
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Spring 5-15-2020 

Identification and Characterization of a Novel Non-homologous Identification and Characterization of a Novel Non-homologous 

End Joining Factor MRI End Joining Factor MRI 

Putzer Joseph Hung 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and 

the Medical Immunology Commons 

Recommended Citation Recommended Citation 
Hung, Putzer Joseph, "Identification and Characterization of a Novel Non-homologous End Joining Factor 
MRI" (2020). Arts & Sciences Electronic Theses and Dissertations. 2201. 
https://openscholarship.wustl.edu/art_sci_etds/2201 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/681?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/2201?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F2201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

Division of Biology and Biomedical Sciences 

Immunology 

 

Dissertation Examination Committee: 

Barry Sleckman, Chair 

Gaya Amarasinghe 

Brian Edelson 

Takeshi Egawa 

Nima Mosammaparast 

Kenneth Murphy 

Sheila Stewart 

 

 

Identification and Characterization of a Novel Non-homologous End Joining Factor MRI 

by 

Putzer Joseph Hung 

 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

May 2020 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020, Putzer J. Hung



ii 

 

Table of Contents 
 

List of Figures and Tables ............................................................................................................. iv 

Acknowledgements  ........................................................................................................................ v 

List of Abbreviations  .................................................................................................................... vi 

Abstract  ........................................................................................................................................ vii 

Chapter 1: Introduction  .................................................................................................................. 1 

1.1 Overview of NHEJ  .......................................................................................................... 1 

1.2  V(D)J End Joining  ........................................................................................................... 6 

1.3  XLF and its Role in DSB Repair  ................................................................................... 11 

1.4  Functional Redundancy of XLF in V(D)J End Joining  ................................................ 15 

1.4.1  A Lymphocyte-specific Role for XLF?  ................................................................. 15 

1.4.2  XLF is Functionally Redundant with the ATM Signaling Pathway  ...................... 17 

1.4.3 XLF is Functionally Redundant with DNA-PKcs  ................................................. 18 

1.4.4  XLF is Functionally Redundant with Non-core RAG2  ......................................... 19 

1.5  Discovery of Novel NHEJ Factors in the Absence of XLF ........................................... 19 

Chapter 2: Materials and Methods  ............................................................................................... 22 

Chapter 3: A Genetic Screen for Novel NHEJ Factors  ................................................................ 35 

3.1 Background  ................................................................................................................... 35 

3.2 Set-up of the Screen  ...................................................................................................... 36  

3.2.1  Establishment of a Reporter Cell-line System  ....................................................... 36 

3.2.2  Implementation of the Screen  ................................................................................ 37 

3.3 PAXX is Functionally Redundant with XLF  ................................................................ 38 

3.3.1  Combined XLF/PAXX Deficiency Inhibits V(D)J End Joining  ........................... 38 

3.3.2  Combined XLF/PAXX Deficiency Prevents Gentoxic DSB Repair  ..................... 39 

3.4  MRI is Functionally Redundant with XLF .................................................................... 40 

3.4.1  Lymphocyte Development in MRI-deficient Mice  ................................................ 40 

3.4.2  Combined XLF/MRI Deficiency is Embryonically Lethal in Mice  ...................... 41 

3.4.3  Combined XLF/MRI Deficiency Inhibits V(D)J End Joining  ............................... 41 

3.4.4  Conclusion  ............................................................................................................. 43 



iii 

 

Chapter 4: MRI is a Multivalent NHEJ Adaptor  ......................................................................... 67 

4.1 Background  ................................................................................................................... 67 

4.2 MRI Promotes NHEJ-mediated DSB Repair  ................................................................ 69 

4.2.1 MRI Localizes to Sites of DNA Damage  .............................................................. 69 

4.2.2  MRI Deficiency Compromises NHEJ  ................................................................... 69 

 4.3 MRI Forms Multimeric DDR Complexes  ..................................................................... 70 

4.3.1 MRI Possesses Adaptor Features  ........................................................................... 70 

4.3.2  MRI Binds Distinct DDR Proteins at Both Termini  .............................................. 71 

4.3.2  MRI Muli-protein Complexes ................................................................................ 72 

4.3.2  MRI Function Depends on Both the KBM and XLM  ........................................... 74 

 4.4 The Functional Role of MRI in NHEJ  .......................................................................... 74 

4.4.1 MRI is Functionally Distinct from XLF  ................................................................ 74 

4.3.2  MRI Deficiency Does Not Impair DDR Signaling  ................................................ 75 

4.3.3  MRI Promotes the Association of DDR Proteins on Chromatin  ........................... 76 

 4.5 Conclusion  ..................................................................................................................... 77 

Chapter 5: Discussion  ................................................................................................................ 104 

5.1 Summary  ..................................................................................................................... 104 

5.2 Antagonistic Roles for MRI?  ...................................................................................... 107 

5.3 Functional Redundancies of XLF  ............................................................................... 109 

5.4 Future Directions  ......................................................................................................... 112 

Literature Cited  .......................................................................................................................... 117 

 

 

 

 

  



iv 

 

List of Figures and Tables 
 

Figure 1  ........................................................................................................................................ 45 

Figure 2  ........................................................................................................................................ 47 

Figure 3  ........................................................................................................................................ 49 

Figure 4  ........................................................................................................................................ 51 

Figure 5  ........................................................................................................................................ 53 

Figure 6  ........................................................................................................................................ 55 

Figure 7  ........................................................................................................................................ 57 

Figure 8  ........................................................................................................................................ 59 

Figure 9  ........................................................................................................................................ 61 

Figure 10  ...................................................................................................................................... 63 

Figure 11  ...................................................................................................................................... 65 

Figure 12  ...................................................................................................................................... 79 

Figure 13  ...................................................................................................................................... 81 

Figure 14  ...................................................................................................................................... 83 

Figure 15  ...................................................................................................................................... 85 

Figure 16  ...................................................................................................................................... 87 

Figure 17  ...................................................................................................................................... 89 

Figure 18  ...................................................................................................................................... 91 

Figure 19  ...................................................................................................................................... 93 

Figure 20  ...................................................................................................................................... 95 

Figure 21  ...................................................................................................................................... 97 

Figure 22  ...................................................................................................................................... 99 

Figure 23  .................................................................................................................................... 115 

 

Table 1: List of the 100-most abundant MRI-interacting proteins ..............................................101 

 

 

 

  



v 

 

Acknowledgements 
 

 Special thanks to my thesis advisor Dr. Barry Sleckman for his mentorship, for inspiring 

me to think more critically and positively (though I often err too much towards the critical side), 

and for teaching me enough immunology to realize that I cannot possibly be allergic to alcohol… 

I am also grateful to the past and present members of the Sleckman lab, who all helped to 

catalyze my development as a scientist: Andrea Bredemeyer, Abigail Morales, Anthony Tubbs, 

Bo-Ruei Chen, Caitlin Purman, Caleb Lieberman, Ian Lamb, Issa Hindi, Jeff Bednarski, Rosmy 

George, Ryan Irwin, Shruthi Deivasigamani, Yinan Wang, etc. 

I would like to thank the members of my committee and all our collaborators, particularly 

Drs. Gaya Amarasinghe and Nima Mosammaparast, for their invaluable guidance and assistance, 

without which a lot of the work described here would be possible.  

I would also like to thank the Medical Scientist Training Program (MSTP) at Washington 

University for their continuous support and for believing in my potential nine years ago. Funding 

for these projects had been generously provided by training grants to the MSTP and Department 

of Pathology and Immunology. 

Finally, my deepest gratitude goes to my friends and family, especially my sister Marian 

and my parents Shu-jean and Wei-Hsiu, who despite their initial reservations about my decision 

to pursue medicine and science, had always remained my greatest advocates and motivation. 

 

 

Putzer J. Hung 

Washington University in St. Louis 

May 2020 



vi 

 

List of Abbreviations 
 

γ-H2AX  Gamma-phosphorylated H2AX (at serine 139) 

aa   Amino acid 

AEJ   Alternative end joining 

CE   Coding end 

CJ   Coding join 

CRISPR  Clustered regularly interspaced short palindromic repeats 

CSR   Class-switch recombination 

DDR   DNA damage response 

DSB   DNA double-strand break 

gRNA   Guide RNA 

HR   Homologous recombination 

IR   Ionizing radiation 

KBM   Ku-binding motif 

Lig4   DNA ligase 4 

MEF   Mouse embryonic fibroblast 

MRI   Modulator of retrovirus infection 

MRN   Mre11/RAD50/Nbs1 complex 

NHEJ   Non-homologous end joining 

PAXX   Paralog of XRCC4 and XLF 

PCC   Post-cleavage complex 

RSS   Recombination signal sequence 

SE   Signal end 

SJ   Signal join 

TdT   Terminal deoxynucleotidyl transferase 

XLF   XRCC4-like factor 

XLM   XLF-like motif 

 

 

 

 

 

 

 

 

 



vii 

 

Abstract of the Dissertation 

Identification and Characterization of a Novel Non-homologous End Joining Factor MRI 

by 

Putzer Hung 

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2020 

Professor Barry Sleckman, Chair 

 

 Non-homologous end joining (NHEJ) is the predominant DNA double-strand break 

(DSB) repair pathway in G1-phase cells. In particular, developing lymphocytes utilize NHEJ to 

repair physiologic DSBs generated during the processes of antigen receptor gene assembly and 

class-switch recombination (CSR). Thus, proper regulation of NHEJ is important not only for 

immune repertoire diversification, but also for the prevention of chromosomal translocations or 

deletions that can arise from misrepaired DSBs. The XRCC4-like factor (XLF) has been strongly 

implicated in promoting NHEJ, presumably by tethering broken DNA ends together in a sleeve-

like complex, but its necessity appears to be cell context-dependent. While XLF is required for 

NHEJ in most cell types, it is dispensable for DSB repair in lymphocytes. Recently, it has been 

discovered that in lymphoid cells, XLF functions redundantly with other DNA damage response 

(DDR) proteins that were previously thought to play negligible roles in NHEJ, suggesting that 

novel NHEJ factors could be revealed in the setting of XLF deficiency. 

 To test this hypothesis, we carried out a genome-wide CRISPR/Cas9 screen in a XLF-

deficient pre-B cell-line for proteins that would become essential for DNA end joining during 
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V(D)J recombination in the absence of XLF. We validated two hits from our screen: paralog of 

XRCC4 and XLF (PAXX), a newly identified NHEJ factor with significant structural homology 

to XLF, and modulator of retrovirus infection (MRI), an uncharacterized small peptide that been 

reported to bind to the DSB sensor Ku70/Ku80. We find that the combined genetic deficiency of 

MRI and XLF in mice leads to an embryonic lethal phenotype that is characteristic of defective 

NHEJ. Furthermore, we show that MRI is intrinsically disordered and interacts with diverse 

DDR proteins at both its termini to form large, multimeric complexes. MRI rapidly localizes to 

DSBs, where it promotes the retention of these DDR proteins on chromatin, and loss of MRI 

results in increased cellular sensitivity to ionizing radiation (IR). We propose that MRI functions 

as a multivalent adaptor that enhances the avidity of DDR proteins at DSBs to promote NHEJ. 
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Chapter 1: Introduction 

1.1. DNA Repair by Non-homologous End Joining 

 In both prokaryotic and eukaryotic cells, DNA double-strand breaks (DSBs) are repaired 

primarily through either one of two competing mechanisms: homologous recombination (HR) or 

non-homologous end joining (NHEJ). HR utilizes the intact sequence on the sister chromatid as a 

template for precise repair and thus occurs exclusively during the G2 and S phases, while NHEJ 

involves the direct ligation of two DNA ends and operates continuously throughout the cell cycle 

(Lieber MR 2010). Exactly how the choice between HR and NHEJ is made in repairing a DSB is 

still an open question, but it is generally thought that the outcome is determined by a competition 

of different DSB sensor proteins at the exposed DNA ends. In this regard, DNA end structure 

and processing play a major role in dictating repair pathway choice, with relatively intact DNA 

ends being the preferred substrates for NHEJ and extensively resected single-stranded DNA ends 

being favored by HR, which uses the 3’ overhangs at a DSB to search for homologous sequences 

on the sister chromatid (Symington LS and Gautier J 2011, Ceccaldi R et al. 2016, Chang HHY 

et al. 2017). Although considered more mutagenic than HR due to the lack of a template and the 

use of error-prone polymerases (discussed briefly below), NHEJ is performed with faster kinetics 

that is essential for preserving genomic stability, notably by suppressing oncogenic chromosomal 

translocations, and has evolved to become the predominant DSB repair pathway in mammalian 

cells (Difilippantonio MJ et al. 2000, Mao Z et al. 2008, Chiruvella, K.K. et al. 2013). 

 NHEJ is initiated by the DSB sensors Ku70 and Ku80, which together form a ring-shaped 

heterodimer (Ku70/80) that encircles broken DNA ends (Walker JR et al. 2004). The abundance 

of Ku70/80 in mammalian cells (estimated at ~400,000 molecules per cell), along with its high 
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affinity for DNA ends (KD = 6 × 10−10 M), ensures that the complex is rapidly localized to DSBs 

(Lieber MR 2010, Chang HHY 2017). The binding of Ku70/80 to DNA ends serves not only to 

physically protect the ends from further resection by nucleases such as Exo1 and CtIP, but also 

to recruit downstream NHEJ factors to sites of DNA damage (Zhang Y et al. 2007, Clerici M et 

al. 2008, Zierhut C and Diffley JF 2008, Mimitou EP and Symington LS 2010). Conversely, the 

affinity of Ku70/80 for single-stranded DNA is poor, making resected DNA ends less efficient 

targets for NHEJ repair (Dynan WS & Yoo S 1998). Once bound to a DNA end, Ku70/80 adopts 

a conformational change that allows it to engage a variety of proteins with nuclease, polymerase, 

kinase, ligase, or DNA end stabilization activities in a flexible order depending on the structure 

of the DNA end. This adaptability enables NHEJ to process a wide range of substrates, ranging 

from hairpins to single-stranded overhangs, and generate diverse products that can be potentially 

beneficial for a biological purpose, such as antigen receptor gene assembly (Lieber MR 2010). 

 NHEJ repair of blunt DNA ends can be effectively carried out by Ku70/80 and the ligase 

complex consisting of DNA ligase 4 (Lig4) and XRCC4. Lig4 interacts with Ku80 through a pair 

of BRCT domains at its C-terminus and with XRCC4 through a short motif situated between the 

two BRCT domains (Grawunder U et al. 1998, Sibanda BL et al. 2001, Costantini S et al 2007). 

XRCC4 is a scaffold protein possessing a distinct structure shared by several other NHEJ factors, 

comprising a N-terminal globular head domain and a C-terminal coiled coil domain that supports 

homodimerization and binding to Lig4 (Sibanda BL et al. 2001). The precise role of XRCC4 in 

NHEJ is unclear, but it has been shown to enhance Lig4 protein stability and activity (Grawunder 

U et al. 1997). Collectively, Ku70/80, Lig4, and XRCC4 are often referred to as the “core NHEJ 

factors,” as they represent the minimal set of proteins required for NHEJ. Indeed, loss of any one 

of these core factors completely abrogates NHEJ, demonstrated by the fact that mice deficient in 
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Lig4 or XRCC4 exhibit impaired lymphogenesis and late embryonic lethality resulting from the 

widespread demise of post-mitotic neurons, which presumably can only rely on NHEJ for DSB 

repair (though the source of DSBs in these cells remains elusive) (Frank KM et al. 1998, Gao Y 

et al. 1998, Frank KM et al. 2000). 

 For the majority of situations, in which the DNA ends are incompatible due to chemical 

modifications or mismatched overhangs, additional factors are required to mediate NHEJ. In this 

regard, Ku70/80 can recruit the large serine/threonine protein kinase DNA-PKcs to DSBs, where 

it undergoes autophosphorylation and activates many downstream effectors in the DNA damage 

response (DDR) pathway, one of them being the nuclease Artemis (Ma Y et al. 2005, Goodarzi 

AA et al. 2006, Spagnolo L et al. 2006). Upon phosphorylation by DNA-PKcs, Artemis, which 

otherwise functions as an exonuclease, gains both 5’ and 3’ endonuclease activities, enabling it 

to trim back DNA hairpins and overhangs so that sufficient microhomologies (short sequences of 

identical nucleotides adjacent to a DSB) can be exposed to allow for base pairing and alignment 

between two DNA ends prior to joining by Lig4 (Ma Y et al. 2002, Ma Y et al. 2004, Lu H et al. 

2006). Although not absolutely necessary for NHEJ, DNA-PKcs/Artemis appear to be involved 

in the repair of a significant fraction of DSBs (~20-50%) generated by ionizing radiation (IR) 

and facilitate most of the limited DNA resection that occurs during NHEJ (Riballo E et al. 2004, 

Kurosawa A et al. 2008, Chang HH et al. 2015, Biehs R et al. 2017). Other nucleases that play a 

similar role in NHEJ include Mre11, CtIP, Exo1, WRN, and APLF (Biehs R et al. 2017, Chang 

HHY et al. 2017). Template-dependent and independent nucleotides are added by the error-prone 

Pol X family of DNA polymerases – consisting of Pol λ, Pol µ, and terminal deoxynucleotidyl 

transferase (TdT) – to fill in any gaps and create microhomologies for joining (Lieber MR 2010, 

Chang HHY et al. 2017). 
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 Despite its apparent necessity, DNA resection is tightly constrained during NHEJ due to 

the presence of end protection proteins, such as Ku70/80, H2AX (a histone variant), and 53BP1, 

which physically block nuclease activities at DNA ends, and end stabilization proteins, such as 

XRCC4 and its structural homologs XRCC4-like factor (XLF) and paralog of XRCC4 and XLF 

(PAXX), which in part help to align DNA ends and reduce the dependence on microhomologies. 

XLF, which will be described in further detail later, has been shown to form mobile, sleeve-like 

complexes with XRCC4 around DSBs that prevent the broken DNA ends from diffusing apart 

prior to repair (Hammel M et al. 2011, Ropars V et al. 2011, Andres SN et al. 2012, Reid DA et 

al. 2015, Roy S et al. 2015, Brouwer I et al. 2017). PAXX, a recently identified binding partner 

of Ku70/80, has been shown to promote the recruitment or retention of other NHEJ components, 

including XLF and XRCC4, on damaged chromatin (Craxton S et al. 2015, Ochi T et al. 2015, 

Xing M et al. 2015). However, the loss of XLF or PAXX, unlike XRCC4, only modestly impairs 

NHEJ, suggesting that XLF and PAXX are required under specific contexts or that other factors 

can compensate for their functions (Li G et al. 2008). Additionally, the DSB sensor MRN, which 

consists of Mre11, RAD50, and Nbs1, and the DDR kinase ATM, which is recruited to DSBs by 

MRN, also participate in stabilizing DNA ends during the NHEJ-mediated repair of RAG DSBs 

(Bredemeyer AL et al. 2006, Helmink BA et al. 2009). On the other hand, MRN and ATM can 

concurrently promote HR – MRN through its nuclease activity, and ATM by activating CtIP – 

showing that proteins in the DDR pathway may possess multiple and sometimes opposing roles 

(Lamarche BJ et al. 2008, Helmink BA et al. 2011). 

 Abrogation of NHEJ leads to extreme cellular sensitivity to DNA damage (especially that 

caused by IR or radiomimetic drugs) and the emergence of a poorly understood third DSB repair 

mechanism, termed “alternative end joining” (AEJ). It is unclear exactly which proteins carry out 
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this process and whether AEJ is a bona fide pathway that serves as a “backup” to NHEJ and HR 

or just a stochastic reaction resulting from the appropriation of other DNA joining factors, such 

as those involved in base or nucleotide excision repair; another open question is whether AEJ is 

operational or being actively suppressed in the presence of NHEJ (Boboila C et al. 2012). Early 

evidence of AEJ came from studies demonstrating that linear plasmid substrates could be joined 

efficiently, albeit with large terminal deletions of up to hundreds of base pairs, in NHEJ-deficient 

cells (Boulton SJ and Jackson SP 1996, Kabotyansk EB et al. 1998). Moreover, NHEJ-deficient, 

p53-null mice (which are viable due to inactivation of the p53-dependent apoptotic pathway) are 

prone to developing pro-B cell lymphomas that contain over a dozen translocations, most notably 

between the IgH locus and c-myc gene (Zhu C et al. 2002). A distinguishing feature of AEJ is the 

reliance on longer stretches of microhomology, usually in the range of 4-20 nucleotides, thereby 

necessitating greater lengths of resection and loss of fidelity; by contrast, NHEJ rarely uses more 

than 4 nucleotides of microhomology (Pan-Hammarstrom Q et al. 2005). AEJ has been strongly 

implicated as a driver of genomic instability, especially in light of the observation that RAG and 

AID can generate DSBs at cryptic sites throughout the genome; thus, its mechanism, regulation, 

and physiologic role, if any, are emerging as topics of special interest in the field of DNA repair 

(Klein IA et al. 2011, Barlow JH et al. 2013, Qian J et al. 2013, Teng G et al. 2015). 

 Although HR appears to be the more “failsafe” method, there are several types of DSBs 

that are repaired exclusively by NHEJ – the most notable examples being the DSBs induced in 

developing lymphocytes by the RAG endonuclease during V(D)J recombination for assembling 

antigen receptor genes and by the cytidine deaminase AID during immunoglobulin class-switch 

recombination (CSR) for diversifying antibody isotypes (Chaudhuri J et al. 2007, Helmink BA 

and Sleckman BP 2011). However, while AEJ can compensate for NHEJ by repairing up to 50% 
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of the DSBs produced during CSR, V(D)J end joining is entirely dependent on NHEJ (Frank KM 

et al. 1998, Gao Y et al. 1998, Yan CT et al. 2007). The reason for this discrepancy is unknown 

but could perhaps be attributed to RAG DSBs being structurally inaccessible to AEJ factors or to 

the end protective effects of RAG itself (Corneo B et al. 2007, Gigi V et al. 2013). Nevertheless, 

this strict requirement makes V(D)J recombination an ideal system by which to study NHEJ in a 

physiological context. 

 

1.2 V(D)J End Joining 

 V(D)J recombination is initiated when the RAG endonuclease (a heterodimer composed 

of RAG-1 and RAG-2) induces DSBs at recombination signal sequences (RSSs) – which consist 

of a conserved heptamer, 12 or 23-base pair spacer, and nonamer – adjacent to the variable (V), 

diversity (D), and joining (J) gene segments that collectively encode the antigen receptor variable 

region (Fugmann SD et al. 2000). RAG cleavage creates two types of DNA ends: a pair of blunt 

5’-phosphorylated signal ends (SEs) and a pair of hairpin-sealed coding ends (CEs). Since RAG 

is only active during G1 (RAG-2 is periodically degraded at the G1-to-S transition stage), repair 

of RAG DSBs can only occur through NHEJ (Li Z et al. 1996, Jiang H et al. 2005). The ligation 

of compatible SEs to form signal joins (SJs) represents the simplest case of NHEJ and requires 

only the core factors Ku70/80, XRCC4, and Lig4 (Helmink BA and Sleckman BP 2011). On the 

other hand, CEs must first be opened by Artemis, which preferentially nicks the hairpins at the 3’ 

side of the loop, before they can be repaired to yield coding joins (CJs) that ultimately constitute 

part of the antigen receptor gene (Ma Y et al. 2002). Thus, loss of either DNA-PKcs or Artemis 

activity in mice and humans results in radiosensitive severe combined immunodeficiency (SCID) 

due to the inability to mend CEs and complete V(D)J recombination (Gao Y et al. 1998, Rooney 
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S et al. 2002, Xiao Z et al. 2009). Furthermore, unlike SJs, which are formed with relatively little 

nucleotide gain or loss, CJs frequently contain random indels due to the addition of palindromic 

(P) nucleotides that arise from the asymmetric opening of CE hairpins by Artemis as well as the 

introduction of non-templated (N) nucleotides by the Pol X family of DNA polymerases (most 

prominently, TdT) following nucleolytic resection (Dudley DD et al. 2005). While the arbitrary 

nature of this process results in only a third of the rearrangements being in-frame and capable of 

producing a functional gene, it is critical for the diversification of the antigen receptor repertoire 

in developing lymphocytes. 

 The differential requirements for NHEJ repair of SEs and CEs are also evidenced in the 

setting of ATM deficiency. As aforementioned, ATM is a serine/threonine protein kinase, which, 

like DNA-PKcs, phosphorylates hundreds of substrates, including H2AX (at serine 139, forming 

γ-H2AX), 53BP1, CtIP, and the checkpoint kinase Chk2, in response to DNA damage (Matsuoka 

S et al. 2007). ATM is activated by RAG DSBs and functions in the repair of CEs by promoting 

their stability within RAG post-cleavage complexes (PCCs) until they can be ligated: in ATM-

deficient (ATM-/-) pre-B cells, ~10-20% of CEs dissociate from PCCs and are left unrepaired or 

become aberrantly joined to other loose DNA ends, most frequently nearby SEs, with which they 

are paired to form nonproductive hybrid joins (HJ) (Bredemeyer AL et al. 2006, Huang CY et al. 

2007). In line with these observations, ATM-/- mice exhibit lymphopenia and a predisposition for 

thymic lymphomas with RAG-dependent translocations of the T cell receptor loci (Liao MJ and 

Van Dyke T 1999, Liyanage M et al. 2000, Petiniot LK et al. 2000). Conversely, SJ formation is 

unimpaired in ATM-/- pre-B cells, suggesting that other factors can compensate for ATM activity 

at SEs (Bredemeyer AL et al. 2006). In this regard, RAG has been shown to bind avidly to SEs 

following cleavage in vitro and could play a similar role during V(D)J recombination that makes 



8 

 

ATM stabilization dispensable (Agrawal A and Schatz DG 1997, Hiom K and Gellert, M 1998). 

DNA-PKcs can likewise form synaptic complexes around DSBs that help hold the DNA ends in 

close proximity, and while the singular deficiency of ATM or DNA-PKcs has minimal effects on 

SJ generation, the combined loss of both kinases completely abolishes SE repair, indicating that 

they carry out overlapping functions in V(D)J end joining (DeFazio LG et al. 2002, Gapud EJ et 

al. 2011, Zha S et al. 2011, Graham TG et al. 2016). As discussed in further detail later, this kind 

of redundancy appears to be an overarching theme throughout the process of NHEJ. Deficiency 

of MRN produces a phenotype similar to that of ATM with regards to V(D)J recombination: pre-

B cells expressing hypomorphic mutants of Mre11 or Nbs1 exhibit defects in joining CEs but not 

SEs, even though ATM can still be robustly activated by RAG DSBs in these cells (presumably 

because low levels of MRN are sufficient to stimulate ATM), implying that MRN contributes to 

V(D)J end joining in ways independent of its ability to recruit ATM to DSBs (Helmink BA et al. 

2009). Indeed, like DNA-PKcs, Mre11 has been implicated in bridging broken DNA ends prior 

to repair as a dimer (Williams JS et al. 2008). 

 The ATM substrates H2AX and 53BP1 also participate in V(D)J end joining and appear 

to be responsible for maintaining the integrity of broken DNA ends  (Helmink BA and Sleckman 

BP 2011). H2AX is phosphorylated across kilobases of chromatin flanking a DSB and functions 

in part to retain other DDR factors, including MRN, 53BP1, and MDC1, at sites of DNA damage 

(Fernandez-Capetillo O et al. 2004). H2AX-/- mice display growth retardation, male infertility due 

to impaired spermatogenesis, radiation sensitivity, and reduced immunoglobulin class-switching 

post-immunization – characteristics suggestive of a defect in DSB repair (Celeste A et al. 2002). 

53BP1-/- mice are phenotypically akin to H2AX-/- mice; moreover, loss of 53BP1 nearly abolishes 

CSR and also compromises the efficiency of rare distal V to (D)J joining events, with unrepaired 
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CEs being subject to extensive degradation (Ward IM et al. 2003, Manis JP et al. 2004, Ward IM 

et al. 2004, Difilippantonio S et al. 2008). Although analyses of H2AX-/- and 53BP1-/- pre-B cells 

did not reveal any ostensible deficits in SE or CE joining, haploinsufficiency of H2AX or 53BP1 

in p53-null mice leads to an increased susceptibility to lymphomagenesis instigated by oncogenic 

V(D)J gene translocations (Bassing CH et al. 2003, Celeste A et al. 2003, Ward IM et al. 2005). 

This seeming discrepancy can be explained by the possibility that (1) H2AX and 53BP1 perform 

nonessential supportive functions in NHEJ such that the absence of either protein only modestly 

raises the chance of misrepair, or (2) H2AX and 53BP1 play essential specialized roles in NHEJ 

at certain types of DSBs, such as those that need to be joined across long distances during V(D)J 

recombination and CSR or those that are located within less accessible regions of the genome. In 

this regard, H2AX has been shown to inhibit CtIP-mediated resection of SEs and CEs in NHEJ-

deficient pre-B cells, thereby preventing these ends from being joined through homology-driven 

AEJ pathways to form anomalous junctions containing large deletions (Helmink BA et al. 2011). 

The means by which H2AX blocks resection, given that its levels vary widely between 2-25% of 

the histone H2A pool across different cell types, remains unknown (Rogakou EP et al. 1998). 

 Two other ATM substrates MDC1 and KAP-1 make less obvious contributions to V(D)J 

end joining. MDC1 binds directly to γ-H2AX through its tandem C-terminal BRCT domains and 

positively regulates H2AX phosphorylation, either by retaining ATM/MRN on chromatin or by 

blocking phosphatase access to H2AX (Stewart GS et al. 2003, Stucki M et al. 2005, Lou et al. 

2006). It has been shown in primary mouse lymphocytes that MDC1 is necessary for maintaining 

a high density of γ-H2AX within compartments of DNA proximal to RAG DSBs (Slavic V et al. 

2009). In this regard, the ability of H2AX to inhibit DNA end resection in G1-phase pre-B cells 

is dependent on the presence of MDC1 (Helmink BA et al. 2011). Together, γ-H2AX and MDC1 
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recruit the RNF8 and RNF168 E3 ubiquitin ligases, which in turn enlist 53BP1 to sites of DNA 

damage (Bohgaki M et al. 2013). KAP-1, also known as TRIM28, is a transcriptional repressor 

that is phosphorylated by ATM at serine 824 in its C-terminus: this action disrupts the interaction 

between KAP-1 and the nucleosome remodeler CHD3, resulting in the dispersion of CHD3 from 

DNA and the relaxation of condensed chromatin to enable the efficient repair of DSBs generated 

within heterochromatic regions of the genome (Ziv Y et al. 2006, Goodarzi AA et al. 2008, Noon 

AT et al. 2010, Goodarzi AA et al. 2011). Surprisingly, it has also been demonstrated that KAP-

1 promotes the resection of DNA ends not protected by H2AX or 53BP1 in G1-phase mouse pre-

B cells, suggesting that KAP-1 might function as an inhibitor of NHEJ; however, this activity is 

abrogated by a single amino acid substitution (proline 548  alanine) reflecting a polymorphism 

between primates and other mammals, indicating that significant species-specific variances exist 

in the regulation of DSB repair (Tubbs AT et al. 2014). 

 As previously mentioned, RAG has also been implicated in facilitating the joining step of 

V(D)J recombination. Specifically, the RAG-2 C-terminal “non-core” domain, so named because 

it is dispensable for RAG endonuclease activity in vitro, helps stabilize RAG PCCs in a manner 

similar to ATM; consequentially, loss of this domain impairs the ligation of RAG recombination 

substrates and results in the accumulation of DSBs that persist throughout the cell cycle (Steen 

SB et al. 1999, Qiu JX et al. 2001, Curry, JD and Schlissel M 2008, Deriano L et al. 2011). Mice 

expressing core RAG-2 in lieu of the full-length protein (RAG2c/c) display partial blocks in B and 

T cell development due to a selective V to (D)J joining defect that also leads to the formation of 

HJs, and furthermore RAG2c/c:p53-/- mice develop aggressive early-onset thymic lymphomas that 

harbor clonal translocations involving the antigen receptor loci (Deriano L et al. 2011). 

 XLF is another key participant in V(D)J end joining, though its exact mechanistic role is 
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ambiguous and masked by layers of functional redundancy, the details of which are only recently 

coming into the light of our understanding. 

 

1.3 XLF and its Role in DSB Repair 

 Originally identified through a yeast two-hybrid screen for XRCC4-interacting factors 

and through cDNA complementation cloning of the mutated gene in a cohort of radiosensitive 

SCID patients who concurrently presented with growth retardation and microcephaly (features 

also seen in hypomorphic Artemis and Lig4 human syndromes), XLF – also known as Cernuous 

or Nhej1 – is a ~300 amino acid (aa)-long protein that possesses a high degree of structural, but 

not sequence, homology to its namesake XRCC4 (Ahnesorg P et al. 2006, Buck D et al. 2006). 

Like XRCC4, XLF consists of a N-terminal globular head domain (aa 1-135), an elongated α-

helical stalk (“coiled coil”) domain (aa 136-233), and a disordered C-terminal domain (aa 234-

299) that contains a distinct patch of conserved basic and hydrophobic aa residues referred to as 

the “XLF-like motif” (XLM), which is also found in other DSB repair factors, such as WRN and 

PAXX (Li Y et al. 2008, Grundy GJ et al. 2016). Similarly, XLF tends to homodimerize through 

interactions between the stalk domains, with aa 125-224 forming the interface (Andres SN et al. 

2007, Li Y et al. 2008). The globular head domains of XLF and XRCC4 support their binding to 

each other: as revealed by crystallography, leucine 115 of XLF fits into a hydrophobic pocket (aa 

63-99) on XRCC4 (Li Y et al. 2008). Alternating XLF and XRCC4 dimers can thus be chained 

together to produce long, helical filaments (Hammel M et al. 2011). Finally, the unstructured C-

terminal domain of XLF mediates its binding to DNA (possibly through Ku70/80) and ability to 

stimulate DSB repair by Lig4/XRCC4 (Andres SN et al. 2007). By itself, XLF can associate with 

a minimal DNA footprint of 83 base pairs in vitro, and this length requirement is decreased to 65 
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base pairs when Ku70/80 is added (Lu H et al. 2007, Yano K et al. 2008). A small deletion of the 

XLF C-terminal region containing the XLM (aa 290-300) completely abrogates XLF localization 

to DSBs and its interaction with Ku70/80, underscoring the functional importance of this domain 

(Yano K et al. 2011). 

 Despite their strong resemblances, the tertiary structures of XLF and XRCC4 diverge in 

two major ways. First, the angle between the globular head domain and the coiled coil domain in 

XLF is much larger than that in XRCC4: in XRCC4, these domains are linked at a ~45° angle to 

each other, whereas in XLF, they form a flattened, elongated surface that could potentially serve 

as a binding interface with another protein (Andres SN et al. 2011). Second, while the coiled coil 

domain in XRCC4 exists as a single helix that extends away from the head domain except for a 

small conformational deviation that constitutes the Lig4-binding site, the XLF stalk is split into 

three helices, two of which fold back onto the third of the opposing dimer subunit to generate a 

more compact structure that increases the dimer interface but precludes the binding of Lig4, and 

consistent with these data, XLF exhibits poor affinity for Lig4 in the absence of XRCC4 in vitro 

(Andres SN et al. 2011, Menon V and Povirk LF 2017). XLF is also structurally homologous to 

PAXX, a 204 aa-long NHEJ factor that is composed of a N-terminal globular head domain (aa 1-

113) of unknown function that forms a ~45° angle with a homodimerizing single-α helix coiled 

coil stalk domain (aa 114-145) and a disordered C-terminal domain bearing a XLM (Ochi T et al. 

2015, Xing M et al. 2015, Grundy GJ et al. 2016). Likewise, the PAXX coiled coil domain lacks 

the Lig4-binding site in XRCC4, and the PAXX C-terminal domain mediates its association with 

Ku70/80 such that the substitution of two conserved residues in the XLM (valine 199  alanine, 

phenylalanine 201  alanine) is sufficient to disrupt this interaction and prevent PAXX from 

being recruited to DSBs (Ochi T et al. 2015, Xing M et al. 2015). PAXX co-immunoprecipitates 
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with XLF, suggesting that they can form a single complex by binding to Ku70/80 simultaneously 

(Xing M et al. 2015). 

 What is the function of XLF? Currently, the prevailing model proposes that XLF works 

in tandem with XRCC4 to structurally align DNA ends prior to ligation – a utility that would be 

particularly useful for the repair of asymmetric DSBs, which require additional processing before 

they can be fixed and are at risk of diffusing irreversibly apart during the extended “downtime” if 

not securely held together. In this regard, XLF has been shown to enhance the efficiency of Lig4 

in joining both compatible and noncohesive DNA ends by 10- to 150-fold in vitro, depending on 

the type and the degree of incongruity, with the largest effects being observed for mismatched 3’ 

overhangs and the smallest for 5’ blunt ends (Hentges P et al. 2006, Lu H et al. 2007, Tsai CJ et 

al. 2007). A follow-up study further reported that while the extent to which Lig4 can successfully 

anneal a pair of DNA overhangs is contingent on the complementarity of the terminal sequences, 

ligation of the least favorable sequences appeared to benefit the most from the presence of XLF, 

consistent with the notion that XLF can functionally compensate, or reduce the requirement, for 

microhomologies in stabilizing DNA ends (Gu J. et al. 2007). Another group also demonstrated, 

using human whole-cell extracts, that XLF is essential for the NHEJ-mediated repair of complex 

DSBs harboring chemically modified bases, such as thymine glycol (a frequent byproduct of IR-

induced oxidation), which are sterically awkward substrates for Lig4 (Almohaini M et al. 2006). 

To catalyze the formation of a phosphodiester bond, Lig4 transfers an AMP molecule onto the 5’ 

phosphate of a nucleobase and must undergo a rate-limiting recharging step prior to subsequent 

reactions. Interestingly, there is evidence that XLF facilitates the re-adenylation of Lig4 in vitro 

and could enhance the ligation of blunt DNA ends in an ATP-dependent and independent manner 

(Riballo E et al. 2008). Moreover, XLF can stimulate gap filling by Pol λ and µ during the repair 
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of non-complementary DNA ends, signifying that its capacity is not merely confined to the direct 

augmentation of Lig4 activity per se, but rather, involves promoting an optimal setting in which 

the entire process of NHEJ can be carried out (Akopiants K et al. 2009). Together, these findings 

support a major role for XLF in maintaining the synapsis of DNA ends that cannot be otherwise 

aligned by Lig4/XRCC4 or base pairing due to physical constraints. 

 Structural analyses of XLF largely reinforce this hypothesis. Crystal lattices composed of 

XLF and XRCC4 reveal that they are assembled into long, left-handed helical filaments and that 

these filaments can in turn be tethered side-by-side through hydrophobic interactions between the 

coiled coil domains of XLF and XRCC4 to create cylindrical tertiary complexes which resemble 

gear cogs, raising the intriguing possibility that two parallel filaments at a DSB can bind to each 

other and thus bridge the opposing DNA ends (Wu Q et al. 2011, Menon V and Povrik LF 2017). 

Imaging by super-resolution fluorescent microscopy confirmed that XLF/XRCC4 filaments do 

indeed accumulate at DSBs and can even adopt multiple dynamic configurations to increase the 

pairing probability of two DNA ends (Reid DA et al. 2015). Furthermore, a recent study utilizing 

optical tweezers combined with fluorescent microscopy showed that XLF stimulates the loading 

of XRCC4 onto DNA and that together they form stable yet highly mobile sleeve-like complexes 

around DSBs: these complexes are capable of holding the fragments in close proximity and can 

diffuse rapidly along the length of the DNA, leaving the ends accessible for processing by other 

repair factors (Brouwer I et al. 2016). Another study, employing single-molecule FRET analysis 

in Xenopus egg extracts, demonstrated that DNA end stabilization during NHEJ occurs in at least 

two distinct stages: an initial stage that promotes long-range synapsis, mediated by Ku70/80 and 

DNA-PKcs, and a subsequent stage that promotes short-range synapsis, mediated by DNA-PKcs 

kinase activity, XLF, and Lig4/XRCC4 (Graham TG et al. 2016). Despite these compelling data, 
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little has been done to substantiate the mechanistic role of XLF in vivo, and it is conceivable that 

XLF may possess additional functions independent of its ability to polymerize with XRCC4 in a 

less artificial biological setting. 

 Upon its recruitment to a DSB, XLF is phosphorylated at six serine/threonine residues in 

the C-terminal domain by DNA-PKcs and ATM (serines 132, 203, 245, 251, 263, and threonine 

266), though the purpose of these modifications is unclear, as their abolishment (through alanine 

substitutions) neither impairs XLF binding to DNA nor affects cellular radiosensitivity (York Y 

et al. 2008). A later study found that mutating all the DNA-PKcs and ATM phosphorylation sites 

in the C-termini of XLF and XRCC4 simultaneously, but not separately, to the phosphomimetic 

residue aspartate promotes the dissociation of XLF/XRCC4 complexes from DNA and impedes 

their ability to bridge DNA ends in vitro; however, these mutations do not influence the repair of 

DSBs generated within episomal substrates in vivo, casting doubt on the physiological relevance 

of DNA-PKcs- and ATM-dependent XLF phosphorylation (Normanno D et al. 2017). XLF can 

also be phosphorylated by Akt, a kinase best known for its role in the mTOR signaling pathway, 

at threonine 181: in this case, phosphorylation of XLF causes it to dissociate from Lig4/XRCC4 

and be retained in the cytoplasm, where it is ubiquitinated for degradation, thereby serving as an 

inhibitory mechanism on NHEJ (Liu P et al. 2015).  

 

1.4 Functional Redundancy of XLF in V(D)J End Joining 

1.4.1 A Lymphocyte-specific Role for XLF? 

 In spite of its seeming importance as a facilitator of DNA synapsis and end joining, XLF 

appears to be variably required for NHEJ in vivo, depending on cellular context. Whereas XLF-

deficient primary human fibroblasts and XLF-deficient mouse embryonic fibroblasts (MEFs) and 
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embryonic stem (ES) cells are radiosensitive, contain multiple aberrant chromosomal alterations, 

and, when ectopically expressing RAG, exhibit a defect in joining both SEs and CEs on episomal 

substrates (though not to the extent of XRCC4-deficient cells), XLF-deficient mouse pre-B cells 

are able to carry out V(D)J recombination of episomal and chromosomal substrates as efficiently 

as wild-type (WT) pre-B cells (Buck D et al. 2006, Zha S et al. 2007, Li G et al. 2008, Vera G et 

al. 2013). Patients carrying mutations in XLF present with a progressive SCID phenotype that is 

less severe than that observed in patients with Artemis or Lig4 genetic hypomorphism; sequence 

analyses of V(D)J recombination substrates in XLF-deficient human fibroblasts revealed close to 

normal or reduced levels of SJ and CJ formation, but notably, these junctions exhibited little loss 

of nucleotides (mostly in the range of 5-20 base pairs) as compared to the extensive deletions and 

long P nucleotides typically found in other NHEJ-deficient settings (Rooney S et al. 2002, Buck 

D et al. 2006). On the other hand, XLF-/- mice are only slightly lymphophenic and display intact 

lymphoid progenitor compartments in their bone marrows and thymuses, in contrast to Artemis- 

and DNA-PKcs-deficient SCID mice, which show a severe block at the pro-B and T cell stage of 

lymphocyte development due to their inability to rearrange the heavy chain loci; moreover, XLF-

/-:p53-/- mice die less often from pro-B cell lymphomas caused by RAG-dependent translocations 

than from thymic lymphomas that arose due to other consequences of p53 deficiency, indicating 

that V(D)J end joining is relatively unperturbed in XLF-/- mouse lymphocytes (Li G et al. 2008). 

The discrepancy that XLF is necessary for V(D)J end joining in mouse non-lymphoid cells but 

not in mouse lymphoid cells signifies that there are lymphocyte-specific factors or mechanisms 

that can functionally compensate for XLF in this regard. Moreover, unlike V(D)J recombination, 

CSR is reduced in XLF-/- mouse B cells (by ~50%), suggesting that the requirement for XLF in 

NHEJ depends not only on cell type, but also on the nature of the DSB (Li G et al. 2008). 
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1.4.2 XLF is Functionally Redundant with the ATM Signaling Pathway 

The finding that ATM is similarly involved in the stabilization of DNA ends in G1-phase 

lymphocytes led to the speculation that ATM could, in fact, be the putative “redundant factor.” 

Indeed, XLF-/-:ATM-/- mice exhibit a SCID phenotype, and B cell development in these mice can 

be rescued by the introduction of germline alleles containing prearranged immunoglobulin heavy 

and light chain genes, as would be expected for a defect that had occurred during the process of 

V(D)J recombination; additionally, XLF-/-:ATM-/- pre-B cell-lines are severely impaired in their 

ability to repair SEs and CEs within chromosomal substrates, and likewise, treating XLF-/- pre-B 

cells with a pharmacological ATM kinase inhibitor strongly suppresses V(D)J end joining (Zha S 

et al. 2011). XLF/ATM double-deficiency also abolishes CSR in mature B cells and dramatically 

increases cytogenetic instability in MEFs, implicating a synergistic role for these two proteins in 

broader aspects of NHEJ (Zha S et al. 2011, Kumar V et al. 2014). Surprisingly, rearrangement 

of transient episomal substrates is not obstructed in XLF-/-:ATM-/- pre-B cells, indicating that this 

functional overlap arises specifically in the context of chromatin (Zha S et al. 2011).  

In this regard, it has subsequently been shown that XLF also operates redundantly with 

H2AX and 53BP1, two chromatin-associated targets of ATM. XLF/H2AX double-deficiency in 

mice leads to early embryonic lethality (before embryonic day 13.5), the cause of which remains 

to be determined and is likely related to the ATM-independent role of H2AX in post-replicative 

DSB repair; correspondingly, XLF-/-:H2AX-/- pre-B cells are unable to efficiently carry out V(D)J 

recombination, though still to a greater degree than XLF-/-:ATM-/- cells (Zha S et al. 2011, Kumar 

V et al. 2014). Furthermore, while unrepaired SEs and CEs remain largely intact in XLF-/-:ATM-/- 

pre-B cells, these ends become extensively resected in XLF-/-:H2AX-/- pre-B cells, consistent with 
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the notion that H2AX helps to protect the integrity of DNA ends, and microhomologies exposed 

by this resection could conceivably contribute to the limited joining observed in these cells (Zha 

S et al. 2011). Like XLF-/-:ATM-/- mice, XLF-/-:53BP1-/- mice are born live with a SCID phenotype 

resulting from a block in lymphopoesis that can be relieved by knocking in a set of preassembled 

antigen receptor genes, and in contrast to XLF-/- and 53BP1-/- mice, they are prone to developing 

thymic lymphomas characterized by clonal translocations of the T cell receptor locus; like XLF-

/- :H2AX-/- pre-B cells, XLF-/-:53BP1-/- pre-B cells display a profound defect in V(D)J end joining, 

with unrepaired SEs and CEs being substantially degraded (Liu X et al. 2012, Oksenych V et al. 

2012). DNA end resection in XLF-/- :H2AX-/- and XLF-/-:53BP1-/- cells can be inhibited by the use 

of an ATM kinase inhibitor, indicating that ATM supports opposing activities during DSB repair  

(Helmink BA et al. 2011, Zha S et al. 2011, Liu X et al. 2012, Oksenych V et al. 2012). How one 

outcome is established in favor of the other is an important yet unresolved question. 

 

1.4.2 XLF is Functionally Redundant with DNA-PKcs 

 DNA-PKcs shares numerous substrates with ATM (including H2AX) and has also been 

implicated in promoting DNA end synapsis at DSBs (DeFazio LG et al. 2002, Spagnolo L et al. 

2006, Callen E et al. 2008). Moreover, as aforementioned, while the loss of ATM or DNA-PKcs 

alone has minimal effect on SE repair, the absence of both kinases abrogates SJ formation and 

precipitates early prenatal death in mice (Gapud EJ et al. 2011, Zha S et al. 2011). Thus, it came 

as little surprise when XLF and DNA-PKcs were later discovered to be functionally redundant in 

V(D)J end joining. XLF-/-:DNA-PKcs-/- mice are viable but produced in sub-Mendelian ratios and 

perish within a week following birth, whereas XLF-/-:Artemis-/- mice do not exhibit such lethality; 

in agreement with these findings, SE joining is significantly compromised in XLF-/-:DNA-PKcs-/-, 



19 

 

but not XLF-/-:Artemis-/-, pre-B cells, and analogously, in XLF-/- pre-B cells treated with a DNA-

PKcs kinase inhibitor, suggesting that NHEJ relies on DNA-PKcs catalytic activity separate from 

the stimulation of Artemis (Oksenych V et al. 2013). Interestingly, free CEs are not appreciably 

degraded in XLF-/-:DNA-PKcs-/-, XLF-/-:Artemis-/-, and XLF-/-:XRCC4-/- pre-B cells, implying that 

XLF is not essential for DNA end protection and is functionally distinct from H2AX and 53BP1 

(Oksenych V et al. 2013, Kumar V et al. 2015). 

 

1.4.3 XLF is Functionally Redundant with Non-core RAG-2 

 The non-core domain of RAG-2 has been shown to mediate the formation of stable PCCs 

that bind loose DNA ends together in a manner similar to the bridging of DSBs by XLF/XRCC4, 

raising the question of whether these two mechanisms would be functionally redundant (Deriano 

L et al. 2011, Coussens MA et al. 2013). As reported in a recent study, XLF-/-:RAG2c/c mice are 

severely lymphopenic due to a block at the pro-B and T cell stage of differentiation; furthermore, 

XLF-/-:RAG2c/c pre-B cells contain persistent DSBs at their immunoglobulin light chain loci and 

cannot properly rearrange chromosomally integrated V(D)J recombination substrates, with most 

of the unrepaired DNA ends undergoing considerable resection (Lescale C et al. 2016). Finally, 

XLF-/-:RAG2c/c:p53-/- mice are also characteristically susceptible to developing B cell lymphomas 

(even more so than RAG2c/c:p53-/- mice) that harbor translocations and amplifications involving 

the immunoglobulin heavy chain and c-myc genes (Lescale C et al. 2016). 

 

1.5 Discovery of Novel NHEJ Factors in the Absence of XLF 

 How can the functional redundancy between XLF and these DDR factors be explained? 

Since many of the proteins (ATM, DNA-PKcs, and RAG-2) contribute to DNA end stabilization 
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like XLF, one possibility is that they all superfluously perform the same general function and can 

compensate for the loss of one another. In this regard, ATM and DNA-PKcs are also functionally 

redundant with each other (Gapud EJ et al. 2011, Zha S et al. 2011). However, this model fails to 

account for H2AX and 53BP1, which are not significantly involved in DSB synapsis, but rather, 

in preventing the undesired nucleolytic processing of DNA ends. An alternative interpretation is 

that these proteins execute different functions, from bridging DNA ends to recruiting or retaining 

other DSB repair factors on chromatin, that cooperatively promote NHEJ: although the loss of a 

single component may reduce the efficiency of the reaction, NHEJ can still be completed without 

any observable deficits – it is only when two components are defective that the overall efficiency 

of NHEJ becomes visibly impaired. For example, in the absence of DNA end alignment by XLF, 

the kinetics of repair would be slowed, leaving time for nucleases to access the free DNA ends if 

not for the effects of H2AX and 53BP1. The inhibition of DNA end resection allows NHEJ to be 

carried out at a diminished rate. Of course, these two possibilities are not mutually exclusive and 

can be used to explain the interplay of XLF with separate proteins. 

 Regardless of its underlying nature, this functional redundancy suggests that the roles of 

many unidentified NHEJ factors might be masked in the presence of XLF. In fact, ATM, DNA-

PKcs, H2AX, and 53BP1 were initially thought to participate only in the repair of certain rarely 

occurring DSBs, as genetic ablation of any one of these proteins did not broadly impair NHEJ: in 

the context of V(D)J recombination, deficiency of ATM or DNA-PKcs perturbs CE, but not SE, 

joining, while deficiency of H2AX or 53BP1 has no discernible consequences on either SJ and 

CJ formation (Helmink BA and Sleckman BP 2012). Yet, in the setting of XLF deficiency, they 

all become necessary for the repair of SEs and CEs, implicating a more general involvement in 

NHEJ than previously appreciated. We hypothesized that other NHEJ factors could be revealed 
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in the absence of XLF and therefore performed a genome-wide CRISPR/Cas9 screen to discover 

novel proteins that are functionally redundant with XLF in V(D)J end joining. Here, we describe 

the methodology of our screen and the characterization of a small peptide, named modulator of 

retrovirus infection (MRI), obtained from the assay. We find that MRI is highly disordered and 

interacts with diverse DDR proteins, including those in the NHEJ and ATM signaling pathways, 

to promote their retention on damaged chromatin, potentially within a multivalent complex. 
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Chapter 2: Materials and Methods 

Mice: MRI+/- were generated by in vitro fertilization using cryopreserved MRI-/- sperm obtained 

from the Knockout Mouse Project (KOMP) Repository based at UC Davis (clone ID: 862138). 

The PCR primers used for genotyping the MRI+ allele were: 5’-CCTTTCTTCCTTCCTTTGGG-

3’ and 5’-CAGGCCAGAGCCCAGTTTG-3’. The PCR primers used for genotyping the MRI- 

allele were 5’-CCTTTCTTCCTTCCTTTGGG-3’ and 5’-GTCTGTCCTAGCTTCCTCACTG-3’. 

Mice were housed in a specific pathogen-free facility at Weill Cornell Medical College, and all 

animal protocols were approved by the institutional Animal Care and Use Committee. 

 

Cell-line generation and culture conditions: WT (lines M51.1-22 and M63.1-7), MRI-/- (lines 

M66.1-24 and M46.3-19), XLF-/- (lines XA3-8-1 and XB1-5-8), and Lig4-/- (line B25-3-4) Abl 

pre-B cells were generated by culturing cells from the bone marrows of 3-5 week-old mice that 

harbor a Eµ-Bcl2 transgene with the pMSCV-v-abl retrovirus, infecting the stably transformed 

cells with the retroviral pMSCV-RSS-GFP-INV-Thy1.2 (MGINV) substrate, and selecting for 

clones that contain single MGINV integrants (Bredemeyer AL et al. 2006, Hung PJ et al. 2017). 

To induce V(D)J recombination, these cells were treated with 3 µM imatinib (Novartis) for the 

indicated times at a density of 106 cells/mL. For ATM and DNA-PKcs kinase inhibition, the cells 

were treated with 15 µM KU55933 (Selleckchem) and 5 µM NU7441 (Torcis), respectively, at a 

density of 106 cells/mL. 

 To generate inducible Cas9 cell-lines, WT and XLF-/- Abl pre-B cells were infected with 

the lentiviral vector pCW-Cas9 (Addgene, #50661), which carries a tetracycline-responsive Cas9 

cDNA, and selected in 2 µg/mL puromycin before being sub-cloned by limiting dilution. Clones 

were treated with 2 µg/mL doxycycline for two days and screened for robust Cas9 expression by 
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anti-FLAG western blot. To generate PAXX-/- and XLF-/-:PAXX-/- Abl pre-B cells, WT and XLF-/- 

Abl pre-B cells containing a single MGINV integrant and expressing high inducible Cas9 levels 

were transduced with the lentiviral vector pKLV (Addgene, #50946) bearing a gRNA that targets 

exon 3 of the mouse PAXX gene (5’-AGATATCCATTCCCGGTTC-3’). The cells were cultured 

with 2 µg/mL doxycycline for a week, sorted for BFP expression (a marker for pKLV), and sub-

cloned by limiting dilution. Clones were screened for loss of PAXX expression by both western 

blot and PCR sequencing (using the primers: 5’-GTGAGTAACAGTGCTGGGGATA-3’ and 5’-

CTAAGGAGGGAGATGTGTGTTA-3’). XLF-/-:MRI-/- Abl pre-B cells were similarly generated 

from XLF-/- Abl pre-B cells with a gRNA that specifically targets exon 3 of the mouse MRI gene 

(5’-GAAATGGTAGACGTGGCAC-3’) and assessed for loss of MRI expression by western blot 

and PCR sequencing (using the primers: 5’-GTGCCCTGCCCCTGGACC-3’ and 5’-AAAAACA 

TGGCTGGAAAGGTGAGG-3’). 

 MRI-/-:PAXX-/- abl pre-B cells were generated as previously described (Liu X et al. 2017). 

Briefly, a pair of gRNAs that target sequences flanking the entire mouse PAXX gene (gRNA 1: 

5’-CTAAGGTGTTCGCTCGGCGG-3’; gRNA 2: 5’-GCAGTTTATTTGACGGAGAA-3’) were 

cloned into the Cas9 vector pX330 (Addgene, #42230) and electroporated into MRI-/- Abl pre-B 

cells using the Nucleofector 2b device (Amaxa Human B Cell Kit, program X-001, Lonza). After 

four days, the cells were sub-cloned by limiting dilution, and individual clones were screened for 

deletion of the PAXX gene by PCR (using the primers: 5’-ATTGAAGAGCGGCAGATATGT-3’ 

and 5’-AGCCAGAATCAACACAGTAGGT-3’) and western blot. 

 WT (lines SZ and WT-1), MRI-/- (lines M61.2 and M61.7), and XLF-/- (lines X-SZ and X-

AB) MEFs were generated from embryonic day 14.5-15.5 mice and immortalized by transfection 

with p-BABE-neo-SV50 (Addgene, #1780), after which they were selected in 400 µg/mL G418. 
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For IR sensitivity assays, MEFs were seeded in 48-well plates at a density of 2,000 cells/well and 

irradiated using a RS 2000 X-ray Irradiator (Rad Source Technologies), with cell survival being 

measured after four days by spectrophotometric analysis of PrestoBlue reagent (Thermo Fisher) 

metabolism according to the manufacturer’s instructions. 

 

CRISPR/Cas9-based genetic screen: The screen was carried out using the Yusa gRNA library 

(Addgene, #50947) according to the rationale presented in Chapter 2 and as previously described 

(Koike-Yusa H et al. 2014). 

 

In vitro CSR assays: Naive B cells were purified from the spleens of 6-8 week-old mice using 

CD43 negative selection microbeads (Miltenyi Biotec, #130-090-862). The cells were seeded in 

96-well plates at a density of 4 x 105 cells/mL and stimulated with either 25 µg/mL LPS (Sigma) 

or 1 µg/mL anti-CD40 antibody (eBioscience, #16-0402-81) plus 20 ng/mL recombinant mouse 

interleukin-4 (IL-4) (Peprotech, #214-14) for 3-4 days. For cell proliferation assays, naive B cells 

were first incubated with 10 µM CFSE (eBioscience, #65-0850-84) at a density of 106 cells/mL 

in 37°C for 10 minutes, protected from light, and then quenched with fetal bovine serum (FBS) 

on ice for 10 minutes prior to stimulation with LPS or anti-CD40 and IL-4. 

 

Retroviral cDNA expression: The murine PAXX and MRI coding sequences were amplified by 

PCR from the cDNA clones BC029214 and BC000168, respectively and cloned into a retroviral 

vector pOZ-FH-N downstream of a FLAG-HA tag and between a XhoI site and a NotI site. After 

transduction, cells containing the plasmid were sorted by human CD25 expression. To coexpress 

HA-tagged MRI and FLAG-tagged Ku80 in cells used for sequential immunoprecipitation (IP), 
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HA-MRI was generated by PCR and cloned into pOZ-FH-N without the FLAG-HA tag, whereas 

FLAG-Ku80 was cloned into another retroviral vector pBMN, which has a human CD2 marker, 

as previously described (Jiang W et al. 2015). PAXX and MRI mutant constructs were generated 

by overlapping PCR using the following primers and cloned into pOZ-FH-N: 

PAXXVF: 5′-GCCCTCGAGATGGCTCCTCCGTTGTTGTC-3′ and 5’-GCCGCGGCCGCTCA 

GGTCTCATCAGCGTCTGCACCAGCAGCTGGT-3’. 

MRIΔN: 5’-CCCTCGAGATGACCGCGCCGGTGG-3’ and 5’-TTGCGGCCGCTCAGCTGAAG 

AAGATTTCACGA-3’ 

MRIΔC: 5’-ATGGAAACCCTGAAAAGCAA-3’ and 5’-TTGCGGCCGCTCACTTTTCCTCCT 

CCGGGCTAC-3’. 

MRIΔNΔC: 5’-CCCTCGAGATGACCGCGCCGGTGG-3’ and 5’-TTGCGGCCGCTCACTTTTC 

CTCCTCCGGGCTAC-3’. 

 

Immunofluorescent detection of γ-H2AX foci: Abl pre-B cells were G1-arrested with imatinib 

for two days and then treated with 10 µg/mL bleocin (EMD Millipore, #203408) for two hours or 

2 µg/mL etoposide (Sigma, #E1383) for one hour, after which they were washed with phosphate-

buffered saline (PBS) and allowed to recover in fresh imatinib media for 24 hours. For γ-H2AX 

immunostaining, the cells were plated onto coverslips coated with Cell-Tak (Corning, #354240), 

fixed in 4% paraformaldehyde for 10 minutes, permeabilized with 0.1% Triton X-100 in PBS for 

five minutes, blocked with 3% bovine serum albumin (BSA) in PBS (w/v) at room temperature 

for one hour, incubated with mouse anti-γ-H2AX (EMD Millipore, #05–636) at 1:1,000 dilution 

in 4°C overnight, washed with PBS, and incubated with Alexa Fluor 594 donkey anti-mouse IgG 

(Thermo Fisher, #A-21203) at room temperature for one hour. After washing the cells again with 
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PBS, the coverslips were mounted onto microscope slides in ProLong Gold Anti-Fade Mountant 

with DAPI (Thermo Fisher, #P36931). Images were acquired on an Olympus BX53 fluorescence 

microscope at 60X magnification. 

 

Laser micro-irradiation and imaging:  MRI-/- MEFs were stably transduced with a lentiviral 

vector pLV (Addgene, #36083) containing an MRI-GFP fusion protein, transiently transfected 

with 1.5 µg Ku80-RFP using Lipofectamine 2000 (Thermo Fisher), and imaged after 48 hours. 

To obtain reliable recruitment of GFP-Ku70 with the 405 nm laser, the transfected cells were 

sensitized with 10 µM BrdU for 24 hours. To arrest cells in G1, MRI-/- MEFs stably expressing 

MRI-GFP were serum-starved in DMEM (Gibco) supplemented with 0.5% FBS (Hyclone) for 

72 hours prior to BrdU sensitization and imaging. Live cell imaging was carried out on a Nikon 

Ti Eclipse inverted microscope equipped with an A1 RMP confocal microscope system and Lu-

N3 Laser Units (Nikon, Inc.). Laser micro-irradiation manipulation and time-lapse imaging were 

performed with the NIS Element High Content Analysis software (Nikon, Inc.) using a 405 nm 

laser at an energy level adequate for Ku70 accumulation. The relative intensity at laser-damaged 

sites was calculated as the ratio of the mean intensity at each of the micro-irradiated sites to the 

corresponding mean intensity of the nucleus as background (considering the entire nucleus). >20 

individual cells were analyzed for each data point. 

 

Brain immunohistochemistry: Embryonic day 14.5 and 16.5 mouse embryos were dissected in 

ice-cold PBS and fixed in 4% paraformaldehyde at 4°C overnight. Tissues were rinsed with PBS, 

cryoprotected in 30% sucrose in PBS (w/v) at 4°C overnight, embedded in Tissue-Tek (Sakura 

Finetek), frozen on dry ice, and stored at -80°C before sectioning. Brains were cryosectioned at 
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18 μm and processed using PBS containing 1.5% donkey serum and 0.35% Triton X-100 for all 

subsequent steps, except for the washing steps where only PBS was used. Sections were blocked 

for 30 minutes and incubated with 1:200 dilution of rabbit anti-cleaved caspase 3 (Cell Signaling 

Technology, #9661) at 4°C overnight. After washing with PBS, 1:1,000 dilution of Cy3 donkey 

anti-rabbit IgG (Jackson ImmunoResearch, #711-165-152) was applied at room temperature for 

one hour. Nuclear counterstaining was performed with 100 ng/mL DAPI solution. An additional 

three washes were performed with PBS, and the slides were then coverslipped using VectaShield 

mounting medium (Vector Laboratories). Fluorescent images were taken on a Fluoview FV3000 

confocal laser scanning microscope (Olympus, Inc.). The following mice were analyzed: MRI-/-

:XLF+/- (n = 2) and MRI-/-:XLF-/- (n = 2) littermates at embryonic day 14.5, and MRI-/-:XLF+/- (n = 

1) and MRI-/-:XLF-/- (n = 2) littermates at embryonic day 16.5. Five coronal sections per animal 

were observed for a total of 35 sections. 

 

Flow cytometric analyses: Antibodies used (all at 1:500) for lymphocyte staining were: Pacific 

Blue anti-B220 (BioLegend, #103227), APC anti-CD43 (BioLegend, #143208), PE/Cy7 anti-

IgM (BioLegend, #406514), Pacific Blue anti-CD4 (BioLegend, #100531), PE/Cy7 anti-CD8 

(BioLegend, #100722), FITC anti-CD3ε (BioLegend, #100306), APC anti-TCRβ (eBioscience, # 

17-5961-82), PE anti-IgG2b (BioLegend, #406707), and APC anti-IgG1 (BioLegend, #406609). 

Single-cell suspensions from bone marrow, thymus, and spleen were incubated with Fc block 

(BD Pharmingen, # 553141) at a density of 106 cells/mL on ice for 15 minutes prior to staining. 

Analyses of the G2/M checkpoint using DNA content (7-AAD, BD Biosciences, #559925) and 

anti-phospho-histone H3 serine 10 (EMD Millipore, #06-570) were performed as previously 

described (Xu B et al. 2011). Data were acquired on a LSR II flow cytometer (BD Biosciences) 



28 

 

and analyzed using FlowJo (FlowJo, LLC). 

 

Southern blot analyses: Genomic DNA from cells containing MGINV were digested with NheI 

or XbaI and hybridized to a 32P-labeled Thy1 or GFP probe as previously described (Bredemeyer 

AL et al. 2006, Hung PJ et al. 2017). The Thy1 probe is a ~800-base pair Thy1.1 cDNA (which 

differs from Thy1.2 by only a single aa residue) fragment, and the GFP probe is a ~700-base pair 

GFP cDNA fragment. 

 

Nuclear extraction and immunoprecipitation (IP): Cells were lysed in cytoplasmic extraction 

(CE) buffer (10 mM Tris-HCl pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 0.05% Triton 

X-100) supplemented with a protease inhibitor cocktail (Sigma) on ice for 15-20 minutes. After 

centrifugation (3,000 rpm, five minutes), the nuclear pellet was washed with CE buffer (without 

Triton X-100) and incubated in 0.5X pellet volume of nuclease buffer (20 mM Tris-HCl pH 7.4, 

1.5 mM MgCl2, 25% v/v glycerol) with 5 U/μL benzonase (Sigma) on ice for one hour to digest 

genomic DNA. 1X pellet volume of nuclear extraction (NE) buffer (20 mM Tris-HCl pH 7.4, 

500 mM KCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25% v/v glycerol) was then added, and the pellet 

was ground using a dounce homogenizer (Sigma) before incubation with gentle rotation at 4°C 

for one hour. The homogenate was clarified by centrifugation (14,800 rpm, 30 minutes), and the 

supernatant was dialyzed in excess BC100 buffer (20 mM Tris-HCl pH7.4, 100 mM KCl, 0.2 

mM EDTA, 20% v/v glycerol) at 4°C overnight using the Pur-A-Lyzer Maxi 6000 Kit (Sigma). 

The dialyzed supernatant was clarified by centrifugation (14,800 rpm, 30 minutes) and incubated 

with 30 μL bed volume of EZView Red HA (Sigma, #E6779) or FLAG (Sigma, #F2426) affinity 

gel on a rotator at 4°C for four hours. The beads were washed four times with TAP buffer (50 
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mM Tris-HCl pH 7.4, 100 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 10% v/v glycerol, 0.1% v/v 

Triton X-100) and eluted by boiling in LDS sample buffer (Thermo Fisher) for SDS-PAGE and 

western blot analysis. For IP of endogenous MRI, nuclear extract was first incubated with ~5 µg 

nonspecific Armenian hamster IgG (BioLegend, #400940) or anti-mouse MRI (13E10.E12.C10) 

at 4°C overnight and then with Pierce Protein L magnetic beads (Thermo Fisher, # 88849) at 4°C 

for two hours. 

For proteomic analysis, the anti-FLAG beads were eluted with 0.4 mg/mL FLAG peptide 

(Sigma, #F3290) in TAP buffer on a rotator at 4°C for one hour. The MRI-containing complexes 

were visualized by SDS-PAGE and silver staining before being precipitated by TCA. Associated 

proteins were then identified by LC-MS/MS at the Taplin Mass Spectrometry Facility (Harvard 

Medical School) using an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo Fisher) 

and SEQUEST software (Eng JK et al. 1994). 

For sequential IP, nuclear extract from WT Abl pre-B cells expressing HA-tagged MRI 

and FLAG-tagged Ku80 was incubated with EZView Red HA affinity gel beads at 4°C for four 

hours, after which the beads were washed four times with TAP buffer and eluted with 0.5 mg/mL 

HA peptide (Sigma, #I2149) in TAP buffer at 4°C for one hour. The eluate was incubated with 4 

µg mouse IgG1 (Santa Cruz, #sc-3877) or mouse anti-FLAG (Sigma, #F1804) at 4°C overnight 

and then with 30 μL bed volume of Dynabeads Protein G (Thermo Fisher, #10003D) at 4°C for 

two hours. The beads were washed four times with TAP buffer and boiled in LDS sample buffer 

for SDS-PAGE and western blot analysis. 

Size-exclusion chromatography (SEC) was performed using an AKTA Pure FPLC on a 

Superose 6 Increase 10/300 GL column (GE Healthcare, #29-0915-96). Anti-FLAG-precipitated 

MRI complexes (500 µL) were loaded onto the pre-equilibrated column and eluted with TAP 
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buffer at a flow rate of 0.5 mL/minute. 0.5 mL fractions were collected and concentrated using 

StrataClean resin (Agilent) before SDS-PAGE and western blot analysis. 

 

Chromatin fractionation: Cells were first pre-extracted in CSK buffer (100 mM NaCl, 10 mM 

PIPES pH 6.8, 3 mM MgCl2, 300 mM sucrose) with 0.05% Triton X-100 on ice for 15 minutes. 

After centrifugation (1,500 x g, five minutes), the chromatin pellet was washed with PBS and 

incubated in CSK buffer with 0.5% Triton X-100 and 0.1 µg/mL RNase A (Sigma, #R4875) at 

room temperature for 10 minutes and on ice for 20 minutes. After centrifugation (1,500 x g, five 

minutes), the pellet was washed with PBS and incubated in CSK buffer with 5 U/µL benzonase 

on ice for one hour. The chromatin fraction was boiled in LDS sample buffer and then analyzed 

by SDS-PAGE and western blotting. 

 

Western blot analyses: The primary antibodies and dilutions used for western blotting were: 

anti-cytoskeletal actin (1:10,000, Bethyl Laboratories, #A300-485A), anti-FLAG (1:5,000, 

Sigma, #F7425), anti-HA (1:5,000, Santa Cruz, #sc-805), anti-DNA-PKcs (1:2,000, Thermo 

Fisher, # MS-423-P), anti-Ku80 (1:2,000, Cell Signaling Technology, #2753S), anti-Ku70 

(1:2,000, Cell Signaling Technology, #4588S), anti-XLF (1:2,000, Bethyl Laboratories, #A300-

730A), anti-C9orf142 (PAXX) (1:1,000, Abcam, #ab126353), anti-XRCC4 (1:1,000, Santa Cruz, 

#sc-8285), anti-ATM (1:2,000, Sigma, #A1106), anti-RAD50 (1:1,000, Abcam, #ab89), anti-

Mre11 (1:5,000, Novus Biologicals, #NB100-142), anti-Nbs1 (1:5,000, Abcam, #ab23996), anti-

KAP-1 (1:5,000, GeneTex, #GTX102226), anti-ATR (1:1,000, Novus Biologicals, #NB100-

323), anti-ATRIP (1:1,000, Sigma, #SAB4503325), anti-tubulin (1:10,000, Sigma, #T5168), 

anti-H2AX (1:5,000, EMD Millipore, #07-627), anti-γH2AX (1:10,000, EMD Millipore, #05-
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636), anti-AID (1:1,000, generated by Chaudhuri lab), and anti-MRI (supernatant from clonal 

hybridoma line 13E10.E12.C10, generated in-house). 

 

MRI protein expression and purification: The coding regions of the mouse MRI and human 

MRI genes were codon-optimized for expression in E. coli (Genscript) and used as templates to 

sub-clone the coding regions into a modified pET15b vector (Novagen). Peptide truncations 

were generated by overlapping PCR and validated by sequencing. Mouse MRI and human MRI 

proteins were expressed in BL21(DE3) E. coli cells (Novagen), cultured in Luria Broth media at 

37°C, induced at an OD600 (optical density at 600 nm) of 0.6 with 0.5 mM IPTG, and grown for 

12-15 hours at 18°C. Cells were harvested, resuspended in lysis buffer (20 mM Tris-HCl pH 7.5, 

250 mM NaCl, 5 mM 2-mercaptoethanol), and lysed using an EmulsiFlex-C5 homogenizer 

(Avestin), after which the resulting lysate was clarified by centrifugation (47,000 x g at 4°C, 40 

minutes). Proteins were purified using a series of affinity and ion-exchange chromatographic 

columns (GE Healthcare). Following TEV protease digestion to separate the maltose-binding 

protein (MBP) fusion, the resulting sample was purified further by sequential ion-exchange and 

SEC. Protein purity was assessed by Coomassie staining of SDS-PAGE and mass spectrometry. 

 

Hydrogen deuterium exchange mass spectrometry (HDX-MS): MRI samples were buffer-

exchanged with PBS pH 7.4. Deuterium labeling was initiated by diluting samples (50 μM, 2 μL) 

10-fold with either D2O buffer or H2O buffer for measuring no-deuterium control samples. At 

eight different time intervals (10, 30, 60, 120, 360, 900, 3600, and 14400 seconds), the labeling 

reaction was quenched by rapidly adjusting the pH to 2.5 with 30 μL of quench buffer (3 M urea, 

0.6% trifluoroacetic acid, H2O) at 4°C. The protein mixture was then immediately injected into a 
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custom-built HDX device and passed through a column containing immobilized pepsin (2 mm × 

20 mm) at a flow rate of 100 μL/minute in 0.1% formic acid, and the resulting peptic peptides 

were captured on a ZORBAX Eclipse XDB C8 column (2.1 mm × 15 mm, Agilent) for desalting 

(three minutes). The C8 column was then switched in-line with a Hypersil Gold C18 column (2.1 

mm × 50 mm, Thermo Fisher), and a linear gradient (4-40% acetonitrile, 0.1% formic acid, 50 

μL/minute flow rate for five minutes) was used to separate the peptides and direct them to a LTQ 

FT-ICR mass spectrometer (Thermo Fisher) equipped with an electrospray ionization source. 

Valves, columns, and tubing for protein digestion and peptide separation were submerged in an 

ice-water bath to minimize back-exchange. 

The resulting data were processed and peptides identified by exact mass analysis and LC-

MS/MS using Mascot (Matrix Science). The raw HDX spectra and peptide sets were submitted 

to HDX Workbench for calculation and data visualization in a fully automated fashion (Pascal 

BD et al. 2012). Peptides for each run were assessed based on their relative representation and 

statistical validation; only the top six peptides from each MS scan were used in the final analysis. 

Deuterium uptake at each time point was calculated by subtracting the centroid of the isotopic 

distribution of the undeuterated peptide from that of the deuterated peptide. Relative deuterium 

uptake was plotted versus labeling time to afford kinetic curves. 

 

Circular Dichroism (CD): CD wavelength scans were taken using a Chirascan CD spectrometer 

(Applied Photophysics). The changes in molar ellipticity of 10 µM MRI protein samples were 

monitored at 4°C. All samples were prepared in 25 mM Na3PO4 pH 7, 150 mM NaCl, and 5 mM 

2-mercaptoethanol buffer containing 0-50% 2,2,2-trifluorethanol (TFE). All experiments were 

performed in triplicate. 
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Multi-angle light scattering-size exclusion chromatography (MALS-SEC): Standard MALS 

experiments were carried out on a Superdex 200 10/300 GL column (GE Healthcare) connected 

in-line to a Dawn Heleos II MALS detector (Wyatt Technologies). 100 μL samples (2 mg/mL) 

were injected at a flow rate of 0.3 mL/minute into a column equilibrated in 10 mM HEPES 

pH 7.5, 150 mM NaCl, and 2 mM tris(2-carboxyethyl)phosphine (TCEP) buffer. Molecular 

weights and standard deviations were determined using Astra software package version 6.1 

(Wyatt Technologies). All experiments were performed at room temperature and in triplicate. 

  

MRI-ATM co-IP: 40 nM purified recombinant biotin-FLAG-ATM was incubated with MBP-

tagged human MRI, MRI∆N, or MRI∆C (50, 100, or 200 nM) and 100 ng bovine serum albumin 

(BSA, New England Biolabs) in A buffer (25 mM Tris-HCl pH 8.0, 100 mM NaCl, 10% v/v 

glycerol) at room temperature for 15 minutes with a final volume of 30 µL. 2 μL of Dynabeads 

M-280 Streptavidin (Life Technologies) were pre-washed with 1 mg/mL BSA and 1% CHAPS 

(Sigma). The samples were then added to the bead mixture with 0.1% CHAPS in A buffer and 

incubated on ice for 15 minutes. After three washes with 2 µg/mL BSA in A buffer with 0.1% 

CHAPS, proteins bound to the beads were resolved by SDS-PAGE using NuPAGE 4-12% Bis-

Tris (Thermo Fisher), followed by western blotting with primary anti-ATM antibody (Santa 

Cruz, #sc-135663) or anti-MBP antibody (GeneTex, #GTX50060) and secondary anti-mouse 

IgG antibody (Thermo Fisher, #A32730) or anti-rabbit IgG antibody (Thermo Fisher, #A21076). 

 

Hybridoma generation: Armenian hamsters (Cytogen Research and Development, Cambridge, 

MA) were immunized s.c. with 50 µg each of four KLH-conjugated peptides (GenScript), listed 
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below, emulsified in Freund’s adjuvant (CFA then IFA at two-week intervals), followed by one 

injection of peptides with Alhydrogel (InvivoGen) (Sheehan K et al. 1989). The sequences of the 

four KLH-conjugated peptides were: GAP-122 (LKSKTKTRVLPSWMTAPVDERKVC), GAP-

123 (KQTAAWAQRVGAATRAPATEC), GAP-124 (GRKQEKPWEQRSLEATDKLQC), and 

GAP-125 (EEKEEEDALKYVREIFFS) – which encompass the entire length of the mouse MRI 

protein. Immune serum showed positive titers by ELISA using peptide-coated plates and also by 

western blot analysis of recombinant protein. Three days prior to fusion, animals were boosted 

i.v. with 25 µg each of the KLH-conjugated peptides solubilized in endotoxin-free PBS. Immune 

splenocytes were fused to the P3X63Ag8.653 murine myeloma line using standard procedures. 

Cultures were screened initially by ELISA using individual peptides and then by western blotting 

of WT and MRI-/- Abl pre-B cell lysates. Antigen-reactive wells were sub-cloned via two rounds 

of limiting dilution to ensure clonal populations. Isotype analysis were performed using cassettes 

provided by Antagen Pharmaceuticals. Monoclonal antibodies were purified and concentrated by 

Protein A affinity chromatography using standard methods (Sheehan K et al. 1989).  

13E10.E12.C10 is an IgG3-type antibody that recognizes the GAP-124 antigen. 
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Chapter 3: A Genetic Screen for Novel NHEJ Factors 

3.1 Background 

Although XLF has long been implicated as a major NHEJ factor, presumably involved in 

the alignment of broken DNA ends, its requirement for DSB repair in vivo appears to be variable 

depending on cell type. In particular, XLF-deficient lymphocytes can undergo V(D)J end joining 

without any detectable loss of efficiency, and correspondingly, XLF-deficient mice show normal 

lymphocyte maturation (Li G et al. 2008). Conversely, XLF-deficient MEFs and ES cells display 

an impaired ability to rearrange episomal V(D)J recombination substrates when expressing RAG 

ectopically and are highly sensitive to IR (Zha S et al. 2007, Li G et al. 2008). These paradoxical 

observations can be explained by the possibility that a lymphocyte-specific mechanism somehow 

can compensate for XLF function. Indeed, in XLF-deficient lymphocytes, the DDR kinase ATM 

and its downstream targets H2AX and 53BP1 become absolutely essential for V(D)J end joining, 

even though, like XLF, these factors are otherwise dispensable for the repair of RAG DSBs (Zha 

S et al. 2011). In fact, the specific roles of these proteins are accentuated by the absence of XLF: 

notably, XLF-/-:H2AX-/- and XLF-/-:53BP1-/- pre-B cells exhibit excessive resection of DNA ends, 

suggesting that H2AX and 53BP1 operate in part to preserve junctional integrity at DSBs (Zha S 

et al. 2011, Liu X et al. 2012, Oksenych V et al. 2012). Moreover, while DNA-PKcs has mainly 

been implicated in CE joining due to its necessity for stimulating Artemis, XLF-/-:53BP1-/- pre-B 

cells demonstrate a block in both SJ and CJ formation, suggesting that DNA-PKcs also functions 

to promote general DSB repair in a manner independent of Artemis activation (Oksenych V et al. 

2013). We speculated that XLF deficiency creates a setting in which NHEJ is compromised such 

that it must increasingly rely on other compensatory factors, such as ATM and DNA-PKcs; thus, 
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it is plausible that new components of the NHEJ pathway could be uncovered in a XLF-deficient 

background. To this end, we developed a CRISPR/Cas9-based genetic screen to look for hits that 

would prevent V(D)J end joining in XLF-deficient lymphocytes. 

 

3.2 Set-up of the Screen 

3.2.1 Establishment of a Reporter Cell-line System 

 To create a cellular system by which we could assay for V(D)J end joining, we generated 

Abelson murine leukemia virus-transformed (Abl) pre-B cell-lines from the bone marrows of 3-5 

week-old WT and XLF-/- mice that carried an Eμ-Bcl2 transgene (which inhibits apoptotic signals 

triggered by DSBs). Upon treatment with the Abl kinase inhibitor imatinib, Abl pre-B cells arrest 

in G1, express RAG, and undergo recombination at their immunoglobulin kappa light chain (Igκ) 

loci (Muljo SA and Schlissel MS 2003, Bredemeyer AL et al. 2006). We transduced these cells 

with a retroviral V(D)J recombination substrate MGINV, which contains a pair of RSSs flanking 

an anti-sense GFP cDNA; rearrangement is mediated by inversion and places the GFP cDNA in 

the sense direction, enabling its expression (Figure 1A). An added advantage of this approach is 

that it allows us to track the repair of RAG DSBs over time by Southern blot, using probes which 

hybridize with the GFP and Thy1.2 cDNAs in the substrate (Figure 1A). As expected, in WT Abl 

pre-B cells, RAG DSBs were efficiently ligated to produce SJs and CJs, leading to robust GFP 

expression, whereas in Lig4-/- Abl pre-B cells, they accumulated as free SEs and CEs, precluding 

the formation of intact GFP sequences (Figure 1B-D). Finally, we introduced into WT and XLF-/- 

Abl pre-B cells a lentiviral vector with a Cas9 gene under the control of a tetracycline-responsive 

promoter and selected for clones in which we could reliably induce Cas9 expression (Figure 1E). 
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3.2.2 Implementation of the Screen 

 We infected WT and XLF-/- Abl pre-B cells harboring a single integrant copy of MGINV 

and the inducible Cas9 cassette with the Yusa lentiviral library of 87,897 guide RNAs (gRNAs) 

targeting 19,150 mouse protein-coding genes to achieve >1,000X coverage (Koike-Yusa H et al. 

2014). The cells were cultured with doxycycline for one week (ensuring sufficient time to knock 

out both alleles of a gene) before being treated with imatinib to stimulate V(D)J recombination. 

After four days, we sorted the cells into GFP+ and GFP- populations, representing cells that had 

successfully and unsuccessfully rearranged the MGINV substrate, respectively, and performed 

deep sequencing of the bar-coded gRNAs (using Illumina HiSeq) to obtain a read count for each 

gRNA in the two populations (Figure 2A). We then searched for genes with at least two gRNAs 

that were enriched by ≥1.8-fold in the GFP- population as compared to the GFP+ population and 

ranked them according to their mean fold-enrichment. Encouragingly, the top scoring hits in both 

WT and XLF-/- Abl pre-B cells included many positive control genes, such as Rag1, Rag2, Xrcc4, 

Lig4, Dclre1c (Artemis), and Prkdc (DNA-PKcs), conferring us with a high degree of confidence 

in the sensitivity of our assay (Figure 2B). On the other hand, a large fraction of our common hits 

also turned out to be genes involved in cell cycle regulation (e.g. Pten), but this is not unexpected 

since disrupting genes that prevent G1 entry or arrest would likely obstruct V(D)J recombination 

without necessarily affecting DSB repair by causing RAG destabilization (Li Z et al. 1996, Jiang 

H et al. 2005). Ultimately, we decided to pursue two unique hits found in XLF-/- Abl pre-B cells: 

PAXX, a structural homolog of XRCC4 and XLF, and MRI, a poorly characterized peptide with 

a putative N-terminal Ku-binding motif (KBM) and a C-terminal XLM that is likewise present in 

XLF and PAXX (Grundy GJ et al. 2016). 
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3.3 PAXX is Functionally Redundant with XLF 

3.3.1 Combined XLF/PAXX Deficiency Inhibits V(D)J End Joining 

 To validate that PAXX is indeed necessary for the repair of RAG DSBs in XLF-deficient 

lymphocytes, we generated PAXX-/- and XLF-/-:PAXX-/- Abl pre-B cells by using a gRNA to target 

exon 3 of the murine PAXX gene in our WT and XLF-/- reporter cell-lines and screened for clones 

with both alleles of PAXX knocked out by western blot and PCR sequencing (Figure 3A and data 

not shown). After imatinib treatment, PAXX-/- Abl pre-B cells were able to rearrange the MGINV 

substrate as efficiently as WT and XLF-/- Abl pre-B cells, as measured by GFP expression; on the 

other hand, like Lig4-/- Abl pre-B cells, XLF-/-:PAXX-/- Abl pre-B cells exhibited a major block in 

V(D)J recombination, with <5% of cells expressing GFP at four days post-treatment (Figure 3B). 

Correspondingly, Southern blot analysis revealed that WT, PAXX-/-, and XLF-/- Abl pre-B cells all 

successfully made SJs and CJs without any observable evidence of unrepaired RAG DSBs, while 

XLF-/-:PAXX-/- Abl pre-B cells showed undetectable levels of SJ and CJ formation with abundant 

accumulation of loose SEs and CEs in a manner similar to Lig4-/- Abl pre-B cells (Figure 3C-D 

and 4). This defect could be reversed by the ectopic expression of WT PAXX, but not a PAXX 

mutant with two substitutions in the C-terminal XLM (valine 199  alanine, phenylalanine 201 

 alanine) that abrogate its interaction with Ku70/80 (Figure 5A-D). These results indicate that 

PAXX operates redundantly with XLF in V(D)J end joining and that its activity in this context 

depends on the presence of Ku70/80. PAXX has been demonstrated to promote the association 

of Ku70/80 and many of its binding partners, including DNA-PKcs and Lig4, with chromatin at 

DSBs, so it could be that PAXX can carry out a general function to compensate for that of XLF, 

or that PAXX is responsible for recruiting to DNA another protein which has an overlapping role 

with XLF (Ochi T et al. 2015). 
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3.3.2 Combined XLF/PAXX Deficiency Prevents Genotoxic DSB Repair 

 To assess whether the V(D)J end joining defect in XLF-/-:PAXX-/- Abl pre-B cells reflects 

a broader NHEJ deficiency, we monitored the repair of genotoxic DSBs, using nuclear γ-H2AX 

as a surrogate marker for DNA damage, in G1-arrested WT, PAXX-/-, XLF-/-, XLF-/-:PAXX-/-, and 

Lig4-/- Abl pre-B cells treated with the radiomimetic agent bleocin or the topoisomerase II poison 

etoposide, both of which generate DSBs through distinct mechanisms. After a 24-hour recovery 

period, a significant percentage of WT, PAXX-/-, and XLF-/- Abl pre-B cells were able to resolve 

the genotoxic DSBs, as indicated by decreased γ-H2AX foci counts, whereas XLF-/-:PAXX-/- and 

Lig4-/- Abl pre-B cells displayed little to no decline in γ-H2AX signals, implying that DSB repair 

is severely compromised, or even abolished, in these cells (Figure 6A-D). Together, our findings 

show that NHEJ is impaired on a scope beyond V(D)J recombination in the absence of both XLF 

and PAXX. In agreement, several concurrent studies reported that XLF:PAXX double-deficiency 

in mice leads to embryonic lethality characterized by extensive neuronal apoptosis – a phenotype 

that also characteristically manifests in Lig4-/- and XRCC4-/- mice (Balmus G et al. 2016, Kumar 

V et al. 2016, Lescale C et al. 2016, Tadi SK et al. 2016, Hung PJ et al. 2017, Liu X et al. 2017, 

Abramowski V et al. 2018). 

Although it might be tempting to speculate that PAXX functions identically to XLF due 

to their structural homology, there are clear differences in their contributions to NHEJ, as PAXX 

deficiency often results in less prominent defects: for example, PAXX-/- MEFs do not display any 

overt signs of cytogenetic instability, in contrast to XLF-/- MEFs, which occasionally present with 

chromosomal and chromatid breaks during metaphase, and while PAXX-/- B cells undergo CSR at 

normal frequencies, XLF-/- B cells consistently demonstrate a ~50% reduction in CSR efficiency 
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(Kumar V et al. 2016, Liu X et al. 2017). Furthermore, unlike XLF, PAXX does not appear to be 

functionally redundant with ATM or DNA-PKcs: PAXX-/-:ATM-/- mice are phenotypically similar 

to ATM-/- mice and do not exhibit SCID, and inhibition of ATM or DNA-PKcs kinase activity in 

PAXX-/- Abl pre-B cells only has a modest effect on V(D)J recombination, suggesting that PAXX 

possesses a role distinct from that of XLF in NHEJ (Balmus G et al. 2016, Liu X et al. 2017). As 

PAXX had already been described in detail by other groups, we did not follow up on it; however, 

the discovery of PAXX in our screen provided a concrete proof-of-concept that we could identify 

non-core components of the NHEJ pathway in a XLF-deficient setting. 

 

3.4 MRI is Functionally Redundant with XLF 

3.4.1 Lymphocyte Development in MRI-deficient Mice 

MRI+/- mice harboring a MRI- allele in which the entire protein-coding region of the MRI 

gene (encompassing exons 2-4) is replaced by a LacZ cassette were derived from cryopreserved 

sperm supplied by the Knockout Mouse Project (KOMP) Repository and intercrossed to produce 

MRI+/+, MRI+/-, and MRI-/- offspring (Figure 7A-B). In collaboration with the Hybridoma Center 

at Washington University School of Medicine, we raised an Armenian hamster monoclonal IgG3 

antibody (13E10.E12.C10) against murine MRI and verified the loss of MRI protein expression 

in MEFs generated from MRI-/- mice by western blot: the antibody recognized a single ~30-kDa 

band in MRI+/+, but not MRI-/-, MEF lysates (Figure 7C). MRI-/- mice were born in the predicted 

Mendelian ratios and displayed no gross physiological or reproductive abnormalities (Figure 7D 

and data not shown). As compared to their MRI+/+ littermates, 6 week-old MRI-/- mice contained 

similar distributions and numbers of pro-B (B220+CD43+IgM-), pre-B (B220+CD43-IgM-), naive 

B (B220lowCD43-IgM+), and re-circulating B (B220highCD43-IgM+) cells in their bone marrows 
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(Figure 7E-F) as well as double-negative T (CD4-CD8-) and double-positive T (CD4+CD8+) cells 

in their thymuses (Figure 7G-H). There were also no significant differences in the frequencies of 

mature splenic B and T cells between MRI+/+ and MRI-/- mice (Figure 7I-J). Thus, akin to XLF-/-, 

PAXX-/-, H2AX-/-, and 53BP1-/- mice, MRI-/- mice demonstrate no apparent defects in lymphocyte 

development, indicating that the loss of MRI has a negligible impact on V(D)J recombination. 

 

3.4.2 Combined XLF/MRI Deficiency is Embryonically Lethal in Mice 

 To determine whether XLF/MRI double-deficiency would disrupt V(D)J recombination, 

we sought to generate XLF-/-:MRI-/- mice by intercrossing XLF+/-:MRI+/- or XLF+/-:MRI-/- breeding 

pairs. However, we were unable to obtain any viable XLF-/-:MRI-/- progeny from these matings in 

>200 births (Figure 8A-B). Analyses of litters from XLF+/-:MRI-/- intercrosses at embryonic days 

14.5 and 16.5 revealed the presence of XLF-/-:MRI-/- mice at near Mendelian ratios, though these 

mice were considerably smaller in size than their littermates (Figure 8C-D). Moreover, similar to 

Lig4-/-, XRCC4-/-, and XLF-/-:PAXX-/- mice, which all succumb in utero after embryonic day 16.5, 

XLF-/-:MRI-/- exhibited widespread apoptosis of post-mitotic neurons in the cortex and ganglionic 

eminences, as evidenced by cleaved caspase-3 immunostaining, suggesting that the cause of their 

deaths might be related to a critical deficit in NHEJ (Figure 8E) (Frank KM et al. 1998, Gao Y et 

al. 1998, Balmus G et al. 2016, Liu X et al. 2017, Abramowski V et al. 2018). 

 

3.4.3 Combined XLF/MRI Deficiency Inhibits V(D)J End Joining 

 To confirm that the embryonic lethality of XLF-/-:MRI-/- mice arose due to a deficiency in 

NHEJ, we generated MRI-/- Abl pre-B cells from MRI-/- mice and XLF-/-:MRI-/- Abl pre-B cells by 

employing a gRNA to target exon 3 of the MRI gene in XLF-/- pre-B cells (Figure 9A). Like WT 
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and XLF-/- Abl pre-B cells, MRI-/- Abl pre-B cells showed robust GFP expression and efficient SJ 

and CJ formation after imatinib treatment, consistent with our previous data that MRI deficiency 

produces insignificant consequences for V(D)J recombination in mice (Figure 9B-D and 10A-C). 

Conversely, like Lig4-/- Abl pre-B cells, XLF-/-:MRI-/- Abl pre-B cells displayed a severe defect in 

V(D)J recombination, with only ~5-20% of cells able to express GFP at four days post-treatment 

(Figure 9B and 10A). As expected, XLF-/-:MRI-/- Abl pre-B cells accumulated unrepaired SEs and 

CEs, yielding very low levels of SJs and CJs (Figure 9C-D and 10B-C). Thus, XLF-/-:MRI-/- Abl 

pre-B cells are indeed unable to effectively carry out NHEJ, but interestingly, do not demonstrate 

a complete block in V(D)J end joining as with Lig4-/- Abl pre-B cells, suggesting that the absence 

of XLF and MRI, rather than abolishing NHEJ, slows the kinetics of DNA end ligation or allows 

persistent RAG DSBs to be repaired inefficiently through AEJ pathways. To examine the nature 

of these rare junctions, we performed PCRs covering the SJ sequences in WT, MRI-/-, XLF-/-, and 

XLF-/-:MRI-/- Abl pre-B cells and digested the products with the restriction enzyme ApaL1. Intact 

SJs formed by direct RSS-to-RSS links comprise a palindromic site that is recognized by ApaL1 

(Figure 11A). While most of the 200-base pair SJ products from WT, MRI-/-, and XLF-/- Abl pre-

B cells were cleaved by ApaL1 into 100-base pair fragments, the SJ products from XLF-/-:MRI-/- 

Abl pre-B cells were largely resistant to ApaL1 activity, indicating that these SJs are imprecise 

(Figure 11B). Correspondingly, preliminary analyses of SJ sequences from XLF-/-:MRI-/- Abl pre-

B cells revealed deletions of up to ~70 base pairs and the use of 3-4 base pairs of microhomology 

(Figure 11C). However, as NHEJ and AEJ are both capable of generating DNA joins that fit this 

description, we cannot definitively rule out the possibility that these aberrant SJs are the outcome 

of dysregulated NHEJ. A more thorough investigation of MRI function in a true NHEJ-deficient 

setting will be warranted. 
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3.5 Conclusion 

 Based on our hypothesis that XLF deficiency compromises NHEJ to the extent by which 

novel NHEJ factors can be revealed, we ran an unbiased CRISPR/Cas9-based genetic screen for 

hits that would significantly impair V(D)J end joining in XLF-/-, but not necessarily WT, Abl pre-

B cells. The principal challenges of studying V(D)J recombination in a population of developing 

lymphocytes are two-fold. First, RAG DSBs are asynchronously generated and repaired in a pool 

of dividing lymphoid progenitors at one time, making it difficult to acquire clear “snapshots” of 

antigen receptor loci rearrangement in chronological progression. Second, RAG DSBs are made 

randomly (albeit with some preferences) at different combinations of V, D, and J gene segments 

in individual cells, rendering the analyses of V(D)J recombination by sequence-specific methods, 

such as PCR and Southern blotting, nigh impossible to interpret. Our Abl pre-B cell-line system 

allows us not only to derive cells from mice of the desired genotypes, but also to overcome these 

two obstacles: by treating Abl pre-B cells with imatinib, we are able to uniformly arrest them in 

G1 and stimulate V(D)J recombination; moreover, by integrating a V(D)J recombination reporter 

substrate (MGINV) into Abl pre-B cells, we are able to track the efficiency and configurations of 

RAG-mediated gene rearrangement by flow cytometry and Southern blotting, respectively. 

 Here, we identified and validated two additional NHEJ factors, PAXX and MRI, in XLF-/- 

Abl pre-B cells. The loss of PAXX or MRI minimally affects V(D)J end joining in WT Abl pre-

B cells but strongly inhibits the repair of RAG DSBs in XLF-/- Abl pre-B cells. Whereas PAXX-/- 

and MRI-/- mice are phenotypically normal, XLF-/-:PAXX-/- and XLF-/-:MRI-/- mice exhibit prenatal 

lethality in a manner reminiscent of other NHEJ-deficient mice, suggesting that PAXX and MRI 

operate broadly in NHEJ. Unlike ATM, DNA-PKcs, H2AX, 53BP1, and RAG, PAXX and MRI 
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share several structural features in common with XLF: PAXX similarly consists of a N-terminal 

globular head domain, a coiled coil domain, and a disordered C-terminal domain bearing a XLM, 

while MRI also harbors a XLM at its C-terminus (Grundy GJ et al. 2016). However, PAXX has 

been demonstrated to stabilize other NHEJ factors on damaged chromatin – a role different from 

the one proposed for XLF in aligning DNA ends (Ochi T et al. 2015). Furthermore, PAXX is not 

functionally redundant with ATM, implying that it works by a distinct mechanism (Balmus G et 

al. 2016, Liu X et al. 2017). We conjectured that MRI, a hitherto uncharacterized small peptide, 

likewise fulfills a unique activity which helps to enhance the efficiency of NHEJ – a premise that 

will be explored in the next chapter. 
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Figure 1: Generation of a V(D)J recombination reporter cell-line system. (A) Schematic of 

the unrearranged (UR) MGINV V(D)J recombination substrate, its signal end (SE) and coding end 

(CE) intermediates following RAG cleavage, and the resulting signal join (SJ) and coding join 

(CJ) products. The long-terminal repeats (LTR), NheI and XbaI restriction sites, recombination 

signals (RSs, depicted by open and filled triangles), GFP cDNA, Thy1.2 cDNA, and Thy1 (red) 

and GFP (blue) probes are shown. The sizes of fragments generated by NheI or XbaI digests are 

also indicated. (B) Flow cytometric analysis of GFP expression in WT and Lig4-/- Abl pre-B cells 

that were treated with imatinib (Imt) for the indicated lengths of time (days). The percentages of 

GFP+ cells are specified. (C) Southern blot analysis of genomic DNA from cells in (B) that were 

digested with NheI (top) or XbaI (bottom) and hybridized to the Thy1 probe. Bands that correspond 

to UR, SJs, and unrepaired SEs are indicated at the right. (D) Southern blot analysis of genomic 

DNA from cells in (B) that were digested with XbaI and hybridized to the GFP probe. Bands that 

correspond to UR, both SJs and CJs (SJ+CJ), and both SEs and CEs (SE+CE) are indicated at the 

right. Molecular weights (kilobases) are also shown. (E) Western blot analysis of FLAG-tagged 

Cas9 in untreated and doxycycline (Dox)-treated WT and XLF-/- Abl pre-B cells stably transduced 

with a tetracycline-responsive Cas9 expression cassette. β-actin and GAPDH are shown as protein 

loading controls. 
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Figure 2: A CRISPR/Cas9-based genetic screen for novel NHEJ factors. (A) Flowchart of the 

procedure: WT and XLF-/- Abl pre-B cells were infected with a lentiviral gRNA library, cultured 

with doxycycline (Dox) for seven days, and treated with imatinib (Imt) for four days to stimulate 

rearrangement of the MGINV substrate. Cells were then sorted into GFP+ and GFP- populations, 

and read counts of the gRNAs in each population were obtained by next-generation sequencing. 

(B) List of several top scoring hits from the genetic screen in WT (top) and XLF-/- (bottom) Abl 

pre-B cells. The average enrichment of gRNAs in the GFP- population as compared to the GFP+ 

population (expressed as a ratio GFP-/GFP+) for gene is indicated. 
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Figure 3: Combined XLF/PAXX deficiency inhibits V(D)J end joining. (A) Western blot 

analysis of XLF and PAXX in WT, PAXX-/-, XLF-/-, and XLF-/-:PAXX-/-Abl pre-B cells. PAXX-/- 

and XLF-/-:PAXX-/- Abl pre-B cells were created from WT and XLF-/- Abl pre-B cells, respectively, 

using CRISPR/Cas9. β-actin is shown as a protein loading control. (B) Flow cytometric analysis 

of GFP expression in WT, PAXX-/-, XLF-/-, and XLF-/-:PAXX-/- Abl pre-B cells that were treated 

with imatinib (Imt) for the indicated lengths of time (days). (C) Southern blot analysis of genomic 

DNA from cells in (B) that were digested with NheI (top) or XbaI (bottom) and hybridized to the 

Thy1 probe. (D) Southern blot analysis of genomic DNA from cells in (B) that were digested with 

XbaI and hybridized to the GFP probe. Bands corresponding to different MGINV arrangements 

are indicated at the right as described in Figure 1. Molecular weights (kilobases) are also shown. 
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Figure 4: Combined XLF/PAXX deficiency inhibits V(D)J end joining (related to Figure 3). 

Independent clones of WT, PAXX-/-, XLF-/-, and XLF-/-:PAXX-/- Abl pre-B cells distinct from those 

presented in Figure 3 were treated with imatinib (Imt) for the indicated lengths of time (days) and 

assayed by Southern blotting as described in Figure 1. 
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Figure 5: The Ku70/80-binding XLM is essential for PAXX function in XLF-deficient pre-B 

cells. (A) Schematic of the WT PAXX (PAXXWT) and XLM-mutant PAXX (PAXXVF) proteins. 

The three major structural domains of PAXX – the N-terminal globular head domain, the coiled 

coil domain (CC), and the disordered C-terminal domain (CTD) – and the aa substitutions in the 

XLM of PAXXVF are shown. (B) Western blot analysis of Ku70 association with FLAG-HA-

tagged PAXXWT and PAXXVF immunoprecipitated by anti-HA from WT Abl pre-B cell lysates. 

(C) Flow cytometric analysis of GFP expression in XLF-/-:PAXX-/- Abl pre-B cells expressing 

PAXXWT or PAXXVF that were treated with imatinib (Imt) for the indicated lengths of time (days). 

(D) Southern blot analysis of genomic DNA from cells in (C) that were digested with NheI (top) 

or XbaI (bottom) and hybridized to the Thy1 probe. Bands corresponding to different MGINV 

arrangements are indicated at the right as described in Figure 1. Molecular weights (kilobases) are 

also shown. 
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Figure 6: Combined XLF/PAXX deficiency prevents genotoxic DSB repair in lymphocytes. 

(A and C) Representative micrographs of γ-H2AX foci in G1-phase WT, PAXX-/-, XLF-/-, XLF-/-

:PAXX-/-, and Lig4-/- Abl pre-B cells that were untreated or treated with bleocin (A) or etoposide 

(C) and rested in fresh media for 0 or 24 hours. (B and D) Quantification of cells in (A) or (C) 

with ≥5 γ-H2AX foci per nucleus. At least 100 nuclei were scored for each condition. Data shown 

is representative of three replicate experiments. 
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Figure 7: Lymphocyte development in MRI-/- mice. (A) Schematic of the mouse MRI gene (top) 

and the targeted allele in which the entire protein-coding region is replaced by a LacZ cassette 

(bottom). Coding and non-coding regions are depicted as pink and gray boxes, respectively. 

Primers used for genotyping are shown as blue arrows (P1, P2, and P3). (B) PCR analysis of 

genomic DNA from MRI+/+, MRI-/-, and MRI+/- mice using the indicated primer pairs. (C) Western 

blot analysis of MRI in MEFs derived from WT and MRI-/- mice using the 13E10.E12.C10 

monoclonal antibody generated against murine MRI. β-actin is shown as a protein loading control. 

(D) Numbers of live births produced from intercrossing MRI+/- mice. (E) Flow cytometric analysis 

of pro-B (B220+CD43+IgM-), pre-B (B220+CD43-IgM-), immature B (B220lowCD43-IgM+), and 

re-circulating B (B220highCD43-IgM+) cells in the bone marrows (BM) of 6-week old WT and 

MRI-/- littermates. The percentage of cells in each gate is indicated. (F) Quantification of total BM, 

pro-B, pre-B, immature B, and re-circulating B cells per femur. (G) Flow cytometric analysis of 

double-positive (DP, CD4+CD8+), double-negative (DN, CD4-CD8-), and single-positive (SP, 

CD4+CD8- or CD4-CD8+) thymocytes in 6-week old WT and MRI-/- mice. The percentage of cells 

in each quadrant is indicated. (H) Quantification of total, DP, DN, CD4+ SP, and CD8+ SP 

thymocytes. (I) Flow cytometric analysis of mature B (B220+IgM+) and T (CD3+TCRβ+) cells in 

the spleens of 6-week old WT and MRI-/- mice. (J) Quantification of mature B and T cells in the 

spleen. All data are mean ± SEM (n = 5). 
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Figure 8: Combined XLF/MRI deficiency is embryonically lethal in mice. (A) Numbers of live 

births produced from intercrossing XLF+/-:MRI+/- mice. (B) Numbers of live births produced from 

intercrossing XLF+/-:MRI-/- mice. (C) Numbers of mice from XLF+/-:MRI-/- intercrosses at 

embryonic days 14.5 (top) and 16.5 (bottom). (D) Photograph of MRI-/- and XLF-/-:MRI-/- 

littermates at embryonic day 16.5. Scale bar, 1 cm. (E) Representative micrographs of the 

ganglionic eminence (GE, top row) and cortex (bottom row) in XLF+/-:MRI-/- and XLF-/-:MRI-/- 

mice at embryonic days 14.5 and 16.5, respectively, stained with DAPI (blue) and anti-cleaved 

caspase 3 antibody (red). Scale bar, 100 μm. 
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Figure 9: Combined XLF/MRI deficiency inhibits V(D)J end joining. (A) Western blot 

analysis of MRI and XLF in WT, MRI-/-, XLF-/-, and XLF-/-:MRI-/- (generated by CRISPR/Cas9) 

Abl pre-B cells. β-actin is shown as a protein loading control. (B) Flow cytometric analysis of GFP 

expression in WT, MRI-/-, XLF-/-, XLF-/-:MRI-/-, and Lig4-/- Abl pre-B cells that were treated with 

imatinib (Imt) for the indicated lengths of time (days). (C) Southern blot analysis of genomic DNA 

from cells in (B) that were digested with NheI (top) or XbaI (bottom) and hybridized to the Thy1 

probe. Bands that correspond to UR, SJs, and unrepaired SEs are indicated at the right. (D) 

Southern blot analysis of genomic DNA from cells in (B) that were digested with XbaI and 

hybridized to the GFP probe. Bands that correspond to UR, both SJs and CJs (SJ+CJ), both SEs 

and CEs (SE+CE), and either SEs or CEs (SE+CJ or SJ+CE) are indicated at the right. Molecular 

weights (kilobases) are also shown. 
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Figure 10: Combined XLF/MRI deficiency inhibits V(D)J end joining (related to Figure 9). 

(A) Independent clones of WT, MRI-/-, XLF-/-, and XLF-/-:MRI-/- Abl pre-B cells distinct from those 

presented in Figure 9 were treated with imatinib (Imt) for the indicated lengths of time (days) and 

assayed for GFP expression by flow cytometry (B) Southern blot analysis of genomic DNA from 

cells in (A) that were digested with NheI (top) or XbaI (bottom) and hybridized to the Thy1 probe. 

(C) Southern blot analysis of genomic DNA from cells in (A) that were digested with XbaI and 

hybridized to the GFP probe. Bands corresponding to different MGINV arrangements are indicated 

at the right as described in Figure 1. Molecular weights (kilobases) are also shown. 
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Figure 11: Imprecise SJ formation in XLF/MRI double-deficient lymphocytes. (A) Schematic 

of an intact SJ (left), which forms an ApaL1 restriction site at its junction, and an imprecise SJ 

(right), which contains a deletion that destroys the ApaL1 restriction site. PCR products covering 

an intact SJ can be digested by ApaL1 to yield two ~100-base pair fragments, whereas PCR 

products covering an imprecise SJ are resistant to ApaL1 cleavage. (B) ApaL1 digestion of PCR 

products spanning the SJ sequences in WT, MRI-/-, XLF-/-, and XLF-/-:MRI-/- (two independent 

clones) Abl pre-B cells that were treated with imatinib for four days. (C) PCR sequencing of SJs 

formed in XLF-/-:MRI-/- Abl pre-B cells (XM).  A reference representing an intact SJ sequence is 

provided (Ref). The RSS heptamers that are joined together at a SJ are bolded, and nucleotides 

that constitute potential microhomologies are underlined. 
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Chapter 4: MRI is a Multivalent NHEJ Adaptor 

4.1 Background 

 Originally identified in a mutagenesis screen as a factor that enables retroviral integration 

into mammalian cells, MRI has since been increasingly implicated in the regulation of NHEJ, but 

its function remains largely unknown (Agarwal S et al. 2006). In humans, MRI is encoded by the 

C7orf49 gene and has three isoforms: MRI-1 produces the full-length, 157 aa-long protein that is 

highly conserved among mammalian species, while MRI-2 and MRI-3 generate shorter peptides 

that lack the first ~100 aa from the N-terminus and last ~50 aa from the C-terminus, respectively, 

of MRI-1 (Agarwal S et al. 2006, Arnoult N et al. 2017). MRI-1 appears to be the dominant form 

of MRI since it is expressed six to seven times more abundantly than MRI-2, whereas MRI-3 is 

translated at undetectable levels, as measured by western blot analysis of endogenously epitope-

tagged MRI isoforms in the HT1080-6TG human fibrosarcoma cell-line (Arnoult N et al. 2017). 

On the other hand, in mice, MRI is encoded by the 3110062M04Rik gene on chromosome 6 and 

has two splice variants, the first of which makes a 157 aa-long product that is homologous to the 

one in humans, while the second yields a 184 aa-long product that is identical to the first but with 

a ~20-aa insertion at position 74. Hereafter, we will focus on the 157 aa-long MRI peptide, as its 

transcript is the most evolutionarily preserved, and thus likely the most functionally relevant, of 

all the known isoforms. Available RNA-seq and protein expression data from the Human Protein 

Atlas (https://www.proteinatlas.org) the EBI Expression Atlas (https://www.ebi.ac.uk/gxa) reveal 

that MRI is ubiquitously present in different human and mouse tissues, with modest enrichment 

in lymphoid (bone marrow, spleen, thymus) and reproductive organs. Similarly, our preliminary 

analyses by western blot show that MRI protein expression is relatively higher in the spleens and 

https://www.proteinatlas.org/
https://www.ebi.ac.uk/gxa
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thymuses of adult WT mice (Figure 12). 

 Human MRI has been demonstrated to interact directly with Ku80 through a 16-base pair 

sequence (KBM) at its N-terminus that is similarly found in other Ku70/80-binding factors, such 

as the histone chaperone APLF and the DNA helicase WRN (Slavoff SA et al. 2014, Grundy GJ 

et al. 2016). Moreover, MRI forms complexes with DNA and Ku70/80 in vitro and can stimulate 

the ligation of radiolabeled DNA duplexes in Ramos (Burkitt’s lymphoma) cell extracts in both a 

DNA-PKcs- and XRCC4-dependent manner, suggesting that it functions to promote DSB repair 

by NHEJ, a notion consistent with its previously described role in facilitating retroviral infection, 

as integration of foreign DNA into the host genome necessitates the generation and resolution of 

a DSB intermediate, usually via NHEJ (Skalka AM and Ratz RA 2005, Slavoff SA et al. 2014). 

However, a recent study has disputed this and proposed that MRI, which the authors renamed as 

cell cycle regulator of NHEJ (CYREN), specifically inhibits NHEJ during the S/G2 phases of the 

cell cycle by sequestering Ku70/80 from DSBs, thus biasing repair pathway choice towards HR: 

strikingly, depletion of MRI in HT1080 6TG cells with deprotected (shelterin-free) telomeres led 

to increased chromatid-type (S/G2), but not chromosome-type (G1), fusions mediated by NHEJ 

(Arnoult N et al. 2017). The authors reported that although MRI expression remained unchanged 

throughout the cell cycle, the MRI-Ku70/80 interaction peaked during S/G2, prompting them to 

conclude that MRI acts as a negative regulator of Ku70/80 activity; furthermore, by sequencing 

across different types of Cas9-induced DSBs in WT and MRI-/- cells, they found that the lengths 

of deletions at both 5’ and 3’ DNA overhangs were increased in the absence of MRI, suggesting 

that MRI also prevents the processing of single-stranded DNA ends to maintain a favorable local 

environment for HR (Arnoult N et al. 2017). On the contrary, in this chapter, we describe a novel 

role for MRI in augmenting the efficiency of NHEJ during G1. 



69 

 

 

4.2 MRI Promotes NHEJ-mediated DSB Repair 

4.2.1 MRI Localizes to Sites of DNA Damage 

 To trace the localization of MRI in vivo, we generated a GFP-tagged MRI fusion protein 

(GFP-MRI) construct and expressed it in MRI-/- MEFs. GFP-MRI showed a predominantly pan-

cellular distribution, as expected of small proteins <30 kDa, which can diffusely freely between 

the nucleus and cytoplasm through nuclear pore complexes (based on its peptide length, MRI has 

a predicted size of 17-kDa but runs at ~30-kDa on SDS-PAGE due to its high content of basic aa 

residues giving it an overall net positive charge) (Figure 13A-B, no IR) (Timney BL et al. 2016). 

However, MRI-GFP rapidly localized to sites of DNA damage induced by laser microirradiation 

within a minute and remained there in discrete foci for up to 45 minutes (Figure 13A-B, post-IR). 

Additionally, GFP-MRI localization coincided physically and kinetically with that of Ku80-RFP 

and occurred robustly even in serum-starved G1-phase MEFs, suggesting that MRI is involved in 

NHEJ-mediated repair at laser-induced DSBs (Figure 13A-C). 

 

4.2.2 MRI Deficiency Compromises NHEJ 

 To verify that MRI functions in NHEJ, we performed survival assays on WT and MRI-/- 

MEFs exposed to different doses of IR. MRI-/- MEFs demonstrated increased radiosensitivity as 

compared to WT MEFs, though not to the same degree as XLF-/- MEFs, confirming that MRI is 

indeed required for DSB repair in mammalian cells (Figure 14A-B). Moreover, MRI-/- splenic B 

cells exhibited moderate, but consistent, defects in immunoglobulin CSR after stimulation with 

either lipopolysaccharide (LPS) or anti-CD40 plus interleukin-4 (IL-4) in vitro (Figure 15A-D). 

The absence of MRI in these cells did not affect AID expression or cell proliferation, suggesting 
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that the block in CSR had arisen during the repair of AID-induced DSBs – a step which is largely 

carried out through NHEJ (Figure 15E-F). Together, these results indicate that MRI plays a role 

specifically in NHEJ that helps to enhance the efficiency of the reaction. 

 

4.3 MRI Forms Multimeric DDR Complexes 

4.3.1 MRI Possesses Adaptor Features 

 The N- and C-terminal regions, including the KBM (aa 4-19) and XLM (aa 147-157), of 

MRI are highly conserved across species, especially among mammals, while the central region is 

relatively non-conserved (Figure 16A). In fact, the amino acid composition of the central region 

suggests that MRI is an intrinsically disordered peptide, which, with its conserved termini, could 

potentially act as an adaptor to bind and nucleate heterogeneous protein complexes (Wright PE 

and Dyson HJ 2015). To test this hypothesis, we generated recombinant mouse MRI from E. coli 

and analyzed the protein by hydrogen-deuterium (H/D) exchange-mass spectrometry (HDX-MS) 

in collaboration with Dr. Gaya Amarasinghe’s lab at Washington University School of Medicine 

(Keppel TR et al. 2015). Pepsin digestion yielded peptic peptides encompassing 85% of the MRI 

protein; these peptides all exhibited high levels, averaging 50-100%, of deuterium uptake (Figure 

16B). Kinetic analyses revealed that most of the peptides spanning the entire length of MRI had 

close to maximal deuterium uptake at the earliest time point observed (10 seconds) (Figure 16C). 

Collectively, these data demonstrate that MRI is intrinsically disordered in solution. Notably, the 

N-terminal peptides, including aa 1-25 which comprise the KBM, were more protected from H/D 

exchange (50-75%) than the rest, suggestive of a tendency to adopt secondary structures (Figure 

16B-C). Indeed, while circular dichroism (CD) spectroscopy also showed that MRI is disordered, 

the addition of trifluoroethanol (TFE), a helix-inducing crowding agent, unexpectedly resulted in 
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CD spectra with helical characteristics, implicating that MRI has the potential to establish helical 

structures (Figure 16D) (Lopes JL et al. 2014). Finally, size-exclusion chromatography coupled 

with multi-angle light scattering (SEC-MALS) revealed that, in solution, MBP-tagged MRI can 

exist as a monomer, dimer, or multimer (Figure 16E). We reasoned that these structural features 

of MRI make it well-suited to recruiting and stabilizing multi-protein complexes during NHEJ. 

 

4.3.2 MRI Binds Distinct DDR Proteins at Both Termini 

 Since MRI has physical properties resembling those of an adaptor, we sought to elucidate 

its function by determining its binding partners. To this end, we carried out immunoprecipitation 

coupled with mass spectrometry (IP-MS) analysis to identify proteins that associate with FLAG-

HA-tagged versions of full-length MRI (MRI), MRI with a deletion of 17 N-terminal aa residues 

comprising the KBM (MRIΔN), and MRI with a deletion of 15 C-terminal aa residues comprising 

the XLM (MRIΔC) in WT Abl pre-B cells (Figure 16A and 17A-B). Remarkably, our IP-MS data 

revealed that MRI interacts with a diverse set of DDR proteins, including members of the NHEJ 

and ATM signaling pathways, preferentially at either its N- or C-terminus (Figure 17C and Table 

1). Immunoprecipitation (IP) of endogenous MRI from WT Abl pre-B cell nuclear extracts using 

our anti-mouse MRI antibody subsequently confirmed many of these associations (Figure 17D). 

To further validate our IP-MS results, we expressed FLAG-HA-tagged MRI, MRIΔN, MRIΔC, or 

MRIΔNΔC in WT Abl pre-B cells and performed anti-HA IP of these proteins followed by western 

blotting. The canonical NHEJ factors, such as DNA-PKcs, Ku70/80, XLF, PAXX, and XRCC4, 

were pulled down with MRI or MRIΔC, but not with MRIΔN or MRIΔNΔC, indicating that they are 

bound to MRI through its N-terminal KBM (Figure 17E). Conversely, ATM, its substrate KAP-

1, and all three components of the MRN complex (Mre11, RAD50, and Nbs1) were pulled down 
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with MRI or MRIΔN, but not with MRIΔC or MRIΔNΔC, indicating that they interact with MRI via 

its C-terminal XLM (Figure 17E). Notably, while MRI associates with ATM and its DSB sensor 

MRN and with DNA-PKcs and its DSB sensor Ku70/80, it does not appear to bind to the kinase 

ATR or its DSB sensor ATRIP, which are activated in response to replicative DNA damage (e.g. 

stalled or reversed replication forks), suggesting that MRI operates specifically in NHEJ (Figure 

17F). Interestingly, although MRI, XLF, and PAXX all possess C-terminal XLMs and co-IP with 

the NHEJ factors DNA-PKcs, Ku70/80, and XRCC4, only MRI binds to ATM and MRN (Figure 

17F). Instead, analogous to the KBM in MRI, the XLMs in XLF and PAXX had been previously 

shown to mediate their interactions with Ku70/80 (Yano K et al. 2011, Ochi T et al. 2015, Xing 

M et al. 2015). Therefore, like an adaptor, MRI can bind to, and potentially link together, distinct 

groups of proteins at its termini and likely plays a role separate from those of XLF and PAXX in 

NHEJ (see Section 4.4.1). 

 

4.3.3 MRI Multi-protein Complexes 

 We explored the prospect that MRI could nucleate multimeric protein complexes in vivo 

by several different approaches. Since Ku70/80 binds to almost all of the known canonical NHEJ 

factors, we wondered whether it would be required for promoting any of the protein interactions 

with MRI. To address this question, we expressed FLAG-HA-tagged MRI in Ku70-/- Abl pre-B 

cells that are deficient in both Ku70 and Ku80 (as Ku monomers are unstable by themselves) and 

performed anti-HA IP to look at MRI-associated proteins in these cells. Remarkably, all the MRI 

N-terminal interactions, including those with DNA-PKcs, XLF, PAXX, and XRCC4, were lost 

in the absence of Ku70/80, while the C-terminal interactions with ATM, MRN, and KAP-1 were 

unperturbed (Figure 18A). Hence, MRI can form complexes with Ku70/80 and at least one other 



73 

 

NHEJ factor at its N-terminus. To extend our findings, we correspondingly pulled down FLAG-

HA-tagged MRI in Mre11A/A Abl pre-B cells, which express a hypomorphic Mre11 product that 

is present at extremely low levels (RAD50 and Nbs1 are similarly destabilized when not part of 

the MRN complex) (Theunissen JW et al. 2003). However, MRN deficiency did not noticeably 

affect any MRI protein interactions, including that with ATM, whose recruitment to chromatin is 

essentially dependent on MRN (Figure 18A). In collaboration with Dr. Tanya Paull’s lab at the 

University of Texas at Austin, we found that the MRI C-terminus binds directly to ATM in vitro, 

as removal of the XLM abolished this association, in agreement with our IP experiments (Figure 

18B). The lack of DNA-PKcs or ATM also did not alter MRI protein interactions, indicating that 

DNA-PKcs is linked to MRI through Ku70/80 but not vice versa and that ATM and MRN could 

bind to MRI separately of one another, thereby raising the intriguing possibility that MRI exists 

in different protein complexes mediating distinct functions (Figure 18C). 

 To assess whether MRI can simultaneously interact with proteins at its N- and C-termini, 

we performed sequential IPs of Ku80 and MRI by expressing both FLAG-tagged Ku80 and HA-

tagged MRI in MRI-/- Abl pre-B cells, purifying Ku80 complexes by anti-FLAG IP, and carrying 

out anti-HA IP on the Ku80 complexes to obtain Ku80 complexes that also contain MRI (Figure 

18C). Western blot analysis revealed the presence of ATM in these Ku80/MRI complexes, along 

with DNA-PKcs and Ku70, indicating that MRI can concomitantly associate with Ku70/80 and 

DNA-PKcs at its N-terminus and with ATM at its C-terminus (Figure 18D). Consistent with this 

notion, size-exclusion chromatography (SEC) showed that MRI protein complexes in Abl pre-B 

cells migrated in fractions ranging from ~100 kDa to >1 mDa in size, with MRI itself being most 

abundant in the 200-kDa fractions with Ku70 only and in the >1-mDa fractions with DNA-PKcs, 

ATM, Mre11 (presumably MRN), and Ku70 (Figure 18E). Taken together, these results suggest 
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that MRI forms diverse multimeric complexes mediated through cis- (e.g. Ku70/80 and XRCC4) 

and trans- (Ku70/80 and ATM) interactions at its termini. 

 

4.3.4 MRI Function Depends on Both the KBM and XLM 

 To clarify the requirements for the MRI N- and C-terminal protein interactions in NHEJ, 

we assayed V(D)J recombination in XLF-/-:MRI-/- Abl pre-B cells reconstituted with XLF, MRI, 

MRIΔN, MRIΔC, or MRIΔNΔC. Expression of XLF or MRI fully restored V(D)J recombination in 

XLF-/-:MRI-/- Abl pre-B cells, as evidenced by the significantly increased percentages of GFP-

positive after imatinib treatment (Figure 19A). Southern blot analysis confirmed that these cells 

were able to form SJs and CJs with barely any signs of unrepaired RAG DSBs (Figure 19B-C). 

In contrast, expression of MRIΔN or MRIΔC only partially reversed the V(D)J end joining defect, 

whereas expression of MRIΔNΔC had no effect at all (Figure 19A). Indeed, XLF-/-:MRI-/- Abl pre-B 

cells transduced with the MRIΔN, MRIΔC, or MRIΔNΔC constructs still accumulated large amounts 

(albeit reduced with MRIΔN or MRIΔC) of free SEs and CEs following imatinib treatment (Figure 

19B-C). Therefore, we conclude that the protein interactions maintained by the N-terminal KBM 

and C-terminal XLM are necessary for distinct functions of MRI in NHEJ such that the loss of a 

terminal motif cannot be compensated for by the other. 

 

4.4 The Functional Role of MRI in NHEJ 

4.4.1 MRI is Functionally Distinct from XLF 

 Since MRI has a XLM in its C-terminus like XLF and operates redundantly with XLF in 

NHEJ, we asked whether MRI and XLF perform overlapping activities in DSB repair, reasoning 

that if they did, then the requirements for efficient V(D)J end joining should be similar in XLF-/- 
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and MRI-/- Abl pre-B cells. However, while ATM kinase inhibition blocked V(D)J recombination 

in XLF-/- Abl pre-B cells as previously described, it had only similarly modest effects on WT and 

MRI-/- Abl pre-B cells (Figure 20A) (Zha S et al. 2011). Indeed, in contrast to XLF-/-:ATM-/- mice, 

which present with a SCID phenotype, MRI-/-:ATM-/- mice displayed minor defects in lymphocyte 

development resembling those of ATM-/- mice, clearly demonstrating that MRI, unlike XLF, does 

not function redundantly with ATM signaling (data not shown) (Zha S et al. 2011). Likewise, we 

and others had established that XLF/PAXX double-deficiency greatly impairs V(D)J end joining 

in lymphocytes (Balmus G et al. 2016, Kumar V et al. 2016, Lescale C et al. 2016, Tadi SK et al. 

2016, Hung PJ et al. 2017, Liu X et al. 2017, Abramowski V et al. 2018). As PAXX also bears a 

C-terminal XLM, we thought it would be more probable that MRI and PAXX carry out the same 

general function which can compensate for XLF. To test this possibility, we used CRISPR/Cas9 

to excise the entire PAXX coding region in MRI-/- Abl pre-B cells to generate MRI-/-:PAXX-/- Abl 

pre-B cells (Figure 20B-C). However, whereas XLF-/-:PAXX-/- Abl pre-B cells exhibited a severe 

block in V(D)J recombination, MRI-/-:PAXX-/- Abl pre-B cells were able to rearrange the MGINV 

substrate as efficiently as WT, MRI-/-, and PAXX-/- Abl pre-B cells following imatinib treatment 

(Figure 20D). Moreover, while unrepaired SEs and CEs were readily detected in XLF-/-:PAXX-/- 

Abl pre-B cells, there were no apparent indications of residual RAG DSBs in MRI-/-:PAXX-/- Abl 

pre-B cells at four days post-treatment, as determined by Southern blot analysis (Figure 20E-G). 

Thus, MRI-/- Abl pre-B cells do not share the dependencies of XLF-/- Abl pre-B cells on ATM and 

PAXX, suggesting that MRI has unique functions that distinguish it from XLF in NHEJ. 

 

4.4.2 MRI Deficiency Does Not Impair DDR Signaling 

 Since MRI interacts with the two major DDR kinases ATM and DNA-PKcs, we surmised 
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that it might play a role in regulating the DDR signaling pathway. To explore this hypothesis, we 

irradiated G1-phase WT and MRI-/- Abl pre-B cells and analyzed by western blot the ATM- and 

DNA-PKcs-dependent phosphorylations of H2AX at serine 139 (γ-H2AX) and KAP-1 at serine 

824; however, there were no significant differences in the induction or resolution of γ-H2AX and 

phospho-KAP-1 signals between WT and MRI-/- Abl pre-B cells (Figure 21A-C). Similar results 

were also observed for WT and MRI-/- MEFs, indicating that the absence of MRI has no effect on 

ATM or DNA-PKcs activity, though our assay is admittedly limited to these two readouts due to 

the lack of specific antibodies which can detect DNA damage-induced phosphorylation events in 

mouse cells (data not shown). We therefore looked at another clear outcome of ATM activation: 

the enforcement of the G2/M checkpoint (Xu B et al. 2001). Prior to irradiation, the frequencies 

of WT, MRI-/-, and ATM-/- Abl pre-B cells entering mitosis were comparable (~2%), as measured 

by flow cytometric analysis of total DNA content and phospho-histone H3 (at serine 10) (Figure 

21D). After being exposed to a low dose of IR, MRI-/- Abl pre-B cells, like WT Abl pre-B cells, 

exhibited a robust G2/M checkpoint, with considerably less percentages of cells able to undergo 

mitosis, while ATM-/- Abl pre-B cells showed little to no change in the proportion of mitotic cells, 

signifying that the ATM-dependent G2/M checkpoint is not disrupted by the loss of MRI (Figure 

21D). Taken together, these observations suggest that MRI, like XLF and PAXX, is not required 

for the initiation or transduction of DDR signaling in mammalian cells (Zha S et al. 2011, Liu X 

et al. 2017). 

 

4.4.3 MRI Promotes the Association of DDR Proteins on Chromatin 

 Since MRI interacts with the DSB sensors Ku70/80 and MRN, which bind to DNA ends 

and subsequently enlist other DDR proteins to chromatin, we speculated that MRI could function 
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in the recruitment or retention of its associated factors at DSBs. To examine this possibility, we 

isolated chromatin fractions from G1-phase WT and MRI-/- Abl pre-B cells before and after being 

exposed to IR. Western blot analysis revealed that MRI deficiency markedly impaired the ability 

of DNA-PKcs, Ku70, XLF, PAXX, XRCC4, and MRN to assemble on chromatin in response to 

DNA damage without affecting the overall stability of these proteins (Figure 22A). On the other 

hand, MRI deficiency did not affect the association of MDC1 with chromatin. This could be due 

to the fact that, unlike the other mentioned DDR proteins, MDC1 spreads extensively away from 

the site of the lesion, so that the loss of MDC1 locally at DSBs has negligible impact on the total 

amount of MDC1 on chromatin. It is equally probable that not all DDR proteins require MRI for 

their engagement with DNA: in this regard, MDC1 binds directly to γ-H2AX and can be tethered 

to chromatin through this interaction alone (Stucki M et al. 2005). Consistent with our chromatin 

fractionation results, Ku70-GFP showed diminished localization to laser-induced DSBs in MRI-/- 

MEFs as compared to WT MEFs (Figure 22B). We conclude that MRI helps to retain other DDR 

proteins, including the core NHEJ factors Ku70/80 and XRCC4, near DSBs to facilitate efficient 

NHEJ (discussed below). 

 

4.5 Conclusion 

 Although MRI has been most recently implicated as a S/G2-specific inhibitor of NHEJ in 

a human fibrosarcoma cell-lines with deprotected telomeres, we find here that it promotes NHEJ-

mediated DSB repair in G1-phase mouse lymphocytes and MEFs, as highlighted by several key 

lines of experimental evidence. First, as we had shown in the previous chapter, MRI is necessary 

for V(D)J end joining in XLF-/- Abl pre-B cells, indicating it is essential for NHEJ in suboptimal 

settings. Moreover, XLF-/-:MRI-/- mice display an embryonically lethal phenotype reminiscent of 
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those presented by other NHEJ-deficient mice. Second, loss of MRI in MEFs leads to increased 

radiosensitivity and in naive B cells leads to a modest reduction in CSR efficiency, both of which 

are hallmarks of defective NHEJ. Third, MRI interacts with diverse DDR factors, including those 

involved in NHEJ and ATM signaling, at each of its termini and thus promotes the association of 

these proteins with chromatin at DSBs. The N- and C-terminal protein interactions are distinctly 

required for MRI function in NHEJ, as MRI mutants lacking either the KBM or XLM could only 

partially restore V(D)J end joining in XLF-/-:MRI-/- Abl pre-B cells. We propose a model in which 

proteins bound to MRI at one of its termini are stabilized on DNA via the chromatin associations 

formed by proteins at the other terminus of MRI (Figure 22C). Thus, by means of its various cis- 

and trans- protein interactions, MRI can increase the avidity of its binding partners for chromatin 

and nucleate the protein components necessary for efficient DSB repair. How this is achieved in 

the context of DNA damage and its implications for the regulation of NHEJ is an emerging topic 

of interest in our lab. We remain open to the scenario that MRI could perform opposing activities 

in G1 and S/G2, and we are currently further investigating this possibility by assaying the repair 

of restriction enzyme-induced DSBs in G1- versus G2-phase cells. Alternatively, MRI may play 

different roles at RAG and genotoxic DSBs than at uncapped telomeres. We will provide a more 

thorough discussion of this discrepancy in the next chapter. 
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Figure 12: MRI protein expression in mouse tissues. Western blot analysis of MRI in the 

indicated mouse tissue lysates. Equal amounts of protein, as determined by Bradford assay, were 

loaded into each lane. β-actin is shown as an intended protein loading control, though it is clearly 

expressed at varying levels with different post-translational modifications in each tissue. This is 

preliminary data that we are currently trying to optimize. 
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Figure 13: MRI is recruited to DSBs. (A and B) Representative time-lapse micrographs of MRI-

GFP and Ku80-RFP recruitment to a site of laser-induced DNA damage (designated by a yellow 

arrow) in MRI-/- MEFs at the indicated times post-damage (minutes). The dotted lines mark the 

nuclear boundaries. (C) Time-lapse micrographs of MRI-GFP localization to a laser-induced DNA 

damage site in serum-starved MRI-/- MEFs (top); flow cytometric analysis of cell cycle phase, as 

indicated by DNA content, in serum-starved MEFs (bottom). 
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Figure 14: MRI deficiency leads to increased radiosensitivity in MEFs. (A and B) Percent 

survival of WT, MRI-/-, and XLF-/- MEFs four days after exposure to the indicated doses of IR, as 

determined by PrestoBlue reagent. Cell-lines derived from different mice are shown in each panel. 

Data are mean ± SEM (n = 3). 
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Figure 15: MRI-deficient B cells exhibit a CSR defect. (A) Flow cytometric analysis of IgG2b 

class-switching in WT and MRI-/- CD43- splenic B cells stimulated with LPS for 3-4 days. (B) 

Quantification of IgG2b+ cells after stimulation with LPS for the indicated lengths of time. Data 

are mean ± SEM (n = 6). * P <0.05, ** P <0.01, *** P <0.005. (C) Flow cytometric analysis of 

IgG1 class-switching in WT and MRI-/- CD43- splenic B cells stimulated with anti-CD40 and IL-

4 for 3-4 days. (D) Quantification of IgG1+ cells after stimulation with anti-CD40 and IL-4 for the 

indicated lengths of time (n = 4). (E) Western blot analyses of AID in WT and MRI-/- B cells after 

stimulation with LPS for four days. β-actin is shown as a protein loading control. (F) Flow 

cytometric analysis of CFSE dilution in WT and MRI-/- B cells that were stimulated with LPS for 

the indicated lengths of time. The Day 1 histogram (red) is provided at each time point for reference. 
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Figure 16: MRI has structural features of an adaptor. (A) Alignment of the MRI protein 

sequence across different species. The KBM and XLM are indicated by red and green lines, 

respectively. The black arrows specify the positions of the aa truncations in MRI∆N and MRI∆C 

(mentioned later in the text). Conserved aa residues are shaded in black. (B) Hydrogen-deuterium 

exchange dynamics of MRI. Bars underlining the aa sequence indicate the peptide fragments 

resolved by mass spectrometry. Numbers displayed in each bar represent the average deuterium 

percentage over seven incubation times, standard deviation, and peptide charge, respectively. The 

color code represents the percentage of average deuterium uptake (see legend). (C) Representative 

deuterium uptake curves for select peptic MRI peptides over seven time points (10, 30, 60, 120, 

900, 3600, and 14400 seconds). (D) Circular dichroism uptake measurements of the mean residue 

ellipticity for MRI in the absence (black) or presence of 5% (red), 10% (green), 25% (blue), or 

50% (cyan) TFE. (E) Analysis by SEC-MALS reveals that MRI elutes as three species: 5,550 ± 

16 kDa (multimer, Mu), 111 ± 7.8 kDa (dimer, D), and 62.1 ± 3.7 kDa (monomer, Mo). Data 

shown are representative of at least three independent experiments. 
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Figure 17: MRI interacts with diverse DDR proteins at its N- and C-termini. (A) Schematic 

of the MRI, MRI∆N, MRI∆C, and MRI∆N∆C proteins. The KBM (red box) and XLM (green box) are 

indicated. (B) Western blot analysis of retrovirally expressed FLAG-HA-tagged MRI, MRI∆N, 

MRI∆C, and MRI∆N∆C in XLF-/-:MRI-/- Abl pre-B cells using anti-FLAG. Ku80 is shown as a protein 

loading control. (C) Scatter plots comparing the total numbers of peptides from MRI-associated 

proteins in WT Abl pre-B cells expressing MRI versus MRI∆N (left plot) or MRI∆C (right plot), as 

determined by mass spectrometry. (D) Western blot analysis of DDR proteins that co-

immunoprecipitated with endogenous MRI in WT Abl pre-B cell nuclear extract using the 

13E10.E12.C10 anti-MRI antibody. (E) Western blot analysis of DDR proteins that co-

immunoprecipitated with FLAG-HA-tagged MRI, MRI∆N, MRI∆C, and MRI∆N∆C in WT Abl pre-

B cell nuclear extract using anti-HA. (F) Western blot analysis of DDR proteins that co-

immunoprecipitated with FLAG-HA-tagged MRI, PAXX, and XLF in WT Abl pre-B cell nuclear 

extract using anti-HA. 
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Figure 18: MRI forms multi-protein complexes. (A) Western blot analysis of DDR proteins that 

co-immunoprecipitated with FLAG-HA-tagged MRI in WT, Ku70-/-, and Mre11A/A Abl pre-B cell 

nuclear extracts using anti-HA. (B) Western blot analysis of purified recombinant biotin-FLAG-

ATM (bio-F-ATM) co-immunoprecipitated with 50 nM, 100 nM, or 200 nM of MBP-tagged 

human MRI, MRI∆N, and MRI∆C proteins. (C) Western blot analysis of DDR proteins that co-

immunoprecipitated with FLAG-HA-tagged MRI in WT, DNA-PKcs-/-, and ATM-/- Abl pre-B cell 

nuclear extracts using anti-HA. (D) Schematic of sequential immunoprecipitations of MRI 

followed by Ku80 in cells expressing HA-MRI and FLAG-Ku80 (left). Western blot analysis of 

ATM, DNA-PKcs, Ku70, FLAG-Ku80, and HA-MRI from MRI-/- Abl pre-B cell nuclear extract 

after first immunoprecipitating with anti-HA (Input HA IP)  and then immunoprecipitating with 

anti-FLAG or an IgG isotype control (right). (E) Western blot analysis of DDR proteins that 

associated with FLAG-purified MRI in different-sized fractions separated by a sucrose gradient 

column. Molecular weights of known markers (200 kDa and 670 kDa) are indicated. 
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Figure 19: The N- and C-termini of MRI are both required for its function in NHEJ. (A) 

Flow cytometric analysis of GFP expression in XLF-/-:MRI-/- Abl pre-B cells transduced with MRI, 

MRI∆N, MRI∆C, MRI∆N∆C, or XLF and treated with imatinib (Imt) for the indicated lengths of time 

(days). (B) Southern blot analysis of genomic DNA from cells in (A) that were digested with NheI 

(top) or XbaI (bottom) and hybridized to the Thy1 probe. (C) Southern blot analysis of genomic 

DNA from cells in (A) that were digested with XbaI and hybridized to the GFP probe. Bands 

corresponding to different MGINV arrangements are indicated at the right as described in Figure 

1. Molecular weights (kilobases) are also shown. 
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Figure 20: MRI is not functionally redundant with ATM or PAXX in NHEJ. (A) Flow 

cytometric analysis of GFP expression in WT, MRI-/-, and XLF-/- Abl pre-B cells that were treated 

with imatinib (Imt) in the absence or presence of an ATM kinase inhibitor KU55933 (ATMi) for 

four days. (B) Schematic of the PAXX knockout strategy using CRISPR/Cas9 with a pair of gRNAs 

flanking the entire PAXX gene. Primers used for screening are shown as blue arrows (P1 and P2). 

(C) PCR analysis of genomic DNA from MRI-/-:PAXX+/+ (parent line), MRI-/-:PAXX+/-, and MRI-/-

:PAXX-/- Abl pre-B cells using primers P1 and P2. (D) Western blot analysis of MRI and PAXX 

in WT, MRI-/-, PAXX-/-, and MRI-/-:PAXX-/- Abl pre-B cells. β-actin is shown as a protein loading 

control. (E) Flow cytometric analysis of GFP expression in WT, MRI-/-, PAXX-/-, MRI-/-:PAXX-/-, 

and XLF-/-:PAXX-/- Abl pre-B cells that were treated with imatinib (Imt) for the indicated lengths 

of time (days). (F) Southern blot analysis of genomic DNA from cells in (E) that were digested 

with NheI (top) or XbaI (bottom) and hybridized to the Thy1 probe. (G) Southern blot analysis of 

genomic DNA from cells in (E) that were digested with XbaI and hybridized to the GFP probe. 

Bands corresponding to different MGINV arrangements are indicated as described in Figure 1. 

Molecular weights (kilobases) are also shown. 
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Figure 21: MRI deficiency does not impair DDR signaling. (A and B)  Western blot analysis 

of DDR signaling events γ-H2AX and phospho-KAP-1 in G1-phase WT and MRI-/- Abl pre-B cells 

at the indicated lengths of time (hours) after exposure to 1 Gy of IR. WT and MRI-/- Abl pre-B cells 

generated from different mice are shown in each panel. (C) Western blot analysis of γ-H2AX and 

phospho-KAP-1 in G1-phase WT and MRI-/- Abl pre-B cells 30 minutes after exposure to the 

indicated doses of IR. (D) Flow cytometric analysis of mitotic phase (indicated by the gates) WT 

and MRI-/- Abl pre-B cells before and one hour after exposure to 0.5 Gy of IR. 
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Figure 22: MRI promotes the retention of DDR proteins at DSBs. (A) Western blot analysis 

of DDR proteins in the whole-cell extracts and chromatin fractions of G1-arrested (with imatinib) 

WT and MRI-/- Abl pre-B cells at the indicated times (hours) after exposure to 10 Gy of IR or no 

IR (–). (B) Representative micrographs of GFP-Ku70 recruitment to a laser-induced DNA damage 

site (designated by a yellow arrow) in WT and MRI-/- MEFs prior to damage (–) or 1 minute post-

damage (1 min). The relative fluorescent intensities of GFP-Ku70 foci in these cells were then 

quantified (bottom histogram). Data are mean ± SEM. >20 cells of each genotype were analyzed 

in two independent experiments. * P <0.05.  (C) Model of how MRI can increase the avidity of its 

associated DDR proteins for chromatin at a DSB. 
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Gene 
MW 

(kDa) 
# peptides  

(MRI) 
# peptides 

(MRIΔN) 
# peptides 

(MRIΔC) 
MRI / 

MRIΔN 
MRI / 

MRIΔC 

Mthfd1l 105.66 390 615 487 0.63 0.80 

Myo18a 232.61 235 298 373 0.79 0.63 

Rad50 153.39 229 214 73 1.07 3.14 

Atm 349.2 185 189 39 0.98 4.74 

Setx 297.4 156 171 176 0.91 0.89 

Xrcc6 69.44 150 51 97 2.94 1.55 

Mre11a 80.17 138 123 50 1.12 2.76 

Xrcc5 83 127 60 97 2.12 1.31 

Prkdc 471.17 120 91 102 1.32 1.18 

Mri 17.28 119 50 127 2.38 0.94 

Gcn1l1 292.83 106 110 34 0.96 3.12 

Dock2 211.57 99 79 74 1.25 1.34 

Eef1a1 50.08 97 96 64 1.01 1.52 

Chd4 217.61 93 72 86 1.29 1.08 

Acta2 41.98 86 71 125 1.21 0.69 

Nbn 83.74 84 79 24 1.06 3.50 

Gcn1l1 115.35 77 86 29 0.90 2.66 

Hspa8 70.83 76 69 72 1.10 1.06 

Stk38 54.14 71 76 90 0.93 0.79 

Wrn 157.1 71 97 16 0.73 4.44 

Sptan1 284.42 68 66 79 1.03 0.86 

Stk38l 53.74 68 76 70 0.89 0.97 

Msh6 150.99 67 56 48 1.20 1.40 

Rfc1 125.91 64 16 46 4.00 1.39 

Flii 144.71 61 46 68 1.33 0.90 

Ckap5 225.49 61 57 59 1.07 1.03 

Top2a 172.68 61 62 64 0.98 0.95 

Sptbn1 274.05 58 65 63 0.89 0.92 

Ahnak 603.87 57 50 50 1.14 1.14 

Mdc1 184.56 54 67 8 0.81 6.75 

Gsn 85.89 53 43 64 1.23 0.83 

Morc3 106.46 51 52 56 0.98 0.91 

Prmt5 72.63 51 57 58 0.89 0.88 

Msh2 104.09 47 29 28 1.62 1.68 

Chd8 290.67 47 38 39 1.24 1.21 

Abl1 122.6 44 31 29 1.42 1.52 

Lrrfip1 79.2 44 42 52 1.05 0.85 

Hnrnpm 77.6 42 24 36 1.75 1.17 

Tuba1a 50.1 42 37 29 1.14 1.45 

Arhgef2 111.9 41 34 28 1.21 1.46 

Actb 41.71 41 41 87 1.00 0.47 
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Cep170 174.94 40 21 18 1.90 2.22 

Gvin1 280.64 39 32 32 1.22 1.22 

Smchd1 225.51 39 34 28 1.15 1.39 

Ercc6l2 173.76 39 36 33 1.08 1.18 

Tmod3 39.48 38 40 45 0.95 0.84 

Prpf8 273.44 37 20 24 1.85 1.54 

Trrap 291.37 37 24 18 1.54 2.06 

Fermt3 75.59 37 31 26 1.19 1.42 

Gtf3c1 237.33 37 33 24 1.12 1.54 

Iqgap1 188.62 36 30 25 1.20 1.44 

Rif1 266.06 34 25 19 1.36 1.79 

Arhgef1 102.74 34 29 24 1.17 1.42 

Hcfc1 210.31 34 30 27 1.13 1.26 

Synj1 172.51 34 33 34 1.03 1.00 

Otud4 122.98 34 37 49 0.92 0.69 

Hspa5 72.38 34 41 37 0.83 0.92 

Trim28 88.79 33 26 27 1.27 1.22 

Smarcc1 122.81 33 29 35 1.14 0.94 

Smc4 146.8 33 32 16 1.03 2.06 

Smc3 141.47 32 26 17 1.23 1.88 

Mdn1 629.94 31 28 16 1.11 1.94 

Sf3b3 135.46 31 29 28 1.07 1.11 

Hnrnpk 50.94 31 32 35 0.97 0.89 

Jak1 133.28 31 35 32 0.89 0.97 

Rpa1 68.99 30 23 18 1.30 1.67 

Smc2 134.16 30 29 18 1.03 1.67 

Hspa9 73.42 30 44 34 0.68 0.88 

Sin3a 145 29 14 22 2.07 1.32 

Smc1a 143.15 29 22 21 1.32 1.38 

Sf3b1 145.72 29 28 31 1.04 0.94 

Myh9 226.23 29 37 47 0.78 0.62 

Ncor1 270.48 28 17 19 1.65 1.47 

Wdfy4 337.15 28 21 22 1.33 1.27 

Snrnp200 244.39 28 25 24 1.12 1.17 

Eif4b 68.8 28 32 32 0.88 0.88 

Dock11 237.62 28 33 29 0.85 0.97 

Rfc5 38.07 27 9 19 3.00 1.42 

Parp1 113.03 27 10 12 2.70 2.25 

Smarca4 181.31 27 19 26 1.42 1.04 

Wdr77 36.92 27 20 23 1.35 1.17 

Gapdh 35.79 27 23 19 1.17 1.42 

Hnrnpu 87.86 27 25 25 1.08 1.08 
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Tab1 54.58 27 28 33 0.96 0.82 

Rfc2 38.7 26 11 19 2.36 1.37 

Matr3 94.57 26 19 22 1.37 1.18 

Dhx9 149.38 26 23 31 1.13 0.84 

Prpf31 55.4 26 37 31 0.70 0.84 

Wiz 184.18 25 15 15 1.67 1.67 

Clasp2 140.65 25 18 13 1.39 1.92 

Pds5a 150.23 25 18 15 1.39 1.67 

Ep400 336.97 25 22 16 1.14 1.56 

Tubb2a 49.87 25 24 28 1.04 0.89 

Flna 281.05 25 30 42 0.83 0.60 

Ehmt2 137.95 24 11 20 2.18 1.20 

Arid1a 241.94 24 15 18 1.60 1.33 

Dock8 238.83 24 17 20 1.41 1.20 

Pfkp 85.4 24 20 14 1.20 1.71 

Tmpo 75.12 24 21 15 1.14 1.60 

Pfkfb3 58.93 24 25 29 0.96 0.83 

 

 

 

 

 

 

 

 

 

 

Table 1: List of the 100-most abundant MRI-interacting proteins. The gene symbol, molecular 

weight (MW), total number of peptides associated with MRI, MRIΔN, and MRIΔC (# peptides), and 

ratio of total number of peptides associated with MRI versus with MRIΔN (MRI / MRIΔN) or MRIΔC 

(MRI / MRIΔC) for each protein is shown. 
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Chapter 5: Discussion 

5.1 Summary 

 Despite its implicated role in aligning broken DNA ends for ligation during NHEJ, XLF 

is dispensable for V(D)J end joining in developing mouse lymphocytes – a process that is strictly 

dependent on NHEJ (Li G et al. 2008). Rather, XLF functions redundantly in NHEJ with several 

other DDR factors – such as ATM, H2AX, 53BP1, DNA-PKcs, and RAG – that were previously 

thought to be involved in the repair of only a limited subset of DSBs (Zha S et al. 2011, Liu X et 

al. 2012, Oksenych V et al. 2012, Oksenych V et al. 2013). The discovery that the combined loss 

of XLF with any one of these proteins leads to a broadly severe defect in NHEJ strongly implies 

that they carry out general, not DSB-specific, activities that could cross-complement each other. 

Unlike the core NHEJ factors Ku70/80, Lig4, and XRCC4, these “non-core” components are not 

directly responsible for executing an essential step in NHEJ, such as DSB sensing (Ku70/80) or 

DNA end ligation (Lig4/XRCC4); instead, they likely perform ancillary functions that ultimately 

serve to increase the efficiency or fidelity of the reaction. We hypothesized that there exist other 

such non-core NHEJ factors which are likewise concealed behind these functional redundancies 

and that XLF deficiency creates a suboptimal NHEJ setting in which they become necessary for 

maintaining the integrity of the process. To explore this premise, we performed a CRISPR/Cas9-

based genetic screen to identify novel non-core NHEJ factors in XLF-deficient pre-B cells, using 

V(D)J end joining as a measure of NHEJ. 

 Our screen yielded not only hits with well-established roles in V(D)J recombination, such 

as RAG, Ku70/80, Lig4, XRCC4, and Artemis, from WT and XLF-/- Abl pre-B cells, but also two 

unique candidates, PAXX and MRI, from XLF-/- Abl pre-B cells alone. Interestingly, both PAXX 
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and MRI share several key characteristics with XLF: all three proteins interact with Ku70/80 and 

contain a similar structural motif at their C-termini known as the XLM (Grundy GJ et al. 2016). 

In fact, PAXX has recently been demonstrated by crystallography to bear a tertiary conformation 

closely resembling that of XLF (Ochi T et al. 2015). We subsequently verified that while PAXX 

and MRI are expendable for V(D)J end joining in WT lymphocytes, loss of either protein almost 

completely abrogates NHEJ in XLF-deficient lymphocytes such that these cells are only capable 

of producing rare, mostly imprecise joins. Indeed, in contrast to MRI-/- mice, which do not exhibit 

any significant defects in lymphocyte development, XLF-/-:MRI-/- mice invariably die in utero due 

to extensive neuronal apoptosis – a classic presentation of NHEJ deficiency. Because PAXX had 

already been described in detail by others to promote NHEJ by serving as a scaffold for Ku70/80 

at DNA ends, we felt confident in the specificity of our screen and focused instead on elucidating 

the potential role of MRI – a peptide of unknown function at the time – in DSB repair (Ochi T et 

al. 2015, Liu X et al. 2017). 

 Consistent with the idea of it being a non-core NHEJ factor, MRI rapidly colocalizes with 

Ku70/80 to sites of laser-induced DNA damage and is involved in the repair of IR-induced DSBs 

in MEFs as well as AID-induced DSBs in mature B cells undergoing CSR. We found that MRI is 

intrinsically disordered and possesses highly conserved terminal motifs – attributes suggestive of 

an adaptor. Following this lead, we then determined by IP-MS that MRI associates with a diverse 

group of DDR proteins at each of its termini, including the NHEJ components Ku70/80, XRCC4, 

XLF, PAXX, and DNA-PKcs at the N-terminal KBM and the DDR signaling kinase ATM along 

with its DSB sensor MRN at the C-terminal XLM. Remarkably, MRI appears to nucleate higher 

order complexes containing many of these proteins at one or both of its termini simultaneously in 

vivo. Unlike XLF, MRI is not functionally redundant with ATM or PAXX, implying that it may 
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operate distinctly from XLF. Although MRI interacts with both ATM and DNA-PKcs, canonical 

DDR signaling events, such as γ-H2AX, phospho-KAP-1 serine 824, and activation of the G2/M 

checkpoint, are unperturbed in the absence of MRI, indicating that these associations serve some 

other purpose than the amplification or transduction of DDR signaling. It is admittedly possible 

that MRI can facilitate the ATM- or DNA-PKcs-dependent phosphorylation of an undetermined 

substrate, but due to the lack of available antibodies, the most comprehensive way to address this 

scenario would be to carry out stable isotope labeling with amino acids in cell culture (SILAC). 

However, chromatin fractionation experiments revealed that, in line with its putative role as an 

adaptor, MRI functions to retain its associated DDR factors at DSBs, presumably by “anchoring” 

proteins at one terminus to DNA through DNA:protein interactions established at the same (cis) 

or opposite (trans) terminus. In this regard, MRI binds to Ku70/80 and MRN at separate termini, 

and these DSB sensors, both of which exhibit nanomolar dissociation constants in complex with 

DNA (KD for Ku70/80 ~0.5 nM and for MRN ~1.5 nM), can tether all the other DDR proteins to 

chromatin via their common link to MRI (Cannon B et al. 2013, Chang HHY et al. 2017). Thus, 

MRI behaves in a mechanistically similar manner to an antibody, which has at least two epitope-

binding sites that increase its avidity for an antigen; analogously, the two DNA-binding (through 

Ku70/80 and MRN) termini of MRI serve to cooperatively augment the avidity of the multimeric 

MRI protein complex for chromatin. 

 How would such a function promote NHEJ? First, by maintaining a high concentration of 

NHEJ factors at DSBs, MRI could prevent nucleases, polymerases, and HR or AEJ proteins from 

accessing the DNA ends, thereby sustaining the processivity of NHEJ. This could be mediated in 

part by Ku70/80, which has been shown to block DNA end resection by physically occluding the 

DNA strand from various nucleases (Clerici M et al. 2008, Shao Z et al. 2008, Reginato G et al. 
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2017). Second, as MRI can form dimers and multimers in solution, two or more MRI molecules 

could conceivably bind to each other and couple large multiprotein complexes together across a 

DSB, effectively stabilizing the DNA ends in a manner reminiscent of XLF/XRCC4. This might 

logically explain why XLF and MRI are functionally redundant: although they work differently 

from one another, XLF and MRI may alternatively achieve the same overarching utility of DSB 

synapsis (more discussed later). Third, as we cannot rule out this possibility, MRI could mediate 

the phosphorylation of an ATM or DNA-PKcs substrate that is functionally redundant with XLF 

by bringing it into close proximity with the kinases. This substrate may be either ATM or DNA-

PKcs, as there is substantial cross-phosphorylation between them (the physiological relevance of 

which remains unclear but appears to be inhibitory in nature), or a downstream target other than 

H2AX and KAP-1 (Chen BP et al. 2007, Neal JA et al. 2011, Zhou Y et al. 2017). In this regard, 

while ATM and DNA-PKcs also reportedly help to align DNA ends, inhibition of their catalytic 

activities by pharmacological agents is sufficient to obstruct V(D)J end joining in XLF-deficient 

lymphocytes, suggesting that these kinases do not physically mediate this function by themselves 

but rather through one of their substrates (Zha S et al. 2011, Oksenych V et al. 2013). A diagram 

depicting each of these scenarios, which are not mutually exclusive, is shown in Figure 23. 

 

5.2 Antagonistic Roles for MRI? 

 Contrary to our main finding that MRI promotes NHEJ in G1-phase mouse lymphocytes, 

primarily evidenced by its functional redundancy with XLF in V(D)J end joining, a recent study 

instead concluded that MRI inhibits NHEJ in human fibrosarcoma cells during the S/G2 phases: 

specifically, the authors showed that MRI prevents the NHEJ-dependent fusions of shelterin-free 

telomeres (now recognized as DSBs by DDR proteins) at the ends of chromatids, which are only 
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present during S/G2, but not chromosomes, which predominantly exist during G1 (Arnoult N et 

al. 2017). Moreover, they found that the interaction between MRI and Ku70/80 increases during 

S/G2 and proposed a model in which MRI competitively sequesters Ku70/80 away from DSBs to 

drive repair pathway choice towards HR; by sequencing across Cas9-induced DSBs with varying 

overhang lengths, the authors determined that asymmetric DSBs, especially ones possessing long 

3’ overhangs, are repaired with larger deletions, whereas blunt DNA ends are ligated without any 

apparent defects, in MRI-deficient cells, suggesting that MRI also blocks the resection of single-

stranded DNA ends to maintain DNA terminal structures which are more favorably processed by 

HR (Arnoult N et al. 2017). 

 This discrepancy can be reconciled by several explanations. First, MRI may differentially 

regulate NHEJ at blunt-ended RAG DSBs versus uncapped telomeres comprising long, repetitive 

3’ overhangs, as Arnoult et al. had alluded to in their study. In fact, Ku70/80 and DNA-PKcs had 

been shown to bind to telomeric ends, where they inhibit inappropriate telomere degradation and 

interchromosomal recombination (Hsu HL et al. 2000, Samper E et al. 2000, d’Adda di Fagagna 

F et al. 2001, Gilley D et al. 2001, Goytisolo FA et al. 2001). While the exact mechanism is still 

unknown, binding of Ku70/80 to the shelterin component TRF2 appears to suppress its ability to 

join DNA ends but not its role in protecting them from nucleolytic processing (Ribes-Zamora A 

et al. 2014). Like Ku70/80 and DNA-PKcs, MRI might function differently in the unique DNA-

protein local environment at telomeric T-loop ends (where the 3’ telomeric overhangs loop back 

and invade the upstream duplex DNA) than at other DSBs. Second, MRI may carry out separate 

activities depending on cellular context in a similar vein as XLF, which is paradoxically required 

for V(D)J end joining in non-lymphoid cells, such as MEFs and ES cells, but not in lymphocytes 

(Zha S et al. 2007, Li G et al. 2008). These disparities likely reflect differences in the chromatin 
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landscape (which can affect DSB accessibility) or protein content of lymphoid and non-lymphoid 

cells. Indeed, many DDR factors seem to display distinct tissue-tropic roles: notably, inactivating 

mutations in the BRCA1 and BRCA2 genes preferentially increase the risks for breast and ovarian 

cancers, while ATM deficiency primarily predisposes to lymphomas, even though these proteins 

are ubiquitously expressed (Roy R et al. 2012, Choi M et al. 2016). We had previously observed 

that there is significant variance in the expression of DDR proteins, such as Ku70/80, ATM, and 

MRN, between fibroblasts and myeloid cells which ultimately resulted in divergent responses to 

DNA damage (Morales AJ et al. 2017). Thus, it is conceivable that MRI function can be altered 

by different protein stoichiometries and interactions in different cell types. In this regard, we did 

not detect any changes in the levels of MRI-Ku70/80 association by IP between cycling and G1-

arrested WT Abl pre-B cells, contrary to what Arnoult et al. had reported in HT1080 6TG human 

fibrosarcoma cell-lines (data not shown). Third, the antagonistic activities of MRI may be strictly 

segregated by the G1-to-S phase transition. Since MRI expression remains consistent throughout 

the cell cycle and is active both G1 and S/G2, the most plausible scenario is that MRI undergoes 

some form of post-translational modification which reverses its mechanism. HR factors, such as 

MRN and CtIP, are likewise phosphorylated by cyclin-dependent kinases (CDKs) during G2/S to 

mediate DNA end resection (Huertas P et al. 2008, Falck J et al. 2012). One of our collaborators, 

Dr. John Tainer at MD Anderson Cancer Center, has identified a potential phosphorylation site at 

serine 122 of MRI in mitotic cells using SILAC (personal communication). An important follow-

up question is whether this phosphorylation event is functionally relevant in DSB repair, and if 

so, which kinase is responsible for it. 

 

5.3 Functional Redundancies of XLF 
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 Here, we identified two additional factors, PAXX and MRI, which are required for V(D)J 

end joining in XLF-deficient lymphocytes. How can the broad functional redundancies between 

XLF and diverse DDR proteins, including ATM, DNA-PKcs, H2AX, 53BP1, RAG, PAXX, and 

MRI, be explained? One possibility is that all these non-core NHEJ factors carry out overlapping 

activities with XLF, presumably in DSB synapsis. Indeed, ATM, DNA-PKcs, and RAG had been 

implicated in stabilizing DNA ends generated during V(D)J recombination (and potentially other 

genotoxic processes) by promoting their retention within PCCs and keeping them from diffusing 

irreversibly apart to establish aberrant joins elsewhere (DeFazio LG et al. 2002, Bredemeyer AL 

et al. 2006, Spagnolo L et al. 2006, Deriano L et al. 2011). Moreover, the combined loss of ATM 

and DNA-PKcs leads to a near complete block in V(D)J end joining, suggesting that XLF, ATM, 

and DNA-PKcs share a common mechanism in NHEJ (Gapud EJ et al. 2011, Zha S et al. 2011). 

However, this model fails to adequately address the functional redundancies of XLF with H2AX 

and 53BP1, both of which are not involved in aligning broken DNA ends but rather in protecting 

them from nucleolytic degradation: in this regard, depletion of H2AX or 53BP1, but not XLF, in 

NHEJ-deficient Abl pre-B cells causes extensive resection of unrepaired SEs and CEs, and while 

XLF-/-:H2AX-/- and XLF-/-:53BP1-/- Abl pre-B cells also exhibit a similar phenotype, SEs and CEs 

remain largely intact in XLF-/-:PAXX-/- and XLF-/-:MRI-/- Abl pre-B cells, implying that XLF does 

not play a role in counteracting DNA end resection and is therefore not functionally equivalent to 

H2AX and 53BP1 (Helmink BA et al. 2011, Zha S et al. 2011, Oksenych V et al. 2012, Liu X et 

al. 2012, Kumar V et al. 2014, Kumar V et al. 2016, Lescale C et al. 2016, Hung PJ et al. 2017, 

Liu X et al. 2017). Furthermore, PAXX and MRI likewise do not appear to operate identically to 

XLF. For example, PAXX and MRI facilitate the assembly of other NHEJ factors on chromatin, 

whereas XLF does not support such a function (Wu PY et al. 2007, Ochi T et al. 2015). Unlike 
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XLF, PAXX and MRI are not functionally redundant with ATM or with one another, suggesting 

that they make distinct mechanistic contributions to NHEJ (Zha S et al. 2011, Liu X et al. 2017). 

One could still argue that these proteins are functionally equivalent, only that XLF plays a more 

significant role than PAXX and MRI in NHEJ; in other words, the absence of PAXX or MRI is 

not sufficient to impair NHEJ to the extent that ATM becomes necessary. We cannot completely 

refute this concept but find it unlikely due to the different protein interactions mediated by XLF, 

PAXX, and MRI. 

 A more compelling possibility is that XLF and its redundant non-core NHEJ factors carry 

out separate activities that may (1) cooperatively achieve the same general purpose, such as DSB 

synapsis or exclusion of undesirable elements and processes (e.g. components of the HR or AEJ 

pathway), or (2) independently augment the efficiency and/or fidelity of the reaction. In the first 

case, for example, the ability of PAXX and MRI to retain XLF and XRCC4 on chromatin could 

promote the polymerization of XLF/XRCC4 filaments along DNA ends and in effect strengthen 

the DSB synaptic complex. In the second case, the speed of DNA end joining could be enhanced 

by XLF/XRCC4 providing proper structural alignment and by PAXX and MRI fostering a higher 

concentration of Lig4 near DSBs simultaneously. Indeed, we observed that V(D)J end joining is 

drastically impaired but not abolished in XLF-/-:PAXX-/- and XLF-/-:MRI-/- Abl pre-B cells, which 

can still form low frequencies of imprecise SJs, suggesting that the kinetics of NHEJ is slowed in 

these cells. Thus, instead of performing an essential step in NHEJ, these non-core factors seem to 

collectively sponsor an optimal local environment for NHEJ – such a “microenvironment” could 

be particularly beneficial during the repair of complex or inaccessible DSBs, where Ku70/80 and 

Lig4/XRCC4 would conceivably require assistance in dealing with suboptimal substrates. In the 

end, all the aforementioned scenarios are not mutually exclusive and may apply to different XLF 
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functional redundancies. An important question to investigate moving forward is why dissimilar 

DDR proteins are functionally redundant with XLF but not necessarily with each other. This will 

entail clarifying the mechanistic role of XLF in vivo – a pursuit that has now eluded the field for 

over a decade. 

 

5.4 Future Directions 

 There are two major directions from our study of MRI that we are interested in exploring. 

First, we had focused only on protein interactions mediated by the conserved N- and C-termini of 

MRI and would like to follow up on those potentially mediated by a conserved central region (aa 

57-72). In this regard, our IP-MS data had revealed several MRI-interacting proteins which were 

not affected by either the N- or C-terminal truncation, suggesting that they might associate with 

MRI through its central region. Intriguingly, among these proteins are the DNA mismatch repair 

(MMR) factors MSH2 and MSH6, which together form a heterodimer MutSα that detects single-

nucleotide and short-sequence mismatches in the genome; despite their well-established roles in 

MMR, MSH2 and MSH6 had been found to participate in multimeric complexes with numerous 

DDR proteins, such as ATM, MRN, and BRCA1, and had even been implicated in the regulation 

of HR in mammalian cells (de Wind N et al. 1995, Wang Y et al. 2001, Smith JA et al. 2007). It 

is also plausible that MMR could promote the ligation of incompatible DNA ends during NHEJ 

by correcting nucleotide mismatches between a pair of overhangs – an idea we are eager to test. 

We had already validated the interaction between MRI and MSH2/6 by IP and currently plan to 

examine whether this association is indeed dependent on the central region of MRI by attempting 

to pull down MSH2/6 with a MRI mutant lacking the central region (data not shown). Moreover, 

we can assess the functionality of the central region by trying to use this mutant to rescue V(D)J 
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end joining in XLF-/-:MRI-/- Abl pre-B cells: failure to reverse the defect would strongly indicate 

a role for the central region and its interacting proteins in NHEJ. Ultimately, this approach might 

prove to be useful in discovering new NHEJ protein functions and avenues of crosstalk between 

separate DNA repair pathways, thus giving us a more complete understanding of the mechanisms 

underlying the DDR. 

 Second, we would like to characterize in further detail the post-translational regulation of 

MRI. Since most intrinsically disordered peptides tend to adopt a more stable conformation once 

bound to their ligands, we surmised that MRI, when complexed to its interacting proteins, might 

likewise assume a functional structure which would be informative of its mechanistic purpose in 

NHEJ. As a pilot study, we are currently collaborating with Dr. John Tainer’s lab to look at how 

MRI may be allosterically modulated through its association with Ku70/80 using small-angle X-

ray scattering (SAXS). Admittedly, our results had only demonstrated that Ku70/80 is necessary 

for the binding of XLF, PAXX, XRCC4, and DNA-PKcs to MRI – not that these proteins bind to 

MRI via Ku70/80 – so it is equally possible that Ku70/80 binding to MRI induces a secondary or 

tertiary structure that is amenable to interacting with the NHEJ machinery. Consistent with such 

a notion, our CD data showed that MRI can form helical structures in solution when treated with 

a crowding agent. Finally, we also plan to investigate the putative phosphorylation site in MRI at 

serine 122. Other than validating its functional relevance and identifying the upstream kinase as 

aforementioned, we are interested in clarifying the conditions that stimulate this phosphorylation 

event (perhaps DNA damage or cell cycle phase transition?) and how it modifies the activity and 

protein interactions of MRI. An outstanding question in the field is how NHEJ factors dissociate 

from chromatin after repair is completed, given their high affinities for DNA, and it is somewhat 

tempting to speculate that post-translational signals leading to MRI degradation or removal from 
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chromatin would concurrently promote the disengagement of its associated DDR proteins. Thus, 

elucidating these details will hopefully not only help us reconcile the discrepant roles of MRI in 

G1 versus S/G2, but also provide us with deeper insights on how NHEJ is regulated, how it may 

be corrupted during oncogenesis, and how it can be manipulated for cancer therapeutics and even 

genome editing technologies. 
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Figure 23: Models of MRI function in NHEJ. (A) By concentrating other NHEJ factors near a 

DSB, MRI can prevent components of the HR or AEJ pathway from accessing the exposed DNA 

ends. (B) Two MRI molecules bound to opposing DNA ends via Ku70/80 or MRN can dimerize 

and mediate DSB synapsis, maintaining the DNA ends in close proximity for ligation. (C) MRI 

can link ATM or DNA-PKcs to a substrate that is functionally redundant with XLF, thus leading 

to its phosphorylation and activation. 
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