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Molecular dynamics simulations are a powerful tool to explore conformational landscapes, 

though limitations in computational hardware commonly thwart observation of biologically 

relevant events. Since highly specialized or massively parallelized distributed supercomputers 

are not available to most scientists, there is a strong need for methods that can access long 

timescale phenomena using commodity hardware. In this thesis, I present the goal-oriented 

sampling method, Fluctuation Amplification of Specific Traits (FAST), that takes advantage of 

Markov state models (MSMs) to adaptively explore conformational space using equilibrium-

based simulations. This method follows gradients in conformational space to quickly explore 

relevant conformational transitions with orders of magnitude less aggregate simulation time than 

traditional simulations. Since each of the individual simulations are at equilibrium, all of the 

thermodynamics and kinetics in the final MSM are preserved. Here, I first describe the FAST 

method then demonstrate that it can be used for a variety of tasks, from folding proteins to 
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finding cryptic pockets. Next, I validate that FAST discovers appropriate transition pathways 

between states. Lastly, I apply FAST in detailing the mechanism of stabilization for a clinically 

relevant mutation in TEM-1 β-lactamase. This mechanistic understanding is then used to design 

other stabilizing mutations, which are all supported experimentally. 
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Chapter 1 

Introduction 

 

1.1 Molecular Dynamics as a Tool for Accessing a Proteins’ 

Conformational Ensemble 

The development of structural biology in the middle of the 20th century transformed our 

understanding of biomolecules.1 No longer were we blind to the underpinnings of cellular 

processes. Rather, all-atom conformational models have allowed us to see how amino acid 

sequences dictate the structural features important for function. Insights from structural models 

have increased our understanding of countless biological systems and influenced the way we 

perceive biological phenomenon, such as enzyme catalysis, protein folding, or cell signaling, to 

name a few. The ever-growing number of structures deposited into the protein data bank (PDB) 

each year highlights the importance we place on structural models. Nevertheless, there are a 

growing number of examples where structural models are insufficient in elucidating relevant 

molecular mechanisms: phenotypically distinct sequences oftentimes give rise to nearly identical 

crystal structures. This begs the question: how do these sequences behave so differently when 

they look so similar? The simple explanation is that the single structure obtained is not the whole 

story. 

A proteins’ dynamics and conformational ensemble are increasingly shown to be 

important for understanding their biological function.2-7 Proteins are not static structures floating 
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in solution. Instead, they are in constant motion and are best characterized by their 

conformational ensemble, which might change in response to particular stimuli. Instead of any 

single conformation, it is the ensemble that is most representative of a proteins’ role in and out of 

cells. It is no surprise then, that single snapshots of a particular conformation may not provide a 

complete picture. A method that could readily access a proteins’ conformational ensemble would 

then bring about another revolution in our understanding of biological mechanisms. While there 

are some experimental methods that can provide insight into a proteins’ conformation ensemble, 

namely spectroscopic methods such as fluorescence resonance energy transfer (FRET)8 and 

nuclear magnetic resonance (NMR) spectroscopy9, the only methods that can provide all-atom 

time-series descriptions of protein motions are computational. 

Molecular dynamics (MD) simulations are very promising as a tool to access the 

conformational ensemble of a protein.10 MD simulations propagate the position of each atom in a 

system by numerically solving Newton’s equations of motion, where snapshots of the atomic 

coordinates are saved at discrete time intervals. The validity of the computed dynamics relies on 

the ability to represent the atomic energies of a system. Since the true energetics of a protein 

system—and even quantum approximations—are difficult to calculate, the energy landscape is 

most commonly an empirical model where atoms are represented as balls attached by springs. By 

repeatedly integrating the empirical model to obtain new coordinates, we obtain a time-series 

trajectory of the protein exploring conformational space. With a sufficiently long trajectory, we 

could theoretically know the thermodynamic and kinetic properties of the protein. However, 

current computational hardware severely limits the ability to access trajectories of sufficient 

length. 
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The timestep for numerically integrating atomic motions is constrained by the fastest 

motion, hydrogen bond vibrations, to be around 1 fs. This means that obtaining a 1 s trajectory—

not an unreasonable timescale for many real protein systems—requires solving the equations of 

motion and propagating each atom a quadrillion (1015) times. Generating such a trajectory, even 

with an empirical approximation of energies, where each timestep occurs within a small fraction 

of a second, could take a desktop computer over a million years.11 Arguably, the greatest 

challenge prohibiting the use of MD simulations is capturing long time-scale phenomena without 

sacrificing the accuracy of thermodynamic and kinetic properties. 

Since the limitation of reaching long timescales can be thought of as a hardware issue, 

there has been a large effort to expand computer power by orders of magnitude. The first 

approach is to simply make a faster computer that is better able to get a sufficiently long 

simulation. The ANTON supercomputer is a notable example of a special purpose hardware for 

running MD simulations.12,13 This supercomputer is a triumph in computer engineering and can 

generate trajectories of small proteins into the millisecond regime14, although their cost and use 

are out of reach for most researchers and academic institutions. 

Another approach towards increasing computational abilities is to crowd-source the 

computation. This is the approach of Folding@Home, which utilizes the hardware of around 

100,000 personal computers that are donated when not in use.15 In this framework, many 

individual simulations are spawned across the commodity hardware that is donated. Instead of 

obtaining a single long simulation, the many independent simulations constitute a large 

aggregate simulation dataset. The aggregate of these simulations has the ability to capture long-

timescale phenomena despite each simulation being orders of magnitude shorter than the said 

timescale. This can be seen in the case of a two-state system with a large energy barrier: each 
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short simulation has a chance to jump the large barrier, which in total matches the chance of the 

single long simulation.16 Folding@Home has also been able to generate aggregate simulation 

times into the millisecond regime.17-19 

While ANTON and Foldin@Home can generate impressive simulation datasets, there is a 

new challenge: how do we make sense of the atomic coordinates to answer specific biological 

questions? It is a non-trivial task to convert the time-series trajectories into a human interpretable 

characterization of conformational space. In the case of having multiple trajectories, there is an 

added task of stitching together the parallel simulations in a way that corrects for the fact that 

conformations may not be Boltzmann distributed. A powerful framework to analyze trajectories 

is the use of Markov State Models (MSMs). These models treat simulation datasets as a Markov 

chain, which has the power of stitching together many parallel simulations in a statistically 

rigorous manner. This ability has some significant implications for using molecular dynamics to 

explore a proteins’ conformational landscape, which is explored in more detail in the following 

sections. 

Considering the abovementioned, it is a central objective of this thesis to combat the 

sampling problem and regularly access a proteins’ conformational ensemble. Work towards this 

goal is attempted in the following chapters with the use of MSMs, which allow for a more 

sophisticated sampling and analysis methods. The purpose of these methods is to connect the 

properties of protein ensembles with experimentally measurable quantities, such as stability and 

enzymatic activity. 
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1.2 Markov State Models 

1.2.1 Introduction to Markov Chains 

Markov state models (MSMs) are a network representation of a free-energy landscape. In this 

framework, each node represents a conformational “microstate” that corresponds to a free-energy 

minimum, and each edge represents the conditional transition probability of hopping between 

them.20-23 The goal in using an MSM is to provide a framework for stitching together many 

parallel simulations in a thermodynamically meaningful way. This is accomplished by reframing 

the simulations as a Markov chain, which only tracks the probability of hopping between states; 

added sampling in any state will only serve to refine transition probabilities and not naively 

overestimate equilibrium distributions. 

Markov chains were developed in the early 20th century as an elegant way to model 

stochastic processes. Markov chains can be described in the following way24: there are a set of 𝑁 

discrete states, 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}. Each of these states has a probability of transitioning to any of 

the other states within some specified unit of time. This unit of time is considered a step-size, or 

lag-time, and is represented as 𝜏. We denote the probability of transitioning, from state 𝑖 to state 

𝑗, as 𝑇𝑖𝑗. Sampling such a process for 𝑘-steps, we would obtain a trajectory, 𝜲 =

{𝛸1, 𝛸2, … , 𝛸𝑘}. A central postulate is that these transition probabilities are only dependent on 

the knowledge of being in the current state; how the process landed on this state does not 

influence where it will go next. This postulate is particularly valid for systems with sufficiently 

complex dynamics, where after some amount of time, a system will not remember how it arrived 

at its current state.25 

The transition probability matrix, 𝑻, has the ability to propagate a probability vector in 

the following way, 
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𝛎(1) =  𝛎𝐓 

 

where 𝛎 is the initial probability of being in any state, and 𝛎(1) is the probability of being in any 

state after one time-step. If we are interested in the probability for a second step, we can 

propagate the probability vector a second time, 

 

𝛎(2) =  𝛎(1)𝐓 = (𝛎𝐓)𝐓 =  𝛎𝐓2 

 

In this way, we can solve for the probability of being in any state at an arbitrary number of steps, 

𝑛, 

 

𝛎(𝑛) =  𝛎𝐓n 

 

For a memoryless process, as the number of steps gets larger, the probability of being in any 

state becomes less dependent on the initial conditions. For an ergodic Markov chain, a process 

where every state has the ability to reach every other state, the probability distribution will 

approach the equilibrium distribution, 

 

𝛑 =  𝛎(∞) = 𝛎𝐓(∞) 
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If the system is truly ergodic, the equilibrium distribution will converge independent of the 

starting distribution. Further propagation of this distribution by the transition probability matrix 

will return the same distribution, 

 

𝛑𝐓 =  𝛑 

 

From this, we can quickly determine the equilibrium populations from an ergodic Markov chain 

by calculating the eigenvectors of the transition probability matrix that have an eigenvalue of 

one. 

As previously mentioned, the ability to capture the equilibrium populations solely from 

the transition probabilities is incredibly powerful. This means that we only need proper estimates 

of the transitions between states, and not necessarily their global population to gather sufficient 

thermodynamics. With this simple Markov chain framework, the main challenge to building a 

Markov state model is in defining a state space from all-atom conformation, and then estimating 

a transition probability matrix from sparse connections. 

1.2.2 Defining a State-Space 

One of the most important aspects in building an MSM is defining the state space. The number, 

size, and connectivity of the discrete states will completely dictate the thermodynamic properties 

within an MSM. Hence, there has been careful thought into how discrete states are generated, for 

which there are a couple dominant approaches: geometric clustering and kinetic clustering. 

Geometric clustering aims to cluster conformations based on their structural similarity. 

This is appealing for a couple of reasons. First, structurally distinct states are a natural choice for 

defining energy minima. Additionally, geometric clustering is an excellent way to assess the 
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conformational heterogeneity in a particular dataset. Having many small states is often beneficial 

for describing the underlying kinetic network. In order to perform this type of clustering, we first 

have to define a structural metric for assessing the similarity between structures. Any metric may 

be used, so long as it can be framed as a distance that obeys the triangle inequality. A common 

metric that is used is the root-mean-squared deviation (RMSD) between atomic coordinates.20 

Another type of metric could be the Euclidean distance between a featurized representation of 

the protein—i.e. characterizing the secondary structure using 𝜙 and 𝜓 angles, creating an 

internal distance matrix, or, as has been done previously, by computing the solvent accessible 

surface area (SASA).26 

An important consideration in defining the state space is to determine which atoms to 

include from conformational frames. If one is characterizing large conformational 

rearrangements, it is found to be beneficial to only use the backbone heavy atoms (N, Cα, Cβ, 

CO, O), as the sidechain degrees of freedom can create an incredibly rugged landscape with poor 

statistics in the MSM downstream. Conversely, there may be certain regions of a protein where 

dynamics are most important, and an all-atom clustering of solely this section may be crucial (as 

is shown to be the case in Chapter 5). 

After the structural metric has been defined, structures are grouped using an unsupervised 

clustering algorithm. Common algorithms are the centroid-based clustering that include k-

centers, k-means, and k-medoids.27,28 These algorithms are optimization algorithms for the NP-

hard problem of partitioning a set of points in a hyper-dimensional space. It should be noted that 

these methods are non-deterministic and serve to find a local optimum. In brief, the main 

difference between the three k-series clustering methods mentioned above is that k-centers 

minimizes the distance between cluster centers, while k-means and k-medoids minimizes an ln 
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norm (or some type of distance) from each point to their assigned cluster center, which is either a 

hypothetical point or an actual data point, respectively. An implementational difference between 

the methods is that k-means and k-medoids requires the number of cluster centers as an input 

parameter, whereas k-centers requires either the number of cluster centers or a maximum 

distance to each cluster center. It should be noted that the number of states is less relevant than 

having small enough cluster centers that do not contain internal energy barriers. In practice, a 

recommended strategy for clustering data, when using an RMSD metric, is to use k-centers with 

a maximum distance cutoff to generate the initial assignments and cluster centers, and then refine 

the cluster centers with the k-medoids algorithm for some number of sweeps. 

The k-centers algorithm, in short, proceeds as follows: 1) choose an initial cluster center, 

either as a predetermined data point or as a randomly chosen point, and assign all data points to 

this cluster. 2) Calculate all distances to their assigned cluster center. 3) Choose the point with 

the largest distance to its assigned cluster center as a new cluster center. 4) Calculate the distance 

between all points and the new cluster center. 5) If the new distance is smaller than the distance 

to its currently assigned center, reassign the data point to the new cluster center. 6) Repeat steps 

3-5 until the specified number of cluster centers is reached or the maximum distance to any 

cluster center falls below some threshold. 

The k-medoids algorithm that is typically used is the partitioning around medoids (PAM) 

variant. This version uses a greedy search to find the medoid at each sweep. Given an initial set 

of assignments, PAM proceeds by iterating through each cluster and choosing a new center from 

one of the points currently assigned. All states are then reassigned to the closest cluster center. A 

cost is calculated, as the sum of distances from each point to their respective cluster center, and 

the new center is accepted if the cost is minimized with the new assignments, otherwise the new 
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center is rejected. K-means works similarly, however the new cluster center is chosen as the 

average point within each state assignment and does not necessarily need to be a real (or even 

physical) data point. 

An alternative to geometric clustering is a kinetic-based clustering, which attempts to 

group conformations based on the speed they exchange. This is thought to be particularly 

beneficial for systems that have very dynamic regions—a disordered tail to a protein could 

quickly produce many conformations with large RMSDs, though be kinetically very similar. 

Conversely, very similar conformations may have a large energy barrier separating them. The 

most common kinetic-based cluster algorithm is the time independent component analysis 

(tICA).29-31 The independent component analysis finds the basis vectors that best separates 

independent signals, in this case on the time-domain. For molecular dynamics data sets, each 

frame is featurized in some way, either using a distance matrix or backbone dihedrals, and 

projected onto the first few independent components. This projection will group things that are 

kinetically similar in each dimension. With this reduced dimensional space, one of the k-series 

clustering algorithms can then be easily used. While this approach has proven well for describing 

events such as protein folding, where the longest timescale is of most interest, it performs poorly 

when slow degrees of freedom are not functionally relevant. This has a particular disadvantage 

when describing the active site of a protein.32 

1.2.3 Estimating a Transition Probability Matrix 

Once the state-space has been described, we are left with the task of estimating a transition 

probability matrix. While this may seem straightforward, defects in sampling and/or clustering 

can make the task very challenging. Specifically, statistics in certain regions may be very poor, 

and in many cases the resulting MSM will not be ergodic; a non-ergodic MSM will have sources 
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and sinks that will impede an eigenvalue decomposition and given unreliable equilibrium 

populations. On the other hand, knowledge of what we expect at equilibrium can aid us in 

reconstructing an appropriate transition probability matrix from simulations out of a global 

equilibrium. In this section, I review some of the basic ways to estimate a transition probability 

matrix given simulation data. 

The first step in estimating a transition probability matrix, given a set of trajectories that 

have been clustered into a discrete state space, is to count the number of transitions between 

states. To ensure the Markov assumption in the resulting Markov model, we count transitions 

between frames that are a specified number apart. The simulation time of this transition is the lag 

time of the resultant MSM. With complex dynamics, the system should become memoryless 

after some amount of time, however if the lag time is too short, the state of the system will be 

influenced from its past and the Markovian assumption will not be valid. 25 Conversely, if the lag 

time is too long, the MSM loses resolution. More practically, a long lag time reduces the amount 

of available data. Due to the sliding window, the number of transitions counted in a single 

trajectory is computed as, 

 

𝑛𝑓𝑟𝑎𝑚𝑒𝑠 − 𝑙 + 1 

 

where 𝑛𝑓𝑟𝑎𝑚𝑒𝑠  is the number of frames in a trajectory and 𝑙 is the number of frames between 

states to count as a transition. For many short simulations, a large lag time could severely reduce 

the number of observed transitions. In practice, an MSM is generated for a variety of lag times 

and selected as the smallest lag time that the Markov assumption is valid. Validity of the Markov 

assumption is measured by plotting the slowest timescale as a function of the lag time; if the 
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system is Markovian, the slowest motion should not be affected by choice of lag time. Once a lag 

time is chosen, transitions are counted and summed into the transition count matrix, 𝐶𝑖𝑗, which 

counts the number of transitions observed between states 𝑖 and 𝑗. 

 The simplest way to estimate a transition probability matrix is to row-normalize the 

transition count matrix, 

 

𝑇𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =

𝐶𝑖𝑗

∑ 𝐶𝑖𝑘𝑘
 

 

As mentioned above, this is very likely to generate a state space that is not ergodic—i.e. there 

may be large number of observed transitions from state 𝑖 to 𝑗 but none from state 𝑗 to 𝑖. A 

common way to ensure ergodicity, without perturbing the data too significantly, is to add a prior. 

This prior can take the form of a pseudocount, 𝐶̃, which serves as our estimate of the system in 

the absence of data. With this pseudocount, we assume that each state has a single observed 

transition equally distributed between all other states, 

 

𝐶̃ =
1

𝑁
 

 

where 𝑁 is the number of states in the model. The resultant transition probability matrix then 

becomes, 

 

𝑇𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =

𝐶𝑖𝑗 + 𝐶̃

∑ (𝐶𝑖𝑘 + 𝐶̃)𝑘
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While adding a pseudocount to the count matrix will help to condition it, and make 

calculation of the eigenspectrum behave properly, we know that the counts are not what are 

expected when at equilibrium. For a reversible Markov process at equilibrium, we know that, 

 

𝜋𝑖𝑃𝑖𝑗 =  𝜋𝑗𝑃𝑗𝑖 

 

or put another way, 

 

𝐶𝑖𝑗 = 𝐶𝑗𝑖 

 

Another way to think of this: if we run an infinitely long simulation (perfectly equilibrated) and 

build an MSM, it should be equivalent to an MSM built from the same simulation run in reverse. 

Knowing this, we can enforce this reversibility by averaging count matrix with the transpose of 

itself, 

 

𝐶𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 =

𝐶𝑖𝑗 + 𝐶𝑗𝑖

2
 

 

From this, we can calculate the transition probability matrix by row normalizing. Since the count 

matrix is fully reversible, we can trivially calculate the equilibrium probabilities as, 

 

𝜋𝑖 =
∑ 𝐶𝑖𝑗

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒
𝑗

∑ 𝐶𝑘,𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

𝑘,𝑗
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This method provides a very convenient way to calculate the transition probability matrix and 

equilibrium populations, however, as can be seen in the above equation, the equilibrium 

population of state 𝑖 is determined by its number of observations. This is obviously not a 

desirable property when building an MSM, since one of the largest benefits should be its ability 

to stitch together simulations when the conformations are not Boltzmann distributed. 

 An alternative way to enforce reversibility is to leverage the information from the 

forward and reverse transitions to estimate the uncertainty of values in the transition probability 

matrix. From an information theoretic view, we know that the probability of a transition 

probability matrix generating the observed trajectory, 𝚾, is given by, 

 

𝑃(𝚾|𝑇) =  ∏ 𝑇𝑖𝑗

𝐶𝑖𝑗

𝑖𝑗

 

 

and from Bayes rule, 

 

𝑃(𝚾|𝑇)𝑃(𝑇) =  𝑃(𝑇|𝚾)P(𝚾) 

 

Therefore, we can assert that, 

 

𝑃(𝑇|𝚾) ∝  ∏ 𝑇𝑖𝑗

𝐶𝑖𝑗

𝑖𝑗
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where 𝑃(𝑇|𝚾) is the probability of a transition matrix given a set of data. Finding the transition 

matrix that maximizes the probability is termed the maximum likelihood estimation33, 

 

𝑇𝑖𝑗
𝑀𝐿𝐸 = arg max

𝑇𝑖𝑗
∗

𝑃(𝑇𝑖𝑗
∗ |𝚾) 

 

Trivially, this value will return the row normalized matrix. However, when the transition 

probability matrix is solved while simultaneously constrained to obey reversibility of the 

transition count matrix, the alterations to transition counts should be well balanced by sampling 

quality. Unfortunately, as is shown in chapter 4, large discrepancies between transition counts 

can lead to instability which tends to overpopulate a small subset of states. 

1.3 Adaptive Sampling 

There are a number of computational methods that aim to capture long timescale phenomena and 

enhance exploration of conformational space. Since MD simulations spend a majority of their 

time in energy minima—waiting to traverse some energy barrier—most methods attempt to alter 

the energy landscape to hasten transitions. If the transition is known a priori, energetic 

constraints can be added to pull the conformation over any barriers, which is known as steered 

molecular dynamics.34,35 Alternatively, to rapidly explore a landscape in an undirected manner, 

well depths can be modulated to reduce all energy barriers, as is done in accelerated molecular 

dynamics simulations.36,37 If exploration along some order parameter is desired, Metadynamics 

has gained popularity, which progressively adds gaussian penalty terms to previously explored 

regions of conformational space projected onto the order parameter.38,39 In addition to these 

methods, there are a number of others that attempt to cleverly apply energetic constraints or other 
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alterations to the energy barriers to enhance exploration.40-47 For most of these methods, there 

exist ways to undo the bias to the energetics after exploration, to reproduce accurate 

thermodynamics. Unfortunately, once the energetics of the landscape are altered, there is no way 

to obtain accurate kinetic information. Additionally, simulations have a significant chance of 

traversing unrealistic pathways between states, possibly crossing very large barriers; while there 

may be accurate free-energy differences between states that are discovered, if the set of states 

discovered are not realistic, the simulation results will be incredibly misleading. As such, there 

are serious advantages to using unbiased simulations for characterizing a conformational 

ensemble, especially if mechanistic details are desired. 

Markov state models offer a promising solution to capture long timescale phenomena, 

while preserving both thermodynamic and kinetic information. As mentioned in section 1.2.1, an 

MSM provides a framework for stitching together many parallel simulations with structures that 

a not Boltzmann distributed. This means that we can have any distribution of starting structures 

and still make a meaningful model. Additionally, there is no reason that the simulations have to 

be run all at the same time—we can use knowledge of a current set of simulations to make an 

informed decision about where to sample from next in conformational space. This is the tactic of 

the set of strategies known as “adaptive sampling”. This was first thought of as a great way to 

gather additional statistics from poorly sampled regions of conformational space and obtain an 

improved MSM.48 In this first version, simulations were restarted from states that contributed the 

most to the uncertainty in eigenvectors and eigenvalues of the obtained transition probability 

matrix. After this method was developed, adaptive sampling was eventually thought of as a new 

way to enhance exploration of conformational space, by selecting for states that have a high 

probability of discovering new and exciting conformations.49,50 Because each individual 
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simulation is run without any perturbation to the Hamiltonian, estimates of transition 

probabilities are unbiased, and proper thermodynamics and kinetics can be reconstructed. 

Adaptive sampling schemes typically follow the same protocol: 1) run a swarm of 

simulations, 2) cluster and analyze the obtained conformations, 3) rank each state based on some 

ranking method, 4) restart simulations from a set of states that optimize the ranking, and 5) 

repeat steps 2-4 until sufficient sampling is obtained. Over the years, there have been many 

adaptive sampling schemes developed, which largely differ based on the way states are either 

clustered and/or ranked between each round.51-57 Although the ranking functions differ between 

these methods, they all focus on statistical quantities and are “undirected” in terms of a direction 

in conformational space. 

 There is one major drawback to adaptive sampling: because the rankings are undirected, 

and conformational space is so unfathomably large, simulations often spend their time exploring 

large regions of space that are not interesting for a particular biological question. It is from this 

issue that a significant portion of this thesis was developed, to direct the sampling of 

conformational space and better explore protein dynamics. 

1.4 Scope of Thesis 

Despite their widespread use, the ability of molecular dynamics simulations to rigorously answer 

biologically interesting questions is still severely limited. As mentioned above, this is largely due 

to gathering sufficient data, although there is also the issue of analyzing the necessarily large 

data sets once obtained. Thus, the recurring theme for each chapter in this thesis is the need for 

developing methodologies and tools to gather meaningful data and make sense of it using 

commodity hardware. 
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Chapters 2-3 detail the development of the goal-oriented sampling algorithm, Fluctuation 

Amplification of Specific Traits (FAST). This algorithm differs from previously developed 

adaptive sampling algorithms in that it guides simulations based on structural metrics in addition 

to the traditional statistical metrics. Chapter 2 details the theoretical development of this 

algorithm. First, there is a formal justification for using counts-based adaptive sampling as part 

of the ranking to enhance state discovery. Next, the idea of conformational gradients in 

conformational space is explore. Then FAST is applied to three challenging problems in protein 

biophysics: finding cryptic pockets on proteins, finding transition pathways between two known 

states, and folding proteins. This method reduces the amount of aggregate simulation time 

required to make meaningful predictions of conformational ensembles. There is an added benefit, 

in that the smaller amount of data is easier to analyze. Chapter 3 details the practical 

considerations when running FAST simulation. In addition to providing a walk through, this 

chapter provides insights into the many hyperparameters that influence exploration and how to 

tune them for a particular use. 

While Chapters 2-3 introduce FAST and show that it can discover interesting states with 

orders of magnitude less aggregate simulation time than other sampling methods, there remain 

some fundamental questions. Specifically, do FAST simulations provide realistic pathways 

between states and are the resulting MSMs, built using goal-oriented sampling, valid in terms of 

their kinetics and thermodynamics? Additionally, these questions can be raised for the other 

dominant equilibrium-based sampling methods: running a long simulation, parallel simulations, 

or adaptive sampling. Chapter 4 explores the relationship between a chosen equilibrium-based 

sampling scheme and its exploration of conformational space by focusing on state discovery. 

This relationship is incredibly important because the states discovered when simulations are out 
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of global equilibrium dictate the final computational predictions. With infinite sampling, all 

sampling algorithms should provide the same result, however, simulation time is always limited. 

Additionally, the benefit of adaptive sampling lies in the ability to make efficient use of limited 

simulations. 

With theoretical and implementational considerations addressed in chapters 2-4, chapter 5 

shows that the FAST algorithm can be applied to real systems for making meaningful 

predictions. As such, this chapter applies FAST to understand the difference in conformational 

ensembles between clinically relevant mutants of TEM-1 β-lactamase. TEM-1 β-lactamase is a 

protein found in bacteria that degrades β-lactam antibiotics and is a major contributor to the 

worldwide antibiotic resistance crisis.58 To combat this scourge, new generations of antibiotics 

are developed that can evade this protein.59 However, mutations appear in clinical isolates of β-

lactamase that rescue its ability to degrade the new antibiotics faster than they can be developed. 

The TEM sequences with these rescuing mutations are known as extended spectrum β-

lactamases (ESBLs) and are particularly difficult to predict, owing to our general lack of 

understanding in the proteins’ conformational ensemble. As an example of our ignorance to its 

conformational landscape, when a small molecule was designed to target the β-lactamase active 

site, and was experimentally determined to bind to the protein, a crystal structure revealed the 

molecule to bind in a cryptic pocket, otherwise unknown to exist.60 Without knowledge of β-

lactamases’ conformational ebb and flow, the factors that allow for mutations to generate ESBLs 

will remain elusive. This is the case for one particular mutation found in clinical isolates of 

ESBLs, the M182T mutation.61,62  This mutation is found to be extraordinarily stabilizing, 

though there exist contradictory explanations for its mechanism.63,64 In chapter 5, FAST is used 

to understand the conformational ensembles of TEM-1 β-lactamase, with and without the M182T 
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mutation, to develop a novel mechanistic model. This model is unique to previous models in that 

it is based on the conformational ensemble and is uniquely able to predict and explain new 

mutations on the protein. 

While adaptive sampling reduces the amount of aggregate simulation required for any 

system, working on larger and more complicated proteins still necessitates tools for dealing with 

large amounts of data. On that front, Chapter 6 details tools developed for the handling of large 

MD datasets and the construction of MSMs. This intuitive python library is called enspara and 

is instrumental in generating FAST simulation data as well as performing subsequent analysis. 

Lastly, chapter 7 concludes with summarizing the main advancements contained within this 

thesis. As science is never finished, future prospects are explored, both in terms of continual 

methods development, as well as what to do now that we have a suitable method to quickly 

explore a proteins’ conformational landscape. 
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Chapter 2 

FAST Conformational Searches by 

Balancing Exploration/Exploitation Trade-

Offs 

2.1 Preamble 

This chapter is adapted from the following article: Zimmerman, M.I. and Bowman, G.R., “FAST 

Conformational Searches by Balancing Exploration/Exploitation Trade-Offs”, Journal of 

Chemical Theory and Computation, 11(12), 5747-5757 

2.2 Introduction 

Understanding the structural mechanisms of conformational changes, such as protein folding and 

allosteric communication, is a notoriously difficult problem. Molecular dynamics (MD) 

simulations can complement experimental studies of such problems by filling in information 

beyond their reach, such as an atomically-detailed picture of conformational heterogeneity. 

However, it is extremely difficult to simulate biologically relevant processes on millisecond and 

slower timescales with conventional molecular dynamics simulations. 

Three broad classes of methods have been developed to capture longer timescale 

processes with computer simulations. The first class consists of directed methods that actively 

drive simulations towards some goal, such as steered molecular dynamics,1 metadynamics,2,3 the 

string method,4,5 and methods for introducing restraints from experiments.6,7 Unfortunately, these 

often go through unrealistically high-energy conformations (Figure 2.1, red path) and fail to 
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explore conformations orthogonal to the direction they’re being driven in, though new methods 

are more capable of finding the energetically preferred paths.8 The second class consists of 

undirected methods that attempt to accelerate the exploration of all conformations, such as 

replica exchange,9 accelerated molecular dynamics,10 weighted ensembles,11-13 combinations of 

coarse-grained and all-atom simulations,14 and adaptive sampling.15-21 While these methods will 

eventually provide the correct result, conformational space is so enormous that researchers can 

easily expend all of their computing resources exploring structures that are not relevant to the 

problem they set out to solve (Figure 2.1 yellow enclosed space). Most of the approaches in these 

two classes also preclude the acquisition of kinetic information by introducing a biasing force or 

altering properties like the potential energy or temperature. While they still provide the proper 

thermodynamics, the lack of kinetic information makes it impossible to make quantitative 

connections with many experimental techniques. The third class of methods focuses on the 

development of a specialized supercomputer, such as a distributed computing platform22,23 or 

purpose-built hardware,24 that is capable of running enough simulation to discover the relevant 

conformational space. This approach has led to some of the most dramatic demonstrations of the 

power of simulations, including insights into protein folding25,26 and allosteric communication27-

29 on up to millisecond timescales. However, there are still many processes beyond the reach of 

these computers. Moreover, very few researchers have access to these resources. 
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Figure 2.1: Contour plot of an energy landscape colored in blue, white, yellow, and red from highest to lowest 

energy. The black line is the optimal path from a starting state to a target. The red line is the path found by directed 

methods. The yellow line encompasses the area where undirected methods are likely to get lost. 

Here, we propose a goal-oriented sampling method called fluctuation amplification of 

specific traits (FAST) that combines elements of a directed and undirected search to quickly 

explore regions of conformational space that are relevant to a given problem. This algorithm was 

inspired by the fact that a protein folds by following an energy gradient to its native state30-32 but 

following such gradients is non-trivial because there are energy barriers and dead-ends along the 

way. We hypothesized that the correlation between structures and energies gives rise to similar 

gradients for many other physical properties—such as the root-mean-squared deviation (RMSD) 

to a target structure and the solvent-accessible surface area. For example, we expect that 

transitioning from a conformation with a small solvent accessible surface area to one with a large 

surface area will require passing through a series of conformations with steadily increasing 
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surface areas. If these gradients exist, then it should be possible to follow them to identify 

structures that maximize (or minimize) specific physical properties. Literature on optimization 

theory has dealt with related problems by balancing tradeoffs between focused searches around 

promising solutions (exploitation) and trying completely novel solutions (exploration).33,34 The 

FAST algorithm leverages these ideas 1) to recognize and amplify structural fluctuations along 

gradients that optimize a selected physical property whenever possible, 2) to overcome barriers 

that interrupt these overall gradients, and 3) to re-route to discover alternative paths when faced 

with insurmountable barriers. 

FAST achieves these objectives by drawing on work on the multi-armed bandit problem 

and particle-swarm optimization. The multi-armed bandit problem33 is a classic 

exploration/exploitation trade-off problem in which a hypothetical gambler at a row of slot 

machines must decide when to 1) try a relatively untested slot machine that could easily yield 

enormous or meager returns and 2) when to exploit the expected rewards of a tried-and-true 

machine. A key result is that one can obtain outstanding performance by using estimates of the 

uncertainty in the expected rewards for each slot machine to select the one that has the highest 

probability of yielding the greatest rewards.35 A simple means of achieving this objective is to 

always choose the slot machine with the highest probability of the greatest return, which can be 

assessed by a reward function of the form  

 

𝑟(𝑖) = 𝜇(𝑖) + 𝛼𝜎(𝑖)         (1) 

 

where 𝑖 is a slot machine, 𝜇(𝑖) is its average return, 𝜎(𝑖) is the standard deviation of the returns 

from that machine, and 𝛼 is a constant that controls the importance of uncertainty.36 Particle-
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swarm optimization34 is another means of addressing exploration/exploitation tradeoffs, but by 

using a swarm of walkers to explore parameter space. These walkers are designed to balance 

between spreading out to explore different potential solutions and converging on promising 

regions of parameter space. 

Inspired by these ideas, FAST runs successive swarms of simulations where the starting 

points for each swarm are chosen from the set of all previously discovered conformations based 

on a reward function. This reward function quantifies the relative likelihood that simulations 

started from different structures will discover new conformations that maximize (or minimize) a 

selected physical property. It mimics the functional form of Equation 1 by including a directed 

component that parallels the mean return and an undirected component corresponding to the 

uncertainty in the return on investment, as described in the Methods section. The directed 

component allows FAST to follow gradients by searching near promising solutions for even 

better ones. Following such gradients alone is not an ideal search strategy because some regions 

of conformational space with a promising gradient may lead to dead ends. To avoid this pitfall, 

the undirected component favors poorly sampled regions of conformational space, allowing the 

algorithm to recognize dead-ends where simulations repeatedly fail to discover structures that 

better optimize the target function and to re-route to less explored regions of conformational 

space in search of new leads. Since no biasing force is applied to any individual simulation, the 

final dataset can be used to build a Markov state model (MSM) to extract the proper 

thermodynamics and kinetics despite the non-equilibrium distribution of starting points for the 

trajectories (see the Methods section for details).37-39  This approach differs from existing 

adaptive sampling techniques15-19 in that it seeks to prioritize what types of structures are 

explored rather than purely trying to minimize the statistical uncertainty in a model. This is an 
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important distinction because adaptive sampling can easily exhaust finite computational 

resources searching through irrelevant conformations, whereas we expect the goal-oriented 

method presented here to quickly focus in on regions of conformational space that are relevant to 

the problem at hand. 

To test FAST, we have applied it to three challenging sampling problems 1) the 

discovery of unexpected pockets that might be valuable drug targets, 2) the identification of 

transition paths between specific conformations, and 3) protein folding. We begin by 

retrospectively analyzing existing MSMs to assess whether various physical properties have the 

gradients we hypothesize to exist in protein conformational space. Then we test FAST’s ability 

to identify and follow gradients that are relevant to each of the problems considered. 

2.3 Methods 

2.3.1 FAST Algorithm 

The FAST algorithm is intended to optimize any selected geometric function 𝜙 of a protein 

structure, including, but not limited to energies, RMSDs, and solvent accessible surface areas. 

For a given physical property 𝜙, the FAST- 𝜙 algorithm is: 

 

1. Start a swarm of simulations from a set of initial conformations, such as one or more known 

crystal structures. 

2. Cluster all the simulation data collected so far into discrete conformational states.  

3. Calculate a reward function for each state 

 

𝑟𝜙(𝑖) = 𝜙̅(𝑖) + 𝛼𝜓̅(𝑖)        (2) 
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where 𝑖 is a particular state, 𝜙̅(𝑖) is a directed component that fosters exploitation by 

favoring states that optimize some structural metric of interest (such as the RMSD to a target) 

compared to other states, 𝜓̅(𝑖) is an undirected component that fosters exploration by 

favoring states that are poorly sampled compared to other states, and 𝛼 is a control parameter 

that determines the relative importance of the directed and undirected components of the 

reward function. The bars over each component of this reward function indicate that we 

feature-scale them (equations below) to highlight the differences between states and ensure 

that a variable with a greater dynamic range does not overshadow the other component. For 

example, when trying to maximize the solvent-accessible surface area, 𝜙̅(𝑖) will range from 

zero for the state with the lowest solvent-accessible surface area to one for the state with the 

largest solvent-accessible surface area and 𝜓̅(𝑖) will range from zero for the most sampled 

state to 1 for the least sampled state. Therefore, poorly sampled states that optimize the target 

function are expected to yield the highest reward while states that have been explored 

thoroughly and are far from the target are not expected to be rewarding. 

4. Start a new swarm of simulations, where the number of simulations started from each state is 

proportional to the reward function for that state. 

5. Repeat steps 2-4 until the target function has converged or until some predetermined amount 

of simulation has been conducted. 

6. Build an MSM from the final dataset to capture the proper thermodynamics and kinetics, 

thereby correcting for any bias introduced by selecting starting conformations for each 

swarm of simulations according to our reward function instead of a Boltzmann 

distribution.37,38 
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It is important to note that a valid MSM does not need to be constructed for each round of 

FAST. This is an important feature since the algorithm needs to work properly even when there 

is not enough data to accurately estimate transition probabilities for parts of conformational 

space. The clustering simply needs to be at a resolution that is fine-grained enough to distinguish 

1) structures with different values of the target geometric function and 2) regions of 

conformational space that are well-sampled versus those that are poorly sampled. In step 6, more 

care is required to build a valid MSM that satisfies the Markov assumption, has a reasonable lag 

time, and captures the phenomena of interest. 

Feature-scaling transforms some quantity into a ranking that ranges from 0 to 1 from the 

least preferred to the most preferred value, respectively. For a quantity 𝜙 that one wishes to 

maximize 

 

𝜙̅(𝑖) =  
𝜙(i) − 𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛
  

 

whereas for a quantity one wishes to minimize 

 

𝜙̅(𝑖) =  
𝜙𝑚𝑎𝑥 − 𝜙(i)

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛
  

 

where 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥 are the minimum and maximum values of 𝜙(i). 

For the undirected component of our reward function, 𝜓̅(𝑖), we adopt a Bayesian 

perspective to devise a simple measure of how likely simulations started from a given state are to 

discover new states. We begin by assuming that the biomolecule under consideration has 𝑛 
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structural states and that 𝑛 =  𝑛𝑑 + 𝑛𝑢, where 𝑛𝑑 is the number of states FAST has discovered so 

far and 𝑛𝑢 is the number of undiscovered states. Following previous work,15,16 we assume that, 

prior to observing any data, a simulation started from some initial state has an equal probability of 

transitioning to any possible final state. Formally, this is achieved by adding a pseudo-count 𝐶̃ =

1 𝑛⁄  to every element of a transition count matrix (𝐶) used to keep track of the number of 

transitions observed between every pair of states (𝐶𝑖𝑗 is the number of transitions observed from 

state 𝑖 to state 𝑗). Next we assume that the transition probabilities out of each state are Dirichlet 

distributed, which is a common way to enforce that they are properly normalized.15,40,41 Given this 

assumption, the expected probability of transitioning from state 𝑖 to any undiscovered state in the 

set 𝑢 is 

 

𝐸(𝑝𝑖𝑢) = ∑ [
1 + 𝐶̃

∑ 1 + 𝐶𝑖𝑘 + 𝐶̃𝑛
𝑘=1

]

𝑗∈𝑢

 

 

This function reaches its maximum for the state 𝑖 that was observed least, as captured by the total 

number of transitions from that state to any other state, 𝐶𝑖 = ∑ 𝐶𝑖𝑘
𝑛
𝑘=1 . Therefore, we can maximize 

our chances of discovering new states (e.g. transitioning to an as yet undiscovered state) by running 

simulations from the most poorly sampled states discovered so far. Feature-scaling the number of 

observations of each state to favor poorly sampled states and to put this undirected component of 

our reward function on the same scale as the directed component yields  

 

𝜓̅(𝑖) =  
𝐶𝑚𝑎𝑥 − 𝐶𝑖

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
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where 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the minimum and maximum number of observations of any state, 

respectively. Favoring poorly sampled states parallels a previously reported heuristic for 

discovering new conformations.42 However, we emphasize that balancing this with the directed 

component of our reward function provides a dramatic improvement in performance, as described 

in the Results section. The Results section also provides an explicit example of how this works in 

practice. 

To determine how to set the balance between the directed and undirected components of 

FAST’s reward function, the algorithm was run with different values of the 𝛼 parameter using 

synthetic trajectories generated with existing MSMs, as has been done in previous work on 

adaptive sampling algorithms.16 Values ranging from 0.5 to 1.5 gave very similar results, so 𝛼 =

1 was selected to place equal weight on the two components for this study. However, there is no 

guarantee that this value of 𝛼 will be optimal for every application. Future work on how best to 

set this parameter may be valuable. 

Simulation parameters for production runs with real molecular dynamics simulations are 

described below. For β-lactamase, 50 rounds of simulations were run.  Each round consisted of a 

swarm of 30 simulations, each 10 ns in length. Therefore, a total of 15 μs of simulation were run 

for each variant of FAST performed for this study. For the variant of the villin headpiece, 20 

rounds of simulations were run.  Each round consisted of a swarm of 10 simulations, each 5 ns in 

length. Therefore, a total of 1 μs of simulation was run.  These simulation lengths were chosen to 

balance a tradeoff between two competing factors: 1) needing simulations to be longer than the 

lag time used for the final model so that a reasonable MSM can be generated and so that each 

simulation has a reasonable chance of hopping to a new state and 2) favoring shorter simulations 
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so that each trajectory remains near the region of conformational space where more data is 

desired rather than drifting to less desirable structures. 

2.3.2 MD Simulations 

All simulations were run with Gromacs 4.6.5.43,44 β-lactamase simulations were run at 300 K 

using the AMBER ff96 force field45 with the OBC GBSA implicit solvent model.46 Using 

implicit solvent is advantageous for these initial tests as we do not have to store water degrees of 

freedom or re-solvate/re-equilibrate protein conformations when spawning new swarms of 

simulations. The single starting conformation used for all of these simulations was generated by 

placing the crystallographic structure of β-lactamase (PDB ID: 1BTL47) in a cubic box that 

extended one nm beyond the protein in any dimension.  This system was energy minimized with 

the steepest descent algorithm until the maximum force fell below 1,000 kJ/mol/min using a step 

size of 0.01 nm and a cut-off distance of 1.2 nm for the neighbor list, Coulomb interactions, and 

Van der Waals interactions. For production runs, all bonds were constrained with the LINCS 

algorithm48 and virtual sites49 were used to allow a 4 fs time step. Cut-offs of 1.0 nm were used 

for the neighbor list, Coulomb interactions, and Van der Waals interactions, respectively. The 

Verlet cut-off scheme was used for the neighbor list. The stochastic velocity rescaling (v-rescale) 

thermostat50 was used to hold the temperature at 300 K. Conformations were stored every 10 ps. 

For the Villin headpiece (PDB ID: 2F4K51), the simulation settings and one of the extended 

starting structures from a previous study (structure 5) were employed.52 Structures were drawn 

with PyMOL.53 
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2.3.3 Clustering and MSM Construction 

All clustering and MSM construction were performed with MSMBuilder.54,55 An MSM is a 

discrete-time Master equation model that models protein dynamics as stochastic hopping 

between discrete conformational states.39 The states are identified by dividing conformational 

space up into discrete states, typically by clustering all the conformations sampled by some set of 

molecular dynamics simulations. Then a transition count matrix is constructed, where the 

element in row 𝑖 and column 𝑗 contains the number of transitions from state 𝑖 to state 𝑗 observed 

over the course of some observation interval, called the lag time of the model. The counts matrix 

is then used to infer a transition probability matrix that contains the probability of transitioning 

from every possible starting state 𝑖 to every possible ending state 𝑗 within a lag time. These 

matrices are typically estimated with an iterative procedure for identifying the maximum 

likelihood set of transition probabilities that satisfy microscopic reversibility.56,57 

Thermodynamic and kinetic properties can then be derived from the transition probability matrix 

rather than the raw simulation data. As a result, these properties are insensitive to the distribution 

of the starting points used for each simulation, as long as there is sufficient data to obtain a 

reasonable estimate of the transition probabilities out of each state.37,38 While building an MSM 

from the final dataset is extremely important for obtaining the proper thermodynamics and 

kinetics, the clustering of each round of FAST simulations need not be a well-behaved MSM 

since our reward function does not depend on estimates of the transition probabilities between 

states. Therefore, these intermediate models just require a clustering with sufficient resolution to 

detect fluctuations that optimize the target function. 

The same clustering procedure was used to analyze each round of simulations and to 

build an MSM for the final dataset. Following a standard protocol,56 every 10th conformation 
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from the simulations for each protein were clustered with a k-centers algorithm based on the 

RMSD between protein conformations. The remaining 90% of the data was then assigned to 

these clusters and a lag time was selected based on an implied timescales plot.58 FAST-SASA β-

lactamase simulations were clustered based on the RMSD between all backbone heavy atoms 

and Cβ atoms until every cluster had a radius—i.e. maximum distance between any data point in 

the cluster and the cluster center—less than 1.0 Å and a lag time of 30 ps was employed. FAST-

RMSD β-lactamase simulations were clustered based on the RMSD between the helices and 

loops that move the most when comparing the starting and ending structures (all backbone heavy 

atoms and Cβ atoms in helices 11 and 12 and the loops before and after helix 11, which include 

residues 215-227 and 270-290) until every cluster had a radius less than 1.0 Å and a lag time of 

30 ps was employed. FAST-energy villin simulations were clustered based on the RMSD 

between all backbone heavy atoms and Cβ atoms until every cluster had a radius less than 3.0 Å 

and a lag time of 2.5 ns was employed. Smaller clusters were employed for the β-lactamase 

simulations because the conformational changes we intended to capture were subtler than the 

folding process we targeted in the villin application. The same settings were also used for our 

retrospective analysis of existing β-lactamase27 and villin simulations.52 

2.3.4 Other Analyses 

Pocket detection was performed with an implementation of LIGSITE.27,59 RMSDs and solvent 

accessible surface areas were calculated with MDTraj.60 The highest flux paths between specific 

starting and ending conformations were performed with transition path theory.61,62 
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2.4 Results 

2.4.1 Many Physical Properties Have Gradients in Conformational Space 

FAST will perform best if the physical property of interest has gradients in conformational 

space. We hypothesized that the correlation between structures and energies that gives rise to the 

energetic drive to fold might also give rise to similar gradients in conformational space for other 

physical properties of proteins. As a first test of this hypothesis, analysis of a number of existing 

MSMs was performed to determine if the highest flux paths from the crystallographic state to the 

states that optimize some geometric property do indeed have roughly monotonically increasing 

(or decreasing) values of that property. For example, Figure 2.2 shows the preferred pathways 

from the crystal structure of TEM-1 β-lactamase to the states with the highest solvent-accessible 

surface areas discovered in 81 microseconds of aggregate simulation conducted on the 

Folding@home distributed computing environment.27 The solvent-accessible surface areas of 

structural states along these high flux pathways tend to increase monotonically, so it is 

reasonable to expect the directed component of FAST to help the algorithm move along these 

paths quickly. There are some backwards steps along these paths that require moving from states 

with larger solvent-accessible surface areas to states with lower surface areas but these steps are 

small enough that it is also reasonable to expect the undirected, statistical component of FAST to 

easily overcome these hurdles. Similar trends are also observed for properties like the energy and 

RMSD to a selected target structure in this model of β-lactamase, as well as models for proteins 

like a fast-folding variant of the villin headpiece (500 μs of simulation),52 NTL9 (1.5 ms of 

simulation),25 and lambda repressor (1.3 ms of simulation).63 Taken together, this evidence 

supports the hypothesis that many physical properties have gradients in conformational space 

that the FAST algorithm is intended to identify and follow. 



41 

 

 

Figure 2.2: Transition pathways from the crystal structure of TEM-1 β-lactamase to the five states with the largest 

solvent accessible surface areas (SASAs) observed in our past work. β-lactamase is depicted with a red ribbon 

following the backbone, a blue mesh for the surface, and yellow spheres filling the observed pockets on the protein 

surface. State sizes are inversely proportional to their free-energies, so larger states have higher equilibrium 

probabilities. Line thickness is directly proportional to the relative flux observed between the start and end states. 

2.4.2 FAST Accurately Identifies the Preferred Paths to Target 

Conformations 

If FAST works as intended, then it should be capable of quickly following gradients in 

conformational space to find the preferred paths to structures that optimize a selected geometric 

function. As a first test of whether FAST successfully achieves this goal, we compared its 

performance to conventional simulations using an existing MSM to generate synthetic 

trajectories via kinetic Monte Carlo. To generate a synthetic trajectory, one first selects a starting 

state, then uses the transition probabilities out of that state to randomly select a new state, and 

repeats this procedure until a desired trajectory length is reached. Synthetic trajectories can then 

be used to estimate the transition probabilities between states to reconstruct the MSM they were 

generated with. Performing initial tests with such synthetic trajectories is advantageous because 

1) it is much more computationally efficient than running real molecular dynamics simulations 
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and 2) the MSM used to generate the trajectories serves as a gold standard for assessing the 

performance of different methods. 

We chose a previously reported relative entropy metric to assess the quality of MSMs 

reconstructed from synthetic trajectories.16 The relative entropy between two MSMs is 

 

𝐷(𝑃||𝑄) = ∑ 𝑃𝑖

𝑁

𝑖,𝑗

𝑃𝑖𝑗 log
𝑃𝑖𝑗

𝑄𝑖𝑗
 

 

where 𝑃 is the transition matrix for the reference MSM used to generate the synthetic 

trajectories, 𝑃𝑖 is the equilibrium probability of state 𝑖 in that MSM, and 𝑃𝑖𝑗 is the probability of 

hopping from state 𝑖 to state 𝑗 in the reference MSM. 𝑄, 𝑄𝑖 , and 𝑄𝑖𝑗  are the corresponding 

properties of the MSM reconstructed from synthetic trajectories. The relative entropy is zero if 

the two MSMs are identical and becomes increasingly large the more the two models differ. To 

ensure that every transition probability is non-zero and avoid infinite relative entropies, we used 

a pseudo-count of 1 𝑛⁄ , where 𝑛 is the number of states in the model, as described in the methods 

section and our previous work.16 

We used our existing MSM for β-lactamase to simulate how quickly FAST-RMSD finds 

structures resembling conformations bound to a surprising allosteric ligand compared to 

conventional simulations. First, we identified the five states with the lowest RMSD to the target 

structure and identified the three highest flux pathways from the state containing the ligand-free 

crystal structure to each of the five target states (15 paths total).  Together, these paths contained 

32 of the 3469 states in the MSM. Then we ran long conventional simulations and FAST-RMSD 

simulations started from the crystallographic state, constructed MSMs from each set of synthetic 
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trajectories, and employed the relative entropy metric to assess how well each method captured 

the transition probabilities for the 32 states along the highest-flux pathways to low RMSD states. 

Figure 2.3A and 2.3B show the results of repeating this analysis for varying numbers of 

simulations of different lengths. These results demonstrate that FAST-RMSD accurately captures 

this structural subspace with far less total simulation time than conventional simulations. 

Comparing the methods across all states (Figure 2.3C and 2.3D) also demonstrates that FAST 

yields models that are as accurate as conventional simulations on a global level. 

Together, these results suggest it is possible to extract the proper thermodynamics and 

kinetics from FAST simulations despite the fact that starting points for simulations are not 

chosen according to a Boltzmann distribution. As a further test of the algorithm we also applied 

it to three real-world problems using real molecular dynamics simulations instead of synthetic 

trajectories, as described below. 



44 

 

 

Figure 2.3: Relative entropies between the gold-standard MSM of β-lactamase and MSMs constructed with different 

sampling methods using varying numbers of kinetic Monte-Carlo simulations of different lengths. Panels A and B 

show the relative entropies for a subset of states along the highest flux pathways to the five states with the lowest 

RMSDs to a target structure for conventional and FAST-RMSD simulations, respectively. Panels C and D show the 

relative entropies for the entire MSMs from each sampling method. Black contours indicate equivalent aggregate 

simulation time. Calculations were not performed for the white regions. 
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2.4.3 FAST-SASA Discovers a Diversity of Pocket Structures 

One use of molecular dynamics simulations is to discover unexpected pockets that open as a 

protein fluctuates away from its crystal structure that might serve as valuable drug targets. Since 

the opening of pockets will generally increase a protein structure’s solvent accessible surface 

area,64 we chose to maximize this property using FAST-SASA.  

To understand how FAST works, the highest flux pathways from the initial 

(crystallographic) state to the five states with the largest solvent accessible surface areas 

discovered by FAST-SASA were identified and colored according to when they were first 

discovered, as shown in Figure 2.4. In the first few rounds of simulation, FAST-SASA finds a 

few states with somewhat higher solvent accessible surface areas, such as states A and B. At this 

point, these states have the highest solvent accessible surface areas and are poorly sampled since 

they were just discovered. Therefore, they are selected as starting conformations for the next 

round of simulations. Simulations spawned from these states then discover states C-E, which are 

selected as the starting points for the next swarm, again because they have large solvent 

accessible surface areas and are poorly sampled. Simulations that are spawned from state D, and 

those subsequently discovered, lead to the discovery of state F, one of the states with the largest 

solvent-accessible surface areas. When the sampling of state F fails to produce new states with 

larger solvent-accessible surface areas, its ranking decreases leading to the favoring of states that 

have been sampled less despite having a lower solvent-accessible surface area. Sampling from 

these lower-solvent accessible surface areas helps to discover a variety of new states, such as 

states G and H, that have the potential to elucidate new pathways to high solvent-accessible 

surface area states. These states are ranked highly due to their recent discovery and manage to 

discover independent pathways to some of the other states with the largest solvent-accessible 
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surface areas (I-L). The yellow spheres in Figure 2.4 fill in pockets that open in the protein 

structures, highlighting that there are distinct pockets forming in different states with equivalent 

solvent accessible surface areas. 

 

Figure 2.4: Transition pathways from the crystal structure of TEM-1 β-lactamase to the five states with the largest 

solvent accessible surface areas (SASAs) discovered using FAST-SASA. β-lactamase is depicted with a red ribbon 

following the backbone, a blue mesh for the surface, and yellow spheres filling the observed pockets on the protein 

surface. States are colored to indicate when they were discovered during the course of 12 μs of FAST-SASA 

sampling. 

To assess the performance of FAST-SASA, we compared it to conventional molecular 

dynamics simulations, a purely SASA-based sampling scheme that just uses the directed 

component of FAST-SASA, and a variant of counts-based adaptive sampling that just uses the 

undirected component of FAST-SASA. An equivalent amount of conventional molecular 

dynamics simulations (ten 1.5 μs simulations) only explore conformations near the crystal 

structure, as shown in Figure 2.5A. The small increases in solvent accessible surface area that 

these simulations achieve make a quantitative comparison with FAST-SASA impossible, so we 

can only conclude that FAST-SASA is orders of magnitude more efficient. 

Counts-based sampling is also significantly less efficient than FAST-SASA. The fact that 

this algorithm lacks a directed component prevents it from aggressively capitalizing on 
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promising structures. Instead, counts-based sampling tries to build out from every new state that 

it discovers. In doing so, it discovers more total states than FAST-SASA, as shown in Figure 

2.5B, but most have small solvent accessible surface areas and do not have the sort of pockets 

that we set out to discover in this application. FAST-SASA finds states with equally large 

solvent-accessible surface areas at least eight times faster than counts-based sampling alone. 

Moreover, this is a conservative estimate of the improved performance of FAST-SASA because 

it finds at least 30-times as many conformations with surface areas greater than 125 nm2. Finding 

equivalent diversity with counts-based sampling would likely take orders of magnitude more 

simulation than with FAST-SASA given the undirected nature of the purely counts-based 

algorithm. 

SASA-based sampling finds states with much higher solvent accessible surface areas than 

the conventional simulations or counts-based sampling (Figure 2.5A). Indeed, SASA-based 

simulations find a few states with solvent accessible surface areas that are comparable to the best 

structures found by FAST-SASA. However, compared to FAST-SASA, it essentially finds a 

single a high solvent accessible surface area state and then persistently simulates that state 

because it lacks the undirected component that allows FAST-SASA to give up on a state and re-

route to other potentially more fruitful starting conformations. Therefore, FAST-SASA discovers 

far more states (Figure 2.5B), including at least twice as many conformations with surface areas 

greater than 125 nm2. Since SASA-based sampling persistently spawns new simulations from the 

single high surface area state that it finds, it is unlikely to ever discover the diversity of structures 

that FAST-SASA finds. Therefore, as with the conventional simulations, we conclude that 

FAST-SASA is orders of magnitude more efficient. 
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Figure 2.5: Performance of FAST-SASA (magenta) compared to conventional molecular dynamics (green), count-

based sampling (black), and SASA-based sampling (orange). (A) The average of the solvent accessible surface areas 

for the 10 states with the largest surface areas discovered as a function of aggregate simulation time. (B) The 

number of states discovered as a function of the aggregate simulation time. 

2.4.4 FAST-RMSD Efficiently Finds Paths Between Specific Structures 

Computer simulations are also frequently employed to discover the transition paths between two 

distinct structures. As an example of this sort of problem, we sought to discover the preferred 

paths from the ligand-free crystal structure of β-lactamase discussed in the previous section to a 

structure with an unexpected allosteric binding pocket (1PZO65). To accelerate the discovery of 

such paths, we used FAST-RMSD to discover structures with low RMSDs to the target structure 
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and compared the performance of these simulations to conventional molecular dynamics 

simulations and counts-based adaptive sampling. All the trends are similar to those observed for 

FAST-SASA in comparison to other sampling methods, as shown in Figure 2.6. Combined with 

our analysis of synthetic trajectories, as described earlier, we conclude that FAST-RMSD 

quickly finds target structures and the preferred paths to these structures. 

 

Figure 2.6: Performance of FAST-RMSD (cyan) compared to conventional molecular dynamics (green) and count-

based sampling (black). (A) The average of the RMSD to the target structure for the 10 states with the lowest 

RMSDs discovered as a function of aggregate simulation time. (B) The number of states discovered as a function of 

the aggregate simulation time. 



50 

 

2.4.5 FAST-Energy Folds Proteins 

As a final test of FAST, we applied it to the folding of a variant of the villin headpiece that folds 

in ~700 ns.51 Inspired by the idea that proteins fold by following an energy gradient towards their 

native states, we chose to run FAST-energy to minimize the system’s energy. This choice also 

allows bona fide structure predictions, rather than building in the answer with a method like 

FAST-RMSD. To make a direct comparison with a past study of this protein conducted on the 

Folding@home distributed computing environment,52 the same simulation parameters and 

explicit solvent were used. However, the energies used in FAST’s reward function were 

calculated using implicit solvent because water-water interactions will dominate the energy of 

any structure with explicit solvent. Implicit solvent, on the other hand, integrates out the water 

degrees of freedom, allowing FAST-energy to focus on finding preferred protein structures. 

FAST-energy simulations fold villin to within 2.5 Å of its crystal structure in just 400 ns 

of aggregate simulation. Figure 2.7 state A shows the extended starting structure used for these 

simulations and Figure 2.7 state B shows the predicted structure overlaid on the crystal structure. 

This result is impressive because there is only an ~60% chance of folding the protein with 700 ns 

of conventional simulation based on the experimental folding time. Furthermore, the previous 

Folding@home study that inspired our FAST-energy calculations used 500 μs of conventional 

simulation52 and a folding study run on the ANTON supercomputer used 125 μs of simulation.26 

To understand the structural ensemble explored by FAST-energy, scatter plots of the 

energies of states from the MSM built from the FAST-energy data vs. their RMSDs to the crystal 

structure were overlaid with the same information from past Folding@home studies,56 as shown 

in Figure 2.7. Overall, the model from FAST-energy covers a similar range of energies and 

RMSDs to that found by conventional molecular dynamics simulations. However, visual 
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inspection of the scatter plot suggests that FAST-energy finds more structures with both low 

energies and low RMSDs. This observation is further supported by the histograms of the 

energies and RMSDs for the structural states discovered by each method. Taken together, these 

results demonstrate that FAST successfully discovers the energetically accessible conformations 

that would eventually be found by conventional simulations but does so with much less 

simulation. 

 

Figure 2.7: The state-space of villin projected onto two order-parameters: potential energy and the RMSD to the 

native crystal structure. Each point represents a single state discovered within 1 μs of FAST-Energy sampling (red) 

or 500 μs of unguided sampling from Folding@home (blue). Normalized histograms of the number of states with a 

given potential energy (right plot) or RMSD (top plot) are shown. The highest flux pathway from the unfolded 

starting state (state A) to the state with the lowest RMSD (state B) is plotted as a green line, where states along the 

pathway are identified with yellow points. Five conformations along the FAST-Energy folding pathway (red) are 

superimposed onto the native crystal structure (grey). 

To see if FAST-energy finds similar folding routes to past studies or if the reward 

function used to choose starting structures for each round of simulation somehow biases the 

result, the preferred folding pathway from the final MSM was identified. This model ought to 
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capture the proper thermodynamics and kinetics of the states visited.37,38 Indeed, the protein first 

forms some elements of secondary structure and begins to collapse, as observed in previous 

studies.66,67 The N-terminal helix is also the last to form, in agreement with previous studies 

using the same force field.68 Finally, the slowest implied timescale of the model was calculated 

as an estimate of the folding time. This calculation yielded a folding time of 830±260 ns, again 

in reasonable agreement with both experiment and past work using conventional molecular 

dynamics simulations. Therefore, we conclude that MSMs built from FAST simulations are 

indeed capable of capturing the proper thermodynamics and kinetics despite the fact that starting 

conformations are not selected according to a Boltzmann distribution. 

2.5 Conclusions 

We have introduced a goal-oriented sampling method, called FAST, which rapidly searches 

through conformational space for structures with desired properties by balancing 

exploration/exploitation tradeoffs. This algorithm was inspired by the hypothesis that many 

physical properties have an overall gradient in conformational space, akin to the energetic 

gradients that are known to guide proteins to their folded states. Indeed, retrospective analysis of 

existing MSMs supports the idea that structural properties like the RMSD to a target structure, 

the solvent accessible surface area, and the energy have such gradients. To follow these 

gradients, we designed FAST to balance between 1) recognizing and amplifying small motions 

that maximize (or minimize) a selected geometric function and 2) exploring poorly sampled 

regions of configuration space. This balance is achieved by leveraging ideas from optimization 

theory regarding exploration/exploitation tradeoffs.  

To test FAST, we applied it to a number of common problems and compared its 

performance to alternative approaches, such as conventional molecular dynamics simulations 
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and counts-based adaptive sampling. For example, we demonstrated that FAST can find pockets 

by preferentially sampling structures with large surface areas, it can find paths between specific 

structures by minimizing the RMSD to a target, and it can fold proteins by minimizing their 

energies. In each case, FAST outperforms the methods that we compared it to by at least an order 

of magnitude, and likely considerably more. The success of FAST supports our hypothesis that 

many physical properties have gradients in conformational space. Moreover, our results 

demonstrate that FAST is capable of identifying and following these gradients, even overcoming 

and circumventing barriers that interrupt these trends. In addition to finding structures with a 

desired property more quickly than other algorithms, FAST also finds a greater diversity of such 

structures. While the data generated with FAST is not Boltzmann distributed, building an MSM 

from the data provides the proper thermodynamics and kinetics. The ability to obtain broad 

sampling while maintaining the proper kinetics is an important advantage over many other 

sampling algorithms that facilitates a direct connection with kinetic experiments. Therefore, we 

expect FAST to be of great utility for a wide range of applications. There are also many 

opportunities for combining FAST with other sampling methods. For example, one could use 

accelerated molecular dynamics to obtain even broader sampling, though this would sacrifice 

kinetics. One could also use FAST for state discovery and then refine estimates of the transition 

probabilities between states with adaptive sampling schemes designed to reduce statistical 

uncertainty. 
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Chapter 3 

How to Run FAST Simulations  

3.1 Preamble 

This chapter is adapted from the following article: Zimmerman, M.I. and Bowman, G.R. (2016). 

“How to Run FAST Simulations”, Methods in Enzymology, 578, 213-225 

3.2 Introduction 

One of the largest challenges in using molecular dynamics simulations to study enzymes is 

achieving adequate sampling to accurately represent its equilibrium structural ensemble and 

conformational transitions.1,2 In other words, the conformational space of a protein is 

extraordinarily large and transitions between two given conformations may be separated by 

numerous kinetically slow steps that require a great deal of simulation-time to observe. To put 

this into perspective, many enzymatic reactions/conformational transitions occur on the 

millisecond-second timescale, but a typical desktop computer may only be able to simulate a few 

nanoseconds of dynamics per day. Therefore, it could take a desktop computer hundreds to 

millions of years to simulate a particular event.  

One approach to overcoming the limitations of MD simulations is to build specialized 

supercomputers. For example, the development of powerful purpose-built hardware for MD 

simulations, such as the ANTON supercomputer, allows for much longer timescale simulations.3 

However, this approach is typically too expensive for the average researcher. 
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An alternative approach is to run many short timescale simulations on different 

computers. A single, long simulation will eventually generate multiple independent samples of 

rare events. Running multiple simulations can capture the same independent events in parallel. 

Running simulations in parallel maximizes the use of commodity hardware since obtaining larger 

aggregate simulation times can be easily achieved through the addition of processors rather than 

increasing a processors speed. For these reasons, massively parallelized distributed computing 

projects, such as Folding@home, have been very successful in using MD to capture long 

timescale conformational transitions of proteins such as folding and allostery.4-10 

Markov state models (MSMs) provide an elegant framework for analyzing protein 

simulation data, whether it is generated by a single simulation or many of them.11-13 An MSM is 

essentially a map of the different conformations a protein adopts. The basic construction of an 

MSM consists of the following steps: 1) cluster all of the simulation data into discrete 

“microstates”, for example with a k-centers clustering algorithm based on the protein backbone, 

2) generate a transition count matrix, an N x N matrix of all the observed transitions from 

microstate i to j for a specified lag time (i.e. observation interval), 3) and generate a transition 

probability matrix, an N x N matrix created from the transition count matrix detailing the 

probability of transitioning from state i to state j. The transition probability matrix contains a 

wealth of information. For example, the first eigenvector of this matrix specifies the equilibrium 

probabilities of all the states. Other eigenvalues and eigenvectors specify the rates of 

transitioning between different sets of states and which states are involved. One powerful 

attribute of MSMs is that it is equally valid to build them from a single long simulation or a set 

of simulations, even if these simulations are not initiated from a Boltzmann distribution. 
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Furthermore, freely available software packages, such as MSMBuilder and pyEMMA, provide a 

readily accessible means to construct and analyze these models.14-16 

MSMs’ ability to extract the equilibrium thermodynamics and kinetics of a system 

irrespective of the distribution of starting conformations for a set of simulations opens the doors 

to interactively sample desired regions of conformational space. For example, adaptive sampling 

algorithms iteratively run a set of simulations, build an MSM, and then select starting points for 

new simulations that will help to reduce statistical uncertainty in the model.17-23 Various adaptive 

sampling schemes have been developed to enhance and automate the construction of MSMs. For 

example, Hinrichs and Pande have developed an adaptive sampling scheme that spawns new 

simulations from the states that contribute most to the statistical uncertainty in an MSMs 

principle eigenvectors and eigenvalues.18 Other methods spawn simulations from states based on 

the number of times they have been observed or the number of neighbors they are connected to 

in order to discover new states more quickly.19 These methods will generally explore 

conformational space more efficiently than brute force simulations. However, they will not 

necessarily sample specific events of interest to a researcher before thoroughly exploring other, 

less relevant regions of conformational space. 

We have developed a goal-oriented sampling algorithm, called Fluctuation Amplification 

of Specific Traits (FAST), which draws inspiration from adaptive sampling and the multi-armed 

bandit problem to efficiently identify structures with a desired physical property.24 For example, 

FAST can be used to identify the preferred pathways between active and inactive states of an 

enzyme or it can be used to identify potentially druggable pockets that are not apparent from 

existing crystal structures. The FAST algorithm achieves this by balancing between exploiting 

promising structures (i.e. searching around promising solutions for even better ones) and broad 
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exploration (i.e. searching unexplored regions of conformational space for entirely new 

solutions). The following sections of this chapter provide details on the algorithm and the 

parameters relevant to setting up FAST simulations. 

3.3 FAST Algorithm 

The FAST algorithm can be used to find structures that optimize any geometric function (𝜙) of 

protein conformations. At the heart of the FAST-𝜙 algorithm is the reward function used to 

decide which states to simulate for future runs of sampling. The FAST-𝜙 reward function is 

modeled after a simple solution to the multi-armed bandit problem, 

 

𝑟𝜙(𝑖) = 𝜙̅(𝑖) + 𝛼𝜓̅(𝑖) 

 

where the reward (rϕ) for state i is the sum of a directed component, 𝜙̅(𝑖), and an undirected 

component, 𝜓̅(𝑖), with scaling parameter 𝛼. The set of directed components correspond to a 

feature-scaled list of traits that one wishes to exploit (such as the RMSD to a target structure) and 

the set of undirected components correspond to a feature-scaled list of some statistical function 

that facilitates state-space exploration (such as the number of observations per state). Feature-

scaling transforms a list of values to range from 0 to 1. Directed and undirected components to 

the FAST ranking can be either positively feature-scaled to favor large values 

 

𝜙̅(𝑖) =
𝜙(𝑖) − 𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛
 

 

or negatively feature-scaled to favor small values 
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𝜙̅(𝑖) =
𝜙𝑚𝑎𝑥 − 𝜙(𝑖)

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛
 

 

The variables 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥 are the minimum and maximum values of 𝜙(𝑖) observed in a 

simulation dataset, respectively.  

 Although the reward function may change for the specific type of FAST-𝜙 sampling, the 

basic algorithm remains the same: 

 

(1) Start a swarm of N simulations from a structure or set of structures, such as one or more 

known crystal structures, 

(2) Cluster all the simulation data collected so far into discrete conformational states. This can be 

accomplished by using a k-centers algorithm on the RMSD between select protein atoms (such 

as backbone heavy-atoms), with a specified distance cutoff. The distance cutoff will specify the 

maximum distance between structures in a cluster to the cluster center and will dictate the total 

number of clusters generated. 

(3) Rank all of the states discovered using the FAST-𝜙 reward function. 

(4) Start a new swarm of simulations from the top N structures that maximize the FAST-𝜙 

reward function. 

(5) Repeat steps 2-4 until some convergence criterion is met or a predetermined amount of 

simulation has been conducted. 

(6) Build an MSM from the final dataset to capture the proper thermodynamics and kinetics, 

thereby correcting for any bias introduced by selecting starting conformations from each swarm 

of simulations according to our reward function instead of a Boltzmann distribution. 
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 As mentioned, the directed and undirected components to the ranking can vary depending 

on the specific problem at hand. Specific traits for the directed component of FAST sampling 

will be discussed in a later section. In early applications of the FAST-𝜙 reward function, the 

undirected component was chosen to be the negatively feature-scaled number of observations of 

each state 

 

𝜓̅(𝑖) =
𝐶𝑚𝑎𝑥 − 𝐶(𝑖)

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
 

 

where Cmin and Cmax are the minimum and maximum number of observations of any state, 

respectively. This version of the undirected component was selected based on a simple Bayesian 

model that suggests it should maximize the discovery of new states. One could also use 

alternative statistical measures, such as existing adaptive sampling methods, in place of our 

counts-based, undirected component. 

3.4 FAST Sampling Parameters 

The FAST algorithm contains many parameters, in the form of input and output, which can be 

reduced to those that are relevant for running molecular dynamics simulations, building MSMs, 

or propagating a run of goal-oriented sampling. With the large number of parameters required for 

running FAST, it can be a daunting task to set up expensive simulations without a good feel for 

reasonable values. In this section, we will detail some of the main parameters that are used in 

FAST simulations, how to determine reasonable values, and how they may interact with one 

another. For the sake of brevity and clarity, parameters relevant to running individual molecular 
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dynamics simulations will not be discussed; there are many software packages that can perform 

these simulations that provide extensive tutorials and user manuals, such as Amber, CHARMM, 

Gromacs, and NAMD.25-28 

3.4.1 Number of Runs 

Typically one will run FAST sampling until some convergence criterion is achieved. In some 

circumstances this is very straightforward, although a convergence criteria is not always easy to 

deduce. Running FAST simulations from a starting structure to a specified target (e.g. using 

FAST-RMSD between known conformations) will produce a simple convergence criterion since 

there is a single end state; simulations can be terminated once the end state is discovered. On the 

other hand, there may not be obvious criteria for terminating a set of FAST simulations for more 

open-ended problems, such as searching for conformations with large solvent accessible surface 

areas (SASAs) using FAST-SASA as a heuristic for discovering unknown druggable pockets. In 

the case of FAST-SASA, one might want to stop simulations when the solvent-accessible 

surface-area ceases to increase as rounds continue, but we have shown that in this scenario the 

undirected component to the FAST-SASA reward function will aid in the discovery of multiple 

pathways to large SASA states, which is desirable because a diversity of potential druggable 

sites can be discovered. In practice, it is convenient to run simulations for a specified number of 

runs and continue the runs if sampling is deemed insufficient, since the algorithm is easy to 

restart from a previous run or preexisting set of data. 

3.4.2 The α Scaling Parameter 

The scaling parameter, 𝛼, is used in the FAST-ϕ reward function to weight the relative 

importance of exploiting physical traits and increasing state-exploration. Large 𝛼 values will 



67 

 

increase the exploration of state space by favoring states that have not been observed as 

frequently, whereas smaller values will place more emphasis on exploiting structures with 

promising traits. Emphasizing the trait-based component of the reward function will increase the 

likelihood FAST tries to hop over larger energy barriers rather than try new solutions. Through 

the analysis of synthetic trajectories generated with existing MSMs, we have seen that sampling 

results are largely insensitive to values of 𝛼 between 0.5-1.5. However, it is possible that the 

energy-landscape of the protein being simulated, as well as the gradient of conformational-space 

that one is attempting to follow, may change this observation. If traits are very monotonically 

increasing/decreasing it is expected that smaller values of 𝛼 will optimize FAST-ϕ‘s 

performance, whereas if traits require significant backtracking, larger values of 𝛼 will optimize 

FAST-ϕ‘s performance. For these reasons, unless one has special insight into the nature of a 

particular protein’s energy landscape, an 𝛼 = 1 is a safe choice. 

3.4.3 Number of Simulations Per Run 

The number of simulations to perform during each run of FAST sampling is an important 

decision to maximize computational resources, ensure a good swath of conformations, and 

accelerate the observation of rare-events. A main advantage to running simulations in parallel 

over generating a single trajectory is that many parallel jobs on multiple processors can be 

efficiently used to generate sizeable datasets, thus, the biggest factor in selecting the number of 

simulations per run is attempting to generate the largest aggregate simulation time with the 

resources available. Additionally, more simulations per run allows for a greater spread of starting 

states that will identify a diversity of potential pathways to explore, which will better allow for 

the circumvention of dead-ends. Despite this improvement, the number of simulations should be 

balanced with the individual simulation lengths so that there is a reasonable amount of aggregate 
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simulation time per run; having too much aggregate simulation per run means that there will be 

less total runs and less FAST-enhancement. As an example, if one wishes to observe a process 

that takes 1 μs of simulation to observe, using 40 simulations per run with 10 ns lengths would 

generate 400 ns of aggregate simulation per run, meaning that after 3 runs the aggregate 

simulation is much larger than the expected mean first passage time. Alternatively, 10 

simulations per run of 10 ns lengths would take 10 runs to total 1 μs, which will provide more 

FAST-enhancement by offering extra chances to adaptively explore conformational space. 

3.4.4 Simulation Length 

Individual simulations must be longer than the Markov time for the final MSM. If simulations 

are shorter than this timescale, then the final model will violate the Markov assumption and be of 

little utility. However, one also wants simulations to be as short as possible to maximize the 

number of different runs that can be performed and to prevent simulations from wandering far 

from the region of conformational space one hopes to explore. In practice, we have often found 

that simulation lengths between 10 and 20 ns satisfy these constraints, in large part because 

models with a Markov time much greater than this would often be insufficient for the 

applications we have pursued. 

3.4.5 Atom Indices Used for Clustering 

The atomic indices that are used to cluster simulation data with a specified method into discrete 

microstates are the core of how states are defined. When clustering simulation data in-between 

runs of FAST sampling it is important to recognize that the structures within a state are similar 

only in the atomic indices specified for clustering. Usually it is beneficial to cluster 

conformations in a holistic fashion, based on the backbone heavy atoms (Cα, Cβ, CO, N, and O), 
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so that different clusters represent global changes in a protein’s conformation. However, 

situations arise where one is interested in an aspect of a protein structure, and that using the 

entire protein backbone for clustering would include unnecessary detail that drowns out the 

relevant structural motions. For example, we used FAST-RMSD to study the transition between 

apo and holo conformations of TEM-1 β-lactamase to understand how a surprising cryptic 

pocket opens up. These conformations have a global RMSD of ~0.26 Å, so an extremely high-

resolution model would be required if the data were clustered based on a global RMSD.29,30 To 

avoid an unnecessarily large number of clusters, we chose to instead cluster the data based on 

just the atoms of the two helices surrounding the pocket we were interested in. 

3.4.6 Resolution of Clustering 

One must balance between having enough clusters to resolve valuable differences but not so 

many as to make the statistical component of the reward function ineffective. For example, we 

have previously used a k-centers clustering algorithm that continues to divide conformational 

space into smaller groups until the maximum distance from any structure to its cluster center is 

less than a predetermined distance-cutoff. This distance-cutoff controls the level of structural 

similarity within and between clusters as well as the total number of clusters created during each 

run of sampling. Large distance-cutoffs will generate fewer clusters with many structures per 

cluster, whereas a small distance cutoff will generate numerous clusters with few structures per 

cluster. A good distance-cutoff value will be small enough that a structure pulled from a cluster 

will be an accurate representation of other structures in that cluster, but also large enough that the 

number of observations of each state reflects the sampling for that region in conformational 

space. If a distance-cutoff is particularly small, there may be many clusters with only a single 

conformation, which the FAST undirected component will rank extraordinarily highly. This is 
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not desirable if it is because extremely similar states are falsely considered separate. On the other 

hand, if the clusters are too coarse, then one may miss a valuable region of conformational space 

that FAST’s reward function would otherwise discover. 

3.5 Applications 

FAST-ϕ can be tailored to provide pertinent thermodynamic and kinetic information for any 

region in conformational space that can be identified with a calculable order parameter. The 

central hypothesis of FAST is that gradients exist in conformational space with respect to 

specific traits and that they can be exploited through sampling states with large or small values of 

some trait that one wishes to maximize or minimize respectively. Although there are limitless 

possibilities for the directed component to the FAST-ϕ ranking, we will discuss a few that have 

been used to study enzyme function and structural ensembles. 

 FAST-SASA aims to uncover structural states of enzymes with large-SASA under the 

assumption that a large-SASA state will likely have large pocket openings that can be used to 

discover or design novel therapeutics. While enzymatic function is generally critical for cellular 

and biological processes, enzymatic reactions can be detrimental to human health. As an 

example, the enzyme TEM-1 β-lactamase is produced in certain bacteria as a means of 

hydrolyzing β-lactam antibiotics to confer antibiotic resistance.31 Antibiotic resistant bacteria are 

swiftly becoming a global health concern due to the overuse of antibiotic treatments, so it is 

desired to find molecular ways to inhibit the antibiotic resistant nature of β-lactamase.32 If 

complete atomistic structures exist where the enzyme has a large pocket opening, computational 

docking of small molecules to this region can aid in the discovery of ligands that will inhibit its 

function.33 While the crystal structure of β-lactamase has a single large pocket (its active site), 

there is little diversity in locations to dock small molecules against; multiple pocket openings 
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will increase the likelihood of successful docking. Fortunately, proteins are not static and pockets 

will emerge during the course of an MD simulation.9 FAST-SASA will accelerate the 

observation of large pocket openings by favoring states with an already large SASA, as we have 

previously shown for the enzyme β-lactamase.8,24 We foresee that FAST-SASA, or related 

FAST-ϕ algorithms that more quantitatively detail global or specific pocket volumes, will be an 

invaluable tool for discovering druggable sites on enzymes that do not display obvious pockets in 

crystal structures. 

 FAST-RMSD is intended to reveal the equilibrium conformational transition pathway 

between two known enzyme structures with accurate thermodynamics and kinetics. Enzymes are 

dynamic proteins that often transition between many conformations that are relevant to their 

biological function.34-36 Knowledge of their transition pathway, along with their kinetic rates and 

conformational free energies, can provide significant insight into their mechanisms of action and 

intrinsic regulation. It is often the case that structural studies of enzymes will identify multiple 

conformational populations, although will be unable to detail the structural intermediates 

between them. For example, nuclear magnetic resonance spectra may identify conformational 

heterogeneity through analysis of chemical shifts, although intermediates between populations 

are too short lived or have too small a population to observe.37 Additionally, crystallographic 

studies may detail enzyme structures in various substrate-binding conformations, but they will 

not reveal the relative populations of these conformations. Given two atomically detailed 

structures as input, a start and a target, FAST-RMSD can efficiently identify the equilibrium 

transition pathway between them by biasing the starting structures of simulations originally 

spawned from the start towards the target. As mentioned earlier, if the conformational change 

that one is attempting to observe takes place for a portion of the total protein, it is beneficial to 
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define states based solely on the atom-indices of that region. Additionally, all RMSDs that are 

used in the reward function should be confined to this region of the protein. By doing this, the 

global changes to the protein will not wash away the observation of (in terms of RMSD values) 

relevant conformational transitions. 

 Clever use of the FAST-ϕ reward function can also provide valuable structural 

information in cases where experiments suggest a conformational transition but are unable to 

produce an atomistic description of the relevant structures. For example, a FRET experiment 

could provide a low-resolution view of a conformational change that occurs in some enzyme. 

Without an all-atom representation of a target structure, FAST-RMSD would be unable to 

elucidate the nature of the conformational change. Despite this, directed components to the 

reward function can be deduced that will explain these data. For example, a FAST-distance 

algorithm can be devised to favor transitions from some known structure, say where the dyes in 

the FRET study would be far apart, to new structures where the dyes would be brought together: 

 

𝜙̅(𝑖) =  
𝑑𝑚𝑎𝑥 − 𝑑(𝑖)

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 

 

where 𝑑 is the distance between the dyes. The resulting model could then be used to help explain 

the origins of the experimental observation and to plan new experiments. 
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Chapter 4 

Choice of Adaptive Sampling Strategy 

Impacts State Discovery, Transition 

Probabilities, and the Apparent Mechanism 

of Conformational Changes 

4.1 Preamble 

This chapter is adapted from the following article: Zimmerman, M.I., Porter, J.R., Sun, 

Xianquiang, S., Silva, R.R., and Bowman, G.R. (2018). “Choice of Adaptive Sampling Strategy 

Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of 

Conformational Change”, Journal of Chemical Theory and Computation, 14 (11), 5459-5475 

 

4.2 Introduction 

The use of all-atom molecular dynamics (MD) simulations for long time-scale phenomena are 

often thwarted by insufficient computational resources. Many interesting biological processes 

occur on the millisecond to second timescale, where a single simulation may take longer than a 

lifetime to gather. Notable attempts to alleviate hardware limitations are the purpose-built 

ANTON supercomputers.1,2 These supercomputers are an engineering feat, yet are still limited 

by sampling and not accessible to many researchers. Since increasing commodity hardware 

performance by many orders of magnitude is not likely in the immediate future, the observation 

of interesting biological phenomena requires the use of clever sampling techniques. 
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A common technique to increase the observation of long time-scale phenomena is to alter 

the underlying energy landscape. These methods aim to guide a simulation towards some end 

goal or toward the exploration of a set of order parameters. Some examples include, Gō 

models,3,4 replica-exchange,5-7 steered MD,8,9 accelerated MD,10,11 meta-dynamics,12,13 among 

others.14-16 Unfortunately, these methods do not capture proper kinetic information, and can 

traverse unrealistically high energy barriers. Here, we are particularly interested in sampling 

methods that access long time-scale phenomena without perturbing the underlying energy 

landscape, such that both thermodynamic and kinetic properties can be inferred. 

As an alternative to a single long simulation, many independent simulations can be run in 

parallel. Combined, these parallel simulations tractably capture time-scales longer than any 

single simulation. To illustrate: if we assume that the transition between conformational states A 

and B follows a Poisson process, the probability of observing a transition to state B is dependent 

only on the aggregate simulation time from A, not the length of each simulation.17 Put another 

way, the probability of traversing a single energy barrier is based on the number of attempts to 

cross that barrier, regardless of whether they are in parallel or successive. Thus, parallel 

simulations may offer a significant enhancement in the observation of rare events, since it is 

usually easier to add more computational resources than to make them faster. This is the strategy 

of Folding@home, which takes advantage of around 100,000 personal computers, whose 

resources are donated for massively distributed MD simulations.18 Additionally, many parallel 

simulations may provide better estimates of transition rates for this single barrier, since there are 

more statistics on the outward transitions. 

For large sets of independent simulations that are in local equilibrium (i.e. they sample 

from the underlying energy distribution), we can reconstruct both the proper thermodynamics 
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and kinetics with the use of Markov state models (MSMs).19 An MSM is a network model that 

describes a protein’s energy landscape in terms of a set of structural states the protein tends to 

adopt and the probabilities of transitioning between neighboring states in a fixed time interval. 

The utility of an MSM depends on accurately estimating the conditional transition probabilities 

between conformational states, without requiring that any individual simulation achieve global 

equilibration. As a consequence, the number of times different states are sampled does not need 

to be Boltzmann distributed for an accurate description of their populations at equilibrium, 

provided that estimates of transition probabilities are accurate. MSMs have recently succeeded in 

guiding the design of new proteins20,21 and allosteric modulators,22 among many other 

applications.19,23-31 

MSMs’ ability to integrate information from many parallel simulations whose starting 

states are not necessarily Boltzmann distributed opens the possibility of performing adaptive 

sampling. First developed for refining MSMs by identifying conformational states that contribute 

the most to statistical uncertainty,32 adaptive sampling schemes typically have the following 

steps: 1) run simulations, 2) build an MSM from simulations, 3) rank each state by some metric, 

4) start new simulations from the highest ranked states, and 5) repeat steps 2-4 for some number 

of rounds or until a convergence criterion is met. The main difference between adaptive 

sampling algorithms is in the metric for ranking and selecting states for future sampling.32-41 

Recently, we have developed the goal-oriented sampling algorithm, Fluctuation Amplification of 

Specific Traits (FAST), that ranks states on some structural metric in addition to a statistical 

metric.42,43 We have demonstrated that this method increases the rate of state exploration by at 

least an order of magnitude, and additionally, can capture thermodynamic and kinetic 

information that agrees with a multitude of experiments.21,44 
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Each of the equilibrium-based sampling methods mentioned above (long-, parallel-, 

adaptive-, and FAST-simulations) should converge on identical MSMs, provided with near 

infinite sampling. Unfortunately, for most systems of interest, simulations are not able to reach 

global equilibrium, and are usually significantly under-sampled. It should be noted that FAST, 

and other adaptive sampling algorithms, do not increase the amount of sampling, but rather focus 

sampling efforts to specific regions of conformational space to make the most of limited 

computational resources. With that, the functional differences between methods are simply the 

rates at which specific sections of conformational-space are explored. However, it is not 

completely understood how each of these methods influences the probability of discovering 

states, nor how this influences the mechanism of conformational changes that is observed, 

especially when conformational sampling is far from global equilibrium. 

In this work, we seek to assess the relative performance of different sampling strategies. 

We develop an analytical expression for the probability of discovering a conformational state for 

very simple landscapes. We find that state discovery is dependent on the number and length of 

simulations, in addition to the shape of the energy landscape. We then examine the performance 

of the four equilibrium-based sampling methods above in finding the highest-flux pathway 

between two states, for a variety of energy landscapes. These results are very informative for 

tuning the many hyperparameters in adaptive sampling, and even identify pitfalls that should be 

avoided. Lastly, we demonstrate that insights from our simple landscapes are consistent with 

observations using all-atom MD simulations, by generating folding trajectories of a fast-folding 

version of the λ-repressor. 
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4.3 Theory 

To understand how the probability of discovering a state on a particular landscape is dependent 

on sampling, we develop a mathematical formalism for describing the probability that a set of 

simulations will discover a particular conformational state. First, we consider sampling to occur 

on a discretized energy landscape with 𝑁 conformational states, where the state index is 

represented as 𝑛𝑖, 𝑖 = 1, …, 𝑁. Transitions between states are described by the 𝑁 × 𝑁-transition 

probability matrix, 𝑇𝑖𝑗, which is the probability of transitioning from state 𝑛𝑖 to 𝑛𝑗 at a specified 

lag-time, 𝜏. A simulation on this landscape of K-steps is denoted with the symbol 𝚾, where the 

conformation at the k-th time step is Χ𝑘, 𝑘 = 1, …, 𝛫. For a dataset with M simulations, we 

denote the m-th simulation as 𝚾𝑚, 𝑚 = 1, …, 𝑀. For multiple simulations of various lengths 

(different number of time steps), we choose 𝚱 to represent a vector of lengths, where Κ𝑚, 𝑚 = 1, 

…, 𝑀, is the length of the 𝑚-th simulation. 

Towards our goal of describing the probability of discovering a particular conformational 

state on an energy landscape given sampling parameters, we introduce the 𝑁 × 𝑁-matrix, 𝐷𝑖𝑗
𝚱,𝐌

, 

which indicates if state 𝑛𝑗 is ever discovered within the trajectories 𝚾𝑀, started from state 𝑛𝑖 with 

lengths described by 𝚱. For example, if state 𝑛𝑗 is a state within the trajectories, 𝐷𝑖𝑗
𝚱,𝐌

 is 1, 

otherwise it is 0. This can be represented with, 

 

𝐷𝑖𝑗
𝚱,𝐌 = {

1    𝑖𝑓 𝑛𝑗 ∈ 𝚾𝑀

0    𝑖𝑓 𝑛𝑗 ∉ 𝚾𝑀
         [1] 

 

While this can be determined for a set of trajectories, we wish to know the probability of having 

observed a state, a priori, or P(𝐷𝑖𝑗
𝚱,𝐌 = 1). This is the probability of discovering state 𝑛𝑗 given 
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the sampling parameters 𝚱. For short hand, we call these probabilities the “discover 

probabilities”. 

Before providing an expression for P(𝐷𝑖𝑗
𝚱,𝐌 = 1), we must first introduce another 𝑁 × 𝑁-

matrix, 𝜐𝑖𝑗
𝑘 , which indicates if the conformation at the 𝑘-th step of a single trajectory, 𝚾, belongs 

to the state 𝑛𝑗, when started from state 𝑛𝑖.
45 

 

𝜐𝑖𝑗
𝑘 = {

1    𝑖𝑓 Χ𝑘 = 𝑛𝑗

0    𝑖𝑓 Χ𝑘 ≠ 𝑛𝑗
          [2] 

 

Additionally, we are interested in the probability of this event occurring, denoted as P(𝜐𝑖𝑗
𝑘 = 1). 

Since only one conformation at the 𝑘-th step can be observed, each row of P(𝜐𝑖𝑗
𝑘 = 1) is a 

normalized probability vector indicating the state index at time 𝑘. For the trivial case of the 0th-

step (i.e. before a simulation is generated), the probability of being in the starting state is 1, and 

everywhere else, 0: 

 

P(𝜐𝑖𝑗
𝑘=0 = 1) = 𝐼  

 

where 𝐼 is the identity matrix. Since P(𝜐𝑖𝑗
𝑘 = 1) is a list of probability vectors, we can propagate 

the probabilities a time step (the lag-time, 𝜏) using the transition probability matrix, 𝑇. 

 

P(𝜐𝑖𝑗
𝑘 = 1) = {

𝐼                                            𝑖𝑓 𝑘 = 0

P(𝜐𝑖𝑗
𝑘−1 = 1) 𝑇                  𝑖𝑓 𝑘 > 0

      [3] 
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This expression is useful for determining 𝑃(𝐷𝑖𝑗
𝚱,𝐌 = 1), since the probability of ever visiting a 

state is the complement of not visiting it at each time step. For example, the probability of 

discovering state 𝑛𝑗 after one step is the complement of not discovering it before and after one 

step: 

 

P (𝐷𝑖𝑗
𝚱={1},𝑀=1

= 1) = 1 − (1 −  P(𝜐𝑖𝑗
0 = 1)

𝑖𝑗
) ∗ (1 −  P(𝜐𝑖𝑗

1 = 1 )
𝑖𝑗

) = 1 − (1 − 𝐼𝑖𝑗) ∗

 (1 − 𝑇𝑖𝑗) = {
1    𝑖𝑓 𝑖 = 𝑗
𝑇𝑖𝑗  𝑖𝑓 𝑖 ≠ 𝑗

  

 

This reasoning holds true for a single step in a simulation, although does not for more than one 

step. What is required is an expression for the probability of being in a state at time step, 𝑘, 

conditional on not having discovered state 𝑛𝑗 for all of the previous steps. We represent this 

expression as, P(𝜐𝑖′𝑗′
𝑘 = 1 | {𝜐𝑖𝑗

𝑘′
= 0 ∀ 𝑘′ < 𝑘}), which can be evaluated with the following: 

 

P(𝜐𝑖′𝑗′
𝑘 = 1 | {𝜐𝑖𝑗

𝑘′
= 0 ∀ 𝑘′ < 𝑘}) =  {

𝐼                                                                                  𝑖𝑓 𝑘 = 0

P(𝜐𝑖′𝑗′
𝑘−1 = 1 | {𝜐𝑖𝑗

𝑘′
= 0 ∀ 𝑘′ ≤ (𝑘 − 1)})𝑇      𝑖𝑓 𝑘 > 0

 [4] 

 

For each step in the recursive calculation, the 𝑗th column of P(𝜐𝑖′𝑗′
𝑘−1 = 1) is set to 0, and each 

row is then normalized to unity. This is described in more detail in the supporting information. 

Using this definition, we can extend our expression of the discover probabilities to 

include an arbitrary number of steps, 𝐾. In a single simulation, we can see that the probability of 

discovering a state is: 
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P (𝐷𝑖𝑗
𝚱={𝐾},𝑀=1

= 1) = 1 − ∏ (1 − P(𝜐𝑖′𝑗′
𝑘 = 1 | {𝜐𝑖𝑗

𝑘′
= 0 ∀ 𝑘′ < 𝑘})

𝑖𝑗
) 𝐾

𝑘=0   [5] 

 

Since the probability of discovering a state within a simulation is independent of the probability 

in another simulation, the discover probabilities for multiple simulations is the complement of 

not discovering a state in any of the individual simulations. For example, in the case of two 

simulations with lengths Κ0 and Κ1, 

 

P (𝐷𝑖𝑗
𝚱={Κ0,Κ1},𝑀=2

) = 1 − (1 − P (𝐷𝑖𝑗
𝚱={Κ0},𝑀=1

= 1)
𝑖𝑗

) ∗ (1 − P (𝐷𝑖𝑗
𝚱={Κ1},𝑀=1

= 1)
𝑖𝑗

)  

 

This can be generalized to an arbitrary number of simulations with arbitrary lengths: 

 

P(𝐷𝑖𝑗
𝚱,𝐌 = 1) = 1 − ∏ [∏ (1 − P(𝜐𝑖′𝑗′

𝑘 = 1 | {𝜐𝑖𝑗
𝑘′

= 0 ∀ 𝑘′ < 𝑘})
𝑖𝑗

) 
Κ𝑚
𝑘=0 ]𝑀

𝑚=1   [6] 

 

This gives us our final expression for state discovery as a function of our equilibrium-sampling 

parameters. 

4.4 Results 

4.4.1 There Are Different Advantages to Running Many Short or Few Long 

Simulations 

From equation 6, it is clear that the probability of discovering a state is influenced by four 

parameters: 1) the number of trajectories, 2) the lengths of the trajectories, 3) the starting state, 

and 4) the shape of the landscape being sampled. Strikingly, this implies that the probability of 
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discovering a state can be drastically distinct between a single long simulation and many short 

simulations, though this is only true for finite sampling since P(𝐷𝑖𝑗
𝚱,𝐌 = 1)  → 1 as either, 𝐌 →

∞, or Κ𝑚 → ∞. It may seem tempting to seek the global optimum sampling parameters, 

however, sampling is strongly dependent on the specifics of the landscape itself. Additionally, 

different goals may necessitate different sampling strategies, i.e. is the goal to discover as many 

states as possible, or to discover a pathway between a particular set of states? From this, our goal 

is to characterize different sampling strategies for a variety of different landscapes to gain insight 

into their appropriate uses. 

 As a first test, we constructed a simple landscape where four states are connected in a 

linear arrangement (Figure 4.1A). Here, each state can transition to either a neighbor or itself, 

with differing probabilities. We imagine that these states represent a conformational landscape 

where each successive state is progress along some order parameter. Starting from state 0, the 

first state in the chain, we calculate the probability of discovering the other states from either a 

single trajectory or many parallel trajectories with an equivalent aggregate amount of simulation. 

Figure 4.1C depicts the probability of discovering states 2 (blue curves) and 3 (red curves) from 

a single trajectory at various time-steps (solid lines), or some number of parallel trajectories with 

4 time-steps each (dashed lines). We see that the long simulations have a higher probability of 

reaching states 3 and 4 than do parallel simulations. For this shaped landscape, the discrepancy 

between long and parallel simulations widens with the number of states. This makes intuitive 

sense from equation 6, because we see that the probability of a simulation making 2 successive 

transitions is different than one of two simulations making 2 successive transitions. 
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Figure 4.1: The probability of discovering particular states on simplified landscapes as a function of the number and 

length of simulations from equation 6. (A) Four states, arranged linearly, have transitions to themselves and their 

direct neighbors to varying degrees. States 2 and 3 are colored blue and red for visual aid. (B) A fully connected 3 

state system. The probability of transitioning from state 0 to 2 is very low. (C) The probability of discovering state 2 

(blue) or state 3 (red) with either a single long simulation (solid line) or many simulations consisting of 4 steps 

(dashed line) for the landscape in panel A. (D) The probability of discovering state 2 (blue) with either a single long 

simulation (solid line) or many simulations consisting of 2 steps (dashed line) for the landscape in panel B. 

We should note that the fully connected landscape in Figure 4.1B also displays this 

property, indicating that it is not an artifact of the way we have drawn the landscape. Here, the 

probability of transitioning between state 0 to 2 is very low, making the more probable route go 

through the transition state, 1. This leaves parallel simulations at a disadvantage of having to take 

the longer route to observe the transition, making this observation less probable. Interestingly, 

this also indicates that it is possible to consistently stumble upon an incorrect conclusion for the 

transition pathway; a trivial example being that many 1-step simulations started from state 0 

would incorrectly predict the pathway as going directly from state 0 to 2. It is an important point 
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that this result arises from the probability of discovering certain states, and their transitions, but 

not from the estimates of each states conditional transition probabilities, which should remain 

preserved across sampling methods. Therefore, in addition to understanding how sampling 

affects state discovery, we are interested in how the state discovery influences the predicted 

mechanism of conformational changes (e.g. the highest probability transition pathways between 

two sets of states). We investigate this idea in more detail in later sections. 

So far, linear and fully connected landscapes might lead one to believe that long 

simulations are always advantageous in state discovery, but this is not the case when landscapes 

have entropic barriers. For many realistic systems, it is likely that a particular conformational 

state has many other states that it can transition to. To capture this transitional entropy, we 

generated the star-shaped landscape depicted in Figure 4.2A. This landscape has a central state 

and 5 arms, which is reminiscent of a “kinetic hub” where unfolded/high-energy states typically 

pass through the folded state to reach other unfolded/high-energy states.46 Parallel simulations 

have a significantly higher probability to discover any of the states on this landscape, compared 

with equal aggregate time of the long simulation. We reason that the long simulations are 

penalized by having to backtrack to explore each of the arms, whereas the parallel simulations 

have a high probability of sampling multiple arms simultaneously. This effect becomes more 

drastic as the dimensionality of the state-space increases. Furthermore, this landscape provides a 

nice example that the optimal sampling scheme is strongly dependent on the shape of the 

landscape. 
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Figure 4.2: The probability of discovering particular states on a star-shaped landscape as a function of simulation 

length and number of simulations from equation 6. (A) Network representation of the star-shaped landscape. Due to 

symmetry in the transition probabilities, a simulation started from state 0 has equal probability of reaching any of the 

states labeled 1, as well as any of the states labeled 2. State 0 also has a self-transition probability of 0.17, but this 

edge is omitted for visual clarity. (B) The probability of discovering a particular state 1 (blue) or state 2 (red) with 

either a single long simulation (solid line) or parallel simulations consisting of 2 steps (dashed line). 

 These simple landscapes provide valuable insight into how long or parallel simulations 

affect state discovery, setting a baseline for characterizing more complicated sampling schemes, 

such as adaptive sampling. Towards this goal, we generated a series of larger landscapes, which 

emulate common challenges in the sampling of proteins. To aid in human intuition, these 

landscapes are two-dimensional energy surfaces projected onto a grid, where each point on the 

grid represents a conformational state with a single potential energy. Each state can have up to 

four connected neighbors, with transitions governed by the Metropolis criterion. In the next few 

sections, we make use of kinetic Monte Carlo simulations on these landscapes using four 

different sampling methods: 1) a single long simulation (referred to as “long”), 2) many short 

simulations (referred to as “parallel”), 3) counts-based adaptive sampling (referred to as 

“counts”), and 4) our goal-oriented FAST algorithm (referred to as “FAST”). Although there are 

many adaptive sampling algorithms, we chose to use counts because it has been shown to be the 
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best at indiscriminately discovering new states.34,42 The specifics of sampling are described in 

greater detail in the methods section. Furthermore, we aim to characterize each method based on 

three different criteria: 1) ability to discover a target state, 2) ability to predict realistic transition 

pathways, and 3) ability to estimate accurate transition probabilities. 

4.4.2 FAST is Most Likely to Discover the Target State 

The first landscape that we generated was inspired by the challenge of using MD simulations to 

find the native state of a cooperatively folding protein. Two common tasks include: 1) to 

determine the native conformational state given an amino-acid sequence, also known as a 

structure prediction problem,47-49 and 2) explore the preferred pathway(s) from an unfolded state 

to the native state.50,51 We chose to start with one of the simplest possible models, a minimally 

frustrated folding-funnel (Figure 4.3).52,53 Here, there is a reasonably smooth energetic gradient 

from a high-energy starting-state to the low-energy target state. The solid colored lines represent 

the three highest-flux pathways from the start to the target. 

 To characterize state-discovery on this landscape, we performed 5,000 independent trials 

of each sampling method, with equivalent aggregate simulation times, as is described in the 

methods. We then calculate the probability of discovering a given state (which we refer to as the 

discover probabilities) for the four methods, by averaging the results of equation 1 for each trial. 

We note that we terminate the algorithm after reaching the target state, since we are mainly 

concerned with the initial pathway to the target; including excessive sampling after reaching the 

target convolutes the results with what happens afterwards. Additionally, trimming the data after 

discovering the end state does not affect the discover probabilities of the end state itself. 
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Figure 4.3: An energy landscape inspired by a simple folding funnel. Conformational states are located at the 

vertices of the grid, where the color at this point represents the energy of that state. States can have up to 4 neighbors 

to transition with. Solid lines (black, red, and green) indicate the three highest flux pathways from the start to the 

target state, where line thickness is proportional to the flux along the particular path. 

 If the goal is to simply reach the end-state, FAST does so with the highest probability. 

The discover probabilities of the target state are 1.0 ± 7 × 10−4, 0.94, 0.62 ± 7 × 10−3, and 

2.2 × 10−5 for FAST, long, counts, and parallel simulations respectively (this value for long and 

parallel simulations come from equation 6). It is not a surprise that FAST is the best at reaching 

the end state, since it is the only method tested that uses knowledge of the end state in its 

sampling and we have previously shown FAST’s ability to reach a target state with orders of 

magnitude less simulation.42 Of greater interest here is the difference between the observation of 

states along the way to the target. 
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Figure 4.4: The discover probabilities (the probability that a simulation set observes a particular state) on the 

funneled landscape in Figure 3. Shown are the probabilities for four sampling strategies, a single long simulation, 

many parallel simulations, counts-based adaptive sampling, and the goal-oriented FAST simulations. 

Towards this goal, we plot the discover probabilities for each method in Figure 4.4, 

which reveals distinct patterns for each sampling method. We find it extremely beneficial to 

view the discover probabilities for each state in this manner, since it provides intuition for the 

ways that each method explores the landscape before reaching the target. Analysis of the long 

simulations indicates that they have a propensity to sample around the native-well before 

reaching the target state. The 25 states closest to the target have over a 0.9 probability of being 
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discovered first. Conversely, parallel simulations rarely venture near the target, but thoroughly 

explore the landscape around the starting state. Strikingly, this suggests that parallel simulations 

would require orders of magnitude more aggregate simulation time than the long simulation to 

reliably observe a transition to the target. In fact, this is what we observe for MD simulations of 

the λ-repressor in a later section. 

Unlike the other sampling strategies, counts-based adaptive sampling has an elevated 

propensity to explore the high-energy edges of the funneled landscape. Compared to the long 

simulations, counts has almost twice the probability of discovering the states furthest from the 

start and the target, yet, nearly half the probability of discovering the target itself. This is because 

counts indiscriminately discovers new states, particularly in high-energy neighborhoods where 

low count states are prevalent. This property enables counts-based sampling to lead in state 

discovery, with an average of 183.3 ± 12.3 states discovered, in comparison to 168.5 ± 12.3, 

144.2 ± 24.0, and 72.7 ± 10.1 for FAST, long, and parallel simulations respectively. 

Interestingly, counts-based sampling’s propensity to climb energy barriers actually hinders its 

ability to follow a simple gradient to the global minimum. Therefore, counts-based simulations 

may actually be a poor choice for many applications, despite its ability to discover many states, 

because it will dedicate significant computational resources to sampling irrelevant (e.g. high-

energy) states. On the other hand, FAST simulations are very directed. 

On this funneled landscape, FAST not only has a higher probability of discovering the 

states along the highest-flux pathways to the global minimum, but also provides the best 

estimates of their transition probabilities. While there are many ways to estimate transition 

probabilities to construct an MSM from trajectories, we compare sampling results by row-

normalizing transition counts. This is a straightforward method that works well with adaptive 
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sampling data, as is described in a later section. Using a relative entropy metric to quantify the 

deviation of MSMs built with each method from the true landscape, as we have done 

previously,42,46 we find that FAST and long simulations have the lowest deviations for states in 

the top three highest-flux pathways. These relative entropies, ascending, are 0.58 ± 0.46, 0.84 ±

0.80, 1.96 ± 0.76, and 2.46 ± 5 × 10−2 for FAST, long, counts, and parallel simulations, 

respectively. This result suggests that FAST matches long simulations’ ability to reach distant 

conformations, parallel simulations’ ability to thoroughly explore particular regions of 

conformational space, and adaptive sampling’s flexibility. 

 Taken together, the funneled landscape provides a coarse view of each sampling 

method’s behavior. With the perspective that aggregate simulation time is a finite resource, we 

can imagine the differences between sampling methods being the amount of this resource spent 

on each region of the conformational landscape. Parallel simulations spend the majority of this 

resource around the starting state. Counts-based simulations spread it across the landscape. Long 

simulations distribute it in proportion to neighboring states’ energy. FAST spends computing 

resources on the states that optimize its objective. On the funneled landscape, there are minimal 

barriers to prevent counts from spreading, and the states that optimize FAST’s objective are 

nearly a straight line from the start to the target. In the following section, we add a layer of 

complexity to see if adaptive sampling can truly adapt to roadblocks in energy landscapes. 

4.4.3 Adaptive Sampling Navigates Obstacles 

To mimic the complexities of more realistic landscapes, we generated the rugged landscape in 

Figure 4.5A. This rugged landscape provides an interesting challenge to not just discover the 

target state, but also discover the preferred pathways. The three highest-flux pathways between 

the start and the target state are shown in Figure 4.5A, which each require navigation around 
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large energy barriers. As an added difficulty, there exist alternative routes around the barriers, 

with differing fluxes. Although sampling is stochastic, and any individual run has the potential to 

proceed along an arbitrary path, we expect the distribution of paths to resemble the actual 

highest-flux paths. Of special interest is how FAST navigates the landscape, since it strongly 

uses structural information in reseeding simulations. We wish to confirm that it does not cut 

across high-energy barriers in an effort to maximize its objective function. 

 

Figure 4.5: The performance of FAST on a rugged landscape. (A) An energy landscape inspired by a folding funnel 

with random obstacles. Conformational states are located at the intersection of the grid lines, where the color at this 

point represents the energy of that state. Solid lines (black, red, and green) indicate the three highest flux pathways 

from the start to the target state, where line thickness is proportional to the flux along the particular path. (B) The 

probability that a FAST simulation set will predict a state to be in the highest-flux path from the start to the target 

state. 

Similar to the performance on the previous landscape, FAST outperforms the alternative 

approaches in discovering the target state. This is best seen from each method’s discover 

probabilities on this landscape (Figure A.1.3), where FAST clearly has the highest probability of 

discovering the target state. In addition, FAST is most likely to discover the states along the 

actual highest-flux pathways, which suggests that FAST also predicts the correct pathways. To 

better quantify this, we characterize the probability that a state is predicted to be on pathway 
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from the start to the target. This is done by calculating the highest-flux pathway for each of our 

5,000 trials and determining the number of times a state is observed. Averaging this leaves us 

with a state value of 1 if it is always observed when transitioning from the start to the target, and 

0 if it is never observed. 

 Inspection of the pathway probabilities for FAST (Figure 4.5B) reveals its ability to 

navigate around obstacles. The predicted pathways from the start to the target do not 

pathologically cut across the energy barriers, but mimic the route taken by the three highest-flux 

pathways that were calculated from the underlying transition probabilities. Furthermore, the 

predicted pathways of FAST and counts resemble the predicted pathways obtained from the long 

simulations (Figure A.1.4). This is consistent with the hypothesized benefits of adaptive and 

goal-oriented sampling: since each simulation is in local equilibrium, the probability of 

traversing any individual barrier remains unchanged, and thus, transitions will typically occur 

along realistic pathways. 

4.4.4 Pathway Tunneling: Observing an Unfavorable Pathway Due to 

Sampling Artifacts 

The landscapes considered so far have been well suited for use with FAST, largely because the 

simple geometric function used in our FAST ranking (i.e. distance to the target state) is a 

reasonable surrogate for kinetic proximity to the target. However, there are many instances 

where finding a reasonable surrogate may be difficult. For example, there are many systems 

where transitioning between geometrically similar conformations may require partial unfolding 

of a protein.54 In these cases, the optimal transition path would have, at times, unfavorable state 

rankings. 
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Figure 4.6: An energy landscape where the preferred pathway is not the shortest distance between the start and the 

target state. Conformational states are located at the intersection of the grid lines, where the color at this point 

represents the energy of that state. Solid lines (black, red, and green) indicate the three highest flux pathways from 

the start to the target state, where line thickness is proportional to the flux along the particular path. 

 To explore the utility of FAST when the preferred pathway is suboptimally described by 

the geometric ranking function, we modeled a landscape with a large barrier separating the start 

and target states (Figure 4.6). Here, the three highest-flux pathways all circumnavigate this large 

barrier rather than taking the geometrically shortest path (across the barrier). Indeed, the long 

simulations also indicate that the preferred pathway does not cut across the barrier, but follows 

the longer, low-energy route (Figure 4.7A-B). 
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Figure 4.7: The discover probabilities and predicted pathways for long and parallel simulations on the landscape in 

Figure 6A. (A) The probability that a long simulation discovers a particular state. (B) The probability that a long 

simulation will predict a state to be in the highest-flux path from the start to the target state. (C) The probability that 

a set of parallel simulations discovers a particular state. (D) The probability that a set of parallel simulations will 

predict a state to be in the highest-flux path from the start to the target state. 

This landscape highlights a potential pathology of running many short parallel 

simulations, which consistently predict that the highest-flux pathway cuts across the high-energy 

barrier. From Figure 4.7C, we observe that the probability that one of the short simulations 

completes the long path is significantly less than the probability that it hops across the high 
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energy barrier. This leads to the prediction of a very unrealistic highest-flux pathway, as shown 

in Figure 4.7D. We name this undesired phenomenon “pathway tunneling”, due to its loose 

similarity to the tunneling through high-energy barriers observed in quantum mechanics. If the 

length of all the parallel simulations is gradually increased, the probability of pathway tunneling 

falls monotonically and converges on the correct mechanism. In this example, pathway tunneling 

is a consequence of not discovering the set of states along the optimal path, although, it can also 

arise from poor estimates of transition probabilities that result in an overestimate of the 

probabilities of rare paths (due to insufficient sampling or inaccuracies in MSM construction). 

We explore the role of MSM estimators on adaptive sampling data in a later section. 

 

Figure 4.8: FAST simulations navigating a large energy barrier. (A) The probability that a FAST simulation set 

discovers a particular state. (B) The probability that a FAST simulation set will predict a state to be in the highest-

flux path from the start to the target state. 

 From the discover probabilities in Figure 4.8A, we observe that FAST has a significantly 

higher probability of discovering the states along the preferred pathway compared to those of the 

tunneled pathway. It appears that even in the extreme case where the directed component is at 

times orthogonal to the preferred pathway, FAST’s statistical component mitigates pathway 

tunneling. This is evidenced from counts-based adaptive samplings’ ability to discover the 
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correct pathway (Figure A.1.6-7). However, despite this benefit, compared to the long 

simulations there is an increased probability of discovering the tunneled states. This isn’t an 

issue if the estimates of the transition probabilities are accurate enough to distinguish the 

likelihood of each path, although the pathway probabilities in Figure 4.8B show that FAST non-

negligibly predicts the tunneled pathway as the preferred pathway. This result suggests that 

although FAST is able to circumnavigate orthogonal energy barriers, poor selection of a 

geometric criterion may lead to over estimating the probability of traversing unfavorable paths. 

4.4.5 FAST-String Quickly Discriminates between Alternative Pathways 

To minimize the probability that FAST falls victim to pathway tunneling, we introduce a new 

ranking scheme for FAST that refines the transition probabilities along the highest-flux pathways 

to quantify their relative weights. This method draws inspiration from the string method,55-57 

which refines a proposed transition path by iteratively running short molecular dynamics 

simulations from regularly spaced conformations along the path and letting them relax towards 

the true lowest free energy path. Here, we begin FAST-string after first discovering a pathway, 

or set of pathways, to the target state using the original FAST rankings. Then, we change the 

ranking function to focus on refining the transition probabilities of the path(s) found. 

Specifically, we calculate the n-highest-flux pathways and rank states found in these paths by 

some statistical criterion. Thus, our state rankings become: 

 

𝑟(𝑖) =  {𝜓̅(𝑖)              𝑖𝑓 𝑖 ∈ {𝑤0, … , 𝑤𝑛}
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       [7] 
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where 𝑟(𝑖) is the ranking of state i, 𝜓̅(𝑖) is the scaled statistical component of the original FAST 

ranking function, and {𝑤0, … , 𝑤𝑛} represents the states found in the n-highest-flux paths. For our 

purposes, we use the counts of each state as our statistical component to favor less explored 

regions of the predicted pathways. We expect that sampling along these states will distinguish 

favorable paths from unfavorable, if multiple paths are discovered, and help relax the pathway to 

the preferred path if pathway tunneling has occurred. 

 

Figure 4.9: A comparison of predicted pathways and estimated transition probabilities between sampling methods on 

a landscape with a large barrier. (A) The probability that a FAST-string simulation set will predict a state to be in the 

highest-flux path from the start to the target state. (B-D) The Kullbeck-Liebler divergence of each states conditional 

transition probabilities to the true transition probabilities. Here, a lower value indicates a lower deviation from the 
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true underlying landscape. Compared are FAST simulations, FAST simulations followed by FAST-string, and a 

long simulation. Each of these are produced from equivalent aggregate simulation. 

 With our FAST-string method, we are able to consistently determine the preferred 

transition path. Figure 4.9A shows that the tunneled pathway is no longer predicted as the 

transition pathway. We obtain this result with the same amount of aggregate simulation as the 

other methods; we run FAST until it discovers the end state, then switch to FAST-string for the 

remainder of the rounds. Instead of redundantly sampling around the target state once found, 

FAST-string productively refines estimates of the transition probabilities. From Figure 4.9B-D, 

we can see that FAST-string has the most accurate estimates of transition probabilities along the 

highest-flux pathways. 

4.4.6 Normalizing Row Counts Provides a Good Balance of Estimating Rates 

and Equilibrium Populations with Adaptive Sampling Data 

In addition to comparing different sampling methods, it is important to ask what the best way of 

estimating the transition probabilities between states from a given data set is. In other words, 

what is the best way to use a count-matrix, which counts the observed transitions between every 

pair of states, to estimate the transition probabilities and equilibrium populations of each state? 

The simplest way is to normalize each row in the count-matrix to get an unbiased 

estimate of each states conditional transition probabilities, where the first eigenvector provides 

the equilibrium populations.45 However, this approach does not guarantee microscopic 

reversibility and can have serious pathologies if the transition probability matrix is not ergodic, 

especially if transitions are observed from state 𝑛𝑖 to 𝑛𝑗 but not in the opposite direction. To 

alleviate this issue, it is customary to assume that, prior to observing any data, each state has 

equal probability to transition to any other state. This can be represented by adding a pseudo-

count, 𝐶̃, to each possible transition, 
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𝑇𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =

𝐶𝑖𝑗+𝐶

∑ (𝐶𝑖𝑘+𝐶)𝑘
         [8] 

 

where, 

 

𝐶̃ =
1

𝑛
            [9] 

 

and 𝑛 is the number of states. An alternative estimator, called the transpose method, enforces 

detailed balance. At equilibrium, we know that each state transition should be equally populated 

by the reverse process (running an infinitely long simulation in reverse should not alter the 

estimates for transition probabilities). Enforcing this is straightforward, by averaging with the 

transpose of the count-matrix: 

 

𝐶𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 =

𝐶𝑖𝑗+𝐶𝑗𝑖

2
  

 

and 

 

𝑇𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

=
𝐶𝑖𝑗

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

∑ 𝐶𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

𝑘
  

 

and the equilibrium populations are calculated as, 
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𝜋𝑖 =
∑ 𝐶𝑖𝑗

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒
𝑗

∑ 𝐶𝑘𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

𝑘,𝑗
          [10] 

 

This has recently been extended for use with simulations at multiple temperatures.58 More 

sophisticated methods have also been developed to enforce detailed balance, such as the use of 

maximum likelihood estimation (MLE),23,24 and the observable operator model (OOM).59 In the 

MLE method, the likelihood of the transition probability matrix given an observed trajectory, 𝚾, 

is determined to be, 

 

P(𝑇|𝚾) ∝ ∏ 𝑇𝑖𝑗

𝐶𝑖𝑗
𝑖,𝑗   

 

Consequently, the most likely transition probability matrix is solved as,  

 

𝑇𝑖𝑗
𝑀𝐿𝐸 = arg max

𝑇𝑖𝑗
∗

P(𝑇𝑖𝑗
∗ |𝚾)   

 

A variant of the MLE method, which we will refer to as MLE-CP (MLE- with Constrained 

Populations), has also been developed to enforce a pre-determined equilibrium probability 

distribution.60,61  This is useful with experimental estimates of state populations. Lastly, the 

OOM was recently developed as a generalization to hidden Markov models,62 and restructured 

for use with MSMs.59,63 
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Figure 4.10: An analysis of MSM estimators’ performance on the landscape depicted in Figure 5A. (A) The 

predicted state populations for a single FAST simulation using the MLE method. (B) A comparison of the MLE-CP, 

transpose, normalize, MLE, and OOM estimators. Solid points are the average relative entropy for transition 

probabilities and equilibrium populations. Red lines are the standard deviations of these values. 

 Each of these methods has been studied theoretically, in the limit of infinite data, and on 

small systems where sampling is not an issue. However, we are interested in the likely scenario 

where sampling is far from exhaustive. To test MSM construction in this regime, we used the 

FAST simulation sets on the landscape in Figure 4.5A to generate MSMs using the five methods 

listed above: 1) normalize, 2) transpose, 3) MLE, 4) OOM, and 5) MLE with constrained 

populations. We then compared the MSMs predictions of thermodynamics (equilibrium 

populations) and kinetics (transition probabilities) to the true distributions calculated from the 

underlying landscape. While the performance of each estimator may depend on the particular 

landscape being sampled, the case study we present here is representative of our results with 

other landscapes. Our metrics for performance consists of how well each estimator predicts the 

kinetics (transition rates) and thermodynamics (equilibrium populations) of the underlying 

energy landscape, as quantified with a relative entropy metric. 
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 Upon inspection of the predicted equilibrium populations, we find that the MLE and 

OOM methods have a tendency to significantly overestimate the populations of an arbitrary set 

of states. Figure 4.10A is an example of this phenomenon for MLE, where four states are 

predicted to have a total probability of 0.58 even though the probability that they were sampled 

in the raw data is only 0.016. For reference, the true total probability of these states is 0.029 and 

the true probability of the most populated state in the underlying landscape is 0.032. In 

comparison, Figure A.1.9 shows that normalize and transpose give more reasonable predictions. 

Characterizing this over the entire dataset, we observe that on average, the largest predicted state 

population for MLE and OOM is 10.5 ± 21.0 and 16.4 ± 53.5 times larger than its true 

population. Interestingly, the deviation in these predictions are sizable; the most egregious 

observances of an overinflated state population for MLE and OOM were predictions of a single 

state containing 0.38 and 0.55 of the total population for each method, respectively. 

Additionally, MLE and OOM do not regularly overpopulate the same state; the probability that 

the state with the largest predicted population is truly the most populated state is 0.16 and 0.14 

for MLE and OOM, respectively, compared to 0.35 and 0.33 for normalize and transpose, 

respectively. On the other hand, normalize and transpose have a largest populated state that is 

only 2.2 ± 2.5 and 2.0 ± 2.7 times its true population. However, while OOM is subject to the 

same pathology as MLE, severely over estimating the populations for a set of states, it appears to 

describe most of the landscape quite well (Figure A.1.9). Future developments of OOM could 

provide an accurate and robust estimator. To further quantify predictions for all states, we 

compute the relative entropy between each models’ prediction of transition probabilities and 

equilibrium populations to the true distributions. 
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 The MLE-CP is shown to generate an MSM with the most accurate estimates of kinetics 

and thermodynamics for FAST simulations on this particular landscape. Figure 4.10B shows the 

average deviations of transition probabilities and equilibrium populations from the true values 

for the underlying landscape for each MSM method. It is not surprising that constraining the 

populations to their true values performs well. Also, as has been previously reported, there are 

significant improvements to estimates of transition probabilities when the equilibrium 

populations are constrained.61 However, a priori knowledge of the equilibrium distribution is not 

typically available, so it is not currently possible to adopt this approach as standard practice. 

The normalize and transpose methods produce the next most accurate estimates of 

transition probabilities and equilibrium populations. However, despite transposes’ adequate 

performance on this landscape, it can be shown from equation 10 that the estimated equilibrium 

populations are directly related to the amount of sampling in each state. This is not thought to be 

ideal with adaptive sampling, since continually sampling from a state will artificially inflate its 

estimated equilibrium population. Transpose does well on this particular landscape due to the 

relatively flat energy surface of the preferred path and would be less favorable with real 

landscapes. Therefore, we recommend the use of the normalize method with adaptive sampling 

data for its simplicity and accurate estimates of thermodynamics and kinetics. 

4.4.7 Simulations of λ-Repressor Recapitulate the Patterns Observed for 

Simple Landscapes 

Kinetic Monte Carlo simulations on physically inspired landscapes have provided valuable 

functional insight, but it is important to ensure that our conclusions hold true for the exploration 

of real protein landscapes. Protein conformational landscapes are hyper-dimensional and likely 

have many barriers, both enthalpic and entropic. Thus, we turn to using all-atom MD simulations 
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for three sampling methods: 1) long simulations, 2) massively parallel simulations, and 3) FAST-

contacts (which ranks states by the fraction of native contacts that are present). Each method uses 

the same unfolded starting structure and simulation parameters, where extended details are 

described in the Methods. As for a model system, we chose to simulate a fast-folding variant of 

the λ-repressor.64 Due to its speed of folding and size, the kinetics of this protein have been 

extensively studied, both experimentally and computationally, making it ideal for use when 

comparing sampling strategies. 

 

Figure 4.11: The largest observed fraction of native contacts as a function of aggregate simulation time for three 

equilibrium-based sampling methods. Simulation sets were generated from the same initial structure, which had a 

fraction of native contacts of 0.17 formed. Structures indicate the largest fraction of native contacts observed in a 

single run of FAST (red) or parallel simulations (blue) in contrast with the crystal structure (gray) (PDBID: 1LMB). 

Unlike the simple landscapes in previous sections, all-atom MD simulations are 

computationally expensive and sample along vast conformational landscapes. As a consequence, 
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we cannot run thousands of iterations to robustly characterize the probability of discovering a 

particular state. Instead, we can compare the performance of each method by focusing on a more 

coarse-grained metric of interest, such as the computational time required to reach the folded 

state, as measured by the fraction of native contacts present. 

Analysis of the three sampling methods reveals that adaptive sampling yields similar 

benefits to those found on our simple landscapes. Figure 4.11 shows the highest fraction of 

native contacts observed for each sampling method as a function of the aggregate simulation 

time. Remarkably, FAST-contacts folds the λ-repressor with ~4 μs of aggregate simulation, 

which is faster than its experimental folding time. By comparison, it takes nearly 40 μs of long 

simulations to achieve a similar level of foldedness. Furthermore, the massively parallelized 

simulations, with over 700 μs of aggregate simulation time, and counts-based adaptive sampling 

do not discover the folded state. Due to the high dimensionality of the λ-repressor, compared 

with our generated landscapes, counts-based adaptive sampling appears to hinder discovery of 

the folded state; low count states are continually discovered and selected in orthogonal directions 

to the fraction of native contacts. These results are in strong agreement with the discovery 

predictions from the landscapes in Figures 4.3 and 4.5. 
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Figure 4.12: Analysis of predicted folding pathways for λ-repressor using the RMSD of each residues’ backbone 𝜙 

and 𝜓 angles to the crystal structure (PDBID: 1LMB). Folding pathways are defined as an MSMs’ highest-flux path 

from the starting state to the state with the largest fraction of native contacts. The time evolution of each residue’s 

backbone RMSDs are shown along the x-axis for the predicted folding pathway from two separate runs of FAST-

contacts and a single set of long simulations. 

In addition to understanding the probability of observing a folded state, we are interested 

in the predicted folding pathways. However, the idea of characterizing a pathway for all-atom 

MD simulations is more complicated than on the theoretical landscapes; state-space is 

significantly larger, computational limitations prevent multiple trials to assess the stochasticity, 

and the optimal (human-intuitive) parameters to define a pathway are not straightforward. The 

long and parallel simulations require too much computational resources to gather statistics on, 

although we were able to generate five independent trials of FAST in a reasonable timeframe. 
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For the purposes of defining a pathway, others have successfully taken the approach of 

characterizing folding by the rate of formation of secondary structural elements.65-67 Thus, we 

also aim to characterize the rate of secondary structure formation by determining each residues’ 

root-mean-square deviation (RMSD) of backbone dihedrals from the crystal structure, for states 

along the predicted highest-flux pathway. We plot these deviations for two representative runs of 

FAST-contacts and the long simulations in Figure 4.12. 

The predicted pathways for each of these methods are reasonably consistent with one 

another. FAST-contacts predominantly predicts the folding of helices 1 and 4 before helices 2 

and 3. This is consistent with our prediction using the single set of long simulations. 

Additionally, this is what has been seen with previous simulation reports,68,69 and hydrogen 

exchange experiments.70 Interestingly, this is counter to the results from a Gō model, which has 

been previously used and describes helices 1-4 folding cooperatively.71 This difference suggests 

that FAST-contacts is not simply an expensive Gō model. 

4.5 Conclusions 

We have presented a systematic comparison of different sampling strategies on a variety of 

representative energy landscapes. We first developed an analytic expression for the probability 

of discovering states on a landscape that depends on the number, length, and starting state of 

simulations. From this we find that long simulations have a higher probability of discovering 

states on landscapes with reduced dimensionality, though parallel simulations have a higher 

probability of discovering states as the dimensionality increases. To build upon this, we used 

kinetic Monte Carlo simulations on more complex landscapes to compare four sampling 

strategies (long simulations, parallel simulations, counts adaptive sampling, and FAST), which 

each reveal a unique state discovery signature. Understanding the differences in how these 
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sampling strategies discover states has provided insight into their advantages and disadvantages. 

Specifically, long simulations provide an unbiased estimates of transition paths, although 

requires significant computational resources compared to adaptive sampling or FAST and 

produces less accurate MSMs. Parallel simulations thoroughly explore around the starting state 

and provide excellent estimates of transition probabilities (for the states discovered) but are 

unlikely to explore distant regions of conformational space and may provide erroneous transition 

paths. Counts-based adaptive sampling discovers the most states along a variety of paths, 

although these states are likely to be unproductive for a given goal, especially on landscapes with 

large dimensionality. 

 Throughout our analysis, we have taken special interest in the performance of our 

recently developed goal-oriented sampling algorithm, FAST. On our simple landscapes, we find 

that FAST consistently has the highest probability of discovering a target state, predicts 

reasonable pathways, and provides the best estimates of transition probabilities for an entire 

MSM as well as of the true highest-flux pathway (Table S1). Furthermore, we demonstrate the 

utility of FAST using all-atom MD simulations of the λ-repressor. FAST produces an accurate 

folding pathway with an order of magnitude less aggregate simulation than long simulations, and 

orders of magnitude less than parallel simulations. 

4.6 Methods 

4.6.1 Generation and Simulation of Simple Landscapes 

The three physically inspired potential energy landscapes were generated by selectively adding 

Gaussian potentials to an otherwise flat surface. These potential energy landscapes were then 

converted to a transition probability matrix using the following relations: 
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𝜁𝑖𝑗 = {
𝑒𝜀𝑖−𝜀𝑗                        𝑖𝑓 𝜀𝑖 <  𝜀𝑗

1                               𝑖𝑓 𝜀𝑖 ≥  𝜀𝑗
 

 

for all 𝑗 that are neighbors of 𝑖 , and where 𝜀𝑖 is the potential energy of state 𝑛𝑖 in units of 𝑘𝐵𝑇. 

This can then be row-normalized to obtain, 

 

𝑇𝑖𝑗 =
𝜁𝑖𝑗

∑ 𝜁𝑖𝑗𝑗
 

 

Kinetic Monte Carlo simulations were then performed with this transition probability 

matrix for four sampling schemes: 1) long simulations, 2) parallel simulations, 3) counts-based 

adaptive sampling, and 4) FAST simulations. For each of the sampling schemes, 5,000 

independent sets of simulations were generated, each with a total of 1,000 time-steps. For the 

long simulations, this consisted of 5,000 single trajectories, of 1,000 steps. Each set for the 

parallel simulations consisted of 25 trajectories with 40 steps. 

Counts-based adaptive sampling and FAST both followed the same basic protocol: 1) 

generate 5 trajectories of 20 steps each from the initial state, 2) build an MSM, 3) rank states, 4) 

generate 5 more trajectories of 20 steps each from the top 5 states with the highest ranking, 5) 

repeat steps 2-4 for a total of 10 rounds. The difference between counts-based adaptive sampling 

and FAST is in the manner of ranking states between each round. For counts adaptive sampling, 

states were ranked by their observed counts in the MSM, with lower counts being more 

favorable. For FAST, we used the following ranking, 

 

𝑟𝜙(𝑖) =  𝜙̅(𝑖) +  𝛼𝜓̅(𝑖) +  𝛽𝜒(𝑖)        [11] 
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where 𝜙̅ is the feature-scaled directed component (Euclidean distance to the target state), 𝜓̅ is the 

feature scaled undirected component, 𝜒 is a similarity penalty, and 𝛼 and 𝛽control the weights of 

𝜓̅  and 𝜒, respectively, as has been published previously.21 Here, 𝜓̅(𝑖) is taken to be the state 

counts and a value of 1 was used for both 𝛼 and 𝛽. The directed component for each state on the 

landscapes was the grid distance to the target state. The similarity penalty for each state selected 

is defined with, 

  

𝜒(𝑖) = {

0 𝑖𝑓 𝑁 = 0

1

𝑁
∑ (1 − 𝑒

−𝑑𝑖𝑗
2

2𝑤2 )𝑁
𝑗=1 𝑖𝑓 𝑁 > 0

       [12] 

 

which is the average of the Gaussian weighted grid distance, 𝑑, from state 𝑛𝑖to the N states that 

have been selected for reseeding so far, where 𝑤 is the Gaussian width (set to the clustering 

radius). Thus, selecting states proceeds as follows: 1) rank all states by the FAST ranking and 

select the top state, 2) add the similarity penalty and select the top-ranking state as the next state, 

3) repeat step 2 until the desired number of states have been selected. 

 After generating the state trajectories on the landscapes from the sampling methods, state 

discover probabilities, pathway probabilities, and relative entropies were calculated. The 

discover probabilities were calculated by first using equation 1 to indicate if a state was 

discovered for each simulation set. These values for 𝐷𝑖𝑗
𝚱,𝐌

 were then averaged over the 5,000 

trials to determine the probability of discovering a state in the simulation set, P(𝐷𝑖𝑗
𝚱,𝐌 = 1). 

Similar to the discover probabilities, the pathway probabilities were calculated by averaging the 
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output of a selector function, over the simulation sets, that indicated if a state was present in the 

predicted highest-flux pathway. The highest-flux pathway for each simulation set was calculated 

using MSMBuilder.72 The relative entropies of each state were calculated as the Kullback-

Leibler divergence between the estimated conditional transition probabilities from that state and 

those of the underlying energy distribution: 

 

𝐷𝐾𝐿
𝑖 (𝑃𝑖||𝑄𝑖) =  − ∑ 𝑃𝑖 log (

𝑄𝑖

𝑃𝑖
)𝑖   

 

where 𝐷𝐾𝐿
𝑖  is the relative entropy for state 𝑖, 𝑃𝑖 is the 𝑖-th row of the true transition probability 

matrix, and 𝑄𝑖  is the 𝑖-th row of the transition probability matrix reconstructed from synthetic 

trajectories. The relative entropy of the entire MSM is a population weighted average of these 

values, as is described previously.42,46 MSMs were constructed with either the MSMBuilder or 

PyEMMA software packages.72-74 

4.6.2 Molecular Dynamics Simulations 

Four sets of all-atom molecular dynamics simulations for the λ-repressor were generated: 1) 

7,005 parallel simulations (103.4 ± 82.0 ns each), 2) 16 long simulations (2.5 μs each), 3) FAST-

contacts simulations (30 rounds of 10 simulations per round, with 30 ns per simulation), and 4) 

counts-based adaptive sampling (30 rounds of 10 simulations per round, with 30 ns per 

simulation). Each of these simulations were run with Gromacs 5.1.175 using the AMBER03 force 

field with explicit TIP3P solvent.76,77 

Each of these sets of simulations began from the same starting structure, which was 

prepared as follows. First, a linear structure of the λD14A mutant64 was generated using the 
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VMD software package.78 The linear structure was equilibrated for 1 ns at 420 K with OBC 

GBSA implicit solvent.79 The final conformation was then placed in a dodecahedron box that 

extended 1.0 nm beyond the protein in any dimension, with a total of 46,450 atoms in the 

system. This system was then energy minimized with the steepest descent algorithm until the 

maximum force fell below 100 kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 

1.2 nm for the neighbor list, Coulomb interactions, and van der Waals interactions. 

For production runs, all bonds were constrained with the LINCS algorithm and virtual 

sites were used to allow a 4 fs time step. Cutoffs of 1.0 nm were used for the neighbor list, 

Coloumb interactions, and van der Waals interactions. The Verlet cutoff scheme was used for the 

neighbor list. The stochastic velocity rescaling (v-rescale) thermostat was used to hold the 

temperature at 360 K and conformations were stored every 50 ps.80 

4.6.3 FAST Simulations 

Five sets of FAST-contacts simulations were generated that each observed an independent 

folding trajectory for the λ-repressor. Each set of FAST-contacts consisted of 9 μs of aggregate 

simulation time: 30 rounds, of 10 simulations per round, where each simulation was 30 ns. 

Between each round, discrete states were generated by clustering atomic coordinates of 

backbone atoms using a k-centers algorithm based on RMSD between conformations until every 

cluster center had a radius less than 3.0 Å. States were selected for reseeding based on the 

ranking function and selection criterion described with equations 11 and 12. The similarity 

penalty used was RMSD between cluster centers, where the Gaussian width, 𝑤, was set to the 

clustering radius of 3.0 Å. The directed component to the FAST ranking was the feature scaled 

values of the fraction of native contacts, described elsewhere.81 
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4.6.4 MSM Construction and Analysis 

MSMs were built of each simulation set using MSMBuilder.72,73 The construction of each MSM 

followed the same basic protocol: 1) cluster conformations into discrete states, 2) count 

transitions between these states at a specified lag-time, and 3) generate each states’ conditional 

transition probabilities. For the first step, atomic coordinates of backbone heavy atoms (CO, Cα, 

O, N) and Cβ atoms were clustered with a k-centers clustering algorithm until every cluster center 

had a radius of less than 3.0 Å. A lag-time of 5 ns was used for counting transitions between 

states. Each states’ conditional transition probabilities were computed using the normalize 

method with a prior-counts, as described with equations 8 and 9. Structural analysis was aided 

with the use of MDTraj.82 



117 

 

Bibliography 

(1) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon, J. 

K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; Gagliardo, 

J.; Grossman, J. P.; Ho, C. R.; Ierardi, D. J.; Kolossváry, I.; Klepeis, J. L.; Layman, 

T.; McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.; 

Theobald, M.; Towles, B.; Wang, S. C. Anton, a Special-Purpose Machine for 

Molecular Dynamics Simulation. Communications of the ACM 2008, 51 (7), 91–97. 

 

(2) Shaw, D. E.; Grossman, J. P.; Bank, J. A.; the, B. B. P. O.; 2014. Anton 2: Raising 

the Bar for Performance and Programmability in a Special-Purpose Molecular 

Dynamics Supercomputer. dl.acm.org. 

 

(3) Takada, S. Go-Ing for the Prediction of Protein Folding Mechanisms. Proc. Natl. 

Acad. Sci. U.S.A. 1999, 96 (21), 11698–11700. 

 

(4) Go, N. Theoretical Studies of Protein Folding. Annu. Rev. Biophys. Bioeng. 1983, 12 

(1), 183–210. 

 

(5) Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein 

Folding. Chemical Physics Letters 1999, 314 (1-2), 141–151. 

 

(6) Fukunishi, H.; Watanabe, O.; Takada, S. On the Hamiltonian Replica Exchange 

Method for Efficient Sampling of Biomolecular Systems: Application to Protein 

Structure Prediction. The Journal of Chemical Physics 2002, 116 (20), 9058–9067. 

 

(7) Faraldo-Gómez, J. D.; Roux, B. Characterization of Conformational Equilibria 

Through Hamiltonian and Temperature Replica-Exchange Simulations: Assessing 

Entropic and Environmental Effects. J Comput Chem 2007, 28 (10), 1634–1647. 

 

(8) Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; 

Wriggers, W.; Schulten, K. Steered Molecular Dynamics. In Computational 

Molecular Dynamics: Challenges, Methods, Ideas; Lecture Notes in Computational 

Science and Engineering; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; 

Vol. 4, pp 39–65. 

 

(9) Isralewitz, B.; Gao, M.; Schulten, K. Steered Molecular Dynamics and Mechanical 

Functions of Proteins. Current Opinion in Structural Biology 2001, 11 (2), 224–230. 

 

(10) Voter, A. F. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent 

Events. Physical Review Letters 1997, 78 (20), 3908–3911. 

 

(11) Hamelberg, D.; Mongan, J.; McCammon, J. A. Accelerated Molecular Dynamics: a 

Promising and Efficient Simulation Method for Biomolecules. The Journal of 

Chemical Physics 2004, 120 (24), 11919–11929. 



118 

 

 

(12) Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. 

U.S.A. 2002, 99 (20), 12562–12566. 

 

(13) Laio, A.; Gervasio, F. L. Metadynamics: a Method to Simulate Rare Events and 

Reconstruct the Free Energy in Biophysics, Chemistry and Material Science. 

Reports on Progress in Physics 2008, 71 (12), 126601. 

 

(14) Perez, A.; MacCallum, J.; Dill, K. A. Meld: Modeling Peptide-Protein Interactions. 

Biophysical Journal 2013, 104 (2), 399a. 

 

(15) Perez, A.; MacCallum, J. L.; Dill, K. A. Accelerating Molecular Simulations of 

Proteins Using Bayesian Inference on Weak Information. Proc. Natl. Acad. Sci. 

U.S.A. 2015, 112 (38), 11846–11851. 

 

(16) Zheng, L.; Chen, M.; Yang, W. Random Walk in Orthogonal Space to Achieve 

Efficient Free-Energy Simulation of Complex Systems. Proc. Natl. Acad. Sci. U.S.A. 

2008, 105 (51), 20227–20232. 

 

(17) Shirts, M. R.; Pande, V. S. Mathematical Analysis of Coupled Parallel Simulations. 

Physical Review Letters 2001, 86 (22), 4983–4987. 

 

(18) Shirts, M. COMPUTING: Screen Savers of the World Unite! Science 2000, 290 

(5498), 1903–1904. 

 

(19) Bowman, G. R.; Pande, V. S.; Noé, F. Introduction and Overview of This Book. In 

An Introduction to Markov State Models and Their Application to Long Timescale 

Molecular Simulation; Advances in Experimental Medicine and Biology; Springer 

Netherlands: Dordrecht, 2014; Vol. 797, pp 1–6. 

 

(20) Hart, K. M.; Ho, C. M. W.; Dutta, S.; Gross, M. L.; Bowman, G. R. Modelling 

Proteins’ Hidden Conformations to Predict Antibiotic Resistance. Nature 

Communications 2016, 7, 12965. 

 

(21) Zimmerman, M. I.; Hart, K. M.; Sibbald, C. A.; Frederick, T. E.; Jimah, J. R.; 

Knoverek, C. R.; Tolia, N. H.; Bowman, G. R. Prediction of New Stabilizing 

Mutations Based on Mechanistic Insights From Markov State Models. ACS Cent. 

Sci. 2017, 3 (12), 1311–1321. 

 

(22) Hart, K. M.; Moeder, K. E.; Ho, C. M. W.; Zimmerman, M. I.; Frederick, T. E.; 

Bowman, G. R. Designing Small Molecules to Target Cryptic Pockets Yields Both 

Positive and Negative Allosteric Modulators. PLOS ONE 2017, 12 (6), e0178678. 

 

(23) Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. Progress and 

Challenges in the Automated Construction of Markov State Models for Full Protein 

Systems. The Journal of Chemical Physics 2009, 131 (12), 124101. 



119 

 

 

(24) Metzner, P.; Noé, F.; Schütte, C. Estimating the Sampling Error: Distribution of 

Transition Matrices and Functions of Transition Matrices for Given Trajectory Data. 

Physical Review E 2009, 80 (2), 021106. 

 

(25) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything You Wanted to Know 

About Markov State Models but Were Afraid to Ask. Methods 2010, 52 (1), 99–105. 

 

(26) Chodera, J. D.; Noé, F. Markov State Models of Biomolecular Conformational 

Dynamics. Current Opinion in Structural Biology 2014, 25, 135–144. 

 

(27) Mukherjee, S.; Pantelopulos, G. A.; Voelz, V. A. Markov Models of the 

<I>Apo</I>-MDM2 Lid Region Reveal Diffuse Yet Two-State Binding Dynamics 

and Receptor Poses for Computational Docking. Scientific Reports 2016 6 2016, 6 

(1), 31631. 

 

(28) Zhou, G.; Pantelopulos, G. A.; Mukherjee, S.; Voelz, V. A. Bridging Microscopic 

and Macroscopic Mechanisms of P53-MDM2 Binding with Kinetic Network 

Models. Biophysical Journal 2017, 113 (4), 785–793. 

 

(29) Plattner, N.; Doerr, S.; De Fabritiis, G.; Noé, F. Complete Protein–Protein 

Association Kinetics in Atomic Detail Revealed by Molecular Dynamics 

Simulations and Markov Modelling. Nature Chemistry 2017 9:10 2017, 9 (10), 

1005–1011. 

 

(30) Wang, W.; Cao, S.; Zhu, L.; Huang, X. Constructing Markov State Models to 

Elucidate the Functional Conformational Changes of Complex Biomolecules. Wiley 

Interdisciplinary Reviews: Computational Molecular Science 2018, 8 (1), e1343. 

 

(31) Husic, B. E.; Pande, V. S. Markov State Models: From an Art to a Science. Journal 

of the American Chemical Society 2018, 140 (7), 2386–2396. 

 

(32) Hinrichs, N. S.; Pande, V. S. Calculation of the Distribution of Eigenvalues and 

Eigenvectors in Markovian State Models for Molecular Dynamics. The Journal of 

Chemical Physics 2007, 126 (24), 244101. 

 

(33) Bowman, G. R.; Ensign, D. L.; Pande, V. S. Enhanced Modeling via Network 

Theory: Adaptive Sampling of Markov State Models. J. Chem. Theory Comput. 

2010, 6 (3), 787–794. 

 

(34) Weber, J. K.; Pande, V. S. Characterization and Rapid Sampling of Protein Folding 

Markov State Model Topologies. J. Chem. Theory Comput. 2011, 7 (10), 3405–

3411. 

 



120 

 

(35) Doerr, S.; De Fabritiis, G. On-the-Fly Learning and Sampling of Ligand Binding by 

High-Throughput Molecular Simulations. J. Chem. Theory Comput. 2014, 10 (5), 

2064–2069. 

 

(36) Voelz, V. A.; Elman, B.; Razavi, A. M.; Zhou, G. Surprisal Metrics for Quantifying 

Perturbed Conformational Dynamics in Markov State Models. J. Chem. Theory 

Comput. 2014, 10 (12), 5716–5728. 

 

(37) Bacci, M.; Vitalis, A.; Caflisch, A. A Molecular Simulation Protocol to Avoid 

Sampling Redundancy and Discover New States. Biochimica et Biophysica Acta 

(BBA) - General Subjects 2015, 1850 (5), 889–902. 

 

(38) Kukharenko, O.; Sawade, K.; Steuer, J.; Peter, C. Using Dimensionality Reduction 

to Systematically Expand Conformational Sampling of Intrinsically Disordered 

Peptides. J. Chem. Theory Comput. 2016, 12 (10), 4726–4734. 

 

(39) Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput 

Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016, 12 

(4), 1845–1852. 

 

(40) Sultan, M. M.; Pande, V. S. Decision Functions From Supervised Machine Learning 

Algorithms as Collective Variables for Accelerating Molecular Simulations. 

February 28, 2018. 

 

(41) Noé, F.; Banisch, R.; Clementi, C. Commute Maps: Separating Slowly Mixing 

Molecular Configurations for Kinetic Modeling. ACS Publications 2016, 12 (11), 

5620–5630. 

 

(42) Zimmerman, M. I.; Bowman, G. R. FAST Conformational Searches by Balancing 

Exploration/Exploitation Trade-Offs. J. Chem. Theory Comput. 2015, 11 (12), 

5747–5757. 

 

(43) Zimmerman, M. I.; Bowman, G. R. How to Run FAST Simulations. Methods in 

Enzymology 2016, 578, 213–225. 

 

(44) Bowman, G. R.; Geissler, P. L. Equilibrium Fluctuations of a Single Folded Protein 

Reveal a Multitude of Potential Cryptic Allosteric Sites. Proc. Natl. Acad. Sci. 

U.S.A. 2012, 109 (29), 11681–11686. 

 

(45) Grinstead, C. M.; Snell, J. L. Introduction to Probability; 2012. 

 

(46) Bowman, G. R.; Pande, V. S. Protein Folded States Are Kinetic Hubs. Proc. Natl. 

Acad. Sci. U.S.A. 2010, 107 (24), 10890–10895. 

 

(47) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal Structure Prediction via Particle-Swarm 

Optimization. Phys. Rev. B 2010, 82 (9), 094116. 



121 

 

 

(48) Moult, J. A Decade of CASP: Progress, Bottlenecks and Prognosis in Protein 

Structure Prediction. Current Opinion in Structural Biology 2005, 15 (3), 285–289. 

 

(49) Floudas, C. A.; Fung, H. K.; McAllister, S. R.; Mönnigmann, M.; Rajgaria, R. 

Advances in Protein Structure Prediction and De Novo Protein Design: a Review. 

Chemical Engineering Science 2006, 61 (3), 966–988. 

 

(50) Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. Molecular Simulation 

of Ab Initio Protein Folding for a Millisecond Folder NTL9(1−39). Journal of the 

American Chemical Society 2010, 132 (5), 1526–1528. 

 

(51) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How Fast-Folding Proteins 

Fold. Science 2011, 334 (6055), 517–520. 

 

(52) Leopold, P. E.; Montal, M.; Onuchic, J. N. Protein Folding Funnels: a Kinetic 

Approach to the Sequence-Structure Relationship. Proc. Natl. Acad. Sci. U.S.A. 

1992, 89 (18), 8721–8725. 

 

(53) Dill, K. A.; Chan, H. S. From Levinthal to Pathways to Funnels. Nature Structural 

& Molecular Biology 1997 4:1 1997, 4 (1), 10–19. 

 

(54) Whitford, P. C.; Onuchic, J. N. What Protein Folding Teaches Us About Biological 

Function and Molecular Machines. Current Opinion in Structural Biology 2015, 30, 

57–62. 

 

(55) E, W.; Ren, W.; Vanden-Eijnden, E. String Method for the Study of Rare Events. 

Phys. Rev. B 2002, 66 (5), 052301. 

 

(56) Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G. String Method in 

Collective Variables: Minimum Free Energy Paths and Isocommittor Surfaces. The 

Journal of Chemical Physics 2006, 125 (2), 024106. 

 

(57) Albert C Pan; Deniz Sezer, A.; Benoît Roux. Finding Transition Pathways Using 

the String Method with Swarms of Trajectories;  American Chemical Society, 2008; 

Vol. 112, pp 3432–3440. 

 

(58) Leahy, C. T.; Kells, A.; Hummer, G.; Buchete, N.-V.; Rosta, E. Peptide 

Dimerization-Dissociation Rates From Replica Exchange Molecular Dynamics. The 

Journal of Chemical Physics 2017, 147 (15), 152725. 

 

(59) Nüske, F.; Wu, H.; Prinz, J.-H.; Wehmeyer, C.; Clementi, C.; Noé, F. Markov State 

Models From Short Non-Equilibrium Simulations—Analysis and Correction of 

Estimation Bias. The Journal of Chemical Physics 2017, 146 (9), 094104. 

 



122 

 

(60) Trendelkamp-Schroer, B.; Noé, F. Efficient Bayesian Estimation of Markov Model 

Transition Matrices with Given Stationary Distribution. The Journal of Chemical 

Physics 2013, 138 (16), 164113. 

 

(61) Trendelkamp-Schroer, B.; Noé, F. Efficient Estimation of Rare-Event Kinetics. 

Phys. Rev. X 2016, 6 (1), 011009. 

 

(62) Jaeger, H. Observable Operator Models for Discrete Stochastic Time Series. 

http://dx.doi.org/10.1162/089976600300015411 2006, 12 (6), 1371–1398. 

 

(63) Wu, H.; Prinz, J.-H.; Noé, F. Projected Metastable Markov Processes and Their 

Estimation with Observable Operator Models. The Journal of Chemical Physics 

2015, 143 (14), 144101. 

 

(64) Yang, W. Y.; Gruebele, M. Folding Λ-Repressor at Its Speed Limit. Biophysical 

Journal 2004, 87 (1), 596–608. 

 

(65) Hu, W.; Walters, B. T.; Kan, Z.-Y.; Mayne, L.; Rosen, L. E.; Marqusee, S.; 

Englander, S. W. Stepwise Protein Folding at Near Amino Acid Resolution by 

Hydrogen Exchange and Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2013, 

110 (19), 7684–7689. 

 

(66) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. How Robust Are Protein Folding 

Simulations with Respect to Force Field Parameterization? Biophysical Journal 

2011, 100 (9), L47–L49. 

 

(67) Henry, E. R.; Best, R. B.; Eaton, W. A. Comparing a Simple Theoretical Model for 

Protein Folding with All-Atom Molecular Dynamics Simulations. Proc. Natl. Acad. 

Sci. U.S.A. 2013, 110 (44), 17880–17885. 

 

(68) Liu, Y.; Strümpfer, J.; Freddolino, P. L.; Gruebele, M.; Schulten, K. Structural 

Characterization of Λ-Repressor Folding From All-Atom Molecular Dynamics 

Simulations. ACS Publications 2012, 3 (9), 1117–1123. 

 

(69) Bowman, G. R.; Voelz, V. A.; Pande, V. S. Atomistic Folding Simulations of the 

Five-Helix Bundle Protein Λ6−85. Journal of the American Chemical Society 2010, 

133 (4), 664–667. 

 

(70) Yu, W.; Baxa, M. C.; Gagnon, I.; Freed, K. F.; Sosnick, T. R. Cooperative Folding 

Near the Downhill Limit Determined with Amino Acid Resolution by Hydrogen 

Exchange. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (17), 4747–4752. 

 

(71) Shoemaker, B. A.; Wang, J.; Wolynes, P. G. Exploring Structures in Protein Folding 

Funnels with Free Energy Functionals: the Transition State Ensemble. Journal of 

Molecular Biology 1999, 287 (3), 675–694. 

 



123 

 

(72) Harrigan, M. P.; Sultan, M. M.; Hernández, C. X.; Husic, B. E.; Eastman, P.; 

Schwantes, C. R.; Beauchamp, K. A.; McGibbon, R. T.; Pande, V. S. MSMBuilder: 

Statistical Models for Biomolecular Dynamics. Biophysical Journal 2017, 112 (1), 

10–15. 

 

(73) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; Haque, I. S.; Pande, 

V. S. MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to 

Millisecond Scale. J. Chem. Theory Comput. 2011, 7 (10), 3412–3419. 

 

(74) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; 

Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-H.; Noé, F. PyEMMA 2: a 

Software Package for Estimation, Validation, and Analysis of Markov Models. J. 

Chem. Theory Comput. 2015, 11 (11), 5525–5542. 

 

(75) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. 

GROMACS: High Performance Molecular Simulations Through Multi-Level 

Parallelism From Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25. 

 

(76) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; 

Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A Point‐Charge 

Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed‐
Phase Quantum Mechanical Calculations. J Comput Chem 2003, 24 (16), 1999–

2012. 

 

(77) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. 

Comparison of Simple Potential Functions for Simulating Liquid Water. The 

Journal of Chemical Physics 1998, 79 (2), 926–935. 

 

(78) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics 1996, 14 (1), 

33–38. 

 

(79) Onufriev, A.; Bashford, D.; Case, D. A. Exploring Protein Native States and Large‐
Scale Conformational Changes with a Modified Generalized Born Model. Proteins: 

Structure, Function, and Bioinformatics 2004, 55 (2), 383–394. 

 

(80) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity 

Rescaling. The Journal of Chemical Physics 2007, 126 (1), 014101. 

 

(81) Best, R. B.; Hummer, G.; Eaton, W. A. Native Contacts Determine Protein Folding 

Mechanisms in Atomistic Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (44), 

17874–17879. 

 

(82) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; 

Hernández, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MDTraj: 

a Modern Open Library for the Analysis of Molecular Dynamics Trajectories. 

Biophysical Journal 2015, 109 (8), 1528–1532. 



124 

 

Chapter 5 

Prediction of New Stabilizing Mutations 

Based on Mechanistic Insights from Markov 

State Models 

5.1 Preamble 

This chapter is adapted from the following article: Zimmerman, M.I., Hart., K.M., Sibbald, C.A., 

Frederick, T.E., Jimah, J.R., Knoverek, C.R., Tolia, N.H., and Bowman, G.R. (2017). “Prediction 

of New Stabilizing Mutations Based on Mechanistic Insights from Markov State Models”, 

American Chemical Society Central Science, 3 (12), 1311-1321 

5.2 Introduction 

Studying the evolution of antibiotic resistance has provided many insights into how proteins 

acquire new functions, but the mechanistic basis for how mutations alter a protein’s activity and 

stability often remains unclear. For example, studying how bacteria evolve variants of TEM β-

lactamase that confer resistance to new antibiotics by degrading these drugs has revealed that 

many of the mutations that give rise to new functions are destabilizing. Therefore, it is common 

for proteins to acquire one or more mutations that alter their function and then to acquire 

additional mutations that restore stability.1 M182T is one such stabilizing mutation in TEM, and 

it has appeared in numerous clinical isolates and directed evolution experiments.2-4 

 This substitution occurs far from the active site (Figure 5.1A) and, on its own, has little effect on 

TEM’s activity. It is often called a global suppressor because of its ability to counterbalance the 
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destabilizing effects of a wide variety of other substitutions that do alter TEM’s activity.3 Despite 

over two decades of work on this variant, the mechanism of stabilization by M182T is not 

understood well enough to predict new stabilizing mutations. Elucidating the mechanism 

underlying this stabilization would provide a basis for predicting other global suppressors and 

eventually developing quantitative design principles. 

 A mechanistic understanding of how M182T stabilizes TEM remains elusive because of a 

lack of methods that provide both a detailed structural model of the relevant species and their 

relative populations. Spectroscopic studies have revealed that TEM-1, which we will refer to as 

wild-type TEM, populates at least three states at equilibrium: a native state (N), an intermediate 

(I), and an unfolded state (U).5 Introducing the M182T substitution appears to reduce the number 

of equilibrium states to two.4 However, there is debate over whether this results from M182T 

stabilizing the native state or destabilizing the intermediate.6 Moreover, these spectroscopic 

experiments do not directly provide a structural model for how M182T shifts the relative 

populations of these states. Two competing structural models based on crystallographic data 

have been proposed to explain M182T’s ability to stabilize the enzyme. In the first crystal 

structure, Thr182 is poised to form a hydrogen bond between TEM’s two structural domains, 

interacting with the backbone carbonyls of Glu63 and Glu64 in an adjacent loop7 (Figure 5.1B). 

Therefore, it was proposed that M182T stabilizes TEM by strengthening the interface between 

the α-helix and β-sheet domains. However, in a later structure, Thr182 is oriented to form 

hydrogen bonds with the backbone amide of Ala185 (Figure 5.1C).1 Based on this model, it was 

proposed that M182T stabilizes the protein by forming a hydrogen bond between its sidechain 

and an unfulfilled backbone donor at the end of helix 9 in a classic N-capping interaction. In all 

likelihood, both of these structures are present at thermal equilibrium, but it is impossible to 
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conclude which, if either of these interactions, plays a dominant role in stabilizing TEM from the 

crystallographic data. 

 

Figure 5.1: Representative structures of TEM that highlight two potential mechanisms for stabilization by Thr182. 

(A) Crystal structure of TEM with mutation M182T (PDB 1JWP). The backbone of the α-helix domain (cyan), β-

sheet domain (gray), and s2h2 loop (orange) are represented as a cartoon. Active site residue, Ser70, and the 

stabilizing mutation, Thr182, are shown in sticks. (B) A structure where Thr182 hydrogen bonds to the s2h2 loop. 

(C) A second structure where Thr182 caps helix 9. 
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 Here, we employ Markov state models (MSMs)8-10 to understand how M182T shifts the 

distribution of different structures that TEM adopts. These models provide a quantitative 

description of a protein’s thermodynamics and kinetics by defining its structural states and the 

rates of transitioning between them. We have previously compared MSMs of variants that alter 

TEM’s specificity to understand how they change the proteins function.11 In this study, we 

compare MSMs of the wild-type and M182T variants to infer how M182T stabilizes TEM. We 

then predict the effects of other mutations, including new global suppressor mutations, and 

experimentally test our predictions using a combination of spectroscopic measurements of 

protein stability, nuclear magnetic resonance (NMR) measurements of chemical shifts, a crystal 

structure, and in vivo measurements of the fitness of bacteria expressing our newly designed 

TEM variants. 

5.3 Results 

5.3.1 M182T Stabilizes the Native State 

Uncertainty over whether M182T stabilizes the native state or destabilizes the intermediate stems 

from the limited ability of any one spectroscopic observable to clearly distinguish all three 

thermodynamic states. For example, circular dichroism (CD) fails to adequately capture 

M182T’s intermediate state. By CD, there are three distinguishable states for wild-type5 but only 

two for M182T4 (Figure 5.2A); however, the dependence of M182T’s native-state stability on 

denaturant, as reflected in its m-value, is shallower than expected for a protein of its size.12 This 

indicates that like wild-type, M182T likely populates more than two states at equilibrium,13 

rendering a two-state model insufficient. Fluorescence also fails to capture all three 

thermodynamic states for both wild-type and M182T (Figure 5.2B). Previous studies of β-
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lactamases have established that the intermediate state has the same fluorescence as the unfolded 

state,14 so fluorescence captures only the transition between the native and intermediate states. 

 

Figure 5.2: Chemical melts of TEM. Shown are the fractions of folded protein for wild-type TEM (black) and TEM 

M182T (orange) as a function of [urea]. (A) Monitoring circular dichroism signal. (B) Monitoring intrinsic 

fluorescence at 340 nm. 

 To overcome the limitations of a single spectroscopic observable, we performed global 

fits to the fluorescence and CD data for each variant, assuming that the first transition observed 

by CD is the same as that observed by fluorescence. Doing so allows us to disambiguate the two 

transitions captured by CD by leveraging the single transition captured by fluorescence. Our 

global fits reveal that M182T stabilizes the native state without destabilizing the intermediate. 

The free energy difference between the native and intermediate states of M182T is 3.3 kcal/mol 
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greater than that for wild-type (Table 5.1). In contrast, the free energy differences between the 

intermediate and unfolded states are the same, within error, for both variants. 

Table 5.1. Stabilities of TEM 𝛃-lactamase variants* 

 ΔGun 
(kcal mol-1) 

mun 

(kcal mol-1 M-1) 

ΔGin
† 

(kcal mol-1) 

min
† 

(kcal mol-1 M-1) 

ΔGui
† 

(kcal mol-1) 

mui
‡ 

(kcal mol-1 M-1) 

wild-type 14.3 ± 0.3 3.8 ± 0.2 6.0 ± 0.1 2.1 ± 0.1 8.3 ± 0.1 1.7 ± 0.1 

M182T 17.7 ± 0.4 4.1 ± 0.2 10.0 ± 0.6 2.4 ± 0.2 7.8 ± 0.2 1.7, fixed 

M182S 18.5 ± 0.5 4.4 ± 0.1 10.6 ± 0.5 2.7 ± 0.1 7.9 ± 0.4 1.7, fixed 

M182V 13.5 ± 0.3 3.8 ± 0.1 5.4 ± 0.2 2.1 ± 0.1 8.2 ± 0.1 1.7, fixed 

M182N 13.7 ± 0.5 3.8 ± 0.1 5.9 ± 0.4 2.1 ± 0.1 7.8 ± 0.4 1.7, fixed 

*All measurements were repeated three times. Errors are standard deviations. 
†Determined using a global fit of fluorescence data to a two-state (I-N) model and CD data to a three-state (U-I-
N) model using the linear extrapolation method (see Methods). 
‡The value for mui was fixed to the average value determined for wild-type. The addition of mui as a parameter 
did not significantly improve the quality of the fit, as determined by F-tests (values in the range of 1x10-10 – 1x10-

7, see Appendix 2). 

5.3.2 M182T Stabilizes Helix 9 

Given our assumption that M182T does not affect the unfolded ensemble, and thus, primarily 

stabilizes the native state, we reason that it should be possible to infer the mechanism of 

stabilization from analysis of native-state ensembles. To accomplish this, we use MSMs to 

provide an atomically-detailed representation of conformational heterogeneity in the native state 

that is currently unavailable to many experimental techniques. Doing so enables us to quantify 

the probabilities of various interactions in a manner that is not possible with the static structures 

from techniques like crystallography. Furthermore, by identifying interactions that are formed in 

M182T’s native-state ensemble but not that of wild-type TEM we can narrow down the 

secondary effects of this mutation. 

To efficiently identify the interactions that Thr182 forms, we employed our FAST 

simulation method15,16 to build MSMs of the wild-type and M182T variants of TEM. FAST is a 

goal-oriented adaptive sampling method in which we 1) run a batch of simulations, 2) build an 

MSM from all the simulation data collected so far, 3) rank each state with a function that favors 



130 

 

states that optimize some geometric criteria, as well as a statistical criterion that favors poorly 

sampled states, 4) run a new batch of simulations from the highest ranked states, 5) repeat steps 

2-4 for some number of iterations, and 6) build a final MSM from all the simulation data. For 

this study, we sought to maximize the RMSD from the starting structure to maximize the number 

of different structures identified by the final model. We have previously established that FAST 

captures rare events with one or two orders of magnitude less simulation data than conventional 

molecular dynamics simulations.15 Therefore, the 6.5 microseconds of simulation data we 

collected for each variant should be sufficient to construct a quantitatively predictive map of the 

native-state ensemble.17 

 Analysis of our FAST simulations reveals that M182T prefers to N-cap helix 9.  

This conclusion comes from quantifying the probabilities of all the different contacts Thr182’s 

sidechain can form. Doing so reveals that Thr182 predominantly caps helix 9 by forming a 

hydrogen bond with Ala185 with a probability of 0.72±0.023. Thr182 also forms a hydrogen 

bond with the backbone carbonyl of Glu64 with a probability of 0.12±0.017. Thus, we observe 

both conformations captured in the two competing crystal structures. The probabilities of other 

contacts, such as the hydrogen bond with the backbone carbonyl of Glu63, are negligible. 

 While it is tempting to conclude that capping is sufficient for global stabilization, we 

instead propose that the stability of helix 9 is a better predictor of TEM’s stability. Our model’s 

distinction between capping and helix stability was motivated by the observation that other 

residues capable of N-capping have not been observed at position 182 either in clinical isolates 

or in directed evolution studies.2 It might seem intuitive that capping would stabilize helix 9, but, 

in the next section, we defy this intuition by identifying a residue that caps without conferring 

global stabilization. Previous work on the folding of β-lactamases provides a foundation for our 
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model by suggesting that the α-helix domain is largely folded in the intermediate state but the β-

sheet domain is unstructured.18 Taking inspiration from this model, we propose that helix 9 is 

unstructured in the intermediate state. In our model, M182T stabilizes helix 9’s native 

conformation and reduces its conformational heterogeneity. Because this helix is an important 

part of the interface between the α-helix and β-sheet domains, we propose that stabilizing the 

helix stabilizes the entire interface between the two domains, thereby stabilizing TEM’s native 

conformation. Helix 9 being unstructured in the intermediate state in our model is consistent with 

the fact that the free energy difference between the unfolded and intermediate states is unaffected 

by M182T (Table 5.1). 

 As a proxy for assessing the stability of helix 9, we quantify the distribution of distances 

between its backbone hydrogen bonding partners. Our simulations capture transitions between 

weak and moderate hydrogen bonds. Following past work,19,20 we define a moderate hydrogen 

bond as having a hydrogen bond acceptor to hydrogen distance less than 2.2 Å, where a weak 

hydrogen bond has a distance between 2.2-2.5 Å. Assuming that weak hydrogen bonds are more 

likely to break on longer timescales, we can infer M182T’s effect on helix stability by comparing 

the local fluctuations of its hydrogen bonds to that of wild-type. 
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Figure 5.3: Effect of M182T on the stability of helix 9, as judged by the distributions of distances between 

hydrogen-bonding partners. (A) Structure highlighting hydrogen-bonding partners residue 182 and Met186, Pro183 

and Ala187, and Met186 and Leu190, which are colored red. (B-D) Cumulative distribution functions of the 

hydrogen-bonding partners listed in (A) for wild-type (black) and M182T (orange). These plots indicate the 

probability of observing an atomic distance less than the specified value. Our cutoff distance for moderate hydrogen 

bonds, 2.2 Å, is shown as a dotted line. Probabilities of moderate hydrogen bonds for each pair are shown in the 

inset. (E, F) Representative structures, from our MSMs, of helix 9 with a moderate hydrogen bond (observed in 

M182T) and a broken hydrogen bond (observed in wild-type). The backbone of the α-helix domain (cyan) and β-

sheet domain (gray) are represented as a cartoon. 

 Quantifying the distance distributions of hydrogen bonds reveals that M182T stabilizes 

helix 9. M182T increases the probability of moderate strength hydrogen bonds between three 
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pairs of residues: 182-186, 183-187, and 186-190 (Figure 5.3). As stated above, since moderate 

strength hydrogen bonds are less likely to break we conclude that they are stabilizing. The 

distributions for other hydrogen bonds are not altered significantly by the M182T substitution. 

Interestingly, all the residues with increased hydrogen bonding strength reside on the face of the 

helix that points into the core of the protein, along the interface between the two domains (Figure 

5.3A). 

5.3.3 Helix Capping Alone is Not Sufficient to Stabilize the Native State 

Mutagenesis at position 182 presents a valuable opportunity to test our model and probe why 

other mutations may or may not stabilize helix 9. In particular, studying other capping residues 

could reveal that capping is sufficient for stabilization, or alternatively, lead to the identification 

of other stabilizing factors. To discover these factors, we modeled mutations at position 182, 

predicted their stability relative to wild-type, and performed experimental tests. 

We selected three alternative substitutions at position 182 to study. First, we selected 

M182N because asparagine is the most frequently observed N-capping residue in proteins with 

known structures21 and the most stabilizing N-cap,22 so one might expect it to be even more 

stabilizing than threonine. Second, we chose M182S because serine has a hydroxyl group that is 

analogous to threonine’s, so it might form a similar capping interaction and have a comparable 

effect on stability. Third, we modeled M182V because valine mimics threonine sterically but 

lacks the ability to cap since it has a methyl group instead of a hydroxyl group. Therefore, 

comparing M182V with the other substitutions could help elucidate the relative importance of 

capping and sterics. 

Consistent with our expectations, MSMs show that M182S and M182N cap helix 9 

(Figure A.2.1). The probabilities that Ser182 and Asn182 cap by hydrogen bonding with Ala185 
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are 0.61±0.02 and 0.79±0.02, respectively. Each residue can also hydrogen bond with Glu64 in 

the s2h2 loop. M182S forms this interaction with a probability of 0.22±0.02 and M182N forms 

this interaction with a probability of 0.59±0.03. Notably, M182N has the ability to 

simultaneously cap helix 9 and interact with the s2h2 loop. Therefore, if capping were sufficient 

to predict helix stability we would expect that M182S and M182N would be stabilizing 

mutations, while M182V would not. 

Quantifying the degree that each of these substitutions stabilizes helix 9 suggests that 

capping is not sufficient to stabilize TEM. Comparing the probabilities of moderate hydrogen 

bonds along the length of helix 9 reveals that M182S is stabilizing, whereas M182V and M182N 

are not (Figure A.2.2). The fact that M182N is not stabilizing is particularly surprising given that 

it caps as frequently as M182T and can simultaneously hydrogen bond with Glu64. If true, this 

would highlight the predictive power of our model, since it defies biochemical intuition. To test 

these predictions, we experimentally measured the stability of each TEM variant. 

Free energy differences of each variant, derived from chemical melts, and a crystal 

structure are consistent with our model for global stability. As predicted, M182S stabilizes TEM 

to a similar extent to M182T (Table 5.1, Figure A.2.3). Furthermore, M182N and M182V are not 

stabilizing. To provide additional evidence that M182N caps helix 9 without conferring stability, 

we solved a crystal structure of this variant to 2.0 Å resolution (Figure A.2.4, Table A.2.5). This 

structure further supports our prediction that Asn182 caps, since the x-ray density around 

position 182 is best fit with a rotamer that caps helix 9 by hydrogen bonding with Ala185 (Figure 

A.2.4). 

Understanding why M182N does not stabilize TEM despite its strong propensity for 

capping helix 9 presents a valuable opportunity for dissecting the mechanisms of stabilization by 
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M182T and M182S. Given that capping is generally stabilizing, we reasoned that Asn182 must 

form other interactions that counterbalance this effect. If this is true, we would expect the 

stability of helix 9 in isolation from the rest of the protein to correlate with the propensity of 

residue 182 to cap the helix. To test this prediction, we simulated helix 9 (residues 181-197) with 

each of the following residues at position 182: threonine, serine, asparagine, valine, and 

methionine. 

Probing the helical propensity of each variant suggests that capping is sufficient to 

stabilize helix 9 in isolation. We quantify helical propensity by measuring the probability that at 

least 80% of the residues adopt a conformation in the α-helical region of the Ramachandran plot. 

We find that each of the helix 9 variants with an N-terminal capping residue (Thr, Ser, or Asn) at 

position 182 have a similar helical propensity of ~45% (Figure A.2.5). Furthermore, variants that 

lack a capping residue have much lower helical propensity (12-23% for Val and Met). These 

trends remain the same if the cutoff for considering a structure helical is changed. Therefore, it 

appears that any capping interaction will stabilize helix 9 in isolation, consistent with our 

hypothesis that Asn182 must be forming other destabilizing interactions in the context of the 

full-length protein. To determine the reason that M182N does not stabilize helix 9 in the context 

of the full sequence, we next examine the differences in Asn182’s conformations between the 

full-length sequence and in the isolated helix. 
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Figure 5.4: Two commonly observed sidechain conformations of Asn182 in MSMs, which can be characterized by 

their χ1 angle. (A) A representative structure with Asn182 in the gauche+ conformation. The sidechain amine points 

out into solution. (B) A representative structure with Asn182 in the trans conformation. The sidechain amine 

hydrogen-bonds with Glu64 in the s2h2 loop. In both conformations, the sidechain hydrogen-bonds with Ala185. 

The backbone of the α-helix domain (cyan) and β-sheet domain (gray) are represented as a cartoon. 

In both sets of simulation for M182N, the isolated helix and the full-length sequence, 

Asn182 largely populates only two conformations. These conformations differ in whether the χ1-

angle is in the gauche+ (χ1 : 0° → 120°) or trans (χ1 : 120° → 240°) rotamer. Both 

conformations are capable of capping helix 9 but only the trans rotamer hydrogen bonds with 

Glu64 (Figure 5.4A and 5.4B). In the isolated helix, Asn182 adopts the trans rotamer with a 

probability of 0.75±0.01, while the probability of this conformation is only 0.58±0.03 in the 

context of the full-length protein (Figure 5.5). In contrast, Thr182 and Ser182 overwhelmingly 

adopt the gauche+ rotamer (Figure A.2.6). 
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Figure 5.5: Asn182 rotamer populations for the full protein and isolated helix. Shown are the gauche+ (black) and 

trans (red) rotamer populations from MSMs of the full protein and isolated helix. 

Asn182’s rotamer populations suggest that the trans rotamer stabilizes helix 9 but that 

competing interactions in the context of the full-length protein mitigate these stabilizing effects 

by favoring the gauche+ conformation. As a test of this hypothesis, we calculated two sets of 

distance distributions for hydrogen bonds along helix 9: one for the set of conformations when 

Asn182 is in the trans rotamer, and one for the gauche+ rotamer (Figure A.2.7). Comparing 

these distributions confirms that the trans rotamer stabilizes helix 9 by increasing the probability 

of moderate strength hydrogen bonds, while the gauche+ rotamer behaves more like wild-type. 

We next examined structures from each rotameric state of Asn182 to understand why gauche+ 

appears so frequently given that it doesn’t stabilize helix 9. 
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Figure 5.6: Representative structures that highlight the effects of different Asn182 rotamers on packing at the 

interface of the s2h2 loop and α-helix/β-sheet domains. (A) A representative structure of the gauche+ rotamer. (B) A 

representative structure of the trans rotamer. Residues whose packing is affected by Asn182’s rotamer (Tyr46, Ile47, 

Pro62, Glu63, Pro182, and Ala184) are shown as red spheres. The backbone of the α-helix domain (cyan) and β-

sheet domain (gray) are represented as a cartoon. 

We find the trans and gauche+ conformations of Asn182 to have distinct effects on 

packing at the interface between the α-helix and β-sheet domains. In the gauche+ state, which 

does not stabilize helix 9, the domain interface is well-packed (Figure 5.6A). In contrast, when 

Asn182 adopts the trans conformation, it appears to disrupt the packing of this interface and 

increase the exposure of a number of hydrophobic moieties to solvent (Figure 5.6B). 

Specifically, a pocket forms between Tyr46 and Ile47 from the β-sheet domain, Pro62 and Glu63 

of the s2h2 loop, and Pro183 and Ala184 of the α-helix domain. To quantify this effect, we 

calculated the average solvent accessible surface area of these residues for the ensembles of 

structures where Asn182 adopts either the trans or gauche+ rotamer. Doing so reveals that when 

Asn182 adopts the trans state, this surface area increases by ~20% compared to when Asn182 is 

in the gauche+ state (Figure A.2.8). Furthermore, much of the increased surface area is 

contributed by hydrophobic portions of these residues. Since exposure of buried hydrophobic 

groups is thermodynamically destabilizing, we propose that opening of this pocket 

counterbalances the stabilizing effects of capping. Therefore, M182N fails to stabilize helix 9 
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and ultimately the entire protein. This result is also consistent with the observation of the 

gauche+ rotamer in the crystal structure of M182N, since each rotamer has roughly equal 

population and crystal packing forces will favor the more compact structure. Finally, our results 

for Asn182 are consistent with our proposal that the domain interface is a crucial determinant of 

the stability of TEM’s native state. 

5.3.4 Stabilizing Mutations Stabilize the Domain Interface 

As a further test of our model, and the importance of helix 9 to the domain interface, we turned 

to NMR spectroscopy. We use NMR because it can provide site specific details on protein 

structure and dynamics. Here, we performed 1H-15N heteronuclear single quantum coherence 

(HSQC) experiments for each variant and calculated chemical shift perturbations (CSPs) relative 

to wild-type. Since each chemical shift reports on a nuclei’s unique local magnetic environment, 

a CSP indicates a change in the structure and dynamics at this site. Thus, the CSPs for each 

variant will identify all regions affected by the mutation, regardless of their proximity to the 

mutation. 

Consistent with our proposed mechanism for stabilization, most of the statistically 

significant CSPs for M182T are found in helix 9 and the adjacent β-sheets (Figure 5.7). 

Significant CSPs are observed on the first two turns of helix 9, as is expected from our prediction 

that M182T increases the propensity of moderate hydrogen bonds. We also observe significant 

CSPs on the β-sheet domain, not only in residues that interact directly with helix 9 (i.e. Ile47, 

Leu49, and Val262), but also in more distant residues (i.e. Val44, Phe60, and Thr265). Together, 

these results demonstrate that M182T alters the structure and dynamics of helix 9 and that these 

effects are propagated to distant residues along the domain interface. This is consistent with our 

model that M182T stabilizes helix 9, which in turn stabilizes the interface between the β-sheet 
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and α-helix domains. To explore this idea further we next examined the CSPs of the other 

variants. 

 

Figure 5.7: Backbone amide chemical shift perturbations of TEM M182T. The backbone of the α-helix domain 

(cyan) and β-sheet domain (gray) are represented as a cartoon. Residues with statistically significant chemical shift 

perturbations are colored red. 

Comparing the magnitude and direction of CSPs on the β-sheet between each variant 

suggests that stabilizing mutations stabilize the domain interface. Similar to M182T, each variant 

predominately displays CSPs on helix 9 and the interface of the α-helix and β-sheet domains 

(Figure A.2.9). This indicates that each of our substitutions at position 182 alters the structure 

and dynamics of the domain interface. Although one might conclude from the common locations 

of CSPs between the variants that each mutation perturbs TEM in a similar manner, we find that 

the magnitude of CSPs on the β-sheet differs between variants (Figure 5.8). Additionally, these 

CSPs are not randomly scattered. Instead, there is a clear trend from the least stable to the most 

stable variant. Taking all of our observations together, we propose that CSPs closer to wild-type 

represent a more loosely packed, weaker interface, whereas those closer to M182T/M182S 
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represent a more tightly packed, stronger interface. Therefore, we conclude that global stability is 

not only achieved through helix 9 stabilization, but also through stabilization of the domain 

interface. 

 

Figure 5.8: Representative backbone amide chemical shifts, located on TEM’s β-sheet, for 5 sequence variants. 

Shown are the chemical shifts for wild-type (black), M182V (blue), M182N (purple), M182S (green), and M182T 

(orange) for residues located on the β-sheet: Val44, Ile47, Leu49, Phe60, and Val262. For reference, Glu212 is not 

located on the β-sheet and does not display significant perturbations upon mutation. 

5.3.5 Stabilizing Mutations are Global Suppressors 

If stabilization by M182T is the biophysical mechanism for its ability to suppress the impact of 

other deleterious mutations, then we would expect the stabilities of the three new variants we 

selected to correlate with their ability to act as global suppressors. To test this hypothesis, we 

introduced our three substitutions into a background that also contains the substitution G238S. 

G238S is known to confer TEM with cefotaxime resistance at the expense of protein stability1,5. 

Furthermore, a variant with both G238S and M182T is more resistant to cefotaxime than a 
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variant with just one of these substitutions. Therefore, we expect M182S/G238S to have similar 

levels of cefotaxime resistance to M182T/G238S while we expect M182N/G238S and 

M182V/G238S to have similar levels of cefotaxime resistance to G238S alone. 

Table 5.2. MICs for E. coli strains expressing TEM −lactamase variants* 

 cefotaxime (M) 

 Single mutant Double mutant 
(+G238S) 

Wild-type TEM <0.035 0.141 

Suppressor/stabilizing   

M182T 0.070 72.000 

M182S 0.070 36.000 

Wild-type-like/neutral   

M182V <0.035 0.141 

M182N <0.035 0.141 

M182C <0.035 0.281 

M182A <0.035 0.281 

Deleterious   

M182G ND† <0.035 

M182P ND† <0.035 

M182I ND† <0.035 

M182L ND† <0.035 

M182F ND† <0.035 

M182W ND† <0.035 

M182Y ND† <0.035 

M182R ND† <0.035 

M182H ND† <0.035 

M182K ND† 0.070 

M182D ND† <0.035 

M182E ND† <0.035 

M182Q ND† <0.035 

M182G ND† <0.035 
*MIC determination was performed in triplicate. Values are most commonly observed concentration 
with an error of +/- one well, which differ by 2-fold in concentration. 
†Not determined. 
 

Minimal inhibitory concentrations (MICs) of bacteria expressing our TEM variants in the 

background of G238S in the presence of varying levels of cefotaxime reveals that global 

stabilization of the domain interface leads to global suppression. As predicted, M182S/G238S 

resembles M182T/G238S while the other variants are more similar to G238S alone (Table 5.2). 
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The observation that M182S is a global suppressor mutation that has not been reported 

previously lead us to question if other global suppressors may exist. 

MICs for every other possible variant at position 182, in combination with G238S, reveal 

that there are no other possible global suppressor mutations at this position (Table 5.2). 

Substituting Met182 with valine, asparagine, cysteine, or alanine in a G238S background is 

neutral. All other double mutants have lower MICs than G238S alone, suggesting that they are 

deleterious. Therefore, M182T and M182S are the only global suppressor mutations at this 

residue. Together with the previous sections, these results are consistent with our hypothesis that 

stabilization of helix 9 and the domain interface are responsible for M182T’s ability to stabilize 

TEM and suppress the effects of other destabilizing substitutions. 

5.4 Conclusions 

Our MSMs have provided a new mechanistic understanding of the stabilizing effects of M182T, 

which we successfully use to predict the effects of new mutations at position 182. Previous 

crystallographic studies have proposed that M182T’s stabilizing effect is a result of Thr182 

either N-capping or forming a hydrogen bond between the α-helix and β-sheet domain interface. 

Since MSMs are able to capture conformational heterogeneity in a way that cannot be inferred 

from static structures, we are able to propose that M182T stabilizes helix 9, which in turn 

stabilizes the interface between the α-helix and β-sheet domains. In support of the validity of our 

model, it has superior predictive power compared to previous models: we correctly predict that 

M182S is stabilizing but not M182V and M182N, whereas the hydrogen bonding model 

incorrectly predicts M182N to be stabilizing. Furthermore, NMR chemical shift perturbations 

support our dynamical predictions. The fact that our MSMs make successful predictions that 
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defy biochemical intuition is a strong testament to the accuracy and value of these atomically-

detailed models. 

The ability to predict new stabilizing mutations is an important step towards designing 

proteins with new or improved functions. The fact that M182S hasn’t been observed suggests 

that nature hasn’t exhaustively identified all possible stabilizing mutations. Our work raises 

interesting questions, such as why hasn’t M182S been observed in nature. Furthermore, 

combining our ability to predict new stabilizing mutations with our previous work on predicting 

how mutations impact activity could enable the design of proteins with new or improved 

function. 

5.5 Methods 

5.5.1 MD Simulations 

All simulations were run with Gromacs 5.1.1.23 β-Lactamase simulations were run at 300 K 

using the AMBER03 force field with explicit TIP3P solvent.24,25 We have previously shown that 

the AMBER03 forcefield is sufficient to capture the relevant conformational states of TEM β-

lactamases for a range of problems.11,26-28 The single starting structure for TEM-1 β-Lactamase 

simulations was generated from the crystallographic structure (PDB ID: 1JWP)1. The starting 

structures for each TEM variant was generated by mutating the side chain at position 182 to the 

respective amino acid using PDBFixer, followed by an energy minimization for 1,000 steps 

using the AMBER03 force field with the OBC GBSA implicit solvent model.24,29,30 Starting 

structures for the individual helix simulations were taken as residues 181-197 from the starting 

structures of the full sequence. For each full-length sequence, 2.5 μs of conventional sampling 

and 4 μs of FAST-RMSD adaptive sampling (described below) was performed. For the 

individual helix simulations, 4 μs of each sequence was performed: 20 simulations of 200 ns. 
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Simulations were prepared by placing the starting structure for each sequence in a 

dodecahedron box that extended 1.0 Å beyond the protein in any dimension. Each system was 

then energy minimized with the steepest descent algorithm until the maximum force fell below 

100 kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 1.2 nm for the neighbor list, 

Coulomb interactions, and van der Waals interactions. For production runs, all bonds were 

constrained with the LINCS algorithm and virtual sites were used to allow a 4 fs time step.31,32 

Cut-offs of 1.0 nm were used for the neighbor list, Coulomb interactions, and van der Waal 

interactions. The Verlet cutoff scheme was used for the neighbor list. The stochastic velocity 

rescaling (v-rescale) thermostat was used to hold the temperature at 300 K.33 Conformations 

were stored every 20 ps. 

5.5.2 Adaptive Sampling 

The FAST algorithm was used to generate simulation data.15 FAST-RMSD was run for each 

sequence for 10 rounds, of 10 simulations per round, where each simulation was 40 ns in length; 

a total of 4 μs per sequence. The FAST-ranking favored states that maximized the RMSD to the 

starting structure. RMSD calculations were performed between all heavy atoms in residues 

within 1.0 nm of position 182 in the crystallographic starting structure. To enhance the 

conformational diversity of states that are chosen for reseeding simulations, the FAST-ranking 

function was modified with a term that penalizes states conformationally similar to others 

selected. This ensures that each round of sampling contains a good spread of conformations. 

Procedurally, states are selected one at a time, where the modified term is recomputed and added 

to the original ranking for each selection. The modified ranking takes the form,   

 

𝑟𝜙(𝑖) =  𝜙̅(𝑖) +  𝛼𝜓̅(𝑖) +  𝛽𝜒(𝑖) 
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where 𝜙̅ is the directed component, 𝜓̅ is the undirected component, and α and β control the 

weights of 𝜓̅  and 𝜒 respectively. Here, 𝜓̅(𝑖) is taken to be the state counts and a value of 1 was 

used for both α and β. The additional term, 

 

𝜒(𝑖) = {

0 𝑖𝑓 𝑁 = 0

1

𝑁
∑ (1 − 𝑒

−𝑅𝑀𝑆𝐷𝑖𝑗
2

2𝑤2 )

𝑁

𝑗=1

𝑖𝑓 𝑁 > 0
 

 

is calculated as the average of Gaussian weighted RMSDs from state i to the N states that have 

been selected for reseeding so far, where w is the Gaussian width (set to the clustering radius). 

Thus, the procedure for selecting states to reseed simulations from each round is as follows: 1) 

rank all states by the FAST-ranking and select the top state as the first state to reseed, 2) add the 

similarity penalization term to the FAST-ranking and select the top state as another state to 

reseed, 3) update the penalization term and repeat step 2 until the desired number of states for 

reseeding have been selected. 

5.5.3 MSM Construction and Analysis 

All MSMs were built using MSMBuilder.34,35 An MSM is a network representation of an energy 

landscape, where nodes are discrete conformational states and directed edges are conditional 

transition probabilities. MSMs provide a statistically rigorous way of mapping of protein 

dynamics, even from parallel simulations with starting structures that are not Boltzmann 

distributed. Using an MSM, we can quantify thermodynamic and kinetic changes that aid in 

understanding molecular motions. 
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 Simulation datasets for each TEM variant were combined and clustered into a single 

shared state-space. Each dataset consisted of 4 μs FAST-RMSD and 2.5 μs conventional 

simulations. With 5 sequences, this gives a total of 32.5 μs of total simulation. The shared state-

space was defined using all heavy atoms on residues within 1.0 Å of position 182 in the 

crystallographic structure of TEM β-lactamase (PDB ID: 1JWP). The sidechain atoms of 

position 182 were not included, since they vary between sequences. These atomic coordinates 

were then clustered with a k-centers algorithm based on RMSD between conformations until 

every cluster center had a radius less than 1.0 Å. Then, 10 sweeps of a k-medoids update step 

was used to center the clusters on the densest regions of conformational space. Following 

clustering, the cluster assignments were split and a unique MSM was constructed for each TEM 

sequence with a lagtime of 2 ns. To obey microscopic reversibility, transition count matrices 

were symmetrized. Representative cluster centers were saved for each state in each sequence for 

analysis. 

 Geometric analysis of representative cluster centers was performed using MDTraj;36 in 

particular, RMSDs, solvent-accessible surface areas, and atomic distances. Ensemble average 

values within MSMs were calculated as the expectation value for a particular observable. i.e. the 

expectation of observable 𝑧 is calculated as: 

 

𝐸(𝑧) =  ∑ 𝑃(𝑖) ∗ 𝑧(𝑖)

𝑖

 

 

where P(i) is the population of state i and z(i) is the value of state i. 
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5.5.4 Protein Expression and Purification 

TEM-1 was subcloned using NdeI and XhoI restriction sites into the multiple cloning site of a 

pET24 vector (Life Technologies), and its native export signal sequence was replaced by the 

OmpA signal sequence to maximize export efficiency. Site-specific variants were constructed via 

site-directed mutagenesis and verified by DNA sequencing. Plasmids were then transformed into 

BL21(DE3) Gold cells (Agilent Technologies) for expression under T7 promoter control.  

Cells were induced with 1 mM IPTG at OD = 0.6 and grown at 18 °C for 15 h before 

harvesting. TEM β-lactamases were isolated from the periplasmic fraction using osmotic shock 

lysis: Cells were resuspended in 30 mM Tris pH 8, 20% sucrose and stirred for 10 min at room 

temperature. After centrifugation, the pellet was re-suspended in ice-cold 5 mM MgSO4 and 

stirred for 10 min at 4 °C. After centrifugation, the supernatant was dialyzed against 20 mM 

sodium acetate, pH 5.5 and purified using cation exchange chromatography (BioRad UNOsphere 

Rapid S column) followed size exclusion chromatography (BioRad ENrich SEC 70 column) into 

storage buffer (20 mM Tris, pH 8.0). 

5.5.5 Protein Stability Measurements 

Fluorescence data were collected using a Photon Technology International QuantaMaster 800 

Rapid Excitation Spectrofluorometer with Quantum Northwest Inc. TC-125 Peltier-controlled 

cuvette holder. Melts were performed by monitoring intrinsic protein fluorescence, exciting at 

280 nm and detecting emission intensity at 340 nm. Melts were carried out in a 1-cm pathlength 

cuvette (50 g/mL protein, 20 mM Tris pH 7). Samples with varying concentrations of urea were 

prepared individually, equilibrated overnight and allowed to stir in the instrument for 2 minutes 

before data collection.  
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Circular dichroism data were collected using an Applied Photophysics Chirascan with a 

Quantum Northwest Inc. TC-125 Peltier-controlled cuvette holder. Melts were performed by 

monitoring CD signal at 222 nm and were carried out in a 1-cm pathlength cuvette (50 g/mL 

protein, 20 mM Tris pH 7). For urea melts, samples with varying concentrations of urea were 

prepared individually, equilibrated overnight and allowed to stir in the instrument for 2 minutes 

before data collection, which was averaged over 60 seconds. 

Urea melt data for each variant were globally fit. Fluorescence data were fit by a two-

state model (I-to-N), and CD data simultaneously were fit by a three-state model (U-to-I-to-N) 

using a linear extrapolation method:37 

 

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 (𝐹) =
𝐹𝑖+𝐹𝑛𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇

1+𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇     Equation 1 

 

𝐶𝐷 (𝛩) =
𝛩𝑢+𝛩𝑖𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇+𝛩𝑛𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇𝑒−(∆𝐺𝑢𝑖+𝑚𝑢𝑖[𝑢𝑟𝑒𝑎])/𝑅𝑇

1+𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇+𝑒−(∆𝐺𝑖𝑛+𝑚𝑖𝑛[𝑢𝑟𝑒𝑎])/𝑅𝑇𝑒−(∆𝐺𝑢𝑖+𝑚𝑢𝑖[𝑢𝑟𝑒𝑎])/𝑅𝑇  Equation 2 

 

where Fi and Fn are the fluorescence signals for the intermediate and native states, fit as lines, 

and Θu, Θi and Θn are the CD signals for the unfolded, intermediate and native states, fit as lines.  

ΔGin is the extrapolated free energy of folding relative to the intermediate in the absence of 

denaturant, and min is a proportionality constant related to the steepness of the I-to-N transition. 

ΔGui and mui are the free energy and m-value describing the U-to-I transition. 

The mui-value was fixed to 1.7 kcal/mol*M, the average derived for wild-type TEM, 

because we hypothesize the intermediate species is the same between variants. m-values 

correlate with the change in solvent-exposed surface area upon folding12 and are characteristic of 
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a particular folded or partially folded state. For comparison, all data were also fit using a floating 

mui-value, and F-tests were performed with the null hypothesis that any improvement to the fit 

due to the additional parameter occurs by chance. The F-values obtained were all in the range of 

1x10-10—1x10-7 (much lower than ~4.2, the critical F-value for p<0.05), and thus the F-tests 

strongly support our hypothesis that holding the mui-value fixed is reasonable. 

5.5.6 Minimal Inhibitory Concentration (MIC) Measurements 

Levels of antibiotic resistance of BL21(DE3) cells containing TEM expression plasmids were 

determined by measuring their minimum inhibitory concentrations (MIC90’s) using the broth 

microdilution method according to the Clinical and Laboratory Standards Institute (CLSI, 

formerly the NCCLS) guidelines. 38 Strains were grown to saturation overnight in Luria Miller 

broth with kanamycin and 1 mM IPTG. Each well of a 96-well microtiter plate was filled with 50 

μL of sterile Mueller Hinton II (MHII) media broth (Sigma). Antibiotic was dissolved in water 

making a 20 mM solution, then diluted with sterile MHII media broth to 288 M cefotaxime 

(CFX). Exactly 50 μL of the compound solution was added to the first well of the microtiter 

plate, and 2-fold serial dilutions were made down each row of the plate. Exactly 50 μL of 

bacterial inoculum (diluted to 5 x 105 CFU mL-1 from the overnight cultures) was then added to 

each well giving a total volume of 100 μL well-1 and compound concentration gradients of 72 

μM–0.04 μM CFX. The plate was incubated at 37 °C for 17 h, and then each well was examined 

for bacterial growth. The MIC90 was recorded as the lowest compound concentration required to 

inhibit 90% of bacterial growth as judged by turbidity of the culture media relative to a row of 

wells filled with a water standard. Gentamicin was included in a control row at a concentration 

gradient of 174 μM–0.09 μM. 
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5.5.7 Nuclear Magnetic Spectroscopy 

Uniform 15N labeled TEM-1 was expressed in M9 minimal media containing 15NH4Cl (1 g/L), 

D-glucose (4 g/L), and 2.5 mM betaine. The cells were incubated at 37 °C and 240 rpm until 

OD600 » 0.6, then an additional 30 minutes at 18 °C and 225 rpm. Cells were induced with IPTG 

and incubated approximately 36 hours prior to harvesting. Protein was purified from both the 

periplasm and the media; the media was concentrated to approximately 100 mL using an Amicon 

stirred cell (EMD Millipore) and dialyzed overnight into TEM-1 S loading buffer. Purification 

followed the periplasmic prep. 

  15N/1H HSQC spectra were recorded at 303 K on a 600 MHz (1H) Bruker Avance III 

spectrometer. TEM-1 samples were concentrated to 100 μM in 25 mM sodium phosphate, 4 mM 

imidazole pH 6.6 and 10% D2O. Wild type TEM-1 assignments were previously reported 

(BMRB entry 16392).39 

5.5.8 X-ray Crystallography 

Screening for crystal growth conditions was performed with Mosquito (TTP LabTech Limited) 

using 25 mg/mL protein. Optimized crystals were grown via hanging drop vapor diffusion at 

18oC by mixing 1 µl of protein at 25 mg/ml with 1µl of reservoir containing 0.1 M sodium 

phosphate dibasic/citric acid pH 4.2, 0.1 M lithium sulfate, and 20% PEG 1000. Crystals were 

cryoprotected in oil (Hampton Research Parabar 10312 HR2-862) before flash-freezing in liquid 

nitrogen. X-ray diffraction data was collected at beamline 4.2.2 of the Advanced Light Source in 

Berkeley, CA and processed with XDS.40 Phase determination was by molecular replacement 

using PHENIX41 with the coordinates from PDB 1JWP used as a search model. Iterative model 

building in COOT42 and refinement with PHENIX41 accounting for crystal twinning led to the 

current model of M182N with Rwork/Rfree of 22.46%/28.26%.  The final refined model had a 
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Ramachandran plot with 96.54% of residues in the favored region and none in the disallowed 

region (MolProbity43). A summary of the data collection and refinement statistics is shown in 

Table S1. Structure factors and coordinates are deposited in the RSCB Protein Structure 

Database under PDB ID 6B2N. 
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Chapter 6 

Enspara: Modeling Molecular Ensembles 

with Scalable Data Structures and Parallel 

Computing 

6.1 Preamble 

This chapter is adapted from the following article: Porter, J.R., Zimmerman, M.I., and Bowman, 

G.R. (2019). “Enspara: Modeling Molecular Ensembles with Scalable Data Structures and 

Parallel Computing”, Journal of Chemical Physics, 150, 044108 

6.2 Introduction 

Markov state models (MSMs)1-4 are a powerful tool for representing the complexity of dynamics 

in protein conformational space. They have proven useful both as quantitative models of protein 

behavior5-8 and for producing insights about the mechanism of protein conformational 

transitions.9-12 And, with the rise of special-purpose supercomputers,13,14 distributed-computing 

platforms,15 and the dramatic increases in the power of consumer-grade processors (especially 

GPUs), the size of molecular dynamics (MD) data sets that MSMs are built on have grown in 

size commensurately. 

With the increasing size of MD datasets, there is ongoing and substantial interest in 

making more tractable models by distilling protein landscapes into a small number of essential 

states. Typically, this is achieved by making assumptions about the relevant features. In 



158 

 

particular, existing MSM libraries PyEMMA216 and MSMBuilder317-19 over state-of-the-art, 

modular components for the newest theoretical developments from the MSM community. These 

libraries emphasize early conversion to coarse-grained models, particularly through the use of 

time-lagged independent components analysis (tICA),20-22 but also through deep learning23,24 or 

explicit state-merging.25-28 All these approaches merge states that are kinetically close to one 

another to build a more interpretable model. 

Kinetic coarse-graining is effective when the most interesting process is also the slowest, 

for example, when studying folding. However, physiologically-relevant conformational changes 

also can occur quickly. For example, the opening of druggable cryptic allosteric sites can occur 

many orders of magnitude faster than the global unfolding process.29,30 Thus, for biological 

questions where the underlying physical chemistry is irreducibly high-dimensional or the 

features in which it is low-dimensional are not known, building models with a large number of 

states is an effective strategy for ensuring that important states are not overlooked. An alternative 

approach to extracting insight from large MD datasets is to retain the size and high 

dimensionality, and to manually learn which features are relevant to the biological question. For 

example, one approach to understanding sequence-function relationships is to compare 

simulations of different sequences to form hypotheses about which features are important, which 

can then be used to propose experiments. This approach has been successfully leveraged to, for 

example, understand the determinants of protein stability,8 enzyme catalysis,6 and biochemical 

properties.29 The downside of this approach is that it is substantially more computationally 

demanding, due to the much larger size of both the input features and the resulting model. 

In this paper, we present enspara, which implements methods that improve the scalability 

of the MSM methods. We implement a “ragged array" data structure that enables memory-
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efficient in-memory handling of data with heterogeneous lengths, and develop tools which use 

sparse matrices, vastly reducing memory usage of the models themselves while speeding up 

certain calculations on them. We further introduce clustering methods that can be parallelized 

across multiple nodes in a supercomputing cluster using MPI, a user-friendly command-line 

interface (CLI) for large clustering tasks, thread-parallelized routines for information-theoretic 

calculations, and a new framework for rapid experimentation with methods for estimating 

MSMs. 

6.3 Results and Discussion 

6.3.1 Ragged Arrays 

The most computation-intensive step in any molecular dynamics-based approach is actually 

generating the simulation data. One approach to mustering the computation necessary to solve 

this problem is to harness the power of distributed computing to generate many parallel 

simulations on many computers. Indeed, one of the points where MSMs excel is in unifying such 

parallel simulations into a single model. An example of this is the distributed computing project 

Folding@home.15 However, in these scenarios, individual trajectories often substantially differ in 

their lengths. In Folding@home, the trajectory length distribution shows strong positive skew, 

with a few trajectories one or more orders of magnitude longer than the median trajectory. 

Historically, atomic coordinates, as well as features computed on trajectories, have been 

represented as `square' arrays of 𝑛trajectories × 𝑛timepoints × 𝑛features (or 𝑛atoms × 3), which 

assumes uniform trajectory length.16,31 
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Figure 6.1: Ragged arrays compactly store non-uniform length data in memory. (a) A schematic comparison 

between the memory footprint of a masked, uniform array, and our implementation of the ragged array interface. In 

the masked array, rows of length lower than the longest row are padded with additional, null valued elements to 

preserve the uniformity of the array. In the ragged array, however, rows are stored concatenated and memory is not 

expended. (b) A plot of memory used by traditional and ragged arrays as a function of aggregate simulation time as 

trajectories of increasing length are added from a previously published Folding@home dataset.11 

To represent non-uniform trajectory lengths, a number of approaches exist. One 

approach, found in MSMBuilder2,17 is to use a two-dimensional square array with the 

‘overhanging’ timepoints filled with a null value. This is also the solution provided by numpy,32 
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with its masked array object. While this approach maintains the in-memory arrangement that 

makes array slicing and indexing fast, it can dramatically inflate the memory footprint of datasets 

with highly non-uniform length distributions. The other approach, used by the latest version of 

MSMBuilder319 sacrifices speed for memory by building a python list of numpy arrays. While 

this is more memory-efficient, it cannot easily be sliced, cannot easily take advantage of numpy's 

vectorized array computations, and can be very slow to read and write from disk via python's 

general-purpose pickle library. 

In enspara, we introduce an implementation of the ragged array, a data structure that 

relaxes the constraint that the rows in a two-dimensional array be the same length (Figure 6.1a). 

The ragged array maintains an end-to-end concatenated array of rows in memory. When 

the user requests access to particular elements using a slice or array indices, the object 

translates these array slices or element coordinates appropriately to the concatenated array, 

uses these translated coordinates to index into the concatenated array, and then reshapes 

the data appropriately and returns it to the user. On trajectory the length distributions 

described, the ragged array scales much better than the padded square array (Figure 6.1b), such 

as the square array used in MSMBuilder2 while retaining the useful properties of an array 

which are lost in a list-of-arrays representation. 

6.3.2 SIMD Clustering Using MPI 

Among the more expensive and worst-scaling steps in the Markov state model construction 

processes is clustering, and substantial effort has been spent on improving the speed of these 

calculations.33,34 The most popular clustering algorithms for use in the MSM community are k-

means35 (generally composed of k-means++ initialization and Lloyd's algorithm36 for 

refinement) for featurized data, and k-hybrid17 (composed of k-centers37 initialization and k-
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medoids38 refinement) for raw atomic coordinates. Both of these algorithms scale roughly with 

𝑂(𝑛𝑘𝑑𝑖), where n is the number of observations, 𝑑 is the number of features per observation, k 

is the number of desired cluster centers, and 𝑖 is the number of iterations required to converge. 

Unfortunately, with the possible exception of 𝑖, these numbers are all generally very large. As 

discussed below (Section II D), the number of clusters k must be large for some problems, 

proteins are intrinsically high-dimensional objects (i.e. high 𝑑), and the increasing speed of 

simulation calculations39 has increased the number of timepoints that must be clustered, n, into 

the millions. 

To address the poor scaling of clustering, the MSM community has developed a number 

of approaches to managing this problem. One approach is to reduce the number of observations 

by subsampling data31 so that only every nth frame is used. Another approach is to reduce the 

number of features by including only certain atoms (as in Refs8,40,41), using a dimensionality 

reduction algorithm like principal components analysis (PCA),42,43 or creating a hand-tuned set 

of order parameters (e.g. specific, relevant pairwise atomic distances). Yet a third approach is to 

use tICA as a dimensionality reduction, which has the benefit of reducing both the number of 

features and the number of clusters needed to satisfy the Markov assumption, but has the 

disadvantage that it may obscure important fast motions and can be sensitive to parameter 

choices (in particular the lag time). 
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Figure 6.2: SIMD reformulation of clustering algorithms allows greater scaling. (a) The runtime of the parallelized 

k-centers code as a function of data input size. (b) The runtime of the parallelized k-medoids code as a function of 

data input size. (c) The load time of the parallel code as a function of input data size. Points represent the average 

and error bars the standard deviation across three trials. 

An alternative or complimentary approach to preprocessing data to reduce input size is to 

parallelize the clustering algorithms themselves so that many hundreds, rather than many tens, of 

cores can be simultaneously utilized. Message Passing Interface (MPI)44 is a parallel computing 

framework that enables communication between computers that are connected by low-latency, 

high-reliability computer networks, like those commonly encountered in academic cluster 

computing environments. This approach to interprocess communication has enabled numerous 
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successful parallel applications including molecular dynamics codes like GROMACS45,46 

(among many others). This approach to interprocess communication allows information to be 

shared easily across a network between an arbitrary number of distinct computers. Thus, for a 

successfully MPI-parallelized program, the amount of main memory and number of cores 

available is increased from what can be fit into one computer to what can be fit into one 

supercomputing cluster—a difference of one or two dozens of processors to hundreds of 

processors. However, because interprocess communication is potentially many orders of 

magnitude slower than, for example, in thread-parallelization, single-core algorithms must 

generally be adjusted to scale well under these constraints. 

In this work, we present low-communication, same-instruction-multiple-data (SIMD) 

variants of clustering algorithms that are popular in the MSM community, k-centers, k-medoids, 

and k-hybrid. Specifically, data—atomic coordinates/features and distances between coordinates 

and medoids—are distributed between parallel processes which can reside on separate 

computers, allowing more data to be held in main memory, and allowing more processors in toto 

to be brought to bear on the data. 

The k-centers initialization algorithm repeatedly computes the distance of all points to a 

particular point, and then identifies the maximum distance amongst all distances computed this 

way. This introduces the need for communication to (1) distribute the point to which distances 

will be computed and (2) collectively identify which distance is largest. (1) is solved trivially by 

the MPI scatter directive and (2) is solved by computing local maxima and then distributing 

these maxima with MPI allgather. Implementation details of k-medoids are somewhat more 

complex but follow a similar pattern. The full code is available on our GitHub repository. In 

brief, during each iteration, (1) all nodes must collaborate to choose a new random centroid for 
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each existing center—achieved by choosing a random number on the highest-ranked node and 

MPI scattering it to all other nodes—before (2) recomputing the assignment of each frame that 

could possibly have changed its state assignments. This step is potentially embarrassingly 

parallel in the number of frames assigned to the cluster. Finally, (3) the costs (usually mean-

squared distances from each point to its cluster center) are computed and compared between the 

new and old assignments, and the cheaper assignment is accepted. 

The performance characteristics of this implementation as a function of data input size is 

plotted in Figure 6.2a and b, which show marked decreases in runtime as additional computers 

are added to the computation. In both the k-centers and the k-medoid case, growth of runtime as 

a function of data input size is roughly quadratic. While this is expected for k-medoids, it may be 

surprising that k-centers also grows quadratically (see, for example, Ref. 34). This is because we 

have chosen a fixed cluster radius for k-centers (rather than a fixed number of cluster centers). 

As new data (molecular dynamics trajectories with different initial velocities) are added, both the 

number of cluster centers and the number of data points to which each center must be compared 

increase, apparently roughly proportionally, leading to roughly quadratic scaling. 

A further advantage of a parallelized algorithm is that, if configured correctly, it can also 

decrease load times. In the traditional high-performance computing (HPC) environment used in 

many academic settings, data typically resides on a single central, “head" node and it is 

distributed to \worker" nodes via a network file system (NFS). The NFS can transfer data to any 

particular worker node only as quickly as the network allows, which is generally orders of 

magnitude slower than the rate at which it can be loaded from disk into memory. However, if 

network topology allows nodes to independently communicate with the head node (and hence 

filesystem), the network bottleneck is reduced or removed, and load times can be substantially 
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decreased, as shown in Figure 6.2c. While load times do not dominate the overall runtime of the 

algorithms we discuss here, low load times are desirable since many forms of misconfiguration 

can only be detected after data has been loaded. 

6.3.3 Flexible, Well-Scaling Clustering CLI 

In this section, we illustrate how enspara can be used to analyze an MD dataset using our 

clustering command-line interface (CLI), and use the flexibility enspara offers to compare the 

usefulness of different ways of clustering the same MD trajectories. 

Clustering, or assigning frames of the trajectory to discrete states, is the first step in 

analyzing most MD datasets using MSM technology. In enspara, we focus on offering 

mechanisms for clustering large datasets into many states, since other libraries already offer 

excellent mechanisms for reducing data size using various preprocessing strategies like tICA. 

For this purpose, enspara provides a command-line application, in addition to a clustering API, 

which handles some common tasks (Figure 6.3a-c). This clustering application can take 

trajectories in formats accepted by MDTraj (Figure 6.3a) or numpy arrays of numerical features 

(Figure 6.3c), supports several different distance metrics, provides easy support for clustering 

different topologies into shared state spaces (Figure 6.3b), and supports execution under MPI. 
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Figure 6.3: enspara offers a flexible, well-scaling, and multipurpose clustering CLI. (a) A CLI invocation clustering 

trajectories with a shared topology with the k-hybrid algorithm using backbone RMSD, stopping k-centers at 3 Å, 

and 20 rounds of k-medoids refinement. (b) A CLI invocation clustering trajectories with differing topologies by a 

small subset of shared atoms using the k-centers algorithm to discover 1000 states. (c) A CLI invocation clustering 

Euclidean distances between feature vectors representing frames stored in a group of numpy NPY-format files using 
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k-hybrid. (d) An MSM’s ability to predict the results of an experimental measurement of solvent exposure as a 

function of number of clusters. Dashed lines are models constructed using Euclidean distances between vectors of 

residue sidechain solvent accessible surface areas, whereas solid lines use backbone RMSD. Blue traces used k-

centers, and red traces used k-hybrid. The experimental measurement is a previously published29 biochemical 

labeling assay that classifies a residue as exposed, buried, or transiently exposing. Residues exposure class was 

predicted as “buried” if no state exists where the residue was exposed, “exposed” if the residue is never buried, and 

“transient” if the residue populates both exposed and buried states in the MSM. The y-axis represents the fraction of 

these residues that were classified correctly. Error bars represent the standard deviation of three trials (k-centers are 

deterministic and have no error bars). 

In enspara, we have implemented many of these options because different choices for 

cluster size/number, clustering algorithm, and cluster distance metric can dramatically impact an 

MSM's predictive power. As an example, in Figure 6.3d, we investigate the effect of clustering 

algorithm (k-centers vs. k-hybrid) and cluster number on the ability of an MSM to retrodict a 

previously-described biochemical thiol labeling assay.29,30 In this case, the MSM's ability to 

sufficiently represent the protein's state space is positively related to the number of clusters used 

to represent the state space. Interestingly, k-centers appears to perform better than k-hybrid in 

this case. This may be related to the fact that these exposed states are high energy and hence rare, 

giving rise to a tendency in k-medoids to lump these rare states in with more populous adjacent 

states. 

Because of this potential need for very large state spaces, it is often necessary to handle a 

large amount of data. In part, this challenge is a computer scientific one, which can be addressed 

by new parallel algorithms, such as that described above (Sec. 2). In addition to efficient 

algorithms, however, there are also software engineering concerns like effective memory 

management. Our CLI places an emphasis on these large clustering tasks and large state spaces, 

and hence scales better than existing codes that place an emphasis on smaller state spaces (Figure 

6.4). For purposes of reference, clustering of the TEM-1 data set used all 2026 protein heavy 

atoms across 90.5 μs total simulation time saved every 100 ps and the Gq dataset used all 2655 

protein heavy atoms across 20.5 μs saved every 10 ps. All these values trade off against one 
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another, however, meaning that if every 10th frame were used to cluster the Gq dataset, 205 μs of 

data could be clustered on a single node (and up to 1.03 ms on 5 nodes using MPI). 

 

Figure 6.4: The CLI provided by enspara has favorable memory and performance characteristics. (a) Runtime as a 

function of data input size for the enspara cluster CLI on the TEM-1 and Gq datasets, and the MSMBuilder CLI on 

the TEM-1 dataset. For TEM-1/MSMBuilder and Gq/enspara, the final point represents the largest data size that can 

be run without exceeding available memory. (b) Process-allocated memory usage as a function of data input size for 

the enspara cluster CLI on the TEM-1 and Gq datasets, and the MSMBuilder CLI on the TEM-1 dataset. Apparent 

memory use by enspara appears to stop growing after 32 GB because, on the computer system tested (see section 

6.5), the operating system allocates double the necessary RAM to enspara. Where MSMBuilder runs out of RAM 

loading ~16 GB, enspara is capable of using almost all of the available 64 GB RAM. (c) Number of clusters as a 

function of data input size for TEM-1 and Gq datasets. The change in runtime growth of the Gq dataset around 26 
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GB of data loaded is a consequence of the slowdown in state discovery as the new data are added. For (a) and (b), 

error bars represent the standard deviation of three trials. 

6.3.4 Sparse Matrix Integration 

Building a Markov state model with tens of thousands of states presents some methodological 

challenges. One of these is the representation of the transition counts and transition probability 

matrices. Most straightforwardly, this is achieved using dense arrays, such as the array or matrix 

classes available in numpy, and this is the strategy employed by extant MSM softwares, 

MSMBuilder3and PyEMMA. The problem with this representation is that the memory usage of 

these matrices grows with the square of the number of states in the model. To make matters 

worse, the computational cost of the eigendecomposition that is typically required to calculate a 

model's stationary distribution (equilibrium probabilities) and principal relaxation modes grows 

with the cube of the number of elements in the matrix. 47 

To address the computational challenges posed by traditional arrays, enspara has been 

engineered to support sparse arrays wherever possible. Sparse arrays have been supported by 

MSMBuilder in the past but were dropped with version 3. PyEMMA also makes heavy use of 

dense arrays, although there is some support for sparse arrays. Sparse arrays, rather than growing 

strictly with the square of the number of states, grow linearly in the number of nonzero elements 

in the array. In the worst case, where every element of the transition counts matrix is non-zero 

(i.e. every possible transition between pairs of states is observed) this becomes the dense case. 

However, this is very unusual: the number of observed transitions is generally several orders of 

magnitude smaller than the number of possible transitions (Figure 6.5a). By implementing 

routines that support scipy's sparse matrices, it becomes possible to keep much larger Markov 

state models in memory (Figure 6.5b) and analyze those models much more quickly (Figure 

6.5c). 
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Figure 6.5: The performance characteristics of sparse and dense metrics representing the same MSM. (a) The mean 

number of transitions per state in a transition counts matrix as a function of the number of states in the model. Any 

pair of states with an observed transition between them has a nonzero entry in the transition counts matrix and 

consumes memory in both sparse and dense cases. In contrast, a sparse matrix does not require memory for the zero 

elements of the transition counts matrix. (b) The runtime of an eigendecomposition as a function of the number of 

states in a model. (c) The memory footprint of the transition probability matrix as a function of the number of states 

in a model. 

6.3.5 Fast and MSM-Ready Information Theory Routines 

Recent work48-50 has demonstrated the usefulness of information theory, and mutual information 

(MI) in particular, for identifying and understanding the salient features of conformational 
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ensembles. MI is a nonlinear measurement of the statistical non-independence of two random 

variables. MI is given by 

 

MI(X, Y) =  ∑ ∑ P(x, y) log (
P(x,y)

P(x)P(y)
)x∈Xy∈Y    (1) 

 

where P(x) is the probability that random variable X takes on value x, P(y) is the probability that 

random variable Y takes on value y, and P(x, y) is the joint probability that random variable X 

takes on value x and that random variable Y takes on value y. 

Historically, the joint distribution P(x, y) is estimated by counting the number of times 

that combination of features appeared in each frame. This computation can become a bottleneck 

when it must be computed over hundreds or thousands of different features and for datasets with 

hundreds of thousands or millions of observations. This is because it is highly iterative—which 

is notoriously slow in many higher-level programming languages like python or Matlab—and 

because the number of joint distributions that must be calculated grows with the square of the 

number of features to be tracked. Consequently, in the worst case, this involves examining every 

frame of a trajectory 𝑛2 times, where 𝑛 is the number of random variables of interest. 

In enspara, we take two overlapping approaches to address the problem of the poor 

scalability of pairwise MI calculations. The first approach is to use the joint distribution implied 

by the equilibrium probabilities of a Markov state model, rather than by counting co-occurrences 

from full trajectories. Specifically, the joint probability P(x, y) is estimated by ∑ 𝜋(𝑠)𝑠∈𝑆 , where 

𝜋(𝑠) is the equilibrium probability of states from the MSM and 𝑆 is the set of states where x = X 

and y = Y . This works by reducing the number of individual observations, usually by orders of 
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magnitude. Existing codes49,51 either do not provide the option to compute MI with weighted 

observations or require a specific object-based framework to do so.52 

Our second approach is to implement a fast joint counts calculation routine. This routine 

is both thread-parallelized and much faster than the equivalent numpy routine even on a single 

core. This approach is needed because, in some cases, information from a Markov state model 

cannot be trivially substituted for frame-by-frame calculations. To address this case, we also 

implement a function using cython53 and OpenMP54 that takes a trajectory of n features and 

returns a four-dimensional joint counts array with dimension 𝑛 × 𝑛 × 𝑠𝑛 × 𝑠𝑛, where 𝑠𝑛 is the 

number of values each feature 𝑛 can take on. The value of returning this four-dimensional joint 

counts matrix is that it renders the problem embarrassingly parallel in the number of trajectories: 

this function can be run on each trajectory totally independently, and the resulting joint counts 

matrices can be summed before being normalized to compute joint probabilities. We recommend 

combining this with a pipelining software like Jug.55 

Additionally, in this package, we include a reference implementation of Correlation of 

All Rotameric and Dynamical States framework (CARDS).49 In brief, this method takes a series 

of molecular dynamics trajectories and computes the mutual information (MI) between all pairs 

of dihedral angle rotameric states, and between all pairs of dihedral angle order/disorder states. A 

dihedral angle is considered disordered if it frequently hops between rotameric states. This 

implementation parallelizes across cores on a single machine using the thread-parallelization 

described in Section 6.3.5. 

6.3.6 Flexible and Interoperable Model Fitting and Analysis 

With enspara, a major goal is maximal flexibility. This means loosely-coupled, function-based 

components and the use of widely-accepted datatypes for input and output of these functions. 
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This helps us maximize interoperability with existing MSM softwares, other python libraries, 

and prototypes of novel analysis strategies in the future. One important way we achieve 

flexibility in enspara is by constructing an API that accepts widely-used datatypes, rather than 

datatypes that are unique to enspara. This is most important for our analysis functions, which 

accept parameters of MSMs rather than MSM objects themselves. For example, mutual 

information calculations (Section 6.3.5) that use equilibrium probabilities from an MSM accept a 

vector of probabilities rather than an MSM object. (Note also that any function that accepts a 

RaggedArray will also accept a numpy array.) A crucial consequence of this API pattern is that 

enspara's MSM analysis routines are interoperable with both PyEMMA's and MSMBuilder's 

MSM objects. It also allows integration with simple, hand-crafted models, as it was used to do in 

Zimmerman et al.56 

Another way we achieve flexibility is to preference function-based semantics over object-

based semantics. A successful and prominent API pattern for machine learning tasks was 

promulgated by scikit-learn, which represents various machine learning tasks (clustering, 

featurization, etc.) as objects. While this nicely contains the logic and complexities of each 

algorithm inside a fairly uniform API, it also makes the behavior of these algorithms difficult to 

modify with novel approaches, since new ideas must either be integrated into the existing object 

completely or the object must be entirely duplicated. An object can also obscure state from the 

user, hindering comprehension, modification, or reuse of code. To address this in enspara, 

wherever we have created object interfaces exist, they are thin wrappers for chains of function 

calls. Consequently, an interested user can then easily intercept control ow to inject new 

behavior. 
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A noteworthy example of this in enspara is our semantic for estimating transition 

probability matrices. Estimating a transition probability matrix from observed state transitions is 

a crucial step in building an MSM, yet there is not a uniform procedure for accomplishing this 

that works in all cases. Many different estimators exist, and more are in active development.31,56-

64 Perhaps the simplest procedure to estimate the transition probability matrix, 𝑇, is to row-

normalize the transition count matrix, 𝐶, 

 

𝑇𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =

𝐶𝑖𝑗

∑ 𝐶𝑖𝑘𝑘
      (2) 

 

where 𝑇𝑖𝑗 is the probability of observing a transition from state 𝑖 to 𝑗 and 𝐶𝑖𝑗 is the number of 

times such a transition was observed. While this method is simple, it can and often does generate 

a non-ergodic state space. In an effort to address this difficulty and to condition the MSM to be 

well-behaved, one can include an additional pseudocount, 𝐶̃, before estimation, 

 

𝑇𝑖𝑗
𝑝𝑠𝑒𝑑𝑢𝑜 =

𝐶𝑖𝑗+𝐶

∑ 𝐶𝑖𝑘+𝐶𝑘
      (3) 

 

which ensures ergodicity. A more dramatic conditioning comes when forcing the counts matrix 

to obey detailed balance by averaging forward and reverse transitions: 

 

𝐶𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 =

(𝐶𝑖𝑗+𝐶𝑗𝑖)

2
     (4) 

 

𝑇𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 =

𝐶𝑖𝑗
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

∑ 𝐶𝑖𝑘𝑘
    (5) 
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Yet a third proposed way of estimating an MSM is to find the maximum likelihood estimate for 

𝑇 subject to the constraint that it satisfies detailed balance.4,31 Framed as a Bayesian inference, 

the transition probabilities are solved as the most likely given a transition counts matrix, such 

that, 

 

𝑇𝑖𝑗
𝑀𝐿𝐸 = arg max 𝑃(𝑇𝑖𝑗

∗ |𝐶𝑖𝑗)    (6) 

 

Additionally, there exist more sophisticated schemes of estimation, such as those that draw on 

inspiration from observable operator models,57 and projected MSMs.65 While it is beyond the 

scope of this article to review this area of study in exhaustive detail, we hope these few examples 

demonstrate the variety and importance of estimators. This poses a major challenge to writing a 

framework that can readily estimate a transition probability matrix; estimators are an active area 

of research, and a flexible framework that allows users to quickly modify an existing estimator or 

try a new one would be of great utility. 

To address this difficulty, we treat fitting methods as simple functions, which we call 

builders, that take a transition counts matrix and return transition and equilibrium probabilities. 

These built-in functions, along with our MSM object can be used to quickly fit an MSM using 

commonly-used approaches (Figure 6.6a). Alternatively, for users who wish to slightly modify 

existing MSM estimation methods, the function-level interface provides fine-grained control 

over the steps in fitting an MSM (Figure 6.6b). Finally, for users who wish to prototype entirely 

new MSM estimation methods, any function or callable object is accepted as a builder, as long as 
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it accepts a transition counts matrix 𝐶 as input and returns a 2-tuple of transition probabilities 

and equilibrium probabilities. 

 

Figure 6.6: (a) An example usage of the high-level, object-based API to fit a Markov state model. (b) An example 

usage of enspara’s low-level, function-based API to fit a Markov state model. (c) A custom method that fits a 

Markov state model and is interoperable with enspara’s existing API. 

6.4 Conclusions 

In this work, we have presented enspara, a library for building Markov state models at scale. We 

introduced an implementation of the ragged array, which dramatically improved the memory 

footprint of MSM-associated data. We developed a low-communication, parallelized version of 

the classic k-centers and k-medoids clustering algorithms, which simultaneously reduce runtime 
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and load time while vastly increasing the ceiling on memory use for those algorithms by 

allowing execution on multiple computers simultaneously. Enspara also has turn-key sparse 

matrix usage. Finally, we implement a function-based API for MSM estimators that greatly 

increases the flexibility of MSM estimation to enable rapid experimentation with different 

methods of fitting. Taken together, these features make enspara the ideal choice of MSM library 

for many-state, large-data MSM construction and analysis. 

6.5 Methods 

6.5.1 Source Code and Documentation 

The source code to enspara is available on GitHub at https://github.com/bowman-lab/enspara, 

where installation instructions can also be found. In brief, it can be downloaded from GitHub and 

installed using setup.py. 

Documentation takes two forms, docstrings and a documentation website. Individual 

functions and objects are documented as docstrings, which indicate parameters and return values, 

and briefly describe each functions role. The library as a whole is documented at 

https://enspara.readthedocs.io, which gives a high-level description of the library's functionality, 

as well as providing worked-through examples of enspara's use. 

Finally, at https://enspara.readthedocs.io/tutorial, we give an in-depth tutorial example 

analyzing data from a public dataset. 

6.5.2 Libraries and Hardware 

Eigenvector/eigenvalue decomposition experiments were performed on a Ubuntu 16.04.5 

(xenial) workstation with an Intel i7-5820K CPU @ 3.30GHz (12 cores) with 32GB of RAM 

using SciPy version 1.1.0 and numpy 1.13.3. Probabilities were represented as 8-byte floating 
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point numbers. 

Thread parallelization experiments were performed on the same hardware using OpenMP 

4.0 (2013.07) with gcc 5.4.0 (2016.06.09) and cython 0.26 in Python 3.6.0, distributed by 

Continuum Analytics in conda 4.5.11. 

Clustering scaling experiments were performed on identical computers running CentOS 

Linux release 7.3.1611 (Core) with Intel Xeon E5-2697 v2 CPUs @ 2.70GHz and 64 GB of 

RAM linked to a head node with two Intel 10-Gigabit X540-AT2 ethernet adapters and nfs-utils 

1.3.0. We used the mpi4py66-68 and Python 3.6.0 with Open MPI 2.0.2. Clustering used as a 

distance metric the RMSD function provided in the MDTraj 1.9.1.33 

6.5.3 Simulation Data 

For example, simulation data, we used a previously-published 90.5 μs TEM-1 β-lactamase 

dataset9 and a 122.6 μs Gq dataset.69 As described previously, simulations were run at 300 K with 

the GROMACS software package45 using the Amber03 force field70 and TIP3P34 explicit 

solvent. Data was generated using the Folding@home distributed computing platform.71 

6.5.4 Residue Labeling Analysis 

Residue labeling behavior for residues A150, L190, S203, A232, A249, I260, and L286 was 

measured in Bowman et al.29 and for S243 in Porter et al.30. “Exposed” residues label almost 

immediately, “pocket” or “transiently-labeling” residues label on the order of 10-3 or 10-4 s-1, and 

buried residues label on the order over days. 

Residue labeling behavior was predicted according to the procedure described in Ref. 50. 

In brief, sidechain atoms' solvent exposure to a 2.8 Å probe was calculated (using the Shrake-
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Rupley72 algorithm implemented by MDTraj33) for the representative structure for each MSM 

state, and the residue was called as exposed if its exposed area exceeded 2 Å2. 
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Chapter 7 

Conclusions 

7.1 Main Findings 

As summarized in chapter 1, accessing a proteins’ conformational ensemble using MD 

simulations has been a tantalizing goal. Before the work in this thesis, obtaining meaningful 

conformational dynamics of even small protein systems has only been possible with special 

purpose or massively parallelized computing platforms. While there is no free lunch when it 

comes to sampling, this thesis has shown that the developed FAST algorithm can make more 

efficient use of computational hardware to explore protein conformational landscapes. In this 

section, I review the main findings and results in the development, analysis, and application of 

the FAST algorithm. 

 The FAST algorithm is first introduced in chapters 2-3, where the algorithmic details are 

given and potential applications are explored. A fundamental principle of FAST is that there 

exist gradients in conformational space that can be followed—i.e. if we want to find states with 

large solvent accessible surface areas, sampling from the states with the largest surface area will 

be more likely to discover even larger surface areas than states with very low surface areas. 

Evidence for this is provided from analyzing the highest-flux pathways to large surface area 

states in a pre-generated MSM of β-lactamase, which shows a nearly monotonically increasing 

SASA. I then show that following these gradients can be a general-purpose strategy for exploring 

conformational space by tackling three difficult challenges in sampling: 1) identifying cryptic 
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pockets on proteins, 2) observing transitions between known conformations, and 3) folding 

proteins. For each of these challenges, the FAST simulations acquire a solution with orders of 

magnitude less aggregate simulation time. Furthermore, there is evidence that the MSMs produce 

reasonable statistics, since we are able to retrodict the correct folding time of the villain 

headpiece. 

 Chapter 4 takes a more in-depth look at how equilibrium-based sampling influences 

exploration on conformational landscapes. Particularly, if FAST is able to generate MSMs that 

are reasonable for biological inference. The perspective taken is one that focuses on state 

discovery, since this is the only factor that differs between sampling methods. To investigate the 

relationship between state discovery and state-space exploration, a relationship between state 

discovery and the length, number, and starting state of simulations is derived. From this, we can 

see that each of these parameters could have a drastic impact on exploration, although general 

purpose conclusions are difficult to obtain because results can vary depending on the landscape 

sampled. Assessing sampling on a variety of physically inspired landscapes, it can be seen that 

the FAST algorithm has the ability to avoid obstacles and provide realistic pathways. However, 

many parallel simulations could have the pathology that they can traverse unrealistically high 

energy barriers with an inflated probability compared to long simulations, which is termed 

pathway tunneling. In the case of a very poorly selected geometric component, FAST 

simulations have a finite probability of pathway tunneling. To alleviate the chances of tunneling, 

the FAST-string method is developed, which resamples along the highest-flux pathways and 

corrects for any tunneling artifacts. It is then shown that use of FAST followed by FAST-string, 

even with an extremely poor selection of geometric component, will generate correct transition 

pathways in addition to thermodynamic and kinetic predictions. These results are even more 
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accurate than those of a single long simulation with equivalent aggregate simulation time. This 

suggests that FAST simulations are not only easier to generate but also create better MSMs than 

traditional sampling. This is further evidenced with all-atom MD simulations of the λ-repressor. 

 From chapters 2-4, FAST simulations are shown to be great at exploring the 

conformational landscapes defined by a force-field, however, require further evidence that the set 

of states discovered can be biologically insightful. While very rare-event states can be discovered 

with many orders of magnitude less aggregate simulation time, a real application of FAST is 

necessary to demonstrate that it is complementary to experiments. Towards this goal, chapter 5 

applies FAST simulations to understand the mechanistic determinates of stabilization in the 

TEM-1 β-lactamase M182T variant. Previous studies of crystal structures have provided two 

competing models, N-terminal helix capping or loop stabilization. FAST simulations are more 

consistent with the helix capping model over loop stabilization (the Thr182 sidechain spends 

more time in this conformation in MSMs) but suggest a different model altogether. Comparing 

the MSMs of the two variants, a set of distances down helix-9 are observed to be stabilized in the 

presence of the stabilizing mutation. The developed computational model is therefore that 

mutations that stabilize helix-9, and the interdomain interface where it docks, are the key 

determinants of stabilization. This model is the only proposed model that is able to predict the 

stabilities of three other point mutations. Of particular interest is the M182N variant that we 

designed, that does not provide significant stabilization despite crystallographic evidence of 

helix-capping. In a triumph of computational predictions, the FAST simulations are able to 

provide a reasonable justification for this: the asparagine sidechain is caught between either 

stabilizing helix-9 or the domain interface, not both. In all, the significant agreement between the 
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experiments and computational predictions highlight the power of using FAST simulations as a 

biophysical tool to assess conformational landscapes. 

 Lastly, in chapter 6, tools for efficiently building and analyzing MSMs are presented. The 

software enspara is developed to efficiently handle large amounts of aggregate simulation data. 

Enspara is a fast and flexible framework for building and analyzing trajectory data, with some 

key developments being the implementation of a “ragged array”, sparse-matrix implementations 

of key MSM algorithms, and an interoperable framework for MSM construction. These tools 

have been pivotal in the development of FAST and will undoubtedly be necessary as simulation 

sets get larger as we push the limits of MD. 

 Combined, the data presented in this thesis is expected to significantly aid in the ability to 

characterize a proteins’ conformational ensemble. Conformational space is extraordinarily vast 

(an understatement) and brute force sampling is doomed to fail for larger systems. The only way 

that many relevant conformational ensembles can be documented is with the aid of goal-oriented 

sampling. Whether FAST be the end all, or a stepping stone for future development, we are 

approaching the age where knowledge of a proteins’ conformational ensemble is becoming a 

reality. 

7.2 Future Directions 

Leonardo Da Vinci once said, “art is never finished, only abandoned”, and the same can be said 

of methods development. The FAST algorithm has proven incredibly useful, however, there is 

still much room for improvement. Additionally, the algorithm has opened the doors for many 

future applications. In this final section, the possibilities of a few new directions and applications 

will be explored. 



192 

 

 It is surprising that the incredibly simple counts-based adaptive sampling has worked so 

well at discovering new states. This strategy has even outperformed more sophisticated 

methods.1 Despite this positive performance when discovering new states, it can lead to 

pathologies as the statistical component in the FAST ranking. 

Oftentimes, FAST simulations travel down a deep energy well and hit a dead end with no 

prospect of discovering states that further optimize a particular order parameter. Most of the time 

this is not an issue; as the dead-end states are sampled more, their counts go up, their rankings go 

down, and FAST chooses states that will circumvent the trap. Unfortunately, if the dead-end 

pathway has a large entropic component, new states can be discovered very quickly within this 

energy minima. These states will be subtly different from one another, though sufficient enough 

to classify as geometrically distinct. Since these states will be new, they will have a small 

number of counts and will be mistakenly favored in the FAST ranking. An example of this might 

arise during the task of folding a protein: if half of the protein misfolds, though partially 

optimizes the trait-based objective, and has a disordered tail with significant conformational 

heterogeneity, geometric clustering will produce many new states from this trap with low counts 

and hinder backtracking. One might argue for using a kinetic clustering to lump all of these 

states together, although kinetic clustering obscures a significant portion of conformational 

heterogeneity and will perform poorly with large entropic barriers. A better solution would be to 

keep the benefits of geometric clustering, however, devise a statistical ranking that considers 

each states’ position in the context of the known conformational landscape—i.e. its neighbors 

sampling quality, their neighbors sampling quality, etc.—instead of considering the state in 

isolation. Such a holistic view of conformational space would better identify sampling quality in 
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particular regions and recognize when an extraordinary amount of sampling is being spent in a 

dead-end. 

One such scheme to better identify sampling quality comes from the algorithm initially 

used to power Google’s search engine. The PageRank algorithm ranks a website based on its 

connectivity within the world-wide web. Specifically, the ranking of website 𝑖 is calculated as a 

sum of the rankings of each website, 𝑗, that links to 𝑖. Each of the rankings in this sum are 

normalized by the number of connections in 𝑗; websites give a share of their ranking to 

connected pages. This type of ranking has a strong analog to Markov state models and could be 

used as the statistical component within the FAST ranking to improve sampling. With this 

framework, states would be ranked based on their number of observations in addition to the 

number of observations in their connected neighbors. That means that if a large number of low 

count states were generated in a dead end of conformational space, the ranking would identify 

this as a densely connected region and conclude that it is well sampled. 

Another region that could benefit from improvement comes from the trait-based portion 

to the FAST ranking. The goal of FAST is to automate the process of exploring conformational 

space, although choosing an order parameter that is amenable to efficient exploration is often 

very challenging. Selection is still an art, rather than a science, and may require insider 

knowledge of the particular system being studied. Automated selection of trait-based 

components to the FAST ranking would greatly simplify its use and expand adoption by non-

experts. Much inspiration can come from the field of machine learning. There have been a 

number of recent attempts to use machine learning on proteins for dimensionality reduction,2-5 or 

identification of simple order parameters.6-9 While the specific path is unclear, it seems possible 

to retrain a model, within each round of FAST, to identify the most productive order parameter. 
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This could adaptively identify energetic barriers and reframe the problem to be tackled with 

reinforcement learning.10 

 Finally, with FAST as a tool to quickly explore conformational landscapes, the natural 

question arises: what can we do with an increased understanding of conformational space? The 

most logical next steps are to simulate proteins with mutational differences that influence disease 

severity, as we are pursuing with clinical mutations found on a protein related to Alzheimer’s 

disease, Apolipoprotein E.11 We can also use the exploration of conformational space to identify 

cryptic pockets to develop drugs for otherwise undruggable proteins, such as the Ebola virus 

protein, VP35.12,13 Additionally, mechanistic pathways between known conformational states can 

be incredibly valuable in understanding how biological systems operate, and as such, an 

ambitious project would be to use FAST to obtain a complete biological pathway, such as the 

myosin cycle.14 It will be exciting to see what the future holds for FAST and its abilities to tackle 

larger systems. 
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Appendices 

A.1 Appendix to Chapter 4 

A.1.1 Calculation of Discover Probabilities 

Given the landscape depicted in Figure 4.1B, with the transition probability matrix,  

 

𝑇𝑖𝑗 = [
0.65 0.3 0.05
0.25 0.5 0.25
0.25 0.25 0.5

]  

 

we can calculate the probability of discovering state 𝑛𝑗 from simulations starting from state 𝑛𝑖 

given 3 simulations of length 2, P (𝐷𝑖𝑗
𝚱={𝟐,𝟐,𝟐},𝐌=𝟑 = 1), by first calculating the probability that a 

single simulation of length 2 discovers state 𝑛𝑗, P (𝐷𝑖𝑗
𝚱={2},𝑀=1

= 1). To do this, we use equation 

4 to determine the probability of being in any of the three states at each timestep, conditional on 

not having discovered state 𝑛𝑗 yet. Before simulations (𝑘 = 0), the probability of discovering 

state 𝑛𝑗 is 1 if starting from state 𝑛𝑗, and 0 otherwise, which is simply the identity matrix, 

 

P(𝜐𝑖𝑗
𝑘=0 = 1) = 𝐼  

 

To determine the probability of being in any state after the first timestep, we propagate the 

probabilities with the transition probability matrix, 
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P(𝜐𝑖𝑗
𝑘=1 = 1) = P(𝜐𝑖𝑗

𝑘=0 = 1)T = 𝑇𝑖𝑗  

 

For the second step, we propagate the probabilities conditional to not having discovered state 𝑛𝑗 

yet 

 

P(𝜐𝑖′𝑗′
𝑘=2 = 1 | {𝜐𝑖𝑗

𝑘′
= 0 ∀ 𝑘′ < 2}) = P(𝜐𝑖′𝑗′

𝑘=1 = 1 | 𝜐𝑖𝑗
𝑘=1 = 0)T  

 

where, for 𝑗 = 2, we have, 

 

P(𝜐𝑖′𝑗′
𝑘=1 = 1 | 𝜐𝑖2

𝑘=1 = 0) =  [
0.68 0.32 0
0.33 0.67 0
0.5 0.5 0

]  

 

which are the renormalized rows of P(𝜐𝑖𝑗
𝑘=1 = 1) after setting column 2 to 0. Propagating this by 

the transition probability matrix, we obtain the probability of being in state 2 given that it was 

not discovered previously, 

 

P(𝜐𝑖′𝑗′
𝑘=2 = 1 | {𝜐𝑖2

𝑘′
= 0 ∀ 𝑘′ < 2}) =  [

0.524 0.363 0.113
0.383 0.433 0.183
0.450 0.400 0.150

]  

 

Combining these probabilities of being in state 2 at various time-steps, we calculate the 

probability of discovering state 2, P (𝐷𝑖2
𝚱={2},𝑀=1

= 1), as, 
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P (𝐷𝑖2
𝚱={2},𝑀=1 = 1) = 1 − (1 − P(𝜐𝑖𝑗

𝑘=0 = 1))
𝑖2

∗ (1 −  P(𝜐𝑖𝑗
𝑘=1 = 1))

𝑖2
∗ (1 −

P(𝜐𝑖′𝑗′
𝑘=2 = 1 | {𝜐𝑖2

𝑘′
= 0 ∀ 𝑘′ < 2}))

𝑖2
= 1 − [

1 − 0
1 − 0
1 − 1

] ∗ [
1 − 0.05
1 − 0.25
1 − 0.5

] ∗ [
1 − 0.113
1 − 0.183
1 − 0.150

] = [
0.16
0.39
1.0

]  

 

Calculating the columns for 𝑗 = {0, 1}, we get the full discover probabilities between any 𝑛𝑖 and 

𝑛𝑗 as, 

 

P (𝐷𝑖𝑗
𝚱={2},𝑀=1 = 1) = [

1.0 0.51 0.16
0.44 1.0 0.39
0.44 0.45 1.0

]  

 

Next, this is used to calculate the discover probabilities of 3 independent simulations of length 2 

using the following, 

 

P(𝐷𝑖𝑗
𝚱,𝐌 = 1) = 1 − [1 − P (𝐷𝑖𝑗

𝚱={2},𝑀=1 = 1)]
3

= 1 − [1 − [
1.0 0.51 0.16

0.44 1.0 0.39
0.44 0.45 1.0

]]

3

= [
1.0 0.88 0.41

0.82 1.0 0.77
0.82 0.83 1.0

] 



200 

 

A.1.2 Supporting Figures 

 

Figure A.1.1: The pathway probabilities (the probability that a state is predicted to be in the highest-flux pathway 

from the start to the target) for the funneled landscape in Figure 3. Shown are the probabilities for four sampling 

strategies, a single long simulation, many parallel simulations, counts-based adaptive sampling, and the goal-

oriented FAST simulations. The parallel simulations did not observe a transition, and thus, do not have a pathway.  
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Figure A.1.2: The average Kullbeck-Liebler divergence of each states conditional transition probabilities to the true 

transition probabilities for the funneled landscape in Figure 3. Shown are the average divergences of each state for 

four sampling strategies, a single long simulation, many parallel simulations, counts-based adaptive sampling, and 

the goal-oriented FAST simulations. 
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Figure A.1.3: The discover probabilities (the probability that a simulation set observes a particular state) on the 

random barriered landscape in Figure 5A. Shown are the probabilities for four sampling strategies, a single long 

simulation, many parallel simulations, counts-based adaptive sampling, and the goal-oriented FAST simulations. 
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Figure A.1.4: The pathway probabilities (the probability that a state is predicted to be in the highest-flux pathway 

from the start to the target) for the random barriered landscape in Figure 5A. Shown are the probabilities for four 

sampling strategies, a single long simulation, many parallel simulations, counts-based adaptive sampling, and the 

goal-oriented FAST simulations. The parallel simulations did not observe a transition, and thus, do not have a 

pathway. 
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Figure A.1.5: The average Kullbeck-Liebler divergence of each states conditional transition probabilities to the true 

transition probabilities for the random barriered landscape in Figure 5A. Shown are the average divergences of each 

state for four sampling strategies, a single long simulation, many parallel simulations, counts-based adaptive 

sampling, and the goal-oriented FAST simulations. 
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Figure A.1.6: The discover probabilities (the probability that a simulation set observes a particular state) on the large 

barriered landscape in Figure 6. Shown are the probabilities for four sampling strategies, a single long simulation, 

many parallel simulations, counts-based adaptive sampling, and the goal-oriented FAST simulations. 
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Figure A.1.7: The pathway probabilities (the probability that a state is predicted to be in the highest-flux pathway 

from the start to the target) for the large barriered landscape in Figure 6. Shown are the probabilities for four 

sampling strategies, a single long simulation, many parallel simulations, counts-based adaptive sampling, and the 

goal-oriented FAST simulations. 
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Figure A.1.8: The average Kullbeck-Liebler divergence of each states conditional transition probabilities to the true 

transition probabilities for the large barriered landscape in Figure 6. Shown are the average divergences of each state 

for four sampling strategies, a single long simulation, many parallel simulations, counts-based adaptive sampling, 

and the goal-oriented FAST simulations. 
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Figure A.1.9: Comparison of MSM estimators’ prediction of state populations for a single FAST simulation set. The 

data set used is the same as is shown in Figure 10A. Shown are (A) the true populations of each state at equilibrium, 

(B) the predictions from the normalize method, (C) the predictions from the transpose method, and (D) the 

predictions from the OOM method. 
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Figure A.1.10: Analysis of λ-repressor predicted folding pathways using the RMSD of each residues’ backbone 𝜙 

and 𝜓 angles to the crystal structure (PDBID: 1LMB). Folding pathways are determined as an MSMs highest-flux 

path from the starting state to the state with the largest fraction of native contacts. From left to right on each plot are 

the residue backbone RMSDs for each state in the predicted folding pathway from five separate runs of FAST-

contacts and a single set of long simulations. 
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Table A.1.1: Probabilities of discovering the target state, average number of states discovered, and relative entropies 

of transition probabilities for long, parallel, counts, and FAST simulations. Results are shown for 3 landscapes in the 

main text: 1) funneled landscape depicted in Figure 3, 2) the random barriered landscape depicted in Figure 5A, and 

3) the large barrier depicted in Figure 6. Standard deviations of the discover probabilities come from bootstrapping 

the kinetic Monte Carlo simulations. The discover probabilities for parallel simulations on the funneled and random 

barriered landscape come from Equation 6 and do not have a calculated standard deviation, since none of these 

simulations observed a transition to the target state. The optimal value for a given parameter and landscape is 

bolded. 

Landscape/method Probability of discovering 

the target state 

Number of states 

discovered 

Relative 

entropy 

Relative entropy of 

highest-flux paths 

Funneled     

Long 0.94 ± 3.2E-3 144.2 ± 24.0 2.53 ± 1.82 0.84 ± 0.80 

Parallel 2.2E-5 72.7 ± 10.1 5.38 ± 0.19 2.46 ± 0.05 

Counts 0.62 ± 6.9E-3 183.3 ± 12.3 4.18 ± 1.74 1.96 ± 0.76 

FAST 1.0 ± 7.4E-4 168.5 ± 12.3 2.02 ± 1.19 0.58 ± 0.46 

     

Random barriers     

Long 0.50 ± 7.0E-3 108.9 ± 24.7 3.15 ± 2.17 1.46 ± 1.29 

Parallel 8.5E-7 50.2 ± 8.6 5.03 ± 0.36 2.64 ± 0.22 

Counts 0.34 ± 6.6E-3 141.7 ± 18.6 3.60 ± 1.69 1.89 ± 0.92 

FAST 0.91 ± 4.0E-3 143.5 ± 15.7 2.61 ± 1.62 0.89 ± 0.89 

     

Large barrier     

Long 0.74 ± 5.9E-3 129.7 ± 34.1 3.69 ± 2.04 0.67 ± 0.36 

Parallel 0.059 ± 3.3E-3 33.0 ± 7.0 5.30 ± 0.20 0.83 ± 0.03 

Counts 0.78 ± 5.6E-3 146.1 ± 18.7 3.97 ± 1.64 0.63 ± 0.26 

FAST 0.90 ± 4.3E-3 124.8 ± 24.2 3.60 ± 1.69 0.63 ± 0.29 

FAST + string 0.90 ± 4.3E-3 160.6 ± 25.1 2.67 ± 1.83 0.46 ± 0.32 
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A.2 Appendix to Chapter 5 

 

Figure A.2.1: Analysis of N-terminal capping probabilities for each TEM variant. (A-C) Cumulative distributions 

functions of three distances: Res182-Oγ (or equivalent) to Ala185-H, Res182-Hγ (or equivalent) to Glu63-O, and 

Res182-Hγ (or equivalent) to Glu64-O, for five TEM variants: wild-type (black), M182T (red), M182S (green), 

M182N (purple), and M182V (blue). This indicates the probability of observing an atomic distance less than the 
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specified value. The dotted line indicates the distance of transition from moderate to weak hydrogen bond strength 

(2.2 Å). 

 

 

Figure A.2.2: Effect of M182T on the stability of helix 9, as judged by the distributions of distances between 

hydrogen-bonding partners. (A) Structure highlighting hydrogen-bonding partners Residue 182 and Met186, Pro183 

and Ala187, and Met186 and Leu190, which are colored red. (B-D) Cumulative distribution functions of the 

hydrogen bonding partners listed above for wild-type (black) and M182T (orange), M182S (green), M182N 

(purple), and M182V (blue). These plots indicate the probability of observing an atomic distance less than the 

specified value. Our cutoff distance for moderate hydrogen bonds, 2.2 Å, is shown as a dotted line. Probabilities of 

moderate hydrogen bonds for each pair are shown in the inset. 
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Figure A.2.3: Chemical melts of TEM variants. Shown are the fractions of folded protein for wild-type TEM (black) 

and TEM M182T (red), M182V (blue), M182S (green), and M182N (purple) as a function of urea. (A) Monitoring 

signal from circular dichroism. (B) Monitoring signal from fluorescence. 

 

Figure A.2.4: The best fit rotamer of Asn182 from the crystal structure of M182N. Shown is a representative TEM 

structure from the crystal lattice, solved to 2.0 Å. Asn182 is observed to form a hydrogen bond with Ala185. 
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Additionally, the sidechain amine has no hydrogen bonding partner and points outward to solvent. (A) Asn182 and 

Ala185 are represented as sticks, with the backbone of the α-helix domain (cyan) and β-sheet domain (gray) 

represented as a cartoon. (B) Electron density around Asn182. 

 

 

Figure A.2.5: Investigation of helix 9 stability in isolation between TEM variants. (A) Probability of each variant’s 

helix 9 having greater than or equal to 80% of its native helicity. Probabilities come from the MSMs of the isolated 

helix 9 for wild-type (black), M182T (orange), M182S (green), M182V (blue), and M182N (purple). (B) Helix 9 in 

isolation (residues 181-197), and the starting structure for simulations. 

 

 

 

Figure A.2.6: Residue 182 χ1 probabilities. Shown are the χ1 probabilities of each TEM sequence: wild-type 

(black), M182T (red), M182V (blue), M182S (green), and M182N (purple). These probabilities come from MSMs 

of the full protein. 
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Figure A.2.7: M182N distance distributions, conditional on Asn182’s rotamer conformation, for three helix 9 

backbone hydrogen bonding partners. (A-C) Cumulative distribution plots, conditional to M182N’s rotamer, of the 

three distances represented in Fig S2. Shown are the distributions for Asn182 adopting the trans rotamer (dashed 

lines), the gauche+ rotamer (dotted lines), and all rotamers (solid lines). These plots indicate the probability of 
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observing an atomic distance less than the specified value. Our cutoff distance for moderate hydrogen bonds, 2.2 Å, 

is shown as a dotted line. Probabilities of moderate hydrogen bonds for each pair are shown in the inset, which show 

a significant difference between the trans and gauche+ rotamer for two out of three distances. 

 

 

 

Figure A.2.8: Solvent accessibility distributions at the domain interface, conditional on Asn182’s rotamer 

conformation. Shown are the cumulative distribution functions for the solvent accessible surface area of six 

residues: Tyr46, Ile47, Pro62, Glu63, Pro183, and Ala184, illustrated in Figure 5.6. These residues are located at the 

interface of the s2h2 loop, helix 9, and the β-sheet domain. Shown are the distributions for Asn182 adopting the 

trans rotamer (dashed line), the gauche+ rotomer (dotted line), and all rotamers (solid line). These plots indicate the 

probability of observing solvent-accessible surface area less than the specified value. 
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Figure A.2.9: Chemical shift perturbations for each TEM variant. The backbone of the α-helix domain (cyan) and β-

sheet domain (gray) are represented as a cartoon. Highlighted residues indicate the locations of backbone amide 

chemical shifts that are perturbed significantly relative to wild-type. Chemical shift perturbations are shown for each 

TEM variant: M182T (orange), M182S (green), M182V (blue) and M182N (purple). 
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