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ABSTRACT OF THE DISSERTATION 

Activation and Regulation of the ASCC-ALKBH3 Alkylation Repair Pathway 

by 

Joshua Brickner 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2019 

Professor Nima Mosammaparast, Chair 

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA 

lesions. These lesions are sensed by distinct pathways to recruit repair factors specific to type of 

damage. In particular, the ALKBH family of proteins recognizes and repairs specific alkylated 

lesions, including 1-methyladenine (m1A) and 3-methylcytosine (m3C). A major outstanding 

question in the field is how the AlkB homologue ALKBH3 and its associated protein partners are 

recruited to sites of alkylation damage and how this repair activity is regulated. Understanding 

the upstream signaling events that mediate recognition and repair of DNA alkylation damage is 

particularly important as alkylation chemotherapy is one of the most widely used systemic 

modalities for cancer treatment and environmental chemicals may trigger DNA alkylation. Here, 

I demonstrate that human cells have a previously unrecognized signaling mechanism for sensing 

DNA damage induced by alkylation. The ALKBH3-ASCC alkylation repair complex (consisting 

of the dealkylase ALKBH3 and the ASCC complex subunits ASCC1, ASCC2, and ASCC3) 

relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylation agents. These 

foci associate with alkylated nucleotides and are coincident with elongating RNA Polymerase II 

and other splicing components. Proper recruitment of the complex requires K63-polyubiquitin 
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recognition via the CUE (coupling ubiquitination to ER degradation) domain of the subunit 

ASCC2. The E3 ligase RNF113A is responsible for the upstream ubiquitin signaling necessary to 

recruit the repair complex. Conversely to ASCC2 and ASCC3, the subunit ASCC1 is present at 

nuclear speckles prior to alkylation but leaves in response to damage. Upon loss of ASCC1, 

ASCC3 foci significantly increase upon alkylation damage, suggesting a negative regulatory 

function for ASCC1. Indeed, ASCC1 appears to coordinate the proper recruitment of the ASCC 

complex in response to alkylation in a manner dependent on its putative RNA-binding motif. 

Interestingly, expression of an AlkB homologue from the blueberry scorch RNA virus containing 

an NLS (nuclear localization signal) fusion was sufficient to significantly reduce HA-ASCC2 

foci during alkylation damage. Overexpression of the RNA-specific methyltransferase METTL8, 

which produces m3C on mRNA, with an NLS fusion was sufficient to induce recruitment of 

ASCC3 to the nucleus, and primarily the nucleolus, even in the absence of alkylating agents, 

suggesting that RNA alkylation is both necessary and sufficient to recruit the ALKBH3-ASCC 

repair complex. Together, these findings significantly contribute to the notion that human cells 

have specialized DNA repair mechanisms and that these mechanisms can also repair damaged 

RNA. 
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Chapter 1: Introduction 
Zhao Y, Brickner JR, Majid MC, Mosammaparast N. 2014. Trends Cell Biol. 24: 426-434. 

Brickner JR, Townley BA, Mosammaparast N. 2019. DNA Repair (Amst). 102663. 

1.1 Signaling Cascades in Double Strand Break Repair 
Genomic integrity is constantly challenged by exposure to endogenous and exogenous damaging 

agents that can cause unfaithful DNA replication, which may result in mutagenesis (Fu et al., 

2012; Jackson and Bartek, 2009). Many of these damaging agents also generate DNA double-

strand breaks (DSBs), which are particularly cytotoxic. As such, cells have evolved multiple 

pathways that sense the presence of DNA damage, which activate various signaling cascades to 

recruit repair factors specific for the type of recognized lesion in DNA (Jackson and Durocher, 

2013). In particular, the response to DNA double-stranded breaks heavily relies on post-

translational modification of histones and non-chromatin proteins (Jackson and Durocher, 2013; 

Zhao et al., 2014). These repair mechanisms often are restricted to recognizing a specific DNA 

lesion. Although the signaling cascades that regulate the repair of DSBs are well characterized, 

whether such a “sensor-transducer-mediator” paradigm exists for specific types of DNA lesions 

is unknown. Regardless, understanding the various post-translational modifications that regulate 

DSB repair may provide insight into the upstream regulation of other DNA repair mechanisms. 

1.1.1 DSB Recognition and Phosphorylation 

The DSB response begins with the recognition of the double-stranded DNA break by the Mre11-

Rad50-NBS1 (MRN) complex, which is thought to promote activation of signaling kinases 

including ATM, ATR, and DNA-PK (Sirbu and Cortez, 2013) (Figure 1.1A). These serine-

threonine kinases target hundreds of proteins (Matsuoka et al., 2007) but a key target is a 

conserved site (serine 139) at the C-terminus of the histone variant H2A.X, which replaces the 
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canonical H2A in approximately 10% of the genome and is critical for orchestrating the DSB 

response (Celeste et al., 2002). In particular, the N-terminus of histones and histone variants are 

subject to post-translational modifications important for DNA repair (Gardner et al., 2011). 

Phosphorylated H2A.X (also known as pH2A.X) creates a ligand for MDC1, which recognizes 

pH2A.X via its tandem BRCT (BRCA1 C-terminal homology) domains (Reinhardt and Yaffe, 

2013). MDC1 itself contains phosphorylation sites near its N-terminus that are targeted by the 

ATM/ATR kinases that promotes the recruitment of RNF8 via its FHA domain, which causes a 

feedback loop that promotes further ATM activation via RNF8 and another DSB response 

associated E3 ligase, CHFR (Reinhardt and Yaffe, 2013; Wu et al., 2011). Additionally, another 

substrate of ATM, HERC2, contains a phosphorylation site that interacts with the FHA domain 

of RNF8 to help assemble the RNF8-UBC13 ubiquitin ligase complex (Bekker-Jensen et al., 

2010). It is therefore possible that upstream phosphorylation events regulate both the localization 

and enzymatic activities of proteins involved in alkylation repair. 

1.1.2 Ubiquitination During DSB Repair 

Ubiquitin signaling is an important cellular signaling mechanism that has been implicated in 

pathways ranging from targeting proteins for proteasomal degradation to promoting the DNA 

damage response (Komander and Rape, 2012). Ubiquitin is a small, 76 amino acid protein. There 

are eight primary ubiquitin chains that can be formed, dictated by linking the C-terminal of one 

ubiquitin monomer to either the N-terminus or one of seven lysine residues of another monomer 

(Komander and Rape, 2012; Pickart, 2001). Each chain acts as a unique cellular signal, though 

there is some overlap. While both K6- and K27-polyubiquitin chains have been implicated in 

DNA repair, the primary signal for repair is via K63-polyubiquitin (Wu-Baer et al., 2003; Gatti 

et al., 2015), while the primary signal for proteasomal degradation is K48-polyubiquitin 



3 

 



4 

 

(Komander and Rape, 2012). Ubiquitin conjugation occurs during a process involving an E1 

activating enzyme, an E2 conjugating enzyme, and an E3 ubiquitin ligase (Schulman and Harper, 

2009; Ye and Rape, 2009; Komander and Rape 2012). Substrate selectivity is dictated by the E3 

ligase, which interacts with the target protein (Pickart 2001). Interestingly, different E3 ligases 

ubiquitinate target proteins via different mechanisms. RING E3 ligases promote the direct 

transfer of a ubiquitin monomer from the E2 conjugating enzyme to the substrate. Conversely, 

the HECT family of E3 ligases directly receive the ubiquitin monomer before ligation to the 

substrate (Zheng and Shabek, 2017). 

The upstream phosphorylation events during DSB repair result in the recruitment of a variety of 

E3 ligases. In particular, phosphorylation of MDC1 recruits the E3 ligase RNF8, which 

ubiquitylates the histone H1 with K63-polyubiquitin chains (Huen et al., 2007; Mailand et al., 

2007; Kolas et al., 2007; Thorslund et al., 2015) (Figure 1.1B). This ubiquitination event then 

recruits another E3 ligase, RNF168, leading to additional ubiquitination of H2A and H2A.X at 

lysine residues K13 and K15 (Mattiroli et al., 2012; Gatti et al., 2012). Ubiquitination at these 

sites is essential to recruit the repair factors 53BP1 and BRCA1 to repair these breaks (Doil et 

al., 2009; Stewart et al., 2009). Additionally, PCNA that becomes arrested at stalled replication 

forks is either mono-ubiquitinated by RAD6/RAD18, or poly-ubiquitinated by K63-linked chains 

by SHPRH/HLTF (Watanabe et al., 2004; Motegi et al., 2006; Motegi et al., 2008). These 

ubiquitin modifications result in the initiation of translesion synthesis or error-free repair, 

respectively (Ulrich 2009). It stands to reason that, in addition to phosphorylation, upstream 

ubiquitin signaling may be indispensable for recruiting the proper repair proteins during other 

forms of DNA damage. 
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1.2 The Cellular Response to Alkylation Damage 

1.2.1 Characteristics of DNA Alkylation Adducts 

A major class of DNA damage that threatens genomic integrity is alkylation, defined as the 

transfer of an alkyl group to any accepting atom on DNA. The repair of alkylated DNA is 

particularly critical in the context of cancer, since alkylation chemotherapy is used to treat 

many tumor types. While agents that cause alkylation damage are also abundant in the 

environment, certain physiological metabolites, such as S-adenosyl-methionine (SAM) 

are capable of generating alkylated lesions in DNA (Rydberg and Lindahl, 1982; Barrows and 

Magee, 1982). Indeed, endogenous SAM is proposed to directly methylate DNA at a rate that 

reflects biologically relevant damage (Eloranta 1977; Rydberg and Lindahl, 1982). To generate 

an alkylated base, alkylators will react with either the ring nitrogen (N) or oxygen (O) atoms via 

an SN1 or SN2 nucleophilic reaction (Fu et al., 2012; Drablos et al., 2004). Due to its high 

nucleophilicity, simple methylating agents primarily attack the N-atom at position 7 of guanine 

to generate the 7-methylguanine (m7G) adduct, which corresponds to ~75% of all observed 

alkylation lesions (Beranek 1990). While m7G alone is relatively well-tolerated, it can 

spontaneously depurinate, resulting in an abasic site (Gentil et al., 2992). Other N-lesions caused 

by alkylation such as 3-methyladenine (m3A), 1-methyladenine (m1A), and 3-methylcytosine 

(m3C), are relatively less common. However, these lesions can be highly toxic due to their 

ability to block the DNA polymerase and disrupt canonical Watson-Crick base pairing, resulting 

in DNA replication fork collapse or mutagenesis, respectively (Larson et al., 1985). Indeed, 

error-prone translesion polymerases can bypass these lesions (Johnson et al., 2007). Alkyl 

modification at the O-atom primarily produces O6-methylguanine, which mismatch during 

replication, leading to mutagenesis (Warren et al., 2006: De Bont and Van Larebeke, 2004). 
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Due to the large variety of lesions caused by alkylating agents, even simple methylation adducts 

require one of three distinct pathways for their reversal. These include direct reversal by either 

the O6-methylguanine DNA methyltransferase (MGMT) or the AlkB family of iron 

dioxygenases, as well as the multi-step base excision repair (BER) pathway (Fu et al., 2012; Soll 

et al., 2017). Bulkier alkylation lesions capable of helical distortion or the generation of 

interstrand crosslinks (ICLs) rely upon nucleotide excision repair (NER) and the Fanconi anemia 

(FA) pathways (Spivak 2015; Kim and D’Andrea, 2012). 

1.2.2 Repair by the O6-methylguanine DNA Methyltransferase 

O6-methylguanine (MGMT) is responsible for the direct demethylation of oxygen-linked lesions, 

such as O6meG (Figure 1.2A). Demethylation occurs through the irreversible transfer of the alkyl 

group to a cysteine residue within the catalytic site of MGMT (Kaina et al., 2007). The alkylated 

protein has increased potential as a substrate for ubiquitin ligases, facilitating its degradation via 

the 26S proteasome (Srivenugopal et al., 1996; Xu-Welliver and Pegg, 2002; Hwang et al., 

2009). As MGMT protein function is non-enzymatic and restricted to a single demethylation 

reaction, the repair of these lesions is dependent on the availability of MGMT. Should O6meG 

avoid repair by MGMT, DNA polymerase may insert either cytosine or thymine opposite 

O6meG, potentially giving rise to G:C to A:T transition mutations (Warren et al., 2006). 

Interestingly, MGMT expression status can be used as a predictor of how certain tumors will 

respond to chemotherapy. Tumors that exhibit high levels of MGMT tend to be resistant towards 

treatment with the alkylation chemotherapeutic temozolomide (TMZ) or other alkylating drugs 

(Christmann et al., 2011; Gerson 2004). Conversely, methylation of the MGMT promoter in 

certain tumors, such as gliomas, results in a loss of MGMT expression and better tumor response 

(Weller et al., 2010; Esteller et al., 2000). 
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1.2.3 Direct Reversal by the AlkB Family of Iron Dioxygenases 

In direct contrast to MGMT, the AlkB family of iron dioxygenases serve as bona fide enzymes to 

repair N-linked alkylation adducts, such as the minor SN2 products m1A and m3C (Fu et al., 

2012) (Figure 1.2B). Mechanistically, these enzymes transfer a hydroxyl moiety to the 

methylated ring nitrogen of the damaged base (Sedgwick et al., 2007). This reaction consumes 2-

oxoglutarate and oxygen in a 1:1 stoichiometric ratio and produces succinate and carbon dioxide 

as byproducts; iron serves as the catalyst for the reaction (Welford et al., 2005). Indeed, 

accumulation of the 2-oxoglutarate competitor, D-2-hydroxyglutarate, results in accumulation of 

alkylation damage, demonstrating the importance of this metabolite (Wang et al., 2015). The 

hydroxylated intermediate is highly unstable and will hydrolyze spontaneously, reverting the 

base to its original unmodified state and releasing formaldehyde as a byproduct (Falnes et al., 

2002; Trewick et al., 2002). Although toxic to the cell, formaldehyde can be metabolized by 

cellular dehydrogenases (Sedgwick et al., 2007; Pontel et al., 2015). Alternatively, the 

formaldehyde-derived damage, such as ICLs, can be repaired via the Fanconi anemia pathway 

(Niedernhofer et al., 2005; Kee and D’Andrea, 2010). 

Although nine human homologues to AlkB have been identified in humans to date, only two 

members of this family, ALKBH2 and ALKBH3, have definitive activity on m1A and m3C on 

DNA (Duncan et al., 2002; Aas et al., 2003). The presence of two repair enzymes that recognize 

the same lesions hints at redundancy; however, ALKBH2 preferentially dealkylates a double-

stranded DNA substrate, while ALKBH3 prefers single-stranded DNA or RNA, suggesting 

specific roles for each repair enzyme (Aas et al., 2003). Thus, this direct reversal of DNA 

alkylating adducts by the ALKBH proteins prevents m1A and m3C accumulation from blocking 

replication events (Shrivastav et al., 2010). 
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1.2.4 The Base Excision Repair (BER) Pathway 

While the repair mechanisms described in Chapter 1.2.2 and 1.2.3 are one-step reactions, 

removal of an alkylated lesion during BER involves a multi-step process that results in either 

short-patch BER and the removal of a single nucleotide, or long-patch BER and the removal of a 

small stretch of DNA (Robertson et al., 2009) (Figure 1.2C). Although BER repairs diverse 

damage adducts, the predominant methylated lesion resolved by this pathway is m3A. Repair for 

each BER pathway is initiated by recognition of the lesion by a DNA glycosylase, such 

as alkyladenine glycosylase (AAG) (Wyatt et al., 1999; Svilar et al., 2011). AAG cleaves 

the glycosidic bond, removing the base and leaving an apurinic (AP) site. The AP site is then 

recognized by the AP endonuclease (APE1), resulting in excision of the sugar phosphate. During 

short-patch BER, XRCC1/Polβ fills in the single nucleotide gap and the DNA is ligated by DNA 

ligase I or III (Fortini and Dogliotti, 2007). Conversely, during long-patch BER, either Polβ 

or Polδ/ε (in proliferating cells) fill in a several nucleotide gap. Ligation of the DNA is mediated 

by DNA ligase I and the remaining flap is excised by PCNA/FEN1 (Fortini and Dogliotti, 2007). 

The presence of multiple pathways to repair alkylation lesions predicts that there may be some 

redundancy to ensure proper repair in the event that one pathway becomes defective. Indeed, loss 

of ALKBH2 in mice (Alkbh2-/-) resulted in an accumulation of m1A, while Alkbh3-/- mice did not 

result in this phenotype (Ringvoll et al., 2006). While this observation suggests that ALKBH2 is 

the predominant demethylase for endogenous m1A, double knockout (Alkbh2-/- Alkbh3-/-) mice 

were more susceptible to alkylation-induced tumor development relative to the single Alkbh2-/- 

mice (Calvo et al., 2012). Thus, both ALKBH2 and ALKBH3 contribute to alkylation resistance, 

albeit to different degrees. Interestingly, the Aag-/- Alkbh2-/- Alkbh3-/- triple knockout mouse 

exhibited a severe sensitivity to the inflammatory agents dextran sodium sulfate (DSS), resulting 
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in an accumulation of 1,N6-ethanoadenine (εA) and 1,N2-ethanoguanine (εG) in these mammals 

(Calvo et al., 2012). This work demonstrates the importance and redundancy of AlkB 

demethylases and BER proteins in repairing bulkier lesions in vivo (Delaney et al., 2005; Fu and 

Samson et al., 2012; Singer et al., 1992). 

1.2.5 Regulation of Alkylation Repair Pathways by Ubiquitin Signaling 

While the ubiquitin signaling events that promote double stranded break repair have been well-

studied (see Chapter 1.1.2), emerging evidence exists that ubiquitin signaling may regulate 

alkylation damage repair. Indeed, recent studies have demonstrated that APE1 can be 

polyubiquitinated at several residues near its N-terminus (Meisenberg et al., 2012; Edmonds and 

Parsons, 2014). Polyubiquitination of APE1 by the E3 ligase UBR3 results in its proteasomal 

degradation (Meisenberg et al., 2012). Polβ has also been shown to be ubiquitylated on lysines at 

position 206 and 244 in the absence of XRCC1 in a CHIP or MULE independent manner and 

subsequently targeted for proteasomal degradation (Fang et al., 2014). XRCC1 is then available 

for K48-polyubiquitination by CHIP or protected from proteasomal degradation via direct 

interaction with HSP90. Thus, BER is directly regulated via ubiquitin-dependent processes.  

Similarly, recent work has demonstrated that the demethylases ALKBH2 and ALKBH3 are also 

regulated via ubiquitin signaling. Both enzymes are modified by K48-polyubiquitin and 

degraded (Zhao et al., 2015). Interestingly, a deubiquitinase complex positively regulates these 

dealkylases by reversing the ubiquitination. A key component of this complex is the 

deubiquitinase OTUD4, whose catalytic activity is dispensable for the stabilization of ALKBH2 

and ALKBH3. Rather, OTUD4 serves as a scaffold to promote the association of these proteins 

with two additional deubiquitinases: USP7 and USP9X (Zhao et al., 2015). Indeed, loss of either 

USP7 or USP9X destabilizes ALKBH2 and ALKBH3, resulting in hypersensitivity to alkylation 
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damage, dependent upon the catalytic activity of these proteins (Zhao et al., 2015). Together, 

these studies reveal that master regulatory mechanisms may exist for enzymes involved in 

repairing alkylated DNA. 

1.3 The ALKBH3-ASCC Complex in Alkylation Repair 

1.3.1 The ASCC3 Helicase 

 Our work previously showed that the repair enzyme ALKBH3 interacts with the heterotrimeric 

ASCC (Activating Signal Co-integrator Complex), consisting of the subunits ASCC1, ASCC2, 

and the ASCC3 DNA helicase. This complex was originally isolated through its physical 

association with ASC-1, a transcriptional coactivator (Jung et al., 2002). This original report 

suggested that the ASCC complex coordinates with ASC-1 to activate transcription via AP-1, 

NF-B and SRF. While the individual role of each subunit remained elusive, our work 

demonstrated an important role for this complex in repairing alkylated DNA in various tumor 

cells (Dango et al., 2011). ASCC3 encodes a superfamily II tandem helicase protein that 

associates directly with the ALKBH3 dealkylase (Dango et al., 2011). While ASCC3 has the 

most homology with RNA helicases such as the spliceosomal protein BRR2, it has the ability to 

unwind short strands of DNA in an apparent 3’-5’ direction in a manner that depends on its C-

terminal ATPase domain (Dango et al., 2011). This helicase activity appears to support 

ALKBH3 mediated dealkylation of double-stranded DNA, expanding the substrate repertoire 

of ALKBH3, which strongly prefers single-stranded substrates (Aas et al., 2003). Consistently, 

loss of ASCC3 significantly sensitizes cells to MMS and results in accumulation of genomic 

m3C, particularly in cell lines which appear to overexpress this factor (Dango et al., 2011). Of 

note, ASCC3 and ALKBH3 are associated with each other in a sub-stoichiometric fashion, 

consistent with ALKBH3-independent functions of the ASCC complex.  
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1.3.2 ASCC1 and ASCC2 

Two outstanding questions in regard to the regulation of ASCC-ALKBH3 complex are the roles 

of ASCC1 and ASCC2. I hypothesize that ASCC1 and ASCC2 coordinate proper complex 

formation and recruitment of the ASCC-AKLBH3 repair complex to modulate its activity. I 

further propose that ASCC1 and ASCC2 act through distinct mechanisms. Therefore, I am 

investigating the roles of ASCC1 and ASCC2 in regulating the recruitment and function of the 

ASCC-ALKBH3 complex during alkylation damage. In Chapter 2, I provide evidence that 

ASCC2, ASCC3 and ALKBH3 localize to nuclear speckle bodies that coincide with the m1A 

alkylation lesion specifically upon alkylation damage. These sites are subnuclear regions 

associated with active splicing and processing of RNA PolII transcripts, amongst many other 

functions (Spector et al., 1991; Spector and Lamond, 2011; Girard et al., 2012; Dias et al., 

2010). As such, these foci are co-incident with the spliceosomal factors BRR2, PRP8 and 

elongating RNA PolII. Proper recruitment of this complex to alkylation-induced foci is 

dependent upon ubiquitin recognition by the accessory subunit ASCC2, which appears to 

function as an adaptor to recruit ASCC3 and ALKBH3. Consistent with dependence 

upon a ubiquitin signaling pathway, we identified the E3 ligase RNF113A as the key factor that 

produces such chains responsible for recruiting ASCC-ALKBH3 (Figure 1.3). A combination 

of in vitro and in vivo ubiquitination experiments demonstrated that the spliceosomal helicase 

BRR2 is a substrate of RNF113A. In contrast to ASCC2, ASCC1 is present at nuclear speckles 

prior to damage but leaves these foci in response to alkylation (Chapter 3). Loss of ASCC1 

results in a dramatic increase in ASCC3 foci during alkylation damage. Interestingly, while 

ASCC3 and ASCC2 are primarily present in the same foci during alkylation, ASCC1 loss 

increases the amount of ASCC2-independent ASCC3 foci. I also demonstrate that both ASCC1 

and ASCC2 are critical to promote cellular survival when challenged with alkylating agents. 
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Together, these results suggest that ASCC1 and ASCC2 coordinate the recruitment and 

formation of the ASCC-ALKBH3 complex via distinct mechanisms. 

1.4 The Interplay Between Transcription and DNA Damage 

1.4.1 DNA Damage Responses and Transcription  

A major reason why many types of damage to the genome, including alkylation, result in 

cytotoxicity is because of disruption to the coding capacity of DNA. Specifically, adducts that 

disrupt the DNA backbone or canonical Watson-Crick base pairing can affect both RNA and 

DNA polymerases, hindering not only DNA replication but also transcription. Canonical types of 

damage that are strong blocks to either process include UV damage, DNA interstrand crosslinks, 

and bulky alkylated adducts. Smaller adducts, such as aberrantly methylated bases, have 

significantly less impact on transcription. The majority of the pathways described above in 

Chapter 1.3, however, repair relatively simple alkylation additions, such as single methyl 

additions. While some evidence suggests that the AlkB enzymes may resolve bulkier N-

linked lesions (Delaney et al., 2005; Li et al., 2013), larger alkylation adducts are thought 

to induce DNA helical distortion, which in turn activates nucleotide excision repair (NER) 

(Spivak et al., 2015). Indeed, MGMT-like proteins have been identified which bind to bulky 

lesions and activate NER, suggesting the presence of crosstalk between NER 

and direct alkylation reversal pathways (Tubbs et al., 2009; Latypov et al., 2012). 

NER is the primary pathway that repairs bulkier adducts, which include UV lesions. Indeed, 

helical distortion in the DNA backbone is the major signal which activates this pathway (Hess et 

al., 1997; Zou et al., 2001; Sugasowa, 2001). As with BER, there are two distinct subsets of 

NER: global genome repair (GGR) and transcription-coupled repair (TC-NER). In global 

genome repair (GGR), factors such as UvrA in bacteria or XPC/Rad23 in mammals 
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recognize NER substrates and initiate the recruitment of excisional machinery and downstream 

endonucleases that cut a single-stranded region surrounding the damage site. The single-stranded 

gap resulting from removal of the lesion is filled in by DNA polymerases and the end is ligated 

by DNA ligase. However, the initial lesion recognition factors in GGR are generally limiting and 

RNA polymerase (RNA PolII) may encounter the lesion in a transcriptionally active gene. 

This encounter at actively transcribed genes initiates a specific TC-NER. TC-NER was 

discovered in mammalian cells, where certain silent loci within the genome were found to 

be relatively resistant to repair (Bohr et al., 1985). Subsequent studies demonstrated that repair of 

UV-induced cyclobutane dimers in CHO cells in a transcriptionally active locus is more efficient 

than an adjacent silent locus (Mellon et al., 1987). In fact, the transcribed strand of DNA was 

shown to be preferentially repaired, strongly implying a role for RNA polymerase in the early 

recognition events (Mellon et al., 2987). 

Once an RNA polymerase molecule encounters a stalling lesion, several additional factors are 

recruited to promote early events unique to TC-NER, and couple it to the downstream removal of 

the lesion. Many of the factors involved in this pathway were initially characterized by their 

association with three distinct inherited syndromes, namely xeroderma pigmentosum, Cockayne 

syndrome, UV-sensitive syndrome, and trichothiodystrophy (XP, CS, UVSS, and TTD, 

respectively). Importantly, many of the severe neurological and developmental phenotypes 

associated with Cockayne syndrome have since been linked to general transcriptional defects that 

function independently of TC-NER (Apostolou et al., 2019). Accordingly, a similar 

phenomenon occurs in TTD, in which non-photosensitive TC-NER proficient cases 

feature similar phenotypes as cases with photosensitivity and TC-NER deficiency (Stefanini et 

al., 2010).  
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While to date many of the specific molecular events are not fully elucidated, a stalled RNA 

polymerase requires remodeling of the region to permit access to the damage site for its repair. In 

bacteria, the major factor that performs this function is Mfd, whose functional homologue 

in yeast and mammals appears to be the Rad26 and CSB proteins, respectively (Guzder et al., 

1996; Selby and Sancar, 1994; Friedberg 1996). CSB is stabilized at the lesion by UVSSA-

USP7, which CSB forms a complex with CSA that is thought to trigger recruitment 

of chromatin-remodeling factors, including the histone acetyltransferase p300 and HMGN1 

(Zhang et al., 2012; Fei and Chen 2012; Fousteri et al., 2006). Subsequent to recruitment of the 

basal transcription factor TFIIH, the GGR and TC-NER pathways converge (Li et al., 

2015). Upon recruitment of TFIIH, the helicase subunits XPD and XPB unwind the damaged 

DNA and replication protein A (RPA) binds to and stabilizes the undamaged strand. XPA binds 

the damaged site as part of a lesion verification step and RPA then directs nucleolytic cleavage 

of the region surrounding the lesion via ERCC1-XPF and XPG (Overmeer et al., 2011; Fagbemi 

et al., 2011). Upon removal of the damaged region, PCNA loading allows gap-filling DNA 

synthesis by one of several polymerases and subsequent DNA ligation. Notably, virtually all of 

these studies on TC-NER have focused on types of damage that are strong blocks to the 

polymerase, such as UV-induced lesions. Therefore, what happens with smaller lesions that may 

slow down the polymerase or otherwise negatively affect the nascent transcript is relatively 

unexplored. 

1.4.2 Alkylated Lesions and Effects on Transcription  

As stated previously, smaller adducts including methylated bases are more limited in their 

capacity to block transcription when they occur in DNA. Indeed, the most highly abundant 

adduct created when cells are treated with genotoxic methylating agents is the largely 
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innocuous m7G (Rinne 2005). Although prone to spontaneous depurination, m7G does not block 

either DNA or RNA polymerases. On the other hand, while m3A can block replicative DNA 

polymerases, this lesion does not significantly affect human RNA PolII elongation (Malvezzi et 

al., 2017). Indeed, larger 3-alkyladenine lesions are needed to block RNA PolII, and their degree 

of transcription inhibition appears to correlate with the size of the adduct (Malvezzi et al., 

2017). m7G and m3A comprise ~90-95% of the lesions that are created using methylating agents 

such as MMS, consistent with the notion that global transcriptional shutdown does not occur 

upon treatment of human cells with this agent.  

Thus, it would seem that alkylating agents, or at least simple methylating agents that do not 

induce bulky lesions, may not require TC-NER. However, certain alkylated lesions such as 3-

methylthymine serve as strong transcriptional blocks (Xu et al., 2017). Although these N-

linked lesions are thought to be exquisitely rare, they may be more pronounced in open regions 

of chromatin or actively transcribed regions because single-stranded DNA lacks the protection 

from normal base pairing. Genome-wide location analysis for these lesions will be necessary 

to determine their potential to impact transcription. Nevertheless, it is interesting to note 

that ChIP-Seq analysis of ALKBH3, one of the human AlkB homologues that has the capacity to 

demethylate m1A and m3C, demonstrated a strong preference for highly active genes, suggesting 

that the cell is poised to repair such lesions even under undamaged conditions (Liefke et al., 

2015). 

1.4.3 ASCC3 and Transcription  

While it is unclear whether N-linked lesions that block base pairing specifically activate TC-

NER, new evidence suggests that at least some of the factors that are associated with TC-NER 

also play a role in the cellular response to alkylation. Such potential crosstalk between repair 
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factors assembled in response to UV and alkylation damage has been suggested in genome-wide 

studies in both yeast and mammalian cells (Mathew et al., 2017; Williamson et al., 2017). A 

multi-omic approach to identify new factors involved in TC-NER uncovered an important role 

for the ASCC complex (Boeing et al., 2016). ASCC3, the largest subunit of the complex, was 

one of the highest scoring factors in the multi-omics TC-NER screen, becoming highly 

phosphorylated and ubiquitinated during UV-irradiation, and interacting with RNA PolII and 

CSB (Boeing et al., 2016). Interestingly, loss of ASCC3 or its interacting partner ASCC2, led to 

a global increase in transcription upon UV-irradiation, suggesting that ASCC may act as a 

suppressor of global transcription during damage (Williamson et al., 2017). Interestingly, 

the ASCC3 gene encodes a short non-coding RNA which negatively regulates ASCC. Selective 

loss of this short isoform impedes transcriptional recovery after UV damage and increases UV-

damage hypersensitivity, reminiscent of functional phenotypes associated with Cockayne 

syndrome (Karikkineth et al., 2017). While the mechanism of how the ASCC3 protein mediates 

transcriptional repression or recovery after damage is not clear, the association of ASCC3 with 

RNA PolII and CSB suggests a remodeling function of the polymerase holoenzyme during 

damage that may impinge upon proper elongation. It is tempting to speculate that the targeting of 

the ASCC complex may remove RNA PolII or other components of the basal transcriptional 

machinery during damage, as other helicases of the same family, such as DNA polymerase theta 

(pol), have the capacity to displace proteins associated with single-stranded DNA (Mateos-

Gomez et al., 2017). 

1.4.4 RNA Alkylation and the ASCC-ALKBH3 Repair Pathway  

The same endogenous and exogenous sources of alkylation damage on DNA are also capable of 

alkylating RNA, which are hypothesized to disrupt RNA processing, splicing and translation 
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(Wurtmann and Wolin, 2009; Thapar et al., 2018). Interestingly, two modifications repaired by 

ALKBH2 and ALKBH3, m1A and m3C, are also products of RNA methyltransferases (Xu et al., 

2017; Xiong et al., 2018). Indeed, as cells contain four to six more times the amount of RNA as 

compared to DNA, RNA may be more readily available for modification by alkylating agents 

and these modifications may also play a role in cancer progression (Feyzi et al., 2007). 

In addition to reversal of DNA modifications, the AlkB family of proteins, in particular 

ALKBH3, have also been shown to remove modifications on RNA (Aas et al., 2003; Alemu et 

al., 2016). ALKBH3 exhibits equally strong preference for single-stranded RNA (ssRNA) as it 

does single-stranded DNA (ssDNA) (Aas et al., 2003). These observations, coupled with the data 

presented in Chapter 2, suggest that the ASCC-ALKBH3 repair complex may also respond to 

RNA alkylation. Interestingly, emerging evidence supports the notion that RNA can drive DNA 

damage repair (Xiang et al., 2017; Mazina et al., 2017). Thus, I propose that further upstream 

recruitment of the ASCC-ALKBH3 repair may be dependent upon RNA alkylation. In Chapter 

4, I demonstrate that overexpression of the RNA-specific demethylase reduces ASCC3 foci 

during alkylation damage. This data suggests that RNA alkylation is necessary for the proper 

recruitment of the ASCC-ALKBH3 complex. Additionally, overexpression of an RNA 

methyltransferase that produces a m3C lesion, METTL8, is sufficient to induce the nucleolar 

localization of ASCC3. RNA-Seq experiments revealed that MMS treatment results in general 

transcriptional repression. Intriguingly, loss of ASCC3 led to de-repression of nearly all of these 

transcripts during alkylation damage, suggesting that ASCC3 serves as a negative regulator of 

transcription during alkylation. Additionally, I demonstrate that RNF113A autoubiquitination is 

not only specifically induced by alkylation damage but also by METTL8 overexpression, 

suggesting that upstream RNA alkylation triggers RNF113A E3 ligase activity. Taken together, 
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this data demonstrates that RNA alkylation is both necessary and sufficient to recruit the ASCC-

ALKBH3 repair complex. These findings provide further evidence for a potential role for RNA 

in signaling. 
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Chapter 2: A Ubiquitin-Dependent Signaling 

Axis Specific for ALKBH-Mediated DNA 

Dealkylation Repair 
Brickner JR, Soll JM, Lombardi PM, Vagbo CB, Mudge MC, Oyeniran C, Rabe R, Jackson J, 

Sullender ME, Blazosky E, Byrum AK, Zhao Y, Corbett MA, Gecz J, Field M, Vindigni A, 

Slupphaug G, Wolberger C, Mosammaparast N. 2017. Nature 551:389-393. 

2.1 Abstract 
DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA 

lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage 

type. Although biochemical mechanisms for repairing several forms of genomic insults are well 

understood, the upstream signaling pathways that trigger repair are established for only certain 

types of damage, such as double-stranded breaks and interstrand crosslinks (Jackson and 

Durocher, 2013; Sirbu and Cortez, 2013; Zhao et. al, 2014). Understanding the upstream 

signaling events that mediate recognition and repair of DNA alkylation damage is particularly 

important, since alkylation chemotherapy is one of the most widely used systemic modalities for 

cancer treatment and because environmental chemicals may trigger DNA alkylation (Drablos et 

al., 2004; Fu et al., 2012; Sedgwick et al., 2007). Here, we demonstrate that human cells have a 

previously unrecognized signaling mechanism for sensing damage induced by alkylation. We 

find that the ASCC alkylation repair complex (Dango et al., 2011) relocalizes to distinct nuclear 

foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated 

nucleotides and coincide spatially with elongating RNA polymerase II and splicing components. 

Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the 

CUE domain of ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and 

increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify 
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RNF113A as the E3 ligase responsible for upstream ubiquitin signaling in the ASCC pathway. 

Cells from patients with X-linked trichothiodystrophy (TTD), which harbor a mutation in 

RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. 

Together, our work reveals a heretofore unrecognized ubiquitin-dependent pathway induced 

specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked 

TTD. 

2.2 Introduction 
A crucial first step in DNA repair involves the recognition of the damage. After recognition, 

signaling pathways are activated that will recruit effectors and resolve the lesion. However, 

whether this “sensor-transducer-mediator” paradigm is generally applicable to pathways 

dedicated to repairing each distinct type of DNA lesion, such as alkylated lesions, remains 

unknown. Understanding the signaling events that mediate recognition and repair of DNA 

alkylation damage is of critical importance as alkylation chemotherapy is one of the most widely 

used systemic modalities for cancer treatment and because environmental chemicals may trigger 

DNA alkylation (Drablos et al., 2004; Fu et al., 2012).  

In humans, the alkylation lesions 1-methyladenine (m1A) and 3-methylcytosine (3mC) are 

repaired by the dealkylases ALKBH2 and ALKBH3 (Fu et al., 2012). While ALKBH2 had been 

thought to be the primary enzyme responsible for reversing m1A and m3C, growing evidence 

suggests an important pathological role for ALKBH3. ALKBH3 is overexpressed in prostate and 

non-small-cell lung cancer (Konishi et al., 2005; Tasaki et al., 2011). Subsequent loss of 

ALKBH3 in these cell lines results in decreased cell proliferation and increased levels of m3C in 

genomic DNA (Dango et al., 2011), indicating a critical role for ALKBH3 in maintaining 

genomic stability. 
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One of the major outstanding questions regarding repair by ALKBH3 and the ALKBH family of 

proteins is the mechanism by which these repair enzymes are recruited to sites of alkylation. 

Previous studies have demonstrated that ALKBH3 interacts with the ASCC complex, which is 

comprised of the subunits ASCC1, ASCC2, and the helicase ASCC3 (Dango et al., 2011). The 

current model for alkylation repair by ALKBH3 suggests that ASCC3 promotes ALKBH3 repair 

activity by generating the preferred single-stranded substrate of ALKBH3 (Chen et al., 2010; 

Monsen et al., 2010). Here, we investigate the function of the uncharacterized subunit ASCC2 in 

promoting alkylation repair. We find that proper recruitment of the ALKBH3-ASCC repair 

complex to sites of alkylation lesions is dependent upon recognition of K63-polyubiquitin by the 

CUE domain of ASCC2. This recruitment is further promoted by the ubiquitination of BRR2 by 

the E3 ubiquitin ligase RNF113A. Together, our work reveals a ubiquitin-dependent pathway 

induced specifically to repair alkylation adducts via ALKBH3. 

2.3 Results 
2.3.1 The ASCC Complex Forms Nuclear Foci During Alkylation Damage 

Previous studies established that the dealkylating enzyme ALKBH3 functions in concert with the 

ASCC helicase complex (Dango et al., 2011). We tested the subcellular localization of ASCC3 

upon exposure to various DNA damaging agents. Endogenous ASCC3 formed nuclear foci upon 

treatment of U2OS cells with the alkylating agent methyl methanesulphonate (MMS). Strikingly, 

other types of DNA damaging agents did not significantly induce ASCC3 foci (Figure 2.1A-B). 

These genotoxins all induced pH2A.X foci, indicating that DNA damage was occurring in these 

cells. Knockout of ASCC3 abrogated these foci (Figure 2.1C), demonstrating that the antibody 
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used was specific for ASCC3. ASCC3 foci were also observed upon treatment with the 

alkylating agents busulfan, CCNU, and temozolomide (TMZ), all of which are used clinically in 

the treatment of various tumors (Figure 2.1D) (Wick and Platten, 2014). The ASCC complex 

subunit ASCC2 also formed foci specifically after treatment with MMS (Figure 2.1E). 

Consistent with their known physical association (Dango et al., 2011; Jung et al., 2002), 

endogenous ASCC3 co-localized with both HA-ASCC2 and the dealkylase ALKBH3 upon 

MMS treatment (Figure 2.2A). Interestingly, ALKBH2 also formed foci that partially co-

localized with ASCC3 (Figure 2.2B-C). Conversely, two other alkylation repair factors, 

methylguanine methyltransferase (MGMT) and the base excision repair (BER) enzyme 

alkyladenine glycosylase (AAG), showed minimal co-localization with ASCC3 (Figure 2.2B-C). 

Taken together, this data suggests that the ASCC complex specifically forms nuclear foci in 

response to alkylation damage that are distinct from other alkylation repair factors. 

2.3.2 The ASCC Complex Co-localizes with the Spliceosome  

To provide more insight into the upstream signaling that initiates recruitment of the ASCC 

complex during alkylation, we asked what other DNA damage response proteins may be 

associated with ASCC. Surprisingly, ASCC foci did not co-localize with pH2A.X or 53BP1, 

demonstrating that they are distinct from double-stranded break (DSB)-induced foci (Figure 

2.3A). These foci were also distinct from GFP-PCNA or BMI-1 (Figure 2.3B), indicating that 

these foci are not associated with replications forks or the Polycomb repressor complex 

(Moldovan et al., 2007; Sauvageau and Sauvageau, 2010). Indeed, HA-ASCC2 foci were largely 

limited to G1/early S-phase of the cell cycle (Figure 2.3C).  

We thus took an unbiased proteomic approach to identify the factors associated with ASCC foci 

in response to alkylation damage by purifying Flag-HA-ASCC2 from HeLa-S cells using tandem 
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affinity purification (Figure 2.4A) (Biancalana et al., 2004) with or without exposure to MMS. 

Mass spectrometric analysis of ASCC2-associated proteins revealed a constitutive association of 

ASCC3 and ASCC1 with ASCC2. ASCC2 also associated with many spliceosome components 

and basal transcription factors (Figure 2.4B). These factors, including BRR2, PRP8, and TFII-I 

had 2-3 fold higher total peptide numbers from cells exposed to MMS, suggesting an increased 

association with the ASCC complex in response to alkylation-induced damage. Focused 

immunofluorescence studies revealed that ASCC components co-localized with BRR2 and PRP8 

upon alkylation damage (Figure 2.4C-D), confirming the results of the mass spectrometry. 

Furthermore, ASCC foci co-localized with elongating (Ser2 phosphorylated) RNA polymerase 

II, but not other transcription-associated nuclear bodies, such as paraspeckles (Figure 2.4E-F). 

Due to the association of the ASCC factors with several spliceosomal factors, we next assessed 

the importance of proper transcription and splicing on the ability of the complex to form foci 

during alkylation damage. Chemical inhibition of transcription or splicing during alkylation 

damage significantly reduced ASCC3 foci (Figure 2.5A-B). To further assess the dependence of 

RNA on complex recruitment, we pre-treated samples with RNase before processing for 

immunofluorescence. Consistently, RNase treatment nearly completely abrogated ASCC3 foci 

formation (Figure 2.5C). Similarly, recombinant ASCC3 containing an N-terminal deletion (NΔ-

ASCC3; residues 401-2202) bound to ssRNA in vitro (Figure 2.5D). Taken together, this data 

suggests that, while distinct from other canonical DNA repair proteins, the ASCC complex is 

recruited to sites of active transcription and splicing during alkylation damage. Indeed, this data 

is consistent with previous ChIP-Seq results finding that ALKBH3 is enriched at highly active 

promoters (Liefke et al., 2015). 
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2.3.3 ASCC2 Binds to K63-polyubiquitin via its CUE Domain 

While recruitment of certain DNA repair complexes is dependent upon specific upstream 

signaling kinases (Jackson and Durocher, 2013; Sirbu and Cortez, 2013; Zhao et. al, 2014), 

ASCC recruitment to sites of alkylation damage seems to be independent of upstream 

phosphorylation events. Inhibition of ATM (ataxia-telangiectasia mutated) moderately increased 

ASCC3 foci formation, while ATR (ataxia-telangiectasia and Rad3 related) inhibition had no 

significant impact on foci formation (Figure 2.6A). We found that HA-ASCC2 foci co-localized 

with polyubiquitin as visualized using the FK2 antibody, suggesting that ubiquitin signaling may 

recruit this repair complex to sites of alkylation adducts (Figure 2.6B). Analysis of the ASCC2 

protein sequence revealed a highly conserved CUE (coupling ubiquitination to ER degradation) 

domain (residues 467-509), which belongs to the ubiquitin binding domain superfamily 

(Komander and Rape, 2012) (Figure 2.7A). Previous studies focusing on CUE ubiquitin binding 

domains found that these domains preferably recognize K48-ubiquitin chains, which marks 

proteins for proteasomal degradation (Bagola et al., 2013; Shih et al., 2003). We thus assessed 

the capacity of ASCC2 for ubiquitin binding. Using recombinant His-ASCC2 purified from 

bacteria, we found that full-length ASCC2 bound K63- but not K48-linked ubiquitin chains in 

vitro (Figure 2.7B-D). Interestingly, the minimal domain necessary for in vitro ubiquitin binding, 

residues 457-525, was not sufficient to confer binding specificity to a ubiquitin chain linkage 

(Figure 2.7E-F), suggesting an additional region interacts with the ubiquitin monomer to provide 

chain specificity. Indeed, an additional conserved region adjacent to the CUE domain was 

necessary for specific binding to K63-linked ubiquitin (Figure 2.7E-F). Importantly, ASCC2 co-

localized with K63- but not K48-linked ubiquitin foci upon MMS damage (Figure 2.7G), 

suggesting that K63-polyubiquitin binding may be important for its recruitment to sites of 

alkylation damage. 
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A deposited but unpublished NMR structure of the ASCC2 CUE domain (PDB ID: 2DI0) was 

used to model its interaction with ubiquitin in comparison to another CUE domain from Vps9 

(Figure 2.8A). While Vps9 CUE binds to ubiquitin as a dimer (Prag et al., 2003), our model 

predicts ubiquitin binding by a monomeric form of the ASCC2 CUE domain. Modeling of the 

ASCC2 CUE domain with a ubiquitin monomer alone was used to identify residues predicted to 

be critical for ubiquitin recognition (Figure 2.8B), and we introduced point mutations into the 

CUE domain at these residues. Two of these mutations, L506A and LL478-9AA, completely 

abrogated ubiquitin binding in vitro. Importantly, an introduction of a third mutation that is not 

predicted to be necessary for the interaction between ubiquitin and the CUE domain, P498A, had 

no effect on the binding capacity of the CUE domain to K63-Ub (Figure 2.8C). Isothermal 

titration calorimetry (ITC) experiments demonstrated that WT ASCC2 bound K63-linked di-

ubiquitin chains with a Kd of 10.1 M, which is similar to other CUE domains (Liu et al., 2012) 

(Figure 2.8D). In contrast, the L506A mutant showed no detectable binding (Figure 2.8E). 

Strikingly, both ASCC2 mutants that abrogated ubiquitin binding in vitro demonstrated 

significantly reduced foci formation upon MMS treatment (Figure 2.8F). Thus, not only does the 

CUE domain recognize K63-ubiquitin chains but also this recognition is critical for the 

recruitment of ASCC2 to sites of alkylation damage. Together, these data suggest that 

recruitment of ASCC2 is dependent upon upstream ubiquitin signaling events. 

2.3.4 ASCC-ALKBH3 Recruitment is Dependent upon ASCC2 

We reasoned that ASCC2 could act as an intermediary subunit to recruit the other components of 

the ASCC-ALKBH3 complex. To this end, we generated ASCC2 knockout cells using 

CRISPR/Cas9 (Figure 2.9A-B). Two independent ASCC2 knockout clones showed a significant 

reduction in ASCC3 foci formation upon MMS treatment (Figure 2.9C-D). Importantly, this 
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reduction was not due to a change in the population of cells in G1, as both U2OS wild-type and 

ASCC2 knock-out cells had similar cell cycle profiles (Figure 2.9E). Similar to ASCC3 foci, 

HA-ALKBH3 were also diminished in the ASCC2 KO cells (Figure 2.10A-B). Another member 

of the ALKBH family of proteins, HA-ALKBH2, also had reduced foci in response to MMS in 

the ASCC2 KO cells (Figure 2.10C). However, this loss was modest as compared to the loss 

observed for ASCC3 and HA-ALKBH3. Together, this data demonstrates that proper 

recruitment of the ASCC3-ALKBH3 repair complex is dependent upon the presence of ASCC2. 

2.3.5 ASCC2 is Necessary for Alkylation Damage Resistance 

To ascertain that the ASCC complex is indeed recruited to regions of the nucleus that have 

alkylation damage, we performed a proximity ligation assay using an antibody that recognizes 

m1A (PLA). In PLA, amplification of the immunofluorescence signal will only occur if the 

antibodies are within a certain distance of one another. We found that a specific nuclear PLA 

signal between 1-methyladenosine and ASCC3 is induced upon MMS damage (Figure 2.11A-C). 

To ensure that repair of m1A was impaired upon loss of ASCC2, we quantified the amount of 

remaining alkylated adducts in either U2OS WT or ASCC2 KO cells over time after exposure to 

MMS. DNA alkylated lesion repair kinetics was significantly slower in ASCC2 knockout cells 

(Figure 2.11D), suggesting that the ASCC-ALKBH3 repair complex is being recruited to sites 

where alkylation adducts are present. Consistent with a role in the recruitment of these factors, 

ASCC2-deficient PC-3 cells were hypersensitive to MMS, but not to the other damaging agents 

camptothecin or bleomycin. (Figure 2.12A-E). Cellular sensitivity to MMS was determined by 

both MTS assay as well as colony formation assay. Together, these data support the notion that 

ASCC2 is critical for the proper cellular response to alkylation damage. 

2.3.6 ASCC2 Recruits ASCC-ALKBH3 Through K63-Ub Recognition 
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Due to the requirement of ubiquitin binding for ASCC2 to form foci in the presence of 

alkylation, we reasoned that ubiquitin recognition was necessary for the recruitment of the entire 

repair complex. To this end, we reconstituted ASCC2-KO cells with either wild-type or the 

L506A mutant version of ASCC2. WT ASCC2 but not the L506A CUE mutant restored MMS-

induced HA-ALKBH3 foci formation (Figure 2.13A-C). The ubiquitin binding deficient mutant 

was also unable to restore ASCC3 foci in response to alkylation damage while WT ASCC2 

nearly completely rescued these foci (Figure 2.13D-F). Importantly, WT ASCC2 but not the 

L506A mutant rescued the MMS sensitivity observed in ASCC2 knockout cells (Figure 2.14). 

These results strongly support the importance of ubiquitin binding to recruit not only ASCC2 but 

also the entire ASCC-ALKBH3 repair complex. 

To ensure that mutation of the CUE domain did not disrupt the integrity of the ASCC-ALKBH3 

complex, we performed co-immunoprecipitation experiments to validate proper complex 

formation. HA-tagged ASCC2 WT or ASCC2 L506A equally co-immunoprecipitated ASCC3 

(Figure 2.15A). Further, His-ASCC3 bound to immobilized Flag-ASCC2. His-ASCC3 also 

bound to Flag-ALKBH3, albeit with a weaker interaction as compared to Flag-ASCC2 (Figure 

2.15B). While deletion of the ASCC3 N-terminus (NΔ-ASCC3; residues 401-2202) abrogated its 

interaction with ASCC2, loss of the N-terminus had no effect on its capacity to bind ALKBH3 

(Figure 2.15C). To further elucidate the complex conformation, binding experiments between 

ASCC2 and ALKBH3 were also performed. ASCC2 did not interact with recombinant ALKBH3 

(Figure 2.15D). ASCC2 therefore appears to bridge ASCC3 and K63-linked ubiquitin chains, 

while ALKBH3 is indirectly recruited by ASCC2 through its interaction with ASCC3 (Figure 

2.15E). Taken together, this data suggests that ASCC3 serves as a scaffold for the ASCC-
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ALKBH3 complex, interacting with ASCC2 near its N-terminus and with ALKBH3 near its C-

terminus. This complex is then recruited to alkylation adducts via ubiquitin recognition by 

ASCC2. 

2.3.7 The E3 Ligase RNF113A is Necessary for ASCC2 Foci Formation 

As proper complex recruitment is dependent upon the recognition of upstream ubiquitin 

signaling by ASCC2, we next endeavored to identify the E3 ubiquitin ligase responsible for 

forming the ubiquitin chains recognized by ASCC2. As humans have hundreds of different E3 

ligases and one E2 conjugating enzyme interacts with a specific set of E3 ligases (Hersko et al., 

2000), we decided to first identify the E2 conjugating enzyme. Importantly, UBC13, a major E2 

ubiquitin ligase responsible for formation of K63-linked ubiquitin chains, has previously been 

implicated in DNA damage response pathways (Unk et al., 2006; Zhao et al., 2007; Thorslund et 

al., 2015). Knockdown of UBC13 attenuated MMS-induced HA-ASCC2 foci (Figure 2.16). 

Importantly, knockdown of UBC13 also severely reduced 53BP1 foci (Figure 2.16A), consistent 

with previous reports. Interestingly, knockdown of RNF8 or RNF168, two E3 ligases involved in 

the double-stranded break repair (Jackson and Durocher 2013), did not affect HA-ASCC2 foci 

formation (data not shown), suggesting that a distinct E3 ligase functions in the alkylation 

pathway. To identify this E3 ligase, we performed a screen using a custom library of short-

hairpin RNAs (shRNAs) that target UBC13-interacting E3 ligases or other ligases implicated in 

DNA repair. The screen identified RNF113A as a potential candidate, with three distinct 

shRNAs reducing HA-ASCC2 foci to UBC13 knockdown levels (Figure 2.17A). We confirmed 

that these shRNAs attenuated both RNF113A protein levels and HA-ASCC2 foci formation 

(Figure 2.17B-C). Importantly, MMS-induced ASCC2 foci co-localized with RNF113A (Figure 

2.17D). In the absence of damage, RNF113A co-localized with PRP8 and BRR2 (Figure 2.17E), 
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which is consistent with our mass spectrometry findings that the interaction between ASCC2 and 

spliceosomal proteins is enriched during MMS treatment. Furthermore, this finding is consistent 

with previous studies suggesting that RNF113A nominally serves as a spliceosome component 

(Hegele et al., 2017). We then purified Flag-tagged RNF113A from HeLa-S cells to analyze its 

E3 ligase activity in vitro (Figure 2.18A). RNF113A exhibited robust E3 activity in vitro, which 

was significantly reduced with the I264A RING-finger point mutation (Figure 2.18B), which is 

predicted to disrupt its interaction with UBC13. Use of K63R ubiquitin abrogated chain 

elongation, suggesting that RNF113A may function to promote the E2 activity of UBC13 to 

from K63-linked ubiquitin chains (Figure 2.18C). Together, this data provides strong evidence 

that RNF113A is the E3 ubiquitin ligase that generates the K63-polyubiquitin recognized by 

ASCC2. 

2.3.8 BRR2 Ubiquitylation is Critical for ASCC-ALKBH3 Recruitment 

To uncover the relevant RNF113A substrate, we combined our initial proteomics screen 

assessing proteins enriched for their interaction with ASCC2 after MMS treatment (Figure 2.4B) 

with a second screen for proteins that interact preferentially with WT ASCC2 relative to the 

L506A mutant (Figure 2.19A). In this dataset, 295 proteins were enriched for their interaction 

with WT ASCC2 as compared to the L506A mutant. Of these putative substrates, only eight 

have been shown to be ubiquitinated by UBC13 (Thorslund et al., 2015). BRR2 was the most 

obvious candidate, as our previous data demonstrated that it co-localized with RNF113A and 

ASCC components by immunofluorescence. Indeed, BRR2 co-immunoprecipitated with 

RNF113A in a manner dependent upon the N-terminal domain of RNF113A (Figure 2.19B-C). 

Further deletion analysis revealed that the RNF113A N-terminus was also critical for its co-
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localization with PRP8 (Figure 2.19D), which is a stoichiometric partner of BRR2 (Hegele et al., 

2012). 

To further confirm BRR2 as a bona fide substrate of RNF113A, we performed an array of 

biochemical analyses. A denatured immunoprecipitation from cells expressing His-Ubiquitin 

after MMS treatment demonstrated that ubiquitin conjugation of BRR2 was significantly reduced 

upon loss of RNF113A (Figure 2.20A). A modified binding assay where cell lysates were added 

to GST-ASCC2 conjugated to Glutathione-Sepharose in vitro showed that RNF113A promotes 

BRR2 binding to ASCC2 (Figure 2.20B). BRR2 binding to ASCC2 was dependent on the RING 

domain of RNF113A, suggesting that ubiquitin is necessary for the interaction between ASCC2 

and BRR2. Importantly, recombinant BRR2 was ubiquitinated in vitro by RNF113A, also in a 

manner dependent on its RING domain (Figure 2.20C-D). Knockdown of BRR2 or its partner 

PRP8 significantly reduced ASCC3 foci formation upon MMS damage (Figure 2.21 A-C). 

Consistently, loss of BRR2 increased sensitivity to MMS (Figure 2.21D). Thus, BRR2 likely 

represents at least one physiologic substrate for RNF113A in this alkylation repair pathway. 

2.3.9 RNF113A Mutation is Implicated in X-linked Trichothiodystrophy 

A recent study identified a nonsense mutation (Q301*) in RNF113A in two related individuals 

suffering from X-linked trichothiodystrophy (X-TTD) (Corbett et al., 2015). While most TTD 

patient cells are hypersensitive to UV damage, X-TTD cells do not have this phenotype (Corbett 

et al., 2015). Lymphoblastoid cell lines obtained from these two patients were hypersensitive to 

MMS (Figure 2.22A). U2OS cells in which RNF113A was knocked down was also 

hypersensitive to MMS (Figure 2.22B). Strikingly, X-TTD cells had significantly reduced 

ASCC3 foci formation (Figure 2.22C-D). Reconstitution of these patient cells with WT 

RNF113A rescued ASCC3 foci formation while the I264A mutant only partially rescued the 
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ASCC3 foci phenotype, possibly due to the small degree of remaining E3 ligase activity (Figure 

2.22C). Similarly, reconstitution with U2OS cell lines with WT RNF113A but not the I264A 

mutant was able to restore MMS resistance in these cells (Figure 2.22B) Interestingly, loss of 

TTDN1, another TTD-associated gene (Nakabayahi et al., 2005), also reduced ASCC3 foci 

formation (Figure 2.22E-G). Together, these results demonstrate that alkylation repair is 

deficient in patients with X-TTD, which may contribute to the phenotypes displayed by these 

patients. 

2.4 Discussion 
Our results provide the first evidence for an alkylation-specific damage response in human cells. 

The ASCC complex acts as a major node in this pathway, sensing ubiquitin-dependent signaling 

(via ASCC2) and concomitantly recruiting alkylation repair enzymes (ALKBH3 and ASCC3). 

As such, ASCC2 serves as an adaptor, and may be analogous to Rap80, which recruits the 

BRCA1 complex to chromatin during the double-stranded break response (Jackson and 

Durocher, 2013). Indeed, Rap80 recognizes non-proteasomal ubiquitin chains produced by the 

upstream RNF8/RNF168 E3 ubiquitin ligases before BRCA1 recruitment. Here, RNF113A 

functions as the E3 ligase that transduces the alkylation damage signal. How alkylation damage 

uniquely activates RNF113A to recruit ASCC2 versus other repair complexes will be an 

important question for future studies. RNF113A contains a CCCH-type zinc finger, a motif 

known to bind RNA. Since RNA is also modified by exposure to alkylating agents, it is possible 

that damaged RNA serves as the initial signal to activate DNA alkylation repair. As our work 

strongly suggests the presence of a cellular sensor specific for alkylation damage in human cells, 

it may be possible to target numerous proteins in this pathway to improve tumor responses to 
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conventional chemotherapy. Future studies will undoubtedly clarify these critical questions 

regarding the upstream signals for this novel damage signaling pathway. 

2.5 Materials and Methods  
Data Reporting. No statistical methods were used to predetermine sample size. The experiments 

were not randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment. 

Plasmids. Human ALKBH3, ASCC2, ASCC3, RNF113A, BRR2, and gp78 cDNAs were 

isolated as previously described (Dango et al., 2011). For mammalian cell expression, cDNAs 

were subcloned into pHAGE-CMV-3xHA, pHAGE-CMV-Flag, or pMSCV-Flag-HA as needed 

by Gateway recombination (Sowa et al., 2009). The cDNA for PCNA (a kind gift of Zhongsheng 

You, Washington University) was subcloned into pHAGE-CMV-GFP. For recombinant protein 

expression, cDNAs were subcloned into pGEX-4T1, pET28a-Flag, or pDEST10. All constructs 

derived by PCR, including deletions and point mutations, were confirmed by Sanger sequencing. 

Cell culture and cell survival assays. U2OS, PC-3, HeLa-S, and 293T cells (originally from 

ATCC) were cultured and maintained as previously described (Zhao et al., 2015). Cells were 

tested for mycoplasma at the Washington University Genome Engineering and iPSC Center and 

were authenticated using the ATCC human STR profiling services. Normal and X-TTD patient 

lymphoblastoid cell lines were kind gifts of Drs. Mark Corbett and Jozef Gecz (University of 

Adelaide). These cells were originally obtained after informed consent and ethical approval from 

the Women’s and Children’s Health Network Human Research Ethics Committee, as described 

(Corbett et al., 2015). They were maintained in RPMI 1640 media supplemented with 10% FBS 

and 1% penicillin-streptomycin (Corbett et al., 2015). Preparation of viruses, transfection, and 
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viral transduction were performed as described previously (Zhao et al., 2015). For knockout cell 

foci rescue experiments, cells were transduced with the pHAGE-CMV-3xHA or pHAGE-CMV-

Flag lentiviral rescue vector. For knockout cell MMS sensitivity rescue experiments, cells were 

transduced with the pMSCV-Flag-HA retroviral rescue vector. For DNA damaging agent 

survival assays using PC-3 cells, 10,000 cells/well were cultured overnight in 96-well plates in 

100 l media. Cells were then exposed to medium containing the indicated concentration of 

methyl methanesulphonate (MMS; Sigma) for 24 hours at 37 °C. The media was then replaced 

with normal media, and cell viability was assessed using the MTS assay (Promega) 72 hours 

after initial damaging agent exposure. For experiments involving camptothecin (CPT), or 

bleomycin (both purchased from Sigma), cells were exposed to medium containing the indicated 

concentration of the damaging agent in culture medium for 72 hours at 37 °C. Viability was then 

processed by MTS assay as above.. For survival assays using the patient-derived cells, 10,000 

cells were plated in 80 l media. MMS-containing media was then added for a total volume of 

100 l at the indicated final concentration of MMS and incubated for 72 hours at 37 °C. MTS 

assay was then performed as above. All MTS-based survival experiments were carried out in 

quintuplicate. 

CRISPR/Cas9 mediated knockouts. U2OS and PC-3 knockout cells were created using 

CRISPR/Cas9 genome editing at the Genome Engineering and iPSC Center (GEiC) at 

Washington University School of Medicine (St. Louis). PC-3 ASCC2 and ASCC3 KO clones 

were initially assessed by deep sequencing and confirmed by Western analysis. All other 

knockout clones were isolated and confirmed by Western analysis. The gRNA sequences used to 

generate the knockout cell line were as follows: ASCC2: 5’-

GCCAAGTTACTACAGTGACCTGG-3’; ASCC3: 5’-ATGGCTTTACCTCGTCTCACAGG-
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3’; RNF113A: 5’- TCTTTTGCTTCGACTCCCGGCGG-3’ and 5’-

CGGGTGGTGAAGTAGGGTCCTGG-3’ 

Immunofluorescence microscopy. All immunofluorescence microscopy was done as previously 

described (Zhao et al., 2015), with minor modifications. After treatment with indicated damaging 

agent in complete medium at 37°C for six hours (500 M MMS, unless indicated otherwise; 1 

M camptothecin; 10 mM hydroxyurea; 20 M bleomycin; 5 Gy IR; or 25 J/m2 UV), U2OS 

cells were extracted with 1× PBS containing 0.2% Triton X-100 and protease inhibitors (Pierce) 

for 10-20 minutes on ice prior to fixation with 3.2% paraformaldehyde. The cells were then 

washed extensively with IF Wash Buffer (1× PBS, 0.5% NP-40, and 0.02% NaN3), then blocked 

with IF Blocking Buffer (IF Wash Buffer plus 10% FBS) for at least 30 minutes. Primary 

antibodies were diluted in IF Blocking Buffer overnight at 4°C. After staining with secondary 

antibodies (conjugated with Alexa Fluor 488 or 594; Millipore) and Hoechst 33342 (Sigma-

Aldrich), where indicated, samples were mounted using Prolong Gold mounting medium 

(Invitrogen). Epifluorescence microscopy was performed on an Olympus fluorescence 

microscope (BX-53) using an ApoN 60X/1.49 NA oil immersion lens or an UPlanS-Apo 

100X/1.4 oil immersion lens and cellSens Dimension software. Raw images were exported into 

Adobe Photoshop, and for any adjustments in image contrast or brightness, the levels function 

was applied. For foci quantitation, at least 100 cells were analyzed in triplicate, unless otherwise 

indicated. 

Flow cytometry. Samples were prepared and flow cytometry was performed using the BrdU 

Flow Kit (BD Pharmingen) protocol with minor modifications. U2OS cells were transduced with 

pHAGE-CMV-Flag-ASCC2 lentivirus for 72 hours, treated with MMS, washed with PBS, and 
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extracted with Triton X-100 as for immunofluorescence. Cells were then fixed by resuspension 

in BD Cytofix/Cytoperm Buffer and incubated on ice for 15 minutes. Samples were washed with 

1× BD Perm/Wash Buffer, resuspended with Flag antibody diluted in 1× BD Perm/Wash Buffer, 

incubated at room temperature for 1 hour, and washed again in the same buffer. Samples were 

resuspended in buffer containing Alexa Fluor 488-conjugated secondary antibody and incubated 

at room temperature for 20 minutes. Samples were washed and resuspended in staining buffer 

(1× PBS + 2% FBS) containing 7-amino-actinomycin D and processed by flow cytometry. All 

flow cytometry analysis was performed on the FACSCalibur Flow Cytometer using the 

CellQuest software. Post-acquisition analysis was performed using the FlowJo software (Tree 

Star). 

Colony formation assay. Parental or knockout cells were trypsinized, counted, and plated at low 

density. After overnight incubation, the cells were treated with the indicated doses of MMS or 

CPT for 24 hours in complete medium. The cells were incubated for 12–14 days, fixed, and 

stained with crystal violet. The experiment was performed in quadruplicate for each cell line and 

drug dose. Colonies were counted and relative survival was normalized to untreated controls.  

In situ Proximity Ligation Assay. PLA was performed using the Duolink detection kit (Sigma) 

following the manufacturer’s instructions with minor modifications. U2OS cells were extracted 

and fixed as described above. The cells were washed extensively with IF Wash Buffer, then 

blocked with 1× Duolink blocking solution for 30 minutes at 37 °C in a pre-warmed humidifier. 

Primary antibodies were diluted in 1× Duolink antibody diluent and added to samples overnight 

at 4°C. Samples were washed with Wash Buffer A at room temperature. PLA probes anti-rabbit 

PLUS and anti-mouse MINUS were diluted 1:5 in 1× Duolink antibody diluent, then added to 

samples and incubated for 1 hour at 37 °C. Samples were again washed with Wash Buffer A at 
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room temperature. Duolink ligation stock and ligase were diluted 1:5 and 1:40 in pure water, 

respectively, and applied to samples for 30 minutes at 37°C. After washing with Wash Buffer A, 

Duolink amplification red probe and polymerase were diluted 1:5 and 1:80 in water and applied 

to samples for 100 minutes at 37°C. After a brief wash with Wash Buffer B, samples were 

mounted using Duolink mounting medium with DAPI and imaged as above. 

Purification of TAP-ASCC2 complexes and MS/MS analysis. Affinity purification of ASCC2 

was performed as previously described for ALKBH3, with minor modifications (Dango et al., 

2011). Briefly, Flag-HA-ASCC2 was stably expressed after transduction of pMSCV-Flag-HA-

ASCC2 retrovirus into HeLa-S cells. Nuclear extract was prepared from the stable cell line with 

or without prior treatment with MMS (400 M for six hours), and the ASCC2 complex was 

purified using anti-Flag (M2) resin (Sigma), followed by purification using anti-HA (F-7) resin 

(Santa Cruz) in TAP buffer (50 mM Tris-HCl pH 7.9, 100 mM KCl, 5 mM MgCl2, 10% 

glycerol, 0.1% NP-40, 1 mM DTT, and protease inhibitors). For comparison of WT ASCC2 

versus ASCC2 L506A, the same method was used, except that both samples were treated with 

MMS and the HA purification was omitted. After peptide elution, the complexes were TCA 

precipitated and associated proteins were identified by LC-MS/MS at the Taplin Mass 

Spectrometry Facility (Harvard Medical School) using an LTQ Orbitrap Velos Pro ion-trap mass 

spectrometer (ThermoFisher) and Sequest software (Eng et al., 1994). 

Protein purification. Recombinant proteins (ALKBH3, ASCC2, ASCC3, and gp78 CUE) were 

purified from Rosetta (DE3) or Sf9 cells using an ÄKTA-pure FPLC (GE Healthcare). For His-

tagged bacterially expressed proteins, cells were resuspended in His-lysis buffer (50 mM Tris-

HCl pH 7.3, 250 mM NaCl, 0.05% Triton X-100, 3 mM −ME, 30 mM imidazole, and protease 
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inhibitors) and lysed by sonication. After centrifugation and filtration, the extract was loaded 

onto a HisTrap HP column using a 50 ml Superloop (GE Healthcare). After extensive washing 

with lysis buffer, the protein was eluted using lysis buffer containing 400 mM imidazole. His-

Flag-ALKBH3 was further purified on a Superdex 200 Increase 10/300 GL size exclusion 

column. All recombinant proteins were dialyzed into TAP buffer. Flag-tagged RNF113A was 

purified from HeLa-S cells by resuspension in Flag-lysis buffer (50 mM Tris-HCl pH 7.9, 150 

mM NaCl, 10% glycerol 1.0% Triton X-100, 1 mM DTT, and protease inhibitors) and lysed by 

sonication. After incubation with Flag resin, the protein was eluted with lysis buffer containing 

0.4 mg ml-1 Flag peptide. 

Protein and RNA binding assays. All in vitro binding assays were performed as previously 

described (Drablos et al., 2004), with minor modifications. Flag (M2) agarose and Ni-NTA 

agarose beads were pre-blocked with 10% bovine serum albumin (BSA). For ubiquitin binding 

assays, 10 g of His-ASCC2 or His-ASCC2 mutants were added to each reaction, along with 

500 ng of either K48- or K63-Ub2-7 (Boston Biochem). The indicated proteins were added to 10 

µl of beads in a total volume of 100 µl with TAP Wash Buffer. Reactions were incubated at 4 °C 

with rotation for 1 hour, then washed extensively with TAP Wash Buffer. A final wash was 

performed with 1× PBS, and bound material was eluted with 20 µl of Laemmli buffer, analyzed 

by SDS-PAGE, and stained with Coomassie Brilliant Blue or subjected to Western analysis as 

indicated. For RNA binding experiments, 0.5 nmol of each 5’-biotinylated RNA (50mer 

sequence: 5’-UCGAUAGUCUCUAGACAGCAUGUCCUAG 

CAAGCCAGAAUUCGGCAGCGUC-3’; the 35mer and 20mer removed 15 and 30 nucleotides 

from the 3’ end of the same sequence, respectively) was immobilized on 10l streptavidin-

agarose beads. To each reaction, 1g of His-N-ASCC3 (residues 401-2202) was added in a 
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total volume of 100 µl in TAP Wash Buffer with RNase inhibitor (NEB). Reactions were 

incubated at 25°C with rotation for 30 minutes, then washed extensively with TAP Wash Buffer. 

A final wash was performed with 1× PBS, and bound material was eluted with 10 µl of Laemmli 

buffer, analyzed by SDS-PAGE and Western blotting. 

Ubiquitin ligase assays. Reactions analyzing ubiquitin chain polymerization were performed in 

ubiquitin ligase buffer (25 mM Tris pH 7.3, 25 mM NaCl, 10 mM MgCl2, 100 nM ZnCl, 1 mM 

mercaptoethanol) containing 5 mM ATP and 100 µM of either WT ubiquitin or K63R ubiquitin 

in a total volume of 20 l. E1 activating enzyme (UBE1; Boston Biochem) was used at 500 nM, 

and E2 ubiquitin conjugating enzymes (Ubch5c or Ubc13/MMS2; Boston Biochem) were added 

at the indicated concentrations. Flag-HA-tagged-RNF113A or RNF113A I264A mutant protein 

purified from HeLa-S cells was added to each reaction and incubated at 37°C for 3 hours. 

Reactions were stopped with 20 µl of Laemmli buffer, analyzed by SDS-PAGE, and Western 

blotted. For ubiquitination of BRR2, 1 g of His-N-BRR2 (residues 394-2136) purified from 

Sf9 cells was used as a substrate for ubiquitination with Flag-RNF113A (WT and ΔRING) 

purified from HeLa cells. Each reaction contained E1 (50 nM), E2 (Ubch5c; 150 nM), 2 g HA-

Ub and 2 mM ATP, and were incubated at 35°C for 2 hours. An aliquot (5l) of the total E3 

reaction was saved, and the remaining reaction was used for binding to Ni-NTA beads for one 

hour. After extensive washing with TAP buffer, the captured His-BRR2 was eluted with 

Laemmli buffer, analyzed by SDS-PAGE and analyzed by SDS-PAGE, and Western blotted. 

Immunoprecipitation. Immunoprecipitation of HA-tagged RNF113A was carried out by 

transient expression in 293T cells. The cells were resuspended in high-salt buffer (50 mM Tris-

HCl pH 7.9, 300 mM NaCl, 10% glycerol 1.0% Triton X-100, 1 mM DTT, and protease 
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inhibitors), lysed by sonication, and centrifuged. An equal volume of buffer containing no salt 

was added, and the lysate was incubated with anti-HA resin. After incubation at 4°C with 

rotation, the beads were washed extensively with buffer containing 150 mM NaCl. Bound 

material was eluted with Laemmli buffer and analyzed by SDS-PAGE. Immunoprecipitation 

after denaturation was performed as previously described (Sowa et al., 2009) with minor 

modifications. Briefly, HEK293T cells were transfected with His-Ub, then transduced with the 

indicated shRNA lentivirus. Cells were then treated with 500 µM MMS for 6 hours and 

harvested. Pellets were resuspended in TBS + 1% SDS and further lysed by sonication, boiled 

and cleared by centrifugation. Samples were diluted to 0.1% SDS with lysis buffer (50mM Tris 

pH 7.9, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1mM DTT, and protease inhibitors) and 

incubated with Ni-NTA beads at 4°C overnight. After incubation and extensive washing with 

lysis buffer, the bound material was eluted with Laemmli buffer and analyzed by Western 

blotting.  

Isothermal titration calorimetry. All reported ITC data were collected using a MicroCal iTC200 

instrument. His-tagged ASCC2, the L506A ASCC2 mutant, and K63-Ub2 were dialyzed in 20 

mM HEPES pH 7.5, 150 mM NaCl, and 200 μM Tris(2-carboxyethyl)phosphine prior to the 

experiment. For the WT ASCC2 binding experiment, a 102 μM K63-Ub2 solution in the sample 

cell was titrated with 435 μM ASCC2 solution using eighteen 2-μL injections. The L506A 

ASCC2 binding experiment was performed similarly, with 388 μM L506A ASCC2 titrated into 

42 μM K63-Ub2. Fitting was performed using Origin 7 SR4 (OriginLab, Northampton, MA). 

Structural analysis. PyMOL (The PyMOL Molecular Graphics System, Version 1.8.0.5 

Schrödinger, LLC.) was used to align the structure of ASCC2 residues 463-525 (PDB ID: 2DI0) 
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with the VSP9 CUE:ubiquitin complex structure (PDB ID: 1P3Q). Figure 2C and Extended Data 

Figure 3E were generated using PyMOL. 

Quantification of methylated bases using LC-MS/MS. Cells were grown in DMEM (Sigma-

Aldrich), supplemented with 0.03 g/L triple-deuterized L-Methionine (Sigma-Aldrich), for at 

least five cell divisions prior to the experiment. For each condition, 3 × 10 cm cell culture dishes 

were used. MMS was added to the growth medium at a final concentration of 1 mM and cells 

incubated further for 1 h. After a brief wash with pre-warmed PBS, new medium was added and 

the cells incubated further for various time spans prior to analysis. After medium removal, 

culture plates (60-80% confluency) were placed on ice and washed with ice cold PBS. Cells were 

harvested by scraping into ice cold PBS, centrifuged and the pellet washed with ice cold PBS. 

Dry pellets were snap frozen and stored at -80°C until further processing. Cell lysis and total 

DNA isolation was performed with the AllPrep DNA/RNA/Protein Mini kit (Qiagen) according 

to the manufacturer’s instructions. DNA was hydrolyzed to nucleosides by 20 U benzonase 

(Santa Cruz), 0.2 U nuclease P1, and 0.1 U alkaline phosphatase (Sigma) in 10 mM ammonium 

acetate pH 6.0 and 1 mM magnesium chloride at 40 C for 40 min. Three volumes of acetonitrile 

was added and the sample was centrifuged (16,000 g, 30 min, 4C). The supernatants were dried 

and dissolved in 50 µl water for LC-MS/MS analysis of methylated and unmodified nucleosides. 

Chromatographic separation was performed using an Agilent 1290 Infinity II UHPLC system 

with an ZORBAX RRHD Eclipse Plus C18 150 x 2.1 mm ID (1.8 μm) column protected with an 

ZORBAX RRHD Eclipse Plus C18 5 x 2.1 mm ID (1.8 µm) guard column (Agilent). The mobile 

phase consisted of water and methanol (with 0.1 % formic acid) run at 0.25 ml/min, for 

methylated nucleosides starting with a 6-min gradient of 5-90 % methanol, followed by 4 min re-

equilibration with 5 % methanol, and for unmodified nucleosides maintained isocratically with 
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20 % methanol. Mass spectrometric detection was performed using an Agilent 6495 Triple 

Quadrupole system operating in positive electrospray ionization mode, monitoring the mass 

transitions 282.1/150.1 (mA), 285.1/153.1 (D3-mA), 258.1/126.1 (mC), 261.1/129.1 (D3-mC), 

298.1/166.1 (mG), 301.1/169.1 (D3-mG), 268.1/136.1 (A), 244.1/112.1 (C), 284.1/152.1 (G), 

245.1/113.1 (U), 266.1/150.1 (m(dA)), 252.1/136.1 (dA), 228.1/112.1 (dC), 268.1/152.1 (dG), 

and 243.1/127.1 (dT). 

shRNA library and targeted E3 ligase screen. The targeted E3 ligase shRNA library was part of 

the TRC/pLKO.1 vector collection (Sigma). For the screen, U2OS cells were concurrently 

transduced with pHAGE-CMV-3xHA-ASCC2 lentivirus and individual lentiviral shRNAs. A 

scrambled pLKO.1 shRNA and a lentivirus targeting UBC13 (TRCN0000039435) served as the 

negative and positive controls, respectively. After approximately 72 hours, the cells were treated 

with MMS (500 M) for six hours and processed for immunofluorescence microscopy using 

anti-HA and pH2A.X. At least 100 cells per sample were analyzed for HA-ASCC2 foci 

formation. Quantified results were normalized to the scrambled control. RNF113A was the only 

candidate E3 ligase with three independent shRNAs exhibiting at least a threefold reduction in 

MMS-induced HA-ASCC2 foci formation. For verification, U2OS cells were co-transduced with 

pHAGE-CMV-3xHA-ASCC2 and the candidate lentiviral shRNAs. HA-ASCC2 foci formation 

was assessed as above. 

Statistical Analyses. All p-values were calculated by unpaired, two-tailed Student’s t-test. All 

error bars represent the standard deviation, unless otherwise noted. 

Antibodies. The antibodies and the concentration used for the given application are listed as 

following: 1-methyladenine (MBL Life Science; 1:500 PLA), 53BP1 (Santa Cruz; 1:1000 IF), 
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6x-His (Abcam; 1:2500 Western), ASCC2 (Bethyl; 1:2500 Western), ASCC3 (In house; 1:500 

IF; 1:500 PLA; 1:5000 Western), BMI-1 (Millipore; 1:500 IF), BRR2 (Bethyl; 1:200 IF; 1:2500 

Western), FK2 (Enzo Life Sciences; 1:1000 IF), Flag (Sigma; 1:5000 IF; 1:3000 Western; 1:200 

Flow Cytometry), HA (BioLegend; 1:300 IF; 1:2500 Western), HA (Santa Cruz; 1:300 IF), K48-

Ubiquitin (Millipore; 1:200 IF), K63-Ubiquitin (Millipore; 1:200 IF), LSD1 (Active Motif; 

1:2500 Western), pH2A.X (Abcam; 1:2000 IF), PRP8 (Bethyl; 1:200 IF; 1:2500 Western), 

PSPC1 (Bethyl; 1:500 IF), RNA PolII-pS2 (Abcam; 1:200 IF), RNF113A (Sigma; 1:2000 

Western), SC-35 (Abcam; 1:1000 IF), SFPQ (Bethyl; 1:200 IF), SHPRH (Abcam; 1:2500 

Western), UBC13 (Cell Signaling; 1:2000 Western), Ubiquitin (Santa Cruz; 1:2500 Western), β-

actin HRP (Sigma; 1:5000 Western). 
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Chapter 3: RNA Ligase-Like Domain in 

ASCC1 Regulates ASCC Complex Function 

during Alkylation Damage 

Soll JM, Brickner JR, Mudge MC, Mosammaparast N. 2017. J. Biol. Chem. 293:13524-13533. 

3.1 Abstract 
Multiple DNA damage response (DDR) pathways have evolved to sense the presence of damage 

and recruit the proper repair factors. We recently reported a signaling pathway induced upon 

alkylation damage to recruit the ALKBH3– ASCC3 dealkylase–helicase repair complex (see 

Chapter 2). As with other DDR pathways, the recruitment of these repair factors is mediated 

through a ubiquitin-dependent mechanism. However, the machinery that coordinates the proper 

assembly of this repair complex and controls its recruitment is still poorly defined. Here, we 

demonstrate that the ASCC1 accessory subunit is important for the regulation of ASCC complex 

function. ASCC1 interacts with the ASCC complex through the ASCC3 helicase subunit. We 

find that ASCC1 is present at nuclear speckle foci prior to damage but leaves the foci in response 

to alkylation. ASCC1 loss significantly increases ASCC3 foci formation during alkylation 

damage.  Strikingly, the majority of these foci lack ASCC2. These results suggest that ASCC1 

coordinates the proper recruitment of the ASCC complex during alkylation. This function 

appears to depend on a putative RNA-binding motif near the ASCC1 C-terminus. Consistent 

with its role in alkylation damage signaling and repair, ASCC1 knockout through a 

CRISPR/Cas9 approach results in alkylation damage sensitivity in a manner epistatic with 

ASCC3. Together, our results identify a critical regulator of the ALKBH3–ASCC alkylation 

damage signaling pathway and suggest a potential role for RNA-interacting domains in the 

alkylation damage response. 
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3.2 Introduction 
Endogenous DNA alkylation damage is caused by numerous agents that are present in the 

environment, as well as by cellular metabolism via the metabolite S-adenosylmethionine 

(Drablos et al., 2004; Fu et al., 2012; Sedgwick et al., 2007; Rydberg and Lindahl, 1982). 

Exogenous alkylation damage may be induced by a number of cancer chemotherapeutics. If left 

unrepaired, alkylated adducts can stall replication, cause mutations, and potentially lead to cell 

death. Due to the diverse chemical nature of alkylation damage, multiple pathways have evolved 

to protect the genome from alkylation damage. These include base-excision repair (BER), direct 

reversal by O6-methylguanine methyltransferase (MGMT), and the AlkB family of 

demethylases/dealkylases (Fu et al., 2012; Sedgwick et al., 2007; Soll et al., 2017).  

Although BER excises alkylated bases, it is a more general DNA repair mechanism, as this 

pathway also is responsible for the removal of many other forms of DNA damage, including 

oxidized bases, uracil and other deaminated bases (Krokan and Bjoras, 2013). Conversely, 

MGMT and the AlkB family of proteins appear to be dedicated solely to the direct reversal of 

alkylation damage (Fu et al., 2012; Sedgwick et al., 2007; Soll et al., 2017). MGMT repairs O-

linked adducts, particularly O6-methylguanine, by the direct transfer of an alkyl group to a 

cysteine in the active site via a non-enzymatic mechanism which inactivates MGMT and signals 

the protein for proteasomal degradation (Xu-Welliver and Pegg, 2002; Zak et al., 1994). In 

contrast, AlkB proteins are bona fide demethylases/dealkylases that directly reverse N-linked 

adducts such as 1-methyladenine (m1A) and 3-methylcytosine (m3C) in an Fe(II) and 2-

oxogluterate dependent reaction (Falnes et al., 2002; Trewick et al., 2002). m1A and m3C are 

particularly cytotoxic as both disrupt canonical base pairing, hence blocking replicative DNA 

polymerases (Fu et al., 2002). In humans, there are nine AlkB homologues (Gerken et al., 2007; 
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Kurowski et al., 2003; Sanchez-Pulido and Andrade-Navarro, 2007), but only two homologues, 

ALKBH2 and ALKBH3, have been shown to repair m1A and m3C on DNA with different 

substrate preferences (Duncan et al, 2002; Aas et al., 2003). 

It is important for the cell to coordinate the various alkylation repair pathways, as there is some 

redundancy in the substrate binding of the numerous repair factors. This overlap in substrate 

preference may lead to a potential conflict during initial lesion recognition and reduce the 

efficiency of repair. For example, alkyl-adenine glycosylase (AAG), which is involved in the 

initiation step of BER, binds to the 3,N4-ethenocytosine (ϵC) lesion but cannot excise the base 

(Gros et al., 2004; Lingaraju et al., 2011). ALKBH2 is capable of repairing ϵC but cannot access 

the lesion and is thus inhibited by the presence of AAG (Fu and Samson, 2012). Due to such 

competition, it is important for the cell to have a tightly controlled damage response to ensure 

that repair occurs in an efficient manner, while simultaneously preventing recruitment of 

inappropriate repair factors. In order to understand the interplay between these different repair 

mechanisms, it is first necessary to determine the regulation of the individual alkylation damage 

repair pathways. However, for alkylation damage repair, little is known about the regulation of 

repair factor recruitment in vivo. 

We previously found that the ALKBH3 demethylase associates with the Activation Signal 

Cointegrator Complex (ASCC; also known as ASC-1) (Dango et al., 2011). This complex plays 

a key role in repairing alkylated DNA in cell lines overexpressing ALKBH3, such as prostate 

and non-small-cell lung tumor cells (Dango et al., 2011; Konishi et al., 2005; Tasaki et al., 

2011). ASCC is comprised of three proteins: ASCC1 (p50), ASCC2 (p100), and ASCC3 (p200) 

(Jung et al., 2002). Biochemical characterization of this complex revealed that ASCC3 is a DNA 

helicase, whose unwinding activity is crucial for dealkylation by the ALKBH3 repair enzyme in 
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vitro (Dango et al., 2011). It is thought that ASCC3 and ALKBH3 work in concert such that 

ASCC3 generates the single-stranded substrate needed for ALKBH3-mediated repair. Recently, 

we found that ASCC2 is important for the recruitment of the ALKBH3-ASCC3 complex to 

nuclear speckle foci specifically during alkylation damage (Chapter 2; Brickner et al., 2017; 

Galganski et al., 2017; Spector and Lamond, 2011). This recruitment is dependent upon non-

proteasomal K63-linked ubiquitination by the E3 ligase RNF113A (Brickner et al., 2017). The 

ubiquitination is recognized by the ASCC2 subunit, which is responsible for the recruitment of 

both ASCC3 and ALKBH3 to sites of damage. Loss of ASCC2 results in increased sensitivity to 

alkylating agents, strongly suggesting that ASCC2-mediated recruitment is critical for efficient 

repair (Brickner et al., 2017). 

One of the outstanding questions remaining is how these proteins are coordinated to form an 

active complex and what other mechanisms are regulating its recruitment during alkylation 

damage. Here, we characterize ASCC1, the smallest subunit of the ASCC complex. We find that 

ASCC1, unlike ASCC2 or ASCC3, is constitutively present at nuclear speckle foci. In response 

to alkylation damage, ASCC1is removed from these nuclear regions. As a result, ASCC1 is 

capable of modulating ASCC3 recruitment during alkylation damage. Together, our data 

suggests a novel regulatory mechanism for the ALKBH3-ASCC repair pathway wherein ASCC1 

modulates the localization and function of the complex components.  

3.3 Results 

3.3.1 ASCC1 Interacts Directly with ASCC3 

We wished to determine what factors associated with the ASCC complex are involved in 

regulating its function in response to alkylation damage. To this end, we focused on ASCC1, a 

protein previously shown to co-purify with ASCC2 and ASCC3 (Dango et al., 2011; Jung et al., 
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2002). To determine how the individual complex components associate with one another, we 

performed immunoprecipitation of either HA-ASCC1 and HA-ASCC2 with ASCC3 (Figure 

3.1A). Both of these factors co-immunoprecipitated ASCC3 from 293T cells, although a stronger 

interaction between HA-ASCC2 and ASCC3 was observed. Consistent with this result, 

immunoprecipitation of endogenous ASCC3 from 293T cell extracts yielded ASCC1, suggesting 

that this physical interaction is present at the endogenous level (Figure 3.1B). To test whether 

ASCC1 and ASCC3 interact directly, we purified all three components of the complex as 

recombinant proteins from E. coli. His-tagged ASCC3 bound to both immobilized GST-tagged 

ASCC1 and GST-ASCC2 but not GST alone (Figure 3.1C). An N-terminal truncation of ASCC3 

(NΔ-ASCC3; residues 401-2202) abrogated the interaction with ASCC2 but did not affect 

ASCC1 binding (Figure 3.1C). Thus, both ASCC1 and ASCC2 can bind directly to ASCC3. 

These interactions are likely to be through distinct regions within ASCC3. In support of this 

notion, recombinant ASCC1 and ASCC2 did not interact with each other in pulldown assays 

(Figure 3.1D), suggesting that ASCC3 serves as a scaffold between ASCC1 and ASCC2. To test 

this, we knocked out ASCC3 in PC-3 cells using CRISPR/Cas9. Immunoprecipitation of HA-

ASCC1 from parental PC-3 cells yielded the other two components of the complex but ASCC2 

was not co-immunoprecipitated in the absence of ASCC3 (Figure 3.2). Thus, ASCC3 is required 

to bridge the interaction between ASCC1 and ASCC2 in vivo. 

3.3.2 ASCC1 Forms Nuclear Foci in the Absence of Alkylation Damage 

As both ASCC2 and ASCC3 form nuclear foci specifically upon alkylation damage (Brickner et 

al., 2017) and in light of the physical interactions between the complex components, we reasoned 

that ASCC1 may also form alkylation induced foci (Figure 3.3A-C). Interestingly, HA-tagged 

ASCC1 formed foci that co-localized with the nuclear speckle component PRP8 in the absence 
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of any damage, unlike the other components of the ASCC-ALKBH3 complex (Figure 3.3A-C). 

Surprisingly, treatment of the cells with the alkylating agent methyl methanesulphonate (MMS) 

significantly reduced ASCC1 co-localization with these nuclear domains in a time-dependent 

manner (Figure 3.3A-B). This was not due to a reduction in the expression level of the tagged 

ASCC1 during MMS treatment (Figure 3.3D). Taken together, these results suggest that ASCC1 

is part of the ASCC complex but may perform a distinct function in response to alkylation 

damage. 

3.3.3 ASCC1 Modulates Alkylation-Induced ASCC3 Foci Formation 

We next wished to determine the role of ASCC1 in ASCC3 foci formation. To this end, we 

knocked out ASCC1 in U2OS cells using CRISPR/Cas9 (Figure 3.4A). Notably, loss of ASCC1 

significantly increased MMS-induced ASCC3 foci formation (Figure 3.4B-C). This increase was 

apparent with two different knockout clones, making it unlikely that the induction of foci was 

due to an off-target effect of CRISPR/Cas9. These results were not attributable to an increase of 

ASCC3 foci at baseline (i.e., without MMS) in the ASCC1 KO cells (Figure 3.5). In time-course 

experiments, ASCC3 foci were still resolved in the absence of ASCC1 upon removal of MMS 

(Figure 3.5). These results suggested that ASCC1 modulates ASCC3 foci formation during 

alkylation damage. 

We next asked whether ASCC1 affects the co-localization of other components of the ASCC 

complex. Upon MMS treatment, nearly 75% of WT cells had foci containing co-localized 

ASCC3 and HA-ASCC2 (Figure 3.6A-B). Under the same conditions, ASCC1 KOs had 

significantly fewer cells exhibiting co-localization between HA-ASCC2 and ASCC3 foci (42%). 

This was not due to a difference in the expression level of HA-ASCC2 in parental versus ASCC1 

KO cells (Figure 3.6C). This suggested that ASCC1 may function to promote co-localization of 
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the other two components of the complex during alkylation damage. To test this biochemically, 

we immunoprecipitated endogenous ASCC2 in WT versus ASCC1 knockout PC-3 cells (Figure 

3.6D-E). Consistent with the diminished interaction observed by microscopy, less ASCC3 was 

co-immunoprecipitated with ASCC2 in ASCC1 knockout cells than in WT cells upon alkylation 

damage (Figure 3.6E). Thus, ASCC1 appears to coordinate the proper recruitment of the 

complex components during alkylation. 

3.3.4 Deletion Analysis of ASCC1 Reveals Modular Functional Domains 

We reasoned that distinct domains within ASCC1 may be responsible for the interaction with 

ASCC3 and its subsequent removal from nuclear speckle domains during damage. ASCC1 

contains a KH domain adjacent to an unstructured region at its N-terminus, as well as an RNA 

ligase-like C-terminus, which has been postulated to be an RNA binding domain (Brown et al., 

2003; Siomi et al., 1993; Valverde et al., 2008). We generated deletion mutants of ASCC1 

(Figure 3.7A) and tested their individual ability to associate with ASCC3 via 

immunoprecipitation (Figure 3.7B). Deletion of the N-terminus of ASCC1 (ASCC1-NΔ; 

residues 54-357) abolished its binding to ASCC3, while deletion of the C-terminus (ASCC1-CΔ; 

residues 1-243) had no effect on this interaction (Figure 3.7B).  

We then expressed the ASCC1-NΔ and ASCC1-CΔ constructs in ASCC1 knockout cells (Figure 

3.8A) and analyzed their ability to retain localization within nuclear speckles upon MMS 

treatment. We utilized the ASCC1 knockout cell line to prevent possible interference from any 

endogenous ASCC1 may have on the localization of these constructs. Strikingly, HA-ASCC1-

CΔ maintained foci formation during MMS treatment, while HA-ASCC1-NΔ behaved like WT 

ASCC1 (Figure 3.8B-C). This was not because ASCC1-CΔ was expressed at a higher level than 
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WT ASCC1 or ASCC1-NΔ (Figure 3.8A). Together, these results suggest that different modular 

domains within ASCC1 have distinct functions during the alkylation damage response. 

3.3.5 A Putative RNA-Binding Domain in ASCC1 Regulates ASCC Function 

In analyzing the C-terminal RNA ligase-like domain of ASCC1, we noticed that it contains two 

conserved His-X-Thr (HXT) motifs, shown to be important for RNA or nucleotide binding in 

various proteins (Koonin and Gorbalenya, 1990). Examples of other proteins containing this 

motif in their nucleotide binding pocket include the 2’-5’ RNA ligases from Thermus 

thermophiles and Pyrococcus horikoshii, as well as the AMP-binding protein AKAP18 (also 

known as AKAP7) (Figure 3.9A) (Koonin and Gorbalenya, 1990; Mazumder et al., 2002). 

Previous structural studies suggest that these HXT motifs line the substrate binding pocket and 

interact with the nucleotide through a pseudo 2-fold symmetry (Gold et al., 2008). We modeled 

this domain within ASCC1 using the Phyre2 server (Kelley et al., 2015; Kelley and Sternberg, 

2009). The resulting structural analysis predicted that ASCC1 forms a similar overall structure to 

other members of the 2H phosphoesterase family (Figure 3.9B) (Silverman and Weiss, 2014). 

Furthermore, the predicted structure suggests that the conserved HXT motifs of ASCC1 are 

positioned such that they also line a putative nucleotide- or RNA-binding pocket similar to the 

aforementioned RNA ligases and AKAP18. Notably, the ASCC1 domain lacks residues critical 

for ligase activity (Figure 3.9C) (Doherty and Suh, 2000). We then mutated both of the HXT 

motifs of ASCC1 to AXA (ASCC1-AXA; H179LT→A179LA and H277AT→A277AA) and 

analyzed its localization during MMS damage. As with ASCC1-CΔ, ASCC1-AXA retained foci 

under these conditions (Figure 3.10). This indicates that the HXT motifs of ASCC1 play a role in 

its localization during alkylation damage.  
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Since the C-terminus of ASCC1 appeared to be critical for regulating its ability to form foci, we 

asked whether the RNA ligase-like domain played a role in foci formation of other complex 

components during alkylation damage. To address this question, we rescued ASCC1 knockout 

cells by expressing exogenous ASCC1 WT, ASCC1-CΔ, or ASCC1-AXA (Figure 3.11A). While 

the wild-type ASCC1 partially rescued HA-ASCC2/ASCC3 foci co-localization, neither 

ASCC1-CΔ nor ASCC1-AXA was able to rescue this phenotype (Figure 3.11B-C). Thus, this 

putative RNA ligase-like domain of ASCC1 plays an important role in the regulation of the 

ASCC complex localization upon alkylation damage. 

3.3.6 ASCC1 is Important for Alkylation Resistance 
The previous results suggested that ASCC1 may play a key role in modulating ASCC recruitment during 

alkylation damage. Therefore, we tested whether ASCC1 was functionally important for alkylation 

damage resistance in PC-3 prostate cancer cells. ASCC1 was knocked out in these cells using 

CRISPR/Cas9. Loss of ASCC1 resulted in an increase in sensitivity to MMS in these cells (Figure 

3.12A). Again, this increase in sensitivity was observed with two distinct ASCC1 knockout clones. To 

determine whether this decrease in cell survival in response to MMS was due to the function of ASCC1 

within the ASCC complex, or whether this was due to its function in another pathway, we created 

ASCC1-ASCC3 double knockout cells (ASCC1/3 DKO). We sequentially knocked out ASCC3 in PC-3 

cells, and then knocked out ASCC1 using CRISPR/Cas9 (Figure 3.12B). MMS sensitivity of all four 

resulting genotypes was then tested. Consistent with our previous work, loss of ASCC3 increased 

sensitivity to MMS (Dango et al., 2011). However, the ASCC1/3 DKO cells did not have an increase in 

MMS sensitivity compared to either the single knockout cell lines of ASCC1 or ASCC3 respectively 

(Figure 3.12C). These results support the notion that ASCC1 has an epistatic relationship with ASCC3 in 

alkylation damage resistance. Taken together, our data supports a role for ASCC1 in controlling the 

ASCC complex recruitment and function during the cellular response to alkylation damage. 
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3.4 Discussion 
We recently described a signaling pathway that is activated by alkylation damage to recruit the 

ALKBH3-ASCC complex to nuclear foci (Brickner et al., 2017). This pathway is dependent 

upon the RNF113A E3 ligase, which induces K63-linked ubiquitination that is then recognized 

by the ASCC2 subunit of the ASCC complex (Brickner et al., 2017). Here, we present evidence 

for additional regulation of this pathway by ASCC1. Our work suggests that ASCC1 is 

constitutively present at nuclear speckle foci prior to damage but leaves these foci upon MMS 

treatment. In addition, ASCC1 can interact directly with ASCC3 and thus modulate its 

localization during alkylation damage. Consistent with a role in this pathway, knockout of 

ASCC1 sensitizes cells to alkylation damage. Loss of ASCC1 does not further increase the 

sensitivity of cells that lack ASCC3, suggesting that the role of ASCC1 in the alkylation damage 

response is primarily through the ASCC complex. 

Surprisingly, unlike ASCC2 or ASCC3, ASCC1 is already present at nuclear foci in the absence 

of any damage. Upon alkylation damage, ASCC1 is removed from these foci (Figure 3.3A-C). 

This phenomenon depends on the C-terminal domain of ASCC1, and more specifically, its HXT 

motifs (Figures 3.8 and 3.10). At the same time, ASCC1 can bind directly to ASCC3 via its N-

terminus (Figure 3.1). This physical interaction and the dynamic localization of ASCC1 during 

alkylation provides the basis for the rational of our preferred model to explain the resulting 

phenotypes from ASCC1 deficient cells (Figure 3.13). We hypothesize that ASCC1 is acting as a 

specificity determinant for ASCC3 localization at these foci. In wild-type cells, we observe that 

the vast majority of the ASCC3 foci are positive for ASCC2 (Figure 3.6). In the ASCC1 

knockout cells, although ASCC3 foci are significantly increased, the majority of these lack 

ASCC2. Thus, there are likely two subsets of ASCC3 foci: those that are positive for ASCC2 and 
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those that are negative for ASCC2. In wild-type cells, the fraction of ASCC3 present at foci 

without ASCC2 is likely removed in a manner dependent on ASCC1. This is consistent with the 

observation of increased ASCC3 foci formation in ASCC1 knockout cells. The failure of ASCC3 

to be removed from these ASCC2-negative foci by ASCC1 would explain the observation that 

more ASCC3 foci lack ASCC2 in ASCC1 knockout cells. Our immunoprecipitation results 

further confirms thus notion (Figure 3.6). 

Why does an increase in ASCC3 foci formation lead to increased alkylation damage sensitivity? 

This phenotype is potentially due to the necessary regulation of ASCC3 recruitment by ASCC1. 

In double-stranded break repair, the loss of the repair protein 53BP1 increases BRCA1 

recruitment, but this leads to increased sensitivity to γ-irradiation, at least partly due to the 

recruitment of BRCA1 in the G1 phase of the cell cycle (Daley and Sung, 2014). This 

inappropriate recruitment and attempt at homologous recombination in G1 is thought to be 

deleterious in double-strand break repair. In like manner, in the absence of ASCC1, inappropriate 

ASCC3 recruitment may cause alkylation damage sensitivity because other repair factors are 

displaced, or a portion of ASCC3 needs to be removed for repair to be promptly completed. It is 

also possible that, in the absence of ASCC1, the complex cannot function properly, and 

alkylation damage sensitivity is increased despite an increase in ASCC3 recruitment.  

The C-terminal RNA ligase-like domain of ASCC1, which appears to be critical for the function 

described here, is part of a larger 2H phosphoesterase family of enzymes that have been shown 

to harbor diverse activities, including bona fide tRNA ligases, phosphodiesterases, and putative 

RNA binding factors (Mazdumer et al., 2002; Silverman and Weiss, 2014). Structural studies on 

the phosphoesterase domain of AKAP18 initially suggested a proclivity for binding to AMP and 

CMP in a manner that is dependent upon its HXT motifs (Gold et al., 2008). It is intriguing that 
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AKAP18 binds to the same nucleotides that are the major reaction products for the ALKBH3 

dealkylase activity, which primarily targets 1-methyladenine and 3-methylcytosine for 

demethylation. We currently do not have any direct evidence for the binding of ASCC1 to AMP 

or CMP. However, the importance of this domain in ASCC1 foci formation strongly implies that 

substrate binding through this domain, whatever its biochemical identity, plays a role in ASCC 

complex recruitment and function. 

3.5 Materials and Methods 
Plasmids. Human ASCC1 cDNA was isolated by RT-PCR from total human RNA, cloned into 

pENTR-3C (Invitrogen), and subcloned into pMSCV-Flag, pMSCV-Flag-HA, or pHAGE-CMV-

3X-HA by Gateway recombination (Sowa et al., 2009). ASCC1 deletions and point mutations 

were created by PCR and cloned as above. ASCC2, ASCC3, and ALKBH3 vectors were 

previously described (Brickner et al., 2017). For recombinant protein expression, wild-type 

ASCC1, ASCC1 mutants, and ASCC2 were subcloned into pGEX-4T1 or pET28a-Flag. For 

expressing the 6X-His-tagged full-length ASCC3 and NΔ-ASCC3 (401-2202), the pENTR-3C 

vectors containing these cDNAs were subcloned into pDEST10 (Invitrogen). All constructs 

produced by PCR were verified by Sanger sequencing.  

CRISPR/Cas9 mediated knockouts. U2OS and PC-3 KO cells were created using CRISPR/Cas9 

genome editing at the Genome Engineering and iPSC Center (GEiC) at Washington University 

School of Medicine (St. Louis). The U2OS ASCC3 KO cells were previously described 

(Brickner et al., 2017). The gRNA sequences used to generate the ASCC1 KO cell lines were: 5'- 

AAGGATTCCGGTCTACTTTGNGG-3' and 5'- AAGTAGACCGGAATCCTTGTNGG-3'.  The 

gRNA sequences used to generate the PC-3 ASCC3 KO cell line was 5’-
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GACATTTGAAAAGGAACGCANGG-3’. All knockout clones were verified by deep 

sequencing or by Western blot analysis. 

Cell culture, viral transduction, and cell survival assays. U2OS, PC-3, 293T, and Sf9 cells were 

cultured and maintained as previously described (Zhao et al., 2015). Preparation of viruses, 

transfection, and viral transduction were also performed as previously described (Zhao et al., 

2015). For knockout cell foci rescue experiments, U2OS cells were transduced with WT ASCC1 

or ASCC1 mutants using the pMSCV retroviral vector and pHAGE-CMV-3X-HA-ASCC2. For 

DNA damaging agent survival assays using PC-3 cells, 4,000-15,000 cells/well were cultured 

overnight in 96-well plates in 100μl media. Cells were then exposed to medium containing the 

indicated concentration of MMS (Sigma) for 24 hours at 37 °C. The media was then replaced 

with normal media and cell viability was assessed 72 hours after initial exposure to MMS via the 

MTS assay (Promega). All MTS based survival experiments were carried out in quintuplicate. 

Recombinant protein purification. For purification of the 6X-His tagged ASCC3 and NΔ-

ASCC3, the baculovirus vector was produced using the Bac-to-Bac expression system 

(ThermoFisher). Amplified baculovirus was used to infect Sf9 cells and harvested after 72 hours. 

The cells were resuspended in Buffer L (20 mM Tris pH 7.3, 150 mM NaCl, 8% glycerol, 0.2% 

NP-40, 0.1% Triton X-100, 20 mM imidazole) plus protease inhibitors and frozen -80°C. Cells 

were lysed by sonication and rotated for 30 minutes at 4°C. The cell extracts were then 

centrifuged at 10,000 rpm for 10 minutes. The supernatant was incubated with Ni-NTA beads 

and eluted with Buffer L containing 400 mM imidazole. His-ASCC1 and GST tagged 

recombinant proteins were purified from E. coli as described (Zhao et al., 2015). All proteins 

were dialyzed into TAP buffer (50 mM Tris pH 7.9, 100 mM KCl, 5 mM MgCl2, 0.2 mM 

EDTA, 0.1% NP-40, 10% glycerol, 2 mM 2-Mercaptoethanol, 0.2 mM PMSF) after purification. 
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Protein binding assays. All in vitro GST-protein binding assays were performed as previously 

described (Mosammaparast et al., 2013) with minor modifications. Briefly, 5 μg of GST-tagged 

bait protein was incubated with 10 μl of glutathione-Sepharose beads and 250 ng of 6X-His 

ASCC3 FL or NΔ-ASCC3, 1 μg of 6X-His ASCC1, or 500 ng K63-Ub3-7 in TAP buffer 

containing 1% BSA in a total volume of 100 μl. After incubation at 4°C with rotation for one 

hour, beads were washed extensively using TAP buffer. Bound material was eluted using 

Laemmli buffer and analyzed by SDS-PAGE and Western blotting. 

Structural model. The model for the predicted structure of ASCC1 was generated using the 

publicly available Phyre2 server (Kelley et al., 2015; Kelley and Sternberg, 2009). 

Statistical analysis. All p-values were calculated by unpaired, two-tailed Student’s t-test. 

Immunofluorescence microscopy. All immunofluorescence microscopy was done as previously 

described (Brickner et al., 2017; Mosammaparast et al., 2013). 100 cells were analyzed at least in 

biological triplicate for all quantifications. 

Immunoprecipitation and Western blotting. Immunoprecipitation of HA-tagged ASCC1, 

ASCC1 mutants, and ASCC2 were performed by transfection of constructs into 293T cells using 

Transit293 reagent (Mirus Bio). Cells were treated with 0.5 mM MMS as indicated, collected 

and washed in 1X PBS, and frozen at -80°C. Cell pellets were resuspended in IP lysis buffer (50 

mM Tris pH 7.9, 300 mM NaCl, 10% glycerol, 1% Triton X-100, 1 mM DTT, and protease 

inhibitors), lysed by sonication, and cleared by centrifugation. An equal volume of IP lysis buffer 

containing no salt was added (final concentration of NaCl was 150 mM). Lysates were then 

incubated with anti-HA resin (Santa Cruz) for 3-4 hours at 4°C with rotation. The beads were 
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washed extensively with IP lysis buffer containing 150 mM NaCl and bound material was eluted 

with Laemmli buffer.  

Preparation of viruses, transfection, and viral transduction for immunoprecipitation of HA-

tagged ASCC1 or HA-empty from PC-3 WT and ASCC3 KO cells was performed as previously 

described (Mosammaparast et al., 2013). Cells were selected with 1 μg/ml puromycin for 24 

hours. The media was then replaced with normal media for two days after which cells were 

transfected with Flag-ASCC2. Cells were collected and washed in 1XPBS and frozen at -80°C 

two days after transfection. Immunoprecipitation was then executed as described above. 

Endogenous immunoprecipitation was carried out by collecting the cells and freezing at -80°C as 

above. Cell pellets were resuspended in TAP buffer containing 300 mM KCl, lysed by 

sonication, and cleared by centrifugation. IP lysis buffer containing no salt was added to bring 

the final concentration of KCl to 100 mM. Samples were pre-cleared by incubation with Protein 

A/G beads (Santa Cruz) with rotation at 4°C. After centrifugation, the supernatant was then 

incubated with the relevant antibodies overnight at 4°C. Protein A/G beads were then added and 

rotated at 4°C one hour. The samples were then centrifuged and washed extensively with TAP 

buffer. Bound material was eluted with Laemmli buffer and analyzed by Western blot. 

Antibodies. The antibodies and the concentration used for the given application are listed as 

following: ASCC3 (House; 1:500 IF; 1:100 IP; 1:2500 or 1:3000 Western), 6x-His (Abcam; 

1:2500 Western), ASCC1 (Abcam; 1:1250 or 1:2500 Western), ASCC2 (Bethyl; 1:200 IP; 

1:2500 Western), Flag (Sigma; 1:2500 Western), HA (BioLegend; 1:250 or 1:300 IF; 1:2500 or 

1:5000 Western), HA (Santa Cruz; 1:2500 Western), HA (Abcam; 1:2500 Western), IgG (Sant 

Cruz; 1:200 IP), LSD1 (Santa Cruz; 1:2500 Western), LSD1 (Active Motif; 1:2500 Western), 
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pH2A.X (Abcam; 1:2000 IF), PRPF8 (Bethyl; 1:200, 1:400 or 1:600 IF), Ub P4D1 (Santa Cruz; 

1:5000 Western), β-actin HRP (Sigma; 1:2500 or 1:5000 Western). 
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Chapter 4: Aberrant RNA Methylation 

Triggers Recruitment of the ASCC-ALKBH3 

Repair Complex 

Brickner JR, Tsao N, Oyeniran C, Zhang L, Rodell R, Soll JM, Ganguly A, Majid MC, He C, 

Mosammaparast N. In preparation. 

4.1 Abstract 
DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA 

lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage 

type. Although the roles of the effector proteins involved in these repair pathways have been well 

elucidated, the importance of RNA molecules in propagating efficient DNA repair is becoming 

more evident, particularly for double-strand break (DSB) repair. Specifically, RNA from an 

actively transcribed gene is readily available for RAD52-dependent strand invasion in the 

presence of a DSB to act as a template during homologous recombination (HR), providing an 

alternative, RNA-based approach for promotion of DNA repair (Mazina et al., 2017). However, 

whether RNA can direct DNA repair via the regulation and activation of other DNA repair 

pathways remains unclear. The abundance and availability of RNA for modification by 

alkylating agents (Fu et al., 2012) gives credence to the notion that RNA alkylation may play a 

similar role during alkylation damage repair. Here, we demonstrate that RNA alkylation is 

necessary and sufficient to recruit the ASCC complex. Overexpression of the 3-methylcytosine 

RNA methyltransferase METTL8 was capable of inducing the recruitment of ASCC3, even in 

the absence of alkylation damage. Conversely, overexpression of an AlkB homologue from the 

RNA virus blueberry scorch significantly reduced ASCC foci in the presence of methyl 

methanesulphonate (MMS). Similar to the recruitment of the ASCC-ALKBH3 complex, 
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RNF113A E3 ligase activity was specifically induced upon alkylation damage. Importantly, 

overexpression of METTL8 was also capable of activating RNF113A E3 ligase activity, even in 

the absence of alkylating agents. Taken together, our results strongly suggest that alkylated RNA 

is an activator to initiate the alkylation damage response by ASCC-ALKBH3. 

4.2 Introduction 
Maintaining genomic integrity is essential for cellular survival. To counteract challenges 

presented by various endogenous and exogenous genotoxins, cells have developed multiple DNA 

repair mechanisms that are necessary to ensure faithful replication, including double strand break 

(DSB) repair, base excision repair (BER), and transcription-coupled nucleotide excision repair 

(TC-NER) (Jackson and Durocher, 2013; Soll et al., 2017; Gregersen and Svejstrup, 2018). The 

majority of these pathways rely upon sensor proteins to recognize the damaged lesion. These 

proteins then interact with various transducer proteins to propagate a signaling cascade to recruit 

and activate the downstream mediator proteins that resolve the lesion to avoid genomic 

catastrophe. Recently, we showed that this “sensor-transducer-mediator” paradigm has been 

shown to be important for regulating the ASCC-ALKBH3 repair complex during alkylation 

damage (Brickner et al., 2017). 

While the majority of studies regarding DNA repair have focused on elucidating the roles of the 

various proteins involved in these pathways, the importance of various RNA molecules in 

propagating efficient DNA repair is only recently becoming more evident (Yang and Qi, 2015; 

Thapar 2018). RNA-directed DNA repair appears to be important for DSB repair. The first 

evidence for RNA-directed DNA homologous recombination (HR) demonstrated that both yeast 

and human cells could utilize synthetic RNA oligonucleotides as the template for HR of DNA 

(Storici et al., 2007; Shen et al., 2011). Interestingly, cis-RNA (i.e., same locus) of an actively 



99 

 

transcribed gene was readily available for strand invasion in the presence of a DSB in a manner 

dependent upon RAD52 (Keskin et al., 2014; Mazina et al., 2017), suggesting that an 

endogenous RNA transcript can direct HR during DSB repair. 

In addition to endogenous RNA transcripts, other RNA molecules such as long non-coding 

RNAs (lncRNAs) and micro RNAs (miRNAs) may dictate DNA repair. Several lncRNAs have 

been identified as either oncogenes or tumor suppressors (Thapar 2018). A majority of these 

RNAs modulate DSB repair by regulating the activity and expression of p53 (Huarte et al., 2010; 

Mahmoudi et al., 2016). Importantly, lncRNAs also regulate the DNA damage response (DDR) 

by tethering chromatin remodeling factors to the damage site or by serving as a scaffold for 

important repair proteins such as KU70/80 and RNF169 (Wan et al., 2013; Maringele et al., 

2002; Deng et al., 2019). Similar to lncRNAs, miRNAs regulate the DSB response by 

modulating the protein levels of DSB repair factors (Tessitore et al., 2014). Taken together, these 

data support the notion that the regulation of DNA repair at both the protein and template level 

may be mediated by RNA molecules. While the role of RNA is best characterized for HR, it 

remains unclear if RNA has a role in promoting other types of DNA repair.  

RNA itself is subject to extensive modification, including modification by alkylating agents 

(Thapar et al., 2018; Fu et al., 2012). Interestingly, certain modifications induced by alkylating 

agents, such as 1-methyladenine (m1A) and 3-methylcytosine (m3C), also occur endogenously 

via methyltransferases. The RNA-specific methyltransferase METTL8 has been shown to 

deposit m3C on mRNA in human cells (Xu et al., 2017), although the role of this modification is 

unknown. The role of the m1A modification on RNA has recently become more apparent. m1A 

is primarily found in the 5’-UTR of mRNAs and may promote translation initiation via the m1A 

reader protein YTHDF3 (Dominissini et al., 2016; Dai et al., 2018). The AlkB homologue 
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ALKBH3 acts as the eraser of m1A and m3C on RNA (Aas et al., 2003). Intriguingly, ALKBH3 

repairs m1A and m3C on DNA in concert with the ASCC complex (Dango et al., 2011; Brickner 

et al., 2017). Recruitment of this repair complex is strictly limited to alkylation damage and does 

not respond to other damaging agents (Brickner et al., 2017). However, the basis for this 

selectivity toward alkylation remains unknown. 

As RNA is several fold more abundant than DNA in the cell and thus more readily available for 

modification (Vagbo et al., 2013; Thapar et al., 2018), we hypothesized that RNA alkylation may 

serve as an upstream activator of the ASCC-ALKBH3 repair complex. Here, we demonstrate 

that RNA alkylation is necessary and sufficient to recruit the ASCC-ALKBH3 complex. 

Overexpression of an AlkB homologue from an RNA virus significantly reduced HA-ASCC2 

foci in the presence of methyl methanesulphonate (MMS). Conversely, overexpression of the 

RNA methyltransferase METTL8 was capable of recruiting ASCC3, even in the absence of 

alkylation damage. We show that alkylation damage resulted in general transcriptional 

repression. Strikingly, the majority of transcripts repressed during alkylation damage were de-

repressed upon loss of ASCC3. Similar to the ASCC-ALKBH3 complex, RNF113A E3 ligase 

activity was specifically induced upon alkylation damage. Importantly, overexpression of 

METTL8 was also capable of activating RNF113A E3 ligase activity, even in the absence of 

alkylating agents. Taken together, our results strongly suggest that alkylated RNA is an activator 

to initiate the alkylation damage response and transcriptional repression by the ASCC complex. 

4.3 Results 

4.3.1 RNA Alkylation is Necessary to Mediate ASCC Recruitment 

We previously reported the discovery of a nuclear ubiquitin-dependent signaling pathway that 

is specifically required for recruiting the ASCC complex to mediate alkylation damage 
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responses (Brickner et al., 2017). However, the mechanistic basis for this alkylation damage 

selectivity remains unclear. We reasoned that the specificity of this pathway towards 

alkylation may be due to modification of RNA, consistent with the fact that RNA is more 

readily modified by alkylation relative to DNA (Vagbo et al., 2013; Thapar et al., 2018). To 

test whether RNA was necessary for the recruitment of ASCC, we cloned and expressed an 

AlkB homologue from blueberry scorch virus, an RNA virus (Figure 4.1A). This dealkylase 

was active on RNA but not DNA substrates in vitro (Figure 4.1B-E). Expression of BsvAlkB 

as an NLS-fusion targeted it to the nucleus (Figure 4.2A). Strikingly, BsvAlkB-NLS 

expression significantly reduced HA-ASCC2 foci formation during MMS damage (Figure 

4.2B-C), suggesting that RNA alkylation is indeed necessary to recruit the ASCC-ALKBH3 

complex during alkylation damage. This reduction depended on the enzymatic activity of 

BsvAlkB, as the H156A catalytic mutation was significantly less capable of countering 

ASCC2 foci formation. 

4.3.2 RNA Alkylation is Sufficient to Mediate ASCC Recruitment 

To test if RNA alkylation is sufficient to activate RNF113A and recruit the ASCC complex, 

we turned to RNA methyltransferases that produce methylated base lesions that are also 

created by chemical agents. We cloned the METTL8 methyltransferase, which is thought to 

produce 3-methylcytosine (m3C) on mRNAs (Xu et al., 2017). While the function of this 

modification on mRNA is unclear, it is one of the major modifications produced on RNA by 

MMS and is countered by the AlkB family of enzymes (Aas et al., 2003; Yan and Zaher, 

2019). Flag-METTL8 is nominally cytoplasmic but was targeted to the nucleus, and 

particularly the nucleolus, when fused to the SV40 NLS (data not shown, Figure 4.3A). 

Strikingly, ectopic expression of wild-type METTL8-NLS induced recruitment of the ASCC3 
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helicase to nucleolar regions, which coincided with the localization of the active 

methyltransferase (Figure 4.3B-C). Two catalytic mutations targeting the SAM-binding 

domain of METTL8 (G204A/G206A and D230A) (Alexandrov et al., 2005) failed to recruit 

ASCC3 (Figure 4.3B-C). Although the m3C activity of wild-type METTL8 was modest, the 

G204A/G206A mutant was in fact deficient for 3-methylcytosine RNA methyltransferase 

activity, as determined by MS/MS (data not shown). We noted that these mutant METTL8-

NLS proteins did not localize as robustly to nucleoli compared to the wildtype counterpart 

(Figure 4.3B), which could alternatively explain the impairment of ASCC3 nucleolar 

recruitment. To address this potential concern, we utilized a single locus reporter system 

where we could target this methyltransferase (Shanbhag et al., 2010; Janicki et al., 2004). In 

this system, fusing a degron-tagged METTL8-NLS to mCherry-LacI allows for targeted 

recruitment of this RNA methyltransferase to the single locus (Figure 4.4A). Cells expressing 

either mCherry-LacI or METTL8-mCherry-LacI fused to a degron tag were recruited to this 

locus upon treatment with 300 nM Shield-1 (Figure 4.4B-C). As with the nucleolar targeting 

of ASCC3 with wildtype METTL8-NLS, we found that METTL8 induces ASCC3 recruitment 

to this locus in a manner dependent upon active transcription (Figure 4.4D-E). Taken together, 

our results support the notion that aberrant RNA methylation is necessary and sufficient to 

recruit the ASCC complex. 

4.3.2 ASCC-mediated Transcriptional Repression in Response to Aberrant 

RNA Alkylation 

Previous work using various genotoxins have revealed that such damage generally elicits a 

repressive transcriptional response, either locally or globally (Jelinsky and Samson, 1999; 

Silva and Ideker, 2019). We reasoned that alkylation damage may also result in transcriptional 

repression. Indeed, we found that MMS treatment results in a greater number of 
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downregulated versus upregulated genes (data not shown). During alkylation treatment, 357 

genes were significantly downregulated using a log2 fold change threshold. Strikingly, we 

found that 347 of the 357 genes (97%) repressed during alkylation are derepressed upon loss 

of ASCC3, again using the log2 fold change threshold. This data suggests that this complex 

has a major role in transcriptional repression during alkylation damage (data not shown). 

Together, this supports the notion that that the ASCC complex acts primarily as a 

transcriptional repressor during alkylation damage. 

4.3.3 Selective Activation of RNF113A E3 Ligase Activity Upon Alkylation 

A key factor in this pathway is the E3 ubiquitin ligase RNF113A, which we reasoned could be 

selectively activated during alkylation, similar to ASCC-ALKBH3 (Brickner et al., 2017). 

Many E3 ubiquitin ligases are autoubiquitinated when activated (Mallery et al., 2002; Ben-

Saadon et al., 2006), and decided to analyze RNF113A ubiquitination status by denatured 

immunoprecipitation after expressing HA-RNF113A and His-Ub in HeLa cells. Indeed, we 

found that RNF113A is ubiquitinated in cells upon MMS treatment (Figure 4.5A). This likely 

represented RNF113A autoubiquitination, as inactivation of the RING domain abrogated 

RNF113A ubiquitination during MMS treatment (Figure 4.5B). Strikingly, other types of 

damaging agents, including hydroxyurea (HU), bleomycin (Bleo), or camptothecin (CPT) 

were not capable of inducing RNF113A autoubiquitination (Figure 4.5A), consistent with the 

specificity for alkylation damage observed with the ASCC-ALKBH3 repair complex. Using 

tandem ubiquitin binding element (TUBE) conjugated beads to isolate ubiquitinated proteins, 

we found that endogenous RNF113A is also autoubiquitinated, again only with MMS but not 

the other types of damaging agents (Figure 4.6A). These agents all induced pH2A.X, 

suggesting damage signaling is occurring with all of these agents (data not shown). A 
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significant portion of the ubiquitin linkage associated with RNF113A during MMS treatment 

appeared to be K63-linked, consistent with previous findings that suggested that RNF113A 

functions with the K63-specific E3 ligase UBC13 (data not shown) (Brickner et al., 2017). 

The methylating agent methyl iodide also induced autoubiqitination of RNF113A but the 

ethylating agent EMS did not, suggesting that RNF113A is activated primarily by methylation 

(Figure 4.6B-C). This autoubiquitination of RNF113A was accompanied by increased 

RNF11A E3 ligase activity, as RNF113A isolated from cells treated with MMS was 

significantly more active than RNF113A from untreated cells (Figure 4.7). MMS-induced 

autoubiquitination was specific to RNF113A, as RNF8 and RNF168, two other E3 ligases 

involved in DNA damage signaling (Mailand et al., 2007; Doil et al., 2009), were not 

autoubiquitinated during alkylation (Figure 4.8). Importantly, overexpression of METTL8 in 

HEK293T cells was sufficient to induce similar autoubiquitination of RNF113A as compared 

to cells treated with MMS (Figure 4.9). Consistent with its selective activation during 

alkylation damage, loss of RNF113A resulted in significant sensitivity to MMS but not CPT 

(Figure 4.10). Together, these results suggest the specific activation of the RNF113A-ASCC 

pathway during alkylation damage rests with the E3 ligase activity of RNF113A. 

4.4 Discussion 
Our results provide the first evidence for a repair pathway mediated by aberrant RNA alkylation. 

RNA alkylation is sufficient to activate the E3 ligase activity of RNF113A, which in turn 

initiates the ubiquitin signaling cascade required to recruit the ASCC-ALKBH3 repair complex. 

Not only is aberrant RNA alkylation sufficient to recruit this complex but an RNA-specific 

demethylase is sufficient to attenuate ASCC recruitment, suggesting that RNA alkylation is also 

necessary for its function. How RNA alkylation acts as an activator of this pathway remains the 



112 

 



113 

 



114 

 



115 

 



116 

 

focus of future studies. Intriguingly, it is possible that, in addition to repairing alkylation damage 

on DNA, the ASCC-ALKBH3 could serve as a nuclear RNA quality control mechanism that 

intersects with elongating RNA Polymerase II (PolII).  

Similar to epigenetic regulation in DNA, methyl-specific ‘reader’ proteins, such as the YTH 

family of proteins, recognize RNA modifications, specifically 6-methyladenine (m6A), to 

regulate translation initiation and elongation (Meyer and Jaffery, 2017; Wang et al., 2014; Xiao 

et al., 2016). Emerging evidence suggests that some of these reader proteins, such as YTHDF3 

and YTHDC1, can recognize specifically damaged or alkylated RNA lesions, such as m1A (Dai 

et al., 2018). It is therefore plausible that after these readers engage the alkylated lesion, they 

initiate downstream damage signaling that is reminiscent of double-strand break repair. This 

signaling would activate the RNF113A E3 ligase, and ultimately result in the recruitment of the 

ASCC complex.  

Conversely, alkylation could induce the uncoupling of RNA PolII and the RNA processing 

machinery. Due to the inability of RNA binding factors to recognize specific sequences on the 

damaged nascent transcript, such as the 5’ splicing junction, splicing is inhibited, while 

polymerase elongation continues unperturbed. This uncoupling activates RNF113A to initiate 

damage signaling. Here, it is enticing to predict that RNF113A itself can serve as a ‘sensor’ of 

alkylation, as its zinc-finger domain directly interrogates the nascent pre-mRNA to identify the 

5’ splicing junction (Yan et al., 2016). Future studies will undoubtedly clarify these critical 

questions regarding the signaling cascade initiated by aberrant RNA alkylation in activating this 

repair pathway. 
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4.5 Materials and Methods 
Data Reporting. No statistical methods were used to predetermine sample size. The experiments 

were randomized and the investigators were single-blinded to allocation during experiments and 

outcome assessment. 

Plasmids. Human METTL8 and RNF113A cDNAs were isolated as previously described 

(Dango et al., 2011). Humanized BsvAlkB DNA was ordered as a gene block from IDT. For 

mammalian cell expression, cDNAs were subcloned into pHAGE-CMV-3xHA, pHAGE-CMV-

Flag, pLVX-PTuner, or pMSCV-Flag-HA as needed by Gateway recombination (Sowa et al., 

2009). For recombinant protein expression, cDNAs were subcloned into pET28a-Flag. All 

constructs derived by PCR, including deletions and point mutations, were confirmed by Sanger 

sequencing. 

Cell culture. U2OS, HeLa-S, HeLa, and 293T cells (originally from ATCC) were cultured and 

maintained as previously described (Zhao et al., 2015). Cells containing the lac operon reporter 

system were a generous gift from Roger Greenberg and maintained as previously described 

(Shanbhag et al., 2010). Cells were tested for mycoplasma at the Washington University Genome 

Engineering and iPSC Center and were authenticated using the ATCC human STR profiling 

services. Preparation of viruses, transfection, and viral transduction were performed as described 

previously (Zhao et al., 2015). For cell foci experiments, cells were transduced with pHAGE-

CMV-3xHA-ASCC2 and pHAGE-CMV-Flag-BsvAlkB WT or H156A lentiviral vectors or the 

pHAGE-CMV-Flag-METTL8-NLS or pLVX-PTuner-METTL8-NLS lentiviral vectors.  

Cell survival assays. For DNA damaging agent survival assays using HeLa cells, 2,000 cells-

3,000 cells/well were cultured overnight in 96-well plates in 100 l media. Cells were then 
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exposed to medium containing the indicated concentration of methyl methanesulphonate (MMS; 

Sigma) or camptothecin (CPT; Sigma) for 24 or 72 hours at 37 °C, respectively. The media was 

then replaced with normal media, and cell viability was assessed using the MTS assay (Promega) 

72 hours after initial damaging agent exposure. All MTS-based survival experiments were 

carried out in quintuplicate. 

CRISPR/Cas9 mediated knockouts. U2OS ASCC3 knockout cells were created using 

CRISPR/Cas9 genome editing at the Genome Engineering and iPSC Center (GEiC) at 

Washington University School of Medicine (St. Louis). ASCC3 KO clones were initially 

assessed by deep sequencing and confirmed by Western analysis. ASCC3: 5’-

ATGGCTTTACCTCGTCTCACAGG-3’. For pooled RNF113A knockout, HeLa or U2OS cells 

were infected with pLentiV2-CRISPR-Cas9 lentivirus and selected for infection with 1μg/ml 

puromycin. Knockout of RNF113A was confirmed by Western analysis. RNF113A: 5’- 

GTAGCGACGAAGGCTGCACT-3’. 

Immunofluorescence microscopy. All immunofluorescence microscopy was done as previously 

described (Zhao et al., 2015), with minor modifications. After treatment with 500 M MMS in 

complete medium at 37°C for six hours or incubation with 300 nM Shield-1 ligand for 24 hours, 

U2OS cells were extracted with 1× PBS containing 0.2% Triton X-100 and protease inhibitors 

(Pierce) for 20 minutes on ice prior to fixation with 3.2% paraformaldehyde. The cells were then 

washed extensively with IF Wash Buffer (1× PBS, 0.5% NP-40, and 0.02% NaN3), then blocked 

with IF Blocking Buffer (IF Wash Buffer plus 10% FBS) for 30 minutes. Primary antibodies 

were diluted in IF Blocking Buffer overnight at 4°C. After staining with secondary antibodies 

(conjugated with Alexa Fluor 488 or 594; Millipore) and Hoechst 33342 (Sigma-Aldrich), where 
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indicated, samples were mounted using Prolong Gold mounting medium (Invitrogen). 

Epifluorescence microscopy was performed on an Olympus fluorescence microscope (BX-53) 

using an UPlanS-Apo 100X/1.4 oil immersion lens and cellSens Dimension software. Raw 

images were exported into Adobe Photoshop and for any adjustments in image contrast or 

brightness, the levels function was applied. For foci quantitation, at least 100 cells were analyzed 

in triplicate, unless otherwise indicated. 

Purification of Flag-RNF113A complexes. Affinity purification of RNF113A was performed as 

previously described, with minor modifications (Brickner et al., 2017). Briefly, Flag-RNF113A 

was stably expressed after transduction of pMSCV-Flag-RNF113A retrovirus into HeLa-S cells. 

Flag-tagged RNF113A was purified from HeLa-S cells by resuspension in Flag-lysis buffer (50 

mM Tris-HCl pH 7.9, 150 mM NaCl, 10% glycerol 1.0% Triton X-100, 1 mM DTT, and 

protease inhibitors) with or without prior treatment with MMS (400 M for 30, 60, 120, or 240 

minutes) and lysed by sonication. After incubation with anti-Flag (M2) resin (Sigma), the protein 

was eluted in TAP buffer (50 mM Tris-HCl pH 7.9, 100 mM KCl, 5 mM MgCl2, 10% glycerol, 

0.1% NP-40, 1 mM DTT, and protease inhibitors) containing 0.4 mg ml-1 Flag peptide. 

Protein purification. Recombinant BsvAlkB WT or H156A proteins were purified from Rosetta 

(DE3) cells using an ÄKTA-pure FPLC (GE Healthcare). For His-tagged bacterially expressed 

proteins, cells were resuspended in His-lysis buffer (50 mM Tris-HCl pH 7.3, 250 mM NaCl, 

0.05% Triton X-100, 3 mM −ME, 30 mM imidazole, and protease inhibitors) and lysed by 

sonication. After centrifugation and filtration, the extract was loaded onto a HisTrap HP column 

using a 50 ml Superloop (GE Healthcare). After extensive washing with lysis buffer, the protein 

was eluted using lysis buffer containing 400 mM imidazole and dialyzed into TAP buffer.  
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Ubiquitin ligase assays. Reactions analyzing ubiquitin chain polymerization were performed in 

ubiquitin ligase buffer (25 mM Tris pH 7.3, 25 mM NaCl, 10 mM MgCl2, 100 nM ZnCl, 1 mM 

mercaptoethanol) containing 5 mM ATP and 100 µM of ubiquitin in a total volume of 20 l. E1 

activating enzyme (UBE1; Boston Biochem) was used at 500 nM, and E2 ubiquitin conjugating 

enzymes (Ubch5c or Ubc13/MMS2; Boston Biochem) were added at 250 nM. Flag-HA-tagged-

RNF113A protein purified from HeLa-S cells was added to each reaction and incubated at 37°C 

for 1 hour. Reactions were stopped with 20 µl of Laemmli buffer, analyzed by SDS-PAGE and 

Western blotted. 

Immunoprecipitation. Immunoprecipitation after denaturation was performed as previously 

described (Sowa et al., 2009) with minor modifications. Briefly, HEK293T cells were transfected 

with His-Ub, the indicated RNF113A construct and either Flag-GFP or Flag-METTL8 or Flag-

METTL8-NLS simultaneously. then transduced with the indicated RNF113A WT or lentivirus. 

Cells were then treated with 500 µM MMS for 6 hours and harvested. Pellets were resuspended 

in TBS + 1% SDS and further lysed by sonication, boiled and cleared by centrifugation. Samples 

were diluted to 0.1% SDS with lysis buffer (50mM Tris pH 7.9, 150 mM NaCl, 10% glycerol, 

1% Triton X-100, 1mM DTT, and protease inhibitors) and incubated with Ni-NTA beads at 4°C 

overnight. After incubation and extensive washing with lysis buffer, the bound material was 

eluted with Laemmli buffer and analyzed by Western blotting. For analysis of RNF113A 

autoubiquitination after exposure to various DNA damaging agents for 6 hours (500 μM MMS, 

10mM HU, 20 μM bleomycin, 1 μM CPT), HeLa cells stably expressing Flag-HA-RNF113A 

WT or ΔRING protein were transduced with His-Ub and His-Ub was immunoprecipitated after 

denaturation as described previously (Gajjar et al., 2012; Xirodimas et al., 2001). 
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TUBE pulldown assays. Endogenous ubiquitination of RNF113A was assessed as described 

previously, with minor modifications. HeLa-S cells were diluted to 350,000 cells/ml and grown 

in completed medium at 37°C overnight. Cells were then treated with the indicated genotoxin 

(1mM MMS, 250 μM hydrogen peroxide, 20 μM bleomycin, 1 μM camptothecin, 10 mM 

hydroxyurea, 1mM ethyl methanesulphonate, or 1 mM methyl iodide) for 4 hours. After 

pelleting, cells were incubated in Lysis Buffer (50 mM Tris-HCl pH 7.5, 1 mM EGTA, 1 mM 

EDTA, 1% Triton X-100, 0.25M Sucrose +protease inhibitors) at 4°C for 1 hour. Cell debris was 

cleared by tandem centrifugation at 6500 rpm for 30 minutes, then again at 5000 rpm for 5 

minutes. The supernatant was added to ubiquilin TUBE2 beads (AM-130; Boston Biochem) with 

overnight rotation at 4°C. After extensive washing with High Salt TAP Buffer (50 mM Tris-HCl 

pH7.9, 300 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 0.1% NP-40, 10% glycerol, protease 

inhibitors) then Low Salt TAP Buffer (see above; 0 mM KCl), bound material was eluted with 

Laemmli Buffer and analyzed by Western blotting. 

In vitro BsvAlkB Demethylase Assay. 60 pmol of ssRNA or ssDNA substrate was incubated 

with 20 pmol of either BsvAlkB WT or H156A recombinant protein in demethylase reaction 

buffer (50 mM HEPES-KOH pH 7.5, 2 mM ascorbate, 100 μM 2-oxoglutarate, 40 μM FeSO4, 

and 1 μl RNAse inhibitor) for 1 hour at 37°C. Reactions were digested with S1 nuclease (Sigma) 

overnight at 37°C, then incubated with alkaline phosphatase (NEB) for 1 hour at 37°C. 

Chromatographic separation was performed using an Agilent 1290 Infinity II UHPLC system 

with an ZORBAX RRHD Eclipse Plus C18 150 x 2.1 mm ID (1.8 μm) column protected with an 

ZORBAX RRHD Eclipse Plus C18 5 x 2.1 mm ID (1.8 µm) guard column (Agilent). The mobile 

phase consisted of water and methanol (with 0.1 % formic acid) run at 0.25 ml/min, for 

methylated nucleosides starting with a 6-min gradient of 5-90 % methanol, followed by 4 min re-
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equilibration with 5 % methanol, and for unmodified nucleosides maintained isocratically with 

20 % methanol. Mass spectrometric detection was performed using an Agilent 6495 Triple 

Quadrupole system operating in positive electrospray ionization mode, monitoring the mass 

transitions 282.1/150.1 (mA), 268.1/136.1 (A), 266.1/150.1 (m(dA)) and 252.1/136.1 (dA). 

Quantification of RNA methylated bases using LC-MS/MS. HEK293T cells were transfected 

with METTL8 WT or G204A/G206A mutant and grown in DMEM (Sigma-Aldrich), 

supplemented with 0.03 g/L triple-deuterized L-Methionine (Sigma-Aldrich). Cells were 

harvested and total RNA was extracted according to the manufacturer’s directions (Qiagen) 

using TRIzol (Rio et al., 2010; Su et al., 2014; Thuring et al., 2016). Chromatographic separation 

was performed using an Agilent 1290 Infinity II UHPLC system with an ZORBAX RRHD 

Eclipse Plus C18 150 x 2.1 mm ID (1.8 μm) column protected with an ZORBAX RRHD Eclipse 

Plus C18 5 x 2.1 mm ID (1.8 µm) guard column (Agilent). The mobile phase consisted of water 

and methanol (with 0.1 % formic acid) run at 0.25 ml/min, for methylated nucleosides starting 

with a 6-min gradient of 5-90 % methanol, followed by 4 min re-equilibration with 5 % 

methanol, and for unmodified nucleosides maintained isocratically with 20 % methanol. Mass 

spectrometric detection was performed using an Agilent 6495 Triple Quadrupole system 

operating in positive electrospray ionization mode, monitoring the mass transitions 258.1/126.1 

(mC), and 244.1/112.1 (C). 

RNA-Seq. 5 million U2OS WT or ASCC3 KO cells were plated onto a 10cm plate and grown 

under standard conditions. Cells were treated with 500 μM MMS for 8 hours and total RNA was 

extracted using the miRNeasy Kit (Qiagen) following the manufacturer’s directions.  Library 

preparation, reads, and data analysis were performed by the Genome Technology Access Center 

in the Department of Genetics at Washington University School of Medicine. 
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Statistical Analyses. All p-values were calculated by unpaired, two-tailed Student’s t-test. All 

error bars represent the standard deviation, unless otherwise noted. 

Antibodies. The antibodies and the concentration used for the given application are listed as 

following: 6x-His (Abcam; 1:2500 Western), ASCC3 (In house; 1:500 IF; 1:5000 Western), Flag 

(Sigma; 1:1000 IF; 1:3000 Western), GAPDH (Abcam; 1:3500 Western), HA (BioLegend; 1:300 

IF; 1:2500 Western), Nucleolin (Bethyl; 1:200 IF), pH2A.X (Active Motif; 1:1000 IF), 

RNF113A (Sigma; 1:2000 Western), RNF8 (Abcam; 1:2500 Western), RNF168 (Abcam; 1:2500 

Western), Ubiquitin (Santa Cruz; 1:2500 Western) 
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Chapter 5: Conclusion and Future Directions 
Although ALKBH2 is the primary dealkylase responsible for repairing m1A and m3C lesions 

(Ringvoll et al., 2006), ALKBH3 is overexpressed in certain subsets of cancer, such as non-small 

cell lung carcinoma and prostate adenocarcinoma (Konishi et al., 2005; Tasaki et al., 2011). As 

alkylating agents represent a large class of clinically used chemotherapeutic drugs, ALKBH3 

may be required to repair such lesions in these subsets of cancer (Duncan et al., 2002). Previous 

studies demonstrated that ALKBH3 co-precipitates with the ASCC complex, which is comprised 

of the helicase ASCC3 and the undefined accessory proteins ASCC1 and ASCC2. Interestingly, 

in vitro studies of ALKBH3 have also identified ssRNA as a substrate for this enzyme (Aas et 

al., 2003). As RNA has been shown to direct DNA repair of DSBs (Keskin et al., 2014), it is 

enticing to envision RNA alkylation as another mechanism by which ALKBH3 repair is 

activated. 

The research presented here provides insight into how ASCC1 and ASCC2 regulate the 

recruitment of the ASCC-ALKBH3 repair complex during alkylation damage. We find that 

ASCC1 coordinates complex assembly, while ASCC2 is critical for proper recruitment of the 

complex to alkylation lesion sites. Additionally, we demonstrate that aberrant RNA alkylation is 

both necessary and sufficient to induce the recruitment of this repair complex. Together, this 

knowledge expands upon the understanding of DNA alkylation repair and provides further 

evidence of RNA-mediated DNA repair. 
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5.1 Ubiquitin Recognition by ASCC2 in Alkylation Repair 
5.1.1 Conclusions 

The role of the DNA helicase ASCC3 in generating single-stranded DNA, the preferred substrate 

of ALKBH3, has been well-elucidated (Dango et al., 2011; Falnes et al., 2002; Trewick et al., 

2002; Duncan et al., 2002). However, the mechanistic basis for regulating the recruitment of the 

ASCC-ALKBH3 repair complex to m1A and m3C adducts remained elusive. Here, we describe 

an essential role for ASCC2 in regulating the recruitment of this complex to sites of alkylation 

damage. 

Interestingly, the several components of the ASCC-ALKBH3 repair complex, ASCC2, ASCC3 

and ALKBH3, form nuclear foci specifically upon induction of damage with alkylating agents 

(Figures 2.1 and 2.2). While these foci did not co-localize with canonical DSB repair factors or 

replication factors, ASCC2 and ASCC3 co-localized with the spliceosomal proteins BRR2 and 

PRP8, as well as with elongating RNA PolII (Figures 2.3 and 2.4). These results were confirmed 

by mass spectrometry. Perturbation of both splicing and transcription significantly reduced 

ASCC3 foci formation, while inhibiting the canonical DSB kinases ATR and ATM had no effect 

on complex recruitment (Figures 2.4 and 2.5). This data suggests that the ASCC-ALKBH3 

complex may be associated with regions of active transcription and may be necessary to repair 

lesions at or near genes with high transcriptional activity via a mechanism that is distinct from 

DSB repair. 

We hypothesized that proper recruitment of this complex may be mediated by ASCC2, which 

contains a CUE ubiquitin binding motif (residues 467-509). ASCC2 co-localized with the 

general ubiquitin antibody FK2 as well as with K63-Ub upon alkylation damage (Figures 2.6 and 

2.8). We found that ASCC2 bound to K63-linked ubiquitin chains but not K48-linked ubiquitin 
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chains (Figure 2.7). While CUE domains have previously been shown to recognize K48-linked 

ubiquitin chains (Shih et al., 2002), an upstream and downstream region to the CUE domain 

(residues 388-525) provided the specificity for K63-linked ubiquitin (Figure 2.7E-F). Mutational 

analysis of ASCC2 identified a leucine mutation in the ubiquitin recognition motif, L506A, that 

abrogated its in vitro ubiquitin binding and severely diminished ASCC2 foci formation (Figure 

2.8). Thus, ASCC2 recruitment to sites of alkylation damage is mediated by recognition of K63-

polyubiquitin via its CUE domain. 

Strikingly, ASCC2 also mediated the recruitment of both ASCC3 and ALKBH3. Loss of ASCC2 

significantly reduced both ASCC3 and ALKBH3 foci formation in response to alkylation 

damage (Figure 2.9 and 2.10). Proximity ligation experiments (PLA) revealed that the ASCC-

ALKBH3 complex is being recruited to alkylated bases (Figure 2.11). Importantly, loss of 

ASCC2 caused cells to become hypersensitive to alkylating agents but not to other types of 

genotoxins and impaired m1A repair kinetics on both RNA and DNA (Figures 2.11 and 2.12). 

Reconstitution of ASCC2 KO cells with wild-type ASCC2 was able to restore foci formation of 

both complex components. Conversely, the L506A mutant ASCC2 was incapable of restoring 

ASCC3 and ALKBH3 foci (Figure 2.13). Similar to the foci experiments, reconstitution of 

ASCC2 KO cells with WT ASCC2 was able to restore cellular survival during exposure to 

alkylation damage while the L506A mutant reconstituted cells remained hypersensitive (Figure 

2.14). Thus, proper complex recruitment is dependent upon K63-polyubiquitin recognition by the 

ASCC2 subunit. 

As the above work suggests that ASCC2 is upstream to both ASCC3 and ALKBH3, we then 

analyzed the physical interactions between the different complex components. Utilizing in vitro 

recombinant protein binding assays as well as in vivo immunoprecipitation experiments, we 
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found that ASCC3 serves as a scaffold for this repair complex, with ASCC2 and ALKBH3 

interacting with distinct regions of ASCC3 (Figure 2.15). ASCC2 binds to the N-terminus of 

ASCC3, while ALKBH3 binds to the helicase cassettes of ASCC3. ASCC2 and ALKBH3 did 

not directly interact with one another. This supports the conclusion that ASCC2 bridges the 

interaction between K63-polyubiquitin and ASCC3 and that ALKBH3 is recruited via its 

interaction with ASCC3. 

To further unveil the mechanistic regulation of this repair complex, we next sought to identify 

the E2 conjugating enzyme and E3 ubiquitin ligase responsible for forming the chains 

recognized by ASCC2. Knockdown of the E2 conjugating enzyme UBC13 significantly 

decreased ASCC2 foci formation (Figure 2.16), suggesting that this enzyme is critical for 

complex recruitment. Using this knowledge as the basis for identifying the E3 ligase, we 

performed a shRNA screen of E3 ligases known to interact with UBC13. From this screen, we 

identified RNF113A as the E3 ligase of this pathway, as knockdown of RNF113A using several 

different shRNA attenuated ASCC2 foci formation (Figure 2.17). RNF113A consistently co-

localized with PRP8 and BRR2, suggesting that this enzyme is the bona fide E3 ligase of this 

pathway. 

In vitro ubiquitin ligase assays confirmed that RNF113A purified from human cells is an active 

E3 ligase that predominantly forms K63-linked ubiquitin chains (Figure 2.18). Through further 

analysis of the mass spectrometry-based ASCC2 interactome, we identified BRR2 as one of the 

substrates of RNF113A. RNF113A was able to ubiquitinate recombinant BRR2 in vitro. 

Furthermore, immunoprecipitation of RNF113A pulled down BRR2, demonstrating that these 

proteins interact in vivo (Figures 2.19 and 2.20). Like RNF113A, loss of BRR2 or its 

stoichiometric partner PRP8 resulted in reduced ASCC2 foci in response to alkylation damage 
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(Figure 2.21). These cells were also hypersensitive to alkylation damage. Thus, these data 

implicate BRR2 as being the target of RNF113A ubiquitination during alkylation damage. 

Surprisingly, recent studies have identified mutations RNF113A as for X-linked 

trichothiodystrophy (X-TTD) (Corbett et al., 2015). Lymphoblasts from patients with a Q301* 

mutation were hypersensitive to alkylation damage and exhibited reduced ASCC3 foci upon 

MMS treatment (Figure 2.22). Complementation of these cells with WT RNF113A was able to 

completely rescue ASCC3 foci, while the I264A mutant, which has impaired interaction with the 

E2 conjugating enzyme (Zheng and Shabek, 2017), only partially rescued ASCC3 foci 

formation. This data suggests that a sensitivity to alkylation damage may be contributing to the 

phenotypes exhibited by X-TTD patients. 

Taken together, this data describes a function for ASCC2 in which it promotes alkylation repair 

by recruiting the ASCC-ALKBH3 repair complex to sites of alkylation damage. This recruitment 

is dependent upon ubiquitin recognition by ASCC2. Additionally, BRR2 both co-localizes with 

ASCC2 and is upstream in the recruitment of the complex, suggesting that there may be an 

intersection between active transcription, splicing, and alkylation repair by the ASCC-ALKBH3 

complex in vivo. 

5.1.2 Future Directions 

Additional future studies could focus on the alternative mechanisms by which recruitment of the 

ASCC-ALKBH3 repair complex during alkylation damage is regulated. In the absence of 

damage, ASCC2 is primarily contained within the cytoplasm (Figure 5.1A). After alkylation 

damage, ASCC2 remains primarily cytoplasmic until four hours post-treatment (Figure 5.1A-B). 

Importantly, pre-treatment of U2OS cells with leptomycin B, an inhibitor of nuclear export 

(Kudo et al., 1998), causes ASCC2 to be retained in the nucleus (Figure 5.1C). Taken together, 
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these data suggest that ASCC2 is actively imported into the nucleus during alkylation damage. 

Future experiments could focus on the effect of importins and the nuclear export proteins 

RanGAP/CRM1 on ASCC2 localization during alkylation damage (Cook et al., 2007; Fukuda et 

al., 1997; Bohnsack et al., 2002). Like ASCC-ALKBH3 complex recruitment is dependent upon 

ubiquitin recognition of ASCC2, the complex localization could be similarly dictated by ASCC2. 

More in-depth analysis of the ASCC2 protein sequence could provide insight into the presence of 

either a nuclear localization signal (NLS) or nuclear export signal (NES) in ASCC2. Conversely, 

the ASCC-ALKBH3 complex could be shuttled as passenger complex for another protein or 

protein complex. A genome-wide CRISPR/Cas9 screen could identify chaperone proteins that 

are needed for the nuclear localization of the ASCC-ALKBH3 complex. ASCC2 localization 

during MMS treatment would be used as the read-out for the screen. Intriguingly, recent studies 

have shown that inhibitors for importins, RanGAP or CRM1 are promising anticancer targets 

(Lapalombella et al., 2012; Miyake et al., 2015; Kim et al., 2016). Thus, targeting the nuclear 

transport of ASCC2 could be another mechanism by which to inhibit ALKBH3 in certain cancer 

types. 

In addition to the nuclear transport of ASCC-ALKBH3, the data presented in Figure 5.1 suggests 

that this complex has a cytoplasmic function. As such, future experiments could be performed to 

elucidate the cytoplasmic role of ASCC. I predict that ASCC-ALKBH3 serves as an RNA 

quality control mechanism, similar to nonsense-mediated decay. To identify factors that could be 

involved in ASCC-ALKBH3-mediated RNA quality control, Flag-HA-ASCC2 could be purified 

from cells in the presence or absence of alkylation damage from the cytoplasmic fraction. 

Additionally, the levels of the alkylation lesions m1A and m3C on mature mRNA can be 

determined by mass spectrometry. The levels of methylated RNA can be quantified for both PC-
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3 and U2OS control, ASCC2 KO, ASCC3 KO, RNF113A knock-down, and ALKBH3 KO cell 

lines by purifying mRNA by TRIzol extraction (Rio et al., 2010). Mature mRNA can be further 

purified by polyA enrichment. This RNA can then be digested with S1 nuclease (Sigma) and 

FastAP alkaline phosphatase (ThermoFisher Scientific) and analyzed by liquid chromatography-

tandem mass spectrometry (LC-MS/MS) to quantify m1A and m3C lesions (Su et al., 2014; 

Thuring et al., 2016). I predict that m1A and m3C will be enriched on mRNA upon loss of all of 

these factors. 

Alternatively, ASCC-ALKBH3 could be an alternative mechanism to prevent ribosome stalling 

and escape no-go decay (Simms et al., 2017). PC-3 control or ASCC2 KO cells in the presence 

or absence of MMS will be resuspended in lysis buffer and lysed. Cell lysate will then be layered 

over a sucrose gradient, fractionated and analyzed by Northern blotting to determine the 

localization of the polysomes on the transcript. I hypothesize that there will be more polysomes 

on transcripts in the ASCC2 KO cells, suggesting impaired translation kinetics and increased no-

go decay during alkylation damage. These experiments will establish a role for the ASCC-

ALKBH3 in translation and cytoplasmic RNA quality control. 

RNF113A is a key component of the activated spliceosome and binds directly with the 5’ splice 

sites of the nascent mRNA, suggesting a link with RNA splice site selection and maturation (Wu 

et al., 2017). While most cases are not due to RNF113a mutations, nearly half of all TTD cases 

are non-photosensitive (NP-TTD), strongly suggesting the core molecular defect in TTD is 

not necessarily due to a defect with UV-induced TCR (Faghri et al., 2008). Mutations 

in RNF113a are associated with a non-photosensitive form of TTD (NP-TTD), linking ASCC 

complex recruitment to a disease connected with TC-NER (Corbett et al., 2015). Exome 

sequencing revealed an H279R variant in RNF113A, along with severely skewed X-chromosome 
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inactivation (Figure 5.2A-B). The histidine residue mutated in this patient is essential for 

coordinating one of the zinc ions in the RING domain, which is necessary for catalytic activity 

(Figure 5.2C) (Deshaies et al., 2009). This patient also did not present the “tiger-tail” banding 

pattern as seen on hair polarizing light microscopy that is common in TTD patients (Figure 

5.2D). This point mutation disrupted its E3 ubiquitin ligase activity in vitro (Figure 5.3). 

Importantly, the H279R mutation did not affect the localization of RNF113A with the 

spliceosomal components PRP8 or BRR2 (Figure 5.4A-D). Complementation of RNF113A 

knock-down cells with the H279R mutant RNF113A reduced ASCC foci formation during 

alkylation damage (Figure 5.4E-F) and increased alkylation damage hypersensitivity (Figure 

5.5). Together, these data suggest that an inability to recruit the ASCC complex may be a key 

molecular defect in non-photosensitive TTD.  

Interestingly, loss of TTDN1, a more commonly mutated factor associated with NP-

TTD, appears to reduce ASCC3 foci formation during alkylation damage (Figure 2.22). Similar 

to RNF113A, proteomic studies have revealed interactions between TTDN1 and 

the RNA splicing machinery, such as the debranching enzyme DBR1 (data not shown). It is 

possible, therefore, that a major molecular defect in NP-TTD is the inability to recruit the ASCC 

complex when transcription goes awry, which may happen during UV as well as alkylation 

damage. During UV damage, the polymerase is stalled on the chromatin template, while it may 

not be during alkylation damage. However, alkylation of the RNA still requires remodeling of 

the elongating polymerase and its associated machinery, which may thus require the RNF113A-

induced recruitment of the ASCC complex. Interestingly, the shared commonality between 

Xeroderma pigmentosum (XP), Cockayne syndrome (CS) and TTD seems to be an underlying 

transcriptional defect. It is also possible that what goes awry in TTD may be aberrant signaling 
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between TFIIH and the later RNA processing machinery in TC-NER after the RNA PolII has 

been repositioned for lesion repair on the DNA template. Notably, TFIIH mutations that cause 

TTD selectively disrupt the overall complex integrity of TFIIH without necessarily altering its 

helicase or ATPase, unlike XP or CS associated mutations (Fan et al., 2008). Thus, determining 

whether TTD-associated TFIIH mutations, as opposed to XP or CS associated mutations, 

selectively disrupt RNF113A activation and ASCC recruitment during alkylation and elucidating 

the interplay between alkylation repair, RNA processing and TC-NER requires further 

examination. 

5.2 ASCC-ALKBH3 Complex Coordination by ASCC1 

5.2.1 Conclusions 

Chapter 2 establishes that ALKBH3, ASCC2 and ASCC3 all form nuclear foci in response to 

alkylation damage and establishes a role for ubiquitin-dependent signaling mediated by ASCC2 

in complex recruitment (Brickner et al., 2017). In contrast to the other complex components, 

ASCC1 forms nuclear foci in the absence of alkylation damage (Figure 3.3). These foci did co-

localize with the spliceosomal factor PRP8, indicating that ASCC1 is also associated with areas 

of active transcription in the absence of damage. However, this indicates that ASCC1 has a 

distinct role in the alkylation response in comparison to other complex components. 

In vitro binding assays demonstrated that recombinant ASCC1 and ASCC3 interact directly 

(Figure 3.1). Co-immunoprecipitation studies indicated that, like ASCC2 and ALKBH3, ASCC1 

and ASCC2 interaction is mediated by ASCC3 (Figure 3.2), suggesting that ASCC3 serves as a 

scaffold for the entire ASCC-ALKBH3 complex. Due to the interaction between ASCC1 and 

ASCC3, we decided to determine the effect of ASCC1 depletion on ASCC3 recruitment during 

alkylation damage. Surprisingly, there was an increase in ASCC3 foci in the ASCC1 KO cells as 
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compared to control cells in response to alkylation (Figure 3.4). While there was an increase in 

the initial number of ASCC3 foci, foci resolution was not altered (Figure 3.5), suggesting that the 

recruitment but not repair kinetics are altered in ASCC1 KO cells. Together, these data suggest 

that ASCC1 may negatively regulate ASCC3 foci formation. 

We then asked if ASCC1 affects complex assembly at sites of alkylation damage. During 

alkylation damage, the majority of ASCC3 foci in the wild-type cells co-localized with HA-

ASCC2 (Figure 3.6A-B). Upon loss of ASCC1, there was a reduction in co-localization between 

these two factors and many ASCC3 foci were HA-ASCC2 independent. Consistent with this 

result, ASCC2 immunoprecipitation from ASCC1 KO cells pulled down less ASCC3 as 

compared to their wild-type counterpart. Therefore, while ASCC2 and ASCC3 interact directly, 

their in vivo co-localization and recruitment to foci appears to be dependent upon ASCC1. 

ASCC1 contains two putative RNA-binding domains: a KH domain and a C-terminal ligase 

domain. Within the latter domain are two conserved His-X-Thr motifs (Mazumder et al., 2002), 

which are found in members of the 2H phosphoesterase family (Silverman and Weiss, 2014). 

Previous data has demonstrated that these motifs are important for nucleotide binding activity of 

proteins containing this motif. Therefore, we wished to determine which domains within ASCC1 

were necessary for its removal from nuclear speckle domains during alkylation damage. ASCC1-

NΔ, ASCC1-CΔ and ASCC1-AXA were expressed in ASCC1 KO cells and foci formation was 

analyzed after MMS treatment. Interestingly, HA-ASCC1-CΔ and ASCC1-AXA still formed 

foci during alkylation damage, while HA-ASCC1-NΔ were reduced after MMS treatment, 

similar to WT ASCC1 (Figures 3.8 and 3.10). Consistent with the immunofluorescence 

experiments, ASCC1 WT but not ASCC1-CΔ or ASCC1-AXA could partially rescue HA-



139 

 

ASCC2 and ASCC3 co-localization during damage (Figure 3.11). Together, the putative RNA 

ligase-like domain regulates ASCC1 removal from foci during MMS treatment. 

To date, ASCC2, ASCC3 and ALKBH3 have been shown to promote resistance to alkylation 

damage as assessed by MTS assay and clonogenic survival assay (Brickner et al., 2017; Dango et 

al., 2011). We demonstrated that ASCC1 also confers resistance to alkylation damage using the 

MTS assay. PC-3 knockout cells lacking either ASCC1, ASCC3 or both ASCC1 and ASCC3 

were hypersensitive to MMS, with ASCC1 being epistatic to ASCC3 (Figure 3.12). 

Taken together, this data supports a model whereby ASCC1 acts as a specificity determinant for 

ASCC3 localization at sites of alkylation damage and as such acts as a regulator of this complex. 

As the majority of ASCC3 foci in wild-type cells were ASCC2 positive but the majority of these 

foci in ASCC1 KO cells were ASCC2 independent, we hypothesize that two distinct populations 

of ASCC3 foci exist. In wild-type cells, RNF113A-mediated ubiquitination of BRR2 is 

recognized by ASCC2, which recruits ASCC3-ALKBH3 to nuclear speckle foci. 

Simultaneously, a fraction of ASCC3 is recruited to ASCC2-negative foci by an independent 

mechanism. These foci are removed by ASCC1 in a manner dependent upon the activity of the 

C-terminal RNA ligase-like domain, likely via the engagement of an unknown ligand. Thus, in 

ASCC1 KO cells, the fraction of ASCC3 foci that are ASCC2 independent is significantly 

increased (Figure 3.13). 

5.2.2 Future Directions 

There remains much to be discovered about the enzymatic activity of ASCC1. Future research 

should focus on determining the structure of the RNA ligase-like domain and characterizing its 

potential catalytic activity. Indeed, in collaboration with the Tainer lab, we are working to solve 

the structure of the RNA ligase-like domain. Their group has solved the X-ray crystal structure 
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of this domain to 2.8A resolution (Thapar, unpublished). This structure indicates that the HXT 

motifs are positioned in a manner similar to the 2H phosphodiesterase family member AKAP18 

(Figure 3.9) (Song et al., 2010). AKAP18 degrades 2’-5’ oligoadenylate (OA) (Gold et al., 2008; 

Gusho et al., 2014). Due to the sequence and structural similarities of ASCC1 to AKAP18, I 

predict that ASCC1 is a bona fide phosphodiesterase. Furthermore, I predict that ASCC1 will 

bind to methylated RNA substrates, particularly m1A and m3C adducts on RNA (Dominissini et 

al., 2016; Koivisto et al., 2004; Roundtree et al., 2017). 

To further identify the exact substrate of ASCC1, RNA immunoprecipitation coupled with mass 

spectrometry (RIP-MS) could be performed. In this experiment, Flag-ASCC1 WT and Flag-

ASCC1 AXA would be immunoprecipitated and RNA will subsequently be extracted by TRIzol 

reagent (Rio et al., 2010). The RNA will be digested and analyzed by mass spectrometry to 

determine the preferred RNA modification or sequence motif of ASCC1. Once the substrate is 

identified, solving the crystal structure of ASCC1 in complex with the ligand would provide 

valuable insight into the activity of ASCC1. 

Lastly, comparing RNA-Seq data from wild-type or ASCC1 KO cells in the presence or absence 

of MMS could provide insight into global transcriptome changes. In addition to giving 

information about changes in gene expression during alkylation, these RNA-Seq experiments 

could provide insight into regulation of alternative splicing during alkylation damage (Kukurba 

and Montgomery, 2015). Together, these experiments would provide a better understanding of 

the role of ASCC1 in the overall cellular response to alkylation damage extending beyond the 

ASCC-ALKBH3 repair pathway. 
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5.3 Aberrant RNA Alkylation is Necessary and Sufficient 

for ASCC Complex Recruitment 

5.3.1 Conclusions 

Emerging evidence provides support for the notion that RNA plays a role in propagating efficient 

DNA repair, particularly for homologous recombination (HR). Specifically, RNA from an 

actively transcribed gene is readily available for RAD52-dependent strand invasion to act as a 

template during HR (Mazina et al., 2017). Previously, we demonstrated that RNA processing 

events, such as splicing and active transcription, are important for proper recruitment of the 

ASCC complex during alkylation damage (Brickner et al., 2017). Whether RNA plays a role in 

promoting other types of DNA repair besides DSB repair remains unclear. Here, we describe a 

role for aberrant RNA alkylation in recruiting the ASCC complex. 

To assess the effect of aberrant RNA alkylation on the recruitment of the ASCC complex, we 

first analyzed whether aberrant RNA alkylation was necessary for complex recruitment to sites 

of alkylation damage. Recombinant BsvAlkB, a dealkylase purified from the RNA virus 

blueberry scorch, dealkylated a ssRNA substrate but not a ssDNA substrate in vitro, suggesting 

that this protein is active towards alkylated ssRNA (Figure 4.1). Overexpression of BsvAlkB in 

U2OS cells during exposure to MMS resulted in significantly reduced HA-ASCC2 foci 

formation (Figure 4.2). This was dependent upon the catalytic activity of BsvAlkB (Figure 4.2). 

Together, these data suggest that aberrant RNA alkylation is necessary to recruit the ASCC 

complex to sites of alkylation damage. 

In addition to being necessary for ASCC recruitment, we hypothesized that RNA alkylation 

would also be sufficient to recruit this complex. To assess whether RNA alkylation is sufficient 

for complex recruitment, we overexpressed the 3-methylcytosine (m3C) RNA methyltransferase 
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METTL8 in U2OS cells. METTL8 was fused to the SV40 NLS to force its nuclear localization 

and ensure that it is primarily alkylating nuclear RNAs. Importantly, m3C modifications on RNA 

are reversed by ALKBH3 in vitro (Aas, et al., 2003), suggesting that the ASCC complex should 

respond to aberrant RNA alkylation by METTL8. Strikingly, overexpression of METTL8 was 

sufficient to induce ASCC3 nuclear recruitment, even in the absence of alkylation damage 

(Figure 4.3). ASCC3 recruitment was dependent upon the catalytic activity of METTL8, as 

expression of two different point mutations in the SAM binding domain, D230A and 

G204A/G206A (Alexandrov et al., 2005), was insufficient for ASCC3 recruitment (Figure 4.3). 

Notably, while wild-type METTL8 localized to the nucleolus, neither METTL8 mutant co-

localized with the nucleolar protein nucleolin (Figure 4.3A). To ensure that this difference in 

METTL8 localization was not responsible for the lack of ASCC recruitment with the catalytic 

mutants, we utilized a single locus reporter system where we could target this 

methyltransferase to a specific locus by fusing it to LacI (Figure 4.4A) (Shanbhag et al., 2010; 

Janicki et al., 2004). Fusion of a degron-tagged METTL8 to mCherry protein and LacI was 

sufficient to localize wild-type METTL8 to this locus in the presence of the ligand Shield-1, 

which stabilizes the degron-tagged protein and protects it from degradation (Figure 4.4B) 

(Banaszynski et al., 2006). The addition of doxycycline can also control transcription at this 

locus (Figure 4.4A). METTL8 expression induced the localization of ASCC3 to this locus in a 

manner dependent on active transcription (Figure 4.4C). Together, these data suggest that 

aberrant RNA alkylation is sufficient to recruit the ASCC complex. 

Our previous work demonstrated that the ASCC-ALKBH3 complex was specifically recruited 

during alkylation damage in a manner dependent upon RNF113A ubiquitin signaling (Brickner 

et al., 2017). We therefore hypothesized that RNF113A E3 ligase activity may also be 
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specifically activated upon alkylation. Thus, we assessed RNF113A E3 ligase activity via 

RNF113A autoubiquitination. Denatured pulldown of His-ubiquitin revealed that RNF113A 

undergoes robust autoubiquitination during MMS treatment. In contrast to MMS, other DNA 

damaging agents did not induce RNF113A autoubiquitination (Figure 4.5A). RNF113A 

ubiquitination status was dependent upon the RING domain of RNF113A (Figure 4.5B), 

suggesting that assessing RNF113A autoubiquitination measures RNF113A ligase activity.  

To ensure that the observed autoubiquitination was not an artifact of the experiment, we utilized 

the tandem ubiquitin binding element (TUBE) method to assess autoubiquitination of 

endogenous RNF113A. As with the denatured pulldown, only MMS was sufficient to induce 

autoubiquitination of endogenous RNF113A (Figure 4.6A). Strikingly, the alkylating agent ethyl 

methanesulphonate (EMS) did not induce RNF113A autoubiquitination but the agent methyl 

iodide (MeI) did (Figure 4.6B-C). Induction of E3 ligase activity due to alkylation damage was 

specific to RNF113A, as MMS failed to alter the activity of two other E3 ligases involved in 

DNA damage signaling (Figure 4.8) (Mailand et al., 2007; Doil et al., 2009). Together, these data 

suggest that RNF113A activity is activated primarily by methylation. 

To further underscore the importance of aberrant RNA alkylation for recruiting the ASCC 

complex, we asked whether METTL8 was capable of activating RNF113A activity. Strikingly, 

overexpression of METTL8 in HEK293T cells induced RNF113A autoubiquitination (Figure 

4.9). This autoubiquitination was comparable to the autoubiquitination induced by MMS. 

Consistent with its selective activation during alkylation damage, loss of RNF113A resulted 

in significant sensitivity to MMS but not CPT (Figure 4.10), suggesting that RNF113A is 

important for the response to alkylation damage. Taken together, these results suggest the 
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specific activation of the RNF113A-ASCC pathway during alkylation damage rests with the 

E3 ligase activity of RNF113A. 

5.3.2 Future Directions 

This work details an E3 ligase whose activity is specifically activated upon alkylation. 

Interestingly, previous work has demonstrated that the activity of E3 ligases and deubiquitinases 

(DUBs) are regulated by post-translational modifications like phosphorylation (Khosravi et al., 

1999; Wertz et al., 2015; Zhao et al., 2018). Thus, future experiments analyzing the post-

translational modifications that regulate RNF113A would be of particular importance. 

Intriguingly, preliminary studies from our lab suggest that pre-treatment of Flag-RNF113A 

purified from HeLa-S cells with either the CIP phosphatase or λ-phosphatase drastically reduces 

in vitro RNF113A ligase activity (Figure 5.6), suggesting that phosphorylation may regulate 

RNF113A E3 ligase activity.  

To identify the phosphorylation site on RNF113A, Flag-HA-RNF113A was purified from HeLa-

S cells after MMS treatment. The complex was run on a Coomassie gel after elution and the 

RNF113A band was isolated for phosphorylation-specific mass spectrometry. The mass 

spectrometry data revealed four sites that were phosphorylated: S6, S84, S85, and S253 (data not 

shown), which are detailed in Figure 5.7A. Additionally, we generated the RNF113A N5 mutant 

(S6A, S43A, S45-47A), the N7 mutant (S6A, S43, S45-47A, and S84-85A) or the C9 mutant 

(T168A, S169A, S174-175A, T192A, S253A, S268A, and T292-293A) constructs containing 

mutations of putative phosphorylation sites (Figure 5.7A). Mutation of S6 to alanine significantly 

attenuated RNF113A ligase activity in vitro, while the S84A/S85A and S253A had no 

appreciable effect on its activity (Figure 5.7B). The RNF113A S6A mutant also demonstrated 

decreased autoubiquitination activity, as did the S84A/S85A mutant. Conversely, the S253A 
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mutation had less effect on RNF113A autoubiquitination (Figure 5.7C). Each of these RNF113A 

mutant, however, was more active than RNF113A WT protein purified in the absence of 

alkylation damage (data not shown), suggesting that these single mutants are not sufficient to 

abrogate RNF113A E3 ligase activity. The RNF113A N5, N7 and C9 mutants also reduced but 

did not abrogate RNF113A autoubiquitination (Figure 5.7). The RNF113A N5 and N7 mutants 

co-localized with PRP8 to similar levels as wild-type RNF113A (Figure 5.8A-B). Conversely, 

the RNF113A C9 mutant did not express (data not shown). Interestingly, both the RNF113A N5 

and N7 mutants reduced HA-ASCC2 foci during alkylation damage (Figure 5.8C), suggesting 

that phosphorylation near the N-terminus of RNF113A regulates is E3 ligase activity and thus 

regulates ASCC complex recruitment. Taken together, this data suggests that a post-translational 

phosphorylation modification regulates RNF113A ligase activity.  

While the data described above provides the groundwork for identifying the phosphorylation 

site, future experiments could help further elucidate the specific phosphorylation site. TUBE 

pulldown assays using various RNF113A phosphorylation mutants could identify which mutants 

reduce RNF113A autoubiquitination. These mutants could then be used to complement 

RNF113A KO cells in both U2OS and HeLa cells. The effect of these phosphorylation mutants 

on ASCC2/ASCC3 foci formation and sensitivity to MMS could be assessed, respectively. 

Additionally, rather than mutating the serine or threonine residue(s) to alanine, the same 

experiments could be performed using RNF113A mutants where the serine or threonine has been 

mutated to aspartate or glutamate, generating phospho-mimetic mutants. Using these mutants 

will determine whether the change in protein charge or the actual phosphate is responsible for 

activation of RNF113A ligase activity. Together, this work will help further elucidate the 

mechanism by which the ASCC-ALKBH3 repair pathway is regulated. 
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In addition to identifying the phosphorylation site that regulates RNF113A activity, future 

experiments could also focus on the kinase responsible for the phosphorylation. Analysis of the 

RNF113A interactome as determined by tandem mass spectrometry revealed several kinases that 

interact with RNF113A (Figure 5.9A). Of particular interest are the kinases CDK12 and CDK13, 

as each of these kinases phosphorylate the CTD domain of RNA PolII to initiate the switch from 

an initiation complex to an elongation complex (Bartkowiak et al., 2010; Liang et al., 2015). As 

ASCC2 and ASCC3 co-localize with elongating RNA PolII during alkylation damage (Figure 

2.4), it is probable that one of these kinases are responsible for phosphorylating RNF113A. 

Interestingly, S6 is a canonical CDK target site, providing further support for the notion that this 

may be the site of phosphorylation. Knockdown of CDK12 and its associated partner Cyclin K 

reduced ASCC2 foci during alkylation damage (Figure 5.9B), while knockdown of CDK13 had a 

much less significant effect. Strikingly, inhibition of CDK12 using the CDK12/CDK13-specific 

inhibitor THZ531 (Zhang et al., 2016) attenuated RNF113A autoubiquitination as assessed by 

the TUBE assay (Figure 5.10). Taken together, these data suggest that RNF113A may be a 

substrate of CDK12.  

To further elucidate the role of CDK12 in recruiting the ASCC-ALKBH3 complex, CDK12 

knockdown cells or cells treated with THZ531 could be assessed for sensitivity to MMS. The 

knockdown cells could then be complemented with wild-type or mutant versions of CDK12. To 

distinguish between the role of CDK12 and CDK13, the MMS sensitivity phenotype of CDK12 

knockdown cells could be compared to the MMS sensitivity displayed by CDK12 knockdown 

cells. I predict that CDK12 but not CDK13 loss will result in hypersensitivity to MMS. 

The interplay between RNA alkylation and CDK12-mediated activation by can be further 

determined by overexpressing METTL8 in cells. After transducing cells with METTL8, 
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RNF113A autoubiquitination can be assessed by the TUBE assay in the presence or absence of 

THZ531. I predict that, like MMS treatment, THZ531 inhibition will result in a decrease in 

RNF113A autoubiquitination during METTL8 expression. Additionally, m1A and m3C levels on 

both DNA and RNA could be measured upon inhibition of CDK12 after alkylation. I predict that 

m1A and m3C levels will be elevated on both RNA and DNA upon inhibition of CDK12 with 

THZ531. Together, these studies will provide further evidence that CDK12 is part of the 

mechanism regulating ASCC-ALKBH3-mediated alkylation repair. 

In collaboration with the Reynoird lab, preliminary experiments have also identified RNF113A 

as a substrate for the protein methyltransferase SMYD3 (Figure 5.11A-B). Previous work 

described a mechanism by which methylation of the SMYD3 substrate MAP3K2 inhibits the 

interaction between MAP3K2 and the PP2A phosphatase complex, thus promoting MAP3K2 

kinase activity (Mazur et al., 2014). Thus, a potential model for RNF113A activation during 

alkylation suggests that RNF113A remains in an equilibrium between being phosphorylated by 

CDK12 and de-phosphorylated by an unknown phosphatase. During alkylation damage, 

methylation by SMYD3 may inhibit the interaction between RNF113A and this phosphatase, 

promoting RNF113A phosphorylation and resulting in an active RNF113A enzyme (Figure 

5.11C). Future experiments could focus on identifying the phosphatase in this pathway. To 

identify the phosphatase, a panel of shRNAs targeting the different phosphatases could be co-

transduced with HA-ASCC2 into cells. Spontaneous ASCC2 foci formation in the absence of 

damage could then be assessed, serving as a read-out for hyperactive RNF113A and thus 

revealing the putative phosphatase. Alternatively, RNF113A autoubiquitination after knockdown 

of these phosphatases could also be measured to identify the putative kinase. The effect of a loss 

of the phosphatase on MMS sensitivity could also be assessed. I predict that loss of the 
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phosphatase would result in hyper-resistance of these cells to MMS as compared to their wild-

type counterparts. These cells could be complemented with wild-type and catalytic mutant 

versions of the phosphatase and reassessed for MMS sensitivity. These experiments will shed 

insight into another mode of regulation for this pathway. 

The role of RNA modification in regulating translation, RNA processing, and DNA repair is 

becoming more apparent (Thapar 2018; Thapar et al., 2018). Similar to DNA damage repair, this 

regulation involves RNA readers, writers, and erasers (Jonkhout et a., 2017). While evidence of a 

‘reader’ protein for alkylation damage adducts on pre-mRNA remains speculative, m6A on 

mature mRNA is recognized by multiple proteins, including YTHDF2 (Meyer and Jaffrey, 2017; 

Wang et al., 2014; Xiao et al., 2016). Interestingly, recent work suggests that a subset of these 

m6A readers may recognize m1A, making it plausible that readers of alkylated lesions could 

exist (Dai et al., 2018).  

As such, future work could also focus on identifying these reader proteins of pre-mRNA 

alkylation lesions. Of particular interest would be YTHDF3 and YTHDC2, both of which have 

been shown to be nuclear (Sigma Protein Atlas). Our preliminary studies also suggest that loss of 

YTHDF3 and YTHDC2 reduce ASCC2 foci formation during alkylation (data not shown), 

suggesting that these proteins may be bona fide readers of alkylation adducts on RNA that 

promote ASCC complex recruitment. To verify that these proteins bind to m1A and m3C 

adducts, RIP-MS experiments could be performed. YTHDF3 and YTHDC2 would be purified 

from cells after alkylation damage and the RNA will be subsequently isolated using TRIzol 

extraction (Rio et al., 2010). The resulting RNA can then be digested to the nucleoside and 

analyzed by mass spectrometry to identify the modification recognized by these proteins, 

respectively. Additionally, knockout cell lines of these proteins could be generated and ASCC 
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foci formation, RNF113A autoubiquitination and MMS sensitivity could be determined. I predict 

that loss of these proteins would result in reduced ASCC foci formation and RNF113A 

autoubiquitination in response to alkylation damage. These cells would also be hypersensitive to 

MMS as compared to their wild-type counterpart. Taken together, these experiments would 

identify novel readers of alkylation damage occurring on RNA and provide further support for 

the idea that ASCC complex recruitment depends upon RNA alkylation. 

Lastly, further exploration into the transcriptional repression function of this complex is required. 

To demonstrate that the ASCC complex represses transcription in response to RNA alkylation, 

global RNA-Seq experiments can be performed. Here, RNA will be isolated from cells 

expressing METTL8-NLS protein and transcript levels will be analyzed by sequencing. As a 

control, a separate population of cells will be treated with MMS. Changes in transcription can be 

compared between the MMS-treated samples and the METTL8-NLS overexpression cells. I 

hypothesize that these two cell populations will have a similar expression profiles. As an 

additional control, RNA will be isolated from ASCC3 KO cells expressing METTL8-NLS and 

sequenced. As loss of ASCC3 de-repressed the majority of transcripts that were repressed upon 

alkylation, I predict that overexpressing METTL8 in an ASCC3 KO background will mimic this 

de-repression phenotype.  

Additionally, it would particularly interesting to map the m3C landscape on RNA during 

METTL8 overexpression. In collaboration with the Chuan He lab, RNA has been isolated from 

cells overexpressing METTL8-NLS and the m3C landscape is being profiled (Zhang et al., 

2019). Concurrent ChIP-Seq of ASCC3 would demonstrate that the ASCC complex is being 

recruited to sites of RNA modification by METTL8. Here, ASCC3 will be immunoprecipitated 

from cells. Crosslinking would be reversed, the RNA or DNA isolated, and sequenced. I 
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hypothesize that the m3C landscape will overlap with the reads from ASCC3 ChIP-Seq, 

suggesting that ASCC3 is being recruited to sites of METTL8 RNA methylation. Additionally, I 

predict that these sites will correspond to regions of active transcription, providing further 

support for RNA-driven recruitment of the ASCC complex.  

Together, these studies will provide invaluable insight into the increasingly complex mechanisms 

by which ASCC complex recruitment is regulated. Importantly, a more complete understanding 

of ASCC complex regulation could provide multiple potential novel therapeutic targets for 

inhibitors to re-sensitize cancers to chemotherapy. Additionally, these studies will provide a 

better understanding of how RNA alkylation impacts the recruitment of the ASCC complex and 

elucidate the transcriptional responses dictated by the ASCC complex and beyond. 
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