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ABSTRACT OF THE THESIS

Functional Dissociations Revealed by Representational Similarity Analysis of Color-Word
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Research Advisor: Professor Todd Braver

The color-word Stroop task is often used in cognitive neuroscience as a common platform for

both theoretical and experimental approaches to cognitive control. Yet traditionally, there

has been tension between these two approaches. Theoretical models of Stroop have focused

on representation: for example, how distributed and overlapping representations of the two

stimulus dimensions (color, word) are prioritized, and how conflict between these dimen-

sions is represented and used to regulate control. In contrast, neuroimaging experiments

have primarily focused on ‘univariately’ (uniformly) mapping the effects of conflict to par-

ticular brain regions. This focus on univariate changes in brain activity limits the specificity

with which neural representations can be measured — which limits the bearing of results on

representational models. To address this limitation, the current study provides a novel, ret-

rospective application of representational similarity analysis (RSA), a multivariate analytic

approach that enables specification and comparison of representational models, to functional

magnetic resonance imaging data acquired while participants (N=49) performed the classic
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color-word Stroop task. Through RSA, we disentangled coding of the target (color naming),

distractor (word reading), and congruency (conflict) dimensions across cortex, observing ro-

bust and predicted dissociations in the neuroanatomical profile, representational structure,

and functional relevance of these distinct coding schemes. These results highlight the utility

of RSA as tool for addressing key questions in cognitive control, and we provide guidance

on how to apply, both retrospectively and prospectively, this technique in neuroimaging.
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Chapter 1

Introduction

The color-word Stroop task is a hallmark paradigm of cognitive control (Stroop, 1935; see

MacLeod, 1991 for a not-so-recent review). Within a single multidimensional stimulus, the

task straightforwardly captures what is thought to be an essential cognitive control function:

enabling the selection of a less automatic target process (i.e., color naming) in the face of

concurrent activation from a more automatic distractor process (i.e., word reading). Because

of its simplicity, the Stroop paradigm of conflicting task dimensions has afforded a platform

useful for developing theories of cognitive control. But, although the Stroop task has been

used in investigation for almost 100 years, there is much we still do not understand about

how theorized target and distractor processes are embedded and regulated within neural

systems.

A useful first step to understanding the Stroop task and the kind of cognitive control it

demands is to decompose the task into different dimensions and investigate how these di-

mensions may be represented in mind and brain. In particular, influential cognitive models

of color-word Stroop explicitly represent target and distractor dimensions, corresponding to

hue and wordform identities of the compound stimulus, which respectively feed into parallel

streams of color naming and word reading processes (e.g., Cohen, Dunbar, & McClelland,
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1990; Logan, 1980). These models have provided an important formal backdrop for a gen-

eral neuroscientific framework of control, in which dorsolateral prefrontal cortex (dlPFC) and

associated neural systems (e.g., intraparietal sulcal cortex, or IPS) preferentially encode fea-

tures related to the target dimension, from abstract goals and task rules, to concrete stimulus

and response information (Duncan, 2001; Miller & Cohen, 2001). By way of long-range ex-

citatory projections and local (lateral) inhibition, these prefrontal target representations are

thought to guide the flow of activation along the target pathway while inhibiting propagation

along the distractor (Miller & Cohen, 2001; Munakata et al., 2011).

In parallel, other theoretical accounts have suggested the importance of a third, more ab-

stract, Stroop dimension of conflict or congruency, which corresponds to whether the target

and distractor dimensions indicate identical or conflicting responses. This property is highly

informative of whether controlled processing may be useful on a given trial, and is hypothe-

sized to be encoded by dorsomedial prefrontal (dmPFC), with a focus in anterior cingulate

cortex (ACC) — which may serve, in part, to dynamically recruit a broader network of

control systems (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Shenhav, Botvinick, &

Cohen, 2013). In conjunction with substantial evidence indicating dmPFC encodes errors

and performance-related information (e.g., Ito, Stuphorn, Brown, & Schall, 2003; Bonini

et al., 2014; Brown & Braver, 2005; Sarafyazd & Jazayeri, 2019), this perspective has also

supported a “dual mechanisms” framework of control. According to this framework, there

are two control “strategies” at participants’ disposal for successful task performance, with

dissociable neural substrates and relations to behavior (Braver, 2012). On one hand, par-

ticipants may proactively engage with the task, relying on structures within lPFC and IPS

to implement top-down control. On the other, participants may adopt a reactive strategy,
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loading more heavily on conflict and performance-monitoring functions of dmPFC. The op-

timal strategy for performance depends on contextual factors. For example, when control is

likely to be required, proactive control may be beneficial, whereas reactive may be costly.

Support for these Stroop frameworks has been bolstered by decades of functional magnetic

resonance imaging (fMRI) research — albeit at a course-grained level. Incongruent Stroop

trials consistently evoke increased levels of activity in dlPFC, IPS, and dmPFC (Cieslik,

Mueller, Eickhoff, Langner, & Eickhoff, 2015; Nee, Wager, & Jonides, 2007). Clear dissoci-

ations have emerged in the dynamics and behavioral relevance of these dlPFC and dmPFC

activations: a stronger proactive dlPFC response, but weaker reactive dmPFC response, are

associated with reduced Stroop interference (e.g., MacDonald, Cohen, Andrew Stenger, &

Carter, 2000; for review, see Braver, 2012). Further, trial-by-trial modulations in control

have been linked to enhancement of posterior sensory regions associated with representation

of the target dimension (Egner & Hirsch, 2005).

The extent to which these findings bear on theory is limited, however, because it is less clear

what information these fronto-parietal activations may contain. For example, given that

dlPFC has been shown to encode multiple task features, does increased incongruent-trial

activity in this region reflect conflict coding, or strengthened target coding as a result of

conflict? This ambiguity is mitigated by focusing on modulations in activation within poste-

rior sensory cortices (Egner & Hirsch, 2005) — a putative consequence of dlPFC function —

as these regions tend to respond in a more specific manner (e.g., to faces). But, such a down-

stream investigatory angle is impoverished, as well, as attentional modulation of particular

ventral visual “hubs” is unlikely to sufficiently account for the regulation of interference in

the wide variety of ways it can arise — particularly in the Stroop task, which is thought to

have a more central locus of interference (e.g., Duncan-Johnson & Kopell, 1981; MacLeod,
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1991). Thus, testing these hypotheses with traditional neuroimaging methods has remained

difficult.

This difficulty arises because the traditional analytic technique used in these studies (and in

cognitive control research more broadly), “univariate voxel-wise encoding” analysis (Friston

et al., 1994; Worsley et al., 1996) was developed for a fundamentally different purpose than to

estimate regional representations. Rather, the purpose of a univariate analysis is to estimate

the overall level of activity (e.g., mean) within a given region of interest (ROI) evoked

by particular task conditions. In most cases, this goal is in opposition to one of isolating

and estimating representations (e.g., of particular Stroop dimensions), as task variables are

generally not thought to be mapped to cortical areas in a one-to-one manner. For example,

in general, cortical areas are not thought to encode target information in a uniform, scalar

manner (i.e., in which the level of activity directly indicates the extent to which color-related

information is being processed — let alone which color is being processed). Instead, encoding

of these types of variables is thought to occur in a given cortical area in a spatially distributed

and overlapping manner (i.e., through a neural population-level code; Hebb, 1949; Saxena

& Cunningham, 2019). As a result, the level of activity in a given region will likely reflect

processing of a mixture of task dimensions (e.g., target and distractor), and will likely not

distinguish particular exemplars of these dimensions (e.g., the hues blue and red would be

expected to evoke similar mean levels of activity within a cortical region). Despite this

inadequacy, univariate methods have been the overwhelmingly used analytic framework in

Stroop investigations. This has resulted in a substantial inferential gap between cognitive

neuroscience findings and cognitive theory.

Thus, what is currently needed is a method that “unmixes” the multivariate response of

a region, furnishing interpretable measures of representation of particular task dimensions.
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Multivariate pattern analysis methods of fMRI data accomplish exactly this purpose. By

shifting to a more spatially fine-grained level of analysis, these methods capitalize on the

fact that response preferences for subtle task features (e.g., particular hues or wordforms)

are much more likely to emerge in individual voxels rather than the regional mean. Fur-

ther, a form of pattern analysis, termed representational similarity analysis (RSA), enables

particular models to be fit to the representations of regions, thus enabling different hypothe-

ses regarding neural representations to be evaluated and compared (Kriegeskorte, 2008;

Kriegeskorte & Kievit, 2013; Nili et al., 2014). Although these methods are well-aligned to

test frameworks of cognitive control function, they have been infrequently used to this end

— and surprisingly, to the best of our knowledge, RSA has never been applied to investigate

coding of task dimensions in the color-word Stroop task.

Here, we conduct a retrospective analysis of an fMRI dataset acquired while subjects per-

formed a color-word Stroop task, to provide an initial “proof of concept” demonstration of

the feasibility and potential theoretical advantages of using RSA for estimating the neural

processing of component Stroop dimensions. In combination with a multi-modal parcellation

atlas (Glasser et al., 2016), we used RSA to estimate distributions of target, distractor, and

congruency representations across the cortical hierarchy. The use of the RSA framework

enabled us (1) to compare representation of each dimension in terms of neuroanatomical

profile, (2) to graphically depict these representations in an intuitive, data-driven manner,

and (3) to assess whether dimension representations are differentially associated with behav-

ior. Because of the retrospective nature of this project, however, it is important to keep in

mind that the experimental design was not optimized for RSA; thus, our results are subject

to several limitations (see Discussion section Limitations). But, despite these limitations,

our results demonstrate clear dissociations between representation of Stroop dimensions,

and largely in predicted ways, suggesting that we were successful in measuring dissociable
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neural processing of each task dimension. We interpret these results as providing strong

initial support regarding the utility of pattern analysis methods of non-invasively obtained

measurements of brain activity — in particular, RSA of fMRI — to enable stronger tests of

neuroscientific theory of cognitive control.
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Chapter 2

Method

Unless noted, all analyses were conducted in R, version 3.4.4 (R Core Team, 2018).

2.1 Availability of data and code

This study was conducted on data from the Dual Mechanisms of Cognitive Control project.

Additional procedural details, illustrations, task scripts can be accessed via our project

website1 and Open Science Framework page2. RSA-level data (e.g., similarity matrices) and

R scripts for all analyses, figures, and this manuscript will be made available on the first

author’s GitHub.3

1https://pages.wustl.edu/dualmechanisms/tasks
2https://osf.io/xfe32/
3https://github.com/mcfreund/stroop-rsa
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Figure 1: Schematic of task paradigm (A), conceptual (B) and analytic (C–D) framework. Participants performed a color-word
Stroop task (A) while undergoing an fMRI scan. To decompose task-driven fMRI activity into three conceptual task dimensions
of target, distractor, and congruency (B) — associated in turn with task-relevant color-naming, task-irrelevant word-reading,
and higher-order conjunctive processes — a general linear model estimated the BOLD response evoked by sixteen unique Stroop
stimuli (e.g., “WHITE” displayed in blue hue) independently for each voxel. The multi-modal atlas of Glasser et al. (2016) was
then used to parcellate cortex (C, light silver borders), and within each parcel, linear correlations among response patterns from
the sixteen stimuli were estimated to form an empirical similarity matrix (D, right). Through partial rank correlation, these
matrices were fit to three representational models (D, left), which corresponded to the three hypothesized dimensions of the
Stroop task (B). The resulting correlation statistics summarized the extent to which a parcel emphasized, within its distributed
activity patterns, the representation of each unique task dimension. This framework may support inference regarding regional
involvement in processing of a particular aspect of a task or the quality of an individual’s particular task representations—both
of which are obscured in univariate fMRI analysis of common cognitive control tasks such as Stroop.

2.2 Participants

At the time of analysis (February 2019), 78 individuals were recruited from the Washington

University and surrounding St Louis metropolitan communities for participation in the Dual

Mechanisms of Cognitive Control project. The present study began with a subset (N =

67) of these participants: those with a full set of imaging and behavioral data from the

Stroop task during a particular scanning session (the “proactive” session), which we selected

for methodological utility (for session selection reasoning, see Method section Selection of

data for analysis). Of this subset, 1 individual was excluded for an atypically high rate
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of response omission (> 10%) and 17 for being genetically related as twins (by randomly

selecting a set of unrelated co-twins). This left a final, unrelated sample of Nsubj = 49, which

we used in all analyses (i.e., Results sections Representational similarity analysis and Brain–

behavior correlations), with the exception of the reduced-dimension plots in Figure 4. For

this analysis, we included data from the held-out sample of co-twins, as this inclusion helped

stabilize the observed configurations. (Note that the goal of this analysis was descriptive,

and thus is not impacted by any assumptions associated with treating the participants as a

random effect.)

2.3 Stimuli and procedures

We used a version of the standard color-word Stroop task (Stroop, 1935). Participants saw

names of colors that were displayed in different hues and were instructed to “name the color,

not read the word, as fast and accurately as possible”.

2.3.1 Stimuli creation

The set of stimuli consisted of two subsets of color-word stimuli (randomly intermixed during

the task): a mostly incongruent and an unbiased set. Each stimulus set was created by

pairing four color words with four corresponding hues in a balanced factorial, forming 16

unique color-word stimuli within each set. The mostly incongruent group consisted of stimuli

with hues (and corresponding words) “blue” (RGB = 0, 0, 255), “red” (255, 0, 0), “purple”

(128, 0, 128), and “white” (255, 255, 255); the unbiased group, of “black” (0, 0, 0), “green”

(0, 128, 0), “pink” (255, 105, 180), and “yellow” (255, 255, 0). These words were centrally
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presented in uppercase 18-point, bold Courier New font on a grey background (RGB = 191,

191, 191). We focus our analysis solely on mostly incongruent stimuli (see Method section

Selection of data for analysis), and thus do not describe the unbiased set further.

2.3.2 Task parameters.

Fixation and color-word stimuli were displayed in 18-point, bold Courier New. Each trial

(e.g., Figure 1A) began with a central fixation cross, presented for 300 ms on a grey back-

ground (RGB = 191, 191, 191). The color-word stimulus, preceded by a blank screen follow-

ing fixation offset (100 ms), was centrally presented for a duration of 2000 ms, fixed across

trials. The duration of the inter-trial interval (triangle of fixation crosses) was either 900,

2100, or 3300 ms, selected randomly. These trials were organized into three blocks of 36, be-

tween which a fixation cross appeared for 30 s, forming a mixed block-event design (Chawla,

Rees, & Friston, 1999; e.g., Dosenbach et al., 2006). Each of the 16 mostly incongruent

stimuli were presented in both runs. However, of the 16 unbiased stimuli, 6 were presented

in only in the first run and 6 in the second. Within each run for each participant, mostly

incongruent stimuli were presented an equal number of times within each block. Within

each block, stimulus order was randomized.

2.3.3 Hardware and software for task display and behavioral data

collection.

The experiment was programmed in EPrime 2.0 (“E-Prime,” 2016), ran through a Windows

7 Desktop, and displayed through a projector. Verbal responses were recorded for offline
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transcription and response-time (RT) estimation. The first number of participants spoke

into a standard MR-compatible electronic microphone; due to mechanical failure, however,

we replaced this microphone with the noise-cancelling FOMRI III, which the subsequent par-

ticipants used. A voice-onset processing script (from the MATLAB Audio Analysis Library)

was used to derive response time estimates on each trial.

2.4 Selection of data for analyses

We focused our representational similarity analysis (RSA) solely on trials from the mostly

incongruent stimulus group within the “proactive” scanning session of our Stroop task for

methodological reasons: this was the only stimulus group and scanning session in our larger

Dual Mechanisms project in which each unique Stroop stimulus (e.g., “BLUE” displayed in

blue hue) was presented an equal number of times (9) to each participant.4 These sixteen

unique stimuli constituted the “conditions” for the RSA by forming the columns (and rows) of

the similarity matrices (Figure 1D). By selecting this session and stimulus group for analysis,

we ensured that any pattern differences observed between the stimulus conditions were not

due to differences in the number of trials that contributed towards pattern estimations —

a factor which strongly impacts the reliability of multi-voxel activation pattern estimates

(Dimsdale-Zucker & Ranganath, 2018) — and without having to resort to under-sampling,

which reduces the precision of estimates.

4In contrast, for example, we presented each unbiased stimulus three times more often if it was congruent
(9) versus incongruent (3) within the “proactive” session. This trial frequency manipulation was performed
to investigate questions outside the scope of the current analysis (see, e.g., Gonthier, Braver, & Bugg, 2016
for a similar manipulation).
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2.5 Image acquisition, preprocessing, and mass-univariate

general linear model

The fMRI data that used in these analyses were acquired with a 3T Siemens Prisma (32

channel head-coil; CMRR multi-band sequence, factor = 4; 2.4 mm isotropic voxel, with

1200 ms TR), and subjected to the minimally pre-processed functional pipeline of the Hu-

man Connectome Project, outlined in Glasser et al. (2013). After pre-processing, to estimate

activation patterns, we fit a mass-univariate general linear model (GLM) to blood-oxygen-

level dependent (BOLD) timecourses via a mixed block-event design in AFNI, version 17.0.00

(Cox, 1996). We convolved with a hemodynamic response function 16 boxcar regressors,

each coding for the initial second of presentation of a mostly incongruent stimulus that

prompted a correct response [via AFNI’s BLOCK(1,1)]. We also included (1) two regressors

[similarly created via BLOCK(1,1)] to capture trial-driven BOLD signal variance associated

with congruent and incongruent stimuli of non-interest (unbiased) that prompted correct

responses, (2) an “error regressor” coding for any trial in which a response was incorrect or

omitted, (3) a sustained regressor coding for task versus rest (via BLOCK), (4) a transient

regressor coding for task-block onsets [as a set of 7 finite impulse response functions [via

TENTzero(0,16.8,8)], (5) 6 orthogonal motion regressors, (7) 5 polynomial detrending re-

gressors (order automatically set) for each run, and (8) an intercept for each run. These

models were created via 3dDeconvolve and solved via 3dDeconvolve. The data for each

subject’s model consisted of 2 runs × 3 blocks × 36 trials per subject (144 from the mostly

incongruent stimulus group, 72 from unbiased). Frames with FD > 0.9 were censored.
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2.6 Representational similarity analysis

RSA consists of three steps — similarity estimation, model fitting, and model evaluation

— and our procedures generally followed the originally recommended methods for each step

(Nili et al., 2014). To parcellate cortex, however, instead of using a data-driven searchlight

analysis, we used a combination of an atlas-based parcellation scheme and an independent

univariate region-of-interest (ROI) analysis. This atlas-based ROI approach enabled us to

a conduct whole-cortex analysis that was not subject to known limitations associated with

searchlights (Etzel, Zacks, & Braver, 2013), while maintaining a suitable level of power,

particularly within regions sensitive to control demand.

2.6.1 Similarity estimation and atlas selection.

To estimate our empirical similarity matrices, beta coefficient images of the Nstimuli = 16

mostly incongruent stimuli were first extracted from the GLMs. We next used a volumetric

version (in MNI) of the Human Connectome Project’s Glasser Parcellation (Glasser et al.,

2016) to divide each image into Nparcel = 360 parcels tiling the brain (Figure 1C, light

silver borders). The Glasser parcellation is useful as it is whole-cortex and constructed from

multimodal sources (resting-state functional connectivity, myelin density, cortical thickness

estimates, and task fMRI activations). Further, explicit links have been drawn between

several Glasser parcels and areas defined within the broader neuroanatomical literature (see

supplementary material in Glasser et al., 2016), in addition to the hypothetical “multiple

demand” network implicated in functional neuroimaging (Assem, Glasser, Essen, & Duncan,

2019). Finally, using each parcel’s stimulus activation patterns, we estimated the across-voxel

linear correlation between each of the pairwise combinations of stimulus conditions, and
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collated these correlations into an Nstimuli ×Nstimuli empirical similarity matrix, R (Figure

1D, right).

2.6.2 Representational model fitting.

To decode task information from these correlation matrices, we first built three models, each

corresponding to one of the three Stroop dimensions. We formulated each of these models as

an Nstimuli ×Nstimuli correlation matrix X, indexed by X(i, j), that took only binary values

(Figure 1D). These models make different predictions regarding the similarity structure of

a region’s measured activity patterns. The target model (Xt) predicts that the region will

show a unique pattern of activity for each stimulus hue (or equivalently, correct response),

such that the correlation Xt(i, j) is equal to one when the two stimuli have the same hue

(e.g., “BLUE” and “GREEN” in red hue). Similarly, the distractor model (Xd) predicts a

region’s activity patterns will cluster purely by the status of the stimulus word (i.e., r = 1

if the two stimuli have the same word, e.g., “BLUE” in red and green hues, 0 otherwise).

Finally, in the congruency model (Xc), activity patterns cluster purely by the congruency

status of stimuli (1 if the two stimuli are both incongruent or congruent, 0 elsewhere). Thus,

each of these models is categorical, essentially reflecting the similarity matrix R that would

be obtained from a hypothetical area that responds to each level of a given dimension (e.g.,

to each hue of the target stimulus) with a unique and noiseless pattern.

To fit these models, we extracted the unique off-diagonal elements of each X and of R,

which we denote as vectors x and r, and estimated the partial rank correlations between

them. The partial correlation captures the unique association between r and a model (e.g.,

xt), that remains after removing the variance component that each vector shares with the
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other two models (xc and xd). Partial correlation was advisable here, as our model vectors

were not orthogonal (i.e., the correlation between xt and xd is rt,d = −0.25, rt,c = −0.10,

and rd,c = −0.10). We opted for rank correlation to provide robustness against univariate

outliers and to keep with RSA convention (e.g., Diedrichsen & Kriegeskorte, 2017; Nili et

al., 2014).

In an additional step — prior to the model fitting described above — we removed a spe-

cific nuisance component from the empirical similarity vector of each parcel through a rank

regression procedure. This component stemmed from the task design: though each mostly

incongruent stimulus occurred an equal number of times throughout the course of a session,

these stimuli were not fully balanced across the two scanning runs. Specifically, half of the

stimuli were presented three times in run 1 versus six in 2, and vice versa for the other half of

stimuli. As each scanning run contains a large amount of run-specific noise (Alink, Walther,

Krugliak, Bosch, & Kriegeskorte, 2015; Henriksson, Khaligh-Razavi, Kay, & Kriegeskorte,

2015), this imbalance across runs could lead to a bias in the resulting correlation coefficients

between stimulus activation patterns, in which similarity among patterns from stimuli that

mostly occurred within the same run would be inflated. We formalized this component of

bias as a model matrix Xbias (equal to 1 where the run in which stimulus i most frequently

occurred = the run in which stimulus j most frequently occurred, 0 elsewhere). As xbias

was correlated to our models of interest (albeit weakly, at rbias,t = 0.03, rbias,d = −0.13, and

rbias,c = −0.05), we removed this component from each parcel’s similarity structure via ordi-

nary least-squares regression (i.e., by regressing each parcel’s rank-transformed r onto xbias

and subtracting this component from r). The resulting bias-corrected vector of residuals

thus formed the dependent variable in our RSA models (the r of the previous paragraph).
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As a result of these procedures, we obtained three partial Spearman’s correlation coefficients

(ρt, ρd, ρc), each indexing the magnitude of coding of a unique feature of the task, per

participant and parcel.

2.6.3 Region of interest definition

A subset of cortical ROIs were of a priori theoretical interest due to their putative involvement

in cognitive control computations. These ROIs were identified based on a separate analysis of

independent data from the Dual Mechanisms project (i.e., a univariate ‘conjunction’ analysis

of the baseline session, involving all four tasks scanned in the project). The specifics of

this conjunction analysis are beyond the scope of the current study, but it yielded a set

of 29 cortical parcels. Because of the a priori identification and interest in these parcels,

they were evaluated within the RSA through a separate p-value correction procedure (see

Representational model evaluation). Notably, many of these ROIs are also highly consistent

with prior cognitive control neuroimaging studies, including a recent conjunction analysis

published using the Human Connectome Project data and the same cortical parcellation

scheme: lateral (IFJp, p9-46v, i6-8) and medial (SCEF, a32pr) prefrontal cortex, anterior

insula (AVI, FOP5), and intraparietal cortex (LIPd, IP1) regions (Assem et al., 2019).

2.6.4 Representational model evaluation.

We evaluated the fits of our RSA models in two ways. First, to assess whether a parcel’s

activity patterns carry any information about a given task dimension, we performed one-

sided Wilcoxon sign-rank tests over participants (the default recommendation for inferential

testing within an RSA framework; Nili et al., 2014), predicting that the distribution of
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participants’ model fits should be greater than zero. The resulting p-value was then adjusted,

independently for each model, to maintain a consistent false-discovery rate (FDR; Benjamini

& Hochberg, 1995) either over all 360 parcels, for non-ROI parcels, or over NROI = 29

parcels, for our ROIs (see Region of interest definition).5 Parcels for which the distribution

of model fits was greater than zero with an FDR-adjusted p < 0.05 we took for evidence of

“task-dimension coding”.

Then, to assess the relative strength of task representations, we used model comparison.

among the parcels we found to code for a given task dimension, we test whether the given

representation was stronger than the other two task-dimension representations by performing

paired sign-rank tests (two-tailed) on the model fits. These three pairwise comparisons were

FDR-corrected within each parcel.

To interpret and organize the results, we combined these two evaluation methods (testing

against zero and pairwise comparisons), sorting parcels into different sets. Membership to

each set was constrained by the representational preferences that parcels displayed across

the three task dimensions — that is, by the coding profile of each parcel. The most inclusive

of these sets were those that merely required significant coding of a given task dimension

(i.e., greater than zero across participants at p < 0.05). We refer to parcels within these sets

as target, distractor, or congruency coding parcels, and indicate the respective membership

constraints with t > 0, d > 0, and c > 0 (where t, d, and c denote the model-fit distribution

across participants, and > 0 indicates the sign-ranked test hypothesis was supported at

α = 0.05). More stringently, we used the pairwise comparisons to create subsets of these

coding sets with parcels that displayed preferential, or selective coding, of task dimensions.

Target-selective parcels, for example, included all target coding parcels for which the target

5The results of the RSA are not strongly impacted by this correction: a highly consistent set of parcels
would be obtained if this ROI approach had not been included.
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representation was not only greater than zero, but greater than distractor and congruency

representations, in addition to the latter two model fits not being significantly greater than

zero (i.e., t > {0,d, c}, and {c,d} 6> 0, where 6> indicates the sign-rank test hypothesis was

not supported at α = 0.05].

2.7 Data-driven dimensionality reduction

To interpret the representations of an area, some form of dimensionality reduction is required.

RSA model-fitting (above) can be considered a form of hypothesis-driven dimensionality re-

duction, in which the similarity structure of high-dimensional activity patterns is summarized

along three particular axes that correspond to the hypothesized dimensions of Stroop. Com-

plementary to this approach is data-driven dimensionality reduction: instead of projecting

to a low-dimensional space defined a priori, data-driven methods typically seek a space that

optimizes some overall criterion of fit. This enables a “hypothesis-free” examination of an

area’s representations, which may reveal aspects of an area’s representational structure that

are lost within the hypothesis-based space.

To accomplish this, we used non-metric multidimensional scaling (NMDS; Kruskal, 1964).

NMDS is a flexible non-parametric technique that operates on dissimilarities, rather than

similarities (e.g., 1− r). In NDMS, a lower-dimensional embedding, termed configuration, is

found through iterative procedures that seek to minimize stress, a goodness-of-fit measure

of the configuration. Stress refers to the error obtained from a monotonic regression of all

interpoint Euclidean distances within the estimated configuration (dij between points i and

j ) onto the observed (high-dimensional) dissimilarities: specifically, the proportion of unex-

plained root sum-of-squared deviations (i.e., stress =

√∑
i<j(dij−d̂ij)2√∑

i<j d
2
ij

, where d̂ij represents the
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fitted values6). In other words, in the low-dimensional configuration produced by NMDS,

as one moves from the closest to the furthest pairs of points, one is also moving, with some

degree of error, from the most similar to the most dissimilar pairs of high-dimensional pat-

terns. This degree of error is given by the stress of the solution. Thus, NMDS is ideal for our

purposes: it assumes only that the rank order of pattern similarities is meaningful (i.e., that

they are not embedded within a metric space), while producing an optimal low-dimensional

representation within the intuitive Euclidean space.

We performed NMDS on five select parcels (Figure 4). These parcels were chosen, from

each of the five groups of “representational profiles” highlighted in Figure 4, as the parcels

demonstrating the largest effect sizes on the relevant Stroop dimension(s) within each group.

[That is, if WD is the Wilcoxon sign-rank statistic for coding of Stroop dimension D, the

parcel chosen within the task-relevant selective group gave max(Wt); for the task-relevant &

congruency selective, max(Wt+Wc); distractor & target, max(Wd +Wt); distractor, max(Wd);

and congruency, max(Wc).] For each selected parcel, we estimated the mean similarity

matrix across participants and subtracted these values from 1 to obtain dissimilarities. Before

averaging, we applied Fisher’s z -transform (inverse hyperbolic tangent), and after averaging,

transformed back to r: D̄ = J − tanh(
∑Nsubj

s=1 arctanh(Rs)/Nsubj ), where J is an Nstimuli ×

Nstimuli matrix of all ones, and D̄ is the resulting mean dissimilarity matrix.7 Each D̄ was

submitted to an implementation of Kruskal’s NMDS in R [MASS::isoMDS()] to generate a

2-dimensional configuration.

6This equation assumes that the dissimilarity matrix is symmetric with an all-zero diagonal, so that∑
i<j d

2
ij , e.g., captures all unique entries.

7Similar to our RSA, we regressed from each subject’s R the Xbias model prior to conducting this
procedure.
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2.8 Brain–behavior models

In a final analysis, we assessed whether our estimates of Stroop-dimension representation

may have indexed behavioral processes that diverge across individuals. First, we estimated

each participant’s behavioral Stroop effect. Then, through bivariate correlation and multiple

regression, we related these estimates to RSA model fits from several task-modulated brain

regions.

2.8.1 Behavioral Stroop effect estimation.

We estimated each participant’s Stroop effect in RTs and errors as a random slope param-

eter within mixed-effect models using the R packages lme4 (Bates, Maechler, Bolker, &

Walker, 2014) and nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018). This

framework gave a straightforward way to benchmark the level of individual variability in

the Stroop effect (see Behavioral model specification and evaluation), that is, relative to the

level of unexplained variance in the response. Note that these mixed-effect estimates, though

precision-weighted, were similar to those obtained from simple, independent linear contrasts

(rrt = 0.94, rerror = 0.82).

Error coding and exclusion criteria. We defined “errors” as any non-target color word

spoken by a participant prior to the correct response (e.g., including distractor responses, but

not disfluencies) or as a response omission. Error trials (137 commissions and 52 omissions

of 10,548 trials) and all trials with RTs greater than 3000 ms or less than 250 ms (2) were

excluded from the RT model. Additionally, the responses on some trials were unable to be

transcribed due to poor recording quality (from, e.g., high scanner noise or poor enunciation);
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these trials were coded as “unintelligible” and were excluded from both RT and error models

(54). Further, to help stabilize RT estimates, we adopted an additional, relatively liberal

(i.e., inclusive) criterion of excluding all trials for a given participant with RTs that deviated

greater than 3.5 SDs from their correct-trial mean RT (94, range of exclusions per participant

= [0, 4]). We validated this latter exclusion by fitting a separate model on data from each run,

and estimating the change in cross-run reliability of the resulting participant-level Stroop

effects: this trimming procedure increased the estimated split-half correlation from r = 0.60

to 0.69 (∆r = 0.14, bootstrapped 95% CI = [0.01, 0.14]; note that these contrasts were

calculated after z -transformation). Thus, our RT and error models were fit, respectively,

to a total of 10,176 and 10,530 datapoints, with ranges from [179, 216] and [178, 215] per

participant.

Behavioral model specification and evaluation. The RT model assumed a Gaussian

distribution (with identity link function) and the error model assumed binomial (with logit

link). Both models were fit with a fixed effect for the congruency of a trial (congruent, incon-

gruent) and a random effect of participant, with a random intercept, slope of congruency,

and a covariance parameter. Additionally, our RT model estimated a participant-specific

parameter by which their residual standard deviation was scaled. This additional estima-

tion relaxed the assumption that each participant (level-II factor) has equal variance. To

accomplish this, we fit the model in nlme, estimating a diagonal residual matrix [i.e., with

weights = varIdent(form = ∼ 1 | participant)]. Though this addition made the RT

model significantly more complex (estimating Nsubj − 1 more parameters), it was warranted:

homogeneity of variance was clearly violated, as indicated by the vastly improved fit of

the heterogeneous-variance model (∆BICfull−red . = −4309, χ2
48 = 4752, p < 10−22). Impor-

tantly, this also increased the robustness of our model: using participant-specific rather than
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uniform variance “re-claimed” some of the between-participant variance (level-II) as within-

participant (level-I), increasing the shrinkage of the Stroop estimates (Supplementary Figure

7B; Pinheiro & Bates, 2000, p. 4.3.2, pp. 188–190). If anything, this additional shrinkage

made our brain–behavior analysis more conservative, and had the added benefit of bring-

ing all participants’ Stroop effects positive (Supplementary Figure 7B), a property largely

thought to be “universal” (Haaf & Rouder, 2017).

Once we obtained these estimates, we sought to establish that there was enough variability

within to be plausibly explained: searching for moderators of individual differences in Stroop

would be of limited validity when there are limited differences to moderate. To this end, we

compared the “full” models, specified above, to reduced models that omitted the congru-

ency variance parameter (and corresponding covariance). For RT data, the full model was

preferred (∆BICfull−red . = 75.90, χ2
2 = 94.36, p < 10−20). For the error data, however, the

reduced model was preferred (∆BICfull−red . = 17.78, χ2
2 = 0.74, p < 0.69), indicating that

the Stroop effect in errors was not measurably variable across individuals. Thus, we focus

our brain–behavior models on RTs.

2.8.2 Selection and definition of regions for brain–behavior mod-

els.

To assess the functional significance of our RSA-derived task representations, we selected a

set of seven cortical regions per hemisphere, plus one bilateral region (ventral somatomo-

tor strip), that we expect are linked to variability in color-word Stroop task performance:

(a) V1–V3, (b) ventral occipito-temporal, (c) intra-parietal sulcal, (d) ventral somato-motor
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cortex, (e) mid-dorsolateral prefrontal, (f) inferior frontal, (g) frontal insular, and (h) dor-

somedial prefrontal cortices. Corresponding to each of these regions, we defined a spatially

contiguous cluster of Glasser parcels (a “super-parcel”) in which at least one task-dimension

representation was successfully decoded (i.e., with FDR-adjusted p < 0.05). For ventral

primary motor cortex, however, we used the bilateral “’somato-motor–mouth”’ community

from the Gordon atlas (Gordon et al., 2016), as the Glasser atlas does not contain a parcel

with exclusive coverage of this area. Table 6 contains the full list of parcels included within

each super-parcel, and Supplementary Figure 9 depicts their surface locations. Next, for

each super-parcel, we created a single mask and used the activity patterns across the entire

super-parcel to re-estimate our RSA model fits, which were subsequently correlated with

behavioral estimates (see Brain–behavior model fitting and evaluation).

Conducting our brain–behavior correlations at this “wider angled” level of analysis, versus

at the level of individual parcels, enabled us to reduce both the number of statistical tests

and the between-individual heterogeneity in coverage of a given functional area, with a

corresponding loss, of course, in the spatial precision of our inferences.

2.8.3 Brain–behavior model fitting and evaluation.

We assessed the relationship between an individual’s strength of task-dimension coding and

their behavioral Stroop effect in two ways: first, via robust bivariate correlations, then,

through multiple linear regression.

First, for each of the fifteen super-parcels, (7 unilateral areas × 2 hemispheres + 1 bilateral

area) we assessed the correlation between each of the three RSA model fits (ρt, ρd, ρc)

and the Stroop effect estimate across participants. For each of these 45 relationships, we
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estimated both Pearson’s r and Spearman’s ρ with a trimmed correlation procedure, in

which multivariate outliers were identified and excluded through a projection technique

similar to the Stahel-Donoho measure of “outlyingness” (e.g., Maronna & Yohai, 1995),

with code adapted from the development version of the WRS2 package (Mair & Wilcox,

2018). No bivariate associations reported in the text, however, contained outlying values. For

inference, we used 95% confidence intervals, estimated through bootstrap resampling (10,000

replicates). This method provided robustness to heteroskedasticity (Wilcox, Rousselet, &

Pernet, 2018). Corrections for multiple comparisons were not conducted.

Next, we further characterized seven of these task-dimension correlations (see Results, Brain–

behavior correlations for variable inclusion criteria) with a model selection procedure using

ordinary least-squares regression. This model selection procedure enabled us to find a set

of explanatory variables (regional task-dimension representations) that parsimoniously ac-

counted for unique variance in the behavioral Stroop effect. Specifically, we fit all 127 unique

combinations of these regressors and calculated three fit statistics for each model: Akike In-

formation Criterion (AIC), Bayseian Information Criterion (BIC), and error obtained from a

leave-one-out cross-validation scheme (LOO error). To obtain LOO-error, we first fit a given

model on all possible “training” sets of Nparticipant − 1, then reconstructed a Stroop effect

with the regressors of each held-out participant. These reconstructed Stroop effects formed

a vector, ŷ. LOO error was then given by 1 − rŷ,y, where rŷ,y is the Pearson correlation

between the reconstructed and observed Stroop effects. Models that minimized these criteria

are considered in the results.
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Chapter 3

Results

3.1 Representational similarity analysis

In a hypothesis-driven representational similarity analysis (RSA), we first fit three mod-

els (Figure 1C) to the correlation structure of each Glasser parcel’s (Figure 1B) activity

patterns. These models enabled us to isolate and estimate regional coding, then compare

the cortical distributions of three conceptual dimensions of information within the Stroop

task: target, distractor, and congruency. (Figure 2 displays the resulting statistical maps,

thresholded at an FDR-corrected p < 0.05; Tables 3–4 contain statistical results relevant to

these analyses.) Examining the representational profiles of select areas (Figure 3) suggested

the target, distractor, and congruency-coding sets of parcels may be amenable to further

decomposition through within-parcel model comparison. Finally, these within-parcel model

comparisons (Figure 3, Supplementary Figure 8, Figure 4 center, Tables 1–2), demonstrate

neuroanatomical dissociations in task-dimension preferences.

25



WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

distractor

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

target

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

WHITE

RED

PURPLE

BLUE

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

B
L
U
E

P
U
R
P
L
E

R
E
D

W
H
IT
E

congruency

A

B

C

Figure 2: Representational similarity analysis of color-word Stroop. A–C, Parcels for which the target (A), distractor (B), or
congruency (C) model statistics were significantly greater than zero over Nsubj = 49 participants after FDR correction. The
hue indicates the value of the test statistic (the sum of signed ranks). Each row (A–C) is plotted with the same color scale.
A, The target model (left) is correlated with parcel representations across cortex. B, The distractor model (left) exclusively
captures representations in early-to-mid visual cortex (V1–V4). C, The congruency model (left) is correlated with lateral and
medial prefrontal, intraparietal, and insular parcels, in addition to left retrosplenial and right lateral occipital cortex.

Target representations were found widely across cortex.

A majority of parcels (236/360) had representations that were correlated with our target

model (Figure 2A). This set of parcels tiled most of the frontal, insular, superior parietal,

lateral and ventral temporal cortices, without a strong overall preference for hemisphere

(Nleft = 122, Nright = 114).

For further examination, we subdivide this collection of “target coding” parcels into two

overlapping sets: target-selective parcels, and task-relevant–selective parcels.

‘Target selective’ parcels. We defined “target selective” parcels as those for which (1)

the target model fits were greater than zero (i.e., t > 0 via one-tailed sign-rank; Figure
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1A), (2) whereas congruency and distractor fits were not ({c,d} 6> 0), and (3) target model

fits were greater than both the latter two models (t > {c,d} via two-tailed paired sign-

rank). This revealed a reduced set of 19 parcels (Supplementary Figure 8), which included

parcels in bilateral somatomotor strip (parcel–hemisphere: 3a–l, 3b–l, 4–l); bilateral superior

temporal gyrus (STG), near the lateral sulcus (PBelt–r, A4–r) and more anterior (STGa–l);

and bilateral inferior temporal cortex (IT; TE2a–l, TF–r, TGv–r). Additionally within this

set were bilateral orbitofrontal parcels towards the frontal pole (OFC; 11l–l, 11l–r, a10p–r),

a left rostral inferior parietal lobular parcel (IPL; PFop–l), and a right precuneal parcel

(POS2–r).

‘Task-relevant–selective’ parcels. Influential theories of prefrontal cortex function hold

that these regions orchestrate goal-directed behavior by emphasizing representation of task-

relevant information (e.g., Miller & Cohen, 2001). Within our Stroop-dimension framework,

it follows that these regions should encode the target dimension stronger than distractor.

The prediction for the congruency dimension, however, is weaker: current-trial congruency

is a higher-order property of Stroop, not an explicitly relevant or irrelevant feature. Our

target-selective constraints may have therefore been a poor match for the representational

profiles that control-related fronto-parietal parcels generally exhibited. Thus, we defined a

task-relevant contrast (t > {0,d},d 6> 0) to identify which regions are preferentially selective

for the relevant, versus irrelevant, dimension. Note that this task-relevant–selective set was

constructed according to the same criteria as the target-selective (above), except that all

constraints regarding coding of the congruency dimension were relaxed. This collection of

parcels therefore contained all target-selective parcels, in addition to a wider set of 99 parcels

that spanned bilateral lateral and medial PFC, frontal opercular, IPS, ventral visual, and

posterior cingulate cortex (Figure 4 center, dark and light blue).
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3.1.1 Distractor representations were found exclusively in V1–V3.

In striking contrast to the widespread distribution of target representations, the parcels that

were measurably correlated with our distractor model were confined to early-to-mid visual

cortex, from V1 to V3 (Figure 2B), most prominently in V1–l.

3.1.2 Congruency representations were found primarily in pre-

frontal and intra-parietal parcels.

In a third neuroanatomical distribution, congruency information was successfully decoded

from a set of 20 parcels that were mostly situated within the left frontal lobe and along left

IPS (Figure 2C). Within left hemisphere, these frontal lobe parcels were located in inferior

frontal junction and premotor cortex (IFJ-p, PEF), inferior frontal gyrus (44), insula (FOP4),

mid-dlPFC (p9-46v), superior frontal gyrus (s6-8), lateral fronto-polar cortex (9-46d), and,

relatively strongly, (pre-)supplementary motor regions (SCEF, ρ = 0.09; 6ma, ρ = 0.08).

In right frontal lobe, only three parcels significantly represented congruency information:

a dmPFC cluster (8BM, p32pr), and a superior frontal gyral parcel (s6-8). Numerically,

the largest effect sizes, however were found in a cluster of left IPS parcels (IP1, ρ = 0.13;

MIP, ρ = 0.12; LIPd, ρ = 0.11), in addition to a more inferior, right IPS parcel (IP0,

ρ = 0.09). Two other parcels—the left retrosplenial complex (RSC–l), and a right lateral

occipital parcel (LO2–r)—also measurably represented congruency information.

Notably, several of these congruency representations were coincident with task-relevant rep-

resentations, and were also stronger than distractor representations (Figure 4 center, lime

green). We refer to these as “task-relevant–congruency” selective parcels. In fact, only three
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areas were “purely” selective for congruency, according to our criteria: left 9-46d (fronto-

polar), right 6ma (supplementary motor), and LO2 (lateral occipital; displayed in Figure 4

center, in pink).

3.1.3 Dissociations in select representational profiles.

While Figures 2 (A–C) and 4 (center) clearly demonstrate the neuroanatomical dissociations

in encoding of these Stroop dimensions, to illustrate more clearly the variety of representa-

tional preferences across the cortical hierarchy, we selected four parcels from task-relevant

regions — V1, primary motor (4), dorsal premotor (FEF), and ACC (p32pr). Figure 3

displays these preferences. In V1, distractor coding was numerically stronger than target

(∆ρ = 0.03, p = 0.07), whereas in area 4, target coding predominated (∆ρ = −0.07, p = 0).

In dorsolateral versus medial frontal cortex (FEF, p32pr), dissociations between congruency

and target coding emerged: a preference for the target versus congruency dimension was

stronger in FEF versus ACC (βregion×dimension = 0.07, p = 0.09; pairwise comparisons not

significant).
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Figure 3: Representational preferences of select sensory, motor, and control-related areas. Circles are centered on the mean of
participants’ RSA model fits (for a given model and parcel); error bars span 95% confidence intervals bootstrapped from these
samples. Left V1 (V1 l); left primary motor cortex (4 l); right dorsal premotor cortex (FEF r); dorsomedial prefrontal cortex
(p32pr l).

3.2 Data-driven dimensionality reduction

Next, we conducted a data-driven analysis using non-metric multidimensional scaling (MDS),

a non-parametric dimensionality reduction technique, on activity patterns from an exemplary

group of task-dimension coding parcels (Figure 4, surround). Whereas the hypothesis-driven

RSA sought to summarize high-dimensional fMRI activity patterns along particular dimen-

sions in activity space that corresponded to dimensions of the Stroop task (e.g., Figure 3),

this MDS analysis aims to summarize these patterns in low-dimensional configurations, or

“representational geometries”, that best capture the “full” representational structure of an

area, without assuming what that structure may be. This approach is also complementary
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to RSA, as it provides a compact visual representation of the task-dimension coding results

and a means for hypothesis generation.
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Figure 4: The spatial distribution and exemplary geometry of five “types” of areal representational profiles. Center, A
“conjunction” map in which multiple representational profiles are overlaid. Dark blue indicates the parcels that were defined
as being task-relevant–selective — that is, with target representations both stronger than zero and stronger than distractor
coding (cf., the more expansive set of “target coding” parcels in Figure 2A, and the more restrictive set of “target selective”
parcels in Supplementary Figure 8). These task-relevant–selective parcels encompass a broad set of somatomotor, inferior and
superior temporal, intraparietal, and lateral, insular and anterior PFC areas. Notably, several of these parcels within left lPFC
and bilateral mPFC were simultaneously selective for congruency (light blue). The distribution of these two representational
profiles contrasted to that of distractor coding parcels, which were exclusively located in early-to-mid visual cortex (V1–V3).
This distractor information, however, was not selectively represented by these visual areas: V1 distractor representations (dark
green) were not stronger than congruency nor target, and in extrastriate cortex, activity patterns reflected a combination of
distractor and target representations (light green). Finally, three parcels — areas within left fronto-polar, left supplementary
motor, and right lateral occipital cortices — contained neither target nor distractor representations, but were instead selective for
congruency (dark grey). Surround, The representational geometry of parcels that most strongly represented a task dimension
in isolation (3b–l, top; V1–l, bottom left; 9-46d–l, top left) or in conjunction with another task dimension (IP0–l, top right;
V2–l, bottom right), displayed via non-metric multidimensional scaling(Kruskal, 1964). Within each plot, distances between
colored letters (i.e., color-word Stroop stimuli; white stimuli indicated by grey letters) represent the relative rank-ordering of
similarities between higher-dimensional activity patterns within each region. Though connecting lines are arbitrarily imposed,
they highlight the task-dimension structure within each parcel. Respectively, the MDS solutions for 3b–l (left somatosensory
cortex), V1–l, and 9-46d–l (left fronto-polar cortex), clearly show pattern clustering by target, distractor, and congruency task
dimensions. The solution for V2-l similarly reflects the hypothesis-driven analysis, roughly depicting simultaneous discrimination
of distractor and target status along the horizontal and vertical axes, respectively. While the solution for SCEF–l [left (pre-)
supplementary motor area] also demonstrates some degree of conformance to the target and congruency models, a feature of
the representation not captured by the congruency model is the heightened dissimilarity among congruent stimulus patterns
relative to among incongruent. This can be seen in the central contraction of incongruents and the peripheral expansion of
congruents, suggesting this region responded in a stereotyped manner, specifically during incongruent trials.
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3.2.1 MDS reveals a range of representational structures

The peripheral plots in Figure 4 display MDS configurations from five exemplary parcels.

These parcels represented a given task dimension (or conjunction of task dimensions) most

strongly within each of the five “types” of representational profiles displayed. Thus, we are

by definition focusing on the representations that best conform to our hypothesized task-

dimension representations. While we are likely missing much unpredicted and potentially

interesting results, by restricting our scope in this way, we focus on interpreting the MDS

configurations that are the most interpretable: those that are the least likely to be driven

by task-independent noise, and those with features that map relatively well to our specified

task dimensions. Further, as these analyses are not for inference (but rather for hypothesis

generation), all participants, including twins and non-twins (N = 67) are retained, to help

stabilize the geometries.

The differences between the geometries of parcels coding for each task dimension are clearly

illustrated by the MDS solutions (Figure 4, surround). The solutions from regions displaying

coding of only one dimension — target coding in left somatomotor cortex (Figure 4, top, dark

blue), distractor coding in left V1 (bottom left, dark green), and congruency coding in left

fronto-polar cortex (top left, dark grey) — display notable separation of points according to

the respective task dimension (connecting lines are arbitrary, but highlight this separation).

Similarly, in left V2, a region that displayed both target and distractor representations, the

horizontal and vertical dimensions learned by MDS approximately map to the dimensions

along which stimulus-evoked patterns are best discriminated (within the low-dimensional

solution), respectively, on distractor and target status. And, in left dmPFC (SMA–pre-

SMA; top right, light blue), incongruent patterns are located towards the origin (center),

33



while congruent patterns diverge in the periphery, and these patterns are superimposed over

an approximate clustering by target.

3.2.2 ‘Incongruency’, rather than congruency, coding marks the

geometry of several parcels.

The MDS configuration of SCEF patterns illustrates a potential deficiency of the RSA con-

gruency model. Effectively, this model proposes a representational geometry of two clusters

of patterns, corresponding to incongruent and congruent stimuli. What is instead observed

in SCEF is one central cluster of incongruent-evoked patterns, and four divergent congruent-

evoked patterns. This suggests that SCEF may have responded in a stereotypical way to

incongruent, but in divergent ways to congruent stimuli. To test this hypothesis, we built

an “incongruency” coding model, which would be observed by a region that responds with

a common pattern only on incongruent trials (i.e., r = 1 if stimulus i and j are both in-

congruent, 0 otherwise). Indeed, this “incongruency” model fit the SCEF geometry better

than our original (congruency) model (∆ρ = 0.02, p = 0.04), in addition to the geometry of

several other congruency-coding parcels within dmPFC and IPS (Table 5).

3.3 Brain–behavior correlations

In a final analysis, we attempted to link explicitly these RSA-derived indices of regional task-

dimension representations to behavioral performance. By relating individual-level variability

in the magnitude of a given task-dimension index to variability in the size of the Stroop effect,

we test several hypotheses regarding the nature of the information carried by these indices.
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Briefly, we defined a collection of 15 anatomical regions — 7 sets of Glasser parcels per

hemisphere, and one bilateral Gordon community (Somato-Motor–mouth) — based on a

priori evidence, refined each set to include only a single contiguous cluster of task-modulated

parcels (a “super-parcel”), then re-estimated RSA indices using the entirety of each super-

cluster. We then correlated each index with the behavioral Stroop effect across participants.

Table 7 displays the strongest 25 of these bivariate correlations.

3.3.1 The strength of regional task representations explains indi-

vidual variability in the Stroop effect in predicted ways.
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Figure 5: Dissociations in functional relevance of Stroop dimension coding. For clarity, we plot only the relevant dimension for
each region (i.e., distractor coding for SM–mouth, target coding for lFP, congruency coding for dmPFC). Bivariate correlations
from the omitted relationships were non-significant: rSM ,targ. = −0.11, rdmPFC ,targ. = 0.12, rlFP,dist. = −0.12, rlFP,cong. =
−0.02. To test for double dissociations, however, we fit two 3-way interaction models, each with terms for coding strength (ρ),
region, and dimension: one model for target and congruency coding in lFP versus dmPFC, a second for target versus distractor
coding in lFP versus SM–mouth. Results from these models are reported in the text.

Four of these correlations were from regions and in directions that we predicted. Most

prominently, stronger target representations in right IPS and left dlPFC were associated with

an attenuation of Stroop interference (Supplementary Figure 10), supporting the notion that

task-relevant information in these regions is a key locus of control function (Kane & Engle,
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2002; Miller & Cohen, 2001). In contrast to target coding in lPF, in bilateral ventral somato-

motor cortex, we found that stronger distractor representation was associated with larger

Stroop effects (Figure 5A) This positive correlation suggests that the relationship between

fronto-parietal target coding and interference resolution cannot be explained by a general

factor of “decodability”. Finally, participants with stronger congruency coding in left mPFC

(supplementary-motor to anterior cingulate) tended to have larger Stroop effects (Figure 5C).

Although this bivariate correlation is weak, it was predicted based on the assumption that

the strength of an individual’s dmPFC congruency coding reflects their reliance on reactive

control processes — which, given the mostly incongruent list, is expected to be suboptimal

for performance.

To test formally whether dlPFC and IPS target coding reflect dissociable functions from

dmPFC congruency coding, we fit a single model on Stroop RTs with explanatory variables

of coding strength (ρ), indicators for region (dmPFC, IPS/dlPFC ) and dimension (target,

congruency), and their interactions. As IPS and dlPFC coding readouts were relatively

similar (rt = 0.57, rc = 0.34, rd = 0.33), we averaged them for simplicity, forming a single

lateral fronto-parietal estimate for each subject and dimension. (Note that this decision

did not change the direction or significance of the effects.) As reflected in Figure 5 (B–C),

the nature of the relationship between task coding and the Stroop effect depended both on

region and dimension (βρ×dimension×region = 238, t = 2.42, p = 0.02). In other words, this

positive and predicted correlation in dmPFC congruency coding forms a double dissociation

with lateral fronto-parietal target coding.

Similarly, we tested for a double dissociation between lFP and SM–mouth in target versus dis-

tractor coding. While we did not find evidence for a double dissociation (βρ×dimension×region =

36



−38, t = −0.28, p = −0.28), a single dissociation was present within SM–mouth between tar-

get and distractor coding (βρ×dimension = −201, t = −2.18, p = 0.03). This interaction was

not detected within lFP (βρ×dimension = −163, t = −1.64, p = 0.11) But, because this overall

particular pattern of results (Figure 5) was predicted based on (a) established functional

dissociations between medial and lateral PFC of reactive and proactive control, and (b) the

intuitive hypothesis that distractor coding at the output level should be detrimental, these

dissociations suggest that our representational models were sufficiently specific in indexing

these functions.

3.3.2 Unpredicted relationships to behavior in task-involved ar-

eas.
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Figure 6: Unpredicted relationships between Stroop dimension coding and behavior. Ventral occipito-temporal cortex (VOT).

Three of the observed correlations, however, were unexpected, and one was directly contra-

predicted. In early and extrastriate visual cortex, we found that the strength of distractor

coding was weakly and negatively associated with the size of the Stroop effect (Figure 6A).

In left ventral visual, by contrast, we found a moderately strong negative correlation between
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congruency coding and Stroop (Figure 6B). Finally, against our predictions regarding the

relative importance of task-relevant representations within fronto-parietal network, we found

that larger distractor coding in left dlPFC was moderately associated with smaller Stroop

effects (Figure 6C).

3.3.3 The variance explained by these representations is indepen-

dent.

To explore whether these representational readouts predict independent variance in perfor-

mance, we performed a simple model selection procedure. In brief, we fit linear regression

models using all (127) combinations of these seven readouts as explanatory variables, and

calculated three fit statistics for each model (BIC, AIC, and LOO error). These statistics

agreed in accepting the best model (Supplementary Figure 11), which contained terms for

right IPS target coding, left dlPFC distractor coding, left ventral visual congruency coding,

and left dmPFC congruency coding (Table 8).

Notably, while the signs of each of these estimates matched their bivariate counterparts (cf.,

Table 7), the multiple regression revealed an interesting case of suppression: including ven-

tral visual congruency coding in the same model as dmPFC congruency coding substantially

increased the dmPFC estimate, to the extent that dmPFC congruency coding became (nu-

merically) the strongest explanatory variable in the final selected model (Table 8, coefficients

of partial determination). This suppression can also be clearly seen in the two-fold increase

in R2 that adding the mPFC term brings to a model with ventral visual congruency coding

relative to the R2 of a model with mPFC alone (0.15 versus 0.07).
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Chapter 4

Discussion

We conducted a retrospective, and, to the best of our knowledge, novel, application of

RSA (Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013) to fMRI data obtained during the

classic color-word Stroop task (Stroop, 1935). In combination with a multimodal atlas-

based approach to parcellating cortex (Glasser et al., 2016), this framework enabled us to

orthogonalize and estimate representation, within areas tiling the cortex, of three sources of

task information in Stroop: the potentially conflicting target and distractor task dimensions,

and their conjunction, or congruency. We found that these hypothesized dimensions — in

predicted and specific ways — were dissociated in their mapping to cortex (Figures 2–4;

Supplementary Figure 8), their representational structure (Figure 4, surround), and their

association with individual differences in behavioral performance (Figure 5).

To avoid overinterpreting these results, it is important to acknowledge the many limita-

tions that were associated with the particular experimental design used for analysis. These

limitations largely stemmed from the retrospective nature of the analysis and thus could

mostly be successfully addressed through a prospectively designed study. But, despite these

limitations, the representational dissociations we observed meshes well with several decades-

worth of neuroimaging research of Stroop and theoretic development in cognitive control —
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suggesting that our simple RSA procedures were successful in specifically indexing compo-

nent neural processes underlying performance in this task. This study therefore contributes

an important “proof of concept” demonstration of the utility of the RSA framework for

addressing key questions in cognitive control research.

In the sections that follow, we interpret the current results and their implications for un-

derstanding of cognitive control mechanisms in the Stroop task. Next, we discuss fruitful

directions for extending the RSA framework to address a broader range of cognitive con-

trol questions and associated experimental paradigms. Lastly, we address the limitations of

the study and analysis approach, and how these could be potentially remedied in a future

prospective study.

4.1 Implications regarding Stroop mechanisms.

The motivation for the present work was based upon the assumption that dissociable pro-

cesses of color naming, word reading, and conflict are represented in regional fMRI activity

patterns and that these representations can be indexed in isolation through simple RSA.

Importantly, we had strong a priori predictions for the how these component representations

should be differentially distributed across the cortical hierarchy and how they should differ-

entially associate with behavioral performance. To validate our motivating assumption, we

tested whether these dissociations were borne out in our data. Our expectations were largely

confirmed by these tests.
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4.1.1 Neuroanatomical profiles.

Target coding. Our target coding model was built to capture representations associated

with the task relevant process of color naming. These representations could relate to any

aspect of the color-naming process, from early visual encoding of hue-related information,

to the final neocortical output of articulatory representations in motor cortex. We sorted

the regions coding for target into those that exclusively carried task-relevant representations

(target selective), and those that preferred the task-relevant to irrelevant dimension (task-

relevant selective).

Target-selective parcels were those that represented the target dimension more strongly than

either distractor or congruency dimensions, and showed no evidence of representing either

congruency or distractor dimensions (Supplementary Figure 8). Notably, several of these

target-selective parcels were in regions associated with sensorimotor representations of target

response information: somatomotor cortex (left 4, 3a, 3b, OP2-3, and, on the posterior bank

of the postcentral gyrus, PFop) and auditory cortex (A4–r, PBelt–r). That is, because we

focused our RSA solely on correct-response trials, we effectively constrained our scope to

trials in which the motor output was target articulation, and therefore also the trials in

which participants (could have only) heard themselves articulate the correct response.

We also notably observed target-selective coding in hetero-modal areas that are more deeply

situated within processing pathways, such as bilateral inferotemporal cortex and superior

temporal lobe areas. While posterior ventral temporal cortex was expected to carry target

and distractor representations, finding that anterior IT regions, the culmination of the ventral

visual stream, exhibited a target-selective profile is consistent with an interpretation that

the target dimension was processed to a deeper extent than the distractor. Additionally,

41



several target selective parcels were situated within linguistically sensitive areas, such as

left superior temporal gyrus (anterior) and sulcus. It is also worth noting that among the

parcels just over the criteria for target selectivity was left inferior frontal gyrus (47–l, with

ρt = 0.03, p(|t−c| > 0) = 0.076), a region traditionally associated with language production.

While unpredicted, there were also two other parcels within the target-selective group: a

region within left orbitofrontal cortex and in right precuneus. We avoid speculating on the

functions these regions may have played in this task, but note that recent studies using

pattern analysis have similarly decoded task-relevant information from these regions (e.g.,

Schuck, Cai, Wilson, & Niv, 2016; Crittenden, Mitchell, & Duncan, 2015; Jackson & Wool-

gar, 2018), and that the precuneus has been identified as being activated during color-word

Stroop by previous univariate analyses (Banich et al., 2001).

Task-relevant–selective parcels were those that represented the target dimension stronger

than the distractor dimension (no constraints were placed on congruency coding; Figure 4,

center). From the framework of top-down attentional modulation, we hypothesized that

control-related lateral fronto-parietal regions would exhibit this representational profile (i.e.,

emphasizing target over distractor information). Although the resulting task-relevant selec-

tive group was much more expansive than the target-selective parcels, this hypothesis was

supported: this set covered bilateral dorsal premotor, mid-dlPFC to IFG, insular, dMPFC,

and IPS — all regions associated with fronto-parietal, cingulo-opercular and dorsal or ven-

tral attentional control networks (e.g., Corbetta & Shulman, 2002; Dosenbach et al., 2006;

Duncan, 2010; Tanji & Hoshi, 2008). Additionally, this group gave more extensive coverage

of task-relevant areas such as ventral temporal and extrastriate cortex (V8, FFC, VVC) and

STG.
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Distractor coding. The distractor coding results stand in stark contrast to the target

coding results: we found distractor representations exclusively within V1 to V3. While we

expected a general cortical emphasis of target coding, finding no evidence of elevated dis-

tractor coding in left lateral occipito-temporal sulcus (“visual word form area”) in particular

was unexpected, as this region is an important sensory hub for reading (Dehaene, Cohen,

Sigman, & Vinckier, 2005). In hindsight, however, our choice of atlas was inappropriate to

localize this area (or any ventral visual area), as the parcel boundaries encompass heteroge-

neous areas within this region (Glasser et al., 2016). Another possibility is that participants

were less reliant upon word reading processes as a result of the mostly incongruent nature

of the list. Within mostly incongruent lists, the Stroop effect is greatly reduced. Behav-

ioral evidence suggests that this reduction is, in part, mediated by a general attenuation of

reading processes (Gonthier et al., 2016; Lindsay & Jacoby, 1994). It remains to be seen

whether ventral visual distractor representations play a role in this list-level adaptation (e.g.,

as a locus of feature-based attentional suppression). One avenue future work could pursue is

combining probabilistic atlases or functional localizers for left occipito-temporal cortex (e.g.,

Weiner et al., 2017) and proportion congruence manipulations to examine more precisely

how intermediate sensory distractor representations are modulated by adaptive control.

Congruency coding. In a third and unique neuroanatomical profile, the higher-order

congruency dimension was represented primarily within medial, lateral, and polar frontal

cortex, in addition to intra-parietal cortex. The regions identified from this multivariate

analysis were congruent with a substantial body of research demonstrating increased (uni-

variate) activation in these regions: in particular, dmPFC (including SMA and pre-SMA),

left mid-dlPFC, and left IFG (e.g., Cieslik et al., 2015; Nee et al., 2007). This profile also

meshes with a recent report that used face–word Stroop paradigm, and decoded congruency

information from lateral PFC and fronto-polar cortex (Jiang & Egner, 2014).
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But, given the robustness of these prior univariate results, one might interpret the current

congruency decoding effects as relatively weak, as we identified only a handful of dmPFC

and dlPFC parcels that encoded the congruency status of trials. The paucity of congruency

coding, however, is likely due to the mostly incongruent nature of the list, as the list-wide

reductions in the behavioral Stroop effect are mirrored by brain activations (e.g., Carter et

al., 2000; Wilk, Ezekiel, & Morton, 2012). Notably, a univariate analysis of these same data

failed to identify any regions that responded with greater mean activation to conflict. This

suggests that pattern analysis may be more sensitive than traditional univariate analyses,

even for variables that are well-known to elicit robust increases in regional activity, such

as “conflict”. In extensions of the present study, it will be useful to explicitly compare

univariate and RSA results to test this hypothesis directly.

We also found coexisting target and congruency representations in parcels within lateral

and medial frontal cortex (Figure 4, center, light blue). In other words, these regions

carried multidimensional representations, congruent with recent work demonstrating high-

dimensionality of prefrontal representations (Fusi, Miller, & Rigotti, 2016; Rigotti et al.,

2013). Notably, this highlights another advantage of pattern analysis methods, as demon-

strating multidimensionality is challenging to establish with univariate methods.

4.1.2 Brain–behavior models.

One of the more robust bivariate correlations we found was negative, and between the

strength of target coding in right IPS and individual differences in the magnitude of the

Stroop effect (Supplementary Figure 10A). Target coding in this region was also moderately

related to target coding in right dlPFC (r = 0.57), which was in turn related to performance

44



(Figure 10B), suggesting our target model indexed a process in which these regions were

involved. Further suggesting this redundancy, in multiple regression model selection, only

target coding in IPS was selected by the best model. These results suggest that task-relevant

information encoded within these regions is an important mediator of Stroop interference.

Indeed, these regions are known to be tightly coupled to the implementation of top-down con-

trol (e.g., Buschman & Miller, 2007), via attentional sets (Corbetta & Shulman, 2002), task

sets (Sakai, 2008), and in the representation of target information in a distractor-resistant

format (e.g., Miller, Erickson, & Desimone, 1996; Jacob & Nieder, 2014; Qi, Elworthy, Lam-

bert, & Constantinidis, 2014; Rademaker, Chunharas, & Serences, 2019). The observed

brain–behavior correlations are also in line with the theoretical perspective that fidelity of

target coding is a key locus of individual differences in cognitive control (e.g., Kane & Engle,

2002). The particular processes these relationships reflect, however, are less clear. With

the present design, it is ambiguous whether target representations in IPS or dlPFC reflect

stimulus or response-related information. Similarly, the downstream functional targets (e.g.,

IT, premotor cortex) of these representations are unclear. To shed light on these questions,

future work could employ larger and more diverse stimulus sets, feature-based representa-

tional models (e.g., based on similarity in color space), and could examine inter-regional

correlations between RSA model fits (e.g., to test “informational connectivity”).

The observed brain–behavior correlations in target coding also formed one half of a predicted

double dissociation with congruency coding in dmPFC. This dissociation rules out an alter-

native explanation of non-specific encoding (i.e., that in better-performing participants, any

task variable would be more strongly encoded), and lends stronger support to our hypothe-

sis that our representational models were specific in indexing reactive and proactive control

processes. It is also notable that, relative to dmPFC, the other behavioral relationship with
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congruency coding that we observed was more posterior in ventral visual cortex, and with

opposite sign (negative). Further, within our model selection procedures, the suppression

we observed between these two terms suggests that the dmPFC congruency response may

contain two opposing components: one that indexes reactive control, another that is linked

to the ventral visual response. Examining how brain–behavior correlations are modulated

by control state (e.g., reactive, proactive) and contextual factors (e.g., list or item-level

statistics) could shed light on these underlying functions.

We also observed a dissociation between distractor coding in sensory versus motor cortex:

participants with a strong representation of distractor information in V1–V3, but weaker rep-

resentations in somatomotor–mouth, had smaller Stroop effects. The SMMouth relationship

was a clear prediction we derived from the assumption that participants with larger Stroop

effects may be “closer” to articulating the stimulus word (e.g., sub-articulation). However,

the early visual relationship was unpredicted. A speculative account is that stronger distrac-

tor representations may reflect better stimulus encoding. By making a further assumption

that, at this relatively early level of vision, distractor (form) coding is somehow coupled to

target (hue), this relationship could be explained. While tenuous, this assumption might

not be implausible: hue and form information were spatially isomorphic in our task, thus

distractor-correlated features such as word size may impact the strength of early target (hue)

coding.

In contrast to these relationships, one association was directly contra-predicted: more precise

distractor coding in left dlPFC was associated with smaller Stroop effects. The framework

of top-down biased competition (e.g., Miller & Cohen, 2001) cannot account for this finding.

Although we are unaware of an fMRI study that demonstrates distractor representations in

dlPFC, neurons within this region do transiently encode distracting input in a variety of
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control tasks (e.g., Jacob & Nieder, 2014; Mante, Sussillo, Shenoy, & Newsome, 2013). It is

possible that this information is used in some form to guide subsequent-trial behavior. Future

work could examine properties of these distractor representations and their correlation to

behavior (e.g., timecourse, spatial distribution within dlPFC, sensitivity to feature-based

models) to constrain plausible explanations. We discuss some of these potential directions

in the next section.

4.2 Extending the RSA and multivariate framework to

broader questions in cognitive control research

The general success of the present project in capturing dissociable representation of Stroop

dimensions is highly encouraging for the utility of RSA and other multivariate techniques

for addressing open questions in cognitive control. Here, we roughly sketch some selected

examples of questions and methodologies that could shed light on them, involving not only

Stroop, but also cued task-switching, and other cognitive control tasks.

4.2.1 Stroop.

The present study treated the Stroop effect as if it were a stationary phenomenon: a single

behavioral readout was estimated per participant. In reality, however, the size of the Stroop

effect depends greatly on the context in which the control system is embedded, that is,

the statistics learned from trial history (Bugg & Crump, 2012). Learning and using these

statistics to guide decisions is thought to be a central function of control systems centered over

prefrontal and parietal cortices (e.g., Gold & Shadlen, 2007). Combining pattern analysis
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with contextual manipulations might offer a useful window into how the brain mediates such

adaptive control.

One well-researched modulation in the Stroop effect emerges from list-level manipulations of

the proportion of congruent to incongruent stimuli (Gonthier et al., 2016; Logan & Zbrod-

off, 1979). The learning mechanisms underlying this adaptation are relatively general (i.e.,

untethered to particular stimulus or response identities). But, the putative neural sub-

strates and mechanisms mediating this process are less clear. A potentially fruitful approach

to investigating these mechanisms is to extend the present design (estimating task-evoked

target, distractor, and congruency representations) to lists with varying proportion congru-

ency. This could enable within-subject tests of how these representations are modulated by

list-level control across the cortical hierarchy.

Perhaps a more relevant analysis, however, would be in examining the time periods before

trial onset. It has been hypothesized that list-wide adaptation effects are mediated by

sustained and preparatory activity in dlPFC that reflects proactive coding of the task set.

This mechanism of anticipatory task-set coding could account for the generality of this

behavioral adaptation; however, a number of studies have failed to find sustained activity in

dlPFC within mostly incongruent lists (Grandjean et al., 2012). However, this coding may

not be evident in above-baseline activity, but could be present in a sub-threshold pattern

— similar to notions of predictive coding in sensory systems (e.g., Kok, Mostert, & Lange,

2017), but for more abstract variables (i.e., congruency). Further, medial PFC may instead

be involved in this prediction process, given its hypothesized role in using performance

outcomes to generate expectations of abstract task-related variables (Alexander & Brown,

2011), and preliminary evidence that it may be activated within list-wide mostly incongruent
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contexts (Wilk et al., 2012). In the Stroop task, these templates may take the form of “pre-

activated” congruency representations (as this is the only information that can be predicted).

Within the RSA or other multivariate decoding frameworks, this leads to a straightforward

hypothesis: in mostly incongruent versus unbiased lists, are pre-trial activity patterns more

similar to the conflict-evoked pattern?

Beyond list-wide modulations, research has demonstrated that the Stroop effect is modu-

lated in a within-trial manner. Specifically, if stimulus locations or features (e.g., a blue

hue) are made predictive of the congruency status of a trial (e.g., incongruent), individuals

seem to take advantage of this information, as the Stroop effect is also reduced in these

scenarios (Bugg, Jacoby, & Chanani, 2011). These item-specific proportion congruency ef-

fects (and others) are parsimoniously explained by an “event” or “episode file” framework of

episodic memory and cognitive control (e.g., Egner, 2014; an extension of Hommel, 2004).

Within this framework, representations of features of the task set (e.g., blue) are bound

with co-occurring representations of internal control “settings” (e.g., decreased processing of

distractor dimension) as an episodic trace. Presentation of any one feature leads to retrieval

of the entire file, including re-instantiation of the associated control setting. This leads to a

clear prediction that could be tested via multivariate methods and an appropriately designed

Stroop task: within trials in which only one feature of a learned association is presented (a

blue hue, without an accompanying distractor word), can the associated control condition

(incongruent) be decoded from patterns of prefrontal activity (relative to when blue does

not predict congruency)? In other words, when control is unnecessary , will there still be

the obligatory retrieval and expression of the control state? Such a finding would provide

the most direct neural evidence to-date of the existence of control-based event files.
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4.2.2 Cued task-switching.

The cued-task switching paradigm is perhaps even more amenable to RSA decomposition

than Stroop, as it orthogonalizes abstract task rules. This enables representational models

to be simultaneously estimated at multiple levels of abstraction: from target or distractor

stimuli or responses, to task rules, to effects of task-switching and task-rule congruency.

Indeed, recent EEG studies have used this design to great effect (Hall-McMaster, Muhle-

Karbe, Myers, & Stokes, 2019; Hubbard, Kikumoto, & Mayr, 2019) in tracing within-trial

dynamics for each representational component. Within fMRI research, such a design could

be useful for a variety of questions. For example, incorporating additional, 2nd or 3rd-order

rules could enable novel tests of hierarchical theories of prefrontal cortex organization to

be tested (Badre & Nee, 2018). Tracking how these representations are modulated by the

effects of learning, or by performing the task under different instructions (e.g., to learn all

S-R pairings, or to use a “hidden” task rule; Dreisbach & Haider, 2008) could inform the

neural consequences of establishing a task set. Or, incorporating reward manipulation into

the design (e.g., Hall-McMaster et al., 2019) could enable dissociating motivational from

task representations, and examining their interaction. Findings from fMRI experiments

could compliment the EEG work that has been conducted by localizing the representations

to more focal anatomical areas.

4.2.3 Across task and across timepoint analyses.

RSA also lends itself to testing theories regarding the format of dorsolateral prefrontal rep-

resentations. One influential theory, “adaptive coding”, posits that dlPFC has a high degree
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of representational flexibility (Duncan, 2001; Stokes et al., 2013). This theory places lim-

ited constraints on long-term encoding stability of particular variables (e.g., the patterns

on cortex that are evoked by a certain task rule), emphasizing instead a flexible, context-

dependent organization. But, a key prediction this perspective makes is that, though the

code itself is labile, the information contained within is stable. For example, in a test–retest

cued task-switching design, dlPFC is expected to encode the same task-relevant features at

test and retest, however the patterns on cortex that contain this information are liable to

change. From an RSA framework, the stability at these two levels of analysis could be easily

tested by assessing the test–retest correlation between the spatial activity patterns (encoding

stability), and between the correlation matrices derived from these patterns (informational

stability) (see, e.g., Kriegeskorte & Diedrichsen, 2019).

In contrast, alternative “compositional” frameworks propose that dlPFC stably encodes cer-

tain abstract functions, or “task primitives”, that are combined to perform various tasks.

The degree to which two tasks load on common primitives dictates the degree to which they

drive similar activation patterns. To test this hypothesis, RSA models could be designed to

evaluate, for example, the intercorrelations among conflict-driven activation patterns from

a battery control tasks. Tasks that evoke similar activation patterns should tap similar un-

derlying processes – and thus, should elicit similar behavioral performance across subjects.

In other words, the similarity structure of activation patterns should predict that of behav-

ioral performances. Demonstrating an isomorphism between brain and behavioral structures

would suggest a compositional architecture underlies dlPFC function within these tasks.
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4.3 Limitations

4.3.1 Task-correlated noise.

A general concern for multivariate based neuroimaging analyses is the degree to which fMRI

BOLD activation patterns are reflective of non-neural contributions. Relative to regional

synaptic activity, the BOLD signal is strongly dependent on non-neural, “nuisance” factors

such as motion and respiration. Traditionally, these sources of noise are removed in fMRI

analyses via regression, under the assumption that their timecourses are uncorrelated, or

weakly correlated, with models of the timecourse of regional brain activity. Yet when this

assumption is not met, interpretational problems can arise. The current design may be

particularly vulnerable to this concern because of the use of overt verbal responding for the

Stroop task.

This feature of the task design increases the difficulty of interpreting the results of our

target coding model. Participants likely moved their heads or exhaled while articulating

in a way that was to some degree unique to each target response.8 In turn, this response-

specific motion could have induced particular patterns of variance in the BOLD signal across

voxels, which would inflate correlations to our target coding model. Although we used

standard motion regressors and performed scrubbing, it is likely that our procedures were not

completely effective. Thus, it is likely that the widespread target coding we observed (66%

of parcels) reflects an overestimation of neural activity that was driven by task-correlated

noise.

8While likely, this hypothesis could be tested by performing “RSA” on the timecourses of framewise
displacement (i.e., the rigid-body motion estimates).: is target information decodable from these traces?
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To mitigate this issue, we used model comparison. Model comparison is a characteristic

advantage of the RSA framework over other multivariate decoding frameworks (MVPA),

which typically do not furnish effect sizes (but rather decoding accuracies), and typically do

not involve multiple models being compared in terms of their fit to the entire representational

structure. For our purposes, RSA model comparison gave a principled way of narrowing the

list of “target coding” parcels to those carrying representations less likely to be driven solely

by noise. Encouragingly, these model comparisons led to a substantial reduction in the

number of identified parcels; and, those that were identified included areas in line with

previous research (see Discussion section Specific implications: Neuroanatomical profiles).

Further, it is less clear how these sources of noise could account for the predicted and

anatomically specific correlations we observed between the strength of target coding (in

IPS and dlPFC) and the size of the behavioral Stroop effect.9 Thus, while task-correlated

motion may have inflated target decoding, our method of model comparison was to some

degree effective at distinguishing neurally driven pattern representations.

Future fMRI work with verbal tasks should anticipate these sources of noise and use more ag-

gressive motion removal procedures (either statistical or procedural). But, we note that the

problem of “task-correlated noise”, if conceptualized more generally to include correlated fea-

ture spaces, is not unique to fMRI. That is, neuroimagers and neurophysiologists alike must

contend with the fact that the measured response of a region (or, e.g., neuron) may seem

to reflect a particular hypothesized feature space, but in actuality encodes a correlated,

yet fundamentally different, space. For example, rather than “conflict”, dmPFC activity

has been alternatively interpreted as encoding “time on task” (Grinband et al., 2011). This

problem of correlated feature spaces is addressable via experimental design. In general, more

9To bolster this stance, additional correlational analyses could be performed that attempt to control for
potential relationships between motion estimates and Stroop.
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elaborate stimulus sets enable representational models with more fine-grained distinctions to

be compared. Further, in combination with an expansive stimulus set, demonstrating spe-

cific modulation of a representation as a result of contextual manipulations (e.g., attention,

proportion congruency) would afford stronger evidence for the model representation (Popov,

Ostarek, & Tenison, 2018). In addressing these more fine-grained representational questions,

future work would also likely attenuate issues with task-correlated “nuisance” factors.

4.3.2 Analytic decisions.

A general limitation of the current study was our choice of the particular statistical methods

for RSA. While we followed the originally recommended default procedures (Nili et al., 2014),

in recent years, several issues with these procedures have been highlighted and substantial

improvements have made (Diedrichsen & Kriegeskorte, 2017).

In particular, interpretational problems arise from the use of the Pearson correlation to esti-

mate pattern similarity. The Pearson correlation is statistically biased: with increasing noise,

the expected value of r shrinks toward 0 (away from the “true” similarity). Because different

ROIs have different signal-to-noise ratios (SNR), this bias makes it difficult to compare RSA

model fits between regions. For example, we found that target coding in dlPFC (FEF) was

not greater than dmPFC (Figure 3). Yet, it is hard to determine whether this was due to

increased noise in dlPFC (e.g., from the scanner), or because of no “true” difference. The use

of a biased statistic would also systematically impact individual differences analysis, as SNR

likely also varies across participants. These issues can be entirely circumvented, however, by

using unbiased estimators, which can be obtained in RSA through cross-validating patterns

across scanning runs (Walther et al., 2016) or through empirical Bayesian methods (e.g.,
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Diedrichsen, Ridgway, Friston, & Wiestler, 2011; Cai, Schuck, Pillow, & Niv, 2019; Friston,

Diedrichsen, Holmes, & Zeidman, 2019). An added benefit of cross-run estimation is that it

naturally affords an estimate of split-half pattern reliability. Reliability estimates could be

used for several purposes: for example, to select ROIs that reliably encode some aspect of

the task prior to RSA, or as a metric for unbiased methodological optimization (i.e., to find

pre-processing procedures that maximize reliability).

4.4 Prospective design recommendations for RSA in

Stroop.

A prospective design could address many limitations of the current study, in addition to

many new questions. Here, we provide general suggestions for prospective studies.

4.4.1 Use unbiased measures of similarity.

Many interesting Stroop manipulations rely on changing the presentation frequency of certain

stimuli or conditions to effect certain cognitive control processes. While creating a design

that employs these manipulations, the current best practice is to use two sets of stimuli:

those that induce the process, and those that diagnose the process (Braem et al., 2019).

The inducer stimuli carry the frequency manipulations, while the diagnostic stimuli are

“unbiased” (e.g., congruency status is uncorrelated with target or distractor identities, and

cannot be predicted in advance). Thus, with equal proportion congruent:incongruent, the

total number of the diagnostic stimuli will necessarily be unbalanced within each cell of the

RSA matrix (i.e., incongruent stimuli will be presented less often than congruent). This
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poses a problem for RSA, as patterns estimated from more numerous stimuli (i.e., more

reliable estimates) will tend to have stronger correlations with other patterns. (In the case

of diagnostic stimuli, this would inflate the correlations among congruent stimuli.)

Two solutions to this problem would be to either down-sample (exclude data), or to focus

only on mostly incongruent lists (as we did here). A much more practical solution, however

would be to simply to use an unbiased measure of similarity (see Limitations). Because the

expected value of these measures is independent of the number of trials contributing to the

pattern estimate, using such a measure would side-step this design issue.

4.4.2 Incorporate experimental control conditions or tasks.

Adding certain conditions to the paradigm would help to shed light on target and distractor

representation. Including a reverse Stroop list, in which participants would be instructed

to read the word (ignoring color), could be useful for several purposes. For example, this

condition could used as a “negative” control, as any brain–behavior relationship that is

hypothesized to depend on control should not be present (albeit, a null correlation would

be qualified by the probable reduction in across-participant variance of the reverse Stroop

effect). Also, examining the relative cortical distribution of target and distractor coding

within reversed and “forward” Stroop tasks could highlight the impact that different con-

textual rules have on widespread cortical processing. Including a nonverbal paradigm would

additionally be desirable to address concerns of task-correlated noise, although this comes

with limitations, of course, of limited stimulus sets and arbitrary response mappings.
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4.4.3 Densely sample the stimulus space.

RSA can be likened to casting a net over an invisible structure: the denser the net, the

more detail will become visible. That is, with more diversity in the set of stimuli (or task

conditions), more finer-grained representational models will be able to be teased apart. But,

this type of “condition-rich” approach is incongruent with typical color-word Stroop investi-

gations, which have typically used between 4–16 unique stimuli (whereas RSA studies often

use upwards of 30). More diverse stimulus sets could be incorporated in Stroop in a number

of ways.

One method for increasing the specificity of the results would be to incorporate condition-

rich multivariate localizer tasks for different representations. That is, prior to the color-word

Stroop experiment, participants could be presented with extensive lists of words and colors.

A variety of models could be fit on these data to identify regions that preferentially represent

certain stimulus features, which could be used as functional ROIs in the subsequent Stroop

task.10 For example, distractor models could be built to estimate representations of low-

level visual form (by calculating the pixel-by-pixel overlap of images), orthography (e.g., via

a model of open bigram similarity; Whitney, 2008), semantic features (via similarity in, e.g.,

word2vec embeddings; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), or phonology

(e.g., Fischer-Baum, Bruggemann, Gallego, Li, & Tamez, 2017). Similarly, target models

could be build to estimate hue (using similarity in a color space), semantic, or phonologi-

cal representations. Further, manipulating the instructions (e.g., “name the color” versus

“ignore the colors; perform another [irrelevant] task”), response versus perceptual processes

could be (de)emphasized. When creating the stimuli lists, the to-be-tested models should

10This localizer analysis could be conducted via searchlight procedures, or a parcellation-based approach.
Although searchlights may be appealing, care would have to be taken in establishing searchlight-based ROIs
(Etzel et al., 2013)
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be built and examined. An optimal stimulus list would result in orthogonal representational

models. Combining these procedures with the color-word Stroop paradigm and proportion

congruence manipulations could provide a greater level of representational specificity to the

findings (e.g., “In mostly incongruent versus congruent lists, distractor representations within

regions sensitive to orthographic features were attenuated.”).

A stronger design would enrich the Stroop stimulus set itself to test for specific context-based

modulation of representations. (This could be done in combination with a localizer task.)

At least relative to the present design (of 4 colors × 4 words), the color-word stimulus set

could be expanded (e.g., to 8 or 12 colors and words). Ultimately, however, the number of

color words with high hue–name agreement is limited. Using Stroop variants that are not

confined to the set of nameable colors (e.g., picture-word interference task) can address this

issue.

58



Chapter 5

Conclusion

In the classic color-word Stroop task, distinct stimulus dimensions evoke corresponding com-

ponents of fMRI activity patterns, with predictable dissociations in neuroanatomical distri-

bution and behavioral relevance. With care, these representations can be revealed through

simple representational similarity analysis. This neuroimaging approach opens the door for

more sophisticated tests of cognitive control theory, as the language of many such theories

is representational in nature.
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Tables

Table 1: Task-relevant selective parcels (t > {0,d}, d 6> 0).

parcel neighborhood rho(t) p(t¿0) rho(d) p(d¿0) rho(c) p(c¿0)

d32 r aCC and mPFC 0.04 0.00 0.00 0.48 0.04 0.07
a24 r aCC and mPFC 0.02 0.02 -0.01 0.92 0.02 0.34
9m l aCC and mPFC 0.02 0.01 -0.01 0.88 0.03 0.17
STSda r aud. assoc. 0.04 0.00 0.00 0.79 0.00 0.63
STSdp l aud. assoc. 0.02 0.01 -0.01 0.92 0.02 0.27
V6A r d vis. 0.03 0.00 -0.01 0.96 -0.01 0.86
p9-46v r dlPFC 0.05 0.00 0.01 0.37 0.04 0.10
8C r dlPFC 0.04 0.00 0.00 0.29 0.03 0.12
9p l dlPFC 0.04 0.00 -0.01 0.76 0.03 0.23
a9-46v r dlPFC 0.04 0.00 0.00 0.71 0.01 0.17
8Ad r dlPFC 0.04 0.00 0.00 0.59 0.04 0.08
8BL r dlPFC 0.03 0.00 -0.01 0.83 0.05 0.04
8Ad l dlPFC 0.03 0.00 -0.01 0.94 0.04 0.08
46 l dlPFC 0.03 0.01 -0.01 0.85 0.01 0.44
9-46d r dlPFC 0.03 0.02 -0.01 0.85 0.04 0.15
8Av l dlPFC 0.03 0.01 -0.01 0.88 0.02 0.25
LBelt l early aud. 0.05 0.00 0.01 0.10 0.04 0.17
RI l early aud. 0.04 0.00 0.01 0.10 0.04 0.05
MBelt r early aud. 0.04 0.00 -0.01 0.77 0.01 0.55
A1 l early aud. 0.03 0.01 -0.01 0.78 0.03 0.31
IFSp r iFC 0.04 0.00 0.00 0.39 0.03 0.14
45 l iFC 0.04 0.00 -0.01 0.84 0.03 0.19
IFJa l iFC 0.04 0.00 0.00 0.58 0.06 0.00
47l l iFC 0.03 0.00 0.01 0.49 0.00 0.72
47l r iFC 0.03 0.03 -0.01 0.77 0.04 0.23
p47r r iFC 0.03 0.03 -0.01 0.92 0.01 0.40
IFSp l iFC 0.02 0.01 -0.01 0.82 0.05 0.06
FOP4 r insular and FO 0.05 0.00 0.00 0.32 0.06 0.04
MI r insular and FO 0.05 0.00 0.01 0.38 0.05 0.03
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FOP5 r insular and FO 0.05 0.00 0.01 0.32 0.04 0.20
FOP3 l insular and FO 0.04 0.00 0.01 0.38 0.03 0.09
Ig l insular and FO 0.04 0.00 0.00 0.75 0.05 0.03
FOP3 r insular and FO 0.04 0.00 0.01 0.61 0.03 0.17
PoI2 l insular and FO 0.04 0.00 -0.01 0.81 0.00 0.50
PI r insular and FO 0.03 0.01 0.00 0.41 0.03 0.13
MI l insular and FO 0.03 0.00 -0.01 0.92 0.02 0.18
AVI r insular and FO 0.03 0.00 -0.01 0.91 0.03 0.32
IP2 r iP 0.04 0.00 -0.01 0.79 0.07 0.01
PFop r iP 0.04 0.00 0.00 0.47 0.01 0.35
PGi l iP 0.03 0.00 0.00 0.53 0.03 0.23
IP0 l iP 0.02 0.02 -0.01 0.76 0.05 0.04
PGp l iP 0.02 0.02 -0.01 0.92 0.05 0.04
TGd r lT 0.04 0.00 0.00 0.73 0.01 0.30
TGd l lT 0.03 0.00 0.00 0.57 0.00 0.47
TE2p l lT 0.03 0.00 -0.01 0.85 0.01 0.51
TE1a l lT 0.03 0.01 -0.01 0.93 -0.01 0.76
TE1a r lT 0.03 0.01 -0.01 0.91 -0.01 0.80
PHT l lT 0.03 0.00 0.00 0.55 0.05 0.03
TF r lT 0.02 0.02 -0.01 0.90 -0.01 0.84
3b r M1 and S1 0.06 0.00 0.02 0.06 0.04 0.13
4 r M1 and S1 0.06 0.00 0.00 0.39 0.02 0.24
2 l M1 and S1 0.04 0.00 -0.01 0.89 0.03 0.13
1 l M1 and S1 0.03 0.01 -0.01 0.88 0.02 0.22
PeEc l mT 0.04 0.00 0.00 0.80 0.01 0.51
FST r MT+ 0.04 0.00 0.01 0.46 0.07 0.01
V4t l MT+ 0.04 0.00 0.00 0.71 0.02 0.30
LO3 r MT+ 0.03 0.01 0.00 0.68 0.01 0.40
p10p l oFC and pFC 0.05 0.00 0.00 0.43 0.04 0.03
a47r l oFC and pFC 0.04 0.00 0.01 0.28 0.02 0.15
OFC r oFC and pFC 0.03 0.00 -0.01 0.81 0.00 0.52
OFC l oFC and pFC 0.02 0.01 -0.01 0.93 0.03 0.18
47s r oFC and pFC 0.02 0.03 -0.01 0.77 0.01 0.43
23c l pCC 0.05 0.00 0.00 0.62 0.03 0.12
PCV l pCC 0.02 0.02 -0.01 0.87 0.05 0.03
SCEF r PL and mid cing. 0.05 0.00 0.01 0.26 0.05 0.09
24dv l PL and mid cing. 0.03 0.02 0.00 0.62 0.01 0.37
FEF r PM 0.05 0.00 0.01 0.27 0.03 0.12
6v r PM 0.05 0.00 -0.01 0.86 0.01 0.37
55b l PM 0.05 0.00 0.00 0.69 0.04 0.10
55b r PM 0.05 0.00 -0.01 0.77 0.04 0.05
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6d l PM 0.04 0.00 0.00 0.38 0.03 0.10
FEF l PM 0.04 0.00 -0.01 0.94 0.03 0.23
6v l PM 0.03 0.00 -0.02 0.96 0.00 0.45
6a r PM 0.03 0.00 0.00 0.72 0.06 0.01
OP4 l pOperc 0.06 0.00 -0.01 0.88 0.05 0.03
43 r pOperc 0.04 0.00 0.01 0.19 0.00 0.71
PFcm l pOperc 0.04 0.00 0.01 0.22 0.03 0.17
OP4 r pOperc 0.03 0.00 -0.01 0.83 0.00 0.78
OP1 l pOperc 0.03 0.00 0.00 0.45 0.03 0.13
43 l pOperc 0.03 0.00 0.00 0.48 0.02 0.34
FOP1 r pOperc 0.03 0.00 -0.01 0.84 0.02 0.38
AIP r sP 0.05 0.00 0.00 0.38 0.03 0.21
AIP l sP 0.04 0.00 0.00 0.35 0.09 0.01
7PC l sP 0.04 0.00 0.00 0.67 0.02 0.21
LIPv r sP 0.03 0.01 0.00 0.64 0.05 0.01
MIP r sP 0.03 0.01 0.00 0.66 0.08 0.01
LIPd r sP 0.02 0.02 -0.01 0.83 0.03 0.26
PSL r TPOJ 0.03 0.01 0.00 0.51 0.03 0.17
V8 l v vis. 0.04 0.00 0.01 0.39 0.03 0.39
VVC l v vis. 0.04 0.00 0.00 0.72 0.03 0.24
VVC r v vis. 0.04 0.00 0.00 0.37 0.02 0.39
FFC l v vis. 0.03 0.01 0.00 0.52 0.03 0.26

Note. This list does not include target-selective parcels (see Table 2), or task-
relevant–congruency selective parcels (see Table 1). Anterior cingulate and medial
prefrontal cortex (aCC and mPFC); auditory association cortex (aud. assoc.); dor-
sal visual cortex (d vis.); dorsolateral prefrontal cortex (dlPFC); early auditory cor-
tex (early aud.); inferior frontal cortex (iFC); insular and frontal operculum (insu-
lar and FO); inferior parietal lobule (iP); lateral temporal cortex (lT); mT (middle
temporal); orbital and polar frontal cortex (oFC and pFC); posterior cingulate cor-
tex (pCC); premotor cortex (PM); posterior operculum (pOperc); superior parietal
lobule (sP); temporo-parietal-occipital junction (TPOJ); ventral visual (v vis.).
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Table 2: Target-selective parcels (t > {0,d, c}, {d, c} 6> 0).

parcel neighborhood rho(t) p(t¿0) rho(d) p(d¿0) rho(c) p(c¿0)

10r r aCC and mPFC 0.02 0.02 0.00 0.56 -0.01 0.71
STSda l aud. assoc. 0.05 0.00 -0.01 0.81 0.00 0.45
STGa l aud. assoc. 0.04 0.00 0.01 0.35 0.00 0.68
A4 r aud. assoc. 0.04 0.00 -0.01 0.86 -0.01 0.88
A5 r aud. assoc. 0.02 0.03 -0.01 0.86 -0.02 0.92
V6 r d vis. 0.04 0.00 0.01 0.08 0.00 0.64
PBelt r early aud. 0.05 0.00 0.00 0.49 0.01 0.62
PFop l iP 0.05 0.00 -0.01 0.89 0.00 0.52
TGv r lT 0.04 0.00 0.01 0.22 0.01 0.55
TE2a l lT 0.03 0.01 -0.01 0.80 -0.02 0.87
3b l M1 and S1 0.08 0.00 -0.01 0.86 0.00 0.46
4 l M1 and S1 0.06 0.00 -0.01 0.85 -0.01 0.79
3a l M1 and S1 0.06 0.00 -0.01 0.85 -0.02 0.95
11l l oFC and pFC 0.04 0.00 0.01 0.12 0.01 0.51
11l r oFC and pFC 0.04 0.00 0.01 0.29 0.00 0.64
POS2 r pCC 0.04 0.00 0.00 0.65 0.00 0.70
5mv r PL and mid cing. 0.05 0.00 0.02 0.10 0.02 0.30
5m l PL and mid cing. 0.04 0.00 0.00 0.35 -0.01 0.67
OP2-3 l pOperc 0.03 0.00 0.00 0.49 0.00 0.76

Note. See Table 1 for “neighborhood” abbreviations.

Table 3: Distractor coding parcels (d > 0).

parcel neighborhood rho(t) p(t¿0) rho(d) p(d¿0) rho(c) p(c¿0)

V2 l early vis. 0.03 0.00 0.05 0.00 0.04 0.05
V3 r early vis. 0.03 0.02 0.04 0.00 0.06 0.03
V1 l V1 0.03 0.05 0.05 0.00 0.06 0.03

Note. See Table 1 for “neighborhood” abbreviations.
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Table 4: Congruency coding parcels (c > 0).

parcel neighborhood rho(t) p(t¿0) rho(d) p(d¿0) rho(c) p(c¿0)

8BM r aCC and mPFC 0.05 0.00 0.00 0.47 0.08 0.00
p32pr r aCC and mPFC 0.04 0.00 0.01 0.41 0.07 0.00
s6-8 r dlPFC 0.03 0.01 0.00 0.37 0.08 0.00
i6-8 l dlPFC 0.03 0.00 0.02 0.08 0.07 0.02
9-46d l dlPFC 0.01 0.29 -0.02 0.97 0.06 0.00
p9-46v l dlPFC 0.04 0.00 -0.01 0.92 0.06 0.01
SFL l dlPFC 0.04 0.00 0.02 0.05 0.06 0.01
IFJp l iFC 0.03 0.01 0.01 0.17 0.07 0.00
44 l iFC 0.03 0.01 -0.01 0.93 0.06 0.01
FOP4 l insular and FO 0.03 0.00 0.00 0.46 0.08 0.01
IP1 l iP 0.02 0.02 0.01 0.37 0.13 0.00
IP0 r iP 0.05 0.00 0.03 0.02 0.09 0.00
LO2 r MT+ 0.01 0.18 0.00 0.72 0.08 0.00
RSC l pCC 0.03 0.00 0.01 0.06 0.08 0.00
SCEF l PL and mid cing. 0.04 0.00 0.01 0.07 0.09 0.00
6ma l PL and mid cing. 0.02 0.04 0.02 0.04 0.08 0.00
6ma r PL and mid cing. 0.05 0.00 0.02 0.07 0.07 0.00
PEF l PM 0.04 0.00 0.01 0.11 0.07 0.01
MIP l sP 0.02 0.02 0.02 0.09 0.12 0.00
LIPd l sP 0.02 0.01 0.02 0.03 0.11 0.00

Note. See Table 1 for “neighborhood” abbreviations.
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Table 5: Congruency coding parcels
that were better explained by an “in-
congruency” coding model.

parcel.hemi rho(incon-con) p

IP1 l 0.03 0.00
MIP l 0.03 0.01
SFL l 0.02 0.01
6ma l 0.02 0.01
6ma r 0.02 0.02
SCEF l 0.02 0.04
LIPd l 0.02 0.04

Note. Incongruency model fit (i);
Congruency model fit (c). See Table
1 for “neighborhood” abbreviations.
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Table 7: Correlations with R2 > 0.01 between the strength of task-dimension coding
and Stroop effect (RT) across individuals.

region dimension r [95% CI] r2 ρ [95% CI] ρ2

IPS (r) target -0.50 [-0.663 -0.275] 0.25 -0.45 [-0.667 -0.183] 0.20
dlPFC (l) distractor -0.39 [-0.645 -0.072] 0.15 -0.32 [-0.597 -0.010] 0.10
dlPFC (r) target -0.39 [-0.615 -0.096] 0.15 -0.35 [-0.596 -0.049] 0.12
VOT (l) congruency -0.32 [-0.507 -0.121] 0.10 -0.38 [-0.580 -0.139] 0.15
SMmouth distractor 0.29 [0.064 0.507] 0.09 0.32 [0.040 0.564] 0.10
dmPFC (l) congruency 0.26 [-0.018 0.495] 0.07 0.16 [-0.145 0.427] 0.03
V1–V3 (r) distractor -0.25 [-0.484 0.008] 0.06 -0.24 [-0.492 0.034] 0.06
V1–V3 (r) congruency -0.25 [-0.494 0.019] 0.06 -0.30 [-0.543 -0.009] 0.09
V1–V3 (l) congruency -0.24 [-0.526 0.085] 0.06 -0.31 [-0.562 -0.015] 0.09
V1–V3 (r) target -0.23 [-0.495 0.068] 0.05 -0.28 [-0.537 0.004] 0.08
VOT (r) congruency -0.22 [-0.507 0.070] 0.05 -0.32 [-0.570 -0.041] 0.11
IPS (r) congruency -0.20 [-0.459 0.092] 0.04 -0.19 [-0.460 0.119] 0.04
IFC (r) target -0.20 [-0.483 0.110] 0.04 -0.21 [-0.496 0.102] 0.04
dlPFC (r) congruency 0.18 [-0.139 0.453] 0.03 0.10 [-0.195 0.373] 0.01
VOT (r) target -0.17 [-0.473 0.162] 0.03 -0.22 [-0.493 0.072] 0.05
dlPFC (l) target -0.16 [-0.402 0.089] 0.03 -0.17 [-0.429 0.121] 0.03
IPS (l) congruency -0.15 [-0.364 0.057] 0.02 -0.23 [-0.461 0.016] 0.05
SMmouth congruency 0.14 [-0.146 0.411] 0.02 0.09 [-0.211 0.375] 0.01
fIns (l) congruency -0.13 [-0.376 0.127] 0.02 -0.16 [-0.425 0.137] 0.02
IPS (r) distractor -0.13 [-0.421 0.174] 0.02 -0.11 [-0.404 0.194] 0.01
dmPFC (l) target 0.12 [-0.181 0.434] 0.02 0.13 [-0.182 0.428] 0.02
VOT (l) distractor -0.12 [-0.417 0.181] 0.01 -0.18 [-0.446 0.111] 0.03
SMmouth target -0.11 [-0.377 0.218] 0.01 -0.07 [-0.361 0.237] 0.00
fIns (r) congruency 0.10 [-0.188 0.361] 0.01 0.04 [-0.271 0.329] 0.00
fIns (l) target -0.10 [-0.355 0.166] 0.01 -0.06 [-0.336 0.234] 0.00

Note. 95% confidence intervals obtained through bootstrap resampling (10,000 repli-
cates). r = Pearson’s correlation coefficient; ρ = Spearman’s correlation coefficient;
IPS = intra-parietal sulcus; dlPFC = dorsolateral prefrontal cortex; VOT = ventral
occipito-temporal cortex; fIns = frontal insular; IFC = inferior frontal cortex; SM-
mouth = somato-motor–mouth.

80



Table 8: Parameter estimates from the selected brain–behavior
model.

term b se t p CPD

distractor, dlPFC (l) -163.95 60.48 -2.71 0.01 0.08
target, IPS (r) -153.48 44.09 -3.48 0.00 0.13
congruency, mPFC (l) 63.18 17.07 3.70 0.00 0.15
congruency, v-vis. (l) -57.42 20.23 -2.84 0.01 0.09

Note. CPD = coefficient of partial determination, the unique
variance explained by a given term.
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Figure 7: Stroop effects estimated with simple linear models. A, Participants’ mean Stroop effects, estimated through simple
linear contrast. These point-estimates were calculated the “standard” way: the mean RT or error rate on incongruent trials
minus congruent, independently for each participant. Error bars represent percentile bootstrapped 95% confidence intervals.
Two things are notable: three participants have negative Stroop effects, and there is substantial heterogeneity in variance
across individuals’ estimates. Notably, the individuals with negative Stroop effects (which are generally thought not to exist
in the population) either have relatively increased error rates, larger variances, or a combination thereof. These factors —
heterogeneity of variance, and negative Stroop effects — are undesireable, but can be taken into account by mixed-level
models, which furnish “posterior” estimates of participants’ stroop effects (i.e., after shrinking each effect toward the mean in
proportion to its reliability). B, Plot of estimated Stroop effects from homogeneous versus heterogeneous-variance mixed-level
models. The x-axis displays estimates from a homogeneous-variance model (note that these estimates were virtually identical
to those estimated by simple linear contrast in A, with an R2 of 0.88). The y-axis displays the same coefficients, estimated
through a model that additionally estimates a separate residual variance parameter per participant. The area of each circle is
proportional to the estimated residual variance (arbitrary scale). The horizontal deviations from the grey (unity) line indicate
that the heterogeneous-variance model shrunk the participant coefficients more towards their mean. Notably, the larger circles
(individuals with higher variance) tend to be more deviant from the line, illustrating that the less precise estimates tended to
be more extreme.
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Figure 8: Target-selective parcels. Areas that displayed significant coding only for the target dimension and greater target coding
than both distractor or congruency dimensions [t > (0,d, c), (d, c) 6> 0]. Parcels within this set are within left somatomotor
strip (4, 3a, 3b), bilateral STL (STGa–l, STSda–l, A4–r, PBelt–r), bilateral IT (TE2a–l, TGv–r), in addition to OFC (11-l and
a10p–r) and vmPFC (10r–r), left rostral IPL (PFop–l), left posterior opercular (OP2-3–l), right posterior paracentral lobular
(5mv–r), right precuneus (POS2–r) and medial extrastriate (V6–r).

Figure 9: “Super-parcels” defined for brain–behavior analysis.
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Figure 10: Bivariate relationships between target coding in IPS–r and dlPFC–r and behavior.
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Figure 11: Fit statistics from brain–behavior regression model selection. Each point is a model: a unique combination of any
number of the 7 explanatory variables, with Stroop effect in RT as the response variable. Cross-validated error (y-axis) refers
to the error obtained in a leave-one-out cross-validation procedure (i.e., 1 − rCV ; see Method section Brain–behavior model
fitting and evaluation). Among the best models, the statistics agree: a general structure with congruency coding in left mPFC
(with +β coefficient), congruency coding in left ventral visual (−), target coding in right IPS (−), distractor coding in left
dlPFC (−) yeilds the lowest BIC, and the second lowest CV-error and AIC. (The model that minimized these latter statistics
additionally included a term for distractor coding in bilateral somato-motor–mouth (+); however, the change in AIC and CV-
error associated with this addition was relatively small. Further, the best 17% of these models (with lowest BIC) contain coding
of congruency in both mPFC (red points), suggesting that this term, despite its weak bivariate correlation (Figure 5D), is an
important explanatory variable of individual variability in Stroop RT.
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