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ABSTRACT OF THE DISSERTATION

Developing Tools for Identifying Tissue-Specific Epigenetic Marks and Predicting DNA
hydroxy/methylation
by
Yu He
Doctor of Philosophy in Biology and Biomedical Sciences
Computational and Systems Biology
Washington University in St. Louis, 2020

Professor Ting Wang, Ph.D. Chair

A single genome can derive phenotypically unique cell types through various epigenetic
modifications that instruct specific gene expression patterns. Histone modifications, DNA
methylation, and DNA hydroxymetylation are the most common epigenetic modifications. To
understand the mechanisms how these epigenetic modifications regulate gene expression, one
often needs to map these marks genome-wide through profiling methods. Firstly, for histone
modifications, Roadmap Epigenomics Consortium generated The Human Reference
Epigenome Map, containing thousands of genome-wide histone modification datasets that
describe epigenomes of a variety of different human tissue and cell types. This map has allowed
investigators to obtain a much deeper and more comprehensive view of our regulatory genome,
e.g. defining regulatory elements including all promoters and enhancers for a given tissue or cell
type. An outstanding task is to combine and compare different epigenomes in order to identify
regions with epigenomic features specific to certain types of tissues or cells, e.g. lineage-
specific regulatory elements. Currently available tools do not directly address this question. This
need motivated us to develop a tool that allows investigators to easily identify regions with

epigenetic features unique to specific epigenomes that they choose, making detection of



common regulatory elements and/or cell type- specific regulatory elements an interactive and
dynamic experience. An online tool EpiCompare was developed to assist investigators in
exploring the specificity of epigenomic features across selected tissue and cell types.
Investigators can design their test by choosing different combinations of epigenomes, and
choosing different classification algorithms provided by our tool. EpiCompare will then identify
regions with specified epigenomic features, and provide a quality assessment of the predictions.
Investigators can interact with EpiCompare by investigating Roadmap Epigenomics data, or
uploading their own data for comparison. We demonstrated that by using specific combinations
of epigenomes we can detect developmental lineage-specific enhancers. Secondly, for DNA
methylation and hydroxymethylation, generating high resolution methylomes and
hydroxymethylomes is a significant barrier for individual laboratories, therefore so far only a few
cell types have deeply sequenced hydroxymethylomes at single-base resolution. This potential
cost-barrier problem engendered a need for cost-effective, but high-resolution 5hmC mapping
technology. Current enrichment-based technologies provide cheap, but low-resolution and
relative enrichment of 5ShmC levels while single base-resolution methods can be prohibitively
expensive to scale up to large experiments. To address this problem, we develop a deep
learning-based method “DeepH&M”, which integrates enrichment and restriction enzyme
sequencing methods to simultaneously estimate absolute hydroxymethylation and methylation
levels at single CpG resolution. Using 7-week-old mouse cerebellum data for training DeepH&M
model, we demonstrate that the 5hmC and 5mC levels predicted by DeepH&M were in high
concordance with whole genome bisulfite- based approaches. The DeepH&M model can be
applied to 7-week old frontal cortex and 79-week cerebellum revealing the robust

generalizability of this method to other tissues from various biological time points.
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Chapter 1: Introduction

One of the fundamental mysteries in biology is the generation of diverse cell types.
Nearly every cell type in an organism shares the same genomic material but each cell type has
different gene expression pattern and exerts different function and phenotype. Enormous
amounts of evidence indicate that the epigenome instructs the gene expression program of
different cell types with the genome. Histone modifications, DNA methylation, and DNA

hydroxymetylation are the most common epigenetic modifications.

To understand the mechanisms how epigenetic modifications regulate gene expression,
one often needs to map these marks genome-wide through profiling methods. Firstly, for histone
modifications, Roadmap Epigenomics Consortium generated The Human Reference
Epigenome Map, containing thousands of genome-wide histone modification datasets that
describe epigenomes of a variety of different human tissue and cell types. This map has allowed
investigators to obtain a much deeper and more comprehensive view of our regulatory genome,
e.g. defining regulatory elements including all promoters and enhancers for a given tissue or cell
type. | developed an online tool “EpiCompare”, which compares different epigenomes in order to
identify regions with epigenomic features specific to certain types of tissues or cells, e.g.
lineage-specific regulatory elements. Secondly, for DNA methylation and hydroxymethylation,
generating high resolution methylomes and hydroxymethylomes is a significant barrier for
individual laboratories. Current enrichment-based technologies provide cheap, but low-
resolution and relative enrichment of 5hmC levels while single base-resolution methods can be
prohibitively expensive to scale up to large experiments. | developed a deep learning-based

method “DeepH&M”, which integrates enrichment and restriction enzyme sequencing methods



to simultaneously estimate absolute hydroxymethylation and methylation levels at single CpG

resolution.

1.1 The Epigenome

The epigenome refers to all chemical modifications of the chromatin including
posttranslational modifications on histone proteins and DNA methylation and
hydroxymethylation. Chromosomes are composed of nucleosome units, which are packed by
DNA wrapping histone octamers, including H2A, H2B, H3, H4 and their variants. The tails and
globular domains of histone proteins are subject to diverse posttranslational modifications.
These histone modifications can directly affect chromatin accessibility by altering the net charge
of histone proteins and thus changing chromatin structure, or serving as substrate for chromatin
binding proteins, such as chromatin modifying complexes’. DNA methylation in the human
genome primarily occurs at cytosine’s fifth carbon (5mC) and cytosine methylation is largely
restricted to CpG dinucleotides. DNA hydroxymethylation is an oxidative product of 5mC in
which the hydrogen atom at the C5-position in cytosine is replaced by a hydroxymethyl group
(5hmC). The methylation and hydroxymethylation of cytosine can affect the transcription of
genes by impeding the binding of transcription factors or recruiting proteins bound to methylated

cytosine.

1.1.1 Histone modifications

Over 130 posttranslational modifications on histone proteins and over 700 distinct
histone isoforms have been identified so far?*. The identified histone modifications include
methylation, acetylation, propionylation, butyrylation, formylation, phosphorylation,
ubiquitylation, sumoylation, citrullination, proline isomerization, ADP ribosylation, hydroxylation,

and crotonylation. Initially, chromatin immunoprecipitation followed by DNA microarray (ChlIP-



chip) was used to map genome-wide binding profile of chromosomal proteins*. With the advent
of next generation sequencing technology, chromatin immunoprecipitation followed by
sequencing (ChIP-seq) became the main method for mapping genome-wide binding profile®.
With the characterization of histone modifications on a genome-wide scale using these
technologies, many individual histone modifications have been found to be associated with
specific functional elements®®. First, H3K4me3 was found to localize to promoters and
associated with transcription initiation, and H3K36me3 was detected at gene body and
associated with transcription elongation'®'". Enhancers were at first thought to have similar
histone marks as promoters, but later were found to enrich for H3K4me1 instead of H3K4me3%.
However, the H3K4me1 or H3K4me3 mark alone is not sufficient to activate gene expression.
H3K27ac is shown to distinguish active enhancers and promoters from inactive enhancers and
promoters®. As for repressed chromatin, two distinct types have been identified. One is
H3K9me3-marked heterochromatin, which is concentrated in pericentromeric regions; the other

is H3K27me3-marked regions, which repress cell-type specific genes'?.

Although individual chromatin marks are associated with various functional elements,
different chromatin marks can occur at the same locations, as confirmed by sequential ChlP-seq
experiments'®. One example is the identification of bivalent promoter state marked by both
H3K4me3 and H3K27me3. Bivalent promoter states silence developmental genes in embryonic
stem cells (ES) and keep them poised for activation in differentiated cells'. Therefore, it is
possible that different chromatin marks combine together to encode function. This is the histone
code hypothesis that was proposed over 20 years ago after the identification of large number of

histone modifications™.



1.1.2 Chromatin states

The combinations of chromatin marks that are biologically meaningful and recurrent
throughout the genome are called chromatin states. Various computational algorithms based on
Hidden Markov Models (HMM), clustering methods and others have been developed to define
chromatin states. They integrate a collection of chromatin mark datasets and generate non-
overlapping segmentations of the whole genome and assign labels to each segment. The labels
generated are then interpreted as biologically meaningful chromatin states based on enrichment
of known functional annotations, sequence motifs, and some specific experimentally observed
characteristics. These identified chromatin states include promoter state, transcription state,
enhancer state, repressed state, and quiescent state. Each chromatin state is enriched for

1519 For example, active promoter state is enriched for

distinct combinations of chromatin marks
H3K4me3, H3K4me2, H3K9ac, and H3K27ac, and bivalent promoter state is enriched for
H3K4me3, H3K4me2 and H3K27me3'. Active enhancer state is enriched for H3K4me1 and
H3K27ac, and bivalent enhancer state is enriched for H3K4me1 and H3K27me3. All promoter
states have lower DNA methylation and all enhancer states have intermediate DNA
methylation®. Transcribed state is enriched for H3K36me3, H3K79me3, H3K79me2,
H3K79me1, H3K27me1, H2BK5me1, H4K20me1, and high DNA methylation. Heterochromatin

is enriched for H3K9me3 and H3K9me2 and high DNA methylation.

The identification of chromatin states generates systematic annotations of the genome in

12.16.21-24 The annotations

multiple species, including human, mouse, fly, worm, yeast and plants
include promoter, enhancer, insulator, transcribed, repressed and quiescent states. These
annotations agree largely with genomic annotations. For example, in the human genome,
promoter states identified overlap with over 90% of RefSeq TSS and transcribed states overlap

with over 90% of RefSeq genes'®'®. Around 5% of the genome is in enhancer state™.

Luciferase reporter assays have shown that strong enhancer states have much stronger



reporter activity than weak enhancer states. Clustering of enhancer states among multiple cell
types identified cell-type specific enhancer state and they are enriched for biological processes
and transcription factor binding sites in that cell type'>%°. Studies have also shown that strong
enhancer states significantly overlap with disease-causing variants and many of them are
enriched in enhancers specific to disease-related cell types''®202°_ For example, Farh et. al.
found that 60% of candidate causal variants from 21 autoimmune diseases mapped to immune-
cell specific enhancers. 10%-20% of these causal variants altered transcription factor binding

sites and thus altered gene expression.

Over 15 years have passed since the completion of the human genome sequencing, but
we are still not completely clear about the function of the entire human genome. Only around
1.5% of the human genome is protein-coding®. In contrast, over 98% of the genome is non-
coding, including regulatory elements such as enhancers, promoters, silencers, and insulators.
Understanding the non-coding genome is important because regulatory elements can control
the transcription of genes. It is also important for understanding the contribution of regulatory
elements in diseases. Over 90% of GWAS hits are located in non-coding regions, and yet hard
to interpret because of the lack of annotations in non-coding regions?’. Of these regulatory
elements, enhancers are the key players in regulating the spatial and temporal gene
expression. Dysfunction of enhancers are often linked to disease. Plenty of evidence have
shown that enhancers overlap significantly with disease-causing SNPs'®'8'° Hence, a
comprehensive list of enhancer locations could have significant diagnostic potential. Identifying
enhancers has been challenging because they are usually far from promoters and do not have
common sequence signatures. Furthermore, over 60% of enhancers are cell-type specific,

making identification of enhancers in each cell type necessary®®%.



1.1.3 CpG DNA methylation and hydroxymethylation

DNA methylation has been shown to play a vital role in gene regulation, genomic
imprinting, X-chromosome activation, the repression of transposable elements, etc®*,
Generally, high level of DNA methylation is associated with repression. The methylation of
cytosine can affect the transcription of genes by impeding the binding of transcription factors or
recruiting proteins bound to methylated cytosine. The pattern of 5mC is globally similar between
different cell types but changes at specific loci can affect cell fate decisions. Although 60%-80%
of 28 million CpG dinucleotides in human genome are methylated, less than 10% of CpG occur
in CG-dense regions called CpG islands that are largely unmethylated®. These unmethylated
CpG islands are enriched at promoters of housekeeping genes and developmentally regulated
genes. Recently, tissue-specific hypo-methylated regions have been found to be enriched in

enhancers and are associated with activation of targeted genes®%.

Although DNA methylation has been known for decades, how DNA methylation is
actively removed besides passive loss of DNA methylation during replication was not
discovered until recently. In 2009, two breakthrough paper discovered high abundance of 5-
hydroxymethylation (5hmC), the oxidative product of 5mC, in mouse embryonic stem cells and
Purkinje neurons® . A family of ten-eleven translocation (TET) proteins including TET1, TET2,
TET3 were found to oxidize 5mC to 5hmC. Subsequently, TET enzymes were shown to oxidize
5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) stepwise®. 5fC and 5caC can be
further excised by DNA repairing enzyme thymine DNA glycosylase and restored to unmodified
cytosine through base-excision repairing process, thus completing the process of active

demethylation*®*',

Since the discovery of active DNA demethylation process, many quantification and

sequencing methods have been developed to study the global level and genome-wide



distribution of 5hmC, 5fC, and 5caC*?. 5hmC is abundant and as high as 40% of 5mC level in

Purkinje neurons®’, ~ 5% of 5mC level in embryonic stem cells (ESCs)*

, and is low (less than
1% of 5mC level) in other cell types**. Compared to 5hmC, 5fC and 5caC are extremely low
(hundred times lower than 5hmC) in cells®. In this dissertation, | mainly focus on 5mC and
5hmC. Genome-wide profiling of 5ShmC has found that 5hmC is not just an intermediate of the
active DNA demethylation process, but also a stable epigenetic mark involved in gene
regulation. 5hmC is enriched in promoters, gene bodies and enhancers**. 5hmC level in
promoters and gene bodies positively correlates with gene expression*>*’. 5hmC level in
enhancers positively correlates with active enhancer marks such as H3K4me1 and H3K27ac

and the identification of cell-type specific hydroxymethylated regions can reveal cell-type

specific enhancers*.

1.2 Identifying tissue-specific histone marks

Given datasets of multiple histone modifications for a specific cell type, several tools,
including ChromHMM**%?, RFECS®', and Segway®?, can define chromatin states across the
cell’'s epigenome and/or define regulatory elements such as enhancers. While the above tools
are designed for a single sample, tools like hiHMM?®® and TreeHMM®>* can define chromatin
states in multiple cell types or multiple species simultaneously. But these tools cannot be readily
applied to detect tissue or cell type-specific enhancers. Several efforts have been devoted to
define tissue or cell type-specific enhancers. For example, the FANTOMS Consortium identified
active enhancers for a large number of human tissues and cell types by using bidirectional
capped RNA data®®. They called differentially expressed enhancers across all tissue and cell
types, using Kruskal-Wallis rank sum tests. To define tissue differentially expressed enhancers,
for example, for the brain, they further performed pair-wise, post-hoc tests, and required the

enhancers to be differentially expressed between brain tissues and at least one non-brain



tissue. A limitation of this approach is that such differentially expressed enhancers are often
expressed in multiple tissue and cell types and are not specific to a single tissue or cell type.
Furthermore, since the enhancers are marked by active transcription, poised enhancers are
likely to be missed. Indeed, the active enhancers identified by FANTOMS had 231 fold more

bidirectional capped RNA reads than polycomb-repressed enhancers®°.

The Roadmap Epigenomics Project used a tool called HoneyBadger2 to define tissue or
cell type-specific enhancers using k-means clustering. Regions that were clustered together
share similar epigenetic profiles across a variety of tissue and cell types. A given cluster may
have a pattern such that the enhancer signals are predominantly present in certain tissues, but
not in other tissues. Such regions were defined as tissue-specific enhancers. However, this
approach is based on unsupervised learning, and as such, clusters are not directly assigned to
a specific tissue. Other groups characterized the cell-type specificity of enhancers in human and
mouse using clustering methods®*=*°, but did not provide tools to define cell-type specificity.
Tools like MultiGPS®® and dPCA®" were designed to compare Chip-seq data between two
conditions but not readily adaptable to compare enhancers or histone modifications between
groups of tissue and cell types. Another tool, ChromDiff®? compared chromatin states across
different group of samples. For each given region, ChromDiff calculated the percent coverage
for each chromatin state in each sample and corrected them based on sample metadata. Then
it tested for difference of corrected values between two groups of samples for each chromatin
state using statistical test such as Mann-Whitney—Wilcoxon test and identified significant
regions with specific chromatin states. The tool can be applied to identify tissue or cell type-
specific enhancers if ChromHMM models are defined, but can be difficult to use by experimental

biologists due to the lack of a user-friendly interface.



1.3 Mapping DNA methylation and hydroxymethylation

Many genome-wide profiling methods were developed to map 5mC®. Technologies for
mapping 5mC include bisulfite conversion of unmethylated cytosine to uracil (whole genome
bisulfite sequencing (WGBS)), enrichment of methylated DNA using methyl-cytosine-specific
antibodies (methylated DNA immunoprecipitation sequencing (MeDIP-seq)), and enrichment of
unmethylated regions using methylation-sensitive restriction enzymes (methylation sensitive
restriction enzyme sequencing (MRE-seq)) , followed by next-generation sequencing®. The
gold standard method WGBS can measure methylation genome-wide at single-base resolution
but requires high coverage of the genome (at least 10x coverage for each cytosine) and is 10
times more expensive than enrichment or restriction enzyme sequencing methods®. MeDIP-seq
enriches for methylated regions and gives methylation status of enriched regions but has low
resolution (about 150bp)®®%®. MRE-seq can cover 30% of the genome using multiple restriction

enzymes and give unmethylation status at single-base resolution for CpG at cut sites®.

Similarly, 5hmC profiling technologies advanced from immunoprecipitation/enrichment-
based methods to whole genome single-base resolution. Because WGBS cannot distinguish
5hmC from 5mC, Yu et. al. developed a method called TET-assisted bisulfite sequencing (TAB-
seq), where 5hmCs are first protected by glucosylation and then 5mC is completely oxidized to
5caC with TET enzyme*. The following bisulfite treatment can reveal which CpGs are protected
and infer hydroxymethylation levels. TAB-seq can measure genome-wide 5hmC at single-base
resolution but requires very high coverage to confidently call 5hmC at all cytosines. For
example, for 5% 5hmC, based on binomial test with a probability of 2.22% for 5mC non-
conversion rate, a coverage of 120 is required to call 5hmC at 95% confidence level. The study
from Yu, et al. could only confidently call 20% or higher 5hmC at an average coverage of 27.

Often in TAB-seq experiments, both WGBS and TAB-seq libraries are deeply sequenced to



parse out 5mC and 5hmC levels in a single sample. Achieving high confidence, single base
resolution of 5hmC can be a heavy financial strain for large experimental designs due to the
necessary sequencing depth. Therefore, many adopted the cheaper alternative of utilizing
antibody-based enrichment method, such as hydroxymethylated DNA immunoprecipitation
sequencing (hMeDIP-seq), which can reveal hydroxymethylated regions with limited
sensitivity*>. hMeDIP-seq can also provide relative hydroxymethylation over controls, but at the
cost of low resolution. Similar to antibody-based enrichment method such as hMeDIP-seq,
hmC-Seal chemically tags hydroxymethylated cytosine and enriches hydroxymethylated regions
by pulling down tagged 5hmC*"“8, hmC-Seal can pull down regions with extremely low 5hmc

content and thus have higher sensitivity than hMeDIP-seq.

Because of the high cost of single-base-resolution profiling methods for 5ShmC and 5mC,
several computational methods were developed to estimate 5hmC and 5mC at single-base
resolution. Xiao et.al. developed a random forest regression-based method MeSiC to estimate
single-CpG 5mC from MeDIP-seq data®’. Stevens et. al. took advantage of the complementary
properties of MeDIP-seq and MRE-seq and developed a conditional random field-based
algorithm methylCRF to effectively predict single-CpG 5mC from MeDIP-seq and MRE-seq
data®®. However, the two aforementioned algorithms cannot predict 5ShmC levels. Pavlovic et al.
developed a SVM/random forest-based method DIRECTION to predict single-CpG 5mC or
5hmC from histone modification and transcription factor ChIP-seq data®. This method can only

predict binary values, either high or low 5mC/5hmC, but not the absolute quantitative level.
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2.1 Abstract

The Human Reference Epigenome Map, generated by the Roadmap Epigenomics
Consortium, contains thousands of genome-wide epigenomic datasets that describe epigenomes
of a variety of different human tissue and cell types. This map has allowed investigators to obtain
a much deeper and more comprehensive view of our regulatory genome, for example defining
regulatory elements including all promoters and enhancers for a given tissue or cell type. An
outstanding task is to combine and compare different epigenomes in order to identify regions with
epigenomic features specific to certain types of tissues or cells, for example, lineage-specific
regulatory elements. Currently available tools do not directly address this question. This need
motivated us to develop a tool that allows investigators to easily identify regions with epigenetic
features unique to specific epigenomes that they choose, making detection of common regulatory
elements and/or cell type-specific regulatory elements an interactive and dynamic experience. An
online tool EpiCompare was developed to assist investigators in exploring the specificity of
epigenomic features across selected tissue and cell types. Investigators can design their test by
choosing different combinations of epigenomes, and choosing different classification algorithms
provided by our tool. EpiCompare will then identify regions with specified epigenomic features,
and provide a quality assessment of the predictions. Investigators can interact with EpiCompare
by investigating Roadmap Epigenomics data, or uploading their own data for comparison. We
demonstrate that by using specific combinations of epigenomes we can detect developmental
lineage-specific enhancers. Finally, prediction results can be readily visualized and further

explored in the WashU Epigenome Browser.

2.2 Introduction

The Roadmap Epigenomics Consortium generated a reference catalogue of human

epigenomes across a variety of tissue and cell types’™. Using this resource, investigators can
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compare the epigenomes of different tissue and cell types and identify regulatory elements such
as enhancers, promoters, and regions occupied by epigenetic features that are unique to a

specific tissue or cell type, as well as those that are shared by multiple tissue and cell types.

One common application utilizing the Human Reference Epigenome is the identification
of tissue or cell type-specific enhancers. Enhancers are cis-regulatory elements playing
essential roles in regulating the spatial and temporal pattern of gene expression’’. Many
enhancers function in a tissue or cell type-specific manner®®-8. Disruption of enhancer functions
can often lead to diseases’. Many studies revealed that enhancers significantly overlap with
disease-causal variants and such variants are often enriched in enhancers specific to cell types

56,70,73-

that are implicated in the specific diseases 7 Hence, a comprehensive list of tissue or cell

type-specific enhancers could have significant clinical impact.

The identification of tissue-specific histone marks including H3K27ac and H3K4me1 can
help identify tissue or cell type-specific enhancers. Enhancers are epigenetically defined by the
presence of H3K4me1 and the absence of H3K4me3"8. H3K27me3 is a repression histone mark
that is associated with polycomb complex’®. The combination of H3K4me1 and H3K27me3
marks poised enhancers, which silence developmental genes in embryonic stem cells (ESCs)
and keep them poised for activation in differentiating cells®®. H3K27ac is a mark of active
enhancers and promoters and distinguishes active enhancers from poised enhancers.
Combination of H3K4me1 and H3K27ac modifications is used to identify active enhancers®'.
Therefore, combination of different histone marks can be used to predict tissue or cell type-

specific poised/active enhancers.

Given datasets of multiple histone modifications for a specific cell type, several tools,

including ChromHMM***%?, RFECS®', and Segway®?, can define chromatin states across the
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cell’'s epigenome and/or define regulatory elements such as enhancers. While the above tools
are designed for a single sample, tools like hiHMM?®® and TreeHMM?®* can define chromatin
states in multiple cell types or multiple species simultaneously. But these tools cannot be readily
applied to detect tissue or cell type-specific enhancers. Several efforts have been devoted to
define tissue or cell type-specific enhancers. For example, the FANTOMS5 Consortium identified
active enhancers for a large number of human tissues and cell types by using bidirectional
capped RNA data®®. They called differentially expressed enhancers across all tissue and cell
types, using Kruskal-Wallis rank sum tests. To define tissue differentially expressed enhancers,
for example, for the brain, they further performed pair-wise, post-hoc tests, and required the
enhancers to be differentially expressed between brain tissues and at least one non-brain
tissue. A limitation of this approach is that such differentially expressed enhancers are often
expressed in multiple tissue and cell types and are not specific to a single tissue or cell type.
Furthermore, since the enhancers are marked by active transcription, poised enhancers are
likely to be missed. Indeed, the active enhancers identified by FANTOMS had 231 fold more

bidirectional capped RNA reads than polycomb-repressed enhancers®°.

The Roadmap Epigenomics Project used a tool called HoneyBadger2 to define tissue or
cell type-specific enhancers using k-means clustering. Regions that were clustered together
share similar epigenetic profiles across a variety of tissue and cell types. A given cluster may
have a pattern such that the enhancer signals are predominantly present in certain tissues, but
not in other tissues. Such regions were defined as tissue-specific enhancers. However, this
approach is based on unsupervised learning, and as such, clusters are not directly assigned to
a specific tissue. Other groups characterized the cell-type specificity of enhancers in human and
mouse using clustering methods®*=*°, but did not provide tools to define cell-type specificity.
Tools like MultiGPS®® and dPCA®! were designed to compare Chip-seq data between two

conditions but not readily adaptable to compare enhancers or histone modifications between
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groups of tissue and cell types. Another tool, ChromDiff®? compared chromatin states across
different group of samples. For each given region, ChromDiff calculated the percent coverage
for each chromatin state in each sample and corrected them based on sample metadata. Then
it tested for difference of corrected values between two groups of samples for each chromatin
state using statistical test such as Mann-Whitney—Wilcoxon test and identified significant
regions with specific chromatin states. The tool can be applied to identify tissue or cell type-
specific enhancers if ChromHMM models are defined, but can be difficult to use by experimental

biologists due to the lack of a user-friendly interface.

To address these needs, we have developed an online tool EpiCompare to help
investigators to analyze the Roadmap Epigenomics data. Investigators can easily identify
regions with epigenomic features specific to combinations of tissue or cell types. Several
classification methods are provided, including the clustering method used by the Roadmap
Epigenomics Project’. Investigators can compare enhancers, promoters, and specific histone
marks using any combination of tissue and cell types, using Roadmap data and/or their own
data. Investigators can test a variety of hypotheses by designing specific combinations of
epigenome comparisons, and EpiCompare provides a quality assessment of the predictions.
The predicted regions can be readily visualized and further explored within the WashU
Epigenome Browser. EpiCompare makes Roadmap reference epigenomes more easily usable

by experimental biologists in order to enhance their research.

2.3 Results

2.3.1 Performance comparison
To identify regions with epigenomic features specific to combinations of tissue or cell

types, we applied three different methods: frequency cutoff, Fisher's exact test, and k-means
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clustering, as described in Methods. The most important parameters for all the methods are
choices of foreground samples and background samples (see Methods). The main assumption
we make is that the epigenomic features we focus on are enriched in foreground samples but
depleted in background samples. Identified regions were tested using the following validation
methods: GREAT analysis, enrichment for DNase | hypersensitive sites (DHS) and H3K27ac
peaks, and the tissue enrichment index, contribution measure (CTM) (see Supplementary Note
1). CTM measures how much a sample or a group of samples contributes to the total amount of
signal (e.g., read density for H3K27ac) combined by all samples in a region®. To further
evaluate the performance directly, we randomly picked 20 identified regions and visualized them
in WashU Epigenome Brower with chromatin states and histone modification tracks. We used
adult brain tissues as foreground samples and evaluated the efficacy of the three methods in
identifying adult brain-specific enhancers using enhancers defined by 15-state ChromHMM
model. Seven adult brain samples were available from the Roadmap Epigenomics Project. We
compared them to 91 other samples with available H3K27ac data. Since the clustering method
does not provide ranks, we obtained a list of adult brain-specific enhancers using the clustering
method with default settings. We then picked an equal number of regions in ascending order of

ranks using the frequency cutoff and Fisher’s exact test methods.

First, we examined the overlap of enhancers found by three methods (Supplementary
Fig. S2). Out of 188,076 identified adult brain-specific enhancers (i.e., 200bp windows), 148,170
overlapped between the frequency cutoff and Fisher’'s exact test; 133,370 overlapped between
k-means clustering and Fisher’s exact test; and 144,182 overlapped between frequency cutoff

and k-means clustering. 123,746 were shared across all three methods.

Next, we tested our predicted brain-specific enhancers using the three validation

methods. Using the GREAT®?, we found that adult brain-specific enhancers identified by each of
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three methods were strongly associated with brain functions such as myelination, regulation of
action potential and regulation of synaptic plasticity (Figure. 1(a) and Supplementary Fig. S3).
The brain-specific enhancers predicted by all three methods also had much higher enrichment
for H3K27ac peaks in brain tissues compared to other tissues (Figure. 1(b) and
Supplementary Fig. S4). Overall, the enrichment in brain tissues was higher for the frequency
cutoff and Fisher’s exact test methods than for the clustering method. The brain-specific
enhancers predicted by all three methods also had much higher CTM index in brain tissues than
in other tissues for H3K27ac-based CTM distribution (Figure. 1(c) and Supplementary Fig.
$5), underscoring the brain specificity of the enhancer histone modification in the identified
regions. The brain tissue CTM distributions for regions identified by the three methods almost
superimposed each other (Supplementary Fig. S5). A visualization of randomly picked 20
brain-specific enhancers identified from Fisher’s exact test showed most regions had much
stronger H3K4me1/H3K27ac peaks in the foreground samples than the background samples
(Supplementary Fig. S6). In summary, the validation results confirmed that our methods can
effectively identify tissue-specific enhancers. Similarly, the same methods can be applied to

identify other epigenomic modifications that are tissue or cell-type specific.

Since FANTOMS5 defined active enhancers for a variety of tissue and cell types by their
differential expression patterns, we compared brain-specific enhancers identified by Fisher’s
exact test on enhancers defined by 15-ChromHMM model and the FANTOMb. First, we
examined the overlap between these two methods. The FANTOMS5 enhancers were not binned
on 200bp windows, so we mapped them onto 200bp windows. 89 of 208,804 regions by
ChromHMM-based method overlapped with 1,578 binned FANTOMS5 brain enhancers
(hypergeometric test, p=10-26). The overlap was small because only 11% of
H3K4me1/H3K27ac loci overlapped the FANTOM5 enhancers®, and enhancers defined by

ChromHMM included active enhancers (characterized by H3K4me1/H3K27ac loci), poised
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enhancers (characterized by H3K4me1/H3K27me3 loci), and other types of enhancers (single
H3K4me1 mark or single H3K27ac mark). Although the overlap with the FANTOMS5 brain
enhancers was small, it was highly significant. In contrast, 35 regions by ChromHMM-based
method overlapped with 3,409 binned FANTOMS blood enhancers (hypergeometric test,
p=0.98), suggesting the overlap was specific to brain. Second, we plotted enrichment of
H3K27ac for the shared regions, as well as regions unique to each method (Supplementary
Fig. S7). Finally, we randomly picked 20 regions that were unique to each method, and
visualized them on the WashU Epigenome Browser in gene set view (Supplementary Fig. S8
and S9). Interestingly, we found that many FANTOMS5-defined brain-specific enhancers are
defined as promoters by using Roadmap Epigenomics data, with clear and strong promoter
histone mark support (i.e., H3K4me3). Moreover, these regions also have high H3K27ac in the

background samples.

Using similar analysis as above, we compared identifying brain-specific enhancers using
Fisher’s exact test and ChromDiff (See Supplemental Note 9). We found enhancers identified
from Fisher’s exact test and ChromDiff largely overlapped (80%). Enhancers that were unique
to Fisher’s exact test had much stronger enrichment of H3K27ac in brain samples than
ChromDiff but also had higher enrichment in the background samples. Therefore anecdotally
EpiCompare seems to have better sensitivity, while ChromDiff seems to exhibit better
specificity, at a comparable statistical cutoff. ChromDiff is a command line only program, while
EpiCompare provides a much more user-friendly interface and includes access to WashU

Epigenome Browser, allowing biologists to better explore their result.

The k-means clustering method in our tool is similar to the clustering method used in
HoneyBadger2 tool with the exception that enhancers defined by the 15-state ChromHMM

model in HoneyBadger2 were further filtered by DHS before used for clustering. To demonstrate
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that our clustering method is comparable to HoneyBadger2, we compared adult brain-specific
enhancers identified by the two approaches. We used 250 clusters as a close approximation of
246 clusters in HoneyBadger2 tool. We identified 158,110 regions with our approach and
86,019 regions with HoneyBadger2. For the comparison, we randomly picked 86,019 regions
from the total regions identified by our approach. By comparing the enrichment of H3K27ac
peaks in the foreground samples and background samples between our clustering method and
HoneyBadger2, we found that both methods had similar enrichment in the foreground samples
(t-test, p=0.87) and also in the background samples (t-test, p=0.98) (Supplementary Fig.
$10(a)). When we examined the CTM distribution of H3K27ac, we found that the brain tissue
CTM distributions for regions identified by the two methods almost superimposed each other
(Supplementary Fig. S10(b)). Thus our clustering method is comparable to the clustering

method in HoneyBadger2 tool.

After demonstrating that our methods can identify tissue-specific enhancers, we
determined the impact of sample size on performance: i.e., the impact of the number of
foreground samples and the number of background samples (see Supplementary Note 2). First,
to examine how the number of foreground samples affects the performance, we predicted adult
brain-specific enhancers by using different number of foreground samples while fixing
background samples. To assess performance, we computed the average enrichment of
H3K27ac peaks in the seven adult brain samples and also in selected background samples
because we expect that tissue-specific enhancers should have higher enrichment in the
foreground samples and lower enrichment in the background samples. We found that with
increasing foreground samples, the performance of all three methods increased. This is
illustrated by increasing H3K27ac enrichment in the foreground samples, and relatively stable

depletion in the background sample (Figure. 2(a)).
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To examine how the number of background samples affects the performance, we
predicted adult brain-specific enhancers by using different number of background samples while
fixing foreground samples. The enrichment of H3K27ac in the foreground samples seemed to
be quite stable across a range of numbers of background samples used (Figure. 2(b)).
However, depletion of H3K27ac in background samples seemed to be quite sensitive to the
number of background samples used A larger number of background samples did improve the
specificity effectively, underscoring the importance of having a comprehensive collection of

epigenomes, such as those made available by the Roadmap Epigenomics project.

Finally, we demonstrate that our simple but versatile framework allows investigators to
design any combination of epigenome comparison to identify specific epigenomic features
associated with specific biological entities. For example, by combining samples that share the
same developmental origin, one might be able to identify specific regulatory mechanisms for this
developmental lineage. This is particularly useful when samples representing cells in early
development are difficult to obtain. Here we set out to define endoderm-specific enhancers by
comparing nine adult tissues derived from the endoderm to other background tissues (see
Supplementary Note 3). The enhancers were defined using 18-state ChromHMM model. We
identified 13,728 regions using frequency cutoff method, 46,859 regions using Fisher’s exact
test method, and 29,386 regions using k-means clustering method with 140 clusters. We picked
top 13,728 from Fisher’s exact test for the following analysis. The predicted regions exhibited
much stronger enrichment of DHS in endoderm-derived tissues than in other tissues (Figure.
3(a) and Supplementary Fig. S11). Moreover, when subjected to analysis by the GREAT tool,
these regions were strongly associated with biological processes related to epithelial cell
functions (Figure. 3(b)), a well-known derivative function common for endoderm-derived
tissues®. A visualization of randomly picked 20 endoderm-specific enhancers identified from

Fisher’s exact test showed most regions had much stronger H3K4me1/H3K27ac peaks in the
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foreground samples than the background samples (Supplementary Fig. S12). To further
explore the functions of these endoderm-specific enhancers, we identified potential regulatory
transcription factors (TFs) interacting with these regions by HOMER®. The top enriched TFs are
all important for endoderm specification, including FoxA family TFs (FoxA1, FoxA2), GATA
family TFs (Gata4), HNF1, HNF4a and others (Figure. 3(c)). FoxA family and GATA family TFs
are key players in the transcriptional regulatory network of the endoderm®. FoxA1 and FoxA2
are pioneer TFs that remodel chromatin environment and facilitate recruitment of other TFs®.
FoxA1 and FoxA2 are homologous and required for the development of endoderm tissues such
as liver, lung, intestine and pancreas®~°. Like FoxA1 and FoxA2, HNF1 and HNF4a play key
regulatory roles in liver, pancreas, and intestine development®=*. Moreover, the foregut
markers PDX1 and the hindgut marker CDX2 were also highly enriched (p= 10-5 for PDX1 and
CDX2 motifs)®. To further support the function of the top enriched TFs in endoderm tissues,
many of them were highly expressed in endoderm tissues comparing to non-endoderm tissues,

ESCs and ESC-derived multipotent endoderm cells’® (Supplementary Fig. S13).

Using top enriched TFs that were also highly expressed in adult endoderm tissues
compared to non-endoderm adult tissues, we identified 4 upstream TF candidates - FoxA1,
FoxA2, HNF1b, HNF4a, and were able to build a transcriptional regulatory network for them and
shared target genes by linking enhancers with TF binding sites to nearest genes (Figure. 3(d)
and Supplementary Table S1) using previously described methods®. The reconstructed
network recapitulated many important gene regulation relationships in endoderm development
and differentiation. For example, the FoxA family TFs cooperate with HNF1b and HNF4a to
regulate intestinal epithelial cell function®®. FoxA2, HNF1b, and HNF4a were shown to bind to a
large number of target regions in intestinal epithelial cell line*®. The 72 shared target genes for
the 4 TFs were enriched for signaling pathways required for cell proliferation and differentiation

including WNT, BMP, VEGF and Hippo signaling (Supplementary Table S$2)*. The median
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expression level of these genes was significantly higher in endoderm tissues than that in non-
endoderm tissues (t-test, p=5e-5) (Supplementary Fig. S14). To further confirm that the
network was activated in endoderm tissues, we examined the profile of epigenetic marks
(DNase |, H3K27ac and DNA methylation) on all enhancers in this network across different
tissues, including adult endoderm tissues, fetal endoderm tissues, endoderm cells, non-
endoderm tissues and ESCs. These enhancers showed strong expression of DNase | and
H3K27ac mark and low DNA methylation only in adult endoderm tissues and fetal endoderm
tissues (Figure. 3(e)). Figure 3(f) gave an example of merged endoderm-specific enhancers.
The enhancers had strong DHS and H3K27ac peaks and low DNA methylation level in both
adult and fetal endoderm tissues but not others. The evidence suggests that this regulatory
cascade is active in fetal and adult endoderm tissues, but not in ESC-derived endoderm cells
which presumably have not committed to a special endoderm cell type and also not in non-

endoderm tissues.

2.3.2 Web server

The tool EpiCompare is freely available online. It was written in R using the Shiny
framework and hosted by open source shiny server®. The home page includes a simple and
intuitive user interface for the selection of foreground samples and background samples from a
list of human tissue and cell types available from the Roadmap Epigenomics Consortium
(Supplementary Fig. S15). Options for selecting different classification methods and
parameters are also provided. It also provides the option of uploading user’s data for analysis.
The results page provides analysis results, including H3K27ac enrichment and tissue
enrichment index using H3K27ac expression data. Results are presented as a table of identified
regions, and can be downloaded for further analysis. Each region is linked to the WashU
Epigenome Browser®® where users can visualize, explore, and compare their epigenomic

patterns in different tissue/cell types. The help page gives a tutorial on how to use EpiCompare.
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2.4 Discussion and Conclusions

We have developed an online tool EpiCompare to help investigators to analyze the
Roadmap Epigenomics data. The presented data showed that the tool can easily identify
regulatory elements such as enhancers, promoters, and regions occupied by epigenetic
features that are unique to a specific tissue or cell type, as well as those that are shared by
multiple tissue and cell types. Our tool is designed specifically for biologists in such a way that
no programming or data processing capacity is required to perform genome-wide analysis. We
demonstrated that our tool could identify endoderm-specific enhancers and analysis on these

enhancers revealed the regulatory network common to all endoderm tissues.

In identifying regions with epigenomic features specific to combinations of tissue or cell
types, EpiCompare has several advantages over existing methodologies reported in the
FANTOMS5, Roadmap, and others. First, investigators can compare enhancers, promoters, and
specific histone marks using any combination of tissue and cell types depending on their needs.
This enables the identification of specific epigenomic features associated with specific biological
entities, such as lineage-specific enhancers. Second, the tool is user-friendly so that an
experimental biologist with little or no programming experience can easily use. Investigators can
test a variety of hypotheses by designing specific combinations of epigenome comparisons
using Roadmap data and/or their own data, and EpiCompare provides a quality assessment of
the predictions. The predicted regions can be readily visualized and further explored using the

WashU Epigenome Browser.

EpiCompare has some limitations. First, the regulatory elements used in this tool are defined

based on the ChromHMM model. Although considered the state-of-the-art, ChromHMM model

still has limited sensitivity and specificity, especially for identifying enhancers’. The
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performance of predicting tissue or cell type-specific enhancers is clearly dependent on the
performance of ChromHMM. Second, EpiCompare is based on comparison of binary data
including chromatin states and histone mark peaks. It could potentially miss regions with
quantitatively different signal between samples. For example, it could not distinguish a weak
enhancer from a strong enhancer if both had signals over the threshold. It could also not
distinguish two quantitatively different weak enhancers which were below the threshold. These
cases are false negatives for EpiCompare. The comparison of binary data can also lead to false
positives if two samples had very similar signal at one region, with one above the threshold and
the other below the threshold. Third, we implemented three very simple statistical models, and
potentially could oversimplify the problem of identifying tissue or cell type-specific features.
Frequency cutoff method uses simple cutoffs, and Fisher’s exact test assumes the occurrence
of features as hypergeometric distribution while k-means clustering method assumes certain
number of clusters in the data and groups them based on similarity. All of them assume the
independence of samples, but biological samples are clearly not independent from each other.
The statistical models also do not consider the distribution of each feature along the genome of
each sample. However, we are encouraged by the strong performance of these simple models,
and anticipate that development of more sophisticated models will surely improve the accuracy

of feature identification.

2.5 Methods

2.5.1 Datasets

The Roadmap Epigenomics Consortium uses the ChromHMM tool to generate
chromatin states for different tissue and cell types. The type and number of chromatin
states depends on the histone modification data provided. The 15-state ChromHMM

model integrates histone modifications H3K4me1, H3K4me3, H3K9me3, H3K27me3,
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and H3K36me3, while the 18-state ChromHMM model integrates the five marks in the
15-state model plus H3K27ac’®. From the Roadmap Epigenomics Project, we obtained
15-state and 18-state ChromHMM models, and processed peak data (obtained from
MACS®) for H3K27ac, H3K4me1, H3K4me3 and H3K27me3 marks for all tissue and
cell types. Chromatin states are predicted for each 200 base pair (bp) window. The 15-
state ChromHMM model defines enhancers as state numbers 6, 7, 12, corresponding to
genic enhancers, enhancers, and bivalent enhancers, respectively. The 18-state
ChromHMM model defines enhancers as state numbers 7, 8, 9, 10, 11, 15,
corresponding to genic enhancer 1, genic enhancer 2, active enhancer 1, active
enhancer 2, weak enhancer, and bivalent enhancer, respectively. Further, for all
processed peak data, the coordinates are mapped to 200bp windows by requiring at
least 50bp overlapping. Only peaks with g-value less than 0.01 are considered. Each
feature above — the enhancer state or epigenomic modification peak — is converted into
binary presence or absence of the feature in each 200bp window, denoted by 1 or 0. A
table is generated for each feature by summarizing the presence or absence of the

feature in all samples across windows where at least one sample has the feature.

2.5.2 Classification methods

EpiCompare contains three methods for identifying regions with epigenomic features
specific to combinations of tissue or cell types (Supplementary Fig. S1). All methods require
the definition of foreground samples and background samples by users. Foreground samples
are the group of samples for which we identify specific regions. Background samples are the

group of samples against which we compare foreground samples. The principle of all methods
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is, to define regions with features specific in foreground samples, the features should be

enriched in the foreground samples but depleted in the background samples.

The first method implements a frequency cutoff. For each region (in this case each
200bp genomic window), the percentages of samples having the feature in the foreground
samples and background samples are calculated. If the percentage of samples having the
feature in the foreground samples is greater than or equal to the defined minimal foreground
cutoff (default is 80%) and the percentage of samples having the feature in the background
samples is less than or equal to the defined maximal background cutoff (default is 20%), then
the region is defined as a positive region. These positive regions are further ranked by the
difference between the percentage of samples having the feature in the foreground samples

and background samples so users can prioritize top-ranked regions.

The second method implements Fisher’s exact test. For each 200bp window, a
contingency table composed of the number of samples with or without the feature in foreground
samples and background samples is calculated. Fisher’s exact test is used to examine whether
the percentage of features in the foreground samples is significantly greater than in the
background samples. The p-value is corrected by multiple hypothesis testing using the
Benjamini-Hochberg procedure, and regions with g-value less than a cutoff (default is 0.01) are
identified and ranked by their g-values. The statistical power of the test depends on the number
of foreground samples and background samples and having more samples can provide more
statistical power to identify more significant g-values (See Supplementary Note 6). Therefore,
when the number of foreground samples or background samples is small, investigators can use
g-value as a ranking measure and obtain the top candidates by setting a higher g-value
threshold. We also evaluated the false positive rate of Fisher’s exact test (See Supplementary

Note 7).
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The third method implements k-means clustering based on a Jaccard-index distance,
similar to the clustering method used in HoneyBadger2™. First, k-means clustering is performed
on regions in the binary data table for each feature. R package flexclust is used for clustering'®.
We determined the optimal cluster number by the elbow method and the silhouette method'”!
(See Supplementary Note 8). The optimal cluster number for all features is close and around
140, so we provide the optimal cluster number for all features to be 140. In addition to the
default number, we provide several other options (i.e., cluster number 90, 200 and 250) to give
users flexibility. Next, the percentage of regions having the feature is calculated for each cluster
and defined as a feature density table (number of clusters times number of samples). Finally, a
cluster specific for a tissue/cell type should have higher feature density in that tissue/cell type
than in the background samples. Specifically, to identify clusters specific for foreground
samples, we select clusters satisfying the following two conditions: first, the median of feature
densities of foreground samples in a cluster is greater than or equal to a threshold (default is
0.4); second, it should also be greater than or equal to the highest feature density in the
background samples of that same cluster (this threshold can be set to any percentile of feature

densities in the background samples).
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Figure 1. Validation of predicted brain-specific enhancers by Fisher’s exact test method.

(a) Enriched GO terms and their binomial p-values based on GREAT. The top 10 GO terms are
displayed here. (b) Enrichment of H3K27ac peaks in brain tissues and non-brain tissues for
predicted adult brain-specific enhancers by Fisher’'s exact test. (¢) The distribution of tissue
enrichment index CTM based on H3K27ac expression data for predicted adult brain-specific
enhancers by Fisher’s exact test.
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Figure 2. The effect of sample size on the performance of adult brain specific-enhancer
predictions.

(a) How the number of foreground samples influences the performance with fixed background

samples. (b) How the number of background samples influences the performance with fixed
foreground samples.
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Figure 3. Identification of endoderm-specific enhancers by Fisher’s exact test method.

(a) Enrichment of DHS for endoderm-specific enhancers identified by Fisher’s exact test. (b)
Enriched GO terms and their binomial p-values based on GREAT. Top 10 terms are displayed.
(c) Enrichment of TF binding motifs in endoderm-specific enhancers by Fisher's exact test. Top
15 TFs are displayed. (d) The putative gene regulatory networks for endoderm tissues based on
identified enhancers. (e) The expression profiles of epigenetic marks for enhancers in the
network in endoderm tissues and non-endoderm tissues, ESCs and ESC-derived endoderm
cells. (f) A browser example of merged endoderm-specific enhancers. Blue is endoderm
tissues, brown is non-endoderm tissues, and red is ESCs and ESC-derived endoderm cells.
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Supplementary Figure 1. Visualization of three methods in EpiCompare with a simple
example.

F represents foreground samples, B represents background samples, R represents regions, C

represents clusters.
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Supplementary Figure 2. The overlap of adult brain-specific enhancers identified by three
methods.
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Supplementary Figure 3. Enriched GO terms and their binomial p-values from analyzing
predicted adult brain-specific enhancers by frequency cutoff and k-means clustering
method based on GREAT.

The top 10 GO terms are displayed here.
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Supplementary Figure 4. Enrichment of H3K27ac peaks in brain and non-brain tissues for
adult brain-specific enhancers identified by frequency cutoff and k-means clustering

method.
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Distribution of CTM on H3K27ac
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Supplementary Figure 5. The distribution of tissue enrichment index CTM based on
H3K27ac RPKM data for adult brain-specific enhancers identified by frequency cutoff and
k-means clustering method.

For comparison, the figure in the last row merges CTM index distribution in brain tissues for

Fisher’s exact test, frequency cutoff and k-means clustering method.
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Supplementary Figure 6. Visualization of randomly picked 20 brain-specific enhancers
identified from Fisher’s exact test

The regions are put together using gene & region set function in WashU Epigenome Browser. 3
types of tracks are included: ChromHMM 15 state, H3K27ac signal track (-log10(p-value)),
H3K4me1 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents
enhancer state, green represents transcribed state, white represents quiescent state and grey
represents repressed state. Information about other colors can be found in
http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core_15state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Supplementary Figure 7. Enrichment of H3K27ac peaks in brain and non-brain tissues for

shared and unique brain-specific enhancers identified by Fisher’s exact test and
FANTOMS.
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Supplementary Figure 8. Visualization of randomly picked 20 brain-specific enhancers
identified from Fisher’s exact test but not FANTOM5.

The regions are put together using gene & region set function in WashU Epigenome Browser. 3
types of tracks are included: ChromHMM 15 state, H3K4me1 signal track (-log10(p-value)),
H3K4me3 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents
enhancer state, green represents transcribed state, white represents quiescent state and grey
represents repressed state. Information about other colors can be found in
http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core_15state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Supplementary Figure 9. Visualization of randomly picked 20 brain-specific enhancers
identified from FANTOMS5 but not Fisher’s exact test.

The regions are put together using gene & region set function in WashU Epigenome Browser. 3
types of tracks are included: ChromHMM 15 state, H3K4me1 signal track (-log10(p-value)),
H3K4me3 signal track (-log10(p-value)). Yellow color in ChromHMM state track represents
enhancer state, green represents transcribed state, white represents quiescent state and grey
represents repressed state. Information about other colors can be found in
http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core_15state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Supplementary Figure 10. Comparison of k-means clustering method in EpiCompare and
HoneyBadger2 tool for identifying adult brain-specific enhancers.

(a) The enrichment of H3K27ac peaks in in brain and non-brain tissues for adult brain-specific
enhancers identified by clustering methods in EpiCompare and HoneyBadger2. (b) H3K27ac
RPKM-based CTM distribution in brain tissues for adult brain-specific enhancers identified by
clustering methods in EpiCompare and HoneyBadger2.
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Supplementary Figure 11. Enrichment of DHS for endoderm-specific enhancers identified
by frequency cutoff and k-means clustering method.

Regions identified by two methods are highly enriched for DHS in endoderm tissues comparing

to other tissues.
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Supplementary Figure 12. Visualization of randomly picked 20 endoderm-specific
enhancers identified from Fisher’s exact test.

The regions are put together using gene & region set function in WashU Epigenome Browser. 3
types of tracks are included: ChromHMM 18 state, H3K27ac signal track (-log10(p-value)),
H3K4me1 signal track (-log10(p-value)). Yellow and orange color in ChromHMM state track
represent enhancer state, green represents transcribed state, white represents quiescent state
and grey represents repressed state. Information about other colors can be found in
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Supplementary Figure 13. The expression of enriched transcription factors in different
tissues.

Endoderm tissues (blue), non-endoderm tissues (purple), ESCs and ESC-derived endoderm

cells (black). The clustering is based on Euclidian distance.
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Supplementary Figure 14. The distribution of expression levels of 72 predicted target

genes.

Endoderm tissues (blue) and other tissues (purple). The median expression level of these

=5e-5).

genes in endoderm tissues is significantly higher than that in other tissues (t-test, p
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Supplementary Figure 15. The main components of the website.

The home page includes selection of database, samples and methods. The result page includes
a table of identified regions and validation analysis. The links in the table link to WashU
Epigenome Browser for visualization of regions in selected samples.
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Supplementary Note
1. Validation methods

We envision that most users would use our tool to define tissue or cell type-specific
enhancers, therefore we provide additional validation process for this type of tasks. To validate
the genomic regions identified are specific to certain tissue or cell types, we use three methods.
First, GREAT analysis®® is performed on identified regions (regions are not merged and single-
nearest gene option is used) to determine if they are enriched for biological processes related to

the queried tissue or cell types. The whole genome is used as background.
Second, enrichment for DNase | hypersensitive sites (DHS) and H3K27ac peaks in
different tissue and cell types are calculated for identified regions, since DHS and H3K27ac

modification are marks of regulatory regions. Enrichment is defined as below:

#bp in overlapped regions/#bp in DHS or H3K27ac peaks

ch t=
enrichmen #bp identified regions/#bp in hg19 genome

Third, a tissue enrichment index for enhancers is calculated using H3K27ac RPKM
(Reads Per Kilobase per Million mapped reads), since H3K27ac marks enhancers. A tissue
enrichment index has been routinely used to identify tissue-specific genes'*>'%. Generally, a
high tissue enrichment index represents tissue-specific regions. The tissue enrichment index is
a contribution measure (CTM)®2, which is calculated as the following.

H3K27ac RPKM is calculated for N samples for each region and transformed into a vector X:

X= (X1, X2y vuny Xiy vuny XN)
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where xiis the RPKM for one sample in one region. X is then converted into a cosine vector

Xcose:
Xeoss = (COSO1, COSO2, ..., COSO;, ..., COSON)

where cosbi= xi/|X|, and |X| is the magnitude of X. The tissue enrichment index in a tissue with k

CTM= [T, cos8;

Here CTM can be calculated for each tissue. The range of CTM is 0 to 1, with a higher CTM

samples is:

value in one tissue representing enrichment in that tissue.

2. Effect of sample size

To examine how the number of foreground samples affects the quality of regions
identified, we fixed background samples to 91 non-brain samples with H3K27ac data and picked
N (N=1, 2, 3, 5 or 7) samples from 7 adult brain samples as foreground samples. For each N,
we chose 5 combinations of N samples selected from 7 brain samples and calculated
enrichment of H3K27ac peaks in 7 brain samples for each combination. Mean and variance
were calculated on the 35 enrichment values in 5 combinations. In the case of N=7, mean and
variance were calculated on 7 enrichment values as there was only one combination. We set
foreground cutoff and background cutoff to be 0.5 and 0.2 for frequency cutoff method, and set
g-value threshold as 0.5 for Fisher’s exact test method. Other settings were set to default for all
three classification methods. All enhancers were defined from 15-state ChromHMM and top
24,453 regions were used for comparison because the smallest number of regions identified in
all cases was 24,453. Since k-means clustering method does not have ranks, we randomly

picked 24,453 regions identified by k-means clustering method. To examine how the number of
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background samples affects the quality of regions identified, we fixed foreground samples to 7
adult brain samples and picked 5, 10, 30 or 91 samples from 91 non-brain samples as

background samples using 5 combinations like above (Fig. 2).

3. Identify endoderm-specific enhancers

To test the performance of EpiCompare, we designed a simple epigenome combination
comparison to identity endoderm-specific enhancers. We hypothesized that adult tissues that
are derived from the endoderm should share enhancers that are specific for endoderm. Thus,
we selected one sample from each adult tissue derived from the endoderm as foreground
samples, including stomach, colon, liver, pancreas, lung, duodenum, esophagus, small
intestine, and rectum. The background samples chosen were 34 samples in adult tissues
including blood, brain, fat, heart, muscle, ovary, spleen, and aorta. We identified 13,728 regions
using the frequency cutoff method (foreground cutoff = 0.7, background cutoff = 0.2), 46,859
regions using Fisher’s exact test method (g-value cutoff = 0.05), and 29,386 regions using k-

means clustering method with 140 clusters (default settings).

4. TF-binding motif enrichment analysis

Motif enrichment analysis was performed using the HOMER tool®®. Enrichment for
known motifs was used. The tool was also used to annotate the closest gene for each region. In
the example of brain enhancers, we connected enhancers to target genes using GREAT. We
confirmed that the rules for GREAT and HOMER are very similar but not identical. 90% of
protein-coding genes identified from HOMER for brain-specific enhancers overlapped with that
from GREAT. The analysis we performed using GREAT and/or HOMER are examples of post-
EpiCompare analysis that users can perform on their own, or they can replace the analysis with
other user-defined analysis on the collection of tissue or cell type-specific epigenetically marked

regions returned by EpiCompare.
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5. Construction of gene regulatory network

To build putative regulatory network common for adult tissues derived from the
endoderm, we first identified transcription factors (TFs) that were highly expressed in endoderm
tissues comparing to other tissues (p<0.05, t-test) and highly enriched in TF-binding motif
enrichment analysis (p<10°). The TFs satisfying the requirements were FOXA1, FOXA2,
HNF1, HNF4a. We then built a network for these TFs by linking each TF to its target genes
using the nearest target gene method from the HOMER tool. Finally we identified target genes
for each TF-bound endoderm-specific enhancers and used the intersection of the target genes
as shared target genes for 4 TFs. These were further filtered by requiring a RPKM of >1 in at

least one endoderm tissue.

6. Examine how sample size affects statistical power of Fisher's exact test

To understand how statistic power of Fisher’'s exact test depends on sample size, we
examined how minimal g-value changes with different number of foreground samples and
background samples (Supplementary Fig. S16). It can be seen that with increased number of
foreground samples and background samples, the minimal g-value decreases greatly and

therefore statistic power increases.
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Fig. S16. How minimal g-value changes with different number of foreground samples and

background samples in identifying brain-specific enhancers with Fisher’s exact test.

7. Examine the false positive rate of Fisher’s exact test

We examined how the number of brain-specific enhancers identified from Fisher’s exact
test changed with different g-value cutoff (Supplementary Fig. S17). To estimate the false
positive rate, we randomly picked 7 samples (not including any adult brain sample) from 98
samples as foreground samples and the rest 91 as background samples and identified
enhancers specific for the randomly selected 7 samples. We repeated this process 10 times.
Interestingly, no enhancers were identified with g-value less than 0.1. This suggests that
Fisher’s exact test method along with multiple hypothesis test correction can effectively control

false positive rate.
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Fig. S17. How the number of regions identified with different g-value cutoff in identifying brain-

specific enhancers with Fisher’s exact test

8. Find optimal cluster number

we calculated sum of square errors (SSE) for a series of cluster number and identified
the optimal cluster number using the elbow method'". To reduce the time complexity, we
randomly picked 200k data points for this analysis. Here we included an example of a plot of
SSE for enhancers defined by 15-state ChromHMM model (Supplementary Fig. $18). There
was a knee point between 100 and 150. To further find the optimal number, we utilized the
silhouette method, which measures how closely a point matched to data within its cluster and
matched to data of the neighboring cluster. A higher silhouette value implies a more appropriate
clustering. Since this method can only be done on small number of data, we randomly picked
20% of data from each cluster for this analysis. As seen from the plot, the highest value
between 100 and 150 was 140 (Supplementary Fig. S19). Therefore, we determined the
optimal cluster number to be 140 for enhancers from 15-state ChromHMM model. We used
similar methods to find optimal cluster number for other features and found the optimal cluster
number was close for all features and was around 140. So we provide the optimal cluster
number for all features to be 140. In addition to the default number, we provide several other

options (i.e., cluster number 90, 200 and 250) to give users flexibility.
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Fig. S18. The sum of square error for k-means clustering with different cluster number.
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Fig. $S19. The average silhouette value for k-means clustering with different cluster number.

9. Compare EpiComapre with ChromDiff
We compared identifying brain-specific enhancers using Fisher’s exact test and
ChromDiff on union of enhancers in seven adult brain samples. Same foreground and

background samples were used for two methods. We used one-tailed Mann—-Whitney—Wilcoxon

test for ChromDiff.
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We identified 208,804 regions using the Fisher’'s exact test, and 283,267 regions using
ChrombDiff. For fairness we kept the top 208,804 from Fisher’s exact test. They overlapped by
167,691. We plotted enrichment of H3K27ac for the shared regions, as well as regions unique
to each method, see Supplementary Fig. $20. We then randomly picked 20 regions that were
unique to each method, and visualized them on the WashU Epigenome Browser in gene set
view, see Supplementary Fig. S21 and S22. It can be seen that enhancers identified from
Fisher’s exact test and ChromDiff largely overlapped (80%). Enhancers that were unique to
Fisher’s exact test had much stronger enrichment of H3K27ac in brain samples than ChromDiff
but also had higher enrichment in background samples. Therefore anecdotally EpiCompare
seems to have better sensitivity, while ChromDiff seems to exhibit better specificity, at a
comparable statistical cutoff. ChromDiff is a command line only program, while EpiCompare
provides a much more user-friendly interface and includes access to WashU Epigenome

Browser, allowing biologists to better explore their result.

Method

15 [l Shared
Fisher-only
ChromDiff-only

Enrichment fold

=

Brain Non-brain
Tissue

Fig. $20. Enrichment of H3K27ac peaks in brain and non-brain tissues for shared and unique

brain-specific enhancers identified by Fisher’'s exact test and ChromDiff.
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Fig. S21. Visualization of randomly picked 20 brain-specific enhancers identified from Fisher’s
exact test but not ChromDiff. The regions are put together using gene & region set function in
WashU Epigenome Browser. 3 types of tracks are included: ChromHMM 15 state, H3K27ac
signal track (-log10(p-value)), H3K4me1 signal track (-log10(p-value)). Yellow color in
ChromHMM state track represents enhancer state, green represents transcribed state, white
represents quiescent state and grey represents repressed state. Information about other colors
can be found in

http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core_15state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Fig. S22. Visualization of randomly picked 20 brain-specific enhancers identified from ChromDiff
but not Fisher’'s exact test. The regions are put together using gene & region set function in
WashU Epigenome Browser. 3 types of tracks are included: ChromHMM 15 state, H3K27ac
signal track (-log10(p-value)), H3K4me1 signal track (-log10(p-value)). Yellow color in
ChromHMM state track represents enhancer state, green represents transcribed state, white
represents quiescent state and grey represents repressed state. Information about other colors
can be found in

http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core_15state. Foreground

samples are labeled as blue and background samples are labeled as brown.
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Supplementary Tables

Gene Ensembl ID

ERRFI1 ENSG00000116285
LIPH ENSG00000163898
FARP2 ENSG00000006607
SLC45A1 ENSG00000162426
C1orf116 ENSG00000182795
ELF3 ENSG00000163435
FAM3D ENSG00000198643
MECOM ENSG00000085276
ATP8B1 ENSG00000081923
VEGFA ENSG00000112715
SUSD1 ENSGO00000106868
TMPRSS2 | ENSG00000184012
EXT1 ENSG00000182197
PRLR ENSGO00000113494
RHPN2 ENSG00000131941
SERINC2 | ENSG00000168528
KIAA1324 | ENSG00000116299
BMP2 ENSG00000125845
ACVR2A ENSG00000121989
MYO5C ENSG00000128833
MYO10 ENSG00000145555
CHN2 ENSG00000106069
PIGR ENSG00000162896
ROR1 ENSG00000185483
IFFO2 ENSG00000169991
TJP2 ENSG00000119139
ANKRD40 | ENSG00000154945
PARVA ENSGO00000197702
NRP2 ENSG00000118257
DHRS2 ENSGO00000100867
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SLC22A23 | ENSG00000137266
FOXQ1 ENSG00000164379
IER3 ENSG00000137331
WWC1 ENSG00000113645
C14orf2 ENSG00000156411
HMGCS2 | ENSG00000134240
CD55 ENSG00000196352
CCDC58 ENSG00000160124
COL21A1 | ENSG00000124749
DNPEP ENSG00000123992
KCNK5 ENSG00000164626
GPR37L1 | ENSG00000170075
CAMTA1 ENSGO00000171735
FZD5 ENSG00000163251
HES1 ENSG00000114315
SYF2 ENSG00000117614
TTLL6 ENSG00000170703
STK24 ENSG00000102572
F3 ENSG00000117525
CHD1L ENSG00000131778
AMBP ENSG00000106927
PLEKHA7 | ENSG00000166689
INO80D ENSG00000114933
NDRG1 ENSG00000104419
SH3YLA1 ENSGO00000035115
C9orf152 ENSG00000188959
IHH ENSG00000163501
TTC39A ENSG00000085831
TOX3 ENSG00000103460
PANK3 ENSG00000120137
HEXB ENSG00000049860
AGAP1 ENSGO00000157985
ABCC4 ENSG00000125257
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GPR160 ENSG00000173890
KALRN ENSG00000160145
C6orf132 ENSG00000188112
PPP2R5A | ENSG00000066027
PDXK ENSG00000160209
ADGRV1 ENSG00000164199
LINC01549 | ENSG00000232560
SPIDR ENSG00000164808
FAM86B3P | ENSG00000173295

Supplementary Table 1. The intersection of target genes for each TF (FOXA1, FOXAZ2,

HNF1a, HNF4a)-bound endoderm-specific enhancers.

Pathway Raw p-value
WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.000165
VEGF and VEGFR signaling network 0.000734
BMP Signalling Pathway 0.002443
Canonical Wnt signaling pathway 0.003018
Signaling by Hippo 0.003018
Signaling by BMP 0.003327
Validated targets of C-MYC transcriptional repression 0.003471
Mesodermal Commitment Pathway 0.003743
Class B/2 (Secretin family receptors) 0.005468
VEGFR1 specific signals 0.006298
Signal Transduction 0.008242
Developmental Biology 0.009417

Supplementary Table 2. Pathway enrichment from ConsensusPathDB for 72 target genes
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3.1 Abstract

Increased appreciation of 5-hydroxymethylation (5hmC) as a stable epigenetic mark,
which defines cell identity and disease progress, has engendered a need for cost-effective, but
high-resolution 5hmC mapping technology. Current enrichment-based technologies provide
cheap, but low-resolution and relative enrichment of 5hmC levels while single base-resolution
methods can be prohibitively expensive to scale up to large experiments. To address this
problem, we developed a deep learning-based method “DeepH&M”, which integrates
enrichment and restriction enzyme sequencing methods to simultaneously estimate absolute
hydroxymethylation and methylation levels at single CpG resolution. Using 7-week-old mouse
cerebellum data for training DeepH&M model, we demonstrated that the 5hmC and 5mC levels
predicted by DeepH&M were in high concordance with whole genome bisulfite-based
approaches. The DeepH&M model can be applied to 7-week old frontal cortex and 79-week
cerebellum revealing the robust generalizability of this method to other tissues from various

biological time points.

3.2 Introduction

A single genome can derive phenotypically unique cell types through various epigenetic
modifications that instruct specific gene expression patterns'®1%. DNA modifications, such as
methylation of 5 position of cytosines (5mC) at CpG dinucleotide context, play a vital role in
gene regulation, genomic imprinting, X-chromosome inactivation, and repression of
transposable elements®*~®, The recent discovery that Ten-Eleven Translocation (TET) oxidase
proteins can oxidize 5mC to 5-hydroxymethylcytosine (5hmC) has spurred an effort at
characterizing the landscape of 5hmC in normal and diseased tissues and deciphering its
potential functional role in gene regulation®'%-""°. Genome-wide profiling of 5ShmC has found

that 5hmC is not just an intermediate product of the active DNA demethylation process, but also
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a stable epigenetic mark correlated with gene expression. 5hmC abundance varies significantly
across different tissues''". 5hmC is present as high as 40% of 5mC levels in Purkinje neurons®,
5% of 5mC levels in embryonic stem cells*®, and is low (less than 1% of 5mC level) in other cell
types*’. 5hmC is enriched in promoters, gene bodies and enhancers; 5hmC levels in promoters
and gene bodies are positively correlated with gene expression***". 5hmC levels in enhancers
are often cell-type specific and are positively correlated with active enhancer histone marks,
such as H3K4me1 and H3K27ac*®. However, the molecular mechanism by which 5hmC might

regulate the genome has yet to be fully elucidated'?.

Rapid technological innovations for mapping 5mC have cemented 5mC as a crucial
epigenetic mark for cell fate. Technologies for mapping 5mC include bisulfite conversion of
unmethylated cytosine to uracil, such as whole genome bisulfite sequencing (WGBS),
enrichment of methylated DNA using methyl-cytosine-specific antibodies, such as methylated
DNA immunoprecipitation sequencing (MeDIP-seq), and enrichment of unmethylated regions
using methylation-sensitive restriction enzymes, such as methylation-sensitive restriction
enzyme sequencing (MRE-seq)®®. The gold standard method WGBS can measure methylation
genome-wide at single-base resolution but requires high coverage of the genome (at least 10x
coverage for each cytosine) and therefore can be 10 times more expensive than enrichment or
restriction enzyme sequencing methods®. MeDIP-seq enriches for methylated regions but has
low resolution (~150bp)®®®®. MRE-seq provides CpG resolution, but can only interrogate
methylation status at restriction enzyme sites (~30% of the genome)®.

Similarly, 5hmC profiling technologies advanced from immunoprecipitation/enrichment-
based methods to whole genome single-base resolution. Because WGBS cannot distinguish
5hmC from 5mC, Yu et. al. developed a method called TET-assisted bisulfite sequencing (TAB-

seq), where 5hmCs are first protected by glucosylation and then 5mC is completely oxidized to
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5caC with TET enzyme*®. The following bisulfite treatment can reveal which CpGs are protected
and infer hydroxymethylation levels. TAB-seq can measure genome-wide 5hmC at single-base
resolution but requires very high coverage to confidently call 5hmC at all cytosines. For
example, for 5% 5hmC, based on binomial test with a probability of 2.22% for 5mC non-
conversion rate, a coverage of 120 is required to call 5hmC at 95% confidence level (see
Materials and Methods). The study from Yu, et al. could only confidently call 20% or higher
5hmC at an average coverage of 27. Often in TAB-seq experiments, both WGBS and TAB-seq
libraries are deeply sequenced to parse out 5mC and 5hmC levels in a single sample. Achieving
high confidence, single base resolution of 5hmC can be a heavy financial strain for large
experimental designs due to the necessary sequencing depth. Therefore, many adopted the
cheaper alternative of utilizing antibody-based enrichment method, such as hydroxymethylated
DNA immunoprecipitation sequencing (hMeDIP-seq), which can reveal hydroxymethylated
regions with limited sensitivity**. hMeDIP-seq can also provide relative hydroxymethylation over
controls, but at the cost of low resolution. Similar to antibody-based enrichment method such as
hMeDIP-seq, hmC-Seal chemically tags hydroxymethylated cytosine and enriches
hydroxymethylated regions by pulling down tagged 5hmC*"*®, hmC-Seal can pull down regions

with extremely low 5hmc content and thus have higher sensitivity than hMeDIP-seq.

Because of the high cost of single-base-resolution profiling methods for 5ShmC and 5mC,
several computational methods were developed to estimate 5hmC and 5mC at single-base
resolution. Xiao et.al. developed a random forest regression-based method MeSiC to estimate
single-CpG 5mC from MeDIP-seq data®’. Stevens et. al. took advantage of the complementary
properties of MeDIP-seq and MRE-seq and developed a conditional random field-based
algorithm methylCRF to effectively predict single-CpG 5mC from MeDIP-seq and MRE-seq
data®. However, the two aforementioned algorithms cannot predict 5hmC levels. Pavlovic et al.

developed a SVM/random forest-based method DIRECTION to predict single-CpG 5mC or
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5hmC from histone modification and transcription factor ChIP-seq data®. This method can only
predict binary values, either high or low 5mC/5hmC, but not the absolute quantitative level. To
address these limitations, we developed a deep learning-based method DeepH&M, which
integrates enrichment and restriction enzyme sequencing methods to estimate absolute single-

CpG resolution hydroxymethylation and methylation levels simultaneously.

3.3 Results

3.3.1 Description of DeepH&M model

To estimate single-CpG hydroxymethylation and methylation, we developed a deep
learning-based algorithm DeepH&M to integrate MeDIP-seq, MRE-seq and hmC-Seal data (Fig.
1A). The core of DeepH&M is to model the relationship between MeDIP-seq/MRE-seq/hmC-
Seal data and TAB-seq/WGBS data using deep learning networks. The relationship between
MeDIP-seq/MRE-seq data and WGBS data was well characterized previously in a conditional
random filed-based algorithm, methylCRF, which was used to integrate MeDIP-seq and MRE-
seq data to predict absolute methylation levels at single-CpG resolution®®. hmC-Seal data is
positively correlated with TAB-seq data while MeDIP-seq and MRE-seq data present a complex
relationship with TAB-seq data (fig. S1A). DeepH&M model is composed of 3 modules: a
regular neural network-based CpG module, a convolutional neural network-based DNA module
and a regular neural network-based joint module (Fig. 1B). The inputs for CpG module are
genomic features and methylation features (table S1) for each CpG. Genomic features include
GC percent, CpG density and distance to nearest CpG island. Methylation features include
MeDIP-seq, MRE-seq and hmC-Seal signal. Because CpG in proximity tends to have similar
5hmC and 5mC level (fig. S1B), we also include average signal for above features in
neighboring windows around the target CpG. DNA module takes DNA sequence around a CpG

as inputs and uses convolutional neural network to extract information from DNA sequence. The
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joint module combines outputs from CpG module and DNA module and predicts 5hmC and

5mC levels simultaneously.

3.3.2 Benchmarking DeepH&M model

To examine the performance of DeepH&M, we generated WGBS, TAB-seq, MeDIP-seq,
MRE-seq and hmC-Seal data for 7-week-old mouse cerebellum and trained DeepH&M model
with these datasets. Because DeepH&M requires 5hmC and 5mC as the labels, we used a
statistical method MLML'*? to integrate TAB-seq and WGBS data to get consistent 5hmC, 5mC
and total methylation. MLML can prevent obtaining negative 5mC values by subtracting TAB-
seq data directly from WGBS data, and also prevent the contradiction of TAB-seq and WGBS
data at some CpG sites. As a reference, we called 5hmC, 5mC and total methylation derived
from MLML as “gold standard” data and evaluated our predictions against them. However, we
recognize that even the gold standard data might not represent the true hydroxymethylation and
methylation levels of a sample due to intrinsic limitations of profiling methods as described

previously' 1%,

Our predicted 5hmC, 5mC and total methylation levels are in high concordance with gold
standard results. DeepH&M recapitulates the distribution of gold standard 5hmC, 5mC, and total
methylation (Fig. 2A and B). The genome-wide correlation across our predictions and gold
standard data for 5hmC, 5mC and total methylation is 0.8, 0.85 and 0.85 respectively (Fig. 2A).
Using a previously developed concordance metric (defined as the percent of CpGs with a
methylation proportion difference less than 0.1 or 0.25)""®, 5hmC predictions are 86%
concordant with gold standard data within 0.1 difference, 5mC predictions are 90% concordant
within 0.25 difference and total methylation predictions are 91% concordant within 0.25
difference. To examine if the concordance is high only at particular 5hmC/5mC/total methylation

levels, we examined the concordance at differing 5hmC/5mC/total methylation windows (Fig.
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2C). 5hmC concordance is over 80% for 5hmC levels less than 0.4 and 45% for 5hmC levels
higher than 0.4. We report that less than 1% of the CpGs in mouse cerebellum have 5hmC
levels higher than 0.4. One explanation for the low concordance could be due paucity of high
hmC CpGs in the training set (2 million CpGs) thus DeepH&M might have difficultly learning the
rules for high 5hmC CpGs. The concordance for 5mC is relatively lower for 5mC at 0.2-0.4
window and the concordance for total methylation is low for total methylation at 0.2-0.6 window.
This may be due to the difficulty in predicting intermediate methylation as the problem also
existed in predictions by methylCRF®. The high concordance can be appreciated in the WashU
Epigenome browser view of the SIc22a17 and Efs locus, where 5hmC, 5mC and total
methylation levels of predicted and gold standard data are visualized (Fig. 2D). Furthermore, as
a positive control for evaluating our predictions against gold standard data, we examined the
concordance of two 7-week-old cerebellum replicates (fig. S2). The genome-wide correlation for
5hmC, 5mC and total methylation between two replicates is 0.82, 0.89, and 0.91 respectively,
and the concordance is 88%, 92%, and 94% respectively. The concordance of our predictions
with gold standard data is very close to the concordance of two replicates. These results confirm

DeepH&M can estimate single-CpG hydroxymethylation and methylation with high accuracy.

Since it has been shown that 5hmC is enriched at enhancers and 5ShmC levels at gene

body are positively correlated with gene expression*>*

, We investigated if our 5hmC predictions
can reveal these relationships. To examine the enrichment of 5hmC in genomic features, we
divided CpGs into four categories based on their 5hmC levels and calculated the enrichment
fold of the four CpG categories in genomic features. We found the enrichment of DeepH&M
predicted 5hmC in genomic features was similar to that of gold standard 5hmC (fig. S3A). CpGs
with high 5ShmC levels by predictions or gold standard data were highly enriched for enhancers

and depleted for promoters. To examine the relationship between 5ShmC and gene expression,

we grouped genes into four categories based on expression levels and profiled average 5hmC
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levels at gene body of the four categories of genes. We observed that similar to the gold
standard 5hmC, the predicted 5hmC levels were positively correlated with gene expression (fig.

S3B).

3.3.3 Factors affecting DeepH&M performance

Next, we wanted to investigate factors that may affect DeepH&M'’s performance. First,
we examined DeepH&M'’s performance across different genomic features, as DNA methylation
and hydroxymethylation were known to be highly non-random across the genome. The
concordance is over 93% at CpG islands and promoters for 5hmC and 5mC (Fig. 3A). The
concordance for other genomic features is over 80% for 5hmC and over 87% for 5mC. Because
most CpG islands (CGls) are lowly methylated and only a small portion of CGls are highly
methylated, we wanted to see if DeepH&M can distinguish highly methylated CGls from lowly
methylated CGls. We divided CGls into lowly methylated CGI and highly methylated CGls
based on total methylation levels, and then examined the concordance of predictions and gold
standard data in these two types of CGls. At lowly methylated CGls, the concordance for 5hmC
and 5mC are 99.9% and 99.8%, respectively (Fig. 3B). At highly methylated CGils, the
concordance for 5hmC and 5mC are 95% and 98%. These results indicate that DeepH&M’s
predictions are determined by experimental data instead of a learned assumption that all CGls
are lowly methylated. Second, since the accuracy of methylation levels from TAB-seq and
WGBS data are significantly influenced by sequencing coverage, we examined DeepH&M'’s
performance across differing CpG coverage from TAB-seq and WGBS data. The concordance
for 5hmC and 5mC increases steadily from less than 10x coverage to over 10x coverage (85%
to 88% for 5hmC, 78% to 89% for 5mC) (Fig. 3C). Thus, the lower concordance at lower
coverage is likely a consequence of lower confidence in gold standard data, underscoring the
robustness of our algorithm. Third, we examined DeepH&M'’s performance across regions with

differing CpG density, as CpG density is a confounding factor for our enrichment-based
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sequencing methods, MeDIP-seq and hmC-Seal, which do not work optimally for regions with
low CpG density. Indeed, we observed increasing concordance for 5hmC and 5mC with
increasing CpG density. Note that the concordance was greater than 0.8 even at lowest CpG
density; it increased to over 88% (5hmC) and 92% (5mC) for high CpG density regions that

most of the current investigations focus on (Fig. 3D).

3.3.4 Generalizability of DeepH&M model to explore hydroxymethylation and
methylation dynamics

Finally, we wanted to test whether DeepH&M model, trained on data from 7-week-old
mouse cerebellum, can be generalized to data of other samples. This includes whether
DeepH&M can predict differentially hydroxymethylated regions (DHMR) and differentially
methylated regions (DMR) between two samples. We generated WGBS, TAB-seq, MeDIP-seq,
MRE-seq and hmC-Seal data for 79-week-old mouse cerebellum as we wanted to explore
5hmC changes during aging. Using DeepH&M model from 7-week-old mouse cerebellum, we
predicted 5hmC and 5mC for 79-week-old mouse cerebellum. We performed similar
concordance analysis between predictions and gold standard data for 79-week-old mouse
cerebellum. The overall performance of DeepH&M model in 79-week-old mouse cerebellum is
similarly high as 7-week-old mouse cerebellum (Fig. 4, A to C). The genome-wide correlation
for 5hmC, 5mC and total methylation between predictions and gold standard data is 0.81, 0.86,
and 0.86 respectively, and the concordance is 84%, 91%, and 92% respectively. As illustrated
by the WashU Epigenome browser view, there is high concordance between DeepH&M
prediction and gold standard data across 5hmC, 5mC and total methylation levels in the UTR

and first exon of Kcnd2 gene (Fig. 4D).

Recent research suggests that epigenetic mechanisms, DNA methylation in particular,

play a central role in the aging process'"’. Using antibody-based methods to quantify 5hmC
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levels, several studies reported global levels of 5hmC increase significantly in mouse
cerebellum during aging, but remain stable in mouse hippocampus''®'"®. Furthermore, a recent
study used single-base-resolution sequencing method (0xBS-seq) to measure 5ShmC at single
sites in mouse hippocampus and found no global 5hmC changes'®. However, due to low
sequencing depth (2X), the study only examined 5hmC changes at chromosome level and
genomic element level, such as CGlIs and promoters, and could not provide single-base

resolution 5ShmC dynamics at local regions.

In this study, we explored whether DeepH&M could reveal how 5ShmC changes globally
and locally in mouse cerebellum during aging. We report that global 5hmC levels increase by
20% from 7 weeks to 79 weeks and that global 5mC levels do not change (table S2). Next, we
examined if there are 5hmC and 5mC changes in specific regions during aging by calling
differentially hydroxymethylated regions (DHMRs) and differentially methylated regions (DMRs).
First, we identified 524 DHMRs between hmC-Seal data of 7-week-old and 79-week-old mouse
cerebellum using DiffBind'?". We wanted to see if 5hmC changes in these DHMRs are similar
between predictions and gold standard data. Indeed, the hyperDHMRs have significantly higher
5hmC in both gold standard data and predictions, and hypoDHMRs have significantly lower
5hmC in both gold standard data and predictions (Fig. 5A). Thus, both gold standard data and
DeepH&M predictions support DHMRs defined by hmC-Seal data. Second, we defined DHMRs
and DMRs by comparing TAB-seq and WGBS data between 7-week-old and 79-week-old
cerebellum using the tool DSS'?2. We examined whether these DHMRs/DMRs are supported by
DeepH&M data. Indeed, the differences predicted by DeepH&M are highly significant, and they
are concordant with differences defined by gold standard data, although the overall magnitude

tends to be smaller (Fig. 5, B and C).
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We also examined enrichment of biological processes for these DHMRs and DMRs
using GREAT®®. We report that hyperDHMRs are enriched near genes that regulate synaptic
plasticity and transporter activity (fig. S4A) and that hyperDMRs are enriched in genes
responsible for neuron axonogenesis (fig. S4B). There were no significantly enriched terms
associated with hypoDMRs and hypoDHMRs, possibly due to the small number of hypoDMRs
and hypoDHMRs. As an example, Fig. 4D illustrates one of the numerous differentially
hydroxymethylated regions between 7-week-old and 79-week-old cerebellum. The 5hmC
changes at this region is supported by changes of gold standard 5hmC, predicted 5hmC and
also hmC-Seal signal between the two ages. These results suggest that DeepH&M can predict

DHMRs and DMRs between two samples.

The above analysis demonstrates that DeepH&M model, trained on data from 7-week-
old mouse cerebellum, can be generalized to 79-week-old mouse cerebellum. We wanted to
examine whether our DeepH&M model can be also generalized to 7-week-old mouse cortex as
5hmC levels in cortex is much higher than cerebellum. We found the overall performance of
DeepH&M model for 5hmC is a little lower in cortex than in cerebellum (concordance: 72% vs
86%), and the performance for 5mC and total methylation is similar to cerebellum (Fig. 6, A to
C). The genome-wide correlation for 5hmC, 5mC and total methylation between predictions and
gold standard data is 0.65, 0.82, and 0.89 respectively, and the concordance is 72%, 89%, and
92% respectively. We can see that 5hmC distribution in cortex is distinct from cerebellum (Fig.
2B vs. Fig. 6B) and the mean 5hmC level in cortex is almost twice as high as in cerebellum
(0.19 vs 0.11). Satisfyingly, DeepH&M can still recapitulate the distribution of gold standard
5hmC and 5mC and total methylation. These results suggest DeepH&M model trained from
cerebellum is not only generalizable to other cerebellum samples at different ages, but also
generalizable to adult frontal cortex. We also applied our DeepH&M model to mouse fetal cortex

which has much lower global 5hmC levels than adult cortex. The genome-wide correlation for
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5hmC, 5mC and total methylation between predictions and gold standard data provided in Lister
et al.”® is 0.44, 0.63, and 0.65 respectively, and the concordance is 61%, 84%, and 94%
respectively (fig. $5). The extremely low concordance for 5hmC in fetal cortex may be

explained by the rather big global differences in 5ShmC distribution in adult and fetal cortex.

3.4 Discussion and Conclusions

5hmC is known to be an intermediate, but stable, epigenetic feature of the active DNA
demethylation process. However, the molecular mechanisms underlying the role of 5hmC in
gene regulation remains largely unknown. Furthermore, the loss of 5hmC has been identified as
a hallmark of most types of human cancers. Many cancers are characterized by down-
regulation of or deleterious mutations in TET or isocitrate dehydrogenase IDH1/IDH2 (co-factors
of TET enzymes) genes, which reduces the rate of oxidization of 5mC into 5hmC"%¢1%8.199 |¢'g
important to note that many of these studies employ hMeDIP-seq technology to profile tumor

and matched-tumor samples, therefore, there is a lack of high-resolution hydroxymethylomes of

tumors.

Understanding the mechanisms underlying 5hmC'’s roles in development and
tumorigenesis can benefit from profiling 5hmC levels at genome-wide, single-base resolution.
As shown in Wen et al.'®*, high-resolution 5hmC profiling of the human brain revealed novel
5hmC signatures, such as high hydroxymethylation levels near 5’splicing sites and transcription-
correlated hmC levels on the sense strand of the gene, that hMeDIP-seq would not be able to
detect due to inherent limitations of the technology. Identifying these novel signatures could hold
the key in deciphering the biological machineries that 5hmC could potentiate. Currently, TAB-
seq and oxidative-bisulfite sequencing (0xBS-seq) are the gold standard methods for providing

single-CpG-resolution DNA hydroxymethylomes*®'?*. These two methods require very high

71



coverage to confidently call 5hmC at all cytosines. The coverage required for oxBS-seq is even
higher due to the fact that oxBS-seq measures 5hmC indirectly through subtracting measured
5mC from measured total methylation. The high cost associated with the high coverage is a
significant barrier for individual laboratories to adopt TAB-seq and oxBS-seq as a routine assay
for DNA hydroxymethylomes. Indeed, so far only a few cell types have deeply sequenced

hydroxymethylomes at single-base resolution*®:115:123.124.126-130

To overcome this potential cost-barrier problem, we have developed a deep learning-
based algorithm DeepH&M, which integrates enrichment and restriction enzyme sequencing
methods to estimate the absolute levels of hydroxymethylation and methylation at single CpG
resolution. The cost of the three assays combined is <5% of WGBS and TAB-seq. About 50-100
million MeDIP reads, 30 million MRE reads and 50 million hmC-Seal-seq reads are sufficient for
measuring a hydroxymethylome with DeepH&M, which translates to roughly 3x coverage of the
human or mouse genome. Also, TAB-seq requires ~3ug of genomic DNA while MeDIP-seq,
MRE-seq, and hmC-Seal can be generated from 100ng or less input thus allowing DeepH&M to
be more amenable to rare or difficult-to-procure cells or samples. Compared to 100x coverage
for TAB-seq and 20x coverage for WGBS, our method can minimize the cost of generating a
complete hydroxymethylome by 40-fold. Furthermore, DeepH&M can estimate for all CpGs
while WGBS and TAB-seq miss a significant fraction of the genome due to low coverage. As
mentioned previously, previous TAB-seq study on H1 cells could only confidently call 20% or
higher 5hmC at a coverage of 27 and thus identified less than 1 million hydroxymethylated

CpGs*“®.

One caveat to DeepH&M is that TAB-seq and WGBS libraries must be sequenced
initially to generate training data for the cell type of interest. Since creating comprehensive

hydroxymethylome and methylome can be cost-prohibitive, we explored alternative methods of
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generating training data. Currently, Infinium MethylationEPIC BeadChip Kit (lllumina, WG-317-
1001) can profile the methylation levels from roughly 850,000 CpGs at single-nucleotide
resolution for human. To address whether methylation microarray results could be utilized as
training set, we asked whether DeepH&M can be trained on 850,000 CpGs in our mouse data.
Compared to 2 million CpG training data, which has 86% 5hmC and 90% 5mC concordance,
DeepH&M can still predict with 83% and 89% concordance for 5hmC and 5mC respectively.
Therefore, to reduce the cost of generating training data, we can replace WGBS and TAB-seq

5 ltis also

with methylation arrays coupled with bisulfite and TAB-treated samples respectively
feasible to supply other enrichment and restriction enzyme sequencing methods as replacement
of DeepH&M inputs, such as replacing hmC-Seal with hMeDIP-seq. However, users need to

retrain DeepH&M model when using new input methods.

Using 7-week-old mouse cerebellum data for training DeepH&M model, we
demonstrated that the estimated 5hmC and 5mC levels were in high concordance with those
estimated by combining TAB-seq and WGBS data. DeepH&M estimated 5ShmC levels at 85%
concordance with TAB-seq data within 0.1 difference and DeepH&M estimated total methylation
level at 91% concordance with WGBS data within 0.25 difference. Furthermore, DeepH&M can
be generalizable to other tissues and biological time points. DeepH&M model trained on 7-
week-old mouse cerebellum data was able to estimate 5hmC and 5mC levels with high
performance for 79-week-old mouse cerebellum (concordance for 5ShmC and total methylation is
84% and 92%). Of note, differentially hydroxymethylated regions and differentially methylated
regions between 7-week-old and 79-week-old mouse cerebellum can be recapitulated using the
estimated 5hmC and 5mC values from DeepH&M for the two ages. However, we report
relatively lower performance for 7-week-old mouse cortex (concordance for 5hmC and total
methylation is 72% and 92%). The relatively lower performance for cortex may be explained by

the rather big global differences of 5hmC distribution in cerebellum and cortex, as the mean
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5hmC level is 0.19 in cortex and 0.11 in cerebellum. As one of the caveats of DeepH&M, these
data suggest that DeepH&M model cannot be generalized to different tissues when 5hmC levels
differ greatly between tissues. Indeed, when we applied our DeepH&M model to mouse fetal
cortex (mean 5hmC level of 0.05), the concordance for 5hmC and total methylation is 61% and
94%. The extremely low concordance for 5hmC indicates that mean level of 5hmC should be
taken into account when applying trained models to different biological systems. Because of the
dynamic range of absolute 5hmC levels in different tissues, the relationships between MeDIP-
seq, MRE-seq and hmC-Seal data and 5hmC are different in different tissues, and thus a single
DeepH&M model cannot be generalized to all tissues. One way to address this limitation is to
categorize tissues into multiple classes based on their 5hmC levels and train a DeepH&M model
for each group. The DeepH&M model trained for each group can then be generalized to tissues

that have similar 5hmC levels.

3.5 Methods

3.5.1 DeepHM model

DeepH&M model is derived from DeepCpG model, which predicts single-cell DNA
methylation states using deep learning’'. DeepH&M model is composed of 3 modules: a
regular neural network-based CpG module, a convolutional neural network-based DNA module
and a regular neural network-based joint module (Fig. 2). CpG module extracts information from
inputs of genomic features and methylation features of a CpG with regular neural network. DNA
module takes DNA sequence around a CpG as input and uses convolutional neural network to
extract information from DNA sequence. The joint module combines outputs from CpG module

and DNA module and predicts 5hmC and 5mC simultaneously with regular neural network.
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Unlike CpG module in DeepCpG which is a recurrent neural network, the CpG module in
DeepH&M is a regular neural network using two fully connected layers with 100 neurons and
ReLU activation function. The inputs for CpG module are genomic features and methylation
features (Supplementary Table 1) for each CpG. Genomic features include GC percent, CpG
density and distance to nearest CpG island. Methylation features include MeDIP-seq, MRE-seq
and hmC-Seal signal. Because CpGs in proximity tend to have similar 5hmC and 5mC levels,
we also include average signal for the above features in neighboring windows (0-50bp,50-

250bp,250-500bp,500-1000bp) around the target CpG.

The structure of our DNA module is the same as DNA module of DeepCpG model
except that the activation function in our DNA module is tanh function instead of ReLU function

(with two connected layers: layer 1 with 120 neurons and layer 2 with 240 neurons).

Joint module uses two fully connected layers with 100 neurons and RelLU activation
function to predict 5hmC and 5mC simultaneously, unlike the joint module in DeepCpG which

only predicts DNA methylation.

We used data that has at least 25x coverage from TAB-seq data and 20x coverage from
WGBS data for training and validation. The feature data is normalized by Z-score normalization.
Because the number of high 5hmC level CpGs was much smaller than those with low hmC
levels, we balanced the training set through subsampling and oversampling. We divided CpGs
into 9 windows based on 5hmC levels: 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.25, 0.25-0.3,
0.3-0.35, 0.35-0.4, 0.4-1 and subsampled CpGs if number of CpGs in the window was higher
than a threshold and oversampled CpGs if number of CpGs in the window was less than a
threshold. The threshold was chosen as the median of the number of CpGs in 9 windows. Data

were randomly split into training set (2 million CpGs), validation set (0.5 million CpGs) and test
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set (the rest). Model parameters were learnt on the training set by minimizing the L2 loss
function. We selected the model that had the smallest loss in the validation set and used the

model to predict 5hmC and 5mC for all CpGs.

3.5.2 Tissue sample dissection and genomic DNA extraction.

All procedures were approved by the Washington University Institutional Animal Care
and Use Committee. Two male 6-week-old C57BL/6J mice and two male 78-week-old
C57BL/6J mice were purchased (The Jackson Laboratory, 000664) and allowed to acclimate in
the mouse facility for a week. Cerebellum were dissected following protocol described
previously'*? from mice in both age groups while the frontal cortex (from bregma +1.0mm to the
base of the olfactory bulb) was dissected as described previously'? from 7-week-old mice. All

tissues were snap frozen in liquid nitrogen immediately after dissection.

Each tissue was cut into two pieces with a sterile razor blade for subsequent DNA and
RNA extraction immediately following. For genomic DNA extraction, we followed previously

established protocol'. In brief, each tissue piece was incubated in 600ul of lysis buffer (50mM
Tris-HCI pH 8, 1mM EDTA pH 8, 0.5% SDS, 1mg/ml proteinase K) at 55°C for 4 hours. DNA

was purified by phenol/chloroform/isoamyl alcohol extraction followed by ethanol extraction.
DNA used for MeDIP-seq was sheared into 100-500bp fragment size with Bioruptor Pico
Sonication system while DNA for WGBS and TAB-seq was sheared into 200-600bp fragment

size with Covaris E220 -Ultrasonicator.

3.5.3 MeDIP-seq, MRE-seq, and hmC-Seal library construction and data processing

d133

MeDIP-seq libraries were generated as previously describe with few modifications.

100ng of sheared DNA was ligated with lllumina adapters and methylation-enriched adapter-
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ligated DNA fragments were immunoprecipitated with 0.1ug of anti-methylcytidine antibody
(Eurogentec, BI-MECY-0100). MeDIP DNA fragments were amplified with lllumina barcodes
with NEB 2x PCR master mix (NEB, M0541). MeDIP-seq libraries were sequenced on lllumina

NovaSeq 6000 platform.

MRE-seq libraries were generated as previously described'® with few modifications. In
brief, 50ng of genomic DNA was digested by four restriction enzymes (Hpall, HinP1l, Acil,
HpyCH4IV) that generate a CG overhang. Adapter ligation was performed with custom Illlumina
adapters (5- ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’ and 5-P-
CGAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3’). Adapter-ligated DNA fragments
were amplified with lllumina barcodes with NEB 2x PCR master mix (NEB, M0541) and
sequenced on lllumina NovaSeq 6000 platform.

18 on tissue samples.

To identify 5hmC-enriched regions, we performed Nano-hmC-Sea
In brief, 50ng genomic DNA was used in the tagmentation reaction. The tagmented DNA was
glucosylated by incubating in a 50 pl solution containing 1x glucosylation buffer, 200 uM UDP-
Azide-Glucose (Active Motif, 55020), and 5 U T4 R-glucosyltransferase (Thermofisher,
EO0831), at 37°C for 1 hr. After glucosylation, the DBCO-PEG4-Biotin reaction and streptavidin
C1 beads pull-down were same as the Nano-hmC-Seal*®. The beads were washed ten times
with 1x binding-washing buffer and twice with ddH20 and were re-suspended in 15ul ddH20.
The captured DNA fragments were amplified and barcoded by PCR using the NEBNext 2x PCR

master mix (NEB, M0541). hmC-Seal libraries were sequenced on lllumina NovaSeq 6000

platform.

The reads for MeDIP-seq, MRE-seq, hmC-Seal were aligned to the mm9 reference

genome with bwa'** and then processed by methylQA'™:3. The signal for MeDIP-seq, MRE-seq
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and hmC-Seal at each CpG was the number of reads aligned to that location divided by total
reads (million). The average signal for MeDIP-seq, MRE-seq and hmC-Seal in each window

was the mean of signal at all bases in that window.

3.5.4 WGBS and TAB-seq library construction and data processing
WGBS and TAB-seq libraries were constructed using 5hmC TAB-Seq Kit (WiseGene,
K001) following manufacturer’s protocol with few modifications detailed below. 5ug of sheared

gDNA were treated with B-glucosyltransferase-based reaction to glucosylate 5hmCs. 400ng of

glucosylated DNA was incubated in Tet-based oxidation reaction at 37°C for 1.5 hours. 500ng of
glucosylated DNA and 250ng of Tet-oxidized DNA were bisulfite converted using EZ DNA
Methylation-Gold Kit (Zymo, D5005) for subsequent WGBS and TAB-seq library construction
respectively with Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences, 30024). WGBS

and TAB-seq libraries were sequenced on Illlumina NovaSeq 6000 platform.

The reads for TAB-seq and WGBS data were aligned to mm9 reference genome and
processed using Bismark'®. A statistical method MLML was used to integrate TAB-seq and

WGBS data to get consistent 5hmC and 5mC and total methylation'?.

3.5.5 DHMRs and DMRs identification

DHMRs between hmC-Seal datasets were defined by DiffBind'?' with a g-value of 0.01.

DHMRs between TAB-seq datasets and DMRs between WGBS datasets were defined

by DSS'®. Two replicates and smoothing options were used for DSS. The called DHMRs and

DMRs were then filtered by requiring a minimal coverage of 10 by TAB-seq and WGBS data
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and the absolute difference of gold standard 5hmC (for DHMRs) and total methylation (for

DMRs) in two datasets over 0.15.

3.5.6 Coverage required to call 5% 5hmC

Based on binomial test with a probability of 2.22% for 5mC nonconversion rate, the p-
value for using a coverage of 120 to call 5% 5hmC was calculated in R by
binom.test(round(120*0.05), 120, p= 0.0222, alternative= "greater"). The resulted p-value for
the test was 0.05184. Therefore, a coverage of 120 was required to called 5% 5hmC at 95%

confidence level.

3.5.7 Enrichment of 5hmC in genomic features
Enrichment fold = (#CpG for class A CpGs overlapping genomic feature B / #CpG in
class A CpGs) / (#CpG for all classes of CpGs overlapping genomic feature B / #CpG in all

classes of CpGs).

3.5.8 mRNA-seq library construction and data processing

Total RNA from tissue samples were extracted using TRIzol Reagent as previously
detailed'’. 500ng of total RNA was processed with Universal Plus mRNA-Seq kit (Nugen, 0508-
08) to generate mMRNA-seq libraries, which were sequenced on lllumina NovaSeq 6000
platform. mRNA reads were aligned to mm9 reference genome using STAR'®, Read counts for

each gene were obtained using HTSeq"®.

3.5.9 Software availability

DeepH&M tool is available in https.//epigenome.wustl.edu/DeepHM/.
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Figure 1. DeepH&M model.

(A). Schematic explanations for the 3 main assays used for DeepH&M model. (B). Structure of
DeepH&M model. DeepH&M is composed of 3 modules. CpG module takes inputs of genomic
features and methylation features. DNA module processes raw DNA sequence data using a
convolutional neural network. Joint module combines outputs from CpG module and DNA

module to predict 5hmC and 5mC simultaneously. Examples were given to show how 5hmC

and 5mC were predicted from the 3 main assays. Conv is convolutional layer. Pool is pooling

layer. Full con is full connected layer.
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Figure 2. Performance of DeepH&M model in 7-week-old mouse cerebellum.

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation.
Pearson correlation coefficient is used as correlation metric. (B). Global distribution comparison
of predictions and gold standard data for 5hmC, 5mC and total methylation. (C). Concordance
between predictions and gold standard data for 5hmC, 5mC and total methylation at CpGs with
differing 5hmC/5mC/total methylation levels. For 5hmC, 0.1 difference is used to calculate
concordance. For 5mC and total methylation, 0.25 difference is used. Concordance for five
ascending 5hmC windows and five ascending 5mC/total methylation windows are calculated to
see how concordance distributes in differing 5hmC/5mCi/total methylation levels. (D). Genome
browser view of predictions and gold standard data for 7-week-old cerebellum at a

representative locus.
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Figure 3. Factors affecting concordance between gold standard data and predictions.

(A). Concordance for 5hmC/5mC/total methylation at different genomic features. (B).
Comparison of gold standard 5hmC/5mC and predicted 5hmC/5mC at lowly methylated CGls
and highly methylated CGls. CGls are divided into lowly methylated CGls (<0.2) and highly
methylated CGls (>0.7) based on their average total methylation levels. (C). Concordance for
5hmC/5mC/total methylation as a function of CpG coverage. For 5hmC concordance, CpG
coverage is from TAB-seq data. For 5mC/total methylation concordance, CpG coverage is from

WGBS data. (D). Concordance for 5ShmC/5mC/total methylation as a function of CpG density.
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Figure 4. Performance of DeepH&M model in 79-week-old mouse cerebellum.

(A). Density plots of predictions and gold standard data for 5ShmC, 5mC and total methylation.

(B). Global distribution comparison of predictions and gold standard data for 5hmC, 5mC and

total methylation. (C). Concordance between predictions and gold standard data for 5hmC, 5mC

and total methylation at CpGs with differing 5ShmC/5mC/total methylation levels. (D). Genome

browser view of a differentially hydroxymethylated region between 7-week-old and 79-week-old

cerebellum. The selected box is the DHMR. The 5hmC changes at this region is supported by

changes of gold standard 5hmC, predicted 5hmC and also hmC-Seal signal between the two

ages.
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Figure 5. DeepH&M can predict differentially hydroxymethylated regions and
differentially methylated regions between 7-week-old and 79-week-old mouse cerebellum.

(A). Distribution of mean 5hmC for gold standard data and predictions at hyperDHMRs and
hypoDHMRs defined by hmC-Seal data between 7w and 79w cerebellum. gold is for gold
standard data. pred is for prediction. N is the number. (B). Distribution of mean 5hmC+5mC for
gold standard data and predictions at hyperDMRs and hypoDMRs defined by WGBS data
between 7w and 79w cerebellum. (C). Distribution of mean 5hmC for gold standard data and
predictions at hyperDMRs and hypoDMRs defined by TAB-seq data between 7w and 79w

cerebellum.
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Figure 6. Performance of DeepH&M model in 7-week-old mouse cortex.

(A). Density plots of predictions and gold standard data for 5hmC, 5mC and total methylation.

(B). Global distribution comparison of predictions and gold standard data for 5hmC, 5mC and

total methylation. (C). Concordance between predictions and gold standard data for 5hmC, 5mC

and total methylation at CpGs with differing ShmC/5mC/total methylation levels.

86



A hmC-Seal MeDIP MRE

Density
60
40
20

Density
6
4
2

S5hmcC

1.00

Density

30
20
10

Density

20
1.5
10
0.5

Density
0

3
20
10

0.75

0.50

5mC

0.25

10.0

— 5hmC at 10-20X

------ ShmCat30X

—— Total methylation at 10-20X
------ Total methylation at 30X

0.6

Correlation
04

10 20 50 100 150 200 300 500 Te3 5e3 1e6
Distance between two CpGs (bp)

Supplementary Figure 1. Relationship between main DeepH&M features and gold
standard 5hmC and 5mC.

(A). Density plots of 5hmC/5mC as a function of hmC-Seal, MeDIP-seq, MRE-seq signal at the
CpG sites. X-axis represents feature signals. Y-axis represents gold standard 5hmC/5mC
values. Color bar shows the density of points. (B). Correlation of 5hmC and total methylation
levels between two CpG sites as a function of distance between the two CpG sites. Two
coverage cutoffs (10-20X, >30X) are chosen to demonstrate how the correlation between two
CpG sites can be dependent on sequencing coverage (which is a surrogate of confidence in
predicted methylation levels). Pearson correlation coefficient is used as correlation metric.

87



1.00 =082 1.00

0.75-

o
N
«a

c
Kl
V] k]
£ = £
in A 7]
) 3 £
® 2 ® 0.50

S S S
= 8 ]
o g P
©

5 : 5] )

Denety | 205 engiy

60 15

e 10 @ I

20 5 5

0.00 g - g 0.00 : - - 0.00 - - -
0.00 0.25 ) 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Replicate1 5hmC Replicate1 5mC Replicate1 total methylation

Supplementary Figure 2. Density plots of two 7-week-old cerebellum replicates data for
5hmC, 5mC and total methylation.

Pearson correlation coefficient is used as correlation metric.
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Supplementary Figure 3. Comparison between gold standard 5hmC and 5hmC
predictions for known 5hmC function.

(A). Enrichment of gold standard 5hmC and 5hmC predictions at genomic features. CpGs are
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