cell line RNA-seq datasets were analyzed for the presence of the most 

robust candidates. 26 of the cell lines were downloaded from a previous study, and one of the 

cell lines (H838) came from previously generated data from our own lab. 5 of the top 10 

candidates were found in these cell lines. The tpm value of the transcript of each candidate is 

listed for each of the 27 cell line datasets.  

Supplementary Table 6. Primer sequences. 

Sequences of primers used in experiments presented in the paper. 
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Supplementary Figure 1. RNA-seq computational pipeline detects numerous TE onco-

exaptation events in 15 cancer types from TCGA. a, Number of cases from various cancer 

types that were analyzed. b, Schematic of the computational pipeline describing how RNA-seq 

from TCGA was processed to identify onco-exaptation candidates.  
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Supplementary Figure 2. TE locations and annotations that are implicated in onco-

exaptation events. a, The genomic locations of TEs that act as cryptic promoters for oncogenes 

across different cancer types. b, Distribution of TE classes across cancer types. Total number of 
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unique TEs that contribute to onco-exaptation events are labeled on top. c, Distribution of each 

TE family that contributed to onco-exaptation across 15 cancer types. 

 

 

Supplementary Figure 3. Oncogene expression profiles of the top 10 onco-exaptation 

candidates across cancer types. Oncogene expression of each tumor with and without an onco-

exaptation event. Each grey dot represents a tumor while the red dots reveal whether the tumor is 
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predicted to have an onco-exaptation event. Total expression is represented as log2(FPKM-UQ) 

provided by TCGA GDC (https://portal.gdc.cancer.gov/). 
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Supplementary Figure 4. Overall survival impact of oncoexaptation candidates. Kaplan-

Meier Curves for the 8 examples of where a top 10 candidate was significantly prognostic in a 

cancer (p<0.05) based on log-rank statistical test (two-sided). The red line in each graph 

represents patients where the candidate was found to be present, and in blue line represents all 

the patients where the candidate was not detected. All were found to negatively impact overall 

survival. The number of biologically independent patients is listed within each plot.  
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Supplementary Figure 5. Transcription start site characterization of onco-exaptation 

candidates in H727 lung cancer cell line. a, WashU Epigenome browser view of CAGE-seq 

and mate-paired reads where the forward read initiates from AluJb and the reverse read ends in 

the gene body of LIN28B in H1299 and b, H838. c, WashU Epigenome browser view of H727 

CAGE-seq and mate-paired reads that where the forward read from L1PA2 and the reverse read 
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ends in the gene body of SYT1. d, WashU Epigenome browser view of H727 CAGE-seq and 

mate-paired reads where the forward read initiates from Tigger3a/MLT1D and the reverse read 

ends in the gene body of ARID3A. e, WashU Epigenome browser view of H727 CAGE-seq over 

SYT1 promoters. f, WashU Epigenome browser view of H727 CAGE-seq over ARID3A 

promoter. 
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Supplementary Figure 6. The AluJb TE is methylated in somatic tissue and is 

epigenetically dysregulated in cancer. a, DNA methylome profiles of multiple somatic tissues 

from the Roadmap Epigenomics Project (http://www.roadmapepigenomics.org/) are displayed on 

the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser/). b, Schematics 

showing DNA methylation levels of AluJb in different cancer cell lines. An alternative start 

http://www.roadmapepigenomics.org/)
http://epigenomegateway.wustl.edu/browser/)
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codon present in AluJb generates a chimeric LIN28B peptide that lacks 3 amino acids 

contributed by exon 1, but has 22 novel amino acids prepended. c, Predicted amino acid 

sequence of AluJb-LIN28B protein. d, Cropped Western blot (repeated twice with similar 

results) representing the size difference between the AluJb-LIN28B protein and canonical 

LIN28B protein. 

 

 

Supplementary Figure 7. Genotypes of AluJb-P and LIN28BP CRISPR-deleted clones. The 

CRISPR-mediated genetic breaks are illustrated for H1299 (left) and H838 (right) CRISPR 

clones. gRNA sequences are illustrated with various colors. AluJb1 KO clones were generated 

by deleted genomic region between gRNA-A1 and gRNA-A3. AluJb2 KO clones were generated 

by deleted genomic region between gRNA-A2 and gRNA-A3. LIN28BP KO clones were 
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generated by deleted genomic region between gRNA-L1 and gRNA-L2. Two independent clones 

were profiled for each set of CRISPR KOs. The genotyping gel results were replicated twice in 

independent experiments. 

  

 

Supplementary Figure 8. K562 control experiments for AluJb-LIN28B candidate 

validation. a, Promoter luciferase (n = 3 independent experiments) results illustrating 
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transcriptional activity of various TE arrangements in K562. Welch’s t-test was performed 

against reverse complement AluJb sequence (limited activity). b, Luciferase assays (n = 3 

independent experiments) for mutagenized transcription factor motifs in K562. Welch’s t-test 

against wild-type AluJb-P sequence. c, Genotypes of K562 CRISPR KO clones for AluJb-P and 

LIN28BP deletions. Genotype check was repeated twice with similar results. d, Cropped 

Western blot for LIN28B in K562 CRISPR KO clones. K562 also expresses a smaller isoform of 

LIN28B that is not present in H1299 and H838. This experiment was repeated twice with similar 

results. e, Relative let-7a, let-7b and let-7g miRNA levels compared to wild-type in CRISPR-

knockout clones of K562 as measured by qPCR (n = 3 independent experiments). f, CCK-8 

growth assay measuring cell growth rate of K562 WT and CRISPR clones (n = 3 independent 

experiments). a,b, P-values were calculated using two-tailed Welch t-test. a,b,e,f, All data are 

represented as means ± SE.  
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Supplementary Figure 9. Uncropped Western blots and gel images. Black boxes denote 

cropped images that are presented in the manuscript. 
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7.1 Abstract 
Pervasive chimeric transcripts from transposable element (TE) exaptation events can provide 

immunogenic targets that we can exploit with antigen-based immunotherapies. We analyzed 33 

TCGA cancer types and 675 cancer cell lines and performed comprehensively profiled all TE-

gene fusion events. This effort discovered 2,461 TE-exaptation events that were tumor-specific 

and present in nearly all tumor samples. Computational prediction of coding potential and 

reading frames of these TE-chimeric reads discovered potential atypical tumor-specific TE-

derived antigen (TS-TEA) candidates. Reexamining mass spectrometry data of published MHC-

pulldown peptidomes from cell lines revealed that multiple novel antigens from these transcripts 

could be detected on MHC molecules. Furthermore, we perform our own MHC-pulldown and 

report discovery of one out-of-frame TS-TEA candidate in a cancer cell line. These preliminary 

results indicate that careful analysis of TE dysregulation in cancer can ultimately lead to novel 

protein products that have the potential to be targeted with immunotherapy. Furthermore, we 

highlight tumor-specific membrane proteins transcribed from TE-exapted promoters that 

potentially expose a novel epitope, which can be targets of CAR-T or antibody-based therapy. In 

conclusion, we showcase the high prevalence of TE-derived promoter activation in cancer and 

suggest multiple avenues by which this phenomenon can be targeted therapeutically.  

7.2 Introduction 
In this chapter, we hypothesize that epigenetic dysregulation in cancer leads to the activation of 

cryptic regulatory elements encoded by TEs, some of which may form cancer-specific products 

such as tumor-specific antigens or immunoreactive proteins. TEs make up 50% of the genome, 

and they locate in and around almost all genes. In our previous work, we found that TEs are 

widely used as cryptic promoters that drive abnormal gene expression in cancer cells39. 

Importantly, many well-known oncogenes are upregulated in this manner, a phenomenon that 
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has been termed “onco-exaptation”. Transcripts initiated from epigenetically deregulated TEs 

promiscuously readthrough and splice into nearby protein coding genes, resulting in a chimeric 

RNA product that joins TE sequence with gene sequence. When such a chimeric RNA is 

translated, sometimes the TE sequence modifies the N-terminus of the protein by adding a few 

amino acids, as we illustrated in Jang et. al.39 (Fig. 1a). These newly discovered and cancer-

specific protein sequences represent a completely novel way to identify antigens. 

TCGA has generated a rich resource of exome sequencing, RNA sequencing, and methylation 

data sets for hundreds of glioblastoma patients303. Recent studies have thoroughly characterized 

the landscape of cancer drivers, somatic mutations, and chromosomal rearrangements of these 

tumors and correlated these changes with immune phenotype53,54,303,304. However, these studies 

largely ignored the potential impact of transcriptional changes caused by epigenetic 

dysregulation, such as the activation of TE-derived promoters. Thus, we performed a thorough 

characterization of TE-derived alternative transcripts and assessed their potential as a significant 

source of tumor-specific antigens across all tumor types. Furthermore, we provide the first 

comprehensive TE-transcript map of normal tissues by processing TCGA, GTEx and 

FANTOM5 databases. This effort will assist in identifying candidate tumor-specific TE-derived 

antigens (TS-TEAs) that are not present in normal tissues to minimize possible autoimmune 

side-effects potentiated by vaccination strategies305–307. 

Though short-read RNA-sequencing technology is not optimized for accurate detection of 5’ 

ends of transcripts, we have developed a bioinformatics pipeline that can identify alternative TE-

derived transcripts with a specificity >95% and assess their potential as a source of tumor-

specific antigens (Fig. 1b). We use our pipeline to define the landscape of high-confidence TE-

gene fusion events in cancer utilizing transcriptomic data of over 10,000 tumor samples across 
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33 tumor types available from TCGA. Then, candidates are filtered for tumor specificity. In 

addition to the matched-normal samples available from TCGA, we will also incorporate 15,000+ 

samples representing 54 tissue types from The Genotype-Tissue Expression (GTEx) project and 

promoter expression data from 1,800+ normal tissue samples from the FANTOM5 project. We 

can then stringently filter our candidates and confidently identify the candidates that are tumor-

specific. Subsequently, we assess the coding potential of transcripts using CPC2 and Kozak 

predictions and perform in silico translation to identify novel chimeric or out-of-frame 

isoforms292. Finally, with the patient transcriptome data, we determine their HLA class I and 

class II alleles and expression using seq2HLA308. Using NetMHCpan-4.0 and NetMHCIIpan-3.2, 

to predict which novel peptide sequences from these isoforms can be presented on patient MHC 

molecules51,309. 

7.3 Results 
The discovery of transposable element-derived transcripts also opens the door towards novel 

targeted therapies. In fact, recent publications have indicated that focusing on the non-coding 

regions of the genome and transposable element expression could significantly enhance the pool 

of tumor-specific antigens310. Chimeric peptides created through onco-exaptation or exaptation 

of other genes could be an additional, underexplored source of antigens to enhance 

immunotherapy or other targeted therapies311,312. For example, the AluJb-LIN28B candidate has 

the addition of 22 amino acids (AA) that are present in multiple tumor samples, absent in 

somatic tissues, and part of a highly expressed isoform (Fig. 1a); these 3 characteristics make it 

ideal as a target for immunotherapy43,313. Thus, we performed a comprehensive screen of TE-

gene fusion events across 10,365 tumors and 675 cancer cell lines and evaluated them for tumor-

specificity, antigenic potential, and MHC presentation. 
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We modified our previously developed computational framework to universally screen for TE-

derived cryptic promoters across all genes (Fig. 1b).  First, we screened RNA-sequencing data 

available across 33 tumor types from TCGA for these events and filtered them based on 

expression, intron structure, and tumor specificity (Methods). Considering the reported toxicity 

in off-target tissues with even basal low levels of target expression during immunotherapy 

trials314,315, we further filtered candidates for expression in other adult tissues. First, we used the 

Snaptron316 splice junction expression profiling data to remove candidates with significant 

expression of their unique splice junctions in any of the 31 adult tissues across 9,662 samples 

profiled in the Genotype-Tissue Expression (GTEx) project, excluding the testis (Fig. 1c). In 

addition, we removed candidates that had significant adult tissue expression according to the 

FANTOM5317 promoter database (Fig. 1d).  We arrived a final list of 2,461 tumor-specific TE-

gene fusion events across all cancer types (Fig. 1e). Surprisingly, we found that nearly all tumors 

(97.9%) had at least one event, and the median level of events ranged from 2 in THCA to 57 in 

TGCT (Fig. 2a).  Finding such a large number of highly tumor-specific TE-gene fusion 

examples indicates that this a promising resource of therapeutically targetable events. With 

solely the expression of the candidate TE-gene fusion transcripts, we performed a standard 

dimensional reduction technique, t-Distributed Stochastic Neighbor Embedding (t-SNE)318, on 

all of our tumor samples to examine the similarity of across samples. As expected, we saw that 

clustering based on TE-gene fusion transcripts was mainly tumor-specific (Fig. 2b); however, 

there were certain cancers that were split based on subtype. For example, esophageal carcinoma 

(ESCA) was split between squamous carcinoma and adenocarcinoma, labeled “ESCA(1)” and 

“ESCA(2)” respectively. These clusters are also consistent with previous studies analyzing the 

data based on mRNA expression and chromatin accessibility319, and our results indicate that the 
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activation of these TE exaptation events may be related to differences in underlying mRNA 

expression, chromatin accessibility, and regulatory networks across these various tumor types.  

To evaluate the presence of our candidates in cancer cell lines, we also processed RNA-

sequencing data from a previous study and quantified the expression of our candidates in 675 

cell-lines generated by Cancer Cell Line Encyclopedia (CCLE)320. We manually curated the cell 

lines with corresponding TCGA identifiers and also marked those identified as being commonly 

misidentified321. We were able to detect 56% of our candidates across the cell line catalogue that 

represented 26 of the 33 cancers profiled in TCGA as well as other cancer types such as Burkitt’s 

lymphoma and multiple myeloma (Fig. 2c). With this analysis we have now created a resource 

of the ideal experimental system to interrogate a sizeable portion of our candidates.  

Next, we predicted the most likely protein products of these transcripts and their antigenic 

potential.  Two methods were used to predict the open reading frame: (1) the first was based off 

of using CPC2 to evaluate coding potential and (2) the second was based on finding the first start 

codon in a “strong” Kozak context (Methods). The location of the novel start codon was used to 

determine if this would create an in-frame or out-of-frame peptide. For in-frame candidates, we 

further evaluated if the candidates would be either of the following four categories: (1) normal, 

(2) truncated, (3) chimeric normal, or (4) chimeric truncated (Fig. 3a).  The vast majority (90%) 

of our TE-gene fusion candidates were predicted to code for a protein in at least one of our two 

methods (Fig. 3b).  Furthermore, considering a substantial portion of our candidates would be 

truncated or chimeric truncated, we evaluated how these new isoforms would affect the major 

protein domains and transmembrane domains using Pfam322 and TMHMM323. Of the 1,500 

truncated isoforms, 958 (63.9%) disrupt at least one Pfam domain and 239 (15.9%) disrupt at 

least one transmembrane domain. These TE-derived truncated isoforms could have alternative 
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oncogenic functions from the canonical protein. For three promising candidates, we highlight the 

predicted protein structure, abundance across tumor types, and the cell lines with the highest 

levels of candidate expression (Fig. 3c).  Strikingly, 763 (31%) of all the candidates were 

predicted to be out-of-frame, chimeric truncated, or chimeric normal and have the potential to be 

antigenic. Within tumor types, the presence of these antigenic TE-gene fusion events varied 

between 55% in THCA to 98.8% in ESCA, but overall, 84.6% of tumor samples had at least one 

antigenic candidate, further supporting this mechanism as a potential pan-cancer source of 

antigens (Fig. 3d).   

Though our transcriptomic analyis allowed us to amass a valuable pool of potential cancer-

specific targets, we sought to provide more evidence supporting the existence of these peptides 

as well as their presentation on MHC class I molecules. As a proof of principle, we utilized 

publicly available HLA-pulldown mass spectrometry data324 for four of the cell lines that we 

profiled (SUPB15- acute lymphoblastic leukemia, HCT116- colon cancer, HCC1143- breast 

invasive ductal carcinoma, and HCC1937- breast ductal carcinoma) from the CCLE. The study 

also analyzed the EBV transformed JY cell-line that we did not have RNA-sequencing data for, 

but we also included that data to search for our protein products. In addition, we obtained SNV 

and HLA binding affinity predictions from the Tron Cell Line Portal325 to predict neoantigen 

burden in the cancer cell lines. For our TE-gene fusion candidates, we used NetMHCPan-4.0 to 

predict the binding affinity of out-of-frame and chimeric peptides51. Then, we examined the 

relative amount of predicted strong (<=500 nM IC50) HLA binders between the mutational 

neoantigens and the TE-gene fusion antigens (Fig. 4a,b). Across all the samples, it is apparent 

that HCT116 mutational neoantigens are a huge outlier with almost a magnitude more potential 

HLA-binders than the next closest sample. In addition, though the gap is much smaller for the 
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other 3 cell lines, there are consistently more predicted mutational neoantigens than there are TE-

gene fusion antigens with HCT116 having the least.  

To compare the amount of each type of antigen that could be found in MHC-pulldown mass-spec 

experiments, we created a custom database composed of the Uniprot reference326, all predicted 

neoantigens within the cell lines (regardless of predicted binding), and all TE-gene fusion 

candidates. We subsequently used Maxquant to search for these candidates in the HLA 

peptidomes of these cell lines327. For neoantigens, we were able to detect four for HCT116 and 

one for SUPB15 (Fig. 4c).  This aligned with HCT116 having the largest number of potential 

candidates by a large margin. Shifting our focus to TE-gene fusion candidates, we were amazed 

to find a substantial number of antigens coming from these events: four in HCC1143, seven in 

SUPB15, and four in JY. TE-gene fusion peptides substantially increased the number of detected 

antigens for two cell lines when compared to neoantigen analysis alone. Though this was a small 

pilot for TE-gene fusion antigen discovery, the distribution of antigens show how these tumor-

specific TE-derived antigens (TS-TEAs) could serve as complementary source of antigens to 

target therapeutically. In addition, our framework of identifying candidates could easily and 

quickly be incorporated into popular neoantigen detection pipelines that use transcriptomic data 

and could substantially increase the yield of protein targets50,328.  

We also personally validated the presence of TS-TEAs on MHC-molecules by performing MHC-

pulldown LC-MS/MS experiments. We have successfully adopted a previously published 

pulldown methods329 (Fig. 5a) to generate high-quality samples in accord of what is expected 

from MHC-pulldown. The peptides characterized by MaxQuant327 from our MHC-pulldown 

samples represent 8-12 amino acid peptides with a mass/charge ratio from 250 to 1200 M/Z as 

expected of antigens presented on MHC-I molecules (Fig. 5b). Analysis of CCLE RNA-seq data 
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provided candidate cancer cell lines with high prevalence of TE-derived transcripts that can 

ultimately be presented as antigens. To verify promoter activity of TEs identified to generate 

chimeric peptides, we generated nanoCAGE-seq libraries and mapped the transcription start sites 

in the candidate cancer cell lines (Fig. 5c). Furthermore, we set extremely stringent filters for 

processing antigens identified by MHC-pulldown experiments. These filters include RNA and 

CAGE support for TE promoter activity and BLAST-ing the peptide sequence against the current 

proteome database to determine peptide exclusivity to cancer samples. Furthermore, we reverse-

translate the TS-TEA into all possible DNA sequences and BLAT the each sequence against the 

genome to determine if any other genomic regions can potentially transcribe a transcript that can 

be translated into the detected TS-TEA candidate. This often filters TE-derived peptides from 

young TEs, such as L1s and HERVs, due to conservation of sequence. For example, we detect 

numerous chimeric candidates transcribing from SVA elements. However, since there are 

multiple SVA elements that can generate the same peptide sequence, we filter out majority of 

SVA-derived antigen candidates due to lack of specificity. Even with these filters, we positively 

identified one TS-TEA antigen from an out-of-frame peptide from L1PA2-IBSP chimeric 

transcript in DMS53 cancer cell line (Fig. 5c). Indeed, L1PA2 is a bona-fide tumor-specific 

promoter in DMS53 further supporting that TE-chimeric transcript is expressed (Fig. 5c). 

However, synthetic peptide validation will further improve confidence that this is a real antigen. 

Cell membrane proteins have been hot topic of discussion for immunotherapy-targets due to their 

intrinsic nature of being presented on the cell membrane surface. Often the case, in TE-chimeric 

transcripts, the TE sequences are prepended to a canonical transcript, which ultimately can be 

translated to add novel peptides to the N-terminus of the chimeric protein. Therefore, we 

hypothesized that TE-exapted membrane proteins have the potential of presenting a tumor-
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specific TE-derived epitope outside the cancer cells. Indeed, we identified numerous tumor-

specific TE-exapted membrane protein events (data not shown). Here, we focus on two most 

prevalent candidates, L1PA6-STIM1 and SVA_F-GPR176, and attempt to validate its presence 

in cancer cell lines. L1PA2-STIM1 is a chimeric truncated transcript that retains its 

transmembrane domains and presents novel ~40 amino acid sequence in the N-terminus of 

STIM1, which is predicted to be outside the cell (Fig. 6a). L1PA6-STIM1 is present across 

numerous tumor types with highest incidence in BRCA (Fig. 6b). To validate this candidate, we 

profiled cancer cell line data and identified a cell line, H2110, that highly expresses the TE-

exapted version of STIM1 (Fig. 6c). We profiled promoter activity in H2110 with nanocage-seq 

and verified that L1PA2 is actively transcribing (Fig. 6d). Since L1PA2-STIM1 is truncated 

version of STIM1(74kDA vs canonical 77.4kDa), we performed cytosol and membrane protein 

isolation and probed for STIM1 protein presence. We detect that smaller isoform of STIM1 

present in the membrane, but not cytosol, of H2110 further supporting the presence of TE-

exapted STIM1. Similarly, we validated the presence of SVA_F-GPR176 candidate in H1623 

(Fig. 6f,g). Considering that the only isoform of GPR176 is transcribed from SVA_F TE in 

H1623 (Fig. 6i), we are confident that the SVA_F-GPR176 is present in the cell membrane (Fig. 

6j,k). However, the size of the GPR176 is much larger than expected (TE-version: 54kDa vs. 

canonical version: 57kDa). We suspect that there could be post-translation modifications 

occurring on the SVA_F-GPR176 protein that could explain the size difference. However, 

further experiments, such as CRISPR deletion of SVA_F, will be necessary to validate that the 

GPR176 detected in H1623 is the TE-exapted version. If these TE-exapted membrane proteins 

are indeed real, it can open new therapeutic avenues of utilizing antibody-based or CAR-T 
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therapies without the restrictive need for TE-chimeric peptides to be presented on MHC 

molecules.  

7.4 Discussion 
In cancer, transposable elements are promiscuously resurrected to drive expression of novel 

transcripts that are oftentimes highly expressed, widespread across tumor samples, and have the 

potential to produce novel peptides not predicted to be present in other adult tissues. Here, we 

provide a comprehensive analysis of TE-gene fusion events across 33 tumor types from TCGA. 

Even after stringent filtering for tumor specificity using both splice junction profiling in adult 

tissue and promoter expression, we find thousands of events present in the vast majority of 

tumors. In addition, a substantial portion of these events have unique peptide sequences, and our 

pilot MHC-pulldown mass spec data analysis shows that these events can be detected on HLA 

molecules and could be a promising complementary source of antigens for immunotherapy. 

Though this analysis was promising, there are many hurdles that our subset of TS-TEA face. 

They could be subject to some level of central tolerance as has been found for other tumor-

specific antigens43, and we will have the burden of proof in showing that these events are 

significantly immunogenic. In addition, even after stringent filtering, we are less confident in the 

tumor-specificity of our candidates when compared to neoantigens that result from genomic 

changes specific to the tumor since there could be rare subtypes of normal cells that have yet to 

be profiled. Nonetheless, considering that many of these candidates have disrupted epigenetic 

regulation, unique transcript sequences, and unique protein sequences, they offer a plethora of 

avenues to target them in cancer. Furthermore, for cancers with low levels of TE-exaptation 

events, previous work from our lab indicates that epigenetic therapy can be used to activate these 

transcripts and potentially lead to the production of antigenic peptides330. 
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We plan to incorporate this rich database of tumor expression, cell-line expression, protein 

structure prediction, and antigenic peptide prediction generated in this study into an intuitive web 

interface. This way, researchers can easily locate promising candidates and identify the ideal 

experimental cell line model to validate and interrogate their chosen antigen. For our own future 

analysis, we have found the optimal combination of cell lines to validate half of the top 

candidates and increase likelihood of detecting candidates on subsequent MHC-pulldown 

experiments.  Though our primary goal was to evaluate antigenicity of these candidates, there are 

many interesting biological questions that can be asked based on the various different isoforms 

detected. Does the absence of specific domains make a protein more oncogenic? Do any of the 

chimeric peptide sequences have a novel function in this tumor-specific protein-isoform? In 

addition, we are also working to package both our transcript annotation tools and our protein 

prediction algorithm to allow for easy incorporation of our methods into tumor sequencing and 

neoantigen detection workflows. We hope this will accelerate research on TS-TEA candidates 

and their incorporation into cancer therapies. 

7.5 Methods 
Data download 

Normal and tumor RNA-seq BAM files from TCGA for the following 33 cancers were 

downloaded using the gdc-client version 1.3.0: adrenocortical carcinoma (ACC), bladder 

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical carcinoma (CESC), 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large b-cell lymphoma 

(DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck 

squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell 

carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia 
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(LAML), low grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous 

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and 

paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), 

sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), 

testicular germ cell tumors (TGCT), thymoma (THYM),  thyroid carcinoma (THCA), uterine 

corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), and uveal melanoma 

(UVM). In addition, normalized gene expression data (HTSeq-FPKM-Uq) and clinical metadata 

for all samples were downloaded using the gdc-client version 1.3.0. A total of 10,365 tumor 

samples and 729 matched-normal samples were used for analysis. The 675 cell line RNA-

sequencing data were downloaded from the European Genome-phenome Archive (accession 

EGAD00001000725). GENCODE Version 25 was used as the transcript reference288. The GTF 

file of consensus transcripts was downloaded from 

https://www.gencodegenes.org/releases/25.html. Repeatmasker annotations were downloaded 

from the UCSC table browser for hg38 (refs. 331,332). FANTOM5317 hg38-aligned peaks used for 

annotating the supplementary tables were downloaded from 

http://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/. The genome reference used for 

RNA sequencing analysis (GRCh38.d1.vd1.fa.tar.gz) was the GDC reference files that were 

downloaded from https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-

reference-files. Splice junction expression data (raw counts) for GTEX and TCGA were 

downloaded from Snaptron316 using the provided command line client 

(https://github.com/ChristopherWilks/snaptron-experiments). HLA-pulldown mass spectrometry 

raw data from a previous study324 for the HCT116, SUPB15-RT, SUPB15-WT, JY, HCC1143, 

https://www.gencodegenes.org/releases/25.html
http://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files
https://github.com/ChristopherWilks/snaptron-experiments
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and HCC1937 cell lines were downloaded from PRIDE using the following accession: 

PXD000394.  Mass spectrometry mzML files for BRCA were downloaded from the CPTAC 

data portal (https://proteomics.cancer.gov/data-portal). 

TE-gene fusion transcript pipeline: 

This pipeline is available upon request, and the steps for candidate identification (1-4) have been 

described previously39. We further predict protein products from these transcripts and generates a 

fasta file with potential antigenic transcript products.   

(1) Assembly and annotation of transcripts 

BAM files were sorted and indexed and chr1-22, X, and Y were extracted. Stringtie version 1.3.3 

was used to assemble the BAM files for all the RNA-seq samples (stringtie –m 100 –c 1). These 

transcripts were then annotated with features from GENCODE v.25 with a custom script. 

Briefly, GENCODE v.25 was first processed into a coordinate dictionary based on chromosome, 

start, and end location for the “appris_principal” transcription. This dictionary of principal 

transcripts as well as the Repeatmasker TE coordinates were used to annotate the transcripts 

generated from the stringtie assembly for each sample. The starting position of the transcript was 

annotated using the Repeatmasker table to find TE-derived transcription start sites. Then, the 

first exon of the transcript was annotated based on overlap with exonic or intronic features of 

GENCODE v.25. If the exon overlapped both an exon and intron, then the exon was selected as 

the annotation for that element. Then, all subsequent exons in the transcript were annotated until 

one overlapped with a protein-coding gene exon; this exon of the protein-coding gene was 

selected as the “splice target” of that transcript. After all transcripts were annotated, candidate 

transcripts were selected based on the following criteria: the start site of the transcript being 

https://proteomics.cancer.gov/data-portal
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within a TE, the TE being intergenic or intronic, the starting exon not overlapping with exon 1 of 

the canonical gene, and the transcript splicing into a protein-coding gene.  

(2) Generating a reference transcriptome including onco-exaptation candidates 

Aggregating annotation data across all tumor and normal RNA-seq data sets, we constructed a 

list of unique TE-gene fusion candidates based on the subfamily of the TE, the chromosomal 

coordinates of the TE, and the exon of the gene that the transcript spliced into. To remove 

potential assembly artifacts and genomic contamination, we removed candidates that had an 

average exon 1 length greater than the 99th percentile of all GENCODE v.25 transcript first 

exons (2588 bp). Furthermore, transcripts with first exons that retained an intron were also 

removed. Finally, we only included candidates that were present in at least 2 samples.  

To further increase confidence of promoter activity, we interrogated all reads that uniquely 

mapped to each candidate TE. We subsequently annotated the mate pair of those reads to see if 

any overlapped directly with oncogene exons. For single-end reads, we annotated the portion of 

the read mapping outside the TE to see if it overlapped with an oncogene exon. First, we 

removed candidates that had zero files where there were at least 10 uniquely mapped reads that 

started within the TE. In addition, these events were required to have at least 1 sample with 

uniquely mapped paired-end reads where one of the pairs mapped to the TE and the other to the 

splice target of the candidate. For intronic onco-exaptation events, we also removed candidates 

that had evidence of exonization (there were reads mapping to both an upstream exon and the 

TE) in more than 15% of samples. Finally, candidates that were exclusively in single-end RNA-

seq files were removed. The remaining candidate TE-derived transcripts were then merged with 

the reference GENCODE v.25 annotation file using Cuffmerge333 to create a reference 

transcriptome inclusive of potential TE-gene fusion events.  
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(3) Transcript-level quantification and candidate selection 

To determine the contribution of candidates to overall gene expression, we used stringtie 

quantification (-e -b) with the merged transcriptome as the reference. The FPKM values 

generated by this command were extracted from the ballgown output files to get transcript-level 

expression. In addition, intron read counts for unique splice junctions found in each transcript 

were also extracted from the stringtie ballgown output for further analysis.  

(4) Candidate TE-gene fusion transcript filtering 

For each sample, we labeled a candidate as being present if it met the following criteria: (1) the 

transcript accounted for at least 10% of total gene expression, (2) there was at least one read 

covering the closest unique splice junction to the splice target (candidates without unique splice 

junctions were removed), and (3) the target gene had at least 1 FPKM expression.  

(5) Open-reading frame prediction and annotation 

We utilized two strategies to define the coding reading frame of the transcripts. (1) First, we used 

CPC2 which predicted which candidates were coding or non-coding. For coding transcripts, we 

subsequently used the start codon identified by CPC2 for the longest open reading frame292. (2) 

Second, we searched for the first start codon (AUG) that met the following criteria: (A) the start 

codon matches the Kozak334 sequence at the +4 or -3 positions and (B) the protein made had to 

be at least 50 AA in length. For each of these methods, we then determined if the start codon 

identified was in-frame or out-of-frame relative to the canonical start codon of the gene. If it was 

out-of-frame, we checked if it was present within the original transcript of the protein, and if it 

was, it was removed from consideration. For in-frame proteins, we determined if the start codon 

was predicted to make a protein in either of the following categories: original, truncated, 

chimeric original, and chimeric truncated. If both the selected start codon and the novel start 
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codon were present in the canonical transcript, then the candidate was annotated as making the 

canonical isoform of the protein. In addition, we performed pairwise alignment of the original 

protein sequence and the predicted coding frames of the transcripts using the Biostrings R 

package335, and conflicts between the nucleotide sequence-based annotation prediction and 

protein alignment were manually checked and corrected.   

Protein and Transmembrane Domain Annotation 

To explore the putative functional and transmembrane domains that candidates retained or lost 

from the canonical protein, we utilized the Pfam322 domain annotations and TMHMM323 

transmembrane domain predictions available through Biomart336. Those proteins that retained at 

least one transmembrane domain were kept as potentially membrane-associated candidates. To 

further highlight proteins associated with the plasma membrane specifically, we queried the 

Uniprot326 database with the gene names for the cellular localization and selected those 

candidates that had the term “plasma membrane” in their description.  

Candidate filtering for tumor-specificity 

We filtered for candidates that were highly tumor enriched within the TCGA samples (>8x 

enrichment in the tumor samples when compared to the normal samples in TCGA) and present in 

at least 5 tumor samples. To further filter for candidates restricted to tumors, we incorporated the 

Genotype-Tissue Expression (GTEx) project that transcriptionally profiled 9662 samples across 

31 adult tissue types. We downloaded splice junction count information profiled by the Snaptron 

project for both the TCGA and GTEx projects. For the closest unique splice junction to the 

“splice target” of each candidate, we evaluated the expression across all TCGA and GTEx 

datasets and calculated a junction counts per million (jpm) value. We subsequently determined 

the maximum jpm values across TCGA and GTEx (excluding Testis) separately, and kept 
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candidates with a maximum jpm in GTEx of 0 or that met the following criteria: (1) maximum 

jpm across TCGA samples > 0, (2) maximum jpm across GTEx samples <= 1, and (3) 

(maximum jpm across TCGA samples)/(maximum jpm across GTEx samples) >= 2.  

 For FANTOM5 promoter annotation, we first filtered the FANTOM5 peaks in hg38 for samples 

that were not part of exposure or time-course experiments. Subsequently, we evaluated if there 

were any peaks that overlapped with the onco-exapted TE that were on the same strand as our 

candidate transcript. If there were multiple peaks in the same transposable element, we combined 

them to get the amount of expression coming from the transposable element. We then calculated 

the mean expression level of the TE promoter (tpm) across all the adult tissues. We removed all 

candidates that had a mean tpm expression >=1 tpm in any adult tissue (exclusion Testis).  

Raw RNA-sequencing data processing 

For the 675 cell line rna-sequencing data, we first performed adapter trimming using cutadapt226. 

We subsequently aligned the reads using STAR v2.6.1b337 (STAR  --runMode alignReads  --

runThreadN 6  --genomeDir <reference directory>  --readFilesIn <R1.fastq.gz> <R2.fastq.gz>  

--readFilesCommand zcat  --outFileNamePrefix <name.out>  --outSAMtype BAM 

SortedByCoordinate  --outSAMstrandField intronMotif   --outSAMattributes NH HI NM MD AS 

XS  --outSAMunmapped Within  --outSAMheaderHD @HD VN:1.4  --outFilterMultimapNmax 

20  --outFilterScoreMinOverLread 0.33  --outFilterMatchNminOverLread 0.33  --

alignIntronMax 500000  --alignMatesGapMax 1000000  --twopassMode Basic). We 

subsequently used stringtie to quantify the expression of TE-gene fusion candidates using the 

reference generated from the TCGA data (created in step 2 of the TE-gene fusion transcript 

pipeline). We used the same parameters as we used for the TCGA data to identify if a candidate 

was present in a sample: (1) the transcript accounted for at least 10% of total gene expression, (2) 
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there was at least one read covering the closest unique splice junction to the splice target, and (3) 

the target gene had at least 1 FPKM expression.  

HLA-type Determination and Binding Prediction 

For the TCGA samples, the HLA type has already been determined in a previous study304, and 

the HLA allele information was downloaded using the gdc-client 1.3.0 using the manifest found 

at the following location: https://gdc.cancer.gov/about-data/publications/panimmune. For the 675 

cell lines, the seq2HLA308 program was run to predict the 4-digit HLA allele code for every cell 

line using their RNA-sequencing data. We then predicted the binding affinity of the unique 

peptide sequences of our TE-gene fusion candidates to the HLA alleles of samples with the 

candidate present using NetMHCPan-4.051. For out-of-frame candidates, we included the entire 

predicted protein sequence. For in-frame chimeric candidates, we included the novel N-terminal 

AA + 10 AA from the original protein.  

SNV Neoantigen Prediction for TCGA and Cell Line Data 

SNV Neoantigens for TCGA and their predicted binding affinity to sample HLA alleles had been 

previously profiled, and we obtained the predicted neoantigens and their predicted binding 

affinities to samples of TCGA with the gdc-client 1.3.0 using the manifest found at the following 

location: https://gdc.cancer.gov/about-data/publications/panimmune.  SNV neoantigens for all 

the cell lines had also been profiled by the TRON Cell Line Portal325, and their sequences and 

binding affinity were obtained from the authors.   

HLA Mass Spectrometry Analysis 

 Raw files our MHC-pulldown samples and publically available HLA-mass spectrometry 

experiments were analyzed using MaxQuant327  Version 1.6.3.4. The parameters used in the 
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proteomics search different from the default were the following: unspecific enzyme digestion, no 

protein-level FDR since we were interested in peptides, peptide FDR of 5%, peptide length limit 

between 8 and 15 AA, and maximum peptide mass of 1500 Da. In addition, a custom proteome 

database was used consisting of the Uniprot reference database, the sequences of potential 

antigenic peptides from our analysis, and the potential neoantigen sequences from the TCLP (JY 

was not available). Decoy sequences and contaminants were removed before performing 

subsequent identification analysis.  

Detection of transcription start site locations  

To detect transcription start site locations in promoters, we generated and processed nanoCAGE-

seq libraries on cancer cell lines described in this paper by following protocol described 

previously39. 

MHC/HLA pull-down and LC-MS/MS procedure. 

We adopted a published protocol338,339 to generate HLA-I antigen pull-down samples with couple 

exceptions mentioned below. As per published protocol, anti-HLA-I antibodies were collected 

from W6/32 (ATCC HB-95) growth medium and were crosslinked to Protein A-sepharose 4B 

beads (ThermoFisher Scientific, 101041) with dimethylpimelimidate. We harvested and froze 

down cell line samples until time of lysis. Roughly 5x108 to 1x109 cells were lysed with ice-cold 

modified lysis buffer (0.3% sodium deoxycholate, 0.75% IGEPAL CA-630, 0.2mM 

iodoacetamide, 1mM EDTA, 1:200 Protease Inhibitors Cocktail, 1mM Phenyl-methylsulfonyl 

fluoride, 1% octyl- β-D glucopyranoside in PBS) on ice for 1 hour. The samples were slightly 

vortexed every 10 minutes to maximize lysis efficiency. The samples were centrifuged at 

21,000x g at 4ºC for 1 hour to pellet large cell debris and cell nuclei. The lysate supernatant was 

transferred to Poly-Prep chromatography columns (Bio-Rad, 7311550) with 500ul Protein A-
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sepharose 4B beads to remove endogenous antibodies. The endogenous antibody-depleted lysate 

was then transferred to Poly-Prep chromatography columns containing 1ml of crosslinked 

W6/32-proteinA beads. The flow-through was collected and loaded to the same column for a 

total of three flow throughs. Then the MHC-antigen bound beads were washed and MHC-I 

antigens were purified following the aforementioned protocol338. The antigens samples were then 

processed on nanoLC coupled to Orbitrap Fusion Lumos Mass Spectrometer. Mass spectrometry 

results were acquired following the “top10” method.       

Western blot and immunofluorescent detection of TE-derived membrane proteins 

All cell lines were grown in mediums and conditions designated by ATCC. Membrane-bound 

and cytosolic proteins were isolated from cell line samples with Mem-PER Plus Membrane 

Protein Extraction Kit (ThermoFisher Scientific, PI89842) following manufacturer’s protocol. 

Extracted protein samples were denatured with Blue Loading Buffer Pack (Cell Signaling 

Technology, 7722S) and loaded into Novex 10% Tris-Glycine Mini Gels (Thermo Fisher 

Scientific, XP00100BOX) and separated by gel electrophoresis at 125V for 4 hours. STIM1 and 

GPR176 were detected using anti-STIM antibody (Cell Signaling Technology, #5668S) and anti-

GPR176 antibody (abcam, ab122605) with anti-rabbit secondary antibody (Cell Signaling 

Technology, #7074). The Western blot was imaged with Thermo Scientific myECL Imager 

(Thermo Scientific, 62236).  

For immunofluorescence detection of GPR176 in H1623 cell line, H1623 was seeded into 12-

plate well culture-treated plates with 18mm glass coverslips. Once ~50% confluent, we aspirated 

the media and washed each well twice with room temperature (RT) PBS. Then the cells were 

fixed with 300l of 4% paraformaldehyde (PFA) in PBS at RT for 10 minutes. After 3 washes 

with PBS, the cells were permeabilized with 0.01% Triton X-100 in PBS for 10 minutes at RT. 
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Then the fixed cells were treating with blocking buffer (5% bovine serum albumin in PBS) for 

30 minutes at RT with slow shaking. For primary antibody incubation, anti-GPR176 antibody 

was diluted 1:100 in blocking buffer and added to cells for overnight incubation at RT in the 

dark. To label GPR176 with GFP immunofluorescence, we washed the cells three times with 

PBS and added Alexa Fluor 488 conjugated donkey anti-rabbit (ThermoFisher Scientific, A-

21206) at dilution of 1:100 for 1-hour incubation at RT in the dark. For imaging, the cells were 

washed 3 times with PBS. For the second wash, DAPI was added to the PBS at 1:5000 dilution 

and incubated for 5 minutes to label nuclei. Then the coverslips were mounted on slides and cells 

were imaged with a Leica DM IL LED Fluorescence Inverted Microscope at 40x magnification.  
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7.7 Figures 

 

Figure 1: Tumor-specific TE-gene fusion candidate selection. a, Schematic of TE-gene fusion 

events having the potential to create novel chimeric peptides or to create out-of-frame proteins 

that are tumor specific b, Diagram of our computational framework for RNA-sequencing data to 

detect tumor-specific TE-gene fusion events, predict their reading frames, and predict potential 

antigens. c, Maximum unique splice junction expression in units of junctions per million (jpm) in 
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TCGA and GTEx data sets. Those labeled in green were kept as potential tumors-specific 

candidates. d, FANTOM5 CAGE expression (tpm) of candidates with FANTOM5 peaks in fetal 

tissue, adult tissue, and cancer cell lines.  
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Figure 2: Landscape of TE-gene fusions in TCGA and in cancer cell lines. a, Series of 

boxplots for all 33 cancers in TCGA showing the distribution of the number of candidates 

detected per samples.  b, t-SNE plot displaying the clustering of 10365 tumor samples based on 

the expression of the candidate TE-gene fusion transcripts. The dots are colored based on their 

tumor-type, and the clusters have been labeled with TCGA identifier corresponding to the cancer 

type that represents the majority of that cluster. ESCA has been labeled twice due to two large 

split clusters. c, Landscape of TE-gene fusion candidate presence across the 675 cancer cell lines 

profiled in this study. Cell lines not corresponding to any TCGA identifier are labeled as 

“NONE.” Commonly misidentified cell lines are labeled as “MIS.” The donut plot on the right 

represents the percentage of TCGA TE-gene fusion candidates that are detected in the cell lines.  
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Figure 3: TE-gene fusion transcripts generate protein products that are potentially 

antigenic. a, Diagram of annotation possibilities of protein products from TE-gene fusion 

transcripts b, Pie graphs showing the distribution of protein product annotation using Method 1 

(based on CPC2) and Method 2 (based on Kozak similarity).  c, Three chimeric truncated 

candidates are highlighted. The left most column has the original protein structure (top) with the 
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candidate protein structure aligned (bottom). The middle column displays the presence of the 

candidate across the 33 TCGA cancer types. The right most column contains a plot showcasing 

the expression of the candidate in the top 10 cell lines where it is present. d, The proportion of 

samples in each cancer type that have at least 1 antigenic candidate.   
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Figure 4: Detection of TE-gene fusion candidates in previously published HLA-pulldown 

LC-MS/MS data. a, Bar graph displaying the number of predicted neoantigen peptides with a 

predicted peptide affinity <= 500nM (IC50). b, Bar graph displaying the number of predicted TE-

gene fusion antigenic peptides with a predicted peptide affinity <= 500nM (IC50). c, A series of 

scatter plots summarizing the MHC antigens detected based on spectral score (x-axis) and 

intensity (y-axis). Each grey dot represents a detected peptide (FDR<=.05). Colored dots 

highlight the neoantigen peptides that were detected. The horizontal and vertical lines represent 

the average intensity and score for the cell-line respectively. d, Same plots as c with the TE-gene 

fusion antigenic peptides highlighted instead of neoantigens. 
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Figure 5: Identification of L1PA2-IBSP TS-TEA in DMS53. a, A schematic describing the 

process of MHC-I pulldown experiment. b, Characterization of peptide length, charge and 

mass/charge ratios from peptides detected by LC-MS/MS in MHC-I pulldown sample. c, Visual 

representation of validating presence of TS-TEAs in cancer cell lines. LC-MS/MS spectra result 

of L1PA2-IBSP TS-TEA. d, WashU Epigenome browser view of nanoCAGE-seq data in 

DMS53. 



 197 

  

Figure 6: TE-derived membrane protein discovery and validation. a, A schematic 

representing canonical STIM1 and L1PA6-STIM1 protein structure. b, Frequency of L1PA2-
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STIM1 candidate detected in various TCGA tumors. c, Expression profile of L1PA6-STIM1 in 

cancer cell lines. Intron reads represent number of reads that span the TE-gene junction. Red 

circle denotes cancer cell line used to validate L1PA6-STIM1. d, WashU Epigenome browser 

view of nanoCAGE-seq data of L1PA2 and STIM1 in H2110. e, Western blot of STIM1 in cell 

membrane and cytosol across cancer cell lines. Black arrow points to smaller STIM1 protein 

isoform in H2110. f, A schematic representing canonical GPR176 and SVA_F-GPR176 protein 

structure. g, Frequency of SVA_F-GPR176 candidate detected in various TCGA tumors. 

Expression profile of SVA_F-GPR176 in cancer cell lines. Intron reads represent number of 

reads that span the TE-gene junction. Red circle denotes cancer cell line used to validate SVA_F-

GPR176. i, WashU Epigenome browser view of nanoCAGE-seq data of SVA_F and GPR176 in 

H1623. j, Western blot of GPR176 across cancer cell lines. Black arrow points to candidate 

SVA_F-GPR176 protein present on cell membrane. k, Immunofluorescence labeling of GPR176 

in H1623. Blue represents DAPI. Green represents GPR176.  
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8.1 Introduction 
Transposable elements (TEs) make up 50% of the human genome but are referred to as “junk 

DNA” and often ignored in genomic medicine. However, our recent work reveals that TEs offer 

a unique opportunity to understand cancer-specific gene activities. We hypothesize that 

epigenetic dysregulation in cancer leads to the activation of cryptic regulatory elements encoded 

by TEs, some of which generate cancer-specific products including immunogenic antigens (Fig. 

1A). Therefore, TEs are a rich and underexplored source of candidate targets for precision cancer 

therapy that deserve considerable attention.  

The concept of vaccinations has been around for centuries, but it wasn’t until recently that this 

concept was systematically applied to cancer therapy. Monumental efforts have established that 

cancer-specific coding mutations create neoantigens that can be presented on the cell surface of 

tumors to trigger immunogenic clearance. Initial trials of neoantigen-based cancer vaccines 

showed therapeutic promise, as vaccines primed the immune system to better stimulate cytotoxic 

response against the tumor. However, current approaches to immunotherapy have not been 

universally effective, and this is especially true in tumors with a low mutational load which, in 

turn, carry a low conventional neoantigen burden. One example is glioblastoma, the most 

common and deadliest adult brain cancer. Neoantigen-vaccine clinical trials have validated the 

safety and immunogenicity of peptide-based vaccines in glioblastoma, and the evaluation of 

clinical response is ongoing. A major barrier to these approaches, however, is immunoescape in 

which primed T cell responses to a limited number of targetable immunogenic neoantigens 

eradicate only a subset of clones that make up the tumor. To overcome this limitation, there is a 

significant need to identify more tumor-specific antigens not expressed in normal tissue of the 

CNS.  
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Here, we explore how TE activation by epigenetic therapy can provide synergy with vaccine-

based therapy. We develop and adapt a series of genomics and computational tools to identify 

and validate novel TE-derived antigens to demonstrate that these antigens can be presented on 

MHC molecules to activate T-cell responses. We pursued two FDA-approved epigenetic therapy 

drugs: Decitabine (DAC) and Panobinostat (LBH-589). DAC is a nucleoside analog that 

covalently binds to DNMT to incapacitate the enzyme. Pharmacokinetic and pharmacodynamic 

studies in murine models revealed that efficacious drug concentrations could be reached in the 

brain through both intraperitoneal and intravenous injections340. Panobinostat, a hydroxamic 

acid, is a pan-HDAC inhibitor commonly utilized in preclinical GBM trials for pre-sensitizing 

cancer cells to downstream therapy341–343. Although Panobinostat cannot cross the brain-blood 

barrier, various delivery mechanisms, such as nanoparticles, are currently being tested in 

glioblastoma models344,345.  

We focused on GSCs as these subpopulations in GBM are 1) responsible for the oncogenic 

potential of the tumor and 2) more generally, represent a tractable model system of human GBM 

tumors and stably recapitulate the genetic features of parent tumors in culture346–348. Our 

hypothesis argues that the connection between hypomethylation of transposable elements, 

epigenetic therapy, and cancer cells’ immune response might give us a new way to understand and 

treat cancer. We profiled patient-derived glioblastoma stem cell (GSC) lines with state-of-the-art 

epigenomics technologies to identify novel sources of antigens originating from heretofore 

disregarded genomic regions. Our overarching goal is to characterize and verify the existence of 

TE-derived antigens in GBM and evaluate the potential of these antigens to stimulate an immune 

response for therapeutic outcome.  
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By comparing the epigenomic and transcriptomic profiles between epitherapy-treated samples 

and DMSO-treated (control) samples, we reveal the potential existence of treatment-induced 

transposable element-derived antigens (TI-TEAs) on HLA molecules. We distinguish cancer-

specific reactivation of cryptic promoters after treatment by identifying those present in GSC 

samples but not in primary cell lines. Furthermore, by profiling numerous GSCs, we predict to 

find both shared and patient-specific examples, reinforcing the importance of both the global 

application and targeted strategy of this approach. We will pursue TI-TEAs by following the 

same strategy described in Chapter 7 to verify that candidate antigens are presented on HLA-I. 

We will also improve epigenetic engineering strategies to target specific transposable elements, 

thereby selectively producing TI-TEAs for targeted therapy in GSCs.   

Lastly, there is still an incomplete understanding of how epigenetic therapy impacts normal cells 

and tissues. Considering that autoimmune side-effects of immunotherapy can have potentially 

devastating consequences, it is imperative that we have a complete understanding of antigens’ 

tumor-specificity. This is especially true if we aim to combine epigenetic therapy with 

immunotherapy to target induced TE-antigens. Although profiling the impact of epitherapy in all 

tissues and cell types is essential for translational progress of TI-TEAs, this effort can be overtly 

difficult due to the curation and treatment of proper “normal” samples and can be prohibitively 

expensive due to the cost of generating multi-omics libraries. Although not comprehensive, we 

provide the first look into how epitherapy might induce TE expression in normal cells by taking 

advantage of primary cell lines: adult human fibroblasts and normal human astrocytes. Normal 

cells in the body can be broadly categorized as dividing or non-dividing quiescent states, such as 

skin or brain cells respectively. To mimic these two cell states, we treated proliferating and 

contact-inhibition-induced349–352 quiescent adult human fibroblasts and normal human astrocytes 
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with epigenetic therapy (Fig. 1B). Our results present a cautionary tale for future efforts in 

harnessing TI-TEAs in the war against cancer. 

8.2 Results 

8.2.1 Epigenetic therapy results in promiscuous activation of the epigenome, 

with exception of quiescent cells. 

The dose and length of treatment with epigenetic drugs were chosen to maximize activation of 

the epigenome through loss of DNA methylation and gain of histone acetylation without high 

cytotoxicity. Considering that decitabine’s (DAC) efficacy is dependent on DNA replication353 

and GSC’s doubling time is ~36-48 hours, we chose to treat the cells for 6 days to allow for a 

minimum of 3 cell replication cycles. Therefore, the epigenetic therapy regiment consisted of 

treating GSCs with 1uM DAC for 6 days and 100nM Panobinostat for the remaining last two 

days (Fig. 1B). Since Panobinostat was dissolved in DMSO, the control cell lines were treated 

with 0.05% DMSO for the last two days to control for cellular responses caused by DMSO 

treatment. Trypan blue staining assays revealed that cell death was similar to DMSO samples at 

the end of the treatment across all cell types assayed in this study. 

To interrogate the epitherapy’s efficacy and impact on DNA methylation, we generated  

whole genome bisulfite sequencing (WGBS) library and calculated average CpG DNA 

methylation levels across all samples. We report variable, yet consistent, decreases of DNA 

methylation dependent on cell type (Fig. 2A). Epitherapy treatment reduced DNA methylation 

levels globally in GSC by 20-37% while primary adult human fibroblasts (hFB) and normal 

human astrocytes (NHA) displayed reduction of 10-13% DNA methylation. The discrepancy 

between GSC and primary cell lines could be explained by the differences in cell doubling time. 
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Indeed, in quiescent hFB (qhFB) and quiescent NHA (qNHA), there are minimal changes in the 

global DNA methylation levels reflecting DAC’s dependency on cell replication and division for 

its activity (Fig. 2A). Majority of the variation in DNA methylation dynamics is a factor of 

epitherapy treatment as illustrated by principal component analysis (PCA) (Fig. 2B). 

Interestingly, although the loss of DNA methylation caused by DAC is considered to be a 

stochastic process, the GSC samples segregated into three clusters on PC2 based on cell identity 

suggesting that epitherapy could have cell line-specific DNA demethylation events. In summary, 

epigenetic treatment leads to global decrease in DNA methylation levels, but with varying 

magnitudes as the GSCs experienced the highest change and the quiescent cells showed almost 

no change. 

Next, we asked how epitherapy impacted chromatin accessibility dynamics by comparing 

ATAC-seq results across the samples. As expected, Pearson’s correlation clustering based on 

differentially accessible peaks revealed that GSCs clustered by epitherapy treatment condition. 

Proliferating epitherapy-treated primary cells also clustered with epitherapy-treated GSCs 

suggesting similar changes in chromatin accessibility (Fig. 2C). However, quiescent primary 

cells clustered with proliferating DMSO-treated primary cells regardless of epitherapy treatment 

status (Fig. 2C). This result implied that epitherapy does not significantly alter the accessible 

chromatin landscape in quiescent cells, consistent with the finding that DNA methylation 

landscape also remains stable in quiescent cells after epitherapy. Furthermore, PCA reflected that 

the variance in chromatin accessibility can be mostly explained by epitherapy treatment with cell 

type-specific nuances (Fig. 2D). In conclusion, epigenetic therapy increased chromatin 

accessibility overall (Fig. 2E), which coupled with global DNA demethylation, could reactivate 

cryptic regulatory elements, such as promoters or enhancers. 
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8.2.2 Gene expression differences reflect epigenetic and viral mimicry 

activation. 

We profiled the transcriptomic changes associated with epigenetic therapy in GSC and primary 

cell lines. Relative to epigenetic dynamics, samples are strongly demarcated by cell-type and 

then by epigenetic therapy as shown by sample-to-sample distance heatmap (Fig. 3A) and PCA 

of gene expression differences (Fig. 3B). Even within GSCs, the variance in PCA is equally 

distributed based on epitherapy condition and cell type. Many genes were up-regulated in 

epitherapy-treated samples compared to DMSO-treated samples (Fig. 3C) reflecting the potential 

consequence of epigenetic activation, rather than silencing, induced by epitherapy. Furthermore, 

gene ontology enrichment revealed that cytokine-related genes are activated in GSCs (Fig. 3D), 

consistent with previous findings that DAC can activate cell-intrinsic viral mimicry 

response59,60,354. Accordingly, we report that many viral mimicry-related genes and MHC/HLA 

genes are more highly up-regulated in the GSCs than primary cell lines, with quiescent primary 

samples showing the almost no fold change in gene expression (Fig. 3E). Here, we provide 

further support that epitherapy activates viral defense pathway in GSCs to potentially sensitize 

GSCs for subsequent immuno-based cancer therapies.  

8.2.3 Epitherapy activates transposable elements to generate chimeric 

transcripts. 

Across all treatment conditions and samples, we identified 464 TE promoter events involving the 

expression of 394 genes. Then, we asked how many TEs were specifically activated after 

epitherapy. In GSCs, we detected 154, 207, and 221 high-confidence TE-chimeric transcripts 

induced in B36, B49 and B66 respectively (Fig. 4A). DNA methylation levels surrounding these 

transcribing TEs in the epitherapy-treated samples are much lower than the levels in DMSO-

treated samples (Supplementary Fig. 1A). Also, ATAC-seq signal focalized on reactivated TEs 
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solely in epitherapy-treated samples, illustrating that epigenetic activation is a prerequisite for its 

transcriptional activity (Supplementary Fig. 1C). However, majority of these TEs were also 

epigenetically activated in hFB and NHA after epitherapy (Supplementary Fig. 2B). 

Interestingly, 48-62% and 64-69% of epitherapy-induced TE-derived transcripts were also 

activated in hFB and NHA respectively. When we filtered for GSC-only activation events, the 

number of candidates drastically reduced to ~36 antigenic TE-chimeric transcripts (data not 

shown), of which most are too lowly expressed to be good sources for antigen processing and 

presentation on MHC molecules. In quiescent primary cells, many exapted TEs remained 

epigenetically dormant (Supplementary Fig. 2B,C) and did not generate any transcripts (Fig. 

4A). We prioritized these quiescent-absent and epitherapy-induced TE-derived transcripts for 

further analysis.  

We utilized two translation prediction tools, CPC2 and Kozak method, to predict the coding 

reading frame of the transcripts. Only candidates that generate chimeric normal, chimeric 

truncated, and out-of-frame peptides can provide novel amino acid sequences that can potentially 

be presented as immunogenic antigens. This narrowed down the candidate list to 33 to 45 TE-

chimeric transcripts in GSCs, which are 1) induced by epitherapy, 2) not activated in quiescent 

cells, and 3) predicted to produce an antigenic peptide. Majority of these transcripts are predicted 

to be translated in-frame of the canonical protein based on CPC2 prediction while Kozak 

predicted more out-of-frame peptides (Fig. 4B). Although chimeric transcripts unique to each 

GSCs exist, the bulk of the TE-derived candidates are shared (Fig. 4C), highlighting the 

possibility of pan-GSC TI-TEA vaccine. However, it is important to note that these TI-TEAs, 

albeit not present in quiescent cells, are expressed in propagating NHA and hFB (Fig. 4D), thus 
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can lead to devastating auto-immune consequences and must be followed up thoroughly before 

clinical use.  

8.2.4 Treatment-induced chimeric transcripts are predicted to produce HLA-

presented antigens. 

With the final candidate list of treatment-induced TE-chimeric transcripts, we asked whether the 

translated peptide could be processed and presented on HLA molecules. Since each GSC has its 

own unique set of HLA alleles, seq2HLA308 program was run to predict the 4-digit HLA allele 

code for every GSC line using their RNA-sequencing data. Then we utilized NetMHCPan-4.051 

to predict the binding affinity of the TE-chimeric peptides to the GSC-specific HLA alleles. For 

each GSC, we identified over 20 treatment-induced TE-derived peptides that are predicted to 

bind strongly to various HLA alleles (Fig. 5A,B,C). We report numerous TI-TEAs that can be 

presented on HLA alleles of all three GSCs. We highlight two exceptional candidates, LTR12C-

DENND3 and LTR12C-ACP6, that create in-frame chimeric peptides and are strongly expressed 

after epitherapy in all three GSCs (Fig. 6A,B). These LTR12C copies are not activated in 

quiescent cells thus can be promising candidates for future validation studies.  

8.3 Discussion 
Here, we explore the synergistic potential of combining TE biology and epigenetic therapy to 

generate novel antigens for immunotherapy applications in GSCs. We treated three GSC lines 

with DNMTi (DAC) and HDACi (Panobinostat) to investigate whether cryptic promoters in TEs 

can be epigenetically reactivated to express TE-chimeric transcripts. These chimeric transcripts 

could then be translated into peptides with novel amino acids derived from TE sequences. 

Indeed, we detected a couple hundred epitherapy-induced TE-derived transcripts in each GSC 

line. However, whether these TE resurrection events also occurred in normal tissue and cells is 
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currently unknown. To address this issue, we used two primary cell lines, adult human 

fibroblasts and normal human astrocytes, as controls for this study. Considering that majority of 

the cells in the body are either quiescent or replicating, we profiled the impact of epitherapy on 

proliferating cells and contact-inhibited quiescent cells. Importantly, more than half of treatment-

induced TE-derived transcripts were also expressed in proliferating primary cells after 

epitherapy. However, in quiescent cells, more than 70% of TE candidates identified above are 

transcriptionally silent, which can be attributed to inefficient epigenetic activation by DAC. 

Furthermore, we computationally predicted that many of the quiescent-absent, treatment-induced 

candidates could be translated into novel out-of-frame peptides or chimeric in-frame proteins and 

be processed into HLA-bound antigens. Currently, we are validating the presence of epitherapy-

induced TE-derived peptide products through Western blot techniques. Furthermore, we will 

perform HLA-pulldown on epitherapy-treated and DMSO-treated GSC samples to prove that TI-

TEAs can be presented on GSC HLA molecules.   

To conclude, this work stresses the importance of having proper controls for testing novel 

antigen detection in cancer. Although TI-TEAs are attractive candidates, due to the promiscuous 

activation in primary cell lines after epitherapy, utilizing TI-TEAs in clinical settings could have 

devastating consequences from potential autoimmune side-effects. However, various strategies 

can be further investigated to overcome the activation of TEs in normal tissues to increase 

feasibility of TI-TEA application. In this study, we treated the samples with extremely high 

doses of epitherapy drugs to maximize TE reactivation events. It would be interesting to see if 

titrating the drug dose or modifying the treatment time could preferentially activate TEs in 

cancer cells, but not in normal cells. Another avenue could be to perform targeted delivery344,345 

of epitherapy drugs specifically to tumor to minimize TE activation in normal tissues. Another 
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innovation involves developing precise epigenetic engineering tools to induce TE activation and 

TE-derived antigen production in diseased cells with precision. Currently, we are developing 

CRISPR-mediated targeted epigenetic technology by adapting the SUperNova tagging system 

(SunTag)285–287,355 and MS2-loop system356,357. In the SunTag system, a dCas9 enzyme is 

modified to include a tail of peptide epitopes that can be recognized by single-chain variable 

fragment (scFv) antibodies. By fusing scFv antibodies to TET1 catalytic domain, dCas9 can now 

recruit TET1CD to specific locations in the presence of sgRNAs. Of the currently available DNA 

methylation engineering systems, SunTag outperforms others in its methylation/demethylation 

efficiency. For histone modifications, two MS2-stem loops were engineered into gRNA 

sequences. Proteins fused to MS2 bacteriophage coat protein (MCP) can be recruited to 

gRNA/Cas9 complex. By fusing MCP to histone modifiers, such as KRAB or p300, we can 

effectively modulate the histone methylation or acetylation of specific TEs358,359. By integrating 

SunTag and MS2 systems into one module (Fig. 6), we can robustly and specifically modulate 

the epigenetic landscape of candidate TEs.  

8.4 Methods 

8.4.1 Cell culture and chemicals 
The GSC lines were established and cultured as previously described360,361. In brief, culture 

plates were treated with 0.01% poly-L-orinithine (Sigma-Aldrich, P2533) at 37C for 20 

minutes. The plates were washed twice with PBS and then treated with 1:200 diluted laminin 

solution (Sigma-Aldrich, L2020) at 37C overnight. After incubation, laminin was apirated out 

and replaced with GSC media: Neurocult NSA media (STEMCELL Technologies, 05750), 1x 

Glutamax (ThermoFisher Scientific, 35050061), 0.25x Penicillin-Streptomycin (ThermoFisher 

Scientific, 15140122), 75ug/ml Bovine Serum Albumin (Sigma-Aldrich, A8412), 1x B-27 
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supplement (ThermoFisher Scientific, 17504001), 1x N-2 supplement (ThermoFisher Scientific, 

17502001), 2ug/ml Heparin (Sigma-Aldrich, H3149), 20ng/ml FGF (PeproTech, 100-18B), and 

20ng/ml EGF (PeproTech, 315-09). Half of media was exchanged with fresh media every two 

day. GSCs were harvested with Accutase (Sigma-Aldrich, A6964).  

ATCC primary adult human fibroblasts (generous gift from Andrew Yoo, Washington 

University, St. Louis) were grown in media described previously362. Primary Normal Human 

Astrocytes (ScienCell, 1800) were grown in Astrocyte medium (ScienCell, 1801). 50% of 

culture media was refreshed every 2-3 days. Adult human fibroblasts were harvested with 0.25% 

Trypsin-EDTA (ThermoFisher Scientific, 25200056) while human astrocytes were harvested 

with Accutase. To induce quiescent states, primary cells were contact inhibited for 14 days 

before use. 

For epigenetic therapy treatment, Decitabine (LC laboratories, D-3899) was dissolved in saline 

(0.9% NaCl) solution at 22mM concentration. Panobinostat (BioVision, 1612) was dissolved in 

DMSO at 2mM concentration. The epitherapy drugs were diluted in culture media and refreshed 

every two days. 

8.4.2 Epigenomic profiling and data analysis 
To generate WGBS of cell lines, we extracted genomic DNA with Quick-DNA Miniprep Kit 

(Zymo, D3024) and bisulfite converted 200-400 ng of DNA spiked with 0.5% lambda DNA 

using EZ DNA Methylation-Direct kit (Zymo, D5020). For WGBS, we processed the bisulfite-

converted DNA with Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, 30024). 

WGBS libraries were sequenced on Illumina NovaSeq 6000 platform. The sequencing reads 

were aligned to hg38 genome with Bismark and CpG methylation values were calculated using 

bismark_methylation_extractor function294. 
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omniATAC-seq libraries were generated as detailed previously39,363. omniATAC-seq reads were 

trimmed for adapter sequences and aligned to hg38 genome using bwa (bwa mem)234. Duplicate 

reads were removed with Picard MarkDuplicates. Since the ends of the reads represent Tn5 

insertion locations, we processed the aligned reads by offsetting + strand reads by +4bp and – 

strand reads by -5bp. The offset position for each read was used as input for calling peaks with 

MACS2235 using the following parameters: “-g 1.4e+9 -B –SPMR –keep-dup all –nomodel -s 75 

–extsize 73 –shift -37 -p 0.01”. With narrowPeak output from MACS2, we utilized 

irreproducible discover rate (IDR) framework236 to generate a consensus peak file. To identify 

differentially accessible regions, we processed ATAC peaks with DiffBind213 with a FDR cutoff 

of <0.01.  

8.4.3 Transcriptomic profiling and data analysis. 
mRNA-seq libraries were generated as previously described39 and sequenced on the Illumina 

NextSeq platform. mRNA-seq libraries were adapter-trimmed and aligned to the hg38 genome 

using STAR228. We processed aligned reads with StringTie229 to generate a count matrix for each 

gene, which was subsequently processed using DESeq2209 to identify differentially expressed 

genes. DEG expression plot was generated using Volcanoplot function in DESeq2. To identify 

which gene ontologies are enriched in DEGs induced by epitherapy, the list of DEGs was 

processed by Metascape133 for GO term enrichment.  

8.4.4 Detection of TE-derived transcripts and HLA-antigen presentation 

prediction 
The pipeline for TE-chimeric transcript identification and prediction of antigen binding on HLA 

molecules is detailed extensively in Chapter 7: Methods. 
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Figure 1. Overview of TI-TEA study. A) Visual representations of various epigenetic 

aberrations that can activate cryptic TE promoters to generate novel immunogenic antigens. B) 

Experimental design for assaying the impact of epigenetic therapy (epitherapy) on the epigenetic, 

transcriptomic and peptidomic landscape in glioblastoma stem cells and control primary cell 

lines.  
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Figure 2: Epigenetic dynamics across epitherapy-treated and DMSO-treated samples. A) 

Average DNA methylation change between two treatments across all samples. B) Principal 

component (PC) analysis of DNA methylation differences in GSCs. C) Heatmap representing 

correlation of samples based on differential peaks identified by ATAC-seq. D) Principal 

component (PC) analysis of accessible chromatin dynamics across all samples. E) Heatmap 

representing the peak score and clustering of differential accessibility. 
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Figure 3. Transcriptomic dynamics across epigenetic therapy-treated and DMSO-treated 

samples. A) Sample-to-sample distance heatmap based on gene expression. B) Principal 

components analysis based on gene expression differences for all samples and only GSC 

samples. C) Volcano plots representing statistically significant differentially expressed genes 

(DEGs). Red points indicate DEGs with p < 0.01 and expression fold change > 2. D) Gene 

Ontology (GO) enrichment of DEGs comparing epitherapy-treated and DMSO-treated GSC 

samples. Cytokine and immune-related GO terms are in bold. E) Heatmap displaying gene 

expression fold change of viral mimicry-related genes in all epitherapy-treated and DMSO-

treated samples. 
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Figure 4: Detection of Epitherapy-induced TE-chimeric transcripts. A) Number of TE-

chimeric transcripts after filtering. Epitherapy-activated transcripts are only present in 

epitherapy-treated samples. Not in quiescent filters for TE-derived transcripts that are not 

activated in quiescent control cells. Antigenic filters candidates that are predicted to generate 

chimeric peptide or out-of-frame peptides, which have potential to be presented as antigen on 
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MHC-I. B) Distribution of predicted translation of antigenic TE-derived transcripts using CPC2 

method and Kozak method. C) Venn diagram showing number of filtered TE-derived transcripts 

shared across GSCs. D) Dot plot representing tpm expression of various filtered TE-derived 

transcripts calculated from CAGE data across all samples.   
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Figure 5. MHC-binding prediction of epitherapy-induced, quiescent-absent and antigenic 

TE-derived peptides. Heatmap representation of predicted binding potential of TE-derived 

peptides to various MHC/HLA alleles in B36 GSC (A), B49 GSC (B) and B66 GSC (C).  The 

heatmap is further partitioned into TE-derived peptides predicted to be translated in-frame 

(green) and out-of-frame (red). WB: Weak Binding, NP: Not Present. 

 

 

Figure 6. WashU Epigenome browser view of TE-derived transcripts predicted to be 

strong-binding TI-TEA in GSCs. A) WGBS, ATAC-seq, mRNA-seq and nanoCAGE-seq 

visualization of epitherapy-treated and DMSO-treated GSC samples of LTR12C-DENND3 
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candidate. Epitherapy-induced TE promoter is marked with black box. A) WGBS, ATAC-seq, 

mRNA-seq and nanoCAGE-seq visualization of epitherapy-treated and DMSO-treated GSC 

samples of LTR12C-ACP6 candidate. Epitherapy-induced TE promoter is marked with black 

box. 

 

Figure 7. Schematic of dual-epigenetic CRISPR-dCas9 system utilizing SunTag and MS2 

technology to perform targeted epigenetic manipulations.  



 223 

 



 224 

Supplemental Figure 1: Epigenetic landscape of activated TE promoters in GSCs. A) 

Heatmap of DNA methylation levels over 10kb around TEs that generate chimeric transcript. 

Average DNA methylation levels are represented as line graphs. B) Heatmap of ATAC-seq 

signals representing chromatin accessibility over 10kb around TEs that generate chimeric 

transcript. Average ATAC-seq signals are represented as line graphs. C) Heatmap of ATAC-seq 

signals representing chromatin accessibility over 10kb around TEs that are induced by 

epitherapy. Average ATAC-seq signals are represented as line graphs. D) Heatmap of ATAC-seq 

signals representing chromatin accessibility over 10kb around TEs that induced by epitherapy, 

but not present in quiescent control cells. Average ATAC-seq signals are represented as line 

graphs. 
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Supplemental Figure 2: Chromatin landscape of activated TE promoters in control 

primary cell lines. A) Heatmap of ATAC-seq signals representing chromatin accessibility over 
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10kb around TEs that generate chimeric transcript. Average ATAC-seq signals are represented 

as line graphs. B) Heatmap of ATAC-seq signals representing chromatin accessibility over 10kb 

around TEs that are induced by epitherapy. Average ATAC-seq signals are represented as line 

graphs. C) Heatmap of ATAC-seq signals representing chromatin accessibility over 10kb around 

TEs that induced by epitherapy, but not present in quiescent control cells. Average ATAC-seq 

signals are represented as line graphs. 
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