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ABSTRACT OF THE DISSERTATION 

Neural Mechanisms of Cognitive Individual Difference: An Investigation of the Human 

Connectome Project by 

Shelly R. Cooper 

Doctor of Philosophy in Psychological and Brain Sciences 

Washington University in St. Louis, 2020 

Professor Todd Braver, Chair  

 

Considering individual differences in task activation functional magnetic resonance imaging (t-

fMRI) can be challenging because they may arise from variability in activity in brain regions, in 

the tasks themselves, or some combination thereof. Delineating sources of between-subjects 

variance is particularly important for cognitive control where task goals are at the forefront. Here 

we applied structural equation modeling (SEM) to the Human Connectome Project to examine if 

activity could be partitioned into separable brain and task individual difference dimensions. A 

series of SEMs were defined with varying numbers of latent factors, where the inputs were 

parcels of two cognitive control-related brain networks measured during two cognitive control-

related task paradigms. Model comparisons favored the SEM where each network and task were 

specified separately. The same analyses were repeated with additional higher-order brain 

networks and tasks, and still the best-fitting model had latent factors for each task and network. 

Brain networks and task contexts are thus critical sources of individual differences, especially in 

the realm of cognitive control, and the t-fMRI signal can be decoupled accordingly. We further 

discuss the ramifications of considering different aspects of neuroimaging signals when 

interrogating brain-behavior relationships.  
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Chapter 1: Introduction 
A large component of cognitive neuroscience research has focused on the use of task-

based functional magnetic resonance imaging (t-fMRI) as a tool to investigate the neural bases of 

various cognitive functions via tightly controlled experimental paradigms (e.g., is there a 

difference in mean neural activity between conditions or groups?). Yet important details get lost 

in this approach, simply due to within-group averaging across individuals. Consequently, 

translation of experimental findings into impactful therapeutics may ultimately fall short, 

especially in a domain like cognitive control, for which individual differences are thought to play 

a major role (Braver, Cole, & Yarkoni, 2010; Kane & Engle, 2002; Miyake et al., 2000). This 

discrepancy has recently led to large-scale efforts (e.g., NIMH Research Domain Criteria, or 

RDoC, initiative) dedicated to characterizing the spectrum of individual variation at multiple 

levels of granularity for various domains, including cognitive control. The goal of the current 

study is to validate and test the explanatory power of a highly applicable, but an under-utilized 

statistical methodology within neuroscience – structural equation modeling – to characterize 

individual differences in brain activation patterns and relate them to key issues in cognitive 

control. 

Standard t-fMRI methods provide limited utility for characterizing the contribution of 

individual level variability in evoked fMRI brain activity patterns. One potential reason for this 

is that individual variability may be a characteristic of the brain network (or region) itself, yet 

present in a task-independent fashion. For instance, between-subjects variance patterns observed 

within a given network may persist across various task states. Additional, individual-level 

variation that is task-specific may also be present, but could be masked by task-independent 
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variation. Likewise, brain-behavior relationships may be preferentially observed if assessed 

during a particular task (state-like), or instead may be consistently present across multiple task 

contexts (trait-like). Accurate identification of brain-behavior relationships that operate in a more 

trait-like (i.e., stable, task-independent) versus those that are present in state-like manner will 

have important implications for understanding the continuum (or potential discontinuities) 

between healthy individual variation and neurocognitive impairments. It could also serve to 

increase validity in existing group-based comparisons through better control of individual-level 

variance.   

The above issues are particularly salient for investigations of the neural mechanisms of 

cognitive control, a domain inherently dependent upon the task at hand. That is, cognitive control 

is defined by the ability to actively maintain particular task goals and update them accordingly. 

As a consequence, specific task demands are particularly relevant for cognitive control, which 

makes individual variation in cognitive control to be an especially likely candidate function that 

could exhibit state-like brain-behavior relationships (e.g., more task-related variance). A better 

understanding of the sources of individual variation that contribute to cognitive control function 

would have broad implications, as cognitive control is well-established to play a critical role in 

many task domains (e.g., attention, working memory, decision-making, reward processing, etc.; 

(Botvinick, 2007; Chiew & Braver, 2011; Gray, Chabris, & Braver, 2003; Kane, Bleckley, 

Conway, & Engle, 2001; Redick, 2014; Richmond, Redick, & Braver, 2015; Satterthwaite et al., 

2007). Moreover, cognitive control is thought to be a central factor in a wide variety of mental 

health disorders and dysfunctions (e.g., schizophrenia, ADHD, Alzheimer’s). Lastly, cognitive 

control has been clearly identified as a construct subject to substantial inter- and intra-individual 

differences in behaviorally focused investigations (Braver, 2012). As such, it has been identified 
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by the NIMH RDoC initiative as a target construct of interest. This is not to insinuate that there 

are more individual differences in cognitive control than in other domains, such as working 

memory, episodic memory, attention etc. Rather, cognitive control is a domain where inter-

individual differences are thought to play a major role. Therefore, delineating dimensions that 

underlie individual differences in cognitive control is of interest not only from a basic science 

perspective, but also because of its clinical relevance. Further, lessons learned from this domain 

can then be applied to additional cognitive domains, enabling more direct comparisons across 

constructs. The purpose of the current study is to tease apart the between-subject variability of 

the t-fMRI BOLD signal into brain region-related and task-related dimensions, and to examine 

how these differentially correlate to behaviors both related and unrelated to cognitive control. 

Prior investigations of individual differences in t-fMRI have been impeded by the 

analytical challenges associated with this endeavor. One limitation is that in much of the prior 

work, they have been assessed as an after-thought of a between-condition or between-group 

analysis, and via simple correlations (Pearson or Spearman; Yarkoni & Braver, 2010). Yet there 

are statistical frameworks optimized for the study of individual differences, mostly developed 

from within the field of psychometrics – of which, latent variable modeling methods such as 

Structural Equation Modeling or SEM, might be the most applicable. In SEM, observed 

(manifest) variables are linked to unobserved (latent) constructs via concurrent regression 

equations. This is done by comparing the variance-covariance matrix of an implied, researcher-

specified model to the variance-covariance matrix of the observed data (Bollen, 1989; Kline, 

2015). By mathematically modeling user-defined sources of between-subject variability, 

researchers can flexibly deploy a hypothesis-testing framework to simultaneously ask questions 

regarding: a) how individual variability across multiple manifest variables ought to organize into 
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latent individual differences dimensions (the measurement model), and b) how individual 

differences dimensions correlate to other latent dimensions and/or predict other observed 

behaviors (the structural model). Importantly, latent variables defined in SEM are considered 

“error-free” in that they reflect the variance shared by multiple manifest variables; they also 

enable shared variance to be “partialled out”, if it can be attributed to other latent factors. As 

such, SEM procedures are especially adept at delineating and evaluating sources of individual 

differences, while simultaneously minimizing the influence of measurement error on the latent 

variables; thus, they lead to increased psychometric reliability. Likewise, since the latent 

constructs are theoretically specified and constrained, results are also thought to be more valid 

than traditional analyses. For more on using SEM on neuroimaging datasets, see Cooper, 

Jackson, Barch, & Braver (2019). 

The advantages of SEM make it an ideal technique for the proposed characterization of 

individual difference dimensions in brain activation patterns. Specifically, it provides a flexible 

framework from which to partition individual variability in t-fMRI into latent constructs that 

separately reflect both brain networks and task contexts (as well as more global factors, such that 

these can be correlated with a range of individual differences dimensions (including but not 

limited to cognitive, psychosocial, and health-related outcomes). Therefore, the application of 

SEM to t-fMRI data has the potential to provide new insights regarding the degree to which the 

low end of functioning within a healthy population is continuous versus discontinuous with that 

observed in various clinical populations. Unfortunately, to date there has been very little 

integration of these individual difference-focused statistical methods with t-fMRI datasets 

because SEM requires large sample sizes (for fMRI) to be most validly deployed. A standard of 

n = 200 participants is often considered to be the minimum needed for SEM procedures 
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(Boomsma, 1985). Because typical neuroimaging studies are both labor and time intensive, 

acquiring such large datasets has previously been considered to be cost-prohibitive. 

Yet it can be reasonably claimed that neuroimaging research is at the dawn of a new era. 

In particular, the recent large-scale, multi-center Human Connectome Project (HCP; 

https://www.humanconnectome.org/study/hcp-young-adult) yielded one of the very first datasets 

that enables a systematic and rigorous investigation of the neural mechanisms that underlie 

individual variation in human higher-cognitive functions (Van Essen et al., 2013). The HCP 

collected high quality, state-of-the-art neuroimaging data with comprehensive phenotyping 

(genetic, physiological, self-report, and behavioral information) on a demographically 

representative and genetically informed sample. Each subject participated in not only structural 

MRI, resting state fMRI, but also t-fMRI with a wide range of tasks, making it among the largest 

and richest publicly available datasets in existence. Since the HCP, other large-scale datasets 

have also been collected; yet, the HCP is particularly well-suited for an initial investigation into 

the utility of SEM approaches with regards to task fMRI. For instance, the UK Biobank is 

primarily focused on structural neuroimaging methods (https://www.ukbiobank.ac.uk/), with 

only a single short t-fMRI measure (Sudlow et al., 2015). The Cambridge Centre for Ageing and 

Neuroscience (Cam-CAN) project has a very wide age-range of participants (potentially 

increasing individual variation, but also making age a confounding factor); however, their t-

fMRI procedures include only a single sensorimotor task plus movie watching, as opposed to 

multiple t-fMRI tasks (Shafto et al., 2014; http://www.cam-can.org/). Finally, while the currently 

ongoing Adolescent Brain Cognitive Development (ABCD; https://abcdstudy.org/) is following 

similar scanning procedures as the HCP, and will involve multiple t-fMRI measures collected on 

over 10,000 individuals in a longitudinal 10-year design, it has a primarily developmental focus 
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(Volkow et al., 2018). This adds in the additional complication of accounting for developmental 

differences and change effects; moreover, currently (at the time of this manuscript) only the first 

wave of data on children ages 9-10 is available.  

The key question of the present project relates to the task contexts from which 

neuroimaging data is acquired. In order to address it properly, a dataset is required in which a 

large sample of participants are scanned while performing multiple task paradigms. Though 

usually not feasible (cost, time burden), the pooled “big data” resources from the HCP enabled 

each participant to be scanned during 7 different t-fMRI paradigms, two of which tap into 

cognitive control-related processes. Therefore, this unique HCP dataset is ideal for interrogating 

questions surrounding the neural circuitry that gives rise to individual differences, particularly as 

they relate to cognitive control.  

An additional impediment to the adoption of latent variable model approaches in t-fMRI 

relates to the challenges in deciding between whole-brain voxel-wise and region-of-interest 

analyses. However, integrating recent developments from “network neuroscience” (Medaglia, 

Lynall, & Bassett, 2015; Sporns & Bassett, 2017) with individual differences research may help 

overcome this difficulty. A central insight that has emerged in the last decade is that brain 

regions are organized into functional networks, and that these networks show similar 

organization across both “resting” states and “task” states (Cole, Bassett, Power, Braver, & 

Petersen, 2014; Power, Schlaggar, & Petersen, 2014). Although the primary approach for 

defining networks has been on the basis of functional connectivity patterns, a critical assumption 

has been that these networks define an intrinsic level of organization of the brain, which should 

also be identifiable and useful for task activation studies. Newly developed parcellation 

algorithms yield a full set of cortical “nodes”, postulated as unique, functionally meaningful sub-
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units from which higher-level networks are defined (Gordon et al., 2016; Schaefer et al., 2018; 

Wig, Laumann, & Petersen, 2014). An innovative feature of the HCP dataset is that it has 

incorporated such parcellation schemes into an optional preprocessing pathway, making it easy 

to conduct analyses that utilize cortical parcels and functional networks as predefined building 

blocks.   

Focusing on networks as the level of analysis seems like a particularly promising middle 

ground for examining individual differences in t-fMRI, as the preserved data in networks are 

more robust than typical voxel-wise analyses, yet are broader and potentially more functionally 

interpretable than region-of-interest analyses. Although certain networks have been strongly 

associated with cognitive control functions (at least at the group level), such as fronto-parietal 

(FPN) and cingulo-opercular networks (CON; Braver & Barch, 2006; Cole & Schneider, 2007; 

Dosenbach et al., 2007; 2006; Lerman-Sinkoff et al., 2017), there has not yet been a rigorous 

evaluation of the validity and functional utility of such brain networks for t-fMRI studies, 

particularly with respect to sensitivity to individual differences, both within specific networks 

and also across task contexts. The current project posits that the ability of brain networks to 

properly capture individual variation within and across tasks is an appropriate and powerful 

metric for such validation.  

Although there is a rich history of t-fMRI studies examining smaller regions-of-interest 

that may be encompassed by these functional networks, to be clear, the current study is not 

assessing the claim that examining t-fMRI at the network level is better or worse than focusing 

on a particular node or region-of-interest. This is itself a very interesting question and worthy of 

investigation in future studies but is outside the scope of the current project.  
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The current study is divided into two specific aims. In the first aim, the goal is to test whether 

there are reliable individual differences that are brain network-specific, (i.e., related to key 

cognitive control networks, such as FPN and CON) and/or task-specific (i.e., related to key 

cognitive control paradigms, N-back and Relational Processing), utilizing SEM as the key 

analytic and inferential method. We hypothesize that partitioning the overall between-subject 

variability into more targeted nodes of individual difference (e.g., latent variables for each brain 

network and each task context) will provide a more internally consistent model of how BOLD 

data are inherently structured. That is, the best fitting model of t-fMRI BOLD data should be one 

that delineates task contexts and brain networks as separate sources of between-subject 

variability. Furthermore, we expect that the nature of t-fMRI BOLD data is such that even when 

expanding the focus to include a broader set of brain networks (e.g., dorsal attention network 

[DAN], default mode network [DMN]) and task contexts (e.g., Social Cognition, Language, and 

Gambling tasks), we will still find that the best fitting model is one that delineates the tasks and 

brain networks as separate sources of individual differences. Support of these hypotheses would 

facilitate the development of biologically constrained models of cognitive control. That is, future 

research may want to perform this type of variance decomposition procedure in order to create 

dimensions of cognitive control that are more faithful to the true internal structure of the 

individual differences contained in the t-fMRI signal. In turn, this can guide future hypothesis 

generation in a more targeted manner.  

To be clear, the first aim of this study is focused entirely on the measurement model (e.g., 

how manifest variables organize into a latent factor structure), and the key data of interest are the 

overall model fit indices. Going forward, analyses only involving two brain networks and two 

cognitive tasks will be referred to as “2x2” whereas analyses involving the two additional brain 
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networks and three additional tasks will be referred to as “4x5”. As an aside, although the 

primary intention of the 2x2 analyses was to take a relatively narrow approach in targeting 

cognitive control, they also fulfilled a second goal of serving as a stepping-stone or proof-of-

concept regarding the feasibility and utility of scaling-up to the larger 4x5 models. That is, if 

none of the 2x2 models converged, moving on to the 4x5 analyses would be exceedingly 

difficult. 

The second aim extends the first by probing which of the neural activation latent 

variables reflecting individual difference dimensions (e.g., specific networks, specific tasks) best 

predict outcome measures that should be of theoretical relevance to cognitive control (for 

example, working memory). As with the first aim, the second aim has two subcomponents: 1) 

first, in the 2x2 setting which only includes a narrow set of cognitive control-related tasks (N-

back and Relational Processing) and brain networks (FPN and CON) 2) then again with the 4x5 

expanded set of tasks and brain networks. In this aim, there were three sets of outcome variables 

that vary in their supposed relationship to cognitive control. For the 2x2 phase, we hypothesized 

that all four latent constructs (two brain networks and two task contexts) would significantly 

predict outcome variables most strongly related to cognitive control, but exhibit a smaller effect 

sizes for the outcome variable expected to be only moderately related to cognitive control, and 

not significantly predict an outcome variable that should be unrelated to cognitive control. For 

the 4x5 expanded phase, we expect that the same relationships observed in the 2x2 will hold 

even in the presence of additional tasks and brain networks, although this is more exploratory in 

nature. In other words, the key focus of the second aim is to test whether brain networks and task 

contexts are both important dimensions of individual differences in cognitive control in terms of 

predicting relevant outcome variables, above and beyond other classically higher-order brain 
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networks and other general cognitive tasks. The primary focus of this aim will be to carefully 

examine particular parameter estimates/regression coefficients across various models in order to 

evaluate if separating the sources of individual differences results in any gains (or losses) in 

explanatory power. Knowledge of this nature is essential for precision medicine efforts, as 

support for this hypothesis would indicate that future interventions targeting neurocognitive 

impairment might only be effective in specific environmental contexts. 

 

  



 11 

Chapter 2: Methods 
The primary approach of this manuscript is to apply the modern latent variable 

framework from the psychometric literature to neuroimaging data in order to better characterize 

the neural factors that underlie individual differences in cognitive control. The following sections 

describe the participants, neuroimaging tasks and data processing, then providing greater detail 

about the statistical methodology. Note that in order to facilitate open access to all aspects of the 

research lifecycle, most activities related to this project (preprocessing scripts, analysis scripts, 

publications etc.) are contained on Open Science Framework (https://osf.io/a6x5b/), and all 

preprocessed neuroimaging and behavioral data is publicly available through the HCP website 

(https://www.humanconnectome.org/).   

2.1 Participants 
The HCP Healthy Young Adult full release dataset (n = 1200) was used for all aspects of 

this project, and included healthy participants ranging from 22-35 years of age. Although a broad 

set of imaging and other data were collected for the HCP, the current project focuses on t-fMRI 

and associated behavioral outcomes. As such, participants were included if they had 

neuroimaging data available for each of the 5 cognitive tasks and completed the three out-of-

scanner tasks (described below), resulting in a final sample size of n = 1005. Note that family 

structure was not taken into account for the primary analyses; however, supplemental analyses 

described below tested the validity of this approach to inference. Here the HCP is considered an 

archival dataset, and no new participants were recruited for this project. For more details 

regarding HCP participant recruitment and informed consent processes, please see Van Essen et 

al., (2013). 
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2.2 Neuroimaging Data and Tasks 
Detailed aspects of the neuroimaging data acquisition and preprocessing protocol are 

available both on the HCP website (www.humanconnectome.org) and in various publications 

(Barch et al., 2013; Glasser et al., 2013; Ugurbil et al., 2013). Broadly however, HCP data were 

collected on a Siemens 3T Skyra and acquisition parameters feature whole-brain coverage, a 32-

channel head coil, multi-band acceleration, and high spatial and temporal resolution (2 mm 

voxels, <1s TR). 

The HCP protocol included 7 t-fMRI paradigms, but two were excluded from the current 

project: Motor and Emotion tasks. The Motor task was excluded because it exhibits minimal 

between-subjects variability in the corresponding out-of-scanner motor behavioral measures. The 

Emotion task was excluded because its utility was primarily for engaging subcortical limbic 

regions, especially amygdala (Hariri, Tessitore, Mattay, Fera, & Weinberger, 2002). Currently, 

the available parcellation algorithms are thus far best suited for cortical networks making it 

challenging to know how to incorporate subcortical regions into the relevant brain networks. Of 

note, this is an active area of research and future parcellation algorithms may soon be able to 

account for the subcortex and cerebellum (Seitzman et al., 2018). Consequently for the current 

study, the emphasis was on the five remaining task paradigms: N-back, Relational Processing, 

Gambling, Language, and Social Cognition. Comprehensive rationales for HCP task selection, 

task descriptions, and all relevant task parameters have been extensively reported in Barch et al., 

(2013). Below, brief descriptions of the tasks are provided describing the key aspects and 

activation contrasts from each of the five task paradigms.  

N-back: The N-back is a well-established working memory (WM) paradigm, which 

includes blocked 2-back (high WM-load) and 0-back (low WM-load) conditions, performed with 
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a variety of stimulus types that varied across blocks. The current study focuses on activation that 

should isolate WM load effects, via the 2-back - 0-back contrast (cope 11), collapsing across 

stimulus type. This task is included in both the 2x2 and 4x5 set of analyses. 

Relational Processing: This task engages higher-cognitive processes used in analogical 

reasoning, such as integration within WM. In the relational blocks, the dimension along which 

one pair of objects differs (e.g., texture) must be extracted (and maintained in WM), and then 

compared with another pair of objects to determine if the latter vary on the same or different 

dimension. In match blocks, the judgment is just whether a bottom object matches either of the 

top objects on the specified dimension (shape or texture). The current study utilizes the 

activation present in the relational - match contrast (cope 4) to isolate relational processing 

effects. This task is included in both the 2x2 and 4x5 set of analyses. 

Gambling: This task involves guessing card numerical values, with monetary rewards and 

punishments provided as feedback, in blocked mostly-reward and mostly-punishment conditions 

(Delgado, Nystrom, Fissell, Noll, & Fiez, 2000). To focus on these differential reward effects, 

the current study focuses on activation present in the reward - punishment contrast (cope 6). This 

task and data are only included the 4x5 set of analyses. 

Language: This task requires participants to process auditorily-presented and 

semantically challenging stories in order to answer later comprehension questions, with story 

task blocks alternating with math blocks of matched length and difficulty (followed by 

comprehension questions; task adapted from (Binder et al., 2011). To focus on these differential 

language-related effects, the current study focuses on activation present in the story - math 

contrast (cope 4). This task and data are only included the 4x5 set of analyses. 
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Social Cognition: This task involves presentation of short videos depicting geometric 

shapes moving in ways that appear to express either social interactions (i.e., inferring 

intentionality, sometimes referred to as involving Theory of Mind; TOM) or random trajectories, 

with participants making a judgment regarding which type of pattern occurred (video clips 

adapted from Castelli, Happé, Frith, & Frith, 2000; Wheatley, Milleville, & Martin, 2007). To 

isolate these social interaction processes, the current study focuses on activation present in the 

social (or TOM) - random contrast (cope 6).  This task and data are only included the 4x5 set of 

analyses. 

2.3 Network Assignment 
A key aspect of the proposed methodology is to treat functional networks (rather than 

voxels or regions-of-interest) as the primary unit of analysis, enabling significant data reduction 

while concurrently evaluating the validity of this approach. Each network is composed of a set of 

cortical parcels (treated as “nodes” of the network) defined from a parcellation algorithm. In 

general, these parcellations take coordinates delineating boundaries of individual parcels and 

apply them to individual subject t-fMRI data as a mask, thus individual parcels reflect the 

average BOLD signal across the set of voxels comprising the parcel. Each parcel is assigned as 

belonging to a network. Activation parameter estimates (in terms of percent signal change, 

defined from the HCP preprocessing pipeline) are then provided for each parcel, in each task 

contrast, for each participant.  

There are now several different methods for defining these coordinate boundaries (and 

thus different parcellation algorithms; Glasser et al., 2016; Gordon et al., 2016; Power et al., 

2011; Schaefer et al., 2018). Interested readers can find relevant information (such as parcel 

coordinates, labels etc.) and code for each of these parcellations at the following locations: 
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https://sites.wustl.edu/petersenschlaggarlab/resources/ for Power et al. (2011) and Gordon et al. 

(2016); supplementary information (online version of manuscript only) for Glasser et al. (2016); 

and 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefe

r2018_LocalGlobal for Schaefer et al. (2018). If these parcellation mechanisms are indeed 

tapping the same underlying networks, then the inferences one might make from an analysis with 

one parcellation scheme should mirror the inferences one would make if replicating that analysis 

using a different parcellation scheme. To test this, the 2x2 analyses (aims 1 and 2) were 

performed using the Gordon et al. (2016) and the Schaefer et al. (2018) parcellations (note going 

forward these will be referred to as “Gordon/Schaefer parcellation”, “Gordon/Schaefer parcels”, 

or “Gordon/Schaefer atlas”). Additionally, the Schaefer parcellation has the option of specifying 

how many parcels should be defined. The current project uses the Schaefer 300 parcels in order 

to roughly match the number of Gordon parcels (nGordonParcels = 333), as well as the Schaefer 100 

parcels. The Schaefer 100 was chosen because it adds an element of extra data reduction. Again 

however, we expect results to be concordant across the three parcellation methods. 

In all, four functional networks were examined in this study. Below, brief descriptions of 

the four networks are provided describing basic anatomical components and functional 

relevance. Italicized labels reflect the Schaefer atlas labeling. 

Control Network (Cont): The Cont network anatomically maps to lateral prefrontal and 

frontal cortices and lateral posterior parietal cortex, including the intraparietal sulcus. In the 

Gordon atlas, as well is in a large portion of the literature, this is referred to as the frontoparietal 

network (FPN; however, we will keep with the Schaefer labeling for the duration of this article). 

This network has been extensively linked to cognitive control processes, especially showing 
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error-related activation and start-of-task engagement (Dosenbach et al., 2006; 2007; Gratton et 

al., 2016), with some even considering it a “flexible hub” of control (Cole et al., 2013). For 

further reading on this network, see Marek & Dosenbach (2018). We therefore consider this 

network to be one of the cognitive control networks in the current study, and it is used in both the 

2x2 and 4x5 analyses. In Schaefer 100 there are 13 Cont parcels; in Schaefer 300 there are 40 

Cont parcels; and in Gordon there are 24 FPN parcels. Figure 1 illustrates this network across the 

three parcellations.  

Figure 1. Network Comparisons Per Parcellation Atlas 

 

Salience Ventral Attention Network (SalVenAttn or SVA): This network is comprised of 

regions in the dorsal anterior cingulate, as well as the anterior insula and frontal operculum. The 
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labeling of this network is particularly confusing, however. The Schaefer atlases are an extension 

of Yeo et al. (2011), who label their network as the “ventral attention network” and note that this 

corresponds with Fox, Corbetta, Snyder, Vincent, & Raichle (2006). Yet as Yeo and colleagues 

concede, what they call the “ventral attention network” is an amalgam of sorts of the cingulo-

operuclar (CON) network and Salience network. Sometimes, the literature refers to a Salience 

network, but the anatomical correlates very closely mirror the CON (for example, see Seeley et 

al., 2007). Others consider the CON and Salience to be separable networks. In fact, the Gordon 

atlas does include a separate Salience network, however it only contains 4 parcels, compared to 

their 40 CON parcels. To maintain simplicity, we consider the SVA to be roughly analogous to 

the CON in the Gordon atlas. In Schaefer 100 there are 12 SVA parcels; in Schaefer 300 there 

are 34 SVA parcels; and in Gordon there are 40 CON parcels. Like the Cont (FPN), this network 

has been expressly related to cognitive control. In contrast to the Cont (FPN), however, the SVA 

(CON/Salience) has been shown to engage in a more sustained fashion suggesting it contributes 

to cognitive control via tonic alertness (Dosenbach et al., 2006; 2007; Sadaghiani & D'Esposito, 

2015). We thus consider the SVA to be the second cognitive control network in the current 

study, and it is used in both the 2x2 and 4x5 sets of analyses. See Figure 1 for how this network 

appears across the different atlases. Figure 2 shows the degree of closeness in overlapping 

networks, specifically for the Schaefer 300 and Gordon atlases since they have similar numbers 

of parcels (300 and 333, respectively).  
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Figure 2. Overlapping Networks 

 

 

Dorsal Attention Network (DAN): The DAN includes the bilateral intraparietal sulcus and 

frontal eye fields (Fox et al., 2006) and is primarily concerned with visuospatial attention, 

especially in regards to using a top-down cue to bias attention (Corbetta & Shulman, 2002). 

Much of the literature involving the DAN has been principally related to selective attention, 

rather than cognitive control, per se. As such, the current study considers the DAN to be a 

higher-order cognitive network, but not explicitly a cognitive control network. It is only 

examined in the 4x5 analyses with the Schaefer 100 atlas and consists of 15 parcels.  

Default Mode Network (DMN): The DMN includes the posterior cingulate cortex, ventral 

anterior cingulate cortex, and medial prefrontal cortex (bilaterally). It is unique in that increased 

activation in the DMN occurs at rest, whereas it is “deactivated” or not as strongly engaged 

during goal-directed behavior (Greicius, Krasnow, Reiss, & Menon, 2003; Raichle et al., 2001). 

Here, the DMN is included in the 4x5 set of analyses as an interesting control network such that 

we expect a negative relationship between the DMN and a given outcome. In the Schaefer 100 

atlas, the DMN has 24 parcels.    
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2.4 Behavioral Data 
The behavioral outcome measures used in aim 2 were selected based on availability in the 

HCP dataset and theoretical relevance. Amongst the plethora of behavioral outcomes to choose 

from in the HCP dataset, three out-of-scanner measures were selected due to their varying 

degrees of theoretical relevance to cognitive control. Note that in-scanner task-associated 

behaviors were not considered. Behavioral performance on in-scanner tasks would be expected 

to be related to participant “states” (e.g., fatigue, mood, arousal) and traits, and may directly 

reflect some activation patterns (e.g., individuals making more errors might show stronger error-

related patterns in SVA/CON networks; Yarkoni & Braver, 2010). This can sometimes lead to 

accidental statistical double dipping, and thus in-scanner performances were not taken into 

account in this study. We chose working memory (WM) to be the domain of most relevance to 

cognitive control (Kane et al., 2001; Redick, 2014; Richmond et al., 2015). Therefore, we expect 

any individual differences captured by cognitive control-related task states and brain networks to 

strongly predict WM. The current study uses the NIH Toolbox List Sorting Task (age-adjusted; 

Tulsky et al., 2014) as the WM measure. 

As the List Sorting WM measure ultimately tests convergent validity, we then chose two 

additional constructs which were hypothesized to have varying levels of discriminant validity. 

First, we chose the Openness dimension from the NEO-FFI (McCrae & Costa, 2004), as 

Openness has been shown to positively correlate with IQ at around .4 (Goff & Ackerman, 1992), 

and it has been theorized that cognitive control is related to intelligence, especially fluid 

intelligence (gF; Duncan, Emslie, Williams, Johnson, & Freer, 1996; Gray et al., 2003; Kane & 

Engle, 2002). Further, IQ and WM have been shown to be related, but independent constructs 

(correlation of .48; Ackerman, Beier, & Boyle, 2005). We therefore expected that there could be 
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some moderate relationships between cognitive control-related networks and tasks and 

Openness, but also expected they would be weaker since Openness comes from the personality 

domain rather than being an index of cognitive ability (as WM & gF). To contrast, we include an 

additional 2x2 analysis where Openness is instead replaced with the Penn Progressive Matrices 

(PMAT; Bilker et al., 2012), which taps into gF in a more direct cognitive ability manner. Yet to 

reiterate, our aim was to find a construct where cognitive control-related networks and tasks 

would demonstrate smaller effect sizes, and thus prioritized the Openness dimension. As such, 

analyses with the PMAT are limited to the 2x2 with only the Schaefer 100 atlas, as inclusion in 

the full suite of analyses is beyond the scope of the current study.  

Lastly, we selected a measure from the Motor domain of the NIH Toolbox – Grip 

Strength – as the third primary outcome measure (Reuben et al., 2013). In this task, participants 

squeeze a dynamometer to obtain a measure of grip strength force. Though Grip Strength has 

been shown to be related to some elements of cognitive functioning, these studies tend to focus 

on aging populations (Viscogliosi, Di Bernardo, Ettorre, & Chiriac, 2017). For example, a recent 

study from the UK Biobank sample showed a relationship between Grip Strength and memory 

and reasoning, but the mean age of the healthy sample was 56.49 (Firth et al., 2018). Since the 

HCP cohort is quite a bit younger than this sample (Van Essen et al., 2013), we expected Grip 

Strength to thus show the most divergent validity with regards to cognitive control brain 

networks and task states.   

2.5 Statistical Methods 
The current project uses a series of latent variable models, SEMs in particular, to test if 

there are reliable network-specific individual differences in the full HCP dataset, and if they 

persist across task states. For each set of analyses (2x2 per parcellation method and 4x5 with 
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Schaefer 100 parcels), a total of four models were defined, wherein each of the four researcher-

specified models reflects a particular hypothesis about the organization of the underlying 

between-subject variability of t-fMRI BOLD data. The input for all SEMs was the same: t-fMRI 

parcels from each network in each of the task contexts (see Table 1 for number of parcels per 

network). 
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Table 1. Number of Parcels Per Network 

 However, before using the parcel data, a brief data cleaning procedure was done to 

correct for the “ill scaling problem”. SEM relies on variance-covariance matrices. As such, large 

discrepancies in variances amongst manifest variables (here, parcels) can be problematic for any 

iterative estimation process, such as the maximum likelihood estimation used here. Thus, a 

common practice is to correct for this by multiplying or dividing by a scalar in order to improve 

the properties of the variance-covariance matrix, and ideally, they should be within a factor of 10 

with each other. This was done for each of the four datasets used here (Gordon 2x2, Schaefer 

Atlas Network Number 
of Parcels 

Cognitive Control 
Network? 

(Y/N) 

Schaefer 100 

Salience Ventral 
Attention Network 
(SVA) 

12 Yes 

Control Network 
(Cont) 13 Yes 

Dorsal Attention 
Network 
(DAN) 

15 No 

Default Mode Network 
(DMN) 24 No 

Total Cognitive Control  26  
Total All   64  

Schaefer 300 

Salience Ventral 
Attention Network 
(SVA) 

34 Yes 

Control Network 
(Cont) 40 Yes 

Total   74  

Gordon 

CinguloOpercular 
Network 
(CON) 

40 Yes 

FrontoParietal Network 
(FPN) 24 Yes 

Total  64  
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300 2x2, Schaefer 100 2x2, and Schaefer 100 4x5), and Table 2 identifies which parcels were 

adjusted. 

Table 2. Parcels Adjusted for Ill-Scaling 

CONT – Control network; CON – Cingulo-Opercular Network; FPN – Fronto-Parietal Network; DMN – Default 
Mode Network.    

 

Below describes how each of the four measurement models were defined (see Figures 3 

and 4 for schematic path diagrams of these four competing models for the 2x2 and 4x5 analyses, 

respectively), the hypothesis tested by the model, and the implications should the model be 

considered the “best fitting model” compared to the remaining three (additionally, see Table 3 

for number of parcels per model):  

“Full Model” or “Full Bifactor Model”: The full model was defined such that each task 

and each brain network had their own dedicated latent factors. That is, four latent variables were 

Atlas Network Task Parcel ID 

2x2 Analysis 

Schaefer 100 NA NA None 
Schaefer300 CONT N-back LH_Cont_PFCl_5_nbk 

Gordon 

CON N-back L_CinguloOperc_ID147_nbk 
CON N-back L_CinguloOperc_ID28_nbk 

FPN N-back L_FrontoParietal_ID108_nbk 

FPN N-back L_FrontoParietal_ID109_nbk 

FPN N-back L_FrontoParietal_ID149_nbk 
FPN N-back L_FrontoParietal_ID7_nbk 

CON Relational L_CinguloOperc_ID28_rel 

FPN Relational L_FrontoParietal_ID149_rel 

4x5 Analysis 

Schaefer 100 

CONT Social Cognition LH_Cont_PFCl_1_socialcog 

DMN Language LH_Default_PCC_1_language 

DMN Language RH_Default_PCC_1_language 
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specified in the 2x2 analysis: SVA/CON, Cont/FPN, N-back, and Relational Processing. In the 

4x5, nine latent variables were specified: SVA/CON, Cont/FPN, DMN, DAN, N-back, 

Relational Processing, Social Cognition, Language, and Gambling. Importantly, the correlation 

amongst all latent variables was fixed to zero, and each parcel was allowed to simultaneously 

load onto two latent factors – one relating to the appropriate task and one relating to the 

appropriate brain network. This setup is known as a “bifactor SEM” and ensured that the 

between-subject variance of a single parcel was partitioned (or partialled) into brain 

networks/task contexts appropriately. For a schematic representation of this model, see panel D 

in Figures 3 and 4. 

The full bifactor model reflects the hypothesis that both brain networks and task contexts 

are important dimensions of cognitive individual difference. In this full model, a network-

specific latent variable, say the SVA/CON, is interpreted as the between-subject variance shared 

by all parcels in the SVA/CON (within network), after controlling for variance due to the 

different task states (i.e., isolating the task-independent variance). Conversely, a task-specific 

latent variable, say the N-back, captures between-subject variance shared across all cortical 

parcels measured in the N-back (within task), after removing variance due to each specific 

different brain network (i.e., isolating brain network-independent variance). If both brain 

networks and task contexts are separate sources of individual differences, then this full model 

should yield the best fit compared to the other three. While it may seem almost intuitive that this 

should be the case, given that the nature of t-fMRI is to induce particular task-related behaviors 

to better understand the neural mechanisms underlying these behaviors, to our knowledge this 

has not been formally studied or validated.  
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“Null Model”: An alternative to the full model described above is a far more 

parsimonious account where every parcel loads onto a single global latent variable (not a bifactor 

model). This null model reflects the hypothesis that while there may be shared variance across all 

parcels from all networks and tasks, neither brain networks nor task contexts are separable, 

independent dimensions of cognitive individual difference. This global factor can be thought of 

in the same manner as the first component of a principal component analysis. A single global 

latent factor would not be particularly informative since it would be difficult to determine the 

source of the shared variability. If this null model were the best fitting model, it would instead 

suggest that brain activation patterns are so intertwined with task-imposed variance, that they are 

not able to be decoupled. This model corresponds to panel A in Figures 3 and 4. 

“Partial Brain Model”: Here, a bifactor SEM was defined such that latent factors for 

each brain network were specified (two in the 2x2 analyses and four in the 4x5 analyses), but 

only one “general task” latent variable for all task states was specified (one latent task variable 

for both the 2x2 and 4x5 sets). The partial brain model tests the hypothesis that particular brain 

networks capture meaningful individual differences, but task-specific dimensions do not. If this 

were supported, it would imply that the only meaningful individual difference dimension is the 

brain network, and that t-fMRI does not add anything that is uniquely due to the particular task 

context. Such a pattern would be somewhat akin to suggesting that t-fMRI does not meaningfully 

capture between-subject variance beyond that which can be ascertained from resting-state fMRI. 

Given that t-fMRI explicitly tries to change neural activation patterns based on behavioral 

manipulations, we expect that it is highly unlikely that this is the best fitting model (see panel B 

of Figures 3 and 4). 
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“Partial Task Model”: This bifactor approach is the complement of the partial brain 

model such that one “general brain” latent factor was defined, but latent factors were specified 

for each of the task states (two in the 2x2 analyses and five in the 4x5 analyses). This bifactor 

model proposes that task contexts capture meaningful individual differences, but particular brain 

networks do not. If deemed the best fitting model, it would suggest that the task state is more 

impactful than functionally-defined brain networks, and that perhaps a majority of relevant 

information could be obtained via global whole-brain measures. Yet, there is precedent for 

observing region and network-specific brain-behavior correlations (Braver et al., 2010; Yarkoni 

& Braver, 2010), making this possibility less likely. For a schematic, see panel C of Figures 3 

and 4. 

  



 27 

Figure 3. 2x2 Measurement Model Schematic 
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Figure 4. 4x5 Measurement Model Schematic 

 

 

The focus of the first aim was to evaluate the four competing measurement models 

described above. For the second aim, the same procedures are repeated with the only change 

being the inclusion of the three outcome variables: List Sorting, Openness, and Grip Strength. 
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Three independent regression equations were specified per model such that each outcome was 

predicted by the defined latent variables.  

All analyses were conducted in R (R Core Team, 2019); SEM models were constructed 

with the lavaan package (Rosseel, 2012) and all path diagrams were created with the semPlot 

package (Epskamp, 2015). All models were estimated using maximum likelihood with robust 

Huber-White standard errors (also known as a “sandwich variance estimator”) in order to help 

protect against violations of multivariate normality (Kauermann & Carroll, 2001). Importantly, 

all models allowed the residuals of parcels to correlate with their corresponding parcel. For 

example, consider hypothetical parcel “A”. Throughout the models described above, while the 

variance in parcel “A” is partitioned into an appropriate latent variable, there will still be some 

left over variability that cannot be explained by any of the latent variables. This residual variance 

is unique to that parcel, and could reflect any number of things; for example, a parcel’s residual 

variance may be indicative of respiration patterns in that location of the brain. Since the same 

individuals completed multiple task paradigms (i.e., parcel “A” was measured during the N-back 

task, during the Relational Processing task, and so on), we therefore allowed the residual 

variances of each unique parcel to correlate (residual variance of parcel “A” in the N-back 

correlates with residual variance of parcel “A” in the Relational Processing task).  

To reiterate, the first aim focused on the fit indices of the measurement models such that 

all models were pit against each other in a model comparison framework. Multiple fit indices 

(e.g., Root Mean Square Error of Approximation [RMSEA], Standardized Root Mean Square 

Residual [SRMR], Akaike Information Criterion [AIC], and Bayesian Information Criterion 

[BIC]) were examined to see how well each model’s hypothesized covariance structure conforms 
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to the observed covariance structure. In all four of these fit measures, a lower value is better. 

Below briefly describes each fit index.  

The RMSEA is a measure of absolute fit that compares the closeness between a 

hypothesized model and an ideal model, however it does penalize model complexity (Steiger, 

1990). Conventional cutoffs of RMSEA are as follows: <.05 indicates very good fit, .05 - .08 

indicates reasonable fit, and >.10 indicates poor fit. Additionally, 90% confidence intervals 

around the RMSEA are reported, with conventional wisdom suggesting that the upper bound of 

the 90% confidence interval should not exceed .10. Robust RMSEA values (including 

confidence intervals) are reported here because the current study utilized maximum likelihood 

estimation with robust standard errors. 

The SRMR is another absolute fit measure, yet it is one where model complexity is not 

penalized. It indexes the standardized difference between observed correlations and hypothesized 

correlations; an SRMR <.10 is considered acceptable, and a SRMR equal to zero would be 

indicative of perfect fit. 

The AICs and BICs are comparative fit indices that are especially useful for model 

comparisons. The model with the lowest AIC/BIC is considered the best-fitting model. Both AIC 

and BIC penalize for model complexity, however the BIC penalty is more severe, especially as 

the sample size increases. On the whole, AICs and BICs reported here converge in the same 

manner, but in the one or two instances where they yield differing results, we prioritize the BIC 

because it is more conservative. Furthermore, AIC and BIC are mathematically equivalent to k-

fold cross-validation (Stone, 1977) and leave-one-out cross-validation (Shao, 1997), 
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respectively. The current study considers all fit indices; however, emphasis is placed on models 

with lowest AIC and BIC values. 

When possible, determination of best competing model was accomplished via scaled chi-

square difference (Δχ2) tests for nested model comparisons (Satorra & Bentler, 2001). Yet for 

models that have the same degrees of freedom, such as the partial brain, partial task models, and 

full bifactor models when no outcome measures are included; and partial brain and partial task 

models even when outcome measures are included, Δχ2 tests are not appropriate because they are 

not truly nested models and the difference in the difference in degrees of freedom is zero. 

Moreover, Δχ2 tests are known to be problematic. Most concerning for the current study, Δχ2 

tests are meaningfully influenced by large sample sizes such that minute differences may become 

significant (Schermelleh-Engel, Moosbrugger, & Müller, 2003). We therefore take a holistic 

approach by considering all descriptive fit indices mentioned above in conjunction with Δχ2 tests 

when appropriate. In cases where fit measures tell differing stories, AICs and BICs were 

emphasized over the rest. 

The second aim also considered fit statistics, but in this aim the focus was on the 

regression coefficients of latent variables predicting the outcome variables, as well as the 

variance of the outcomes that can be explained by the latent predictor variables. Regression 

coefficients reported are a result of both the manifest variables and latent variables being 

standardized and are thus denoted as “b*”. While a simple heuristic is to think of these as 

standardized regression coefficients from a normal linear regression, there are instances where 

the larger b* value is not significant, but a smaller b* value is significant. In all cases reported 

here, this is due to very large standard errors around the non-standardized regression coefficients 

(standard errors can be found in the full parameter estimate output on OSF). Importantly, while 
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significance of regression coefficients is described, priority is placed on the direction of 

association and overall magnitude so as not to overstate findings. Given that there are a large 

number of manifest variables and for all bifactor models (e.g., all models excluding the null 

models) there are two factor loadings per variable, factor weights are not reported here but can 

be found in the full parameter estimate output on OSF.  



 33 

Table 3. Number of Parcels Per Model 

  

Model Networks 
Included Tasks Included Latent Variable Description 

2x2 Analysis 

Null Model SVA 
CONT 

N-back 
Relational Global Factor (50 parcels) 

Partial Brain 
Model 

SVA 
CONT 

N-back 
Relational 

SVA (24 parcels) 
CONT (26 parcels) 
Global Task Factor (50 parcels) 

Partial Task 
Model 

SVA 
CONT 

N-back 
Relational 

N-back (25 parcels) 
Relational (25 parcels) 
Global Brain Factor (50 parcels) 

Full Bifactor 
Model 

SVA 
CONT 

N-back 
Relational 

SVA (24 parcels) 
CONT (26 parcels) 
N-back (25 parcels) 
Relational (25 parcels) 

4x5 Analysis 

Null Model 

SVA 
CONT 
DAN 
DMN 

N-back 
Relational 
Gambling 
Language 

Social Cognition 

Global Factor (320 parcels) 

Partial Brain 
Model 

SVA 
CONT 
DAN 
DMN 

N-back 
Relational 
Gambling 
Language 

Social Cognition 

SVA (60 parcels) 
CONT (65 parcels) 
DAN (75 parcels) 
DMN (120 parcels) 
Global Task Factor (320 parcels) 

Partial Task 
Model 

SVA 
CONT 
DAN 
DMN 

N-back 
Relational 
Gambling 
Language 

Social Cognition 

N-back (64 parcels) 
Relational (64 parcels) 
Gambling (64 parcels) 
Language (64 parcels) 
Social Cognition (64 parcels) 
Global Brain Factor (320 parcels) 

Full Bifactor 
Model 

SVA 
CONT 
DAN 
DMN 

N-back 
Relational 
Gambling 
Language 

Social Cognition 

SVA (60 parcels) 
CONT (65 parcels) 
DAN (75 parcels) 
DMN (120 parcels) 
N-back (64 parcels) 
Relational (64 parcels) 
Gambling (64 parcels) 
Language (64 parcels) 
Social Cognition (64 parcels) 
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Chapter 3: Results 
3.1 Addressing Confounds Related to Family Structure of HCP Dataset 

Before reporting the main findings from the current study, we address an important 

concern that SEM-related statistical inferences might be strongly impacted by the nested family 

structure of the HCP dataset (Van Essen et al., 2013). Though it is possible to define multi-level 

SEMs, it is sometimes challenging to do so, especially for bifactor SEMs, simply because the 

models often have issues converging. To ensure that using data from the entire HCP sample in a 

non-nested manner is a statistically valid approach, we examined this issue in terms of 

measurement invariance estimation. HCP participants were randomly assigned into two groups 

of unrelated individuals (ngroup1 = 389 and ngroup2 = 386; in cases where a family contained more 

than one individual, two of the family members were randomly chosen and randomly assigned to 

either group 1 or group 2 and all remaining family members were excluded). We then ran a 

measurement invariance procedure on the full bifactor 2x2 model with Schaefer 100 parcels. We 

defined a configural model where all parameters were freely estimated, and then a restricted 

model where all factor loadings were fixed to equal across the two groups. The idea is that if the 

configural model is measurably better than the equal loading model, then the models are not 

inherently similar across groups and thus combining all participants into one large group may be 

problematic for the current study procedures. Fit measures of the configural and equal loading 

models were extremely close, with perhaps the equal loading model being slightly better than the 

configural model. The AIC value favored the configural model by a very small margin 

(AICConfigural = 311,735 AICEqualLoadings = 311,777), whereas the BIC favored the equal loadings 

model (BICConfigural = 314,025, BICEqualLoading = 313,619). Moreover, the other fit measures were 

extremely close (RMSEAConfigural = .103, SRMRConfigural = .082; RMSEAEqualLoading = .101, 
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SRMREqualLoading = .088). Taken together, these findings indicate that there are not meaningful 

differences between the configural and equal loadings models, and that allowing the factor 

loading parameters to be freely estimated in the configural model did not provide measurable 

benefits (in fact, these findings trend in the opposite direction, albeit only slightly). Given how 

close these two models appeared, we felt confident moving forward with the previously 

described set of analyses. However, we encourage future studies to carefully consider the 

hierarchical nature of these datasets.  

3.2 Aim 1: 2x2 Analyses  
The primary objective of this set of analyses was to determine which of the four 

competing measurement models best reflects the observed structure of t-fMRI BOLD data that 

were acquired during cognitive control-related task (N-back and Relational) conditions and 

looking within cognitive control-related brain networks (SVA/CON and Cont/FPN). The key 

hypothesis was that the full bifactor model would show better overall fit indices compared to the 

remaining three (null model, partial brain model, and partial task model), indicating that the 

separate brain networks and separate tasks contexts were all critical dimensions of individual 

differences. This hypothesis was clearly supported, and shown to be robust and consistent across 

the three different parcellations: Schaefer 300, Schaefer 100, and Gordon atlases. Table 4 shows 

that the full bifactor model was indeed the best fitting model across all fit indices for each of the 

three parcellations, although it is interesting that the 300 atlas has better fit indices compared to 

the 100 atlas. In fact, all three parcellations showed the same trend of the null model being the 

worst, the partial brain model being second worst, the partial task model being second best, and 

the full model being the best. Seeing as the degrees of freedom are identical for partial brain 
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models, partial task models, and full bifactor models (within a given atlas), Δχ2 tests were not run 

here. 

Table 4. Fit Indices of Aim 1 – 2x2 Analysis 

 

3.3 Aim 1: 4x5 Analyses  
The same analyses described above were repeated after including two additional brain 

networks (DMN and DAN) and three additional task contexts (Social Cognition, Language, and 

Gambling). Because of the increased complexity of this measurement model, this analysis was 

conducted only with the Schaefer 100 parcellation. The overall fit indices of the 4x5 analysis 

(Table 5) converged with findings from the 2x2 analysis (Table 4). The full bifactor model had 

the best fit indices, with the exception of the SRMR in the full bifactor model being just slightly 

higher than the partial task model (ΔSRMR = .007). Yet both AICs and BICs were lowest for the 

full model, supporting the same overall conclusions. Taken together, these findings strongly 

support the key hypothesis of the study: that cognitive tasks and brain networks are both 

Model df 
N Para- 
meters AIC BIC 

RMSEA 
(90% CI) SRMR 

Dataset: Schaefer 100 
Null Model 1,150 125 398,649.8 399,263.9 .163 (.161, .165) .233 
Partial Brain Model 1,100 175 384,344.3 385,204.0 .122 (.120, .124) .146 
Partial Task Model 1,100 175 382,481.5 383,341.2 .115 (.113, .117) .077 
Full Bifactor Model 1,100 175 379,965.9 380,825.6 .105 (.103, .106) .078 
Dataset: Schaefer 300 
Null Model 10,656 370 1,226,694.4 1,228,512.1 .095 (.095, .096) .196 
Partial Brain Model 10,508 518 1,191,012.9 1,193,557.7 .076 (.076, .077) .165 
Partial Task Model 10,508 518 1,184,351.6 1,186,896.4 .072 (.071, .072) .084 
Full Bifactor Model 10,508 518 1,178,529.4 1,181,074.2 .068 (.067, .069) .079 
Dataset: Gordon 
Null Model 7,936 320 1,087,533.6 1,089,105.6 .091 (.091, .092) .177 
Partial Brain Model 7,808 448 1,060,531.9 1,062,732.8 .071 (.070, .072) .142 
Partial Task Model 7,808 448 1,056,679.7 1,058,880.6 .067 (.067, .068) .084 
Full Bifactor Model 7,808 448 1,050,118.4 1,052,319.3 .061 (.060, .062) .072 
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independent sources of individual differences even when tasks and networks are not cognitive 

control-specific.  

Table 5. Fit Indices of Aim 1 – 4x5 Analysis 

Model df 
N Para- 
meters 

AIC BIC 
RMSEA 
(90% CI) 

SRMR 

Dataset: Schaefer 100 

Null 50,080 1,280 2,640,957.7 2,647,246.0 .082 (.082, .082) .173 

Partial Brain 49,760 1,600 2,599,514.0 2,607,374.4 .077 (.077, .077) .164 

Partial Task 49,760 1,600 2,505,306.7 2,513,167.1 .063 (.063, .064) .060 

Full 49,760 1,600 2,500,084.8 2,507,945.2 .063 (.062, .063) .067 

 

3.4 Aim 2: 2x2 Analyses 
All four competing models were re-run with the inclusion of the three outcome variables 

(List Sorting, Openness, and Grip Strength) and defined regressions (i.e., measurement model 

and structural model) for each of the three parcellations. Fit indices are far more strongly 

influenced by the measurement model rather than the structural model of an SEM, and so 

unsurprisingly, the same model comparison results of the full bifactor being the best still held 

when including the regressions (fit statistics can be found for these 2x2 and 4x5 analyses in 

Supplement Tables 1 and 2, respectively). However, differing degrees allowed for Δχ2 tests to be 

run. Of note, there were cases where the Δχ2 statistic was negative. It is not appropriate to 

interpret findings in these cases, and therefore we default to relying on AIC and BIC values (note 

that it is possible to run a variant of a Δχ2 test that corrects for negative scaling factors [Satorra & 

Bentler, 2010], however implementation of this in the context of bifactor SEMs was quite 

challenging and not a fruitful endeavor). In all model comparisons that did not result in a 

negative scaling factor, results favored the more complex model (Tables 6 and 7). For the three 
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comparisons with a negative scaling factor, all fit indices support that the full bifactor model had 

the best fit (Table 4).  

Table 6. Chi-Squared Difference Tests – 2x2 

 
Note: When Δχ2 value is negative, it is inappropriate to interpret significance. Thus, models with negative Δχ2 values 
show NA for the last two columns. In these cases, we encourage readers to instead focus on AIC and BIC values for 
model comparisons.  

Table 7. Chi-Squared Difference Tests – 4x5 

Note: When Δχ2 value is negative, it is inappropriate to interpret significance. Thus, models with negative Δχ2 values 
show NA for the last two columns. In these cases, we encourage readers to instead focus on AIC and BIC values for 
model comparisons.  

Model 0 Model 1 Δχ2 Δdf p-value Model To Keep? 
Dataset: Schaefer 100 
Null  Partial Brain  4806.26 56 < .001 Model 1 
Null  Partial Task  5417.91 56 < .001 Model 1 
Null  Full Bifactor  7084.25 59 < .001 Model 1 
Partial Brain  Full Bifactor  -1157.71 3 NA NA 
Partial Task  Full Bifactor  -644.57 3 NA NA 
Dataset: Schaefer 300 
Null  Partial Brain  18673.7 154 < .001 Model 1 
Null  Partial Task  18478.56 154 < .001 Model 1 
Null  Full Bifactor  21752.46 157 < .001 Model 1 
Partial Brain  Full Bifactor  705.29 3 < .001 Model 1 
Partial Task  Full Bifactor  -3202.23 3 NA NA 
Dataset: Gordon 
Null  Partial Brain  14407.94 134 < .001 Model 1 
Null  Partial Task  12415.58 134 < .001 Model 1 
Null  Full Bifactor  15108.88 137 < .001 Model 1 
Partial Brain  Full Bifactor  354.67 3 < .001 Model 1 
Partial Task  Full Bifactor  3328.04 3 < .001 Model 1 

 

Model 0 Model 1 Δχ2 Δdf p-value Model To 
Keep? 

Null Partial Brain 11059.26 332 <.001 Model 1 
Null Partial Task 38765.41 335 <.001 Model 1 
Null Full 42520.47 344 <.001 Model 1 
Partial Brain Full -10045.78 12 NA NA 
Partial Task Full -1450.49 9 NA NA 
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Findings from Schaefer 100 and Schaefer 300 were markedly similar. See Figures 5 and 

6, respectively, especially panel D. The N-back latent variable significantly positively predicted 

the List Sorting, after controlling for the three remaining variables (b*Schaefer 100 = .187, p < .001; 

b*Schaefer 300 = .192, p < .001). The Relational Processing latent task factor also positively 

predicted the List Sorting, but with a smaller effect size (b*Schaefer 100 = .075, p = .025; b*Schaefer 300 

= .062, p = .057). While the relationships with the task factors aligned with our hypotheses, the 

brain network associations demonstrated some interesting trends. Interestingly, the Cont network 

(akin to the FPN in the Gordon parcels) did not significantly predict the List Sorting (b*Schaefer 100 

= .052, p = .598; b*Schaefer 300 = .094, p = .129). Moreover, the SVA network (akin to CON in the 

Gordon parcels) did significantly predict List Sorting, however the relationship was negative 

(b*Schaefer 100 = -.094, p = .007; b*Schaefer 300 = -.118, p < .001). None of the latent variables from 

either Schaefer 100 or Schaefer 300 in the full bifactor model significantly predicted Openness 

or Grip Strength (see Supplemental Figures 1-4). When this process was repeated using the 

Gordon atlas (Figure 7), all coefficients were in the same direction as both Schaefer analyses, 

however the p-values were altered such that the N-back no longer reached significance (b*Gordon = 

.200, p = .113), while the FPN did (b*Gordon = .088, p = .037). The Relational Processing factor 

was still positively associated (b*Gordon = .068, p = .042) and the CON was showed the same 

significant negative association (b*Gordon = -.085, p = .012).  
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Figure 5. 2x2 Structural Models to List Sorting with Schaefer 100 
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Figure 6. 2x2 Structural Models to List Sorting with Schaefer 300 
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Figure 7. 2x2 Structural Models to List Sorting with Gordon Atlas 

 

 

As just described, analysis of the Gordon parcellation yielded coefficients that were in the 

same direction as the coefficients in the Schaefer models, yet the statistical significance levels 

deviated for the N-back and the FPN/Cont (Schaefer: N-back significant, FPN/Cont not; Gordon: 

FPN/Cont significant, N-back not). Consequently, we explored whether allowing the residual 



 43 

parcel variances to correlate impacted the regression findings (in Gordon models only). When 

the correlation of residual variances was not defined in the model, the associations to the List 

Sorting look more similar to the Schaefer parcels such that the N-back latent factor trends 

towards predicting the List Sorting (b*Gordon = .196, p = .085), while the FPN became no longer 

significant (b*Gordon = .060, p = .159), and the CON and Relational Processing coefficients 

showed the same associations as with the original Gordon atlas analysis and Schaefer analyses 

(CON: b*Gordon = -.090, p = .009, Relational Processing: b*Gordon = .068, p = .042). Lastly, to see 

if the trending of the N-back was impacted by the robust standard error procedure, we re-ran 

these analyses not including the residual variance correlations and without using the robust 

standard errors (standard maximum likelihood estimation). All regression coefficients remained 

the same, however without the robust standard errors, the N-back did reach significance (b*Gordon 

= .196, p < .001). 

One explanation for the null results regarding Openness and Grip Strength may be that 

there is simply less variation in these measures than the List Sorting. To examine this 

descriptively, the coefficient of variation (standard deviation / mean, expressed as a percentage; 

CV%) was calculated for each of the three outcome measures. Surprisingly, the List Sorting had 

the lowest CV% whereas Openness had the highest: CV%ListSorting = 12.89%, CV%Openness = 

21.81%, and CV%GripStrength = 19.37%. Thus, the null Openness and Grip Strength findings 

cannot be attributed to there being less dispersion in these particular variables.    

Although a lengthy and computationally-intensive process, the bifactor SEM approach 

used in these analyses did generally yield improved explanatory power of the List Sorting. Table 

8 shows total explained variance in the outcome (e.g., List Sorting, Openness, Grip Strength) by 

all of latent variables defined in the model (R2). In both the Schaefer 300 and Gordon atlases, the 
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R2 values of the List Sorting in the full bifactor model were larger than the other three competing 

models (both of which have R2List Sorting = .06; Table 8). However, this pattern was not fully 

consistent in the Schaefer 100 atlas, at least descriptively, as here the highest List Sorting R2 was 

noted in the partial brain model (R2 = .06) whereas R2 = .05 for both the partial task model and 

full bifactor model (see Table 8).  
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Table 8. Variances and Variances Explained – 2x2 

Note: Significance symbols reflect whether variance is significantly different from zero, with † indicating trending toward significance, * p < .05, 
** p < .01, and *** p < .001. Confidence intervals around variances can be found in full parameter estimate outputs on OSF. SVA – Salience 
Ventral Attention network; CONT – Control network; FPN – Fronto-Parietal Network; CON – Cingulo-Opercular Network; NBK – N-back task; 
and REL – Relational Processing task.  

Model Variable Variance SE 
List Sorting 

% R2 
Openness 

% R2 
Strength 

% R2 

Dataset: Schaefer 100    

Null Model Global .93 1.65 .88% .04% .01% 

Partial Brain Model Global 21.74 26.18 
6.09% .18% .56% Partial Brain Model CONT 46.64** 16.82 

Partial Brain Model SVA 57.38† 30.15 
Partial Task Model Global .11 2.03 

5.31% .33% .21% Partial Task Model NBK 120.79*** 16.98 
Partial Task Model REL 168.75*** 19.76 

Full Model CONT .06 .20 

5.23% .94% .23% 
Full Model SVA 74.61*** 16.78 

Full Model NBK 63.94*** 10.44 
Full Model REL 166.33*** 20.25 

Dataset: Schaefer 300    

Null Model Global .41 1.03 .82% .13% .01% 

Partial Brain Model Global .04*** .00 
4.26% 3.65% .04% Partial Brain Model CONT .04 .05 

Partial Brain Model SVA .04 .07 

Partial Task Model Global .02 .06 
3.97% 1.71% .04% Partial Task Model NBK 115.21*** 21.12 

Partial Task Model REL 183.95*** 27.43 

Full Model CONT 1.87 2.22 

6.33% 1.55% .07% 
Full Model SVA 85.26*** 15.51 
Full Model NBK 88.03*** 16.09 

Full Model REL 175.15*** 22.77 

Dataset: Gordon    

Null Model Global .11 1.52 .81% .09% .00% 

Partial Brain Model Global .01*** .00 

3.58% 1.99% .01% Partial Brain Model FPN 4.30 5.70 
Partial Brain Model CON .04 .06 

Partial Task Model Global .01 .02 
3.8% 1.39% .02% Partial Task Model NBK 39.19 27.95 

Partial Task Model REL 68.46* 26.63 
Full Model FPN 3.00 1.89 

5.95% 1.13% .04% 
Full Model CON 152.25* 66.83 

Full Model NBK 2.60 3.10 

Full Model REL 101.54*** 12.81 
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Additionally, Table 8 shows the (unstandardized) variances of each latent variable (s2), 

standard errors around the s2 estimates, and significance tests that ask if these variances are 

different from zero. Though nice to know, it is perhaps more informative to examine how the s2 

estimates change with each competing model (note that doing so is facilitated by the fact that in 

this study every manifest variable has the same underlying units rather than, say, a latent variable 

comprised of two brain measures and two behavioral measures). Interpretation of the variances is 

made easier when one considers how the latent variables are defined (readers may find the 

measurement models shown in Figure 3 to be particularly helpful here). For instance, take the s2 

for the Cont latent factor from the 2x2 Analysis in the Schaefer 100 (Table 8). In the partial brain 

model, Cont s2PartialBrain = 46.64, se = 16.82. In this model, Cont is interpreted as the variance 

shared across all parcels that have the “Control network” assignment, after controlling for any 

variance shared across all parcels (the Global latent factor). We can (descriptively) compare this 

variance to that in the full bifactor model; s2FullBifactor = .06, se = .20. Although this is a large 

decrease, the Cont latent factor in the full bifactor model reflects between-subject variability for 

all parcels with the “Control network” assignment, after controlling for any variance shared 

across parcels measured during the N-back task and any variance shared across parcels measured 

during the Relational task (N-back and Relational latent factors, respectively). This example 

highlights that when that when the observed variables are differentially organized into latent 

variables (e.g., latent variables defined different in each competing model), the variance captured 

by a given latent variable can markedly change.  
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In the Schaefer 100 dataset, the N-back and Relational variances both also decreased 

from the partial task model to the full bifactor model (some of their respective variances were 

then pulled into the SVA latent factor), although both still retained much more variability 

compared to the Cont (partial task model – s2N-back = 120.79, s2Relatioal = 168.75; full model – s2N-

back = 63.94, s2Relational = 166.33). The SVA s2 increased between the partial brain model and full 

bifactor model indicating that more SVA-unique variability was able to be pulled out when latent 

variables for tasks were defined (partial task model – s2SVA = 57.38; full model – s2SVA = 74.61). 

These same patterns mostly hold for the Schaefer 300 set, with the exception that the Cont did 

not demonstrate much variability in any of the four competing models. These patterns were 

largely seen in the Gordon dataset as well, with the notable exception that the N-back did not 

exhibit variances significantly different from zero in either the partial task or full bifactor 

models. Despite the fact that it is somewhat expected, generally, that s2 estimates might decrease 

with the increasing numbers of latent variables (e.g., smaller variances in full bifactor model) 

because some of the variance will be partitioned into the newly added latent factor, these finding 

suggest that the full bifactor model still yields latent factors that capture between-subject 

variability (for full listing of all variances, please see Table 8). 

As briefly mentioned earlier, the Openness factor was primarily chosen because it comes 

from the personality domain, rather than cognitive ability, and is known to correlate moderately 

with gF. However, one might expect different results if Openness was instead replaced with a 

cognitive ability measure of gF, like the PMAT. As such, the 2x2 analysis was re-run (on 

Schaefer 100 only) with the PMAT included instead of Openness to explore how findings may 

change. The overall fit indices still favored the full bifactor model over all others with the full 

bifactor model having the lowest AIC, BIC, and RMSEA (the partial task model had a slightly 
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lower SRMR, but the difference between the partial task model and full bifactor model was only 

.01; see Supplement Table 3 for full list of fit measures). Supplement Table 4 shows all 

regression results of latent variables predicting outcomes. The overall pattern of directionality of 

latent variables predicting List Sorting remained the same such that the N-back and Relational 

task latent factors significantly positively predicted List Sorting (b*N-back = .187, p < .001; 

b*Relational = .073, p = .029), the Cont showed no association to List Sorting (b*Cont = .050, p = 

.543), and the SVA showed a significant negative relationship (b*SVA = -.093, p = .008). 

Interestingly, relationships of these latent variables to the PMAT were nearly identical to those 

from of the latent variables to the List Sorting in terms of significance and direction of 

association (b*N-back = .242, p < .001; b*Relational = .103, p = .001; b*Cont = .091, p = .520; b*SVA = -

.131, p < .001). Furthermore, the correlation between the PMAT and List Sorting in this analysis 

was .27 (compared to r = .09 for List Sorting and Openness). Given the strong association of the 

PMAT to List Sorting, it is not surprising that the significance and directionality of associations 

with the latent variables are mirrored. 

Interestingly, more variance was explained across the board in the PMAT than the List 

Sorting. For example, in the full bifactor model, 5.15% of the variance was explained in the List 

Sorting compared to 9.45% in the PMAT (see Supplement Table 5 for full list of R2 values). 

Unlike previous analyses, however, this might be due to their being more variation in the PMAT 

compared to the List Sorting (CV%ListSorting = 12.89%, CV%PMAT = 27.60%). These findings 

suggest that perhaps the tasks and networks chosen for the 2x2 analyses are more closely related 

to a gF ability measure over a working memory measure, although please see the Discussion 

section for more on this particular topic.  
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Taken together, these results indicate that the overall associations across the three 

parcellation methods are indeed consistent, especially in regard to the directionality of all 

parameter estimates and model fits. The primary difference is that the strength of the associations 

between latent factors and outcomes in the Gordon atlas seem to be impacted by the inclusion of 

allowing residual variances to correlate. However, the direction of the associations, as well as the 

results of the model selection procedure (e.g., full bifactor model being the best model), align 

with the Schaefer models. 

3.5 Aim 2: 4x5 Analyses  
Overall fit indices of 4x5 SEM models that included outcomes supported the results of 

the measurement model (aim 1) outcomes. Given that the full model was the best fitting model, 

here we focus on the parameter estimates of relationships to the List Sorting from this model 

(Figure 8), however all coefficients for all four competing models can be found in Supplement 

Figures 5 and 6 for Openness and Grip Strength, respectively. See Table 7 for Δχ2 tests. 
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Figure 8. 4x5 Structural Models to List Sorting with Schaefer 100 

 

 

In the 4x5 full bifactor model, the directions of associations between the original latent 

factors from the 2x2 (N-back, Relational Processing, SVA, and Cont) and the List Sorting 

persisted (see Figure 8, especially panel D). As before, the N-back and Relational Processing had 

positive significant associations with the N-back having a larger effect size than Relational 
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Processing (b* = .113, p = .001 and b* = .070, p = .035, respectively). For the brain networks, the 

direction of association remained however their significance levels changed. The positive 

relationship between the Cont network and List Sorting did not quite reach significance (b* = 

.077, p = .056) and the SVA was negatively, although not significantly, related to List Sorting (b* 

= -.017, p = .693). Similarly, the Gambling and Social Cognition tasks were negative but not 

significant predictors of the List Sorting task (b* = -.033, p = .234 and b* = -.005, p = .873, 

respectively). The remaining relationship between the Language task and List Sorting was 

significant and positive (b* = .111, p < .001). The two additional brain networks were both 

significant predictors but in opposite directions such that the DMN had a negative association 

and the DAN had a positive association (b* = -.245, p = .011 and b* = .168, p = .002, 

respectively). These findings suggest, at least descriptively, that the same relationships from the 

2x2 endure, even with the inclusion of higher-order but non-cognitive control-related brain 

networks and task contexts (note that one might want to formally test this via re-running the 4x5 

model but fixing the regression parameters to the same coefficients from the 2x2 model, and 

comparing this fixed estimates model versus the free estimates model).  

Note that the above is an example of the magnitude of b* not yielding the “most 

significant” coefficient (where b* = .111, p < .001, but b* = -.245, p = .011, for example). This is 

due to the larger standard errors around the regression coefficients. For the Language to List 

Sorting relationship, the unstandardized coefficient is b = .102, the standard error = .029, and 

thus z = 3.502. Yet for the DMN relationship to List Sorting, the unstandardized coefficient is b 

= -20.497, standard error = 8.040, and thus z = -2.549 (again, all unstandardized). Standardizing 

in a SEM framework is more nuanced than simply z-scoring because the standardization process 

includes the manifest variables and the latent variables. Although ideally it would be great to 
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obtain a R2 value of each latent variable, this is not possible because the underlying assumption 

is that of local independence. This principle states that the latent variable explains why the 

manifest variables are related to one another – that is, the latent variable is a common predictor 

of each manifest variable (one might note that in path diagrams, the arrows point from the latent 

variable to the observed variables). One could get a R2 for how much variance in each manifest 

variable is explained by a latent variable, although this is simply a conversion of each factor 

weight. We suggest readers use the standardized coefficients as a measure of relative magnitude 

and to place less emphasis on statistical significance, however noting that if a very large 

coefficient does not reach significance, that it is indicative of excessive error around that 

parameter. All unstandardized (and standardized) coefficients can be found in OSF parameter 

estimates outputs.   

In the 2x2 analyses, none of the four latent variables predicted either Openness or Grip 

Strength (in either the original 2x2 analyses or in the 4x5 analyses). Yet interestingly, in the 

expanded 4x5 analysis, some of the added latent variables did predict these outcome variables. 

The relationship between both DMN and DAN to Openness mirrored their relationship to List 

Sorting such that they were in opposite directions, with the former trending toward significance 

(b* = -.154, p = .060) and the latter reaching significance (b* = .208, p < .001; see Supplement 

Figure 5). Finally, two of the nine latent variables significantly predicted the Grip Strength. The 

DMN showed a negative association (b* = -.095, p = .016) as did the Social Cognition task (b* = 

-.093, p = .010; see Supplement Figure 6). 

Finally, the predictive utility was illustrated again in the 4x5 analyses such that the 

variance explained in the List Sorting was highest for the full bifactor model, although the partial 

task model was only slightly lower (see Table 9 for unstandardized variance estimates along with 
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R2 values). The same trend was observed for variance explained in Openness, although all values 

were lower than those of the List Sorting. This trend was not observed for Grip Strength, 

however very little variance was explained by any model. Of note, more variance overall was 

explained in this set of 4x5 analyses compared to the 2x2 (e.g., for List Sorting in the Schaefer 

100 atlas, R22x2 = 5.23% and R24x5 = 12.59%; see Tables 8 and 9). Furthermore, the variance 

estimates reported in Table 9 suggest that the task latent factors captured a lot of variability 

whereas the brain networks did not. As described in the Discussion section below, lower 

variances for the brain networks are not inherently problematic. 



 54 

Table 9. Variances and Variances Explained – 4x5 

Note: Significance symbols reflect whether variance is significantly different from zero, with † indicating trending 
toward significance, * p < .05, ** p < .01, and *** p < .001. Confidence intervals around variances can be found in 
full parameter estimate outputs on OSF. SVA – Salience Ventral Attention network; CONT – Control network; DMN 
– Default Mode Network; DAN – Dorsal Attention Network; NBK – N-back task; REL – Relational Processing task; 
GAM – Gambling task; SOC – Social Cognition task; and LAN – Language task.   

Model Variable Variance SE 
List Sorting 

% R2 
Openness 

% R2 
Strength 

% R2 

Dataset: Schaef100    
Null Model Global .07 .19 0.86% 0.08% 0.01% 
Partial Brain Model Global .04 .15 

5.18% 0.63% 4.26% 
Partial Brain Model CONT 51.34*** 12.09 
Partial Brain Model SVA 2.61 4.29 
Partial Brain Model DMN 2.06 7.96 
Partial Brain Model DAN 2.17 4.94 
Partial Task Model Global .02 .04 

11.4% 3.9% 2.37% 

Partial Task Model NBK 106.09*** 16.70 
Partial Task Model REL 171.54*** 19.76 
Partial Task Model GAM 133.48*** 20.74 
Partial Task Model SOC 166.07*** 25.62 
Partial Task Model LAN 188.98*** 23.48 
Full Model NBK 111.18*** 17.35 

12.59% 8.28% 3.08% 

Full Model REL 162.00*** 19.99 
Full Model GAM 136.02*** 21.51 
Full Model SOC 160.19*** 31.23 
Full Model LAN 211.66*** 23.58 
Full Model CONT .01** .00 
Full Model SVA .01 .03 
Full Model DMN .03* .01 
Full Model DAN .01* .01 
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Chapter 4: Discussion 
Findings from the current study support the notion that t-fMRI BOLD data contain 

separable sources of individual differences, and that isolating these sources through SEM 

approaches can be advantageous for enhancing explanatory power in brain-behavior 

relationships. This inference that the brain networks and task contexts are independent sources of 

individual differences is reasonably robust to parcellation algorithm. Furthermore, while 

significance levels did vary across parcellation method in the 2x2 procedures (although the 

Gordon models did ultimately match the Schaefer 100 and 300 models after some parameter 

tuning), and slightly between the 2x2 and 4x5 sets of analyses, the directionality of associations 

remained constant. Yet effect size ought to be prioritized over significance, especially when 

models are as incredibly large as the ones presented here. Thus, the fact that the direction of 

associations stayed the same and with reasonably similar effect sizes lends credibility to these 

findings. 

We hypothesized that cognitive control is a domain in which both the brain networks and 

task contexts should be particularly vital dimensions of individual differences, with associated 

brain networks and task contexts showing meaningful relationships to an out-of-scanner measure 

of WM. While the first part of the hypothesis was supported, relationships between latent 

variables to WM were mixed. That the cognitive control-related tasks were positively linked to 

WM was not surprising, however the weaker/less reliable associations with the Cont/FPN, and 

the negative association of the SVA/CON were both unexpected. These oddities are discussed in 

further detail below (see The Quiet FPN and Negative CON subsection of this Discussion). 

The expansion to the broader 4x5 analysis provided a stronger, but less hypothesis-driven 

extension of the study. Although the same full bifactor model was hypothesized to still be the 
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best fitting model in this expanded analysis, it was harder to make predictions regarding how 

inclusion of the additional networks and tasks would impact the findings. For instance, the three 

extra tasks (Social Cognition, Gambling, and Language tasks) all tap into higher-order cognitive 

processes, just like the N-back and Relational Processing tasks. If the underlying constructs were 

markedly similar across tasks, then the best fitting model of the 4x5 procedure may have been 

the partial brain model (independent brain networks, but one global task factor), and might have 

suggested that perhaps all 5 tasks were merely tapping an over-arching attentional state rather 

than narrower constructs. Likewise, evidence for a more general “task positive network” (Fox et 

al., 2005) would have manifested as similarities in between-subject variability across the four 

brain networks and thus the partial task model (independent task latent factors, but a global brain 

factor) might have had the best overall fit. And though the inclusion of the DMN may have 

complicated this slightly, one would have expected the DMN to show factor weights onto a 

general factor that were strong but negative. Though the partial task model was similar to the full 

model in terms of fit indices, the full model was selected because a) on the whole, fit measures 

were slightly better for the full model, especially AICs and BICs, and b) the full model better 

aligns with the larger literature that these brain networks are functionally distinct from one 

another. 

 In addition to the overall fits, interrogation of specific regressions in the 4x5 were also 

somewhat exploratory in that focus of the current study was to strategically examine if same 

relationships between cognitive control networks/tasks and WM found in the 2x2 model still 

remained present when expanding to the larger model, rather than articulating clear hypotheses 

for the remaining networks/tasks and their relationships to WM. However, interesting 

information was gleaned from these findings. First, the DMN was negatively associated with 
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nearly everything, which was reassuring and adds an element of construct validity to the results 

(Figure 8). Specifically, the DMN is known to deactivate when engaged in external cognitive 

tasks, which would suggest that the individual differences should scale with the strength of DMN 

deactivation, as was observed (Esposito et al., 2006; Raichle et al., 2001). Moreover, the strong 

relationship of the DAN to WM (Figure 8) was also somewhat anticipated given that the DAN 

has been shown to be sensitive to WM load (Majerus, Peters, Bouffier, Cowan, & Phillips, 

2018). The DAN was also found to be associated with Openness (b* = .208, p < .001; 

Supplement Figure 5), which was perhaps a bit more unexpected. However, the DAN and 

Cont/FPN are anatomically nearby (Vincent, Kahn, Snyder, Raichle, & Buckner, 2008) and 

perhaps inconsistencies in the literature, including but not limited to various parcellations, 

regarding the labeling of these networks could help explain the DAN to Openness relationship. 

Interestingly, the Language task was also strongly related to WM (Figure 8). This was especially 

surprising since the presented here analyses utilized the Story > Math contrast in order to account 

for WM since both the story and math conditions have equitable WM demands (Binder et al., 

2011). However, language production has been linked to verbal WM (Acheson, Hamidi, Binder, 

& Postle, 2011), and the List Sorting is a verbal WM task. It would be even more unexpected if 

future studies find this relationship holds when including a relevant non-verbal outcome measure 

(e.g., a visuospatial task like the PMAT). Perhaps the most surprising and unpredicted finding 

was the significant, negative relationship of Social Cognition to Grip Strength (b* = -.093, p = 

.010; Supplement Figure 6). On one hand, this could be indicative of a real relationship that 

ought to be explored in future studies. Conversely, it may not be particularly reliable, especially 

given that only about 3% of the variance in Grip Strength was explained across all latent 

variables (Table 9). As a control analysis, we obtained each individual’s average activation 
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across all parcels (irrespective of network) measured during the Social Cognition task, examined 

the zero-order correlation of these averages to Grip Strength, and found a correlation of -.07 (p = 

.029). The SEM procedure therefore only yielded a marginally larger effect size, suggesting that 

future studies may want to interrogate this relationship further. Yet given the small effect size 

and that not much variance in Grip Strength was explained, we caution against over-emphasizing 

this particular finding. 

The variance estimates of the latent variables were particularly interesting in the 4x5 

analyses in that they were notably large in the task factors and rather small for the brain factors 

(Table 9). Ideally, each latent factor would contain a lot of variability. However, the smaller 

variances reported here in the brain network factors are not inherently problematic. Of utmost 

importance is that the full bifactor model was better than the alternative models (Tables 4 and 5), 

indicating that hypothesized covariance patterns defined in the full model best matched the 

covariance patterns in the observed dataset. It would not be recommended to prefer the partial 

brain model over the full bifactor model, even though variances for the brain network factors 

were slightly larger in the partial brain model, because doing so would ignore the latent structure 

of the data. Moreover, one of the benefits of latent variable models is that latent variables are 

considered “error-free” and “perfectly reliable”. While the network latent factors might not 

contain much variability, the amount that is there is more reflective of true score variability. As 

such, they can still be useful for subsequent analyses defined in the structural model.  

On the whole, the current study supports the overarching hypothesis that the t-fMRI 

BOLD data contain separable dimensions of cognitive individual difference that can be 

partitioned into brain network and task context factors. The remainder of this section elaborates 
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on the implications of these results, the more surprising aspects these findings, some of 

challenges and limitations of these analyses, and potential future directions. 

4.1 The Importance of Tasks 
Cognitive psychologists and cognitive neuroscientists develop new task paradigms in 

order to tap into underlying cognitive constructs, which can then be used in t-fMRI experiments 

to better understand the neural mechanisms underlying such constructs. A common analysis and 

interpretation technique is to take the t-fMRI BOLD activation that was measured under a 

particular task, and correlate this activity with some behavioral outcome (either directly related 

to the task itself or a different out-of-scanner measure). A significant correlation is then 

interpreted as “individual differences in this brain region significantly relate to that behavior”. 

However, this interpretation is somewhat misleading because it is not just individual differences 

in the brain region; rather, it is individual differences in a brain region under a particular task 

context that are related to the behavior. Put differently, individual differences in the brain region 

are “contaminated” by individual differences in the task (or vice versa), and thus it is a brain-by-

task interaction. Perhaps one of the most important implications of the current study is that this 

interaction can be disentangled, and the findings presented here ultimately show that doing so is 

more reflective of the organization of t-fMRI variability than any of the other alternative models, 

including the null model (akin to the first component of a principal components analysis) or the 

partial brain model where the individual brain networks are distinguished from a global task 

component. That is, the task components add a critical element of between subject variability 

that cannot be found only in the brain regions. If anything, the fact that every analysis described 

here resulted in the partial task model having better overall fit indices than the partial brain 
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model suggests that the tasks may be even more important than particular brain regions, 

although, here, delineating both task contexts and brain networks was always best.  

Moreover, the Human Connectome Project explicitly chose tasks designed to cover a 

breadth of functionality that could map onto distinct brain networks (Barch et al., 2013). As 

such, it is not surprising that the HCP tasks utilized in the current study contribute meaningful 

variability. The results of a similar analysis might be quite different if all tasks tapped a 

particular domain. For example, the Dual Mechanisms of Cognitive Control is an ongoing 

project that is scanning participants under four task paradigms, all of which broadly fit into the 

cognitive control domain (https://pages.wustl.edu/dualmechanisms). Examining how the findings 

presented here may replicate if using tasks from a more targeted construct is an interesting future 

direction. This topic is expanded upon below in the Implications for the study of Cognitive 

Control section of this Discussion.  

While the current study explicitly shows the influence of task contexts as they pertain to 

t-fMRI studies, these findings this may also have vital repercussions for connectivity analyses. 

Functional connectivity and task activation are both crucial elements of healthy brain 

functioning, and an understanding of how they are intertwined will be critical in advancing 

cognitive neuroscience (see Cole, Ito, Bassett, & Sultz, 2016 for an interesting take on how these 

might be mathematically related). Though not discussed much here thus far, the majority of 

connectivity studies measure the BOLD signal during periods of awake rest. Yet if connectivity 

and activity are indeed enmeshed, then it holds that if the task setting is a critical dimension of in 

task activation analyses, then it may also play a substantial part in understanding individual 

differences in connectivity. In support of this claim, Finn et al., (2017) describe how connectivity 

can differ based on task state at both the between- and within-subject levels. They also found that 
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the ability to identify individual subjects based on connectivity patterns was notably worse in the 

rest state condition compared to the task conditions (Finn et al., 2017). These results, coupled 

with results of the current study, imply that consideration of task states should be critically 

important when trying to characterize the dimensions on which individuals differ.  

4.2 The Quiet FPN and Negative CON 
One particularly interesting finding of this investigation was that the Cont/FPN had a 

much weaker association with List Sorting than expected, including not reaching significance in 

the 2x2 analyses and only trending toward significance in the 4x5 analyses. This null result was 

surprising given that the relationship between Cont/FPN and cognitive control behaviors is well-

documented in the literature, especially in that it is considered a flexible hub of connectivity 

supporting a variety of higher order functions (Cole et al., 2013). However, these findings may 

not be as paradoxical as they might seem. If the FPN is indeed a flexible hub, one might expect 

that it behaves somewhat like a relay station. For example, consider two separate cognitive tasks 

or goals. For the first task, information may enter the FPN, and due to the particular goal, the 

FPN will relay this information to an appropriate brain region for further processing (say, 

dorsolateral prefrontal cortex; DLPFC). In the second task, information enters the FPN, but since 

this goal is different from the first, perhaps the FPN relays this information to a different brain 

region for further processing (for example, perhaps the ventromedial prefrontal cortex; VMPFC). 

In this scenario, the FPN does indeed act as a flexible hub and one would expect the FPN to 

show strong increased task-related activity for these particular tasks. That is, while there may be 

between-subject variability, one might also predict that a truly flexible hub like the FPN would 

show marked between-task variability, perhaps even more so than between-subject variability. 

The findings presented here support this notion in that the current study statistically removes the 
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influence of between-task variance on brain network latent variables, and therefore there was 

little between-subject variance left over to be captured by a Cont/FPN latent factor. In the 2x2 

analyses, the variance captured by the Cont network was not significantly different from zero for 

both the Schaefer 100 and Schaefer 300 atlases (where s2 is the unstandardized variance of the 

Cont latent variable from the full bifactor model; s2Schaefer100 = .06, p =.782; s2Schaefer300 = 1.87, p = 

.399; Table 8). In the 4x5 analyses, the variance of the Cont network was significantly different 

from zero but it was still very minimal (s2 = .01, p =.002; Table 9). Thus, while it may seem as 

though the null Cont/FPN finding is contradictory to the extensive literature, in fact the findings 

here might actually be a piece of converging evidence in favor of the Cont/FPN as a flexible hub 

of higher-order processing. 

A similarly surprising finding was that the association between the SVA/CON and List 

Sorting was consistently negative. One potential explanation could be that participants were 

primarily engaged in reactive control which consists of a more late-onset conflict detection and 

performance monitoring system, as compared to proactive control which is thought to be more 

preparatory in nature (Braver, 2012). If an individual does not actively maintain task goals in 

their WM (as one might when using proactive control), then they instead must rely on stimulus-

triggered reminders of the task demands or reactive control. As such, one might suspect that 

increased utilization of reactive control could be associated with decreased WM function. This is 

somewhat reminiscent of the Processing Efficiency Theory (Eysenck & Calvo, 1992) which 

posits that individuals with anxiety do not have as much of their WM capacity available due to 

their worries, which in turn leads to worse performance on WM tasks. In support of this, the 

anterior cingulate cortex, which is considered part of the SVA/CON and is thought to be 

involved with conflict detection, has been negatively associated with poorer WM performance 
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(Bunge, Ochsner, Desmond, Glover, & Gabrieli, 2001). A recent meta-analysis of decision-

making tasks reports that the CON shows greater activity in a late-onset performance monitoring 

manner (Gratton et al., 2016), and thus the areas that comprise the SVA/CON may serve as a 

neural signature of reactive control, which in turn may therefore explain the negative 

associations between the SVA/CON and List Sorting. 

The fact that we found the SVA/CON results to be somewhat surprising may be, 

unintentionally, due to inconsistent naming conventions. Some refer to these regions as the 

Salience network because they have been shown to be important for coordinating processes like 

attention and memory for stimuli that are particularly relevant, or “salient” to the task at hand 

(Menon & Uddin, 2010). Yet others, like both Schaefer and Gordon parcellations, use 

anatomical distinctions to define this network such as the Salience Ventral Attention network 

(SalVenAttn/SVA) or the Cingulo-Opercular network (CON), respectively. Thus, while the 

current study exploits the network neuroscience approach for the dimension reduction benefit, 

there is an important caveat in that using these networks can make it harder to connect to 

previous literature for this same reason. T-fMRI has a history of mostly exploring smaller nodes 

(e.g., dorsal anterior cingulate cortex) rather than the larger networks. This can make it quite 

difficult for researchers looking to previous work for hypothesis generation or those hoping to 

gain better understanding of their own findings via examining if there is any precedent for their 

findings (such as here with the negative relationship between SVA/CON and WM). Similarly, 

researchers may wind up searching for different key terms (i.e., searching for CON rather than 

Salience networks etc.) and inadvertently miss articles relevant to their research questions. 

Future individual differences t-fMRI studies that explicitly target network-level effects could 

help harmonize the overall literature. More broadly, we encourage future studies looking at 
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smaller ROIs to additionally include any network assignment (if applicable) one might see in the 

literature, and further support good open science practices to make it easier for researchers to 

compare ROIs and networks across studies (e.g., is this dorsolateral prefrontal cortex ROI from 

my study included in the FPN network of a different study?).  

4.3 Parcellation Methods and Levels of Analysis 
One of the most reassuring aspects of the current study is the general concordance across 

parcellation methods, especially in regard to the directionality of associations. As discussed 

above, the Gordon parcellation was a bit different from the Schaefer 100 and 300 atlases, 

although despite these differences the same overall patterns emerged. One possibility for some of 

the discrepancy is that the individual parcels of the Gordon atlas are more heterogeneous in size 

than the Schaefer parcels (Schaefer et al., 2018). This could potentially influence findings such 

that results could have been more heavily influenced by larger parcels in the Gordon atlas 

whereas the more equal parcel size of the Schaefer atlases would minimize this concern.  

Interestingly, the Schaefer method allows researchers to decide how many parcels they 

would like (Schaefer et al., 2018). While this added flexibility is advantageous in allowing for 

more nuanced hypotheses, it can be very difficult for researchers to choose the appropriate 

granularity or dimensionality of parcellation, since the relative tradeoffs associated with this 

choice are unclear. The current study chose the 100 and 300 levels, the former to aid in 

dimensionality reduction and the latter to be comparable to the Gordon parcels (nGordonParcels = 

333). We were careful to avoid repeating all analyses with all levels of parcels in order to 

minimize the likelihood of multiple comparisons concerns or, worse, falling prey to p-hacking. 

Yet there are certainly pros and cons to each level. From a classical test theory perspective, the 

benefit of obtaining more measures from an individual is that one is able to more accurately and 
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precisely capture a person’s “true score” variance. Here, this would imply that one should prefer 

the Schaefer 300 over the Schaefer 100. Indeed, the precision of measurement is one potential 

explanation for why the fit indices, excluding AICs and BICs, of Schaefer 300 (and the Gordon 

parcels) were better than Schaefer 100 (Table 4).  

The flip side of this network neuroscience advantage is the tradeoff of computational 

complexity. Indeed, researchers are constantly faced with computational complexity issues, and 

latent variable techniques like SEM are no exception. The more variables that are included in the 

SEM, the more difficult model estimation becomes. In fact, all of the Schaefer 300 models used 

up too much memory to be completed on a standard laptop and instead required using resources 

from the Washington University in St. Louis high-performance computing cluster, and the use of 

robust standard errors further increased the required computing resources. This reality led us to 

favor the Schaefer 100 when expanding to the 4x5 analyses (and again, all 4x5 analyses still 

required a computing cluster in order to run). 

It is very possible that the results of the 2x2 or 4x5 analyses would be different if using a 

different level of parcellation, such as the 500 or 1000 atlases, although the degree to which they 

would differ is hard to characterize. Since the associations amongst latent factors and WM were 

consistent across the 100 and 300 atlases, we felt confident using the 100 atlas for the 4x5 

analysis. If those relationships were not consistent, however, the interpretation of any of the 

analyses would have been far more cautious. Even still, far more emphasis was placed on the 

overall sign and effect size of the regression coefficient, rather than significance values, partially 

for this reason. The concordance across Schaefer 100 and Schaefer 300 seen here is also 

supported by Bolt, Nomi, Bainter, Cole, & Uddin (2019) who found that until one reaches the 

voxel level of analysis, the Schaefer parcels roughly yield the same inferences. 
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Thus far, the impact of parcellation methods have been one of the prominent 

methodological concerns of the current study. However, there is a different, often less explored 

level which is that of activation contrasts. It is very common in t-fMRI experiments to utilize 

some form of contrast comparison to tap an underlying behavior. For example, the N-back task 

used here had a 0-back task block (i.e., subjects should press a particular button when they see 

the target stimulus) and a 2-back task block (i.e., subjects should press a particular button when 

the stimulus shown on the screen is the same as the stimulus shown two trials before). Typically, 

researchers use these blocks to their advantage by creating contrasts such as the 2-back – 0-back 

blocks. In this example, the 0-back is not a particularly demanding WM task, whereas the 2-back 

has a much higher WM load, and so subtracting the 0-back activation from the 2-back activation 

allows researchers to target only activity that is exclusive to the increased WM load. This type of 

“narrow” contrast was used for each in-scanner task paradigm presented here. As such, it is 

possible that perhaps the individual differences captured by the tasks may have been weakened 

(e.g., the between-subject variance across tasks would have been more similar to one another) if 

a different, more liberal (“broad”) activation contrast was used. For example, perhaps our 

findings would have differed if we had used a 2-back – average activation contrast or simply 

explored activation levels in the 2-back or 0-back blocks relative to just a common resting 

fixation (which is present in all tasks). However, these may be equally, if not more, problematic 

than the extreme contrast. Use of just a 2-back or just a 0-back condition, or an analogous block 

in a different task, often leads researchers with findings that are too coarse. Is the observed 

activity due to WM load or is it due to the participant engaging in any type of cognitively 

demanding task? The whole point of using contrasts is to enhance the signal relative to noise. 

Relatedly, while there are certainly times in which specific hypotheses about how an extreme 
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block would compare to average activity (2-back – avg) are theoretically justified, often these 

types of contrasts can be difficult to interpret. However, future studies may want to investigate 

the degree to which task-related individual differences vary based on activation contrasts.  

4.4 Latent Variable Models and Neuroimaging – The Good, The Bad, and The 
Future 

In earlier periods, cognitive psychology, and by extension cognitive neuroscience 

research, was mostly carried out independently of sub-fields focused on the study of individual 

differences (e.g., personality, intelligence etc.; Cronbach, 1957). However, in the last decade, 

questions related to individual differences have become more tightly integrated within the 

cognitive sciences. One of the unique aspects of this project is that the latent variable framework 

used here is optimized for the study of individual differences and is quite frequently used in 

domains where individual differences are at the forefront, yet it is still infrequently employed 

within neuroimaging research. The next section outlines some of the challenges and limitations 

faced by the application of latent variable techniques (e.g., SEM) to neuroimaging data in this 

study, as well as how utilization of these frameworks may be key in opening doors to new 

research question (for a more systematic and in-depth review of this topic, please see Cooper, 

Jackson, Barch, & Braver, 2019).  

As described earlier, the SEM results provided some unexpected associations and 

potentially counter-intuitive results (see The Quiet FPN and Negative CON section of this 

Discussion), which is arguably the most exciting aspect of using this methodology. Yet one 

glaring limitation of the current study is that the fit indices, especially RMSEA and SRMR, are 

not as low as one might like. RMSEA values should ideally be less than .05, although .05-.08 are 

considered acceptable. RMSEA values of the best-fitting full bifactor models range from .061-
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.105 (Tables 4 and 5), with no models scraping below the .05 ideal fit cutoff, including the lower 

90% confidence intervals around the RMSEAs. Similarly, although SRMR indices met an 

acceptable cutoff, they could still be considered indicators of a mediocre fit. One driving force 

behind these lackluster fits is the large number of parameters being estimated (Tables 4 and 5). 

The sheer number of input/manifest variables makes these models somewhat daunting. The 

current study uses parcels as a middle ground between ROI and voxelwise approaches such that 

networks can be chosen based on a priori hypotheses, but do not need whole brain coverage, 

thus eliminating many more potential input variables. Future studies adopting latent variable 

methods may have more targeted hypotheses that would reduce the number of inputs and 

therefore simplify the model. For example, Bolt et al. (2018) took an SEM approach where they 

chose particular ROIs from a larger network (e.g., a ROI in right dorsolateral prefrontal cortex 

which had a network assignment of the FPN), and additionally they performed separate SEMs 

for each task. Consequently, the number of input variables were substantially decreased, and they 

report fit indices that traditionally fall into acceptable – very good ranges, especially in regard to 

SRMR (Bolt et al., 2018). While we hold that researchers can still use SEM for very large, 

complex models, we suggest that expectations be somewhat tempered as the number of inputs 

expands. 

When using SEM, it is critical remember is that it is an inherently disconfirmatory 

procedure such that even with excellent fit measures, one can never truly prove that a model is 

the correct model. Instead, one can only eliminate worse models. In this regard, though the 

current study finds the full bifactor model to be the best-fitting, it is perhaps more important that 

we can eliminate the other three as potential choices. And perhaps even more importantly, SEM 

as applied in the current study is explicitly being used to test a hypothesis (note that it is possible 



 69 

to perform exploratory SEMs but that is outside the scope of the current project). Conventional 

wisdom suggests that when fits are exceptionally close in model comparisons, researchers should 

rely on theory to guide their decisions (Kline, 2015). Taken together, the mediocre fits reported 

here still allowed us to make important headway: a) we were able to strike a balance between 

brain coverage and model complexity that still yielded reasonable fits, and b) we were able to 

eliminate worse competing models via taking a holistic approach to fit indices and incorporating 

ideas from previous literature. 

An additional methodological limitation of the current study, outside of the topic of fit 

measures, is that the HCP contains twin and sibship pairs, yet the analyses presented here do not 

account for this hierarchical family structure. Further, rather than limit the participants to only 

those that are unrelated (making the sample size roughly half of what we report here), we instead 

chose to use all participants for several reasons. Most notably, the large number of parameters 

being estimated in these SEM models requires exceedingly large sample sizes (Kline, 2015). 

Although we did perform a measurement invariance procedure to try to mitigate these concerns, 

we fully acknowledge that it would be much better to account for the nested structure of these 

data. Although it is possible to conduct hierarchical SEMs (in the lavaan R package, only 2 

levels are allowed as of version 0.6-5; Rosseel, 2012), it can be quite difficult to overcome 

convergence issues. Furthermore, typically even more participants are required for hierarchical 

analyses than traditional analyses. Estimating power with SEM is not quite straightforward and 

requires fairly involved bootstrapping procedures, and though we do not report on power for the 

models presented here, we air on the side of assuming we are underpowered. Big data projects 

like the ongoing ABCD study will likely have enough power to detect if the findings presented 

here replicate once the family structure is properly accounted for.  



 70 

A final statistical concern, which can be problematic across most areas of psychology and 

neuroscience, is the notion of overfitting. Though it has been argued that psychology ought to 

switch its focus more towards prediction, as opposed to explanation (Yarkoni & Westfall, 2017), 

the SEM approach applied here was not optimized for prediction. Rather, the objective of most 

SEMs is to get the most accurate parameter estimates. As an analogy, consider standardized tests 

like the Graduate Records Examination (GRE). Development of standardized testing has very 

strong roots in latent variable techniques like SEM, often using a related method known as item-

response theory. Yet the goal of the GRE is to get the most precise measure of an individual’s 

abilities – not to see if a matched participant would get a similar score. 

Despite the goals of SEM not being particularly geared toward predictions, there are 

some tools one could use to feel more confident in how their SEM would hold in a prediction-

based framework. One possibility is to use a cross-validation approach. One could split the 

dataset into a larger “training set”, develop the model, and then define that same model with the 

same (fixed) parameter estimates but using the remaining “testing set” and examining the model 

fits. This can be done a number of times and ultimately results from the testing sets would be 

examined to see how well the original model held. If the various iterations of the testing set 

demonstrated good fits, one might infer that the SEM would hold out-of-sample. To the authors’ 

knowledge, this procedure is not performed much in the SEM literature, if at all. One reason is, 

again, the need for large samples which is of course impeded if the original dataset is split into 

training and testing sets. If this wanted to be accomplished with the current set of models, the 

HCP is likely too small of a dataset (note that it might be possible where the data are split into an 

80:20 training/testing sets, yet even this requires averaging across iterations or folds, which can 

introduce additional complexities). However, the ongoing ABCD study, which aims to include 
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~11,500 kids (Casey et al., 2018), might have large enough sample sizes where this procedure 

could be accomplished. Although, it is worth noting that AIC and BIC values mathematically 

converge with cross-validation studies such that a model with the lowest AIC and BIC would 

perform best in k-fold cross-validation (Stone, 1977) and leave-one-out cross-validation (Shao, 

1997) processes, respectively. As such, while future studies might want to go through this 

process more thoroughly, it may not yield results that are any more informative than that which 

can already ascertained from the AIC and BIC values of traditional SEM model outputs.  

Another possibility in addressing this overfitting concern may be to take a measurement 

invariance procedure, similar to the one described on the family structure here, but where each 

group comes from a different dataset. Of course, this would require very similar tasks, similar 

preprocessing, and may be quite challenging. However, many of the large-scale neuroimaging 

studies are following open science practices and encouraging of data sharing (Poldrack & 

Gorgolewski, 2014). Though it would take careful consideration, it may be a possibility for 

future studies. 

Most immediately, however, future studies may want to address overfitting via 

employing regularization, which essentially penalizes models based on complexity. In the 

context of SEM, this can be applied in a frequentist or Bayesian manner (see Jacobucci & 

Grimm, 2018). In the frequentist form of regularization, the notion is that parameters with small 

estimates are essentially set to zero so as to minimize the contribution of parameters that may not 

be as critical. In contrast, regularization in Bayesian SEM essentially allows parameters with 

small estimates to still be estimated, but with very limited variability so as to a get a more 

accurate representation of the parameter (Jacobucci & Grimm, 2018). Either way, regularization 
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procedures could help balance the same over-fitting concerns without going through an iterative 

cross-validation process that compromises sample sizes.  

4.5 Implications for the study of Cognitive Control 
While the preceding section focused on limitations and future directions in regard to 

methodology, this last section addresses the limitations and implications the current findings 

have for improving our understanding cognitive control.  

As briefly described above, one limitation of the current study is that the HCP tasks were 

chosen for breadth across domains, rather than depth of one or two domains. Researchers 

particularly interested in a given domain may instead opt to include multiple task paradigms of 

one construct or multiple paradigms of a small number of highly interconnected constructs. The 

currently on-going Dual Mechanisms of Cognitive Control study is doing just that. This project 

is scanning participants under four task paradigms that are all thought to be part of cognitive 

control, including the Stroop, AX-CPT, Cued Task Switching, and Sternberg tasks 

(https://pages.wustl.edu/dualmechanisms). If these four tasks were used in the current study, 

rather than the 5 HCP tasks, one might instead expect the partial brain model to be favored. 

Since the four tasks are tapping the same underlying construct, it may therefore be better to 

consider items from each task as multiple measurements of the same latent factor (i.e., a global 

task factor). This pattern of findings would be interpreted as indicating that the broader domain 

of cognitive control is an important source of between-subjects variability, but that each task in 

and of itself is not a meaningful dimension of cognitive individual difference. Yet a recent study 

tried to use structural equation modeling on multiple task paradigms to create an executive 

function latent variable but were unsuccessful in their endeavor (Rey-Mermet, Gade, Souza, 

Bastian, & Oberauer, 2019). Therefore, questions regarding the relative utility of studies 
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involving multiple tasks tapping a single psychological construct versus individual paradigms 

tapping multiple constructs remain an open area of research. 

An additional limitation of the current study relates to the outcome dimensions. We chose 

three outcome measures that we hypothesized would have varied degrees of relatedness to 

cognitive control. Much the same way we do not use a single parcel as a predictor in the current 

study and instead define latent variables comprised of multiple indicator parcels, ideally outcome 

variables would be latent variables that consisted of at least three or more measures of that 

particular domain. Since the outcome would also be latent, it should only reflect “true score” 

variance in the construct and be free of random error. In turn, this should help strengthen any 

true brain-behavior relationships. For an example of this, please see Example 4 of Cooper, 

Jackson, Barch, & Braver (2019). As such, future studies ought to use outcome variables from 

which they can define a latent outcome construct. Yet we advise researchers to first examine the 

measurement model(s) of just the outcomes to ensure it is suitable to be absorbed into a larger 

model.   

Cognitive control has been linked to a variety of clinical disorders, so much so that it is 

even a construct of interest in the NIMH RDoC Matrix. Yet the treatment of psychological 

conditions is notoriously difficult. There is a plethora of reasons for why this may be the case, 

one of which might be that previous t-fMRI research of the behaviors most impaired in patient 

populations do not delineate the influences of tasks versus the influences of brain networks. 

Consider what might happen if the analyses described in the current study were repeated on a 

cohort with clinical impairments known to be associated to cognitive control. Given the findings 

here that cognitive control-related tasks seem to be their own sources of individual differences, it 

follows that clinical dysfunctions linked to cognitive control might also exhibit task-related 
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individual differences. This might manifest similarly to what was described here where the full 

model is best, or perhaps the variability is best captured by specific task latent variables and a 

global brain latent variable (e.g., partial task model). In either scenario, researchers may want to 

consider closer interrogation of those task dimensions and their relationships to therapeutics that 

help moderate a person’s behavior within an environment. That is, the individual differences 

captured by the task state might be critical for predicting which individuals would benefit most 

from cognitive behavioral therapy versus mindfulness meditation versus exposure therapy etc. 

Further examinations of the influences of tasks and brain networks, especially in regard to 

cognitive control, are thus warranted and may be a key pathway toward precision medicine 

efforts.  

Whereas the HCP cohort included healthy young adults, future studies may want to 

investigate if brain networks and task contexts are crucial dimensions at different stages of 

development and decline. Not only is SEM particularly well-suited for longitudinal data 

analyses, but the currently ongoing ABCD study might be the ideal dataset on which to examine 

hypotheses relating to how the sources of individual differences may change over the course of 

development. Since ABCD has a very large target sample size of ~11,500, SEM methods 

described here can be easily ported with the added benefit of increased statistical power. As of 

this study, wave 1 of ABCD (9-10 year old children) has been publicly released, however the 

entire project will follow these children for 10 years with imaging assessments roughly every 2 

years (for more information, please see https://abcdstudy.org/). One possible hypothesis that 

could very feasibly be tested with these ABCD data is that independent brain networks 

dimensions might not capture individual differences as well as task contexts in very young 

children, as experiences play a large role in forming brain architecture. As they grow up, 
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however, the best fitting models might ultimately evolve to have both brain networks and task 

contexts be important individual difference dimensions.  

4.6 Conclusions 
 There seems to be a growing appreciation that human behavior is rarely categorical in 

nature; there are a variety of dimensions on which people differ. The difficulty, however, is in 

picking and choosing these dimensions. For example, it is easy to make the assumption that 

people differ in their BOLD activation patterns, but it is much more difficult to determine if 

researchers ought to focus on continuums at the level of individual brain networks versus larger 

whole brain patterns or even smaller ROIs. The current study serves as a proof-of-concept, 

highlighting that applications of modern psychometric frameworks like latent variable modeling 

in conjunction with big data neuroimaging projects can feasibly help researchers in this 

endeavor. The analysis techniques described here can be modified to accommodate more 

targeted hypotheses and even different datasets. Adoption of these methods along with further 

psychometric considerations and refinements specific to neuroimaging could set the stage for 

exciting future research, especially in regard to disentangling brain and task related variability. 

Benefits include increasing explanatory power of brain-behavior relationships in a 

psychometrically sound way, as well as statistical opportunities to reveal new insights that might 

otherwise be overshadowed by the coupling of brain activation and task contexts (e.g., the 

CON’s negative relationship with WM). We hope future studies targeting brain-behavior 

relationships, will continue to explore how these relationships may differ across task contexts 

both within and outside of the cognitive control domain. 
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Appendix 

Supplement Table 1 

 

 

  

Model df 
N Para- 
meters AIC BIC 

RMSEA 
(90% CI) SRMR 

Dataset: Schaefer 100 
Null 1,297 134 422,101.2 422,759.5 .154 (.152, .156) .221 
Partial Brain 1,241 190 407,771.3 408,704.7 .116 (.114, .117) .138 
Partial Task 1,241 190 405,899.2 406,832.7 .109 (.107, .111) .073 
Full 1,238 193 403,382.3 404,330.4 .099 (.098, .101) .075 
Dataset: Schaefer 300 

Null 11,097 379 1,250,145.5 1,252,007.5 .093 (.093, .094) .192 
Partial Brain 10,943 533 1,214,431.2 1,217,049.7 .075 (.074, .075) .162 
Partial Task 10,943 533 1,207,765.8 1,210,384.3 .071 (.070, .071) .083 
Full 10,940 536 1,201,927.5 1,204,560.7 .067 (.066, .067) .078 

Dataset: Gordon 
Null 8,317 329 1,110,985.2 1,112,601.5 .089 (.089, .090) .173 
Partial Brain 8,183 463 1,083,958.3 1,086,232.9 .069 (.069, .070) .139 
Partial Task 8,183 463 1,080,101.9 1,082,376.5 .066 (.065, .067) .083 
Full 8,180 466 1,073,526.0 1,075,815.4 .060 (.059, .060) .071 
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Supplement Table 2 

Model df 
N Para- 
meters 

AIC BIC 
RMSEA 
(90% CI) 

SRMR 

Dataset: Schaefer 100 

Null 51,037 1,289 2,664,408.8 2,670,741.4 .081 (.081, .081) .171 

Partial Brain 50,705 1,621 2,622,922.2 2,630,885.7 .076 (.076, .077) .163 

Partial Task 50,702 1,624 2,528,635.5 2,536,613.8 .063 (.063, .063) .060 

Full 50,693 1,633 2,523,389.5 2,531,412.0 .062 (.062, .062) .067 
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Supplement Table 3 

Model df 
N Para- 
meters 

AIC BIC RMSEA 
SRM
R 

Dataset: Schaefer 100 

Null 1,150 125 398,649.8 399,263.9 .163 (.161, .165) .233 

Partial Brain 1,100 175 384,344.3 385,204.0 .122 (.120, .124) .146 

Partial Task 1,100 175 382,481.5 383,341.2 .115 (.113, .117) .077 

Full 1,100 175 379,965.9 380,825.6 .105 (.103, .106) .078 
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Supplement Table 4 

 

Note: Significance symbols reflect if regression coefficient is significantly different from zero: * p < .05, ** p < .01, 
and *** p < .001. SVA - Salience Ventral Attention network; CONT – Control network; NBK – N-back task; REL – 
Relational Processing task. * 

  

 

Latent Variable List Sorting 
b* 

PMAT 
b* 

Grip Strength 
b* 

SVA -.093** -.131*** -.027 
CONT    .050 .091 -.014 
NBK .187*** .242*** .034 
REL .073* .103** .016 
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Supplement Table 5 

 

  

Model List Sorting 
R2 

PMAT 
R2 

Strength 
R2 

Null Model .84% 1.81% .01% 
Partial Brain Model 6.07% 10.75% .58% 
Partial Task Model 5.25% 9.65% .22% 
Full Model 5.15% 9.45% .23% 
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Supplement Figure 1 
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Supplement Figure 2 
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Supplement Figure 3 
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Supplement Figure 4 
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Supplement Figure 5 
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Supplement Figure 6 
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Supplement Figure 7 
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Supplement Figure 8 
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