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Nonsense mediated RNA decay (NMD) is an RNA surveillance pathway present in all 

eukaryotes that detects and degrades nonsense mRNAs, which contain pre-mature translation 

termination codons. Nonsense mRNAs are prevalent when pre-mRNA splicing is altered or 

defective. Interestingly, defective pre-mRNA splicing is emerging as a major driver of cancer 

development, including development of myelodysplastic syndrome (MDS), leukemia, and some 

solid tumors. Moreover, pre-mRNA splicing is also thought to enhance NMD in human cells, 

although it’s still unclear whether and how splicing or splicing factors promote NMD. The role 

of NMD in regulating mis-spliced mRNA and the link between NMD and RNA splicing, suggest 

that understanding the process of NMD in the context of normal and defective splicing may hold 

some clues on developing therapies to treat cancers with dysregulated splicing. To better 

understand the process of NMD, we have developed a novel NMD reporter system to measure 

NMD activity in individual human cells and used it to perform a genome-wide CRISPR/Cas9 

KO screen to identify genes that promote NMD. We found that the SF3B spliceosome complex 

promotes NMD without splicing of the target mRNA, suggesting that recruitment of certain 
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spliceosome factors, but not pre-mRNA splicing per se, promotes NMD. In the context of 

defective splicing, we found that expression of cancer-associated spliceosome mutants (including 

mutant SF3B1) attenuate NMD. Importantly, cancer cells harboring spliceosome mutations were 

remarkably sensitive to inhibition of NMD. Therefore, inhibition of NMD is a novel potential 

therapeutic strategy to treat cancers with defective splicing. This finding suggests that small 

molecule inhibitors of NMD are needed to facilitate development of therapies that target the 

NMD pathway. In this dissertation, we have evaluated the use of two different compounds to 

inhibit NMD. SMG1i directly targets SMG1, the only kinase in the NMD pathway, while 

Compound C, a commonly used AMPK inhibitor, inhibits NMD indirectly probably by down-

regulating NMD factors. Compound C is, however, non-specific, but its derivatives may generate 

specific NMD inhibitors. Collectively, our studies shed some new light on the process of NMD 

in the context of normal or defective splicing, uncover NMD as a novel vulnerability of cancers 

with defective splicing, and provide promising lead compounds for developing therapies that 

target NMD for cancer treatment.
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NMD as a Guardian of the Central Dogma 
and a Target for Treating Disease 

 

Abigael Cheruiyot 
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Introduction 

The central dogma of molecular biology dictates the flow of genetic information between DNA, 

RNA and protein1. This implies that genetic information must be faithfully replicated during 

DNA replication, accurately transcribed to RNA and some RNA need to be accurately translated 

to protein, which are the primary effectors of cellular processes. In eukaryotic cells, pre-mRNA 

(precursor messenger RNA) splicing is an important step of gene expression, where the intronic 

sequences of RNA are identified and removed to make a mature messenger RNA (mRNA)2. This 

process greatly contributes to the diversity of the transcriptome and the proteome, especially in 

metazoans where about 60% of genes are alternatively spliced to generate many mRNA 

isoforms3.  Increased transcriptome diversity is, however a double-edged sword. While this 

feature increases the utility of the genome, it also presents a greater opportunity for errors in the 

transcriptome and the proteome, which may have negative impacts on the cell, or may contribute 

to formation of genetic disorders and cancers4,5. Maintaining the quality and quantity of the 

transcriptome is, therefore a major challenge to metazoans.  Consequently, cells have evolved 

elaborate RNA surveillance and degradation pathways, including nonsense mediated RNA decay 

(NMD)6,7,8. As the name suggests, NMD was discovered as an RNA surveillance mechanism that 

targets and degrades nonsense mRNAs, which are the mRNAs that possess pre-mature 

translation termination codons (PTCs)9,10. NMD is now thought to serve both a quality control 

function, by targeting mutant mRNAs with PTCs, and a general gene expression function, by 

targeting about 10% of mRNAs encoding functional full-length proteins to facilitate various 

developmental process and cellular homeostasis11,12,13,14,15,16. While pre-mRNA splicing and 

NMD appear distinct, there is evidence that the two processes are functionally and 

mechanistically connected. NMD degrades PTC-containing mRNAs resulting from erroneous 
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splicing, and about one third of RNAs produced by alternative splicing17. It is apparent that 

coupling alternative splicing to NMD is yet another mechanism of gene regulation where 

numerous genes, particularly splicing factors, regulate their RNA levels by promoting production 

of PTC-containing mRNA isoforms of their genes18,19,20. Mechanistically, pre-mRNA splicing 

seems to enhance efficiency of mammalian NMD21. It is thought that the exon junction 

complexes (EJCs) that are deposited upstream exon-exon junctions during splicing can be used 

to determine whether a termination codon is pre-mature and activate NMD22,23,24,25,26. However, 

it is not clear whether splicing per se ,or the recruitment of splicing factors is important for 

NMD. The relationship between NMD and splicing needs to be better explored to understand the 

mechanisms of NMD and the roles of these two pathways in maintaining the quality and 

abundance of RNA.  

RNA processing, such as pre-mRNA splicing and RNA surveillance may have a previously 

unappreciated role in genome maintenance. Emerging evidence suggest that RNA-binding 

proteins and splicing factors prevent RNA from annealing to DNA during transcription, which 

would form stable DNA/RNA hybrids and subsequently displace one strand of DNA (a structure 

known as R-loop)27. While R-loops are important for some cell biological processes, aberrant R-

loops are a threat to the integrity of the genome, as they may become obstacles during DNA 

replication and generate DNA breaks28,29. Indeed, the depletion of RNA binding proteins, RNA 

helicases, and many splicing factors cause R-loop mediated genomic instability29,30. It was also 

found that depleting NMD factors results in genomic instability, although the mechanisms 

responsible are still unclear31,32. The bona fide roles of splicing and RNA surveillance in 

regulating the transcriptome, and these new roles of RNA processing pathways in genome 

maintenance underscore the complexity of maintaining the fidelity of the central dogma. 
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pre-mRNA splicing and the consequences of mis-splicing 

A simplified mechanism of pre-mRNA splicing 

Splicing of pre-mRNA is a highly dynamic and complex process that involves several 

ribonucleoprotein (snRNPs) and over 150 proteins33,34. While splicing is conserved in 

eukaryotes, human spliceosome contains both a major spliceosome, which is present in lower 

eukaryotes, and a minor spliceosome, which is not conserved35. Mechanism of splicing by the 

major spliceosome, which consists of 5 small nuclear RNAs (U1, U2, U4, U5, U6 snRNAs), is 

the best understood36. To correctly excise introns from RNA, the spliceosome must recognize 

core splicing signals within the intron, which include the 5’ splice site (5’ss), the 3’ splice site 

(3’ss), and the branch point37. The stepwise splicing process begins by U1 snRNP binding to the 

5’ss, forming complex E (Figure 1.1). U2 snRNP then binds to the branch point, forming 

complex A, which subsequently binds a pre-formed tri-snRNP complex U4/U6.U5 to form 

complex B. Major rearrangements, including dissociation of U1 and U4 are required to activate 

complex B to form complex Bact, which supports the first catalytic step needed to cleave the 5’ 

end of the intron. The resulting complex is known as complex C, and it supports the second 

catalytic reaction, which cleaves the 3’ end of the intron and ligates the exons. Upon ligation of 

the exons, the spliceosome dissociates releasing snRNPs for recycling, the intron lariat, and the 

mRNA33,34,36.  
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Figure 1.1. A schematic representation of the main steps of splicing by the major 
spliceosome. 

 Pre-mRNA splicing is performed by five snRNP complexes (U1, U2, U4, U5, U6) and about 
150 proteins (omitted for simplicity). Splicing is done over many steps beginning from 
sequential binding of snRNP, remodeling of the complexes and 2 catalytic steps that lead to 
ligation of exons, release of intron lariat, and recycling of snRNP complexes. 

 

Defective splicing and associated diseases 

As a vital and complex step of gene expression in eukaryotes, splicing is a highly regulated 

process. However, errors during splicing can still occur due to mutations on the RNA cis-

regulating elements, core splicing components, or regulatory factors38,39. Mutations that alter pre-
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mRNA sequence may alter the choice of the 5’ss or 3’ss, generating different spliced 

isoforms38,39. Examples of diseases arising from mutations on the RNA that causes altered 

splicing include β+-thalassaemia, which is caused by mis-spliced β-globin gene 40,41,42; Duchenne 

and Becker muscular dystrophy, which is caused by mis-spliced DMD gene43; frontotemporal 

dementia and parkinsonism associated with chromosome 17 (FTDP-17), which is caused by mis-

spliced MAPT gene44 ; and laminopathies caused by mis-spliced LMNA gene45. In addition to 

mutations in pre-mRNA, mutations that occur on the spliceosome proteins themselves also cause 

many diseases and cancers. U2 snRNP components and related proteins are mutated in 

hematological malignancies and some solid tumors. Approximately 50% of myelodysplastic 

syndrome (MDS), 20% of acute myeloid leukemia (AML) and 60% of chronic myelomonocytic 

leukemia (CMML) harbor heterozygous somatic mutations in spliceosome genes SF3B1, 

U2AF1, SRSF2, and ZRSR2, which cause largely distinct changes in RNA splicing and gene 

expression46,47,48,49,50,51,52,53. Mutations in components of U4/U6.U5 tri-snRNP PRPF3, PRPF4, 

PRPF6, PRPF8, PRPF31, and SNRNP200 are associated with retinitis pigmentosa, a retinal 

degeneration disease54. 

 

Nonsense mediated RNA decay (NMD) 

Proteins involved in NMD 

The first few NMD factors were identified in S.cerevisiae55. In these seminal studies, it was 

observed that frame-shift mutations and nonsense mutations caused rapid turnover of resulting 

mRNAs, and that the UP-Frameshift (UPF) proteins were responsible for this turnover. Genetic 

screens in C. elegans and S.cerevisiae resulted in identification of SMG1-7 and UPF1-3 proteins 
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as NMD factors56,57. The S.cerevisiae UPF1-3 are orthologs of C. elegans SMG 2-4. Orthologs 

of all SMG proteins have been identified and defined as NMD factors in several species, 

including plants and mammals58. Two genome-wide RNAi screen in C. elegans later identified 4 

additional NMD factors conserved in eukaryotes; NBAs, DHX34, GNL and SEC1359,60. It was 

also found that SR proteins (proteins with RNA recognition motifs and serine arginine-rich 

domains) enhance NMD, and that SRSF1 particularly promotes NMD by promoting UPF1 

binding to RNA61,62. Additional RNA helicases were also found to promote NMD, including 

DDX5, DDX17, RUVBL1, and RUVBL263,64. Exon junction complexes (EJCs) deposited during 

splicing enhance NMD in mammalian cells, as presence of an EJC downstream of a stop codon 

is one of the best understood mechanism of identifying a pre-mature stop codon (PTC) from a 

normal stop codon 21.  EJCs are however dispensable for NMD in other organisms, such as C. 

elegans and S. cerevisiae, and Drosophilla65,66,67.   It is apparent that all the mechanisms of NMD 

that have been described so far require the function of UPF1, but the requirements of other NMD 

factors varies62,68,13,69. Therefore, although NMD is conserved among all eukaryotes, there exist 

significant differences in the mechanisms of NMD in different species, and the mechanisms may 

vary depending on the kind of NMD target. Because a majority of known NMD factors in 

mammalian systems were identified through sequence homology to C. elegans and S.cerevisiae 

factors, it is likely that there are unknown NMD factors and regulators unique for NMD in 

mammalian systems. In an effort to identify factors involved in NMD in human cells, some 

studies have employed protein interaction approaches, where proteins binding to phosphorylated 

UPF1 or SMG1 were identified using SILAC or immuno-precipitation assays. These studies 

identified eIF3 as a prominent protein interacting with UPF1, and SMG8-9 as proteins 

interacting with SMG170,71. However, given that NMD factors have other NMD-independent 
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roles, these methods may identify interacting proteins that are not necessarily important for 

NMD. In support of the idea that the list of NMD factors in mammalian systems is likely 

incomplete, recent RNAi and CRISPR Cas9 knockout screens in human cells have identified 

additional genes that potentially function in the NMD pathway, including ICE1, which facilitates 

NMD by promoting binding of UPF3B to EJC72. Defining the roles of these potential NMD 

factors will facilitate a better understanding of NMD in mammalian systems. 

Mechanisms of NMD in mammalian systems 

NMD from yeast to human requires mRNA translation73,74. It is thought that inefficient 

translation termination can trigger NMD, although certain features on the RNA are additionally 

required to activate NMD. In humans, the presence of an EJC on an mRNA downstream of a 

translation termination codon (stop codon), otherwise known as 3’UTR EJC, strongly enhances 

NMD23,69,75,76. This has led to the proposed EJC-dependent NMD model, although EJC-

independent NMD models also exists (Figure 1.2)21,68,25. EJCs are deposited during splicing at 

20-24 nucleotides upstream of an exon-exon junction, and remain associated to the mRNA even 

after the mRNA is exported to the cytoplasm77,78. The EJC core is composed of 4 proteins: 

eIF4A3, RBM8A (also called Y14), MAGOH, and MLN51 (also called Barentz, BTZ, or 

CASC3)79,80. The EJC core is usually associated with auxiliary proteins, including UPF3B, a 

known NMD factor81,24. During translation, processive translocation of the ribosome on mRNA 

removes proteins on the mRNA, including EJCs. Since the ribosome does not translocate past the 

stop codon, the protein complexes downstream the stop codon (the 3’ UTR), remain on the 

mRNA. The EJC-dependent NMD model posits that if an EJC is 50-55 nucleotides downstream 

of the stop codon, NMD is activated10,74. To activate NMD, SMG1 complex (SMG1-SMG8-

SMG9) and UPF1 are recruited to the terminating ribosome via interactions with translation 
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termination release factors eRF1and eRF3, forming the so-called SURF complex71,82. 

Subsequently, UPF2 is recruited to the EJC via its interaction with UPF3B, and both recruit the 

SURF complex to the EJC, forming the so-called DECID complex24,83. Interaction between the 

SURF complex and the EJC in the DECID complex is required to activate SMG1 kinase to 

phosphorylate UPF1, which commits the RNA for degradation through NMD82,84,85. 

Phosphorylated UPF1 facilitates recruitment of SMG5, SMG6 (also called EST1A), and SMG7 

via 14-3-3 domains on these proteins, which bind to the phospho-residues on UPF186,87,88. SMG5 

and SMG7 recruit deandenylation and decapping complexes86,89,90. De-capped and/or de-

adenylated RNA is degraded by exonucleases, including XRN191. SMG6 possesses RNA 

endonuclease activity and directly cleaves NMD-targeted RNAs92,93,94. The SMG5-SMG7 and 

the SMG6 pathways of RNA degradation appear to be partially redundant in human cells86,95. 

The EJC-independent model of NMD is less well understood compared to the EJC-dependent 

model, but there is sufficient evidence that some RNA targets are degraded without following the 

EJC rule, or in the absence of 3’UTR EJC68,96,25. Consistent with this EJC-independent model of 

NMD, artificially tethering UPF1 to the 3’UTR of an mRNA is sufficient to induce NMD97. 

Moreover, NMD not only targets nonsense mRNAs containing pre-mature stop codons (PTCs), 

but also many physiological transcripts with certain NMD-inducing features, including upstream 

open reading frames (uORFs), inclusion of PTCs-containing exons, introns in 3’ UTR, and 

exceedingly long 3’ UTRs (greater than 1kb)21,98,99. Non-mutant NMD targets that have 

exceedingly long 3’UTRs do not have EJCs in the 3’UTR, yet they are still degraded by NMD, 

making the degradation of this subset of NMD targets prime example of the EJC-independent 

NMD.  
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Figure 1.2. A schematic representation of the EJC-dependent model for NMD in human 
cells.  

NMD ensues during translation when the ribosome pre-maturely terminates at a PTC that is 
located 50-55 nucleotides upstream of an EJC. SMG1 and UPF1 are recruited by association 
with the terminating factors to form the SURF complex. EJC-associated UPF2 and UPF3B 
recruit the SURF complex to form the DECID complex, which facilitates phosphorylation of 
UPF1. Phosphorylated UPF1 recruits SMG5, SMG7, and SMG6, which subsequently recruit 
decapping and deadenylation (SMG5 and SMG7), or directly cleave RNA (SMG6).  
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However, 3’UTR length does not necessarily predict RNA degradation by NMD, suggesting that 

the length of the 3’UTR alone is not sufficient to induce NMD100,16,15. Therefore, it is still 

unclear how NMD targets these RNAs. It is thought that presence of poly-adenylate binding 

protein (PABP), which binds to poly-A tail of mRNA, close to translation termination codon 

antagonizes NMD by promoting efficient translation termination101,102. This suggests that 

mRNAs with long 3’UTRs may be targeted by NMD due to inefficient translation termination, 

because the long 3’UTR places the stop codon far from PABP. However, mRNAs can assume a 

loop configuration, where the poly-A tail and the cap of the mRNA are brought into close 

proximity to each other, reducing the distance between PABP and the stop codon, despite the 

RNA having a long 3’UTR103. In the mRNAs with long 3’UTR, NMD can also be activated by 

presence of many UPF1 proteins downstream of a stop codon, because UPF1 non-specifically 

binds to mRNA104.  However, NMD activated this way can be inhibited by binding of certain 

proteins immediately downstream of the stop codon, such as polypyrimidine tract-binding 

protein 1 (PTBP1), and heterogenous nuclear ribonucleoprotein L (hnRNPL)104,105. Therefore, 

the balance between NMD-inducing and antagonizing features on the mRNA may determine 

whether this mRNA is targeted for degradation by EJC-independent NMD. The degradation of 

the mRNA itself still utilizes the proteins required for RNA degradation in EJC-enhanced NMD. 

Physiological functions of NMD  

NMD is essential in development of mammalian systems, as the knockout of NMD factors 

UPF1, UPF2, SMG1, or SMG6 is embryonic lethal in mice106,107,108,109. Studies in embryonic 

stem cells with NMD factor knockout showed that lack of NMD prevented cells from 

differentiating109. In certain differentiation steps, NMD is down-regulated. Examples include 

differentiation of the endoderm layer and neuronal cells110,111,112. NMD also promotes immune 
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cell maturation by degrading PTC-containing RNAs resulting from imprecise recombination 

between variable (V), diversity (D), and joining (J) segments, which happens in almost two-

thirds of all recombinations113.  The competition between NMD and (STAU1)-mediated mRNA 

decay (SMD), due to the requirement of UPF1 in both pathways, promotes myogenesis114. NMD 

is an important mechanism of cellular stress response, as a number of cellular stresses, such as 

hypoxia, amino acid depravation, reactive oxygen species, and increased calcium can blunt 

NMD115,11,116,117. This blunting of NMD promotes expression of NMD-targeted mRNAs 

important for stress response and establishing cellular homeostasis118. NMD plays a major role in 

regulating many splicing factors, including SR-containing splicing factors (SRSF 

family)119,120,121. Some of these splicing factors can promote alternative splicing of their own 

RNAs to produce PTC-containing RNAs that are targeted by NMD, thus auto-regulating their 

own protein abundance, while others regulate related splicing factors20. These observations 

demonstrate that fine-tuning NMD is crucial for normal cell physiology. 

NMD in disease and as a potential therapeutic target 

NMD is thought to modulate the phenotypic outcome of about 1/3 of genetic disorders that are 

caused by nonsense mutations122,123. How NMD affects the outcomes of these diseases depend 

on the location of the PTC on the gene (whether it is on NMD-sensitive, insensitive region), the 

function of the full-length and truncated gene product, and the efficiency of NMD124,125,126. 

Depending on the location of a PTC on the gene, NMD affects the pattern of inheritance of the 

disease. If a PTC is located on NMD-sensitive region, NMD degrades the RNA and the 

heterozygous carrier of this mutation will rely on the function of the WT allele, promoting 

autosomal recessive inheritance124,125.  However, if a PTC is in NMD-insensitive region of the 

gene, then the truncated protein resulting from this mutation will accumulate in the cell, causing 
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autosomal dominant inheritance124,125. Examples of diseases showing distinct patterns of 

inheritance depending on the location of the PTC include β-thalassemia127, susceptibility to 

mycobacterial infection128, von Willebrand disease129, Becker disease and Thomsen disease130, 

and Leber congenital amaurosis131. In addition to affecting the pattern of inheritance, NMD can 

either make the disease outcome less or more severe, depending on whether the truncated protein 

has dominant negative effects or some normal function. For example, NMD-sensitive nonsense 

mutations in the collagen type I alpha 1 (COL1A1) and collagen type II alpha 1 (COL2A1) genes 

cause haplo-insufficiency and a milder form of osteogenesis imperfecta (OI), while missense 

mutations that are not targeted by NMD are dominant negative and cause the more severe form 

of OI132,133,134. In contrast, some NMD-insensitive nonsense mutations in Duchenne muscular 

dystrophy (DMD) have partial normal function, and patients with these mutations have a milder 

form of DMD, compared to patients with NMD-sensitive nonsense mutations135,136. This 

suggests that NMD worsens the phenotypic outcome of DMD by degrading nonsense mRNAs 

that encode truncated proteins with partial normal function. Therefore, inhibition of NMD is a 

potential therapeutic approach to treat such disorders. 

Mutations of NMD factors themselves are also associated with disease. For instance, mutations 

in UPF3B gene is associated with intellectual disability in humans137,138. Sequencing analysis 

identified UPF3B mutations in 2 families with Lujan–Fryns syndrome, one family with FG 

syndrome, and several other families with schizophrenia and autism spectrum 

disorder137,139,140,141. Moreover, deletion of genomic region containing UPF2 gene were found in 

11 patients with intellectual disability142. These deletions caused gene expression changes that 

were similar to those seen in UPF3B mutations, suggesting that the dysregulation of the NMD 

pathway is likely an important factor in the development of these diseases142. Deletion of a 
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region of chromosome 1 that consists of the EJC gene RBM8A has also been linked to 

intellectual disability143. Consistent with these observations, a UPF3B-null mouse exhibited 

defects in learning, and prepulse inhibition common in patients with schizophrenia and other 

brain disorders144. 

The effects of NMD on cancer development seem to be context-specific. Many tumor suppressor 

genes, such as BRCA1, BRCA2, TP53, and Rb have NMD-sensitive mutations145,146,147,148. It 

appears that tumor suppressors are more likely to harbor NMD-sensitive nonsense mutations, 

while oncogenes are more likely to harbor missense mutations149. Therefore, intact NMD may 

promote tumorigenesis by down-regulating tumor suppressor proteins. In other cases, disabling 

NMD seems to promote tumorigenesis or tumor progression. For example, somatic loss-of-

function mutations in UPF1 are commonly found in pancreatic adenosquamous carcinomas and 

lung inflammatory myofibroblastic tumours, suggesting NMD downregulation may promote 

development of these cancers 150,151. Inhibiting NMD may also promote tumor growth in the 

tumor microenvironment. The tumor microenvironment is characterized by stresses, such as 

hypoxia and ER stress, and as such, cancer cells need to adapt to this environment in order to 

proliferate152.  Because NMD blunting promotes cellular response to stress, inhibition of NMD 

may promote tumor growth by promoting adaptation of tumor cells to the stress in the tumor 

microenvironment153.  

NMD is a potential target for developing therapies to treat genetic disorders and cancers. As 

discussed above, some genetic disorders, such as Duchenne muscular dystrophy (DMD), may 

benefit from inhibition of NMD to allow for expression of truncated proteins with partial normal 

function, which reduce the severity of the disease135. Moreover, inhibiting NMD and promoting 

translation read-through allows for production of full length proteins, which would fully restore 
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protein function to treat such genetic disorders. As a proof of concept, antisense oligonucleotide-

mediated knockdown of UPF3B increased production of dystrophin mRNA (from DMD gene) in 

a mouse model of DMD, and coagulation factor IX mRNA in a mouse model of hemophilia154. 

Furthermore, combination of translation read-through and UPF3B knockdown lead to production 

of full-length functional coagulation factor IX protein in the mouse model of hemophilia154. 

However, the use of translation read-through drugs is associated with toxicity155. Therefore, 

more studies are needed to devise a safer method of translation read-through. NMD inhibition 

also has a potential to improve immunotherapy, as nonsense mRNAs arising from frameshift 

mutations and mis-splicing would encode novel peptides, which may promote neo-antigen 

production necessary for immunotherapy156. A proof of concept study showed that targeted 

inhibition of NMD in subcutaneous and metastatic tumor models, using tumor-targeted NMD 

factor siRNAs, reduced tumor size due to immune recognition156. A recent analysis also showed 

that a better response to immunotherapy was associated with patients who had more nonsense 

mRNAs that evaded NMD, suggesting that increasing nonsense mRNAs may improve immune 

response157. Small molecule inhibitors of NMD have been recently developed, and have shown 

promising effects on restoring protein expression from nonsense mRNAs and some anti-cancer 

effects in cell lines and mouse models, but the safety and efficacy of NMD inhibitors in to 

treating genetic disorders and cancers has not yet been demonstrated in clinical trials158,159. 

Therefore, more studies are needed to develop many specific inhibitors of NMD to explore the 

therapeutic benefits of NMD inhibition in treating certain genetic disorders and cancer. 

The role of RNA processing in regulating R-loops to promote genome maintenance 

R-loop formation and regulation 
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R-loops are three stranded nucleic acids structures composed of displaced ssDNA and 

RNA:DNA hybrid that often form during transcription when nascent RNA reanneals to template 

DNA (Figure 1.3)160.  Due to this unique structure, R-loops are detected in cells primarily by 

using S9.6 antibody that has high specificity for RNA:DNA hybrids, although other studies have 

utilized catalytic-dead RNase H1, or foot-printing assays161,162,163. 

  

Figure 1.3. Schematic representation of R-loop formation and regulation. 

R-loops are co-transcriptional three-stranded nucleic acid structures consisting of an RNA:DNA 
hybrid and a displaced RNA. Efficient RNA processing (including splicing and RNA export) and 
regulated transcription prevent formation of R-loops. Once they are formed, R-loops can be 
removed by the helicase activity of many RNA:DNA helicases, and the activity of RNase H 
nucleases that remove the RNA moiety on the RNA:DNA hybrid. Not illustrated are the DNA 
repair and related proteins, such as BRCA1/2, FANCM, and Topoisomerase 1 that regulate R-
loops through other mechanisms. 
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Immunoprecipitation of R-loops combined with high-throughput sequencing has contributed to 

mapping genomic regions where R-loops are enriched. Although this is still an active area of 

research, the  general features that seem to pre-dispose to R-loop formation include high G/C 

ratio in non-template strand, high transcription, and polyA tracts164,165,166. R-loops are ubiquitous 

in chromosomes, constituting 5-8% of the genome167. Consistently, R-loops have several 

physiological functions, including class switch recombination during lymphocyte development, 

control of methylation of CpG island promoters, and transcription termination168,164,161. Aberrant 

R-loops are, however, a major threat to genome maintenance, as they have been linked to 

increased mutations, hyper-recombination, rearrangements, and DNA damage due to 

transcription-replication collisions caused by transcription and/ or replication stress29,169,170. R-

loops, therefore, need to be regulated in cells. Several factors that remove R-loops or prevent 

their formation have been identified. RNase H proteins specifically degrade the RNA in the 

RNA:DNA hybrid171. A number of helicases have also been implicated in R-loop removal, 

including DDX1, DDX19, DDX21, DDX23, DHX9, AQR, and SETX172,173,174,175,176,177. 

Interestingly, depletion of each of these helicases causes R-loop induction, suggesting a non-

redundant role in R-loop metabolism. Additionally, RNA processing proteins, primarily 

members of the spliceosome complex and mRNA export, such as SF3B1, SRSF1, PIAS, 

SNRPA1, Nrl1 and THO/TREX are also required for R-loop metabolism178,179,180,181. 

Transcription efficiency also seem to affect the level of R-loops in cells, as inefficient or too high 

transcription can increase R-loops27,182. Finally, proteins involved in genome maintenance such 

as, BRCA1/2, FANCM, and Topoisomerase 1 also play a role in preventing aberrant R-

loops183,184,185. 

Defective splicing and R-loops 
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Heterozygous somatic mutations in the splicing genes SF3B1, U2AF1, SRSF2, and ZRSR2 are 

found in approximately 50% of myelodysplastic syndrome (MDS), 20% of acute myeloid 

leukemia (AML) and 60% of chronic myelomonocytic leukemia (CMML)46,47,48,49,50,51,52,53. 

Because all these genes are involved in the 3’ splice site recognition, these mutations cause mis-

splicing in cells, but the patterns of mis-splicing appear to be distinct186,187,188,189. The different 

patterns of mis-splicing caused by each mutation raises the possibility that mis-splicing alone is 

not the underlying mechanism for how the mutations in splicing factors contribute to MDS and 

leukemia etiology. Other studies have observed increased genomic instability in cells harboring 

mutations in MDS-associated splicing factors190,191,192. Recent studies now suggest that the 

genomic instability observed in cells harboring splicing factor mutations are likely due to 

increased R-loops, although future studies are needed to mechanistically determine how each of 

the mutations increase R-loops193,194,195. 

Potential role of NMD in R-loops Regulation 

Several key factors in the NMD pathway seem to play a role in genome maintenance, as their 

depletion causes DNA damage, but the mechanisms are not well understood196,197,198. 

Downregulation of UPF1 helicase in HeLa cells, causes ATR-mediated cell cycle arrest at early 

S-phase31.  Moreover, depletion of UPF1, SMG1, and SMG6 in HeLa cells results in increased 

association of TERRA to telomeres and telomere loss, suggesting a role of these NMD factors in 

displacing TERRA from telomeres199. This latter evidence suggest that the NMD/NMD factors 

may regulate R-loops, because TERRA is known to form R-loops at telomeres200. More studies 

are required to determine if and how the NMD pathway can regulate R-loops to promote genome 

maintenance. 
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Abstract 

Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved pathway that targets and 

degrades aberrant mRNAs with premature translation termination codons (PTCs), which are 

prevalent in cells with defective splicing. Previous studies have also implicated splicing in the 

NMD process as removal of introns from pre-mRNA in human cells attenuates its degradation by 

NMD. However, it remains unclear whether and how splicing factors or the splicing process 

itself promote NMD.  By carrying out a genome-wide CRISPR/Cas9 knockout screen using a 

novel NMD reporter system, we identified a previously unrecognized function of the heptameric 

SF3B spliceosome complex in promoting NMD that is completely separate from its role in 

splicing. We also found that cancer cells with spliceosome gene mutations common in 

myelodysplastic syndrome (MDS) and other cancer cells, have overall attenuated NMD activity. 

Further inhibition of NMD in spliceosome mutant cells caused heightened sensitivity, which 

results from an accumulation of R loops that contain RNA:DNA hybrid structures. Together, our 

findings shed new light on the functional interplay between NMD and splicing and suggest a 

novel therapeutic strategy for MDS and other cancers with spliceosome mutations based on the 

synthetic lethality between NMD inhibition and aberrant splicing.  

 

Introduction 

In metazoans, pre-mRNA splicing generates diversity in the transcriptome, but also presents a 

major source of aberrant RNAs when dysregulated1,2. Incorrect splice site selection, intron 

retention and exon exclusion threaten the fidelity of gene expression, which can cause many 

genetic disorders, such as b-thalassemia, frontotemporal dementia and laminopathies, and 
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cancer3,4,5,6,7,8. Abnormal splicing is particularly prevalent in myelodysplastic syndrome (MDS) 

and other cancers with recurring mutations in splicing factors9,10. Approximately 50% of MDS, 

20% of acute myeloid leukemia (AML) and 60% of chronic myelomonocytic leukemia (CMML) 

harbor heterozygous somatic mutations in the spliceosome genes SF3B1, U2AF1, SRSF2, and 

ZRSR2, which are involved in the early stage of spliceosome assembly and cause distinct 

changes in RNA splicing and gene expression9,10,11,12,13,14,15,16,17. Many solid tumors, including 

uveal melanoma, breast, lung and pancreatic cancers, also harbor spliceosome gene 

mutations18,19,20,21. The inherent vulnerability of the splicing process and its dysregulation in 

disease conditions necessitate mechanisms to detect and control the fate of mis-spliced 

transcripts. Nonsense mediated RNA decay (NMD) plays a key role in RNA surveillance by 

specifically targeting abnormal mRNAs with premature translation termination codons (PTCs) 

for degradation22. NMD also regulates gene expression by degrading physiological transcripts 

with certain NMD-inducing features, including upstream open reading frames (uORFs), PTC-

containing exons, introns in the 3’ untranslated region (UTR), and exceedingly long 3’ 

UTRs22,23,24. Consequently, NMD modulates the severity of many genetic diseases and regulates 

various developmental processes and responses to cellular stress25,26,27,28,29,30,31. In addition to 

eliminating alternatively spliced or mis-spliced transcripts, NMD may be mechanistically linked 

to RNA splicing in mammals, as removal of introns from target pre-mRNAs attenuates their 

degradation by NMD32,33,34. It is believed that splicing-mediated deposition of exon junction 

complexes (EJCs) facilitates the recognition of PTCs in mRNA, although an EJC-independent 

NMD pathway also exists22,35. A key step of NMD is the recruitment of core NMD factors UPF1 

and SMG1 to the terminating ribosome by eRF1 and eRF3, leading to phosphorylation of UPF1 

by SMG1, a member of the PIKK family of protein kinases that also include ATM, ATR, DNA-
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PKcs and mTOR36,37. This phosphorylation leads to recruitment of SMG5, SMG6 and SMG7 to 

target mRNA via phospho-specific interactions, which in turn either directly cleaves the mRNA 

(SMG6) or recruits nucleolytic activities for RNA degradation (SMG5 and SMG7)38,39. Despite 

extensive research in this area, our understanding of the functional interplay between NMD and 

splicing remains limited, and the exact role of NMD in cells with dysregulated splicing remains 

to be determined.    

In this study we identify a previously unrecognized function of the SF3B spliceosome complex 

in NMD, and a synthetic lethal relationship between splicing dysregulation and NMD disruption. 

By performing a genome-wide CRISPR/Cas9 knockout screen using a novel NMD reporter 

system, we have identified a number of new factors that promote NMD, including components of 

the SF3B spliceosome complex. Further studies uncovered a role of SF3B in promoting NMD 

that requires EJC, but not splicing of the target mRNA. Interestingly, cells expressing mutants of 

SF3B1 or U2AF1 that are frequently found in MDS and cancer exhibited attenuated NMD 

activity. Furthermore, we found that spliceosome mutant cells are hypersensitive to NMD 

disruption. Remarkably, this sensitivity could be rescued by ectopic expression of RNaseH1, 

which removes R loops, a cellular structure formed during transcription that contains a 

RNA/DNA hybrid and displaced ssDNA40,41. Together our results have uncovered novel roles of 

splicing factors in NMD and identified a new strategy for treating MDS and other cancers with 

defective splicing by targeting the NMD pathway.   

 

Results 

A novel reporter system for NMD analysis in individual cells 
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In our effort to screen for additional NMD factors and regulators, we developed a new reporter 

system that can rapidly and accurately measure NMD activity in individual mammalian cells. 

This new reporter system (Fig. 2.1A) is built on a bioluminescence-based NMD reporter that we 

developed previously, which consists of two separate, but highly homologous, transcription units 

that are inserted in tandem into a single vector30,42. Each unit in the original reporter contains a 

CMV promoter, a T cell receptor-β (TCR β) minigene containing three exons and two introns, a 

HA tag-encoding sequence inserted in exon 1, and a polyadenylation signal. The first unit, which 

contains the open reading frame (ORF) of the CBR luciferase and its natural stop codon in exon 

2 of the TCR β minigene, expresses a nonsense mRNA that is targeted for degradation by NMD. 

The second unit, which serves as an internal control for the expression of the first unit, contains 

the ORF of the CBG99 luciferase (without a stop codon) in the same position in exon 2 of the 

TCR β minigene. This reporter can be used to measure NMD activity in a population of cells 

based on the ratio of the products of the two fusion reporter genes at the levels of RNA, protein, 

or the luciferase activity of CBR and CBG30,42,43. In order to develop a reporter that can analyze 

NMD activity in individual cells, we inserted the ORFs of mCherry and EGFP (without stop 

codons) immediately upstream of CBR and CBG, respectively, into the original reporter (Fig. 

2.1A). The increase and decrease in the mCherry/EGFP signal ratio represent NMD repression 

and enhancement, respectively. Both the fluorescent proteins (mCherry and EGFP) and 

luciferases (CBR and CBG) in the reporter are functional (see below). Thus, this new reporter is 

expected to allow for accurate NMD analysis in individual live cells through fluorescence 

detection, while still retaining the ability to measure NMD efficiency in a group of cells via 

bioluminescence detection.  
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To validate the new NMD reporter, we generated a U2OS cell line stably expressing the reporter 

(hereafter referred to as U2OS reporter cells) through stable transfection and clone validation. As 

expected, while the reporter cells exhibited robust EGFP signal, little mCherry signal was 

detected by fluorescence imaging (Fig. 2.1B). Treatment of the reporter cells with caffeine, 

which inhibits NMD by decreasing enzymatic activity of the SMG1 protein kinase, dramatically 

increased mCherry signal (Fig. 2.1B). Flow cytometry analysis also showed an increase in the 

mCherry/EGFP fluorescence ratio after caffeine treatment, leading to a shift of the cell 

population in a dot plot (Fig. 2.1C). These results were corroborated by western blot and RT-

qPCR analyses of the levels of protein and RNA, respectively, of the two fusion reporter genes 

(Fig. 2.1D and E). Furthermore, shRNA- or sgRNA-mediated depletion of SMG1 or its direct 

substrate UPF1, or UPF2 also resulted in increased mCherry/EGFP ratio at the levels of protein, 

RNA and fluorescence activity (Fig. 2.1F-H, Fig. S2.1A-C), further validating the reporter. 

Together, these data demonstrate that our new reporter is a specific, robust and convenient 

system for analyzing NMD activity at both the single-cell and population levels.  

 

A genome-wide CRISPR/Cas9 knockout screen identifies novel NMD-promoting factors in 

human cells  

Using the new NMD reporter system described above we next performed a genome-wide 

CRISPR/Cas9 knockout screen to identify new NMD factors and regulators. To do this, we 

generated a U2OS reporter cell line expressing Cas9 and infected them with lentiviruses 

expressing the GeCKOv2 human sgRNA library to knock out individual genes in cells. 

Fluorescence-activated cell sorting (FACS) was then performed to collect cells with inhibited 
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NMD activity (0.22% of infected cells with increased mCherry/EGFP ratio) (Fig. 2.2A and B). 

Genomic DNA was then isolated from the collected cells as well as a fraction of infected but 

unsorted cells (baseline control), and the integrated sgRNA inserts in the genome were amplified 

by PCR. After the addition of Illumina sequencing tags via a PCR method, samples were 

subjected to Next-Gen sequencing and analysis in order to obtain read counts for each sgRNA in 

the library. MAGeCK analysis was then performed to rank genes based on the enrichment of 

their respective sgRNAs in the collected NMD-inhibited cells. Notably, among the 15 top ranked 

hits, six are known to promote NMD, including three known NMD factors (UPF1, SMG6, 

RUVBL1), two components of EJC (eIF4A3, RBM8A), and a spliceosome factor that facilitates 

EJC assembly on mRNA (CWC22) (Fig.2. 2C and D). Moreover, Gene Set Enrichment Analysis 

(GSEA) of the overall screen result indicates that NMD, spliceosome and mRNA translation are 

among the most enriched pathways (Fig. 2.2E). These data further validate our new reporter 

system and the quality of the genome-wide CRISPR/Cas9 screen.   

Importantly, our screen identified many potential novel factors that promote NMD in human 

cells, providing a rich resource for future elucidation of the mechanism and regulation of the 

NMD pathway. In the present study, we validated the 9 genes among the top 15 hits that were 

not known to be involved in NMD. These genes are involved in the early stage of spliceosome 

assembly during splicing (SF3B1, SF3B5, SF3A3, PRPF19, RNF113A, DGCR14)44,45,46,47, 

regulation of pyruvate dehydrogenase activity (PDP2)48, cilia function (DNAAF2)49, or unknown 

processes (TRAM1L1). Using two independent sgRNAs for each gene that are distinct from that 

in the original GeCKOv2 library, we examined the effects of knockdown of these factors on 

NMD of our reporter. Western blot results show that depletion of each factor increased the 

expression of the HA-mCherry-CBR-TCR(PTC) fusion protein and the HA-mCherry-CBR-
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TCR(PTC)/HA-EGFP-CBG-TCR(WT) ratio (Fig. S2.2A and B), suggesting that these factors 

promote NMD. To complement this experiment, we examined in Calu-6 cells the effect of 

depletion of these factors on the stability of p53 mRNA, which contains an endogenous PTC and 

is known to be degraded by NMD36,50. Depletion of the aforementioned nine factors individually 

resulted in increased stability of p53 mutant mRNA, consistent with the results of our reporter 

assay (Fig. S2.2C). Furthermore, depletion of these factors also increased the stability of several 

physiological NMD targets in Calu-6 cells, including ATF4, PIM3, and UPP1, but not the 

stability of ORCL, which is not a NMD target (Fig. S2.2D-G)50,51,52. These observations 

independently verify the CRISPR screen results, although further characterization is needed to 

define the functions of these factors in promoting NMD. 

 

SF3B promotes NMD in human cells in an EJC-dependent, but splicing-independent, 

manner 

In human cells splicing is believed to promote NMD by depositing EJC on mRNA that facilitates 

upstream PTC recognition22,53,54,55. However, it remains to be determined whether the entire 

splicing process is necessary for NMD or whether the recruitment of EJC factors to mRNA by a 

subset of spliceosome factors during splicing promotes NMD. Further analysis of our NMD 

screening hits revealed an enrichment of components of the SF3B complex (Fig. S2.2H). To 

untangle the function of SF3B in NMD and in splicing, we employed an intronless, tethering 

reporter system consisting of a lN-fused NMD factor and a target mRNA with boxB sites in the 

3’ UTR. It has been shown previously that the recruitment of a lN-fused NMD factor to the 

cognate boxB sites leads to degradation of the target mRNA by NMD53,56,57,58. To test whether 
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tethering SF3B components to a mRNA can trigger NMD, we first generated a U2OS cell line 

stably expressing an intronless reporter mRNA containing the EGFP ORF and 4 boxB sites in 

the 3’ UTR (Fig. 2.3A). As expected, no cryptic splicing was detected in this reporter mRNA in 

cells (Fig. S2.3A). As a control for this tethering system, we also generated a U2OS cell line 

stably expressing a reporter mRNA with scrambled boxB sites (boxB’) in the 3’ UTR that are 

deficient in lN binding. Expression of lN fusion proteins in cells was controlled by a 

doxycycline inducible system. To assess the stability of the reporter mRNA, actinomycin D was 

used to block transcription, and the amount of reporter mRNA remaining before and after 

actinomycin D treatment was analyzed by RT-qPCR. Consistent with published reports, 

expression of lN-fused UPF3B (a known NMD factor) (lN-UPF3B) resulted in accelerated 

degradation of the boxB reporter mRNA, while expression of lN or UPF3B alone had no effect 

(Fig. 2.3B). Expression of lN, UPF3B or lN-UPF3B did not affect the stability of the boxB’ 

reporter transcript (Fig. 2.3B). Importantly, the decay of the boxB reporter mRNA after lN-

UPF3B induction was completely abrogated by sgRNA/Cas9-mediated depletion of UPF1 or a 

core EJC factor eIF4A3 (Fig. 2.3C, D).  Treating cells with a specific small molecule inhibitor of 

SMG1 (SMG1i), which does not inhibit related kinases, such as ATR, at the used concentrations 

(Fig. S2.3B-D, Bailis et al., manuscript in preparation), also prevented the degradation of the 

boxB reporter mRNA (Fig. 2.3E). Together, these results further validate the degradation of the 

reporter mRNA by NMD.  

Using this tethering system, we next determined whether components of the SF3B complex can 

promote NMD independently of splicing. Remarkably, expression of lN-SF3B1, lN-SF3B5, or 

lN-SF3B6 all resulted in accelerated degradation of the boxB reporter mRNA, in comparison 
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with expression of lN or untagged proteins alone (Fig. 2.3F-H). Expression of these lN-fusion 

proteins had no effects on the stability of the boxB’ reporter mRNA (Fig. 2.3F-H). In contrast to 

SF3B factors, expression of lN-tagged SNRNP40 (a component of U5 snRNP complex) did not 

affect the stability of boxB or boxB’ reporter mRNAs (Fig. 2.3I), demonstrating the specificity 

of the role of SF3B in NMD. Importantly, the degradation of the boxB reporter mRNA induced 

by lN-SF3B1, lN-SF3B5 or lN-SF3B6 was completely abrogated by treatment with SMG1i or 

depletion of UPF1 using sgRNA/Cas9, confirming that the degradation of the tethered reporter 

transcript is mediated by NMD (Fig. 2.3J and K). Depletion of eIF4A3 using sgRNA/Cas9 also 

blocked the decay of the boxB reporter RNA induced by lN-SF3B1, lN-SF3B5 or lN-SF3B6, 

suggesting that SF3B complex promotes NMD in an EJC-dependent manner (Fig. 2.3L). In 

further support of this idea, depletion of the spliceosome factor CWC22 (also a top hit in our 

NMD screen), which facilitates EJC assembly on mRNA through its direct interaction with 

eIF4A354,59,60, prevented the degradation of the tethered boxB reporter transcript (Fig. 2.3M).  

Taken together, these results suggest that SF3B complex possesses a function that directly 

promotes NMD independently of its role in splicing and that SF3B likely acts upstream of 

CWC22 to facilitate EJC assembly and subsequent NMD.  

 

NMD activity is attenuated in cells with aberrant splicing 

The identification of multiple spliceosome factors as top hits in our genome-wide CRISPR 

screen and the novel function of SF3B complex in NMD described above motivated us to 

investigate whether dysregulated splicing, which can result from spliceosome gene 

mutations9,10,11,12,13,14,15,16, affects NMD activity. Heterozygous mutations in SF3B1 occur 
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frequently in MDS, CMML, AML and solid tumors, with SF3B1K700E being the most prominent 

mutation9,11,12,61,62,63,64. To determine whether mutant SF3B1K700E impacts NMD activity, we 

expressed Flag-SF3B1K700E or Flag-SF3B1WT in U2OS cells that contain the lN-UPF3B-boxB 

based tethering reporter system described above. The effects on NMD of the tethered reporter 

were assessed via RT-qPCR. As shown in Fig. 2.4A, cells expressing Flag-SF3B1K700E, but not 

Flag-SF3B1WT, exhibited a reduced level of degradation of the reporter RNA, suggesting that 

NMD activity is attenuated in the presence of this spliceosome mutant. Because the RNA 

binding activity of SF3B1K700E is apparently not affected by the mutation65, the inhibitory effect 

of this mutant on NMD is likely an indirect consequence of splicing dysregulation, which may 

cause mis-splicing of NMD factors or saturating levels of NMD substrates. In further support of 

this idea, we found that NMD of the lN-UPF3B-tethered reporter mRNA was also partially 

repressed in cells expressing U2AF1S34F, another spliceosome mutation frequently found in MDS 

and cancer (Fig. 2.4B)66. Furthermore, treating cells with the splicing modulator pladienolide B 

(PB) also caused inhibition of the degradation of the tethered NMD reporter (Fig. S2.4A). Taken 

together, these observations suggest that NMD is attenuated in cells with perturbed splicing.  

 

Cancer cells harboring spliceosome mutations are preferentially sensitive to NMD 

attenuation  

The high levels of nonsense mRNAs observed in cells with spliceosome mutations16,17 and the 

role of NMD in the clearance of these potentially deleterious transcripts raise the possibility that 

these mutant cells depend on NMD for survival10. The attenuated NMD activity in spliceosome 

mutant cells may also make them more vulnerable to further NMD disruption. In support of this 
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idea, we found that SF3B1K700E-expressing U2OS cells exhibited much more reduced viability 

after shRNA-mediated knockdown of UPF1, compared to cells expressing a comparable level of 

SF3B1WT (Fig. 2.4C). Similarly, U2OS cells expressing U2AF1S34F were also much more 

sensitive to UPF1 knockdown than cells expressing U2AF1WT (Fig. 2.4D). These results suggest 

that a synthetic lethal relationship exists between splicing alterations induced by spliceosome 

mutations and NMD disruption and that NMD can be targeted for selective elimination of 

spliceosome mutant cells. In further support of this idea, we found that SF3B1K700E-expressing 

U2OS cells were much more sensitive to SMG1i, compared to SF3B1WT-expressing cells (Fig. 

2.4E). K562 leukemia cells expressing U2AF1S34F also displayed heightened sensitivity to 

SMG1i, compared to cells expressing U2AF1WT (Fig. 2.4F). Furthermore, SMG1i preferentially 

killed K562 cells containing a knock-in SF3B1K666N mutation compared to the isogenic SF3B1WT 

control cells (Fig. 2.4G, Fig. S2.4B). Together these data suggest the possibility that NMD is a 

therapeutic vulnerability for cancer cells with spliceosome mutations such as MDS. It was 

previously reported that spliceosome mutant cells are sensitive to splicing modulators such as 

PB, sudemycin, E7107, and H3B-880017,66,67,68. Consistent with published results, U2OS or 

K562 cells expressing SF3B1K700E, U2AF1S34F, or SF3B1K666N all exhibited elevated sensitivity 

to PB (Fig. 2.4E-G). Interestingly, SMG1i appeared to have better selectivity in killing these 

spliceosome mutant cells, compared to PB (Fig. 2.4E-G).  

To explore the cellular processes responsible for the sensitivity of spliceosome mutant cells to 

NMD inhibition, we first examined the effects of SMG1i treatment on cell cycle progression and 

DNA replication by performing flow cytometry analysis on K562 cells expressing U2AF1S34F or 

SF3B1K666N after pulse-labeling with BrdU. As shown in Fig. 2.4H and I, prolonged SMG1i 

treatment caused an increase in the G2/M population in both control WT cells and spliceosome 
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mutant cells; however, this effect was much greater in mutant cells than in WT cells. Similarly, 

although SMG1i treatment reduced BrdU incorporation in both WT and spliceosome mutant 

cells, this effect was much greater in mutant cells than in WT cells (Fig. S2.4C and D). These 

data suggest that the combination of splicing dysregulation and NMD inhibition compromises 

cell cycle progression and DNA replication. To further assess the effects of NMD inhibition on 

DNA replication in spliceosome mutant cells, we performed DNA fiber analysis of nascent DNA 

after a sequential IdU/CIdU pulse-labeling procedure69,70. In the DNA tracts with both IdU and 

CldU signals, the average length of the CIdU tracts represents the overall speed of fork 

elongation, while the ratio of CIdU/IdU tract lengths reflects the “smoothness” of fork 

progression with a ratio < 1 indicative of fork obstruction that occurs during CldU incorporation 

(forks stalled/collapsed during IdU incorporation are less likely to proceed to have subsequent 

CIdU incorporation and thus are excluded from analysis.)71,72,73. As shown in Fig. 2.4J and K, 

SMG1i treatment reduced the overall speed of fork progression, with a greater effect in 

spliceosome mutant cells than in control WT cells. SMG1i treatment also caused much more 

reduction in the CIdU/IdU ratio in spliceosome mutant cells than in control WT cells (Fig. 2.4L 

and M), indicative of replication obstruction. Defects in replication often cause fork collapse, 

resulting in chromosomal instability. Consistent with the observed replication defects, we also 

detected a higher level of chromosome abnormalities, including chromosomal breaks and 

fusions, in K562 cells expressing U2AF1S34F or SF3B1K666N after SMG1i treatment, compared to 

control cells expressing WT proteins (Fig. 2.4N and O). Taken together, these data suggest that 

disruption of NMD in spliceosome mutant cells causes an elevated level of replication 

obstruction, leading to slowed replication, cell cycle arrest and chromosomal instability. These 
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effects are likely in part responsible for the observed hypersensitivity of spliceosome mutant 

cells to NMD inhibition.   

 

R-loops are important for the hypersensitivity of spliceosome mutant cells to NMD 

disruption  

To better understand the molecular mechanisms for the sensitivity of spliceosome mutant cells to 

NMD disruption, we investigated the possible involvement of R-loops (a structure containing a 

RNA:DNA hybrid and a displaced ssDNA) that are known to be elevated in spliceosome mutant 

cells74,75,76. Although R-loops participate in a number of physiological processes, abnormal R-

loop formation can interfere with DNA replication and transcription, causing DNA damage, 

genomic instability and cell death77. Consistent with their high basal levels of R-loops, 

spliceosome mutant cells exhibit intrinsic DNA damage, cell cycle arrest and chromosomal 

instability (Fig. 2.4H-O)78,79,80,81,82. NMD factors have been shown to regulate levels of telomeric 

repeat-containing RNA (TERRA) on telomeres, suggesting that they may play a role in R-loop 

regulation at telomeres83. Notably, we observed that SMG1i treatment or UPF1 depletion caused 

a marked increase in overall R-loop levels in cells (without spliceosome mutations) (Fig. 2.5A 

and B, Fig. S2.5A and C). UPF1 depletion and SMG1i treatment also caused increased H2AX 

phosphorylation (gH2AX), a marker of DNA damage (Fig. S2.5B and D). These increased levels 

of both R-loops and gH2AX were largely rescued by overexpression of RNase H1 that removes 

R-loops (Fig. S2.5E-H). Thus, both spliceosome mutations and NMD disruption cause aberrant 

R-loop formation and DNA damage. This raises the possibility that the combination of 

spliceosome mutations and NMD inhibition causes even more abnormal R-loops and DNA 
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damage. Indeed, SMG1i treatment and U2AF1S34F or SF3B1K700E mutations exhibited additive 

effects on the levels of R-loops andCgH2AX in U2OS cells (Fig. 2.5C, D, F, G). These effects 

were largely rescued by overexpression of RNaseH1 (Fig. 2.5C, D, F, G). Remarkably, the 

selective killing effect of SMG1i on spliceosome mutant K562 cells was also largely rescued by 

RNase H1 overexpression, indicating that R loops are a major underlying mechanism for the 

sensitivity of spliceosome mutants to NMD inhibition (Fig. 2.5E and H). Taken together, the 

results described above strongly suggest that disruption of NMD in spliceosome mutant cells 

causes further increase in R loops, leading to replication defects, DNA damage, chromosomal 

instability and cell death. 

 

Discussion 

In this study, we have identified a novel function of the SF3B spliceosome complex in promoting 

NMD in human cells and a synthetic lethal relationship between splicing dysregulation and 

NMD disruption. By performing a genome-wide CRISPR/Cas9 knockout screen using a new 

fluorescence-based reporter system that can measure NMD activity in individual cells, we have 

identified many putative new factors or regulators, including components of the SF3B 

spliceosome complex and other factors required for early spliceosome assembly, in the human 

NMD pathway (Fig. 2.1, Fig. 2.2, Fig. S2.1, Fig. S2.2). These hits, together with those identified 

previously in CRISPR/Cas9 knockout and siRNA knockdown screens using different reporter 

systems, provide a rich resource for future characterization of the mechanism and regulation of 

NMD in human cells84,85. Using a RNA tethering-based reporter system we uncovered a 

previously unrecognized function of the SF3B complex in promoting NMD, separate from its 
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role in pre-mRNA splicing. Interestingly, NMD activity is partially attenuated in cells harboring 

mutations in SF3B1 or U2AF1, which are common in MDS and cancer. These spliceosome 

mutant cells are preferentially sensitive to NMD disruption, suggesting that NMD is a unique 

therapeutic vulnerability for malignancies with defective splicing.   

The identification of a role of the SF3B complex in NMD that is separable from its splicing 

function sheds new light on the process of NMD. Because both introns and EJC assembly are 

important for NMD of multiple reporters, it is believed that pre-mRNA splicing plays a crucial 

role in NMD in mammals, at least for some transcripts. However, it remains unclear whether 

NMD of those transcripts requires the complete process of splicing, or whether the association of 

certain spliceosome factors to pre-mRNA (which then facilitates EJC assembly) during splicing 

promotes NMD. In support of the latter possibility, we found that tethering of multiple 

components of the SF3B complex, but not a later splicing factor SNRNP40, to the 3’ UTR of an 

intronless reporter RNA induced NMD (Fig. 2.3F-K). This RNA degradation requires the core 

EJC factor eIF4A3 as well as CWC22 that directly recruits EJC factors to RNA (note that both 

eIF4A3 and CWC22 are also among the top hits identified in our CRISPR screen) (Fig. 2.2C, D; 

Fig. 2.3L, M). These findings suggest that the splicing of pre-mRNA per se is not required for 

NMD; rather, the recruitment of EJC factors to mRNA by a subset of spliceosome factors during 

splicing facilitates nonsense mRNA recognition and degradation. This model is also in line with 

the fact that several verified top hits in our screen (SF3A3, PRPF19, RNF113A, DGCR14) are 

spliceosome factors required for early steps of splicing86,87. Interestingly, we note that a recent 

siRNA-based genome-wide screen by Hogg and colleagues using a different NMD reporter 

system also identified multiple spliceosome factors among the top hits of potential NMD factors 

or regulators, including four members of the SF3B complex85. Further work is needed to 
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determine precisely how SF3B and possibly other spliceosome factors promote EJC assembly 

and subsequent NMD.  

We found that NMD activity is attenuated under conditions where cells express certain mutant 

splicing factors. Somatic, heterozygous mutations in spliceosome genes such as SF3B1, U2AF1, 

SRSF2 and ZRSR2 frequently occur in patients with MDS, AML, CMML as well as solid 

tumors62,88,89,90,91,92. These mutations cause largely distinct patterns of alterations in splicing and 

gene expression, but a shared feature is the generation of numerous aberrant nonsense mRNAs, 

which normally rely on NMD for clearance9,16,17. Interestingly, our results suggest that the 

activity of NMD is partially attenuated in cells expressing SF3B1(K700E) or U2AF1(S34F) 

(Figs. 2.4A, B), which is in agreement with a previous observation that the levels of certain 

NMD factor transcripts (which are themselves NMD targets) are increased in spliceosome 

mutant cells9,93. Perturbation of splicing by PB, which directly binds to the SF3B complex, also 

suppressed NMD activity (Fig. S2.4A). The inhibitory effect of dysregulated splicing on NMD 

likely results indirectly from abnormal splicing/expression of NMD factors (e.g., UPF3A and 

SMG794), and/or high levels of nonsense mRNAs that saturates the NMD machinery. However, 

some splicing factor mutants can also stimulate NMD of certain target transcripts in a sequence-

specific manner, as exemplified by SRSF2P95H 95.  

The prevalence of aberrant nonsense mRNAs and the attenuated NMD activity observed in 

spliceosome mutant cells raise the possibility that partial disruption of NMD can selectively kill 

these cells. Indeed, we found that cells expressing spliceosome factor mutants were much more 

sensitive to SMG1 inhibition or UPF1 knockdown, compared with cells expressing WT proteins 

(Fig. 2.4C-G). This preferential sensitivity is correlated with cell cycle arrest, DNA replication 

defects, DNA damage and chromosomal instability (Fig. 2.4H-O). Remarkably, the sensitivity of 
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spliceosome mutant cells to SMG1 inhibition could be rescued by RNaseH1 overexpression (Fig. 

2.5E and H), suggesting that R loops are a major underlying mechanism of the synthetic 

lethality. In support of this idea, we found that SMG1 inhibition and spliceosome mutations in 

combination caused an additive effect on R loop formation (Fig. 2.5A-C, F, Fig. S2.5A and C 

)76,81,82. This effect on R loops is in line with that on gH2AX, which is induced by abnormal R 

loop levels (Fig. 2.5D and G). Thus, our data strongly suggest that inhibition of NMD in 

spliceosome mutant cells causes a further increase in R loop levels, which in turn causes 

heightened DNA damage, chromosomal instability and cell death.  

The synthetic lethal relationship identified here between splicing dysregulation and NMD 

inhibition suggests that NMD is an attractive target for treating MDS and cancer with 

spliceosome mutations. Based on the observation that spliceosome mutant cells are sensitive to 

further splicing perturbation, a major effort has been focused on developing splicing modulators 

such as E7107 and H3B-8800¾both of which bind to SF3B1¾as therapies for MDS, AML and 

CMML96,97,98,99,100. However, clinical trials with these compounds either were suspended due to 

toxicity, or did not achieve objective responses97,98,99,100. Our results suggest that NMD 

inhibition, more specifically SMG1 inhibition, is an alternative strategy for treating MDS and 

cancers with defective splicing (Fig. 2.4E-G). It is worth noting that although complete 

disruption of NMD appears to be lethal, its attenuation is tolerated and occurs normally in certain 

developmental processes and in response to cellular stress28,101,102,52. Beyond the cell-

autonomous effects described in this study, NMD inhibition also has the potential to induce anti-

cancer immunity by increasing the production of cancer neoantigens encoded by mis-spliced 

nonsense mRNAs in spliceosome mutant cells103,104,105. In addition to splicing modulation and 

NMD inhibition, spliceosome mutant cells are also sensitive to inhibition of ATR, another 
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SMG1-related kinase in the PIKK family82,106,107. Of note, SMG1i described in this study is 

highly specific for SMG1 (manuscript in preparation). At the concentrations used for NMD 

inhibition in this study, SMG1i does not inhibit ATR (Fig. S2.3D). It will be important to 

directly compare different therapeutic strategies for MDS and cancers with defective splicing and 

test the potential of combination treatment with spliceosome modulators, SMG1i and ATRi.   
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Materials and Methods 

Key reagents, oligo sequences, genetically modified K562 SF3B1K666N cells, SMG1 inhibitor 

The key reagents used in this study are listed in Table 2.1. The sequences of sgRNAs, RT-qPCR 

primers and oligos for CRISPR/Cas9 knock-in are listed in Table 2.2. Genetically modified K562 

SF3B1K666N cells were generated using CRISPR-Cas9 technology. Briefly, 200,000-400,000 

K562 cells were transiently co-transfected with 150 ng of sgRNA (Synthego), 75 ng Cas9 

protein (Berkeley Macrolab), 100 pmol of ssODN donor (hSF3B1.K666N.anti.ssODN), and 200 

ng pMaxGFP expression plasmid (Lonza, #13429329) via nucleofection (Lonza, 4D-

NucleofectorTM X-unit) using solution P3 (Lonza, #V4XP-3024), program FF-120 in small 

cuvettes according to the manufacturer's recommended protocol.  To obtain heterozygous clones, 

two ssODN donors were used: one donor containing the desired modification and a blocking 

modification to prevent subsequent editing after incorporation of the desired modification, and 

another donor containing only a silent blocking modification in order to prevent editing by non-

homologous end joining on the second allele. Five days post nucleofection, cells were single-cell 

sorted by FACS to enrich for GFP+ (transfected) cells, clonally selected, and verified for the 

desired targeted modification via targeted deep sequencing and analysis with CRIS.py108. The 

SMG1i used in this study is an ATP-competitive sulfonamide compound developed by Amgen, 

Inc. The SMG1i inhibits SMG1 enzymatic activity with an IC50 of 0.3 nM and has at least 100-

fold selectivity over other PI3K kinase family members (Bailis et al., manuscript in preparation). 

 

Cell culture, transfection, lentivirus production and infection 
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Human cell lines were cultured in DMEM (Sigma, D5796) (for U2OS, HEK293T and Calu-6) or 

in RPMI 1640 medium (Gibco, 1187) (for K562) supplemented with 10% fetal bovine serum 

(FBS), 100 units/ml penicillin, 100 µg/ml streptomycin in a 5% CO2 incubator at 37 °C.  

Human GeCKOv2 CRISPR knockout pooled library (Addgene # 1000000049) and lenti-Cas9 

plasmid were obtained from addgene (Addgene # 52962), a gift from Feng Zhang109,110. The 

library was amplified in DH5a cells on 100 agar plates (15 cm). Deep Sequencing results 

indicate 98% coverage of all the sgRNAs in the designed library. To generate lentiviruses 

expressing shRNA, Cas9, sgRNA-Cas9, or the GeCKOv2 sgRNA library, HEK 293T cells were 

transfected with lentiviral vectors and packaging vectors (pCMV-VSVG and psPAX2, Addgene 

# 8454 and 12260, respectively), using the Mirus TransIT-LT1 transfection reagent. Cell culture 

medium containing lentiviruses was collected 48 and 72h after transfection, filtered (0.45 µm 

filter, Millipore Sigma #SLHV033RS) and used to infect target cells in the presence of 8 µg/mL 

polybrene.  

Transfection of sgRNA-Cas9 plasmids into Calu-6 cells for individual gene validation was done 

using Lipofectamine 3000 transfection reagent (ThermoFisher Scientific), according to 

manufacturer’s protocol. Cells were selected with puromycin (3 µg/mL) 48 hours after 

transfection. RNA stability was analyzed 6 days after transfection via an actinomyin D chase 

assay, as described previously30,43.  

 

Generation of a fluorescence- and bioluminescence-based NMD reporter  
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The fluorescence/bioluminescence-based NMD reporter system used for the genome-wide 

CRISPR/Cas9 screen in this study was generated by inserting ORFs of mCherry and EGFP 

immediately upstream of CBR and CBG, respectively, into our previously described 

bioluminescence-based NMD reporter30,42. Complete annotated sequence of the reporter is 

available upon request. U2OS cells stably expressing this NMD reporter system was generated 

by co-transfecting the NMD reporter plasmid and pMXs-puro vector that encodes a puromycin-

resistance gene into U2OS cells, using Mirus TransIT-LT1 transfection reagent. After selection 

with puromycin (1.5 µg/mL), single clones expressing the reporter were isolated and validated by 

examining the effects of depletion of known NMD factors or caffeine treatment on NMD of the 

integrated reporter. 

 

Assays for NMD of the fluorescence/bioluminescence-based reporter 

Multiple assays were used to measure NMD activity using our new fluorescence/ 

bioluminescence-based reporter. For live cell imaging, mCherry and GFP fluorescence signals in 

U2OS reporter cells plated in 3.5 cm glass-bottomed dishes (MatTek corporation) were acquired 

using a Nikon Eclipse TiE inverted microscope with MetaMorph software, as described 

previously111. For flow cytometry, resuspended single U2OS reporter cells were analyzed on a 

FACS machine (Sony, Synergy HAPS 1) to separate cell populations based on mCherry and 

GFP signals. For western blots, anti-HA antibodies were used to detect reporter fusion proteins 

HA-mCherry-CBR-TCR(PTC) and HA-EGFP-CBG-TCR(WT). For RT-qPCR, total RNA was 

isolated using RNAqueous™ Total RNA Isolation Kit from ThermoFisher Scientific (AM1912), 

or TRIzol™ reagent from ThermoFisher Scientific (15596). Trace DNA contamination was 
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removed using TURBO DNA-free™ Kit from ThermoFisher Scientific (AM1907), followed by 

reverse transcription to synthesize cDNA using PrimeScript RT kit from Clontech (RR037A). 

qPCR was performed using a two-step PCR protocol (melting temperature: 95°C; 

annealing/extension temperature: 60°C; cycle number: 40) on an ABI V117 real-time PCR 

system with PowerUp SYBR Green Master Mix (ThermoFisher Scientific, A25742). The mRNA 

levels of the housekeeping gene GAPDH was used for normalization. The sequences of the 

primers used are listed in Table 2.2. 

 

Knockdown of NMD factors 

To knock down NMD factors in U2OS reporter cells for reporter validation, lentiviruses 

expressing previously validated shRNAs targeting UPF1 or SMG1 were used30. A shRNA 

targeting firefly luciferase (shLuc) was used as a control. The sequences of shRNA used are 

listed in Table 2.2. U2OS reporter cells were infected with shRNA and incubated for 4 days 

before NMD reporter analysis. Depletion of the proteins was confirmed via western blot analysis 

using anti-SMG1 (Cell Signaling Technology, 9149), and anti-UPF1 (Cell Signaling 

Technology, 12040) antibodies. Tubulin (Santa Cruz, sc8035) was used as a loading control. 

 

Pooled genome-wide CRISPR/Cas9 knockout screen to identify new NMD factors and 

regulators  

U2OS reporter cells were infected with lentiviruses expressing Cas9, and then selected with 

blasticidin (10 µg/mL) for 5 days to establish the U2OS reporter Cas9 cell line. This cell line was 
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validated by examining the effects of sgRNAs targeting SMG1 or UPF2 on NMD of the reporter. 

To carry out the screen, U2OS reporter Cas9 cells were infected with lentiviruses expressing the 

GeCKOv2 library (containing two sub-libraries) at a MOI of less than 1 with a 500x coverage of 

the library. Six days after infection, FACS was performed to collect cells with increased 

mCherry to EGFP ratio, indicative of NMD inhibition. Genomic DNA was extracted using 

PureLink Genomic DNA kit (ThermoFisher Scientific, K182001) followed by two PCR 

reactions to prepare samples for Illumina Next-Gen sequencing. The first PCR was used to 

amplify out sgRNA inserts in the cells, and the second PCR was used to add Illumina sequencing 

tags as well as indexes for sample identification. To improve complexity of the library required 

for deep sequencing, a mixture of 5 forward primers with staggered nucleotides immediately 

upstream of the sgRNA sequences was used in the second PCR. The sequences of primers used 

are listed on Table 2.2. All PCR reactions were performed using Phusion Hot Start II High-

Fidelity DNA Polymerase (ThermoFisher Scientific, F549L). PCR samples were sequenced 

using the Illumina HiSeq 2500 platform. As a baseline control for the abundance of sgRNAs in 

the collected cells, a fraction of unsorted cells were subjected to the same procedure of genomic 

DNA isolation, PCR and Next-Gen Sequencing. 

 

Data analysis and hit identification and validation 

A custom Perl script was used to determine the read counts for each sgRNA and map the 

sgRNAs to their gene IDs in the reference GeCKOv2 library. The script is available upon 

request. Only the sgRNAs with at least 10 reads in each sample was used for further analysis. 

Analysis of genes enriched in FACS-collected cells (with inhibited NMD) compared to baseline 
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control was performed using MAGeCK, a computational tool designed to rank genes based on 

the enrichment of individual sgRNAs as well as the number of enriched sgRNAs for each 

gene112.   

To validate genes identified in the screen, 2 gRNAs from a different human gRNA library 

(AVANA library)113 for each of the 9 genes were cloned into the pLentiCRISPR V2 vector that 

also expresses Cas9 (Addgene, #52961). Two non-targeting gRNAs were also cloned into the 

same vector to serve as controls. All the sequences for the gRNAs used are listed in Table 2.2. 

Lentiviruses containing each gRNA were generated and infected into U2OS reporter Cas9 cells 

to deplete expression of individual genes. NMD activity was then analyzed by western blot to 

determine the ratio of HA-mCherry-CBR-TCR(PTC) to HA-EGFP-CBG-TCR(WT). Since the 

ratio was similar for both non-targeting controls, the relative NMD activity was normalized to 

one non-target control (sgNT-1). As an independent NMD analysis system for further validation, 

human pulmonary adenocarcinoma Calu-6 cells that express a PTC-containing p53 mRNA was 

used36,50,30,43. The same sgRNAs-Cas9 in pLentiCRISPR V2 described above were transfected 

into Calu6 cells, followed by 48 hours of puromycin selection, to deplete expression of the top 

ranked 9 genes individually. Six days after transfection, cells were treated with actinomycin D (5 

µg/mL) for 6 hours to inhibit transcription. RNA samples were collected immediately before and 

after actinomycin D treatment. RT-qPCR was performed for p53 mRNA to measure the percent 

mRNA remaining after addition of actinomycin D.  In addition to p53 mRNA, the RNA stability 

of several known non-mutant NMD targets, including ATF4, PIM3, and UPP1, and a control that 

is not a NMD target, ORCL, were also measured in the same samples51. 
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lN-boxB tethering reporter and NMD analysis 

The EGFP-4boxB reporter construct was generated based on the Globin 4boxB tethering reporter 

developed by Dr. Niels Gehring and colleagues53. The 3’UTR containing four boxB sites were 

cloned into pEGFP-C1 vector to replace the 3’ UTR of the EGFP transcription cassette. The 

resulting EGFP-4boxB expression cassette was then sub-cloned into the pCDH lentiviral vector 

at Xba I and Sal I sites. A construct with scrambled boxB (boxB’) sequences was also generated 

as a control. To generate a dox-inducible lN-UPF3B expression construct, the lN-V5-UPF3B 

ORF in pCl-neomycin-lN-V5-UPF3B (also a gift from Dr. Gehring) was PCR amplified and 

inserted into the pCW lentiviral vector.  lN-fused SF3B1, SF3B5, SF3B6 or SNRNP40 

inducible expression constructs in pCW were generated by replacing UPF3B in pCW-lN-

UPF3B. Note that all these constructs contain a V5 tag sequence immediately downstream of lN 

in all the constructs. pCW-lN-V5 expressing lN alone, pCW-UPF3B, pCW-V5-SF3B1, pCW-

V5-SF3B5, pCW-V5-SF3B6 and pCW-V5-SNRNP40 without lN were also generated as 

controls. Inducible U2OS cell lines expressing lN, lN-fused or lN-unfused UPF3B, SF3B1, 

SF3B5, SF3B5, or SNRNP40 were generated by lentivirus infection. Stable expression of EGFP-

4boxB or EGFP-4boxB’ reporters in these cells lines were generated by lentiviral infection. 

Expression of the inducible proteins was induced by 1 to 2 µg/mL doxycycline for 48 hours. The 

stability of EGFP-4boxB or EGFP-4boxB’ reporter transcripts was determined by RT-qPCR 

analysis of RNA samples before or after 6 hours of actinomycin D treatment.  

 

Cell viability analysis 
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U2OS cells stably expressing Flag-SF3B1WT or Flag-SF3B1K700E were generated by lentiviral 

infection. To assess the sensitivity of these cells to SMG1i or PB, cells were plated in triplicates 

at similar density and 24 hours later treated with DMSO, SMG1i or PB. K562 cells with 

inducible expression of U2AF1WT or U2AF1S34F were generated previously114. To assess the 

sensitivity of these cells to SMG1i or PB, cells were grown in T25 flasks in the presence or 

absence of 250 ng/mL doxycycline for 48 hours. An equal number of induced or uninduced cells 

were then plated and treated with SMG1i, PB, or DMSO. K562 cells with SF3B1K666N knock-in 

mutation were generated using the CRISPR/Cas9 technique. The sensitivity of these cells and 

their parental K562 cells to SMG1i or PB was also evaluated. In all these experiments, alamar 

blue assay was performed 3 days after addition of SMG1i or PB. Relative viability of SMG1i- or 

PB-treated cells were obtained after normalization to DMSO-treated cells. To determine the 

effect of RNase H1 over-expression on cell sensitivity to SMG1i, K562 cells with inducible 

U2AF1WT or U2AF1S34F, or with SF3B1K666N knock-in mutation were infected with lentiviruses 

generated from empty pCDH vector (EV), or pCDH-RNase H1 (RNH1). Cell viability in EV, or 

RNH1-expressing cells after SMG1i treatment was then measured as described above. 

To determine the sensitivity of spliceosome mutant cells to UPF1 depletion, U2OS cells stably 

expressing SF3B1WT, SF3B1K700E, U2AF1WT, or U2AF1S34F were infected with UPF1 shRNA, or 

with shLuc control. Twenty hours after infection, an equal number of cells were plated and 

alamar-Blue assay was performed on day 3 to day 6 post infection. To determine cell growth 

from day 3 to day 6, the values obtained from alamar blue assay were normalized to day 3 for 

each cell line. To determine the relative cell viability of cells expressing WT versus mutant 

splicing factors after UPF1 depletion, values from cells infected with shUPF1 were normalized 

to values from shLuc infected cells. 
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Immunofluorescence to detect R-loops and gH2AX 

U2OS cells were treated with DMSO, or SMG1i (5 µM) for 24 hours, or infected with 

shUPF1/shLuc and incubated for 5 days. U2OS cells stably expressing SF3B1WT, SF3B1K700E, 

U2AF1WT, or U2AF1S34F were infected with LacZ control, or RNase H1 adenovirus and then 

treated with SMG1i (1 µM) for 3 days. For immunofluorescence to detect S9.6 nuclear signal 

and gH2AX, cells plated on cover-slips were first permeabilized with PBS containing 0.2% 

Triton, washed with PBS and fixed with 4% PFA, and then blocked with 10% goat serum in 

PBS. Cells were then incubated with antibodies against S9.6 (1:100, Millipore Sigma, 

MABE1095) and gH2AX (1:500, Cell Signaling Technology, 9718) for 2 hours at room 

temperature. Cells were washed with PBS containing 0.1% Triton, and then incubated with 

Alexa Fluor 488-conjugated goat anti-mouse antibody (1:500, ThermoFisher, A-11001) and 

Alexa Fluor 568-conjugated goat anti-rabbit (1:500, ThermoFisher, A-11011) for 1 hour. Cells 

were counter-stained with Hoecsht (ThermoFisher, H3570). Images were acquired using Nikon 

Ti-E fluorescence microscope and Metamorph software (Molecular Devices). Nuclear signal of 

S9.6 and gH2AX were quantified using ImageJ software.  

 

 Detection of R-loops in U2OS cells using slot blot analysis  

U2OS cells were treated with DMSO, or SMG1i (5 µM) for 24 hours, or infected with 

shUPF1/shLuc and incubated for 5 days. Genomic DNA was then extracted using 

phenol/chloroform/isoamyl alcohol. 2 µg genomic DNA was treated with buffer alone or with 1 
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unit RNase H enzyme (NEB, MO297S) for 2 hours at 37 °C. 200 ng to1 µg genomic DNA was 

then slotted directly to 2 nylon membranes. One membrane, used as loading control was 

incubated in DNA denaturing buffer (0.5 M NaOH, 1.5 M NaCl) for 10 min and neutralized for 

10 min in 0.5 M Tris-HCl pH 7.2, 1.5 M NaCl. Both membranes were UV-crosslinked, blocked 

with casein buffer, and then incubated with S9.6 antibody (Millipore Sigma, MABE1095) to 

detect R-loops, or with anti-ssDNA antibody (Millipore Sigma, MAB3868) to detect total DNA. 

Images were obtained using ChemiDoc imaging system, and the S9.6/ssDNA signal was 

quantified using ImageJ software. To determine if RNase H1 can remove R-loops in cells, U2OS 

cells were infected with adenovirus expressing LacZ control, or RNase H1. After respective 

UPF1 knockdown/SMG1i treatment, genomic DNA was then extracted and slot blot analysis 

was performed as described above.  

 

Immunoblotting  

Detection of all the proteins was done using SDS-PAGE and immunoblotting using the Odyssey 

Infra-red Imaging System as described before115. Briefly, cells were lysed using 50 mM Tris, 

10% glycerol, 2% SDS, 5% β-mercaptoethanol. Protein lysates were run on SDS-PAGE gels and 

transferred to a PVDF membrane, blocked with casein buffer and incubated with the indicated 

primary antibodies (see Table 2.1). DyLight 800- and DyLight 680-conjugated secondary 

antibodies were used to detect the primary antibodies, and signals were acquired using Odyssey 

Infra-red Imaging System (Li-COR Biosciences). 
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BrdU incorporation and cell cycle analysis 

Cell proliferation and cell cycle analysis was performed by flow cytometry after BrdU 

incorporation, as described before69. K562 cells expressing inducible U2AF1WT or U2AF1S34F, or 

with SF3B1K666N knock-in mutation were treated with 1 µM SMG1i for 3 days, and then 

incubated with BrdU (20 µM) for 30 min. Subsequently, cells were washed with cold PBS and 

fixed with 70% ethanol overnight. DNA was denatured using 2 N HCl/0.5% Triton X-100 for 30 

minutes in room temperature, and then neutralized with 0.1 M sodium tetraborate, pH 8.5. Cells 

were then incubated overnight with mouse anti-BrdU antibody (1:00, BD Biosciences, 347580) 

in PBS + 0.5% Tween 20 + 1% BSA. After washing with PBS + 1% BSA, cells were incubated 

with Alexa Fluor 488-conjugated goat anti-mouse IgG (1:500, ThermoFisher, A-11001) for 1 h. 

After washing with PBS + 1% BSA, cells were re-suspended in PBS containing propidium 

iodide (20 µg/ml) and RNase A (200 µg/ml) and incubated at 37°C for 30 min. Flow cytometry 

was performed using BD FACSCalibur Flow Cytometer and cell cycle profile was analyzed with 

FlowJo software. 

 

Metaphase chromosome spreads  

Metaphase chromosome spreads to evaluate genomic instability following SMG1i treatment 

were performed as previously described70. K562 cells expressing inducible U2AF1WT or 

U2AF1S34F, or SF3B1K666N knock-in mutation were treated with 1 µM SMG1i for 2 days. Cells 

were then washed and incubated in fresh medium for another 2 days. In the last 4 hours, cells 

were incubated with 10 µM nocodazole. Cells were then collected, washed with PBS, and re-

suspended with10 ml of pre-warmed hypotonic solution (10 mM KCl, 10% FBS) and incubated 
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for 10 min at 37 °C. Cells were fixed by adding 500 µl of cold fixation buffer (1V acetic acid: 3V 

methanol), and washed in the same buffer 4 times before overnight incubation in the same buffer 

at 4 °C. The nuclei were then spread on pre-chilled slides, air-dried overnight, and mounted with 

Prolong Gold Antifade reagent (ThermoFisher, P36930) containing Hoechst (ThermoFisher, 

H3570). Images were acquired using Nikon Ti-E fluorescence microscope. Fifty randomly 

selected metaphases per experiment (total of 3 experiments) were scored for chromosomal 

aberrations.  Statistical analysis was done using GraphPad Prism 6.    

 

DNA fiber assay 

A DNA fiber assay to determine replication fork speed was performed as previously described70. 

K562 cells expressing inducible U2AF1WT or U2AF1S34F, or SF3B1K666N knock-in mutation were 

treated with 1 µM SMG1i for 3 days. Cells were then incubated with 20 µM 5-iodo-2′-

deoxyuridine (IdU, Sigma-Aldrich) for 30 minutes, followed by incubation with 400 µM 5-

chloro-2′-deoxyuridine (CldU, Sigma-Aldrich) for 30 minutes. Cells were then collected and 

washed with cold PBS, and then re-suspended at a concentration of 4 million cells per mL. A 

total of 2 uL of the cell solution was combined with 8 uL of lysis buffer (200 mM Tris.HCl pH 

7.5; 50 mM EDTA; 0.5 % SDS) on a glass slide. Cells were allowed to settle on the slide for 5 

minutes and then tilted at 20-45° angle to allow DNA to slowly spread on the slide. The resulting 

DNA spreads were air-dried, fixed in 3:1 methanol/acetic acid and stored at 4 °C. DNA fibers 

were denatured using 2.5 N HCl for 1 hr, washed with PBS and blocked with 5% BSA in PBS-T 

(PBS + 0.1% Tween-20) for 1 hr. CldU and IdU tracks were detected with rat anti-BrdU 

antibody (1:50, Abcam, ab6326), and mouse anti-BrdU antibody (1:50, BD Biosciences, 
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347580), respectively. Secondary antibodies (anti-rat Alexa 488, (1:100, ThermoFisher, A-

11077) and anti-mouse Alexa 546 (1:100, Thermofisher, A21123) were used to detect CldU and 

IdU. Antibody incubations was performed in a humid 37°C chamber for 1 hr for primary 

antibodies, and 45 min for secondary antibodies. The slides were air-dried and mounted with 

Prolong Gold Antifade reagent (ThermoFisher, P36930). Fluorescence images of IdU and CldU 

tracks were captured using an inverted microscope (Nikon Ti-E) and Metamorph software 

(Molecular Devices). The IdU and CldU tract lengths were measured using ImageJ software, and 

the pixel length values were converted into micrometers using the scale bars created by the 

microscope. Fork speed mas measured as total length of CldU tract in the tracts containing both 

IdU and CldU. Statistical analysis was performed using Prism 6.  
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Figure 2.1. A new reporter system for analyzing NMD in individual human cells. 
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A. Schematic diagram of a multicolored, fluorescence- and bioluminescence-based NMD 
reporter.  

B. Fluorescence imaging of the NMD reporter in U2OS reporter cells after treatment with H2O 
or caffeine (10 mM) for 24 hrs. 

C. FACS analysis of U2OS reporter cells treated with H2O or caffeine (10 mM) for 24 hrs. In 
the merged panel, green dots are H2O-treated cells whereas red dots are caffeine-treated cells. 

D. Western blot of the protein products (HA-tagged) of the NMD reporter after 24-hr treatment 
of U2OS reporter cells with H2O or caffeine (10 mM). 

E. Ratios of mCherry-containing reporter mRNA to EGFP-containing reporter mRNA in U2OS 
reporter cells treated with H2O or caffeine (10 mM) for 24 hrs. The mCherry/EGFP mRNA 
ratio of the H2O control was normalized to 1. Data represent the mean ± SD of three 
independent experiments. **p ≤ 0.01 (paired t-test). 

F. Western blot of the protein products of the NMD reporter in U2OS reporter cells after 
shRNA-mediated knockdown of SMG1 or UPF1. 

G. Ratio of mCherry-containing reporter mRNA to EGFP-containing reporter mRNA in U2OS 
reporter cells after shRNA-mediated knockdown of SMG1 or UPF1. The mCherry/EGFP 
mRNA ratio of the shLuc control was normalized to 1. Data represent the mean ± SD of three 
independent experiments. **p ≤ 0.01 (paired t-test). 

H. FACS analysis of U2OS reporter cells after shRNA-mediated knockdown of SMG1 or UPF1. 
In the merged figure, green dots represent control shLuc cells, and red dots represent 
shSMG1 or shUPF1 samples. 
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Figure 2.2. A genome-wide CRISPR/Cas9 knockout screen to identify novel NMD factors 
and regulators. 

A. Workflow of the CRISPR/Cas9 knockout screen.  
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B. FACS analysis of Cas9-expressing U2OS reporter cells infected with the two GeCKOv2 
sgRNA sub-libraries, or a non-targeting sgRNA control. The gating represents the collected 
cell population with attenuated NMD activity. 

C. A bubble plot showing results of gene enrichment analysis obtained from MAGeCK analysis. 
The x-axis represents gene IDs of all targeted genes. The bubble size represents the number 
of gRNAs enriched for the target gene.  

D. The list of top 15 gene hits as ranked by MAGeCK analysis. 
E. GSEA analysis of the ranked gene list. 
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Figure 3. SF3B complex promotes NMD in an EJC-dependent, but splicing-independent, 
manner. 

A. A schematic of a tethering reporter that recapitulates NMD in human cells. The 3’ UTR of 
the reporter construct contains 4 boxB sites. A reporter with scrambled boxB (boxB’) 
sequences in the 3’ UTR was used as a control.  

B. Left, western blot analysis of UPF3B or lN-UPF3B proteins (both V5-tagged) after 
induction with doxycycline (1 ug/mL). Right, stability of boxB or boxB’ reporter mRNA in 
cells expressing lN, UPF3B, or lN-UPF3B. RNA decay analysis was performed by 
measuring RNA before and after actinomycin D treatment. Percent mRNA remaining was 
calculated as the mRNA remaining as a percent of RNA before actinomycin D treatment. 
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Data represent the mean ± SD of three independent experiments. **p ≤ 0.01, *p ≤ 0.05 
(unpaired t-test). 

C. Left, western blot analysis of UPF1 knockdown and lN-UPF3B induction in cells expressing 
the boxB reporter mRNA. Right, effects of UPF1 knockdown on the stability of boxB 
reporter mRNA in cells expressing lN or lN-UPF3B. Data represent the mean ± SD of three 
independent experiments. ***p ≤ 0.001 (unpaired t-test). 

D. Left, western blot analysis of eIF4A3 knockdown and lN-UPF3B induction in cells 
expressing the boxB reporter mRNA. Right, effects of eIF4A3 knockdown the stability of 
boxB reporter mRNA in cells expressing lN or lN-UPF3B. Data represent the mean ± SD of 
three independent experiments. **p ≤ 0.01 (unpaired t-test). 

E. RNA decay analysis of boxB reporter mRNA in lN- or lN-UPF3B expressing cells after 
treatment with DMSO or SMG1i (1 µM). Data represent the mean ± SD of three independent 
experiments. **p ≤ 0.01 (unpaired t-test). 

F–I. Left, western blot analysis of lN-tagged or untagged spliceosome factors (SF3B1, SF3B5, 
SF3B5 or SNRNP40) in cells after induction with doxycycline (2 ug/mL). Middle and right, 
stability of boxB or boxB’ reporter mRNA in cells expressing lN, or lN-tagged or -untagged 
spliceosome factors. Data represent the mean ± SD of three independent experiments. *p ≤ 
0.05 (unpaired t-test). 

J.  Effects of SMG1i (1 µM) or DMSO on the stability of boxB reporter mRNA in cells 
expressing lN, lN-SF3B1, lN-SF3B5 or lN-SF3B6. Data represent the mean ± SD of three 
independent experiments. ***p ≤ 0.001; **p ≤ 0.01 (unpaired t-test). 

K-M. Left, western blot analysis of knockdown of UPF1, eIF4A3 or CWC22, and expression of 
lN-SF3B1, lN-SF3B5 or lN-SF3B6 in cells expressing the boxB reporter mRNA. Right, 
effect of knockdown of UPF1, eIF4A3 or CWC22 on the stability of the boxB reporter 
mRNA in cells expressing lN, lN-SF3B1, lN-SF3B5 or lN-SF3B6. Data represent the 
mean ± SD of three independent experiments. **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 
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Figure 2.4. Cells expressing mutant spliceosome factors rely more on NMD for survival. 

A-B. Left, western blot analysis of lN-UPF3B in boxB reporter cells expressing Flag-tagged 
SF3B1WT/K700E (A) or U2AF1WT/S34F (B). Right, effects of SF3B1WT/K700E or U2AF1WT/S34F 
overexpression on the stability of boxB reporter mRNA in cells in the presence of lN-
UPF3B. Data represent the mean ± SD of three independent experiments. **p ≤ 0.01 
(unpaired t-test). 

C-D. Left, western blot analysis of UPF1 knockdown in U2OS cells expressing Flag-tagged 
SF3B1WT/K700E (C) or U2AF1WT/S34F (D). Right, effects of UPF1 knockdown on the viability 
of U2OS cells expressing SF3B1WT/K700E (C) or U2AF1WT/S34F (D). Data represent the mean 
± SD of three independent experiments. ***p ≤ 0.001; **p ≤ 0.01 (unpaired t-test). 

E.  Left, western blot analysis of Flag-tagged SF3B1WT or SF3B1K700E overexpression in U2OS 
cells. Middle and right, effects of SMG1i or PB treatment (3 days) on the viability of U2OS 
cells expressing SF3B1WT or SF3B1K700E. Data represent the mean ± SD of three independent 
experiments. **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 

F. Left, western blot analysis of inducible expression of Flag-tagged U2AF1WT or U2AF1S34F in 
K562 cells. Middle and right, effects of SMG1i or PB treatment (3 days) on the viability of 
K562 cells expressing U2AF1WT or U2AF1S34F. Data represent the mean ± SD of three 
independent experiments. **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 
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G. Effects of SMG1i or PB treatment (3 days) on the viability of K562 cells with or without 
SF3B1K666N knock-in mutation. Data represent the mean ± SD of three independent 
experiments. ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 

H-I. Effects of SMG1i treatment (1 µM, 3 days) on the G2-M population of the K562 cells 
expressing U2AF1WT/S34F (H) or K562 cells with or without SF3B1K666N knock-in mutation 
(I). Data represent the mean ± S.E.M of three independent experiments. ***p ≤ 0.001; **p ≤ 
0.01; *p ≤ 0.05 (unpaired t-test). 

J-M. Effects of SMG1i treatment (1 µM, 3 days) on DNA replication speed (J, K) or fork 
progression (L, M) in K562 cells expressing U2AF1WT/S34F (J, L) or K562 cells with or 
without SF3B1K666N knock-in mutation (K, M). Upper, experimental scheme for DNA fiber 
assay. Lower, distribution of CldU tract lengths or CIdU/IdU ratio. Green bars represent the 
median ± S.E.M of two independent experiments. A total of 150 tracts analyzed per sample. 
****p ≤ 0.0001; ***p ≤ 0.001; **p ≤ 0.01 (Mann Whitney test). 

N-O. Effects of SMG1i treatment (1 µM, 2 days followed by 2 days of recovery) on 
chromosomal integrity in K562 cells expressing U2AF1WT/S34F (N) or K562 cells with or 
without SF3B1K666N knock-in mutation (O). Upper, experimental scheme of metaphase 
spread assay. Lower, distribution of chromosomal aberrations per mitosis. Red bars represent 
the mean ± S.E.M of two independent experiments. A total of 150 metaphases analyzed per 
sample. **p ≤ 0.01 (Mann Whitney test). 
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Figure 2.5. Elevated R-loop formation is a major underlying mechanism for the 
hypersensitivity of spliceosome mutant cells to NMD inhibition 

A. R-loop analysis of SMG1i-treated cells. U2OS cells were treated with SMG1i (5 µM) for 24 
hours and then immunofluorescence was performed to detect nuclear S9.6 signal. Left, 
representative images showing nuclear signal of S9.6. Right, Quantification of nuclear S9.6 
signal. Red bars represent the mean ± S.E.M of two independent experiments. A total of 130 
nuclei analyzed per sample. ****p ≤ 0.0001 (Mann Whitney test). 
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B. R-loop analysis of U2OS cells after shRNA-mediated knockdown of UPF1. U2OS cells were 
infected with shLuc/UPF1 and then incubated for 5 days. Immunofluorescence was 
performed to detect nuclear S9.6 signal. Left, representative images showing nuclear signal 
of S9.6. Right, Quantification of nuclear S9.6 signal. Red bars represent the mean ± S.E.M of 
two independent experiments. A total of 130 nuclei analyzed per sample. ***p ≤ 0.001 
(Mann Whitney test). 

C. R-loop analysis of U2OS cells stably expressing U2AF1 WT/S34F. Cells were infected with 
adenovirus expressing lacZ control or RNH1 and then treated with SMG1i (1 µM) for 3 days. 
Red bars represent the mean ± S.E.M of two independent experiments. A total of 150 nuclei 
analyzed per sample. ****p ≤ 0.0001 (Mann Whitney test). 

D. Immunofluorescence analysis of gH2AX in U2OS cells stably expressing U2AF1 WT/S34F. 
Cells were infected with adenovirus expressing lacZ control or RNH1 and then treated with 
SMG1i (1 µM) for 3 days. Red bars represent the mean ± S.E.M of two independent 
experiments. A total of 150 nuclei analyzed per sample. ****p ≤ 0.0001 (Mann Whitney 
test). 

E. Cell viability analysis of K562 cells stably expressing EV/RNH1 after induction of U2AF1 
WT/S34F and treatment with indicated amounts of SMG1i for 3 days. Data represent the 
mean ± SD of three independent experiments. **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 

F. R-loop analysis of U2OS cells stably expressing SF3B1 WT/K00E. Cells were infected with 
adenovirus expressing lacZ control or RNH1 and then treated with SMG1i (1 µM) for 3 days. 
Red bars represent the mean ± S.E.M of two independent experiments. A total of 150 nuclei 
analyzed per sample. ****p ≤ 0.0001 (Mann Whitney test). 

G. Immunofluorescence analysis of gH2AX in U2OS cells stably expressing SF3B1 
WT/K700E. Cells were infected with adenovirus expressing lacZ control or RNH1 and then 
treated with SMG1i (1 µM) for 3 days. Red bars represent the mean ± S.E.M of two 
independent experiments. A total of 130 nuclei analyzed per sample. ****p ≤ 0.0001 (Mann 
Whitney test). 

H. Cell viability analysis of K562 control/SF3B1-K666N knock-in cells stably expressing 
EV/RNH1, treated with indicated amounts of SMG1i for 3 days. Data represent the mean ± 
SD of three independent experiments. ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05 (unpaired t-test). 
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Figure S2.1. A new reporter system for analyzing NMD in individual human cells. 

A. Western blot analysis of the protein products of the NMD reporter in Cas9-expressing U2OS 
reporter cells after sgRNA-mediated depletion of UPF2. 

B. Ratios of mCherry-containing reporter mRNA to EGFP-containing reporter mRNA in Cas9-
expressing U2OS reporter cells after UPF2 depletion. The mCherry/EGFP mRNA ratio of 
the sgNT control was normalized to 1. Data represent the mean ± SD of three independent 
experiments. *p ≤ 0.05 (paired t-test). 

C. FACS analysis of Cas9-expressing U2OS reporter cells after UPF2 depletion. 
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Figure S2.2. A genome-wide CRISPR/Cas9 knockout screen to identify novel NMD factors 
and regulators. 
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A. Western blot analysis of the protein products of the NMD reporter in Cas9-expressing U2OS 
reporter cells after sgRNA-mediated depletion of the 9 top-ranked genes individually. Two 
sgRNAs that are distinct from that in the original GeCKOv2 library were used for 
knockdown.  

B. Quantified results of the samples depicted in A. The ratios of the sgNT (nontargeting) control 
was normalized to 1. Data represent the mean ± SD of three independent experiments. ***p 
≤ 0.001; **p ≤ 0.01; *p ≤ 0.05 (paired t-test).   

C. Effects of depletion of the 9 top-ranked genes individually on the stability of endogenous 
PTC-containing p53 mRNA in Calu-6 cells. Cells were transfected with sgRNA-Cas9 
constructs and incubated for 6 days, and then treated with actinomycin D for 6 hours to 
inhibit transcription. Total mRNA was collected before and after actinomycin D treatment. 
p53 mRNA levels were measured using RT-qPCR. Data represent the mean ± SD of three 
independent experiments. *p ≤ 0.05; **p ≤ 0.01; (paired t-test).   

D-G. Effects of depletion of the 9 top-ranked genes individually on the stability of known NMD 
targets ATF4 (D), UPP1 (E), and PIM3 (F) in Calu-6 cells. ORCL (G) is non-NMD target 
control. Samples were generated as depicted in C.  Data represent the mean ± SD of three 
independent experiments. ****p ≤ 0.0001; ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05 (paired t-
test).   

H. Comparison of the enrichment of NMD factor genes and spliceosomal complex genes in 
collected NMD-inhibited cells in the genome-wide CRISPR/Cas9 screen. 
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Figure S2.3. SF3B complex promotes NMD in an EJC-dependent, but splicing-
independent, manner. 

A. No cryptic splicing was detected in boxB or boxB’ tethering reporter RNA. Total RNA was 
extracted from U2OS cells expressing boxB or boxB’ reporter mRNAs, followed by RT 
using a oligo dT primer. PCR was then used to generate cDNAs with primers that anneal to 
5’UTR and 3’UTR of the boxB or boxB’ reporter transcripts.  

B. Western blot analysis of the protein products of the new NMD reporter after treatment with 
SMG1i at indicated concentrations for 24 hours. 

C. Ratios of mCherry-containing reporter mRNA to EGFP-containing reporter mRNAs in 
U2OS cells treated with 1 µM SMG1i for 24 hours. DMSO-treated cells were normalized to 
1. Data represent the mean ± SD of three independent experiments. **p ≤ 0.01 (paired t-test). 

D. Western blot analysis of phosphor-CHK1 (phosphor serine 345), total CHK1, and gH2AX in 
U2OS cells pre-treated with the indicated concentrations of SMG1i for 24 hours, and then 
treated with 1 mM hydroxyurea (HU) for 6 hours. 
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Figure S2.4. Cells expressing mutant spliceosome factors rely more on NMD for survival. 

A. Left, western blot analysis of induced lN-UPF3B in cells expressing the boxB reporter 
mRNA after treatment with 1 nM PB for 24 hours. Right, effects of PB treatment on the 
stability of boxB reporter mRNA in the presence of lN-UPF3B.  
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B. Genetically modified K562 SF3B1K666N expresses 50% SF3B1WT mRNA and 50% 
SF3B1K666N mRNA. Sequence fragment density reads from RNA sequencing of K562 cells 
with or without SF3B1K666N knock-in mutation aligned in IGV. The control cells express 
100% SF3B1WT mRNA. The knock-in cells express 50% mRNA containing the C to G 
mutation at position 1998 (that changes K at 666 to N, colored bars on the left) and 100% 
mRNA containing the blocking modifications (that do not change the amino acid) to prevent 
additional editing by Cas9 (colored bars on the right). 

C. Upper, effects of SMG1i treatment (1 µM, 3 days) on the cell cycle and DNA replication of 
K562 cells expressing U2AF1WT or U2AF1S34F. Treated cells were pulsed labeled with BrdU 
for 30 min before being harvested for propidium iodide staining and flow cytometry. Lower, 
percentages of cells in different cell cycle phases after SMG1 treatment. Data represent the 
mean ± S.E.M. of three independent experiments. 

D.  Upper, effects of SMG1i treatment (1 µM, 3 days) on the cell cycle and DNA replication of 
K562 cells with or without SF3B1K666N knock-in mutation. Treated cells were pulsed labeled 
with BrdU for 30 min before being harvested for propidium iodide staining and flow 
cytometry. Lower, percentages of cells in different cell cycle phases after SMG1 treatment. 
Data represent the mean ± S.E.M. of three independent experiments. 

 



93 
 

 

Figure S2.5. Elevated R-loop formation is a major underlying mechanism for the 
hypersensitivity of spliceosome mutant cells to NMD inhibition 

A. R-loop analysis using slot blot assay. U2OS cells were treated with SMG1i (5 µM) for 24 
hours and then genomic DNA was collected for R-loop analysis. Total genomic DNA 
with/without RNase H (RNH) digestion were slotted on a membrane and S9.6 antibody was 
used to detect R-loops. ssDNA was used to detect total genomic DNA. 

B. Western blot analysis of gH2AX in U2OS cells treated with SMG1i as described in A, above. 
C. R-loop analysis of U2OS cells after shRNA-mediated knockdown of UPF1. Total genomic 

DNA with/without RNase H (RNH) digestion were slotted on a membrane and S9.6 antibody 
was used to detect R-loops. ssDNA was used to detect total genomic DNA. 

D. Western blot analysis of gH2AX in U2OS cells after knockdown of UPF1 as described in C, 
above. 
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E. R-loop analysis of U2OS cells treated with SMG1i (5 µM) for 24 hours after lacZ, or RNH1 
adenovirus infection for 48 hours.  

F. Western blot analysis of gH2AX in U2OS infected with adenovirus-lacZ, or RNH1, and then 
treated with SMG1i, as described in E. 

G. R-loop analysis of U2OS cells after shRNA-mediated knockdown of UPF1 and infection 
with adenovirus-lacZ, or RNH1 for 48 hours.  

H. Western blot analysis of gH2AX in U2OS cells after UPF1 KD and infection with 
adenovirus-lacZ, or RNH1, as described in G. 

I. Western blot analysis of RNH1 over-expression in U2OS cells expressing U2AF1WT, 
U2AF1S34F, SF3B1WT, or SF3B1K700E, infected with adenovirus lacZ control, or adenoivurs 
RNH1. 

J. Western blot analysis of RNH1 in K562 cells stably expressing RNase H1 after induction of 
U2AF1 WT/S34F 

K. Western blot analysis of stably expressed RNH1 in K562 control, or SF3B1-K666N knock-in 
cells 

 

 

 

	

 Table 2.1. List of key resources and reagents used. 

Key Reagents and Resources Table 
Reagent or Resource Source Identifier 

   
NMD reporters and other plasmids   
pBS-(HA-CBR-TCR(PTC))-(HA-CBG-
TCR(WT)) 

Generated in You lab N/A 

pBS-(HA-CBR-TCR(PTC)) Generated in You lab N/A 
pBS-(HA-CBG-TCR(WT)) Generated in You lab N/A 
pBS-(HA-mCherry-CBR-TCRβ(PTC)) Generated in You lab N/A 
pBS-(HA-EGFP-CBG-TCRβ(WT)) Generated in You lab N/A 
pBS-(HA-mCherry-CBR-TCR(PTC))-(HA-
EGFP-CBG-TCR(WT)) 

Generated in You lab N/A 

lentiGuide-Human GeCKOv2  Addgene Cat#10000
00049 

pLenti-Cas9 Blast  Addgene Cat#52962 
pCMV-VSVG  Addgene Cat#8454 
psPAX2 Addgene Cat#12260 
pLentiCRISPR V2  Addgene Cat#52961 
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pCl-ƛN-V5-UPF3B Gift from Dr. Niels 
Gehring 

N/A 

pCW-ƛN-V5-UPF3B Cloned from pCl-ƛN-V5 -
UPF3B 

N/A 

pCI-globin-4boxB Gift from Dr. Niels 
Gehring 

N/A 

pCDH-GFP-4boxB Cloned from pCI-globin-
4BOXB 

N/A 

pCDH-GFP-scrambled-4boxB (boxB') Generated in You lab N/A 
pCW-UPF3B Generated in You lab N/A 
pCW-Cas9-puro Addgene Cat#50661 
pCW-ƛN-V5 Generated in You lab N/A 
pCW-ƛN-V5-SF3B5 Generated in You lab N/A 
pCW-V5-SF3B5 Generated in You lab N/A 
pEGFP-C1-GFP-SF3B6-FLAG Addgene Cat#86870 
pCW-ƛN-V5-SF3B6 Generated in You lab N/A 
pCW-V5-SF3B6 Generated in You lab N/A 
pCDNA3.1-FLAG-SF3B1-WT Addgene Cat#82576 
pCDNA3.1-FLAG-hSF3B1-K700E Addgene Cat#82577 
pCDH-FLAG-SF3B1-WT Generated in You lab N/A 
pCDH-FLAG-SF3B1-K700E Generated in You lab N/A 
pCW-ƛN-V5-SF3B1 Generated in You lab N/A 
pCW-V5-SF3B1 Generated in You lab N/A 
pSPlit-OC-SNRNP40 Addgene Cat#51741 
pCW-V5-SNRNP40 Generated in You lab N/A 
pCW-ƛN-V5-SNRNP40 Generated in You lab N/A 
pCDNA3.1-FLAG-U2AF1-WT Obtained from Walter lab N/A 
pCDNA3.1-FLAG-U2AF1-S34F Obtained from Walter lab N/A 
pCDH-FLAG-U2AF1-WT Generated in You lab N/A 
pCDH-FLAG-U2AF1-S34F Generated in You lab N/A 
pMaxGFP  Lonza™ Cat#13429

329 
   

Antibodies   
Mouse anti-HA antibody Biolegend Cat#90150

7  
Rabbit anti-SMG1 Cell Signaling 

Technology  
Cat#9149  

Rabbit anti-UPF1 Cell Signaling 
Technology  

Cat#12040 

Mouse anti-tubulin Santa Cruz Cat#sc-
8035 

Rabbit anti-SF3B1 Cell Signaling 
Technology  

Cat#14434 

Mouse anti-FLAG Cell Signaling Cat#8146 
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Technology  
Rabbit anti-V5 Cell Signaling 

Technology  
Cat#13202 

Mouse anti-β-Actin  Cell Signaling 
Technology  

Cat#3700 

Rabbit anti-UPF2 Novus Biologicals Cat#NB2-
20813 

Rabbit anti-CWC22 Abclonal Cat#A1311
6 

Rabbti anti-eIF4A3 Abclonal Cat#A4338 
Rabbit anti-UPF3B Bethyl laboratories Cat#A303-

688A 
Rabbit anti-ɣH2AX 
 

Cell Signaling 
Technology  

Cat#9718 

Mouse anti-S9.6 Millipore Sigma Cat#MAB
E1095 

Mouse anti-ssDNA Millipore Sigma Cat#MAB
3868 

Rabbit anti-Rnase H1 Gene Tex Cat#GTX1
17624 

Mouse monoclonal anti-BrdU, Clone B44 BD PharMingen Cat#34758
0 

Rabbit monoclonal Phospho-Chk1 (S345) Cell Signaling 
Technology  

Cat#2348 

Mouse monoclonal anti-Chk1 Santa Cruz Cat#sc-
8408 

Rat monoclonal anti-BrdU [BU1/75 (ICR1)] Abcam Cat# 
ab6326 

Alexa Fluor 488-conjugated goat anti-mouse ThermoFisher Scientific Cat#A-
11001 

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed 
Secondary Antibody, DyLight 680 

ThermoFisher Scientific Cat#35568 

Goat anti-Mouse IgG (H+L) Cross-Adsorbed 
Secondary Antibody, DyLight 800 

ThermoFisher Scientific Cat# SA5-
10176  

Alexa Fluor 488-conjugated goat anti-rat ThermoFisher Scientific Cat#A-
11077 

Alexa Fluor 546-conjugated goat anti-mouse ThermoFisher Scientific Cat#A-
21123 

Alexa Fluor 568-conjugated goat anti-rabbit ThermoFisher Scientific Cat#A-
11011 

   
Chemicals   
Actinomycin D Sigma-Aldrich Cat#A1410 
Caffeine Sigma-Aldrich Cat#C0750 
TransIT®-LT1 Transfection Reagent Mirus Cat#MIR 
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2304 
Lipofectamine 3000 Reagent ThermoFisher Scientific Cat#L3000

015 
RNAqueous™ Total RNA Isolation Kit  ThermoFisher Scientific Cat#AM19

12 
TRIzol™ reagent  ThermoFisher Scientific Cat#15596 
TURBO DNA-free™ Kit ThermoFisher Scientific Cat#AM19

07 
PrimeScript RT kit Clontech Cat#RR03

7A 
PowerUp SYBR Green Master Mix  ThermoFisher Scientific Cat#A2574

2 
PureLink Genomic DNA kit  ThermoFisher Scientific Cat#K1820

01 
Phusion Hot Start II High-Fidelity DNA 
Polymerase 

ThermoFisher Scientific Cat#F549L 

SMG1 inhibitor (SMG1i) Amgen N/A 
Pladienolide B (PB) Santa Cruz 

Biotechnology 
Cat#sc-
391691 

5-Iodo-2′-deoxyuridine (IdU) Sigma-Aldrich Cat#I7125 
5-Chloro-2′-deoxyuridine (CldU) Sigma-Aldrich Cat#C6891 
BrdU ThermoFisher Cat#B2315

1 
Hoechst 33342 ThermoFisher Cat#H3570 
Propidium Iodide MP Biomedicals Cat#19545

8 
Prolong Gold Antifade reagent  ThermoFisher Cat#P3693

0 
Solution P3 Lonza™ Cat#V4XP

-3024 
   

Purified Protein   
Cas9-NLS Berkeley Macrolab N/A 

 

Table 2.2. Sequence Identities of PCR primers, oligo, sgRNAs, and shRNAs. 

sgRNA, shRNA, primer and oligo sequences 
Name of primer Sequence 

  

RT-qPCR Primers  
EGFP-F CGACGGCAACTACAAGACCC 
EGFP-R TGTGGCGGATCTTGAAGTTCA 
mCherry-F AGAAGACCATGGGCTGGGAG 
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mCherry-R ACTGTTCCACGATGGTGTAG 
p53-F GAGGTTGGCTCTGACTGTACC  
p53-R TCCGTCCCAGTAGATTACCAC  
ATF4-F ATGTCCCCCTTCGACCA 
ATF4-R CCATTTTCTCCAACATCCAATC 
UPP1-F CCAGCCTTGTTTGGAGATGT 
UPP1-R ACATGGCATAGCGGTCAGTT 
PIM3-F GCACCGCGACATTAAGGAC 
PIM3-R TCCCCACACACCATATCGTAG 
ORCL-F GGCAGCAGATGAAATCTGAA 
ORCL-R TCCAGAATGTGATTTTTGCAG 
GFP-3'UTR-F GCTTTCTTGCTGTCCAATT 
BOXB-R GAACCTTTGGTCGAGTG 
BOXB'-R GAACCTTTGGCACAGATTATC 
GAPDH-F CCTGTTCGACAGTCAGCCG 
GAPDH-R CGACCAAATCCGTTGACTCC 

  
RT-PCR Primers for 
boxB/boxB' 

 

GFP-5'-UTR-F GTTTAGTGAACCGTCAGATCG  
GFP-3'-UTR-R GAAATTTGTGATGCTATTGC 

  
Primers for first PCR to amplity sgRNA inserts from genomic DNA 
sgRNA Forward AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTT

CG 
sgRNA Reverse CTTTAGTTTGTATGTCTGTTGCTATTATGTCTACTATTCTT

TCC 
  

Illumina sequencing 
primers 

 

Forward 1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCTtcttgtggaaaggacgaaacaccg 

Forward 2 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCTGtcttgtggaaaggacgaaacaccg  

Forward 3 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCTTAtcttgtggaaaggacgaaacaccg 

Forward 4 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCTCAGtcttgtggaaaggacgaaacaccg 

Forward 5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCTAGAGtcttgtggaaaggacgaaacaccg 

Reverse Index 1 CAAGCAGAAGACGGCATACGAGATAACCTCAGTGACTG
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GAGTTCAGACGTGTGCTCTTCCGATCTtctactattctttcccctgcact
gt 

Reverse Index 2 CAAGCAGAAGACGGCATACGAGATTCTAAGCGTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTtctactattctttcccctgcact
gt 

Reverse index 3 CAAGCAGAAGACGGCATACGAGATCTGTCATGTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTtctactattctttcccctgcact
gt 

Reverse index 4 CAAGCAGAAGACGGCATACGAGATGGAGGTGGTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTtctactattctttcccctgcact
gt 

  
sgRNA sequences  
sgNT#1 AGGACTAGTGTCGCACTCAG 
sgNT#2 TGAATCGAATACAAACGATG 
sgSMG1#1 GAAGTTGTAGACTGTGTAGG 
sgUPF2#1 GCTGGTGAAAGAGAGAGCAG 
sgUPF1#1 GTAGATGTAGCCAGACACCG 
sgSF3A3#2 GATGCTCACCAAGAAGTCCA 
sgSF3A3#3 GGAGGTCAGTGGGAACCTGA 
sgSF3B1#2 TATGACCAGGAAATTTATGG 
sgSF3B1#3 TCTTGATGAAGCTCAAGGAG 
sgSF3B5#1 GCAGTCCAAGTACATCGGCA 
sgSF3B5#2 TGTAGGAGCAGTACGAGTCG 
sgPDP2#1 CTACAGACACACATCAACAG 
sgPDP2#2 GCATTGGCTCAAGCACCCAG 
sgPRPF19#1 CTAATCATGTTTATGAGCGG 
sgPRPF19#2 GCTCATCGAGAAGTACATTG 
sgRNF113A#1 GCGCAGCCAGAAGATCCAGG 
sgRNF113A#2 GCAGCTTTCTCCAGGAAAGG 
sgDNAAF2#1 AATGTTCTCCCAGTACGCCG 
sgDNAAF2#2 AATGTTCTCCCAGTACGCCG 
sgDGCR14#1 GAAGGAGTACCTGGAAGCCG 
sgDGCR14#2 CCTCCAGACGGTCATCCAAA 
sgTRAM1L1#2 ATTCCTGGCTGAGAACGGGG 
sgTRAM1L1#3 GAGTAGACTGTCCGCCAAAG 
sgEIF4A3 GTTGGCTGTGCAGATCCAGA 
sgCWC22 GATTATAGTCATCCTCCAGA 

  
shRNA sequences  
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shLuc GAATCGTCGTATGCAGTGAAA 
shUPF1 GCAUCUUAUUCUGGGUAAUAA 
shSMG1 GCCGAGAUGUUGAUCCGAAUA 

  
Oligo sequences for engineered SF3B1-K666N mutation in K562 cells 
hSF3B1_K666N 
sgRNA spacer 

TCCTGGCAAGCGAGACACAC 

hSF3B1.K666N.anti.ss
ODN modifications 

(upper case) 
 

*Phophorothioate 
linkages 

t*a*aacttctaagatgtggcaagatggcacagcccataagaatagctatctgttgtacaatGt
taataccagtgtgCcGcgcttgccaggacttcttgcttttgcacacagcttttaagaagggcaa
taaagaagga*a*t 

hSF3B1.Block.Sense.ss
ODN modifications 

(upper case) 
 

*Phophorothioate 
linkages 

a*t*tccttctttattgcccttcttaaaagctgtgtgcaaaagcaagaagtcctggcaagcgCg
Gcacactggtattaagattgtacaacagatagctattcttatgggctgtgccatcttgccacatct
tagaagtt*t*a 
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Abstract 

The nonsense mediated RNA decay (NMD) pathway safeguards the integrity of the 

transcriptome by targeting mRNAs with premature translation termination codons (PTCs) for 

degradation. It also regulates gene expression by degrading a large number of non-mutant RNAs 

(including mRNAs and noncoding RNAs) that bear NMD-inducing features. Consequently, 

NMD has been shown to influence development, cellular response to stress, and clinical outcome 

of many genetic diseases. Small molecules that can modulate NMD activity provide critical tools 

for understanding the mechanism and physiological functions of NMD, and they also offer 

potential means for treating certain genetic diseases and cancer. Therefore, there is an intense 

interest in identifying small-molecule NMD inhibitors or enhancers. It was previously reported 

that both inhibition of NMD and treatment with the AMPK-selective inhibitor Compound C 

(CC) induce autophagy in human cells, raising the possibility that CC may be capable of 

inhibiting NMD. Here we show that CC indeed has a NMD-inhibitory activity. Inhibition of 

NMD by CC is, however, independent of AMPK activity. As a competitive ATP analog, CC 

does not affect the kinase activity of SMG1, an essential NMD factor and the only known kinase 

in the NMD pathway. However, CC treatment down-regulates the protein levels of several NMD 

factors. The induction of autophagy by CC treatment is independent of ATF4, a NMD target that 

has been shown to promote autophagy in response to NMD inhibition. Our results reveal a new 

activity of CC as a NMD inhibitor, which has implications for its use in basic research and drug 

development.  

Introduction 
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First discovered in S. cerevisiae, nonsense mediated mRNA decay (NMD) is an evolutionarily 

conserved RNA quality control pathway that targets aberrant RNAs with PTCs for 

degradation[1]. Translation of PTC-containing mRNAs generates aberrant protein products, 

which may have pathological effects on the cell. Therefore, NMD plays an important protective 

role in the cell. It is believed that NMD modulates the clinical outcome of approximate 1/3 of 

human genetic disorders and many forms of cancer caused by mutations that lead to nonsense 

mRNAs[2]. In addition to downregulating mutant transcripts, more recent studies indicate that 

NMD also regulates the expression of ~10% of mRNAs bearing NMD-inducing features (e.g. 

PTCs caused by alternative splicing or programmed intron retention, upstream open reading 

frames (uORFs), intron-containing 3’ UTRs, exceedingly long 3’ UTRs), as well as many 

noncoding RNAs[3, 4]. Consequently, NMD as well as its dynamic regulation play an important 

role in many physiological processes, such as embryonic development, neurogenesis, 

myogenesis and stress responses[3, 5-9].  

Small-molecule inhibitors or enhancers of NMD offer critical tools for dissecting the NMD 

pathway and its physiological functions. They also have the potential for treating certain genetic 

disorders and cancer[2, 10]. While active NMD renders many dominant mutations recessive by 

degrading transcripts encoding abnormal proteins with dominant activities, it can exacerbate the 

phenotypes of many disorders by preventing the synthesis of truncated protein products with 

normal function[10]. Therefore, inhibition of NMD is an attractive therapeutic approach for 

treating certain diseases where the protein products of the corresponding nonsense mRNAs are 

fully or partially functional. Furthermore, NMD inhibitors can be combined with drugs that 

promote translation readthrough at PTCs (e.g. PTC124 and aminoglycosides such as G418 and 

gentamicin) to produce full-length protein products[11-13]. As a proof of concept, co-treatment 
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with NMD inhibitor NMDI14 and G418 restored full-length p53, and subsequent cell death in 

cells expressing nonsense p53 mRNA[14]. Similar effects have been observed for siRNA-

mediated depletion of UPF1 and gentamicin in promoting the production of full length CFTR 

protein in cell lines derived from cystic fibrosis patients that carry nonsense mutations in the 

gene[15]. Inhibition of NMD also has the potential to improve cancer immunotherapy[16]. In 

cancer cells, nonsense mRNAs produced by aberrant splicing or frame-shift mutations encode 

proteins with novel epitopes, therefore, NMD inhibition is expected to increase the levels of 

cancer antigens for immune detection[16]. Several NMD inhibitors with different mechanisms of 

action have been previously identified. NMDI-1 disrupts the interaction of the NMD factors 

UPF1 and SMG5, whereas NMDI-14 disrupts the interaction of UPF1 with SMG7[14, 17]. 

Pateamine A inhibits the function of the EJC factor eIF4III in NMD[18]. Cardiac glycosides (e.g. 

ouabain, digoxin, digitoxin, lanatoside C and proscillaridin) and 5-azacytidine have been shown 

to inhibit NMD indirectly by increasing intracellular calcium levels and by inducing MYC 

expression, respectively[19, 20]. 

In this study, we have identified compound C (6-[4-(2-Piperidin-1-ylethoxy) phenyl]-3-pyridin-

4-ylpyrazolo [1,5-a] pyrimidine) as a new cell-permeable, small-molecule inhibitor of NMD in 

human cells. Compound C (CC) was first identified as an inhibitor of the metabolic sensor kinase 

AMPK in a chemical screen[21]. CC inhibits the kinase activity of AMPK by competing with 

ATP for binding, with Ki of 109 ± 16 nM in the absence of AMP[21]. The binding of CC to 

AMPK also prevents its activation by AICAR or metformin, the most prescribed drug for type II 

diabetes[21]. Interestingly, CC was also identified in a functional screen in zebrafish as a 

compound (Dorsomorphin) that perturbs dorsoventral axis formation[22]. CC exerts this activity 

by inhibiting bone morphogenetic protein (BMP) type 1 receptors ALK2, ALK3, and ALK6, 
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preventing BMP-mediated SMAD 1/5/8 phosphorylation, target gene transcription and 

osteogenic differentiation[22]. In addition to AMPK and ALKs, CC was found to inhibit several 

other kinases, including ERK8, MNK1, PHK, MELK, DYRK isoforms, HIPK2, Src, and Lck, 

with similar or even greater potency[23]. Thus, CC is a selective, but not specific, inhibitor of 

AMPK, although it is widely used as a tool for AMPK studies[24-29]. A recent study shows that 

CC can induce autophagy, which would be contrary to the finding that activation of AMPK, but 

not its inhibition, promotes autophagy[30-32]. However, the ability of CC to induce autophagy is 

AMPK-independent[30]. Interestingly, disruption of NMD activity also results in activation of 

autophagy, which is, in part, due to the stabilization of the transcripts of ATF4, a transcription 

factor that promotes expression of multiple autophagy genes including LC3B and ATG5[33]. 

These observations prompted us to test the possibility that CC inhibits NMD, which in turn leads 

to autophagy induction. By examining the effects of CC on a highly effective NMD reporter as 

well as endogenous NMD target transcripts, we demonstrate that CC indeed possesses a 

previously unrecognized activity in inhibiting NMD in human cells. The ability of CC to 

suppress NMD is not mediated through the inhibition of AMPK or SMG1, the only known 

kinase in the NMD pathway, but it down-regulates protein levels of several core NMD factors. 

Although CC treatment causes upregulation and stabilization of the NMD target ATF4, this 

effect is apparently not responsible for the induction of autophagy by CC.  

Results 

CC inhibits NMD activity in human cells 

To determine whether CC can modulate NMD efficiency in human cells, we used a previously-

developed bioluminescence-based reporter system, which can accurately measure NMD activity 

in mammalian cells using multiple assays[19]. This reporter contains two transcription units that 
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express a PTC-containing TCRβ minigene fused to CBR luciferase (CBR-TCRβ(PTC)) and a 

wild type TCRβ minigene fused to CBG luciferase (CBG-TCRβ(WT)), respectively (Fig 3.1A). 

NMD activity is measured as the ratio of CBR-TCRβ(PTC) to CBG-TCRβ(WT) at the levels of 

mRNA, protein, or luciferase activity, with an increase in the ratio representing NMD 

inhibition[19]. To determine the effects of CC on NMD, we treated human U2 osteosarcoma 

(U2OS) cells stably expressing the reporter with CC and then measured NMD activity by 

bioluminescence imaging. CC inhibited NMD in a dose- and time-dependent manner, with ~ 3-

fold inhibition of NMD of the reporter observed after 24-hr treatment with CC at 10 µM, a 

concentration commonly used to inhibit AMPK in vivo and in vitro (Figs 3.1B and C). This level 

of inhibition is similar to that caused by treatment with caffeine (10 mM, 24 hrs), an inhibitor of 

SMG1 (Fig 3.1B)[17], or by shRNA-mediated knockdown of NMD factors such as SMG1, 

UPF1 and UPF2[19].  

To confirm the results obtained from bioluminescence imaging, we measured CBR and CBG 

mRNA and protein levels using RT-qPCR and western blot, respectively. Consistent with the 

results of bioluminescence imaging, CC treatment increased the ratio of CBR-TCRβ(PTC) to 

CBG-TCRβ(WT) at both mRNA and protein levels (Figs 3.1D and E). Treating the human lung 

cancer cell line Calu-6 or non-transformed BJ human fibroblasts with CC also resulted in NMD 

inhibition as measured by the NMD reporter (Figs 3.1F and G), indicating that the effect of CC 

on NMD is not a cell line-specific phenomenon. 

To further validate that CC is a bona fide inhibitor of NMD, we determined its effects on the 

stability of the endogenous mutant p53 mRNA in Calu-6 cells, which contains a PTC 

mutation[34]. To do this, cells were first treated with CC for 24 hrs. Subsequently, the 

transcription inhibitor actinomycin D was added to block new mRNA synthesis for 6 hrs. RT-
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qPCR was then performed to measure the levels of the p53 mutant mRNA immediately before 

and after actinomycin D treatment. As shown in Fig 3.2A, CC stabilized the PTC-containing p53 

mRNA, further supporting the idea that CC inhibits NMD. 

CC stabilizes physiological NMD targets 

In addition to eliminating mutant mRNAs, NMD also regulates gene expression by targeting 

many non-mutant physiological transcripts for degradation[35]. To further illustrate the effects of 

CC on NMD, we determined whether CC can also stabilize physiological NMD targets. The 

SC35 (SRSF2) gene encodes three splicing variants, two of which (SC35C and SC35D) are 

targets of NMD[36]. We found that CC treatment increased the levels of SC35C and SC35D, but 

had no effect on SC35WT that is not targeted by NMD (Fig 3.2B), consistent with the results 

obtained from the NMD reporter described above. In further support of the idea that CC inhibits 

NMD, CC also stabilized endogenous NMD targets such as PIM3, UPP1, FRS2, and PISD, but 

had no effect on ORCL and HPRT, which are not NMD targets (Fig 3.2C)[3, 37]. Previous 

studies have shown that transcripts of several NMD factors including SMG1, UPF1, UPF2, 

SMG5, SMG6, and SMG7 are themselves targets of NMD, a feature that allows for 

autoregulation of the NMD pathway[38, 39]. We predicted that inhibition of NMD by CC would 

cause stabilization of these transcripts. Indeed, CC stabilized the mRNA of these NMD factors 

(Fig 3.2D). CC treatment also increased the steady-state levels of these transcripts except UPF2 

(Fig 3.2E). UPF3B mRNA, which is not a NMD target, was not stabilized by CC, although its 

steady-state level increased (Fig 3.2D), suggesting that CC exerted additional effects on NMD 

factor transcripts. Taken together, these data strongly suggest that CC has a previously 

unrecognized activity in inhibiting NMD in human cells.  
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CC inhibits NMD independent of AMPK 

CC has been widely used as an inhibitor of AMPK, although it also targets several other 

kinases[23]. To determine whether CC inhibits NMD through AMPK, we used siRNAs to knock 

down both isoforms of the catalytic subunit of AMPK (AMPKα1 and AMPKα2) in U2OS cells. 

As expected, AMPK depletion reduced the phosphorylation of acetyl-CoA carboxylase1 (ACC1) 

at serine 79, a direct AMPK phosphorylation site (Fig 3.3A)[40]. However, AMPK knockdown 

did not influence the inhibitory effects of CC on NMD, suggesting that CC inhibits NMD 

independently of AMPK (Fig 3.3B). To rule out the possibility that the residual AMPK present 

in the knockdown cells was sufficient to mediate CC’s effects on NMD, we generated AMPKα-

KO cells lacking both AMPKα1 and AMPKα2 using the CRISRP/Cas9 technology (Fig 3.3C). 

No significant differences in the extent of NMD inhibition were observed between WT and 

AMPKα-KO cells after CC treatment (Fig 3.3D), indicating that AMPK inhibition is not 

responsible for CC’s effect on NMD. Interestingly, we found that forced activation of AMPK 

using 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) did not enhance, but actually 

attenuated NMD activity (Figs 3.3E and 3.3F). These results strongly suggest that CC inhibits 

NMD independently of AMPK activity and that activation, but not inhibition, of AMPK 

suppresses NMD.  

CC does not inhibit the kinase activity of SMG1, but it reduces the protein levels of 

multiple NMD factors  

As a competitive ATP analog[21], CC is known to inhibit several other kinases in addition to 

AMPK[23]. One possible mechanism by which CC inhibits NMD involves the inhibition of 

SMG1, which is the only known protein kinase that directly phosphorylates the RNA helicase 
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UPF1 to promote NMD[34]. To test this possibility, we performed an in vitro kinase assay to 

determine whether CC can inhibit the kinase activity of SMG1. We immunoprecipitated His-

tagged wild type (WT) or a kinase dead (DA) mutant of SMG1 expressed in 293T cells[34]. A 

purified recombinant GST-p53N fusion protein containing a N-terminal segment of p53 was 

used as a model substrate for SMG1 (Fig 3.4A)[41]. As shown before, SMG1(WT), but not 

SMG1(DA), efficiently phosphorylated GST-p53N (Fig 3.4B)[41]. This kinase activity was 

abolished by caffeine, a known inhibitor of SMG1[17]. However, SMG1 kinase activity was not 

affected by CC at 10 µM, a concentration that efficiently inhibited NMD in cells (Figs 3.4B and 

3.1). This result suggests that the inhibitory effects of CC on NMD do not result from SMG1 

inhibition.  

We next asked whether CC affected the protein levels of NMD factors, which would impact 

NMD activity. Interestingly, we found that CC markedly reduced the protein levels of 3 core 

NMD factors including UPF1, SMG5, and SMG6 (Figs 3.4C and 3.4D). CC treatment did not 

affect the protein levels of SMG1, UPF2, SMG7 and UPF3B, indicating the effects of CC are 

specific for a subset of NMD factors (Figs 3.4C and 3.4D). This downregulation of the protein 

levels of multiple NMD factors may in part underlie the inhibitory effects of CC on NMD.   

CC augments the expression and stability of the NMD target ATF4, but ATF4 is 

dispensable for autophagy induced by CC  

Our investigation of the effects of CC on NMD was initially inspired by the observations that 

both CC treatment and NMD disruption induce autophagy[30, 33]. The autophagy-inducing 

activity of CC in cells is unexpected as AMPK, which CC inhibits, has been shown to promote 

autophagy[42]. To investigate the relationships between CC, NMD, and autophagy, we first 
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determined whether CC could induce autophagy under our experimental conditions. U2OS cells 

were treated with 10 µM CC and the induction of autophagy was assessed. Consistent with 

published findings, both western blot and immunofluorescence staining results show a dramatic 

increase in the levels of LC3B-II, a surrogate marker of autophagosome formation, after CC 

treatment (Figs 3.5A and B)[43]. Using transmission electron microscopy (TEM), we also 

detected a marked increase in autophagosome formation after CC treatment (Figs 3.5C and D). 

Knockdown of the NMD factor SMG1 or UPF1 also resulted in accumulation of LC3B-II, in 

agreement with previous observations (Fig 3.5E)[33]. These data indicate that both CC and 

NMD disruption do indeed induce autophagy. Given the inhibitory effects of CC on NMD 

activity described above, these observations suggest the possibility that NMD inhibition is part of 

the mechanism for the autophagy-inducing activity of CC. 

It has been shown that the induction of autophagy in response to NMD inhibition is in part 

mediated by ATF4, a direct NMD target[33]. Upon NMD inhibition, the stabilization of ATF4 

mRNA leads to increased ATF4 protein levels, which promote autophagy by activating the 

expression of autophagy genes including LC3B and ATG5[44]. To determine whether ATF4 

contributes to CC-induced autophagy, we first examined whether CC treatment causes 

stabilization and increase of ATF4 mRNA. RT-qPCR results indicate that CC treatment indeed 

increased both the stability and the steady-state levels of ATF4 mRNA (Figs 3.5F and G), 

leading to a dramatic increase in ATF4 protein levels (Fig 3.5H). To determine whether this 

ATF4 upregulation is important for autophagy induction after CC treatment, we knocked down 

ATF4 using siRNA in cells and then examined LC3B-II accumulation after CC treatment. 

Depletion of ATF4 expression did not significantly abrogate LC3B-II accumulation (Fig 3.5I). 

To rule out the possibility that the residual ATF4 protein in the knockdown cells is sufficient for 
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autophagy activation, we generated ATF4-knockout cells using CRISPR/Cas9 (Fig 3.5J). No 

significant differences were observed between parental cells and ATF4-knockout cells in LC3B-

II accumulation after CC treatment, further supporting the idea that ATF4 is dispensable for 

autophagy activated by CC (Fig 3.5K).  

Discussion 

This study identifies CC as an inhibitor of NMD activity in human cells (Figs 3.1 and 3.2). Using 

both knockdown and knockout approaches, we show that the effect of CC on NMD is not 

mediated through the inhibition of the key metabolic regulator AMPK, adding another important 

“off-target” activity to CC (Figs 3.3A-D)[23, 28, 45]. Interestingly, activation of AMPK by 

AICAR causes NMD attenuation (Figs 3.3E and F), raising the possibility that cellular metabolic 

state can influence NMD activity. In addition to AMPK, CC has been shown to inhibit several 

other protein kinases including ALK2, ALK3, ALK6, ERK8, MNK1, PHK, MELK, DYRK, 

HIPK2, Src, and Lck [22, 23]. SMG1 is the only protein kinase among the identified NMD 

factors and thus could be a potential target of CC. However, CC did not inhibit the kinase 

activity of SMG1 in vitro at the concentration that efficiently abrogates NMD in cells (Fig 3.4B). 

Interestingly, we found that CC treatment reduced the protein levels of three core NMD factors 

including UPF1, SMG5, and SMG6 (Figs 3.4C and D). The downregulation of these NMD 

factors may in part underlie the repression of NMD by CC. The mRNA levels of UPF1, SMG1, 

SMG5, SMG6 and SMG7, however, were higher in CC-treated cells (which was at least in part 

caused by the stabilization of these transcripts as a result of NMD inhibition) (Fig 3.2E)[38, 39, 

46]. These observations raise the possibility that CC affects the mRNA translation or the stability 

of these NMD proteins. Several miRNAs including miR128, miR125, and miR433 have been 

shown to regulate NMD factors[6, 47, 48]; it will be interesting to determine in the future 
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whether these miRNAs play a role in the CC-induced downregulation of NMD factors and 

attenuation of NMD efficiency.  

At the cell level, both CC treatment and NMD inhibition induce autophagy (Fig 3.5)[30, 33]. The 

ability of CC to inhibit NMD suggests that NMD attenuation is part of the mechanism for the 

activation of autophagy by CC. Previously, it has been shown that autophagy induction after 

NMD inhibition is mediated in part by the stabilization of the mRNA of ATF4, a NMD target 

that promotes the transcription of the key autophagy factors LC3B and ATG5[33, 44]. However, 

we found that although CC treatment also induced and stabilized ATF4 transcripts, ATF4 was 

dispensable for autophagy induction by CC (Fig 3.5). Future work is needed to identify relevant 

NMD targets that promote autophagy in the presence of CC.  

Our finding that CC inhibits NMD may have important implications for the use of CC as a 

chemical biology tool and as a potential therapeutic agent. The ability of CC to inhibit NMD 

may represent a mechanism for the many cellular phenotypes observed for CC. For example, in 

addition to autophagy, CC has been shown to induce apoptosis in many cancer cell lines and in 

vivo tumor models[28, 49-52]. Because NMD appears to be essential for human cells, its 

inhibition likely accounts partially for the effects of CC on cancer cell viability. CC has also 

been shown to induce cell differentiation, which was previously attributed in part to its inhibition 

of BMP type 1 receptors[53-55]. Because downregulation of NMD has been shown to promote 

multiple differentiation processes (e.g. embryonic stem cell differentiation, neurogenesis and 

myogenesis) by regulating the levels of many target mRNAs, including that involved in the BMP 

and TGF-β pathways in specific contexts[6, 7, 56, 57], it is possible that NMD inhibition could 

contribute to CC-induced cell differentiation. On the other hand, the effects of CC on many other 

targets also limit its use as an inhibitor of NMD in research. Thus, caution needs to be taken 
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when interpreting results of CC treatment. In spite of its many off-target activities, CC or its 

derivatives with low toxicity may be effective in treating certain diseases by inhibiting NMD, as 

NMD inhibition may alleviate the symptoms of certain genetic disorders (e.g. β-thalassemia, 

cystic fibrosis, Hurler’s syndrome, and Duchenne muscular dystrophy) that are caused by 

nonsense mutations in a single gene whose mutant protein products retain full or partial 

function[10]. Abrogation of NMD has also been suggested to induce antitumor immunity due to 

the expression of cancer antigens encoded by nonsense mRNAs[16, 58]. Thus, CC or its 

derivatives may have the potential of improving immunotherapy for cancers that contain an 

increased level of nonsense mRNAs as a result of a high mutation load. Further investigation of 

the mechanism of action of CC in NMD inhibition will facilitate the development of CC or its 

derivatives as a therapeutic agent and aid our understanding of the physiological functions of 

NMD.  

Materials and Methods 

Key Reagents 

The key reagents used in this study, including plasmids, siRNAs, sgRNAs, antibodies, and 

chemicals are listed in Table 3.1. 

Table 3.1 Key Reagents used in the study 

Reagent Source Identifier 
Reporter and other plasmids 

pBS-(CBR-TCR(PTC))-
(CBG-TCR(WT)) 

Generated in lab N/A 

pBS-(CBR-TCR(PTC)) Generated in lab N/A 
pBS-(CBG-TCR(WT)) Generated in lab N/A 
pAdenoX-PRLS-ZsGreen1 Clontech Cat#632258 
pLenti-Cas9 Blast  Addgene 52962 
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pCMV-VSVG Addgene 8454 
pPAX2 Addgene 12260 
plentiGuide-Puro  Addgene 52963 
His-hSMG1 (WT) Dr.Shigeo Ohno N/A 
His-hSMG1 (DA) Dr.Shigeo Ohno N/A 
GST-p53 Dr. Robert T. Abraham N/A 

siRNAs/gRNAs 
siAMPK α1  Ambion  GAAGATCGGCCACTACATTC 
siAMPK α2  Ambion  GAAGATCGGACACTACGTGC  
siATF4#1 Ambion  S1702 
siATF4#2 Ambion  S1703  
siControl Ambion  Cat#4390846 
sgAMPK α1 IDT GAAGATCGGCCACTACATTC  
sgAMPK α2  IDT GAAGATCGGACACTACGTGC  
sgATF4 IDT AACCTCTTCCCCTTTCCCCA 

Antibodies 
Mouse anti-HA antibody Biolegend Cat#901507  
Mouse anti-β-Actin  Thermo Fisher Scientific Cat#MA5-15739  
Rabbit anti-AMPK α Cell Signaling Technology  Cat#2532  
Rabbit anti pACC1 Ser79 Cell Signaling Technology  Cat#11818  
Rabbit anti-ACC1 Cell Signaling Technology  Cat#3676  
Rabbit anti-SMG1 Cell Signaling Technology  Cat#9149  
Rabbit anti-p53-pS15 Cell Signaling Technology  Cat#9284 
Rabbit anti-GST Raised against GST-GFP N/A 
Rabbit anti-UPF1 Cell Signaling Technology  Cat#12040 
Rabbit anti-SMG6 Abcam Cat#AB87539 
Rabbit anti-UPF2 Novus Biologicals Cat#NB2-20813 
Rabbit anti-UPF3B Bethyl laboratories Cat#A303-688A 
Rabbit anti-SMG5 Abcam Cat#AB129107 
Rabbit anti-SMG7 Bethyl Laboratories  Cat#A302-170A 
Rabbit anti-LC3B Cell Signaling Technology  Cat#2775 
Rabbit anti-ATF4 Cell Signaling Technology Cat#11815  
Alexa Fluor 488-
conjugated goat anti-rabbit  

Thermo Fisher Scientific  Cat#A-11008 
Chemicals 

D-Luciferin Sigma Cat#L9504 
Actinomycin D Sigma Cat#A1410 
Caffeine Sigma Cat#C0750 
Compound C (CC) Sigma Cat#5499 
Thapsigargin   Sigma Cat#T9033 
AICAR TOCRIS Cat#2840 
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Cell culture, transfection, lentivirus and adenovirus production and infection 

Human U2OS, HEK293, HEK293T and Calu-6 cells were cultured in DMEM (Sigma, D5796) 

supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, 100 µg/ml 

streptomycin in a 5% CO2 incubator at 37 °C. Human foreskin BJ fibroblasts were cultured in 

70% DMEM (Sigma, D5796), 15% medium 199 (Sigma, M7528), supplemented with 15% FBS, 

100 units/ml penicillin and 100 µg/ml streptomycin and grown in a 5% CO2 incubator at 37 °C.  

siRNA transfection for knockdown of AMPKα or ATF4 was done using TransIT-siQUEST 

transfection reagent (Mirus), according to manufacturer’s protocol. Transfections were done 48 

hours before analysis of NMD and sample collection.  

Lentiviruses expressing Cas9 or gRNAs used to knockout AMPK or ATF4 were generated by 

co-transfecting HEK293T cells with lentiviral vectors and packaging vectors (pCMV-VSVG and 

pPAX2) using TransIT-LT1 transfection reagent (Mirus). Cell culture medium containing 

lentiviruses was collected 48 and 72h after transfection, and used to infect target cells. 

Recombinant adenovirus expressing our NMD reporter was described before[19]. Target cells 

were infected with the reporter adenovirus for 24 hours before NMD analysis (see below). 

NMD Reporter assays 

A dual color bioluminescence-based NMD reporter system described previously was used to 

measure NMD activity in human cells[19]. The reporter in the pBluescript (KS-) vector consists 

of a PTC-containing TCR minigene fused to CBR (CBR-TCRβ(PTC)) and a WT TCR minigene 

fused to CBG (CBG-TCRβ(WT)). NMD activity is measured by the ratios of CBR-TCRβ(PTC) 

to CBG-TCRβ(WT) at the protein and mRNA levels using bioluminescence imaging, western 
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blot or RT-qPCR, as previously described[19, 59]. U2OS cells stably expressing the NMD 

reporter system were described previously[19]. For analysis of NMD activity in Calu-6 and BJ 

cells, a recombinant adenovirus expressing the NMD reporter was used for infection. For 

bioluminescence imaging, cells were incubated with 150 µg/ml D-luciferin for 10 min at 37 °C, 

and bioluminescence signals were measured sequentially using IVIS 100 imager with 

appropriate open, red, green filters. Regions of interest (ROIs) were drawn over the images and 

bioluminescence signals were quantified using Living Image (Caliper) and Igor (Wavemetrics) 

analysis software packages as described previously[19, 60]. Spectral unmixing was performed 

using an Image J plugin. For RNA analysis of CBR-TCRβ(PTC) and CBG-TCRβ(WT), total 

RNA was extracted using a Nucleospin RNA II Kit from Clontech (740955). Reverse 

transcription reaction was performed to synthesize cDNA using PrimeScript RT kit from 

Clontech (RR037A). RT-qPCR was performed using a two-step PCR protocol (melting 

temperature: 95°C; annealing/extension temperature: 60°C; cycle number: 40) on an ABI V117 

real-time PCR system with PowerUp SYBR Green Master Mix (Thermo-Fisher). The mRNA 

levels of the housekeeping genes GAPDH were used for normalization. The sequences of all the 

primers used are listed in Table 3.2. Protein levels of CBR-TCRβ(PTC) and CBG-TCRβ(WT) 

(both of which are N-terminally HA-tagged) were measured by western blot with anti-HA 

antibodies using the Li-Cor Odyssey system. Cells were lysed in 50 mM Tris, 10% glycerol, 2% 

SDS, 5% β-mercaptoethanol. Protein lysates were run on SDS-page gels and transferred to a 

PVDF membrane, blocked with casein buffer and incubated with HA antibody (Biolegend, 

901507). β-Actin detected with an antibody from Thermo-Fisher (MA5-15739) was used as a 

loading control. 

Analysis of the expression and stability of endogenous NMD targets  
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Calu-6 cells expressing a mutant PTC-containing p53 mRNA were first treated with DMSO or 

CC for 24 hours. Subsequently, actinomycin D (5 or 10 µg/mL) was added to inhibit new mRNA 

synthesis. Total mRNA was isolated both immediately before and 6 hours after the addition of 

actinomycin D. mRNA levels of mutant p53 was measured using RT-qPCR. The percent of 

mRNA remaining (stability analysis) was determined as the percent of mRNA remaining after 

actinomycin D treatment, compared to that before actinomycin D treatment. The stability of 

known physiological NMD targets including PISD, UPP1, FRS2, ATF4, PIM3, as well as 

transcripts of NMD factors UPF1, UPF2, SMG1, SMG5, SMG6, SMG7, and UPF3B were 

measured using RT-qPCR[19]. ORCL and HPRT, which are not NMD targets, were used as 

controls. Relative expression of different SC35 splice variants in U2OS cells was also measured 

using RT-qPCR. Sequences of the qPCR primers are listed in Table 3.2. 

Table 3.2. Sequences of RT-qPCR primers  

Name Sequence 
CBR-F TCCATGCTTTCGGCTTTCAT 
CBR-R CGAGAGTCTGGATAATCGCA 
p53-F GAGGTTGGCTCTGACTGTACC  
p53-R TCCGTCCCAGTAGATTACCAC  
SC35C-F GGCGTGTATTGGAGCAGATGTA  
SC35D-F CGGTGTCCTCTTAAGAAAATGATGTA   
SC35C and D-R CTGCTACACAACTGCGCCTTTT  
SC35WT-F CGTGCCTGAAACTGAAACCA  
SC35WT-R TTGCCAACTGAGGCAAAGC  
UPP1-F CCAGCCTTGTTTGGAGATGT 
UPP1-R ACATGGCATAGCGGTCAGTT 
ATF4-F ATGTCCCCCTTCGACCA 
ATF4-R CCATTTTCTCCAACATCCAATC 
PIM3-F GCACCGCGACATTAAGGAC 
PIM3-R TCCCCACACACCATATCGTAG 
PISD-F TCCCTGATGTCAGTGAACCCT 
PISD-R TGGTGTGCGTCACGAAGC 
FRS2-F TGTGGTGGAAGAGCCAGTTGT 
FRS2-R CTGAAGGCAGGCGAGCAC 
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ORCL-F GGCAGCAGATGAAATCTGAA 
ORCL-R TCCAGAATGTGATTTTTGCAG 
UPF1-F CCCTCCAGAATGGTGTCACT 
UPF1-R CTTCAGCAACTTCGTGGTGA 
UPF2-F CAGGAAGAAGTTGGTACGGG 
UPF2-R ACATGCAGGGATGCAATGTA 
UPF3B-F TTTTGTTCAGGGATCGCTTT 
UPF3B-R GCTTTTTGAAAAGGTGCAAAT 
SMG1-F CTGGCAACCCAGAACTGATAG 
SMG1-R TGTAGCCACCCTTTTCGTCAT 
SMG5-F CAGTCTGAGCAGGAGAGCCT 
SMG5-R TGAAGTCGTAGCTGAGCCAT 
SMG6-F CTCTCCCATTGGAAGTACCCG 
SMG6-R CGGCGGACCAGTAGAGAAAAC 
SMG7-F CTCTGGAATCACGCCTTTAAGAA 
SMG7-R CTTCACACGGCATGGTAAATCT 
GAPDH-F CCTGTTCGACAGTCAGCCG 
GAPDH-R CGACCAAATCCGTTGACTCC 
HPRT-F TGACACTGGCAAAACAATGCA 
HPRT-R GGTCCTTTTCACCAGCAAGCT 

 

Knockdown and knockout of AMPKα or ATF4 in human cells 

To deplete the catalytic subunits of AMPK (AMPKα1 and AMPKα2), U2OS cells were 

transfected with mixed siRNAs targeting AMPKα1 and AMPKα2, respectively, using the 

TransIT-siQUEST transfection reagent (Mirus). To knock out AMPKα1 and AMPKα2, a Cas9-

expressing U2OS cell line was first generated by lentiviral transduction with pLenti-Cas9 Blast 

(Addgene 52962) followed by blasticidin selection for 5 days. sgRNAs in plentiGuide-Puro 

 (Addgene 52963) targeting AMPKα1 and AMPKα2 were then introduced into cells for gene 

deletion by lentivirus transduction. Cells were then plated in 96-well dishes and individual 

knockout cell clones were screened and verified by western blot using AMPKα antibodies. 

Knockdown and knockout of ATF4 in U2OS cells were also performed by the siRNA 

transfection and CRISPR-Cas9 methods. Because basal expression levels of ATF4 are below 

detection in U2OS cells, knockdown or knockout was confirmed by western blot analysis after 

treating cells with CC or Thapsigargin, both of which induce ATF4 upregulation[61].  
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Immunoprecipitation and in vitro kinase assay 

His-tagged, wild type (WT) or kinase dead (DA) SMG1 ectopically expressed 293T cells was 

immunoprecipitated using cobalt beads (HisPurä, ThermoFischer) in a buffer containing 300 

mM NaCl, 50 mM Na3PO4 (pH 8.0), 0.02% Tween, 0.25% NP40, and protease inhibitor cocktail 

(EDTA-free, Pierce). A recombinant GST-p53N fusion protein containing a N-terminal segment 

of p53 with the Ser15-phosphorylation site was expressed in E. coli and purified using FPLC 

with a GSTTrap column (GE Healthcare). In vitro kinase reaction was performed by incubating 

His-SMG1 (WT) or His-SMG1 (DA) with the GST-p53 substrate in the presence or absence of 

CC (10 µM) or caffeine (10 mM) at 30°C for 2 hours in a kinase buffer (25 mM Tris HCl, pH 

7.5, 10 mM β-Glycerophosphate, 0.2 mM Na3VO4, 10 mM MgCl2, 0.05 mM DTT). Reactions 

were terminated by the addition of SDS sample buffer. S15-phosphorylation of the GST-p53N 

substrate was detected by western blot using a phosphor-specific antibody (Cell Signaling 

Technology, 9284). 

 

Immunofluorescence staining to detect LC3B foci 

U2OS reporter cells were plated in 3.5 cm glass-bottomed dishes (MatTek corporation) and 

treated with DMSO or CC for 24 hours. Cells were then washed with phosphate buffered saline 

(PBS, pH 7.5), and then fixed using 4% paraformaldehyde (PFA) in PBS for 10 minutes. 

Subsequently, cells were permeabilized using 0.2% Triton X-100 in PBS followed by blocking 

for 1 hour with 10% normal goat serum in PBS. Cells were then incubated overnight with anti-

LC3B antibodies (Cell Signaling Technology, 2775 at 1:200 dilution in PBS with 0.1% Triton X-

100). After washing, cells were incubated with Alexa Fluor 488-conjugated goat anti-rabbit 

secondary antibodies (Thermo-Fisher, A-11008 at 1:500 dilution) to detect LC3B foci. DNA was 

visualized with Hoechst 33342 staining (1 µg/ml). Fluorescence images were acquired using a 

Nikon Eclipse Ti-E inverted microscope with MetaMorph software, as described previously[62].  

 

Electron Microscopy and quantification of autophagosomes 
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U2OS cells were grown on 4 x 4 mm cover slips immobilized in 6 cm dishes. Cells (~70% 

confluent) treated with either DMSO or CC for 24 hours were briefly washed with Mammalian 

Ringer’s solution (155 mM NaCl, 3 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 3 mM NaH2PO4, 

10mM glucose, and 5 mM HEPES pH 7.2), and then fixed with 2% glutaraldehyde in buffer 

containing 100 mM NaCl, 2 mM CaCl2, 30 mM HEPES, pH 7.2 for 1 hour at room temperature. 

The coverslips were then washed with the same buffer 3 times over a period of 1 hour and then 

subjected to a secondary fixation with 1% Osmium tetroxide for 1 hour in the dark. Coverslips 

were washed 3 times with ultrapure water over 30 minutes and then en bloc stained with 1% 

uranyl acetate in H2O for 1 hour in the dark. After staining was complete, coverslips were briefly 

washed in ultrapure water, and dehydrated in a graded acetone series (20%, 40%, 60%, 80%, 

100%) in H2O, with 10 minutes for each dilution. Coverslips were transferred into fresh 100% 

ethanol and then placed in 50% Araldite in ethanol followed by two exchanges of 100% Araldite, 

30 minutes for each. Resin embedding was done by filling BEEM capsules with resin and then 

placing coverslips on top, with sample side facing down. To ensure infiltration of resin, blocks 

were incubated at RT for 2 hours, and then polymerized at 60°C overnight. Coverslips were 

dissolved off polymerized blocks with 42% hydrofluoric acid, followed by extensive water 

washes of the block before sectioning. Sections of 80 nm thickness were generated on an ultra 

microtome and post-stained first with 1% uranyl acetate in H2O for 4 minutes and then with 

Reynold’s lead citrate for 4 minutes.  Images of sections were acquired on a JEOL 1400 

Transmission Electron Microscope (JEOL, Tokyo, Japan) with an attached AMT XR111 digital 

camera (AMT, Woburn, MA, USA).  Autophagosomes were identified as vacuoles containing 

cytoplasmic organelles, such as ribosomes or mitochondria, with a limited membrane as 
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described in standard guidelines[63, 64]. Quantification was achieved by counting the number of 

autophagosomes per cell within two 1.75 mm sections taken from two blocks for each sample. 
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Figure 3.1. CC inhibits NMD in human cells. 

A. Schematic diagram of the dual color bioluminescence-based NMD reporter construct 
containing CBR-TCRβ(PTC) and CBG-TCRβ(WT) transcription units. 

B. Ratios of CBR to CBG bioluminescence signals in U2OS cells stably expressing a dual color 
bioluminescence-based NMD reporter (hereafter referred to as U2OS reporter cells). Cells 
were treated with indicated concentrations of CC, or caffeine for 24 hours before imaging. 
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The CBR/CBG ratio of the DMSO alone control was normalized to 1. Data represent the 
mean ± SD of three independent experiments.  ****p ≤ 0.0001; **p ≤ 0.01; *p ≤ 0.05 (paired 
t-test). 

C. Ratios of CBR to CBG bioluminescence signals in U2OS reporter cells treated with DMSO 
or CC (10 µM) for the indicated times. The CBR/CBG ratio of the 0-hour time point was 
normalized to 1.  Data represent the mean ± SD of three independent experiments. **p ≤ 0.01 
(paired t-test). 

D. Ratios of CBR to CBG reporter mRNAs in U2OS reporter cells treated with DMSO or CC 
(10 µM) for 24 hours. The CBR/CBG mRNA ratio of the DMSO alone control was 
normalized to 1. Data represent the mean ± SD of three independent experiments. *p ≤ 0.05 
(paired t-test). 

E. Western blot result of the NMD reporter proteins (HA-tagged) after 24-hour treatment of 
U2OS reporter cells with DMSO or CC (10 µM). 

F. Ratios of CBR to CBG bioluminescence signals in Calu-6 cells infected with adenoviruses 
expressing the NMD reporter after 24-hour treatment with DMSO or CC (10 µM). The 
CBR/CBG ratio of the DMSO alone control was normalized to 1. Data represent the mean ± 
SD of three independent experiments. **p ≤ 0.01 (paired t-test).  

G. Ratios of CBR to CBG bioluminescence signals in BJ cells infected with adenoviruses 
expressing the NMD reporter after 24-hour treatment with DMSO or CC (10 µM). The 
CBR/CBG ratio of the DMSO alone control was normalized to 1. Data represent the mean ± 
SD of three independent experiments. **p ≤ 0.01 (paired t-test).  
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Figure 3.2. CC stabilizes endogenous NMD targets. 

A. Effects of CC on the stability of p53 mRNA containing a PTC in Calu-6 cells. Cells were 
treated with DMSO or CC (10 µM) for 24 hours followed by actinomycin D treatment for 6 
hours to inhibit transcription. Total mRNA was collected before and after actinomycin D 
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treatment. p53 mRNA levels were measured using RT-qPCR. Data represent the mean ± SD 
of three independent experiments. **p ≤ 0.01 (paired t-test). 

B. Effects of CC on the levels of the SC35 mRNA isoforms (SC35C, SC35D, and SC35WT). 
U2OS cells were treated with DMSO or CC (10 µM) for 24 hours followed by total RNA 
isolation and RT-qPCR. The mRNA levels of DMSO-treated cells were normalized to 1. 
Data represent the mean ± SD of three independent experiments. *p ≤ 0.05; ns, not 
significant (paired t-test). 

C. Effects of CC on the stability of known NMD targets PIM3, UPP1, FRS2, and PISD in Calu-
6 cells.  Samples were collected and analyzed as depicted in (A). ORCL and HPRT are non-
NMD target controls. Data represent the mean ± SD of three independent experiments. **p ≤ 
0.01; ns, not significant (paired t-test).   

D. Effects of CC on the stability of the mRNA of NMD factors UPF1, UPF2, SMG1, SMG5, 
SMG6, SMG7, and UPF3B in Calu-6 cells. UPF3B is not a NMD target. Samples were 
collected and analyzed as depicted in (A). Data represent the mean ± SD of three independent 
experiments. ****p ≤ 0.0001; **p ≤ 0.01; *p ≤ 0.05, ns, not significant (paired t-test). 

E. Effects of CC on the steady-state levels of the mRNA of NMD factors UPF1, UPF2, SMG1, 
SMG5, SMG6, SMG7, and UPF3B. Calu-6 cells were treated with DMSO or CC (10 µM) 
for 24 hours followed by total RNA isolation and RT-qPCR. Results represent fold change of 
mRNA levels in CC-treated cells, compared to DMSO-treated cells. ***p ≤ 0.001; **p ≤ 
0.01; ns, not significant (paired t-test) 
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Figure 3.3. CC inhibits NMD independently of AMPK inhibition. 

A. Effects of AMPKα-knockdown on ACC1 phosphorylation in U2OS reporter cells. Protein 
samples were collected 48 hours after siRNA transfection. 
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B. Relative ratios of CBR to CBG bioluminescence signals in AMPKα-knockdown or control-
knockdown U2OS reporter cells after 24-hour treatment with 10 µM CC or DMSO. The 
CBR/CBG ratio of the siControl DMSO control was normalized to 1. Data represent the 
mean ± SD of three independent experiments. *p ≤ 0.05; ns, not significant (paired t-test). 

C. Knockout (KO) of AMPKα in U2OS cells.  
D. Relative ratios of CBR to CBG bioluminescence signals in AMPKα-KO or control cells after 

24-hour treatment with 10 µM CC or DMSO and infection with adenoviruses expressing the 
NMD reporter. The CBR/CBG ratio of the AMPK WT DMSO control was normalized to 1. 
Data represent the mean ± SD of three independent experiments. *p ≤ 0.05; ns, not 
significant (paired t-test). 

E. Effects of AICAR on ACC1 phosphorylation. Activation of AMPKα by AICAR also caused 
a gel mobility shift. 

F. Relative ratios of CBR to CBG bioluminescence signals in U2OS reporter cells after 
treatment with indicated concentrations of AICAR. The CBR/CBG ratio of untreated control 
was normalized to 1. Data represent the mean ± SD of three independent experiments. **p ≤ 
0.01; ns, not significant (paired t-test). 
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Figure 3.4. CC reduces protein levels of multiple NMD factors, but does not inhibit SMG1 
kinase activity. 

A. Purified, recombinant GST-p53 protein containing a N-terminal fragment of p53.  
B. Result of in vitro kinase assay for SMG1 with GST-p53 as substrate containing the 

phosphorylation site S15. CC (10 µM) was used to test effects on SMG1 kinase activity. 
Caffeine (10 mM), a known inhibitor of SMG1, was used as a positive control.  

C. Effects of CC on the protein levels of NMD factors UPF1, UPF2, UPF3B, SMG1, SMG5, 
SMG6, and SMG7 in U2OS reporter cells.  

D. Quantification of the effects of CC on the protein levels of NMD factors UPF1, UPF2, 
UPF3B, SMG1, SMG5, SMG6, SMG7. Quantification was performed by measuring signal 
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intensity relative to actin. Protein levels of DMSO-treated cells are normalized to 1. Data 
represent the mean ± SD of three independent experiments. **p ≤ 0.01; *p ≤ 0.05; ns, not 
significant (paired t-test).  
 

 
Figure 3.5. CC induces autophagy independently of the expression and stabilization of the 
NMD target ATF4 
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A. Effects of CC on LC3BII levels in U2OS cells. Cells were treated with DMSO or CC (10 
µM) for 24 hours and collected at the indicated time points.  

B. Immunofluorescence detection of LC3B foci in U2OS cells after 24-hour treatment with 
DMSO or CC (10 µM). DAPI was used to visualize nuclei. 

C. Representative electron microscopy images of U2OS cells after 24-hour treatment of with 
DMSO or CC (10 µM). The arrow marks an electron-dense autophagosome. N, nucleus.  

D. Quantification of autophagosomes formed after 24-hour treatment with DMSO or CC (10 
µM). Two sections were made from 2 different blocks for each sample. Each section is 80 
nm thick and 1.75 mm long. The number of autophagosomes per cell from the two sections 
was counted for each sample. In total, 89 cells were counted in DMSO control, and 88 cells 
were counted in the CC-treated sample. 

E. Effects of shRNA-mediated knockdown of UPF1 or SMG1 on LC3BII levels in U2OS cells, 
compared to the effects in U2OS cells treated with DMSO or CC (10 µM) for 24 hours.  

F. Effects of CC on ATF4 mRNA expression in U2OS cells treated with DMSO or CC (10 µM) 
for 24 hours. mRNA expression of DMSO-treated cells was normalized to 1. Data represent 
the mean ± SD of three independent experiments. **p ≤ 0.01 (paired t-test). 

G. Effects of CC on ATF4 mRNA stability in U2OS cells. Cells were treated with DMSO or CC 
(10 µM) for 24 hours followed by treatment with actinomycin D for 6 hours. Total RNA was 
collected before and after actinomycin D treatment. ATF4 mRNA levels was measured by 
RT-qPCR. Data represent the mean ± SD of three independent experiments. *p ≤ 0.05 
(paired t-test). 

H. ATF4 protein levels after 24-hour treatment with DMSO or CC (10 µM).  
I. Effects of siRNA-mediated knockdown of ATF4 on LC3BII levels in U2OS cells treated 

with DMSO or CC (10 µM) for 24 hours.  
J. ATF4 protein levels in WT or knockout U2OS cells. Because the basal level of ATF4 is 

below detection, cells were treated with 0.2 µM Thapsigargin (a known ER stressor that 
induces ATF4) for 4 hours before ATF4 western blot.  

K. Effects of ATF4 KO on LC3BII levels in WT or ATF4-KO cells treated with DMSO or CC 
(10 µM) for 24 hours. 
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Conclusions 

The quantity and quality of the transcriptome must be regulated to maintain the fidelity of the 

central dogma. Pre-mRNA splicing greatly contributes to the abundance of the transcriptome by 

producing multiple mRNA isoforms, which serve different functions in cells, including tissue-

specific development1. Due to the complexity of the splicing process, errors can occur, which 

may cause defects in development, genetic disorders, and cancer2. Errors in splicing necessitate 

RNA surveillance mechanisms to regulate the transcriptome. Nonsense mediated RNA decay 

(NMD) regulates both the quantity and the quality of the mRNA3. By targeting nonsense 

mRNAs with pre-mature stop codons (PTCs), including those produced by alternative/mis-

splicing, NMD prevents expression of truncated protein products which may possess dominant 

negative effects in the cell4.  Consequently, NMD plays a major role in modifying the phenotypic 

outcomes of many genetic disorders and cancers associated with nonsense mutations5. By 

targeting non-mutant RNAs, NMD fine-tunes the transcriptome to facilitate many biological 

processes including embryonic development, cell differentiation, and cellular response to 

stress6,7,8.  

Previous studies have implicated pre-mRNA splicing in promoting NMD, especially in 

mammalian systems where exon junction complexes (EJCs) deposited during splicing promote 

recognition of PTCs9. However, an EJC-independent model of NMD exists, even in some 

organisms, such as S. pombe (which has EJC homologs), where splicing still promotes NMD10,11. 

It is, therefore, unclear whether splicing per se is required to promote NMD in mammalian 

systems, or whether the spliceosome components themselves promote NMD, perhaps by 

recruiting and maintaining interactions of EJCs with the mRNA. In this dissertation, we have 

explored the intricate relationship between pre-mRNA splicing, including how pre-mRNA 
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splicing can promote NMD, the impact of defective splicing on NMD, and the impact of NMD 

disruption in cells with defective splicing. 

To better understand the process of NMD, including how and whether splicing or splicing factors 

promote NMD, we developed a novel, specific, and convenient NMD reporter system to measure 

NMD in individual cells and used it to perform a genome-wide CRISPR/Cas9 knockout screen to 

identify genes that promote NMD in human cells. Our findings further highlighted the 

importance of splicing in promoting NMD, as the spliceosome was the most enriched pathway 

and several splicing factors were among the top hits. Specifically, we found that the SF3B 

complex promotes NMD in an EJC-dependent manner, without requiring splicing of the target 

mRNA, suggesting that the recruitment of splicing factors to the mRNA, but not splicing per se, 

promotes NMD.  

SF3B1 and other U2 snRNP-related genes are mutated in cancers, such as hematological 

malignancies (MDS, AML, and CMML), and solid tumors, such as uveal melanoma, breast, lung 

and pancreatic cancers12. These mutations cause distinct patterns of mis-splicing. We predicted 

that these mutations may have an impact on NMD, either directly by impairing the role of the 

splicing factors in NMD, or indirectly by mis-splicing NMD factors or over-whelming the NMD 

pathway with too many NMD targets. Our findings suggest that these cancer-associated splicing 

factor mutations partially inhibit NMD. With this observation, we made a prediction that further 

NMD inhibition would make the cells harboring the splicing factor mutations more susceptible 

to cell death. Indeed, cells expressing splicing factor mutations were remarkably sensitive to 

further inhibition of NMD, suggesting that targeting NMD is a potential novel therapeutic 

strategy to treat cancers with defective splicing. 
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Aberrant R-loops have been suggested as the unifying mechanism for the etiology of cancers 

caused by splicing factor mutations, as the expression of the cancer-associated splicing factor 

mutations increase R-loops13. R-loops, which are co-transcriptional structures consisting of 

RNA:DNA hybrids and displaced single-stranded DNA, can cause genomic instability if 

unregulated14.  While NMD has not been implicated in R-loop regulation before, we found that 

NMD inhibition or the depletion of an NMD factor increases R-loops. We anticipated that the 

combination of splicing factor mutations and NMD inhibition would result in additive R-loops, 

and associated genomic instability. Indeed, we found that cells expressing splicing factor 

mutations had more R-loops, compared to controls, and that inhibition of NMD further increased 

R-loops and genomic instability in these cells. Consistently, reducing R-loops by over-

expressing the R-loop removing enzyme RNase H1, rescued the cell sensitivity to NMD 

inhibition in cells expressing splicing factor mutants. These observations suggest that R-loops 

play a crucial role in the sensitivity of cells with spliceosome mutations to NMD inhibition. 

Because inhibiting NMD is an attractive approach for treating some genetic disorders and 

cancers, including cancers with defective splicing presented here, efforts are needed to identify 

and characterize specific and non-toxic small molecule inhibitors of NMD. In this dissertation, 

we tested a compound that targets SMG1 (SMG1i), and found that SMG1i inhibits SMG1, but 

does not inhibit the related kinases, including ATR. SMG1i also selectively kills cancer cells 

with spliceosome mutations. We also found that the commonly used AMPK inhibitor, compound 

C potently, inhibits NMD, independent of AMPK inhibition. This compound is, therefore, a non-

specific inhibitor of NMD, suggesting that caution is needed when using this drug, and that more 

specific derivatives of this compound may be effective at inhibiting NMD. 
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Future Directions 

How does SF3B promote NMD? 

While it is apparent that pre-mRNA splicing enhances NMD, it remains to be determined 

whether and how the spliceosome process itself or the spliceosome factors promote NMD. Our 

finding that the SF3B spliceosomal complex promotes NMD in an EJC-dependent manner, 

without the splicing of the target mRNA, supports a model where the spliceosome process itself 

is dispensable for NMD in mammalian systems. Because EJC is deposited during splicing, our 

model proposes that the SF3B tetrameric complex is involved in EJC recruitment, or stabilization 

during splicing. Moreover, our model suggests that SF3B complex acts upstream of CWC22, a 

spliceosome protein that directly recruits the EJC core protein eIF4A3 during splicing. However, 

more studies are needed to elucidate whether SF3B directly interacts with EJC factors, or 

CWC22 during EJC assembly. Tethering 3 proteins of the SF3B complex individually caused the 

decay of the target mRNA through NMD, which suggests that the complex as a whole is likely 

important for NMD. However, it will be important to determine which one, among the seven 

proteins within the complex interacts with CWC22 or EJC factors. To better understand the 

importance of such interaction for NMD, it will be critical to identify a separation of function 

mutant that retains its splicing function, but loses its NMD function, and vice versa.  

Previous studies have suggested that CWC22 and eIF4A3 recruitment occurs before or during 

the first catalytic step of splicing15. SF3B complex and the other spliceosome factors identified 

as putative NMD factors/regulators in our screen (SF3A3, PRPF19, RNF113A, and 

DGCR34)16,17,18 are recruited before the catalytic steps of splicing, suggesting that the 

spliceosome proteins required for early steps of splicing may also be important for EJC assembly 



158 
 

and NMD. Consistent with this notion, tethering SNRNP40 (component of U5 SnRNP that is 

recruited later) did not cause the decay of the target mRNA, suggesting that this protein is not 

important for NMD. SNRNP40 interacts with PRPF8 and may promote exon ligation and the 

unwinding of U4/U6 and U2 snRNA after splicing is completed19. To further support the 

importance of only the early spliceosome factors for NMD, it will be important to determine 

other key splicing factors required for late steps of splicing, after EJC assembly, that are 

dispensable for NMD. It will be important to demonstrate that indeed the late splicing factors 

tested are required and functional for splicing, but do not promote NMD. Completing these 

studies will facilitate a better understanding of the process of NMD and the relationship between 

pre-mRNA splicing and NMD in mammalian systems. 

How do cancer-associated splicing factor mutations attenuate NMD? 

Splicing factors required during early steps of splicing and participate in the 3’ss selection 

(SF3B1, U2AF1, SRSF2, ZRSR2) are commonly mutated in cancer12. Our finding that the 

expression of SF3B1K700E, or U2AF1S34F attenuates NMD is intriguing, but more experiments are 

required to solidify this finding and uncover the underlying mechanisms for the inhibition of 

NMD. The finding that the expression of splicing factor mutations attenuates NMD is consistent 

with the observation that the expression of NMD factors, which are themselves targets of NMD 

in an auto-regulatory pathway, were increased by expression of splicing factor mutants20. Since 

there is now a library of non-mutant mRNA targets of NMD, NMD activity can be assessed by 

measuring the stability of these NMD targets using RNA sequencing. Ongoing RNA sequencing 

experiments will determine whether the expression and stability of known NMD targets are 

increased by the expression of splicing factor mutants in human cells, mouse models, and patient 

samples.  
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There are at least 3 possibilities that may explain attenuation of NMD by the expression of these 

splicing factor mutants. First, since SF3B1 and likely other early spliceosome factors may 

promote NMD, these mutations may impair the function of these proteins in promoting NMD. 

All cancer-associated mutations in SF3B1 are found on the heat domain that contributes to the 

tertiary structure of the SF3B complex. However, the SF3B1K700E mutation does not affect the 

interaction of SF3B complex with U2AF2, or decrease its affinity for RNA21. It will be 

interesting to determine whether the SF3B1K700E mutation somehow affects the conformation of 

the complex in a way that no-longer supports interaction with EJC/CWC22 to promote NMD. 

Second, since the splicing factor mutations cause aberrant splicing of multiple genes, it is 

possible that some key NMD factors are mis-spliced when the splicing factor mutations are 

expressed. In support of this notion, SMG7 was found to be mis-spliced after the expression of 

cancer-associated mutations in SF3B1, U2AF1, and SRSF222. It will be important to directly 

check whether NMD factors are mis-spliced in the conditions used in our experiments, whether 

the resulting mRNAs are stable, and whether the protein products are functional. Lastly, 

expressing splicing factor mutations can generate numerous nonsense mRNAs that need to be 

degraded by NMD that simply over-whelm the NMD machinery, thus slowing down the NMD 

process. Indeed, it was found that about 50% of the aberrantly spliced mRNAs resulting from the 

expression of cancer-associated SF3B1 mutations were NMD targets23. Uncovering the 

underlying mechanisms for NMD attenuation by expression of splicing factor mutants may 

provide some clues on the function of splicing factors in NMD, and perhaps additional methods 

of modulating NMD in human cells. 

How does dysregulated splicing and disruption of NMD increase R-loops? 
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Our finding that cells harboring splicing factor mutations are remarkably sensitive to NMD 

inhibition suggest that NMD is a novel vulnerability for these cells. Our results indicate that 

dysregulated splicing and disruption of NMD independently increase R-loops and genomic 

instability, and that the combination causes additive effects for both phenotypes. Importantly, 

ectopic expression of RNase H1, which removes R-loops, largely rescues the sensitivity of 

spliceosome mutant cells to NMD inhibition. This observation suggests that R-loops play a 

major role in the cell death caused by NMD inhibition in cells expressing spliceosome mutants. 

However, it remains to be determined how each splicing factor mutation increases R-loops, and 

how NMD regulates R-loops. Several studies have implicated splicing factors, including SF3B1, 

in regulation of R-loops24. It is, however, still unclear what impact the mutations may have on 

the roles of the splicing factors in regulating R-loops, as these mutations do not block, but alter 

the splicing process25. A recent study showed that the SRSF2P95H mutation increased R-loops by 

increasing RNA polymerase II pausing, which is associated with the splicing-independent 

function of SRSF2 during transcription13. Since this transcription role is unique to SRSF2, and 

not other commonly mutated splicing factors, it will be important to determine whether other 

splicing factors have a similar role in transcription, or increase R-loops via other mechanisms.  

NMD has not been directly implicated in R-loop regulation before. However, a study showed 

that the depletion of key NMD factors SMG1, UPF1, and SMG6 increased association of 

TERRA RNA (transcribed from the telomeres) with the telomere and increased chromosomal 

breaks at subtelomeric and intrachoromosomal regions26, suggesting that NMD/NMD factors 

may regulate R-loops at the telomeres (caused by association of TERRA with telomeric DNA 

sequence) and at other regions of the chromosome27. The observation that SMG1, UPF1, and 

SMG6 individual depletion caused a similar phenotype is intriguing, because it suggests that 
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perhaps an intact NMD pathway is needed to regulate R-loops. However, the depletion of UPF2 

(another NMD factor) to similar levels, caused a milder phenotype, suggesting that a UPF2-

independent NMD, which reportedly exists in human cells10, is likely the important pathway that 

regulates R-loops. While our results show that SMG1 inhibition and UPF1 depletion increase R-

loops, more experiments involving depletion of other key NMD factors are required to determine 

whether the NMD process itself is important for R-loop regulation. The next step would be to 

determine how NMD may regulate R-loops.  

NMD may regulate R-loops directly or indirectly. Previous observation that the NMD factors 

were present at the telomeres suggest a direct role of NMD/NMD factors at regulating R-loops at 

the telomeres. However, it is hard to explain a direct role of a translation-dependent pathway in 

removing R-loops in the nucleus. It is, therefore, more likely that NMD regulates R-loops 

indirectly. Other mRNA processing factors regulate R-loops by binding to nascent RNA to 

prevent annealing of mRNA to DNA, unwinding RNA:DNA hybrids, and ensuring efficient 

transcription, splicing and mRNA export28. It is possible that NMD reduces R-loops by 

facilitating the degradation of many mRNAs that are usually still bound by RNA binding 

proteins, such as EJCs, which allows for quicker recycling of RNA binding proteins that bind 

RNA and prevent formation of R-loops in the nucleus.  

NMD can also prevent R-loops by reducing features that pre-dispose to R-loop formation. One 

such feature is G-quadruplex (G4) formation, which is often formed at GC-rich chromosomal 

regions, including mammalian telomeres. It was found that G4s form on the displaced ssDNA on 

an R-loop, and that stabilizing G4s, such as by treatment with G4 ligands, increased R-loops29,30. 

There are now many proteins that bind and stabilize G4, such as MYC-Associated Zinc Finger 

Protein (MAZ), nucleolin, and PARP131. Since NMD regulates many non-mutant genes, it is 
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possible that NMD regulates the expression of a gene that stabilizes G4s, so that NMD inhibition 

allows for the expression of such a gene and increases R-loops. It is worth noting that some 

mutant proteins can also promote G4s. A well characterized example is the cancer-associated 

mutant p53 that was shown to bind and stabilize G4s and alter transcription32. It is, therefore, 

tempting to speculate that NMD may regulate R-loops by regulating both physiological and 

mutant mRNAs to prevent expression of proteins that may stabilize R-loop structures. 

While R-loops seem to be important for cell death resulting from inhibiting NMD in cells 

expressing splicing factor mutants, it is likely that this is not the only mechanism involved. 

RNase H1 over-expression is not expected to restore NMD, or reduce the levels of mis-spliced 

mRNAs. What then is the consequence of increased aberrantly spliced mRNAs, due to NMD 

inhibition, in cells with defective splicing that are now viable because R-loops are reduced? It 

will be important to determine if the accumulation of aberrant mRNAs contribute to the cell 

death caused by NMD inhibition and defective splicing.  

Developing small molecule inhibitors of NMD 

Small molecule compounds are crucial tools that facilitate modulation of cellular pathways, 

which promotes a better understanding of the pathways and potential targeting of such pathways 

for therapeutic purposes. In chapter 2, we have tested the use of a ATP-competitive sulfonamide 

compound developed by Amgen (SMG1i). This inhibitor targets SMG1, which is the only kinase 

in the NMD pathway. ATP-competitive compounds are common kinase inhibitors, but their 

specificities are sometimes low. However, SMG1i seems to be a specific inhibitor for SMG1. 

We found that SMG1i potently inhibits NMD and selectively kills cells harboring spliceosome 

mutations, but does not inhibit other PIKK-related kinases, such as ATR. Ongoing studies will 
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further characterize this compound and its derivatives, and evaluate the use of this compound in 

human cells and mouse models to selectively kill cancer cells with defective splicing. In chapter 

3, we describe another new small molecule inhibitor of NMD. We found that Compound C, a 

common AMPK inhibitor, inhibits NMD probably by down-regulating some key NMD factor 

proteins. Because Compound C does not reduce the mRNA levels of these NMD factors, 

evaluating whether Compound C up-regulates micro RNAs that target NMD factors will be one 

avenue of uncovering how this compound inhibits NMD. Since compound C increases 

autophagy, it will be interesting to determine if key NMD factors are regulated by autophagy. 

Identifying specifically how Compound C inhibits NMD may provide more information on how 

to develop different small molecules with similar NMD-inhibiting capabilities. Because this 

compound inhibits AMPK and other kinases, future studies should focus on identifying other 

derivatives of this compound that more specifically inhibit NMD.  

Targeting NMD and other pathways to treat cancers with defective splicing 

Our finding that NMD inhibition preferentially kills cells harboring cancer-associated 

spliceosome mutations has wide-ranging clinical implications, as it provides a new strategy for 

treating many cancers with defective splicing. Since the results presented here were obtained 

from experiments in cell lines, it is important to confirm that inhibiting NMD in vivo will have 

similar effects. Ongoing experiments are now testing whether inhibition of NMD will 

preferentially reduce the viability of cells expressing splicing factor mutants that are implanted in 

mice. The next step would be to develop a mouse model of a cancer, such as leukemia that 

normally harbors splicing factor mutants, and then test whether NMD inhibition reduces cancer 

burden.  
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The finding that R-loops play a major role in the sensitivity of spliceosome mutant cells to NMD 

inhibition provides new avenues for combination therapies to treat cancers with defective 

splicing. Combination of NMD perturbation and other chemotherapeutic agents, particularly 

those that impair the DNA repair pathway, may be more effective at treating cancers with 

defective splicing. This is because accumulation of R-loops, caused by NMD inhibition and 

spliceosome mutants, causes replication stress and generates DNA breaks that must be repaired 

to promote cell viability and proliferation33. Therefore, impairing the subsequent repair pathway 

would lead to accumulation of DNA breaks and cell death. In support of this idea, cells 

expressing splicing factor mutants and have higher basal levels of R-loops were sensitive to 

inhibition of the DNA repair protein, ATR34. It will be interesting to directly compare the effects 

of treating with NMD inhibitors and ATR inhibitors (separately and combined) in cells harboring 

splicing factor mutants. 

 Small molecule splicing modulators that bind to SF3B1 have also been shown to cause mis-

splicing and increase R-loops. These inhibitors were also effective at killing cells with defective 

splicing in vitro and in mouse models, although clinical trials with these compounds were 

suspended due to toxicity, or lack of objective clinical response35,36. The rationale for the 

effectiveness of these drugs in killing cells with defective splicing was based on the observation 

that mutations in splicing factors are always heterozygous during tumorigenesis, suggesting that 

some level of normal splicing promotes survival of cells with defective splicing. Therefore, 

further altering the splicing process, and accumulating mis-spliced RNA would lead to cell 

death37. Inhibition of NMD would also increase mis-spliced mRNAs, as a big percent of mis-

spliced RNAs are regulated by NMD. Therefore, it will be interesting to directly test whether 
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combination of splicing modulators and NMD inhibition would be beneficial in treating cancers 

harboring spliceosome mutations. 

Lastly, combination of NMD inhibition and G4 analogs that stabilize G4s and increase R-loops 

may also be an effective strategy for treating cancers with defective splicing. Recently, G4 

ligands have attracted great attention as anti-cancer compounds due to their cytotoxicity in cells 

deficient of DNA repair proteins, such as BRCA230. One G4 ligand (CX-5461) is now in an 

advanced phase I clinical trial for patients with BRCA1/2 deficient cancer (NCT02719977). 

Stabilization of G4s at the telomeres have also been shown to impair telomerase activity, thus 

preventing lengthening of telomeres in cancer cells with activated telomerase38. These effects of 

G4 ligands (increased R-loops, DNA damage, and inhibition of telomerase), combined with the 

role of NMD in regulating R-loops and telomere maintenance, suggest that there may be a 

synthetic lethal relationship between stabilization of G4s and NMD inhibition.  
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