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ABSTRACT OF THE DISSERTATIONs 

Genomic Contributors to Individual Differences in Reward-Related Neural Activity 

by 

Lindsay Jane Michalski 

Doctor of Philosophy in Psychological & Brain Sciences 

Washington University in St. Louis, 2019 

Professor Ryan Bogdan, Chair 

Aberrant reward-related behavior, including impulsive and risk-taking behaviors, is a common 

feature of externalizing psychopathology (e.g., attention deficit hyperactivity disorder, antisocial 

personality disorder, and substance-use disorders). Through imaging studies, these behaviors 

have been linked to dysregulated reactivity within a diffuse reward-related corticostriatal neural 

network, including the striatum, frontal regions (namely orbital, ventromedial, and dorsolateral 

cortices), the insula, and the hippocampus. Because variability in risk-taking behavior and 

related psychopathology is moderately-to-largely heritable (i.e., with estimates ranging from 40 – 

80%), a genetically-informed approach is well-positioned to provide valuable insight into the 

etiology of reward-related neural and behavioral phenotypes that characterize externalizing 

psychopathology. Using summary statistics from a recent genome-wide association study 

(GWAS) of risk tolerance among 939,908 individuals, we generated polygenic risk scores (PRS) 

for a European-ancestry subsample (usable data ranging from n=457 to n=518; see Table 2) of 

the Duke Neurogenetics Study (DNS; a large community sample) and examined associations 

between genomic liability and risk-taking phenotypes (i.e., self-reported impulsivity and alcohol 

use, and behavioral delay discounting), as well as BOLD activation of the ventral striatum. 

Contrary to our hypotheses, GWAS-based PRS were not consistently significantly associated 
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with risk-related behavior or with activation of the ventral striatum. In order to increase 

biological informativeness, we also used PrediXcan analyses to identify genes with differential 

expression based on the risk-related genomic liability; however, PRS of these differentially-

expressed variants were also not significantly associated with risk-related behavioral or neural-

activation phenotypes in the DNS. Though these null findings may reflect a true lack of 

association between risk-related genetic liability and behavior/neural externalizing phenotypes, 

we discuss possible alternative explanations regarding imprecise phenotyping in the discovery 

GWAS, inadequate statistical power, and questionable reliability of task-based fMRI 

measurements. 
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1.0 Introduction 
 

Externalizing psychopathologies (e.g., ADHD, antisocial personality disorder, substance use 

disorders) are characterized by impulse-control problems, sensation-seeking behaviors, poor 

interpersonal functioning, and psychopathic traits that lead to significant adverse effects on 

social relationships, overall health, and quality of life. Externalizing disorders are common and 

often diagnosed in early life, with conduct and oppositional defiant disorders affecting up to 10% 

of youth and ADHD affecting roughly 10-17% of youth and adolescents (Hicks, Krueger, 

Iacono, McGue, & Patrick, 2004; Larsson, Chang, D’Onofrio, & Lichtenstein, 2014). 

Furthermore, externalizing behaviors that initially manifest in childhood often persist into 

adulthood (e.g., impulsive behavior, risk-taking, and attention deficits; Rodgers et al., 2015) and 

are associated with substance use disorders, mood and anxiety disorders, and other negative 

outcomes, including failure to complete high school, early pregnancy, and criminality (Reef et 

al., 2011; Loth et al., 2014).  

Externalizing behavior and related psychopathology also have a tremendous 

socioeconomic impact on society. For example, in 2010, alcohol use cost the federal, state, and 

local governments in the United States $249 billion; this equates to $2.05 per alcoholic beverage 

consumed, or an annual cost of $807 per person (Sacks, Gonzales, Bouchery, Tomedi, & Brewer, 

2015). These costs can be primarily attributed to lost workplace productivity, while the 

remainder is due to health care, law enforcement, and motor vehicle accidents. Similarly, the 

literature suggests that other forms of externalizing behavior also pose a significant burden: for 

example, ADHD is estimated to contribute $143-266 billion in annual socioeconomic costs 

(Doshi et al., 2012). Altogether, estimates suggest that externalizing behavior and related 
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psychopathology cost the US government more than $700 billion annually (Caulkins, Kasunic, & 

Lee, 2014; Doshi et al., 2012; Kessler et al., 2009). 

The widespread prevalence and astronomical costs of externalizing psychopathology are 

starkly contrasted by our limited etiologic knowledge of how these disorders arise and persist. 

Though etiologic factors associated with externalizing psychopathology remain unidentified 

(with few exceptions, e.g., the role of variation in alcohol metabolism in problematic alcohol use; 

Köhnke, 2008; Edenberg and Foroud, 2014), recent genetic-association and neuroscience studies 

do offer some clues. First, externalizing behavior and psychopathology are moderately-to-largely 

heritable (i.e., 49-88%; Larsson et al., 2014; Verhulst, Neale and Kendler, 2015), suggesting that 

genetic variation plays a prominent role in their expression. Consistent with high rates of 

comorbidity (Vollebergh et al., 2001), twin studies show significant genetic overlap across 

externalizing disorders (Krueger et al., 2002; Slutske et al., 1998), further suggesting common 

mechanisms that may underlie the broad spectrum of externalizing behaviors despite diagnostic 

distinctions that imply unique etiology. Second, neuroimaging research has repeatedly linked 

externalizing behavior and psychopathology to variability in reward-related brain function. 

However, the neural mechanisms through which genetic risk may contribute to externalizing 

behavior have not yet been thoroughly investigated. Understanding the neural mechanisms of 

genomically-conferred risk for externalizing behaviors that are common to antisocial/conduct 

disorders, ADHD, and substance-use disorders alike may ultimately lead to refined nosology, 

prevention, intervention, treatment, and public-policy considerations that honor a complex 

etiologic architecture. 
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1.1  The Heritability of Externalizing Behavior and Psychopathology 

Twin studies show that externalizing disorders are highly heritable (49–88%; Slutske et al., 

2008; Jacobson et al., 2002; Fu et al., 2002), with ADHD being among the most heritable 

psychiatric disorders (alongside schizophrenia and bipolar disorder, with estimates up to 88%; 

Larsson et al., 2014). Furthermore, both twin (Hicks et al., 2004) and epidemiologically-based 

studies (Krueger et al., 2002) indicate high genetic overlap across related externalizing disorders, 

suggesting that common genetic factors largely contribute to a broad externalizing factor rather 

than acting independently to impart liability for specific diagnoses. In fact, a general 

externalizing liability factor is highly (i.e., 80%) correlated between relatives, and associations 

between impulse-control issues in parents and externalizing behaviors (e.g., antisocial 

phenotypes) in their children are largely due to shared genetic – rather than environmental – 

influences (Button et al., 2009; Hicks et al., 2004; Hicks, South, DiRago, Iacono, & McGue, 

2009). Taken together, these insights suggest that it is crucial to better understand the 

mechanisms that may underpin genetic contributions to the persistence of externalizing 

behaviors generally defined within families and across generations.  

1.2  Methods of Characterizing Genetic Risk 

Candidate-gene and Genome-wide Studies 

Thus far, molecular genetics research on externalizing psychopathology and reward-related brain 

function has largely focused on single variants within candidate genes (e.g., MAOA; dopamine-

system genes including DRD2 and DRD4; Weeland et al., 2015). However, mounting evidence 

suggests instead that complex behavior and neural phenotypes are undergirded by extensive 

polygenicity, with common variants conferring only small effects that require large samples to 

detect. As a result, use of the single-variant, candidate-gene approach has become increasingly 
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controversial and, consequently, has been largely abandoned in mainstream genetics. Moreover, 

while some candidate-gene work on externalizing phenotypes and reward-related brain function 

has been successfully replicated [e.g., gene-environment interaction between MAOA variant and 

childhood adversity predicting antisocial phenotypes (Byrd & Manuck, 2014); the influence of 

several DRD2 variants and the Taq1A variant in ANKK1 on striatal dopamine-receptor binding 

potential (Gluskin & Mickey, 2016)], the vast majority is characterized by inconsistent findings 

that suggest a high rate of false positives (Pasche & Yi, 2010). 

 In light of these issues, which limit the utility of candidate-gene studies (Duncan & 

Keller, 2011), as well as the realization that psychiatric phenotypes are a product of complex 

polygenic architecture, the past decade has seen a surge in genome-wide association studies 

(GWAS; Visscher et al., 2012, 2017; Kendler, 2013). Made possible by recent advancements in 

technology, associated reductions in cost, and a field-wide push for a more collaborative 

approach to science, this shift has led to the acquisition of (previously-unfathomably) large 

datasets and, in turn, the identification of novel genetic variants linked to psychopathology and 

associated traits. Specific to externalizing phenotypes, GWAS of alcohol-use disorders from the 

past decade have consistently implicated genes within the ADH cluster (see: Frank et al., 2012; 

Gelernter et al., 2014; Walters et al., 2018) and other GWAS have implicated loci across 

externalizing diagnoses [e.g., GABRA2 associated with both conduct phenotypes in children and 

substance use in adults (Dick et al., 2006); ABCB1 linked to both substance-use disorders and 

antisocial traits in adulthood (Salvatore et al., 2015)].  

Polygenic Risk Scores 

The era of GWAS has provided two compelling insights. First, associations of common genetic 

variation with both psychiatric and neural phenotypes are characterized by small effects that 
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require large samples for detection. Second, and more encouraging, the additive effects of 

independent and commonly-occurring variants, when weighted by summary statistics from a 

well-powered GWAS in what is called a polygenic risk score (PRS) approach, are reliably 

predictive of related constructs (Bogdan, Baranger, & Agrawal, 2018). Briefly, the PRS 

approach is informed by large-scale GWAS of thousands of participants that serve as discovery 

samples; other large, healthy community samples (i.e., “target” samples) are used for both 

replication and extension, wherein PRS are calculated for each participant using statistics from 

the original discovery sample. Using odds ratios or beta-weights, depending on the nature (i.e., 

continuous or discrete) of the trait for which the GWAS was conducted, each genetic variant’s 

contribution to the total polygenic score is weighted by the strength of its association with the 

phenotype-of-interest in the discovery sample. Then, within the target sample, these scores are 

used to determine the extent to which variations in genetic liability at the subject level are 

associated with a given phenotype (Dima & Breen 2015).  For example, in a sample of 

adolescents and young adults, externalizing PRS reliably predicted externalizing diagnoses, 

subclinical externalizing behavior, and impulsiveness, indicating that externalizing behaviors 

likely precede psychiatric diagnosis in those at high genetic risk (Salvatore et al., 2015b); 

further, in a sample of children aged 9-12, ADHD PRS predicted externalizing symptoms and 

explained nearly 1% of variance in a broad psychopathology factor (Brikell et al., 2018; Caspi, 

Houts, Belsky, & Goldman-Mellor, 2015). Because this innovative technique increases power to 

detect small effect sizes relative to single variant approaches, it bolsters the success of replication 

attempts and enables researchers to examine links between polygenic risk and psychiatrically-

relevant phenotypes in large cohorts of healthy individuals, which avoids confounding variables 

inherent to patient samples (i.e., medication use, comorbidity, disease course, and symptom 
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severity). Furthermore, genotype – and, thus, PRS – is stable across the lifetime, which cannot be 

said of other neural, physical, or biological markers that may be considered “predictors” of 

disease. Thus, the PRS method is uniquely positioned to improve our understanding of the 

mechanisms that underlie externalizing behaviors across diagnostic categories. 

In the last year, numerous GWAS of externalizing-related constructs have been 

published, the most well-powered of which was conducted by Linner et al. using 939,908 total 

participants aggregated from the UK Biobank (n=431,126) and 23andMe (n=508,782) datasets. 

This study, which reported 124 independent loci associated with risk-tolerance measured via 

responses to a single self-report item, may inform our examination of genetic associations with 

reward-related neural function and risk-related behavioral measures.  

1.3  Reward-Related Neural Activity: Associations with Externalizing 

Behavior and Psychopathology 

Reward-related Neural Circuitry  

The ventral striatum (VS), a hub of a corticostriatal circuit that is chiefly involved in reward 

processing, has been reliably implicated in reward-related behaviors among healthy controls and 

patients with psychiatric diagnoses (Hariri, 2009). Within this reward circuit, the VS may be 

conceptualized as a “gate,” opening and closing to convey motivation toward goals and allowing 

us to initiate action in order to acquire or achieve it. The corticostriatal circuit also includes 

several nodes which engage in unilateral and reciprocal connections with the VS hub. The dorsal 

striatum (DS), which is divided into two subregions, the putamen and the caudate, is a 

downstream target of the VS. Namely, the caudate belongs to an “executive loop” that primarily 

projects to the frontal cortex via the thalamus, and allows for formulation of an action plan; the 

putamen engages in a “motor loop” that predominantly sends connections between the VS, DS, 
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and motor and premotor cortices and aids in the generation and activation of motor programs to 

physically achieve a goal (e.g., picking up a glass and taking a drink). Various frontal regions 

also play a significant role in this circuit. These include the orbitofrontal cortex, which is 

associated with the assignment of subjective value to options in order to evaluate and choose 

between them, and the ventromedial prefrontal cortex, which integrates signals from the 

aforementioned regions and modulates motivational impulses received from the VS (Rushworth, 

Noonan, Boorman, Walton, & Behrens, 2011). Altogether, this multifaceted circuit is responsible 

for our range of responses to reward signals, including anticipating eventual reward receipt, 

integrating external environmental and internal subjective awareness to plan actions that will 

satisfy our motivations, and initiating the motor actions required to carry out those goal-directed 

plans (Haber, 2011; Haber & Knutson, 2010).  

Associations with Externalizing Psychopathology  

The corticostriatal reward circuit is inextricably linked to impulsiveness, a key externalizing 

symptom that is common to ADHD, antisocial and conduct disorders, and substance-use 

disorders. In fact, in healthy controls, higher scores on behavioral measures of impulsivity are 

correlated with increased levels of VS reactivity to appetitive stimuli, suggesting that VS 

activation may generally track with impulsive tendencies (van der Laan, Barendse, Viergever, & 

Smeets, 2016; Weiland et al., 2014). Externalizing diagnoses, which may be conceptualized as 

the outward manifestation of disordered functioning of the corticostriatal circuit, tend to be 

associated with differential VS activation. For instance, impulsive traits are positively correlated 

with VS reactivity among antisocial patients (Buckholtz et al., 2010), indicating that antisocial 

behaviors may stem from aberrant behavioral control mechanisms. However, psychiatric 

extremes of impulsivity do not necessarily follow a stereotypic pattern of increased activation 
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during all stages of reward (i.e., anticipation and receipt). For example, while ADHD and 

polygenic risk for its expression have been linked to increased VS response to reward receipt 

(Carey, Knodt, Conley, Hariri, & Bogdan, 2017; Von Rhein et al., 2015), dampened VS 

activation among ADHD patients during reward anticipation suggests that the VS may fail to 

activate externally-prompted downstream motivation-dependent processes that enable focused 

goal pursuit (Scheres, Milham, Knutson, & Castellanos, 2007). As such, this may lead to 

dysregulated reward-related behavior, independent of long-term (and even short-term) goals. 

Meanwhile, substance use disorder – which is defined by cyclical periods of craving/seeking 

(i.e., disordered motivation and goal-direction), binging/compulsive use (i.e., disordered 

behavioral control mechanisms), and withdrawal – has been linked to increased VS reactivity to 

both associated conditioned stimuli (e.g., drug paraphernalia) and delivery of the preferred 

substance, as well as deficient top-down prefrontal modulation of the reward circuit (Kober et 

al., 2010). Taken together, these findings highlight a key role of the VS in externalizing behavior 

and psychopathology. 
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1.4 The Current Study 

Given evidence that common genetic factors contribute to a continuum of externalizing-related 

constructs (Dick et al., 2008), rather than to singular diagnostic categories specifically, the 

current study examines whether genetic variants linked to risk-taking behavior predict 1) reward-

related brain function and 2) behavioral markers of risk-taking and impulsiveness.1 In light of the 

limited utility of single-variant analyses – as they do not capture the polygenic architecture of 

complex behavior and often explain only a small proportion of variance of complex traits (Dima 

& Breen, 2015; Ferreira et al., 2008; Sullivan, 2010) – a polygenic risk score (PRS) approach is 

employed here to leverage genetic risk across the genome, which can account for much larger 

proportions of phenotypic variance (Lee, Wray, Goddard, & Visscher, 2011). The PRS method is 

well-positioned to detect neuroimaging phenotypes associated with psychiatric disorders at small 

effect sizes, which is key to expanding our understanding of the etiology of complex disease. 

Further, as discovery sample sizes continue to increase, so does the utility and predictive power 

of PRS (Dima & Breen 2015); thus, a potential strength of the Linner et al. risk-taking GWAS is 

its sample size of more than 900,000 participants, though we must also consider the possible 

implications of a single-item phenotype used to delineate risk-taking behavior. Importantly, in 

isolation, the PRS approach does not provide insight into the mechanisms underlying any 

emerging associations between genotype and externalizing phenotypes, and its predictive 

capacity for brain-based phenotypes may be limited by the inclusion of other contributors (e.g., 

variants affecting peripheral arousal). 

                                                 

1 Given null findings (see Results), as well as recent literature pointing to questionable reliability of task-

related fMRI (Elliot et al., 2019; see Discussion), we further probed whether risk-taking PRS are 

associated with variability in brain structure phenotypes. As these analyses were not planned in the 

original dissertation, they are presented in Supplemental Tables 2 and 3 and discussed only briefly. 
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 Variability in brain-based gene expression may be another key mechanistic contributor 

to both the etiology and heritability of psychiatric diagnoses and related phenotypes (Nicolae et 

al., 2010; Gusev et al., 2014). Given this, we also examined whether genomically-associated 

differences in gene expression are correlated with risk taking, and, if so, whether polygenic 

variation within these differentially-expressed genes is correlated with reward-related brain 

function and behavior (Gamazon et al., 2015). To do so, we used PrediXcan software: this 

program imputes static-DNA-related differences in brain-based gene expression using post-

mortem gene expression and DNA genotyping; as such, it allows us to test whether such 

differences in gene expression are correlated with genomic liability for risk-tolerance based on 

the Linner et al. GWAS (2019). Following these imputation-based analyses, we then computed a 

PRS based on PrediXcan-identified gene to investigate whether integrating gene expression data 

may improve the predictive utility of PRS for neural phenotypes.  

Together, the PRS and PrediXcan methods allow us to better characterize the temporal 

contribution of genetic influences on phenotypic outcomes: that is, whether psychiatric neural 

phenotypes arise due to predisposing genomic factors or, rather, as a consequence of behavioral 

expression or its correlates. The current study uniquely leverages a large community sample (the 

Duke Neurogenetics Study) to contribute to this etiological understanding while working within 

the multifaceted genetic and phenotypic architecture of externalizing psychopathology. It is 

important to keep in mind, however, that the nature of phenotypic assessment required to attain 

large sample sizes – as in the Linner et al. GWAS upon which we are drawing – is necessarily 

broad, and therefore may sacrifice specificity. In light of this, the current study also attempts to 

disentangle potential strengths and limitations by comparing the predictive power of GWAS-

derived PRS to a more biologically-informed gene-expression-based PRS. We hypothesized that 
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PRS based on the Linner et al. risk-tolerance GWAS will be associated with differential VS 

activation, as well as risk-related behavior (i.e., increased self-reported impulsivity, delay 

discounting, and problematic alcohol use) in our community sample. We also hypothesized that 

PrediXcan analyses will identify genetic variants that impart differential gene expression based 

on genomic liability for risk-tolerance. Further, because of its improved biological relevance, we 

hypothesize that PrediXcan-based PRS will outperform GWAS-based PRS and be more strongly 

associated with both brain activation and behavioral measures of risk-taking.  
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2.0 Methods 

2.1 Sample: The Duke Neurogenetics Study 

The Duke Neurogenetics Study (DNS) assesses a wide range of behavioral, experiential, and 

biological phenotypes among young-adult (18–22-year-old) college students. Self-report, 

neuroimaging, and genomic data are available from 526 non-Hispanic participants of European 

ancestry. Ancestry was determined via self-report and confirmed using ancestrally informative 

principal components derived from genomic data (no individuals were ±6 SDs from the mean on 

the top 10 components; Purcell et al., 2007) Following quality control, 34 individuals were 

excluded from fMRI analyses (see Table 1 for specific exclusions), leaving a final sample of 492 

(mean age=19.80±1.23; 234 males) participants of European ancestry for functional analyses 

(see Table 2 for further information on this sample). Each participant provided written informed 

consent to a protocol approved by the Duke University Medical Center Institutional Review 

Board prior to participation and received $120 remuneration. All participants were in general 

good health and free of  exclusion criteria specific to this study, including: (1) medical diagnosis 

of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver disease, or lifetime 

psychotic symptoms; (2) use of psychotropic, glucocorticoid, or hypolipidemic medication; (3) 

conditions affecting cerebral blood flow and metabolism (e.g., hypertension); and (4) 

contraindications to MRI scanning. DSM-IV Axis I and select Axis II (i.e., borderline and 

antisocial personality disorder) psychiatric disorders were assessed with the electronic Mini 

International Neuropsychiatric Interview (Sheehan et al., 1998) and Structured Clinical Interview 

for the DSM-IV Axis II (SCID-II; see Supplemental Table 1; First et al., 1996). 
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Table 1. DNS Exclusion Criteria 

 
Exclusion Reason Number of Participants (% of n=492) 

Scanner related artifacts in fMRI data 4 (0.01%) 

Movement outliers 9 (0.02%) 

Inadequate signal in regions of interest 10 (0.02%) 

Poor behavioral performance 5 (0.01%) 

Incomplete data collected from task 4 (0.01%) 

Incidental structural brain abnormalities 2 (0.02%)  

Table 2. DNS Sample Data 

 
Variable Number of Participants (% of n=492) 

Sex 234 males (47.5%) 

Presence of any psychiatric diagnosis* 131 participants (26.6%) 

 Mean ± SD 

Age 19.80 ± 1.23 

Left VS reactivity (n=457) 0.0522 ± 0.0522 

Right VS reactivity (n=457) 0.0514 ± 0.1621 

BIS score (n=496) 60.7527 ± 8.7766 

DDT score (n=496) -2.7022 ± 0.7972 

AUDIT score (n=494) 6.0084 ± 4.3791  

     *Breakdown of specific diagnostic categories is supplied in Supplemental Table 1 

 

2.2 Self-Report and Behavioral Measures of Risk-Taking 

Delay Discounting  

Delay discounting tasks assess preferences for varying amounts of money contingent upon 

whether they are delivered immediately or after a specified amount of time. Both the amount of 

money and the delay before receipt are varied such that we can calculate participant 

“indifference points,” i.e., the likelihood of choosing a smaller reward delivered immediately 

versus a larger reward delivered after a delay. A consistent preference for a smaller reward 

received sooner is associated with impulsivity (Green, Myerson, & Vanderveldt, 2014). In the 

DNS, delay discounting is assessed as follows: immediate reward amounts are varied from $0.10 
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to $105. The waiting period for delayed reward (valued at a constant $100) is varied from 0 days 

to 5 years (in intervals of 0, 7, 30, 90, 180, 365, or 1825 days; Nikolova et al., 2016). Then, as a 

summary measure, we computed area-under-the-curve measurements of discounting for each 

participant (Myerson, Green, & Warusawitharana, 2001). This method is both reliable and 

flexible, as it does not assume any specific form of the discounting function.    

Impulsivity  

To examine trait impulsivity, the DNS uses the Barratt Impulsiveness Scale (BIS), a self-report 

measure that assesses impulsivity as a behavioral construct / personality trait with good internal 

consistency (α=0.84; M=61.78; SD=9.41; range: 37-113; Barratt and Patton, 1995). 

Substance Use 

The DNS examines potentially-problematic alcohol use using the Alcohol Use Disorders 

Identification Test (AUDIT), a 10-item self-report questionnaire that gathers information on 

consumption and behavioral tendencies (Saunders et al., 1993).  

Scores range from 0-40, with scores >7 indicating hazardous drinking and >20 indicating alcohol 

dependence. This measure has been reported to have good internal consistency across diverse 

samples and settings (median reliability coefficient of 0.83; Reinert & Allen, 2007).  

2.3 Functional Magnetic Resonance Imaging Protocols  

Reward-Related Behavior Paradigm 

A number-guessing paradigm was used to elicit ventral striatum reactivity.  This block-design 

paradigm consists of three blocks of predominantly positive feedback (80% correct guess; gain 

feedback), three blocks of predominantly negative feedback (80% incorrect guess; loss feedback) 
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and three control blocks (displaying a yellow circle after each response; Delgado et al. 2000, 

Hariri et al. 2006). Blocks are presented in pseudo-random order and are composed of five trials 

each. During each trial of the positive and negative feedback blocks, participants are given 3 s to 

guess via button press whether the value (between 1–4 or 6–9) of a card presented face-down is 

higher or lower than 5. The numerical value of the card is then presented for 500 ms, followed by 

an arrow indicating positive (green upward-facing arrow) or negative (red downward-facing 

arrow) feedback for 500 ms. Finally, a neutral crosshair is presented for 3 s, such that the total 

trial length is 7 s. One incongruent trial (e.g. a negative-feedback trial within a predominantly 

positive block) was included within each block to maintain task engagement and motivation and 

prevent participants from anticipating trial feedback. Three control blocks are interleaved 

between the six experimental card-guessing blocks, during which participants are instructed to 

make button presses during the 3-s presentation of an ‘x,’ which is then followed by an asterisk 

and a yellow circle (presented for 500 ms each). Participants were unaware of the fixed outcome 

probabilities and were led to believe that their performance would determine their net monetary 

gain. All subjects received $10 upon completion of the task. 

BOLD fMRI Data Acquisition 

Participants were scanned at the Duke-UNC Brain Imaging and Analysis Center using a 

research-dedicated GE MR750 3T scanner equipped with high-power high-duty-cycle 50-mT/m 

gradients at 200 T/m/s slew rate, and an eight-channel head coil for parallel imaging at high 

bandwidth up to 1 MHz. BOLD fMRI were acquired using a semi-automated high-order 

shimming program in order to ensure global field homogeneity. A series of 34 interleaved axial 

functional slices aligned with the anterior commissure-posterior commissure (AC-PC) plane 

were acquired for full-brain coverage using an inverse-spiral pulse sequence to reduce 
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susceptibility artifact [TR/TE/flip angle = 2000 ms/30 ms/60; FOV=240 mm; 3.75×3.75×4 mm 

voxels; interslice skip=0]. Four initial RF excitations were performed (and discarded) to achieve 

steady-state equilibrium. High-resolution three-dimensional structural images were acquired in 

34 axial slices co-planar with the functional scans (TR/TE/flip angle=7.7 s/3.0ms/12; voxel 

size=0.9×0.9×4 mm; FOV=240 mm, interslice skip=0) to allow for spatial registration of each 

participant’s data to a standard coordinate system. 

BOLD fMRI Data Preprocessing 

Individual subject data were realigned to the first volume in the time series to correct for head 

motion before being spatially normalized into the standard stereotactic space (Montreal 

Neurological Institute (MNI)) template using a 12-parameter affine model (final resolution of 

functional images=2 mm isotropic voxels). Next, data were smoothed to minimize noise and 

residual difference in gyral anatomy with a Gaussian filter, set at 6-mm full-width at half-

maximum. Voxel-wise signal intensities were ratio normalized to the whole-brain global mean. 

To determine movement, the ARTifact Detection Toolbox  

(http://www.nitrc.org/projects/artifact_detect; (Mazaika et al., 2007) was used to generate 

regressors accounting for images due to large motion (i.e. >0.6mm relative to the previous time 

frame) or spikes (i.e., global mean intensity 2.5 standard deviations from the entire time series). 

Individual whole-brain BOLD fMRI volumes meeting at least two criteria were flagged and 

regressed out when determining task-specific effects: 1) significant mean-volume signal intensity 

variation (i.e., within volume mean signal greater or less than 4 standard deviations of mean 

signal of all volumes in time series), and 2) individual volumes where scan-to-scan movement 

exceeded 2 mm translation or 2º rotation in any direction. Participants with 5% or more 

http://www.nitrc.org/projects/artifact_detect
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acquisition flagged volumes per task run were removed from analysis. An ROI mask (AAL 

template) from WFU pickatlas (Maldjian, Laurienti, Kraft, & Burdette, 2003) was used to ensure 

adequate BOLD signal. Participants who had less than 90% coverage were excluded from 

analyses. 

2.4 Genotype and Gene Expression Data 

DNA Collection and Genotyping 

DNA was isolated from saliva derived from Oragene DNA self-collection kits (DNA Genotek) 

customized for 23andMe (www.23andme.com). DNA extraction and genotyping were performed 

through 23andMe by the National Genetics Institute (NGI), a CLIA-certified clinical laboratory 

and subsidiary of Laboratory Corporation of America. One of two different Illumina arrays with 

custom content was used to provide genome-wide SNP data, the HumanOmniExpress or 

HumanOmniExpress-24 (Hu et al., 2016). Relatedness was assessed using pairwise identity by 

descent estimation in Plink 1.07; pairs with a PI_Hat greater than 0.20 had one member excluded 

from analyses (n=2). Genotype imputation was performed on all DNS participants with genome-

wide chip data using the prephasing/imputation stepwise approach implemented in 

SHAPEIT/IMPUTE2 (Delaneau, Marchini, & Zagury, 2011; Howie, Fuchsberger, Stephens, 

Marchini, & Abecasis, 2012). Imputation was run separately for participants genotyped on the 

Illumina HumanOmniExpress and the Illumina HumanOmniExpress-24 arrays using biallelic 

SNPs only, the default value for effective size of the population (20,000), and chunk sizes of 3 

Mb and 5 Mb for the respective arrays. Within each array batch, genotyped SNPs used for 

imputation were required to have missingness <.02, Hardy-Weinberg equilibrium p > 10-6, and 

minor allele frequency >.01. The imputation reference set consisted of 2504 phased haplotypes 

from the full 1000 Genomes Project Phase 3 data set (May 2013, >70 million variants, release 
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"v5a"). Imputed SNPs were retained if they had high imputation quality (Info >.9), low 

missingness (<5%), and minor allele frequency (MAF) >.01.  

Polygenic Risk Score Calculations  

Polygenic risk scores (PRS) were derived using PLINK (Purcell, 2017), across ten p-value 

significance thresholds (PT; i.e., 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0) from 

the Linner et al. 2019 GWAS of risk tolerance. SNPs were required to have a MAF of >0.02, 

genotyping rates of >0.98, and HWE p-values >10−6 to be included in the PRS. SNPs within the 

major histocompatibility complex (MHC; present on chromosome 6) were excluded, due to 

complex linkage structure within this region. All remaining SNPs were pruned based on linkage 

disequilibrium (LD; i.e., genetic correlation) using a p-value-informed method, called 

“clumping,” which groups correlated SNPs together and preferentially prunes markers that are 

less-significantly associated with the phenotype at hand; this process is implemented in PLINK 

to preserve the predictive accuracy of PRS. At all 10 p-value thresholds, each participant had a 

single PRS score that reflects genome-wide liability for risk-taking, calculated using beta weight 

for risk-taking for each component SNP (i.e., those in the original meta-analysis with p-values 

below the cutoff threshold), multiplied by the number of reference alleles for that SNP, then 

aggregated and divided by the total number of contributing SNPs. 

Discovery GWAS Risk Taking Phenotyping 

The Linner et al., 2019 GWAS assessed risk tolerance via a single-item, self-report measure. The 

measure was unique to each of the two studies from which the 939,908 participants were drawn. 

Participants acquired from the UK BioBank (n=431,126) answered the following: “Would you 

describe yourself as someone who takes risks? Yes/No,” where “yes” was coded as a 1 and “no” 
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coded as a 0 (mean response ± SD: 0.26 ± 0.44). Participants acquired from 23andMe 

(n=508,782) self-rated overall comfort with taking risks on a scale with the following options: 

[1] Very uncomfortable / [2] Somewhat uncomfortable / [3] Neither comfortable nor 

uncomfortable / [4] Somewhat comfortable / [5] Very comfortable (mean rating ± SD: 3.16 ± 

1.15; Karlsson Linnér et al., 2019). 

PrediXcan Analyses 

We used PrediXcan to examine whether genomic risk for risk taking is correlated with brain-

based gene expression. This approach uses postmortem gene expression and static-DNA-

sequence data from the Genotype-Tissue Expression (GTEx) Project (Lonsdale et al., 2013) to 

estimate genomic influence on gene expression and examine whether such genetically-related 

differences in gene expression are correlated with a trait of interest based upon GWAS summary 

statistics (Gamazon et al., 2015). PrediXcan provides tissue-specific models of 44 tissues from 

GTEx, as well as a whole-blood model from the Depression Genes and Networks (DGN) cohort 

(Battle et al., 2014), and may help prioritize GWAS-identified loci (Li et al., 2018). Here, we 

applied PrediXcan to postmortem brain data to identify specific genes that have differential 

expression based on the risk tolerance GWAS (Linner et al., 2019); in effect, the PrediXcan 

approach detects significant correlations between imputed gene expression and risk tolerance in 

order to identify genes that may play an etiological role in risk-taking behavior. Then, we created 

a PRS for each participant that contained variants from these PrediXcan-implicated genes. 

PrediXcan-based PRS were computed using the same standards (i.e., MAF, genotyping rates, 

HWE, and LD-pruning) and computational methods described above and were weighted based 

upon association with the risk-tolerance phenotype (see Polygenic Risk Score Calculations).  
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2.5 Statistical Analyses 

We performed linear regression analyses using R to test for associations between risk-taking 

PRS (at each of ten significance thresholds, i.e., 0.0001 through 1.0) and self-reported risk-taking 

measures, as well as activation in the ventral striatum. For these analyses, covariates included 

biological sex, age, and the top-three ancestry-informative scaling components to account for 

potential effects of population stratification.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 For structural analyses, which were performed in light of null functional findings (see Results), we 

applied this same linear regression approach with all listed covariates plus average cortical thickness. 
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3.0 Results 

3.1 Self-Reported Risk-Taking 

We observed no significant associations between risk-taking PRS and delay discounting, BIS, 

and AUDIT scores [i.e., the only nominally-significant associations arose between PRS at the 

0.30 threshold and delay discounting (b=0.7822; p = 0.0172) and between PRS at the 0.0001 and 

1.0 thresholds and BIS score (b=0.0961; p = 0.0284 and b=-0.7586; p = 0.0423); all other ps > 

0.1129; see Table 3].  

Table 3. Main Effects of Risk-Taking PRS on Behavioral Measures 

 

 DDT SCORE BIS SCORE AUDIT SCORE 

PRS 

p-threshold 
β p β p β p 

0.0001 -0.0215 0.6288 0.0961 0.0284 0.0667 0.1333 

0.001 -0.0594 0.4341 -0.0503 0.4997 0.0819 0.2797 

0.01 -0.0432 0.6042 0.0659 0.4220 -0.3474 0.6769 

0.05 0.0281 0.8181 0.0894 0.4580 0.0834 0.4954 

0.1 0.0347 0.8243 -0.2073 0.1791 0.0459 0.7709 

0.2 -0.3421 0.1129 -0.0311 0.8838 -0.0230 0.9153 

0.3 0.7822 0.0172 0.1891 0.5575 -0.4230 0.1967 

0.4 0.1624 0.7178 0.2264 0.6075 0.5589 0.2122 

0.5 -0.5826 0.2751 0.4372 0.4047 0.1316 0.8048 

1 -0.0772 0.8384 -0.7586 0.0423 -0.3408 0.3682  

 

3.2 Regional Neural Activation 

Consistent with prior work (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000), the card-guessing 

task yielded robust bilateral ventral striatal activation (i.e., positive-activation > negative-

activation contrast) that was roughly normally-distributed across participants (see Supplemental 

Figure 1). However, while there were sporadic nominal significant associations between PRS at 
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individual thresholds (PRS associated with left VS activity at the 0.01 threshold, p = 0.0438; 

PRS associated with right VS activity at the 0.01 threshold, p = 0.0222; see Table 4), there were 

no consistent significant associations between risk-taking PRS and ventral striatal reactivity 

across PRS thresholds (all other ps > 0.110). Of note, Pearson product-moment correlations 

computed between bilateral VS activation values and self-reported risk-taking scales show that 

only left VS activation and AUDIT score were significantly correlated (r = 0.114, p = 0.007; see 

Figure 1); all other correlations were non-significant (all r’s < 0.081, p’s > 0.1065; see Table 5).  

Table 4. Main Effects of Risk-Tolerance PRS and Ventral Striatum Activation 

 

 

VS ACTIVATION 

PRS Left Right 

p-threshold β p  β p 

0.0001 -0.0181 0.6972  -0.0369 0.4285 

0.001 -0.0269 0.7327  -0.0532 0.4991 

0.01 -0.1751 0.0438  0.1986 0.0222 

0.05 -0.0582 0.6585  -0.0191 0.8845 

0.1 -0.0369 0.8232  -0.0914 0.5798 

0.2 0.0263 0.9061  0.1020 0.6467 

0.3 0.2555 0.4555  0.1472 0.6668 

0.4 -0.3788 0.4139  -0.1587 0.7318 

0.5 -0.5892 0.2947  -0.5581 0.3205 

1 0.6413 0.1065  0.4411 0.2661  

Figure 1. Correlation between Left VS and AUDIT Scores 
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Table 5. Pearson Correlations between Ventral Striatum Activation and Self-Report Scales 

 
BIS DDT AUDIT 

LEFT VS -0.0203 -0.0178 0.1140* 

RIGHT VS -0.0570 -0.0037 0.0807 

  

*denotes significant correlation at p<0.01 

 

3.3 PrediXcan 

Our analyses identified 15 genes that showed differential expression across various tissue types: 

CENPV, ZSCAN23, SDCCAG8, AL022393.7, ZSCAN31, XRCC3, BTN3A2, RP5-874C20.3, 

FAM184A, ADORA2B, C10orf32, DPYSL5, RP11-62H7.2, ZKSCAN3, THEM6 (all ps < 

.0000113; see Table 6). However, PRS computed using SNPs from these 15 genes were not 

significantly associated with VS reactivity or behavioral risk-related phenotypes (all ps > 

0.0978). GWAS-computed PRS and PrediXcan-computed PRS for each participant were not 

significantly correlated (Spearman’s rho = -0.011, p = 0.812).  
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GENE 

TISSUE TYPE(S) WITH 

HIGHEST EXPRESSION β P 

CENPV Cerebellum -0.0152 4.81e-08 

ZSCAN23 Cerebellum -0.0153 3.36e-07 

SDCCAG8 Diffuse across brain; thyroid -0.0379 5.63e-07 

AL022393.7 Diffuse across brain -0.0098 6.51e-07 

ZSCAN31 Diffuse across brain -0.0104 1.16e-06 

XRCC3 Cerebellum 0.0244 3.69e-06 

BTN3A2 Spleen and lymphocytes 0.0127 4.47e-06 

RP5-874C20.3 Cerebellum 0.0167 5.75e-06 

FAM184A Diffuse across brain 0.0152 6.01e-06 

ADORA2B 
Frontal regions; nucleus accumbens; 

vagina 
-0.0398 6.84e-06 

C10orf32 Diffuse across brain; adrenal cortex -0.0109 7.38e-06 

DPYSL5 Spinal cord 0.0161 9.62e-06 

RP11-62H7.2 Thyroid, kidney, lungs 0.0110 9.88e-06 

ZKSCAN3 Diffuse across peripheral regions 0.0165 1.03e-05 

THEM6 Cerebellum, frontal cortex, bladder 0.0245 1.13e-05 

 

Table 6. PrediXcan-Identified Genes with Differential Expression based on Risk-Tolerance 

GWAS 
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4.0 Discussion 
 

Externalizing diagnoses, including ADHD, substance-use disorders, and antisocial and conduct 

disorders, are moderately-to-largely heritable and characterized by both increased risk-taking 

behaviors (i.e., impulsivity, delay discounting, and alcohol use) and differences in neural 

activation in key reward-related regions (e.g., ventral striatum). In light of mounting evidence of 

a complex polygenic architecture underlying complex behavior and the limited utility of single 

SNP and candidate-gene approaches for examining genetic contributions to heritable psychiatric 

phenotypes, the current study used a polygenic risk score (PRS) method to assess associations 

between risk-related phenotypes and genome-wide liability for risk-taking behavior. Contrary to 

our hypotheses, we did not find any consistent significant associations between PRS and neural 

activation in the ventral striatum, or between PRS and impulsivity, delay discounting, or AUDIT 

scores. Further, though PrediXcan analyses of post-mortem gene-expression data pointed to 15 

genes with differential expression related to genomic risk-taking liability, none were 

significantly associated with the behavioral or neural phenotypes in question, nor was a PRS 

calculated using variants from these genes.  

Our null findings run counter to several recent publications showing significant 

associations between increased genomic risk for psychopathology and differential neural and 

behavioral phenotypes. For example, Erk and colleagues have reported that schizophrenia-based 

PRS predicts increased cingulate activation during episodic memory and social-cognition tasks 

(Erk et al., 2017), and a systematic review published just this year indicates that, across multiple 

studies, genetic liability for bipolar disorder and schizophrenia predicts aberrant activation of 

frontal regions (Dezhina, Ranlund, Kyriakopoulos, Williams, & Dima, 2019); together, these 

findings putatively link genomic risk to cortical inefficiency during task performance. 
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Furthermore, PRS based on cross-diagnostic liability has been linked to increased generalized 

risk for substance use, suggesting shared mechanisms between psychopathology and substance 

involvement (Carey et al., 2017). PRS computed using genes derived from PrediXcan analyses 

showed similar null associations to the GWAS-generated PRS, which suggests that, here, a 

biologically-informed approach to PRS did not yield increased predictive power. Notably, no 

studies have been published to date utilizing PrediXcan-generated PRS that may reflect 

etiological contributions via gene-expression differences, nor have studies been published 

comparing predictive power GWAS-generated PRS to that of PrediXcan-informed PRS, 

rendering the current study particularly novel. It is possible that predictive power of the 

PrediXcan-informed PRS in our study may be limited by potential regulatory factors at play; as 

such, it may be useful for future studies to conduct more comprehensive analyses by integrating 

further with mRNA-expression databases (e.g., GTEx) to find expression quantitative trait loci 

(eQTLs) that are associated with PrediXcan-identified genes (but may be located outside of 

them).  

Our lack of significant findings may indeed reflect truly null associations; that is, that 

genomic liability for risk-taking does not predispose individuals to differences in related neural 

or behavioral measures, regardless of whether liability is based upon on statistically- or 

biologically-informed associations. However, our null findings may also be attributable to 

alternative explanations, which are detailed below.  

4.1 GWAS Phenotyping 

As noted previously, the Linner et al. GWAS assesses general risk tolerance via a one-item, self-

report measure. Participants acquired from the UK BioBank (n=431,126) answered the 
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following: “Would you describe yourself as someone who takes risks? Yes/No,” where “yes” 

was coded as a 1 and “no” coded as a 0 (mean response ± SD: 0.26 ± 0.44). Participants acquired 

from 23andMe (n=508,782) self-rated overall comfort with taking risks on a scale with the 

following options: [1] Very uncomfortable / [2] Somewhat uncomfortable / [3] Neither 

comfortable nor uncomfortable / [4] Somewhat comfortable / [5] Very comfortable (mean rating 

± SD: 3.16 ± 1.15; Karlsson Linnér et al., 2019). This broad phenotyping has allowed for 

consequently high response rates, enabling Linner and colleagues to concatenate data from over 

900,000 participants. However, this phenotype is questionably ecologically relevant, and 

relatively low endorsement of extreme risk-taking behaviors and attitudes (as surmised from 

mean scores on both scales) may indicate that this group is not particularly well-populated with 

risk-tolerant individuals. As well, the two datasets that comprise Linner and colleagues’ sample 

(i.e., the UK BioBank and 23andMe) used different assessments of risk tolerance, which may 

have affected phenotypic continuity across the sample at large. In all, a lack of precision in 

phenotypic assessment may have compromised the study’s ability to assess externalizing in a 

way that would meaningfully and/or practically correlate with neural or behavioral markers. 

Indeed, evidence suggests that phenotyping and sample size may both impact the power 

and utility of discovery GWAS (Bogdan et al., 2018). GWAS based on low-pass phenotypic 

measurements (i.e., measurements that allow for data to be easily acquired from large samples, 

but, in turn, may sacrifice quality or specificity) have successfully identified significant loci: for 

example, a GWAS of AUDIT scores, a self-report measure assessing alcohol use in the past 12 

months, identifies similar genetic loci and produces results that are genetically correlated with 

(rg: 0.33-0.63) with alcohol dependence (Sanchez-Roige et al., 2019). Should we see similar 

results for other complex psychiatric phenotypes, it would suggest that low-pass phenotypes, 
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such as the metric used by the risk-tolerance GWAS referenced in the current study, may allow 

us to quickly amass findings that lend insight into the role of genetic variation in 

psychopathology. On the other hand, it is possible that low-pass phenotypes are not positioned to 

detect the most mechanistically-informative loci. In fact, some evidence supports the idea that 

low-pass phenotyping is not sufficient to uncover the genetic architecture of complex 

psychopathology: for instance, in contrast to an initial larger GWAS of major depressive disorder 

(Ripke et al., 2012), a smaller GWAS of severe, primarily melancholic, depression characterized 

by anhedonia was notably more successful at identifying genomic loci associated with 

depression risk, including a previously-reported candidate gene, SIRT1 (Cai et al., 2015). 

Meanwhile, other studies using a meta-analytic approach to examine GWAS of heterogenous 

depressive phenotypes have identified many variants (Howard et al., 2019; Wray et al., 2018), 

e.g., upwards of 100 in a single meta-analysis (see Howard et al., 2019). Going forward, it will 

be important for intermediate-phenotype research, such as neuroimaging, to evaluate whether 

genomic risk for low-pass phenotypes (e.g., Linner et al., 2019) is differentially predictive than 

formal psychiatric diagnoses.  

4.2 Reliability of Task-Related fMRI 

Our null results may stem from constraints on the precision of our neuroimaging methodology. 

In the DNS, VS activation is measured via a canonical card-guessing task: in the scanner, 

participants are instructed to guess whether a face-down card will be greater or smaller than a 

target number, earning a positive monetary reward for correct guesses and incurring a loss for 

incorrect guesses. This task has been shown to reliably elicit robust increases in VS activation to 

positive feedback as compared to negative feedback. Notably, task-based fMRI was initially 
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developed to measure average regional activation at the group level, in order to identify specific 

neural regions associated with phenotypes. Examining whether individual differences in the 

extent or variability of activation are associated with complex behavior and psychiatric 

phenotypes was intuitively appealing following reliable map-based activation patterns. However, 

emerging evidence from meta-analyses and independent studies suggests that the magnitude of 

task-related activation as typically studied in individual differences research has poor reliability 

as measured via intraclass correlation (ICC; mean ICC=0.39; see: Elliot et al., 2019). This is 

based on two converging empirical findings: 1) Across a host of tasks designed to elicit 

activation in specific brain regions (included the card-guessing task), target-region reliability 

failed to surpass non-target-region reliability, and 2) Using a meta-analytic approach to examine 

published task-fMRI findings, test-retest reliability was relatively low (ICC=0.397; Elliot et al., 

2019). Because low reliability necessarily reduces statistical power, this sobering estimate of 

task-fMRI reliability for individual-differences research may suggest that previously-published 

findings have questionable replicability and validity. Here, it might suggest that task-fMRI is not 

the right vehicle with which to identify neural markers of genomic risk or externalizing 

disorders, and our null VS-reactivity findings may be the result of employing a method that is 

unfit to establish putative links between brain activation and externalizing. Structural MRI may 

be better-suited to the individual-differences nature of the current study, as even in between-

subjects research, structural measures yield encouragingly-high test-retest reliability [ICC>0.90; 

specifically, cortical thickness and surface area are able to be measured with much greater 

reliability than task activation; (Elliot et al., 2019; Han et al., 2006; Jovicich et al., 2006)]. In 

light of this, we examined PRS associations with cortical thickness calculated using FreeSurfer. 

While estimates were not available for the VS, we examined frontal and sub-cortical regions that 
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have been implicated in reward-related processes.  These investigations yielded null results as 

well (see Supplemental Tables 2 and 3), which may be a product of power and phenotyping 

limitations. Of note, we did not use these regions as ROIs for follow-up analyses of task 

activation, in part to limit multiple testing, and in part because the ventral striatum is the single 

ROI that is most robustly activated during the card-guessing task, while other frontal and sub-

cortical reward-related regions are not activated to nearly the same extent.  

4.3 Predictive Power 

Critiques of the PRS method have noted that studies are often underpowered to detect small 

effects on complex phenotypes (Bogdan et al., 2018). Among PRS computed for psychiatric 

diagnoses, those with the greatest predictive power typically predict less than 1% of variance in 

psychiatrically-relevant traits. One well-powered schizophrenia PRS (SCZ2-PRS, created by the 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, based on a sample of 

36,989 cases and 113,075 controls) has been reported to predict 0.7% of variance in negative 

symptoms (Jones et al., 2016) and 0.3% of variance in cognition (Riglin et al., 2017) among the 

general population. These effect sizes are not particularly encouraging, and the PRS method’s 

mixed predictive success is compounded by its reliance on multiple factors, including the PRS 

itself (as calculated using summary statistics from a discovery GWAS), the size of the target 

sample (i.e., here, the DNS), the nature of the trait it is used to predict, and the true strength of 

the association between genomic liability and behavioral or neural phenotypes across diagnoses. 

The GWAS on which we based our PRS calculations had an impressive sample of over 

900,000 individuals amassed from two large datasets (Karlsson Linnér et al., 2019), which is 

more than many previous studies of its kind. However, power calculations (using G*Power 
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software) indicate that a target sample size of at least 800 is required to account for a benchmark 

1% of variance. Because our target sample, the DNS, has a sample size smaller than this 

estimate, it is arguably underpowered to detect effects that may truly exist in the population at 

large, which may have led to the null effects we have reported. Further, PRS have been reported 

to yield much larger effect sizes when they are used to predict the exact trait on which a 

discovery GWAS was based. For instance, estimates suggest that a GWAS for a phenotype with 

n = 1,000,000 may generate PRS that explain up to 15% of variance in that same phenotype in an 

independent target sample (Rietveld et al., 2013). However, when PRS are used to predict more 

distal, related traits – as we have done here to predict neural and behavioral risk-related 

phenotypes – they tend to generate smaller effect sizes, which may have also contributed to our 

null results.  

4.4 Limitations and Future Directions 

In all, our results should be considered in the context of several important limitations. Above, we 

explored several possible explanations for the null results we report. These included potential 

limitations on predictive power, which in the current study stem largely from the relatively-small 

sample size of the DNS, despite a quite-large discovery GWAS. In the future, studies with larger 

target samples may be better poised to detect small differences in complex externalizing 

phenotypes (Bogdan et al., 2018). Further, we discussed the use of task-based fMRI in between-

subjects research, which yields lower reliability than would be needed to detect disorder-related 

biomarkers (Elliot et al., 2019). Importantly, the literature recommends a few key actions to 

remedy this, including using tailored analyses techniques with existing data (e.g., latent variable 

models, machine learning); encouraging open reporting of reliability for all task-fMRI measures 
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used to assess individual differences, which will bolster replication attempts; creating new tasks 

that prioritize reliable measurement and increase validity; and exposing subjects to complex 

stimuli during imaging (i.e., “naturalistic fMRI”), which may maximize ecological validity (for a 

more detailed explanation of these points, see: Elliot et al., 2019). Finally, we discussed 

imprecise phenotyping in the discovery GWAS that may have limited our study’s practical 

applicability. Of note, the discovery GWAS employed a case-control dichotomy of “risk 

tolerant” versus “non-risk tolerant” individuals based on a single self-report item. Self-report 

measures are especially prone to bias, which may be related to social desirability and 

experimenter-expectancy effects, among other factors. Thus. this measurement may have 

introduced error to the summary statistics we used to compute PRS. Future genome-wide 

explorations of externalizing should consider more robust measures of risk-related phenotypes 

that assess various facets of both behavior (e.g., substance consumption, impulsive behaviors) 

and attitudes (e.g., assessment of risk tolerance in both self and other).  

In addition to such methodological limitations, the generalizability of our findings may 

also be limited by the composition of our target sample. The DNS is comprised of largely-

healthy college students and community members and is not purposefully enriched for 

externalizing features. This allows us to obtain a wide range of scores on behavioral measures of 

impulsivity, delay discounting, and alcohol use that are comparable to the population at large, 

but it does not allow us to use risk-taking PRS to predict current or future diagnosis of 

externalizing disorders. Future investigations of the link between genomic liability for risk-

taking and the development of externalizing disorders in patient populations would better inform 

downstream consequences. Additionally, for the current study, we performed all analyses in a 

European-ancestry subset of the DNS, in order to match the ethnic composition of the discovery 
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GWAS. While the majority of GWAS studies thus far have been conducted in European-ancestry 

populations to control for potential confounding effects of population stratification on genetic 

factors (Morales et al., 2018), it will be crucial for the field to improve its knowledge of how 

genetic research applies across ethnicities and ancestries, as well as for future studies to recruit 

diverse samples.  

4.5 Conclusions 

Externalizing disorders, characterized by sensation-seeking, impulse-control issues, and risk-

taking behavior, are common and have an immense socioeconomic and personal impact. Though 

the literature suggests that they are highly-heritable, we know surprisingly little about the 

etiologic mechanisms that underlie externalizing psychopathology, and, in turn, treatment and 

prevention methods are limited. The current study investigated whether genomic liability for 

externalizing, based upon a large-scale GWAS of risk tolerance, was associated with risk-related 

behavioral and neural phenotypes in a community sample. Further, we explored differential gene 

expression related to genomic liability and compared the predictive power of GWAS-based PRS 

to that of gene-expression-based PRS. Here, we report null results with both approaches; as such, 

future studies are needed to better understand how various factors that may have impacted our 

results – including the reliability of task-fMRI, low-pass vs. deep phenotyping in genome-wide 

studies, sample size, and statistical power – influence the utility of individual-differences 

neuroscience and genetics research to inform our mechanistic understanding of complex 

disorders.  
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Supplemental Materials 

Supplemental Table 1. DNS Psychiatric Diagnosis Data  

Diagnosis  Number of Participants 

Major Depressive Disorder 28 (5.32%) 

Bipolar Disorder 16 (0.03%) 

Panic Disorder (no Agoraphobia) 14 (0.03%) 

Panic Disorder (with Agoraphobia) 12 (0.02%) 

Social Anxiety Disorder 5 (0.01%) 

Obsessive Compulsive Disorder 6 (0.01%) 

Alcohol Abuse/Dependence Disorder  67 (12.7%) 

Post-Traumatic Stress Disorder  0 (0.0%)  

 

 

 

Supplemental Figure 1. Distribution of Ventral Striatal Activation to Card-Guessing Task 
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Supplemental Table 2. Main Effects of Risk-Tolerance PRS on Structure of Risk-Related 

Cortical Regions 

 

 
ROSTRAL 

ACC 
CAUDAL ACC 

LATERAL 

OFC 

MEDIAL 

OFC 

PRS 

p-threshold 
β P β p β p β p 

0.0001 -0.0175 0.6840 -0.0501 0.2341 -0.0871 0.0198 -0.0162 0.6940 

0.001 -0.1665 0.0203 -0.0842 0.2422 -0.0269 0.6729 0.0066 0.9250 

0.01 0.1225 0.1186 0.1061 0.1788 0.1158 0.0976 -0.0277 0.7200 

0.05 -0.2854 0.0138 -0.1944 0.0947 -0.1228 0.2369 -0.0245 0.8291 

0.1 0.1067 0.4684 0.1562 0.2913 0.0748 0.5678 0.1533 0.2902 

0.2 -0.0282 0.8898 0.0711 0.7279 -0.0425 0.8141 -0.1393 0.4860 

0.3 0.3265 0.2895 0.2695 0.3844 0.5805 0.0347 0.2320 0.4450 

0.4 -0.0562 0.8938 0.1091 0.7964 -0.0620 0.8686 -0.1376 0.7400 

0.5 -0.0728 0.8849 -0.1626 0.7477 -0.7476 0.0954 0.2061 0.6770 

1 -0.0450 0.8996 -0.2685 0.4537 0.2352 0.4585 -0.3074 0.3810  

 

 

 

Supplemental Table 3. Main Effects of Risk-Tolerance PRS on Structure of Risk-Related 

Subcortical Regions 

 

 
PARA- 

HIPPOCAMPUS 

ENTORHINAL 

CORTEX 
INSULA 

PRS 

p-threshold 
β p β p β p 

0.0001 -0.0254 0.5676 0.0210 0.6368 0.0257 0.5180 

0.001 -0.1700 0.0254 -0.0110 0.8855 0.0766 0.2596 

0.01 0.0212 0.7900 -0.0405 0.6270 0.0202 0.7858 

0.05 0.0494 0.6862 0.1390 0.2571 -0.1281 0.2432 

0.1 0.1431 0.3586 -0.0214 0.8911 -0.1297 0.3532 

0.2 -0.1966 0.3613 -0.1605 0.4570 0.2034 0.2921 

0.3 -0.0870 0.7898 -0.0534 0.8703 0.3777 0.1696 

0.4 0.5817 0.1922 0.2315 0.6043 0.2073 0.6039 

0.5 -1.0564 0.0478 -0.2753 0.6060 -0.8849 0.0642 

1 0.6716 0.0757 0.2587 0.4941 0.3199 0.3444  
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