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ABSTRACT OF THE DISSERTATION 

 

Developing Tools for Identifying Tissue-Specific Epigenetic Marks and Predicting DNA 

hydroxy/methylation  

by 

Yu He 

Doctor of Philosophy in Biology and Biomedical Sciences  

Computational and Systems Biology 

Washington University in St. Louis, 2020 

Professor Ting Wang, Ph.D. Chair 

 

A single genome can derive phenotypically unique cell types through various epigenetic 

modifications that instruct specific gene expression patterns. Histone modifications, DNA 

methylation, and DNA hydroxymetylation are the most common epigenetic modifications. To 

understand the mechanisms how these epigenetic modifications regulate gene expression, one 

often needs to map these marks genome-wide through profiling methods. Firstly, for histone 

modifications, Roadmap Epigenomics Consortium generated The Human Reference 

Epigenome Map, containing thousands of genome-wide histone modification datasets that 

describe epigenomes of a variety of different human tissue and cell types. This map has allowed 

investigators to obtain a much deeper and more comprehensive view of our regulatory genome, 

e.g. defining regulatory elements including all promoters and enhancers for a given tissue or cell 

type. An outstanding task is to combine and compare different epigenomes in order to identify 

regions with epigenomic features specific to certain types of tissues or cells, e.g. lineage-

specific regulatory elements. Currently available tools do not directly address this question. This 

need motivated us to develop a tool that allows investigators to easily identify regions with 

epigenetic features unique to specific epigenomes that they choose, making detection of 



 

 xi 

common regulatory elements and/or cell type- specific regulatory elements an interactive and 

dynamic experience. An online tool EpiCompare was developed to assist investigators in 

exploring the specificity of epigenomic features across selected tissue and cell types. 

Investigators can design their test by choosing different combinations of epigenomes, and 

choosing different classification algorithms provided by our tool. EpiCompare will then identify 

regions with specified epigenomic features, and provide a quality assessment of the predictions. 

Investigators can interact with EpiCompare by investigating Roadmap Epigenomics data, or 

uploading their own data for comparison. We demonstrated that by using specific combinations 

of epigenomes we can detect developmental lineage-specific enhancers. Secondly, for DNA 

methylation and hydroxymethylation, generating high resolution methylomes and 

hydroxymethylomes is a significant barrier for individual laboratories, therefore so far only a few 

cell types have deeply sequenced hydroxymethylomes at single-base resolution. This potential 

cost-barrier problem engendered a need for cost-effective, but high-resolution 5hmC mapping 

technology. Current enrichment-based technologies provide cheap, but low-resolution and 

relative enrichment of 5hmC levels while single base-resolution methods can be prohibitively 

expensive to scale up to large experiments. To address this problem, we develop a deep 

learning-based method “DeepH&M”, which integrates enrichment and restriction enzyme 

sequencing methods to simultaneously estimate absolute hydroxymethylation and methylation 

levels at single CpG resolution. Using 7-week-old mouse cerebellum data for training DeepH&M 

model, we demonstrate that the 5hmC and 5mC levels predicted by DeepH&M were in high 

concordance with whole genome bisulfite- based approaches. The DeepH&M model can be 

applied to 7-week old frontal cortex and 79-week cerebellum revealing the robust 

generalizability of this method to other tissues from various biological time points. 
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Chapter 1: Introduction 

 

One of the fundamental mysteries in biology is the generation of diverse cell types. 

Nearly every cell type in an organism shares the same genomic material but each cell type has 

different gene expression pattern and exerts different function and phenotype. Enormous 

amounts of evidence indicate that the epigenome instructs the gene expression program of 

different cell types with the genome. Histone modifications, DNA methylation, and DNA 

hydroxymetylation are the most common epigenetic modifications.  

 

To understand the mechanisms how epigenetic modifications regulate gene expression, 

one often needs to map these marks genome-wide through profiling methods. Firstly, for histone 

modifications, Roadmap Epigenomics Consortium generated The Human Reference 

Epigenome Map, containing thousands of genome-wide histone modification datasets that 

describe epigenomes of a variety of different human tissue and cell types. This map has allowed 

investigators to obtain a much deeper and more comprehensive view of our regulatory genome, 

e.g. defining regulatory elements including all promoters and enhancers for a given tissue or cell 

type. I developed an online tool “EpiCompare”, which compares different epigenomes in order to 

identify regions with epigenomic features specific to certain types of tissues or cells, e.g. 

lineage-specific regulatory elements. Secondly, for DNA methylation and hydroxymethylation, 

generating high resolution methylomes and hydroxymethylomes is a significant barrier for 

individual laboratories. Current enrichment-based technologies provide cheap, but low-

resolution and relative enrichment of 5hmC levels while single base-resolution methods can be 

prohibitively expensive to scale up to large experiments. I developed a deep learning-based 

method “DeepH&M”, which integrates enrichment and restriction enzyme sequencing methods 



 

 2 

to simultaneously estimate absolute hydroxymethylation and methylation levels at single CpG 

resolution.  

 

1.1    The Epigenome 

The epigenome refers to all chemical modifications of the chromatin including 

posttranslational modifications on histone proteins and DNA methylation and 

hydroxymethylation. Chromosomes are composed of nucleosome units, which are packed by 

DNA wrapping histone octamers, including H2A, H2B, H3, H4 and their variants. The tails and 

globular domains of histone proteins are subject to diverse posttranslational modifications. 

These histone modifications can directly affect chromatin accessibility by altering the net charge 

of histone proteins and thus changing chromatin structure, or serving as substrate for chromatin 

binding proteins, such as chromatin modifying complexes1. DNA methylation in the human 

genome primarily occurs at cytosine’s fifth carbon (5mC) and cytosine methylation is largely 

restricted to CpG dinucleotides. DNA hydroxymethylation is an oxidative product of 5mC in 

which the hydrogen atom at the C5-position in cytosine is replaced by a hydroxymethyl group 

(5hmC). The methylation and hydroxymethylation of cytosine can affect the transcription of 

genes by impeding the binding of transcription factors or recruiting proteins bound to methylated 

cytosine.  

 

1.1.1    Histone modifications 

Over 130 posttranslational modifications on histone proteins and over 700 distinct 

histone isoforms have been identified so far2,3. The identified histone modifications include 

methylation, acetylation, propionylation, butyrylation, formylation, phosphorylation, 

ubiquitylation, sumoylation, citrullination, proline isomerization, ADP ribosylation, hydroxylation, 

and crotonylation. Initially, chromatin immunoprecipitation followed by DNA microarray (ChIP-
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chip) was used to map genome-wide binding profile of chromosomal proteins4. With the advent 

of next generation sequencing technology, chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) became the main method for mapping genome-wide binding profile5. 

With the characterization of histone modifications on a genome-wide scale using these 

technologies, many individual histone modifications have been found to be associated with 

specific functional elements5–9. First, H3K4me3 was found to localize to promoters and 

associated with transcription initiation, and H3K36me3 was detected at gene body and 

associated with transcription elongation10,11. Enhancers were at first thought to have similar 

histone marks as promoters, but later were found to enrich for H3K4me1 instead of H3K4me38. 

However, the H3K4me1 or H3K4me3 mark alone is not sufficient to activate gene expression. 

H3K27ac is shown to distinguish active enhancers and promoters from inactive enhancers and 

promoters6. As for repressed chromatin, two distinct types have been identified. One is 

H3K9me3-marked heterochromatin, which is concentrated in pericentromeric regions; the other 

is H3K27me3-marked regions, which repress cell-type specific genes12.  

 

 Although individual chromatin marks are associated with various functional elements, 

different chromatin marks can occur at the same locations, as confirmed by sequential ChIP-seq 

experiments13. One example is the identification of bivalent promoter state marked by both 

H3K4me3 and H3K27me3. Bivalent promoter states silence developmental genes in embryonic 

stem cells (ES) and keep them poised for activation in differentiated cells13. Therefore, it is 

possible that different chromatin marks combine together to encode function. This is the histone 

code hypothesis that was proposed over 20 years ago after the identification of large number of 

histone modifications14.  
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1.1.2    Chromatin states 

The combinations of chromatin marks that are biologically meaningful and recurrent 

throughout the genome are called chromatin states. Various computational algorithms based on 

Hidden Markov Models (HMM), clustering methods and others have been developed to define 

chromatin states. They integrate a collection of chromatin mark datasets and generate non-

overlapping segmentations of the whole genome and assign labels to each segment. The labels 

generated are then interpreted as biologically meaningful chromatin states based on enrichment 

of known functional annotations, sequence motifs, and some specific experimentally observed 

characteristics. These identified chromatin states include promoter state, transcription state, 

enhancer state, repressed state, and quiescent state. Each chromatin state is enriched for 

distinct combinations of chromatin marks15–19. For example, active promoter state is enriched for 

H3K4me3, H3K4me2, H3K9ac, and H3K27ac, and bivalent promoter state is enriched for 

H3K4me3, H3K4me2 and H3K27me315. Active enhancer state is enriched for H3K4me1 and 

H3K27ac, and bivalent enhancer state is enriched for H3K4me1 and H3K27me3. All promoter 

states have lower DNA methylation and all enhancer states have intermediate DNA 

methylation20. Transcribed state is enriched for H3K36me3, H3K79me3, H3K79me2, 

H3K79me1, H3K27me1, H2BK5me1, H4K20me1, and high DNA methylation. Heterochromatin 

is enriched for H3K9me3 and H3K9me2 and high DNA methylation.  

 

The identification of chromatin states generates systematic annotations of the genome in 

multiple species, including human, mouse, fly, worm, yeast and plants12,16,21–24. The annotations 

include promoter, enhancer, insulator, transcribed, repressed and quiescent states. These 

annotations agree largely with genomic annotations. For example, in the human genome, 

promoter states identified overlap with over 90% of RefSeq TSS and transcribed states overlap 

with over 90% of RefSeq genes16,19. Around 5% of the genome is in enhancer state15. 

Luciferase reporter assays have shown that strong enhancer states have much stronger 
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reporter activity than weak enhancer states. Clustering of enhancer states among multiple cell 

types identified cell-type specific enhancer state and they are enriched for biological processes 

and transcription factor binding sites in that cell type15,20. Studies have also shown that strong 

enhancer states significantly overlap with disease-causing variants and many of them are 

enriched in enhancers specific to disease-related cell types15,18–20,25. For example, Farh et. al. 

found that 60% of candidate causal variants from 21 autoimmune diseases mapped to immune-

cell specific enhancers. 10%-20% of these causal variants altered transcription factor binding 

sites and thus altered gene expression.  

 

Over 15 years have passed since the completion of the human genome sequencing, but 

we are still not completely clear about the function of the entire human genome. Only around 

1.5% of the human genome is protein-coding26. In contrast, over 98% of the genome is non-

coding, including regulatory elements such as enhancers, promoters, silencers, and insulators. 

Understanding the non-coding genome is important because regulatory elements can control 

the transcription of genes. It is also important for understanding the contribution of regulatory 

elements in diseases. Over 90% of GWAS hits are located in non-coding regions, and yet hard 

to interpret because of the lack of annotations in non-coding regions27. Of these regulatory 

elements, enhancers are the key players in regulating the spatial and temporal gene 

expression. Dysfunction of enhancers are often linked to disease. Plenty of evidence have 

shown that enhancers overlap significantly with disease-causing SNPs15,18,19. Hence, a 

comprehensive list of enhancer locations could have significant diagnostic potential. Identifying 

enhancers has been challenging because they are usually far from promoters and do not have 

common sequence signatures. Furthermore, over 60% of enhancers are cell-type specific, 

making identification of enhancers in each cell type necessary28,29.  
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1.1.3    CpG DNA methylation and hydroxymethylation 

DNA methylation has been shown to play a vital role in gene regulation, genomic 

imprinting, X-chromosome activation, the repression of transposable elements, etc30–33. 

Generally, high level of DNA methylation is associated with repression. The methylation of 

cytosine can affect the transcription of genes by impeding the binding of transcription factors or 

recruiting proteins bound to methylated cytosine. The pattern of 5mC is globally similar between 

different cell types but changes at specific loci can affect cell fate decisions. Although 60%-80% 

of 28 million CpG dinucleotides in human genome are methylated, less than 10% of CpG occur 

in CG-dense regions called CpG islands that are largely unmethylated34. These unmethylated 

CpG islands are enriched at promoters of housekeeping genes and developmentally regulated 

genes. Recently, tissue-specific hypo-methylated regions have been found to be enriched in 

enhancers and are associated with activation of targeted genes35,36. 

 

Although DNA methylation has been known for decades, how DNA methylation is 

actively removed besides passive loss of DNA methylation during replication was not 

discovered until recently. In 2009, two breakthrough paper discovered high abundance of 5-

hydroxymethylation (5hmC), the oxidative product of 5mC, in mouse embryonic stem cells and 

Purkinje neurons37,38. A family of ten-eleven translocation (TET) proteins including TET1, TET2, 

TET3 were found to oxidize 5mC to 5hmC. Subsequently, TET enzymes were shown to oxidize 

5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) stepwise39. 5fC and 5caC can be 

further excised by DNA repairing enzyme thymine DNA glycosylase and restored to unmodified 

cytosine through base-excision repairing process, thus completing the process of active 

demethylation40,41. 

 

Since the discovery of active DNA demethylation process, many quantification and 

sequencing methods have been developed to study the global level and genome-wide 
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distribution of 5hmC, 5fC, and 5caC42. 5hmC is abundant and as high as 40% of 5mC level in 

Purkinje neurons37, ~ 5% of 5mC level in embryonic stem cells (ESCs)43, and is low (less than 

1% of 5mC level) in other cell types44. Compared to 5hmC, 5fC and 5caC are extremely low 

(hundred times lower than 5hmC) in cells39. In this dissertation, I mainly focus on 5mC and 

5hmC. Genome-wide profiling of 5hmC has found that 5hmC is not just an intermediate of the 

active DNA demethylation process, but also a stable epigenetic mark involved in gene 

regulation. 5hmC is enriched in promoters, gene bodies and enhancers44–46. 5hmC level in 

promoters and gene bodies positively correlates with gene expression45,47. 5hmC level in 

enhancers positively correlates with active enhancer marks such as H3K4me1 and H3K27ac 

and the identification of cell-type specific hydroxymethylated regions can reveal cell-type 

specific enhancers48. 

 

1.2    Identifying tissue-specific histone marks 

Given datasets of multiple histone modifications for a specific cell type, several tools, 

including ChromHMM49,50, RFECS51, and Segway52, can define chromatin states across the 

cell’s epigenome and/or define regulatory elements such as enhancers. While the above tools 

are designed for a single sample, tools like hiHMM53  and TreeHMM54 can define chromatin 

states in multiple cell types or multiple species simultaneously. But these tools cannot be readily 

applied to detect tissue or cell type-specific enhancers. Several efforts have been devoted to 

define tissue or cell type-specific enhancers.  For example, the FANTOM5 Consortium identified 

active enhancers for a large number of human tissues and cell types by using bidirectional 

capped RNA data55. They called differentially expressed enhancers across all tissue and cell 

types, using Kruskal-Wallis rank sum tests. To define tissue differentially expressed enhancers, 

for example, for the brain, they further performed pair-wise, post-hoc tests, and required the 

enhancers to be differentially expressed between brain tissues and at least one non-brain 
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tissue. A limitation of this approach is that such differentially expressed enhancers are often 

expressed in multiple tissue and cell types and are not specific to a single tissue or cell type. 

Furthermore, since the enhancers are marked by active transcription, poised enhancers are 

likely to be missed. Indeed, the active enhancers identified by FANTOM5 had 231 fold more 

bidirectional capped RNA reads than polycomb-repressed enhancers55. 

 

The Roadmap Epigenomics Project used a tool called HoneyBadger2 to define tissue or 

cell type-specific enhancers using k-means clustering. Regions that were clustered together 

share similar epigenetic profiles across a variety of tissue and cell types. A given cluster may 

have a pattern such that the enhancer signals are predominantly present in certain tissues, but 

not in other tissues. Such regions were defined as tissue-specific enhancers. However, this 

approach is based on unsupervised learning, and as such, clusters are not directly assigned to 

a specific tissue. Other groups characterized the cell-type specificity of enhancers in human and 

mouse using clustering methods56–59, but did not provide tools to define cell-type specificity. 

Tools like MultiGPS60  and dPCA61 were designed to compare Chip-seq data between two 

conditions but not readily adaptable to compare enhancers or histone modifications between 

groups of tissue and cell types. Another tool, ChromDiff62 compared chromatin states across 

different group of samples. For each given region, ChromDiff calculated the percent coverage 

for each chromatin state in each sample and corrected them based on sample metadata.  Then 

it tested for difference of corrected values between two groups of samples for each chromatin 

state using statistical test such as Mann–Whitney–Wilcoxon test and identified significant 

regions with specific chromatin states. The tool can be applied to identify tissue or cell type-

specific enhancers if ChromHMM models are defined, but can be difficult to use by experimental 

biologists due to the lack of a user-friendly interface.  
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1.3    Mapping DNA methylation and hydroxymethylation 

Many genome-wide profiling methods were developed to map 5mC63. Technologies for 

mapping 5mC include bisulfite conversion of unmethylated cytosine to uracil (whole genome 

bisulfite sequencing (WGBS)), enrichment of methylated DNA using methyl-cytosine-specific 

antibodies (methylated DNA immunoprecipitation sequencing (MeDIP-seq)), and enrichment of 

unmethylated regions using methylation-sensitive restriction enzymes (methylation sensitive 

restriction enzyme sequencing (MRE-seq)) , followed by next-generation sequencing63. The 

gold standard method WGBS can measure methylation genome-wide at single-base resolution 

but requires high coverage of the genome (at least 10x coverage for each cytosine) and is 10 

times more expensive than enrichment or restriction enzyme sequencing methods64. MeDIP-seq 

enriches for methylated regions and gives methylation status of enriched regions but has low 

resolution (about 150bp)65,66. MRE-seq can cover 30% of the genome using multiple restriction 

enzymes and give unmethylation status at single-base resolution for CpG at cut sites65.  

 

Similarly, 5hmC profiling technologies advanced from immunoprecipitation/enrichment-

based methods to whole genome single-base resolution. Because WGBS cannot distinguish 

5hmC from 5mC, Yu et. al. developed a method called TET-assisted bisulfite sequencing (TAB-

seq), where 5hmCs are first protected by glucosylation and then 5mC is completely oxidized to 

5caC with TET enzyme46. The following bisulfite treatment can reveal which CpGs are protected 

and infer hydroxymethylation levels. TAB-seq can measure genome-wide 5hmC at single-base 

resolution but requires very high coverage to confidently call 5hmC at all cytosines. For 

example, for 5% 5hmC, based on binomial test with a probability of 2.22% for 5mC non-

conversion rate, a coverage of 120 is required to call 5hmC at 95% confidence level. The study 

from Yu, et al. could only confidently call 20% or higher 5hmC at an average coverage of 27. 

Often in TAB-seq experiments, both WGBS and TAB-seq libraries are deeply sequenced to 
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parse out 5mC and 5hmC levels in a single sample. Achieving high confidence, single base 

resolution of 5hmC can be a heavy financial strain for large experimental designs due to the 

necessary sequencing depth. Therefore, many adopted the cheaper alternative of utilizing 

antibody-based enrichment method, such as hydroxymethylated DNA immunoprecipitation 

sequencing (hMeDIP-seq), which can reveal hydroxymethylated regions with limited 

sensitivity45. hMeDIP-seq can also provide relative hydroxymethylation over controls, but at the 

cost of low resolution. Similar to antibody-based enrichment method such as hMeDIP-seq, 

hmC-Seal chemically tags hydroxymethylated cytosine and enriches hydroxymethylated regions 

by pulling down tagged 5hmC47,48. hmC-Seal can pull down regions with extremely low 5hmc 

content and thus have higher sensitivity than hMeDIP-seq.  

 

Because of the high cost of single-base-resolution profiling methods for 5hmC and 5mC, 

several computational methods were developed to estimate 5hmC and 5mC at single-base 

resolution. Xiao et.al. developed a random forest regression-based method MeSiC to estimate 

single-CpG 5mC from MeDIP-seq data67. Stevens et. al. took advantage of the complementary 

properties of MeDIP-seq and MRE-seq and developed a conditional random field-based 

algorithm methylCRF to effectively predict single-CpG 5mC from MeDIP-seq and MRE-seq 

data68. However, the two aforementioned algorithms cannot predict 5hmC levels. Pavlovic et al. 

developed a SVM/random forest-based method DIRECTION to predict single-CpG 5mC or 

5hmC from histone modification and transcription factor ChIP-seq data69. This method can only 

predict binary values, either high or low 5mC/5hmC, but not the absolute quantitative level.  
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2.1    Abstract 

The Human Reference Epigenome Map, generated by the Roadmap Epigenomics 

Consortium, contains thousands of genome-wide epigenomic datasets that describe epigenomes 

of a variety of different human tissue and cell types. This map has allowed investigators to obtain 

a much deeper and more comprehensive view of our regulatory genome, for example defining 

regulatory elements including all promoters and enhancers for a given tissue or cell type. An 

outstanding task is to combine and compare different epigenomes in order to identify regions with 

epigenomic features specific to certain types of tissues or cells, for example, lineage-specific 

regulatory elements. Currently available tools do not directly address this question. This need 

motivated us to develop a tool that allows investigators to easily identify regions with epigenetic 

features unique to specific epigenomes that they choose, making detection of common regulatory 

elements and/or cell type-specific regulatory elements an interactive and dynamic experience. An 

online tool EpiCompare was developed to assist investigators in exploring the specificity of 

epigenomic features across selected tissue and cell types. Investigators can design their test by 

choosing different combinations of epigenomes, and choosing different classification algorithms 

provided by our tool. EpiCompare will then identify regions with specified epigenomic features, 

and provide a quality assessment of the predictions. Investigators can interact with EpiCompare 

by investigating Roadmap Epigenomics data, or uploading their own data for comparison. We 

demonstrate that by using specific combinations of epigenomes we can detect developmental 

lineage-specific enhancers. Finally, prediction results can be readily visualized and further 

explored in the WashU Epigenome Browser. 

 

2.2    Introduction 

The Roadmap Epigenomics Consortium generated a reference catalogue of human 

epigenomes across a variety of tissue and cell types70. Using this resource, investigators can 
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compare the epigenomes of different tissue and cell types and identify regulatory elements such 

as enhancers, promoters, and regions occupied by epigenetic features that are unique to a 

specific tissue or cell type, as well as those that are shared by multiple tissue and cell types.  

 

One common application utilizing the Human Reference Epigenome is the identification 

of tissue or cell type-specific enhancers. Enhancers are cis-regulatory elements playing 

essential roles in regulating the spatial and temporal pattern of gene expression71. Many 

enhancers function in a tissue or cell type-specific manner56–58. Disruption of enhancer functions 

can often lead to diseases72. Many studies revealed that enhancers significantly overlap with 

disease-causal variants and such variants are often enriched in enhancers specific to cell types 

that are implicated in the specific diseases56,70,73–77. Hence, a comprehensive list of tissue or cell 

type-specific enhancers could have significant clinical impact.  

 

The identification of tissue-specific histone marks including H3K27ac and H3K4me1 can 

help identify tissue or cell type-specific enhancers. Enhancers are epigenetically defined by the 

presence of H3K4me1 and the absence of H3K4me378. H3K27me3 is a repression histone mark 

that is associated with polycomb complex79. The combination of H3K4me1 and H3K27me3 

marks poised enhancers, which silence developmental genes in embryonic stem cells (ESCs) 

and keep them poised for activation in differentiating cells80. H3K27ac is a mark of active 

enhancers and promoters and distinguishes active enhancers from poised enhancers. 

Combination of H3K4me1 and H3K27ac modifications is used to identify active enhancers81. 

Therefore, combination of different histone marks can be used to predict tissue or cell type-

specific poised/active enhancers. 

 

Given datasets of multiple histone modifications for a specific cell type, several tools, 

including ChromHMM49,50, RFECS51, and Segway52, can define chromatin states across the 
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cell’s epigenome and/or define regulatory elements such as enhancers. While the above tools 

are designed for a single sample, tools like hiHMM53 and TreeHMM54 can define chromatin 

states in multiple cell types or multiple species simultaneously. But these tools cannot be readily 

applied to detect tissue or cell type-specific enhancers. Several efforts have been devoted to 

define tissue or cell type-specific enhancers.  For example, the FANTOM5 Consortium identified 

active enhancers for a large number of human tissues and cell types by using bidirectional 

capped RNA data55. They called differentially expressed enhancers across all tissue and cell 

types, using Kruskal-Wallis rank sum tests. To define tissue differentially expressed enhancers, 

for example, for the brain, they further performed pair-wise, post-hoc tests, and required the 

enhancers to be differentially expressed between brain tissues and at least one non-brain 

tissue. A limitation of this approach is that such differentially expressed enhancers are often 

expressed in multiple tissue and cell types and are not specific to a single tissue or cell type. 

Furthermore, since the enhancers are marked by active transcription, poised enhancers are 

likely to be missed. Indeed, the active enhancers identified by FANTOM5 had 231 fold more 

bidirectional capped RNA reads than polycomb-repressed enhancers55. 

 

The Roadmap Epigenomics Project used a tool called HoneyBadger2 to define tissue or 

cell type-specific enhancers using k-means clustering. Regions that were clustered together 

share similar epigenetic profiles across a variety of tissue and cell types. A given cluster may 

have a pattern such that the enhancer signals are predominantly present in certain tissues, but 

not in other tissues. Such regions were defined as tissue-specific enhancers. However, this 

approach is based on unsupervised learning, and as such, clusters are not directly assigned to 

a specific tissue. Other groups characterized the cell-type specificity of enhancers in human and 

mouse using clustering methods56–59, but did not provide tools to define cell-type specificity. 

Tools like MultiGPS60 and dPCA61 were designed to compare Chip-seq data between two 

conditions but not readily adaptable to compare enhancers or histone modifications between 
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groups of tissue and cell types. Another tool, ChromDiff62 compared chromatin states across 

different group of samples. For each given region, ChromDiff calculated the percent coverage 

for each chromatin state in each sample and corrected them based on sample metadata. Then 

it tested for difference of corrected values between two groups of samples for each chromatin 

state using statistical test such as Mann–Whitney–Wilcoxon test and identified significant 

regions with specific chromatin states. The tool can be applied to identify tissue or cell type-

specific enhancers if ChromHMM models are defined, but can be difficult to use by experimental 

biologists due to the lack of a user-friendly interface.  

 

To address these needs, we have developed an online tool EpiCompare to help 

investigators to analyze the Roadmap Epigenomics data. Investigators can easily identify 

regions with epigenomic features specific to combinations of tissue or cell types. Several 

classification methods are provided, including the clustering method used by the Roadmap 

Epigenomics Project70. Investigators can compare enhancers, promoters, and specific histone 

marks using any combination of tissue and cell types, using Roadmap data and/or their own 

data. Investigators can test a variety of hypotheses by designing specific combinations of 

epigenome comparisons, and EpiCompare provides a quality assessment of the predictions. 

The predicted regions can be readily visualized and further explored within the WashU 

Epigenome Browser. EpiCompare makes Roadmap reference epigenomes more easily usable 

by experimental biologists in order to enhance their research. 

 

2.3    Results 

2.3.1    Performance comparison 

To identify regions with epigenomic features specific to combinations of tissue or cell 

types, we applied three different methods: frequency cutoff, Fisher’s exact test, and k-means 
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clustering, as described in Methods. The most important parameters for all the methods are 

choices of foreground samples and background samples (see Methods). The main assumption 

we make is that the epigenomic features we focus on are enriched in foreground samples but 

depleted in background samples. Identified regions were tested using the following validation 

methods: GREAT analysis, enrichment for DNase I hypersensitive sites (DHS) and H3K27ac 

peaks, and the tissue enrichment index, contribution measure (CTM) (see Supplementary Note 

1). CTM measures how much a sample or a group of samples contributes to the total amount of 

signal (e.g., read density for H3K27ac) combined by all samples in a region82. To further 

evaluate the performance directly, we randomly picked 20 identified regions and visualized them 

in WashU Epigenome Brower with chromatin states and histone modification tracks. We used 

adult brain tissues as foreground samples and evaluated the efficacy of the three methods in 

identifying adult brain-specific enhancers using enhancers defined by 15-state ChromHMM 

model. Seven adult brain samples were available from the Roadmap Epigenomics Project. We 

compared them to 91 other samples with available H3K27ac data. Since the clustering method 

does not provide ranks, we obtained a list of adult brain-specific enhancers using the clustering 

method with default settings. We then picked an equal number of regions in ascending order of 

ranks using the frequency cutoff and Fisher’s exact test methods.  

 

First, we examined the overlap of enhancers found by three methods (Supplementary 

Fig. S2). Out of 188,076 identified adult brain-specific enhancers (i.e., 200bp windows), 148,170 

overlapped between the frequency cutoff and Fisher’s exact test; 133,370 overlapped between 

k-means clustering and Fisher’s exact test; and 144,182 overlapped between frequency cutoff 

and k-means clustering. 123,746 were shared across all three methods.  

 

Next, we tested our predicted brain-specific enhancers using the three validation 

methods. Using the GREAT83, we found that adult brain-specific enhancers identified by each of 



 

 17 

three methods were strongly associated with brain functions such as myelination, regulation of 

action potential and regulation of synaptic plasticity (Figure. 1(a) and Supplementary Fig. S3). 

The brain-specific enhancers predicted by all three methods also had much higher enrichment 

for H3K27ac peaks in brain tissues compared to other tissues (Figure. 1(b) and 

Supplementary Fig. S4). Overall, the enrichment in brain tissues was higher for the frequency 

cutoff and Fisher’s exact test methods than for the clustering method. The brain-specific 

enhancers predicted by all three methods also had much higher CTM index in brain tissues than 

in other tissues for H3K27ac-based CTM distribution (Figure. 1(c) and Supplementary Fig. 

S5), underscoring the brain specificity of the enhancer histone modification in the identified 

regions. The brain tissue CTM distributions for regions identified by the three methods almost 

superimposed each other (Supplementary Fig. S5). A visualization of randomly picked 20 

brain-specific enhancers identified from Fisher’s exact test showed most regions had much 

stronger H3K4me1/H3K27ac peaks in the foreground samples than the background samples 

(Supplementary Fig. S6). In summary, the validation results confirmed that our methods can 

effectively identify tissue-specific enhancers. Similarly, the same methods can be applied to 

identify other epigenomic modifications that are tissue or cell-type specific. 

 

Since FANTOM5 defined active enhancers for a variety of tissue and cell types by their 

differential expression patterns, we compared brain-specific enhancers identified by Fisher’s 

exact test on enhancers defined by 15-ChromHMM model and the FANTOM5. First, we 

examined the overlap between these two methods. The FANTOM5 enhancers were not binned 

on 200bp windows, so we mapped them onto 200bp windows. 89 of 208,804 regions by 

ChromHMM-based method overlapped with 1,578 binned FANTOM5 brain enhancers 

(hypergeometric test, p=10-26). The overlap was small because only 11% of 

H3K4me1/H3K27ac loci overlapped the FANTOM5 enhancers55, and enhancers defined by 

ChromHMM included active enhancers (characterized by H3K4me1/H3K27ac loci), poised 
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enhancers (characterized by H3K4me1/H3K27me3 loci), and other types of enhancers (single 

H3K4me1 mark or single H3K27ac mark). Although the overlap with the FANTOM5 brain 

enhancers was small, it was highly significant. In contrast, 35 regions by ChromHMM-based 

method overlapped with 3,409 binned FANTOM5 blood enhancers (hypergeometric test, 

p=0.98), suggesting the overlap was specific to brain. Second, we plotted enrichment of 

H3K27ac for the shared regions, as well as regions unique to each method (Supplementary 

Fig. S7).  Finally, we randomly picked 20 regions that were unique to each method, and 

visualized them on the WashU Epigenome Browser in gene set view (Supplementary Fig. S8 

and S9).  Interestingly, we found that many FANTOM5-defined brain-specific enhancers are 

defined as promoters by using Roadmap Epigenomics data, with clear and strong promoter 

histone mark support (i.e., H3K4me3). Moreover, these regions also have high H3K27ac in the 

background samples. 

 

Using similar analysis as above, we compared identifying brain-specific enhancers using 

Fisher’s exact test and ChromDiff (See Supplemental Note 9). We found enhancers identified 

from Fisher’s exact test and ChromDiff largely overlapped (80%). Enhancers that were unique 

to Fisher’s exact test had much stronger enrichment of H3K27ac in brain samples than 

ChromDiff but also had higher enrichment in the background samples. Therefore anecdotally 

EpiCompare seems to have better sensitivity, while ChromDiff seems to exhibit better 

specificity, at a comparable statistical cutoff. ChromDiff is a command line only program, while 

EpiCompare provides a much more user-friendly interface and includes access to WashU 

Epigenome Browser, allowing biologists to better explore their result. 

 

The k-means clustering method in our tool is similar to the clustering method used in 

HoneyBadger2 tool with the exception that enhancers defined by the 15-state ChromHMM 

model in HoneyBadger2 were further filtered by DHS before used for clustering. To demonstrate 
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that our clustering method is comparable to HoneyBadger2, we compared adult brain-specific 

enhancers identified by the two approaches. We used 250 clusters as a close approximation of 

246 clusters in HoneyBadger2 tool. We identified 158,110 regions with our approach and 

86,019 regions with HoneyBadger2. For the comparison, we randomly picked 86,019 regions 

from the total regions identified by our approach. By comparing the enrichment of H3K27ac 

peaks in the foreground samples and background samples between our clustering method and 

HoneyBadger2, we found that both methods had similar enrichment in the foreground samples 

(t-test, p=0.87) and also in the background samples (t-test, p=0.98) (Supplementary Fig. 

S10(a)). When we examined the CTM distribution of H3K27ac, we found that the brain tissue 

CTM distributions for regions identified by the two methods almost superimposed each other 

(Supplementary Fig. S10(b)). Thus our clustering method is comparable to the clustering 

method in HoneyBadger2 tool. 

  

After demonstrating that our methods can identify tissue-specific enhancers, we 

determined the impact of sample size on performance: i.e., the impact of the number of 

foreground samples and the number of background samples (see Supplementary Note 2). First, 

to examine how the number of foreground samples affects the performance, we predicted adult 

brain-specific enhancers by using different number of foreground samples while fixing 

background samples. To assess performance, we computed the average enrichment of 

H3K27ac peaks in the seven adult brain samples and also in selected background samples 

because we expect that tissue-specific enhancers should have higher enrichment in the 

foreground samples and lower enrichment in the background samples. We found that with 

increasing foreground samples, the performance of all three methods increased. This is 

illustrated by increasing H3K27ac enrichment in the foreground samples, and relatively stable 

depletion in the background sample (Figure. 2(a)).    
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To examine how the number of background samples affects the performance, we 

predicted adult brain-specific enhancers by using different number of background samples while 

fixing foreground samples. The enrichment of H3K27ac in the foreground samples seemed to 

be quite stable across a range of numbers of background samples used (Figure. 2(b)). 

However, depletion of H3K27ac in background samples seemed to be quite sensitive to the 

number of background samples used A larger number of background samples did improve the 

specificity effectively, underscoring the importance of having a comprehensive collection of 

epigenomes, such as those made available by the Roadmap Epigenomics project. 

 

Finally, we demonstrate that our simple but versatile framework allows investigators to 

design any combination of epigenome comparison to identify specific epigenomic features 

associated with specific biological entities. For example, by combining samples that share the 

same developmental origin, one might be able to identify specific regulatory mechanisms for this 

developmental lineage. This is particularly useful when samples representing cells in early 

development are difficult to obtain. Here we set out to define endoderm-specific enhancers by 

comparing nine adult tissues derived from the endoderm to other background tissues (see 

Supplementary Note 3). The enhancers were defined using 18-state ChromHMM model. We 

identified 13,728 regions using frequency cutoff method, 46,859 regions using Fisher’s exact 

test method, and 29,386 regions using k-means clustering method with 140 clusters. We picked 

top 13,728 from Fisher’s exact test for the following analysis. The predicted regions exhibited 

much stronger enrichment of DHS in endoderm-derived tissues than in other tissues (Figure. 

3(a) and Supplementary Fig. S11). Moreover, when subjected to analysis by the GREAT tool, 

these regions were strongly associated with biological processes related to epithelial cell 

functions (Figure. 3(b)), a well-known derivative function common for endoderm-derived 

tissues84. A visualization of randomly picked 20 endoderm-specific enhancers identified from 

Fisher’s exact test showed most regions had much stronger H3K4me1/H3K27ac peaks in the 
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foreground samples than the background samples (Supplementary Fig. S12). To further 

explore the functions of these endoderm-specific enhancers, we identified potential regulatory 

transcription factors (TFs) interacting with these regions by HOMER85. The top enriched TFs are 

all important for endoderm specification, including FoxA family TFs (FoxA1, FoxA2), GATA 

family TFs (Gata4), HNF1, HNF4a and others (Figure. 3(c)). FoxA family and GATA family TFs 

are key players in the transcriptional regulatory network of the endoderm84. FoxA1 and FoxA2 

are pioneer TFs that remodel chromatin environment and facilitate recruitment of other TFs86. 

FoxA1 and FoxA2 are homologous and required for the development of endoderm tissues such 

as liver, lung, intestine and pancreas87–90. Like FoxA1 and FoxA2, HNF1 and HNF4a play key 

regulatory roles in liver, pancreas, and intestine development91–93. Moreover, the foregut 

markers PDX1 and the hindgut marker CDX2 were also highly enriched (p= 10-5 for PDX1 and 

CDX2 motifs)94. To further support the function of the top enriched TFs in endoderm tissues, 

many of them were highly expressed in endoderm tissues comparing to non-endoderm tissues, 

ESCs and ESC-derived multipotent endoderm cells70 (Supplementary Fig. S13). 

 

Using top enriched TFs that were also highly expressed in adult endoderm tissues 

compared to non-endoderm adult tissues, we identified 4 upstream TF candidates - FoxA1, 

FoxA2, HNF1b, HNF4a, and were able to build a transcriptional regulatory network for them and 

shared target genes by linking enhancers with TF binding sites to nearest genes (Figure. 3(d) 

and Supplementary Table S1) using previously described methods95. The reconstructed 

network recapitulated many important gene regulation relationships in endoderm development 

and differentiation. For example, the FoxA family TFs cooperate with HNF1b and HNF4a to 

regulate intestinal epithelial cell function93. FoxA2, HNF1b, and HNF4a were shown to bind to a 

large number of target regions in intestinal epithelial cell line93. The 72 shared target genes for 

the 4 TFs were enriched for signaling pathways required for cell proliferation and differentiation 

including WNT, BMP, VEGF and Hippo signaling (Supplementary Table S2)96. The median 
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expression level of these genes was significantly higher in endoderm tissues than that in non-

endoderm tissues (t-test, p=5e-5) (Supplementary Fig. S14). To further confirm that the 

network was activated in endoderm tissues, we examined the profile of epigenetic marks 

(DNase I, H3K27ac and DNA methylation) on all enhancers in this network across different 

tissues, including adult endoderm tissues, fetal endoderm tissues, endoderm cells, non-

endoderm tissues and ESCs. These enhancers showed strong expression of DNase I and 

H3K27ac mark and low DNA methylation only in adult endoderm tissues and fetal endoderm 

tissues (Figure. 3(e)). Figure 3(f) gave an example of merged endoderm-specific enhancers. 

The enhancers had strong DHS and H3K27ac peaks and low DNA methylation level in both 

adult and fetal endoderm tissues but not others. The evidence suggests that this regulatory 

cascade is active in fetal and adult endoderm tissues, but not in ESC-derived endoderm cells 

which presumably have not committed to a special endoderm cell type and also not in non-

endoderm tissues. 

 

2.3.2    Web server 

The tool EpiCompare is freely available online. It was written in R using the Shiny 

framework and hosted by open source shiny server97. The home page includes a simple and 

intuitive user interface for the selection of foreground samples and background samples from a 

list of human tissue and cell types available from the Roadmap Epigenomics Consortium 

(Supplementary Fig. S15). Options for selecting different classification methods and 

parameters are also provided. It also provides the option of uploading user’s data for analysis. 

The results page provides analysis results, including H3K27ac enrichment and tissue 

enrichment index using H3K27ac expression data. Results are presented as a table of identified 

regions, and can be downloaded for further analysis. Each region is linked to the WashU 

Epigenome Browser98 where users can visualize, explore, and compare their epigenomic 

patterns in different tissue/cell types. The help page gives a tutorial on how to use EpiCompare. 
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2.4    Discussion and Conclusions 

We have developed an online tool EpiCompare to help investigators to analyze the 

Roadmap Epigenomics data. The presented data showed that the tool can easily identify 

regulatory elements such as enhancers, promoters, and regions occupied by epigenetic 

features that are unique to a specific tissue or cell type, as well as those that are shared by 

multiple tissue and cell types. Our tool is designed specifically for biologists in such a way that 

no programming or data processing capacity is required to perform genome-wide analysis. We 

demonstrated that our tool could identify endoderm-specific enhancers and analysis on these 

enhancers revealed the regulatory network common to all endoderm tissues. 

 

In identifying regions with epigenomic features specific to combinations of tissue or cell 

types, EpiCompare has several advantages over existing methodologies reported in the 

FANTOM5, Roadmap, and others. First, investigators can compare enhancers, promoters, and 

specific histone marks using any combination of tissue and cell types depending on their needs. 

This enables the identification of specific epigenomic features associated with specific biological 

entities, such as lineage-specific enhancers. Second, the tool is user-friendly so that an 

experimental biologist with little or no programming experience can easily use. Investigators can 

test a variety of hypotheses by designing specific combinations of epigenome comparisons 

using Roadmap data and/or their own data, and EpiCompare provides a quality assessment of 

the predictions. The predicted regions can be readily visualized and further explored using the 

WashU Epigenome Browser.  

 

EpiCompare has some limitations. First, the regulatory elements used in this tool are defined 

based on the ChromHMM model. Although considered the state-of-the-art, ChromHMM model 

still has limited sensitivity and specificity, especially for identifying enhancers76. The 



 

 24 

performance of predicting tissue or cell type-specific enhancers is clearly dependent on the 

performance of ChromHMM. Second, EpiCompare is based on comparison of binary data 

including chromatin states and histone mark peaks. It could potentially miss regions with 

quantitatively different signal between samples. For example, it could not distinguish a weak 

enhancer from a strong enhancer if both had signals over the threshold. It could also not 

distinguish two quantitatively different weak enhancers which were below the threshold. These 

cases are false negatives for EpiCompare. The comparison of binary data can also lead to false 

positives if two samples had very similar signal at one region, with one above the threshold and 

the other below the threshold. Third, we implemented three very simple statistical models, and 

potentially could oversimplify the problem of identifying tissue or cell type-specific features. 

Frequency cutoff method uses simple cutoffs, and Fisher’s exact test assumes the occurrence 

of features as hypergeometric distribution while k-means clustering method assumes certain 

number of clusters in the data and groups them based on similarity. All of them assume the 

independence of samples, but biological samples are clearly not independent from each other. 

The statistical models also do not consider the distribution of each feature along the genome of 

each sample. However, we are encouraged by the strong performance of these simple models, 

and anticipate that development of more sophisticated models will surely improve the accuracy 

of feature identification. 

 

2.5    Methods 

2.5.1    Datasets 

The Roadmap Epigenomics Consortium uses the ChromHMM tool to generate 

chromatin states for different tissue and cell types. The type and number of chromatin 

states depends on the histone modification data provided. The 15-state ChromHMM 

model integrates histone modifications H3K4me1, H3K4me3, H3K9me3, H3K27me3, 
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and H3K36me3, while the 18-state ChromHMM model integrates the five marks in the 

15-state model plus H3K27ac70. From the Roadmap Epigenomics Project, we obtained 

15-state and 18-state ChromHMM models, and processed peak data (obtained from 

MACS99) for H3K27ac, H3K4me1, H3K4me3 and H3K27me3 marks for all tissue and 

cell types. Chromatin states are predicted for each 200 base pair (bp) window. The 15-

state ChromHMM model defines enhancers as state numbers 6, 7, 12, corresponding to 

genic enhancers, enhancers, and bivalent enhancers, respectively. The 18-state 

ChromHMM model defines enhancers as state numbers 7, 8, 9, 10, 11, 15, 

corresponding to genic enhancer 1, genic enhancer 2, active enhancer 1, active 

enhancer 2, weak enhancer, and bivalent enhancer, respectively. Further, for all 

processed peak data, the coordinates are mapped to 200bp windows by requiring at 

least 50bp overlapping. Only peaks with q-value less than 0.01 are considered. Each 

feature above – the enhancer state or epigenomic modification peak – is converted into 

binary presence or absence of the feature in each 200bp window, denoted by 1 or 0. A 

table is generated for each feature by summarizing the presence or absence of the 

feature in all samples across windows where at least one sample has the feature. 

 

2.5.2    Classification methods 

EpiCompare contains three methods for identifying regions with epigenomic features 

specific to combinations of tissue or cell types (Supplementary Fig. S1). All methods require 

the definition of foreground samples and background samples by users. Foreground samples 

are the group of samples for which we identify specific regions. Background samples are the 

group of samples against which we compare foreground samples. The principle of all methods 
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is, to define regions with features specific in foreground samples, the features should be 

enriched in the foreground samples but depleted in the background samples.  

 

The first method implements a frequency cutoff. For each region (in this case each 

200bp genomic window), the percentages of samples having the feature in the foreground 

samples and background samples are calculated. If the percentage of samples having the 

feature in the foreground samples is greater than or equal to the defined minimal foreground 

cutoff (default is 80%) and the percentage of samples having the feature in the background 

samples is less than or equal to the defined maximal background cutoff (default is 20%), then 

the region is defined as a positive region. These positive regions are further ranked by the 

difference between the percentage of samples having the feature in the foreground samples 

and background samples so users can prioritize top-ranked regions.  

 

The second method implements Fisher’s exact test. For each 200bp window, a 

contingency table composed of the number of samples with or without the feature in foreground 

samples and background samples is calculated. Fisher’s exact test is used to examine whether 

the percentage of features in the foreground samples is significantly greater than in the 

background samples. The p-value is corrected by multiple hypothesis testing using the 

Benjamini-Hochberg procedure, and regions with q-value less than a cutoff (default is 0.01) are 

identified and ranked by their q-values. The statistical power of the test depends on the number 

of foreground samples and background samples and having more samples can provide more 

statistical power to identify more significant q-values (See Supplementary Note 6). Therefore, 

when the number of foreground samples or background samples is small, investigators can use 

q-value as a ranking measure and obtain the top candidates by setting a higher q-value 

threshold. We also evaluated the false positive rate of Fisher’s exact test (See Supplementary 

Note 7). 
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The third method implements k-means clustering based on a Jaccard-index distance, 

similar to the clustering method used in HoneyBadger270. First, k-means clustering is performed 

on regions in the binary data table for each feature. R package flexclust is used for clustering100. 

We determined the optimal cluster number by the elbow method and the silhouette method101 

(See Supplementary Note 8). The optimal cluster number for all features is close and around 

140, so we provide the optimal cluster number for all features to be 140. In addition to the 

default number, we provide several other options (i.e., cluster number 90, 200 and 250) to give 

users flexibility. Next, the percentage of regions having the feature is calculated for each cluster 

and defined as a feature density table (number of clusters times number of samples). Finally, a 

cluster specific for a tissue/cell type should have higher feature density in that tissue/cell type 

than in the background samples. Specifically, to identify clusters specific for foreground 

samples, we select clusters satisfying the following two conditions: first, the median of feature 

densities of foreground samples in a cluster is greater than or equal to a threshold (default is 

0.4); second, it should also be greater than or equal to the highest feature density in the 

background samples of that same cluster (this threshold can be set to any percentile of feature 

densities in the background samples).   
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Figure 1. Validation of predicted brain-specific enhancers by Fisher’s exact test method. 

(a) Enriched GO terms and their binomial p-values based on GREAT. The top 10 GO terms are 
displayed here. (b) Enrichment of H3K27ac peaks in brain tissues and non-brain tissues for 
predicted adult brain-specific enhancers by Fisher’s exact test. (c) The distribution of tissue 
enrichment index CTM based on H3K27ac expression data for predicted adult brain-specific 
enhancers by Fisher’s exact test. 
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Figure 2. The effect of sample size on the performance of adult brain specific-enhancer 
predictions. 

(a) How the number of foreground samples influences the performance with fixed background 
samples. (b) How the number of background samples influences the performance with fixed 
foreground samples. 
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Figure 3. Identification of endoderm-specific enhancers by Fisher’s exact test method. 

(a) Enrichment of DHS for endoderm-specific enhancers identified by Fisher’s exact test. (b) 
Enriched GO terms and their binomial p-values based on GREAT. Top 10 terms are displayed. 
(c) Enrichment of TF binding motifs in endoderm-specific enhancers by Fisher’s exact test. Top 
15 TFs are displayed. (d) The putative gene regulatory networks for endoderm tissues based on 
identified enhancers. (e) The expression profiles of epigenetic marks for enhancers in the 
network in endoderm tissues and non-endoderm tissues, ESCs and ESC-derived endoderm 
cells. (f) A browser example of merged endoderm-specific enhancers. Blue is endoderm 
tissues, brown is non-endoderm tissues, and red is ESCs and ESC-derived endoderm cells. 
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Supplementary Figure 1. Visualization of three methods in EpiCompare with a simple 
example. 

F represents foreground samples, B represents background samples, R represents regions, C 

represents clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

F1# F2# F3# F4# F5# B1# B2# B3# B4# B5#

R1# 1# 1# 1# 1# 1# 0# 0# 0# 0# 0#

R2# 1# 0# 0# 0# 0# 1# 1# 1# 0# 1#

R3# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0#

R4# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#

1.#Calculate#feature#ra5o#in#
foreground#and#background#

F# B#

R1# 1# 0#

R2# 0.2# 0.8#

R3# 1# 0#

R4# 0# 1#

2.#Filter#regions#by#requiring#
foreground#ra5o#>=#cutoff#(default#
0.8),#background#ra5o#<=#cutoff#
(default#0.2)#

R1#

R3#

#1#in#F# #0#in#F# #1#in#B# #0#in#B# qIvalue#

R1# 5# 0# 0# 5# 0.004#

R2# 1# 4# 4# 1# 0.996#

R3# 4# 1# 0# 5# 0.02#

R4# 0# 5# 5# 0# 1#

1.#Use#Fisher’s#exact#test#to#calculate#pIvalue#

2.#Filter#regions#by#requiring#qIvalue#<=#cutoff#(default#0.01)#

R1#

1.#Perform#kImeans#clustering#

F1# F2# F3# F4# F5# B1# B2# B3# B4# B5#

C1# R1# 1# 1# 1# 1# 1# 0# 0# 0# 0# 0#

C1# R3# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0#

C2# R2# 1# 0# 0# 0# 0# 1# 1# 1# 0# 1#

C2# R4# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#

2.#Calculate#feature#density#in#each#cluster#

F1# F2# F3# F4# F5# B1# B2# B3# B4# B5#

C1# 1# 1# 1# 0.5# 1# 0# 0# 0# 0# 0#

C2# 0.5# 0# 0# 0# 0# 1# 1# 1# 0.5# 1#

3.#Obtain#median#density##in#foreground#and#the#highest#density#(default)#
in#background#

F# B#

C1# 1# 0#

C2# 0# 1#

Frequency#cutoff#

Fisher’s#exact#test#

#KImeans#
clustering#

4.#Filter#clusters#by#requiring#foreground#density#>=#cutoff#(default#the#
highest#feature#density#of#background),#and#foreground#density#>=#cutoff#
(default#0.4)#

R1#

R3#

Enhancer#feature#table#

F1# F2# F3# F4# F5# B1# B2# B3# B4# B5#

R1# Enh# Enh# Enh# Enh# Enh# TSS# TSS# TSS# TSS# TSS#

R2# Enh# Het# Het# Het# Het# Enh# Enh# Enh# Enh# Enh#

R3# Enh# Enh# Enh# Tx# Enh# Tx# Tx# Tx# Tx# Tx#

R4# Quies# Quies# Quies# Quies# Quies# Enh# Enh# Enh# Enh# Enh#

Genomic#data#for#chroma5n#states#

Is#enhancer#(1)#or#not#(0)?#
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Supplementary Figure 2. The overlap of adult brain-specific enhancers identified by three 
methods. 
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Supplementary Figure 3. Enriched GO terms and their binomial p-values from analyzing 
predicted adult brain-specific enhancers by frequency cutoff and k-means clustering 
method based on GREAT. 

The top 10 GO terms are displayed here. 
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Supplementary Figure 4. Enrichment of H3K27ac peaks in brain and non-brain tissues for 
adult brain-specific enhancers identified by frequency cutoff and k-means clustering 
method. 
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Supplementary Figure 5. The distribution of tissue enrichment index CTM based on 
H3K27ac RPKM data for adult brain-specific enhancers identified by frequency cutoff and 
k-means clustering method. 

For comparison, the figure in the last row merges CTM index distribution in brain tissues for 

Fisher’s exact test, frequency cutoff and k-means clustering method.  
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Supplementary Figure 6. Visualization of randomly picked 20 brain-specific enhancers 
identified from Fisher’s exact test 

The regions are put together using gene & region set function in WashU Epigenome Browser. 3 

types of tracks are included: ChromHMM 15 state, H3K27ac signal track (-log10(p-value)), 

H3K4me1 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents 

enhancer state, green represents transcribed state, white represents quiescent state and grey 

represents repressed state. Information about other colors can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Supplementary Figure 7. Enrichment of H3K27ac peaks in brain and non-brain tissues for 
shared and unique brain-specific enhancers identified by Fisher’s exact test and 
FANTOM5. 
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Supplementary Figure 8. Visualization of randomly picked 20 brain-specific enhancers 
identified from Fisher’s exact test but not FANTOM5. 

The regions are put together using gene & region set function in WashU Epigenome Browser. 3 

types of tracks are included: ChromHMM 15 state, H3K4me1 signal track (-log10(p-value)), 

H3K4me3 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents 

enhancer state, green represents transcribed state, white represents quiescent state and grey 

represents repressed state. Information about other colors can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Supplementary Figure 9. Visualization of randomly picked 20 brain-specific enhancers 
identified from FANTOM5 but not Fisher’s exact test. 

The regions are put together using gene & region set function in WashU Epigenome Browser. 3 

types of tracks are included: ChromHMM 15 state, H3K4me1 signal track (-log10(p-value)), 

H3K4me3 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents 

enhancer state, green represents transcribed state, white represents quiescent state and grey 

represents repressed state. Information about other colors can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Supplementary Figure 10. Comparison of k-means clustering method in EpiCompare and 
HoneyBadger2 tool for identifying adult brain-specific enhancers. 

 (a) The enrichment of H3K27ac peaks in in brain and non-brain tissues for adult brain-specific 

enhancers identified by clustering methods in EpiCompare and HoneyBadger2. (b) H3K27ac 

RPKM-based CTM distribution in brain tissues for adult brain-specific enhancers identified by 

clustering methods in EpiCompare and HoneyBadger2. 
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Supplementary Figure 11. Enrichment of DHS for endoderm-specific enhancers identified 
by frequency cutoff and k-means clustering method. 

Regions identified by two methods are highly enriched for DHS in endoderm tissues comparing 

to other tissues. 
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Supplementary Figure 12. Visualization of randomly picked 20 endoderm-specific 
enhancers identified from Fisher’s exact test. 

The regions are put together using gene & region set function in WashU Epigenome Browser. 3 

types of tracks are included: ChromHMM 18 state, H3K27ac signal track (-log10(p-value)), 

H3K4me1 signal track (-log10(p-value)). Yellow and orange color in ChromHMM state track 

represent enhancer state, green represents transcribed state, white represents quiescent state 

and grey represents repressed state.  Information about other colors can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Supplementary Figure 13. The expression of enriched transcription factors in different 
tissues. 

Endoderm tissues (blue), non-endoderm tissues (purple), ESCs and ESC-derived endoderm 

cells (black). The clustering is based on Euclidian distance. 
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Supplementary Figure 14. The distribution of expression levels of 72 predicted target 
genes. 

Endoderm tissues (blue) and other tissues (purple). The median expression level of these 

genes in endoderm tissues is significantly higher than that in other tissues (t-test, p=5e-5).  
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Supplementary Figure 15. The main components of the website. 

The home page includes selection of database, samples and methods. The result page includes 

a table of identified regions and validation analysis. The links in the table link to WashU 

Epigenome Browser for visualization of regions in selected samples. 
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Supplementary Note 

1. Validation methods 

We envision that most users would use our tool to define tissue or cell type-specific 

enhancers, therefore we provide additional validation process for this type of tasks. To validate 

the genomic regions identified are specific to certain tissue or cell types, we use three methods. 

First, GREAT analysis83 is performed on identified regions (regions are not merged and single-

nearest gene option is used) to determine if they are enriched for biological processes related to 

the queried tissue or cell types. The whole genome is used as background. 

 

Second, enrichment for DNase I hypersensitive sites (DHS) and H3K27ac peaks in 

different tissue and cell types are calculated for identified regions, since DHS and H3K27ac 

modification are marks of regulatory regions. Enrichment is defined as below: 

 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
#𝑏𝑝	in	overlapped	regions #𝑏𝑝	in	DHS	or	H3K27ac	peaks	⁄

#𝑏𝑝	 identified	regions #𝑏𝑝	in	hg19	genome⁄  

 

Third, a tissue enrichment index for enhancers is calculated using H3K27ac RPKM 

(Reads Per Kilobase per Million mapped reads), since H3K27ac marks enhancers. A tissue 

enrichment index has been routinely used to identify tissue-specific genes102,103. Generally, a 

high tissue enrichment index represents tissue-specific regions. The tissue enrichment index is 

a contribution measure (CTM)82, which is calculated as the following.  

H3K27ac RPKM is calculated for N samples for each region and transformed into a vector X: 

 

X = (x1, x2, …, xi, …, xN) 
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where xi is the RPKM for one sample in one region. X is then converted into a cosine vector 

Xcosθ: 

 

Xcosθ = (cosθ1, cosθ2, …, cosθi, …, cosθN) 

 

where cosθi= xi /|X|, and |X| is the magnitude of X. The tissue enrichment index in a tissue with k 

samples is: 

CTM=J∑ cosθ!"#
!$%  

Here CTM can be calculated for each tissue. The range of CTM is 0 to 1, with a higher CTM 

value in one tissue representing enrichment in that tissue. 

 

2. Effect of sample size 

To examine how the number of foreground samples affects the quality of regions 

identified, we fixed background samples to 91 non-brain samples with H3K27ac data and picked 

N (N=1, 2, 3, 5 or 7) samples from 7 adult brain samples as foreground samples. For each N, 

we chose 5 combinations of N samples selected from 7 brain samples and calculated 

enrichment of H3K27ac peaks in 7 brain samples for each combination. Mean and variance 

were calculated on the 35 enrichment values in 5 combinations. In the case of N=7, mean and 

variance were calculated on 7 enrichment values as there was only one combination. We set 

foreground cutoff and background cutoff to be 0.5 and 0.2 for frequency cutoff method, and set 

q-value threshold as 0.5 for Fisher’s exact test method. Other settings were set to default for all 

three classification methods. All enhancers were defined from 15-state ChromHMM and top 

24,453 regions were used for comparison because the smallest number of regions identified in 

all cases was 24,453. Since k-means clustering method does not have ranks, we randomly 

picked 24,453 regions identified by k-means clustering method. To examine how the number of 
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background samples affects the quality of regions identified, we fixed foreground samples to 7 

adult brain samples and picked 5, 10, 30 or 91 samples from 91 non-brain samples as 

background samples using 5 combinations like above (Fig. 2).  

 

3. Identify endoderm-specific enhancers 

To test the performance of EpiCompare, we designed a simple epigenome combination 

comparison to identity endoderm-specific enhancers. We hypothesized that adult tissues that 

are derived from the endoderm should share enhancers that are specific for endoderm. Thus, 

we selected one sample from each adult tissue derived from the endoderm as foreground 

samples, including stomach, colon, liver, pancreas, lung, duodenum, esophagus, small 

intestine, and rectum. The background samples chosen were 34 samples in adult tissues 

including blood, brain, fat, heart, muscle, ovary, spleen, and aorta.  We identified 13,728 regions 

using the frequency cutoff method (foreground cutoff = 0.7, background cutoff = 0.2), 46,859 

regions using Fisher’s exact test method (q-value cutoff = 0.05), and 29,386 regions using k-

means clustering method with 140 clusters (default settings). 

 

4. TF-binding motif enrichment analysis  

Motif enrichment analysis was performed using the HOMER tool85. Enrichment for 

known motifs was used. The tool was also used to annotate the closest gene for each region. In 

the example of brain enhancers, we connected enhancers to target genes using GREAT. We 

confirmed that the rules for GREAT and HOMER are very similar but not identical. 90% of 

protein-coding genes identified from HOMER for brain-specific enhancers overlapped with that 

from GREAT. The analysis we performed using GREAT and/or HOMER are examples of post-

EpiCompare analysis that users can perform on their own, or they can replace the analysis with 

other user-defined analysis on the collection of tissue or cell type-specific epigenetically marked 

regions returned by EpiCompare.  
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5. Construction of gene regulatory network 

To build putative regulatory network common for adult tissues derived from the 

endoderm, we first identified transcription factors (TFs) that were highly expressed in endoderm 

tissues comparing to other tissues (p<0.05, t-test) and highly enriched in TF-binding motif 

enrichment analysis (p<10-20). The TFs satisfying the requirements were FOXA1, FOXA2, 

HNF1, HNF4a. We then built a network for these TFs by linking each TF to its target genes 

using the nearest target gene method from the HOMER tool. Finally we identified target genes 

for each TF-bound endoderm-specific enhancers and used the intersection of the target genes 

as shared target genes for 4 TFs. These were further filtered by requiring a RPKM of >1 in at 

least one endoderm tissue.  

 

6. Examine how sample size affects statistical power of Fisher’s exact test 

To understand how statistic power of Fisher’s exact test depends on sample size, we 

examined how minimal q-value changes with different number of foreground samples and 

background samples (Supplementary Fig. S16). It can be seen that with increased number of 

foreground samples and background samples, the minimal q-value decreases greatly and 

therefore statistic power increases.  
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Fig. S16. How minimal q-value changes with different number of foreground samples and 

background samples in identifying brain-specific enhancers with Fisher’s exact test.  
 

7. Examine the false positive rate of Fisher’s exact test 

We examined how the number of brain-specific enhancers identified from Fisher’s exact 

test changed with different q-value cutoff (Supplementary Fig. S17). To estimate the false 

positive rate, we randomly picked 7 samples (not including any adult brain sample) from 98 

samples as foreground samples and the rest 91 as background samples and identified 

enhancers specific for the randomly selected 7 samples. We repeated this process 10 times. 

Interestingly, no enhancers were identified with q-value less than 0.1. This suggests that 

Fisher’s exact test method along with multiple hypothesis test correction can effectively control 

false positive rate. 
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Fig. S17. How the number of regions identified with different q-value cutoff in identifying brain-

specific enhancers with Fisher’s exact test 

 

8. Find optimal cluster number 

we calculated sum of square errors (SSE) for a series of cluster number and identified 

the optimal cluster number using the elbow method101. To reduce the time complexity, we 

randomly picked 200k data points for this analysis. Here we included an example of a plot of 

SSE for enhancers defined by 15-state ChromHMM model (Supplementary Fig. S18). There 

was a knee point between 100 and 150. To further find the optimal number, we utilized the 

silhouette method, which measures how closely a point matched to data within its cluster and 

matched to data of the neighboring cluster. A higher silhouette value implies a more appropriate 

clustering. Since this method can only be done on small number of data, we randomly picked 

20% of data from each cluster for this analysis. As seen from the plot, the highest value 

between 100 and 150 was 140 (Supplementary Fig. S19). Therefore, we determined the 

optimal cluster number to be 140 for enhancers from 15-state ChromHMM model. We used 

similar methods to find optimal cluster number for other features and found the optimal cluster 

number was close for all features and was around 140. So we provide the optimal cluster 

number for all features to be 140. In addition to the default number, we provide several other 

options (i.e., cluster number 90, 200 and 250) to give users flexibility. 
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Fig. S18. The sum of square error for k-means clustering with different cluster number.  

 

 
 

Fig. S19. The average silhouette value for k-means clustering with different cluster number. 

 

9. Compare EpiComapre with ChromDiff 

We compared identifying brain-specific enhancers using Fisher’s exact test and 

ChromDiff on union of enhancers in seven adult brain samples. Same foreground and 

background samples were used for two methods. We used one-tailed Mann–Whitney–Wilcoxon 

test for ChromDiff. 
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We identified 208,804 regions using the Fisher’s exact test, and 283,267 regions using 

ChromDiff. For fairness we kept the top 208,804 from Fisher’s exact test. They overlapped by 

167,691. We plotted enrichment of H3K27ac for the shared regions, as well as regions unique 

to each method, see Supplementary Fig. S20. We then randomly picked 20 regions that were 

unique to each method, and visualized them on the WashU Epigenome Browser in gene set 

view, see Supplementary Fig. S21 and S22. It can be seen that enhancers identified from 

Fisher’s exact test and ChromDiff largely overlapped (80%). Enhancers that were unique to 

Fisher’s exact test had much stronger enrichment of H3K27ac in brain samples than ChromDiff 

but also had higher enrichment in background samples. Therefore anecdotally EpiCompare 

seems to have better sensitivity, while ChromDiff seems to exhibit better specificity, at a 

comparable statistical cutoff. ChromDiff is a command line only program, while EpiCompare 

provides a much more user-friendly interface and includes access to WashU Epigenome 

Browser, allowing biologists to better explore their result. 

 
 

 Fig. S20. Enrichment of H3K27ac peaks in brain and non-brain tissues for shared and unique 

brain-specific enhancers identified by Fisher’s exact test and ChromDiff. 
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Fig. S21. Visualization of randomly picked 20 brain-specific enhancers identified from Fisher’s 

exact test but not ChromDiff. The regions are put together using gene & region set function in 

WashU Epigenome Browser. 3 types of tracks are included: ChromHMM 15 state, H3K27ac 

signal track (-log10(p-value)), H3K4me1 signal track (-log10(p-value)). Yellow color in 

ChromHMM state track represents enhancer state, green represents transcribed state, white 

represents quiescent state and grey represents repressed state. Information about other colors 

can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Fig. S22. Visualization of randomly picked 20 brain-specific enhancers identified from ChromDiff 

but not Fisher’s exact test. The regions are put together using gene & region set function in 

WashU Epigenome Browser. 3 types of tracks are included: ChromHMM 15 state, H3K27ac 

signal track (-log10(p-value)), H3K4me1 signal track (-log10(p-value)). Yellow color in 

ChromHMM state track represents enhancer state, green represents transcribed state, white 

represents quiescent state and grey represents repressed state. Information about other colors 

can be found in 

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state.  Foreground 

samples are labeled as blue and background samples are labeled as brown. 
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Supplementary Tables 
 

Gene Ensembl ID 

ERRFI1 ENSG00000116285 

LIPH ENSG00000163898 

FARP2 ENSG00000006607 

SLC45A1 ENSG00000162426 

C1orf116 ENSG00000182795 

ELF3 ENSG00000163435 

FAM3D ENSG00000198643 

MECOM ENSG00000085276 

ATP8B1 ENSG00000081923 

VEGFA ENSG00000112715 

SUSD1 ENSG00000106868 

TMPRSS2 ENSG00000184012 

EXT1 ENSG00000182197 

PRLR ENSG00000113494 

RHPN2 ENSG00000131941 

SERINC2 ENSG00000168528 

KIAA1324 ENSG00000116299 

BMP2 ENSG00000125845 

ACVR2A ENSG00000121989 

MYO5C ENSG00000128833 

MYO10 ENSG00000145555 

CHN2 ENSG00000106069 

PIGR ENSG00000162896 

ROR1 ENSG00000185483 

IFFO2 ENSG00000169991 

TJP2 ENSG00000119139 

ANKRD40 ENSG00000154945 

PARVA ENSG00000197702 

NRP2 ENSG00000118257 

DHRS2 ENSG00000100867 
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SLC22A23 ENSG00000137266 

FOXQ1 ENSG00000164379 

IER3 ENSG00000137331 

WWC1 ENSG00000113645 

C14orf2 ENSG00000156411 

HMGCS2 ENSG00000134240 

CD55 ENSG00000196352 

CCDC58 ENSG00000160124 

COL21A1 ENSG00000124749 

DNPEP ENSG00000123992 

KCNK5 ENSG00000164626 

GPR37L1 ENSG00000170075 

CAMTA1 ENSG00000171735 

FZD5 ENSG00000163251 

HES1 ENSG00000114315 

SYF2 ENSG00000117614 

TTLL6 ENSG00000170703 

STK24 ENSG00000102572 

F3 ENSG00000117525 

CHD1L ENSG00000131778 

AMBP ENSG00000106927 

PLEKHA7 ENSG00000166689 

INO80D ENSG00000114933 

NDRG1 ENSG00000104419 

SH3YL1 ENSG00000035115 

C9orf152 ENSG00000188959 

IHH ENSG00000163501 

TTC39A ENSG00000085831 

TOX3 ENSG00000103460 

PANK3 ENSG00000120137 

HEXB ENSG00000049860 

AGAP1 ENSG00000157985 

ABCC4 ENSG00000125257 
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GPR160 ENSG00000173890 

KALRN ENSG00000160145 

C6orf132 ENSG00000188112 

PPP2R5A ENSG00000066027 

PDXK ENSG00000160209 

ADGRV1 ENSG00000164199 

LINC01549 ENSG00000232560 

SPIDR ENSG00000164808 

FAM86B3P ENSG00000173295 

Supplementary Table 1. The intersection of target genes for each TF (FOXA1, FOXA2, 
HNF1a, HNF4a)-bound endoderm-specific enhancers. 

 

 

Pathway  Raw p-value 

WNT5A-dependent internalization of FZD2, FZD5 and ROR2 0.000165 

VEGF and VEGFR signaling network 0.000734 

BMP Signalling Pathway 0.002443 

Canonical Wnt signaling pathway 0.003018 

Signaling by Hippo 0.003018 

Signaling by BMP 0.003327 

Validated targets of C-MYC transcriptional repression 0.003471 

Mesodermal Commitment Pathway 0.003743 

Class B/2 (Secretin family receptors) 0.005468 

VEGFR1 specific signals 0.006298 

Signal Transduction 0.008242 

Developmental Biology 0.009417 

Supplementary Table 2. Pathway enrichment from ConsensusPathDB for 72 target genes 
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3.1    Abstract 

Increased appreciation of 5-hydroxymethylation (5hmC) as a stable epigenetic mark, 

which defines cell identity and disease progress, has engendered a need for cost-effective, but 

high-resolution 5hmC mapping technology. Current enrichment-based technologies provide 

cheap, but low-resolution and relative enrichment of 5hmC levels while single base-resolution 

methods can be prohibitively expensive to scale up to large experiments.  To address this 

problem, we developed a deep learning-based method “DeepH&M”, which integrates 

enrichment and restriction enzyme sequencing methods to simultaneously estimate absolute 

hydroxymethylation and methylation levels at single CpG resolution. Using 7-week-old mouse 

cerebellum data for training DeepH&M model, we demonstrated that the 5hmC and 5mC levels 

predicted by DeepH&M were in high concordance with whole genome bisulfite-based 

approaches. The DeepH&M model can be applied to 7-week old frontal cortex and 79-week 

cerebellum revealing the robust generalizability of this method to other tissues from various 

biological time points. 

 

3.2     Introduction 

A single genome can derive phenotypically unique cell types through various epigenetic 

modifications that instruct specific gene expression patterns104,105. DNA modifications, such as 

methylation of 5 position of cytosines (5mC) at CpG dinucleotide context, play a vital role in 

gene regulation, genomic imprinting, X-chromosome inactivation, and repression of 

transposable elements30–33.  The recent discovery that Ten-Eleven Translocation (TET) oxidase 

proteins can oxidize 5mC to 5-hydroxymethylcytosine (5hmC) has spurred an effort at 

characterizing the landscape of 5hmC in normal and diseased tissues and deciphering its 

potential functional role in gene regulation39,106–110. Genome-wide profiling of 5hmC has found 

that 5hmC is not just an intermediate product of the active DNA demethylation process, but also 
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a stable epigenetic mark correlated with gene expression. 5hmC abundance varies significantly 

across different tissues111. 5hmC is present as high as 40% of 5mC levels in Purkinje neurons37, 

5% of 5mC levels in embryonic stem cells43, and is low (less than 1% of 5mC level) in other cell 

types47.  5hmC is enriched in promoters, gene bodies and enhancers; 5hmC levels in promoters 

and gene bodies are positively correlated with gene expression45–47. 5hmC levels in enhancers 

are often cell-type specific and are positively correlated with active enhancer histone marks, 

such as H3K4me1 and H3K27ac48. However, the molecular mechanism by which 5hmC might 

regulate the genome has yet to be fully elucidated112.  

 

Rapid technological innovations for mapping 5mC have cemented 5mC as a crucial 

epigenetic mark for cell fate. Technologies for mapping 5mC include bisulfite conversion of 

unmethylated cytosine to uracil, such as whole genome bisulfite sequencing (WGBS), 

enrichment of methylated DNA using methyl-cytosine-specific antibodies, such as methylated 

DNA immunoprecipitation sequencing (MeDIP-seq), and enrichment of unmethylated regions 

using methylation-sensitive restriction enzymes, such as methylation-sensitive restriction 

enzyme sequencing (MRE-seq)63. The gold standard method WGBS can measure methylation 

genome-wide at single-base resolution but requires high coverage of the genome (at least 10x 

coverage for each cytosine) and therefore can be 10 times more expensive than enrichment or 

restriction enzyme sequencing methods64. MeDIP-seq enriches for methylated regions but has 

low resolution (~150bp)65,66. MRE-seq provides CpG resolution, but can only interrogate 

methylation status at restriction enzyme sites (~30% of the genome)65. 

 

Similarly, 5hmC profiling technologies advanced from immunoprecipitation/enrichment-

based methods to whole genome single-base resolution. Because WGBS cannot distinguish 

5hmC from 5mC, Yu et. al. developed a method called TET-assisted bisulfite sequencing (TAB-

seq), where 5hmCs are first protected by glucosylation and then 5mC is completely oxidized to 
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5caC with TET enzyme46. The following bisulfite treatment can reveal which CpGs are protected 

and infer hydroxymethylation levels. TAB-seq can measure genome-wide 5hmC at single-base 

resolution but requires very high coverage to confidently call 5hmC at all cytosines. For 

example, for 5% 5hmC, based on binomial test with a probability of 2.22% for 5mC non-

conversion rate, a coverage of 120 is required to call 5hmC at 95% confidence level (see 

Materials and Methods). The study from Yu, et al. could only confidently call 20% or higher 

5hmC at an average coverage of 27. Often in TAB-seq experiments, both WGBS and TAB-seq 

libraries are deeply sequenced to parse out 5mC and 5hmC levels in a single sample. Achieving 

high confidence, single base resolution of 5hmC can be a heavy financial strain for large 

experimental designs due to the necessary sequencing depth. Therefore, many adopted the 

cheaper alternative of utilizing antibody-based enrichment method, such as hydroxymethylated 

DNA immunoprecipitation sequencing (hMeDIP-seq), which can reveal hydroxymethylated 

regions with limited sensitivity45. hMeDIP-seq can also provide relative hydroxymethylation over 

controls, but at the cost of low resolution. Similar to antibody-based enrichment method such as 

hMeDIP-seq, hmC-Seal chemically tags hydroxymethylated cytosine and enriches 

hydroxymethylated regions by pulling down tagged 5hmC47,48. hmC-Seal can pull down regions 

with extremely low 5hmc content and thus have higher sensitivity than hMeDIP-seq.  

 

Because of the high cost of single-base-resolution profiling methods for 5hmC and 5mC, 

several computational methods were developed to estimate 5hmC and 5mC at single-base 

resolution. Xiao et.al. developed a random forest regression-based method MeSiC to estimate 

single-CpG 5mC from MeDIP-seq data67. Stevens et. al. took advantage of the complementary 

properties of MeDIP-seq and MRE-seq and developed a conditional random field-based 

algorithm methylCRF to effectively predict single-CpG 5mC from MeDIP-seq and MRE-seq 

data68. However, the two aforementioned algorithms cannot predict 5hmC levels. Pavlovic et al. 

developed a SVM/random forest-based method DIRECTION to predict single-CpG 5mC or 



 

 64 

5hmC from histone modification and transcription factor ChIP-seq data69. This method can only 

predict binary values, either high or low 5mC/5hmC, but not the absolute quantitative level. To 

address these limitations, we developed a deep learning-based method DeepH&M, which 

integrates enrichment and restriction enzyme sequencing methods to estimate absolute single-

CpG resolution hydroxymethylation and methylation levels simultaneously. 

 

3.3    Results 

3.3.1    Description of DeepH&M model 

To estimate single-CpG hydroxymethylation and methylation, we developed a deep 

learning-based algorithm DeepH&M to integrate MeDIP-seq, MRE-seq and hmC-Seal data (Fig. 

1A). The core of DeepH&M is to model the relationship between MeDIP-seq/MRE-seq/hmC-

Seal data and TAB-seq/WGBS data using deep learning networks. The relationship between 

MeDIP-seq/MRE-seq data and WGBS data was well characterized previously in a conditional 

random filed-based algorithm, methylCRF, which was used to integrate MeDIP-seq and MRE-

seq data to predict absolute methylation levels at single-CpG resolution68. hmC-Seal data is 

positively correlated with TAB-seq data while MeDIP-seq and MRE-seq data present a complex 

relationship with TAB-seq data (fig. S1A).  DeepH&M model is composed of 3 modules: a 

regular neural network-based CpG module, a convolutional neural network-based DNA module 

and a regular neural network-based joint module (Fig. 1B). The inputs for CpG module are 

genomic features and methylation features (table S1) for each CpG. Genomic features include 

GC percent, CpG density and distance to nearest CpG island. Methylation features include 

MeDIP-seq, MRE-seq and hmC-Seal signal.  Because CpG in proximity tends to have similar 

5hmC and 5mC level (fig. S1B), we also include average signal for above features in 

neighboring windows around the target CpG. DNA module takes DNA sequence around a CpG 

as inputs and uses convolutional neural network to extract information from DNA sequence. The 
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joint module combines outputs from CpG module and DNA module and predicts 5hmC and 

5mC levels simultaneously.  

 

3.3.2    Benchmarking DeepH&M model 

To examine the performance of DeepH&M, we generated WGBS, TAB-seq, MeDIP-seq, 

MRE-seq and hmC-Seal data for 7-week-old mouse cerebellum and trained DeepH&M model 

with these datasets.  Because DeepH&M requires 5hmC and 5mC as the labels, we used a 

statistical method MLML113 to integrate TAB-seq and WGBS data to get consistent 5hmC, 5mC 

and total methylation. MLML can prevent obtaining negative 5mC values by subtracting TAB-

seq data directly from WGBS data, and also prevent the contradiction of TAB-seq and WGBS 

data at some CpG sites. As a reference, we called 5hmC, 5mC and total methylation derived 

from MLML as “gold standard” data and evaluated our predictions against them. However, we 

recognize that even the gold standard data might not represent the true hydroxymethylation and 

methylation levels of a sample due to intrinsic limitations of profiling methods as described 

previously114,115.  

 

 Our predicted 5hmC, 5mC and total methylation levels are in high concordance with gold 

standard results. DeepH&M recapitulates the distribution of gold standard 5hmC, 5mC, and total 

methylation (Fig. 2A and B). The genome-wide correlation across our predictions and gold 

standard data for 5hmC, 5mC and total methylation is 0.8, 0.85 and 0.85 respectively (Fig. 2A). 

Using a previously developed concordance metric (defined as the percent of CpGs with a 

methylation proportion difference less than 0.1 or 0.25)116, 5hmC predictions are 86% 

concordant with gold standard data within 0.1 difference, 5mC predictions are 90% concordant 

within 0.25 difference and total methylation predictions are 91% concordant within 0.25 

difference. To examine if the concordance is high only at particular 5hmC/5mC/total methylation 

levels, we examined the concordance at differing 5hmC/5mC/total methylation windows (Fig. 
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2C). 5hmC concordance is over 80% for 5hmC levels less than 0.4 and 45% for 5hmC levels 

higher than 0.4. We report that less than 1% of the CpGs in mouse cerebellum have 5hmC 

levels higher than 0.4. One explanation for the low concordance could be due paucity of high 

hmC CpGs in the training set (2 million CpGs) thus DeepH&M might have difficultly learning the 

rules for high 5hmC CpGs. The concordance for 5mC is relatively lower for 5mC at 0.2-0.4 

window and the concordance for total methylation is low for total methylation at 0.2-0.6 window. 

This may be due to the difficulty in predicting intermediate methylation as the problem also 

existed in predictions by methylCRF68. The high concordance can be appreciated in the WashU 

Epigenome browser view of the Slc22a17 and Efs locus, where 5hmC, 5mC and total 

methylation levels of predicted and gold standard data are visualized (Fig. 2D). Furthermore, as 

a positive control for evaluating our predictions against gold standard data, we examined the 

concordance of two 7-week-old cerebellum replicates (fig. S2). The genome-wide correlation for 

5hmC, 5mC and total methylation between two replicates is 0.82, 0.89, and 0.91 respectively, 

and the concordance is 88%, 92%, and 94% respectively. The concordance of our predictions 

with gold standard data is very close to the concordance of two replicates. These results confirm 

DeepH&M can estimate single-CpG hydroxymethylation and methylation with high accuracy. 

 

Since it has been shown that 5hmC is enriched at enhancers and 5hmC levels at gene 

body are positively correlated with gene expression45–47, we investigated if our 5hmC predictions 

can reveal these relationships. To examine the enrichment of 5hmC in genomic features, we 

divided CpGs into four categories based on their 5hmC levels and calculated the enrichment 

fold of the four CpG categories in genomic features. We found the enrichment of DeepH&M 

predicted 5hmC in genomic features was similar to that of gold standard 5hmC (fig. S3A). CpGs 

with high 5hmC levels by predictions or gold standard data were highly enriched for enhancers 

and depleted for promoters. To examine the relationship between 5hmC and gene expression, 

we grouped genes into four categories based on expression levels and profiled average 5hmC 



 

 67 

levels at gene body of the four categories of genes. We observed that similar to the gold 

standard 5hmC, the predicted 5hmC levels were positively correlated with gene expression (fig. 

S3B). 

 

3.3.3    Factors affecting DeepH&M performance 

Next, we wanted to investigate factors that may affect DeepH&M’s performance. First, 

we examined DeepH&M’s performance across different genomic features, as DNA methylation 

and hydroxymethylation were known to be highly non-random across the genome. The 

concordance is over 93% at CpG islands and promoters for 5hmC and 5mC (Fig. 3A). The 

concordance for other genomic features is over 80% for 5hmC and over 87% for 5mC. Because 

most CpG islands (CGIs) are lowly methylated and only a small portion of CGIs are highly 

methylated, we wanted to see if DeepH&M can distinguish highly methylated CGIs from lowly 

methylated CGIs. We divided CGIs into lowly methylated CGI and highly methylated CGIs 

based on total methylation levels, and then examined the concordance of predictions and gold 

standard data in these two types of CGIs. At lowly methylated CGIs, the concordance for 5hmC 

and 5mC are 99.9% and 99.8%, respectively (Fig. 3B). At highly methylated CGIs, the 

concordance for 5hmC and 5mC are 95% and 98%. These results indicate that DeepH&M’s 

predictions are determined by experimental data instead of a learned assumption that all CGIs 

are lowly methylated. Second, since the accuracy of methylation levels from TAB-seq and 

WGBS data are significantly influenced by sequencing coverage, we examined DeepH&M’s 

performance across differing CpG coverage from TAB-seq and WGBS data. The concordance 

for 5hmC and 5mC increases steadily from less than 10x coverage to over 10x coverage (85% 

to 88% for 5hmC, 78% to 89% for 5mC) (Fig. 3C). Thus, the lower concordance at lower 

coverage is likely a consequence of lower confidence in gold standard data, underscoring the 

robustness of our algorithm. Third, we examined DeepH&M’s performance across regions with 

differing CpG density, as CpG density is a confounding factor for our enrichment-based 
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sequencing methods, MeDIP-seq and hmC-Seal, which do not work optimally for regions with 

low CpG density. Indeed, we observed increasing concordance for 5hmC and 5mC with 

increasing CpG density. Note that the concordance was greater than 0.8 even at lowest CpG 

density; it increased to over 88% (5hmC) and 92% (5mC) for high CpG density regions that 

most of the current investigations focus on (Fig. 3D). 

 

3.3.4    Generalizability of DeepH&M model to explore hydroxymethylation and 

methylation dynamics  

Finally, we wanted to test whether DeepH&M model, trained on data from 7-week-old 

mouse cerebellum, can be generalized to data of other samples. This includes whether 

DeepH&M can predict differentially hydroxymethylated regions (DHMR) and differentially 

methylated regions (DMR) between two samples. We generated WGBS, TAB-seq, MeDIP-seq, 

MRE-seq and hmC-Seal data for 79-week-old mouse cerebellum as we wanted to explore 

5hmC changes during aging. Using DeepH&M model from 7-week-old mouse cerebellum, we 

predicted 5hmC and 5mC for 79-week-old mouse cerebellum. We performed similar 

concordance analysis between predictions and gold standard data for 79-week-old mouse 

cerebellum. The overall performance of DeepH&M model in 79-week-old mouse cerebellum is 

similarly high as 7-week-old mouse cerebellum (Fig. 4, A to C). The genome-wide correlation 

for 5hmC, 5mC and total methylation between predictions and gold standard data is 0.81, 0.86, 

and 0.86 respectively, and the concordance is 84%, 91%, and 92% respectively. As illustrated 

by the WashU Epigenome browser view, there is high concordance between DeepH&M 

prediction and gold standard data across 5hmC, 5mC and total methylation levels in the 5’UTR 

and first exon of Kcnd2 gene (Fig. 4D).  

 

Recent research suggests that epigenetic mechanisms, DNA methylation in particular, 

play a central role in the aging process117. Using antibody-based methods to quantify 5hmC 
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levels, several studies reported global levels of 5hmC increase significantly in mouse 

cerebellum during aging, but remain stable in mouse hippocampus118,119. Furthermore, a recent 

study used single-base-resolution sequencing method (oxBS-seq) to measure 5hmC at single 

sites in mouse hippocampus and found no global 5hmC changes120. However, due to low 

sequencing depth (2X), the study only examined 5hmC changes at chromosome level and 

genomic element level, such as CGIs and promoters, and could not provide single-base 

resolution 5hmC dynamics at local regions.  

 

In this study, we explored whether DeepH&M could reveal how 5hmC changes globally 

and locally in mouse cerebellum during aging. We report that global 5hmC levels increase by 

20% from 7 weeks to 79 weeks and that global 5mC levels do not change (table S2). Next, we 

examined if there are 5hmC and 5mC changes in specific regions during aging by calling 

differentially hydroxymethylated regions (DHMRs) and differentially methylated regions (DMRs). 

First, we identified 524 DHMRs between hmC-Seal data of 7-week-old and 79-week-old mouse 

cerebellum using DiffBind121. We wanted to see if 5hmC changes in these DHMRs are similar 

between predictions and gold standard data. Indeed, the hyperDHMRs have significantly higher 

5hmC in both gold standard data and predictions, and hypoDHMRs have significantly lower 

5hmC in both gold standard data and predictions (Fig. 5A). Thus, both gold standard data and 

DeepH&M predictions support DHMRs defined by hmC-Seal data. Second, we defined DHMRs 

and DMRs by comparing TAB-seq and WGBS data between 7-week-old and 79-week-old 

cerebellum using the tool DSS122. We examined whether these DHMRs/DMRs are supported by 

DeepH&M data. Indeed, the differences predicted by DeepH&M are highly significant, and they 

are concordant with differences defined by gold standard data, although the overall magnitude 

tends to be smaller (Fig. 5, B and C).  
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We also examined enrichment of biological processes for these DHMRs and DMRs 

using GREAT83. We report that hyperDHMRs are enriched near genes that regulate synaptic 

plasticity and transporter activity (fig. S4A) and that hyperDMRs are enriched in genes 

responsible for neuron axonogenesis (fig. S4B). There were no significantly enriched terms 

associated with hypoDMRs and hypoDHMRs, possibly due to the small number of hypoDMRs 

and hypoDHMRs. As an example, Fig. 4D illustrates one of the numerous differentially 

hydroxymethylated regions between 7-week-old and 79-week-old cerebellum. The 5hmC 

changes at this region is supported by changes of gold standard 5hmC, predicted 5hmC and 

also hmC-Seal signal between the two ages. These results suggest that DeepH&M can predict 

DHMRs and DMRs between two samples.  

 

The above analysis demonstrates that DeepH&M model, trained on data from 7-week-

old mouse cerebellum, can be generalized to 79-week-old mouse cerebellum. We wanted to 

examine whether our DeepH&M model can be also generalized to 7-week-old mouse cortex as 

5hmC levels in cortex is much higher than cerebellum. We found the overall performance of 

DeepH&M model for 5hmC is a little lower in cortex than in cerebellum (concordance: 72% vs 

86%), and the performance for 5mC and total methylation is similar to cerebellum (Fig. 6, A to 

C). The genome-wide correlation for 5hmC, 5mC and total methylation between predictions and 

gold standard data is 0.65, 0.82, and 0.89 respectively, and the concordance is 72%, 89%, and 

92% respectively. We can see that 5hmC distribution in cortex is distinct from cerebellum (Fig. 

2B vs. Fig. 6B) and the mean 5hmC level in cortex is almost twice as high as in cerebellum 

(0.19 vs 0.11). Satisfyingly, DeepH&M can still recapitulate the distribution of gold standard 

5hmC and 5mC and total methylation. These results suggest DeepH&M model trained from 

cerebellum is not only generalizable to other cerebellum samples at different ages, but also 

generalizable to adult frontal cortex. We also applied our DeepH&M model to mouse fetal cortex 

which has much lower global 5hmC levels than adult cortex. The genome-wide correlation for 
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5hmC, 5mC and total methylation between predictions and gold standard data provided in Lister 

et al.123 is 0.44, 0.63, and 0.65 respectively, and the concordance is 61%, 84%, and 94% 

respectively (fig. S5). The extremely low concordance for 5hmC in fetal cortex may be 

explained by the rather big global differences in 5hmC distribution in adult and fetal cortex. 

 

3.4    Discussion and Conclusions 

5hmC is known to be an intermediate, but stable, epigenetic feature of the active DNA 

demethylation process. However, the molecular mechanisms underlying the role of 5hmC in 

gene regulation remains largely unknown. Furthermore, the loss of 5hmC has been identified as 

a hallmark of most types of human cancers. Many cancers are characterized by down-

regulation of or deleterious mutations in TET or isocitrate dehydrogenase IDH1/IDH2 (co-factors 

of TET enzymes) genes, which reduces the rate of oxidization of 5mC into 5hmC106,108,109. It’s 

important to note that many of these studies employ hMeDIP-seq technology to profile tumor 

and matched-tumor samples, therefore, there is a lack of high-resolution hydroxymethylomes of 

tumors.  

 

Understanding the mechanisms underlying 5hmC’s roles in development and 

tumorigenesis can benefit from profiling 5hmC levels at genome-wide, single-base resolution. 

As shown in Wen et al.124, high-resolution 5hmC profiling of the human brain revealed novel 

5hmC signatures, such as high hydroxymethylation levels near 5’splicing sites and transcription-

correlated hmC levels on the sense strand of the gene, that hMeDIP-seq would not be able to 

detect due to inherent limitations of the technology. Identifying these novel signatures could hold 

the key in deciphering the biological machineries that 5hmC could potentiate. Currently, TAB-

seq and oxidative-bisulfite sequencing (oxBS-seq) are the gold standard methods for providing 

single-CpG-resolution DNA hydroxymethylomes46,125. These two methods require very high 
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coverage to confidently call 5hmC at all cytosines. The coverage required for oxBS-seq is even 

higher due to the fact that oxBS-seq measures 5hmC indirectly through subtracting measured 

5mC from measured total methylation. The high cost associated with the high coverage is a 

significant barrier for individual laboratories to adopt TAB-seq and oxBS-seq as a routine assay 

for DNA hydroxymethylomes. Indeed, so far only a few cell types have deeply sequenced 

hydroxymethylomes at single-base resolution46,115,123,124,126–130.  

 

To overcome this potential cost-barrier problem, we have developed a deep learning-

based algorithm DeepH&M, which integrates enrichment and restriction enzyme sequencing 

methods to estimate the absolute levels of hydroxymethylation and methylation at single CpG 

resolution. The cost of the three assays combined is <5% of WGBS and TAB-seq. About 50-100 

million MeDIP reads, 30 million MRE reads and 50 million hmC-Seal-seq reads are sufficient for 

measuring a hydroxymethylome with DeepH&M, which translates to roughly 3x coverage of the 

human or mouse genome. Also, TAB-seq requires ~3ug of genomic DNA while MeDIP-seq, 

MRE-seq, and hmC-Seal can be generated from 100ng or less input thus allowing DeepH&M to 

be more amenable to rare or difficult-to-procure cells or samples. Compared to 100x coverage 

for TAB-seq and 20x coverage for WGBS, our method can minimize the cost of generating a 

complete hydroxymethylome by 40-fold. Furthermore, DeepH&M can estimate for all CpGs 

while WGBS and TAB-seq miss a significant fraction of the genome due to low coverage. As 

mentioned previously, previous TAB-seq study on H1 cells could only confidently call 20% or 

higher 5hmC at a coverage of 27 and thus identified less than 1 million hydroxymethylated 

CpGs46.  

 

One caveat to DeepH&M is that TAB-seq and WGBS libraries must be sequenced 

initially to generate training data for the cell type of interest. Since creating comprehensive 

hydroxymethylome and methylome can be cost-prohibitive, we explored alternative methods of 
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generating training data. Currently, Infinium MethylationEPIC BeadChip Kit (Illumina, WG-317-

1001) can profile the methylation levels from roughly 850,000 CpGs at single-nucleotide 

resolution for human. To address whether methylation microarray results could be utilized as 

training set, we asked whether DeepH&M can be trained on 850,000 CpGs in our mouse data. 

Compared to 2 million CpG training data, which has 86% 5hmC and 90% 5mC concordance, 

DeepH&M can still predict with 83% and 89% concordance for 5hmC and 5mC respectively. 

Therefore, to reduce the cost of generating training data, we can replace WGBS and TAB-seq 

with methylation arrays coupled with bisulfite and TAB-treated samples respectively115.  It is also 

feasible to supply other enrichment and restriction enzyme sequencing methods as replacement 

of DeepH&M inputs, such as replacing hmC-Seal with hMeDIP-seq. However, users need to 

retrain DeepH&M model when using new input methods. 

 

Using 7-week-old mouse cerebellum data for training DeepH&M model, we 

demonstrated that the estimated 5hmC and 5mC levels were in high concordance with those 

estimated by combining TAB-seq and WGBS data. DeepH&M estimated 5hmC levels at 85% 

concordance with TAB-seq data within 0.1 difference and DeepH&M estimated total methylation 

level at 91% concordance with WGBS data within 0.25 difference. Furthermore, DeepH&M can 

be generalizable to other tissues and biological time points. DeepH&M model trained on 7-

week-old mouse cerebellum data was able to estimate 5hmC and 5mC levels with high 

performance for 79-week-old mouse cerebellum (concordance for 5hmC and total methylation is 

84% and 92%). Of note, differentially hydroxymethylated regions and differentially methylated 

regions between 7-week-old and 79-week-old mouse cerebellum can be recapitulated using the 

estimated 5hmC and 5mC values from DeepH&M for the two ages. However, we report 

relatively lower performance for 7-week-old mouse cortex (concordance for 5hmC and total 

methylation is 72% and 92%). The relatively lower performance for cortex may be explained by 

the rather big global differences of 5hmC distribution in cerebellum and cortex, as the mean 



 

 74 

5hmC level is 0.19 in cortex and 0.11 in cerebellum. As one of the caveats of DeepH&M, these 

data suggest that DeepH&M model cannot be generalized to different tissues when 5hmC levels 

differ greatly between tissues. Indeed, when we applied our DeepH&M model to mouse fetal 

cortex (mean 5hmC level of 0.05), the concordance for 5hmC and total methylation is 61% and 

94%. The extremely low concordance for 5hmC indicates that mean level of 5hmC should be 

taken into account when applying trained models to different biological systems. Because of the 

dynamic range of absolute 5hmC levels in different tissues, the relationships between MeDIP-

seq, MRE-seq and hmC-Seal data and 5hmC are different in different tissues, and thus a single 

DeepH&M model cannot be generalized to all tissues. One way to address this limitation is to 

categorize tissues into multiple classes based on their 5hmC levels and train a DeepH&M model 

for each group. The DeepH&M model trained for each group can then be generalized to tissues 

that have similar 5hmC levels. 

 

3.5    Methods 

3.5.1    DeepHM model 

DeepH&M model is derived from DeepCpG model, which predicts single-cell DNA 

methylation states using deep learning131. DeepH&M model is composed of 3 modules: a 

regular neural network-based CpG module, a convolutional neural network-based DNA module 

and a regular neural network-based joint module (Fig. 2). CpG module extracts information from 

inputs of genomic features and methylation features of a CpG with regular neural network. DNA 

module takes DNA sequence around a CpG as input and uses convolutional neural network to 

extract information from DNA sequence. The joint module combines outputs from CpG module 

and DNA module and predicts 5hmC and 5mC simultaneously with regular neural network. 
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Unlike CpG module in DeepCpG which is a recurrent neural network, the CpG module in 

DeepH&M is a regular neural network using two fully connected layers with 100 neurons and 

ReLU activation function. The inputs for CpG module are genomic features and methylation 

features (Supplementary Table 1) for each CpG. Genomic features include GC percent, CpG 

density and distance to nearest CpG island. Methylation features include MeDIP-seq, MRE-seq 

and hmC-Seal signal.  Because CpGs in proximity tend to have similar 5hmC and 5mC levels, 

we also include average signal for the above features in neighboring windows (0-50bp,50-

250bp,250-500bp,500-1000bp) around the target CpG.  

 

The structure of our DNA module is the same as DNA module of DeepCpG model 

except that the activation function in our DNA module is tanh function instead of ReLU function 

(with two connected layers: layer 1 with 120 neurons and layer 2 with 240 neurons). 

 

Joint module uses two fully connected layers with 100 neurons and ReLU activation 

function to predict 5hmC and 5mC simultaneously, unlike the joint module in DeepCpG which 

only predicts DNA methylation.  

 

We used data that has at least 25x coverage from TAB-seq data and 20x coverage from 

WGBS data for training and validation. The feature data is normalized by Z-score normalization. 

Because the number of high 5hmC level CpGs was much smaller than those with low hmC 

levels, we balanced the training set through subsampling and oversampling. We divided CpGs 

into 9 windows based on 5hmC levels: 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.25, 0.25-0.3, 

0.3-0.35, 0.35-0.4, 0.4-1 and subsampled CpGs if number of CpGs in the window was higher 

than a threshold and oversampled CpGs if number of CpGs in the window was less than a 

threshold. The threshold was chosen as the median of the number of CpGs in 9 windows. Data 

were randomly split into training set (2 million CpGs), validation set (0.5 million CpGs) and test 
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set (the rest).  Model parameters were learnt on the training set by minimizing the L2 loss 

function. We selected the model that had the smallest loss in the validation set and used the 

model to predict 5hmC and 5mC for all CpGs. 

 

3.5.2    Tissue sample dissection and genomic DNA extraction. 

All procedures were approved by the Washington University Institutional Animal Care 

and Use Committee. Two male 6-week-old C57BL/6J mice and two male 78-week-old 

C57BL/6J mice were purchased (The Jackson Laboratory, 000664) and allowed to acclimate in 

the mouse facility for a week. Cerebellum were dissected following protocol described 

previously132 from mice in both age groups while the frontal cortex (from bregma +1.0mm to the 

base of the olfactory bulb) was dissected as described previously123 from 7-week-old mice. All 

tissues were snap frozen in liquid nitrogen immediately after dissection. 

 

Each tissue was cut into two pieces with a sterile razor blade for subsequent DNA and 

RNA extraction immediately following. For genomic DNA extraction, we followed previously 

established protocol133. In brief, each tissue piece was incubated in 600ul of lysis buffer (50mM 

Tris-HCl pH 8, 1mM EDTA pH 8, 0.5% SDS, 1mg/ml proteinase K) at 55°C for 4 hours. DNA 

was purified by phenol/chloroform/isoamyl alcohol extraction followed by ethanol extraction. 

DNA used for MeDIP-seq was sheared into 100-500bp fragment size with Bioruptor Pico 

Sonication system while DNA for WGBS and TAB-seq was sheared into 200-600bp fragment 

size with Covaris E220 -Ultrasonicator. 

 

3.5.3    MeDIP-seq, MRE-seq, and hmC-Seal library construction and data processing 

MeDIP-seq libraries were generated as previously described133 with few modifications. 

100ng of sheared DNA was ligated with Illumina adapters and methylation-enriched adapter-
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ligated DNA fragments were immunoprecipitated with 0.1ug of anti-methylcytidine antibody 

(Eurogentec, BI-MECY-0100). MeDIP DNA fragments were amplified with Illumina barcodes 

with NEB 2x PCR master mix (NEB, M0541). MeDIP-seq libraries were sequenced on Illumina 

NovaSeq 6000 platform. 

 

MRE-seq libraries were generated as previously described133 with few modifications. In 

brief, 50ng of genomic DNA was digested by four restriction enzymes (HpaII, HinP1I, AciI, 

HpyCH4IV) that generate a CG overhang. Adapter ligation was performed with custom Illumina 

adapters (5’- ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ and 5’-P- 

CGAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’). Adapter-ligated DNA fragments 

were amplified with Illumina barcodes with NEB 2x PCR master mix (NEB, M0541) and 

sequenced on Illumina NovaSeq 6000 platform. 

 

To identify 5hmC-enriched regions, we performed Nano-hmC-Seal48 on tissue samples. 

In brief, 50ng genomic DNA was used in the tagmentation reaction. The tagmented DNA was 

glucosylated by incubating in a 50 μl solution containing 1x glucosylation buffer, 200 μM UDP-

Azide-Glucose (Active Motif, 55020), and 5 U T4 ß-glucosyltransferase (Thermofisher, 

EO0831), at 37°C for 1 hr. After glucosylation, the DBCO-PEG4-Biotin reaction and streptavidin 

C1 beads pull-down were same as the Nano-hmC-Seal48. The beads were washed ten times 

with 1x binding-washing buffer and twice with ddH2O and were re-suspended in 15ul ddH2O. 

The captured DNA fragments were amplified and barcoded by PCR using the NEBNext 2x PCR 

master mix (NEB, M0541). hmC-Seal libraries were sequenced on Illumina NovaSeq 6000 

platform. 

 

 The reads for MeDIP-seq, MRE-seq, hmC-Seal were aligned to the mm9 reference 

genome with bwa134 and then processed by methylQA133. The signal for MeDIP-seq, MRE-seq 
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and hmC-Seal at each CpG was the number of reads aligned to that location divided by total 

reads (million). The average signal for MeDIP-seq, MRE-seq and hmC-Seal in each window 

was the mean of signal at all bases in that window.  

 

3.5.4    WGBS and TAB-seq library construction and data processing 

 WGBS and TAB-seq libraries were constructed using 5hmC TAB-Seq Kit (WiseGene, 

K001) following manufacturer’s protocol with few modifications detailed below. 5ug of sheared 

gDNA were treated with b-glucosyltransferase-based reaction to glucosylate 5hmCs. 400ng of 

glucosylated DNA was incubated in Tet-based oxidation reaction at 37°C for 1.5 hours. 500ng of 

glucosylated DNA and 250ng of Tet-oxidized DNA were bisulfite converted using EZ DNA 

Methylation-Gold Kit (Zymo, D5005) for subsequent WGBS and TAB-seq library construction 

respectively with Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, 30024). WGBS 

and TAB-seq libraries were sequenced on Illumina NovaSeq 6000 platform. 

 

The reads for TAB-seq and WGBS data were aligned to mm9 reference genome and 

processed using Bismark135. A statistical method MLML was used to integrate TAB-seq and 

WGBS data to get consistent 5hmC and 5mC and total methylation113.  

 

3.5.5    DHMRs and DMRs identification 

DHMRs between hmC-Seal datasets were defined by DiffBind121 with a q-value of 0.01. 

 

DHMRs between TAB-seq datasets and DMRs between WGBS datasets were defined 

by DSS136. Two replicates and smoothing options were used for DSS. The called DHMRs and 

DMRs were then filtered by requiring a minimal coverage of 10 by TAB-seq and WGBS data 
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and the absolute difference of gold standard 5hmC (for DHMRs) and total methylation (for 

DMRs) in two datasets over 0.15. 

 

3.5.6    Coverage required to call 5% 5hmC 

Based on binomial test with a probability of 2.22% for 5mC nonconversion rate, the p-

value for using a coverage of 120 to call 5% 5hmC was calculated in R by 

binom.test(round(120*0.05), 120, p= 0.0222, alternative=  "greater"). The resulted p-value for 

the test was 0.05184. Therefore, a coverage of 120 was required to called 5% 5hmC at 95% 

confidence level. 

 

3.5.7    Enrichment of 5hmC in genomic features 

Enrichment fold = (#CpG for class A CpGs overlapping genomic feature B / #CpG in 

class A CpGs) / (#CpG for all classes of CpGs overlapping genomic feature B / #CpG in all 

classes of CpGs). 

 

3.5.8    mRNA-seq library construction and data processing 

 Total RNA from tissue samples were extracted using TRIzol Reagent as previously 

detailed137. 500ng of total RNA was processed with Universal Plus mRNA-Seq kit (Nugen, 0508-

08) to generate mRNA-seq libraries, which were sequenced on Illumina NovaSeq 6000 

platform. mRNA reads were aligned to mm9 reference genome using STAR138. Read counts for 

each gene were obtained using HTSeq139. 

 

3.5.9    Software availability 

DeepH&M tool is available in https://epigenome.wustl.edu/DeepHM/. 
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Figure 1. DeepH&M model. 

(A). Schematic explanations for the 3 main assays used for DeepH&M model. (B). Structure of 

DeepH&M model. DeepH&M is composed of 3 modules. CpG module takes inputs of genomic 

features and methylation features. DNA module processes raw DNA sequence data using a 

convolutional neural network. Joint module combines outputs from CpG module and DNA 

module to predict 5hmC and 5mC simultaneously. Examples were given to show how 5hmC 

and 5mC were predicted from the 3 main assays. Conv is convolutional layer. Pool is pooling 

layer. Full con is full connected layer. 
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Figure 2. Performance of DeepH&M model in 7-week-old mouse cerebellum. 

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation. 

Pearson correlation coefficient is used as correlation metric. (B). Global distribution comparison 

of predictions and gold standard data for 5hmC, 5mC and total methylation. (C). Concordance 

between predictions and gold standard data for 5hmC, 5mC and total methylation at CpGs with 

differing 5hmC/5mC/total methylation levels. For 5hmC, 0.1 difference is used to calculate 

concordance. For 5mC and total methylation, 0.25 difference is used. Concordance for five 

ascending 5hmC windows and five ascending 5mC/total methylation windows are calculated to 

see how concordance distributes in differing 5hmC/5mC/total methylation levels. (D). Genome 

browser view of predictions and gold standard data for 7-week-old cerebellum at a 

representative locus.   
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Figure 3. Factors affecting concordance between gold standard data and predictions. 

(A). Concordance for 5hmC/5mC/total methylation at different genomic features. (B). 

Comparison of gold standard 5hmC/5mC and predicted 5hmC/5mC at lowly methylated CGIs 

and highly methylated CGIs. CGIs are divided into lowly methylated CGIs (<0.2) and highly 

methylated CGIs (>0.7) based on their average total methylation levels. (C). Concordance for 

5hmC/5mC/total methylation as a function of CpG coverage. For 5hmC concordance, CpG 

coverage is from TAB-seq data. For 5mC/total methylation concordance, CpG coverage is from 

WGBS data. (D). Concordance for 5hmC/5mC/total methylation as a function of CpG density. 
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Figure 4. Performance of DeepH&M model in 79-week-old mouse cerebellum. 

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation. 

(B). Global distribution comparison of predictions and gold standard data for 5hmC, 5mC and 

total methylation. (C). Concordance between predictions and gold standard data for 5hmC, 5mC 

and total methylation at CpGs with differing 5hmC/5mC/total methylation levels. (D). Genome 

browser view of a differentially hydroxymethylated region between 7-week-old and 79-week-old 

cerebellum. The selected box is the DHMR. The 5hmC changes at this region is supported by 

changes of gold standard 5hmC, predicted 5hmC and also hmC-Seal signal between the two 

ages. 
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Figure 5. DeepH&M can predict differentially hydroxymethylated regions and 
differentially methylated regions between 7-week-old and 79-week-old mouse cerebellum. 

(A). Distribution of mean 5hmC for gold standard data and predictions at hyperDHMRs and 

hypoDHMRs defined by hmC-Seal data between 7w and 79w cerebellum. gold is for gold 

standard data. pred is for prediction. N is the number. (B). Distribution of mean 5hmC+5mC for 

gold standard data and predictions at hyperDMRs and hypoDMRs defined by WGBS data 

between 7w and 79w cerebellum. (C). Distribution of mean 5hmC for gold standard data and 

predictions at hyperDMRs and hypoDMRs defined by TAB-seq data between 7w and 79w 

cerebellum. 
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Figure 6. Performance of DeepH&M model in 7-week-old mouse cortex. 

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation. 

(B). Global distribution comparison of predictions and gold standard data for 5hmC, 5mC and 

total methylation. (C). Concordance between predictions and gold standard data for 5hmC, 5mC 

and total methylation at CpGs with differing 5hmC/5mC/total methylation levels. 
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Supplementary Figure 1. Relationship between main DeepH&M features and gold 
standard 5hmC and 5mC. 

(A). Density plots of 5hmC/5mC as a function of hmC-Seal, MeDIP-seq, MRE-seq signal at the 

CpG sites. X-axis represents feature signals. Y-axis represents gold standard 5hmC/5mC 

values. Color bar shows the density of points. (B). Correlation of 5hmC and total methylation 

levels between two CpG sites as a function of distance between the two CpG sites. Two 

coverage cutoffs (10-20X, >30X) are chosen to demonstrate how the correlation between two 

CpG sites can be dependent on sequencing coverage (which is a surrogate of confidence in 

predicted methylation levels). Pearson correlation coefficient is used as correlation metric. 
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Supplementary Figure 2. Density plots of two 7-week-old cerebellum replicates data for 
5hmC, 5mC and total methylation. 

Pearson correlation coefficient is used as correlation metric.  
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Supplementary Figure 3. Comparison between gold standard 5hmC and 5hmC 
predictions for known 5hmC function. 

(A). Enrichment of gold standard 5hmC and 5hmC predictions at genomic features. CpGs are 

divided into four groups based on their 5hmC levels and enrichment is calculated for each 

group. (B). Average 5hmC profiles for gold standard 5hmC and 5hmC predictions across gene 

body of genes with differing expression levels. Genes are divided into four groups based on 

their expression levels at 7-week-old cerebellum. RPM (reads per million) is used for gene 

expression normalization. TSS: transcription start site. TTS: transcription termination site. 
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Supplementary Figure 4. Enrichment of biological processes for hyperDHMRs and 
hyperDMRs between 7-week-old and 79-week-old cerebellum using GREAT. 

(A). Enrichment of biological processes for hyperDHMRs. Default settings were used for 

GREAT. (B). Enrichment of biological processes for hyperDMRs. 
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Supplementary Figure 5. Performance of DeepH&M model in fetal mouse cortex. 

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation. 

(B). Global distribution comparison of predictions and gold standard data for 5hmC, 5mC and 

total methylation. (C). Concordance between predictions and gold standard data for 5hmC, 5mC 

and total methylation at CpGs with differing 5hmC/5mC/total methylation levels.  
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Feature Description Motivation 

distance to 

nearest CGI 

help distinguish CGI, CGI shore and 

non-CGI 

CGIs tend to be significantly 

unmethylated and CGI shores tend 

to be variably methylated 

GC percent 

GC percent in multiple upstream and 

downstream windows (upstream and 

downstream 0-50bp,50-250bp,250-

500bp,500-1000bp) 

higher GC content empirically 

shows lower methylation 

CpG density 

CpG density in multiple upstream and 

downstream windows 

higher GC content empirically 

shows lower methylation 

MeDIP 

signal 

MeDIP signal in multiple upstream and 

downstream windows 

MeDIP-seq measures the 

enrichment of methylation 

MRE signal 

MRE signal in multiple upstream and 

downstream windows 

MRE-seq measures the enrichment 

of unmethylation at enzyme cut 

sites 

MRE site 

whether CpG is in restriction enzyme 

cut sites 

MRE-seq measures the enrichment 

of unmethylation at enzyme cut 

sites 

hmC-Seal 

signal 

hmC-Seal signal in multiple upstream 

and downstream windows 

hmC-Seal measures the 

enrichment of hydroxymethylation 

DNA 

sequence 

DNA sequence in upstream and 

downstream 500bp 

Specific motifs in the sequence can 

be subjected to methylation and 

hydroxymethylation  

Supplementary Table 1. Features for DeepH&M model. 
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 7w replicate1 7w replicate2 79w replicate1 79w replicate2 

mean 5hmC 0.107 0.114 0.132 0.133 

mean 5mC 0.639 0.64 0.637 0.634 

Supplementary Table 2. Mean 5hmC and 5mC levels in 7w and 79w mouse cerebellum. 

About 4 million CpGs are considered for the analysis by requiring 10x coverage for WGBS and 
25x coverage for TAB-seq in all cerebellum samples. 
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Chapter 4: Conclusions and Future Directions 

Yu He 
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4.1    Significance 

In this dissertation, I present an online tool EpiCompare, which compares different 

epigenomes in order to identify regions with epigenomic features specific to certain types of 

tissues or cells, and a deep learning-based algorithm DeepH&M, which integrates enrichment 

and restriction enzyme sequencing methods to estimate the absolute levels of 

hydroxymethylation and methylation at single CpG resolution. 

 

We have showed that the EpiCompare can easily identify regulatory elements such as 

enhancers, promoters, and regions occupied by epigenetic features that are unique to a specific 

tissue or cell type, as well as those that are shared by multiple tissue and cell types. Our tool is 

designed specifically for biologists in such a way that no programming or data processing 

capacity is required to perform genome-wide analysis. We demonstrated that our tool could 

identify endoderm-specific enhancers and analysis on these enhancers revealed the regulatory 

network common to all endoderm tissues. In identifying regions with epigenomic features 

specific to combinations of tissue or cell types, EpiCompare has several advantages over 

existing methodologies reported in the FANTOM5, Roadmap, and others. First, investigators 

can compare enhancers, promoters, and specific histone marks using any combination of tissue 

and cell types depending on their needs. This enables the identification of specific epigenomic 

features associated with specific biological entities, such as lineage-specific enhancers. 

Second, the tool is user-friendly so that an experimental biologist with little or no programming 

experience can easily use. Investigators can test a variety of hypotheses by designing specific 

combinations of epigenome comparisons using Roadmap data and/or their own data, and 

EpiCompare provides a quality assessment of the predictions. The predicted regions can be 

readily visualized and further explored using the WashU Epigenome Browser.  
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We have showed that using 7-week-old mouse cerebellum data for training DeepH&M 

model, the 5hmC and 5mC levels predicted by DeepH&M were in high concordance with whole 

genome bisulfite- based approaches. The DeepH&M model can be applied to 7-week old frontal 

cortex and 79-week cerebellum revealing the robust generalizability of this method to other 

tissues from various biological time points. Currently, TAB-seq and oxidative-bisulfite 

sequencing (oxBS-seq) are the gold standard methods for providing single-CpG-resolution DNA 

hydroxymethylomes46,125. These two methods require very high coverage to confidently call 

5hmC at all cytosines. The coverage required for oxBS-seq is even higher due to the fact that 

oxBS-seq measures 5hmC indirectly through subtracting measured 5mC from measured total 

methylation. The high cost associated with the high coverage is a significant barrier for 

individual laboratories to adopt TAB-seq and oxBS-seq as a routine assay for DNA 

hydroxymethylomes. Indeed, so far only a few cell types have deeply sequenced 

hydroxymethylomes at single-base resolution46,115,123,124,126–130.  Our algorithm DeepH&M can 

overcome this potential cost-barrier problem. The cost of the three assays combined is <5% of 

WGBS and TAB-seq. About 50-100 million MeDIP reads, 30 million MRE reads and 50 million 

hmC-Seal-seq reads are sufficient for measuring a hydroxymethylome with DeepH&M, which 

translates to roughly 3x coverage of the human or mouse genome. Also, TAB-seq requires 

~3ug of genomic DNA while MeDIP-seq, MRE-seq, and hmC-Seal can be generated from 

100ng or less input thus allowing DeepH&M to be more amenable to rare or difficult-to-procure 

cells or samples. Compared to 100x coverage for TAB-seq and 20x coverage for WGBS, our 

method can minimize the cost of generating a complete hydroxymethylome by 40-fold. 

Furthermore, DeepH&M can estimate for all CpGs while WGBS and TAB-seq miss a significant 

fraction of the genome due to low coverage. As mentioned previously, previous TAB-seq study 

on H1 cells could only confidently call 20% or higher 5hmC at a coverage of 27 and thus 

identified less than 1 million hydroxymethylated CpGs46. 
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4.2     Future Directions 

EpiCompare has some limitations. First, the regulatory elements used in this tool are 

defined based on the ChromHMM model. Although considered the state-of-the-art, ChromHMM 

model still has limited sensitivity and specificity, especially for identifying enhancers76. The 

performance of predicting tissue or cell type-specific enhancers is clearly dependent on the 

performance of ChromHMM. Second, EpiCompare is based on comparison of binary data 

including chromatin states and histone mark peaks. It could potentially miss regions with 

quantitatively different signal between samples. For example, it could not distinguish a weak 

enhancer from a strong enhancer if both had signals over the threshold. It could also not 

distinguish two quantitatively different weak enhancers which were below the thresh-old. These 

cases are false negatives for EpiCompare. The comparison of binary data can also lead to false 

positives if two samples had very similar signal at one region, with one above the threshold and 

the other below the threshold. Third, we implemented three very simple statistical models, and 

potentially could oversimplify the problem of identifying tissue or cell type-specific features. 

Frequency cutoff method uses simple cutoffs, and Fisher’s exact test assumes the occurrence 

of features as hypergeometric distribution while k-means clustering method assumes certain 

number of clusters in the data and groups them based on similarity. All of them assume the 

independence of samples, but biological samples are clearly not independent from each other. 

The statistical models also do not consider the distribution of each feature along the genome of 

each sample. However, we are encouraged by the strong performance of these simple models, 

and anticipate that development of more sophisticated models in the future will surely improve 

the accuracy of feature identification. 

 

DeepH&M model trained on 7-week-old mouse cerebellum data was able to estimate 

5hmC and 5mC levels with high performance for 79-week-old mouse cerebellum (concordance 
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for 5hmC and total methylation is 84% and 92%). However, we report relatively lower 

performance for 7-week-old mouse cortex (concordance for 5hmC and total methylation is 72% 

and 92%). The relatively lower performance for cortex may be explained by the rather big global 

differences of 5hmC distribution in cerebellum and cortex, as the mean 5hmC level is 0.19 in 

cortex and 0.11 in cerebellum. As one of the caveats of DeepH&M, these data suggest that 

DeepH&M model cannot be generalized to different tissues when 5hmC levels differ greatly 

between tissues. Indeed, when we applied our DeepH&M model to mouse fetal cortex (mean 

5hmC level of 0.05), the concordance for 5hmC and total methylation is 61% and 94%. The 

extremely low concordance for 5hmC indicates that mean level of 5hmC should be taken into 

account when applying trained models to different biological systems. Because of the dynamic 

range of absolute 5hmC levels in different tissues, the relationships between MeDIP-seq, MRE-

seq and hmC-Seal data and 5hmC are different in different tissues, and thus a single DeepH&M 

model cannot be generalized to all tissues. One way to address this limitation is to categorize 

tissues into multiple classes based on their 5hmC levels and train a DeepH&M model for each 

group. The DeepH&M model trained for each group can then be generalized to tissues that 

have similar 5hmC levels. In the future we need to collect methylation and hydroxymethylation 

datasets for different tissues as training sets and build complete models for diverse tissues with 

mean 5hmC levels at all ranges. So far only a few cell types have deeply sequenced 

hydroxymethylomes at single-base esolution46,115,123,124,126–130. These include ES cells, neurons, 

cortex, cerebellum, olfactory bulb, lung, liver. However, the corresponding MeDIP-seq, MRE-

seq and hmc-Seal data for these cell and tissue types were missing. We can collaborate with 

other labs in generating these feature data for these cell and tissue types. For other cell and 

tissue types, the burden may be on individual labs to generate the complete set of data required 

for training DeepH&M. 
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