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Washington University in St. Louis, 2019 

Professor Kenneth M. Olsen, Chair 

 

 Geographically widespread species experience varied selection across their 

ranges, and adaptation to local environments plays a critical role in their ability to 

persist.  Understanding the genetic basis of local adaptation is a longstanding goal in 

evolutionary biology and provides practical information for agriculture and conservation.  

However, the genetic architecture of local adaptation has been characterized in 

relatively few plant species, primarily those with short lifespans and high rates of self-

fertilization.  Moreover, for plants, chemical defenses are known to play an important 

role in adaptation, but the extent to which they contribute to local adaptation is less 

understood.  This dissertation provides a genome-wide, multi-environment assessment 

of the importance of a well-studied chemical defense polymorphism for local adaptation, 

relative to other genetic factors, and addresses fundamental questions in evolutionary 

biology about the genetic architecture of local adaptation in an outcrossing plant. 

 White clover (Trifolium repens L.) is a perennial, obligately outcrossing legume 

and an important forage crop.  Naturalized populations occur across a wide range of 
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climates, from subtropical to near arctic.  White clover populations display adaptation 

related to a chemical defense polymorphism, cyanogenesis—the production of 

hydrogen cyanide upon tissue damage.  Adaptive cyanogenesis clines have repeatedly 

evolved across the species range, such that higher proportions of cyanogenic plants are 

found in warmer climates.  However, the relative adaptive importance of the 

cyanogenesis polymorphism for local adaptation, compared to other genetic factors, is 

unknown.   

 Chapter 1 in this dissertation provides evidence of local climatic adaptation in 

white clover by documenting correlations between fitness traits and home-site climate 

variation for 15 widespread populations grown in a central North American common 

garden experiment.  Chapter 2 demonstrates that divergent life history strategies 

associated with early flowering versus multi-year persistence contribute to local 

adaptation across three common garden experiments in locations spanning the U.S. 

latitudinal range of white clover.  It also suggests that allelic trade-offs at major-effect 

loci are common for local adaptation in this outcrossing species.  We did not find 

significant fitness differences that were attributable to cyanogenesis in the experiments 

presented in Chapters 1 and 2, which focused on mature adult plants; however, Chapter 

3 documents significant shifts in cyanogenesis frequencies from the seedling to adult 

life stages and also from benign greenhouse to field germination environments, 

specifically at the seedling stage, across three environments.  These results suggest 

that cyanogenesis may be more important for local adaptation at the earliest life stages, 

thereby promoting clinal evolution in this chemical defense trait.   



 

 

1 

 

 

 

 

INTRODUCTION 
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Historical Context 

Organisms tend to be well adapted to the environments where they are found — 

that is, they often possess traits that make them successful in their environment.  

Adaptation has long intrigued biologists and was originally thought to be the work of a 

creator.  A typological paradigm was dominant, and minor variations among individuals 

within the same species were largely ignored.  Lamarck was one of the first biologists to 

propose the idea of biological evolution, which shifted focus onto the importance of 

variation between individuals.  Darwin’s seminal book On the Origin of Species later 

proposed natural selection as a non-random evolutionary mechanism that leads to 

change in populations over time (1859).  Darwin’s theory of natural selection suggested 

that, due to competition for finite resources, individuals possessing the traits best suited 

to their environment will leave more offspring, thereby bringing the underlying heritable 

genetic variations to higher frequencies in future generations.  Adaptation can thus be 

explained as the result of this process acting on variation over many generations.   

By synthesizing Mendel’s laws of genetic inheritance with Darwin’s theory in the 

early 20th century, the new statistical field of population genetics began developing 

quantitative models of microevolution (Provine, 1971).  Fisher, Wright and Haldane 

were major early contributors to this “Modern Synthesis” and the field of population 

genetics.  Fisher first proposed the “Fundamental Theorem of Natural Selection,” 

defining the mathematical relationship between genetic variance and rate of change in 

fitness due to natural selection (Fisher, 1930).  Wright and Haldane emphasized the 

need to consider factors other than natural selection, which may affect the evolution of 

populations in the same or different directions as that of selection.  Wright studied 
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interactions within and among demes, proposing ideas about mutation, mating system, 

and genetic drift (Wright, 1932, 1949).  Among Haldane’s many contributions, he wrote 

about the evolution of genetic clines that can result from the interaction between 

selection and gene flow across environmental gradients (Haldane, 1948, 1976).  

Early studies of adaptation across heterogeneous environments in plant species 

employed common garden experiments, whereby many genotypes of the same species 

were grown in contrasting environments (J Clausen, Keck and Hiesey, 1941; Jens 

Clausen, Keck and Hiesey, 1941); these studies empirically demonstrated that 

populations are adapted to their local environments.  Increased recognition that fitness 

depends on environmental context led to early models for the genetics of local 

adaptation (Levene, 1953).  However, the lack of molecular technologies for assessing 

population-level heritable polymorphisms made it difficult to identify locally-adaptive 

genetic variation, as well as to test theoretical predictions in the field of population 

genetics.   

Advances in molecular biology techniques in later decades of the 20th century 

and subsequent advances in the field of genomics have vastly accelerated empirical 

progress in population genetics (Nadeau and Jiggins, 2010; Stapley et al., 2010; 

Visscher and Goddard, 2019), as well as our ability to study the molecular basis of 

adaptation across many study systems and heterogeneous environments (Savolainen, 

Lascoux and Merilä, 2013; Bragg et al., 2015; Hoban et al., 2016).  The chapters 

presented in this dissertation leverage next-generation advances in sequencing 

technologies (Elshire et al., 2011), in combination with classical common garden 

experiments and longstanding quantitative genetics approaches (Haley and Knott, 
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1992), to study the genetic basis of local adaptation in an herbaceous, perennial plant 

species (Anderson et al., 2014). 

 

Local Adaptation 

Species that are broadly geographically distributed often experience large 

amounts of environmental heterogeneity among their populations.  Natural selection 

resulting from differences in local climates or biotic communities can thus lead to 

adaptive divergence across populations.  Local adaptation is said to have occurred 

when the fitness of local genotypes is highest in their respective local habitats, which 

produces a deme × habitat interaction (Kawecki and Ebert, 2004).  

Local adaptation is most likely to occur in species with large population sizes, 

which have the ability to harbor large amounts of standing genetic variation and to 

generate high numbers of new mutations — the source of all evolutionary change and 

adaptation.  In contrast, genetic drift and low additive genetic variation may prevent 

local adaptation in small populations (Kawecki and Ebert, 2004; Leimu and Fischer, 

2008).  Local adaptation helps to maintain genetic variation and polymorphism within a 

species (Hedrick, 1986).  It can also serve as a route to speciation when gene flow is 

restricted or when ecological specialization in different habitats leads to reproductive 

isolation (Sobel et al., 2010).   

Local adaptation is not an inevitable path for widespread species with large 

populations; it is a possible result of the balance between selection and gene flow.  

Provided there is sufficient additive genetic variation, isolated populations with no gene 

flow are expected to undergo local adaptation and eventually speciation, whereas high 
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levels of gene flow may prevent differentiation and local adaptation (Barton, 1999; 

Lenormand, 2002; Savolainen, Pyhäjärvi and Knürr, 2007; Polechová and Barton, 

2015).  Furthermore, metapopulations with extinction-colonization dynamics are unlikely 

to undergo local adaptation (Hanski, 1999).  In populations experiencing temporally 

varying selection, phenotypically plastic individuals may be favored over those that are 

locally adapted to a specific set of environmental conditions (Chevin, Lande and Mace, 

2010; Nicotra et al., 2010).   

Despite the fact that many factors may oppose local adaptation, it has been 

frequently observed in herbaceous plant species with large population sizes (Leimu and 

Fischer, 2008).  In the face of global climate change, local adaptation has therefore 

become increasingly invoked as an important potential mechanism for the evolutionary 

persistence of sessile plant species, which cannot rapidly migrate out of unfavorable 

locations (Anderson, 2016).  Identifying locally adaptive traits and characterizing the 

underlying genetic architecture of local adaptation in plants is therefore a major goal in 

the fields of agriculture and conservation biology. 

 

The genetic architecture of local adaptation  

 Despite many examples of local adaptation (Hereford, 2009), we know 

surprisingly little about its genetic basis due to experimental and technological 

limitations.  Experimentally, measuring lifetime fitness for large numbers of individuals in 

multiple environments is simply a sizeable undertaking.  Doing so with access to 

complementary genetic data is rare.  Previous field studies in plants have therefore 

largely been limited to a small number of experimentally tractable species and their 
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close relatives (Rushworth et al., 2011; Ågren et al., 2013; Yant and Bomblies, 2017; 

Price et al., 2018).  Advances in sequencing technologies have allowed researchers to 

begin evaluating the genetic architecture of local adaptation in a broader number of 

plant species, including non-model organisms (Anderson, Willis and Mitchell-Olds, 

2011).  Developments in the field of statistical genomics have further increased the 

ability to identify locally-adaptive genetic variation with correlational and outlier methods 

that do not require empirical fitness data (Neale and Savolainen, 2004; De Mita et al., 

2013; Savolainen, Lascoux and Merilä, 2013; Hoban et al., 2016).  

  Several basic questions still remain unanswered.  For example, at the gene or 

locus level, is local adaptation due to a few genes of large effect, many genes of small 

effect, or some combination of effect sizes? In other words, what is the effect size 

distribution of loci underlying local adaptation?  Fewer contributing loci with larger effect 

sizes are predicted, as selection can act strongly on them in the face of gene flow 

(Hedrick, 1986; Yeaman and Whitlock, 2011).  However, local adaptation could also 

result from the combined action of many small-effect loci (Whitlock, 2015; Yeaman, 

2015).  In species studied to date, heterogeneous effect size patterns are seen, with a 

common trend of a few large-effect loci and many small-effect loci contributing to local 

adaptation (Ågren et al., 2013; Savolainen, Lascoux and Merilä, 2013).  Loci with large 

effects on locally-adaptive quantitative traits (e.g., flowering time) have been identified 

more often for the self-fertilizing A. thaliana than in outcrossing forest tree species 

(González-Martínez et al., 2008; Ingvarsson et al., 2008; Eckert et al., 2009; Atwell et 

al., 2010; Alberto et al., 2013).   
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 Related questions about the genetic architecture of local adaptation arise at the 

allelic level and are concerned with the prevalence of antagonistic pleiotropy at locally-

adaptive loci (i.e., QTL × E interactions).  At any given locus, an allele may be favored in 

one environment and selectively neutral in others, thus facilitating local adaptation.  This 

conditional neutrality is predicted to lead to local adaptation when gene flow is limited 

between populations; however, it is expected always to be transient, as even modest 

amounts of gene flow would be expected to lead to the fixation of conditionally-neutral 

alleles across loci in all populations (Gavrilets and Gibson, 2002; Kawecki and Ebert, 

2004).  Instead, antagonistic pleiotropy — i.e., allelic trade-offs for fitness in contrasting 

environments — is expected to be the major cause of local adaptation (Anderson, Willis 

and Mitchell-Olds, 2011).  

 Previous studies in plant species have been mixed in their ability to detect 

antagonistic pleiotropy, with conditional neutrality often detected more readily (Price et 

al. 2018; reviewed in Savolainen, Lascoux, and Merilä 2013).  Researchers have noted 

a statistical bias against detecting antagonistic pleiotropy, due to the difficulties of 

demonstrating significant genotypic fitness differences in two or more environments (a 

criterion not required for conditional neutrality) (Anderson et al., 2013).  This pattern 

may also be an artifact of the species and populations chosen for study.  Most have 

focused on systems that contain inherently low levels of pollen-mediated gene flow, 

such as highly self-fertilizing species (e.g., Arabidopsis thaliana, Boechera stricta, 

Avena barbata, and Hordeum spontaneum). Low effective recombination in self-

fertilizing species could slow the displacement of conditionally neutral alleles; 

antagonistic pleiotropy may therefore be more prevalent in outcrossing species, where 
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higher effective recombination creates lower levels of linkage disequilibrium and allows 

for more rapid introgression of adaptive alleles into a population.   

 This dissertation characterizes the genetic architecture of local adaptation in an 

outcrossing plant species and identifies optimal life history strategies in contrasting 

environments that span a North American latitudinal gradient.  Furthermore, it assesses 

the contribution of a well-studied, adaptive chemical defense polymorphism for local 

adaptation by describing its importance in different life stages and also in comparison to 

other genetic polymorphisms that are associated with fitness trade-offs across 

environments.  

 

Study System 

White clover (Trifolium repens L., Fabaceae) is an obligately outcrossing, 

perennial, herbaceous plant species with large population sizes that would be expected 

to facilitate local adaptation.  In addition to being pollinated by generalists and producing 

large quantities of seed, white clover spreads vegetatively by stolons and forms large 

clonal mats.  The species exhibits little population structure across its global range 

(George et al., 2006; Kooyers and Olsen, 2012, 2013).  This feature facilities 

characterization of the genetics of local adaptation, since population structure can be a 

major confounding factor in distinguishing between locally-adapted alleles and neutral 

variants (De Mita et al., 2013; de Villemereuil and Gaggiotti, 2015).  

White clover is native to Europe and was important as a source of nitrogen 

fertilizer before the advent of synthetic fertilizers. It was introduced worldwide by 

humans and is now ubiquitous across mesic temperate and cool tropical regions 
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(Kjærgaard, 2003).  In North America, it was widely and intentionally introduced and 

naturalized within the last 500 years. As a nitrogen-fixing legume, it remains important 

as a human commensal and forage crop for grazing livestock (USDA, 2002; Abberton 

and Thomas, 2010).  Understanding the genetics of local adaptation in white clover is 

therefore valuable for clover breeders.  

 

The cyanogenesis polymorphism in white clover 

Cyanogenesis (the ability to produce hydrogen cyanide, HCN, following tissue 

damage) is a chemical defense that has evolved multiple times across the plant 

kingdom and can be found in >3,000 plant species (Møller, 2010).   Two spatially 

separated biochemical components are necessary to produce HCN in white clover:  1) 

cyanogenic glucosides (CNglcs), specifically lotaustralin and linamarin, which are stored 

in the vacuoles of photosynthetic tissue, and 2) their hydrolyzing enzyme linamarase, a 

cyanogenic -glucosidase present in the apoplast (Gleadow and Møller, 2014). Unlike 

most cyanogenic plant species, where all individuals within the species constitutively 

produce both CNglcs and their hydrolyzing enzymes, white clover is characterized by a 

genetic polymorphism for cyanogenesis, with both cyanogenic and acyanogenic plants 

occurring in natural populations.   

The physiological, biochemical and genetic bases of the cyanogenesis 

polymorphism are well characterized in white clover.  Cyanogenic plants readily release 

HCN if tissue damage causes cell rupture to bring the two cyanogenic precursors into 

contact (Armstrong, Armstrong and Horton, 1913; Rigg, Askew and Kidson, 1933).  

Acyanogenic plants may lack one or both of the required precursors.  The 
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presence/absence of the two cyanogenic components is controlled by two 

independently segregating (unlinked) simple Mendelian genetic polymorphisms, where 

a dominant allele at each gene confers the presence of the component.  Specifically, 

the Ac/ac polymorphism controls the presence/absence of CNglcs, and the Li/li 

polymorphism controls the presence/absence of linamarase (Williams, 1939; Coop, 

1940; Melville and Doak, 1940; Corkill, 1942).  At the molecular level, the Li/li 

polymorphism is a genomic presence/absence polymorphism for the locus encoding the 

protein precursor of the linamarase glycoprotein (Olsen, Sutherland and Small, 2007); 

similarly, at the molecular level the Ac/ac polymorphism locus corresponds to a genomic 

presence/absence polymorphism for the 138-kb genomic region that contains the three 

genes encoding the three-step CNglc biosynthetic pathway (CYP79D15, CYP736A187, 

UGT85K17) (Olsen and Small, 2018).  For both the Ac/ac and Li/li polymorphisms, the 

recessive (gene-deletion) alleles have evolved repeatedly in white clover and in related 

Trifolium species through recurrent gene deletion events (Olsen, Kooyers and Small, 

2013, 2014).  Because both polymorphisms are widely distributed throughout the 

species range, four cyanogenesis phenotypes or ‘cyanotypes’ can be found in wild 

white clover populations: AcLi (cyanogenic, containing both precursors); and Acli, acLi, 

and acli (acyanogenic, lacking one or both precursors).   

 

Cyanogenesis clines and selective factors that maintain them 

The cyanogenesis polymorphism in white clover spurred many ecological-genetic 

studies beginning in the 1950s. Latitudinal, altitudinal, and drought-related 

cyanogenesis clines in white clover have since been documented worldwide.  In these 
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clines, higher proportions of cyanogenic plants are found in warmer and drier climates, 

while acyanogenic plants dominate cooler, wetter environments (Daday, 1954a, 1954b, 

1958; de Araújo, 1976; Till-Bottraud, Kakes and Dommée, 1988; Caradus et al., 1990).  

Recent studies have demonstrated the rapid evolution of cyanogenesis clines in 

introduced North American populations that are associated most closely with two 

climatic variables — minimum winter temperature, and aridity index (a function of 

precipitation and evapotranspiration) (Ganders, 1990; Kooyers and Olsen, 2012, 2013; 

Kooyers et al., 2014). 

Selective mechanisms that lead to climate-associated cyanogenesis clines have 

been suggested and tested to some extent (reviewed in Hughes 1991; N. Kooyers et al. 

2018).  In the case of temperature-associated clines, higher herbivore pressure in 

warmer environments may favor cyanogenic plants.  In support of this hypothesis, many 

studies have provided evidence that cyanogenic plants experience reduced herbivore 

damage compared to acyanogenic plants; herbivore deterrence has been demonstrated 

for diverse species including chewing insects, gastropods (slugs and snails), and small 

mammals (Whitman, 1973; Angseesing, 1974; Dritschilo et al., 1979; Dirzo and Harper, 

1982; R. Dirzo and Harper, 1982; Horrill and Richards, 1986; Burgess and Ennos, 1987; 

Kakes, 1989; Pederson and Brink, 1998; Saucy et al., 1999; Viette, Tettamanti and 

Saucy, 2000).  Two main hypotheses have been proposed to explain the prevalence of 

acyanogenic plants in cooler climates:  1) cell rupture due to freezing temperatures 

leads to “autotoxicity” in cyanogenic plants and thus low fitness in colder climates, or 2) 

fewer herbivores are present in cooler climates, which confers a competitive advantage 

to acyanogenic plants that invest energetically in growth and reproduction rather than in 
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costly and unnecessary anti-herbivore defenses.  No evidence for the autotoxicity 

hypothesis has been found in controlled freezing experiments in T. repens (Olsen and 

Ungerer, 2008; Kooyers et al., 2018).  The growth-defense trade-off hypothesis is 

supported by evidence of greater and earlier reproductive output and higher competitive 

ability for plants lacking cyanogenesis components in controlled greenhouse conditions 

and under cooler, wetter conditions (Daday, 1965; Foulds and Grime, 1972; R. A. 

Ennos, 1981; R. Ennos, 1981; Kakes, 1989).   

 Besides functioning in the anti-herbivore defense response, CNglcs may also 

serve as nitrogen storage and transport compounds that may be particularly adaptive in 

drought-prone environments (since they can provide a readily-metabolized source of 

reduced nitrogen) (Møller, 2010; Burke et al., 2013; Kooyers, 2015).  Consistent with 

this function, higher frequencies of CNglc-producing plants (both AcLi and Acli 

cyanotypes) are found in white clover populations occurring in drier environments 

(Kooyers and Olsen, 2013; Kooyers et al., 2014).  This proposed adaptive function is 

further supported by growth chamber experiments, which have demonstrated a 

reproductive fitness advantage for CNglc-producing plants under conditions simulating a 

moderate, long-term drought (Kooyers et al., 2014).  Considered together with the 

extensive literature on temperature-associated clinal variation at the cyanogenesis loci, 

these studies suggest that multiple selective factors are likely at play in the evolution of 

the Ac/ac and Li/li polymorphisms.  

 

Chapters of the Dissertation 
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 While it is abundantly clear that the cyanogenesis polymorphism is adaptive in 

white clover and has repeatedly evolved clinal variation throughout the species range, it 

does not necessarily follow that populations of this species will exhibit strong evidence 

of local adaptation, since high levels of interpopulation gene flow could inhibit this 

evolutionary process (Savolainen, Pyhäjärvi and Knürr, 2007; Lenormand and 

Raymond, 2017).  If populations are locally adapted, the cyanogenesis polymorphism 

may or may not contribute substantially to locally-adaptive fitness traits (Su, Lam and 

Bürger, 2019). Furthermore, little is known about when in a plant’s life cycle the 

cyanogenesis polymorphism experiences the strongest selection in natural settings.  

Relatively few of the previous white clover studies that have aimed to assess 

cyanogenesis-related fitness effects were performed in natural environments; fewer still 

have directly assessed the fitness variation at the seedling life stage, and none have 

assessed the seedling stage in multiple natural environments.  This dissertation aims to 

address all of these shortcomings using field experiments performed in multiple years, 

multiple environments, and across multiple life stages.  This work also represents the 

first study in white clover to take advantage of next generation sequencing technology 

for genetic mapping of fitness traits; this approach can directly assess the relative 

contributions of the cyanogenesis genes vs. other genome-wide variants for local 

adaptation across highly contrasting climates. 

 Chapter 1 of the dissertation evaluates the relationships between growth and 

reproductive fitness traits, cyanogenesis variation, and continent-wide climatic variation 

for 15 widespread North American populations grown in a centrally located common 

garden environment.  It assesses whether populations exhibit correlations between their 
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climate-of-origin and the common garden environment that are indicative of local 

adaptation, and it employs linear mixed modeling approaches to determine which 

climatic factors have the greatest effects on different aspects of fitness (i.e., growth vs. 

reproduction).  It further assesses the relationship between cyanogenesis variation and 

fitness in a single field environment.  This chapter has been published as part of a 

Journal of Heredity special issue on local adaptation (Wright et al., 2017).  

 In Chapter 2, reciprocal common garden experiments in three field environments 

that span a United States latitudinal gradient were used to evaluate local adaptation 

across contrasting climates.  These experiments assess the role of cyanogenesis 

variation in contributing to fitness trade-offs across environments, as would be predicted 

by clinal patterns.  Experimental F2 mapping populations were created and used for 

these experiments, so that the contribution of the cyanogenesis genes could be 

assessed in comparison to genome-wide variation that may also play a role in local 

adaptation.  The use of genetic mapping populations in this study further provided the 

ability to characterize the overall genetic architecture of local adaptation in this 

outcrossing, perennial plant, thereby contributing valuable information for the broader 

evolutionary, conservation, and agricultural communities. 

 Finally, Chapter 3 utilizes greenhouse and field germination experiments, along 

with wild adult population sampling, to begin to evaluate the contribution of the seedling 

life stage for the evolution of cyanogenesis clines.  Findings suggest that studying the 

adaptive role of cyanogenesis at juvenile life stages is a promising future direction for 

white clover research.  A final Conclusions chapter summarizes and synthesizes 

findings of the three data chapters. 
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Continent-wide climatic variation drives local adaptation  

in North American white clover 

  



 

 

24 

ABSTRACT 

Climate-associated clines in adaptive polymorphisms are commonly cited as evidence 

of local adaptation within species.  However, the contribution of the clinally varying trait 

to overall fitness is often unknown.  To address this question, we examined survival, 

vegetative growth and reproductive output in a central US common garden experiment 

using 161 genotypes of white clover (Trifolium repens L.) originating from 15 locations 

across North America.  White clover is polymorphic for cyanogenesis (hydrogen cyanide 

release upon tissue damage), a chemical defense against generalist herbivores, and 

climate-associated cyanogenesis clines have evolved repeatedly across the species 

range.  Over a 12 month experiment, we observed striking correlations between 

population of origin and plant performance in the common garden, with climatic distance 

from the common garden site predicting fitness more accurately than geographic 

distance.  Assessments of herbivore leaf damage over the 2015 growing season 

indicated marginally lower herbivory on cyanogenic plants; however, this effect did not 

result in increased fitness in the common garden location.  Linear mixed modeling 

suggested that while cyanogenesis variation had little predictive value for vegetative 

growth, it is as important as climatic variation for predicting reproductive output in the 

central US.  Together, our findings suggest that knowledge of climate similarity, as well 

as knowledge of locally favored adaptive traits, will help to inform transplantation 

strategies for restoration ecology and other conservation efforts in the face of climate 

change. 
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INTRODUCTION 

Geographically widespread species can experience substantial environmental 

heterogeneity across their ranges, and populations frequently adapt to their local 

climates (Jens Clausen, Keck and Hiesey, 1941; Hiesey, Clausen and Keck, 1942; 

Kawecki and Ebert, 2004).  Local adaptation is thought to be common across all 

domains of life (Leimu and Fischer, 2008; Hereford, 2009).  In the face of rapid climate 

change, the ability to adapt to local climate may be particularly important for plant 

species due to their sessile nature (Alberto et al., 2013).  Studies of local adaptation in 

plants are therefore informative for identifying species that can readily adapt to local 

climate, and for quantifying the relative importance of specific traits for local adaptation.  

Insights into local climatic adaptation also provide useful information for conservation 

and restoration efforts. 

Home-site fitness advantage (i.e., higher fitness for the local genotype in its local 

environment) is central to the concept of local adaptation and has been demonstrated in 

plant species for many years through common garden experiments (J Clausen, Keck 

and Hiesey, 1941; Leimu and Fischer, 2008).  Kawecki and Ebert (2004) suggested that 

geographic distance and/or ecological distance, defined by quantitative environmental 

parameters, may be used as explanatory variables for fitness variation in common 

garden experiments.  Previous studies comparing these two distance measures have 

suggested that geographic distance can be a good predictor of local adaptation at broad 

spatial scales (>200 km) (Galloway and Fenster, 2000; Becker et al., 2006).  In contrast, 

environmental distance has generally been found to be a better predictor of success in 

ecological restoration experiments (Montalvo and Ellstrand, 2000; Raabová, 
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Münzbergová and Fischer, 2007).  More generally, different contributors to total fitness, 

including survival, vegetative growth and flowering phenology, have been found to show 

different responses to a variety of climatic factors across species ranges (Olsson and 

Ågren, 2002; Prieto et al., 2008; Haggerty and Galloway, 2011; Samis et al., 2012b; 

Moles et al., 2014; Preite et al., 2015; Siepielski et al., 2017).  

Many studies of local adaptation have focused on polymorphic traits with simple 

genetic underpinnings and identifiable locally adaptive functions (e.g., Colosimo et al., 

2005; Kivimäki et al., 2007; Linnen et al., 2013; Savolainen, Lascoux and Merilä, 2013; 

Tiffin and Ross-Ibarra, 2014).  Due to the challenges of directly measuring fitness in 

natural settings, the importance of these traits for overall fitness and local adaptation is 

commonly inferred indirectly, either from observations of correlations between 

environmental gradients and genotype (or phenotype) frequencies (e.g., Baxter et al., 

2010), or from short-term experiments in controlled conditions that may not generalize 

to natural settings (Anderson, Lee and Mitchell-Olds, 2011; Jacobs and Latimer, 2012).  

Fewer studies have directly assessed the fitness impact of polymorphic traits in field 

experiments (e.g., Hall and Willis, 2006; Wadgymar, Daws and Anderson, 2017).   In an 

attempt to add to our understanding of the process of local adaptation, this study uses 

fitness measures from an experimental field plot to assess the ability of a well-

documented, locally adaptive chemical defense polymorphism to predict overall fitness 

variation.  The relative predictive values of geographic vs. environmental distance 

(specifically, climatic distance) for local adaptation are also explicitly examined. 

 

The white clover cyanogenesis polymorphism 
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Cyanogenesis, the production of hydrogen cyanide upon tissue damage, occurs 

in >3000 species across the plant kingdom (Gleadow and Møller, 2014).  It is generally 

accepted to have evolved as a chemical defense against generalist herbivores.  While 

this trait is typically universally present in individuals of cyanogenic species, white clover 

(Trifolium repens L.) is unusual in that both cyanogenic and acyanogenic plants can be 

found within populations (Armstrong, Armstrong and Horton, 1913).  The cyanogenesis 

polymorphism is manifested geographically as climate-associated clines where the 

frequency of cyanogenic plants decreases with increasing latitude and altitude; thus, 

higher proportions of cyanogenic plants are found in warmer climates.  Cyanogenesis 

clines have evolved in both the native European species range as well as in introduced 

white clover populations worldwide (Daday, 1954a, 1954b; de Araújo, 1976; Till-

Bottraud, Kakes and Dommée, 1988; Caradus et al., 1990; Kooyers and Olsen, 2012, 

2013; Kooyers et al., 2014; Thompson, Renaudin and Johnson, 2016a).  These patterns 

of repeated cline evolution provide evidence for strong selection on the cyanogenesis 

polymorphism and for local climatic adaptation that is specifically related to this 

phenotype.  Proposed selective factors for cyanogenesis cline evolution include 

climatically varying herbivore abundance, fitness costs of cyanogenesis in colder 

climates, and potential benefits of cyanogenic components for functions other than 

herbivore deterrence (e.g., cyanogenic glucosides may serve a function in drought 

stress adaptation) (Hughes, 1991; Kooyers and Olsen, 2012, 2013; Kooyers et al., 

2014; Thompson, Renaudin and Johnson, 2016a).  

At the biochemical level, cyanogenesis in white clover results from the interaction 

of two components that are spatially separated in intact tissue, cyanogenic glucosides 
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and their hydrolyzing enzyme, linamarase (Gleadow and Møller, 2014).  Two unlinked 

Mendelian genetic polymorphisms control the presence/absence of the two components 

(Ac/ac and Li/li for cyanogenic glucosides and linamarase, respectively); the dominant 

allele of each gene confers the presence of the component, and homozygous recessive 

genotypes lack the component (Hughes, 1991; Olsen, Kooyers and Small, 2013).  At 

the molecular level, both Ac/ac and Li/li are gene presence/absence polymorphisms, 

with recessive alleles corresponding to recurrently evolved gene deletions (Olsen, 

Sutherland and Small, 2007; Olsen, Hsu and Small, 2008; Olsen, Kooyers and Small, 

2013).  Thus, four ‘cyanotypes’ are present in white clover populations.  Cyanogenic 

plants (AcLi) produce both components, whereas acyanogenic plants (Acli, acLi, and 

acli) lack one or both components and do not produce HCN. 

In this study, we performed a white clover common garden experiment in a 

central US location to assess local adaptation across North American white clover 

populations.  We used 161 wild genotypes sampled from 15 geographically widespread 

locations to examine fitness variation as it relates to population of origin and 

cyanogenesis variation.  While the use of a single common garden site does not allow 

for documentation of reciprocal home-site advantage (see discussion below), it can 

nonetheless reveal fitness variation as related to population of origin (Rutter, Shaw and 

Fenster, 2010; Preite et al., 2015; Peterson, 2016).  We asked the following specific 

questions: 1) To what extent do geographic and/or climatic distance predict fitness 

variation across populations? 2) Do cyanogenic plants experience less herbivore leaf 

damage than acyanogenic plants, resulting in higher fitness regardless of population of 
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origin? And 3) Which combinations of climate parameters and cyanotype best predict 

growth and fecundity variation in the common garden location?  

 

MATERIALS AND METHODS 

Study system 

Trifolium repens is a perennial allotetraploid herbaceous legume that is obligately 

outcrossing and primarily bee pollinated.  In addition to reproduction by seed, it spreads 

vegetatively by stolons, allowing for the study of multiple clonal replicates per genotype 

in field experiments.  White clover was an important source of soil nitrogen for 

agriculture before the advent of synthetic fertilizers and was therefore intentionally 

introduced across temperate and cool tropical regions worldwide with European 

colonization (Kjærgaard, 2003); it remains an important temperate forage crop.  Due to 

its history of repeated, intentional introductions, non-native populations contain 

extensive standing genetic variation that natural selection has acted upon (Kooyers and 

Olsen, 2014).  White clover has extremely large effective population sizes worldwide 

and displays minimal population structure on continental and global scales (George et 

al., 2006; Olsen, Sutherland and Small, 2007; Kooyers and Olsen, 2012, 2013).  

 

Sampling 

Plant samples were collected from 15 North American populations ranging from 

central Florida to Vancouver, British Columbia during the 2014 growing season (Figure 

1.1, Table 1.1, Table S1.1).  Samples were collected as stolon cuttings (STL and GFL 

populations) or mature seeds (all other populations) from 9-11 plants per population, for 
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a total of 161 unique genotypes that were used in a common garden experiment near 

St. Louis, MO.  Collections were spaced a minimum of 5 m apart to prevent sampling 

multiple ramets or seed heads from the same genet; GPS coordinates were recorded 

for each sample.  To control for potential confounding effects of sampling stolon cuttings 

(which represent a subset of genotypes that survived to maturity in their local climate) 

rather than seeds at the STL and GFL sites, analyses of local adaptation were 

performed both with and without those populations.  For three of the populations (AOK, 

GFL and STL), deeper sampling was performed largely from stolon cuttings to assess 

neutral genetic differentiation among populations (32-48 samples per population; Table 

S1.1, S1.2).  To calculate the geographic distance between the common garden site 

and sampled populations, latitudes and longitudes were averaged across samples 

within each population, and the great circle distance was calculated using the haversine 

formula (Veness, 2012; Table 1.1, Table S1.2).  

All samples were grown in the Washington University (WU) greenhouse in 4” 

round pots filled with Metro-Mix 360 soil prior to genetic analyses and the field 

experiment (Table S1.1).  Rooting hormone was applied to plants collected as stolon 

cuttings to encourage establishment on mist benches.  For samples collected as seed, 

10 seeds per maternal parent were scarified using fine grit sandpaper and planted in a 

single pot on mist benches.  Upon germination, one seedling was randomly selected for 

use in further analyses, and others were discarded.  We were not able to reduce 

potential maternal effects by producing a second generation of seed in the greenhouse, 

as self-incompatibility in white clover makes this impractical when using wild population 

sample collections. 



 

 

31 

Population structure analyses 

For the three intensively sampled populations (AOK, GFL, STL), genomic DNA 

was extracted for genotyping-by-sequencing (GBS) using a DNA extraction protocol 

modified from Whitlock (2008) with 120-150 mg young leaf tissue (Elshire et al., 2011; 

Table S1.2).  Leaf tissue for each sample was ground in liquid nitrogen using mortars 

and pestles.  Columns from the IBI Scientific Genomic DNA Mini Kit (Plant) were used 

for filtration and binding steps.  

DNA samples were submitted to Cornell University’s Institute for Genomic 

Diversity for library preparation and GBS using the Illumina HiSeq 2000 platform.  

Quality control and SNP calling were performed on raw GBS data by Cornell using the 

UNEAK pipeline and TASSEL v3.0.166 (Lu et al., 2013).  UNEAK was developed for 

polyploid species that lack reference genomes and provides a stringent filtering system 

to account for highly repetitive sequences.  Read depth was calculated with VCFtools 

v0.1.11 (Danecek et al., 2011).  SNPs were called using a minor allele frequency cutoff 

of 0.01. 

To assess genetic differentiation between the AOK, GFL and STL populations, 

pairwise FST values were calculated using the filtered SNP dataset in GenAlEx 6.5 

(Peakall and Smouse, 2006).  For a comparison to this background genomic FST, 

pairwise FST was also calculated separately for the Ac and Li cyanogenesis genes using 

genotypes inferred from cyanogenesis phenotyping and genotyping.  Ac/ac and Li/li 

allele frequencies were calculated with the Hardy-Weinberg assumption that the 

frequency of homozygous recessive genotypes is equal to q2 within each population 

(see Kooyers and Olsen, 2012).  
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Cyanogenesis phenotyping and genotyping 

For each genotype, phenotyping for the presence/absence of HCN production in 

leaf tissue was performed using Feigl-Anger tests, as described previously (Olsen, 

Sutherland and Small, 2007).  For acyanogenic individuals, the presence/absence of 

each cyanogenic component (i.e., cyanogenic glucosides or linamarase) was 

determined by exogenous addition of the complementary component.  Negative 

reaction results were repeated at least twice to minimize false negatives.  To confirm 

that cyanogenesis phenotyping results corresponded to Ac/ac and Li/li gene 

presence/absence, DNA was extracted with the Genomic DNA Mini Kit (Plant) kits (IBI 

Scientific) using 100 mg young leaf tissue, and PCR was performed for the Ac and Li 

loci using previously described primers (Olsen, Sutherland and Small, 2007; Olsen, Hsu 

and Small, 2008).  The presence of a PCR product was taken as evidence of gene 

presence.  Negative results were confirmed by repeating the reaction at least twice.  

Fewer than 3% of PCR assays did not match phenotyping results.  

 

Common garden establishment 

Three replicate cuttings were made from each of the 161 unique genotypes, for a 

total of 483 plants (Table S1.3).  Care was taken to establish cuttings of the same size, 

including similar root masses and numbers of leaves.  Rooting hormone was applied to 

encourage establishment.  Cuttings were grown on mist benches in the WU greenhouse 

for one week, and then were allowed to become established for an additional week 

under standard greenhouse conditions before being planted in the field.  
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The common garden experiment was conducted from April 2015 through March 

2016.  Established cuttings were transplanted to an experimental research garden plot 

at the WU Tyson Research Center in Eureka, MO (Figure S1.1).  The experimental plot 

was enclosed by an underground concrete barrier to exclude burrowing rodents and by 

a fence to exclude deer and other large mammals.  The soil substrate consisted of local, 

native prairie soil.  Planting occurred on April 11, 2015 to coincide with the spring leaf 

flush of local clover populations.  Replicate cuttings were planted in a blocked design to 

account for environmental heterogeneity across the plot; one replicate per genotype 

was planted in a randomized design within each of three replicate blocks.  Cuttings 

were watered only upon transplantation, after which they were left exposed to local 

environmental conditions for the remainder of the 12-month experiment.  

All data collection in the field plot was performed blind with respect to the 

cyanotype and population origin of each plant.  To prevent intermingling of genotypes 

that would lead to inaccurate fitness measurements, plants were trimmed to 1212-inch 

squares, with 6-inch gaps on all sides (Figure S1.1).  Trimming was performed by hand 

using scissors at 2-6 week intervals, depending on the rate of growth; plants were 

trimmed eight times in 2015.  Weeds were also removed from the plot to allow for 

accurate fitness measurements.  As white clover generally performs best in areas with 

regular grazing or mowing (Andrae, Hancock and Harmon, 2016), this trimming and 

weeding regime is not suspected to have unduly biased fitness measures.  

 

Common garden fitness measurements 
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Growth and survival.  Vegetative growth and tissue survival were assessed using 

digital photographs of each plant taken at four time points: April 30; May 24 (prior to first 

trim); October 18 (following last trim); and March 23, 2016.  Photos were taken directly 

over each plant, using a red-painted penny for color contrast and scale.  Easy Leaf Area 

software (Easlon and Bloom, 2014) was used to quantify total vegetative tissue surface 

area (Figure 1.2a).  All output photos with highlighted quantified pixels were visually 

checked for quality.  From these data, relative growth for the growing season was 

calculated as the difference in vegetative tissue area from April to October divided by 

the largest difference.  In addition, biomass was collected with the first trim to verify that 

that vegetative area can serve as an accurate proxy for biomass production (see 

Supplementary Methods in Appendix I). 

 Fecundity.  White clover inflorescences are composed of tens to hundreds of 

individual florets, each capable of producing 1-8 seeds.  Therefore, inflorescence count 

was used to measure fecundity because it was found to be significantly correlated with 

both seed mass and dried floral mass (Supplementary Methods in Appendix I; Figure 

S1.2) (see also Kooyers et al., 2014) and references therein for similar measures of 

white clover reproductive output).  Inflorescences were counted and removed from each 

plant once the oldest (basal) florets began turning downward, an indication of 

successful pollination.  

Herbivory.  Herbivore leaf damage was assessed four times (May 29, July 2, July 

18, and August 5) using a modified protocol of Kooyers et al. (2014) (see also Dirzo and 

Harper, 1982a, 1982b), in which leaf tissue damage was quantified in an ordinal fashion 

as 0%, 1-25%, 26-50%, 51-75% or >75% for all leaves on a randomly chosen stolon 
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(Figure S1.3).  Data across the four sampling points were combined, and two herbivory 

metrics were calculated (Table S1.3).  Total herbivore leaf damage was calculated as 

the number of leaves with any herbivore damage, regardless of damage category, 

divided by the total number of leaves.  Weighted herbivore leaf damage was calculated 

as the sum of leaf damage categories (A=0, B=0.25, C=0.5, D=0.75, E=1), each 

multiplied by the number of leaves in their respective category.  

Germination experiment.  Because we used clonally replicated cuttings of 

greenhouse-grown plants in the common garden experiment, fitness measures for 

these plants do not capture selection that occurs at early life stages, when germinants 

might be particularly susceptible to mortality from herbivore damage.  Therefore, to 

address whether germinant fitness in the field is affected by cyanotype variation, we 

performed a germination experiment at the common garden site using seeds that 

originated from the same maternal parents as the common garden genotypes (see 

Supplementary Methods in Appendix I).  We compared the cyanotype frequencies of 

the common garden genotypes (germinated in the greenhouse) to the germinants that 

survived to the seedling stage at the common garden site using a chi-squared 

contingency test. 

 

Climate Principal Components Analysis and Distance Calculations 

To quantify home-site climate variation across the 15 populations used in this 

study, we downloaded 19 bioclimatic variables related to temperature and precipitation 

(BIOCLIM, Hijmans et al., 2005), as well as annual potential evapotranspiration data 

(CGIAR; Trabucco and Zomer, 2009, using averaged latitudes and longitudes for each 
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population (Table 1.1).  To evaluate the relationship between home-site climate and 

fitness performance specifically during the growing season, when most fitness data 

were collected, we removed three variables related exclusively to winter months (Bio 

6=Min Temperature of Coldest Month, Bio 11=Mean Temperature of Coldest Quarter, 

and Bio 19=Precipitation of Coldest Quarter).  To reduce multicollinearity among 

climatic variables (Farrar and Glauber, 1967), we performed a principal components 

analysis (PCA) using the princomp() function in R and utilized the top three PCs for 

subsequent analyses (R Core Team 2015).  We calculated climatic distances between 

each population and the St. Louis common garden site for each PC as the Euclidean 

distances between the PC score of STL and each of the 14 “away” populations, 

generating PC1_euc, PC2_euc and PC3_euc parameters.  We then calculated an 

overall Climate PC index as the sum of the three PC_euc values for each population.  In 

these metrics, lower values indicate climates that are more similar to St. Louis.  

 

Statistical analyses and linear modeling 

All statistical analyses were performed using R statistical software (v. 3.3.0).  

Figures were generated with the ggplot2 package (Wickham, 2009).  The reshape2 and 

plyr packages were used to format and summarize data for plots (Wickham, 2007, 

2011).  For all fitness measures, we averaged data across the three replicate cuttings 

for each genotype and used this dataset of 161 averaged genotypes for subsequent 

statistical analyses. 

To determine whether geographic distance or climatic distance is a better 

predictor of plant fitness in the St. Louis common garden site, we tested for correlations 
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between distance measures (relative geographic distance to St. Louis and Climate PC 

index) and key fitness measures (relative growth in vegetative tissue and inflorescence 

count).  For these four comparisons, we calculated mean fitness measures for each 

population and performed Pearson correlation tests using the resulting 15 data points.  

The analysis was also performed excluding the two locations where stolon cuttings 

rather than seeds were sampled.  We then created linear models using the lm() function 

in R and utilized adjusted R2 values of the lines of best fit to compare the predictive 

abilities of geographic and climatic distances. 

Using the two herbivory metrics, we performed pairwise Wilcoxon signed-rank 

tests between cyanogenic plants (AcLi) and each of the three acyanogenic groups to 

test for preferential feeding on acyanogenic plants.  If preferential feeding on 

acyanogenic plants were associated with reduced fitness, we would expect the 

cyanogenic group to have elevated growth or reproduction relative to the acyanogenic 

groups.  We therefore compared fitness measures (relative growth and inflorescence 

count) of the cyanogenic and acyanogenic groups using additional pairwise Wilcoxon 

signed-rank tests.  To compare the abilities of different combinations of climate 

parameters and cyanotype to predict fitness variation in the common garden location, 

we built sets of linear mixed models separately for two fitness response variables 

(relative growth in vegetative tissue and inflorescence count) using all combinations of 

PC1_euc, PC2_euc, PC3_euc and cyanotype as parameters.  We then performed 

multimodel inference and model averaging and calculated parameter weights across 

models to identify the most relevant parameters for predicting each fitness measure 
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(Burnham and Anderson, 2002; Botero et al., 2014).  Details on model construction and 

averaging can be found in the Supplementary Methods in Appendix I. 

  

RESULTS 

Population structure and cyanogenesis variation across sampled populations 

Genotyping by sequencing (GBS) was performed for 112 individuals from three 

of the sampled locations (AOK, GFL and STL) to assess neutral population 

differentiation across the sampled species range.  Due to the high stringency of the 

UNEAK pipeline, which was designed for GBS data in polyploid species lacking 

reference genomes (Lu et al., 2013), the raw data (>2 million Illumina sequence reads) 

were filtered to 62,372 reciprocal sequence pairs for SNP calling.  The average read 

depth per site was 3.37x.  From these filtered sequences, 843 bi-allelic SNPs were 

identified and utilized for pairwise population FST calculations.  We found negligible 

population structure, with all pairwise FST values < 0.03 (Table S1.4).  These results 

corroborate previous findings that white clover shows very little population structure on 

regional and continental scales (George et al., 2006; Olsen, Sutherland and Small, 

2007; Kooyers and Olsen, 2012, 2013).  

Cyanotype frequencies varied widely among the 15 sampled populations, with 

the frequency of cyanogenic (AcLi) plants broadly corresponding to latitude and 

minimum winter temperature as in previously documented cyanogenesis clines 

(e.g.,Kooyers and Olsen, 2013) (Figure S1.4).  Consistent with this pattern, pairwise FST 

values for the Ac and Li cyanogenesis loci, which are expected to be under selection in 
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cyanogenesis clines, were elevated by up to an order of magnitude between climatically 

distinct population pairs relative to the background genomic FST (Table S1.4).  

 

Fitness variation 

Growth and survival.  Table S1.5 provides summary statistics for survivorship 

and total vegetative tissue area (cm2) of the 483 common garden plants (triplicate 

clones of 161 genotypes) at four time points:  April, May, October, and March.  Mortality 

was very low throughout the experiment.  Three plants from different source populations 

(CVA, PPA, BID) had died by the end of the growing season in October.  From October 

to March, 24 additional plants died, with mortality overrepresented in a subset of the 

populations (DCO=4, DMN=4, GFL=4, LMT=3 and VBC=4), all of which are 

geographically distant and climatically distinct from the common garden site.  

All populations increased in average vegetative tissue area during the 

establishment period from April to May (Figure 1.2b).  However, populations varied 

widely in their vegetative growth from May to October, with some showing increased 

vegetative tissue area and others showing static or decreased tissue area.  At the end 

of the growing season (October), the local St. Louis (STL) population had the highest 

mean vegetative tissue area remaining, followed closely by the geographically proximal 

Louisville population (LKY).  Overall, the relative growth of plants in the common garden 

displayed a clear correlation with source population distance.  Populations located 

closer to St. Louis had higher relative growth than those collected from more distant 

sites (R2=0.54, p=0.001; Figure 1.3a).  This pattern remained significant when 

population samples that were collected as stolon cuttings (STL, GFL) were excluded 
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from the analysis (R2=0.45, p=0.007; Figure S1.5a).  Thus, relative growth based on 

vegetative area indicated a home-site fitness advantage among white clover 

populations, with a gradation in fitness as a function of geographic distance from the 

source population to the common garden location. 

As with vegetative growth during the growing season, changes in average 

vegetative tissue area over the winter (October to March) varied widely among 

populations in a pattern consistent with local adaptation.  The two populations with the 

highest mean vegetative tissue area in both October and March were the same two 

populations that displayed the greatest relative growth during the main growing season: 

STL and LKY (red lines, Figure 1.2b).  Two east coast US populations from similar 

latitudes to St. Louis (HDE and CVA) also performed well from October to March, 

despite the fact that they declined over the summer months (green lines).  

Fecundity.  Over the course of the growing season (April through October), the 

483 plants produced 57,385 inflorescences, and the average floral production was 119 

inflorescences.  Only 15 plants produced zero flowers, 11 of which originated from five 

genotypes of the southernmost population (GFL).  Additional summary statistics can be 

found in Table S1.5.  Total inflorescence count was positively correlated with relative 

growth in vegetative tissue.  This held true both at the level of genotype (R2=0.06, 

p=0.0009) and population (R2=0.66, p=0.0001) (Figure S1.2c, d). 

Similar to relative growth in vegetative tissue, mean inflorescence production was 

correlated with distance of the source population from the experimental plot, with 

populations originating from sites nearer to St. Louis producing more inflorescences on 

average than those from more distant locations (R2=0.24, p=0.036; Figure 1.3b); this 
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correlation remained marginally significant when the STL and GFL populations were 

removed (R2=0.23, p=0.056; Figure S1.5b).  The SCD, LKY, SFD and STL populations, 

all from the central US, had the highest mean inflorescence counts.  

Floral production varied over the growing season, increasing in June and 

decreasing in September for all populations (Figure S1.6).  Plants displayed collective 

bursts of flowering following rainfall events (Figure S1.7).  The rate and magnitude of 

this flowering response varied across populations, with populations that produced the 

highest inflorescence counts over the season responding most strongly during flowering 

bursts (red lines, Figures S1.6, S1.7). 

  Herbivory.  Total leaf damage was low overall compared to recent studies in 

white clover (e.g., Kooyers et al., 2014; Thompson and Johnson, 2016), with only 10-

12% of leaves showing any sign of leaf herbivore damage and no clear patterns across 

populations (Figure S1.8a).  Nonetheless, despite low herbivore leaf damage in the St. 

Louis common garden location, pairwise comparisons between cyanotypes revealed a 

non-significant trend, with cyanogenic (AcLi) plants showing less total herbivore leaf 

damage than all three classes of acyanogenic plants (Figure 1.4).  Weighted herbivore 

leaf damage revealed the same trend (Figure S1.8b).  

Although cyanogenic (AcLi) plants showed a trend towards lower herbivore leaf 

damage, this did not translate into increased fitness (Figure S1.8c, d).  Rather, the 

cyanotype with both the highest relative growth and inflorescence count was Acli 

(cyanogenic glucosides present but linamarase absent).  While these trends in 

increased fitness for Acli were not statistically significant, it bears noting that this 

cyanotype is the most common cyanotype in local populations in the STL region (Figure 
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S1.4; Kooyers and Olsen, 2012).  These results provide the first empirical evidence that 

the most common local cyanotype shows marginally higher fitness than the other 

cyanotypes in the local climate.  

Germination Experiment.  Cyanotypes of surviving germinants in the common 

garden plot and greenhouse are presented in Table S1.6.  There was no significant 

difference in cyanotype proportions under the two growing conditions (2 = 0.71, 

p=0.87).  This result suggests that cyanotype does not affect fitness at early life stages, 

at least in the central US location and year of this study.  Therefore, fitness 

measurements made from the clonal replicates in the common garden are apparently 

not missing a key component of cyanogenesis-related fitness variation at the germinant 

life stage.  

 

Climate Principal Components Analysis and Distance Calculations 

In a principal components analysis (PCA) utilizing 16 Bioclim variables and 

annual potential evapotranspiration (Apet) data, PC1 explained 44% of the variance in 

climate among the 15 populations studied (Table 1.2).  PC1 is driven primarily by 

variables related to precipitation (e.g., annual precipitation, precipitation in the driest 

month and quarter, but also annual mean temperature) (Figure S1.9a).  PC2 explained 

24% of the variance in climate and is driven primarily by variables related to maximum 

and mean summer temperatures, as well as Apet (Figure S1.9b).  Lastly, PC3 explained 

16% of the variance and corresponds to yearly temperature variability (e.g., 

isothermality, temperature seasonality) (O’Donnell and Ignizio, 2012) (Figure S1.9c).  

Climatic distances, calculated as Euclidean distances between PC scores of STL and 
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the 14 “away” populations (PC1_euc = Precipitation, PC2_euc = Heat, and PC3_euc = 

Variability), as well as the overall PC index, are presented in Table S1.7.  Smaller 

values indicate home-site climate that is similar to STL, while larger values indicate 

climatic dissimilarity.  

Geographic distance and climate PC index were roughly equivalent predictors of 

fitness variation across populations for relative growth (Figure 1.3a, c).  In contrast, 

climate PC index was a better predictor of variation in reproductive output than 

geographic distance; the R2 value increased from 0.24 in the geographic distance 

model to 0.48 in the PC index model (p= 0.003; Figure 1.3b, d).  Climate PC index was 

highly correlated with geographic distance (R2=0.66, p=0.0001; Figure S1.10).  

 

Linear mixed models 

Models containing alternative parameters best predicted variation in the two 

fitness measures.  Single-parameter models best explained relative growth in vegetative 

tissue, with home-site temperature variability (‘Variability’) containing the most predictive 

value, followed by maximum summer temperature (‘Heat’) (Table 1.3, Table S1.8).  

‘Precipitation’ was the least important climatic parameter for relative growth, and adding 

‘Cyanotype’ as a parameter did not improve relative growth models.  Parameter weights 

across models paralleled model rankings:  Variability (0.52), Heat (0.42), Precipitation 

(0.19), and Cyanotype (0.00). 

Inflorescence count was best explained by the model including Precipitation + 

Heat + Cyanotype, and the addition of Cyanotype improved models in all cases (Table 

1.3, Table S1.8).  Parameter weights for Heat and Precipitation were 0.74 and 0.62 
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across inflorescence count models.  In contrast to relative growth models, Variability 

had the lowest parameter weight (0.45) for predicting inflorescence count, and 

Cyanotype the highest (1.00), where Acli (the locally favored cyanotype) and AcLi 

cyanotypes were associated with increased fitness (Table S1.8).  This suggests a 

reproductive fitness advantage in the St. Louis climate for plants that produce 

cyanogenic glucosides.  For the most important climatic parameters in all models, 

slopes were negative, indicating that home-site climate dissimilarity along those axes 

has negative effects on vegetative survival in St. Louis (Table S1.8).  Additional details 

for the top ranking models are presented in Table S1.8.  

 

DISCUSSION 

Local adaptation in white clover has long been apparent from observations of 

repeatedly evolved clines in cyanogenesis.  Less understood is the importance of this 

particular phenotype for overall plant fitness across varied climates.  In this study, we 

evaluated the extent to which North American white clover populations exhibit local 

adaptation with respect to geographic or climatic distance from a central US common 

garden site, and we assessed the importance of cyanogenesis for predicting vegetative 

growth and reproductive output.  We detect clear correlations between source 

population location and both of these fitness measures, with climatic distance the better 

predictor of reproductive output (Figure 1.3b, d).  While cyanogenic plants showed 

marginally lower herbivore leaf damage (Figure 1.4), this effect did not translate into a 

fitness advantage at the common garden site (Figure S1.8c, d).  However, linear mixed 

modeling suggests that the cyanogenesis polymorphism may play some role in local 
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adaptation for reproductive output (Table 1.3).  Below we discuss the implications of 

these findings for white clover local adaptation and more broadly in the context of local 

adaptation, climate change and restoration ecology research. 

 

Rapid local climatic adaptation in white clover 

Our data provide strong evidence that North American white clover has adapted 

to local climate on a continental scale, with this evolution having occurred in the 500 

years since its introduction from Europe.  Similar rates of evolved climatic adaptation 

have been noted in other systems, including annual plant species (Franks, Sim and 

Weis, 2007), invasive plants experiencing range expansion (Colautti and Barrett, 2013), 

and salmonid fishes (Fraser et al., 2011).  In white clover, rapid evolution is likely 

facilitated by its very large population sizes, with the species showing a near-continuous 

distribution in lawns, roadsides and pastures across much of mesic North America, as 

well as an abundance of standing genetic variation that reflects intentional, repeated 

introductions of this agriculturally important plant (Kjærgaard, 2003).  Such rapid 

evolution is promising in the face of climate change; however, the rapidity by which 

clover is able to evolve may be less generalizable to rare or range-restricted species 

with smaller population sizes and less genetic variation for selection to act upon 

(Franks, Weber and Aitken, 2014). 

While we find correlations between average population fitness and both 

geographic and climatic distance in the St. Louis common garden (Figure 1.3), climatic 

distance is a better predictor of fitness variation, particularly for reproductive output 

(Figure 1.3b,d).  The strong correlation that we observe between geographic and 
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climatic distance (Figure S1.10) is likely largely a reflection of the central location of the 

common garden site in relation to population samples and the way Climate PC index 

was calculated (Figure 1.1, Table S1.7).  Across this continental scale, the key climatic 

variables show relatively smooth gradations (Figure S1.9), and summing the PC_euc 

distances to calculate Climate PC index thus generated similar values for populations 

from similar geographic distances (Table S1.7).  For example, Duluth, MN (DMN) and 

Gainesville, FL (GFL) had similar Climate PC indexes (8.039 and 8.437, respectively), 

but they differ climatically from STL in different ways.  Duluth is wetter (PC1_euc) and 

colder (PC2_euc) than STL, while Gainesville is wetter (PC1_euc) and shows less 

variability in temperature (PC3_euc).  Thus, the relationship between geographic and 

climatic distance is context-dependent, and geographic distance from the source 

population may not be the best predictor of fitness in general.  These findings 

corroborate previous studies suggesting that restoration efforts are best advised to 

focus on environmental similarity when selecting individuals to transfer between habitats 

(Raabová, Münzbergová and Fischer, 2007; Lawrence and Kaye, 2011; Noël et al., 

2011; Forrester et al., 2013). 

A key limitation of this study is the lack of reciprocal common garden sites for 

fitness comparisons.  Identification of “reciprocal home-site advantage” in two or more 

locations is often considered the definitive test for demonstrating local adaptation 

(Kawecki and Ebert, 2004).  On the other hand, previous single-site studies have 

provided compelling evidence for local climatic adaptation in plants (e.g.,Rutter, Shaw 

and Fenster, 2010; Preite et al., 2015; Peterson, 2016).  The relatively large number of 

populations sampled in the present study and the clear evidence of climate-associated 



 

 

47 

fitness variation that we detect across populations (Figures 1.2, 1.3; Figures S1.6, S1.7; 

Table 1.3) lend further support to our conclusion that local climatic adaptation is 

pervasive in white clover.  The results of this study are also entirely consistent with 

inferences from cyanogenesis cline studies indicating that the species repeatedly 

evolves local adaptation across climatic gradients.  Nonetheless, future multi-site 

common garden experiments in white clover would undoubtedly be valuable and could 

be especially useful for examining fitness-related traits not considered here — for 

example, flowering phenology, a critical trait for local climatic adaptation in many plant 

species (e.g., Weinig, Ungerer and Dorn, 2002; Verhoeven et al., 2008; Buckler et al., 

2009; Anderson, Lee and Mitchell-Olds, 2011; Anderson et al., 2013; Friedman and 

Willis, 2013).   

Another limitation of the study is that we did not consider the potential impacts of 

competition on fitness variation.  By trimming and weeding, we eliminated both 

conspecific and heterospecific plant competition.  It is thus possible that regional 

variation in competitive ability exists that we did not capture in this study.  Additionally, 

we did not consider the impact of soil nutrients or microbes on fitness, which may be 

particularly important for legumes such as white clover that interact with local soil 

Rhizobia (Macel et al., 2017).  Follow-up studies would be valuable for examining both 

of these factors. 

 

The effects of cyanogenesis on fitness 

While our data suggest that cyanogenic (AcLi) plants experience marginally less 

herbivore leaf damage than acyanogenic plants in St. Louis (Figure 1.4, Figure S1.8b), 
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this advantage did not result in higher fitness for either fitness measure examined here 

(Figure S1.8c, d).  We detected very low herbivory overall in the common garden (10-

12% of leaves on average showed some amount of discernible herbivore damage) 

(Figure S1.8a).  By comparison, Kooyers et al. (2014) found that on average, 25-30% of 

individual leaflets displayed some amount of herbivore leaf damage across four natural 

populations located south of St. Louis in Tennessee, Arkansas, and Oklahoma.  Thus, 

our results are potentially consistent with lower herbivore damage in the central US than 

in southern US populations, as would be expected if variation in herbivore abundance 

drives the evolution of cyanogenesis clines.  However, the two studies may not be 

directly comparable given that the present study examined herbivory in non-local 

genotypes and in a different year.  In contrast to our findings, Thompson & Johnson 

(2016) quantified mean herbivore leaf damage by estimating overall percent damage 

per leaf on plants in a more northern common garden (Toronto, Canada) and found 

leaves experienced 35.7% and 23.8% herbivore damage on average during early and 

late season surveys, respectively.  That high level of herbivory is somewhat unexpected 

given low frequencies of cyanogenic plants in most northern populations (see 

Thompson, Renaudin and Johnson, 2016). 

Interestingly, rather than detecting a fitness advantage for cyanogenic plants in 

the common garden location, we instead found that the cyanotype that is most common 

in local wild populations (Acli) showed the highest mean fitness for both relative growth 

and reproductive output, although this trend was not statistically significant (Figure 

S1.8c, d).  To our knowledge, these are the first data to establish a relationship between 

high cyanotype frequency in local wild populations and high fitness of non-local plants of 
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the same cyanotype in that region.  The Acli cyanotype produces cyanogenic 

glucosides but lacks the enzyme required for HCN release.  Growth chamber 

experiments suggest that this cyanotype shows differentially high reproductive fitness 

under simulated drought conditions when nitrogen is limited (Kooyers et al., 2014).  

Consistent with that finding, studies in sorghum and other species indicate that 

cyanogenic glucosides can be metabolized through non-cyanogenic pathways and are 

likely beneficial as a nitrogen reserve under drought stress conditions (Møller, 2010; 

Kooyers, 2015).  Thus, the slightly elevated fitness of Acli that we detect in the common 

garden might be a reflection of differential success during the dry, hot days of the peak 

growing season in the central US.  

 

Predictive abilities of cyanogenesis vs. climatic parameters for fitness  

 Model averaging indicated that alternative climatic parameters are the best 

predictors of different aspects of fitness in white clover.  Our findings agree with 

previous studies showing that survival and growth-related traits respond more strongly 

to temperature than precipitation (Moles et al., 2014; Preite et al., 2015), whereas water 

availability and precipitation are particularly important for flowering, especially during the 

driest portions of the growing season (Prieto et al., 2008; Samis et al., 2012b).  

Additionally, we documented striking variation across populations in their rate and 

magnitude of flowering in response to bouts of precipitation during the reproductive 

season.  This result suggests that it is important to consider not only the total 

reproductive output but also the tempo of output relative to periodic environmental cues 

when assessing local adaptation.  Furthermore, the predictive nature of chemical 
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defense (in this case, cyanotype) for floral production suggests that knowledge of locally 

favored adaptive traits, in addition to climate similarity, can help to inform restoration 

ecologists in selecting the most appropriate individuals for transplantation efforts. 
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TABLES 

Table 1.1. Geographic coordinates and distances to the common garden site for the 15 populations used in this study. 

Populationa ID N Latitude Longitude Distance (km) Relative Distance 

Ardmore, OK AOK 48 34.16 -97.14 789.1 0.28 

Boise, ID BID 11 43.60 -116.22 2232 0.79 

Chicago, IL CIL 9 41.96 -87.63 433.1 0.15 

Charlottesville, VA CVA 11 38.01 -78.52 1028 0.36 

Denver, CO DCO 11 39.78 -104.97 1270 0.45 

Duluth, MN DMN 11 46.79 -92.15 919.7 0.32 

Gainesville, FL GFL 32 29.64 -82.36 1237 0.44 

Harbeson, DE HDE 10 38.73 -75.28 1301 0.46 

Louisville, KY LKY 10 38.28 -85.62 408.3 0.14 

Livingston, MT LMT 11 45.65 -110.56 1838 0.65 

Pittsburgh, PA PPA 11 40.45 -79.95 908.8 0.32 

Sioux City, SD SCD 11 42.54 -96.53 682.4 0.24 

Sioux Falls, SD SFD 11 43.51 -96.73 764.7 0.27 

St. Louis, MO STL 32 38.64 -90.29 0 0.00 

Vancouver, BC VBC 11 49.22 -122.82 2830 1.00 

aContributions to sample collections are acknowledged in Table S1.1. Collection dates are also given. 
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Table 1.2. Results of the principal components analysis (PCA) 
for home-site climate variables during the growing season. 

Bioclim variable PC1 (44%) PC2 (24%) PC3 (16%) 

AnnMeanTemp -0.318 -0.209 0.086 

AnnPrecip -0.313 0.217 -0.136 

AnnTempRange 0.285 -0.198 -0.258 

Apet -0.222 -0.375 0.103 

Isothermality -0.212 -0.146 0.401 

MaxT_warmM -0.107 -0.456 0.035 

MeanT_dryQ -0.230 0.011 0.345 

MeanT_warmQ -0.221 -0.349 -0.113 

MeanT_wetQ -0.135 -0.194 -0.405 

MeanTempRange 0.097 -0.411 0.196 

Precip_dryM -0.303 0.025 -0.217 

Precip_dryQ -0.305 0.048 -0.223 

Precip_warmQ -0.238 -0.031 -0.301 

Precip_wetM -0.272 0.254 0.025 

Precip_wetQ -0.264 0.284 0.005 

PrecipSeasonality 0.190 0.103 0.261 

TempSeasonality 0.253 -0.106 -0.380 

Bold font indicates the four most highly correlated variables for 
each of the top three PCs. The underlined values correspond 
to maps in Figure S1.9. 
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Table 1.3. Linear mixed model comparisons for two fitness measures.     

   Relative Growth Models  Inflorescence Count Models 

Model Parameters included K ΔAIC Akaike weight  ΔAIC Akaike weight 

1 Precipitation 1 2.929 0.107  316.729 0.000 

2 Heat 1 0.817 0.306  316.059 0.000 

3 Variability 1 0.000 0.461  315.929 0.000 

4 Cyanotype 1 17.309 0.000  3.677 0.052 

5 Precipitation + Heat 2 3.837 0.068  311.959 0.000 

6 Heat + Variability 2 4.753 0.043  315.069 0.000 

7 Precipitation +Variability 2 7.120 0.013  316.139 0.000 

8 Precipitation + Cyanotype 2 22.808 0.000  3.484 0.061 

9 Heat + Cyanotype 2 20.742 0.000  2.131 0.120 

10 Variability + Cyanotype 2 19.967 0.000  2.576 0.096 

11 Precipitation + Heat + Variability 3 9.961 0.003  312.839 0.000 

12 Precipitation + Heat + Cyanotype 3 23.811 0.000  0.000 0.348 

13 Precipitation + Variability + Cyanotype 3 27.060 0.000  3.490 0.061 

14 Heat + Variability + Cyanotype 3 24.761 0.000  1.981 0.129 

15 Precipitation + Heat + Variability + Cyanotype 4 29.983 0.000  1.261 0.185 

Akaike Information Criterion (AIC)-related metrics are given for models with all combinations of four parameters. Bold values indicate the 
ΔAIC and Aikaike weights for the top three models in each set, with the top models underlined. Additional information for the top models 
is provided in Table S1.8.  
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FIGURES 

Figure 1.1.  Sampling locations and abbreviations for the 15 populations used in the 
common garden experiment.  The star indicates the location of the common garden 
experiment in St. Louis, MO (STL).  
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Figure 1.2.  Easy Leaf Area output photos (a) are shown for a single plant at each photographic time point in the common 
garden experiment.  Vegetative tissue is highlighted in green pixels, with a red-painted penny used for scale.  The line 
graph (b) displays mean vegetative tissue across populations at each of the four time points.  Lines that are similar in 
color represent populations that experienced similar trajectories over all four time points. 
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Figure 1.3.  Linear relationships of two fitness measures (relative growth in vegetative 
tissue from April to October (a, c), and inflorescence count (b, d)) as a function of 
geographic distance (a, b) or climatic distance (PC index; c, d) across 15 populations.  
Data points show the mean value for each population with standard error bars.  
Adjusted R2 values and p-values for lines of best fit are shown. 
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Figure 1.4.  Variation in total herbivore leaf damage across cyanotypes.  Mean values 
are shown for each cyanotype with standard error bars.  Pairwise Wilcoxon signed-rank 
tests between the cyanogenic group (AcLi) and each of the three acyanogenic groups 
were not significant at the p < 0.05 level. 
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SUPPLEMENTARY METHODS 

Common garden fitness measurements 

 Growth. Trimmed biomass was collected from each plant during the first 

trimming.  Samples were rinsed to remove soil and debris, then dried at 60°C for 48 

hours before weighing.  This measurement was compared to the total vegetative 

surface area of the plants in May, before the first trim, to verify that these two measures 

were correlated (R2=0.54, p=2.2e-16), confirming that vegetative tissue area can serve 

as an accurate measure of vegetative biomass production. 

Fecundity. We removed all inflorescences and buds from plants for the first 10 

days after transplantation to the experimental plot, as these were produced during 

growth that had occurred in the greenhouse.  From day 10 to the first trim 

(approximately 6 weeks), inflorescences were counted and tagged, and seeds were 

allowed to fully mature.  Seed-filled infructescences were collected from each plant 

upon maturity and dried at 60 degrees C for a minimum of 48 hours.  Seeds from 67 of 

the plants were harvested using 1 mm and 0.5 mm sieves in series and weighed to 

evaluate the correlation between inflorescence count and seed mass.  Following the 

first trim, inflorescences were collected, dried and weighed for each plant to confirm a 

significant correlation between inflorescence counts and dried floral mass (Figure S1.2).  

Seed mass (R2= 0.51, p=8.24e-12) and dried floral mass (R2= 0.87, p=2.2e-16) were 

correlated with inflorescence count (Figure S1.2a, b), suggesting that inflorescence 

count serves as a good proxy for reproductive fitness in white clover. 

 

Germination experiment 
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Ten seeds each from the maternal parents of the common garden genotypes 

were scarified and planted in an experimental plot immediately adjacent to common 

garden plot.  We were unable to use seeds from STL and GFL plants in this germination 

experiment because those samples were collected as cuttings.  Seeds were planted in 

6” square pots with the bottoms removed.  Pots were embedded in the soil of the 

experimental garden plot so as to be level with the surrounding ground surface.  Seeds 

were watered only upon planting, and embedded pots were covered loosely with white 

Scrubbie Mesh (Jo-Ann Stores, Hudson, OH) for the duration of the experiment to 

mimic shading that would occur for seedlings that naturally germinate within a matrix of 

other plants.  The mesh did not prevent small herbivores from accessing the germinant 

plants.  After 30 days, we randomly selected one seedling per maternal parent for 

cyanogenesis phenotyping and genotyping, if a surviving seedling was present.  All 

additional seedlings were discarded.  This protocol paralleled the sampling process for 

the greenhouse-grown plants used in the common garden experiment, except no care 

was provided following the initial planting of the germinants in the experimental plot.   

 

Linear mixed models and model averaging 

We built linear mixed models with all combinations of the three PC_euc 

parameters and cyanotype to assess their relative predictive abilities for fitness 

variation, considering relative growth and inflorescence count separately.  For the 

purposes of their use as parameters in linear mixed models, PC1_euc, PC2_euc and 

PC3_euc are referred to as Precipitation, Heat and Variability, respectively, to reflect the 

key bioclimatic variables underlying their variation (Table 1.2, Figure S1.9).  Models 
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were constructed with the lme4 package using the averaged data set of 161 genotypes 

(Table S1.3), with Population as a random effect (Bates et al., 2015).  In the case of 

October vegetative tissue area, the data were normally distributed, and the lmer() 

function was used.  For inflorescence count, the glmer() function and a Poisson 

distribution were used.  We assessed all models with and without interaction effects.  

The set of models that included interactions outranked the set without interactions; 

however, within each set, the rankings of models were qualitatively the same.  

Therefore, for simplicity we present models that do not include interaction effects.   

Models for each fitness measure were compared using Akaike Information 

Criterion (AIC)-related metrics.  We performed model averaging with ΔAIC and Akaike 

weights; because our sample size was quite large relative to the number of parameters, 

using AICc did not change our inferences.  Parameter importance across models was 

assessed by calculating relative variable importance for each parameter as the sum of 

Akaike weights in all models in which the parameter occurs (Burnham and Anderson, 

2002).  Additionally, parameter slopes were compared, and the amount of variance 

contributed by parameters within models was assessed using F statistics calculated by 

the lmerTest package (Kuznetsova, Brockhoff and Christensen, 2017).  
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SUPPLEMENTARY TABLES 

Table S1.1. Contributors and collection and planting dates for samples used in this study. 

Population Sample contributor(s)    Collected as Collection Date Planting Datea 

AOK Sara Wright, Meena Jeanes (AOK),  
Maria Monteros (Noble Foundation-NFWC) 

 seed (NFWC),  
cuttings (AOK) 

2014 (NFWC);  
May 2014 (AOK) 

January 2014 
(NFWC) 

BID Sara Wright     seed September 2014 February 2015 

CIL Sara Wright, Kenneth Wright, Devin Dobias, 
Madeline Keleher 

seed August 2014 February 2015 

CVA Nic Kooyers      seed September 2014 January 2015 

DCO Rebecca Thomson    seed September 2014 February 2015 

DMN Briana Gross, University of Minnesota-Duluth 
undergraduate class 

seed September 2014 December 2014 

GFL Patricio Munoz, Yolanda Lopez   cuttings May 2014 —  

HDE John McDonald    seed September 2014 February 2015 

LKY Sunita Crittenden    seed September 2014 February 2015 

LMT Sara Wright     seed September 2014 February 2015 

PPA Lisa Limeri     seed August 2014 February 2015 

SCD Sara Wright     seed September 2014 February 2015 

SFD Sara Wright     seed September 2014 February 2015 

STL Sara Wright     cuttings May 2014 —  

VBC Kathryn Turner, University of British Columbia 
undergraduate class 

seed September 2014 February 2015 

aRefers to date samples were scarified and planted as seeds in greenhouse facilities. Cuttings were planted in the greenhouse immediately 
following collection. 
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Table S1.2. Sample coordinates, geographic distance to the common garden site and cyanotype 
information for all genotypes used in this study. 

ID Collected as Pop Latitude Longitude Distance Cyanotype 

AOK_001 cutting AOK 34.1725 -97.160278 789.1 AcLi 
AOK_004 cutting AOK 34.173889 -97.135556 789.1 Acli 
AOK_005 cutting AOK 34.173889 -97.135556 789.1 Acli 
AOK_006 cutting AOK 34.173889 -97.135556 789.1 Acli 
AOK_008 cutting AOK 34.175833 -97.126667 789.1 Acli 
AOK_009 cutting AOK 34.176111 -97.126389 789.1 AcLi 
AOK_012 cutting AOK 34.185556 -97.119444 789.1 AcLi 
AOK_014 cutting AOK 34.185556 -97.119444 789.1 AcLi 
AOK_017 cutting AOK 34.163889 -97.148333 789.1 AcLi 
AOK_018 cutting AOK 34.164444 -97.145556 789.1 AcLi 
AOK_021 cutting AOK 34.164167 -97.144722 789.1 AcLi 
AOK_022 cutting AOK 34.164167 -97.144722 789.1 AcLi 
AOK_023 cutting AOK 34.164167 -97.144722 789.1 AcLi 
AOK_024 cutting AOK 34.164167 -97.144722 789.1 AcLi 
AOK_025 cutting AOK 34.164167 -97.144722 789.1 Acli 
AOK_026 cutting AOK 34.159167 -97.143611 789.1 Acli 
AOK_027 cutting AOK 34.155 -97.145833 789.1 AcLi 
AOK_029 cutting AOK 34.155 -97.145833 789.1 AcLi 
AOK_030 cutting AOK 34.155 -97.145833 789.1 AcLi 
AOK_032 cutting AOK 34.155278 -97.149167 789.1 AcLi 
AOK_034 cutting AOK 34.155278 -97.149167 789.1 AcLi 
AOK_037 cutting AOK 34.158056 -97.149167 789.1 AcLi 
AOK_040 cutting AOK 34.158056 -97.149167 789.1 Acli 
AOK_042 cutting AOK 34.158611 -97.139444 789.1 AcLi 
AOK_044 cutting AOK 34.158611 -97.139444 789.1 AcLi 
AOK_048 cutting AOK 34.161111 -97.14 789.1 AcLi 
AOK_051 cutting AOK 34.161944 -97.139722 789.1 Acli 
AOK_055 cutting AOK 34.161944 -97.139722 789.1 Acli 
AOK_058 cutting AOK 34.161944 -97.136389 789.1 AcLi 
NFWC_04_4 seed AOK NA NA 789.1 AcLi 
NFWC_04_5 seed AOK NA NA 789.1 AcLi 
NFWC04_1 seed AOK NA NA 789.1 Acli 
NFWC04_2 seed AOK NA NA 789.1 Acli 
NFWC04_3 seed AOK NA NA 789.1 Acli 
NFWC04_6 seed AOK NA NA 789.1 AcLi 
NFWC04_7 seed AOK NA NA 789.1 AcLi 
NFWC04_8 seed AOK NA NA 789.1 AcLi 
NFWC05_117 seed AOK NA NA 789.1 Acli 
NFWC05_118 seed AOK NA NA 789.1 AcLi 
NFWC05_120 seed AOK NA NA 789.1 Acli 
NFWC05_121 seed AOK NA NA 789.1 AcLi 
NFWC05_122 seed AOK NA NA 789.1 AcLi 
NFWC05_123 seed AOK NA NA 789.1 acLi 
NFWC05_124 seed AOK NA NA 789.1 AcLi 
NFWC05_128 seed AOK NA NA 789.1 AcLi 
NFWC05_129 seed AOK NA NA 789.1 AcLi 
NFWC05_131 seed AOK NA NA 789.1 Acli 
NFWC05_132 seed AOK NA NA 789.1 AcLi 
BID_001 seed BID 43.5959 -116.2222 2232 acli 
BID_002 seed BID 43.5959 -116.2222 2232 acLi 
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BID_003 seed BID 43.5959 -116.2222 2232 acLi 
BID_004 seed BID 43.5959 -116.2222 2232 Acli 
BID_005 seed BID 43.5959 -116.2222 2232 acli 
BID_006 seed BID 43.5959 -116.2222 2232 acli 
BID_007 seed BID 43.5959 -116.2222 2232 acli 
BID_008 seed BID 43.5959 -116.2222 2232 acli 
BID_009 seed BID 43.5959 -116.2222 2232 acli 
BID_010 seed BID 43.5959 -116.2222 2232 acLi 
BID_011 seed BID 43.5959 -116.2222 2232 acli 
CIL_001 seed CIL 41.9632 -87.6334 433.1 acli 
CIL_003 seed CIL 41.9632 -87.6334 433.1 acli 
CIL_004 seed CIL 41.9632 -87.6334 433.1 AcLi 
CIL_005 seed CIL 41.9632 -87.6334 433.1 AcLi 
CIL_006 seed CIL 41.9632 -87.6334 433.1 acli 
CIL_007 seed CIL 41.9632 -87.6334 433.1 acli 
CIL_008 seed CIL 41.9632 -87.6334 433.1 AcLi 
CIL_009 seed CIL 41.9632 -87.6334 433.1 Acli 
CIL_011 seed CIL 41.9632 -87.6334 433.1 AcLi 
CVA_001 seed CVA 38.0102 -78.5171 1028 AcLi 
CVA_002 seed CVA 38.0102 -78.5171 1028 acLi 
CVA_003 seed CVA 38.0102 -78.5171 1028 acli 
CVA_004 seed CVA 38.0102 -78.5171 1028 acli 
CVA_005 seed CVA 38.0102 -78.5171 1028 Acli 
CVA_006 seed CVA 38.0102 -78.5171 1028 acli 
CVA_007 seed CVA 38.0102 -78.5171 1028 acLi 
CVA_009 seed CVA 38.0102 -78.5171 1028 Acli 
CVA_010 seed CVA 38.0102 -78.5171 1028 acli 
CVA_011 seed CVA 38.0102 -78.5171 1028 acLi 
CVA_012 seed CVA 38.0102 -78.5171 1028 acli 
DCO_001 seed DCO 39.7767 -104.9729 1270 Acli 
DCO_002 seed DCO 39.7767 -104.9729 1270 Acli 
DCO_003 seed DCO 39.7767 -104.9729 1270 acli 
DCO_004 seed DCO 39.7767 -104.9729 1270 Acli 
DCO_005 seed DCO 39.7767 -104.9729 1270 Acli 
DCO_006 seed DCO 39.7767 -104.9729 1270 acLi 
DCO_007 seed DCO 39.7767 -104.9729 1270 acLi 
DCO_008 seed DCO 39.7767 -104.9729 1270 acLi 
DCO_009 seed DCO 39.7767 -104.9729 1270 acLi 
DCO_011 seed DCO 39.7767 -104.9729 1270 Acli 
DCO_012 seed DCO 39.7767 -104.9729 1270 Acli 
DMN_001 seed DMN 46.792 -92.1546 919.7 acli 
DMN_004 seed DMN 46.792 -92.1546 919.7 Acli 
DMN_005 seed DMN 46.792 -92.1546 919.7 AcLi 
DMN_007 seed DMN 46.792 -92.1546 919.7 acli 
DMN_008 seed DMN 46.792 -92.1546 919.7 AcLi 
DMN_013 seed DMN 46.792 -92.1546 919.7 Acli 
DMN_014 seed DMN 46.792 -92.1546 919.7 acLi 
DMN_015 seed DMN 46.792 -92.1546 919.7 acLi 
DMN_016 seed DMN 46.792 -92.1546 919.7 acli 
DMN_017 seed DMN 46.792 -92.1546 919.7 Acli 
DMN_018 seed DMN 46.792 -92.1546 919.7 Acli 
GFL_002 cutting GFL 29.632973 -82.355522 1237 AcLi 
GFL_004 cutting GFL 29.633026 -82.355148 1237 AcLi 
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GFL_006 cutting GFL 29.638927 -82.358749 1237 AcLi 
GFL_007 cutting GFL 29.640671 -82.362297 1237 AcLi 
GFL_008 cutting GFL 29.640635 -82.362282 1237 AcLi 
GFL_010 cutting GFL 29.640596 -82.363647 1237 AcLi 
GFL_012 cutting GFL 29.640257 -82.363968 1237 AcLi 
GFL_013 cutting GFL 29.638119 -82.362885 1237 AcLi 
GFL_014 cutting GFL 29.638138 -82.362923 1237 AcLi 
GFL_016 cutting GFL 29.638201 -82.362419 1237 AcLi 
GFL_019 cutting GFL 29.63517 -82.36142 1237 AcLi 
GFL_021 cutting GFL 29.636271 -82.364983 1237 AcLi 
GFL_022 cutting GFL 29.636152 -82.365402 1237 AcLi 
GFL_024 cutting GFL 29.635914 -82.36554 1237 AcLi 
GFL_025 cutting GFL 29.636101 -82.366623 1237 AcLi 
GFL_029 cutting GFL 29.648767 -82.359688 1237 Acli 
GFL_038 cutting GFL 29.637688 -82.363439 1237 acLi 
GFL_039 cutting GFL 29.63953 -82.364118 1237 AcLi 
GFL_040 cutting GFL 29.63952 -82.364205 1237 AcLi 
GFL_044 cutting GFL 29.650312 -82.371029 1237 AcLi 
GFL_045 cutting GFL 29.649031 -82.360259 1237 AcLi 
GFL_047 cutting GFL 29.64835 -82.350968 1237 AcLi 
GFL_049 cutting GFL 29.648228 -82.357699 1237 AcLi 
GFL_051 cutting GFL 29.649751 -82.343013 1237 acLi 
GFL_052 cutting GFL 29.649855 -82.341013 1237 acLi 
GFL_054 cutting GFL 29.643378 -82.332271 1237 AcLi 
GFL_056 cutting GFL 29.64356 -82.341192 1237 Acli 
GFL_057 cutting GFL 29.643654 -82.340297 1237 AcLi 
GFL_058 cutting GFL 29.64169 -82.342354 1237 AcLi 
GFL_059 cutting GFL 29.641976 -82.342825 1237 AcLi 
GFL_060 cutting GFL 29.642019 -82.342811 1237 AcLi 
GFL_062 cutting GFL 29.641224 -82.343284 1237 AcLi 
HDE_001 seed HDE 38.7252 -75.2837 1301 Acli 
HDE_004 seed HDE 38.7252 -75.2837 1301 acLi 
HDE_007 seed HDE 38.7252 -75.2837 1301 acLi 
HDE_008 seed HDE 38.7252 -75.2837 1301 acLi 
HDE_009 seed HDE 38.7252 -75.2837 1301 AcLi 
HDE_010 seed HDE 38.7252 -75.2837 1301 acLi 
HDE_011 seed HDE 38.7252 -75.2837 1301 Acli 
HDE_012 seed HDE 38.7252 -75.2837 1301 Acli 
HDE_013 seed HDE 38.7252 -75.2837 1301 acli 
HDE_014 seed HDE 38.7252 -75.2837 1301 acli 
LKY_001 seed LKY 38.2817 -85.6192 408.3 acli 
LKY_002 seed LKY 38.2817 -85.6192 408.3 AcLi 
LKY_003 seed LKY 38.2817 -85.6192 408.3 acli 
LKY_004 seed LKY 38.2817 -85.6192 408.3 Acli 
LKY_005 seed LKY 38.2817 -85.6192 408.3 acli 
LKY_006 seed LKY 38.2817 -85.6192 408.3 Acli 
LKY_007 seed LKY 38.2817 -85.6192 408.3 Acli 
LKY_008 seed LKY 38.2817 -85.6192 408.3 acli 
LKY_010 seed LKY 38.2817 -85.6192 408.3 Acli 
LKY_011 seed LKY 38.2817 -85.6192 408.3 AcLi 
LMT_001 seed LMT 45.6509 -110.562 1838 acli 
LMT_002 seed LMT 45.6509 -110.562 1838 AcLi 
LMT_004 seed LMT 45.6509 -110.562 1838 AcLi 
LMT_005 seed LMT 45.6509 -110.562 1838 AcLi 
LMT_007 seed LMT 45.6509 -110.562 1838 acLi 
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LMT_008 seed LMT 45.6509 -110.562 1838 Acli 
LMT_010 seed LMT 45.6509 -110.562 1838 Acli 
LMT_011 seed LMT 45.6509 -110.562 1838 acli 
LMT_012 seed LMT 45.6509 -110.562 1838 acli 
LMT_013 seed LMT 45.6509 -110.562 1838 Acli 
LMT_014 seed LMT 45.6509 -110.562 1838 acli 
PPA_001 seed PPA 40.4526 -79.9476 908.8 AcLi 
PPA_002 seed PPA 40.4526 -79.9476 908.8 Acli 
PPA_003 seed PPA 40.4526 -79.9476 908.8 AcLi 
PPA_004 seed PPA 40.4526 -79.9476 908.8 Acli 
PPA_006 seed PPA 40.4526 -79.9476 908.8 AcLi 
PPA_007 seed PPA 40.4526 -79.9476 908.8 acli 
PPA_008 seed PPA 40.4526 -79.9476 908.8 Acli 
PPA_009 seed PPA 40.4526 -79.9476 908.8 Acli 
PPA_010 seed PPA 40.4526 -79.9476 908.8 AcLi 
PPA_012 seed PPA 40.4526 -79.9476 908.8 Acli 
PPA_013 seed PPA 40.4526 -79.9476 908.8 Acli 
SCD_001 seed SCD 42.5399 -96.5267 682.4 Acli 
SCD_002 seed SCD 42.5399 -96.5267 682.4 acli 
SCD_003 seed SCD 42.5399 -96.5267 682.4 acli 
SCD_004 seed SCD 42.5399 -96.5267 682.4 acLi 
SCD_005 seed SCD 42.5399 -96.5267 682.4 acLi 
SCD_006 seed SCD 42.5399 -96.5267 682.4 Acli 
SCD_007 seed SCD 42.5399 -96.5267 682.4 Acli 
SCD_008 seed SCD 42.5399 -96.5267 682.4 acli 
SCD_009 seed SCD 42.5399 -96.5267 682.4 acli 
SCD_010 seed SCD 42.5399 -96.5267 682.4 acLi 
SCD_011 seed SCD 42.5399 -96.5267 682.4 acli 
SFD_002 seed SFD 43.508 -96.7327 764.7 acli 
SFD_003 seed SFD 43.508 -96.7327 764.7 Acli 
SFD_004 seed SFD 43.508 -96.7327 764.7 acLi 
SFD_005 seed SFD 43.508 -96.7327 764.7 acli 
SFD_006 seed SFD 43.508 -96.7327 764.7 Acli 
SFD_007 seed SFD 43.508 -96.7327 764.7 Acli 
SFD_008 seed SFD 43.508 -96.7327 764.7 Acli 
SFD_009 seed SFD 43.508 -96.7327 764.7 acli 
SFD_010 seed SFD 43.508 -96.7327 764.7 acli 
SFD_011 seed SFD 43.508 -96.7327 764.7 acLi 
SFD_012 seed SFD 43.508 -96.7327 764.7 AcLi 
STL_0108 cutting STL NA NA 0 acli 
STL_0701 cutting STL NA NA 0 acli 
STL_1010 cutting STL NA NA 0 Acli 
STL_5000 cutting STL 38.648333 -90.288056 0 acli 
STL_5002 cutting STL 38.640556 -90.331667 0 Acli 
STL_5003 cutting STL 38.638611 -90.3575 0 AcLi 
STL_5005 cutting STL 38.655556 -90.406389 0 Acli 
STL_5006 cutting STL 38.666389 -90.395556 0 Acli 
STL_5009 cutting STL 38.674722 -90.359722 0 Acli 
STL_5011 cutting STL 38.672778 -90.342778 0 Acli 
STL_5017 cutting STL 38.645278 -90.280278 0 acli 
STL_5019 cutting STL 38.639722 -90.251111 0 Acli 
STL_5020 cutting STL 38.640278 -90.243889 0 Acli 
STL_5022 cutting STL 38.638889 -90.238889 0 Acli 
STL_5023 cutting STL 38.643611 -90.237778 0 acLi 
STL_5024 cutting STL 38.646389 -90.245833 0 Acli 
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STL_5026 cutting STL 38.649722 -90.260833 0 Acli 
STL_5029 cutting STL 38.653056 -90.283889 0 Acli 
STL_5030 cutting STL 38.65 -90.285556 0 Acli 
STL_5031 cutting STL 38.622778 -90.351667 0 Acli 
STL_5033 cutting STL 38.617222 -90.394722 0 acLi 
STL_5034 cutting STL 38.607222 -90.393611 0 AcLi 
STL_5035 cutting STL 38.603056 -90.385278 0 Acli 
STL_5036 cutting STL 38.597222 -90.38 0 acli 
STL_5038 cutting STL 38.592222 -90.357222 0 AcLi 
STL_5041 cutting STL 38.603889 -90.332778 0 AcLi 
STL_5042 cutting STL 38.6125 -90.323333 0 AcLi 
STL_5043 cutting STL 38.623056 -90.286667 0 AcLi 
STL_5044 cutting STL 38.607778 -90.290278 0 AcLi 
STL_5045 cutting STL 38.614722 -90.284167 0 Acli 
STL_5046 cutting STL 38.6275 -90.291667 0 AcLi 
STL_5049 cutting STL 38.623056 -90.325278 0 AcLi 
VBC_001 seed VBC 49.2202 -122.8163 2830 AcLi 
VBC_002 seed VBC 49.2202 -122.8163 2830 acli 
VBC_004 seed VBC 49.2202 -122.8163 2830 AcLi 
VBC_008 seed VBC 49.2202 -122.8163 2830 acLi 
VBC_009 seed VBC 49.2202 -122.8163 2830 Acli 
VBC_010 seed VBC 49.2202 -122.8163 2830 AcLi 
VBC_012 seed VBC 49.2202 -122.8163 2830 acli 
VBC_013 seed VBC 49.2202 -122.8163 2830 AcLi 
VBC_014 seed VBC 49.2202 -122.8163 2830 Acli 
VBC_015 seed VBC 49.2202 -122.8163 2830 acLi 
VBC_016 seed VBC 49.2202 -122.8163 2830 Acli 
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Table S1.3 is too large to include here.  It would be > 50 pages and difficult to read.  It is 
essentially the full set of raw data used in analyses: 
 

Table S1.3. All information for the 483 plants studied in the common garden experiment. Garden 
block and position assignments, source population, cyanotype, fitness, and climate data are 
included.  Fitness data include vegetative area, total inflorescence counts, daily inflorescence 
counts, and leaf herbivore damage measurements. 

 
 
The table is published in the Supplementary Materials associated with: 
 
Wright, S. J. et al. (2017) ‘Continent-Wide Climatic Variation Drives Local Adaptation in 

North American White Clover’, Journal of Heredity, 109(1), pp. 78–89. doi: 
10.1093/jhered/esx060. 
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Table S1.4. Pairwise population FST comparisons for three populations 
genome-wide (GBS) and for the two cyanogenesis loci. 

Comparison GBS Ac Li 

AOK-GFL 0.008 0.038 0.093 

AOK-STL 0.019 0.126 0.038 

GFL-STL 0.020 0.027 0.250 
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Table S1.5. Summary statistics for growth, survival and reproductive fitness measures 
across 483 plants studied in the common garden experiment. 

 
Vegetative tissue (cm2) 

Inflorescence 
count 

(N = 483) April May October March  

Min 0.08 0.00 0.00 0.00 0 

      

25th percentile 9.61 156.50 188.30 52.19 43 

      

50th percentile 14.80 251.10 322.80 232.20 97 

      

75th percentile 23.45 398.30 448.5 653.10 172 

      

95th percentile 38.83 697.05 653.60 1193.94 321 

      

Max 77.28 1609.00 1004.00 1687.00 601 

      
Mean 17.80 303.40 327.80 388.40 119 

      

# dead plants 0 2 3 27 —  
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Table S1.6. Cyanotypes of germinants in two locations. 

Maternal_ID Pop Greenhouse Tysona 

NFWC0401 AOK Acli Acli 
NFWC0407 AOK AcLi Acli 

NFWC0408 AOK AcLi acLi 

NFWC050120 AOK Acli Acli 

NFWC050121 AOK AcLi AcLi 

NFWC050122 AOK AcLi AcLi 

NFWC050124 AOK AcLi AcLi 

NFWC050128 AOK AcLi AcLi 

NFWC050129 AOK AcLi AcLi 

NFWC050131 AOK Acli AcLi 

NFWC050132 AOK AcLi Acli 

BID_001 BID acli acli 

BID_002 BID acLi acli 

BID_003 BID acLi Acli 

BID_004 BID Acli AcLi 

BID_005 BID acli acLi 

BID_006 BID acli acli 

BID_007 BID acli acli 

BID_008 BID acli acli 

BID_009 BID acli acli 

BID_010 BID acLi NA 

BID_011 BID acli acli 

CIL_001 CIL acli NA 

CIL_003 CIL acli NA 

CIL_004 CIL AcLi AcLi 

CIL_005 CIL AcLi NA 

CIL_006 CIL acli AcLi 

CIL_007 CIL acli NA 

CIL_008 CIL AcLi acli 

CIL_009 CIL Acli NA 

CIL_011 CIL AcLi Acli 

CVA_001 CVA AcLi Acli 

CVA_002 CVA acLi acli 

CVA_003 CVA acli acLi 

CVA_004 CVA acli NA 

CVA_005 CVA Acli NA 

CVA_006 CVA acli NA 

CVA_007 CVA acLi AcLi 

CVA_009 CVA Acli NA 

CVA_010 CVA acli NA 

CVA_011 CVA acLi Acli 

CVA_012 CVA acli acli 

DCO_001 DCO Acli Acli 

DCO_002 DCO Acli Acli 

DCO_003 DCO acli NA 

DCO_004 DCO Acli Acli 

DCO_005 DCO Acli NA 

DCO_006 DCO acLi acLi 

DCO_007 DCO acLi acli 

DCO_008 DCO acLi AcLi 
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DCO_009 DCO acLi acli 

DCO_011 DCO Acli NA 

DCO_012 DCO Acli AcLi 

DMN_001 DMN acli NA 

DMN_004 DMN Acli NA 

DMN_005 DMN AcLi acli 

DMN_007 DMN acli NA 

DMN_008 DMN AcLi NA 

DMN_013 DMN Acli acli 

DMN_014 DMN acLi NA 

DMN_015 DMN acLi NA 

DMN_016 DMN acli NA 

DMN_017 DMN Acli NA 

DMN_018 DMN Acli NA 

HDE_001 HDE Acli Acli 

HDE_004 HDE acLi NA 

HDE_007 HDE acLi NA 

HDE_008 HDE acLi NA 

HDE_009 HDE AcLi acLi 

HDE_010 HDE acLi NA 

HDE_011 HDE Acli AcLi 

HDE_012 HDE Acli NA 

HDE_013 HDE acli NA 

HDE_014 HDE acli NA 

LKY_001 LKY acli acli 

LKY_002 LKY AcLi Acli 

LKY_003 LKY acli NA 

LKY_004 LKY Acli acli 

LKY_005 LKY acli NA 

LKY_006 LKY Acli AcLi 

LKY_007 LKY Acli acli 

LKY_008 LKY acli Acli 

LKY_010 LKY Acli NA 

LKY_011 LKY AcLi acLi 

LMT_001 LMT acli acLi 

LMT_002 LMT AcLi NA 

LMT_004 LMT AcLi AcLi 

LMT_005 LMT AcLi AcLi 

LMT_007 LMT acLi acli 

LMT_008 LMT Acli Acli 

LMT_010 LMT Acli NA 

LMT_011 LMT acli Acli 

LMT_012 LMT acli AcLi 

LMT_013 LMT Acli acli 

LMT_014 LMT acli Acli 

PPA_001 PPA AcLi AcLi 

PPA_002 PPA Acli Acli 

PPA_003 PPA AcLi acLi 

PPA_004 PPA Acli Acli 

PPA_006 PPA AcLi acli 

PPA_007 PPA acli NA 

PPA_008 PPA Acli Acli 
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PPA_009 PPA Acli NA 

PPA_010 PPA AcLi Acli 

PPA_012 PPA Acli acli 

PPA_013 PPA Acli NA 

SCD_001 SCD Acli Acli 

SCD_002 SCD acli acLi 

SCD_003 SCD acli AcLi 

SCD_004 SCD acLi acli 

SCD_005 SCD acLi NA 

SCD_006 SCD Acli acLi 

SCD_007 SCD Acli acLi 

SCD_008 SCD acli Acli 

SCD_009 SCD acli acLi 

SCD_010 SCD acLi acLi 

SCD_011 SCD acli NA 

SFD_002 SFD acli Acli 

SFD_003 SFD Acli acLi 

SFD_004 SFD acLi AcLi 

SFD_005 SFD acli NA 

SFD_006 SFD Acli acli 

SFD_007 SFD Acli acli 

SFD_008 SFD Acli acli 

SFD_009 SFD acli NA 

SFD_010 SFD acli acli 

SFD_011 SFD acLi Acli 

SFD_012 SFD AcLi acLi 

VBC_001 VBC AcLi AcLi 

VBC_002 VBC acli AcLi 

VBC_004 VBC AcLi NA 

VBC_008 VBC acLi NA 

VBC_009 VBC Acli Acli 

VBC_010 VBC AcLi AcLi 

VBC_012 VBC acli AcLi 

VBC_013 VBC AcLi NA 

VBC_014 VBC Acli NA 

VBC_015 VBC acLi NA 

VBC_016 VBC Acli NA 
aMissing values (NA) occurred at Tyson when no seeds germinated, or 
when all germinants died before the end of the 30-day experiment. 
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Table S1.7. Climatic distances (Euclidean) across populations for each of the top three 
principal components. 

Population 
PC1_euc 

(Precipitation) 
PC2_euc    

(Heat) 
PC3_euc 

(Variability) 
Climate PC 

index* 

AOK 0.988 1.182 1.884 4.055 

BID 3.283 0.707 4.910 8.900 

CIL 1.450 2.077 0.535 4.062 

CVA 1.545 0.193 0.479 2.217 

DCO 3.047 1.062 3.256 7.365 

DMN 4.265 3.562 0.211 8.039 

GFL 5.315 0.153 2.969 8.437 

HDE 1.660 1.462 0.316 3.437 

LKY 1.473 0.869 1.356 3.699 

LMT 4.142 1.072 3.499 8.712 

PPA 0.264 1.182 0.451 1.897 

SCD 3.121 0.299 0.676 4.097 

SFD 3.863 0.704 0.542 5.109 

STL 0.000 0.000 0.000 0.000 

VBC 1.030 7.051 4.063 12.144 

*Climate PC index is the sum of each of the individual PC distances. 
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Table S1.8. Parameter summary statistics for the top three models for each of the two fitness measures. 

Top 3 Growth Rate Models 

Model Parameter Slope Slope C.I. (±) F P-value 

1 Precipitation -0.03 0.02 2.65 0.13 

2 Heat* -0.04 0.02 5.72 0.03 

3 Variability* -0.04 0.02 6.68 0.02 

Top 3 Inflorescence Count Models 

Model Parameter Slope Slope C.I. (±) F P-value 

12 Precipitation* -0.12 0.05 4.75 0.03 

 Heat* -0.13 0.05 6.63 0.01 

 Cyanotype** (relative to acli)    

 acLi 0.12 0.02 22.65 <0.001 

 Acli 0.32 0.02 246.65 <0.001 

 AcLi 0.37 0.02 229.10 <0.001 

14 Heat -0.09 0.05 2.82 0.09 

 Variability -0.09 0.06 2.31 0.13 

 Cyanotype** (relative to acli)    

 acLi 0.12 0.02 22.56 <0.001 

 Acli 0.32 0.02 247.12 <0.001 

 AcLi 0.37 0.02 230.13 <0.001 

15 Precipitation -0.10 0.06 2.98 0.08 

 Heat* -0.11 0.05 4.89 0.03 

 Variability -0.05 0.06 0.76 0.38 

 Cyanotype** (relative to acli)    

 acLi 0.12 0.02 22.66 <0.001 

 Acli 0.32 0.02 246.43 <0.001 

 AcLi 0.37 0.02 228.83 <0.001 

* indicates significance at P ≤ 0.05, ** indicates significance at < 0.001.  
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SUPPLEMENTARY FIGURES 

 

Figure S1.1.  The experimental garden plot at the Washington University Tyson 
Research Center shown at two stages of the common garden experiment during the 
growing season (May and September).  The plot is situated with buildings on the East 
and West sides.  The aerial photo is labeled to delineate the three blocks.  The inset 
depicts the spacing of plants following trimming. 
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Figure S1.2.  Linear correlations related to inflorescence count.  Seed mass (a) and 
dried floral mass (b) were both correlated with inflorescence count.  Inflorescence count 
was correlated with relative growth when averaged across the three replicate plants of a 
given genotype (c) and also when averaged across genotypes from the same 
population (d).  Adjusted R2 values and p-values for lines of best fit are shown. 
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Figure S1.3.  Examples of leaf herbivore damage categories:  0% (a), 1-25% (b), 26-
50% (c), 51-75% (d), and >75% (e). 
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Figure S1.4.  Cyanotype frequencies across populations used in the common garden 
experiment, including deeper sampling in the AOK, GFL and STL populations that were 
used for population structure analyses. 
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Figure S1.5.  Linear relationships of two fitness measures (relative growth in vegetative 
tissue from April to October (a, c) and inflorescence count (b, d)) as a function of 
geographic distance (a, b) or climatic distance (PC index; c, d) across 13 populations.  
This figure presents the same data as Figure 3 but excludes populations collected as 
stolon cuttings (STL and GFL).  Data points show the mean value for each population 
with standard error bars.  Adjusted R2 values and p-values for lines of best fit are 
shown. 
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Figure S1.6.  Mean inflorescence count across populations over the growing season.  
The four populations with red lines had the highest mean inflorescence count when 
individual inflorescence counts were summed over the entire season, followed 
successively by populations in orange, green, blue and black.  Colors correspond to the 
insets.  
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Figure S1.7.  Mean inflorescence count across populations over the growing season as 
related to three-day precipitation windows.  
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Figure S1.8.  Total herbivore damage across populations (a), weighted herbivore leaf 
damage across cyanotypes (b), and two measures of fitness across cyanotypes 
(relative growth in vegetative tissue from April to October, (c) and inflorescence count, 
(d)).  Data points show the mean value for each group with standard error bars.  
Pairwise Wilcoxon signed-rank tests between cyanotypes were not significant at the p < 
0.05 level for any comparisons in (b), (c), and (d). 
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Figure S1.9.  Sampling locations and abbreviations for the 15 populations used in the 
common garden experiment, with the star indicating the location of the common garden 
experiment in St. Louis, MO.  Maps were created in ArcGIS 10 (ESRI 2011) and are 
shaded according to climatic variables downloaded from BIOCLIM (Hijmans et al.  
2005).  Annual precipitation (a) is highly correlated with PC1, which explains 44% of the 
climatic variation across the 15 populations.  Maximum temperature of the warmest 
month (b) and isothermality (c) are highly correlated with PC2 and PC3, respectively.  
High isothermality denotes high day-to-night temperature oscillations relative to 
summer-to-winter oscillations. 
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Figure S1.10.  Correlation between climatic distance (PC index) and geographic 
distance.  Adjusted R2 and p-values for the line of best fit are shown. 
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CHAPTER 2  

 

Divergent life history strategies and genetic trade-offs underlie local adaptation                    

in white clover 
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ABSTRACT  

Local adaptation is common in plants, and while understanding its genetic basis is an 

important goal of evolutionary biology, it has rarely been examined in herbaceous 

perennial species, which constitute a major component of many of the world’s 

ecosystems.  Moreover, while many plants are characterized by intraspecific chemical 

defense polymorphisms, the importance of this adaptive variation for local adaptation is 

poorly understood.  We examined the genetic architecture of local adaptation in a 

perennial, obligately-outcrossing herbaceous legume, white clover.  This species is 

characterized by a well-studied chemical defense polymorphism for cyanogenesis (HCN 

release following tissue damage) that has repeatedly evolved climate-associated clines.  

We generated two biparental F2 mapping populations from plants collected in three 

environments that span the U.S. latitudinal species range (Duluth, MN, St. Louis, MO 

and Gainesville, FL); genome-wide markers were generated with genotyping-by-

sequencing, and plants were grown for two years in reciprocal common garden 

experiments in the three parental environments.  Fitness-related traits displayed clear 

evidence for local adaptation, and genetic mapping revealed an underlying genetic 

architecture characterized by multiple loci with allelic tradeoffs across environments 

(antagonistic pleiotropy).  We found little evidence that the cyanogenesis polymorphism 

contributes to local adaptation.  Instead, divergent life history strategies in reciprocal 

environments — specifically, early investment in flowering in the southernmost site vs. 

delayed flowering and multi-year persistence in the cooler northern environments — 

were major fitness determinants. These findings suggest that multi-locus allelic tradeoffs 

for life history traits may be a common mechanism for local adaptation in outcrossing 

herbaceous perennials.  
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INTRODUCTION 

 Population differentiation and adaptation to local conditions often occur when 

species have broad geographic distributions and experience spatially-heterogeneous 

environments (Hereford, 2009).  Local adaptation maintains genetic polymorphism in 

the face of gene flow when selection is strong (Hedrick, 1986), providing a pool of 

adaptive variation that can allow species to persist through periods of environmental 

change; it may be a particularly important adaptive strategy for plants and other sessile 

species currently facing rapidly changing climatic conditions (Bradshaw and Holzapfel, 

2001; Leimu and Fischer, 2008; Thompson et al., 2013).  Identifying the most relevant 

traits and the underlying genetic polymorphisms that contribute to local adaptation are 

therefore key goals in evolutionary, agricultural, and conservation biology research 

programs (Anderson, Willis and Mitchell-Olds, 2011).  

 Plant species encounter myriad selective pressures across their ranges, 

involving both biotic and abiotic stressors.  In response, they have evolved adaptations 

for many of these demands, including chemical defenses against herbivores.  Chemical 

defenses are pervasive across the plant kingdom, which strongly suggests that they 

play important adaptive roles (Mithöfer and Boland, 2012).  However, defenses can be 

energetically costly, and producing them may or may not outweigh their benefits in a 

given environment (Züst and Agrawal, 2017).  When a chemical defense is maintained 

as a polymorphism across a species range, it is often assumed that trade-offs exist 

across populations, such that the benefit of the defense for overall fitness varies 

depending upon environmental context; in these cases, chemical defense 

polymorphisms may be important for local adaptation (e.g., Prasad et al., 2012; Kerwin 
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et al., 2015).  However, the assumption that chemical defense polymorphisms 

contribute substantially to fitness differences within or across environments is rarely 

empirically tested (Erb, 2018).  Thus, the relative contribution of chemical defense 

polymorphisms for local adaptation, compared to other factors, is not well understood.   

A classic approach to test for local adaptation in plant species is through 

reciprocal common garden experiments, whereby the same set of genotypes is grown 

under different environmental conditions (Jens Clausen, Keck and Hiesey, 1941).  Local 

adaptation is demonstrated when native genotypes exhibit high relative fitness in local 

environments and reduced fitness in foreign environments (i.e., genotypic fitness trade-

offs across environments) (Kawecki and Ebert, 2004).  When these experiments are 

performed using genetic mapping populations derived from parents that originated in 

the reciprocal environments, the genetic architecture of local adaptation can be 

characterized by mapping fitness-related quantitative trait loci (QTLs) in each 

environment (Ågren et al., 2013; Anderson et al., 2014).  This combined field-

experiment and QTL-mapping approach allows researchers to identify genetic trade-offs 

at the level of QTLs (Rausher and Delph, 2015).  Moreover, for species with 

geographically structured chemical defense polymorphisms, the fitness contribution of a 

chemical defense trait to local adaptation can be directly assessed by determining the 

extent to which chemical defense loci are associated with fitness-related QTLs. 

For a given fitness-related QTL, alternate alleles that show fitness trade-offs 

across reciprocal environments are said to show a pattern of antagonistic pleiotropy 

(also referred to as QTLE interactions) (Anderson, Willis and Mitchell-Olds, 2011; 

Lowry et al., 2019).  Despite the prediction that antagonistic pleiotropy should be 
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common for locally-adapted QTLs, empirical evidence for this trade-off pattern has been 

mixed in plants (Wadgymar et al., 2017).  This may partly reflect statistical limitations in 

detecting significant fitness effects in two environments (Anderson et al., 2013).  

However, it may also reflect a bias in study systems, as work to date has largely 

focused on annual species with high rates of self-fertilization owing to their experimental 

tractability (Anderson, Willis and Mitchell-Olds, 2011; Savolainen, Lascoux and Merilä, 

2013).  Antagonistic pleiotropy may be more commonly detected in outcrossing species, 

which display higher effective recombination and associated reductions in linkage 

disequilibrium (Wadgymar et al., 2017).  

In this study, we use QTL mapping of fitness-related traits to assess the genetic 

architecture of local adaptation in a geographically widespread, obligately-outcrossing 

species that is characterized by a well-documented chemical defense polymorphism.  

Our focal species, white clover (Trifolium repens L.), is an herbaceous legume that is 

native to Europe but naturalized in mesic temperate regions worldwide.  In North 

America, where it was introduced within the last 500 years, it is widely distributed across 

much of the continent and can be found in climates ranging from boreal to subtropical 

(USDA, 2002).  White clover shows evidence of local adaptation across this range.  A 

recent fitness study using genotypes sampled from across North America demonstrated 

strong associations between climate-of-origin and plant performance in a central U.S. 

common garden (Wright et al., 2017).  In addition, white clover populations have 

recurrently evolved climate-associated clines in cyanogenesis (the production of HCN 

following tissue damage; described below), which suggests that this chemical defense 

polymorphism could play an important role in local adaptation.  As a common plant of 
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lawns, roadsides and fields, white clover is characterized by very large effective 

population sizes and little population structure on continental or global scales (George 

et al., 2006; Kooyers and Olsen, 2012, 2013; Wright et al., 2017); these features could 

promote local adaptation via antagonistic pleiotropy.  This species thus provides an 

ideal study system to complement existing studies on the genetic architecture of local 

adaptation and explicitly to assess the relative importance of chemical defense 

polymorphisms vs. other genetic factors in this process.  

 

Cyanogenesis in white clover 

Cyanogenesis is an anti-herbivore defense that has evolved convergently across 

the plant kingdom and occurs in >3,000 species (Gleadow and Møller, 2014).  The 

cyanogenic response occurs when tissue damage triggers the mixing of two chemical 

precursors, cyanogenic glucosides (CNglcs) and their hydrolyzing enzymes, leading to 

the liberation of toxic HCN.  This chemical defense is polymorphic in white clover, with 

both cyanogenic and acyanogenic plants found in natural populations.  At the genetic 

level, the polymorphism is controlled by two unlinked simple Mendelian polymorphisms, 

Ac/ac and Li/li; these control the presence/absence of CNglcs and the hydrolyzing 

enzyme, linamarase, respectively (Olsen, Sutherland and Small, 2007; Olsen, Hsu and 

Small, 2008).  For each gene, recessive alleles correspond to gene deletions, and 

homozygous recessive genotypes lack the corresponding precursor (Olsen, Kooyers 

and Small, 2013; Olsen and Small, 2018).  Thus, four cyanogenesis phenotypes or 

‘cyanotypes’ occur in wild populations: AcLi (cyanogenic, containing both precursors); 

and Acli, acLi, and acli (acyanogenic, lacking one or both precursors).   



 

 

98 

The potential adaptive function of the white clover cyanogenesis polymorphism 

has been studied for more than 60 years (Daday, 1954a, 1954b).  Latitudinal and 

altitudinal clines in the frequency of cyanogenesis have been documented worldwide; 

higher frequencies of cyanogenic (AcLi) plants are consistently found in warmer 

climates, while higher frequencies of acyanogenic plants are maintained in cold climates 

(Daday, 1954b, 1958; de Araújo, 1976; Till-Bottraud, Kakes and Dommée, 1988; 

Caradus et al., 1990; Kooyers and Olsen, 2012, 2013; Kooyers et al., 2014).  

Cyanogenic plants may be favored in warm environments due to higher herbivore 

abundance.  In line with this hypothesis, there is abundant evidence that AcLi plants are 

differentially protected against small herbivores (reviewed in Hughes, 1991; Kooyers 

and Olsen, 2013; Kooyers et al., 2018).  In colder environments, where herbivore 

pressure is likely lower, natural selection may favor acyanogenic plants that do not 

devote energy to producing costly and unnecessary cyanogenesis components (Kakes, 

1989; Kooyers et al., 2018).  In addition to functioning in herbivore deterrence, the 

biochemical precursors of cyanogenesis (specifically, CNglcs) have also been proposed 

to function as nitrogen storage and transport compounds, which could be particularly 

adaptive in drought-prone environments (Gleadow and Møller, 2014; Kooyers et al., 

2014; Kooyers, 2015).  

While this extensive body of accumulated research provides strong evidence that 

natural selection acts on the cyanogenesis polymorphism, the importance of this 

variation for local adaptation, relative to other fitness-related genetic factors, has not 

been assessed.  In this study we used two white clover F2 mapping populations in 

reciprocal common garden experiments spanning the latitudinal climatic gradient across 
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the United States to address the following questions:  1) Does white clover display local 

adaptation, as evidenced by genotypic fitness trade-offs across contrasting 

environments? 2) To what extent is local adaptation attributable to variation at the Ac/ac 

and Li/li cyanogenesis loci, relative to the overall genotypic effect? And 3) What is the 

genetic architecture of local adaptation in white clover, and to what extent does it occur 

through allelic trade-offs across environments (antagonistic pleiotropy)?  

 

MATERIALS AND METHODS 

Study system 

Native to southern Europe, Trifolium repens was broadly introduced throughout 

temperate regions worldwide for soil enrichment prior to the invention of synthetic 

nitrogen fertilizers in the 20th Century (Kjærgaard, 2003).  It remains one of the most 

important temperate forage crops and is commonly grown in mixed pastures with 

grasses (Abberton and Thomas, 2010; Andrae, Hancock and Harmon, 2016).  White 

clover is primarily bee-pollinated; it also spreads vegetatively with lateral stolons, 

allowing it to form dense mats and clonal patches, as well as providing the ability to 

replicate genotypes clonally for field experiments.  The species is allotetraploid 

(2n=4X=16) with a genome size of 1174 Mb (Griffiths et al., 2013), 841 Mb of which has 

been assembled into a draft reference genome (Griffiths et al., 2019).  Two diploid 

congeners, T. occidentale and T. pallescens, have been identified as the closest extant 

relatives of T. repens and the contributors of its two subgenomes (Griffiths et al., 2013, 

2019).   
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Generation of F2 mapping populations  

The common garden experiments used two biparental F2 mapping populations 

generated from three wild North American plants originating from geographical locations 

that span the latitudinal and temperature range of white clover populations in the United 

States: Duluth, MN (DMN), St. Louis, MO (STL), and Gainesville, FL (GFL).  Duluth 

(USDA climate zone 4b) sits on the shores of Lake Superior near the U.S.-Canadian 

border and experiences some of the coldest winter temperatures in the contiguous 48 

states.  Gainesville (USDA zone 9a) is located near the transition from temperate to 

subtropical climate, near the southern limit of naturalized U.S. white clover populations.  

St. Louis (USDA zone 6b) is centrally located in the U.S., midway latitudinally between 

Duluth and Gainesville, and experiences a continental climate marked by cold winters 

and hot, humid summers.   

The three parental genotypes were selected such that the Ac/ac and Li/li genetic 

polymorphisms would be segregating to create all four cyanotypes in the F2 mapping 

populations:  DMN_010 (ac/ac, li/li); STL_0701 (ac/ac, li/li); and GFL_007 (Ac/Ac, Li/Li). 

GFL_007 served as a parent in both mapping populations, with one population having 

DMN_010 as a parent (DMN  GFL, referred to below as the DG population) and the 

other STL_0701 (STL  GFL, referred to below as the SG population).  Hand crosses 

were performed between parents in both directions to generate 50-100 F1 genotypes 

per population.  Within each F1 population, random cross-pollinations were performed 

by hand or using bee cages to generate 502 and 500 F2 genotypes in the DG and SG 

populations, respectively (see Supplementary Methods in Appendix II). All F1 and F2 
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genotypes were planted from seed and grown in the Washington University (WU) 

greenhouse facilities.   

 

Genotyping 

Genome-wide SNP markers for the two mapping populations (including the three 

parents and all F1 and F2 progeny) were generated with genotyping-by-sequencing 

(GBS) using the ApeKI restriction enzyme for digestion (Elshire et al., 2011; Huang et 

al., 2014) (Olsen et al., in prep).  Cyanotypes for all plants were determined using Feigl-

Anger cyanogenesis assays on fresh leaf tissue and by PCR-genotyping the Ac/ac and 

Li/li polymorphisms using established protocols (Olsen, Sutherland and Small, 2007; 

Olsen, Hsu and Small, 2008). 

Linkage maps for genetic mapping were constructed independently for each F2 

population, using SNPs called only for markers that were homozygous in both parents 

and that had > 0.7 heterozygosity in the F1 population.  SNPs were filtered if they did 

not meet any of the following criteria:  a minor allele frequency (MAF) > 0.05, missing 

data < 0.1, average read depth > 5X, or a p-value < 0.01 in a genotype frequency test 

(indicating deviations from 1:2:1 segregation in the F2 generation).  Final genetic linkage 

maps included 2,575 and 2,437 SNPs for the DG and SG populations, respectively 

(Olsen et al., in prep).   

 

Reciprocal common garden experiments 

 Common garden experiments were performed for each mapping population in 

the two regions where the parent plants originated, with all F2 genotypes grown in both 
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of the parental environments.  Thus, both the DG and SG populations were planted at 

the GFL site, with the DG population also grown at the DMN site and the SG population 

also grown at the STL site.  Planting dates were selected such that plants would 

become established during the main growth season at each site; the DMN and STL 

common gardens were planted in the late spring and early summer, while the GFL site 

was established in the fall.  Specifically, the DG mapping population was planted in 

Duluth, MN at the University of Minnesota-Duluth’s Research and Field Studies Center 

(46.866 °N, -92.048 °W) on June 14, 2016, the SG population was planted in Eureka, 

MO at WU’s Tyson Research Center (38.527 °N, -90.562 °W) on June 11, 2016, and 

both mapping populations were planted at the University of Florida-Gainesville’s Plant 

Science Research and Educational Unit (PSREU) in Citra, FL (29.409 °N, -82.171 °W) 

on October 12, 2016.   

 Three replicate stolon cuttings of each F2 genotype were made 2-4 weeks prior 

to planting in each common garden.  All stolon cuttings were initially ~10 cm in length, 

with 5-15 leaves and nodulated roots present at one or more nodes; rooting hormone 

was applied to encourage additional root formation.  Cuttings were planted in Metro-Mix 

360 soil in 2-inch square pots (Hummert International, Earth City, MO) and were grown 

in WU greenhouses for 3-4 days on mist benches, then for 1-2 weeks under standard 

greenhouse conditions to allow for further establishment before being transplanted in 

the field.  

Full sets of F2 genotypes were planted within three fully randomized blocks for 

each mapping population at each site.  Supplemental watering, fertilizer and Rhizobium 

inoculum, as determined by each site’s field coordinator (see Acknowledgements) 
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depending on the condition of the plants, was provided to prevent high mortality from 

transplantation in the first two months of each common garden experiment.  Some 

plants that were suspected to have died primarily from transplanting stress were re-

planted from new stolon cuttings within the first two months; cuttings needing re-planting 

were random with respect to genotype and constituted less than 1%, 15%, and 10% of 

all plants at the DMN, STL, and GFL sites, respectively (See Supplementary Results in 

Appendix II).  Because white clover spreads laterally through stolon growth, it was 

important to keep individual plants from intermingling throughout the experiments for 

accurate fitness measurements.  Thus, plants at all gardens were kept trimmed to 930 

cm2 (1 ft2).  Removal of weeds from the common garden plots was also performed for 

the duration of the experiments (see Supplementary Methods in Appendix II).   

 

Fitness measurements 

 Vegetative area, survival, and reproductive fitness measurements were recorded 

for all plants in each common garden over a period of two years (2016-2018) (Table 

S2.1).  Data collection was performed blind with respect to the genotype and cyanotype 

of each plant.  Trait measurement procedures followed protocols used in a previous 

white clover common garden experiment at the STL site (Wright et al., 2017), as 

described below. 

Vegetative surface area.  Digital photos were taken directly over individual plants 

once per month, with red-painted pennies used for scale and color contrast.  Photos 

were not taken at DMN or STL during winter months when plants were dormant and 
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frequently covered in snow.  After the experiments concluded, time points that were 

comparable across reciprocal sites in terms of days into the experiment, or that 

reflected key seasonal and mortality events, were selected for further digital analysis, in 

which vegetative surface area (cm2) was estimated for individual plants using Easy Leaf 

Area (ELA) software and previously described methods (Table S2.1) (Easlon and 

Bloom, 2014; Wright et al., 2017).  

Survival.  For the DMN and STL gardens, Year 1 survivor counts were assessed 

in the spring following the first winter.  Mortality was low throughout the experiment at 

these sites, but genotypes exhibited variation in their response to winter; final survival 

measurements following the second winter season were therefore recorded in an 

ordinal fashion to capture additional variation (0 = dead; 1 = < 25% of allotted 930 cm2 

space filled with living plant material; 2 = between 25-50% of allotted space filled; 3 = 

50-90% filled; 4 = > 90% filled).  In GFL, where mortality was high, the 

presence/absence of living plant material was assessed monthly beginning in the 

second month of the experiment; total lifespan was calculated by summing the number 

of months each plant was recorded alive. 

Reproductive output.  Maturing inflorescences (identifiable as those with 

senescent, downturned basal florets) were counted every ~3-7 days throughout the 

flowering seasons and then removed to prevent seed dispersal and seedling 

recruitment within the common gardens. Inflorescence counts were used as a proxy for 

seed set, as the two are strongly correlated in white clover (Wright et al., 2017).  

Flowering duration was calculated by subtracting the dates of the first and final recorded 

inflorescences for each plant at each site and for each growing season. 
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Quantitative genetic analyses  

 Prior to statistical analysis, all fitness measurements within each common garden 

site and year were evaluated for normality using a Shapiro-Wilk test and by visual 

assessment with histograms and Q-Q plots.  Square root transformations were applied, 

and all subsequent analyses were completed using both transformed and non-

transformed (raw) data to verify that results did not qualitatively change.  All analyses 

were carried out using R statistical software (R Core Team, 2017).  

We generated genotypic estimates and partitioned variance for fitness traits 

using both within-site and across-site linear models that were constructed using 

restricted maximum likelihood (REML) with lme4 (Bates et al., 2015).  We first evaluated 

the extent to which fitness variation was heritable.  For each trait within each common 

garden site and in each year, we constructed within-site models to partition variance 

among genotype and block, which were included as random effects.  Variance 

estimates from within-site models were then used to calculate broad-sense trait 

heritability (H2=VG/VP).   

To assess the extent to which the different fitness measurements were correlated 

with each other within sites, we used genotypic trait estimates (i.e., best linear unbiased 

predictors (BLUPs) added to least squares trait means) from within-site trait models and 

calculated pairwise trait correlations among all fitness traits within each common garden 

site (Pearson correlation coefficients, r), correcting for multiple comparisons by 

controlling the false discovery rate (FDR) (Benjamini and Hochberg, 1995).  We also 

performed complementary principal components analyses (PCA) to identify major axes 

of fitness variation within each site. 
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To evaluate whether white clover displayed local adaptation, we assessed 

genotypic fitness trade-offs for all traits that were comparably measured across 

reciprocal environments in each mapping population.  To do so, we constructed across-

site mixed models for comparable traits; models included the fixed effect of environment 

(E; common garden site) and the random effects of genotype (G), block nested within 

site, and GE.  Using genotypic estimates from these models, we evaluated genotype-

environment correlations (rGE), again with correction for multiple comparisons (FDR).  In 

these tests, negative rGE indicates genotypic trade-offs across reciprocal sites that 

correspond to local adaptation (i.e., genotypes with high fitness in one environment 

experience reduced fitness in the reciprocal comparison).   

To evaluate fitness variation further, we constructed additional multi-year across-

site trait models, but only for reproductive output traits; these models included an added 

fixed effect of year (Y) and random effects of GY and GEY.  For all across-site trait 

models (with and without year effects), we tested the significance of fixed effects using 

a mixed-model analysis of variance (ANOVA), and the significance of random effects 

was evaluated using likelihood ratio tests with lmerTest (Kuznetsova, Brockhoff and 

Christensen, 2017).   

 To assess the extent to which local adaptation in white clover was attributable to 

variation at the Ac/ac and Li/li cyanogenesis loci, relative to the overall genotypic effect, 

we re-constructed all within- and across-site trait models, and we replaced G with 

cyanotype for all random effects.  For within-site models, we calculated the proportion of 

phenotypic variance explained by variation among cyanotypes (VC/VP), which we 
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compared to H2.  For across-site models, we again evaluated significant fixed and 

random effects using mixed-model ANOVAs and likelihood ratio tests.  

 

QTL mapping and QTLE analysis 

To characterize the genetic architecture of local adaptation, we performed 

genetic mapping and identified quantitative trait loci (QTLs) associated with fitness trait 

variation in each common garden site.  For our mapping analysis, we used genotypic 

fitness trait estimates from across-site trait models without year effects; we also 

included genotypic estimates from within-site models for traits that were not comparable 

across sites (e.g., survival traits).  We did not perform genetic mapping for the earliest 

vegetative area measurements at any site because these measurements occurred 

during the acclimation period.  Genotypes with >75% missing SNP data were removed 

from each mapping population prior to QTL mapping analysis; the DG sample size was 

reduced from 502 to 423, while all 500 SG F2 genotypes remained.   

QTL mapping analysis was performed with R/qtl using the scanone function and 

the Haley-Knott algorithm (Haley and Knott, 1992; Broman et al., 2003).  QTLs were 

considered significant if their LOD score exceeded a p=0.05 confidence threshold that 

was determined independently for each trait from 1000 permutations.  Significant QTLs 

for each trait were then incorporated into a multiple QTL model and their positions were 

refined using the refineqtl function.  The refined LOD score and effect size of each QTL 

were calculated using a drop-one analysis within the fitqtl function.  The 1-LOD Drop 

support intervals for fitness trait QTLs were calculated and visualized with 
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jtlovell/qtlTools using the calcCis and segmentsOnMap functions, respectively 

(Campitelli et al., 2018).   

To evaluate the extent to which white clover exhibits antagonistic pleiotropy for 

local adaptation, we performed a post-hoc QTLE analysis for QTLs associated with 

traits that were comparably measured in both reciprocal sites.  For the highest LOD 

markers within each QTL, we compared the fitness of homozygote genotypes across 

environments by constructing linear mixed-models with genotype and environment as 

fixed effects, and with QTLE (i.e., GE at a single marker) as a random effect.  Again, 

we evaluated the significance of effects in the models using ANOVAs and likelihood 

ratio tests.  Lastly, we identified genomic regions where QTLs for two or more fitness 

traits co-localized, identified based on overlap in their refined 1-LOD Drop intervals, and 

we evaluated the direction of allelic effects in those QTLs to assess potential allelic 

trade-offs that may emerge for different aspects of fitness (e.g., growth vs. 

reproduction).  

 

RESULTS 

By all fitness measures (vegetative area, survival and reproductive output), 

plants grown in the two more northerly locations (DMN and STL) showed higher fitness 

over the duration of the common garden experiments than those in the southernmost 

location (GFL).  This was largely due to differences in survival across reciprocal 

environments, which led to more pronounced differences in reproductive output over the 

full two-year experiment (Figure 2.1, Figure S2.1, Supplementary Results in Appendix 
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II).  In DMN and STL, 99.5% of the plants (100% of the DG F2 genotypes) and 97.1% of 

the plants (99% of the SG F2 genotypes) survived the first year, respectively.  In 

contrast, 45.5% of the SG plants (84% of genotypes) and 16.3% of DG plants (39% of 

genotypes) survived the first year in GFL (Figure 2.1B, Table S2.2).  Lower survival 

rates among DG genotypes relative to SG genotypes in GFL are potentially consistent 

with a greater selective disadvantage for alleles from the northernmost DMN parent in 

the subtropical GFL environment.  

For all quantitative genetic analyses, results were qualitatively the same and 

quantitatively very similar for raw and square root transformed data (see Tables S2.3-

S2.9).  Within each environment, a larger proportion of trait variance was always more 

attributable to genotypic variance than to replicate block.  The average broad-sense 

heritability (H2) across all traits was ~0.3, suggesting a substantial heritable component 

to the observed fitness variation (Table S2.3).   

Within all common gardens, the different measurements of fitness were broadly 

positively correlated with one another.  This was apparent in the first principal 

component (PC1) in the PCA results for each site, which explained 32.4-44.3% of the 

overall fitness variation in common gardens.  Different measurements within the same 

fitness trait category (e.g., vegetative area at different time points) were positively 

correlated.  Measurements of vegetative area and survival were also consistently 

positively correlated at all sites; however, the sign and magnitude of the coefficient of 

correlation between these persistence traits and reproductive output traits varied 

depending on the location and the year (Figures S2.2-S2.5).  This pattern potentially 
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suggests that different environments favored different optimal life history strategies 

related to investment in vegetative growth vs. reproduction (see Discussion).     

 

White clover displays local adaptation across reciprocal environments 

We found strong evidence for genotypic fitness trade-offs across environments, 

consistent with local adaptation in white clover.  Genotype-environment correlations 

(rGE) were all negative and almost always highly significant (p < 0.0001) for all 

comparable traits in both populations, indicating that both vegetative and reproductive 

output fitness traits exhibit environmental trade-offs (Figure 2.2, Table S2.4).  

Consistent with negative rGE findings, the effects of genotype (G) and GE interactions 

were both highly significant for nearly all fitness traits in across-site models, while the 

fixed effect of common garden site (E) was rarely significant (Table S2.5).  Multi-year 

analyses further identified highly significant Y and GEY effects for reproductive output 

traits; these effects reflect strong differences in flowering across years in reciprocal 

environments, which were largely attributable to differences in mortality across sites 

(Figure S2.1).   

 

Local adaptation is not attributable to cyanogenesis variation 

 Variance analyses indicated that the Ac/ac and Li/li cyanogenesis loci accounted 

for essentially none of the variation in fitness in the common gardens relative to overall 

genotypic effects.  For both mapping populations and within all three common garden 

sites, cyanotype explained <3% of the variance for all fitness traits (i.e., VC/VP < 0.03) 

(Table S2.6).  Cyanotype was never a significant effect in across-site comparisons 
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(Figure 2.2).  In a small number of cases, cyanotype E was marginally significant, but 

this was far exceeded by the significance of the GE interaction.  Cyanotype EY was 

the only significant random effect for multi-year floral trait models; however, this was 

likely driven by the highly significant year effect, or an EY effect that was not included 

in the model, rather than by cyanotype (Table S2.7, Table S2.8).  

 

Abundant evidence for genetic trade-offs related to local adaptation 

Genetic mapping analysis identified many fitness-associated QTLs in each 

common garden.  QTL effect sizes, as measured by the percent of trait variation 

explained (PVE), ranged from small (1.9%) to large (24.7%).  Reproductive output traits 

tended to have more complex genetic architectures, with multiple QTLs detected in all 

sites, whereas single QTLs were more often identified for vegetative area and survival 

traits (Table 2.1, Table S2.9).  None of the fitness QTLs co-localized with either of the 

cyanogenesis loci in either population.  Specifically, there were no significant fitness 

QTLs on the entire linkage group containing the Ac locus in either population (Linkage 

group 2, Figure 2.3).  In the DG population only, QTLs for reproductive output in GFL 

were located near, but did not overlap with, the Li locus on linkage group 12; consistent 

with this negative result, a direct comparison of reproductive output between plants with 

and without the functional Li allele confirmed no significant difference (Figure S2.6b). 

Notably, for traits that were comparable across reciprocal sites, the majority of 

associated fitness QTLs exhibited patterns indicating antagonistic pleiotropy.  In post-

hoc QTLE analyses of the DG and SG comparisons, 14 of 16 markers (88%) and 9 of 

15 markers (60%) tested displayed significant QTLE interactions, respectively (Table 
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S2.10).  The higher proportion of significant QTLE interactions in the DG comparison is 

consistent with greater numbers of genetic trade-offs between the two more extreme 

environments (Figure S2.6, Figure S2.7).  

 The strongest example of antagonistic pleiotropy was identified in the DG 

comparison, where QTLs for four different fitness measurements co-localized to the 

same region on linkage group 10 (Figure 2.4).  Strikingly, genotypes homozygous for 

the DMN parental allele (DD) at this QTL produced 20.8 more inflorescences in Year 1 

(22.2% above the mean) and were 86.7 cm2 (12%) larger than GG genotypes in Year 2 

in DMN (Day 339).  Meanwhile, in the GFL environment, GG genotypes flowered for 

20.7 (20.5%) more days and produced 38.7 (21.3%) more inflorescences than DD 

genotypes in Year 1 (Figure S2.6a).  QTLE interactions were highly significant for all of 

the highest LOD markers associated with these four traits (Table S2.10).  

While native parental alleles conferred increased fitness for most QTLs, reflecting 

local adaptation, deviations from this pattern also occurred, where non-local alleles 

significantly increased fitness.  Generally, foreign GFL alleles acted to increase 

reproductive output at the DMN and STL sites, while foreign DMN and STL alleles acted 

to increase vegetative area and survival traits at the GFL site (Table 2.1).  This pattern 

was particularly apparent for regions of fitness QTL co-localization on linkage group 15.  

For both populations, we identified two non-overlapping regions of QTL co-localization 

on this linkage group where parental alleles exhibited trade-offs between vegetative 

growth and reproductive output.  At these QTLs, northern genotypes (DD or SS) 

displayed increased vegetative area and survival, while southern genotypes (GG) 

increased reproductive output (Figure S2.6d, Figure S2.6e, Figure S2.7d, Figure S2.7e).  
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These results are consistent with energetic trade-offs between investment in vegetative 

growth and reproductive output.  Moreover, they suggest that selection may favor 

different life history strategies in the northern sites compared to the subtropical GFL 

site.  Whereas the DMN and STL sites appear to favor investment in vegetative growth 

and multi-year survival, fitness at the GFL site investment appears to be optimized by 

early investment in flowering and seed production at the expense of long-term 

persistence.  

 

DISCUSSION 

 Identifying the most relevant traits and genetic variation underlying local 

adaptation is of major consequence for evolutionary, agricultural, conservation, and 

climate-change biology.  Although intraspecific chemical defense polymorphisms are 

common in plant species and are known to evolve in response to heterogeneous 

environmental selection (Moore et al., 2014), the relative importance of chemical 

defense variation for local adaptation has rarely been explicitly examined.  Moreover, 

while it is well established that local adaptation is common in plants (Leimu and Fischer, 

2008), the genetic mechanisms underlying this process have been studied in limited 

detail.  Notably, outcrossing herbaceous species have been especially 

underrepresented in studies characterizing the genetic basis of local adaptation 

(Savolainen, Lascoux and Merilä, 2013).  

 Here, we have examined local adaptation in a perennial, obligately outcrossing 

herbaceous plant species, white clover, with a well-studied chemical defense 

polymorphism that varies across geographic clines, cyanogenesis.  Using reciprocal 
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common garden experiments that span a U.S. latitudinal gradient, we demonstrate clear 

evidence of local adaptation (Figure 2.2), with an underlying genetic architecture 

characterized primarily by genetic trade-offs at fitness QTLs (i.e., antagonistic 

pleiotropy) (Figure 2.4, Figure S2.6, Table 2.1, Table S2.10).  We find no evidence that 

cyanogenesis variation contributes to this local adaptation.  Instead, divergent life- 

history strategies — specifically, early investment in flowering vs. delayed flowering and 

long-term persistence — appear to be the primary determinants of locally-adaptive 

fitness, as evidenced by trait correlations and allelic trade-offs within environments.  

Below we discuss these findings and their implications for understanding local 

adaptation in herbaceous plants. 

 

Strong evidence for local adaptation 

 For both mapping populations in this study, genotypic fitness trade-offs across 

reciprocal common garden environments were evident for both vegetative growth and 

reproductive output fitness traits (Figure 2.2).  This result indicates that multiple aspects 

of life history contribute to local adaptation in white clover and underscores the 

previously recognized need to consider more than just reproductive fitness in studies of 

local adaptation, especially for perennial species (Hereford, 2009; Friedman et al., 

2015; Wadgymar, Daws and Anderson, 2017).  We believe that our findings are 

conservative and likely underestimate the magnitude of fitness trade-offs in white clover, 

given the necessarily limited two-year time frame of our experiment and other 

constraints of our experimental design (e.g., limits on vegetative area differences 

imposed by trimming; see Supplementary Results in Appendix II).   
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A chemical defense paradox? 

 More than 60 years of ecological genetic studies have provided evidence that 

selection acts on the cyanogenesis polymorphism in white clover (reviewed in Hughes, 

1991; Kooyers et al., 2018).  While no study has assessed fitness variation among 

cyanotypes at different locations along a cyanogenesis cline to our knowledge, the fact 

that clines have evolved repeatedly along climatic gradients in North America and 

worldwide strongly suggests that one or more climate-associated selective factors act 

on this chemical defense polymorphism (Daday, 1958; de Araújo, 1976; Hughes, 1991; 

Kooyers and Olsen, 2012).  Based upon locally abundant cyanotypes in wild 

populations near the three common garden sites in this study (Table S2.11), one would 

predict that in GFL, cyanogenic plants (AcLi), which are locally present at a frequency of 

>85%, would have highest relative fitness, while acyanogenic plants (acli, acLi, and 

Acli), which predominate in the two more northerly environments (>70% in STL, >80% 

in DMN), would have higher fitness in those locations (Kooyers and Olsen, 2012) 

(Wright & Olsen, in prep).  However, we found no evidence that variation for any fitness 

trait we measured was attributable to cyanotype within or across the three common 

gardens (Figure 2.2, Tables S2.5-S2.8).  Below we discuss potential factors that may 

explain why we do not see a contribution of the cyanogenesis polymorphism for fitness 

in these experiments. 

 One potential explanation for our seemingly paradoxical results is that cyanotype 

frequencies in a given location may not precisely predict which plants have differentially 

high fitness in that environment.  Adaptive clines evolve through the interaction of 

divergent selection across populations and homogenizing gene flow between them 
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(Barton and Hewitt, 1985; Barton, 1999).  Gene flow is expected to introduce 

maladaptive genotypes into populations, and this may be a substantial evolutionary 

force in an abundant, widely occurring, and obligately outcrossing species, such as 

white clover (Polechová and Barton, 2015).  However, while this explanation could 

account for a lack of strong cyanotype-fitness associations in mid-cline populations, it 

cannot account for a complete lack of associations at the two cline ends (in our case, 

GFL and DMN), where the locally most-abundant cyanotype should still be expected to 

show differential fitness.  

 Another possible explanation is that the conditions plants experienced in the 

common gardens did not accurately capture all selective pressures in local wild 

populations — for example, natural levels of herbivore exposure.  To assess whether 

our trimming and weeding practices within the common gardens may have altered 

herbivore abundances and community compositions, we compared rates of leaf 

herbivore damage within our common gardens and in natural plant communities near 

but outside of the common gardens (see Supplementary Methods in Appendix II). 

Measured rates of herbivory were low, both inside and outside of gardens; the lowest 

rates of herbivory were measured in the southernmost GFL environment, counter to 

expectations.  Additionally, we found no differences in the rate of herbivory experienced 

by cyanogenic vs. acyanogenic plants within gardens (Table S2.13; Supplementary 

Results in Appendix II).  These results suggest that leaf herbivore damage was likely 

not a major selective agent in any of the three environments during the years of our 

experiment.  Previous herbivory studies in white clover, which have consistently 

revealed evidence for deterrent effects of cyanogenic plants in feeding chamber 
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experiments (e.g., Dirzo and Harper, 1982; Horrill and Richards, 1986; Burgess and 

Ennos, 1987), may therefore be reflecting levels of natural selection that occur primarily 

during episodes of intense herbivory that were not detected in our experiment.  Given 

that selective pressures within clover populations are known to vary from year to year 

(e.g., Richards and Fletcher, 2002), it is possible that common garden experiments 

performed in different years would reveal greater evidence for cyanogenesis-related 

fitness variation. 

 Another possibility is that cyanogenesis variation may be most important for 

survival during the earliest life stages, when loss of vegetative tissue could have a 

greater negative effect on survival.  To achieve genotypic replication, our common 

garden experiments necessarily utilized stolon cuttings of F2 individuals planted from 

seed in a greenhouse, where germinant and seedling mortality is essentially 0%.  

Common garden fitness measurements therefore did not assess potentially important 

fitness variation that is known to be important for local adaptation during germination 

and seedling developmental stages (Postma and Ågren, 2016, 2018).  Interestingly, a 

set of complementary germination experiments that we performed at the three common 

garden sites during Year 1 suggests that selection at the seedling or juvenile life stage 

likely does contribute to local cyanotype frequencies (Wright & Olsen, in prep).  

Consistent with that finding, a previous 24-year study of a single white clover population 

suggested that the germination environment determines the cyanotype frequencies for a 

given cohort, which persist through maturation, and that 2-3 year old plants may 

dominate wild populations (Richards and Fletcher, 2002).  Thus, while our common 

garden findings suggest that traits unrelated to cyanogenesis are the major 
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determinants of fitness in reproductively mature plants, cyanotype variation could still be 

an important contributor to local adaptation at juvenile life stages. 

 Finally, cyanogenesis may be under weak but persistent selection that, while 

undetectable over the span of two years, can gradually lead to cline formation over 

many years.  Our two-year experiment would not have captured these effects.  Future 

studies that utilize wild population samples and population genomics methods may help 

to identify such an effect of cyanogenesis variation (e.g., FST outlier scans) (Wadgymar 

et al., 2017; Price et al., 2018).  

   

Genetic trade-offs underlie local adaptation in an outcrossing plant 

 Simulation studies suggest that local adaptation occurs readily with QTLs of large 

effect but can also be achieved through the action of many small-effect loci (Whitlock, 

2015; Yeaman, 2015).  In this study, we identified a wide range of effect sizes among 

fitness QTLs in each of our common garden environments, suggesting that local 

adaptation in white clover occurs through the action of both small- and large-effect loci 

(Table 2.1). We detected loci with relatively small effects, despite known statistical 

limitations of QTL mapping approaches (Beavis, 1998).  These findings are similar to 

empirical studies in other plant species (Ågren et al., 2013; Savolainen, Lascoux and 

Merilä, 2013). 

 High levels of gene flow are predicted to lead to genomic clustering of small-

effect loci that are locally adaptive; such clustering can empirically emerge as single 

large-effect QTLs in mapping studies (Yeaman and Whitlock, 2011).  Thus, the large-
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effect, locally adaptive loci we identified may represent single large-effect genes or 

many tightly linked small-effect genes acting together. 

 Despite these limitations, our study documented more evidence for allelic trade-

offs at fitness QTLs (i.e., antagonistic pleiotropy) than has been seen in most previous 

studies in plants (Figure 2.4, Figures S2.6-S2.7, Table S2.10) (Savolainen, Lascoux and 

Merilä, 2013; but see Price et al., 2018).  Moreover, genetic trade-offs were more 

prevalent for the reciprocal comparison representing the greater difference in common 

garden environments (DG) than for the climatically less diverged comparison (SG).  

These results are predicted for a species with high levels of gene flow, although genetic 

trade-offs have rarely been empirically demonstrated to this extent in reciprocal 

common garden studies (Wadgymar et al., 2017).  Our results therefore contribute new 

evidence to the body of knowledge related to the genetic architecture of local 

adaptation. 

 We found that many of the fitness QTLs we identified were pleiotropic for multiple 

aspects of life history.  That is, both growth/survival traits and reproductive output traits 

often co-localized to the same QTL regions (Figure 2.3, Figure 2.4); a similar result was 

found in a recent study in Mimulus, where QTLs in a bulk segregant analysis were 

pleiotropic for flowering time and stolon production (Friedman et al., 2015).  Here, we 

were able to show that within pleiotropic QTLs, allelic effects acted antagonistically for 

vegetative growth and reproduction— alleles from northern parents increased growth 

and survival in field experiments, while alleles from southern parents increased 

reproductive output (Figure S2.6a,d,e; Figure S2.7d,e).  To our knowledge, this result is 
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novel; opposing allelic effects may reflect selection for divergent life history strategies in 

contrasting environments as discussed below. 

 

Divergent life history strategies promote local adaptation in herbaceous species 

Local adaptation via differential investment in sustained growth vs. early 

reproduction in contrasting environments has been documented in recent studies of 

several other well-studied herbaceous species; these include the model annual species 

Arabidopsis thaliana (Debieu et al., 2013; Fournier-Level et al., 2013); two related 

perennial species, A. lyrata (Leinonen et al., 2009; Quilot-Turion et al., 2013; Hämälä, 

Mattila and Savolainen, 2018) and Boechera stricta (Wadgymar, Daws and Anderson, 

2017); and annual and perennial populations of Mimulus, (Friedman et al., 2015; 

Peterson, 2016).  These studies generally suggest that alternate life history strategies 

may be a common evolutionary strategy for local adaptation in herbaceous plant 

species. 

 In the case of white clover, the life history trade-offs we observed were most 

evident between investment in vegetative growth and reproductive output in the first 

year.  Specifically, in the environments with low overall mortality (DMN and STL), 

greater investment in vegetative growth came at the cost of Year 1 reproductive output, 

but provided the benefit of high reproductive output in Year 2.  In the northernmost DMN 

site, anti-correlation between growth and Year 1 reproduction was captured by PC2 of 

the within-site principal components analysis, which accounted for 27% of the total 

variation in measured fitness traits (Figure S2.2).  In particular, we detected a significant 

negative correlation between vegetative growth in the first 120 days and Year 1 floral 
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count in DMN.  While this correlation was not statistically significant in the STL common 

garden, PC2 for STL (explaining 27.9% of fitness variation) again suggested that growth 

and reproductive output traits were anti-correlated, albeit to a lesser extent than in DMN 

(Figure S2.3).  The lack of a negative correlation between growth and reproduction in 

Year 1 may have been due to delayed planting of the STL garden (see Supplementary 

Results in Appendix II).  For both populations grown in GFL, PC2 identified anti-

correlation between early investment in both growth and reproduction vs. longevity 

(lifespan and later measures of vegetative area) (Figure S2.4, Figure S2.5).  Unlike in 

the northern environments, plants with longer lifespans in GFL did not achieve 

substantial reproductive gains in Year 2 due to high Year 1 mortality.  Thus, in a 

southern U.S. environment with harsh summer conditions, rapid growth and early 

reproduction appear to be selectively advantageous.  Taken together, differences in trait 

correlations across sites strongly suggest that divergent optimal life history strategies 

are favored in different environments and contribute to local adaptation in white clover.  

At the genetic level, opposing allelic effects at fitness QTLs bolster this argument; 

northern alleles favor growth and survival, while southern alleles favor reproduction 

(Figure S2.6a,d,e; Figure S2.7d,e).   

 For white clover, we propose that these divergent optimal life history strategies 

across environments may be directly tied to the intensity of heat stress exposure in a 

given location.  Heat stress can be a major limiting factor for vegetative growth and 

survival in plants (Moles et al., 2014; Preite et al., 2015).  Hotter and drier conditions 

limit multi-year persistence and favor earlier investment in reproduction and more rapid 

life cycles (Kooyers, 2015).  A previous white clover common garden experiment 
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conducted in STL with wild genotypes from 15 widespread North American locations 

showed that for the 2015 growing season, yearly temperature variability and average 

maximum summer temperature experienced by populations in their local environments 

were the best predictors of vegetative growth (Wright et al., 2017).  In line with this 

finding, patterns in the present study suggest that heat stress led to vegetative tissue 

loss and mortality.  Plants in the DMN common garden did not appear to suffer from 

heat stress at any point, whereas plants in both STL and GFL displayed tissue loss and 

leaf senescence indicative of heat stress.  The duration of heat stress lasted only 2-4 

months each year in STL and was followed by a recovery period of several months 

before winter.  In contrast, heat stress due to elevated temperatures was more intense 

and prolonged in GFL (5-6 months) and was associated with periods of massive tissue 

loss and high mortality (Figure 2.1, Table S2.12, Supplementary Results in Appendix II).  

As a result, hotter conditions in the southernmost common garden environment (GFL) 

favored genotypes that invested in reproduction earlier in the first growing season, prior 

to mortality during the summer months.  In contrast, the two more northerly common 

garden environments (DMN and STL) favored genotypes with early and ongoing 

investment in vegetative growth over the two-year experiment; this investment came at 

the expense of floral production in the first year in DMN.   

For widespread North American plant species, southern populations currently 

and increasingly experience natural selection due to climate change-associated heat 

stress (and potentially associated drought stress).  Thus, life history variation is more 

likely to be a major contributor to local adaptation than chemical defense variation in 

white clover, as our results support, and also more broadly in herbaceous plant species.  
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Specifically, a drought/heat escape strategy involving rapid life cycles and early 

flowering, as opposed to the evolution of physiological tolerance, appears to be locally 

adaptive for herbaceous populations that experience prolonged periods of stress 

(Kooyers, 2015).  Over time, one might predict natural selection to favor the evolution of 

annuality in populations of perennial herbaceous species that occur in hotter and more 

stressful environments.   
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TABLE 

Table 2.1. Locations and allelic effects for fitness trait QTLs (depicted in Figure 2.3) identified for each mapping population at each common garden site.  Additional QTLs and 
results for square root transformed data are located in Table S2.9. 

Pop-
Site 

Fitness 
trait 

Measurement 
(Total PVE*) 

Highest LOD 
Marker 

Refined QTL 
Marker 

Linkage 
group 

Refined 
QTL 

Position 1-LOD Drop Interval PVE* 
LOD 
score 

Allele of 
increased 

effect 

Effect 
size per 
allele** 

Mean 
Trait 

Estimate 
% 

Effect 

DG-
DMN 

Vegetative 
Area 

Day 120 
(10.67%) 

13:13646557 13:13646557 4 141.203 136.60 - 142.82 3.94 5.63 GFL -34.75 746.50 4.66 

10:18587313 15:33145691 15 249.485 211.53 - 319.00 3.56 4.57 DMN 30.08 746.50 4.03 
  

  4:58955253 16:35058866 16 223.293 200.50 - 232.63 3.17 5.33 DMN 25.04 746.50 3.35 
  

Day 339 
(9.02%) 

9:23631957 9:23631957 10 178.702 153.50 - 239.59 4.92 6.80 DMN 43.33 390.35 11.10 
 

  3:26735632 3:26735632 14 5.263 0.00 - 35.62 4.10 5.86 DMN 32.99 390.35 8.45 
 

Survival Winter 4:32890845 4:32890845 14 59.920 48.86 - 121.46 4.33 4.83 DMN 0.05 1.07 4.52 
 

Flowering 
Duration 

Year 1 4:59781115 4:59781115 15 213.296 207.63 - 260.75 9.68 11.10 GFL -3.76 115.77 3.25 

 
Floral 
Count 

Year 1 
(14.35%) 

5:3364109 5:3364109 5 147.083 23.20 - 156.31 2.75 4.53 DMN 8.27 173.15 4.77 
 

2:43914108 6:17008091 10 166.255 156.93 - 214.12 4.03 5.35 DMN 10.41 173.15 6.01 
   

2:24999810 13:40112209 13 276.003 258.18 - 301.29 3.39 4.93 DMN 9.03 173.15 5.21 
  

  9:48242797 10:18367752 15 219.377 211.53 - 285.11 4.18 6.44 GFL -9.29 173.15 5.37 
  

Year 2 
(7.81%) 

11:40901234 11:40901234 11 145.788 130.75 - 198.11 4.21 5.17 DMN 13.82 287.40 4.81 

    8:52230082 8:52230082 14 6.847 5.26 - 22.18 3.60 4.48 DMN 13.06 287.40 4.54 

DG-
GFL 

Vegetative 
Area 

Day 235 12:25588091 12:25588091 15 20.359 0.00 - 37.45 12.66 14.79 DMN 36.99 201.59 18.35 

Flowering 
Duration 

Year 1 
(20.98%) 

2:46629904 2:46629904 10 168.000 164.78 - 173.33 9.99 15.28 GFL -10.36 101.13 10.25 
 

12:12548239 8:58495823 12 333.427 225.23 - 351.83 3.19 4.87 GFL -5.82 101.13 5.75 
   

15:4065533 15:4065533 15 80.604 48.99 - 85.43 4.63 6.94 GFL -4.16 101.13 4.12 
 

    3:16346453 12:47751016 16 267.417 257.82 - 283.42 3.17 5.99 GFL -5.73 101.13 5.67 
 

Floral 
Count 

Year 1 
(23.87%) 

2:46629904 6:17008091 10 166.255 164.78 - 239.59 4.33 6.73 GFL -19.36 181.55 10.66 
 

8:58495823 8:58495823 12 333.427 329.63 - 361.22 4.66 4.75 GFL -19.22 181.55 10.59 
   

15:952339 15:952339 15 12.559 0.00 - 81.33 11.45 14.07 GFL -26.94 181.55 14.84 

      3:16346453 9:13212653 16 269.813 257.82 - 283.42 3.44 6.02 GFL -16.20 181.55 8.92 

Continued on next page 
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Table 2.1. (Continued) 

Pop-
Site 

Fitness 
trait 

Measurement 
(Total PVE*) 

Highest LOD 
Marker 

Refined QTL 
Marker 

Linkage 
group 

Refined 
QTL 

Position 1-LOD Drop Interval PVE* 
LOD 
score 

Allele of 
increased 

effect 

Effect 
size per 
allele** 

Mean 
Trait 

Estimate 
% 

Effect 

SG-
STL 

Vegetative 
Area 

Day 362 9:53788760 9:53788760 15 161.331 119.87 - 175.60 4.29 4.77 STL 52.60 1018.95 5.16 

Survival Winter 4:59794978 4:59794978 15 119.214 111.55 - 126.64 3.96 4.38 STL 0.09 1.46 6.41 
 

Flowering 
Duration 

Year 1 
(13.21%) 

13:13894869 13:13894869 13 121.105 113.82 - 134.38 4.01 5.82 GFL -4.26 87.89 4.85 
 

1:95517659 1:95517659 15 126.639 124.09 - 135.94 9.19 11.93 GFL -7.33 87.89 8.34 
 

  Year 2 10:623367 10:623367 15 4.818 0.00 - 25.65 12.43 14.40 GFL -9.13 173.15 5.27 
 

Floral 
Count 

Year 1 
(12.77%) 

11:53202884 11:53202884 13 140.425 128.67 - 148.88 5.39 7.05 GFL -8.43 48.03 17.55 
 

15:17467828 15:17467828 15 154.786 124.09 - 170.49 7.39 9.39 GFL -10.27 48.03 21.38 

    Year 2 2:32435469 2:32435469 15 117.433 98.72 - 159.63 6.47 7.25 GFL -34.94 385.82 9.06 

SG-
GFL 

Vegetative 
Area 

Day 200 7:36845388 7:36845388 15 170.488 167.24 - 175.60 4.74 5.27 STL 42.89 574.38 7.47 

Day 295 
(12.57%) 

3:3834184 3:11692564 3 26.086 0.00 - 47.75 4.60 4.31 GFL -7.09 29.84 23.76 
 

  15:3511683 15:3511683 15 26.789 19.64 - 29.61 7.98 8.19 STL 10.90 29.84 36.52 
 

Survival Lifespan 16:15693842 12:20254636 8 105.367 63.38 - 109.59 5.26 5.67 GFL -0.54 12.86 4.23 
 

  (9.90%) 15:3511683 15:3511683 15 26.789 19.64 - 41.04 4.64 4.94 STL 0.55 12.86 4.27 
 

Flowering 
Duration 

Year 1 
(23.81%) 

1:27623384 8:22625723 7 67.297 61.71 - 79.00 3.54 4.26 GFL -5.14 104.81 4.90 
 

15:4312433 1:73062464 8 140.951 71.00 - 216.26 2.88 4.80 GFL -4.72 104.81 4.50 
   

6:22247148 10:28013669 10 154.732 121.58 - 176.64 3.22 4.71 GFL -5.18 104.81 4.94 
 

    10:725661 10:725661 15 8.430 0.00 - 17.42 14.17 15.82 GFL -10.55 104.81 10.07 
 

Floral 
Count 

Year 1 
(34.26%) 

12:45616154 12:45616154 1 246.700 239.22 - 257.09 2.45 4.53 GFL -17.14 201.39 8.51 
 

6:18418652 6:18418652 6 275.968 190.04 - 284.44 1.88 4.66 GFL -18.67 201.39 9.27 
   

6:22247148 10:31586103 10 173.517 121.58 - 177.62 5.21 8.56 GFL -29.65 201.39 14.72 

      10:623367 10:623367 15 4.818 2.56 - 10.32 24.73 32.29 GFL -66.92 201.39 33.23 

* PVE is the percent of the phenotypic variation explained by allelic variation at the refined QTL in the full QTL model for that trait at that common garden site. Total PVE is the sum of PVE across 
multiple QTLs. 
** A positive value in Effect size represents an increased trait value from the DMN or STL parental allele, while a negative value represents an increased trait value from the GFL parental allele.  
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FIGURES 

Figure 2.1.  (A) Total vegetative area (m2) at select time points in each of four common 
garden experiments, including reciprocal comparisons of both F2 mapping populations 
(DG and SG).  The x-axis corresponds to the number of days since common garden 
establishment at each site, which occurred in different months (June and October) of 
2016.  Each data point corresponds to the summed vegetative areas of individual 
plants, as determined by digital photo analysis using Easy Leaf Area software (Easlon 
and Bloom, 2014) (Table S2.1).  (B) Survivorship over time in the two GFL common 
gardens. Plants were scored as living or dead from individual digital photos taken 
monthly throughout the experiment. 
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Figure 2.2.  Genotype-environment correlations (rGE) for both mapping populations (DG 
(A, B) and SG (C, D)), including comparisons for vegetative area during the initial 
growth period (~120 days) (A, C) and Total floral count over the duration of the two-year 
experiment (B, D).  Data correspond to genotypic estimates from across-site trait 
models that were built using square root transformed data. Each data point corresponds 
to a single F2 genotype colored by cyanotype (acli (gray), acLi (blue), Acli (red) and AcLi 
(black). Dotted axes denote the mean trait values at each site, and solid lines denote 
lines of best fit (Pearson correlation tests; p < 0.0001 in all cases; Table S2.4).  
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Figure 2.3. (Figure legend on next page) 
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Figure 2.3.  Quantitative trait loci (QTLs) associated with fitness traits measured in each 
common garden for each mapping population (DG (A) and SG (B)).  Colored bars 
indicate 1-LOD Drop intervals for refined QTLs (Table 2.1).  Colored asterisks indicate 
the locations of the Ac and Li cyanogenesis loci.  In each comparison, lower-case letters 
denote genetic regions where QTLs for multiple fitness traits co-localized, which are 
presented in greater detail in Figure 2.4, Figure S2.6 (a-f), and Figure S2.7 (a-e). 

 

 

 

 

 

Figure 2.4.   Multiple fitness traits (vegetative area (A), flowering duration (B), and floral 
count (C)) displaying antagonistic pleiotropy at a single major QTL on linkage group 10 
(Figure S2.7a); homozygotes of native parental alleles (DD vs. GG) exhibited significant 
fitness trade-offs for markers located in this QTL region (p < 0.0001; see Table S2.10). 
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SUPPLEMENTARY METHODS 

Generation of F2 mapping populations 

 Hand crosses were performed between parents in both directions to generate 50-

100 F1 genotypes per population.  Within F1 population, random cross-pollinations were 

performed by hand or using bee cages to generate ~500 F2 genotypes per population.  

In the case of the DG population, commercially purchased solitary blue orchard mason 

bees (Osmia lignaria) were used to cross-pollinate F1s in bee cages in the greenhouse 

(Crown Bees, Woodinville, WA). For the SG population, random F1 crosses were 

performed by hand. 

 

Reciprocal common gardens 

The parental genotypes for the mapping populations used in this study were:  

DMN_010 (ac/ac, li/li, seed collected in Duluth, MN, 46.8185 N, -92.0850 W); STL_0701 

(ac/ac, li/li, stolon cutting from St. Louis, MO, 38.6051 N, -90.2673 W) (Kooyers and 

Olsen, 2012); and GFL_007 (Ac/Ac, Li/Li, stolon cutting from Gainesville, FL, 29.6407 

N, -82.3623 W).  Studies of fitness variation in mapping populations commonly include 

the parental genotypes in the common garden experiment.  In the present study, the 

parents were not included in field experiments because two of the parents (STL_0701 

and GFL_007, collected as stolon cuttings from adult plants in natural populations) 

showed substantial declines in vigor (including growth deformities consistent with viral 

infection) during the two-year period between the initial crosses (2014) and the initiation 

of field experiments (2016).   
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Cuttings of F2 genotypes for the STL garden were transported to the field site in 

greenhouse pots, while cuttings for the DMN and GFL gardens were placed into sealed 

plastic snack bags with damp paper towels and transported by van from WU to their 

respective sites, spending 3-5 days in bags before transplantation in the field. 

F2 genotypes from the DG mapping population were planted in Duluth, MN at the 

University of Minnesota-Duluth’s Research and Field Studies Center (46.866, -92.048) 

and at the University of Florida-Gainesville’s Plant Science Research and Educational 

Unit (PSREU) in Citra, FL (29.409, -82.171). The Research and Field Studies Center is 

a 114-acre site located along Amity Creek approximately four miles from the University 

of Minnesota-Duluth campus. The field site was located in one of the natural fields; it is 

regularly mowed and surrounded by a fence to protect experiments from deer grazing. 

The field was tilled prior to planting the common garden experiment. The PSREU is a 

1,068-acre site, in which roughly 700 acres are cultivatable land. The remaining 

acreage comprises the “Hawthorne Prairie” and is wetland in nature. The field site of the 

common garden was newly tilled and comprised of sandy soils.  

F2 genotypes from the SG mapping population were planted at the PSREU in 

Florida in the same location as the DG population and in Eureka, MO at Washington 

University’s Tyson Research Center (38.527, -90.562). The garden plot at Tyson 

Research Center consisted of local, native prairie soil and was surrounded by a fence to 

exclude deer and by an underground concrete barrier to exclude groundhogs.   

Throughout the experiments, weeding was performed at all sites, primarily by 

hand; glyphosate herbicide was used once at GFL in between clover plants during a 

period of intense weed infestation.  After several months of growth, small tillers and 
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lawn edgers were used to trim plants at the DMN and STL gardens as needed; a tractor 

with a cutter disc attachment was used at GFL.  Excess vegetative tissue was removed 

from the garden plots when trimming was performed to ensure that stolons did not re-

root. 

 

Additional fitness measurements  

Herbivory. Leaf herbivore damage was assessed multiple times for all plants at 

all common garden sites after plants were able to become established in common 

gardens.  Plants in the DMN and STL common gardens were assessed during both 

growing seasons (August and September 2016, May and June 2017), while GFL plants 

were assessed only in the first growing season (March and May 2017), prior to massive 

vegetative tissue loss due to heat stress (see below).   

For each date that measurements were recorded, leaf damage was quantified in 

an ordinal fashion (0=0%, 1=1-25%, 2=26-50%, 3=51-75% or 4= >75%) for 15 leaves 

on a randomly chosen stolon (Wright et al. 2017; see also Dirzo & Harper 1982a; Dirzo 

& Harper 1982b).  For each plant in each environment and for each sampling date, we 

calculated three herbivory metrics:  1) Total Damage was calculated as the number of 

leaves with any herbivore damage, regardless of damage category, divided by the total 

number of leaves; 2) High Damage was calculated as the number of leaves with a 

damage classification of 2 or higher, divided by the total number of leaves; 3) Weighted 

Damage was calculated as the sum of leaf damage categories (0 = 0, 1 = 0.25, 2 = 0.5, 

3 = 0.75, 4 = 1), each multiplied by the number of leaves in their respective category, 

and then divided by the total number of leaves.   
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To determine genotypic herbivory estimates for each of the herbivory metrics, we 

averaged across replicates of the same genotype within each environment and 

sampling date.  Next, for each of the herbivory metrics, we calculated average herbivory 

measures for each cyanotype group with genotypic herbivory estimates; we did this 

separately for each sampling date in each environment. 

Because leaf herbivore damage was low in the common garden experiments 

(i.e., the majority of leaves exhibited no damage, particularly in GFL), we also sampled 

approximately 100 white clover plants in natural plant communities near the STL and 

GFL common garden sites in Year 2 to compare herbivory rates inside and outside of 

the two southerly common garden plots, where herbivory might be expected to be 

higher overall.   

 Floret counts.  Because we counted entire inflorescences as a measure of 

reproductive output in this experiment, any cyanotype-specific differences in seed 

production per inflorescence would not have been detected.  Some experiments in 

white clover have suggested that reproductive effort within inflorescences may be 

associated with the cyanogenesis polymorphism.  For example, petal size and floret 

number within inflorescences may vary according to cyanotype (Thompson and 

Johnson, 2016).  To test this possibility, we counted florets within inflorescences 

produced by plants in Year 2 at STL; specifically, we counted florets for 21 cyanogenic 

and 18 acyanogenic SG genotypes. For each genotype, we counted florets for three 

inflorescences of each replicate (nine total inflorescences per genotype).  We averaged 

floret counts across inflorescences from the same genotype, first averaging within the 

same block, then averaging across blocks, thereby creating one estimate per genotype.  
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We then compared average floret counts in cyanogenic vs. acyanogenic genotypes 

using a t-test.  

 

SUPPLEMENTARY RESULTS 

Common garden acclimation, maintenance, and notable weather events 

 At DMN, plants were watered only the day they were planted and received no 

fertilization. Only 12 plants out of 1,502 (representing 12 unique genotypes) died during 

the two-month acclimation period, and replacement cuttings were replanted on July 11, 

2016. The four-month growing period occurred during a mild summer. The plants grew 

and flowered readily with little mortality. Weeds required constant attention, especially in 

block 3. Trimming began in August. The plants were healthy in the fall. A late, relatively 

mild winter (2016) led to prolonged flowering in the first year and low winter mortality, 

despite a reduction in vegetative tissue over winter (Figure 2.1A, Figure S2.1). In the 

second growing season (2017), there were no notable weather events. The plants 

generally initiated and ceased flowering as expected, relative to local plants. Plants 

were healthy in October 2017.  The second winter was harsher than the first, with much 

higher mortality and substantially reduced vegetation in March 2018 (Table S2.2). 

At STL, a delayed common garden establishment date (by approximately two 

months) and stressful summer weather contributed to higher mortality during the 

acclimation period.  June and July 2016 were hot and dry.  Plants were watered 

regularly until June 25, 2016, and spot watering continued until July 11. No fertilizer was 

provided.  Sets of F2 genotypes were replanted five times between late June and early 

August.  In total, 215 out of 1,500 plants were re-planted, representing 174 unique 
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genotypes.  The majority of the mortality occurred in block 1.  Nonetheless, plants in all 

three blocks grew steadily over the summer, and trimming began in August.  Due in part 

to prolonged watering during acclimation, weeds required much attention during the first 

year. The plants became large in the fall, continuing to grow well into December; a mild 

winter led to low winter mortality.  After winter, record-setting rains and flooding in late 

April (2017) led to a burst of exceptionally high flowering in May and June (Figure S2.1). 

July and August were hotter and drier, which led to vegetative tissue loss and 

decreased flowering (Figure 2.1A); no trimming was necessary after July.  Harsher 

conditions in the second winter reduced vegetation substantially and led to some winter 

mortality (Table S2.2).  

At GFL, plants were watered regularly until November 25, 2016.  Fertilizer (K and 

Mg) was provided on October 28, 2016, and Rhizobium inoculation was performed on 

November 21. Two sets of replacements were planted in GFL on November 18, 2016 

and December 2, 2016. Across both mapping populations, 287 out of 3,002 plants were 

re-planted, representing 261 unique genotypes.  Nitrogen fertilizer was applied once 

more on December 14, 2016, after which time no further care was provided.  By late 

January 2017, after 3-4 months of growth, the plants looked healthy, and many had 

grown to fill their allotted individual plots; trimming occurred in February.  As in other 

sites, weeds required ongoing attention.  While plants flowered well in May and June, 

achieving similar floral counts to the DMN and STL gardens in their first year (Figure 

S2.1, Table S2.2), high summer temperatures slowed flowering and led to high mortality 

(Table S2.12).  Visible leaf senescence was prevalent in June, and steady mortality 

occurred from June to October (Figure 2.1B); some plants survived the heat, likely due 
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in part to evening rains.  Hurricane Irma passed over the plots in September 2017, near 

the end of the major summer mortality event; the remaining plants handled hurricane 

conditions remarkably well.  Flooding cut some trenches in plot rows between plants. 

Due to high heat, new vegetation had not yet begun growing by late September.  By 

January 2018, surviving plants were weak but growing, not flowering, and experienced 

some freezing temperatures.  For the small number of remaining plants, flowering 

occurred in March, also with an increase in weeds.  From April until the end of the 

experiment (October), mortality was again high, with steady declines in surviving plants. 

 

Fitness measurements  

 Some experimental design considerations may have limited our ability to detect 

fitness trade-offs, or reduced the magnitude of the trade-offs we saw.  These are 

discussed below.  

Vegetative area.  Plant vegetative area increased after common garden 

establishment periods for the first 4-5 months at all common garden sites.  These initial 

increases were comparable for both mapping populations at all three locations except 

for the DG population in GFL, which experienced half the increase in vegetative growth 

seen in the other three populations.  After the initial growth periods, vegetative area 

doubled in STL during the late fall months, owing in part to an unseasonably late frost; it 

decreased by half in DMN over winter; and it decreased almost to zero in GFL during 

the summer months.  GFL gardens never regained vegetative area following the first 

summer season (2017).  In contrast, the STL and DMN common gardens had, at the 

end of the second growing season and before the second winter season, maintained 
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roughly equivalent vegetative areas to what they achieved during the first growing 

season (Day ~120 vs. Day ~450) (Figure 2.1A).  

 Because it was necessary to keep genotypes separate by restricting their growth 

in our common gardens, trimming practices may have limited our ability to detect 

significant differences in vegetative area among genotypes, especially at the STL and 

DMN gardens, where most plants were large throughout the experiment and mostly 

filled their individually allotted 930 cm2 plots (Figure 2.1A).  

Survival. At both DMN and STL, mortality occurred primarily during winter 

months, particularly during the second winter, but it was low overall.  At the GFL site, 

mortality was high for both populations.  Summer heat in the first year led to steady 

declines in surviving plants beginning in May of the first summer and continuing to 

October at the end of the first year (Figure 2.1B).  Mortality in the GFL gardens occurred 

during months where maximum temperatures exceeded 95°F at both 60 cm (above soil) 

and -10 cm (below soil) (Table S2.12).  These results are consistent with previous 

findings that vegetative growth is associated with maximum summer temperatures in 

white clover (Wright et al., 2017).   

In GFL, Year 1 survivorship and plant lifespans were higher for the SG 

population than the DG population; 45.5% of the SG plants (84% of the genotypes) and 

16.3% of DG plants (39% of the genotypes) survived the first year, and mean lifespans 

for the two populations were 12.9 months and 9.1 months, respectively.  Ultimately, only 

4 and 26 plants (representing 1% and 5% of the DG and SG genotypes) survived the 

24-month experiment.  (Table S2.2).  These patterns are potentially consistent with a 
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greater selective disadvantage for alleles from the northernmost DMN parent at the 

subtropical GFL site. 

Reproductive output.  Plants in the DMN and STL common gardens began 

flowering immediately after the experiments were established, coinciding with their initial 

period of growth.  In contrast, plants in the GFL common gardens first grew for 4-5 

months (~120 days) and subsequently flowered (Figure S2.1), potentially due to short-

day winter photoperiods that they experienced.   

 In the first year, plants in the DMN and STL gardens produced 260,761 and 

72,039 inflorescences, respectively.  The fact that the STL garden was planted 

approximately two months later than anticipated (June, instead of April) likely explains 

lower floral production in Year 1, compared to DMN (Figure S2.1); this may have 

affected our ability to detect Year 1 growth vs. reproduction trade-offs in STL (Figure 

S2.3), which we saw in DMN (Figure S2.2).  In Year 2, these gardens produced 431,626 

and 563,525, respectively (Table S2.2).  Heavy spring rains and a longer growing 

season likely contributed to high inflorescence counts in STL. 

In GFL, the DG population produced 278,375 inflorescences in Year 1—slightly 

more than the reciprocal comparison in the DMN garden, while the SG population 

produced 303,558 inflorescences.  Following high Year 1 mortality, inflorescence counts 

were substantially reduced in Year 2, totaling 2,473 and 46,379 inflorescences for the 

DG and SG populations, respectively (Table S2.2). 

 Herbivory.  Leaf herbivore damage was low for all sampling dates in all of the 

common garden environments.  Averaging across all sampling dates, the proportion of 

leaves exhibiting any level of damage (Total Damage) was 0.20, 0.36, and 0.03 for the 
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DMN, STL, and GFL environments, respectively (Table S2.13).  These values dropped 

by an order of magnitude at all sites when High Damage and Weighted Damage were 

considered, due to the fact that most leaves exhibiting damage were in the lowest 

damage category.  Thus, while plants in STL exhibited higher herbivory than those in 

DMN, as expected, plants growing in the southernmost GFL environment experienced 

almost no herbivory, counter to expectations.   

 Across cyanotype groups and sampling dates, Total Damage measurements 

ranged from 0.16-0.23 (DMN), 0.21-0.44 (STL), and 0.02-0.04 (GFL).  There was more 

variation between sampling dates in a given site than between cyanotype groups on the 

same sampling date, and cyanogenic (AcLi) plants were rarely the cyanotype that 

experienced the least amount of damage  (Table S2.13).  Thus, we saw little evidence 

that cyanogenic plants were differentially protected from herbivores, compared to 

acyanogenic plants, in our common garden experiments. 

 Approximately 100 wild plants sampled near the STL common gardens exhibited 

similar Total Damage to plants in the common garden plots at a comparable sampling 

date (wild=0.45, June (Year 2)=0.39).  While wild cyanogenic plants did experience less 

herbivory than acyanogenic plants (0.41 vs. 0.45-0.47), the difference would not be 

expected to contribute greatly to significant differences in vegetative area or overall 

fitness.   

 Wild plants sampled near the GFL site also exhibited similar Total Damage to 

plants in the common gardens there (0.02 vs. 0.03).  We did not measure cyanotypes 

for wild plants in GFL, so we cannot say whether cyanogenic plants were differentially 

protected from leaf herbivore damage (Table S2.13). 
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Overall, the results of our herbivory surveys do not support the hypothesis that a 

latitudinal gradient in herbivory drives cyanogenesis clines or contributes greatly to 

fitness trade-offs across contrasting environments in white clover.  Other environmental 

factors, such as heat stress, likely play a greater role in local adaptation. 

Floret counts.  Cyanogenic genotypes averaged 46.5 florets per inflorescence, 

and acyanogenic genotypes averaged 49.1.  These results suggest that acyanogenic 

plants that do not devote energy to cyanogenesis may experience a slight reproductive 

advantage.  However, this result was not significant (t=1.04, df=33.8, p=0.3).  We did 

not make floret count comparisons in the DMN or GFL common gardens, so we do not 

know whether this potential energetic trade-off changes across a latitudinal gradient. 

Because we did not detect significant differences in floret count in STL, we believe 

inflorescence count adequately captures important reproductive variation in these 

experiments.  While insignificant differences in floret counts might be more important 

when considered together with the total number of inflorescences that a genotype 

produces, generating the data to perform such an analysis was beyond the scope of our 

study. 
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SUPPLEMENTARY TABLES 

Table S2.1. Summary of important dates, including vegetative area measurement dates, for common garden 
experiments. 

Site-
Population 

Plant 
Date 

End Est. 
Period 

First Trim Vegetative Area Measurements End Date 

DMN-DG 6/11/16 
7/11/2016 

(d30) 
8/12/2016 

(d62) 
d38 (July 2016), d120 (Oct 2016),  

d339 (May 2017), d458 (Sept 2017) 
5/26/2018 

(d714) 

GFL-DG 10/12/16 
12/14/2016 

(d63) 
2/23/2017 

(d134) 

d9 (Oct 2016), d119 (Feb 2017),  
d235 (June 2017), d295 (Aug 2017),  
d354 (Oct 2017), d452 (Jan 2018) 

10/15/2018 
(d733) 

STL-SG 6/14/16 
8/4/2016 

(d51) 
8/9/2016 

(d56) 

d20 (July 2016), d113 (Oct 2016),  
d282 (Mar 2017), d362 (June 2017),  

d449 (Sept 2017) 

3/30/2018 
(d654) 

GFL-SG 10/12/16 
12/14/2016 

(d63) 
2/23/2017 

(d134) 

d9 (Oct 2016), d119 (Feb 2017),  
d200 (May 2017), d295 (Aug 2017),  
d354 (Oct 2017), d452 (Jan 2018) 

10/15/2018 
(d733) 
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Table S2.2. Summary of reproductive output and survival measurements in the common 
garden experiments. 

Site-
Population 

Y1 Flowering Period 
Y1 Duration 

(days) 
Y1 Floral 

Count 
Y1 Survival 

Count 

DMN-DG 
6/28/2016 

(d14) 
to 

11/14/2016 
(d153) 

139 260,761 1,317 

GFL-DG 
2/8/2017 
(d119) 

to 
11/28/2017 

(d412) 
293 278,375 245 

STL-SG 
6/28/2016 

(d17) 
to 

11/15/2016 
(d157) 

140 72,039 1,457 

GFL-SG 
2/8/2017 
(d119) 

to 
1/30/2018 

(d475) 
356 303,558 685 

              

Site-
Population 

Y2 Flowering Period 
Y2 Duration 

(days) 
Y2 Floral 

Count 
Total Floral 

Count 

DMN-DG 
6/1/2017 
(d352) 

to 
10/23/2017 

(d496) 
144 431,626 692,387 

GFL-DG 
2/20/2018 

(d496) 
to 

9/19/2018 
(d707) 

211 2,473 280,848 

STL-SG 
4/10/2017 

(d303) 
to 

10/29/2017 
(d505) 

202 563,525 635,564 

GFL-SG 
2/20/2018 

(d496) 
to 

9/10/2018 
(d698) 

202 46,379 349,937 
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Table S2.3. Trait means and quantitative genetic partitioning of fitness traits within each common garden site for each mapping population and in 
each year, with calculations of broad-sense heritability.  Genotype (G) and replicate block (B) were included as random effects in within-site 
models.  Vegetative area (cm2), winter survival (0-4), lifespan (months), flowering duration (days), and floral count measurements are shown. 

Population Site Trait Mean St.Error VG St.Dev. VBlock VE VP H2=VG/VP 

DG DMN Vegetative Area (Day 38) 87.79 13.29 576.27 24.01 522.92 1907.08 3006.26 0.19 

Vegetative Area (Day 120) 745.72 97.32 52519.27 229.17 27940.55 77214.06 157673.88 0.33 

Vegetative Area (Day 339) 388.72 61.36 25179.56 158.68 11040.47 51373.72 87593.74 0.29 

Vegetative Area (Day 458) 721.89 44.49 34295.87 185.19 5573.09 78036.52 117905.48 0.29 

Winter Survival (Year 2) 1.07 0.10 0.08 0.29 0.03 0.55 0.66 0.12 

Flowering Duration (Year 1) 115.66 3.22 164.19 12.81 29.70 205.76 399.65 0.41 

Flowering Duration (Year 2) 122.19 2.19 43.59 6.60 12.98 538.07 594.64 0.07 

Flowering Duration 237.86 3.51 201.27 14.19 33.95 871.00 1106.22 0.18 

Floral Count (Year 1) 172.81 27.10 3591.96 59.93 2174.31 3573.18 9339.45 0.38 

Floral Count (Year 2) 287.40 13.30 3674.33 60.62 491.17 8655.97 12821.47 0.29 

Total Floral  460.25 21.47 10749.13 103.68 1290.09 13716.87 25756.09 0.42 

GFL Vegetative Area (Day 9) 21.38 1.29 62.45 7.90 4.31 148.03 214.79 0.29 

Vegetative Area (Day 119) 224.09 46.34 10561.44 102.77 6330.85 23757.70 40650.00 0.26 

Vegetative Area (Day 235) 201.59 50.48 11249.76 106.06 7494.63 41817.06 60561.45 0.19 

Vegetative Area (Day 295) 12.46 3.15 116.78 10.81 27.03 983.07 1126.88 0.10 

Vegetative Area (Day 354) 3.00 1.43 14.06 3.75 5.54 271.82 291.42 0.05 

Vegetative Area (Day 452) 2.82 1.36 15.95 3.99 4.80 306.98 327.74 0.05 

Lifespan 9.12 0.24 1.67 1.29 0.13 11.67 13.47 0.12 

Flowering Duration (Year 1) 101.13 4.25 947.39 30.78 44.81 1892.17 2884.36 0.33 

Flowering Duration 103.12 4.54 1002.74 31.67 51.30 2244.55 3298.59 0.30 

Floral Count (Year 1) 181.55 30.23 9646.36 98.22 2648.46 18015.48 30310.30 0.32 

Total Floral  183.54 30.37 9734.33 98.66 2671.06 18719.44 31124.83 0.31 

SG STL Vegetative Area (Day 20) 21.18 3.84 57.96 7.61 43.51 204.20 305.66 0.19 

Vegetative Area (Day 113) 677.03 66.24 13566.67 116.48 13004.25 37389.48 63960.39 0.21 

Vegetative Area (Day 282) 1326.06 56.36 121751.84 348.93 8617.64 85724.10 216093.59 0.56 

Vegetative Area (Day 362) 1046.97 27.96 45804.99 214.02 1946.14 59320.52 107071.66 0.43 

Vegetative Area (Day 449) 588.72 32.48 39342.54 198.35 2676.66 120978.78 162997.98 0.24 

Winter Survival (Year 2) 1.46 0.04 0.28 0.53 0.00 0.47 0.75 0.37 



 153 

Flowering Duration (Year 1) 90.21 5.58 1490.78 38.61 82.82 794.17 2367.77 0.63 

Flowering Duration (Year 2) 173.15 1.91 463.92 21.54 7.24 444.31 915.47 0.51 

Flowering Duration 263.27 6.95 2854.54 53.43 125.07 1223.26 4202.87 0.68 

Floral Count (Year 1) 49.16 8.15 1531.72 39.14 188.05 1021.56 2741.34 0.56 

Floral Count (Year 2) 385.82 6.40 12417.75 111.43 32.82 7448.08 19898.65 0.62 

Total Floral  435.08 7.39 19769.14 140.60 25.98 9071.29 28866.40 0.68 

GFL Vegetative Area (Day 9) 14.54 2.62 46.06 6.79 20.15 55.86 122.06 0.38 

Vegetative Area (Day 119) 635.49 113.06 75763.80 275.25 37674.41 108450.90 221889.11 0.34 

Vegetative Area (Day 200) 574.38 29.65 31862.30 178.50 2350.24 47980.93 82193.47 0.39 

Vegetative Area (Day 295) 29.84 6.60 500.65 22.38 121.90 2897.90 3520.45 0.14 

Vegetative Area (Day 354) 19.36 4.47 218.13 14.77 53.57 2539.16 2810.86 0.08 

Vegetative Area (Day 452) 48.17 10.74 2446.70 49.46 297.58 16926.15 19670.43 0.12 

Lifespan 12.86 0.82 7.38 2.72 1.93 22.73 32.04 0.23 

Flowering Duration (Year 1) 104.81 6.37 1709.59 41.35 106.89 2325.51 4142.00 0.41 

Flowering Duration 121.72 9.46 2728.91 52.24 242.93 4526.40 7498.25 0.36 

Floral Count (Year 1) 201.39 18.38 19007.24 137.87 871.89 13866.92 33746.06 0.56 

Total Floral  232.29 23.23 27659.86 166.31 1400.52 26427.05 55487.43 0.50 
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Table S2.4. Genotype-environment correlations for fitness traits that were comparable across 
sites.  Pearson correlation coefficients (rGE) are shown for each mapping population. 

  rGE 

Population Fitness Trait Raw Data Transformed Data 

DG Vegetative Area (Day 38v9) -0.281*** -0.296*** 

 Vegetative Area (Day 120v119) -0.353*** -0.345*** 

 Vegetative Area (Day 339v354) -0.111* -0.155*** 

 Vegetative Area (Day 458v452) -0.032NS -0.01NS 

 Flowering Duration (Year 1) -0.107*** -0.092* 

 Flowering Duration -0.166*** -0.168*** 

 Floral Count (Year 1) -0.219*** -0.178*** 

  TotalFloral -0.244*** -0.229*** 

SG Vegetative Area (Day 20v9) -0.228*** -0.261*** 

 Vegetative Area (Day 113v119) -0.37*** -0.388*** 

 Vegetative Area (Day 282v295) -0.155*** -0.224*** 

 Vegetative Area (Day 362v354) 0.092* -0.151*** 

 Vegetative Area (Day 449v452) -0.181*** -0.223*** 

 Flowering Duration (Year 1) -0.357*** -0.331*** 

 Flowering Duration -0.377*** -0.391*** 

 Floral Count (Year 1) -0.318*** -0.315*** 

  Total Floral -0.329*** -0.341*** 

p < *0.01, **0.001, ***0.0001  (significance thresholds, following FDR correction) 

NS = not significant at p=0.01 level   
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Table S2.5. Quantitative genetic partitioning of fitness trait variance across common garden sites and GxE interactions for each mapping population. Models with and without Year 
effects are shown for reproductive output traits. The significance of fixed and random effects in models was determined with ANOVAs and likelihood ratio tests (LRT), respectively. 

DG Population 

Model Trait Mean DMN Mean GFL Fixed effect F value p-value Random effect Variance St.Dev. LRT p-value 
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Veg Area (Day ~120) 746.50 224.10 Site 1.26 1.00E+00 Genotype 13494.20 116.16 40.04 2.49E-10 

G x E 18203.62 134.92 121.92 2.40E-28 

Site(Block) 17274.03 131.43 562.99 1.88E-124 

Residual 50562.57 224.86 - - 

Veg Area (Day ~350) 390.35 3.00 Site 1.65 1.99E-01 Genotype 234.61 15.32 0.06 8.07E-01 

G x E 12675.72 112.59 192.68 8.25E-44 

Site(Block) 5736.21 75.74 383.20 2.50E-85 

Residual 25863.04 160.82 - - 

Veg Area (Day ~450) 723.01 2.88 Site 8.34 3.94E-03 Genotype 0.30 0.55 0.00 1.00E+00 

G x E 17157.96 130.99 157.95 3.17E-36 

Site(Block) 2967.96 54.48 128.89 7.18E-30 

Residual 39999.43 200.00 - - 

Flowering Dur (Y1) 115.77 101.13 Site 1.09 2.98E-01 Genotype 64.50 8.03 2.55 1.10E-01 

G x E 490.68 22.15 180.65 3.49E-41 

Site(Block) 36.82 6.07 57.66 3.11E-14 

Residual 1048.03 32.37 - - 

FloweringDuration 237.91 103.12 Site 1.73 1.00E+00 Genotype 153.19 12.38 9.46 2.10E-03 

G x E 448.08 21.17 87.26 9.53E-21 

Site(Block) 41.93 6.48 42.67 6.48E-11 

Residual 1556.26 39.45 - - 

Floral Count (Y1) 173.15 181.55 Site 0.04 9.99E-01 Genotype 1900.42 43.59 17.57 2.76E-05 

G x E 4730.35 68.78 163.92 1.57E-37 

Site(Block) 2423.29 49.23 387.02 3.69E-86 

Residual 10810.17 103.97 - - 

Total Floral 459.75 183.54 Site 1.35 2.45E-01 Genotype 3832.85 61.91 30.70 3.01E-08 

G x E 6501.73 80.63 144.68 2.52E-33 

Site(Block) 1932.55 43.96 209.90 1.45E-47 

Residual 16189.95 127.24 - - 
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Flowering Duration 120.83 88.54 Year 42.45 9.70E-11 Genotype 0.00 0.00 0.00 9.99E-01 

Site 0.16 6.87E-01 G x E 0.00 0.00 0.00 1.00E+00 

G x Y 0.00 0.00 0.00 1.00E+00 

G x E x Y 550.04 23.45 311.69 9.38E-70 

Site(Block) 24.26 4.93 53.63 2.42E-13 

Residual 899.81 30.00 - - 

Total Floral 221.58 175.40 Year 119.71 1.49E-26 Genotype 1106.58 33.27 16.47 4.94E-05 

Site 0.47 1.00E+00 G x E 0.00 0.00 0.00 9.97E-01 

G x Y 0.00 0.01 0.00 1.00E+00 

G x E x Y 5753.67 75.85 184.50 5.05E-42 

Site(Block) 1334.25 36.53 254.45 2.78E-57 

Residual 10923.17 104.51 - - 
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Table S2.5. (Continued) 

SG Population 

Model Trait Mean STL Mean GFL Fixed effect F value p value Random effect Variance St.Dev. LRT p value 
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Veg Area (Day ~120) 662.55 635.49 Site 0.04 8.53E-01 Genotype 21567.18 146.86 48.08 4.08E-12 

G x E 24656.36 157.02 107.08 4.27E-25 

Site(Block) 27452.64 165.69 604.38 1.86E-133 

Residual 74837.89 273.57 - - 

Veg Area (Day ~350) 1018.95 19.35 Site 16.32 5.54E-05 Genotype 0.02 0.14 0.00 9.98E-01 

G x E 26807.35 163.73 271.21 6.17E-61 

Site(Block) 113.88 10.67 1.84 1.75E-01 

Residual 41088.16 202.70 - - 

Veg Area (Day ~450) 572.45 48.17 Site 0.77 1.00E+00 Genotype 4732.58 68.79 5.26 2.19E-02 

G x E 18205.76 134.93 74.02 7.73E-18 

Site(Block) 544.73 23.34 9.22 2.39E-03 

Residual 69997.22 264.57 - - 

Flowering Dur (Y1) 87.89 104.81 Site 0.14 7.13E-01 Genotype 742.32 27.25 65.78 5.04E-16 

G x E 821.73 28.67 228.51 1.26E-51 

Site(Block) 125.69 11.21 132.53 1.15E-30 

Residual 1645.46 40.56 - - 

FloweringDuration 256.43 121.72 Site 1.86 1.00E+00 Genotype 1507.99 38.83 76.11 2.68E-18 

G x E 1299.63 36.05 122.82 1.53E-28 

Site(Block) 317.96 17.83 154.43 1.87E-35 

Residual 3604.18 60.03 - - 

Floral Count (Y1) 48.03 201.39 Site 1.74 1.87E-01 Genotype 2070.37 45.50 13.41 2.50E-04 

G x E 8151.49 90.29 531.64 1.24E-117 

Site(Block) 549.26 23.44 127.35 1.55E-29 

Residual 7472.10 86.44 - - 

Total Floral 423.71 232.29 Site 1.73 1.88E-01 Genotype 9708.14 98.53 54.52 1.54E-13 

G x E 13866.83 117.76 310.07 2.11E-69 

Site(Block) 943.69 30.72 80.12 3.53E-19 

Residual 19821.26 140.79 - - 
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Flowering Duration 127.58 85.60 Year 110.83 5.69E-25 Genotype 167.09 12.93 8.20 4.19E-03 

Site 0.86 1.00E+00 G x E 0.00 0.00 0.00 1.00E+00 

G x Y 0.00 0.00 0.00 9.99E-01 

G x E x Y 2107.17 45.90 1309.52 9.63E-287 

Site(Block) 49.20 7.01 103.60 2.48E-24 

Residual 1297.48 36.02 - - 

Total Floral 201.51 161.90 Year 344.86 1.36E-70 Genotype 0.00 0.01 0.00 1.00E+00 

Site 0.52 1.00E+00 G x E 0.00 0.00 0.00 9.93E-01 

G x Y 0.00 0.00 4.00 4.55E-02 

G x E x Y 23012.52 151.70 2028.97 0.00E+00 

Site(Block) 203.73 14.27 47.14 6.62E-12 

Residual 8419.06 91.76 - - 
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Table S2.6. Means and quantitative genetic partitioning of fitness traits within each common garden site for each mapping population with calculations of broad-sense heritability. Included 
are models that use transformed data, as well as those that replace genotype with cyanotype. 

M
o

d
e

l Raw Data Square root Transformed Data 

Pop-
Site 

Trait Mean 
St. 
Err 

VG 
St. 

Dev 
VB VE VP 

H2= 
VG/VP 

Mean 
St. 
Err 

VG 
St. 

Dev 
VB VE VP 

H2= 
VG/VP 
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Veg Area (Day 38) 87.79 13.29 576.27 24.01 522.92 1907.08 3006.26 0.19 8.96 0.69 1.71 1.31 1.42 4.95 8.08 0.21 

Veg Area (Day 120) 745.72 97.32 52519.27 229.17 27940.55 77214.06 157673.88 0.33 26.26 1.99 20.57 4.54 11.71 28.06 60.34 0.34 

Veg Area (Day 339) 388.72 61.36 25179.56 158.68 11040.47 51373.72 87593.74 0.29 17.89 1.86 20.37 4.51 10.21 41.51 72.08 0.28 

Veg Area (Day 458) 721.89 44.49 34295.87 185.19 5573.09 78036.52 117905.48 0.29 25.74 0.82 15.15 3.89 1.84 42.86 59.85 0.25 

Winter Survival (Y2) 1.07 0.10 0.08 0.29 0.03 0.55 0.66 0.12 0.90 0.06 0.03 0.17 0.01 0.22 0.26 0.12 

Flowering Dur (Y1) 115.66 3.22 164.19 12.81 29.70 205.76 399.65 0.41 10.70 0.16 0.49 0.70 0.07 0.66 1.22 0.40 

Flowering Dur (Y2) 122.19 2.19 43.59 6.60 12.98 538.07 594.64 0.07 10.89 0.17 0.20 0.45 0.08 3.35 3.63 0.06 

Flowering Duration 237.86 3.51 201.27 14.19 33.95 871.00 1106.22 0.18 15.37 0.12 0.24 0.49 0.04 1.32 1.59 0.15 

Floral Count (Y1) 172.81 27.10 3591.96 59.93 2174.31 3573.18 9339.45 0.38 12.59 1.10 6.56 2.56 3.60 5.37 15.53 0.42 

Floral Count (Y2) 287.40 13.30 3674.33 60.62 491.17 8655.97 12821.47 0.29 16.46 0.51 3.48 1.87 0.73 12.42 16.62 0.21 

Total Floral 460.25 21.47 10749.13 103.68 1290.09 13716.87 25756.09 0.42 21.10 0.51 6.09 2.47 0.73 8.55 15.37 0.40 
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Veg Area (Day 38) 87.01 13.31 5.02 2.24 521.27 2477.68 3003.97 0.00 8.89 0.70 0.03 0.18 1.41 6.64 8.09 0.00 

Veg Area (Day 120) 709.57 103.46 5530.34 74.37 27436.13 127937.45 160903.92 0.03 25.56 2.11 2.09 1.45 11.53 48.03 61.65 0.03 

Veg Area (Day 339) 388.32 61.09 0.00 0.00 11040.53 76548.85 87589.39 0.00 17.90 1.86 0.06 0.24 10.21 61.84 72.11 0.00 

Veg Area (Day 458) 705.87 48.13 1370.25 37.02 5532.80 111655.15 118558.20 0.01 25.39 0.93 0.75 0.86 1.83 57.76 60.33 0.01 

Winter Survival (Y2) 1.08 0.10 0.00 0.06 0.03 0.63 0.66 0.01 0.90 0.07 0.00 0.05 0.01 0.25 0.26 0.01 

Flowering Dur (Y1) 115.66 3.18 0.00 0.00 29.54 370.55 400.08 0.00 10.70 0.16 0.00 0.00 0.07 1.15 1.22 0.00 

Flowering Dur (Y2) 122.19 2.18 0.15 0.39 12.90 581.65 594.69 0.00 10.88 0.18 0.01 0.11 0.08 3.55 3.64 0.00 

Flowering Duration 237.84 3.46 0.00 0.00 33.79 1072.68 1106.47 0.00 15.37 0.12 0.00 0.00 0.04 1.56 1.60 0.00 

Floral Count (Y1) 174.91 27.29 61.16 7.82 2165.07 7129.28 9355.51 0.01 12.68 1.11 0.13 0.36 3.57 11.86 15.56 0.01 

Floral Count (Y2) 287.30 13.07 0.00 0.00 487.42 12340.68 12828.10 0.00 16.46 0.50 0.00 0.00 0.72 15.91 16.63 0.00 

Total Floral 461.15 21.31 24.19 4.92 1286.63 24461.63 25772.46 0.00 21.11 0.51 0.01 0.10 0.73 14.64 15.38 0.00 
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Veg Area (Day 9) 21.38 1.29 62.45 7.90 4.31 148.03 214.79 0.29 4.31 0.20 0.74 0.86 0.12 1.98 2.84 0.26 

Veg Area (Day 119) 224.09 46.34 10561.44 102.77 6330.85 23757.70 40650.00 0.26 13.17 1.74 14.13 3.76 8.98 30.43 53.54 0.26 

Veg Area (Day 235) 201.59 50.48 11249.76 106.06 7494.63 41817.06 60561.45 0.19 11.54 2.04 13.38 3.66 12.26 46.98 72.62 0.18 

Veg Area (Day 295) 12.46 3.15 116.78 10.81 27.03 983.07 1126.88 0.10 1.97 0.21 1.21 1.10 0.11 7.29 8.60 0.14 

Veg Area (Day 354) 3.00 1.43 14.06 3.75 5.54 271.82 291.42 0.05 0.51 0.17 0.17 0.41 0.09 2.52 2.77 0.06 
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Veg Area (Day 452) 2.82 1.36 15.95 3.99 4.80 306.98 327.74 0.05 0.38 0.17 0.08 0.29 0.08 2.57 2.74 0.03 

Lifespan 9.12 0.24 1.67 1.29 0.13 11.67 13.47 0.12 2.95 0.04 0.05 0.22 0.00 0.36 0.41 0.12 

Flowering Dur (Y1) 101.13 4.25 947.39 30.78 44.81 1892.17 2884.36 0.33 9.40 0.33 4.11 2.03 0.29 8.56 12.95 0.32 

Flowering Duration 103.12 4.54 1002.74 31.67 51.30 2244.55 3298.59 0.30 9.47 0.33 4.19 2.05 0.29 9.11 13.59 0.31 

Floral Count (Y1) 181.55 30.23 9646.36 98.22 2648.46 18015.48 30310.30 0.32 11.74 1.21 17.63 4.20 4.23 23.34 45.19 0.39 

Total Floral 183.54 30.37 9734.33 98.66 2671.06 18719.44 31124.83 0.31 11.80 1.20 17.57 4.19 4.20 23.93 45.69 0.38 
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Veg Area (Day 9) 21.38 1.24 0.00 0.00 4.19 210.48 214.67 0.00 4.31 0.20 0.00 0.00 0.11 2.72 2.84 0.00 

Veg Area (Day 119) 211.69 47.97 611.13 24.72 6321.00 34022.19 40954.31 0.01 12.88 1.78 0.46 0.68 8.97 44.30 53.73 0.01 

Veg Area (Day 235) 205.41 50.96 220.25 14.84 7474.94 52911.09 60606.28 0.00 11.69 2.05 0.30 0.55 12.24 60.14 72.68 0.00 

Veg Area (Day 295) 12.97 3.34 4.54 2.13 26.83 1096.90 1128.27 0.00 2.00 0.23 0.03 0.17 0.11 8.48 8.61 0.00 

Veg Area (Day 354) 3.17 1.52 0.82 0.90 5.51 285.34 291.67 0.00 0.53 0.18 0.01 0.11 0.08 2.68 2.77 0.00 

Veg Area (Day 452) 2.98 1.46 0.88 0.94 4.87 322.19 327.94 0.00 0.38 0.17 0.00 0.05 0.08 2.65 2.74 0.00 

Lifespan 9.12 0.23 0.00 0.00 0.13 13.34 13.47 0.00 2.95 0.04 0.00 0.00 0.00 0.41 0.41 0.00 

Flowering Dur (Y1) 101.64 4.27 6.07 2.46 42.94 2836.25 2885.26 0.00 9.40 0.32 0.00 0.00 0.28 12.67 12.94 0.00 

Flowering Duration 103.55 4.51 5.02 2.24 49.29 3244.42 3298.72 0.00 9.47 0.32 0.00 0.00 0.28 13.30 13.58 0.00 

Floral Count (Y1) 181.71 30.78 171.49 13.10 2629.46 27570.53 30371.47 0.01 11.77 1.22 0.17 0.42 4.19 40.87 45.24 0.00 

Total Floral 183.65 30.89 167.32 12.94 2651.07 28364.65 31183.03 0.01 11.83 1.21 0.15 0.39 4.17 41.41 45.73 0.00 
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Veg Area (Day 20) 21.18 3.84 57.96 7.61 43.51 204.20 305.66 0.19 4.25 0.41 0.70 0.84 0.49 2.09 3.28 0.21 

Veg Area (Day 113) 677.03 66.24 13566.67 116.48 13004.25 37389.48 63960.39 0.21 25.47 1.42 5.77 2.40 5.98 18.61 30.36 0.19 

Veg Area (Day 282) 1326.06 56.36 121751.84 348.93 8617.64 85724.10 216093.59 0.56 35.55 0.86 40.00 6.32 1.96 19.83 61.79 0.65 

Veg Area (Day 362) 1046.97 27.96 45804.99 214.02 1946.14 59320.52 107071.66 0.43 31.83 0.41 17.93 4.23 0.37 14.33 32.63 0.55 

Veg Area (Day 449) 588.72 32.48 39342.54 198.35 2676.66 120978.78 162997.98 0.24 22.48 0.74 27.03 5.20 1.37 54.53 82.94 0.33 

Winter Survival (Y2) 1.46 0.04 0.28 0.53 0.00 0.47 0.75 0.37 1.12 0.02 0.08 0.29 0.00 0.12 0.21 0.40 

Flowering Dur (Y1) 90.21 5.58 1490.78 38.61 82.82 794.17 2367.77 0.63 8.73 0.42 8.78 2.96 0.47 4.91 14.15 0.62 

Flowering Dur (Y2) 173.15 1.91 463.92 21.54 7.24 444.31 915.47 0.51 13.07 0.09 1.23 1.11 0.02 1.05 2.29 0.54 

Flowering Duration 263.27 6.95 2854.54 53.43 125.07 1223.26 4202.87 0.68 16.07 0.23 3.35 1.83 0.13 1.44 4.92 0.68 

Floral Count (Y1) 49.16 8.15 1531.72 39.14 188.05 1021.56 2741.34 0.56 5.94 0.61 8.90 2.98 1.06 4.35 14.31 0.62 

Floral Count (Y2) 385.82 6.40 12417.75 111.43 32.82 7448.08 19898.65 0.62 19.25 0.18 10.10 3.18 0.03 4.74 14.86 0.68 

Total Floral 435.08 7.39 19769.14 140.60 25.98 9071.29 28866.40 0.68 20.43 0.18 12.65 3.56 0.01 4.93 17.59 0.72 
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 Veg Area (Day 20) 21.91 4.02 6.31 2.51 42.90 260.51 309.71 0.02 4.30 0.41 0.03 0.17 0.48 2.79 3.29 0.01 

Veg Area (Day 113) 683.90 66.71 628.16 25.06 12725.81 50634.11 63988.07 0.01 25.59 1.43 0.24 0.49 5.87 24.25 30.36 0.01 

Veg Area (Day 282) 1332.35 60.65 3180.92 56.40 8023.08 202716.17 213920.17 0.01 35.70 0.90 0.62 0.79 1.79 57.41 59.82 0.01 

 158



(1
 |
 C

y
a
n
o
ty

p
e
) 

+
 (

1
 |
 B

lo
c
k
) 

 
Veg Area (Day 362) 1051.67 28.64 240.19 15.50 2018.76 103991.12 106250.08 0.00 31.94 0.40 0.03 0.18 0.38 31.16 31.58 0.00 

Veg Area (Day 449) 590.04 33.15 219.00 14.80 2750.94 160088.28 163058.22 0.00 22.52 0.75 0.12 0.34 1.43 81.15 82.69 0.00 

Winter Survival (Y2) 1.46 0.03 0.00 0.00 0.00 0.75 0.75 0.00 1.12 0.01 0.00 0.00 0.00 0.21 0.21 0.00 

Flowering Dur (Y1) 88.74 6.35 39.39 6.28 84.31 2277.40 2401.10 0.02 8.64 0.48 0.23 0.48 0.48 13.64 14.35 0.02 

Flowering Dur (Y2) 173.48 1.73 0.00 0.00 7.16 882.14 889.30 0.00 13.09 0.09 0.00 0.00 0.02 2.16 2.17 0.00 

Flowering Duration 261.87 7.66 50.09 7.08 126.39 4027.23 4203.71 0.01 16.03 0.25 0.05 0.23 0.13 4.72 4.91 0.01 

Floral Count (Y1) 48.30 8.67 36.22 6.02 190.67 2533.74 2760.63 0.01 5.87 0.66 0.24 0.48 1.08 13.14 14.46 0.02 

Floral Count (Y2) 387.28 6.07 73.37 8.57 3.34 19641.04 19717.75 0.00 19.32 0.15 0.04 0.20 0.00 14.27 14.32 0.00 

Total Floral 436.24 9.26 232.95 15.26 0.00 28488.00 28720.95 0.01 20.47 0.22 0.12 0.35 0.00 17.02 17.15 0.01 
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Veg Area (Day 9) 14.54 2.62 46.06 6.79 20.15 55.86 122.06 0.38 3.54 0.37 0.85 0.92 0.41 0.87 2.13 0.40 

Veg Area (Day 119) 635.49 113.06 75763.80 275.25 37674.41 108450.90 221889.11 0.34 23.30 2.29 38.95 6.24 15.39 43.41 97.75 0.40 

Veg Area (Day 200) 574.38 29.65 31862.30 178.50 2350.24 47980.93 82193.47 0.39 22.86 0.67 22.44 4.74 1.16 28.81 52.40 0.43 

Veg Area (Day 295) 29.84 6.60 500.65 22.38 121.90 2897.90 3520.45 0.14 3.89 0.49 3.30 1.82 0.69 10.96 14.96 0.22 

Veg Area (Day 354) 19.36 4.47 218.13 14.77 53.57 2539.16 2810.86 0.08 2.26 0.48 2.18 1.48 0.65 11.66 14.48 0.15 

Veg Area (Day 452) 48.17 10.74 2446.70 49.46 297.58 16926.15 19670.43 0.12 3.23 0.63 6.83 2.61 1.07 30.20 38.11 0.18 

Lifespan 12.86 0.82 7.38 2.72 1.93 22.73 32.04 0.23 3.50 0.11 0.15 0.39 0.04 0.43 0.62 0.24 

Flowering Dur (Y1) 104.81 6.37 1709.59 41.35 106.89 2325.51 4142.00 0.41 9.49 0.38 6.95 2.64 0.38 7.66 14.98 0.46 

Flowering Duration 121.72 9.46 2728.91 52.24 242.93 4526.40 7498.25 0.36 10.11 0.47 8.60 2.93 0.60 10.44 19.65 0.44 

Floral Count (Y1) 201.39 18.38 19007.24 137.87 871.89 13866.92 33746.06 0.56 12.37 0.70 31.25 5.59 1.24 16.42 48.91 0.64 

Total Floral 232.29 23.23 27659.86 166.31 1400.52 26427.05 55487.43 0.50 13.15 0.80 35.93 5.99 1.65 22.50 60.08 0.60 
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Veg Area (Day 9) 14.40 2.62 0.27 0.52 20.10 101.72 122.09 0.00 3.53 0.37 0.00 0.06 0.41 1.72 2.13 0.00 

Veg Area (Day 119) 620.92 114.21 1487.16 38.56 37501.46 183027.54 222016.17 0.01 22.92 2.32 0.74 0.86 15.32 81.77 97.82 0.01 

Veg Area (Day 200) 565.09 30.87 472.08 21.73 2288.67 79586.86 82347.61 0.01 22.60 0.72 0.38 0.62 1.12 51.07 52.57 0.01 

Veg Area (Day 295) 31.27 6.89 16.70 4.09 120.84 3390.34 3527.88 0.00 3.89 0.49 0.00 0.00 0.68 14.27 14.95 0.00 

Veg Area (Day 354) 19.36 4.42 0.00 0.00 53.08 2757.31 2810.39 0.00 2.26 0.47 0.00 0.00 0.64 13.84 14.48 0.00 

Veg Area (Day 452) 48.17 10.51 0.00 0.00 292.55 19372.83 19665.38 0.00 3.23 0.61 0.00 0.00 1.06 37.03 38.10 0.00 

Lifespan 12.86 0.81 0.00 0.00 1.92 30.11 32.03 0.00 3.50 0.11 0.00 0.00 0.03 0.58 0.62 0.00 

Flowering Dur (Y1) 104.81 6.10 0.00 0.00 103.46 4035.10 4138.56 0.00 9.49 0.36 0.00 0.00 0.36 14.61 14.97 0.00 

Flowering Duration 121.72 9.16 0.00 0.00 237.47 7255.35 7492.81 0.00 10.11 0.46 0.00 0.00 0.59 19.05 19.63 0.00 

Floral Count (Y1) 197.40 20.33 414.42 20.36 833.87 32655.88 33904.16 0.01 12.21 0.74 0.45 0.67 1.17 47.44 49.06 0.01 

Total Floral 229.38 24.33 374.57 19.35 1345.70 53883.33 55603.61 0.01 13.03 0.82 0.35 0.59 1.58 58.24 60.17 0.01 
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Table S2.7. Quantitative genetic partitioning of fitness trait variance across common garden sites and GxE interactions for the DG mapping population. Models with and without year 
effects are shown for reproductive output traits. Also included are models that use both raw and transformed data, as well as those that replace genotype with cyanotype. 

Raw Data Square root Transformed Data 

Trait 
(DG Pop) 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 
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VegArea 
d38v9 

87.7 21.4 5.51 1.0E
+00 

Genotype 103.3 10.2 12.56 3.9E-04 8.95 4.31 10.24 1.0E
+00 

Genotype 0.64 0.80 38.14 6.6E-10 

G x E 212.9 14.6 50.44 1.2E-12 G x E 0.57 0.76 34.39 4.5E-09 

Site(Block) 266.8 16.3 445.32 7.5E-99 Site(Block) 0.78 0.88 386.24 5.4E-86 

Residual 1017.1 31.9 - - Residual 3.45 1.86 - - 

VegArea 
d120v119 

746.5 224.1 1.26 1.0E
+00 

Genotype 13494.2 116.2 40.04 2.5E-10 26.27 13.17 3.00 1.0E
+00 

Genotype 9.36 3.06 62.85 2.2E-15 

G x E 18203.6 134.9 121.92 2.4E-28 G x E 8.10 2.85 81.84 1.5E-19 

Site(Block) 17274.0 131.4 562.99 1.9E-124 Site(Block) 10.39 3.22 586.15 1.7E-129 

Residual 50562.6 224.9 - - Residual 29.21 5.41 - - 

VegArea 
d339v354 

390.4 3.0 1.65 2.0E 
-01 

Genotype 234.6 15.3 0.06 8.1E-01 17.92 0.51 7.14 1.0E
+00 

Genotype 0.91 0.96 1.32 2.5E-01 

G x E 12675.7 112.6 192.68 8.3E-44 G x E 9.64 3.10 165.43 7.4E-38 

Site(Block) 5736.2 75.7 383.20 2.5E-85 Site(Block) 5.23 2.29 411.02 2.2E-91 

Residual 25863.0 160.8 - - Residual 21.89 4.68 - - 

VegArea 
d458v452 

723.0 2.9 8.34 3.9E 
-03 

Genotype 0.3 0.6 0.00 1.0E+00 25.75 0.38 8.55 3.5E 
-03 

Genotype 0.05 0.23 0.01 9.4E-01 

G x E 17158.0 131.0 157.95 3.2E-36 G x E 7.67 2.77 107.24 3.9E-25 

Site(Block) 2968.0 54.5 128.89 7.2E-30 Site(Block) 1.02 1.01 74.23 6.9E-18 

Residual 39999.4 200.0 - - Residual 23.04 4.80 - - 

Y1 
FloweringDur 

115.8 101.1 1.09 3.0E 
-01 

Genotype 64.5 8.0 2.55 1.1E-01 10.70 9.40 0.10 1.0E
+00 

Genotype 0.20 0.45 1.42 2.3E-01 

G x E 490.7 22.2 180.65 3.5E-41 G x E 2.09 1.45 173.19 1.5E-39 

Site(Block) 36.8 6.1 57.66 3.1E-14 Site(Block) 0.18 0.42 64.33 1.1E-15 

Residual 1048.0 32.4 - - Residual 4.60 2.15 - - 

FloweringDur 237.9 103.1 1.73 1.0E
+00 

Genotype 153.2 12.4 9.46 2.1E-03 15.37 9.47 2.88 9.0E 
-02 

Genotype 0.37 0.61 4.44 3.5E-02 

G x E 448.1 21.2 87.26 9.5E-21 G x E 1.84 1.36 119.84 6.9E-28 

Site(Block) 41.9 6.5 42.67 6.5E-11 Site(Block) 0.16 0.40 50.86 9.9E-13 

Residual 1556.3 39.4 - - Residual 5.21 2.28 - - 

Y1 
FloralCount 

173.1 181.5 0.04 1.0E
+00 

Genotype 1900.4 43.6 17.57 2.8E-05 12.60 11.74 0.04 8.4E 
-01 

Genotype 2.60 1.61 12.01 5.3E-04 

G x E 4730.3 68.8 163.92 1.6E-37 G x E 9.50 3.08 289.44 6.6E-65 

Site(Block) 2423.3 49.2 387.02 3.7E-86 Site(Block) 3.92 1.98 464.71 4.5E-103 

Residual 10810.2 104.0 - - Residual 14.36 3.79 - - 

TotalFloral 459.7 183.5 1.35 2.4E 
-01 

Genotype 3832.9 61.9 30.70 3.0E-08 21.09 11.80 0.88 3.5E 
-01 

Genotype 3.48 1.87 20.76 5.2E-06 

G x E 6501.7 80.6 144.68 2.5E-33 G x E 8.40 2.90 208.15 3.5E-47 

Site(Block) 1932.5 44.0 209.90 1.4E-47 Site(Block) 2.43 1.56 263.28 3.3E-59 

Residual 16189.9 127.2 - - Residual 16.22 4.03 - - 



Table S2.7. (Continued) 

Raw Data Square root Transformed Data 

Trait 
(DG Pop) 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 
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VegArea 
d38v9 

86.9 21.3 1.49 2.2E 
-01 

Cyanotype 0.3 0.5 0.00 9.5E-01 8.91 4.30 0.89 1.0E+
00 

Cyanotype 0.00 0.04 0.01 9.3E-01 

Cyano x E 2.0 1.4 0.28 6.0E-01 Cyano x E 0.01 0.08 0.21 6.5E-01 

Site(Block) 267.2 16.3 358.32 6.5E-80 Site(Block) 0.78 0.88 298.39 7.4E-67 

Residual 1330.3 36.5 - - Residual 4.66 2.16 - - 

VegArea 
d120v119 

713.4 201.1 2.10 1.5E 
-01 

Cyanotype 2824.4 53.1 2.20 1.4E-01 25.66 12.58 2.62 1.0E+
00 

Cyanotype 1.44 1.20 5.58 1.8E-02 

Cyano x E 352.3 18.8 0.83 3.6E-01 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 17162.5 131.0 375.15 1.4E-83 Site(Block) 10.35 3.22 397.96 1.5E-88 

Residual 81140.0 284.9 - - Residual 46.18 6.80 - - 

VegArea 
d339v354 

390.4 3.0 1.14 1.0E
+00 

Cyanotype 0.0 0.0 0.00 1.0E+00 17.93 0.51 6.28 1.2E 
-02 

Cyanotype 0.04 0.20 0.38 5.4E-01 

Cyano x E 0.0 0.0 0.00 1.0E+00 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 5706.4 75.5 264.71 1.6E-59 Site(Block) 5.21 2.28 288.84 8.9E-65 

Residual 38773.6 196.9 - - Residual 32.43 5.69 - - 

VegArea 
d458v452 

705.0 2.9 12.07 1.0E
+00 

Cyanotype 0.0 0.1 0.00 1.0E+00 25.36 0.37 30.94 3.2E 
-08 

Cyanotype 0.03 0.17 0.00 9.5E-01 

Cyano x E 831.0 28.8 6.18 1.3E-02 Cyano x E 0.41 0.64 3.91 4.8E-02 

Site(Block) 2931.4 54.1 88.64 4.7E-21 Site(Block) 1.01 1.00 53.88 2.1E-13 

Residual 56828.1 238.4 - - Residual 30.61 5.53 - - 

Y1 
FloweringDur 

115.8 101.6 2.21 1.0E
+00 

Cyanotype 0.0 0.0 0.00 1.0E+00 10.70 9.40 0.16 1.0E+
00 

Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 2.7 1.7 0.45 5.0E-01 Cyano x E 0.00 0.00 0.00 9.8E-01 

Site(Block) 35.7 6.0 34.46 4.4E-09 Site(Block) 0.17 0.42 39.74 2.9E-10 

Residual 1601.7 40.0 - - Residual 6.90 2.63 - - 

FloweringDur 237.9 103.3 5.78 1.6E 
-02 

Cyanotype 0.0 0.0 0.00 1.0E+00 15.37 9.47 296.55 5.5E 
-05 

Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 1.2 1.1 0.08 7.8E-01 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 40.7 6.4 28.35 1.0E-07 Site(Block) 0.16 0.40 32.93 9.6E-09 

Residual 2156.8 46.4 - - Residual 7.42 2.72 - - 

Y1 
FloralCount 

174.8 181.7 0.03 1.0E
+00 

Cyanotype 0.0 0.0 0.00 1.0E+00 12.66 11.78 0.23 1.0E+
00 

Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 111.1 10.5 3.94 4.7E-02 Cyano x E 0.14 0.38 2.75 9.7E-02 

Site(Block) 2408.8 49.1 249.09 4.1E-56 Site(Block) 3.88 1.97 265.34 1.2E-59 

Residual 17383.5 131.8 - - Residual 26.38 5.14 - - 

TotalFloral 461.7 183.6 1.73 1.0E
+00 

Cyanotype 0.0 0.0 0.00 1.0E+00 21.12 11.83 1.31 2.5E 
-01 

Cyanotype 0.00 0.00 0.00 9.9E-01 

Cyano x E 84.0 9.2 1.45 2.3E-01 Cyano x E 0.07 0.27 0.91 3.4E-01 

Site(Block) 1911.0 43.7 127.06 1.8E-29 Site(Block) 2.41 1.55 152.45 5.0E-35 

Residual 26480.5 162.7 - - Residual 28.07 5.30 - - 
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Table S2.7. (Continued) 

Raw Data Square root Transformed Data 

 Model 
Trait 
(DG Pop) 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 
(Year) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
DMN 

Mean 
GFL 

F 
(Site) 
(Year) 
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value 

Random 
effect Var 

St. 
Dev LRT p-value 
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Flowering
Dur 120.8 88.5 42.45 

9.7E 
-11 Genotype 0.0 0.0 0.00 1.0E+00 11.00 8.28 100.01 

7.9E 
-23 Genotype 0.00 0.00 0.00 1.0E+00 

G x E 0.0 0.0 0.00 1.0E+00 G x E 0.00 0.00 0.00 1.0E+00 

0.16 
6.9E 
-01 G x Y 0.0 0.0 0.00 1.0E+00 0.71 

4.0E 
-01 G x Y 0.00 0.00 0.00 1.0E+00 

G x E x Y 550.0 23.5 311.69 9.4E-70 G x E x Y 2.88 1.70 335.83 5.2E-75 

Site(Block) 24.3 4.9 53.63 2.4E-13 Site(Block) 0.15 0.38 64.45 9.9E-16 

Residual 899.8 30.0 - - Residual 4.34 2.08 - - 

TotalFloral 
221.6 175.4 119.71 

1.5E 
-26 Genotype 1106.6 33.3 16.47 4.9E-05 14.40 10.67 19.44 

1.1E 
-05 Genotype 0.66 0.81 2.15 1.4E-01 

G x E 0.0 0.0 0.00 1.0E+00 G x E 0.00 0.00 0.00 1.0E+00 

0.47 
1.0E 
+00 G x Y 0.0 0.0 0.00 1.0E+00 1.10 

3.0E 
-01 G x Y 0.00 0.00 0.00 1.0E+00 

G x E x Y 5753.7 75.9 184.50 5.1E-42 G x E x Y 12.70 3.56 366.81 9.2E-82 

Site(Block) 1334.2 36.5 254.45 2.8E-57 Site(Block) 2.21 1.49 306.08 1.6E-68 

Residual 10923.2 104.5 - - Residual 14.94 3.87 - - 
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Flowering
Dur 124.6 67.6 9.41 

9.4E 
-03 Cyanotype 0.0 0.1 0.00 1.0E+00 11.29 6.52 11.22 

5.7E 
-03 Cyanotype 0.00 0.00 0.01 9.3E-01 

Cyano x E 0.0 0.0 0.01 9.3E-01 Cyano x E 0.00 0.00 0.00 9.6E-01 

18.24 
1.0E 
+00 Cyano x Y 0.0 0.0 0.00 1.0E+00 1.73 

1.9E 
-01 Cyano x Y 0.00 0.00 0.00 9.8E-01 

Cyano xExY 614.7 24.8 554.16 1.6E-122 Cyano xExY 4.17 2.04 725.57 8.2E-160 

Site(Block) 23.9 4.9 37.16 1.1E-09 Site(Block) 0.14 0.37 44.29 2.8E-11 

Residual 1242.7 35.3 - - Residual 5.86 2.42 - - 

TotalFloral 
236.7 106.1 0.38 

5.5E 
-01 Cyanotype 0.5 0.7 0.00 1.0E+00 15.06 7.41 2.53 

1.4E 
-01 Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 0.0 0.2 0.00 1.0E+00 Cyano x E 0.00 0.00 0.00 1.0E+00 

2.51 
1.0E 
+00 Cyano x Y 0.0 0.0 0.00 1.0E+00 3.12 

1.0E
+00 Cyano x Y 0.00 0.00 0.00 1.0E+00 

Cyano xExY 5871.1 76.6 454.75 6.7E-101 Cyano xExY 14.43 3.80 723.17 2.7E-159 

Site(Block) 1265.6 35.6 173.50 1.3E-39 Site(Block) 2.05 1.43 192.79 7.8E-44 

Residual 15725.4 125.4 - - Residual 23.01 4.80 - - 
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Table S2.8. Quantitative genetic partitioning of fitness trait variance across common garden sites and GxE interactions for the SG mapping population. Models with and without 
year effects are shown for reproductive output traits. Also included are models that use both raw and transformed data, as well as those that replace genotype with cyanotype. 

Raw Data Square root Transformed Data 

Trait 
(SG Pop) 

Mean 
STL 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
STL 

Mean 
GFL 
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(Site) 
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value 

Random 
effect Var 

St. 
Dev LRT p-value 
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VegArea 
d20v9 

21.0 14.5 0.31 1.0E
+00 

Genotype 20.5 4.5 23.81 1.1E-06 4.22 3.54 0.15 1.0E
+00 

Genotype 0.33 0.58 34.92 3.4E-09 

G x E 31.6 5.6 67.81 1.8E-16 G x E 0.45 0.67 92.06 8.4E-22 

Site(Block) 32.4 5.7 430.12 1.5E-95 Site(Block) 0.46 0.68 522.07 1E-115 

Residual 128.4 11.3 - - Residual 1.49 1.22 - - 

VegArea 
d113v119 

662.5 635.5 0.04 8.5E 
-01 

Genotype 21567.2 146.9 48.08 4.1E-12 24.88 23.30 0.03 1.0E
+00 

Genotype 12.16 3.49 60.85 6.1E-15 

G x E 24656.4 157.0 107.08 4.3E-25 G x E 11.87 3.45 109.21 1.5E-25 

Site(Block) 27452.6 165.7 604.38 1.9E-133 Site(Block) 12.83 3.58 595.22 1E-131 

Residual 74837.9 273.6 - - Residual 35.57 5.96 - - 

VegArea 
d282v295 

1295.5 29.8 13.97 2.0E 
-04 

Genotype 2428.8 49.3 0.42 5.2E-01 34.72 3.89 13.32 2.7E 
-04 

Genotype 4.53 2.13 9.55 2.0E-03 

G x E 62507.2 250.0 530.91 1E-117 G x E 19.68 4.44 343.25 1.2E-76 

Site(Block) 8969.1 94.7 272.95 2.6E-61 Site(Block) 3.54 1.88 238.48 8.4E-54 

Residual 57363.9 239.5 - - Residual 25.98 5.10 - - 

VegArea 
d362v354 

1018.9 19.4 16.32 5.5E 
-05 

Genotype 0.0 0.1 0.00 1.0E+00 30.99 2.26 36.71 1.0E
+00 

Genotype 2.21 1.49 5.72 1.7E-02 

G x E 26807.4 163.7 271.21 6.2E-61 G x E 10.78 3.28 178.13 1.2E-40 

Site(Block) 113.9 10.7 1.84 1.7E-01 Site(Block) 0.48 0.69 31.19 2.3E-08 

Residual 41088.2 202.7 - - Residual 23.19 4.82 - - 

VegArea 
d449v452 

572.5 48.2 0.77 1.0E
+00 

Genotype 4732.6 68.8 5.26 2.2E-02 21.88 3.23 72.84 3.0E 
-16 

Genotype 6.64 2.58 18.63 1.6E-05 

G x E 18205.8 134.9 74.02 7.7E-18 G x E 12.73 3.57 81.40 1.8E-19 

Site(Block) 544.7 23.3 9.22 2.4E-03 Site(Block) 0.57 0.75 16.54 4.8E-05 

Residual 69997.2 264.6 - - Residual 46.07 6.79 - - 

Y1 
FloweringDur 

87.9 104.8 0.14 7.1E 
-01 

Genotype 742.3 27.2 65.78 5.0E-16 8.53 9.49 0.09 7.7E 
-01 

Genotype 3.31 1.82 57.92 2.7E-14 

G x E 821.7 28.7 228.51 1.3E-51 G x E 4.37 2.09 269.98 1.1E-60 

Site(Block) 125.7 11.2 132.53 1.1E-30 Site(Block) 0.63 0.80 159.59 1.4E-36 

Residual 1645.5 40.6 - - Residual 6.94 2.64 - - 

FloweringDur 256.4 121.7 1.86 1.0E
+00 

Genotype 1508.0 38.8 76.11 2.7E-18 15.68 10.11 1.54 1.0E
+00 

Genotype 3.30 1.82 72.19 2.0E-17 

G x E 1299.6 36.1 122.82 1.5E-28 G x E 2.89 1.70 114.72 9.1E-27 

Site(Block) 318.0 17.8 154.43 1.9E-35 Site(Block) 0.68 0.83 141.58 1.2E-32 

Residual 3604.2 60.0 - - Residual 8.40 2.90 - - 

Y1 
FloralCount 

48.0 201.4 1.74 1.9E 
-01 

Genotype 2070.4 45.5 13.41 2.5E-04 5.81 12.37 3.75 1.0E
+00 

Genotype 6.05 2.46 34.63 4.0E-09 

G x E 8151.5 90.3 531.64 1E-117 G x E 13.75 3.71 636.86 1E-140 

Site(Block) 549.3 23.4 127.35 1.6E-29 Site(Block) 1.33 1.15 217.72 2.8E-49 

Residual 7472.1 86.4 - - Residual 10.71 3.27 - - 

TotalFloral 423.7 232.3 1.73 1.9E 
-01 

Genotype 9708.1 98.5 54.52 1.5E-13 19.91 13.15 0.49 4.8E 
-01 

Genotype 9.45 3.07 50.13 1.4E-12 

G x E 13866.8 117.8 310.07 2.1E-69 G x E 15.12 3.89 390.12 7.8E-87 

Site(Block) 943.7 30.7 80.12 3.5E-19 Site(Block) 1.17 1.08 111.94 3.7E-26 

Residual 19821.3 140.8 - - Residual 18.01 4.24 - - 
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Table S2.8. (Continued) 

Raw Data Square root Transformed Data 

Trait 
(SG Pop) 

Mean 
STL 

Mean 
GFL 

F 
(Site) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
STL 

Mean 
GFL 
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(Site) 
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value 

Random 
effect Var 

St. 
Dev LRT p-value 
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VegArea 
d20v9 

21.5 14.4 0.98 3.3E 
-01 

Cyanotype 0.8 0.9 0.16 6.9E-01 4.23 3.55 0.79 3.9E-
01 

Cyanotype 0.01 0.12 1.09 3.0E-01 

Cyano x E 1.7 1.3 0.82 3.6E-01 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 32.7 5.7 321.11 8.3E-72 Site(Block) 0.46 0.68 365.08 2.2E-81 

Residual 179.6 13.4 - - Residual 2.26 1.50 - - 

VegArea 
d113v119 

663.9 622.2 0.09 1.0E
+00 

Cyanotype 387.5 19.7 0.23 6.3E-01 24.89 22.94 0.37 1.0E+
00 

Cyanotype 0.16 0.39 0.13 7.2E-01 

Cyano x E 610.1 24.7 2.15 1.4E-01 Cyano x E 0.36 0.60 2.08 1.5E-01 

Site(Block) 27409.4 165.6 404.48 5.8E-90 Site(Block) 12.79 3.58 384.45 1.3E-85 

Residual 120362.3 346.9 - - Residual 59.23 7.70 - - 

VegArea 
d282v295 

1292.6 32.4 1.50 2.2E 
-01 

Cyanotype 245.3 15.7 0.03 8.7E-01 34.65 3.99 9.40 2.2E-
03 

Cyanotype 0.14 0.38 0.12 7.3E-01 

Cyano x E 1708.7 41.3 8.17 4.3E-03 Cyano x E 0.35 0.59 4.36 3.7E-02 

Site(Block) 8840.5 94.0 127.88 1.2E-29 Site(Block) 3.50 1.87 122.39 1.9E-28 

Residual 121221.9 348.2 - - Residual 49.91 7.06 - - 

VegArea 
d362v354 

1018.7 19.4 7.12 1.0E
+00 

Cyanotype 0.0 0.0 0.34 5.6E-01 30.99 2.26 25.11 5.8E-
07 

Cyanotype 0.00 0.00 3.86 5.0E-02 

Cyano x E 19.0 4.4 0.03 8.7E-01 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 60.2 7.8 0.31 5.8E-01 Site(Block) 0.45 0.67 17.00 3.7E-05 

Residual 67887.4 260.6 - - Residual 36.18 6.02 - - 

VegArea 
d449v452 

571.1 48.9 1.52 2.2E 
-01 

Cyanotype 37.8 6.1 0.02 8.8E-01 21.82 3.27 498.2 5.8E-
09 

Cyanotype 0.00 0.05 0.00 9.9E-01 

Cyano x E 110.9 10.5 0.30 5.8E-01 Cyano x E 0.09 0.30 0.41 5.2E-01 

Site(Block) 501.4 22.4 5.56 1.8E-02 Site(Block) 0.53 0.73 10.27 1.4E-03 

Residual 92843.1 304.7 - - Residual 65.39 8.09 - - 

Y1 
FloweringDur 

86.8 103.6 1.17 1.0E
+00 

Cyanotype 8.5 2.9 0.32 5.7E-01 8.48 9.42 1.89 2.3E-
01 

Cyanotype 0.00 0.02 0.00 1.0E+00 

Cyano x E 4.7 2.2 0.20 6.6E-01 Cyano x E 0.07 0.27 1.62 2.0E-01 

Site(Block) 122.5 11.1 63.56 1.6E-15 Site(Block) 0.62 0.79 71.40 2.9E-17 

Residual 3202.7 56.6 - - Residual 14.58 3.82 - - 

FloweringDur 254.8 120.1 0.46 5.0E 
-01 

Cyanotype 17.6 4.2 1.13 2.9E-01 15.63 10.06 0.44 1.0E+
00 

Cyanotype 0.02 0.14 0.83 3.6E-01 

Cyano x E 0.0 0.0 0.00 1.0E+00 Cyano x E 0.00 0.00 0.00 1.0E+00 

Site(Block) 313.3 17.7 83.42 6.6E-20 Site(Block) 0.67 0.82 77.97 1.0E-18 

Residual 6402.0 80.0 - - Residual 14.58 3.82 - - 

Y1 
FloralCount 

47.3 197.4 0.34 5.6E 
-01 

Cyanotype 0.0 0.0 0.00 1.0E+00 5.76 12.21 10.96 1.0E+
00 

Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 222.1 14.9 8.74 3.1E-03 Cyano x E 0.32 0.56 8.17 4.2E-03 

Site(Block) 529.0 23.0 48.50 3.3E-12 Site(Block) 1.29 1.14 71.55 2.7E-17 

Residual 17577.0 132.6 - - Residual 30.36 5.51 - - 

TotalFloral 422.7 229.8 0.37 1.0E
+00 

Cyanotype 0.0 0.0 0.00 1.0E+00 19.87 13.05 50.23 1.0E+
00 

Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 233.1 15.3 3.45 6.3E-02 Cyano x E 0.17 0.41 2.06 1.5E-01 

Site(Block) 895.9 29.9 31.42 2.1E-08 Site(Block) 1.12 1.06 41.74 1.0E-10 

Residual 43266.1 208.0 - - Residual 42.49 6.52 - - 
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Table S2.8. (Continued) 

Raw Data Square root Transformed Data 

 Model 
Trait 
(SG Pop) 

Mean 
STL 

Mean 
GFL 

F 
(Site) 
(Year) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 

Mean 
STL 

Mean 
GFL 

F 
(Site) 
(Year) 

p-
value 

Random 
effect Var 

St. 
Dev LRT p-value 
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Flowering
Dur 127.6 85.6 110.83 

5.7E 
-25 Genotype 167.1 12.9 8.20 4.2E-03 10.67 8.14 39.85 

3.7E 
-10 Genotype 1.03 1.01 15.85 6.9E-05 

G x E 0.0 0.0 0.00 1.0E+00 G x E 0.00 0.00 0.00 1.0E+00 

0.86 
1.0E
+00 G x Y 0.0 0.0 0.00 1.0E+00 0.49 

1.0E+
00 G x Y 0.00 0.00 0.00 1.0E+00 

G x E x Y 2107.2 45.9 1309.5 9E-287 G x E x Y 9.00 3.00 1228.6 3E-269 

Site(Block) 49.2 7.0 103.60 2.5E-24 Site(Block) 0.23 0.47 117.66 2.1E-27 

Residual 1297.5 36.0 - - Residual 5.57 2.36 - - 

TotalFloral 
201.5 161.9 344.86 

1.4E 
-70 Genotype 0.0 0.0 0.00 1.0E+00 11.98 10.24 260.58 

7.6E 
-55 Genotype 0.00 0.00 0.00 1.0E+00 

G x E 0.0 0.0 0.00 9.9E-01 G x E 0.00 0.00 0.00 1.0E+00 

0.52 
1.0E
+00 G x Y 0.0 0.0 4.00 4.5E-02 0.26 

1.0E+
00 G x Y 0.00 0.00 0.00 1.0E+00 

G x E x Y 23012.5 151.7 2028.9 0.0E+00 G x E x Y 39.82 6.31 2552.7 0.0E+00 

Site(Block) 203.7 14.3 47.14 6.6E-12 Site(Block) 0.45 0.67 101.33 7.8E-24 

Residual 8419.1 91.8 - - Residual 10.68 3.27 - - 
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Flowering
Dur 127.8 72.1 0.49 

5.0E 
-01 Cyanotype 0.0 0.0 0.00 1.0E+00 10.71 7.33 0.06 

8.2E 
-01 Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 0.0 0.0 0.00 1.0E+00 Cyano x E 0.00 0.00 0.00 1.0E+00 

0.29 
1.0E
+00 Cyano x Y 0.0 0.0 0.05 8.1E-01 3.65 

6.2E 
-02 Cyano x Y 0.00 0.00 0.00 1.0E+00 

Cyano xExY 1632.2 40.4 1697.0 0.0E+00 Cyano xExY 5.93 2.43 1315.21 5E-288 

Site(Block) 53.4 7.3 57.94 2.7E-14 Site(Block) 0.24 0.49 57.98 2.6E-14 

Residual 2412.7 49.1 - - Residual 11.23 3.35 - - 

TotalFloral 
205.2 127.9 3.32 

9.2E 
-02 Cyanotype 0.1 0.4 0.00 1.0E+00 12.11 8.82 2.08 

1.7E 
01 Cyanotype 0.00 0.00 0.00 1.0E+00 

Cyano x E 0.0 0.0 0.00 1.0E+00 Cyano x E 0.00 0.00 0.02 8.9E-01 

1.45 
2.5E 
-01 Cyano x Y 0.0 0.2 0.01 9.1E-01 1.42 

6.5E 
-01 Cyano x Y 0.00 0.00 0.01 9.0E-01 

Cyano xExY 15796.2 125.7 2090.8 0.0E+00 Cyano xExY 29.10 5.39 2520.08 0.0E+00 

Site(Block) 201.8 14.2 19.15 1.2E-05 Site(Block) 0.44 0.66 36.70 1.4E-09 

Residual 19072.1 138.1 - - Residual 27.42 5.24 - - 
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Table S2.9. QTL locations for additional fitness traits not depicted in Figure 2.3, as well as 
transformed data QTLs. 

Site-
Population Fitness trait 

Linkage 
group 

 Refined QTL 
Positionǂ 1-LOD Drop Interval 

DMN-DG sqrt_VegArea_d120 4 141.203 111.86 - 185.91 

16 228.148 200.50 - 232.63 

sqrt_VegArea_d339 10 176.377 153.50 - 210.94 

14 5.263 0.00 - 35.62 

sqrt_Y2_WinterSurvival 14 59.920 48.86 - 80.55 

FloweringDuration 10 176.377 164.78 - 215.93 

15 256.441 207.63 - 273.98 

sqrt_Y1_FloweringDur 15 256.686 207.63 - 260.75 

sqrt_Y2_FloweringDur 7 84.135 75.67 - 87.50 

sqrt_FloweringDuration 10 176.377 164.78 - 215.93 

15 258.551 207.63 - 273.98 

TotalFloral 10 206.973 164.78 - 215.93 

15 249.485 216.80 - 295.51 

sqrt_Y1_FloralCount 5 147.083 26.60 - 156.31 

10 176.377 146.94 - 215.93 

13 280.535 258.18 - 384.24 

15 256.686 214.41 - 273.98 

sqrt_Y2_FloralCount 8 290.733 241.68 - 379.79 

11 151.686 130.75 - 198.11 

14 6.847 5.26 - 24.43 

sqrt_TotalFloral 10 166.255 157.53 - 210.94 

13 391.818 263.50 - 423.62 

15 277.716 216.80 - 295.51 

GFL-DG sqrt_VegArea_d235 15 27.884 0.00 - 37.45 

sqrt_Lifespan 15 89.352 20.36 - 150.94 

FloweringDuration 10 168.000 164.78 - 173.33 

12 333.427 225.23 - 351.83 

15 80.604 66.34 - 85.43 

16 267.417 257.82 - 362.16 

sqrt_Y1_FloweringDur 10 169.077 164.78 - 173.33 

12 236.823 225.23 - 351.83 

15 80.604 0.00 - 110.28 

16 267.417 257.82 - 283.42 

sqrt_FloweringDuration 10 169.077 164.78 - 173.33 

12 236.823 225.23 - 347.69 

15 80.604 0.00 - 85.43 

16 267.417 257.82 - 283.42 

TotalFloral 10 166.255 164.78 - 176.79 

12 333.427 330.32 - 351.83 

15 79.665 0.00 - 85.43 

16 269.813 245.24 - 283.42 

sqrt_Y1_FloralCount 10 168.000 164.78 - 176.79 

12 333.427 329.63 - 351.83 

15 49.841 0.00 - 58.08 

16 262.156 257.82 - 272.47 

sqrt_TotalFloral 10 168.000 164.78 - 176.38 

12 333.427 329.63 - 351.83 

15 49.841 46.88 - 80.39 

16 262.156 257.82 - 273.06 
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STL-SG VegArea_d282 8 515.505 512.76 - 519.44 

sqrt_VegArea_d282 8 515.505 491.01 - 519.44 

sqrt_VegArea_d362 15 161.331 119.87 - 175.60 

FloweringDuration 13 121.105 78.16 - 134.38 

15 117.433 23.86 - 170.49 

sqrt_Y1_FloweringDur 13 121.105 113.82 - 134.38 

15 126.639 119.87 - 175.60 

sqrt_Y2_FloweringDur 15 0.000 0.00 - 25.65 

sqrt_FloweringDuration 13 121.105 116.96 - 134.38 

TotalFloral 15 154.786 124.09 - 168.77 

sqrt_Y1_FloralCount 13 134.377 87.92 - 159.62 

15 169.022 124.09 - 170.49 

sqrt_Y2_FloralCount 15 117.433 98.72 - 159.63 

sqrt_TotalFloral 15 38.029 0.00 - 44.32 

GFL-SG VegArea_d354 15 26.789 19.64 - 58.70 

VegArea_d452 15 26.789 13.47 - 38.03 

sqrt_VegArea_d200 8 91.120 86.40 - 106.07 

15 170.488 159.63 - 176.59 

sqrt_VegArea_d295 15 26.789 10.32 - 29.61 

sqrt_VegArea_d354 15 26.789 19.64 - 29.61 

sqrt_VegArea_d452 15 26.789 19.64 - 32.31 

sqrt_Lifespan 8 105.367 63.38 - 109.59 

15 26.789 19.64 - 83.97 

FloweringDuration 8 101.553 63.38 - 163.10 

10 154.732 121.58 - 162.00 

15 16.166 0.00 - 45.61 

sqrt_Y1_FloweringDur 8 143.939 71.00 - 216.26 

10 169.512 151.11 - 176.64 

15 8.430 6.13 - 11.49 

sqrt_FloweringDuration 8 76.500 56.91 - 216.26 

10 154.732 148.89 - 176.64 

15 8.430 6.13 - 17.42 

TotalFloral 1 246.700 239.22 - 287.85 

10 148.892 130.82 - 162.00 

15 5.330 2.56 - 18.39 

sqrt_Y1_FloralCount 6 195.487 179.37 - 285.19 

10 173.517 121.58 - 177.62 

15 4.818 2.56 - 10.32 

sqrt_TotalFloral 1 246.700 239.22 - 287.85 

6 195.487 94.31 - 338.22 

10 154.732 121.58 - 180.38 

15 7.530 2.56 - 10.32 
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Table S2.10.  For each population, results of post-hoc QTL x E analysis for highest LOD markers in Table 2.1, only for traits that were 
comparably measured across reciprocal sites. 

Pop Trait 
Highest LOD 

Marker 
Linkage 
Group 

Mean 
GFL 

Mean 
DMN Effect Test Statistic p-value 

DG Vegetative Area 
(Day 120v119) 

13:13646557 4 227.95 752.23 Genotype (DD vs. GG) F 222.36 4.26E-02 * 

Site F 1.03 4.96E-01 

QTLxE LRT 13.83 2.00E-04 *** 

10:18587313 15 225.34 752.76 Genotype (DD vs. GG) F 255.58 3.98E-02 * 

Site F 0.84 5.28E-01  
QTLxE LRT 12.15 4.92E-04 *** 

Vegetative Area 
(Day 339v354) 

9:23631957 10 2.69 388.75 Genotype (DD vs. GG) F 67.92 7.68E-02 

Site F 0.98 5.03E-01 

QTLxE LRT 25.75 3.88E-07 **** 

3:26735632 14 2.76 405.82 Genotype (DD vs. GG) F 136.42 5.43E-02 

Site F 1.01 4.98E-01 

QTLxE LRT 13.93 1.90E-04 *** 

Flowering 
Duration (Year 1) 

2:46629904 10 100.40 115.28 Genotype (DD vs. GG) F 1.67 4.19E-01 

Site F 0.51 6.06E-01 

QTLxE LRT 49.54 1.94E-12 **** 

12:12548239 12 102.88 115.49 Genotype (DD vs. GG) F 4.54 2.79E-01 

Site F 1.30 4.59E-01 

QTLxE LRT 11.94 5.49E-04 *** 

15:4065533 15 96.26 116.16 Genotype (DD vs. GG) F 19.73 1.41E-01 

Site F 1.65 4.22E-01 

QTLxE LRT 4.91 2.67E-02 * 

4:59781115 15 99.91 115.43 Genotype (DD vs. GG) F 12.15 1.78E-01  
Site F 0.35 6.61E-01  

QTLxE LRT 3.76 5.24E-02 (NS) 

3:16346453 16 100.27 115.53 Genotype (DD vs. GG) F 4.30 2.86E-01 

Site F 0.93 5.11E-01 

QTLxE LRT 19.29 1.12E-05 **** 

Floral Count 
(Year 1) 

2:43914108 10 181.92 171.45 Genotype (DD vs. GG) F 0.15 7.64E-01  
Site F 0.06 8.41E-01  

QTLxE LRT 31.33 2.18E-08 **** 

2:46629904 10 180.59 170.90 Genotype (DD vs. GG) F 0.09 8.10E-01  
Site F 0.10 8.02E-01  

QTLxE LRT 45.61 1.44E-11 **** 
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8:58495823 12 182.72 173.96 Genotype (DD vs. GG) F 0.16 7.57E-01  
Site F 0.32 6.73E-01  

QTLxE LRT 23.40 1.31E-06 **** 

2:24999810 13 179.18 173.73 Genotype (DD vs. GG) F 0.07 8.33E-01 

Site F 0.00 9.90E-01 

QTLxE LRT 5.75 1.65E-02 * 

15:952339 15 172.15 173.01 Genotype (DD vs. GG) F 0.00 9.77E-01  
Site F 1.52 4.34E-01  

QTLxE LRT 30.29 3.72E-08 **** 

9:48242797 15 176.79 171.39 Genotype (DD vs. GG) F 0.35 6.61E-01  
Site F 1.71 4.15E-01  

QTLxE LRT 2.08 1.50E-01  (NS) 

3:16346453 16 178.25 172.23 Genotype (DD vs. GG) F 0.09 8.17E-01 

Site F 0.74 5.49E-01 

QTLxE LRT 19.82 8.52E-06 **** 

SG Vegetative Area 
(Day 282v295) 

3:3834184 3 30.26 1291.71 Genotype (SS vs. GG) F 2083.19 1.60E-02 * 

Site F 2.05 3.88E-01 

QTLxE LRT 0.51 4.77E-01  (NS) 

15:3511683 15 26.94 1297.45 Genotype (SS vs. GG) F 1401.19 2.01E-02 * 

Site F 0.30 6.82E-01 

QTLxE LRT 0.61 4.33E-01  (NS) 

Vegetative Area 
(Day 362v354) 

9:53788760 15 18.42 1023.13 Genotype (SS vs. GG) F 608.17 2.64E-02 * 

Site F 1.65 4.21E-01  
QTLxE LRT 6.81 9.08E-03 ** 

Flowering 
Duration (Year 1) 

1:27623384 7 106.43 87.76 Genotype (SS vs. GG) F 18.94 1.44E-01  
Site F 0.49 6.12E-01  

QTLxE LRT 3.67 5.55E-02  (NS) 

15:4312433 8 104.79 87.29 Genotype (SS vs. GG) F 3.78 3.03E-01  
Site F 0.06 8.52E-01  

QTLxE LRT 25.97 3.47E-07 **** 

6:22247148 10 105.89 86.46 Genotype (SS vs. GG) F 15.48 1.59E-01  
Site F 2.48 3.60E-01  

QTLxE LRT 2.38 1.23E-01  (NS) 

13:13894869 13 105.81 87.70 Genotype (SS vs. GG) F 13.89 1.67E-01 

Site F 0.72 5.53E-01 

QTLxE LRT 6.73 9.46E-03 ** 
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10:725661 15 104.98 87.68 Genotype (SS vs. GG) F 5.41 2.59E-01 

Site F 1.27 4.62E-01 

QTLxE LRT 10.10 1.49E-03 ** 

1:95517659 15 105.18 87.55 Genotype (SS vs. GG) F 7.51 2.23E-01 

Site F 2.03 3.89E-01 

QTLxE LRT 10.52 1.18E-03 ** 

Floral Count 
(Year 1) 

12:45616154 1 206.23 48.28 Genotype (SS vs. GG) F 49.62 8.98E-02 

Site F 0.54 5.96E-01 

QTLxE LRT 10.22 1.39E-03 ** 

6:18418652 6 212.11 47.60 Genotype (SS vs. GG) F 20.07 1.40E-01 

Site F 0.48 6.15E-01 

QTLxE LRT 18.91 1.37E-05 **** 

6:22247148 10 209.92 45.31 Genotype (SS vs. GG) F 17.84 1.48E-01 

Site F 0.89 5.18E-01 

QTLxE LRT 14.99 1.08E-04 *** 

11:53202884 13 201.67 48.82 Genotype (SS vs. GG) F 123.81 5.71E-02  
Site F 0.03 8.89E-01  

QTLxE LRT 2.79 9.51E-02  (NS) 

10:623367 15 195.99 50.78 Genotype (SS vs. GG) F 4.39 2.84E-01 

Site F 0.72 5.51E-01 

QTLxE LRT 138.07 7.03E-32 **** 

15:17467828 15 210.76 47.19 Genotype (SS vs. GG) F 96.42 6.52E-02  
(used marker Site F 3.24 3.23E-01  
7:34111585) QTLxE LRT 1.49 2.23E-01 (NS) 

p< *0.05, **0.01, ***0.001, ****0.0001  (significance thresholds) 

NS = not significant at p=0.05 level 
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Table S2.11.  Cyanotype frequencies in wild populations near the common garden 
experiments in this study. 

Nearest City Latitude N acli acLi Acli AcLi 

Duluth, MN (DMN) 46.8 82* 0.33 0.10 0.38 0.20 

St. Louis, MO (STL) 38.6 57* 0.12 0.14 0.47 0.26 

Gainesville, FL (GFL) 29.6 62* 0.00 0.05 0.05 0.90 

Wausau, WI (WI) 44.9 136** 0.36 0.13 0.40 0.11 

St. Louis, MO (STL) 38.6 299** 0.15 0.28 0.42 0.15 

New Orleans, LA (LA) 30.2 141** 0.01 0.07 0.06 0.86 

* Wright & Olsen (in prep)

** (Kooyers and Olsen, 2012) 
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Table S2.12.  Summary of FAWN§ monthly above- and below-ground temperatures and rainfall at the GFL common gardens in Citra, FL. 
Temperatures (T) are reported in degrees Fahrenheit. 

Month-
Year* N (# obs) 

T min(avg)    
60cm 

T max(avg)   
60cm 

T avg    
60cm 

Tsoil 
min(avg)    

-10cm 

Tsoil 
max(avg)   

-10cm 
Tsoil avg 

-10cm 
2m Rain 
tot (in) 

2m Rain 
max over 
15min(in) 

Oct-16 2976 40.97 92.37 72.3 66.52 95.07 79.75 1.43 0.08 

Nov-16 2880 33.06 86.43 63.93 58.73 82.81 71.89 0.03 0.03 

Dec-16 2976 28.97 86.49 62.96 51.01 77.81 68.12 0.74 0.17 

Jan-17 2976 29.03 85.03 60.2 46.85 75.56 65.3 1.32 0.08 

Feb-17 2688 33.01 87.91 63.36 56.16 81.68 67.93 1.48 0.24 

Mar-17 2976 33.48 90.81 64.15 52.29 85.89 71 1.33 0.17 

Apr-17 2880 42.29 97.02 71.63 63.7 91.47 78.8 3.8 0.89 

May-17 2976 49.42 101.89 76.79 68.92 97.72 83.85 3.2 0.32 

Jun-17 2880 64.94 95.94 78.5 72 100.56 84.18 12.69 0.88 

Jul-17 2976 70.16 97.63 80.74 78.19 103.87 87.74 6.58 0.64 

Aug-17 2976 70.43 96.78 81.22 78.13 103.06 87.47 7.74 0.59 

Sep-17 2880 63.43 96.06 78.6 71.73 97.14 85.24 10.64 0.47 

Oct-17 2976 37.61 94.5 72.75 61.11 93.13 79.02 2.18 0.7 

Nov-17 2874 41.76 85.3 64.5 58.28 82.47 70.71 3.09 0.18 

Dec-17 2976 31.04 83.44 58.74 45.36 77.02 64.21 1.6 0.24 

Jan-18 2976 23.88 81.45 51.52 38.21 71.28 55.88 5.23 0.39 

Feb-18 2688 39.67 87.96 67.73 50.7 84.88 70.4 2.51 0.4 

Mar-18 2976 29.15 85.59 60.98 55.72 82.2 68.92 3.16 0.35 

Apr-18 2880 44.33 88.02 68.63 59.45 90.86 75.06 6.72 0.55 

May-18 2976 52.07 96.37 75.25 71.02 95.81 81.25 8.09 0.7 

Jun-18 2880 67.6 96.53 80.02 75.11 104.29 86.68 3.37 0.55 

Jul-18 2976 69.93 96.12 79.84 74.03 102.76 85.35 6.51 0.51 

Aug-18 2976 70.59 96.15 80.41 77.43 101.95 87.41 6.28 0.84 

Sep-18 2880 69.62 96.28 80.81 77.86 97.92 86.84 4.08 0.39 

Oct-18 2976 48.94 95.7 74.3 63.66 92.7 81 0.86 0.23 
§Florida Automated Weather Network (https://fawn.ifas.ufl.edu/data/); the University of Florida-Gainesville’s Plant Science Research and
Educational Unit (Citra FAWN station) 

* Periods of high plant mortality in common gardens are highlighted.



 173 

Table S2.13. Herbivory measurements (three metrics) for cyanotype groups in the common garden 
environments. 

Site-
Pop 

Sampling 
Date 

Cyano
-type N 

Avg Total 
Damage 

St. 
Dev 

Avg High 
Damage 

St. 
Dev 

Avg Weighted 
Damage 

St. 
Dev 

DMN
-DG 

August acli 20 0.203 0.060 0.031 0.026 0.063 0.022 

(Year 1) acLi 98 0.155 0.056 0.018 0.020 0.045 0.018 

Acli 102 0.170 0.068 0.019 0.025 0.049 0.022 

AcLi 282 0.164 0.065 0.021 0.024 0.048 0.021 

September acli 20 0.206 0.084 0.026 0.026 0.061 0.027 

(Year 1) acLi 98 0.217 0.077 0.035 0.032 0.067 0.026 

Acli 102 0.195 0.078 0.029 0.028 0.060 0.027 

AcLi 282 0.203 0.078 0.029 0.030 0.061 0.026 

May acli 20 0.155 0.059 0.034 0.032 0.053 0.026 

(Year 2) acLi 98 0.200 0.081 0.043 0.040 0.066 0.030 

Acli 102 0.189 0.073 0.039 0.035 0.062 0.028 

AcLi 281 0.197 0.074 0.048 0.047 0.067 0.031 

June acli 20 0.234 0.098 0.034 0.039 0.070 0.033 

(Year 2) acLi 98 0.229 0.089 0.036 0.031 0.070 0.029 

Acli 102 0.210 0.085 0.030 0.031 0.062 0.027 

AcLi 282 0.207 0.080 0.037 0.036 0.065 0.029 

Mean DMN (gardens) 0.196 0.032 0.060 

STL-
SG 

August acli 33 0.213 0.070 0.071 0.052 0.080 0.035 

(Year 1) acLi 116 0.229 0.087 0.085 0.054 0.087 0.038 

Acli 91 0.209 0.081 0.078 0.056 0.081 0.039 

AcLi 259 0.210 0.084 0.072 0.049 0.079 0.036 

September acli 33 0.388 0.101 0.173 0.074 0.159 0.051 

(Year 1) acLi 116 0.399 0.091 0.173 0.066 0.159 0.044 

Acli 91 0.405 0.100 0.171 0.068 0.160 0.045 

AcLi 259 0.415 0.089 0.183 0.065 0.167 0.042 

May acli 33 0.440 0.125 0.040 0.052 0.121 0.039 

(Year 2) acLi 115 0.443 0.120 0.026 0.027 0.119 0.035 

Acli 91 0.417 0.132 0.032 0.046 0.114 0.041 

AcLi 258 0.436 0.133 0.030 0.045 0.118 0.040 

June acli 33 0.384 0.087 0.025 0.032 0.103 0.026 

(Year 2) acLi 115 0.379 0.117 0.028 0.034 0.103 0.034 

Acli 91 0.386 0.131 0.026 0.028 0.104 0.037 

AcLi 259 0.406 0.132 0.028 0.034 0.110 0.038 

Mean STL (gardens) 0.289 0.081 0.100 

STL-
Wild 

Year 2 acli 23 0.473 0.178 0.161 0.102 0.176 0.083 

acLi 14 0.468 0.134 0.105 0.081 0.149 0.054 

Acli 33 0.451 0.164 0.140 0.070 0.163 0.064 

AcLi 34 0.413 0.147 0.110 0.083 0.143 0.063 

Mean STL (wild) 0.451 0.129 0.158 

GFL on next page 
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GFL-
DG 

March acli 20 0.026 0.026 0.003 0.008 0.008 0.008 

(Year 1) acLi 98 0.044 0.042 0.007 0.014 0.013 0.014 

Acli 101 0.039 0.038 0.008 0.017 0.013 0.015 

AcLi 282 0.047 0.045 0.008 0.016 0.015 0.016 

May acli 20 0.027 0.035 0.012 0.022 0.012 0.017 

(Year 1) acLi 98 0.024 0.033 0.008 0.015 0.009 0.013 

Acli 101 0.018 0.024 0.005 0.012 0.007 0.010 

AcLi 282 0.020 0.028 0.006 0.016 0.007 0.013 

GFL-
SG 

March acli 33 0.031 0.036 0.009 0.018 0.012 0.015 

(Year 1) acLi 117 0.032 0.042 0.011 0.021 0.012 0.017 

Acli 91 0.022 0.032 0.008 0.021 0.008 0.015 

AcLi 258 0.027 0.044 0.009 0.025 0.010 0.021 

May acli 33 0.012 0.020 0.003 0.008 0.004 0.009 

(Year 1) acLi 117 0.022 0.035 0.006 0.015 0.007 0.012 

Acli 91 0.017 0.024 0.005 0.011 0.006 0.009 

AcLi 258 0.017 0.026 0.004 0.011 0.006 0.009 

Mean GFL (gardens) 0.027 0.007 0.009 

GFL-Wild     Year 2 unknown 0.024 0.007 0.003 0.015 0.033 0.011 

Mean GFL (wild) 0.024 0.003 0.033 
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SUPPLEMENTARY FIGURES 

 
 
Figure S2.1.  The total number of inflorescences produced over time in each of the four 
common garden experiments, including reciprocal comparisons for both F2 mapping 
populations (DG and SG).  The x-axis corresponds to the number of days since 
common garden establishment at each site, which occurred in different months (June 
and October) of 2016. (Table S2.1, Table S2.2).
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SUPPLEMENTARY FIGURE LEGENDS 

Large Composite Figures 

 

Figures S2.2-S2.5.  Within-site, pairwise trait correlations for all life history traits 

measured in the DMN (Figure S2.2), STL (Figure S2.3), GFL-DG (Figure S2.4), and 

GFL-SG (Figure S2.5) common gardens  (Pearson correlation tests (r), FDR corrected 

p-values).  Analyses were performed with genotypic estimates from within-site trait 

models that were built using both raw (non-transformed) data (A) and square root 

transformed data (B); each data point corresponds to one F2 genotype.  Colored lines 

between plots draw distinctions between vegetative area (green), survival (orange), 

flowering duration (purple), and floral count (pink) traits.  Colored boxes around plots 

indicate examples of negative (red), non-significant (blue), and positive (green) 

correlations between different aspects of life history (growth vs. reproductive output).  

Also shown are the results of complementary principal components analyses (PCA) that 

identify major axes of correlated fitness trait variation (PC1, PC2 and PC3) within each 

common garden site.  Within each PC, green vs. red shading denotes anti-correlation 

between traits, with the degree of shading indicating the magnitude of a given trait’s 

association in the PC. 

 

Figures S2.6-S2.7.  Regions of genomic co-localization among fitness QTLs in the DG 

and SG populations (Figure S2.6 (a-f) and Figure S2.7 (a-e), respectively).  For each 

QTL within each genomic region, phenotypic distributions are shown for homozygotes 

and heterozygotes, with respect to the native parental alleles, within the common 

garden environment where the QTL was significant.  Means and standard error bars are 

indicated for each genotype.  Additionally, for traits that were comparably measured in 

each reciprocal environment, interaction plots for post-hoc QTLE analyses at the 

highest LOD markers are shown; significant QTLE interactions, indicating antagonistic 

pleiotropy, are denoted (p < *0.05, **0.01, ***0.001, ****0.0001; NS = not significant at 

p=0.05 level) (Table S2.10). 

  

 
 
  



 

 

177 

 
 Figure S2.2.  DMN 
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  Figure S2.3.  STL 
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  Figure S2.4.  GFL-DG 
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  Figure S2.5.  GFL-SG 
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Figure S2.6.  DG Population 
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Figure S2.7.  SG Population 
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CHAPTER 3  

 

Selection at the seedling life stage contributes to cyanogenesis cline evolution  

in white clover (Trifolium repens L.) 
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ABSTRACT 

Widespread plant species often evolve adaptive clines across heterogeneous 

environments, and clines in chemical defense polymorphisms are among the best-

documented cases.  However, the role of selection at the seedling life stage for the 

evolution of chemical defense clines is largely unknown.  We examined this question in 

white clover, a species that is polymorphic for cyanogenesis and has repeatedly 

evolved climate-associated cyanogenesis clines throughout its range.  We assessed 

whether selection at the seedling life stage favors locally-abundant cyanogenesis 

variants in three environments that span a U.S. latitudinal cyanogenesis cline.  We first 

compared cyanogenesis frequencies between wild adult populations that have 

experienced natural selection in each environment and wild-collected seed grown in a 

benign greenhouse environment.  We then performed field seedling survival 

experiments in each environment to test for frequency shifts in cyanogenesis variants 

among survivors.  For two of the three environments, there were significant differences 

in cyanogenesis variant frequencies between greenhouse-grown seedlings and wild 

adults.  Field survival experiments further revealed significant shifts towards the locally 

most abundant variants, consistent with selection at the juvenile life stage.  Our results 

indicate that selection at the seedling life stage contributes to the evolution of 

cyanogenesis clines, and that cyanogenesis clines can potentially evolve within a few 

generations in white clover.  They further suggest that the costs and benefits of 

producing secondary metabolites are substantial in juvenile herbaceous plants and that 

this life stage may play a critical role in the evolution of other chemical defense clines.  
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INTRODUCTION 

Chemical defenses against herbivores are common across the plant kingdom.  

The prevalence and diversity of secondary metabolites produced by plants, as well as 

evidence of long-standing coevolution between plants and herbivores, demonstrate that 

chemical defenses are both effective on an ecological time scale and evolutionarily 

advantageous (Mithöfer and Boland, 2012).  Nevertheless, herbivores and other 

environmental challenges vary across space and time, and energetic costs associated 

with producing chemical defenses can reduce their benefits in some contexts, such as 

conditions of low herbivore abundance or nutrient limitation (Strauss et al., 2002; Fine et 

al., 2006; Kooyers, Blackman and Holeski, 2017; Züst and Agrawal, 2017).  Natural 

selection may therefore favor or disfavor chemical defenses in different environments or 

at different stages of a plant’s life cycle (Lankau and Kliebenstein, 2009; Sampedro, 

Moreira and Zas, 2011).  Intraspecific chemical defense polymorphisms provide 

variation upon which this heterogeneous selection can act (Moore et al., 2014).   

Species with widespread geographical distributions often evolve clines in 

adaptive polymorphisms, such that phenotypic and/or genotypic frequencies change 

gradually across latitudinal, altitudinal, or other environmental gradients (Savolainen, 

Pyhäjärvi and Knürr, 2007; Samis et al., 2012a; Woods et al., 2012).  In plants, 

chemical defense polymorphisms are among the best documented examples of traits 

that have evolved adaptive clinal variation (e.g., Daday, 1958; Levin, 1976; Martz et al., 

2009; Pratt et al., 2014).  Clinal patterns typically emerge from ongoing divergent 

selection for alternate variants in different environments (i.e., locally adaptive variants), 

with some degree of homogenizing gene flow between populations (Haldane, 1948; Su, 
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Lam and Bürger, 2019).  However, while chemical defense clines have been readily 

described for multiple species, little is known about which life stages are most important 

for the evolution and maintenance of these clines.   

 Recent empirical studies have highlighted the importance of early life stages for 

lifetime fitness and local adaptation in natural settings (Debieu et al., 2013; Burghardt, 

Metcalf and Donohue, 2016; Postma and Ågren, 2016, 2018; Zettlemoyer, Prendeville 

and Galloway, 2017).  Because juveniles are likely to be differentially affected by 

herbivory and other environmental stressors (Cook, 1979; Züst and Agrawal, 2017), 

relative to established adult plants, it is reasonable to hypothesize that early life stages 

should play a determining role the evolution of chemical defense clines.  On the other 

hand, the juvenile life stage represents only a brief window in the total life span of a 

plant, particularly for perennial species, and fitness variation associated with a chemical 

defense polymorphism could have cumulative effects over multiple years.  Here, we 

take advantage of a well-studied chemical defense polymorphism that has repeatedly 

evolved climate-associated adaptive clines.  For three populations that span a broad 

environmental gradient corresponding to a North American latitudinal cline in the 

defense, we assess whether selection at the seedling life stage favors locally abundant 

chemical defense variants. 

 

Study system 

 White clover (Trifolium repens L., Fabaceae) is a widespread herbaceous 

perennial that is native to Europe and has been introduced to mesic temperate regions 

worldwide as an important forage crop; it exhibits large population sizes across its 
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global range (USDA, 2002; Kjærgaard, 2003).  Evolutionary and ecological genetic 

studies have been performed in white clover for over 60 years, in large part because it 

possesses an adaptive chemical defense polymorphism for cyanogenesis (the ability to 

produce hydrogen cyanide following tissue damage) (Daday, 1954a, 1954b).  Clines in 

the frequency of cyanogenesis have repeatedly evolved across the native and 

introduced range, such that higher frequencies of cyanogenic plants are found in 

warmer environments, and acyanogenic plants are dominant in cooler environments 

(Daday, 1954a, 1954b; Till-Bottraud, Kakes and Dommée, 1988; Caradus et al., 1990; 

Kooyers and Olsen, 2013; Kooyers et al., 2014; Thompson, Renaudin and Johnson, 

2016).  In the United States, for example, the proportion of cyanogenic plants ranges 

from >85% in the Gulf States (e.g., Louisiana, Florida) to <20% in states that share a 

border with Canada (e.g., Wisconsin, Minnesota) (Kooyers and Olsen, 2012).  Similar 

patterns have been documented across latitudinal and elevation gradients worldwide 

(Daday, 1958; de Araújo, 1976), providing strong evidence that natural selection acts on 

this polymorphism and that alternate cyanotypes are locally adaptive in contrasting 

environments.   

Two biochemical components, cyanogenic glucosides (CNglcs) and their 

hydrolyzing enzyme linamarase, must both be present for a white clover plant to 

produce the cyanogenic response; these components are spatially separated in plant 

tissue, so plants produce the defense only when tissue damage occurs (Gleadow and 

Møller, 2014).  Two unlinked Mendelian polymorphisms control the inheritance of these 

cyanogenesis components, Ac/ac and Li/li for CNglcs and linamarase, respectively 

(Olsen, Sutherland and Small, 2007; Olsen, Hsu and Small, 2008).  For both loci, 
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recessive alleles correspond to gene deletions, and homozygous recessive genotypes 

lack the cyanogenic component (Olsen, Kooyers and Small, 2013; Olsen and Small, 

2018).  These presence/absence polymorphisms thus create four cyanogenesis 

variants or ‘cyanotypes’ in white clover, all of which occur in wild populations: 

cyanogenic plants (AcLi cyanotypes) which produce both components, and 

acyanogenic plants (Acli, acLi, and acli cyanotypes), which lack one or both 

components.   

Because the Ac/ac and Li/li polymorphisms are independently segregating, and 

because white clover is an obligately outcrossing species, recombination during sexual 

reproduction is expected to generate cyanotype frequencies for seedlings in a 

population that are determined by Hardy-Weinberg predictions from parental allele 

frequencies in that location (Ennos, 1982).  These seedling cyanotype frequencies may 

or may not be the same as the optimal cyanotype frequencies favored by selection in 

that environment.  Thus, to the extent that selection acts on cyanotype variation at the 

seedling and juvenile life stages, cyanotype frequencies would be expected to change 

between seedlings and reproductively mature plants in a given location, and any 

cyanotype frequency shifts between seedling and adult cohorts can be attributed to the 

action of selection at the juvenile life stage.  

 Experiments using herbivore feeding chambers and other controlled conditions 

have repeatedly demonstrated that cyanotypes exhibit fitness variation when subjected 

to different herbivory, temperature and soil moisture treatments (reviewed in Hughes, 

1991).  However, field experiments have been mixed in their ability to attribute 

significant fitness trade-offs across contrasting environments to the cyanogenesis 
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polymorphism (Wright et al., in prep).  Moreover, field experiments have rarely focused 

on the seedling life stage, as most have involved transplanting mature plants from 

greenhouse environments into the field.  Nonetheless, the few studies that have 

assessed seedling fitness in natural environments have detected cyanotype frequency 

shifts that suggest selection may be occurring at juvenile life stages (R. Ennos, 1981; 

Pederson and Brink, 1998; Richards and Fletcher, 2002).  While these field studies 

highlight the potential for selection at the seedling life stage related to the cyanogenesis 

polymorphism, shifts in cyanotype frequencies have not been assessed for multiple 

populations across cyanogenesis clines. 

Here, we assess the role of fitness variation at the seedling life stage in 

contributing to white clover local adaptation and the evolution of cyanogenesis clines.  

Using population genetic surveys and germination experiments in three environments 

spanning a latitudinal cyanogenesis cline in North America, we address the following 

specific questions: 1) Are cyanotype frequencies of wild-collected seeds grown in a 

benign greenhouse environment different from frequencies found in adult plants in local 

wild populations? 2) If so, do differences between the seedling and adult cohorts 

suggest that selection favors a shift toward frequencies of the locally most abundant 

cyanotypes? And 3) When seedlings are germinated and grown in contrasting field 

environments, do cyanotype frequencies for surviving plants display an increased 

frequency of the locally most abundant cyanotype, consistent with selection favoring 

that cyanotype at the juvenile life stage?  
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MATERIALS AND METHODS 

Germplasm 

White clover seeds and stolon cuttings were collected on separate occasions 

from mature adult plants in three environments between 2014 and 2016.  The 

environments span a broad latitudinal gradient in the United States:  Duluth, Minnesota 

(46.8°N, -92.1°W; hereafter DMN), St. Louis, Missouri (38.6°N, -90.3°W; hereafter STL), 

and Gainesville, Florida (29.6°N, -82.3°W, hereafter GFL).  Duluth (USDA climate zone 

4b) is located on Lake Superior near the U.S.- Canadian border, while Gainesville 

(USDA zone 9a) is located near the transition from temperate to subtropical climate, 

essentially the southern limit of naturalized North American white clover populations.  

St. Louis (USDA zone 6b) is centrally located in the United States. 

Seed samples. In each environment, mature seed heads were collected from 

approximately 10 maternal plants in 10 distinct localities (e.g., empty lots, parks, 

schoolyards).  In total, samples from 287 maternal plants were collected across the 

three environments (DMN: 83 samples from 10 localities; STL: 115 samples from 13 

localities; GFL: 89 samples from 10 localities) (Table S3.1).  Following collection, 

samples were stored in individual coin envelopes and dried with silica gel; mature seeds 

were harvested by hand and stored at 4°C.   

Seeds from different maternal plants were pooled within localities to create seed 

mixes for germination experiments.  Specifically, three seeds per maternal plant were 

pooled in 1.5 mL microcentrifuge tubes for each distinct locality (10-13 tubes per 

environment, approximately 30 seeds per tube).  This pooling procedure was repeated 

three additional times to create four sets of pooled seeds, each containing 861 seeds 
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from across the 33 localities.  Three of the four sets were stored in the dark at 4°C for 5-

9 months prior to their use in field experiments.   

The fourth set of pooled seeds was scarified using fine-grain sandpaper and 

planted on mist benches in the Washington University greenhouses in January 2016.  

Individual tubes of pooled seeds, corresponding to 33 localities across the three 

environments (Table S3.1), were planted in separate 4.5” square pots with Metro-Mix 

360 potting soil (Hummert International, Earth City, Missouri).  Following germination, 

seedlings were removed from mist benches and grown under standard greenhouse 

conditions.  Germinants and seedlings were counted by hand daily for each locality for 

45 days after planting; 99.3% of the 399 germinants survived to 45 days, indicating that 

the greenhouse provided a benign growth environment.  

After 45 days, a subset of the greenhouse seedlings (designated GH) were 

transferred to individual 3.5” square pots (N=52, 59, and 48 from DMN, STL, and GFL, 

respectively, with proportional representation based on the number of seedlings that 

emerged in each locality).  These GH seedling populations represent plants originating 

from each of the three environments grown under benign conditions with relaxed 

selection.  Cyanotypes were determined as described below, and baseline (pre-

selection) cyanotype frequencies were calculated for GH seedlings from each 

environment of origin.  These baseline frequencies were used in comparisons to wild 

adult and field-grown seedling populations (described below).  

Stolon cuttings. Reproductively mature wild plants were sampled as stolon 

cuttings in each environment. In total, we collected stolon cuttings from 82, 57, and 62 

adult white clover plants in DMN, STL, and GFL, respectively (Table S3.2). In these 
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sampling efforts, stolons were collected broadly across each environment, without 

defining distinct localities, with a minimum distance of 5 m between samples to avoid 

collecting multiple ramets of the same genotype.  Stolon cuttings were transplanted into 

3.5” square pots and grown under standard greenhouse conditions.  Cyanotypes were 

determined as described below.   

  

Cyanotype assignments  

 Cyanotypes were first determined using PCR genotyping of the cyanogenesis 

genes.  DNA extractions were performed with 100 mg of pulverized fresh young leaf 

tissue and IBI Scientific Mini Genomic DNA extraction kits (IBI Scientific, Dubuque, 

Iowa).  Standard PCR reaction conditions and primers for the Ac and Li genes were 

used as described previously (Olsen, Sutherland and Small, 2007; Olsen, Hsu and 

Small, 2008).  Negative PCR results (indicating ac- and li- phenotypes) were repeated 

twice to confirm the negative result.  Half of all cyanotypes inferred by PCR-genotyping 

were further confirmed with cyanotype phenotyping assays using Feigl-Anger HCN test 

paper, as previously described (Olsen, Sutherland and Small, 2007).  

 

Statistical analysis (GH seedlings vs. adults)   

To assess whether white clover populations display overall shifts in cyanotype 

frequencies from the seedling to adult life stage, we compared observed cyanotype 

counts from wild adult samples to the baseline cyanotype counts of GH seedling 

populations for each environment of origin using 2-tests with contingency tables.  We 

also tested specifically for an increase in locally abundant cyanotypes by performing two 
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proportion z-tests between seedling and adult population frequencies for the most 

abundant cyanotype in each environment. 

 

Field experiments 

The remaining three sets of pooled seeds were planted in each environment 

(DMN, STL, GFL) so as to coincide with the local leaf flush at the beginning of the main 

growing season.  Seeds were planted on May 5, 2016 at Washington University’s Tyson 

Research Center; on June 14, 2016 at The University of Minnesota-Duluth’s Research 

and Field Studies Center; and on October 13, 2016 at The University of Florida-

Gainesville’s Plant Science Research and Educational Unit (PSREU) in Citra, FL.  

Seeds were scarified with fine-grain sandpaper on-site immediately prior to 

planting, and tubes of pooled seeds from each of the 33 localities were planted in 

separate 4.5” square pots with the bottoms removed.  Pots were embedded in freshly 

tilled local soil, such that the pots were level with the surrounding ground.  Seeds were 

watered only during the initial planting.  White Scrubbie Mesh (Jo-Ann Stores, Inc., 

Hudson, Ohio) was used to loosely cover pots during the experiment. The mesh 

mimicked shading that occurs for seedlings that naturally germinate within a matrix of 

other plants but did not prevent small herbivores from accessing the seedlings; it has 

been used similarly in a previous white clover germination experiment (Wright et al., 

2017).   

 Cyanotypes among surviving seedlings.  To test whether the cyanotype 

frequencies of surviving seedlings in field experiments displayed an increased 

frequency of the locally abundant cyanotype, relative to seedlings that survive in a 
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benign GH environment, we determined cyanotypes for a subset of the surviving 

seedlings in field experiments and calculated cyanotype frequencies.  Specifically, we 

assayed approximately 50 surviving seedlings from each environment of origin in each 

germination environment (total N = 477).  For each group of ~50 plants, we included 

representatives from all localities with the same environment of origin; the number of 

representatives from a given locality was proportional to the number of survivors from 

that locality in a given germination environment.  Cyanotypes were determined as 

described above.   

To determine whether the locally most abundant cyanotypes increased in 

frequency in each field germination environment, we performed two proportion z-tests to 

compare GH seedlings to those that survived in different germination environments.  

Specifically, we tested for increases in the frequency of Acli among surviving seedlings 

in the DMN and STL environments, relative to their respective GH groups, and we 

tested for an increase of AcLi in the GFL environment; we performed these three 

comparisons for each of the seed sets independently (nine comparisons in total).  

 

RESULTS 

Seedlings (GH) vs. adults:  cyanotype frequency shifts  

 For the wild adult populations in DMN and STL, the locally most abundant 

cyanotype was Acli (frequencies of 0.38 and 0.47, respectively); for GFL, the locally 

most abundant cyanotype was AcLi (0.90) (Figure 3.1, Table S3.3).  These most 

abundant cyanotypes recapitulate those reported in previous cyanogenesis cline 

sampling performed for North American populations at similar latitudes (Kooyers and 
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Olsen, 2012).  Cyanotype frequencies among wild adult populations in the three 

environments were all significantly different from one another (DMN vs. STL:  2=7.83, 

df=3, P=0.049; DMN vs. GFL:  2=72.75, df=3, P<0.00001; STL vs. GFL:   2=51.88, 

df=3, P<0.00001); the GFL population was most pronounced in its differences. 

 When wild adult populations were compared to their respective GH seedling 

populations for each environment, two of the comparisons (STL and GFL) demonstrated 

significant differences in overall cyanotype frequencies (contingency tables:   2=10.78, 

df=3, P<0.02 and  2=9.12, df=3, P<0.03).  Notably, in both cases, it was only the locally 

most abundant cyanotype in adult populations (Acli and AcLi, respectively) that 

increased in frequency from the seedling to adult life stages, while all other cyanotypes 

decreased in frequency across life stages (Table S3.3).  In STL, the frequency of Acli 

more than doubled from 0.22 to 0.47 (z=-2.87, P=0.002), and in GFL, the frequency of 

AcLi increased from 0.69 to 0.90 (z=-2.86, P=0.002).  These results demonstrate that 

there are important differences between benign greenhouse and natural environments 

that select for the most locally abundant cyanotypes during the seedling-to-adult 

transition and that reflect latitudinal cline patterns. 

 

Field experiments 

 In the greenhouse, 399 of the 861 planted seeds germinated (46.3%).  In 

comparison, germinant counts in the field experiment were 334 (38.8%), 350 (40.7%), 

and 364 (42.3%) for the DMN, STL, and GFL field environments, respectively.  Whereas 

99.3% of GH germinants survived to 45 days, 243 (72.8%), 341 (97.4%), and 322 

(88.5%) survived to 30 days in the field environments (Table S3.1, see Supplementary 
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Methods and Results in Appendix III).  These germination rates confirm that there were 

no major losses in seed viability during the experiment, and survival rates suggest that 

the greenhouse environment was more benign than field environments. 

Cyanotypes among survivors. For five out of nine comparisons, seedling 

populations displayed a significant shift in the frequency of the locally most abundant 

cyanotype in field germination environments, relative to the respective baseline GH 

frequencies of the same seed group (Table S3.4).  For four of these five instances, 

there was a significant increase in the locally most abundant cyanotype (Figure 3.2).  

Specifically, the frequency of AcLi increased in the GFL environment for both the DMN 

and GFL seed groups, (z=-2.04, P=0.02 and z=-2.12, P=0.02) (Figure 3.2A,C).  Notably, 

cyanogenic plants in the DMN seed group, which exhibited the lowest baseline 

greenhouse frequency (21%) among seed groups, increased to a frequency of 39% in 

the GFL environment (Figure 3.2A).  Additionally, the frequency of Acli increased in both 

the DMN and STL environments; it was the STL seed group that displayed these shifts 

in both cases (z=-3.14, P<0.001 and z=-2.09, P=0.02) (Figure 3.2B).  These results are 

consistent with selection favoring the locally adaptive cyanotype at the earliest life 

stages.  For the one case where a significant decrease of the locally most abundant 

cyanotype occurred (Acli cyanotypes for GFL seed in the DMN environment), this effect 

was likely due to the fact that the GFL seed population showed the least variability 

across germination environments (i.e., AcLi was at very high frequency in all 

environments) (Figure 3.2C).  Collectively, these results indicate that the locally most 

abundant cyanotype increased in frequency in all three environments across the cline 

for at least one of three seed groups, although it was not always the local seed group 
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that displayed the shift.  These results are, to our knowledge, the first empirical 

evidence for selection acting on cyanogenesis variation at the seedling life stage to 

favor locally abundant cyanotypes at multiple environments across a cline.  

 

DISCUSSION 

 In this study, we assessed the contribution of the seedling life stage for 

cyanogenesis cline evolution in the perennial legume white clover.  We found that for 

two of three environments spanning a North American latitudinal cline, comparisons of 

wild-collected greenhouse-grown seed and local wild adults indicate that selection in the 

wild creates frequency shifts between the seedling and adult life stage towards locally 

abundant cyanotypes (Figure 3.1).  Consistent with this finding, seedling survivorship 

experiments conducted in the field revealed multiple cases of differential survival for 

plants of the locally most abundant cyanotype (Figure 3.2).    These results suggest that 

cyanogenesis clines can evolve in just a few generations, and further, they suggest that 

cyanotype-associated fitness variation at juvenile life stages plays an important role in 

the evolution of clines in this chemical defense polymorphism.  Below we discuss the 

implications of our findings in the context of the white clover cyanogenesis 

polymorphism and more broadly for the evolution of chemical defense clines. 

 

Adaptive shifts in chemical defense variation within a generation 

 Since the earliest documentation of adaptive cyanogenesis clines in white clover 

(Daday, 1954a, 1954b), researchers have studied mechanisms of natural selection that 

shape the evolution of these clines (Daday, 1965).  However, this study is the first to our 
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knowledge to assess shifts in cyanotype frequencies from the seedling to adult life 

stages for different populations across a cyanogenesis cline.  Given that adult 

populations of white clover may largely be composed of two- and three-year-old cohorts 

(Richards and Fletcher, 2002), our findings suggest that selection on the cyanogenesis 

polymorphism can lead to significant shifts in population cyanotype frequencies in a 

single generation.  Such an effect is important because persistent selection is needed to 

maintain adaptive clines in outcrossing species, where interpopulation gene flow and 

sexual recombination are both expected to introduce locally-maladaptive variants into a 

population (Ennos, 1982; Lenormand, 2002; Savolainen, Pyhäjärvi and Knürr, 2007).   A 

study in the annual species A. thaliana similarly demonstrated differential selection on a 

defense polymorphism that caused evolution within five generations (Züst et al., 2012); 

in that case, geographically-structured evolution was related to historical and present 

day distributions of aphids.  The rapid evolution of chemical defense polymorphisms has 

also been documented for introduced plant populations (Bossdorf et al., 2005).  

Generally speaking, minimal negative pleiotropic effects of plant secondary metabolites 

may enable their rapid evolution, relative to primary metabolites, which could explain 

why clines for multiple classes of defense metabolites readily evolve and are maintained 

in a wide variety of species (Levin, 1976; Kooyers and Olsen, 2012; Moore et al., 2014; 

Pratt et al., 2014). 

 

Selection at the seedling stage contributes to chemical defense cline evolution 

 In white clover, a small number of previous field experiments have revealed 

significant effects of cyanogenesis variation for fitness at the seedling life stage.  
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Significant increases in the frequencies of linamarase-producing cyanotypes (AcLi and 

acLi) were observed during the transition from seeds to established adult plants at a 

field site in northwest England (R. Ennos, 1981).  For another white clover population in 

the U.K., wide variation in the proportion of cyanogenic plants was documented over a 

24-year study period; cyanotype frequencies in a given cohort were determined early 

and persisted as the cohort matured, suggesting that selection on cyanogenesis 

variation occurred early in life (Richards and Fletcher, 2002).  In a field experiment 

performed in the U.S. state of Mississippi, cyanogenic seedlings experienced reduced 

insect damage and increased survival compared to acyanogenic plants when both were 

planted from seed in bermudagrass sod (Pederson and Brink, 1998).  None of these 

studies were performed in multiple contrasting environments; thus, they did not assess 

the extent to which selection for differing cyanotypes at the seedling stages contributes 

to cyanogenesis cline evolution.  Our results therefore emphasize the importance of 

environment for determining cyanotype frequencies of seedling cohorts, leading to clinal 

patterns across broad geographical ranges.  

 The production of secondary defense metabolites is known to vary throughout 

the course of development, and younger tissues often contain them at higher 

concentrations (Moore et al., 2014; Villamil, Zedillo-avelleyra and Boege, 2015; Barton 

and Boege, 2017).  We would therefore expect defenses against small herbivores to be 

potent at early life stages and potentially to have a larger effect on the probability of 

survival than they would at later life stages, when minor losses in vegetative tissue have 

smaller negative effects.  While our data only allow us to speculate as to whether 

differences in herbivore pressure across the three study sites caused the cyanotype 
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frequency shifts we observed, previous studies indicate a clear effect of generalist 

herbivores on cyanotype fitness variation, particularly at the seedling life stage.  In a 

controlled feeding study that used a common slug species and mixtures of cyanogenic 

and acyanogenic seedlings, lethal damage was inflicted on most of the acyanogenic 

seedlings by 35 days, while cyanogenic seedlings were largely undamaged (Horrill and 

Richards, 1986).  Other studies that did not directly manipulate herbivores have 

documented marginally significant preferential feeding by herbivores among 

transplanted cuttings in field experiments (Dritschilo et al., 1979; Wright et al., 2017) 

and in wild populations (Whitman, 1973); however acyanogenic plants did not display 

differential mortality due to herbivory in adult plants.  While the benefits of chemical 

defenses emerge in the presence of herbivores, their production may reduce growth 

significantly at the seedling stage, when competition for space is high and tied to lifetime 

fitness (Züst and Agrawal, 2017); thus, environments with reduced herbivore pressure 

are likely to favor fast-growing seedlings that do not produce costly defenses.  

Furthermore, because geographically structured chemical defense polymorphisms are 

known to evolve in response to many varying selective pressures, including multiple 

herbivores, pathogens, mutualists, competitors, and abiotic stresses (Lankau and 

Kliebenstein, 2009; Kalske et al., 2012; Erwin, Geber and Agrawal, 2013; Moore et al., 

2014), a more thorough assessment of cline evolution would consider which of these 

factors impact fitness at the juvenile life stage. 

Our results suggest that early life stages may play an important role in the 

evolution of chemical defense clines.  While our data provide new evidence that 

selection at the seedling stage contributes to cyanogenesis cline evolution in white 
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clover, it does not negate the possibility that this defense polymorphism also 

experiences natural selection at later life stages or during periods of intense natural 

selection (e.g., drought, episodic periods of intense herbivore pressure). Future studies 

focused on the role of chemical defense polymorphisms for local adaptation and clinal 

evolution should aim to consider the effects of defense variation across the entire 

lifespan of the plant, and over multiple years, to understand the dynamics of natural 

selection on this trait. 
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FIGURES 

 
 

Figure 3.1.  Cyanotype frequencies of seedling populations germinated in a benign 
greenhouse (GH) environment (A) versus wild adult populations sampled as stolon 
cuttings (B) for three environments that span a U.S. latitudinal cyanogenesis cline: 
Duluth, MN (DMN), St. Louis, MO (STL) and Gainesville, FL (GFL) (see also Table 
S3.3).  Asterisks below plots indicate significant overall differences in cyanotype 

frequencies between adult samples collected from different environments (2 
contingency tests), while asterisks and corresponding arrows above plots indicate 
significant increases in the locally most abundant cyanotype from the seedling to the 
adult life stage (two proportion z-tests).  Significance thresholds for both tests:  P< 
*0.05, **0.01, ***0.0003, NS=not significant. 
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Figure 3.2.  Cyanotype frequencies of surviving seedlings that were germinated in three field environments (DMN, STL, 
and GFL) (see also Table S3.4), compared to baseline frequencies of seedlings from the same seed source that were 
germinated under benign greenhouse (GH) conditions (Table S3.3).  Seeds collected in DMN (A), STL (B) and GFL (C) 
were germinated in all three environments and the greenhouse.  Colored circles indicate the most locally abundant 
cyanotype for each field germination environment.  Asterisks indicate significant changes from the GH to the field 
specifically in the locally most abundant cyanotype for that environment.  Blue and red asterisks indicate significant 
increases and decreases, respectively (two proportion z-tests, P<0.05).  
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SUPPLEMENTARY METHODS 

 There is abundant evidence that white clover displays local adaptation across its 

climatic range in North America, but the extent to which cyanotype variation contributes 

to seedling fitness in different environments has not been assessed.  We therefore 

performed germination counts and seedling survivor counts among germinants for each 

locality in each field germination environment to determine whether seedlings showed 

evidence of home-site advantage with respect to these early life stages.   

 

Measurements 

 Counts were assessed using digital photographs taken at least twice per week 

for 30 days after the seeds were planted. After 30 days, seedlings grew too large to 

distinguish individual plants in photos (Figure S3.1).   

 

Statistical analysis 

 We analyzed the variation in germination and survival among localities using 

linear mixed models that we constructed separately for germinant count and seedling 

survivor count.  Models were built using R statistical software and the lme4 package 

(Bates et al., 2015).  The germinant count model included the environment where seeds 

were planted (E) and the number of seeds planted as fixed effects.  The surviving 

seedling count model included E and the number of germinants as fixed 

effects.  Locality nested within environment of origin (O) and OE were included as 

random effects in both models.  The significance of fixed effects was assessed with 
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ANOVAs, and the significance of random effects was assessed with likelihood ratio 

tests and the lmerTest package (Kuznetsova, Brockhoff and Christensen, 2017). 

 

SUPPLEMENTARY RESULTS 

Germination 

 Germinant counts were 334 (38.8% of the total seeds planted), 350 (40.7%), and 

364 (42.3%) for the DMN, STL, and GFL field environments, respectively, compared to 

399 (46.3%) in the benign greenhouse environment (Table S3.1).  In the germinant 

count model, germination environment (E) did not explain significant differences in 

germination counts (F3,6=0.74, P=0.5654).  These results suggest that there were no 

major losses in seed viability for the time frame over which the field experiments were 

conducted (January-November 2016).   

 Environment of origin (O) was a significant random effect  (2=11.71, df=1, 

P=0.0006); it explained the highest proportion of total variance in germination counts 

among the 33 localities (0.73), after accounting for the number of seeds planted as a 

fixed effect (F1,29=70.13, P < 0.0001).  This suggests that there were differences in 

germination propensity for seed sets originating from different environments and may 

reflect genetic differences in dormancy.  There were also marginally significant 

differences in germination between localities from the same O (2=3.87, df=1, 

P=0.0490).   

 There was a significant OE interaction (2=9.62, df=1, P=0.0019).  This 

interaction was evidenced by the fact that all populations had low relative germinant 
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counts (negative OE effects) in their native environments and higher relative counts 

(positive OE effects) in other environments.  Specifically, DMN seed germinated best 

in the GH and worst in DMN, STL seed germinated best in GFL and worst in the GH, 

and GFL seed germinated best in STL and worst in GFL (Table S3.5).  These findings 

suggest there is not a home-site advantage with respect to germination; rather, the wild-

collected seeds may possess some degree of home-site maladaptation for germination. 

 

Seedling survivorship 

 Among germinants that emerged within 30 days after planting, 243 (72.8%), 341 

(97.4%), and 322 (88.5%) survived to the 30-day mark in the DMN, STL and GFL 

environments, respectively, compared to 99.3% that survived to the 45-day mark in the 

benign GH environment (Table S3.1).  Unlike germinant counts, seedling survivorship 

among localities was significantly affected by E (F3,7=5.95, P=0.023), after including the 

number of germinants as a fixed effect (F1,65=1344, P<0.0001); thus, the environments 

imposed differential selection for seedling survival.  Seedling survival rates suggest that 

the DMN environment imposed the strongest natural selection, and the STL 

environment was relatively benign.   

 The OE interaction also significantly affected seedling survivorship (2=15.92, 

df=1, P<0.0001); it was the random effect that explained the highest proportion of 

variance in survivorship among localities (0.29).  In the DMN environment where 

survivorship was lowest, the local DMN seed had the highest relative survivorship 

(positive OE effects), while seed originating from GFL germplasm had low relative 

survivorship (negative OE effects) (Table S3.5).  In the STL environment, where 



 

 

213 

survivorship was highest among the three field environments, this pattern reversed; 

seed originating from GFL had high relative survivorship and the DMN seed had low 

relative survivorship.  Taken together, these findings provide evidence for home-site 

fitness advantage (i.e., local adaptation) in the DMN environment.  They also suggest 

that there are survivorship trade-offs for seedlings originating from DMN and GFL in 

harsher (DMN) vs. more benign (STL) field environments. 
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SUPPLEMENTARY TABLES 
 

Table S3.1.  Seed sample information and results of the field germination experiment, including germinant and seedling survivor counts in each environment. 

      GERMINATION EXPERIMENT COUNTS 

SEED SAMPLES Germinants* Surviving Seedlings* 

Environment Locality Latitude Longitude 
No. 

Samples 
No. Seeds 

Planted GH DMN STL GFL GH DMN STL GFL 

DMN D01-Portland Square 46.80 -92.09 8 24 8 5 8 8 8 3 8 5 

DMN D02-Chester Park 46.81 -92.10 8 24 4 4 6 3 4 4 6 3 

DMN D03-UMD baseball fields 46.82 -92.08 10 30 16 3 11 6 15 3 11 6 

DMN D04-8th St. & N. 20th Ave. E. 46.81 -92.08 9 27 11 5 6 6 10 5 6 4 

DMN D05-Lakewalk North 46.81 -92.06 7 21 8 7 3 6 8 6 3 6 

DMN D06-Leif Erikson Park 46.80 -92.08 8 24 8 8 5 6 8 7 4 6 

DMN D07-Canal Park Beach 46.79 -92.10 9 27 16 3 5 8 16 2 5 5 

DMN D08-Marshall High School 46.80 -92.11 6 18 7 8 9 2 7 7 9 2 

DMN D09-57-99 W. Mulberry St. 46.80 -92.13 9 27 13 2 5 9 13 2 5 9 

DMN D10-Arrowhead & Stebner 46.82 -92.20 9 27 18 5 5 5 18 4 4 5 

STL S01-Waterman Blvd 38.65 -90.30 10 30 11 14 10 16 11 8 10 11 

STL S02-Central West End 38.65 -90.26 8 24 8 6 4 7 8 4 4 7 

STL S03-Forest Park Metrolink 38.65 -90.29 10 30 10 11 6 9 10 7 6 9 

STL S04-Good Shepherd offices 38.67 -90.32 10 30 3 7 8 10 3 6 8 10 

STL S05-Olive Blvd 38.66 -90.30 10 30 9 11 14 9 9 9 14 9 

STL S06-Forest Park (location 1) 38.63 -90.30 5 15 4 6 5 3 4 3 5 1 

STL S07-Forest Park (location 2) 38.64 -90.28 10 30 8 12 7 12 8 9 7 12 

STL S08-Forest Park (location 3) 38.64 -90.29 9 27 6 9 8 5 6 3 7 5 

STL S09-Joseph Mooney Park 38.66 -90.33 9 27 9 11 7 12 9 10 7 10 

STL S10-Farmhaus restaurant 38.60 -90.30 9 27 11 2 6 11 11 1 6 9 

STL S11-Heman Park 38.66 -90.32 10 30 8 3 7 9 8 3 7 9 

STL S12-STL Comm. Credit Union 38.63 -90.32 10 30 10 8 9 20 10 6 9 19 

STL S13-University City 38.66 -90.31 5 15 6 4 5 9 6 2 5 5 

GFL G01-U Florida offices 29.63 -82.36 15 45 29 33 33 30 29 30 33 28 

GFL G02-AFRU at U Florida 29.80 -82.41 9 27 16 15 18 17 15 13 16 16 

GFL G03-Beef unit at U Florida 29.74 -82.28 10 30 17 21 19 17 17 17 17 13 

GFL G04-Alachua 29.79 -82.49 6 18 13 17 14 14 13 9 14 13 

GFL G05-U Florida campus 29.64 -82.36 10 30 20 17 25 18 20 12 24 17 

GFL G06-U Florida campus 29.64 -82.36 10 30 23 14 21 24 23 9 20 22 

GFL G07-U Florida campus 29.64 -82.36 6 18 14 15 13 9 14 11 13 9 

GFL G08-U Florida campus 29.64 -82.36 7 21 16 16 12 14 16 4 12 11 

GFL G09-U Florida campus 29.64 -82.36 9 27 23 23 22 16 23 18 22 13 

GFL G10-U Florida campus 29.64 -82.36 7 21 16 9 14 14 16 6 14 13 

*30 days after planting  TOTAL 287 861 399 334 350 364 396 243 341 322 
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Table S3.2.  Sampling locations and cyanotypes for wild population samples (adult plants). 

Environment Accession Latitude Longitude Cyanotype 

DMN DMN_200 46.803 -92.095 Acli 

DMN DMN_201 46.804 -92.086 acli 

DMN DMN_202 46.805 -92.097 Acli 

DMN DMN_203 46.805 -92.085 acli 

DMN DMN_204 46.805 -92.085 Acli 

DMN DMN_205 46.806 -92.085 acLi 

DMN DMN_206 46.805 -92.085 acli 

DMN DMN_207 46.805 -92.086 acli 

DMN DMN_208 46.805 -92.086 AcLi 

DMN DMN_209 46.805 -92.086 acLi 

DMN DMN_210 46.827 -92.037 Acli 

DMN DMN_211 46.827 -92.037 acli 

DMN DMN_212 46.836 -92.079 AcLi 

DMN DMN_213 46.837 -92.079 Acli 

DMN DMN_214 47.048 -91.631 acLi 

DMN DMN_215 46.813 -92.913 Acli 

DMN DMN_216 46.813 -92.913 acli 

DMN DMN_217 46.813 -92.095 AcLi 

DMN DMN_218 46.815 -92.096 AcLi 

DMN DMN_219 46.815 -92.096 AcLi 

DMN DMN_220 46.815 -92.096 Acli 

DMN DMN_221 46.815 -92.096 acli 

DMN DMN_222 40.742 -93.989 acli 

DMN DMN_223 47.115 -91.651 AcLi 

DMN DMN_224 47.415 -92.259 acli 

DMN DMN_225 47.670 -92.751 acli 

DMN DMN_226 46.814 -92.091 acLi 

DMN DMN_227 46.819 -92.098 Acli 

DMN DMN_228 46.837 -92.008 Acli 

DMN DMN_229 46.730 -92.175 Acli 

DMN DMN_230 46.732 -92.168 AcLi 

DMN DMN_231 46.733 -92.168 acLi 

DMN DMN_232 46.800 -92.010 AcLi 

DMN DMN_233 46.807 -92.074 Acli 

DMN DMN_234 46.821 -92.075 AcLi 

DMN DMN_235 46.822 -92.076 Acli 

DMN DMN_236 46.837 -92.078 AcLi 

DMN DMN_237 46.837 -92.078 Acli 

DMN DMN_238 46.837 -92.080 acLi 

DMN DMN_239 46.837 -92.078 Acli 

DMN DMN_240 46.778 -92.408 acLi 

DMN DMN_241 46.778 -92.408 acli 

DMN DMN_242 46.819 -92.100 Acli 

DMN DMN_243 46.819 -92.100 Acli 

DMN DMN_244 46.819 -92.100 AcLi 

DMN DMN_245 46.820 -92.100 Acli 

DMN DMN_246 46.818 -92.081 Acli 

DMN DMN_247 46.869 -92.052 acli 

DMN DMN_248 46.869 -92.053 acli 
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DMN DMN_249 46.869 -92.050 acli 

DMN DMN_250 45.599 -92.992 Acli 

DMN DMN_251 45.599 -92.992 acli 

DMN DMN_252 46.818 -92.079 acli 

DMN DMN_253 46.818 92.091 Acli 

DMN DMN_254 46.819 -92.087 Acli 

DMN DMN_255 46.819 -92.087 Acli 

DMN DMN_256 46.818 -92.080 Acli 

DMN DMN_257 46.818 -92.081 AcLi 

DMN DMN_258 46.867 -92.049 Acli 

DMN DMN_259 46.868 -92.048 Acli 

DMN DMN_260 46.778 -92.408 acLi 

DMN DMN_261 46.849 -92.083 acli 

DMN DMN_262 46.731 -92.190 acli 

DMN DMN_263 46.803 -92.095 AcLi 

DMN DMN_264 46.803 -92.095 Acli 

DMN DMN_265 46.815 -92.101 AcLi 

DMN DMN_266 46.868 -92.049 Acli 

DMN DMN_267 46.726 92.191 acli 

DMN DMN_268 NA NA AcLi 

DMN DMN_269 NA NA Acli 

DMN DMN_270 46.806 -92.078 acli 

DMN DMN_271 46.822 -92.112 Acli 

DMN DMN_272 46.787 -92.098 AcLi 

DMN DMN_273 46.787 -92.098 acli 

DMN DMN_274 46.815 -92.082 acli 

DMN DMN_275 46.815 -92.082 acli 

DMN DMN_276 46.820 -92.090 Acli 

DMN DMN_277 47.903 -91.867 acli 

DMN DMN_278 46.868 -92.050 Acli 

DMN DMN_279 46.868 -92.050 acli 

DMN DMN_280 46.868 -92.051 acLi 

DMN DMN_281 46.869 -92.050 acli 

DMN DMN_282 46.869 -92.050 acli 

STL STL_0106 38.641 -90.287 Acli 

STL STL_0108 38.641 -90.287 acli 

STL STL_0507 38.641 -90.287 acLi 

STL STL_0701 38.605 -90.267 acli 

STL STL_0905 38.625 -90.450 Acli 

STL STL_1010 38.611 -90.486 Acli 

STL STL_1309 38.638 -90.293 acLi 

STL STL_5000 38.648 -90.288 acli 

STL STL_5001 38.634 -90.303 Acli 

STL STL_5002 38.641 -90.332 Acli 

STL STL_5003 38.639 -90.358 AcLi 

STL STL_5004 38.653 -90.367 Acli 

STL STL_5005 38.656 -90.406 Acli 

STL STL_5006 38.666 -90.396 Acli 

STL STL_5007 38.671 -90.374 Acli 

STL STL_5008 38.675 -90.371 AcLi 

STL STL_5009 38.675 -90.360 Acli 

STL STL_5011 38.673 -90.343 Acli 
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STL STL_5012 38.667 -90.333 acli 

STL STL_5013 38.658 -90.319 Acli 

STL STL_5014 38.657 -90.298 AcLi 

STL STL_5015 38.662 -90.304 acLi 

STL STL_5016 38.673 -90.318 Acli 

STL STL_5017 38.645 -90.280 acli 

STL STL_5018 38.644 -90.268 AcLi 

STL STL_5019 38.640 -90.251 Acli 

STL STL_5020 38.640 -90.244 Acli 

STL STL_5021 38.639 -90.239 Acli 

STL STL_5022 38.639 -90.239 Acli 

STL STL_5023 38.644 -90.238 acLi 

STL STL_5024 38.646 -90.246 Acli 

STL STL_5025 38.652 -90.256 acLi 

STL STL_5026 38.650 -90.261 Acli 

STL STL_5027 38.655 -90.273 acLi 

STL STL_5028 38.648 -90.278 AcLi 

STL STL_5029 38.653 -90.284 Acli 

STL STL_5030 38.650 -90.286 Acli 

STL STL_5031 38.623 -90.352 Acli 

STL STL_5032 38.618 -90.363 AcLi 

STL STL_5033 38.617 -90.395 acLi 

STL STL_5034 38.607 -90.394 AcLi 

STL STL_5035 38.603 -90.385 Acli 

STL STL_5036 38.597 -90.380 acli 

STL STL_5037 38.584 -90.378 AcLi 

STL STL_5038 38.592 -90.357 AcLi 

STL STL_5039 38.605 -90.349 acli 

STL STL_5040 38.604 -90.333 Acli 

STL STL_5041 38.604 -90.333 AcLi 

STL STL_5042 38.613 -90.323 AcLi 

STL STL_5043 38.623 -90.287 AcLi 

STL STL_5044 38.608 -90.290 AcLi 

STL STL_5045 38.615 -90.284 Acli 

STL STL_5046 38.628 -90.292 AcLi 

STL STL_5047 38.626 -90.302 Acli 

STL STL_5048 38.620 -90.314 Acli 

STL STL_5049 38.623 -90.325 AcLi 

STL STL_5050 38.623 -90.341 acLi 

GFL GFL_001 29.633 -82.356 AcLi 

GFL GFL_002 29.633 -82.356 AcLi 

GFL GFL_003 29.633 -82.355 AcLi 

GFL GFL_004 29.633 -82.355 AcLi 

GFL GFL_005 29.639 -82.359 AcLi 

GFL GFL_006 29.639 -82.359 AcLi 

GFL GFL_007 29.641 -82.362 AcLi 

GFL GFL_008 29.641 -82.362 AcLi 

GFL GFL_009 29.641 -82.364 AcLi 

GFL GFL_010 29.641 -82.364 AcLi 

GFL GFL_011 29.640 -82.364 AcLi 

GFL GFL_012 29.640 -82.364 AcLi 

GFL GFL_013 29.638 -82.363 AcLi 
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GFL GFL_014 29.638 -82.363 AcLi 

GFL GFL_015 29.638 -82.363 AcLi 

GFL GFL_016 29.638 -82.362 AcLi 

GFL GFL_017 29.638 -82.363 AcLi 

GFL GFL_018 29.635 -82.361 AcLi 

GFL GFL_019 29.635 -82.361 AcLi 

GFL GFL_020 29.635 -82.361 AcLi 

GFL GFL_021 29.636 -82.365 AcLi 

GFL GFL_022 29.636 -82.365 AcLi 

GFL GFL_023 29.636 -82.365 AcLi 

GFL GFL_024 29.636 -82.366 AcLi 

GFL GFL_025 29.636 -82.367 AcLi 

GFL GFL_026 29.636 -82.367 AcLi 

GFL GFL_027 29.634 -82.367 AcLi 

GFL GFL_028 29.634 -82.367 AcLi 

GFL GFL_029 29.649 -82.360 Acli 

GFL GFL_030 29.649 -82.360 AcLi 

GFL GFL_031 29.644 -82.349 AcLi 

GFL GFL_032 29.644 -82.349 AcLi 

GFL GFL_033 29.640 -82.360 AcLi 

GFL GFL_034 29.641 -82.361 Acli 

GFL GFL_035 29.641 -82.364 AcLi 

GFL GFL_036 29.643 -82.367 AcLi 

GFL GFL_037 29.642 -82.368 AcLi 

GFL GFL_038 29.638 -82.363 acLi 

GFL GFL_039 29.640 -82.364 AcLi 

GFL GFL_040 29.640 -82.364 AcLi 

GFL GFL_041 29.642 -82.366 AcLi 

GFL GFL_042 29.642 -82.366 AcLi 

GFL GFL_043 29.642 -82.364 AcLi 

GFL GFL_044 29.650 -82.371 AcLi 

GFL GFL_045 29.649 -82.360 AcLi 

GFL GFL_046 29.645 -82.357 AcLi 

GFL GFL_047 29.648 -82.351 AcLi 

GFL GFL_048 29.646 -82.357 AcLi 

GFL GFL_049 29.648 -82.358 AcLi 

GFL GFL_050 29.648 -82.345 AcLi 

GFL GFL_051 29.650 -82.343 acLi 

GFL GFL_052 29.650 -82.341 acLi 

GFL GFL_053 29.649 -82.332 AcLi 

GFL GFL_054 29.643 -82.332 AcLi 

GFL GFL_055 29.644 -82.341 AcLi 

GFL GFL_056 29.644 -82.341 Acli 

GFL GFL_057 29.644 -82.340 AcLi 

GFL GFL_058 29.642 -82.342 AcLi 

GFL GFL_059 29.642 -82.343 AcLi 

GFL GFL_060 29.642 -82.343 AcLi 

GFL GFL_061 29.642 -82.343 AcLi 

GFL GFL_062 29.641 -82.343 AcLi 
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Table S3.3.  Cyanotype counts and frequencies of seedlings grown from wild-collected seeds in a benign greenhouse environment (GH 

seedlings) vs. wild adult plants from three environments that span a U.S. latitudinal cyanogenesis cline. 2 contingency tests compare 
cyanotype composition between the two cohorts. Significant increases in the frequency of the locally most abundant cyanotype are also 
indicated (two proportion z-tests). 

Sample origin 

    Cyanotype Counts   Cyanotype Frequencies 

Life Stage N AcLi Acli acLi acli   AcLi Acli acLi acli 

Duluth, Minnesota (DMN) 

(2=0.97NS) 

GH seedlings 52 11 22 6 13  0.21 0.42 0.12 0.25 

Wild adults 82 16 31 8 27  0.20 0.38 0.10 0.33 

St. Louis, MO (STL) 

(2=10.78*) 

GH seedlings 59 21 13 7 18  0.36 0.22 0.12 0.31 

Wild adults 57 15 27 8 7  0.26 0.47** 0.14 0.12 

Gainesville, FL (GFL) 

(2=9.12*) 

GH seedlings 48 33 6 4 5  0.69 0.13 0.08 0.10 

Wild adults 62 56 3 3 0   0.90** 0.05 0.05 0.00 

Bold frequencies indicate the cyanotype that increased in frequency from the seedling to adult life stage. 

Italics indicate the most abundant cyanotype in wild populations at or near the study locations (Kooyers and Olsen, 2012; Wright et al., 2017). 

Significance thresholds:  *P<0.05, **P<0.01 
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Table S3.4.  Cyanotype counts and frequencies for surviving seedling populations in field germination experiments.  

Seed 
Origin 

Germination 
environment 

 Cyanotype Counts   Cyanotype Frequencies 

N AcLi Acli acLi acli   AcLi Acli acLi acli 

DMN DMN 36 9 16 3 8 
 

0.25 0.44NS 0.08 0.22 

STL 49 5 25 7 12 
 

0.1 0.51NS 0.14 0.24 

GFL 56 22 14 5 15 
 

0.39* 0.25 0.09 0.27 

STL DMN 60 21 25 8 6 
 

0.35 0.42* 0.13 0.10 

STL 52 11 21 7 13 
 

0.21 0.40* 0.13 0.25 

GFL 57 15 22 6 14 
 

0.26NS 0.39 0.11 0.25 

GFL DMN 55 53 1 1 0 
 

0.96 0.02* 0.02 0.00 

STL 55 46 3 5 1 
 

0.84 0.05NS 0.09 0.02 

GFL 57 49 3 4 1 
 

0.86* 0.05 0.07 0.02 

Two proportion z-tests for the locally most abundant cyanotypes: *P<0.05, ***P<0.001, NS=not significant at P=0.05. 
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Table S3.5.  Random effect estimates of O×E (i.e., environment of seed origin 
× germination environment) interactions included in linear mixed models for 
germinant and surviving seedling counts among 33 localities.  Means 
presented are least squares means for each germination environment. 

  Germination Environment 

Model Origin GH DMN STL GFL 

Germinant 
Count* 

DMN 1.91 -0.93 -0.38 -0.87 

STL -1.41 0.35 -0.60 1.43 

GFL -0.50 0.58 0.98 -0.56 

Mean 12.49 10.36 10.93 11.17 

Surviving 
Seedling 
Count* 

DMN -0.19 1.38 -0.21 0.07 

STL -0.19 0.07 -0.03 -0.02 

GFL 0.38 -1.44 0.24 -0.05 

Mean 10.97 8.14 10.67 9.70 

*30 days after planting 
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SUPPLEMENTARY FIGURE 

 
 

Figure S3.1.  Field germination experiments at three field sites that span a latitudinal cyanogenesis cline in North America 
(DMN, STL, and GFL).  Pictures of seedlings at various time points throughout the 30-day experiment are shown for one 
of the 33 localities planted in STL. 
 

Figure S1 

DMN GFL 

May 19 (Day 15) May 23 (Day 19) May 26 (Day 22) June 2 (Day 29) May 13 (Day 9) 

STL 
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 This thesis was designed to study local climatic adaptation in a widespread 

herbaceous legume, white clover, which was once considered the “agricultural 

equivalent of coal” for its importance as a source of nitrogen fertilizer (Kjærgaard, 2003) 

and which remains one of the most important forage crops worldwide (Abberton and 

Thomas, 2010).  The chapters herein aimed to contribute to a body of evolutionary 

research concerned with characterizing the genetic architecture of local adaptation 

(Savolainen, Lascoux and Merilä, 2013) by increasing the breadth of species to include 

an outcrossing, herbaceous perennial plant.  Furthermore, this research has aimed to 

assess the relative importance of a well-studied, adaptive chemical defense 

polymorphism for fitness across multiple environments, and for both juvenile and adult 

life stages. 

 In Chapter 1, I explored the relationships between vegetative growth, 

reproductive fitness, cyanogenesis variation, and continent-wide climatic variation for 15 

widespread North American populations grown for one year in a central U.S. common 

garden environment (St. Louis, MO).  There were clear correlations related to 

population of origin for both fitness measures.  Specifically, populations originating in 

climates that were more similar to St. Louis performed better than those that were 

collected in more dissimilar climates, as would be expected if populations were adapted 

to local climates (Kawecki and Ebert, 2004; Raabová, Münzbergová and Fischer, 2007).  

In addition to the evolution of cyanogenesis clines in these populations (Kooyers and 

Olsen, 2012, 2013), this result provides strong evidence that North American white 

clover populations have rapidly adapted to local climatic variation since their 

introduction to this continent in the last 500 years.  Further, linear mixed modeling 
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analyses suggested that maximum summer temperatures and temperature variability at 

the home-site were the highest weighted climatic predictors for vegetative growth in a 

continental climate, whereas precipitation, and cyanotype to a lesser extent, were best 

predictors of reproductive output.  These results indicate that different selective 

mechanisms affect alternate aspects of fitness across heterogeneous environments in 

white clover, similar to other plant species (Moles et al., 2014; Siepielski et al., 2017).  

Lastly, while cyanogenic plants showed marginally lower levels of herbivore leaf 

damage in the St. Louis common garden (as evidenced by a non-significant trend), this 

effect did not translate into a fitness advantage.  Thus, in the absence of intense 

herbivore pressure, there do not appear to be clear fitness costs or benefits associated 

with the cyanogenesis polymorphism among adult white clover plants (Hughes, 1991; 

Züst and Agrawal, 2017).  This chapter was published as part of a Journal of Heredity 

special issue on local adaptation (Wright et al., 2017). 

 In Chapter 2, I created F2 genetic mapping populations and performed reciprocal 

common garden experiments over a two-year period across three climates that span a 

latitudinal cyanogenesis cline in the United States.  The results provided further 

evidence of local adaptation in white clover, indicated by genotypic trade-offs for both 

vegetative growth and reproductive output traits across reciprocal environments.  As 

predicted by population genetic theory (Anderson, Willis and Mitchell-Olds, 2011; 

Savolainen, Lascoux and Merilä, 2013), antagonistic pleiotropy (allelic tradeoffs 

between environments) contributed to local adaptation in this outcrossing herbaceous 

plant, indicated by QTL × E interactions at fitness QTLs.  As in Chapter 1, I found 

essentially no evidence that cyanogenesis variation contributed to fitness variation or 
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local adaptation in any of the three common garden environments, in contrast to 

predictions from worldwide climate-associated clinal variation in this trait (Daday, 1958; 

de Araújo, 1976; Kooyers and Olsen, 2012, 2013).  Instead, we found strong evidence 

of selection for divergent life history strategies, such that early flowering and rapid life 

cycles were favored in the warmest environment, and long-term vegetative persistence 

with delayed flowering was favored in the cooler environments.  These results 

contribute to a body of local adaptation literature that suggests herbaceous plants may 

commonly employ alternate life history strategies for local adaptation (e.g., Friedman et 

al., 2015; Kooyers, 2015; Hämälä, Mattila and Savolainen, 2018).   

 In Chapter 3, I assessed the contribution of the seedling life stage for local 

adaptation and the evolution of cyanogenesis clines by performing population genetic 

surveys of adult plants, combined with germination experiments in the greenhouse and 

in three field environments that span a North American latitudinal cyanogenesis cline.  I 

found that for two of three environments, local wild adult populations exhibited an 

increased frequency of the locally most abundant cyanotype, relative to seedlings grown 

in benign greenhouse conditions.  Assuming that adult white clover populations are 

likely to be composed primarily of 2-3 year-old plants (Richards and Fletcher, 2002), this 

result indicates that within a few generations, regionally-varying selection can contribute 

to the evolution of cyanogenesis clines; such an effect is important for the maintenance 

of adaptive clines in outcrossing species, where gene flow and recombination are 

expected to introduce locally maladaptive variants (Ennos, 1982; Lenormand, 2002; 

Savolainen, Pyhäjärvi and Knürr, 2007).  Seedling survival experiments in the field 

further indicated differential survival of the locally most abundant cyanotype in all three 
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environments; this result, to our knowledge, is novel in studies relating cyanogenesis to 

fitness variation in white clover.  It suggests that the juvenile life stage plays a critical 

role in the evolution of chemical defense polymorphisms, which may have greater costs 

and benefits during this vulnerable period (Cook, 1979; Züst and Agrawal, 2017).   

 Together, the three chapters presented in this dissertation provide a working 

model for the process of local adaptation in white clover, as it relates to the 

cyanogenesis polymorphism and cline evolution.  Selection at juvenile life stages (i.e., in 

first 30 days post germination) alters the frequency of cyanogenesis variants in seedling 

populations (Chapter 3), which likely remain relatively constant through the cohort’s 2-3 

year existence (Richards and Fletcher, 2002).  In the first growing season, contrasting 

environments in different locations select for alternate life histories, leading to the 

evolution of locally adapted genotypes (Chapter 2).  Specifically, early flowering and 

rapid life cycles appear to be favored in localities that experience periods of long-term 

heat stress (longer than 3-4 months) (Kooyers, 2015), because prolonged heat stress 

triggers massive vegetative tissue loss and ultimately mortality (Wright et al., 2017, 

Chapter 2).  In less stressful environments, white clover vegetation flourishes, and most 

genotypes exhibit low mortality.  Energetic trade-offs between vegetative growth and 

reproduction can exist in the first year, such that genotypes exhibiting reduced flowering 

in the first year have higher reproductive fitness over a two-year period.  Overall, 

vegetative persistence and a perennial life history appear to be favored in these 

environments, even at the expense of earlier reproductive output (Chapter 2).  At the 

adult life stage, cyanogenesis does not seem to play a major role in determining fitness 

(Chapters 1 and 2, Wright et al., 2017).  Nevertheless, while I did not capture major 
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effects of cyanogenesis for adult fitness in these experiments, the results do not rule out 

the possibility that episodes of intense herbivore pressure or other selective agents may 

favor alternate cyanotypes in contrasting environments (Hughes, 1991), thereby 

contributing to the evolution of cyanogenesis clines and potentially to local adaptation if 

events are consistently associated with heterogeneous environmental variation.  

 This dissertation provides additional insights into the genetic architecture of local 

adaptation for an outcrossing, herbaceous perennial plant species.  The results indicate 

that significant, locally-adaptive life history differences can be largely explained by a 

small number of large-effect loci (Yeaman and Whitlock, 2011); this does not negate the 

added effect of many smaller-effect loci that may never or rarely be detectable in 

empirical studies (Rockman, 2012; Yeaman, 2015).  White clover also provides a 

compelling example of antagonistic pleiotropy (i.e., allelic tradeoffs between 

environments) underlying local adaptation in an herbaceous plant.  Although predicted 

by population genetic theory (Anderson, Willis and Mitchell-Olds, 2011), this result has 

rarely been documented empirically in plant species studied to date (Savolainen, 

Lascoux and Merilä, 2013; Wadgymar et al., 2017; Price et al., 2018).  Furthermore, the 

results hint at potential genetic mechanisms for the evolution of rapid, annual life cycles 

for heat and drought escape (Kooyers, 2015); these findings will be of interest to the 

clover breeding community (Abberton and Thomas, 2010).   

 Finally, the resources accumulated during this dissertation set the stage for 

exciting white clover adaptation research in the next several years.  Mentored 

undergraduate honors theses have provided insight into the potentially adaptive roles of 

copy number variation at the cyanogenesis loci and the induction of cyanogenic 
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glucoside synthesis, as they relate to water stress; these explorations contribute to 

previous studies that have suggested a relationship between cyanogenesis variation 

and drought (Vickery, Wheeler and Mulcahy, 1987; Hughes, 1991; Kooyers et al., 

2014).  Genetic mapping populations that were generated for Chapter 2 have been 

used to map the locations of the Ac/ac and Li/li polymorphisms; this work will be 

submitted as a paper to a peer-reviewed journal.  Additionally, F3 mapping populations 

are being generated from the F2 lines for use in future genetic mapping experiments.  

Lastly, wild sample collections that I performed across North America for 43 wild 

populations, along with complementary genotyping-by-sequencing data that I 

generated, will be used for population genomic analyses, including environmental 

association analysis and FST outlier scans (De Mita et al., 2013; Forester et al., 2016; 

Ahrens et al., 2018; Price et al., 2018).  This analysis will further characterize the 

genetic architecture of local adaptation in this outcrossing herbaceous perennial, and it 

will continue to improve our understanding of the relative adaptive importance of the 

cyanogenesis loci, in comparison to other genome-wide factors, for adaptation to 

continent-wide climatic variation. 
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