
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Summer 8-15-2019 

Individual Differences in Human Brain Functional Network Individual Differences in Human Brain Functional Network 

Organization Organization 

Benjamin A. Seitzman 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Neuroscience and Neurobiology Commons 

Recommended Citation Recommended Citation 
Seitzman, Benjamin A., "Individual Differences in Human Brain Functional Network Organization" (2019). 
Arts & Sciences Electronic Theses and Dissertations. 1949. 
https://openscholarship.wustl.edu/art_sci_etds/1949 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1949?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1949&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

Division of Biology and Biomedical Sciences 

Neurosciences 

 

Dissertation Examination Committee: 

Steven E. Petersen, Chair  

Deanna M. Barch 

Christina N. Lessov-Schlaggar 

Bradley L. Schlaggar 

Joshua S. Shimony 

 

 

 

Individual Differences in Human Brain Functional Network Organization 

by 

Benjamin A. Seitzman 

 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

August 2019 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019, Benjamin A. Seitzman



ii 

 

Table of Contents 
List of Figures ................................................................................................................................ iv 

List of Tables ................................................................................................................................. vi 

Acknowledgments......................................................................................................................... vii 

Abstract of the Dissertation ............................................................................................................ x 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Chapter 1 References .................................................................................................... 6 

Chapter 2: A set of functionally-defined brain regions with improved representation of the 

subcortex and cerebellum ........................................................................................... 11 

2.1 Introduction ................................................................................................................. 11 

2.2 Material and Methods ................................................................................................. 15 

2.3 Results ......................................................................................................................... 28 

2.4 Discussion ................................................................................................................... 43 

2.5 Conclusions ................................................................................................................. 51 

2.6 Acknowledgments....................................................................................................... 51 

2.7 Author Contributions .................................................................................................. 51 

2.8 Competing Interests .................................................................................................... 52 

2.9 Chapter 2 References .................................................................................................. 52 

2.10 Supplemental Figures.................................................................................................. 64 

Chapter 3: Trait-like variants in human functional brain networks .............................................. 72 

3.1 Introduction ................................................................................................................. 72 

3.2 Results ......................................................................................................................... 75 

3.3 Discussion ................................................................................................................... 88 

3.4 Material and Methods ................................................................................................. 99 

3.5 Conclusion ................................................................................................................ 107 

3.6 Acknowledgments..................................................................................................... 108 

3.7 Author Contributions ................................................................................................ 108 

3.8 Competing Interests .................................................................................................. 109 

3.9 Chapter 3 References ................................................................................................ 109 

3.10 Supplemental Information ........................................................................................ 117 



iii 

 

Chapter 4: Heritability of individual variant sub-groups in functional brain networks .............. 144 

4.1 Introduction ............................................................................................................... 145 

4.2 Material and Methods ............................................................................................... 148 

4.3 Results ....................................................................................................................... 154 

4.4 Discussion ................................................................................................................. 163 

4.5 Conclusion ................................................................................................................ 169 

4.6 Chapter 4 References ................................................................................................ 169 

Chapter 5: Conclusion................................................................................................................. 176 

5.1 Summary ................................................................................................................... 176 

5.2 Interpretation ............................................................................................................. 177 

5.3 Future Experiments ................................................................................................... 181 

5.4 Chapter 5 References ................................................................................................ 187 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

List of Figures 
Figure 2.1: Subcortical ROIs ……………………………………………………………………30 

Figure 2.2: Cerebellar ROIs ……………………………………...……………………………...31 

Figure 2.3: Functionally-defined ROIs overlaid onto anatomical parcels ………………………32 

Figure 2.4: Exemplar seedmaps for the new ROIs …………...…………………………………34 

Figure 2.5: Correlation matrices are similar across datasets …………………………………….35 

Figure 2.6: InfoMap-defined functional network communities …………………………………39 

Figure 2.7: Spring-embedded graphs show that subcortical and cerebellar ROIs integrate with 

well-characterized network communities …………………………………………...42 

SI Figure 2.1: Disambiguation of discrepancies between assignments …………………………64 

SI Figure 2.2: ROIs in high confidence winner-take-all parcels ………………………………..65 

SI Figure 2.3: Consistency of winner-take-all assignment between split-halves ……………….66 

SI Figure 2.4: Correlation matrices for ROI Set 2 ………………………………………………67 

SI Figure 2.5: Poor temporal Signal-to-Noise Ratio (tSNR) in the subcortex of Human 

Connectome Project data …………………………………………………………68 

SI Figure 2.6: InfoMap-defined functional network communities for ROI Set 2 ………………69 

SI Figure 2.7: Spring-embedded graphs at other tested edge densities …………………………70 

SI Figure 2.8: Graph-theoretic network measures ………………………………………………71 

Figure 3.1: Identification of network variants …………………………………………………..76 

Figure 3.2: Within-subject reliability of network variants ………………………………………78 

Figure 3.3: Distribution of network variants across individuals ………………………………...81 

Figure 3.4: Functional activation of network variants …………………………………………..82 

Figure 3.5: Separable groups of individuals via network associations of variants ……………...87 

Figure 3.6: Schematic of potential neural mechanisms underlying network variants …………..98 

SI Figure 3.1: Network variants are present in all individuals ………………………………...117 

SI Figure 3.2: Reliability of binarized network variants ………………………………………118 



v 

 

SI Figure 3.3: Stability of network variants over a year ……………………………………….119 

SI Figure 3.4: Sampling variability affects identification of network variants ………………...120 

SI Figure 3.5: Overlap of network variants and surface registration deformations ……………121 

SI Figure 3.6: Task-rest alignment of DMN variants ………………………………………….122 

SI Figure 3.7: Sustained activation in cinguloopercular variants ……………………………...123 

SI Figure 3.8: Clustering via anatomical location of network variants ………………………..124 

SI Figure 3.9: Validation of the sub-group clustering …………………………………………125 

SI Figure 3.10: The four sub-group solution …………………………………………………..127 

SI Figure 3.11: Group-wise differences in the size of each network …………………………..128 

SI Figure 3.12: Group-wise differences in neuropsychological measures …………………….129 

Figure 4.1: Heritability of functional connectivity in the present dataset ……………………...157 

Figure 4.2: Within- and between-subject motion-related functional connectivity differences ..159 

Figure 4.3: Network variant sub-groups are heritable …………………………………………161 

 

 

 

 

 

 

 

 

 

 



vi 

 

List of Tables 
SI Table 3.1: HCP exclusion criteria and split-halves …………………………………………132 

SI Table 3.2: Exploratory factor analysis of HCP behavioral variables ……………………….139 

Table 4.1: Previous estimates of the heritability of functional connectivity …………………..156 

Table 4.2: ACE model results ………………………………………………………………….162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Acknowledgments 

There are many people I need to thank for helping me navigate the PhD journey successfully. I’ll 

thank my sources of funding first, since I often forget to do so during talks (unless I do so first). 

The National Institutes of Health, the James S. McDonnell Foundation, and the McDonnell 

Center for Systems Neuroscience provided financial support for my dissertation research, and for 

that I am extremely grateful. Next, I’d like to thank my dissertation committee, who provided 

ample feedback and support throughout my time studying network variants.  

 

Thank you, Josh, for lending me your knowledge and time. I learned just how evanescent the 

latter can be, depending on the week. I look forward to our future collaborations. Thank you, 

Hristina, for your rigor and love of the nitty-gritty. I think some of the most fun I had doing 

science was looking at (bizarre) distributions of data and talking about statistics with you. The 

wine didn’t hurt, either. Thank you, Brad, for your relentless optimism. You were a much-

needed light illuminating the dark skeptical sea that is the Petersen lab. Thank you, Deanna, for 

your expertise and punctuality. Your insightful questions and deep knowledge of the behavioral 

side of my work led to many interesting discoveries and resulted in a much stronger research 

product. And, even though you may be the busiest one out of all of us, you still managed to 

ensure we never missed a deadline. I couldn’t have asked for a better dissertation committee 

chair. Finally, thank you, Steve. You have provided tremendous insight, intuition, skepticism, 

and guidance during our pursuit of good science. And, more importantly, you have mentored 

(and some might say managed) me deftly. Your skills as a scientist and critical thinker are world 

renowned. However, your talent as a leader of people (a.k.a. minions a.k.a. puds) is criminally 



viii 

 

underrated. I’ve grown in so many ways over the past five years, and I believe that you deserve 

the lion’s share of credit for that. Thank you all so very much. 

 

I would not have succeeded without support from the rest of the folks in the Petersen, Schlaggar, 

Dosenbach, and Greene labs. Thank you all for dealing with my “Benisms” and general 

weirdness, and a special thank you to Melissa, Sarah, Carmen, Laura, and anyone else who made 

one of our several BBQ runs over the years. Thank you to my PhD cohort and the rest of my 

friends who are also on a PhD journey at WashU. I’ve sincerely enjoyed spending time with all 

of you. You are some of the best drinking/softball/concert/study/D&D/workout/etc. buddies a 

guy could hope for. A special thank you to Chad Donahue for indulging me in many a kvetch 

session at Kaldi’s. And, a special shout out to my former roommate and cohortmate Alex 

Cammack. I’m really glad we hit it off while sitting on that couch in the lobby of the Parkway 

Hotel during revisit, and I’m even more glad we were able to share a living space for a few 

years. I still think our greatest achievement is moving my desk twice. Thank you to the greatest 

trivia team in St. Louis for many fun-filled and beer-filled Thursday evenings. Dw/oB for life. 

Thank you to the Pub Crawl Committee for allowing me to serve for a few years. I look forward 

to your future endeavors.  

 

Thank you to my YSP cohort. I don’t know if any of us realized the commitment we were 

making when we signed up, but it was a tremendous four years, and I’m so happy I got to share it 

with all of you and our mentees. I look forward to seeing the amazing things they achieve in the 

future. Thank you to my Camp Rainbow family. I am most proud of the things we’ve 

accomplished together, and I can’t wait for our next opportunity to bring joy to our campers. 



ix 

 

Thank you to the Neuroscience Retreat committee for letting me organize a couple of parties and 

coordinate a couple of Thach awards. More importantly, thank you, Anneliese, for trusting us to 

make two retreat videos. Let the record show that Ben and Brian did all of the hard work and 

brought all of the talent to our movie-making business. I am a humble professor/actor wrangler 

and “ideas” guy. 

 

Finally, thank you to my family for your enduring love and support throughout this process. 

There were a few dark times when I was unsure if I could go on. You guided me through and 

never once questioned my capabilities. Thank you so much for that, and for, you know, bringing 

me into the world, raising me, providing a stable home life, etc. I wouldn’t be the person or 

scientist that I am today without you. 

 

Benjamin A. Seitzman 

Washington University in St. Louis 

August 2019 

 

 

 

 

 



x 

 

ABSTRACT OF THE DISSERTATION 

Individual Differences in Human Brain Functional Network Organization 

by 

Benjamin A. Seitzman 
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Neurosciences 

Washington University in St. Louis, 2019 

Professor Steven E. Petersen, Chair 

The human brain is organized at many spatial scales, including the level of areas and systems. 

Resting-state functional magnetic resonance imaging is a non-invasive technique that allows for 

the study of areal- and systems-level brain organization in vivo. Over two decades of research 

has sought to identify and characterize the functional communities that comprise the brain’s 

network architecture. Consequently, a convergent description of group-average functional 

network organization in healthy adults has emerged. Recent advances have allowed for the study 

of such organization in single individuals. Investigation of functional network organization in 

highly sampled individuals has revealed brain regions that deviate from the group-level 

description, i.e. individual differences in human brain functional network organization. This 

dissertation work characterizes individual differences in functional network organization, 

referred to as network variants, across a large sample of healthy adults. Network variants appear 

to be stable over time within an individual and organized systematically across individuals. They 

occur in characteristic cortical locations and associate with characteristic functional networks. 

Further, their task-evoked activity is consistent with their idiosyncratic functional network 

association. Finally, individuals may be sub-typed into one of two groups, where individuals in 

the same sub-group have a similar distribution of network variants. The sub-group phenomenon 
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is heritable and relates to differences in neuropsychological measures of behavior. Network 

variants appear to be trait-like, functionally-relevant components of individual human brain 

functional network organization.



1 

 

Chapter 1: Introduction 
A crucial step towards understanding how the human brain processes information and controls 

behavior is to understand its organization, in terms of both structure and function. Historically, 

investigators performed lesion-symptom mapping studies, extending from the early observations 

of Paul Broca (Broca, 1861), to localize certain behaviors and functions to specific regions of the 

brain. Later, Charles Sherrington and Wilder Penfield employed focal stimulation of brain 

regions in order to map the functional organization of motor cortex in great apes and humans 

(Penfield and Jasper, 1954). Recent technological advances have allowed for the study of brain 

organization non-invasively (Posner et al., 1988). An important innovation was the discovery of 

resting-state functional magnetic resonance imaging (rsfMRI), a powerful non-invasive 

technique that allows investigators to study human brain organization in vivo (Snyder and 

Raichle, 2012). There are many spatial scales at which brain organization may be investigated, 

including the level of areas and systems (Churchland and Sejnowski, 1988). rsfMRI is 

particularly useful for the study of areal and systems-level brain organization. 

 

In the mid 90s, Barat Biswal and colleagues reported the first observation that ongoing 

(spontaneous) blood oxygen level dependent (BOLD) signal fluctuations are correlated between 

spatially distinct but functionally related regions of the brain at rest, i.e. when subjects are awake 

and alert, but not engaged in a task (Biswal et al., 1995). The BOLD signal is an indirect measure 

of neural activity (Logothetis et al., 2001), although the causal mechanisms relating changes in 

neural activity to changes in the BOLD signal remain unknown (Logothetis and Wandell, 2004). 

Over two decades of research since Biswal’s discovery have revealed that there are well 

correlated spontaneous fluctuations in the BOLD signal between regions of the brain that are 
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constitutive components of known anatomical systems, such as the motor system (Biswal et al., 

1995) and the visual system (Nir et al., 2006; Vincent et al., 2007), as well as more recently 

identified and less obviously anatomically constrained systems, such as two distinct systems for 

executive control (Dosenbach et al., 2007, 2006; Seeley et al., 2007) and two attention systems 

(Corbetta and Shulman, 2002; Petersen and Posner, 2012).   

 

Investigators have exploited the powerful rsfMRI technique and this phenomenon of 

synchronous, spontaneous BOLD signal fluctuations to develop increasingly comprehensive 

descriptions of the functional sub-systems that comprise the brain’s network architecture (Power 

et al., 2011; Yeo et al., 2011). Functional network organization is often identified via graph-

theoretic network science techniques in which regions of the brain are assigned to distinct 

communities in an abstract network space (Bullmore and Sporns, 2009; Rosvall and Bergstrom, 

2008; Rubinov and Sporns, 2010). Consequently, a converging picture of human brain functional 

network organization has emerged, and subsequent studies have led to informative distinctions 

between healthy adult control groups and a variety of patient populations (Greene et al., 2016; 

He et al., 2007; Seeley et al., 2009; Siegel et al., 2018; van den Heuvel et al., 2010) and healthy 

individuals at different stages of development (Chan et al., 2014; Greene et al., 2014; Nielsen et 

al., 2018). For a recent review of group-average functional network organization, see (Seitzman 

et al., 2019). 

 

Many of these studies have focused on the cerebral cortex isolated from the rest of the brain 

(e.g., Yeo et al., 2011). Separately, some investigations have focused on non-cortical structures, 

such as the amygdala (Roy et al., 2009), hippocampus (Kahn et al., 2008), basal ganglia (Di 
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Martino et al., 2008), and cerebellum (Marek et al., 2018). However, relatively few research 

efforts have performed an in-depth exploration of the whole brain from a network perspective. 

One reason for this deficiency is a lack of well-defined network nodes, or regions of interest 

(ROIs), that extensively sample both the cortex and non-cortical structures (e.g., Power et al., 

2011). Interactions between the cortex and non-cortical structures have been observed to be 

critical in numerous studies, e.g. many forms of psychopathology appear to relate to cortico-

striatal relationships (Greene et al., 2013; Lynall et al., 2010; Sheffield et al., 2015; Vonsattel et 

al., 1985). Thus, there is a need for a set of whole-brain ROIs that are well-constrained and 

sample all of these brain regions. One aim of this dissertation is to develop such a set of ROIs. 

 

While the aforementioned findings have begun to shape our understanding of normal and 

pathological brain function, much of this work has focused on a group-level description, similar 

to describing the central tendency or mean. The mean is a useful and often edifying statistic to 

know; however, the variance is as or frequently more revealing than the mean (Patten et al., 

2018). Thus, there is a clear need for a systematic characterization of variance, i.e. individual 

differences in functional brain organization. Individual differences promise to yield a potent 

mechanism by which we may further our understanding of normal and pathological brain 

function. Towards this end, recent work has demonstrated that there are elements of group-level 

functional brain organization that are noticeably variable across individuals, including regions of 

frontal and temporo-parietal cortex (Bijsterbosch et al., 2018; Braga and Buckner, 2017; Finn et 

al., 2015; Evan M Gordon et al., 2017; Evan M. Gordon et al., 2017a, 2017b; Kong et al., 2018; 

Laumann et al., 2015; Mueller et al., 2013; Wang et al., 2015). That is, there seem to be regions 
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of cortex with distinctive patterns of BOLD signal correlations that may reflect functional 

divergence in individuals.  

 

For instance, Laumann and colleagues performed an in-depth study of a single highly sampled 

individual (Poldrack et al., 2015), which was an important step towards resolving the 

methodological challenges of studying individual differences via rsfMRI. Their work directly led 

to the discovery of punctate regions of cortex in the individual’s brain with a pattern of BOLD 

signal correlations that is remarkably different from the group-average pattern (derived from 

typical healthy controls). Upon further inspection, they demonstrated that these regions overlap 

with unique features in the individual’s functional network organization (Laumann et al., 2015). 

The remaining aims of this dissertation directly build upon these findings in order to characterize 

fully these distinctive features of functional network organization in individuals. We call such 

features network variants. 

 

The group-level account of healthy brain network organization has yielded valuable perspective 

on both regional differences in task-evoked BOLD activity and differences in functional 

organization in patient populations. Similarly, a robust account of individual differences in 

functional network organization is poised to provide a fresh perspective on the nature of brain 

organization and may provide compelling insight into behavioral variability. Moreover, 

descriptions of functional network organization that incorporate network variants may reveal 

critical deviations in atypical (pathological) brain organization that have been obscured thus far 

by the smearing that occurs when averaging across individuals. Such a result may lead to more 



5 

 

effective treatments for individuals with diseases that affect functional brain organization, such 

as anxiety (Sylvester et al., 2013).  

 

One intriguing open question is to what extent are individual differences in functional network 

organization trait-like. Network variants may represent traits unique to a person that diverge 

across individuals as a consequence of a combination of factors, including genetics, 

environment, and individual experience. Alternatively, they may reflect less interesting 

differences in an individual’s state during data acquisition, such as level of arousal or differences 

in head motion (Laumann et al., 2017; Siegel et al., 2017). If network variants are trait-like, then 

they will likely demonstrate stability over time within an individual (e.g., eye color does not 

change across an individual’s lifespan), as well as some kind of systematic patterning across 

individuals (e.g., some dogs have pointy ears while other dogs have floppy ears). Finally, if 

network variants are bonafide traits, then they will demonstrate some degree of heritability, i.e. 

some amount of variance in network variants will be explained by genetics (Chabris et al., 2015; 

Turkheimer, 2000).  

 

To investigate these possibilities, several datasets of highly sampled individuals were used. 

Analyses were performed on rsfMRI data and were extended to a variety of well-established 

behavioral measures and task domains in order to characterize network variants across a large 

number of individuals. Potential links between specific patterns of network variants and 

individual differences in behavior and task-evoked activity were investigated. Finally, the 

heritability of network variants was explored. 
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Chapter 2: A set of functionally-defined brain regions with 

improved representation of the subcortex and cerebellum 
An important aspect of network-based analysis is robust node definition. This issue is critical for 

functional brain network analyses, as poor node choice can lead to spurious findings and 

misleading inferences about functional brain organization. Two sets of functional brain nodes 

from our group are well represented in the literature: (1) 264 volumetric regions of interest 

(ROIs) reported in Power et al., 2011 and (2) 333 cortical surface parcels reported in Gordon et 

al., 2016. However, subcortical and cerebellar structures are either incompletely captured or 

missing from these ROI sets. Therefore, properties of functional network organization involving 

the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all 

partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs 

in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs 

in three datasets using several criteria, including agreement with existing literature and 

anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical 

ROIs recapitulates and extends previously described functional network organization. This new 

set of ROIs is made publicly available for general use, including a full list of MNI coordinates 

and functional network labels. 

 

2.1 Introduction 

The brain is organized into areas that interact with one another to form distributed large-scale 

networks (Allman and Kaas, 1971; Felleman and Van Essen, 1991; Petersen and Sporns, 2015). 

Researchers studying the brain at the network level have revealed both basic principles of brain 

organization (Bassett and Bullmore, 2006; Honey et al., 2007; Power et al., 2011; Sporns et al., 
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2004; van den Heuvel and Sporns, 2011; Yeo et al., 2011) and insights into neurologic and 

psychiatric diseases (Corbetta and Shulman, 2011; Kim et al., 2014; Seeley et al., 2009; Sorg et 

al., 2007). Much of this work has borrowed concepts and tools from the field of graph theory in 

order to model the brain as a network (Bullmore and Sporns, 2009; Sporns, 2011). A graph is a 

mathematical description of a network, which comprises a set of elements (nodes) and their 

pairwise relationships (edges (Bondy and Murty, 1976)). Therefore, network approaches require 

the definition of a set of nodes, such as regions of interest (ROIs) in the case of brain networks.  

 

Ideally, nodes should be internally coherent (e.g., functionally homogeneous) and independent, 

separable units (Bullmore and Bassett, 2011; Butts, 2009, 2008; Wig et al., 2011). Brain areas 

and their constituent components—local circuits, columns, and domains (Kaas, 2012)—display 

many of these properties, and thus, are suitable nodes for brain network analysis. Research 

efforts focused on node definition often employ data-driven techniques to parcellate the cerebral 

cortex into a set of ROIs meant to represent putative functionally homogeneous brain areas 

(Cohen et al., 2008; Craddock et al., 2012; Glasser et al., 2016; Gordon et al., 2016; Nelson et 

al., 2010; Power et al., 2011; Schaefer et al., 2017; Wig et al., 2013). Most such studies have 

used resting-state functional connectivity MRI, which measures correlations in low-frequency 

blood-oxygen-level-dependent (BOLD) signals across the whole brain while subjects remain 

awake and alert without engaging in an explicit task (Biswal et al., 1995; Gusnard and Raichle, 

2001; Snyder and Raichle, 2012). While many of these existing sets of ROIs sample the cortex 

quite well, most approaches have under-sampled or completely omitted the subcortex and 

cerebellum (but see Ji et al., 2019).  
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The poorer representation of these structures is a limitation of previous work, as closed loop 

anatomical circuits connect the subcortex and cerebellum to the cortex (Woolsey et al., 2008). In 

addition, these structures are known to be integral for many behavioral, cognitive, and affective 

functions. For example, regions of the cerebellum are involved in adaptive behaviors (Thach et 

al., 1992), including fast adaptations, like eye-blink conditioning (Steinmetz et al., 1992; Perrett 

et al., 1993), as well as those that occur over longer timescales, like prism adaptation (Martin et 

al., 1996; Baizer et al., 1999; Morton and Bastian, 2004), and higher order cognitive functions, 

such as semantic processing (Fiez, 2016; Guell et al., 2018). Likewise, regions of the basal 

ganglia and thalamus are important for both lower level sensory and higher order cognitive 

functions (Alexander et al., 1986; Jones, 1985). Furthermore, subcortical structures and the 

cerebellum have been implicated in a variety of neurologic and psychiatric diseases. For 

instance, the basal ganglia are affected in several movement disorders (Greene et al., 2017, 2013; 

Rajput, 1993; Vonsattel et al., 1985), the hippocampus is disrupted in Alzheimer Disease (Hardy 

and Selkoe, 2002), the amygdala is implicated in Major Depressive Disorder (Frodl et al., 2002) 

and Urbach-Wiethe Disease (Siebert et al., 2003), and the cerebellum is disturbed in 

Schizophrenia (Andreasen et al., 1996; Bigelow et al., 2006; Brown et al., 2005; Kim et al., 

2014) and Autism Spectrum Disorder (Fatemi et al., 2002), to name a few. Moreover, 

interactions between the cortex and both subcortical and cerebellar regions are crucial for 

carrying out functions in health (Bostan and Strick, 2018; Greene et al., 2014; Hwang et al., 

2017; Kiritani et al., 2012) and disease (Andreasen et al., 1999; Gratton et al., 2018a; 

Schmahmann, 2004). Because of these interactions between multiple structures, it has been 

postulated that subcortical regions may have important hub-like properties for integrating brain 

systems (Hwang et al., 2017) and may constrain network-level topology (Bell and Shine, 2016; 
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Garrett et al., 2018). Thus, brain network analyses should include these important regions in 

order to have a more complete picture of brain organization and function.  

 

An issue potentially impeding the inclusion of these regions is that subcortical and deep 

cerebellar nuclei are small relative to the spatial resolution of fMRI, often occupying just a few 

voxels, whereas brain areas in the cerebral cortex (e.g. Area V1) are typically larger. 

Furthermore, depending on the acquisition sequence, these regions may have lower signal quality 

(Ojemann et al., 1997) or, especially for the cerebellum, may be captured incompletely. Finally, 

most existing techniques for parcellating the brain into areas, such as gradient-based techniques 

(Cohen et al., 2008; Gordon et al., 2016; Nelson et al., 2010; Wig et al., 2013), were designed for 

the cortical surface, making them less easily applied to structures where surface-based mapping 

is less appropriate (basal ganglia, thalamus), prone to error (medial temporal lobe) (Wisse et al., 

2014), or less well-established (cerebellum). Despite these difficulties, inclusion of the subcortex 

and cerebellum is crucial to properly represent the brain as a network. While there are existing 

anatomical atlases of the subcortex (Morel, 2013) and cerebellum (Diedrichsen et al., 2009), 

functionally defined regions may complement anatomical ones and provide a better 

correspondence to functionally defined cortical areas and task-based measures from fMRI.  

 

Our lab previously published two (now widely used) sets of ROIs: (1) 264 volumetric ROIs 

(Power et al., 2011) and (2) 333 surface-based cortical parcels (Gordon et al., 2016). The first 

was created via combined task fMRI meta-analysis and resting-state functional correlation 

mapping, and the second was created via a gradient-based parcellation of resting-state fMRI 

data. These two ROI sets sample the cortex well, representing a diverse set of brain areas that 
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can be organized into functional networks. Many investigators have used them to describe 

functional brain organization in a variety of healthy samples (Power et al., 2013; Zanto and 

Gazzaley, 2013), lifespan cohorts (Baniqued et al., 2018; Gallen et al., 2016; Gu et al., 2015; 

Nielsen et al., 2018; Rudolph et al., 2017), as well as populations with neurologic and psychiatric 

diseases (Gratton et al., 2018a; Greene et al., 2016; Sheffield et al., 2015; Siegel et al., 2018). 

However, the first set (264 volumetric ROIs) under-samples subcortical and cerebellar structures, 

as only 17 ROIs are non-cortical, and the second set (333 parcels) is restricted to the cortex only, 

similar to other popular ROI sets, e.g. (Glasser et al., 2016; Yeo et al., 2011).  

 

The goal of the current study was to expand these ROI sets to better represent subcortical and 

cerebellar structures. Novel ROIs were created in the thalamus, basal ganglia, and cerebellum by 

use of a data-driven, winner-take-all partitioning technique that operates on resting-state fMRI 

data (Choi et al., 2012; Greene et al., 2014; Zhang et al., 2010). Additional ROIs were generated 

in the amygdala and hippocampus, and all ROIs were validated via several criteria. Finally, we 

characterized whole-brain functional network organization using these refined subcortical and 

cerebellar ROIs combined with previously established cortical ROIs. The fully updated set of 

ROIs is made publicly available for general use, including a list of coordinates and consensus 

functional network labels, at https://greenelab.wustl.edu/data_software. 

 

2.2 Material and Methods 

2.2.1 Primary dataset- WashU 120 

Dataset characteristics 

https://greenelab.wustl.edu/data_software
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The primary dataset used in this study has been described previously (Power et al., 2011). Eyes-

open resting-state fMRI data were acquired from 120 healthy, right-handed, native English 

speaking, young adults (60 F, age range 18-32, mean age 24.7). Subjects were recruited from the 

Washington University community and screened with a self-report questionnaire. Exclusion 

criteria included no current or previous history of neurologic or psychiatric diagnosis as well as 

no head injuries resulting in a loss of consciousness for more than 5 minutes. Informed consent 

was obtained from all participants, and the Washington University Internal Review Board 

approved the study. The data are available at https://legacy.openfmri.org/dataset/ds000243/. 

Data acquisition 

A Siemens MAGNETOM Tim TRIO 3.0T MRI scanner and a 12 channel Head Matrix Coil 

were used to obtain T1-weighted (MP-RAGE, 2.4s TR, 1x1x1mm voxels) and BOLD contrast 

sensitive (gradient echo EPI, 2.5s TR, 4x4x4mm voxels) images from each subject. The mean 

amount of BOLD data acquired per subject was 14 minutes (336 frames, range = 184-729 

frames). Subjects were instructed to fixate on a black crosshair presented at the center of a white 

background. See Power et al., 2011 for full acquisition details. 

Preprocessing 

The first 12 frames (30 seconds) of each functional run were discarded to account for 

magnetization equilibrium and an auditory evoked response at the start of the EPI sequence 

(Laumann et al., 2015). Slice timing correction was applied first. Then, the functional data were 

aligned to the first frame of the first run using rigid body transforms, motion corrected (3D-cross 

realigned), and whole-brain mode 1000 normalized (Miezin et al., 2000). Next, the data were 

resampled (3 cubic mm voxels) and registered to the T1-weighted image and then to a WashU 

https://legacy.openfmri.org/dataset/ds000243/
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Talairach atlas (Ojemann et al., 1997) using affine transforms in a one-step operation (Smith et 

al., 2004).  

 

Additional preprocessing of the resting-state BOLD data was applied to remove artifacts (Ciric et 

al., 2017; Power et al., 2014). Frame-wise displacement (FD) was calculated as in Power et al., 

2012, and frames with FD greater than 0.2 mm were censored. Uncensored segments with fewer 

than 5 contiguous frames were censored as well (mean +/- std frames retained = 279 +/- 107). 

All censored frames were interpolated over using least squares spectral estimation (Hocke and 

Kämpfer, 2009; Power et al., 2014). Next, the data were bandpass filtered from 0.009-0.08 Hz 

and nuisance regression was implemented. The regression included 36 regressors: the whole-

brain mean, individually defined white matter and ventricular CSF signals, the temporal 

derivatives of each of these regressors, and an additional 24 movement regressors derived by 

expansion (Friston et al., 1996; Satterthwaite et al., 2012; Yan et al., 2013). FreeSurfer 5.3 

automatic segmentation was applied to the T1-weighted images to create masks of the gray 

matter, white matter, and ventricles for the individual-specific regressors (Fischl et al., 2002). 

Finally, the data were smoothed with a Gaussian smoothing kernel (FWHM = 6 mm, sigma = 

2.55). 

 

At the end of all processing, each censored/interpolated frame was removed from the time series 

for all further analyses. 

2.2.2 Secondary dataset- HCP 80 

Dataset characteristics 
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Due to a partial cutoff of cerebellar data in over half of the subjects in the primary dataset 

(outside of the field of view), an independent secondary dataset was used to supplement analyses 

related to the cerebellum. Since the cerebellum was not cutoff in every subject in the primary 

dataset, we were able to create a cerebellar portion of the group average matrix derived from just 

those subjects with full cerebellar coverage. We used data from 80 unrelated individuals from the 

Human Connectome Project (HCP) 500 Subject Release (40F, age range 22-35, mean age 28.4) 

who had high-quality (low-motion) data, described previously (Gordon et al., 2017a). All HCP 

data are available at https://db.humanconnectome.org. 

Data acquisition 

A custom Siemens SKYRA 3.0T MRI scanner and a custom 32 channel Head Matrix Coil were 

used to obtain high-resolution T1-weighted (MP-RAGE, 2.4s TR, 0.7x0.7x0.7mm voxels) and 

BOLD contrast sensitive (gradient echo EPI, multiband factor 8, 0.72s TR, 2x2x2mm voxels) 

images from each subject. The HCP used sequences with left-to-right and right-to-left phase 

encoding, with a single RL and LR run on each day for two consecutive days for a total of four 

runs (Van Essen et al., 2012). Thus, for symmetry, the BOLD time series from each subject’s 

best (most frames retained after censoring) LR run and their best RL run were concatenated 

together.  

Preprocessing 

The preprocessing steps were the same as those detailed above, except for the following: (1) the 

first 41 frames (29.52 seconds) of each run were discarded, (2) no slice timing correction was 

applied, (3) field inhomogeneity distortion correction was applied (using the mean field map), 

(4) the data were not resampled (they were collected at 2 cubic mm isotropic voxels), and (5) the 

Gaussian smoothing kernel was smaller (FWHM = 4 mm, sigma = 1.7). The first two changes 

https://db.humanconnectome.org/
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are due to the increased temporal resolution of the HCP data acquisition (0.72s TR) and the last 

two changes are due to the increased spatial resolution of HCP data acquisition (Glasser et al., 

2013). Distortion correction was not applied to the primary dataset because field maps were not 

collected in most participants. In addition, the increased temporal resolution caused respiration 

artifacts to alias into the FD trace (Fair et al., 2018; Siegel et al., 2017). Thus, FD values were 

filtered with a lowpass filter at 0.1 Hz and the filtered FD threshold was set at 0.1 mm (mean +/- 

std frames retained = 2236 +/- 76). 

 

For the purpose of the winner-take-all partitioning of the secondary dataset (described in section 

2.2.4), a CIFTI was created for each subject. Thus, preprocessed cortical BOLD time series data 

(from the secondary dataset only) were mapped to the surface, following the procedure of 

Gordon et al., 2016, and combined with volumetric subcortical and cerebellar data in the CIFTI 

format (Glasser et al., 2013; Gordon et al., 2016). 

 

At the end of all processing, each censored/interpolated frame was removed from the time series 

for all further analyses. 

2.2.3 Validation dataset- MSC 

Dataset characteristics 

Since the primary and secondary datasets were used to create the subcortical and cerebellar ROIs 

(described in sections 2.2.5 and 2.2.6), results for functional network community assignment 

(described in section 2.2.7) were validated with a third independent dataset, the Midnight Scan 

Club (MSC), described previously (Gordon et al., 2017b). These data are available at 

https://openneuro.org/datasets/ds000224/versions/00002. The MSC dataset consists of 5 hours of 

https://openneuro.org/datasets/ds000224/versions/00002
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resting-state BOLD data from each of 10 individuals (5 F, age range 24-34, mean age 29) over a 

two-week period.  

Data acquisition 

The same scanner, head coil, and acquisition parameters described above were used to for the 

MSC. However, a single resting-state run lasting 30 minutes was collected on 10 separate days. 

Each scan was acquired starting at midnight (Gordon et al., 2017b). 

Preprocessing 

For each subject, all runs were concatenated together in the order that they were collected. The 

initial preprocessing steps were the same as those detailed above, except for the following: (1) 

the functional images were registered to the average T2-weighted anatomical image (4 were 

collected per subject), then to the average T1-weighted anatomical image (4 were collected per 

subject), and finally to the Talairach atlas, (2) field inhomogeneity distortion correction was 

applied (using the mean field map), and (3) one subject (MSC08) was excluded due to a 

substantial amount of low-quality data and self-reported sleeping during acquisition, as detailed 

previously (Gordon et al., 2017b; Laumann et al., 2016). 

 

Additional preprocessing followed Raut and colleagues (Raut et al., 2019). Again, FD was used 

to exclude high-motion frames; however, due to respiratory artifacts affecting the realignment 

parameters (Power et al., 2018; Siegel et al., 2017), a lowpass filter (0.1 Hz) was applied to those 

parameters before calculation of FD. Consequently, the threshold for frame censoring was 

lowered to 0.1mm. Frames with outstanding (>2.5 standard deviations above the mode computed 

across all runs) DVARS values (as calculated in Power et al., 2012) were also excluded. All 

censored frames were linearly interpolated, and then bandpass filter (0.005-0.1 Hz) was applied.  
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Finally, component-based nuisance regression was implemented. Individual-specific FreeSurfer 

6.0 segmentation was used to define masks of the gray matter, white matter, and ventricles. A 

mask of extra-axial (or edge (Patriat et al., 2015)) voxels was also created by thresholding the 

temporal standard deviation image (>2.5%) that excluded the eyes and a dilated whole-brain 

mask. BOLD data was extracted from all voxels in each mask (separately), and dimensionality 

reduction was applied as in CompCor (Behzadi et al., 2007). The number of components retained 

was determined independently for each mask such that the condition number (i.e., the maximum 

eigenvalue divided by the minimum eigenvalue) was greater than 30. All retained components 

were submitted to a regressors matrix that also included the 6 realignment parameters. To avoid 

collinearity, singular value decomposition was applied to the regressors covariance matrix. 

Components of this decomposition were retained up to an upper limit (condition number >=250). 

Then, all of the final retained components, the whole-brain mean, and its temporal derivative 

were regressed from the BOLD time series (Raut et al., 2019). 

 

At the end of all processing, each censored/interpolated frame was removed from the time series 

for all further analyses. 

2.2.4 Winner-take-all partitioning of the subcortex and cerebellum 

In order to identify functional subdivisions within subcortical structures and the cerebellum, a 

winner-take-all partitioning technique was applied to the basal ganglia, thalamus, and 

cerebellum, as previously described (Greene et al., 2014). Past applications of this winner-take-

all approach have yielded results consistent with known connectivity from the animal literature 

(Buckner et al., 2011; Choi et al., 2012; Fair et al., 2010; Greene et al., 2014; Zhang et al., 2008). 
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Briefly, the mean resting-state time series were extracted from each of 11 previously defined 

cortical networks (Power et al., 2011): default mode, frontoparietal, cinguloopercular, salience, 

dorsal attention, ventral attention, visual, auditory, somatomotor dorsal, somatomotor lateral, and 

orbitofrontal. This subset of networks (from the original 15 described in Power et al., 2011) was 

selected on the basis of being previously well characterized and validated by multiple methods 

(see Greene et al., 2014). In order to remove the shared variance among cortical networks 

thereby increasing specificity of the subcortico-cortical and cerebello-cortical correlations, 

partial correlations were then calculated between the time series from each cortical network and 

the resting-state time series from each subcortical or cerebellar gray matter voxel (e.g., for each 

cortical network and subcortical voxel, a residual correlation was computed after partialling out 

the signal from the other cortical networks). Each voxel was then assigned to the network with 

which it correlated most in a winner-take-all fashion (Buckner et al., 2011; Choi et al., 2012; 

Greene et al., 2014; Zhang et al., 2010), generating a functional partition of subcortical and 

cerebellar structures.  

2.2.5 ROI creation 

Spherical ROIs (diameter = 8mm) were placed in the (volumetric) center of each of the winner-

take-all partitions in the basal ganglia, thalamus, and cerebellum. Then, the ROIs were manually 

adjusted such that (1) all ROIs included only gray matter voxels and (2) no ROIs had any 

overlapping voxels. If an ROI did not fit entirely within a single winner-take-all partition, it was 

excluded. Two additional ROIs (one per hemisphere) were added to the center of the amygdala, 

since the entire structure was assigned to a single network (default mode) via the winner-take-all 

approach. The winner-take-all approach also assigned the entire hippocampus to a single 
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network (default mode). However, given previous evidence for distinct functional connectivity 

profiles for the anterior and posterior portions of the hippocampus (Kahn et al., 2008), we added 

four ROIs (two per hemisphere) to sample the anterior and posterior hippocampus. In total, 34 

subcortical and 27 cerebellar ROIs were created. 

 

These new subcortical and cerebellar ROIs were then combined with two previously described 

sets of cortical ROIs from our lab, as follows:  

 

ROI Set 1 (Power264 + new): Spherical cortical ROIs were used from the 264 volumetric ROIs 

reported in (Power et al., 2011). Four of these ROIs in the medial temporal lobe (two per 

hemisphere) were removed (Talairach coordinates: (-20, -24, -18), (17, -30, -15), (-25, -41, -8), 

(26, -39, -11)) and replaced by the four new hippocampus ROIs, due to some overlapping voxels. 

In addition, the 17 subcortical and cerebellar ROIs from the original 264 were replaced by 55 

new subcortical and cerebellar ROIs. Finally, the 2 new amygdala ROIs were added. Thus, ROI 

Set 1 is composed of 239 cortical, 34 subcortical (including the amygdala and hippocampus), and 

27 cerebellar volumetric ROIs, for a total of 300 ROIs.  

 

ROI Set 2 (Gordon333 + new): ROI set 2 was generated by combining the 333 surface-based 

cortical parcels (Gordon et al., 2016) with the newly generated subcortical and cerebellar ROIs. 

Thus, ROI Set 2 is composed of 333 surface-based cortical parcels and 34 subcortical (including 

the amygdala and hippocampus) and 27 cerebellar volumetric ROIs, for a total of 394 ROIs. For 

all analyses using this ROI set, we utilized the center of each cortical parcel projected into 
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volumetric atlas space (Gordon et al., 2016). The parcels in this format are publicly available at 

https://sites.wustl.edu/petersenschlaggarlab/parcels-19cwpgu/. 

2.2.6 Seedmaps and consensus functional network communities for each ROI 

Seedmaps 

To validate the winner-take-all assignments of voxels used for ROI placement, we first 

conducted seedmap analyses to examine how each ROI was correlated with every other gray 

matter voxel. A seedmap represents the pattern of correlations between the mean BOLD time 

series from a given ROI and all other gray matter voxels in the brain. We generated group-

average seedmaps for both ROI Sets and each dataset (primary, secondary, validation). The 

preprocessed BOLD time series for each gray matter voxel within each ROI were averaged 

together (after removing censored and interpolated frames). Then, the Pearson correlation 

between each new ROI and every other gray matter voxel in the brain was computed for each 

subject. The subject-specific maps were Fisher transformed, averaged together, and inverse 

Fisher transformed. 

Correlation matrices 

We generated correlation matrices to examine the community structure of the new ROIs. A 

correlation matrix is the set of all possible pairwise correlations between mean BOLD time series 

from each ROI organized into a symmetric matrix (since correlations are undirected). We 

computed correlation matrices for both ROI Sets and each dataset (primary, secondary, 

validation). The preprocessed BOLD time series for each gray matter voxel within each ROI 

were averaged together (after removing censored and interpolated frames). Then, the Pearson 

correlation between every pair of ROIs was computed to create a 300 x 300 (ROI Set 1) and 394 

x 394 (ROI set 2) correlation matrix for each subject. Matrices were individually Fisher Z 

https://sites.wustl.edu/petersenschlaggarlab/parcels-19cwpgu/
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transformed, all matrices were averaged together (within each ROI set and dataset; thus, six 

group-average matrices were created in total- one 300 x 300 and one 394 x 394 for each of the 

WashU 120, HCP 80, and MSC 9), and finally, inverse Fisher transformed.  

Community detection 

To determine the functional network membership of each ROI, an information-theoretic 

community detection algorithm was implemented (InfoMap (Rosvall and Bergstrom, 2008)). 

InfoMap requires a sparse matrix, so an edge density threshold was applied to the correlation 

matrices. The networks (correlation matrices) were thresholded until only the strongest X percent 

of edges remained. All retained edges maintained their correlation value or weight (i.e., the 

networks were not binarized). We ran InfoMap over a range of thresholds (X = 2-10% inclusive, 

with a 1% step increment, following Power et al. (2011)).  

 

In general, the magnitude of BOLD correlations between the cortex and the subcortex, the cortex 

and the cerebellum, and the subcortex and the cerebellum is substantially weaker than within-

structure (and particularly, cortico-cortical) correlations. The primary reasons for this are likely 

distance from the head matrix coil and signal dropout due to sinuses. For instance, in the primary 

dataset, off-diagonal (between-structure) correlations from the subcortex and cerebellum account 

for 40% of the weakest decile of correlations (i.e., the 10% of correlations closest to 0), even 

though the subcortex and cerebellum account for only 23% of all ROIs. Therefore, in order to 

ensure that between-structure correlations were included, structure-specific thresholding was 

used (Marek et al., 2018). The correlation matrix was separated into cortical, subcortical, and 

cerebellar components (e.g., the subcortical component is every entry in each row corresponding 

to any subcortical ROI) and the edge density thresholds were applied to each component 
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separately. Thus, if a 2% structure-specific edge density was applied to the matrix, the top 2% of 

cortical, top 2% of subcortical, and top 2% of cerebellar correlations (excluding diagonal entries) 

were extracted and all other correlations were set to 0. 

Consensus network procedure  

Consensus functional network communities were determined in a semi-automated, multistep 

process. First, a weighting procedure was applied across InfoMap thresholds. For the 2% and 3% 

thresholds the weight was 5, for the 4% and 5% thresholds the weight was 3, and the weight was 

1 for all other thresholds. These weights were chosen to bias the consensus solution to have 

approximately 17 networks on the basis of work from Yeo and colleagues (Yeo et al., 2011). 

Since smaller networks tend to be observed at sparser thresholds, those thresholds contribute 

more weight than the denser thresholds. For each ROI (independently), the InfoMap-determined 

community at each threshold was noted, taking the weights into account, and the highest 

weighted community was assigned as the consensus.   

 

After this automated consensus procedure, authors BAS, CG, and DJG reviewed the community 

assignment of each new subcortical and cerebellar ROI. In ambiguous cases (e.g., an even split 

in assignment across thresholds), we consulted literature describing the anatomy and function of 

that brain region. Furthermore, we visually inspected functional connectivity seedmaps for 

regions in which the InfoMap and the winner-take-all assignments differed (SI Figure 2.1), and 

assigned the region to the functional network that most closely matched the seedmap. There were 

24 ROIs that required adjudication in this way. 
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All cortical ROIs retained their original assignment from published works (Power et al., 2011 for 

ROI Set 1 and from Gordon et al., 2016 for ROI Set 2) unless there was strong evidence to 

overturn the original. Specifically, if an ROI in the present InfoMap solution received the same 

assignment across all thresholds and that assignment was distinct from the original, then the ROI 

was assigned to the novel network community. Furthermore, 5 ROIs originally assigned to the 

salience network were reassigned to the cingulo-opercular network. We made this change 

because (1) the ROIs showed profiles intermediate between salience and cinguloopercular 

assignments and (2) previously published studies revealed that these brain regions demonstrate 

task-evoked activity consistent with the cingulo-opercular network (Dosenbach et al., 2006; 

Dubis et al., 2016; Gratton et al., 2018b, 2017; Neta et al., 2014). 

Validation of ROIs and consensus networks 

The primary and secondary datasets were used to create the subcortical and cerebellar ROIs, 

respectively. The validation dataset (MSC) was used to test the validity of the consensus 

functional network communities in both cases. The network community assignment for each 

ROI was compared across all datasets, and discrepancies were noted. Further, consensus 

networks were compared with those from previously published literature including the Morel 

anatomical atlas of the subcortex and the SUIT anatomical atlas of the cerebellum. Additionally, 

the winner-take-all assignments were compared between split-halves of the primary dataset. 

Finally, we measured the degree of confidence in the “winning” network for each subcortical and 

cerebellar voxel by calculating the difference in functional connectivity between the winning and 

second place network assignments, as in Marek et al., 2018. This analysis was conducted with 

the primary dataset (WashU 120) for the basal ganglia and thalamus, and with the validation 
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dataset (MSC) for the cerebellum. We examined the location of each ROI with respect to this 

estimation of confidence in the winner-take-all assignments (SI Figure 2.2). 

2.2.7 Spring-embedded graphs and participation coefficient 

To visualize the community structure of networks in an abstract graph space, spring-embedded 

graphs were created. The networks (correlation matrices) were thresholded in the same way as in 

Section 2.6.3, and the resulting matrices were submitted to a physical model of connected 

springs (the Kamada-Kawai algorithm, as used in Power et al., 2011). Correlations between pairs 

of ROIs were modeled as force constants between connected springs such that strongly 

correlated ROIs were “pulled” close to one another. ROIs were colored according to their 

consensus functional network community or their anatomical location. 

 

To quantify the degree to which an ROI plays a hub-like role in the network, the participation 

coefficient of each ROI was computed across (structure-specific) edge density thresholds 

between 5 and 25%. Participation coefficient was calculated as defined for weighted networks in 

Rubinov and Sporns, 2010 using code from the Brain Connectivity Toolbox (Rubinov and 

Sporns, 2010). 

 

2.3 Results 

2.3.1 Subcortical and cerebellar ROIs 

The final set of subcortical and cerebellar ROIs overlaid onto the winner-take-all partitions are 

displayed in Figures 2.1 and 2.2, respectively. The winner-take-all partitions were similar to 

previously published partitions for the basal ganglia (Choi et al., 2012; Greene et al., 2014), 
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thalamus (Hwang et al., 2017), and cerebellum (Buckner et al., 2011), and showed good split-

half replication (dice overlap of 61.5% in the thalamus and 60.1% in the basal ganglia; SI Figure 

2.3). Many ROIs outside the cortex agree with anatomical divisions from previously established 

subcortical (Morel, 2013) and cerebellar (Diedrichsen et al., 2009) atlases, as shown in Figure 

2.3. ROIs that do not show perfect correspondence with anatomical parcels may reflect 

discrepancies between anatomical and functional division of these structures, potentially due to 

finer parcellations in the anatomical atlases. A majority of the ROIs were contained within high 

confidence winner-take-all parcels, as assessed in Marek et al., 2018 (SI Figure 2.2). 
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Figure 2.1: Subcortical ROIs. The new ROIs (white circle with black outline) are displayed in serial coronal (A), 

sagittal (B), and axial (C) sections of the thalamus and basal ganglia, with the cortical functional networks for 

reference (D). The ROIs are overlaid on top of the voxel-wise winner-take-all partitions.  
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Figure 2.2: Cerebellar ROIs. The new ROIs (white circle with black outline) are displayed in serial coronal (A), 

sagittal (B), and axial (C) sections of the cerebellum, with the cortical functional networks for reference (D). The 

ROIs are overlaid on top of the voxel-wise winner-take-all partitions. ROIs in the amygdala and anterior 

hippocampus are overlaid on anatomical coronal sections in the bottom right panel of C.  
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Figure 2.3: Functionally-defined ROIs overlaid onto anatomical parcellations. Many of the subcortical and 

cerebellar ROIs are contained within a single anatomical parcel from the Morel atlas of the subcortex (A) and the 

SUIT atlas of the cerebellum (B), indicating good agreement between the current functional parcellation. A few 

ROIs overlap multiple anatomical parcels (e.g., dorsolateral thalamus, right posterior cerebellum), which may be a 

consequence of a finer parcellation than is possible with the current fMRI data. 
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The 34 subcortical ROIs sampled the following anatomical structures (bilaterally): the head and 

tail of the caudate; anterior dorsal, posterior dorsal, anterior ventral, and posterior ventral 

putamen; the globus pallidus (internus and externus combined); the ventral striatum (i.e., nucleus 

accumbens); the amygdala (nuclei not distinguished); anterior and posterior hippocampus; and 

regions in the thalamus. The locations of the thalamic ROIs included the following nuclei and 

surrounding territory (the resolution of our data was not fine enough to delineate precise thalamic 

nuclei): medio-dorsal (MD), latero-dorsal (LD), ventro-anterior (VA), ventro-lateral (VL), 

ventro-postero-lateral (VPL), and lateral geniculate nucleus (LGN)-pulvinar. The 27 cerebellar 

ROIs sampled the vestibulo-, spino-, and cerebro-cerebellum, including the cerebellar vermis, 

classical motor cerebellar cortex, and cerebellar association cortex (Woolsey et al., 2008). 

2.3.2 Correlation structure replicates across datasets 

Exemplar seedmaps from the new ROIs for the primary dataset are displayed in Figure 2.4 and 

the group-average correlation matrices for all datasets using ROI Set 1 are displayed in Figure 

2.5. The correlation matrices using ROI Set 2 are displayed in SI Figure 2.4. The seedmaps were 

comparable to previously published maps (Figure 2.4). The matrices were quite similar across 

datasets (r120,HCP = 0.90, r120,MSC = 0.93, rHCP,MSC = 0.87), with results from the primary dataset 

replicating best in the validation (MSC) dataset. However, in the secondary (HCP) dataset, there 

was approximately 0 correlation between subcortical ROIs and all other ROIs, including 

homotopic subcortical ROI pairs. The likely reason for this difference is due to poor temporal 

signal-to-noise ratio in the subcortex of HCP data (Ji et al., 2019), which we demonstrate here in 

SI Figure 2.5. Thus, we excluded the secondary dataset from all further analyses. 
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Figure 2.4: Exemplar seedmaps for the new ROIs. Functional correlation seedmaps are shown for an exemplar 

ROI in the cerebellum (A), ventral striatum (B), and hippocampus (C). The consensus functional network 

assignment of each ROI is represented by its color (left column). Seedmaps display the correlations between the 

mean BOLD signal from the ROI in question and the BOLD signal from every other gray matter voxel (middle 

column). Results were similar to comparable seedmaps from previously published studies (right column). Images 

from Buckner, R.L. et al., 2011. The organization of the human cerebellum estimated by intrinsic functional 

connectivity. Journal of Neurophysiology 106 (5), 2322–2345; Di Martino, A. et al., 2008. Functional Connectivity 

of Human Striatum: A Resting State fMRI Study. Cerebral Cortex 18 (12), 2735–2747; and, Kahn, I. et al., 2008. 

Distinct Cortical Anatomy Linked to Subregions of the Medial Temporal Lobe Revealed by Intrinsic Functional 

Connectivity. Journal of Neurophysiology 100 (1), 129–139 reproduced with permission from The American 

Psychological Society, Oxford University Press, and The American Psychological Society, respectively. 
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Figure 2.5: Correlation matrices are similar across datasets. The full (300 x 300) correlation matrices for ROI 

Set 1 are displayed for each dataset in the left column, and zoomed-in versions of the subcortical and cerebellar 

portions of the matrices are displayed in the right column (the corresponding images for ROI Set 2 are shown in SI 

Figure 2.4). The cortical portion of the correlation matrix is sorted by functional network community, whereas the 

subcortical and cerebellar portions are sorted first by anatomical structure (i.e., basal ganglia, thalamus, and 

cerebellum) and then by functional network community (within each structure). The matrices are similar to one 

another (e.g., the correlation between the primary and validation datasets is 0.93), except for the subcortical portion 

of the secondary dataset (HCP- Human Connectome Project). We observed poor temporal signal-to-noise in 

subcortical HCP data (SI Figure 5). The first row and column of the matrices correspond to unlabeled regions (i.e., 

InfoMap was unable to assign these ROIs to a network, similar to Power et al., 2011 and Gordon et al., 2016). 
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2.3.3 Functional network organization using the expanded ROI Set 

We used a data-driven community detection algorithm (InfoMap) on weighted networks to 

determine the functional network community membership of the expanded set of ROIs (Rosvall 

and Bergstrom, 2008). The results of this analysis are displayed in Figure 2.6. Communities are 

shown for all tested edge density thresholds alongside the consensus network communities (see 

section 2.2.6).  

 

In the subcortex and cerebellum, the consensus network communities were as follows: ROIs in 

the caudate associated with the default mode network (head) or the frontoparietal network (tail). 

The putamen and globus pallidus ROIs joined the somatomotor dorsal network. In the thalamus, 

the default mode network was assigned to mediodorsal region, the cinguloopercular network to 

the laterodorsal and ventral anterior regions, the somatomotor dorsal network to the ventrolateral 

and ventral posterolateral regions, and the visual network to the ROI that includes the lateral 

geniculate nucleus and the posterior portion of the pulvinar. We use the names of the thalamic 

nuclei for convenience here, even though the ROIs encompass more gray matter than just the 

nuclei themselves. Cerebellar ROIs joined various networks, including the default mode, 

frontoparietal, and cinguloopercular networks (lateral), the somatomotor networks (motor 

cerebellar cortex), and the visual network (vermis). Most of the observed network assignments 

agree with known brain function, such as the association between ventral posteriolateral thalamic 

region and the somatomotor dorsal network. 

 

While some ROIs did not vary in network membership across thresholds (e.g., the tail of the 

caudate ROIs), others changed network membership after a certain threshold (e.g., the putamen 
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ROIs) or switched between two or more networks (e.g., some of the thalamic ROIs). This 

variation is similar to the variation seen with cortical ROI assignments (e.g., see Figure 1 from 

Power et al., 2011 and Figure 2A from Power et al., 2013) and is indicative of the loss of some 

finer-scale community structure at denser thresholds.  

 

Importantly, we replicated these community assignments in the validation dataset (MSC; note 

that we did not use the secondary dataset for this analysis due to poor signal-to-noise in the 

subcortex). The consensus communities from the primary and validation datasets were broadly 

consistent across the two ROI Sets, with 55 out of 61 subcortical (including the amygdala and 

hippocampus) and cerebellar ROIs receiving the same assignment.  

 

Most cortical ROIs retained their functional network membership from Power et al., 2011 (ROI 

Set 1) or Gordon et al., 2016 (ROI Set 2). Nonetheless, with to the addition of the new ROIs, we 

observed two functional networks not previously observed with the original ROI sets: (1) a 

network composed of ROIs in the amygdala, ventral striatum, and orbitofrontal cortex, which we 

will call the “striatal-orbitofrontal-amygdalar (SOFA)” network and (2) a network composed of 

ROIs in the anterior hippocampus and entorhinal cortex, which we will call the medial temporal 

lobe (MTL) network. In addition, in ROI Set 1, 10 previously unlabeled ROIs were now assigned 

to a network: 4 to the SOFA network, 3 to the MTL network, 2 to the visual network, and 1 to 

the dorsal attention network. Also, 12 ROIs changed network membership: 2 from the 

cinguloopercular network to the somatomotor dorsal network, 1 from the auditory network to 

cinguloopercular network, and 9 from the salience network to the frontoparietal (2), dorsal 

attention (1), and cinguloopercular (6) networks. For ROI Set 2, 39 previously unlabeled ROIs 
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were assigned to a network: 8 to the SOFA network, 10 to the MTL network, 16 to the 

parietooccipital network, and 5 to the default mode network (SI Figure 2.6). Again, consensus 

communities from the primary and validation datasets were broadly consistent. 
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Figure 2.6: InfoMap-defined functional network communities. The InfoMap-defined functional network 

community of each ROI is displayed. (A) Cortical ROIs are shown projected onto the surface of the brain, and some 

of the non-cortical ROIs are displayed in axial slices to the right of the cortical surface. (B) The matrices represent 

the functional network assignment of each ROI across all tested edge densities (each column, denoted by the tick 

marks, represents one edge density), with the consensus functional network community displayed in the last column 

of each matrix (delineated by the vertical black line). Results are shown for the primary and validation datasets. The 

matrices on the left represent the cortical ROIs, and the colors correspond to the labels in A. The matrices on the 

right show zoomed-in results for all non-cortical ROIs. Results were highly consistent in the subcortex, cerebellum, 

amygdala, and hippocampus, with a total of 3 disagreements between datasets (in addition to 3 unlabeled ROIs at 

the bottom of the cerebellum forming their own “network” in the MSC dataset). 
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2.3.4 Subcortical and cerebellar ROIs integrate with known functional 

networks  

To visualize the ROIs in functional network space, we created spring-embedded graphs, 

displayed in Figure 2.7 (other edge densities in SI Figure 2.7). The implemented spring model 

aggregates nodes with strong correlations between themselves and weak correlations with other 

nodes. Thus, it is possible to observe which nodes segregate into separate communities and 

which nodes act as connector hubs, mediating interactions across different network communities 

(Cohen and D’Esposito, 2016; Gordon et al., 2018; Gratton et al., 2012; Hagmann et al., 2008; 

Mattar et al., 2015; Power et al., 2013; van den Heuvel and Sporns, 2013).  

 

As is evident from the position of the bolded network nodes, the subcortical and cerebellar ROIs 

were distributed throughout the spring-embedded graph. For instance, the cerebellar ROIs (gray) 

were not segregated from the rest of the network communities as in previous reports (Gratton et 

al., 2018a; Power et al., 2011). This finding was consistent between the primary and validation 

datasets. However, we observed that the basal ganglia, thalamus, and cerebellum did segregate 

into their own network communities when the graph was created without structure-specific edge 

density thresholding (SI Figure 2.7; see Section 2.2.6 for the thresholding procedure). That is, the 

basal ganglia, thalamus, and cerebellum clustered into their own separate network communities 

with standard edge density thresholding (applying the threshold uniformly to the whole 

correlation matrix), likely because of the lower correlation magnitudes associated with these 

regions.  
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To assess the effect of including the new ROIs on network topology, we examined two graph-

theoretic network measures: modularity and participation coefficient (SI Figure 2.8; Rubinov and 

Sporns, 2010). Addition of the non-cortical ROIs decreased modularity, with structure-specific 

thresholding resulting in a further decrease. Similarly, the participation coefficient of ROIs in the 

subcortex was significantly higher, on average, than ROIs in the other structures. Structure-

specific thresholding resulted in higher average participation coefficient for all structures. 
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Figure 2.7: Spring-embedded graphs show that subcortical and cerebellar ROIs integrate with well-

characterized network communities. Spring-embedded graphs are displayed for ROI Set 1 using the primary and 

validation datasets at a structure-specific edge density threshold of 3% (other edge densities shown in SI Figure 2.7; 

see section 2.2.6 for the thresholding procedure). Non-cortical ROIs are larger and have a bold outline. The color of 

each ROI represents its consensus functional network community assignment, except for the non-cortical ROIs, 

which are labeled by anatomical structure. The basal ganglia, thalamus, and cerebellum distribute throughout the 

graph, integrating with well-characterized networks rather than segregating into their own communities.  
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2.4 Discussion 

Here we present a set of regions of interest (ROIs) that sample the basal ganglia, thalamus, 

cerebellum, amygdala, and hippocampus more completely than previous ROI sets in order to 

provide a whole-brain description of functional network organization. We found that the refined 

region sets recapitulate previous network organization results in the cortex and extend functional 

brain network characterization to the subcortex and cerebellum. Notably, these results replicated 

across independent datasets. In addition, with the inclusion of the new ROIs, we observe two 

additional functional networks that were not present in Power et al. (2011) and Gordon et al. 

(2016): a striatal-orbitofrontal-amygdalar (SOFA) network and a medial temporal lobe (MTL) 

network. 

2.4.1 Improved sampling of the subcortex and cerebellum 

Many recent research efforts have used the 264 ROIs from Power et al., 2011 or the 333 surface-

based parcels from Gordon et al., 2016 to study brain network organization. These studies have 

examined both structural and functional network organization in a wide variety of samples, 

including healthy young adults (Power et al., 2013; Zanto and Gazzaley, 2013), developmental 

cohorts (Gu et al., 2015; Nielsen et al., 2018; Rudolph et al., 2017), older adults (Baniqued et al., 2018; Gallen et al., 

2016), and a plethora of neurological and psychiatric populations (Gratton et al., 2018a; Greene 

et al., 2016; Sheffield et al., 2015; Siegel et al., 2018). We have gained a better understanding of 

typical and atypical human brain organization from these efforts. However, a full 

characterization of whole-brain network organization in these populations is incomplete due to 

the common unsderrepresentation of the subcortex and cerebellum. While there is recent work 

that has focused separately on networks in the thalamus, subcortex, and cerebellum (e.g., Bell 
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and Shine, 2016; Buckner et al., 2011; Choi et al., 2012; Greene et al., 2014; Hwang et al., 

2017), here we offer a set of ROIs that encompass all of these structures to encourage broader 

adoption of a whole-brain approach.  

 

The functionally-defined subcortical and cerebellar ROIs presented in the current work provide a 

better sampling of these structures. By improving their representation, we were able to delineate 

well-characterized and additional functional network communities (relative to our past 

descriptions). The ability to uncover these networks, which have been previously described using 

other methods, illustrates the importance of representing the entire brain in network-based 

analyses. Further, these improved ROI sets may allow future studies to discover previously 

unobserved, yet critical deviations in functional network organization in diseases and disorders 

in which the subcortex and cerebellum are implicated (e.g., Parkinson Disease, Tourette 

Syndrome, Schizophrenia).   

 

It is worth noting that, by definition, the cortical surface parcels omit the subcortex and 

cerebellum. Yet, it is technically possible to parcellate the subcortex and cerebellum using an 

adapted gradient-based methodology (such as the one from Gordon et al., 2016). This approach 

would require extending the gradient technique to three dimensions. As fMRI technology and 

analysis strategies improve, it would be useful to compare the current results to a full subcortical 

and cerebellar parcellation using this or other gradient-based techniques.  

 

A methodological issue to note is that the winner-take-all approach used to define subcortical 

and cerebellar parcels here may be sensitive to the number of a priori cortical networks used in 
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the analysis. Increasing the number of cortical networks included may allow for finer 

parcellation of certain structures. Here we used previously well-characterized cortical networks 

that have been consistently found using multiple methods by multiple research groups. 

Conversely, InfoMap does not require an a priori number of networks, but may be sensitive to 

thresholding issues (discussed below). Importantly, final network assignments for the ROIs were 

designated using a combination of both techniques. 

2.4.2 Functional connectivity of the refined ROIs is consistent with previous 

studies and replicates across independent datasets 

Correlation seedmaps from the refined ROIs agree with functional connectivity profiles reported 

in previous studies. For example, the ROIs added to the ventral striatum and the head of the 

caudate correspond closely to the seeds placed in the superior ventral striatum (VSs) and dorsal 

caudate (DC) reported in Di Martino et al., 2008, and our seedmaps are highly similar to theirs. 

Likewise, seedmaps from the hippocampus and amygdala agree well with those from Kahn et al., 

2008 and Roy et al., 2009, respectively. The same is true for the thalamus (Hwang et al., 2017) 

and cerebellum (Buckner et al., 2011). 

 

Moreover, the full correlation structure (shown in correlation matrices) was quite comparable 

across the diverse datasets. The one major discrepancy was that in the subcortical portion of the 

matrix from the secondary (HCP) dataset, we observed correlations near zero. The reason for this 

observation is likely poor temporal signal-to-noise ratio (tSNR) in the subcortex of HCP data (Ji 

et al., 2019). Several factors may contribute to this poor tSNR. (1) The HCP used a custom 

scanner and coil, which caused unique magnetic field inhomogeneities, possibly in part due to 

subjects’ heads being outside of the isocenter of the field. (2) The imaging sequence used an 
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aggressive multiband factor and TR (MB = 8, TR = 0.72s) and (3) small voxels (2 cubic mm) 

were used for acquisition (Glasser et al., 2013; Van Essen et al., 2012). Each of these factors 

substantially increase electronic, thermal, and other physical sources of noise (Triantafyllou et 

al., 2005) relative to slower sequences with larger voxels. These effects may be amplified as a 

function of the distance of the imaged structure from the head coil, resulting in the poorest tSNR 

in the subcortex. Further work is needed to determine the specific contributions of each factor, as 

well as others heretofore unconsidered, to the observed poor tSNR.  

 

The presented group-level descriptions converge on a very similar picture of functional network 

organization in the subcortex and cerebellum. However, there are individual differences in both 

subcortical and cerebellar functional network organization (Marek et al., 2018; Greene et al., 

under review), as have been found in cortical functional network organization. Future work 

designed for in-depth study of individuals, as in Poldrack et al., (2015), Filevich et al., 2017, 

Braga and Buckner (2017), and Gordon et al. (2017b), will be important for elucidating such 

individual differences. In fact, in-depth study of the cerebellum (Marek et al., 2018) and 

subcortex (Greene et al., under review) in individuals reveals both common and unique features 

in its functional organization. Furthermore, future work may be able to include the brainstem as 

well in a whole-brain functional network atlas, although there are several technical issues to 

overcome (e.g., CSF pulsations, small nuclei size). 

2.4.3 SOFA and MTL functional networks map onto known human brain 

systems 

Group-average functional network organization in the cerebral cortex is largely consistent across 

studies (Power et al., 2011; Yeo et al., 2011), and the addition of refined subcortical and 
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cerebellar ROIs did not change functional network organization in the cortex substantially 

(although we observed associations between these canonical networks and ROIs in the subcortex 

and cerebellum). However, the addition of these subcortical and cerebellar ROIs allowed for the 

identification of two additional functional networks compared to the networks reported using the 

original ROI sets in Power et al. (2011) and Gordon et al. (2016): (1) the “SOFA” network 

composed of the amygdala, orbitofrontal cortex, and ventral striatum, and (2) the “medial 

temporal lobe (MTL)” network composed of the anterior hippocampus and entorhinal cortex. It 

is worth noting that the SOFA network has been observed in studies focusing on reward and 

emotion processing (Camara et al., 2009) and its cortical and striatal portions are very similar to 

the limbic network from Yeo et al., (2011) and Choi et al., (2012). The MTL network has been 

observed in a study of highly-sampled individuals (Gordon et al., 2017b) as well as studies 

focused on the hippocampus (Greicius et al., 2009). Here, we demonstrate that these networks 

are measurable at the group-level when the whole brain is represented sufficiently. In addition, 

we found that some cortical ROIs that were previously unlabeled (i.e., they did not group with 

any community) received labels with the inclusion of the refined subcortical and cerebellar ROIs, 

with many of them joining the SOFA and MTL networks.  

 

The SOFA and MTL functional networks map onto well-characterized brain systems. Most of 

the ROIs in the SOFA network are likely connected to each other anatomically in rodents, 

nonhuman primates, and humans (Ongur and Price, 2000; Carmichael and Price, 1995; Amaral 

and Price, 1984). Moreover, these brain areas are known to be functionally related, as they are 

important for various aspects of decision making and reward-related behavior, such as economic 

choice (Padoa-Schioppa and Assad, 2006), emotional regulation (Phelps, 2006), and gambling 
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(Bechara et al., 2000, 1997). Likewise, the ROIs in the MTL network are well-connected 

anatomically (Duvernoy, 1988; Woolsey et al., 2008) and support various aspects of memory 

formation, consolidation, and retrieval, as well as other important functions, such as spatial 

mapping (Burgess et al., 2002; Moser and Moser, 1998; Tulving and Markowitsch, 1998). 

Though our current work is agnostic to the function of these brain systems, we show that their 

constituent regions demonstrate coherent spontaneous fluctuations in infraslow BOLD signal. 

2.4.4 Subcortical and cerebellar ROIs integrate with known functional 

networks 

To visualize the organization of the ROIs in functional network space, we created spring-

embedded graphs. We observed that the subcortical and cerebellar ROIs integrate with various 

well-characterized network communities composed of cortical regions instead of segregating on 

their own (i.e., away from cortical ROIs), particularly after structure-specific thresholding (see 

below). This organization fits with the known anatomy and function of the subcortex and 

cerebellum better than a model in which each structure is segregated into its own community. 

For instance, individual nuclei in the thalamus project directly to distinct brain systems (Woolsey 

et al., 2008) and play unique roles in behaviors associated with those systems (Guillery, 1995; 

Van Der Werf et al., 2000). Likewise, cortico-striatal and cerebello-cortical anatomical 

connections show specific projections to unique regions of cortex (Woolsey et al., 2008) and are 

known to be integral for the function of various large-scale, distributed systems, such as the 

motor system (Glickstein and Doron, 2008) and regions of higher order systems (Alexander et 

al., 1986; Strick et al., 2009). Investigation of network measures revealed that the subcortical 

ROIs have a higher participation coefficient, on average, than other structures, meaning they 

have modest-to-high correlations with multiple networks. This result is consistent with the idea 
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that subcortical structures contain integrative hubs (Hwang et al., 2017); Greene et al., under 

review). Likewise, the non-cortical ROIs decrease the modularity of the whole network, 

reflecting decreased segregation and increased integration. It should be noted, however, that 

several methodological factors may affect or potentially bias participation coefficient, such as 

structure-specific thresholding and the interaction between structure size and BOLD fMRI 

spatial autocorrelation.  

 

The demonstration of integration of subcortical and cerebellar ROIs within cortical networks was 

revealed by the use of structure-specific edge density thresholding (i.e., thresholding the cortex, 

subcortex, and cerebellum separately). In most network analyses, only the strongest positive 

correlations are considered for network-based analyses, such as spring-embedded graphs. 

However, subcortical correlations are generally weaker than cortical correlations (likely due to 

distance from the head matrix coil and signal dropout due to sinuses). Thus, if the top 5% 

strongest positive correlations are selected, almost all subcortical correlations will be excluded. 

To avoid this exclusion, we implemented structure-specific thresholding. This choice ultimately 

affects the nature of the spring-embedded graph as well as the determination of functional 

network communities and network measures. Without structure-specific thresholding, subcortical 

ROIs group with one another into two separate network communities (basal ganglia and 

thalamus), while the entire cerebellum is lumped into one network community. In terms of 

human brain functional organization, this pattern of clustering seems artificially inflated due to 

low subcortex-to-cortex and cerebellum-to-cortex correlations. By using structure-specific 

thresholding, we were able to observe functional network organization that is more consistent 

with the known functions of the subcortex and cerebellum. However, this approach may affect 
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graph theoretic network measures, such as participation coefficient, in the subcortex and 

cerebellum, and thus, deserves future investigation.  

2.4.5 “Optimal” ROI set depends on research question 

There are advantages to both anatomical and functional network-based divisions of ROIs. For 

instance, anatomical network divisions allow for analysis of important distinctions between the 

cortex, subcortex, and cerebellum, whereas functional network divisions are likely to better 

represent putative brain function. Likewise, there are fundamental differences between 

anatomical and functional atlases, with anatomical atlases parsing the brain according to 

anatomical divisions and cytoarchitecture, and functional atlases parsing the brain according to 

functional criteria. For instance, the cerebellum is probabilistically divided into lobes and crura 

in one anatomical atlas (Diedrichsen et al., 2009). While many of these divisions align well with 

the ROIs presented here, some ROIs do not fit within the probabilistic boundaries. Thus, some 

ROIs may better reflect functional rather than anatomical divisions in the cerebellum. Similarly, 

many of the divisions in a commonly used subcortical anatomical atlas (Morel, 2013) agree well 

with the ROIs, with the exception of a few anatomical parcels that are likely beyond the 

resolution of the fMRI data used here. Ultimately, researchers should be cognizant of these 

effects when choosing how to perform network-based analyses and which atlas or ROI Set to 

use. We advise readers to use the analysis strategy and atlas that best suits their research 

questions. 
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2.5 Conclusions 

We created new subcortical and cerebellar ROIs to improve the representation of these structures 

for brain network analysis. Combining these new ROIs with previously characterized cortical 

ROIs allowed further insight into whole-brain functional network organization. Going forward, 

inclusion of these ROIs will yield more comprehensive results from fMRI studies of typical and 

atypical brain organization and function. The ROI Sets and consensus functional network 

assignments described here are available for immediate download and use at 

https://greenelab.wustl.edu/data_software. 
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2.10 Supplemental Figures 

 

 

SI Figure 2.1: Disambiguation of discrepancies between assignments. In cases where the winner-take-all 

assignment and InfoMap solution differed, the underlying BOLD data were used to determine the consensus ROI 

assignment. Visual inspection of the ROI’s seedmap allowed for adjudication between the two networks. This 

exemplar ROI (head of the caudate) was assigned to the default mode network (red) via InfoMap while the winner-

take-all assignment was the salience network (black). The ROI’s seedmap is more similar to the salience network 

(black outline) than the default mode network (red outline), especially on the lateral surface of the brain. Arrows 

highlight functional connectivity within salience and default mode network regions. 
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SI Figure 2.2: ROIs in high confidence winner-take-all parcels. The difference between the top two functional 

networks from the winner-take-all parcellation is displayed. Warmer colors indicate high confidence winner-take-all 

network assignments. The ROIs are overlaid in a translucent blue. We observed that 35 out of 55 (64%) ROIs in the 

basal ganglia and thalamus (A) and cerebellum (B) contained “clear winner” voxels (i.e., voxels with a difference in 

correlation strength between the first and second place networks ≥0.05). The remaining 20 ROIs contained voxels 

with strong functional connectivity to multiple networks, suggesting that they may act as integrative hubs (Hwang et 

al., 2017). An alternative interpretation is that the assignments for these 20 ROIs are low confidence (Marek et al., 

2018). To allow for user flexibility, we created flags for these ROIs in the publicly available files, so users will be 

able to exclude them if desired. 
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SI Figure 2.3: Consistency of winner-take-all assignment between split-halves. In locations where the ROIs are 

located, there is good consistency of the winner-take-all assignments in the two split-halves of the primary dataset 

(N=60 each). 
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SI Figure 2.4: Correlation matrices for ROI Set 2. The center of each surface-based parcel from Gordon and 

Laumann et al., 2016 (Cerebral Cortex) was projected into volume space and combined with the new ROIs 

presented in this work to create ROI Set 2. The mean BOLD timeseries from all voxels within each ROI was 

extracted. The correlation matrices for each dataset are displayed, and zoomed-in portions of the matrix 

corresponding to the new ROIs are on the right. 
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SI Figure 2.5: Poor temporal Signal-to-Noise Ratio (tSNR) in the subcortex of Human Connectome Project 

data. Similar to previously published studies, we found that there was poor tSNR in the subcortex of HCP data. 

Representative images of tSNR (mean divided by standard deviation of the BOLD timeseries at each voxel) are 

displayed for an individual from the primary dataset (WashU 120) and from the HCP dataset (top). The images are 

scaled to the maximum tSNR value in the WashU image. The distributions on the bottom represent tSNR for all 

subcortical ROIs across each individual in each dataset. The distribution for HCP (red) is significantly worse than 

the primary dataset (mean +/- std = 9.63 +/- 6.48 for HCP; 137.79 +/- 76.22 for WashU). 
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SI Figure 2.6: InfoMap-defined functional network community assignments for ROI Set 2. The functional 

network communities detected via InfoMap are displayed for the primary (WashU 120; top row) and validation 

(MSC; bottom row) datasets. The results were very similar to those shown in the main text, and there was good 

agreement between the two datasets. The primary difference is the presence of the Parietal Occipital Network in the 

cortex (gray), which was not observed with ROI Set 1. 
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SI Figure 2.7: Spring-embedded graphs at other tested edge densities. The top portion of the figure shows the 

difference between structure-specific edge density thresholding and traditional thresholding (uniform across the 

matrix). The basal ganglia, thalamus, and cerebellum segregate into their own network communities when 

traditional thresholding is used (top right graph). Spring-embedded graphs for other structure-specific edge density 

thresholds are displayed below for the primary and validation datasets. The non-cortical ROIs (larger, bold outlines) 

distribute throughout each graph, integrating with known functional networks.  
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SI Figure 2.8: Graph-theoretic network measures. (A) Inclusion of non-cortical ROIs decreased modularity. 

Graphs display the modularity statistic for ROI Set 1 with (no marker) and without (triangle marker) the subcortical 

and cerebellar ROIs, as well as with (dashed lines) and without (full lines) structure-specific edge density 

thresholding, for the WashU 120 (black; left) and MSC (blue; right) datasets. Modularity was calculated always 

assuming the consensus network assignment across a variety of edge density thresholds. (B) Subcortical ROIs have 

higher average participation coefficient than cortical and cerebellar ROIs. Graph displays the average participation 

coefficient for all ROIs within a structure with (dashed lines) and without (full lines) structure-specific edge density 

thresholding. Participation coefficient was computed for each ROI and averaged across all ROIs in the cortex 

(black), subcortex (blue), and cerebellum (red) for the WashU 120 (left) and MSC (right) datasets. The result of this 

analysis is shown for a variety of edge densities while always assuming the consensus network assignments. 
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Chapter 3: Trait-like variants in human functional brain 

networks 
Resting-state fMRI has provided converging descriptions of group-level functional brain 

organization. Recent work has revealed that functional networks identified in individuals contain 

local features that differ from the group-level description. We define these features as network 

variants. Building on these studies, we ask whether distributions of network variants reflect 

stable, trait-like differences in brain organization. Across several datasets of highly-sampled 

individuals we show that (1) variants are highly stable within individuals, (2) variants are found 

in characteristic locations and associate with characteristic functional networks across large 

groups, (3) task-evoked signals in variants demonstrate a link to functional variation, and (4) 

individuals cluster into sub-groups on the basis of variant characteristics that are related to 

differences in behavior. These results suggest that distributions of network variants may reflect 

stable, trait-like, functionally-relevant individual differences in functional brain organization. 

 

3.1 Introduction 

Identifying the nature of individual variability in human brain function is a central question in 

many fields of study, including psychology, psychiatry, neurology, and neuroscience. Many 

human neuroimaging studies have identified stable, meaningful individual differences in 

functional activations during task performance (Congdon et al., 2010; Miller et al., 2012, 2009; 

Neta and Whalen, 2011; van Horn et al., 2008) or volumetric differences (e.g., (Filipek et al., 

1997; Kanai and Rees, 2011)) within specific brain regions. However, a number of recent 

investigations have revealed substantial individual variability while subjects are at rest not only 

in single regions, but also in large-scale networks throughout the brain (Braga and Buckner, 



73 

 

2017; Gordon et al., 2017a, 2017b, 2017c; Gratton et al., 2018; Laumann et al., 2015; Marek et 

al., 2018; Mueller et al., 2013; Wang et al., 2015). Here, we examine the characteristics of these 

individual differences in brain networks, asking if they are stable and systematic features of 

individual brain organization. Furthermore, we investigate if the distributions of these 

differences within an individual have trait-like aspects that might be linked to trait-like 

individual differences in behavior. 

 

Large-scale functional brain networks are composed of distributed brain areas that demonstrate 

correlated fluctuations in their spontaneous (resting-state) activity measured using functional 

Magnetic Resonance Imaging (fMRI). Over the last decade convergent descriptions of canonical 

functional network organization of the human brain have emerged from fMRI studies (Power et 

al., 2011; Yeo et al., 2011). These efforts have revealed that functional networks map onto 

known large-scale brain systems, including the motor (Biswal et al., 1995), auditory (Cordes et 

al., 2000), and visual systems (Lowe et al., 1998), as well as higher-level systems, such as those 

for executive control (Dosenbach et al., 2007). Furthermore, regions within the same functional 

network tend to co-activate during tasks (Smith et al., 2009). 

 

Most of the aforementioned studies have analyzed data from large groups of typical adults 

averaged together in order to delineate group-level descriptions of network organization (Power 

et al., 2011; Yeo et al., 2011). However, several recent investigations have revealed variability in 

functional network organization across individuals (Gordon et al., 2017a, 2017b; Mueller et al., 

2013; Wang et al., 2015), including observations that highly sampled individuals show focal 

deviations from the group-level description (Braga and Buckner, 2017; Gordon et al., 2017c; 
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Laumann et al., 2015). We refer to these individual-specific deviations in functional network 

organization as network variants.  

 

Natural questions raised by the observation of variants are whether individual differences in 

functional brain organization relate systematically to individual differences in function. Here, we 

ask specifically whether (1) network variants exhibit stability over time within an individual, (2) 

network variants have systematic spatial distributions and/or functional network associations, (3) 

individuals separate into sub-groups with different distributions of variants, and (4) aspects of 

network variants relate to individual differences in brain function and behavior. These questions 

seek to address the trait-like nature of distributions of individual differences in brain 

organization.  

 

We investigate these questions using three datasets, one composed of 10 highly sampled 

individuals from the Midnight Scan Club (MSC) (Gordon et al., 2017c), a second of a single 

individual scanned over the course of a year called the MyConnectome dataset (Poldrack et al., 

2015), and the third including 384 unrelated individuals with high-quality data from the Human 

Connectome Project (HCP; see methods for exclusion criteria) (Van Essen et al., 2012b). 

Furthermore, we split the HCP dataset into two matched samples for within-study replication. 

Together, these datasets allow us to examine both the within-individual stability of network 

variants as well as the distribution of network variants across larger samples. 
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3.2 Results 

We compared individual resting-state functional correlations (rsFC) to a group-average across 

the entire cortex. We found that most of the brain in individuals shows moderate to high 

correspondence with group-average rsFC, with a few locations showing large deviations, as in 

(Laumann et al., 2015). We defined network variants as the locations where individuals’ rsFC 

differs substantially from the group-average (Fig 3.1). Our goal was to examine the nature of 

these network variants and to determine if they relate to brain function. 
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Figure 3.1: Identification of network variants. We compute a spatial correlation between an individual’s seed 

map and the group-average seed map at every vertex on the cortical surface. An example is shown here for a seed in 

dorsal medial frontal cortex (white seed indicated by the black arrows). We compare the pattern of correlations for 

subject MSC02 with the group-average and the pattern of correlations for subject MSC06 with the group-average. 

Notably, MSC02’s seed map differs substantially from the group-average, while MSC06’s seed map agrees well. 

Hence, the spatial correlation at that vertex is low in MSC02 (blue arrow, top brain on the right) and high in MSC06 

(red arrow, bottom brain on the right). Network variants are defined as contiguous cortical regions where this spatial 

correlation measure is low (dark blue areas on the brains on the right), excluding brain areas with low signal (see 

Methods for additional details). 
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3.2.1 Network variants are present and reliable in individuals 

Network variants (Fig 3.1) were observed in all individuals included in the study, in the MSC, 

MyConnectome, and HCP datasets (SI Fig 3.1). All individuals have at least one brain region 

with low similarity to the group-average (defined as r<0.15 rather than lowest decile for this 

analysis only). Thus, network variants appear to be a common phenomenon, not just an 

idiosyncrasy of a few individuals. However, the location, size, and network assignments of 

variants differed across individuals, as will be described in more detail below. 

 

Next, we asked if network variants were stable within an individual, rather than reflecting 

measurement noise, state change, or sampling variability. We examined session-to-session 

variability of variants in the MSC dataset. For each individual, ten separate 30-minute resting-

state sessions were available (collected over 3 weeks). The spatial correlation map was robust 

across sessions (see example from MSC02 in Fig 3.2A), with high (>0.75) intraclass correlations 

(ICC) across sessions for 9 out of the 10 individuals, and the distribution of randomly sampled 

between-subject ICCs was substantially lower (Fig 3.2B; similar results were found with 

binarized network variants- SI Fig 3.2). The individual with a relatively low ICC (0.44 for 

MSC08) had a substantial amount of high-motion data and self-reported sleeping during 

extensive portions of data acquisition, as previously described (Gordon et al., 2017c; Laumann et 

al., 2016). Thus, this subject was excluded from all further analyses. Furthermore, we found that 

network variants were stable over a year in the individual from the MyConnectome dataset (SI 

Fig 3.3), which is a more ecologically valid timeframe. Finally, we examined the amount of data 

required to identify variants reliably (SI Fig 3.4), and demonstrated that roughly 40 minutes of 

high-quality (low-motion) data is needed (Gordon et al., 2017c; Laumann et al., 2015). 
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Figure 3.2: Within-subject reliability of network variants. (A) The spatial correlation values at each cortical 

surface vertex for all ten independent resting-state fMRI sessions from subject MSC02 are shown. Locations with 

low spatial correlations correspond to network variants (e.g., black circles; similar results were seen for the medial 

surface and right hemisphere). (B) The intraclass correlation (ICC) of the spatial correlation maps (for the entire 

cerebral cortex) computed across each session within each individual in the MSC dataset is shown. The ICC reflects 

the test-retest reliability of network variants identified via data from each session independently for an individual. 

The open black circles represent the correlation between two randomly selected spatial correlation maps from 

different subjects (one session per subject; 1000 random permutations performed). Subject MSC08 (the excluded 

high-motion subject) is the only individual with a relatively low ICC that overlaps the distribution of between-

subject correlations. 
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3.2.2 Variants occur mostly in frontal and temporo-parietal cortex and often 

associate with higher-level functional networks 

The location, size, and network associations of variants differed across individuals. If variants 

relate to a limited number of trait-like features, we might expect them to show characteristic 

patterns of variation across the population. Thus, in our next analysis we examined the 

characteristic spatial distribution and functional network associations of variants across 

individuals. We expand on previous measurements of individual variability in brain networks 

(Gordon et al., 2017a, 2017b; Mueller et al., 2013) by characterizing the distribution of network 

variants across both highly sampled (MSC) and large group (HCP) datasets. 

 

In both datasets we find common locations for network variants near the temporo-occipito-

parietal junction and in lateral frontal cortex, especially in the right hemisphere, with overlaps 

peaking around 33% of subjects in both datasets (3/9 highly sampled individuals, 127/384 HCP 

subjects). In the group-average, these regions overlap with association networks, including the 

frontoparietal and ventral attention networks. Conversely, network variants occur rarely in the 

insula, superior parietal lobe, posterior cingulate, and primary sensory and motor cortical areas, 

with an exception around the occipital pole (Fig 3.3A). Thus, there appears to be a characteristic 

distribution of network variants across individuals, with more network variants occurring in 

specific regions of association cortex. Notably, this common distribution was found using 

separate datasets collected from two different scanners (3T Trio vs. custom 3T HCP Skyra) with 

different acquisition parameters (e.g., spatial resolution of 4mm isotropic voxels vs. 2mm 

isotropic voxels, temporal resolution of 2.5s vs. 0.72s, AP vs. LR-RL phase encoding, and single 

band vs. multi-band acquisition). 
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To determine whether network variants are driven by individual differences in gross anatomical 

features, we examined the overlap between network variants and deformations that occurred 

during surface registration for each individual, following Gordon and colleagues (Gordon et al., 

2017b). We observed extremely low overlap between network variants and deformations due to 

surface registration (SI Fig 3.5; mean dice overlap = 0.0001). 

 

In addition to their location, we examined the functional network with which each variant was 

associated (i.e., idiosyncratically ‘assigned to’). After identifying the location of the variant, we 

implemented a modified winner-take-all template matching approach to determine the resting 

state functional network to which the variant is most similar (see Methods for details) (Gordon et 

al., 2017a). For example, consider that the canonical (group-average) frontoparietal network is 

the network in which variants are most often located (e.g., dorsolateral prefrontal cortex in Fig 

3.3A). Thus, variants in this part of the brain are non-frontoparietal by definition (e.g., the 

default mode variants shown in Fig 3.4B). We observed that variants are often assigned to the 

default mode, cinguloopercular, and other attention/control networks and infrequently assigned 

to networks related to sensorimotor and memory functions (Fig 3.3B). Thus, variants often 

“switch” from one association network to another. 

 

Altogether, network variants’ anatomical distribution and typical functional network assignments 

show characteristic and systematic distributions, largely related to alterations in association 

systems, suggesting that they may be particularly linked to individual differences in higher-level 

functions.  
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Figure 3.3: Distribution of network variants across individuals. (A) The overlap of network variant locations 

across individuals is displayed, with brighter colors indicating increasing levels of overlap for the MSC (left) and 

HCP (right) datasets. Network variants occur commonly in lateral frontal cortex and near the temporo-occipito-

parietal junction, and are rarely found in primary sensorimotor areas, the insula, superior parietal lobule, or posterior 

cingulate cortex. (B) In addition to occurring in characteristic locations, network variants were also typically 

associated with a characteristic set of networks. The mean proportion of variant functional network assignments to 

14 canonical networks (Gordon et al., 2017a) across individuals in the MSC (left) and HCP (right) datasets (error 

bars = SEM) is displayed. A plurality of variants was assigned to the default mode (DMN, red) and cinguloopercular 

(CO, purple) networks across individuals in both datasets.  
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Figure 3.4: Functional activation of network variants. (A) The average task-evoked activations are displayed for 

variants (red) assigned to different networks (x-axis) and contrasted with the average activation for canonical 

regions in each network (blue) and for canonical regions in other networks (black). Mean de-activations are 

significantly stronger for DMN variants than in non-DMN canonical regions, and approach the levels of deactivation 

seen for canonical DMN locations (error bars = SEM across individuals). De-activations were not present across all 

variants; variants from task-activated networks, like visual, fronto-parietal (FP), and dorsal attention (DAN) show 

activations during the task, approaching levels for canonical regions in each network. (B) Example de-activations (t 

< 0) are displayed for subject MSC02 with outlines of the individual’s network variants overlaid. Note that there is 

strong de-activation in DMN variants (red arrows), whereas there is no deactivation in other variants (e.g., FP 

variant, yellow arrow). The group-average networks with the same variants overlaid are displayed below for 

reference, and the righthand image shows an enlarged view of two DMN variants in right lateral frontal cortex. (C) 

The same variant from MSC02 (red outline) is overlaid on an activation map from MSC02 (mostly de-activated) as 

well as other example subjects (MSC03-05) and the group average. In other individuals, this location exhibits 

activations. Indeed, across DMN variants in all subjects, activations were significantly lower for DMN variants than 

the matched location in other subjects. See SI Fig 3.6 for more extended examples. 

3.2.3 Task-evoked signals in variants correspond to network association, not 

location 

To further validate whether network variants are related to changes in task function, next we 

asked if variants exhibit task fMRI activations consistent with their novel network assignments. 
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To address this question, we focused on default mode (DMN) network variants as a test case 

because (a) all MSC subjects had examples of DMN variants and (b) the activation profile of the 

DMN is well described and distinct from other networks, with a robust propensity to show de-

activations during most tasks (Shulman et al., 1997). Thus, we examined whether DMN variants 

follow the expected patterns of de-activations during task performance, despite being located in 

regions outside of the canonical DMN.  

 

To this end, we measured the average BOLD activations across all task conditions in the set of 

mixed-design tasks (semantic, visual coherence) collected in the MSC dataset. We found that 

DMN variants show significantly stronger de-activations than canonical non-default regions of 

the brain (t(8)=3.33, p=0.01; Fig 3.4A, red vs. gray lines), approaching the level of de-activation 

shown by canonical regions of the DMN (Fig 3.4A, blue lines). This pattern of de-activations in 

variants is notable, given that variants, per our working definition, occur in locations remote 

from canonical DMN locations (see Fig 3.4B with an example of variants and task de-activations 

from one individual). Indeed, DMN variants in a given individual show significantly lower 

activations than the same location in other subjects (t(8)=7.86, p<0.001, see SI Fig 3.6C). Fig 

3.4C and SI Fig 3.6A and 3.6B show examples of DMN variant alignments to de-activations 

within and across subjects, including in a region of dorsolateral prefrontal cortex that is typically 

associated with positive activations in these tasks.  

 

Importantly, de-activation was not a generic characteristic of all variants, as variants associated 

with many other networks show activations (e.g., variants assigned to task-activated networks 

such as frontoparietal, dorsal attention, and visual - Fig. 3.4A), approaching the activations 
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shown by canonical regions in each network with these contrasts. To supplement this finding, we 

conducted a related analysis on sustained task activations in cinguloopercular network variants. 

Group studies have suggested that sustained activations are fairly selective to the 

cinguloopercular network, rather than other control-related networks, like the frontoparietal 

(Dosenbach et al., 2008, 2007, 2006; Dubis et al., 2016). We found a descriptive result for 

sustained activation in cinguloopercular network variants (SI Fig 3.7). Since only a small number 

of participants exhibited cinguloopercular variants in the MSC dataset (6 out of 9), we describe 

the result without formal statistics. These findings provide initial evidence that network variants 

carry task-evoked variations in their functional signals related to their idiosyncratic network 

identity at locations not expected from group activation maps. 

3.2.4 Distinct sub-groups of individuals clustered by properties of network 

variants 

A further hypothesis regarding the trait-like nature of network variants is that common 

distributions of variants may be present across individuals, much as eye color or blood type 

present in common clusters across individuals. To address this question, we examined whether 

individuals could be clustered into separate sub-groups on the basis of the distributions of 

network variants using a data-driven approach (InfoMap; see Methods) (Rosvall and Bergstrom, 

2008). Given the exploratory nature of this analysis, we first examined different clustering 

possibilities in the MSC dataset, and then used two matched split-halves in the independent HCP 

dataset to validate the MSC results.  

No clustering via anatomical location of variants 

First, we examined whether individuals could be clustered according to the anatomical locations 

of their network variants (irrespective of functional identity). We constructed a binary map of 
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variant locations for each subject. Then, we computed the spatial similarity of the anatomical 

distribution of variants between all pairs of individuals, and applied InfoMap to this spatial 

similarity matrix (see Methods for details). Across InfoMap thresholds, individuals generally 

grouped into a single large cluster or were unassigned to a group (e.g., for the full 384 HCP 

subjects the average number of individuals in the large cluster was 201+/-130; SI Fig 3.8). Thus, 

individuals were not classified into large sub-groups of common anatomical locations of network 

variants.  

Distinct clusters of individuals via functional network of variants  

Next, we tested if individuals could be clustered according to the functional properties (network 

assignment) of their variants. To this end, we examined the similarity between the seed map of 

each variant to standard templates of canonical functional networks (14 template functional 

networks were derived from a separate dataset, the WashU 120 group-average; see (Gordon et 

al., 2017a) for more details). This procedure produced 14 correlation coefficients per network 

variant, conveying the extent to which a variant is default-like, visual-like, etc. The mean 

template similarity across variants (averaged across all variants within an individual) revealed 

two distinct patterns across individuals in the MSC dataset (Fig 3.5A). Importantly we replicated 

the result in two independent, matched HCP split-halves (Fig 3.5B). Again, this is notable given 

the differences in the subjects (e.g., IQs are much higher in the MSC dataset (Gordon et al., 

2017c)), scanner, and acquisition parameters). Furthermore, we validated the two-group 

clustering solution via a modularity-based null model as well as hierarchical clustering (SI Fig 

3.9). The two sub-group solution was the most robust across datasets, with some evidence for a 

four sub-group solution (SI Fig 3.10). 
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The first sub-group consisted of individuals (NMSC = 3/9, NHCP,1 = 83/192, NHCP,2 = 80/192) 

whose variants exhibited stronger correlations to the cingulo-opercular (CO), dorsal attention 

(DAN), and sensorimotor networks (Fig 3.5A and 3.5B- gray), suggesting that network variants 

in these individuals associated more strongly with control and processing systems. The second 

sub-group consisted of individuals whose variants exhibited stronger correlations to the default 

mode (DMN) network, among others (NMSC= 4/9, NHCP,1 = 92/192, NHCP,2 = 91/192) (Fig 3.5A 

and 3.5B- pink). The two sub-groups were strongly anti-correlated (see the matrices on the left 

in Fig 3.5A and 3.5B), indicating that functional characteristics of variants in these sub-groups 

differed substantially from one another. We observed a similar but weaker pattern of sub-groups 

when individuals were clustered based on the overall size of each functional network relative to 

the group-average (SI Fig 3.11).  

 

Moreover, we observed a small but significant difference between the two HCP sub-groups in 

terms of neuropsychological measures of behavior (SI Fig 3.12). We found that individuals in the 

control and processing sub-group had a higher score (t(344) = 2.04, p < 0.05) in the positive life 

experience factor and a lower score (t(344) = 2.04, p < 0.05) in the history of drug abuse factor. 

Both differences were significant after FDR-correction (see Supplemental Information for full 

details). 
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Figure 3.5: Separable groups of individuals via network associations of variants. The figure displays groups of 

individuals in the (A) MSC and (B) HCP datasets clustered by the network associations of their variants. Network 

associations were computed for each variant as their similarity to templates of 14 canonical functional networks (see 

Methods) (Gordon et al., 2017b). The matrices on the left show the correlation between pairs of individuals in terms 

of variant network associations; each row/column represents a single individual’s correlation to all other individuals. 

The matrices were clustered in a data-driven fashion using InfoMap. The gray and pink colors or bars along the 

edges of the matrices denote individuals in the same sub-group. These groupings were used to create the averages 

(line graphs) on the right. The line graphs show the average similarity of variants to each functional network 

template for individuals within the control and processing sub-group (gray) and the default sub-group (pink; error 

bars = SEM across individuals).   
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Jointly, these findings suggest that individuals cluster into sub-groups based on the network 

assignment of each variant, with one sub-group exhibiting more control and processing-like 

variants and the other sub-group exhibiting more default-like variants. Importantly, these 

findings provide evidence for systematic variation of network variants across individuals that 

replicated across three independent samples, with potential implications for behavior. 

 

As noted above, when we examined cluster solutions across alternate thresholds (see Methods 

and SI Fig 3.9) we observed sub-patterns within each of the two primary clusters in the large 

HCP samples at lower (sparser) thresholds. There was some evidence for a four sub-group 

solution (SI Fig 3.10), but it was less reliable than the two sub-group solution across HCP split-

halves. The presence of more fine-grained sub-groups suggests that greater sample size as well 

as the inclusion of additional measures and data from clinical populations might yield further 

clusters of individuals not yet characterized, and potentially more fine-grained relationships 

between variants and behavior. 

 

3.3 Discussion 

The current study deepens our understanding of individual differences in the systems-level 

organization of the human brain by demonstrating that these differences reflect stable, trait-like 

features with systematic properties that cluster across individuals. Specifically, our results 

demonstrate that network variants (1) show high session-to-session stability in highly sampled 

individuals, suggesting that they are trait-like, (2) occur commonly in lateral frontal and 

temporoparietal regions and often associate with the default mode, cinguloopercular, and other 

control networks, suggesting a systematic linkage to higher-level functions, (3) are related to 
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functional variations during tasks, displaying brain (de-) activations consistent with their novel 

network re-assignment and validating their putative network function, and (4) have a systematic 

patterning across individuals, allowing for the clustering of individuals into sub-groups, with 

small differences in behavior between sub-groups. Jointly, these findings suggest that network 

variants are promising candidates for endo-phenotypic markers of systems-level brain variability. 

3.3.1 Network variants are stable, trait-like components of individual 

functional brain organization 

Our primary goal was to investigate properties of network variants. We hypothesized that they 

might show trait-like differences, including stability over time within individuals and systematic 

variation across individuals.  

 

We found that all individuals across two independent datasets (with separate scanners and scan 

parameters, N=393) showed characteristic focal deviations from the group-level description of 

functional brain organization. This indicates that network variants are standard components of 

typical adult functional network organization, as hinted at by the strong individual variation 

reported in previous research (Braga and Buckner, 2017; Gordon et al., 2017a, 2017b, 2017c; 

Gratton et al., 2018; Laumann et al., 2015). Moreover, we expand upon these findings by 

showing that network variants are stable within an individual, appearing consistently across 10 

independent resting-state fMRI sessions in highly sampled individuals. These findings extend 

previous evidence that resting-state correlations are sensitive to individual differences in brain 

organization, given sufficient data and adequate control for nuisance sources of variance (Birn et 

al., 2013; Braun et al., 2012; Chen et al., 2015; Gratton et al., 2018; Laumann et al., 2015). 
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Our results also indicate that group-average functional networks represent a mixture of 

individuals from distinct sub-groups (Fig 3.5). However, we demonstrate that network variants 

are highly localized to particular portions of cortex. In other words, individuals showed 

substantial similarity to the group-average networks at most cortical locations. Since the 

maximum spatial overlap of network variants is approximately 33%, the group-average may be a 

reasonable description for the majority of individuals in most brain locations. Thus, group-

average functional networks provide an adequate description of the expected pattern of brain 

organization, but the group-average is not a good representation of any given person and is, 

therefore, limited in inferences that can be drawn about brain-behavior relationships. 

 

Taken together, the presence of network variants in all individuals and their robustness over 

sessions provides compelling evidence that they act as stable variations in the systems-level 

organization of the human brain. These features may prove to be useful substrates in 

understanding individual differences in brain function and behavior across many domains.  

3.3.2 Network variants have characteristic distributions and functional 

network associations across individuals 

We observed that network variants are found commonly near the temporo-occipito-parietal 

junction and in lateral prefrontal cortex. We rarely detected network variants in primary 

sensorimotor cortical areas, the insula, superior parietal lobe, or posterior cingulate cortex. This 

finding not only replicates across independent datasets, but also converges with previous studies 

of individual differences in functional network organization reporting high individual differences 

in association networks (Chen et al., 2015; Gordon et al., 2017b; Kong et al., 2018; Mueller et 

al., 2013), with a few specific differences. For instance, compared to Mueller and colleagues, we 
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found more network variants near the inferior frontal gyrus and fewer near angular gyrus and 

supramarginal gyrus. Differences in data processing and registration (surface-based here) may 

have contributed to some of these discrepancies. This idea is supported by the similarity of the 

results here and those reported by Kong and colleagues (Kong et al., 2018). 

 

Interestingly, the distribution of common locations for network variants does not appear to be 

symmetric between the two hemispheres, as we found generally more variants in the right 

hemisphere. Lateralization in the brain is a well-established phenomenon, in terms of both 

anatomy and function (e.g., (Broca, 1861; Sperry, 1961)), even at the level of individual resting-

state functional correlations (Wang et al., 2015). The significance and implications of potential 

network variant lateralization is a topic for future work to explore. 

 

Furthermore, we found that variants tend to associate with the default mode (DMN), 

cinguloopercular (CO), and other association networks more often than other functional 

networks. Networks like the CO and frontoparietal (FP) network are thought to be important for 

control functions and performance monitoring (Dosenbach et al., 2007; Dubis et al., 2016; 

Gratton et al., 2017; Neta et al., 2014; Sadaghiani and D’Esposito, 2015; Seeley et al., 2007), and 

the DMN has been proposed to be involved in numerous domains, including autobiographical 

memory, internal monitoring, and theory of mind (Buckner et al., 2008; Raichle, 2015; Spreng et 

al., 2009). Network variants occur most often in these “association” networks, and they tend to 

re-assign from one higher-level functional network to another. Together, these results suggest 

that flexibility in functional network organization may relate more closely to higher-level 

functions typically associated with these regions. 
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3.3.3 Network variants exhibit functional variations during tasks 

We observed that network variants coincide with locations of functional variations during tasks 

in the MSC dataset. Specifically, we demonstrated that variants that associate with the DMN 

exhibit decreases in activity during task performance, as has been robustly observed for 

canonical DMN regions in most externally directed tasks (Shulman et al., 1997). This was the 

case even in DMN variants in dorsolateral prefrontal cortex, a brain region that canonically 

shows robust positive activity during tasks in most individuals. Moreover, this de-activation was 

not a general property of all variants; variants associated with task-activated systems like the 

visual, dorsal attention, and FP networks showed (positive) activations. Likewise, 

cinguloopercular (CO) network variants showed a trend toward higher levels of sustained 

activation, consistent with role of the CO network in the stable maintenance of task set 

(Dosenbach et al., 2008, 2007, 2006; Dubis et al., 2016). This finding provides initial validation 

that network variants shift toward the response characteristics of their functional network 

assignment during task performance, providing corroborating evidence that variants reflect true 

deviations in the functional organization of individual human brains that impact task function. 

 

This result converges with work from Tavor and colleagues, who built a model that was able to 

predict individual differences in task activations on the basis of individual differences in resting-

state data (Tavor et al., 2016). Their model did not specifically operate on network variants, 

although the presence of network variants would certainly impact the training of the model. 

Likewise, Gordon and colleagues demonstrated that individual specific task-related activation 

patterns map onto that individual’s resting-state functional networks better than they map onto 

different individuals’ networks (Gordon et al., 2017c). Here, we build on these findings by 
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showing that network variants specifically show improved task-rest alignment in individuals 

compared with canonical network assignments. Finally, seminal work from Miller and 

colleagues revealed stable, meaningful individual differences in brain activations during task 

performance (Congdon et al., 2010; Miller et al., 2012, 2009; van Horn et al., 2008). These 

investigations led to the idea that individual-specific activation patterns reflect, or are potentially 

determined by, subject-specific information processing strategies. The results presented here 

suggest that if these hypotheses are true, this trait-like brain activity may be localized to network 

variant regions, specifically.  

3.3.4 Individuals cluster into discrete groups on the basis of network variant 

characteristics 

We found evidence for sub-groups of individuals within a normative sample with similar forms 

of network variants, suggesting that variants demonstrate systematic variation across individuals. 

Intriguingly, it was the network assignment of variants, rather than their anatomical location, that 

appeared to be the driving force behind these distinct sub-groups. That is, it appears as though 

group-level variation of network variants is more related to functional assignment than location.  

 

We observed two sub-groups across individuals that were consistent in both datasets. The two 

sub-groups were composed of individuals with more control and processing-like variants and 

individuals with more default-like variants. The strong distinction between the sub-groups may 

relate to the specific functional networks onto which the variants map, which generally activate 

and de-activate, respectively, during externally directed tasks (Fox et al., 2005; Margulies et al., 

2016). A related possibility is that the distinction between the sub-groups may be due to changes 

in the relative size of the aforementioned networks. In other words, individuals with more 
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default-like variants may have an expanded DMN, which could be achieved via “trading” 

anatomical space canonically occupied by control and processing functional networks for DMN 

network variants (and vice-versa). Any of these possibilities relates to the trait-like status of the 

distributions of variants across individuals. 

 

While our work provides initial evidence for groups of individuals with similar network variants 

across two different samples, it appears likely that additional sub-groups will be found in future 

studies. Some additional sub-groups may be associated with other properties of network variants 

(e.g., specific locations, networks, and their interactions), while others may emerge with a more 

behaviorally diverse range of individuals, e.g., those with neurologic or psychiatric disorders. 

Notably, in the larger HCP dataset we observed some evidence of further clustering, with the two 

initial groups dividing further into four sub-groups of individuals. The current work presents a 

starting point for future investigations into systematic variation in individual functional brain 

organization, an area that merits substantial additional exploration.  

3.3.5 Network variants may relate to behavior 

The trait-like nature of network variant distributions raises the question of whether or not 

network variants relate to individual differences in behavior. It is possible that these individual 

differences in brain organization reflect different manners of instantiating the same behavior, a 

behavioral phenocopy (Schlaggar and McCandliss, 2007), or functional degeneracy (Friston and 

Price, 2003; Tononi et al., 1999). In other words, network variants may reflect individual 

differences in processing organization that ultimately lead to similar functional outcome. 

Conversely, there may be systematic relationships between network variants and measures of 
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behaviors, either in a categorical (e.g., differences between network variant sub-groups and 

behavior) or continuous fashion.  

 

We observed a small but significant relationship between network variant sub-groups and 

behavior. Individuals in the default mode sub-group had a lower life satisfaction and higher 

history of drug abuse, on average. Previous investigations revealed that individual differences in 

resting-state functional correlations are related to a positive and negative ‘mode’ of lifestyle 

(Bijsterbosch et al., 2018; Smith et al., 2015) as well as measures of executive function (Finn et 

al., 2015; Kong et al., 2018). Our finding is more consistent with the former studies. 

 

In addition to the sub-group analysis presented here, there may be continuous relationships 

between network variants and measures of behavior, such as those observed by Bijsterbosch and 

colleagues (Bijsterbosch et al., 2018). Connections between network variants and behavior 

should be pursued by future studies with more specialized behavioral measures and a broader 

range of network variant properties and sub-groups. By extending behavioral relationships to 

network variants specifically, future investigations should have more precise targets, i.e. variant 

locations, for both basic experimentation and potential medical intervention (e.g., via 

stimulation-based methods). It is possible that our approach of identifying network variants may 

provide a rich source of targets to better understand the neurobiological sources of individual 

differences in behavior. 

3.3.6 Neurobiological interpretations of network variants 

In the present study, we demonstrate that individuals stably vary in specific elements of their 

functional network organization. This observation raises the question of what neural mechanisms 
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underlie these individual differences. Any network variant could represent (1) a regional border 

shift, in which a neighboring brain area is enlarged, contracted, or displaced, (2) a relative shift 

in the functional and connectivity properties of an existing area, leading to re-assignment to a 

distinct network, or (3) a de novo brain area unique to an individual or small group.  

 

The appearance of completely novel cortical areas in individuals seems unlikely. Most studied 

cortical areas (i.e., visual areas, motor areas, attention related areas) are found reliably in 

essentially every individual primate (Woolsey, 1982, 1981a, 1981b). Variations in the size of 

brain areas have been observed previously, such as a two-fold difference in the size of some 

visual areas (Dougherty et al., 2003). In cases of perturbations, larger changes can be seen. For 

example, area V1 in congenitally blind individuals is significantly decreased in size (Jiang et al., 

2009; Noppeney et al., 2005; Park et al., 2009) and genetic manipulations can affect the size and 

position of areas, e.g. primary sensory and motor areas are expanded and shifted rostro-laterally 

in mice that overexpress Emx2 (Bishop et al., 2000; Hamasaki et al., 2004). Cortical areas may 

also be displaced along the cortex, as was observed for area 55b by Glasser and colleagues 

(Glasser et al., 2016), leading to the appearance of variant pieces in non-overlapping locations.  

 

As a conceptual example (Fig 3.6), consider the Frontal Eye Fields (FEF), an area that lies close 

to regions where network variants are frequently found across individuals (in the right 

hemisphere, at least). Essentially every human likely has at least one FEF per hemisphere (Paus, 

1996). If an individual has a larger (or smaller) FEF than the average, the expanded (or 

contracted) portion of cortex will appear as a network variant. Likewise, if FEF is displaced in an 

individual relative to the typical cortical location of FEF, it will be identified as a network 
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variant. While these more local variations likely occur (and account for some network variants), 

previous work has demonstrated that individually variable network assignments can occur at 

regions remote from network borders (Gordon et al., 2017a).  

 

One potential explanation for remote network variants is altered functional response and 

connectivity properties of those areas in certain individuals. For example, individual FEF 

neurons code for saccades, visual stimuli, attention in space, and combinations of these three 

properties (Tehovnik et al., 2000). Depending on the relative proportion of these various types of 

FEF neurons, individuals may have different functional connectivity and task-evoked BOLD 

signals in this area relative to the group-average. Whereas a typical individual’s FEF may have a 

high proportion of eye movement and attention neurons, thus producing the usual association 

with the dorsal attention network, another individual’s FEF might contain an unusually large 

number of neurons coding visual stimuli (e.g., due to genetics and/or accumulated experience) 

and, thus, associate with the visual functional network. Therefore, one possibility is that an area 

may appear like a network variant not because it is truly a novel area, but because the 

distribution or function of its neurons is shifted systematically in that individual.  
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Figure 3.6: Schematic of potential neural mechanisms underlying network variants. A schematic of the typical 

(group-average) FEF is displayed on the left. Neurons coding for saccades, attention in space, and visual stimuli are 

color-coded (light blue, green, and dark blue, respectively). An individual’s FEF may be identified as a network 

variant if its border has shifted relative to its typical location, via either contraction/expansion in size (contraction 

displayed middle left) or displacement along the cortex (middle right). Another possibility is that the underlying 

functional and connectivity properties of the individual’s FEF are different from the group-average, e.g., more 

neurons that code for visual stimuli (right).  
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This last idea is supported by the observed task-related activations in network variants. For 

several functional networks, we showed that the level of (de-) activation in those network 

variants is between the level of (de-) activation seen typically for that location and what would 

be expected given the network variant’s reassignment (Fig 3.4A). Moreover, a related paper by 

Arcaro and colleagues provided an example of functional reassignment based on lifetime 

experience, such that the portion of inferotemporal cortex that is typically face-selective becomes 

body- and hand-selective in monkeys reared without exposure to faces (Arcaro et al., 2017). The 

neurons in this region of cortex are innately retinotopic and biased towards the scale and 

curvature of visual stimuli (i.e., biased to respond to faces). However, due to the monkeys’ 

atypical environment and experience, the response properties of the region changed (even for 

face stimuli), suggesting that the area may appear as a network variant compared to typical 

monkeys. 

 

Each network variant may be due to one or more of the abovementioned mechanisms, and future 

work is necessary to determine the consequences of these different types of network variants. 

While the mechanisms are difficult to disambiguate precisely in humans, studies with animal 

models may be well equipped to examine this question and to expand our understanding of the 

sources of individual variability in large-scale brain networks.  

 

3.4 Material and Methods 

3.4.1 Datasets, acquisition parameters, and exclusion criteria 
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Three datasets are analyzed in this manuscript: the MSC (Gordon et al., 2017c), MyConnectome 

(Poldrack et al., 2015), and HCP (Van Essen et al., 2012b) datasets. In addition, for group-

average comparisons, a previously collected dataset of 120 typical adults was used as the group-

level referent (Power et al., 2011), referred to in the text as the WashU 120. All data collection 

was approved by the Washington University and University of Texas Internal Review Board and 

all procedures complied with ethical regulations for studies involving human research 

participants. Dataset composition, acquisition parameters, and exclusion criteria have been 

described in detail previously for all datasets (see Supplemental Information for a brief 

description).  

 

All data and data processing code used in the manuscript are publicly available (MSC and code: 

https://openneuro.org/datasets/ds000224/versions/00002 MyConnectome: myconnectome.org 

HCP: https://db.humanconnectome.org/ WashU 120: 

https://legacy.openfmri.org/dataset/ds000243/). Code for network variant analyses (custom 

MATLAB scripts) will be made available at https://github.com/MidnightScanClub. 

3.4.2 Resting-state data processing 

All data processing has been described in detail previously for each dataset. For extended details 

see (Gordon et al., 2017c) for MSC, (Laumann et al., 2015) for MyConnectome, (Glasser et al., 

2013) for HCP, and (Power et al., 2014) for WashU 120. We briefly review relevant details for 

each type of processing below. 

Anatomical processing 

First, FreeSurfer 5.3 automatic segmentation was applied to the T1-weighted images to create 

masks of the gray matter, white matter, and ventricles for each subject (Fischl et al., 2002). Then, 

https://openneuro.org/datasets/ds000224/versions/00002
https://db.humanconnectome.org/
https://legacy.openfmri.org/dataset/ds000243/
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FreeSurfer’s default recon-all pipeline was used to reconstruct each subject’s native anatomical 

surface. These native surfaces were aligned to the fsaverage surface using a shape-based 

spherical registration (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999; Ségonne et 

al., 2005). The two hemispheres were registered to each other using a landmark-based algorithm 

(Anticevic et al., 2012; Van Essen et al., 2012a). The final resolution of each subject’s surface 

was 32,492 vertices per hemisphere.  

Functional processing 

For each subject, standard preprocessing procedures were applied (slice timing correction, 

functional realignment, mode 1000 normalization, atlas registration and resampling, and 

distortion correction) in addition to further preprocessing to remove motion-related artifacts 

(frame-wise displacement for frame censoring, regression of nuisance signals, including the 

whole-brain mean, interpolation over censored frames, and bandpass filtering) (Power et al., 

2014). See the Supplemental Information for full details. 

Volume-to-surface mapping and functional connectivity processing 

After preprocessing, a CIFTI was created for each subject. Preprocessed BOLD time series data 

were mapped to the surface following the procedure of Gordon and Laumann et al., 2016. Before 

computing the correlations, all previously censored frames were discarded to account for 

distance-dependent motion artifacts (Power et al., 2014). Pairwise correlations between time 

series from every pair of cortical surface vertices from both hemispheres (59412 x 59412) were 

computed to construct an individual-specific vertex-to-vertex correlation matrix, which was then 

Fisher Transformed. For the WashU 120, the individual correlation matrices were averaged 

together. See the Supplemental Information for full details. 

3.4.3 Task data processing 
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In this study, we focus on activations in the two mixed design (Petersen and Dubis, 2012) tasks 

from the MSC dataset: the semantic task and the coherence task. Tasks and their analyses are 

described in detail in (Gordon et al., 2017c). Task activations were modeled with in-house 

imaging analysis software (IDL) using a general linear model (GLM) approach as previously 

described (Gordon et al., 2017c; Gratton et al., 2018). See the Supplemental Information for a 

brief description. 

 

The default mode network has been consistently linked to task-deactivations. To determine how 

network variants (see Section 3.4.4) associated with functional variations associated with the 

default mode, we examined network variant activations in all conditions (cues, trials, and 

sustained activations) vs. implicit baseline. We conducted this comparison for variants associated 

with each network, canonical (i.e., non-variant, group) regions associated with each network, and 

the average of canonical regions associated with all other networks. In addition, the average 

activation of each DMN variant in a single individual was compared with the average activation 

of that same location in other individuals. In all cases, statistical comparisons were carried out 

using paired two-sided t-tests. 

 

In addition, we added a complementary supplementary analysis of task activations associated 

with the cinguloopercular system. The cinguloopercular network has been consistently linked to 

sustained activations, especially during resource limited tasks, unlike other control systems such 

as the frontoparietal (Dosenbach et al., 2008, 2007, 2006). To examine whether variants 

associated with the cinguloopercular network displayed sustained activations, we examined 
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activations associated with the sustained block regressor during a resource-limited semantic task 

(Dubis et al., 2016). 

3.4.4 Identification of network variants 

To identify network variants, individual subject correlation matrices were compared 

(independently) to a group-average correlation matrix generated from the WashU 120. For each 

individual, the spatial similarity between the individual’s and the group’s pattern of correlations 

(seed map) at each cortical surface vertex was computed. More precisely, each row of an 

individual’s matrix was correlated with the corresponding row in the group-average matrix, 

resulting in one spatial correlation per vertex. Susceptibility regions were masked out using a 

vertex-wise measure of signal quality derived from the group-average data. All vertices with a 

mean BOLD signal less than 750 (as computed in (Ojemann et al., 1997)) were set to 0. Then, 

the spatial similarity was binarized such that all cortical vertices with a spatial correlation value 

in the lowest decile of the individual’s distribution were considered for further analyses (these 

vertices were set to 1, and all others were set to 0). Network variants were defined as regions of 

cortex in which sets of at least 50 contiguous vertices were below the spatial correlation 

threshold. As an alternative to allowing the threshold for network variants to vary across 

individuals (lowest decile of the individual’s spatial correlation distribution), the threshold was 

fixed at a spatial correlation value of 0.3. Results were extremely consistent between analysis 

procedures, given that the mean lowest decile cutoff value is 0.32 +/- 0.03. 

3.4.5 Functional network assignment of network variants 

A winner-take-all procedure was implemented to assign functional networks to each network 

variant in each individual. To do so, 14 template networks were created from the 14 group-

average networks as described previously (Gordon et al., 2017a). The templates are the group-
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average resting-state correlation pattern (seed map) of each canonical functional network in the 

WashU 120 (e.g., the group-average default mode network seed map, the group-average visual 

network seed map, etc.). Then, for each unique network variant the following matching 

procedure was applied: (1) A seed map was computed from the average BOLD time series from 

all vertices within the network variant. (2) The similarity between that variant seed map and each 

template network was computed (i.e., the spatial correlation between the template seed map and 

the variant seed map). (3) The template network with the highest similarity was assigned to the 

network variant. (4) Any network variants where the winning template system had low similarity 

(i.e., r <0.3) were reassigned as ‘unknown system.’ (5) Finally, we ensured that the variant did 

not match the group-average network at that cortical location. In other words, we removed the 

variant if it overlapped (spatially) with its assigned group-average functional network by 50% or 

more (this occurred infrequently: 5/129 = 4% in the MSC dataset, 276/7498 = 3.7% in the HCP 

dataset). 

3.4.6 Overlap of network variants across individuals  

In order to examine the spatial overlap of network variants across individuals, binary versions of 

the final maps of network variants (after functional network assignment) were summed across 

individuals to create an overlap map within each dataset. These were divided by the number of 

people within each dataset, to express the frequency of network variants at each cortical vertex. 

3.4.7 Within-subject reliability of network variants 

To measure within-subject reliability of network variants, we compared variants across different 

days from the same participant. Each MSC subject had ten independent 30-minute resting-state 

sessions collected on separate days. We processed each session separately (as described above) 

in order to assess within-subject session-to-session variability of network variants. For each 
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session, we generated the spatial correlation map used for identifying network variants (seed 

maps from the session vs seed maps from the group-average). Then, we measured the intraclass 

correlation (ICC) of each map within an individual. In addition, this entire analysis was repeated 

with binarized network variant maps, but computing the mean dice coefficient instead of ICCs 

(since the maps are binary). The latter analysis allowed for a focused reliability measure of 

variant regions only. For the binarized variants analysis, we generated a null model of between-

subject variant overlaps for comparison. We performed 1000 random permutations of pairs of 

sessions drawn from two different MSC individuals (with replacement) and computed the mean 

dice coefficient of the binary network variant maps from those sessions. For the MyConnectome 

dataset, we compared the stability of network variants from sequential 3 week blocks of data 

(i.e., variants identified from 6 sessions concatenated together for each 3 week block). All 

possible pairs of variant spatial correlation maps (from each 3 week block of time) were 

correlated with one another. 

3.4.8 Patterns of network variants across individuals 

Next, we turned our attention to whether similar types of network variants were seen across sub-

groups of individuals. We tested two options: (1) whether sub-groups of individuals exhibited 

variants at similar anatomical locations and (2) whether sub-groups of individuals exhibited 

variants with similar network associations. 

 

Anatomical: To determine whether sub-groups of individuals exhibited variants at similar 

anatomical locations, we compared the binary maps of (final) network variants between each pair 

of individuals using dice coefficients. This resulted in a symmetric dice overlap matrix with a 

size of N by N (9 x 9 for the MSC dataset and 192 x 192 for each HCP split-half), with each 
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entry representing the degree to which a given pair of individuals covaries in terms of the spatial 

distribution of network variants (i.e., the degree to which the pair both have variants 1, 2, and 3 

and they both do not have variants 4, 5, and 6). A clustering algorithm (InfoMap) (Rosvall and 

Bergstrom, 2008) was applied to this dice overlap matrix. Before clustering, we applied a 

threshold to the matrix to create a sparse network on which to operate. We examined a wide 

range of density thresholds from the top 2% to 30% of correlations in increments of 1%. 

 

Functional: To determine whether sub-groups of individuals exhibited variants with similar 

network associations, we compared their match to 14 standard network templates. Specifically, 

during functional network assignment of variants, we compute the similarity (i.e., spatial 

correlation) between each variant and each template functional network. This results in a 14 x 1 

vector of correlations (to the 14 template networks) for each variant. This measure represents the 

degree to which a variant is default mode-like, visual-like, etc. Then, we computed the mean 

similarity for all variants within an individual to each template network (indicating the degree to 

which all of that individual’s variants are default mode-like, visual-like, etc.). This mean 

measure was correlated across subjects, and the same clustering algorithm (InfoMap) was 

implemented to identify groups of individuals with similar patterns of network variants. We used 

a range of thresholds from 2% to 10% in increments of 1%.  

 

Conceptually, the functional measure discussed above calculates the average similarity of 

variants to canonical networks, producing a quantitative estimate of the (e.g.) DMN-like 

characteristics of all variants in an individual. To complement this measure, we also clustered 

individuals based on the amount of the cortex (number of surface vertices) assigned to each 
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functional network. The WashU 120 group-average functional networks were used as a referent 

to compare the relative expansion or reduction of each individual’s functional networks. Thus, 

we calculated the number of expanded or contracted surface vertices for each network (relative 

to the group-average) using the variants’ network assignments, e.g. a given individual may have 

+1000 cingulo-opercular vertices, -75 default mode vertices, etc. 

3.4.9 Analysis of behavior 

Arguably, an important aspect of network variants is their relation to behavior. As a proof of 

concept, and given network variants’ distributions and re-assignment to association networks, we 

examined relationships to the HCP behavioral measures (Barch et al., 2013). We used 

exploratory factor analysis (EFA) for data reduction and to identify latent constructs in the HCP 

data. We focused on behavior categories that included multiple instruments and/or that did not 

already have summary measures available, which included demographics, cognition, emotion, 

and substance use variables. Age, sex, and handedness were not considered in the EFA to allow 

flexibility to include or exclude these variables in analyses of brain-behavior relationships (e.g., 

as covariates). Data from all HCP subjects (N=1206) were included in the EFA. EFA factors 

were then compared across sub-groups using multiple linear regression. Details about the results 

of the EFA and the regression analysis between HCP sub-groups of individuals are in the 

Supplemental Information (SI Fig 12). 

 

3.5 Conclusion 

We find that network variants are stable components of typical adult functional network 

organization. The organization and arrangement of network variants across individuals appears 
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to be systematic. Specifically, they tend to occur in lateral prefrontal cortex and near the 

temporo-occiptio-parietal junction and are often re-assigned to association networks, suggesting 

a link to higher-level cognitive functions. Moreover, network variants are related to functional 

variations during tasks. Finally, individuals cluster into sub-groups on the basis of these variants 

and these sub-groups demonstrate small differences in behavior. Taken in sum, our data support 

the idea that network variant distributions are trait-like and their patterning across individuals is 

functionally-relevant. 
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3.10 Supplemental Information 

3.10.1  Supplemental Figures 

 

 

SI Figure 3.1: Network variants are present in all individuals. Network variants are present in each individual 

included in the study. The figure displays binarized variants (light blue) for all MSC individuals and 81 randomly 

selected HCP subjects. Variants were created by use of a conservative fixed threshold of spatial correlations less 

than 0.15 (rather than lowest decile as used in the main text, to determine if low similarity locations were present in 

all individuals). Size and SNR exclusion criteria were also applied, as described in the methods.  
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SI Figure 3.2: Reliability of binarized network variants. The figure shows the session-to-session reliability of 

binarized network variants within each MSC individual. (A) Binary variants for all 10 sessions from MSC02 are 

displayed. Most variants are consistent across sessions, with a few missing variants highlighted (red circle; note that 

these often still showed relatively low spatial correlations, as in Fig. 3.2, but did not pass the threshold to be in the 

lowest decile for that session). (B) We quantified the reliability of variant locations across sessions within an 

individual using the dice coefficient instead of the intraclass correlation (ICC), since the data are binary. The mean 

and standard error of within-subject variant reliability (i.e., mean +/- SE across all 10 sessions) is shown for each 

individual. The open black circles represent the null distribution of variant reliability. To create the null, we 

performed 1000 random permutations of pairs of sessions drawn from two different MSC individuals (with 

replacement). Only MSC08 shows a dice coefficient in the range of between subject variant dice. 
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SI Fig 3.3: Stability of network variants over a year. Using data from MyConnectome, we tested the stability of 

network variants over a year in a single individual. The correlation matrix on the left demonstrates that the 

individual’s network variants (i.e., the spatial correlation maps) are quite stable from month-to-month (data from all 

sessions within a 3 week block are concatenated together). The brains on the right show that the individual’s 

network variants are extremely similar (r = 0.85) at the beginning and end of the year. 
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SI Figure 3.4: Sampling variability affects identification of network variants. To quantify the effects of 

sampling variability on network variants, data from both the MSC and MyConnectome individuals were used. Split-

halves of the data were generated, and the BOLD time series in one of the split-halves was sampled consecutively in 

5-minute increments. Network variants were identified via a spatial correlation between the individual and the 

group-average data (as in Figure 3.1). Then, at each 5-minute increment, both the spatial correlation map (top) and 

the map of binarized network variants (bottom; lowest decile of spatial correlation map, SNR and size exclusion 

applied) were compared to the corresponding map generated from the remaining “true” half of the data (as in (Evan 

M. Gordon et al., 2017; Laumann et al., 2015)). Spatial correlation maps were compared via Pearson correlation and 

binarized maps were compared via dice overlap. To prevent an artificial inflation of the dice coefficient due to the 

large number of vertices that did not contain variants, only vertices that were classified as variants in at least one of 

the split-halves were considered. 
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SI Figure 3.5: Overlap of network variants and surface registration deformations. The distribution (top) 

displays the dice coefficient overlap between an individual’s network variants and large deformations (both 

contractions and expansions) that occurred during surface registration, a proxy measure of anatomical variability, 

across the HCP dataset. Large deformations are defined as the top decile of the absolute value of the areal distortion 

map, an output from the HCP registration procedure (registering the individual’s FreeSurfer defined-surface to the 

Conte69 atlas; (Glasser et al., 2013)). There is little to no overlap between network variants and registration 

deformations within individuals. Common regions of registration deformations across HCP individuals (>30% of 

individuals) are displayed as blue borders on the brains (bottom), with the scale bar showing the overlap of network 

variants across HCP subjects (reproduced from Figure 3.3A). There is minimal overlap between common locations 

for network variants and common locations for large deformations across individuals (black arrows). 
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SI Figure 3.6: Task-rest alignment of DMN variants. (A) Alignment of a DMN variant from MSC02 to task 

activations from all other subjects. Note that while MSC02 shows deactivations in this variant, other participants and 

the group show primarily activations. (B) DMN variants in other participants also align with deactivations during 

mixed design tasks. (C) DMN variants from a given subject show significantly lower activations than the same 

location from other subjects (each line represents a single subject). 

 

A 
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SI Figure 3.7: Sustained activation in cinguloopercular variants. Task-evoked activations during a mixed design 

task are displayed for network variants. The mean and standard error across the 9 included highly sampled subjects 

reveals that sustained activations (all conditions – baseline) are stronger in cinguloopercular variants specifically. 

Example sustained activations (t > 0) are displayed for subject MSC02 with outlines of the subject’s variants 

overlaid (as in Figure 3.4). Note that there is strong activation in the cinguloopercular variant near the angular gyrus 

(purple arrow), whereas there is no activation in the frontoparietal variant near the superior frontal gyrus (yellow 

arrow). The group-average functional networks with the same variants overlaid are displayed below for reference 

(variants shown with black outlines). 
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SI Figure 3.8: Clustering via anatomical location of network variants. The matrix displays the dice coefficient 

overlap between the locations of network variants in all pairs of individuals (i.e., the degree to which two individuals 

both have variants 1, 2, and 3 and both do not have variants 4, 5, and 6). The matrix is sorted by clusters, with 

unlabeled subjects in the first portion of the matrix. Across InfoMap thresholds (see Methods), individuals cluster 

into one large group (solid black line). Thus, we did not find evidence for sub-groups of individuals with similar 

anatomical distributions of network variants. 
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SI Figure 3.9: Validation of the sub-group clustering. We validated the clustering of individuals in two sub-

groups (Fig 3.5 in the main text) via two methods: (1) modularity versus a null model that preserves the degree 
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distribution and (2) hierarchical clustering. (A) The number of clusters found by InfoMap (see Methods in the main 

text) varies as a function of edge density. Thus, for each edge density we tested the modularity of the real solution 

against a null model. The null model is a random network (at that specific edge density) with the same degree 

distribution as the real network (generated via the Brain Connectivity Toolbox function null_model_und_sign.m; 

(Rubinov and Sporns, 2010)). The two sub-group solution was the most robust across edge density thresholds and 

split-halves, as indicated by the numbers near the lines. (B) The dendrograms produced by hierarchical clustering 

(created via MATLAB functions dendrogram and linkage, Ward’s minimum variance method) are displayed for 

each split-half. The cophentic correlation coefficient was greater than 0.8 for each split-half. (C) A confusion matrix 

was generated for the two- and four-group hierarchical clustering solutions to test their reliability across each split-

half. If split-half 1 is the ‘true answer,’ then the confusion matrix represents the degree to which split-half 2 matches 

the true answer (in terms of sub-group labeling). In order to align sub-group labels across each split-half (e.g., to 

ensure that individuals in the default sub-group are labeled with a 1 in each split-half), the average network template 

match was used (i.e., the line graphs in Figure 3.5 in the main text). The two sub-group solution had a much higher 

percentage of true positives and a much lower percentage of false positives and false negatives than the four sub-

group solution. 
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SI Figure 3.10: The four sub-group solution. The four sub-groups of individuals from the HCP dataset, identified 

via patterns of network variants, are displayed. Individuals in these sub-groups have variants that are more like the 

frontoparietal, dorsal attention, and cinguloopercular networks (top left), the default mode, frontoparietal, and 

ventral attention networks (top right), the motor, auditory, ventral attention, and cinguloopercular networks (bottom 

left), or a mixed pattern (bottom right). 
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SI Figure 3.11: Group-wise differences in the size of each network. The solid line represents the mean expansion 

or contraction of each functional network in individuals in the two sub-groups identified in the main results (black = 

control and processing, red = default). The specific measure is the number of surface vertices assigned to each 

network in the individual minus the same number for the group-average. A positive number means more vertices 

assigned to that network than the group-average (an expansion), a negative number means fewer vertices assigned to 

that network than the group-average (a contraction), and zero means an identical number of vertices assigned to that 

network as the group-average. The pattern is partially consistent with that observed in Fig 3.5B, but sub-group 

differences are driven by the dorsal and ventral attention networks versus the default mode, salience, and 

frontoparietal networks. 
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SI Figure 3.12: Group-wise differences in neuropsychological measures. Factor scores derived from the HCP 

behavioral measures are displayed (mean and standard error) for the two larger sub-groups from the HCP dataset 

(Fig 3.5B). Factor scores for the control and processing sub-group were significantly higher in the Positive Life 

Experience factor (t(344) = 2.038) and significantly lower in the History of Drug Abuse factor (t(344) = -2.039) than 

scores for the default sub-group. Two-sample t-tests were performed with subjects from both split-halves grouped 

together.  
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3.10.2  Supplemental Methods 

Acquisition details 

Three datasets are included in this manuscript: the first contains five hours of resting-state data 

from each of 10 highly-sampled individual subjects, referred to as the Midnight Scan Club or 

MSC dataset; the second includes 14 hours of resting-state data from a single individual 

collected over the course of a year, referred to as the MyConnectome dataset; and, the third 

includes one hour of resting-state data from 384 unrelated individuals from the Human 

Connectome Project  1200 subject release, referred to as the HCP dataset.  

 

Briefly, for the MSC and WashU 120, high-resolution T1-weighted, T2-weighted, and resting-

state BOLD data were collected on a Siemens 3T Magnetom Tim Trio with a 12-channel head 

coil (gradient-echo EPI sequence, isotropic 4 mm3 voxels, TE of 27ms, and TR of 2.2s and 2.5s, 

respectively; (Evan M Gordon et al., 2017; Power et al., 2013)). The MyConnectome dataset was 

acquired on a Siemens 3T Skyra with a 32-channel head coil (multi-band sequence with MB 

factor 4, isotropic 2.4 mm3 voxels, TE of 30ms, and TR of 1.16s; (Laumann et al., 2015; 

Poldrack et al., 2015)). The HCP was collected on a custom Siemens 3T Skyra with a custom 32-

channel head coil (multi-band sequence with MB factor 8, isotropic 2 mm3 voxels, TE of 33ms, 

and TR of 0.72s (Van Essen et al., 2012)). 

 

We excluded all subjects whose resting-state BOLD runs contained large to moderate amounts of 

head motion in order to ensure reliable identification of network variants. Thus, we excluded 

data from one MSC individual with a substantial amount of head motion and drowsiness (Evan 

M. Gordon et al., 2017; Laumann et al., 2016). We included all high-quality (low-motion) 
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MyConnectome sessions after the schedule shift to Tuesday and Thursday acquisitions, 

following Laumann and colleagues (Laumann et al., 2015). A total of 84 sessions were included. 

Exclusion criteria for individuals from the full HCP 1200-subject HCP release were as follows: 

(1) we removed duplicates and subjects who did not complete the study; (2) we required subjects 

to have >75% of their data, i.e. 45 minutes, retained post motion censoring (see description of 

censoring procedures below); (3) we required that all subjects be unrelated (if more than one 

family member passed the previous criteria, the subject with the most data was selected). Thus, 

384 HCP subjects were included. From these 384 individuals, two split-halves were created for 

within-dataset replication of our findings. Split-halves were balanced on the factors of age, sex, 

handedness, race, mean frames retained post motion censoring, and years of education. See SI 

Table 3.1 for full details. 
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SI Table 3.1: HCP exclusion criteria and split-halves. The flow diagram at the top shows the exclusion criteria 

applied to obtain the final set of 384 HCP subjects. The table shows demographic variables on which the split-halves 

were balanced, as well as t-tests for each variable.  
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Functional preprocessing 

For each subject, the volumetric BOLD time series from each run were concatenated together. 

Slice timing correction was applied first (but not in the HCP dataset, per recommendation from 

Glasser et al., 2013). Then, all functional data were aligned to the first frame of the first run 

using rigid body transforms, after which they were normalized to a whole-brain mode of 1000 

(Miezin et al., 2000). For the WashU 120 and HCP, the functional data were registered to the 

high-resolution T1 image. Following this, a one-step operation (Smith et al., 2004) was applied 

to resample (3 cubic mm) and register the data to the 711-2B atlas (Ojemann et al., 1997). For 

the MSC, the functional data were first registered to the T2 image and then to the T1 image, 

which separately registered to the template space. Finally, field inhomogeneity distortion 

correction was applied using the mean field map applied to all sessions (Evan M. Gordon et al., 

2017; Laumann et al., 2015). Distortion correction was not applied to the WashU 120 because 

field maps were not collected. 

 

In order to remove further artifacts additional preprocessing was applied (Power et al., 2014). 

Frame-wise displacement (FD) was calculated (Power et al., 2012), and frames with FD greater 

than 0.2 mm were flagged for censoring for the MSC and WashU 120 datasets. However, the 

increased temporal resolution of the HCP acquisition (0.72s TR) caused respiration artifacts to 

alias into the FD trace (Siegel et al., 2017). Thus, the 6 realignment (motion) parameters were 

filtered with a lowpass filter at 0.1 Hz before calculating FD values. The filtered FD threshold 

for frame censoring was 0.1 mm. Uncensored segments with fewer than 5 contiguous frames 

were also flagged for censoring as well. First, the aligned and registered BOLD data were 

demeaned and detrended. Multi-linear nuisance regression was implemented with 36 regressors: 
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the whole-brain mean, individually defined white matter and ventricular CSF signals, the 

temporal derivatives of each of these regressors, and an additional 24 movement regressors 

derived by expansion (Friston et al., 1996; Satterthwaite et al., 2013). Then, the previously 

flagged frames were removed and interpolated over using least squares spectral estimation 

(Power et al., 2014). Finally, the data were bandpass filtered from 0.009-0.08 Hz. The 

MyConnectome data were processed identically to the MSC data, except the FD threshold was 

0.25 mm. 

Volume-to-surface mapping and functional connectivity processing 

Unsmoothed (but otherwise completely processed) BOLD data were mapped to each individual’s 

native midthickness surface via the ribbon-constrained sampling procedure (Connectome 

Workbench v1.0) (Marcus et al., 2013). Then, the mapped data were registered to the fsaverage 

surface in one step using the deformation map generated from the aforementioned shape-based 

spherical registration. Afterwards, a geodesic Gaussian smoothing kernel was applied (FWHM = 

6 mm, sigma = 2.55) to the surface registered data (Gordon et al., 2016). Subcortical and 

cerebellar data were not considered in any further analyses due to substantial signal-to-noise 

issues in HCP data.  

 

Before computing correlations (functional connectivity), the first 30 seconds of each functional 

run (14, 41, and 12 frames, for the MSC, HCP, and WashU-120, respectively) were discarded to 

account for magnetization equilibrium and an auditory evoked response to the start of the EPI 

sequence in addition to frame censoring (Laumann et al., 2015). For the MyConnectome data, 

the 60 seconds of each run (52 frames) were discarded due to an amplified evoked response as a 

function of noise cancelling headphones. 



135 

 

Task data processing 

In this study, we focus on activations in the two mixed design (Petersen and Dubis, 2012) tasks 

from the MSC dataset: the semantic task and the coherence task. Briefly, the semantic task 

required a noun or verb judgment on a series of presented words, while the coherence task 

required a yes/no judgment regarding whether an array of dots was arranged concentrically on 

the screen (Glass, 1969). Blocks of each task consisted of start cues signaling the beginning of 

the block, followed by a series of randomly intermixed trials in each condition (nouns and verbs 

in the semantic task, 0% and 50% coherence arrays in the coherence task). 

 

Task activations were modeled with in-house imaging analysis software (IDL) using a general 

linear model (GLM) approach as previously described (Evan M. Gordon et al., 2017; Gratton et 

al., 2018). Eight time-points were modeled for cues and each trial type in each condition. In 

addition, block regressors for sustained activations were included across the full task block. MSC 

individuals completed two runs of each task in each of their 10 sessions; each individual was 

analyzed separately. 

Behavioral measures 

Demographic variables included education recoded into fewer categories to avoid small cell sizes 

(≤high school graduate, some college, ≥4-year college graduate), employment (not working, part 

time, full time), family income, also recoded into fewer categories (bottom quartile ≤$29,999, 

median $30,000-49,999, 3rd quartile $50,000-74,999, 4th quartile >$75,000), and whether the 

respondent was still in school or taking courses for a degree (Yes/No), was married or in a live-in 

relationship (Yes/No), and was born in Missouri (Yes/No). Race/ethnicity was recoded per NIH 

guidelines – not Hispanic White (n=814, 67.5%), Black/African American (n=191, 15.84%), 
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Asian (n=68, 5.64%), American Indian/mixed/unknown (n=28, 2.32%; there were only n=2 

American Indian individuals), and Hispanic/Latino (n=105, 8.71%) – and dummy coded (not 

Hispanic White vs all others, Black/African American vs all others, etc). 

 

Cognitive variables included all measures from the NIH Toolbox Cognition Battery (Picture 

Vocabulary, Oral Reading Recognition, the Flanker Task, Dimensional Change Card Sort, List 

Sorting, Picture Sequence Memory, and Pattern Completion Processing Speed; (Weintraub et al., 

2013)) in addition to the number of correct responses from the Penn Progressive Matrices (Bilker 

et al., 2012), the Variable Short Penn Line Orientation, the Penn Word Memory Test, true 

positives from the Short Penn Continuous Performance Test (Gur et al., 2010), and Delay 

Discounting Area Under the Curve for $200 and $40,000 (Estle et al., 2006; Myerson et al., 

2001). Cognitive variables were Z-score normalized across all HCP subjects and were not 

adjusted for age or sex to allow flexibility in covariate adjustment in other analyses.  

 

Emotion variables included all NIH Toolbox surveys (Anger-Affect, Anger-Hostility, Anger-

Physical Aggression, Fear-Affect, Fear-Somatic Arousal, Sadness, General Life Satisfaction, 

Meaning and Purpose, Positive Affect, Friendship, Loneliness, Perceived Hostility, Perceived 

Rejection, Emotional Support, Instrumental Support, Perceived Stress, and Self-Efficacy). They 

were Z-score normalized and also not adjusted for age or sex. Drug use variables were derived 

from SSAGA interviews on lifetime use and captured lifetime quantity/severity of use: history of 

alcohol abuse or dependence (Yes/No); number of cigarettes smoked: never smoked (0 

cigarettes), experimented (1-19 cigarettes), occasional use (20-99 cigarettes), regular use (≥100 
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cigarettes); number of times used cannabis (never, 1, ≥2); and number of times used each of 

cocaine, hallucinogens, opiates, sedatives, or stimulants (never, ≥1). 

 

For each behavior category, relationships between variables were examined using Pearson or 

polychoric/tetrachoric correlations for continuous and categorical variables, respectively. If a 

variable did not have a correlation of ≥0.32 with at least one other variable, which would suggest 

~10% shared variance, that variable was excluded from consideration. Oblique rotation was 

always tested first and was retained if inter-factor correlations were significantly different from 

zero at p<0.05 (uncorrected). Final EFA structure was determined based on a combination of 

indicators including: (1) factor eigenvalues and scree plot; (2) variables had high loadings 

(≥0.32, accounting for approximately 10% of factor variance) on at least one factor; (3) variables 

had high loadings on one factor and relatively low loadings on all other factors, i.e., cross-

loading was minimal; (4) at least two variables had high loadings on a factor; and (5) 

interpretability (Tabachnick and Fidell, 2007). Factor scores were output for use in subsequent 

analyses. Internal consistency of the factors was assessed using estimates of the squared multiple 

correlations (SMCs) of variables with each factor, where factor scores are predicted from the 

observed variables. SMCs vary from 0 to 1 and high SMCs (≥0.7) indicate that observed 

variables account for significant factor score variance. All data manipulation and EFA analysis 

was conducted in SAS 9.2 (SAS Institute Inc., 2008, Cary, NC, USA).  

EFA results 

Demographic variables (final n=1199): Whether a respondent was born in Missouri did not 

correlate with other variables and was not further considered. Being Black/African American 

was related to three other demographic variables and this dummy variable was retained for 
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analysis. EFA resulted in a single factor. Being in school or employed had low factor loadings 

and these variables were dropped from analysis. The four remaining variables (income, 

education, relationship status, and Black/African American) had inadequate internal consistency 

(SMC=0.59) suggesting that as a group, these variables are poor indicators of an underlying 

construct. We suggest that these variables be considered separately. 

 

Cognitive variables (final n=1193): The two delay discounting variables correlated only with 

each other (r=0.675) and not with any other variables. In addition, the partial correlation 

remained high (r=0.65) after controlling for all other variables suggesting that delay discounting 

does not share variance with the other cognitive measures and was therefore not considered 

further. Likewise, Penn continuous performance and word memory tests did not correlate with 

any other variables and were not considered further. The picture sequence task had low loadings 

on all factors and was excluded. The final EFA consisted of two factors (SI Table 3.2). 

Variables that loaded highly on the first factor reflected fluid intelligence, reading and 

comprehension, spatial orientation and working memory; we named this factor General IQ. 

Processing speed variables loaded highly on the second factor which we named Processing 

Speed. The inter-factor correlation was 0.40 suggesting that higher general IQ is related to higher 

processing speed. The General IQ and Processing Speed factors had good to fair internal 

consistency (SMCs=0.80 and 0.65, respectively).  
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SI Table 3.2. Exploratory factor analysis of HCP behavioral variables. Factor loadings for the cognition, 

emotion, and substance use variables are displayed. Loadings of at least 0.32 (accounting for approximately 10% of 

factor variance) are bolded. Internal consistency of the factors is shown at the bottom of each factor loading vector, 

and inter-factor correlations are shown where applicable.  
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Emotion variables (final n=1204): The variables anger-hostility and anger-physical aggression 

had low factor loadings and were excluded. The final EFA solution consisted of three factors (SI 

Table 3.2). Fear, anger, sadness, perceived social hostility and stress loaded on the first factor 

which we call Negative. Life satisfaction, meaning and purpose, social support, and self-efficacy 

loaded on the second factor which we call Positive. The third factor was characterized by 

positive loadings of loneliness and perceived social hostility and rejection, and negative loadings 

of social support and social relationship and we call this factor Loneliness. Higher score on the 

Negative factor was related to higher score on the Loneliness factor and higher score on the 

Positive factor was related to lower scores on both Negative and Loneliness factors. All three 

factors had good internal consistency (SMCs=0.87, 0.83, and 0.82, respectively).  

 

Drug use variables (final n=1204): Drug use variables comprised a single factor that captured 

overall quantity and heaviness of use. This factor had good internal consistency (SMC=0.82). 

Statistical analysis of behavior 

Analysis of the variance of behavioral factor scores explained by network variant group 

assignment was conducted in MATLAB R2012a using the Statistics and Machine Learning 

Toolbox multi-linear regression (MathWorks Inc., 2012, Natick, MA, USA). Factor scores were 

modeled as dependent variables and variant group as the independent variable of interest. 

Regressions were performed both including and excluding other covariates, which included age, 

sex, handedness, and number of frames retained post-scrubbing. Further, t-tests were used to 

compare differences in factor scores between sub-groups, with an FDR correction for multiple 

comparisons. 
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Chapter 4: Heritability of individual variant sub-groups in 

functional brain networks 

Many recent research efforts have focused on uncovering individual differences in functional 

brain networks measured with fMRI data. We have recently demonstrated the presence of stable 

localized regions of the brain where individuals differ from the typical group-average network 

organization – regions we call network variants. Evidence suggests that network variants are 

systematically organized; they appear in characteristic regions of the brain and tend to associate 

with particular functional networks. Moreover, the distribution of network variants across 

individuals clusters into at least two distinct sub-groups in multiple datasets. Given these trait-

like properties, here we investigated the heritability of network variants. We exploited the 

familial design of the Human Connectome Project, analyzing resting-state fMRI data from 

monozygotic (85 pairs) and dizygotic twins (46 pairs), non-twin siblings (64 pairs), and 

unrelated individuals (N = 362). As has been described previously, overall network structure 

showed significant heritability. Interestingly, network variant sub-groups also showed significant 

heritability (h2 = 47%): monozygotic twin pairs were significantly more likely to be in the same 

sub-group (determined via network variant distributions) than any other relationship pairing. 

This may suggest that some network structure heritability derives from common patterns of 

individual differences. Overall, our results suggest that network variant sub-types may be 

partially affected by genetic influences. In addition, the results point to unique environmental 

contributions to distributions of network variants. 
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4.1 Introduction 

The study of the relationship between genes and behavior is known as the field of Behavior 

Genetics. Insights from Behavior Genetics have resulted in the proposal of three laws 

(Turkheimer, 2000): (1) all human behavioral traits are heritable; (2) the effect of being raised in 

the same family is smaller than the effect of genes; and, (3) a substantial portion of the variation 

in complex human behavioral traits is not accounted for by the effects of genes or families. More 

recently, a fourth law was proposed (Chabris et al., 2015): (4) a typical human behavioral trait is 

associated with very many genetic variants, each of which accounts for a very small percentage 

of the behavioral variability. 

 

To illustrate these laws, consider the example of head motion inside of an MRI scanner. Some 

have argued that there is a “head motion phenotype” (Couvy-Duchesne et al., 2014; Zeng et al., 

2014). If so, then the four laws suggest that we should observe that: (1) head motion inside of an 

MRI scanner is heritable; (2) individuals in the same family have similar head motion; (3) a 

substantial amount of variance in head motion is unexplained by (1) and (2); and, (4) head 

motion is related to a large number of genes, with each explaining a small amount of variance. 

 

In support of the “head motion phenotype,” previous work has shown that head motion is 

heritable (Couvy-Duchesne et al., 2014; Engelhardt et al., 2017). This conclusion is impactful 

because head motion has been revealed to be a major issue for functional connectivity analyses 

(studying correlations in spontaneous resting-state fMRI signals between brain regions) (Power 

et al., 2012; Satterthwaite et al., 2012; van Dijk et al., 2012). Since head motion causes 

systematic changes in functional connectivity patterns (Burgess et al., 2016; Power et al., 2018, 
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2017, 2014, 2012), two groups of individuals will appear to differ in functional connectivity if 

they differ systematically in head motion (e.g., children versus adults, patients versus controls).  

 

The prevailing argument is that head motion-related changes in functional connectivity are 

artifactual, and, thus, head motion must be addressed by preprocessing fMRI data adequately 

(Ciric et al., 2017; Power et al., 2014). However, if there is a true “head motion phenotype,” then 

removing head motion-related patterns from functional connectivity may be incorrectly 

distorting true differences (e.g., between groups of children and adults) (Couvy-Duchesne et al., 

2016). Alternatively, head motion may appear heritable for other reasons (e.g., factors known to 

affect head motion estimates may be heritable, rather than head motion itself) (Hodgson et al., 

2017; Siegel et al., 2017). It is important to resolve this issue for those interested in functional 

connectivity analyses, especially with regards to estimating the heritability of functional 

connectivity. 

 

Previous studies have observed that functional connectivity is heritable (Adhikari et al., 2018; 

Colclough et al., 2017; Elliott et al., 2019; Fornito et al., 2011; Fu et al., 2015; Ge et al., 2017; 

Glahn et al., 2010; Yang et al., 2016). The extent to which these heritability estimates are 

affected by head motion is unknown. It is reasonable to hypothesize that artifactual head-motion 

related patterns of functional connectivity would inflate estimates of functional connectivity 

heritability. Moreover, the heritability of individual differences in functional connectivity is 

another open question of interest. There have been recent advances in our understanding of 

individual differences in functional connectivity (Bijsterbosch et al., 2018; Braga and Buckner, 
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2017; Finn et al., 2015; Evan M Gordon et al., 2017; Evan M. Gordon et al., 2017a, 2017b; Kong 

et al., 2018; Laumann et al., 2015; Mueller et al., 2013; Wang et al., 2015).  

 

Work from Seitzman and colleagues has demonstrated that punctate regions of individual 

difference, called network variants, have intriguing properties, including stability over time 

within individuals, characteristic locations of occurrence and idiosyncratic network assignment 

to higher-level association networks, task activations consistent with the function of their 

idiosyncratic network, and systematic organization across individuals. The systematicity of 

network variants allows for the identification of sub-groups of individuals (with similar 

distributions of network variants) who differ on neuropsychological measures of behavior (see 

Chapter 3). The authors conclude that distributions of network variants seem to be trait-like, with 

functionally relevant patterning across individuals. If network variant properties prove to be 

heritable, then their trait-like status will be supported further. 

 

The present study investigated the heritability of functional connectivity and network variant 

properties, including locations of occurrence in cortex and their patterning across individuals. 

Additionally, motion-related functional connectivity differences were compared within the same 

individuals and between groups of individuals with differing amounts of head motion in order to 

examine the possibility of a head motion phenotype. Data from 752 individuals from the Human 

Connectome Project were used to address these questions. 
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4.2 Material and Methods 

Data from the Human Connectome Project (HCP) 1200 Subject release were analyzed in this 

manuscript (Van Essen et al., 2012b). The HCP dataset is appropriate for the study of network 

variant heritability because of its extended twin-family design (Posthuma et al., 2000) and the 

relatively large amount of resting-state fMRI data collected from each subject (i.e., a sufficient 

amount for network variant analyses) (see Chapter 3). However, there are previously described 

issues with the resting-state fMRI data that prevent investigation of certain questions (e.g., 

network variants in the subcortex- see SI Figure 2.5 in Chapter 2).  

4.2.1 Data acquisition and subjects 

Data acquisition parameters have been described in detail previously (Van Essen et al., 2012b). 

Briefly, high-resolution T1-weighted (MP-RAGE) and BOLD contrast sensitive images 

(multiband gradient-echo planar imaging) were acquired on a custom 3T Siemens Skyra with a 

custom 32-channel head matrix coil. Novel scanning sequences were designed to enhance the 

spatial and temporal resolution of the data. Thus, the T1-weighted and BOLD images were 

sampled at 0.7 and 2.0 mm3 isotropic voxels, respectively. A multiband factor of 8 was 

implemented to reduce the TR of the BOLD data to 0.72s (TE=33ms). A total of 1 hour of eyes-

open resting-state BOLD data was collected from each subject. Four separate 15-minute runs 

were acquired per subject over two consecutive days. On each day, there was one left-to-right 

(LR) phase encoding scan and one right-to-left (RL) phase encoding scan. This LR-RL phase 

encoding scheme was implemented (instead of tradition anterior-to-posterior phase encoding) in 

order to enhance signal-to-noise in ventromedial prefrontal cortex, a typical susceptibility region 

(Glasser et al., 2013). 



149 

 

 

The HCP dataset is composed of monozygotic and dizygotic twin-pairs and their non-twin 

siblings. Reliable identification of network variants requires more than 40 minutes of resting-

state data; therefore, individuals with less than 45 minutes of high-quality (low-motion) resting-

state data were excluded. Thus, data from 752 individuals were analyzed: 85 pairs of 

monozygotic twins (N=170), 46 pairs of dizygotic twins (N=92), 64 pairs of non-twin siblings 

(N=128), and a sample of unrelated individuals (N=362). 

4.2.2 Anatomical processing and surface creation 

Anatomical processing and surface creation were performed by Glasser and colleagues (Glasser 

et al., 2013). Briefly, for each subject the T1-weighted image was segmented into a gray matter 

ribbon enclosed between the pial and white matter surfaces by use of FreeSurfer (Fischl et al., 

2002). These delineations were used to create a native cortical surface to which the processed 

BOLD data are projected.  

4.2.3 Functional processing 

The HCP provides fully processed resting-state BOLD data, which includes FIX ICA correction 

for motion-related artifacts (Salimi-Khorshidi et al., 2014) and a multimodal surface matching 

registration algorithm (Robinson et al., 2014), as an open resource (Glasser et al., 2013). 

However, Burgess and colleagues (Burgess et al., 2016), Siegel and colleagues (Siegel et al., 

2017), as well as Power and colleagues (Power et al., 2018) demonstrated that this pipeline 

provides insufficient correction for head motion. Thus, the minimally preprocessed BOLD data 

were further processed following the methodology of Power and colleagues (Power et al., 2014). 
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These details are described fully in Chapter 3. However, data from both processing pipelines 

were used for the between-subject functional connectivity analysis (see below). 

 

Briefly, all functional data were concatenated, aligned to the reference image (first frame of the 

first run), and then normalized to a whole-brain mode of 1000 (Miezin et al., 2000). Slice timing 

correction was not applied to HCP BOLD data due to the fast TR (Glasser et al., 2013). A one-

step spline interpolation was used to align the functional data to the T1-weighted image and to 

resample to 2 mm3 isotropic voxels (Smith et al., 2004). Finally, distortion correction was 

applied using a bias field map. The data were processed further as follows: the data were 

demeaned and detrended. Then, multi-linear nuisance regression (whole-brain mean, individually 

defined white matter and CSF signals, the temporal derivatives of each, and 24 movement 

regressors derived by expansion (Friston et al., 1996), frame censoring (filtered FD threshold of 

0.1mm, minimum of 5 contiguous frames, as described in Chapter 3 and Siegel et al., 2017, 

interpolation over censored frames via least-squares spectral estimation, and a bandpass filter 

(0.009-0.08Hz) were applied.  

 

Fully processed (but unsmoothed) data were mapped to the native surface (created above) for 

each individual (Gordon et al., 2016), smoothed via a geodesic Gaussian kernel (FWHM = 4mm, 

sigma = 1.7), and registered to the Conte69 atlas surface (deformation field computed by a 

spherical, landmark-based registration of the individual’s native surface and the Conte69 atlas 

surface) (Van Essen et al., 2012a). The resolution of the cortical surface is 32492 vertices per 

hemisphere. Previously censored frames were removed from the timeseries for all further 
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analyses. All subcortical and cerebellar data were excluded from all analyses due to the 

aforementioned issues with SNR (Ji et al., 2019). 

4.2.4 Network variant analysis 

Network variant locations and functional ‘re-assignments’ were identified as in Chapter 3 for 

each individual. Briefly, a seedmap was computed at each cortical surface vertex for a given 

individual, and all individual-specific seedmaps were correlated with the corresponding seedmap 

from a group-average of healthy adults. Sufficiently large patches of contiguous vertices (more 

than 50 vertices) located outside of susceptibility regions (mean BOLD signal < 750 (Ojemann et 

al., 1997)) with sufficiently low correlation to the group-average (lowest decile) were identified 

as network variants.  

 

The average BOLD timeseries from each variant was correlated with the BOLD timeseries from 

every cortical surface vertex within an individual. This ‘whole variant seedmap’ was compared 

against 14 canonical network templates (Evan M. Gordon et al., 2017a) via Pearson correlation. 

The full pattern of variant-to-network-template correlations (the mean across all network variants 

within an individual) was used to classify each individual into a priori defined network variant 

sub-groups. The two large sub-groups described in Chapter 3, i.e. the “default mode” sub-group 

and the “control and processing” sub-group, were used. Each individual was assigned to the sub-

group to which their pattern of variant-to-network-template correlations best matched. 

4.2.5 Between-subject functional connectivity comparison 

To determine the heritability of functional connectivity between pairs of individuals, a vertex-

wise correlation matrix was computed for each individual. The Pearson correlation between 



152 

 

BOLD timeseries from every pair of cortical vertices was calculated, resulting in a 59412x59412 

symmetric correlation matrix (vertices from the medial wall were discarded). The matrix for each 

subject was Fisher-Z transformed, and then matrices from monozygotic twin-pairs (MZ), 

dizygotic twin-pairs (DZ), non-twin sibling pairs (Sibs), and randomly selected pairs of unrelated 

individuals were correlated against one another. The mean correlation and standard error within 

each group (MZ, DZ, Sibs, and unrelated) was calculated. 

4.2.6 Within-subject functional connectivity comparison 

Some studies have criticized techniques that remove head motion-related artifacts from resting-

state fMRI because head motion is heritable. They argue that this explains or is the 

neurobiological basis for the differences in functional connectivity between low- and high-

motion groups. To address these critiques, several groups of HCP subjects were created. 

Between subject high and low motion groups, paralleling that found in Power et al., 2014 were 

created. Two within-subject groups were also created. Individuals in the low-low motion group 

had two consecutive days of low-motion BOLD runs. Individuals in the low-high motion group 

had one of low-motion BOLD runs and one day of high-motion BOLD runs. This between-, 

within-subject design allows for direct comparison of the effects of head motion within the same 

individuals, as compared to differing individuals, directly addressing the heritability of head 

motion argument. For all comparisons, two sample t-tests were used to determine the number of 

functional connectivity edges that were different between runs (p < 0.05 uncorrected) (Power et 

al., 2014). 
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4.2.7 Between-subject network variant comparison 

To determine the heritability of network variant properties, the maps of network variant locations 

(binarized as in Chapter 3) were compared between monozygotic twin-pairs (MZ), dizygotic 

twin-pairs (DZ), non-twin sibling pairs (Sibs), and the same randomly selected pairs of unrelated 

individuals as above. The dice coefficient was used for this comparison, and the mean and 

standard error within each group was calculated. Similarly, the proportion of pairs assigned to 

the same network variant sub-group was compared between MZs, DZs, Sibs, and unrelated 

individuals. 

4.2.8 Statistical analyses 

In order to test for significant differences between groups (e.g., MZs versus DZs) for both 

functional connectivity and network variant locations, two-sample t-tests were computed. To 

determine the significance of the proportion of pairs assigned to the same sub-group, a 

permutation test was used. Subject labels within each group (within MZs, within DZs, etc.) were 

randomly permuted 1000 times, and the proportion of pairs assigned to the same network variant 

sub-group was assessed. To test for significant between group differences, a tetrachoric 

correlation was computed by use of the polycor package in R version 3.5.2  (Drasgow, 1986; 

Olsson, 1979; R Foundation for Statistical Computing., 2018). 

4.2.9 Heritability analysis 

Formal testing of heritability was performed using Falconer’s formula [DS Falconer, 1960] for 

the functional connectivity and network variant location results. A categorical unbounded ACE 

model was used to estimate the heritability of network variant sub-groups. The ACE model was 

implemented in OpenMx (Boker et al., 2011) using R version 3.5.2 (R Foundation for Statistical 
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Computing., 2018). Model specifics were described previously by Reineberg and colleagues 

(Reineberg et al., 2018). Falconer’s formula estimates heritability as 2*(rMZ – rDZ), where rMZ is 

the twin-pair correlation for monozygotic twins and rDZ is the twin-pair correlation for dizygotic 

twins. Generally, an ACE model estimates narrow-sense heritability (h2), i.e. heritability due to 

additive genetics only, whereas Falconer’s formula estimates broad-sense heritability (H2), i.e. 

heritability due to total genetic variance (Falconer, 1960; Weber, 2008). 

 

4.3 Results 

We examined the heritability of network variant properties in order to understand the effects of 

genetics and shared environmental factors on individual differences in human brain functional 

organization. 

4.3.1 Functional connectivity is weakly heritable 

Previous investigations have demonstrated that functional connectivity is moderately heritable, 

on average, with estimates ranging between 10-80% (Table 4.1). Here, we found that resting-

state functional connectivity was weakly heritable (H2 = 15.0 +/- 0.2%) in the included sample of 

individuals. Similarity of functional connectivity (cortex only) between monozygotic twin-pairs 

was higher than dizygotic twin-pairs and non-twin siblings, both of which were higher than pairs 

of unrelated individuals (Fig 4.1). While significant, the observed result is smaller than most 

previously published effects. Furthermore, this finding was affected by differences in processing 

pipelines, with functional connectivity heritability substantially reduced by the standard HCP 

processing pipeline in this sample of subjects (H2 = 10.3 +/- 0.3%). Moreover, the overall 

correlation between the same pairs of subjects processed with the HCP pipeline was decidedly 
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lower than when their data were processed with direct motion-related artifact elimination 

procedures.  
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Table 4.1: Previous estimates of the heritability of functional connectivity. The table lists a number of 

previously published studies of the heritability of functional connectivity. Heritability is estimated for a wide variety 

of measures (e.g., within default mode network connectivity, global efficiency, voxel-wise correlations) and with a 

diverse range of processing schemes. Estimates range from low (10-15%) to strong (75-80%). 

Journal Year First Author Dataset N subjects Heritability Estimate

NeuroImage 2019 M. L. Elliot HCP & Dunedin 144 MZ, 85 DZ twin-pairs 20-25%

Human Brain Mapping 2018 B. M. Adhikari GOBS & HCP 128 MZ, 89 DZ twin-pairs 20-40%

eLife 2017 G. L. Colclough HCP 103 MZ, 54 DZ twin-pairs 15-18%

PNAS 2017 T. Ge HCP & GSP 92 MZ, 46 DZ twin-pairs 45-75%

Cerebral Cortex 2016 Z. Yang 5.25min/person 78 MZ, 58 DZ twin-pairs 23-65%

Human Brain Mapping 2015 Y. Fu 12min/person 32 MZ, 24 DZ twin-pairs 10-60%

J Neuroscience 2011 A. Fornito 20min/person 16 MZ, 13 DZ twin-pairs 30-80%

PNAS 2010 D.C. Glahn GOBS 333 individuals, 29 pedigrees 10-42%

Previous studies of the heritability of functional connectivity
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Figure 4.1: Heritability of functional connectivity in the present dataset. The average correlation of cortical 

functional connectivity between pairs of monozygotic twins was higher than dizygotic twin-pairs, non-twin sibling, 

and unrelated individuals. The processing pipeline that includes global signal (whole-brain mean) regression and 

frame censoring resulted in the highest correlations between pairs of individuals, and a heritability estimate of 15%. 

Exclusion of frame censoring slightly reduced between-subject correlations, and the HCP processing pipeline 

(MSMAll surface registration and FIX-ICA artifact correction) resulted in extremely small between-subject 

correlations for all groups, and a substantially reduced estimate of heritability (10%). 
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The processing pipeline implemented here has been criticized for removing motion-related 

artifacts because head motion may be heritable and, thus, phenotypically related to specific 

functional connectivity patterns (Couvy-Duchesne et al., 2014; Zeng et al., 2014). To address 

this critique, we assessed the similarity of functional connectivity within, as well as between, 

HCP subjects. Two separate groups of individuals were created on the basis of within-subject 

head motion during resting-state runs acquired over two consecutive days: individuals with two 

days of low-motion runs (the low-low group) and individuals with one day of low-motion and 

one day of high-motion runs (the low-high group). 

 

First, we replicated a result from Power et al., 2014 (Fig 4.2A). We observed that between-

subject, motion-related functional connectivity differences (i.e., differences between separate 

groups of individuals with low or high amounts of head motion in their data) were eliminated by 

the processing pipeline implemented here. Then, we found that within-subject, motion-related 

functional connectivity differences (i.e., between low-motion and high-motion runs from the 

same individuals) were more numerous than the between-subject number of differences (Fig 

4.2B). As a control, we showed that there were minimal within-subject differences for 

individuals with two low-motion runs.  

 

Both within- and between-subject motion-related differences in functional connectivity were 

substantially and similarly ameliorated by the processing pipeline implemented here (i.e., 

inclusion of global signal regression and frame censoring). It appears that the application of these 

techniques addressed differences in motion between scans, rather than an underlying phenotypic 

difference between groups. 
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Figure 4.2: Within- and between-subject motion-related functional connectivity differences. Within- and 

between-subject differences in functional connectivity were assessed via t-test between every edge in the correlation 

matrix. The between-subject comparisons (A) include a result previously published by Power et al., 2014 in which a 

set of low-motion runs are compared against a set of high-motion runs from different individuals. A replication 

using data from individuals in the HCP dataset is also included. The within-subject comparisons (B) use data from 

the same individuals. The first test compared a set of low-motion runs against a set of high-motion runs from the 

same individuals (in the low-high motion group). The other within-subject test compared two sets of low-motion 

runs against one another from the same individuals in the low-low motion group. There were numerous within- and 

between-subject differences. The use of global signal regression and scrubbing reduced all such differences to 

chance levels. 
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4.3.2 Network variant sub-group is heritable, but not location 

We observed that the distribution of network variant locations is not heritable (H2 = 4.2 +/- 

0.8%) while network variant sub-group is moderately heritable (h2 = 47.1 +/- 1.0%; Fig 4.3 and 

Table 4.2). Further, we found that only the true proportion of monozygotic twins in the same 

sub-group was significantly higher than chance (Z = 2.82, p = 0.002), and the tetrachoric MZ 

twin-pair correlation (RMZ = 0.51) was more than double that of dizygotic twins (RDZ = 0.10) or 

non-twin siblings (RSibs = 0.25). These findings suggest that network variant sub-group 

heritability is due to additive genetic variance without the influence of environmental factors 

shared by co-twins. 
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Figure 4.3: Network variant sub-groups are heritable. The similarity of the distribution of network variant 

locations between pairs of individuals is displayed on the left. The plot on the right shows the proportion of pairs of 

individuals in the same network variant sub-group. Monozygotic (MZ) twin-pairs are the only group with a 

significantly higher proportion than expected by chance. To generate a null distribution, 1000 random permutations 

of subject labels were performed within each group (MZs, DZs, etc.). 
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Table 4.2: ACE model results. Estimates of variance for additive genetics (A), common/shared environment (C), 

and unique environment (E) are displayed. Network variant sub-group was estimated to be 47% heritable. The full 

ACE model was contrasted against AE, CE, and E models. Since results for the AE model are nearly identical to the 

full ACE model, there appears to be no contribution of common/shared environmental variance to variant sub-

groups. 

df p df p df p

ACE model 0.4711 0.0000 0.5289 260 1.0000 260 0.1809 261 0.0099

AE model 0.4711 0.5289 261 0.0024

CE model 0.3667 0.6333 261 0.0064

E model 1.0000

variant sub-group A C E
versus CE model versus E modelversus AE model
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4.4 Discussion 

The present study examined the heritability of functional connectivity and network variant 

properties, as well as investigated the possibility of a head motion phenotype. Both functional 

connectivity and network variant sub-group were observed to be heritable, but network variant 

location was not. The heritability of network variant sub-group appears to be a consequence of 

additive genetic and unique environmental variance, with little or no influence of shared 

environmental variance. Furthermore, we observed that the implemented processing pipeline, 

which includes global signal regression and frame censoring, effectively eliminated both within- 

and between-subject motion-related differences in functional connectivity. This result suggests 

that motion-related functional connectivity differences are primarily noise (rather than signal), 

and thus, there is no evidence to support a head motion phenotype in functional connectivity 

data. 

4.4.1 Heritability estimates depend on processing pipeline 

We observed that functional connectivity is weakly heritable (15%), with our estimate 

substantially reduced (10%) when data from the HCP processing pipeline were used. Both 

estimates are on the low end of previously published results (which range from 10% to 80% with 

an average near 40% (Adhikari et al., 2018; Colclough et al., 2017; Elliott et al., 2019; Fornito et 

al., 2011; Fu et al., 2015; Ge et al., 2017; Glahn et al., 2010; Yang et al., 2016)). There is a clear 

effect of processing pipeline on heritability estimates, since many of the previously published 

studies used the same dataset. However, sample size is a confounding variable, as each study 

included a different number of monozygotic and dizygotic twin-pairs. Here, we tested four 

different processing strategies on the exact same set of subjects (85 monozygotic and 46 
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dizygotic twin-pairs). The processing pipeline that included both global signal regression and 

scrubbing resulted in the highest heritability estimate. 

 

This pipeline has been shown to be extremely effective at dealing with the effects of head motion 

in resting-state fMRI data (Ciric et al., 2017; Power et al., 2014). It is critically important to 

remove motion-related effects from the data when estimating heritability because two recent 

investigations demonstrated that head motion itself (e.g., framewise displacement) is moderately 

heritable (~40%) (Couvy-Duchesne et al., 2014; Hodgson et al., 2017). Since various pipelines 

deal with head motion effects to varying degrees (Ciric et al., 2017), it is reasonable to expect 

that any residual head motion remaining in the data will affect heritability estimates. The wide 

range of heritability estimates in the literature is likely due to the varied effectiveness of different 

processing pipelines addressing head motion.   

 

Furthermore, most previous investigations implemented processing strategies that do not fully 

remove motion-related effects from the data (Ciric et al., 2017), which may explain why our 

heritability estimate is much smaller than most. However, this does not explain why the HCP 

processing pipeline results in a reduced estimate, since this pipeline has been shown to be 

ineffective at removing motion-related effects (Burgess et al., 2016; Ciric et al., 2017; Power et 

al., 2018). One possibility is that the HCP pipeline introduces additional noise into the functional 

connectivity data. This additional noise may mask the effect of head motion on heritability and 

also explain why the average correlation of functional connectivity between pairs of individuals 

is substantially reduced. Alternative reasons for the reduction in the correlation of functional 
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connectivity and heritability estimates include the lack of a bandpass filter and smoothing. 

Disambiguation between these possibilities requires further investigation by future work. 

4.4.2 Network variant location is not heritable 

We found that the location of network variants is not heritable. In other words, the chance that 

one twin’s distribution of network variant locations matches their co-twin is approximately the 

same for monozygotic and dizygotic twins.  

 

This result interacts with previous findings from Seitzman and colleagues, who demonstrated 

that network variant sub-groups could not be found by use of network variant locations (see 

Chapter 3). One interpretation of these two results is that there is no systematicity to network 

variant locations in cortex. However, across individuals, network variants tend to occur in 

association cortex and almost never occur in primary sensorimotor areas. Thus, the specific 

location of network variants within association cortex may be purely a consequence of an 

individual’s unique experience, with no influences of additive genetics or shared environment. 

Alternatively, network variants may be randomly distributed within association cortex. 

Regardless, neither option precludes the possibility that network variants rarely occur in 

sensorimotor cortex as a consequence of additive genetics and/or shared environment. Future 

work (likely using animal models) is required to substantiate this latter idea. 

 

If network variant location is not random, but rather a consequence of unique environmental 

variance, then network variant location may be due to experience-dependent plasticity (Hebb, 

1949; Nithianantharajah and Hannan, 2006). In other words, variant locations may arise as a 

response to environmental demands as an individual navigates life and/or unique biological 
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experiences that occur during development. However, if this were the case, one would expect to 

observe an effect of shared environment on variant locations, given that co-twins often share a 

womb and experience similar environmental demands in the same place at the same time. 

Therefore, of the options discussed, the most likely is that network variant locations are 

randomly distributed within association cortex (with a potential genetic and/or developmental 

restriction keeping network variant away from sensorimotor cortex). 

4.4.3 Network variant sub-group is due to additive genetic and unique 

environmental variance 

We observed that monozygotic twins are more likely to be in the same sub-group than dizygotic 

twins, non-twin siblings, and unrelated individuals. Further, we found these sub-groups to be 

moderately heritable, with approximately half of the variance in sub-groups explained by 

additive genetics. Since the remaining variance in sub-group heritability is explained by unique 

environment (and model error), there appears to be no effect of common/shared environment on 

network variant sub-groups.  

 

Seitzman and colleagues demonstrated previously that these sub-groups are found via 

associations between an individual’s network variants and canonical functional networks (see 

Chapter 3). That is, some individuals tend to have variants more strongly associated with the 

default mode network, primarily, whereas other individuals tend to have variants more strongly 

associated with control and processing networks (e.g., the frontoparietal, motor, and visual 

networks). The heritability results presented here suggest that there may be a genetic 

predisposition for the sub-group phenomenon. Furthermore, since the twin-pair correlation for 

monozygotic twins is more than double the dizygotic twin-pair correlation, non-additive genetic 
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variance (e.g., gene-gene interaction effects) may also be a contributor to sub-group heritability. 

Taken together, it is possible that there is a genetic template for individual differences in 

functional connectivity such that a specific amount of association cortex is pre-determined to be 

related to either the default mode network or various control and processing systems.  

 

Since approximately half of the variance in sub-groups is explained by unique environment, it is 

likely that there is a substantial effect of development on variant functional network associations. 

Even if some network variants are pre-allocated for associations with either the default mode 

network or control and processing networks, those relationships may be altered as an individual 

develops and navigates their environment. Likewise, novel network variants may arise during the 

course of development and/or in response to environmental challenges. Future studies of the 

development of network variants with specific attention towards the sub-group phenomenon are 

crucial. 

4.4.4 No evidence for a head motion phenotype 

We found that there were substantial motion-related functional connectivity differences when 

comparing data acquired from low-motion and high-motion runs. It did not matter whether these 

runs were acquired from the same individuals (within-subject) or from different groups of 

individuals (between-subject), as there were sizable differences in both cases. However, we 

observed that the processing pipeline implemented here reduced both within- and between-

subject differences to chance levels.  

 

Head motion has a systematic effect on functional connectivity, whereby local correlations are 

increased and long-range correlations are decreased (Power et al., 2012; Satterthwaite et al., 
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2012; van Dijk et al., 2012). Because the effect is systematic, differences in head motion 

between two groups (e.g., control and patient populations) will lead to spurious differences in 

functional connectivity. Many have argued that this effect is artifactual and must be removed 

from the data via appropriate processing strategies (Ciric et al., 2017; Power et al., 2014). 

However, more recent investigations have suggested that head motion inside of an MRI scanner 

is heritable, and thus, head motion effects on MRI data is a phenotype (Couvy-Duchesne et al., 

2014; Zeng et al., 2014). If so, then motion-related functional connectivity differences should be 

considered true signal (rather than artifact or noise) and perhaps should not be removed from the 

data (Couvy-Duchesne et al., 2016).  

 

An alternative explanation for the observed heritability of head motion is that there are heritable 

factors that causally affect head motion. Body Mass Index (BMI), the ratio of an individual’s 

height and weight, has been shown to be (1) strongly heritable (Allison et al., 1996; Schousboe et 

al., 2003) and (2) substantially correlated with head motion (Siegel et al., 2017). A recent 

investigation demonstrated that there are shared genetic factors influencing both BMI and head 

motion inside of an MRI scanner (Hodgson et al., 2017). If BMI, a bonafide phenotype, is the 

reason for the apparent heritability of head motion, then it is reasonable to argue that head 

motion itself is not true signal and, consequently, must be removed from functional connectivity 

data. Our findings suggest that there is not a strong head motion phenotype, since both within- 

and between-subject differences in functional connectivity were eliminated by the implemented 

processing pipeline, which has been shown to address head motion adequately(Ciric et al., 2017; 

Power et al., 2014).  
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4.5 Conclusion 

We investigated the heritability of functional connectivity broadly and of properties related to 

network variants (e.g., location). Further, we examined within- and between-subject differences 

in functional connectivity attributable to motion-related artifacts in order to assess the possibility 

of a head motion phenotype that affects fcMRI signals. We observed that functional connectivity 

is weakly heritable, network variant location is not heritable, and network variant sub-group is 

moderately heritable. Network variant sub-group appeared to be due to additive genetic variance 

and unique environmental variance, with no influence of shared environment. Finally, we found 

that heritability estimates were affected by differences in processing pipelines, and we observed 

no evidence for a head motion phenotype. 
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Chapter 5: Conclusion 

5.1 Summary 

Individual differences in human brain functional network organization are signal, not noise (van 

Horn et al., 2008). Seminal fMRI investigations of areal- and systems-level brain organization 

hypothesized that individual differences were background noise (Biswal et al., 1995; Greicius et 

al., 2003). In order to overcome the noise, these studies averaged together data from distinct 

individuals. Averaging was necessary at the time, since small amounts of data were collected per 

individual and MRI hardware (e.g., head matrix coils) and software (e.g., pulse sequences, image 

reconstruction algorithms) were in their infancies. Thus, individual differences could not be 

measured reliably, and therefore, seemed to be noise (Evan M Gordon et al., 2017; Laumann et 

al., 2015). As the field matured and technology improved, the importance of individual 

differences was slowly recognized (Finn et al., 2015; Miller et al., 2012, 2009; Mueller et al., 

2013; Wang et al., 2015). Now that many of these technical issues have been resolved and there 

has been a focus on individual-specific experimental designs and analyses, a converging picture 

of individual-specific functional network organization has emerged (Bijsterbosch et al., 2018; 

Braga and Buckner, 2017; Evan M Gordon et al., 2017; Evan M. Gordon et al., 2017a, 2017b; 

Kong et al., 2018). 

 

Recent experimenters have acquired substantial amounts of resting-state fMRI data from 

individual healthy adults (Braga and Buckner, 2017; Evan M Gordon et al., 2017; Kong et al., 

2018; Poldrack et al., 2015). As such, these investigators have been able to identify a comparable 

set of brain regions in which individual differences in brain network organization may be found, 

i.e. parts of association cortex, and a separate set of brain regions in which network organization 
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is highly consistent, e.g. primary sensory areas (Evan M. Gordon et al., 2017a, 2017b; Kong et 

al., 2018; Mueller et al., 2013). Likewise, regions of individual difference have been shown to be 

remarkably stable over days (Kong et al., 2018), weeks (Gratton et al., 2018a), months (Chen et 

al., 2015; Filevich et al., 2017), and even a year (Laumann et al., 2017, 2015) within individuals. 

Several advances in our understanding of these individual differences are presented in this 

dissertation, including: (1) a neurobiologically-grounded framework for the terminology and 

interpretation of regions of individual difference, i.e. network variants; (2) the systematic nature 

of the idiosyncratic networks to which variants are re-assigned; (3) the observation that task-

induced brain activations in network variants match those expected to occur in their idiosyncratic 

network; (4) the identification of discrete sub-groups of individuals with similar network variant 

properties; and, (5) the trait-like nature of an individual’s distribution of network variants, 

including the heritability of this distribution.  

 

5.2 Interpretation 

In my opinion, two of the aforementioned findings are most important, and thus, warrant the 

primary focus of the discussion and interpretation: the task-induced brain activation result and 

the identification of sub-groups of individuals. To recap, (1) we observed that network variants 

re-assigned to the default mode network (DMN) tended to de-activate, as expected for canonical 

DMN regions (Raichle et al., 2001; Shulman et al., 1997), even though many of these network 

variants were located in regions that canonically activate during goal-directed tasks (Dosenbach 

et al., 2006; Klingberg et al., 1997); and, (2) we identified two main sub-groups of individuals 

who differed in network variant properties.  
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The fact that network variants show the pattern of brain (de-) activations expected to occur in 

their idiosyncratic network (during goal-directed tasks) helps validate their neurobiological 

function. For instance, dorsolateral prefrontal cortex (dlPFC) has been shown to be an important 

region of control for task performance, which is consistent with the fact that dlPFC is part of the 

frontoparietal network, a functional system of the brain thought to be important for systems-level 

control processes (Dosenbach et al., 2007, 2006; Gratton et al., 2017; He et al., 2007; Woolgar et 

al., 2011; Zanto and Gazzaley, 2013). Yet, this evidence comes from group-level studies, and 

therefore, such results and interpretations are valid only at the group-level. Here, we 

demonstrated that in some individuals, certain regions within dlPFC are not affiliated with the 

frontoparietal network, but rather are aligned with the DMN, which decreases its activity level 

(relative to its baseline state) during goal-directed tasks. It is difficult to argue that a brain region 

expected to activate (because of its physical location) that instead de-activates during task 

performance has the same function as a brain region in the same physical location (in a different 

individual) that shows the expected activation. If the expected activation is necessary for some 

aspect of performing the task, then one must conclude that the network variant region (which 

deactivated) is performing a different process during this task. Thus, network variants appear to 

play a role in task processing that is consistent with their novel, idiosyncratic network, even if 

it’s the opposite of what would be predicted from the group-average. 

 

The two distinct sub-groups of individuals identified via network variant properties are equally 

intriguing, as the same two sub-groups were identified in three separate groups of individuals. 

We observed that one sub-group was composed of individuals whose network variants tend to 

align, primarily, with the DMN, whereas individuals in the other sub-group have network 
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variants that tend to align with control (e.g., cinguloopercular) and processing (e.g., visual, 

auditory) networks. An alternative way to think about this result is in terms of the size of these 

networks (e.g., the DMN is expanded in one sub-group of individuals), but this idea is not a 

perfect representation of the true result (see Chapter 3 for technical details). Moreover, we found 

that these two sub-groups are moderately heritable, with 47% of the variance apparently 

explained by additive genetics. There is substantial evidence supporting the idea that the sub-

group phenomenon is a fundamental aspect of healthy adult functional network organization. 

 

The meaning behind this phenomenon is less clear. Previous work has shown that the control and 

processing networks are activated during goal-directed tasks (Gratton et al., 2018b, 2017, 2016). 

Thus, they are thought to be important for controlling and executing aspects of the tasks 

(Dosenbach et al., 2008; Nelson et al., 2010). Conversely, the DMN, which tends to de-activate 

during such tasks, is thought to be involved in more internal processes, such as introspection 

(Raichle, 2015). Thus, individuals in the so-called control and processing sub-group appear to 

have more association cortex aligned with brain functional networks important for 

accomplishing goal-directed tasks (among other processes). Therefore, a reasonable hypothesis is 

that individuals in the control and processing sub-group will perform such tasks more efficiently 

or accurately. Further, individuals in the control and processing sub-group may have higher 

scores on behavioral measures of relevant for goal-directed tasks, e.g. executive function. 

 

We did not find direct evidence to support either of these hypotheses. However, we did observe a 

weak but significant difference between the sub-groups in terms of some neuropsychological 

measures of behavior. Specifically, individuals in the control and processing sub-group tended to 
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have a more positive outlook on life and were less likely to have a history of drug abuse than 

individuals in the DMN sub-group. Previous studies have shown significant relationships 

between individual differences in functional network organization and behavior (Bijsterbosch et 

al., 2018; Kong et al., 2018; Smith et al., 2015), some of which are consistent with our results. 

However, there is not yet a consensus as to the nature and extent of the relationship between 

network variants (individual differences in functional network organization) and behavior.  

  

Additionally, we found that the two sub-groups were anticorrelated with one another. This 

observation poses an issue for group-level studies that average individuals together. When two 

anticorrelated signals (of approximately equal magnitude) are averaged together, the resultant 

signal is near zero, even though neither original signal was near zero. This means that group-

level studies comparing two populations of individuals (e.g., patients versus controls) may have 

obscured a bonafide difference between the populations as a direct consequence of averaging 

individuals together. As a hypothetical example, consider a patient population in which there are 

three clear sub-groups: the two main sub-groups observed in the control population, and a 

smaller but distinct third sub-group. Such a result would almost certainly be missed at the group-

level, since the two main sub-groups are anticorrelated, and thus, will cancel each other out at the 

group-level (since the third sub-group is smaller than the main two). The third sub-group may 

reveal an insight into the neurobiology of the disease, but until a network variant approach is 

taken, this insight will remain hidden. 

 

However, such obfuscation would not occur if, for a given disease, there is a systematic shift in 

sub-groups. Moving away from the hypothetical, previous investigations have revealed both 



181 

 

decreased activation during a working memory task (Meyer-Lindenberg et al., 2005) and 

aberrant functional connectivity (Lawrie et al., 2002; Lynall et al., 2010) in dorsolateral 

prefrontal cortex (dlPFC) in patients with Schizophrenia relative to controls. Since network 

variants commonly occur in dlPFC, it is reasonable to expect that individuals with Schizophrenia 

(1) will have more network variants aligned with the DMN in dlPFC and (2) will have a higher 

proportion of individuals in the DMN sub-group relative to healthy controls. This example is one 

of many possible re-interpretations of well-known findings from earlier fMRI studies of 

psychiatric disease.  

 

The lens through which prior neuroimaging literature is viewed, as well as future experimental 

designs, should be informed by the discovery of network variants and their systematic patterning 

across individuals. 

 

5.3 Future Experiments 

5.3.1 Basic Neuroscience 

There are several interesting questions for future research to address concerning network variants 

and their many features described in this thesis. As discussed in Chapter 3, understanding the 

neurobiological source(s) of network variants may require non-human research. If this line of 

inquiry is pursued, the presence of network variants must first be established in the animal model 

in question. Consider a popular non-human primate research model- the rhesus macaque. 

Confirmation of the presence of network variants will require a large amount of resting-state 
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fMRI data from a reasonable amount of individual macaques, as well as a macaque group-

average for comparison.  

 

The most straightforward experiment will use either extant fMRI data from lightly anesthetized 

macaques (Vincent et al., 2007) or require training a reasonable number of macaques to perform 

eyes-open resting-state fMRI. Once the data are in hand and processed appropriately (e.g., for 

motion artifacts (Power et al., 2014)), all individual data must be registered to a common atlas 

space. Pipelines for surface-based registration of macaque fMRI data have been developed by the 

Van Essen lab and colleagues, and there is a well-constructed surface atlas from the Yerkes 

National Primate Research Center (similar to the Conte69 surface atlas used for all of the human 

data included in this thesis) (Donahue et al., 2018). After such technical details are resolved, 

network variants can be identified in individual macaques by comparing their resting-state 

correlation matrices against the group-average correlation matrix.  

 

I hypothesize that network variants: (1) will be found in non-human primates (macaque or 

otherwise) in proportional numbers to humans (after normalizing for differences in cortical size), 

(2) will be located in association cortex and rarely in sensorimotor cortex, and (3) will be 

reassigned to higher-level systems (e.g., Frontoparietal and Default Mode Networks) more often 

than to sensorimotor systems. Furthermore, I would not be surprised to observe that network 

variants are distributed systematically across individual macaques, allowing for identification of 

sub-groups of individuals. In sum, I expect the results of this first experiment to reveal very 

similar characteristics to human network variants. However, this study is necessary because all 



183 

 

other experiments require identification, localization, and validation of network variants in the 

macaque. 

 

Subsequent studies could involve in-depth electrophysiological studies of macaque network 

variants. In the discussion section of Chapter 3, we speculated about the neurobiological source 

of network variants near Frontal Eye Fields (FEF). To recap, an FEF network variant may occur 

in an individual because that individual’s FEF is displaced/enlarged/contracted relative to the 

average FEF or the function of FEF neurons is systematically shifted away from the typical 

distribution of FEF neuronal function (e.g., more attention neurons than average). 

Electrophysiology will allow for disambiguation between these possibilities, assuming a 

macaque with an FEF network variant is discovered. Since FEF is a common location for human 

network variants, it is reasonable to expect to find macaques with FEF network variants.  

 

Single- or multi-unit recordings will allow for precise localization and characterization of all 

FEF neurons in an individual macaque. However, many such recordings will need to be acquired 

across a fairly large number of macaques in order to delineate the central tendency of macaque 

FEF location and the typical distribution of FEF neuronal functions. Fortunately, FEF has been 

studied for many years in the macaque (Petit and Pouget, 2019), so there may exist an adequate 

database of FEF neuronal recordings from which the group-average location and distribution of 

FEF neuronal functions may be derived. I expect that network variants will be explained by a 

systematic shift in the distribution of neuronal functions most often. I base this hypothesis on the 

observation that network variants appear to shift their task processing profile to the profile of 

their idiosyncratic network assignment. 
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Additional basic neuroscience experiments include extending network variant investigations to 

non-cortical structures. There is evidence to suggest that the expansion of association cortex in 

humans is mirrored in the cerebellum (Buckner, 2013; Buckner et al., 2011). Furthermore, a 

recent study demonstrated that there is individual variability in the size of cerebellar 

Frontoparietal Network (FP), with many individuals having an overrepresentation relative to 

cortical FP (Marek et al., 2018). These findings, in addition to well-established evidence that 

cognitive processing occurs in the cerebellum (Fiez, 2016; Fiez et al., 1992; Petersen et al., 1988; 

Strick et al., 2009), suggest that network variants are likely present in cerebellar association 

cortex. Speculatively, a Default Mode Network (DMN) network variant located in right 

dorsolateral prefrontal cortex may predict the presence of a DMN network variant in left 

cerebellar association cortex (that is typically assigned to FP at the group-level).  

 

Contralateral mirroring of cortical and cerebellar network variants is forecasted by the known 

anatomy of cortico-cerebellar projections (which decussate in the pons) (Woolsey et al., 2008). 

Such a finding would reveal a whole-brain, systems-level network variant effect, as opposed to 

single areal-level changes. Further questions concerning anatomical projections to/from network 

variant regions may be addressed by use of diffusion tensor imaging in humans and tracer studies 

in non-human primates. For example, an individual with a DMN network variant in right 

dorsolateral prefrontal cortex may have a different pattern of anatomical wiring to/from that 

region compared to an individual with the typical FP network representation in that same cortical 

location. This would indicate that network variants involve a change in both function and 

anatomy. 
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A final set of basic experiments to consider involves the origin of network variants. The 

moderate heritability of network variants discussed in Chapter 4 suggests that approximately half 

of the variance in network variants is due to unique environmental/experiential factors. Thus, 

developmental studies of network variants are required to understand when, and potentially why, 

they occur. Developmental studies are complicated by technical issues of network variant 

identification, since identification of network variants requires a group-level referent. In my 

opinion, it is incorrect to compare individuals to a group-average from a different developmental 

window. This complication is compounded by individual differences in rate of development. The 

ideal study of network variants across development will involve a longitudinal design, similar to 

the ABCD study (Jernigan et al., 2018), but begin near post-natal day one and continue through 

puberty. Capturing critical periods (e.g., the various stages of language acquisition) may prove to 

be quite revealing in terms of network variant development. 

5.3.2 Translational Neuroscience 

There are many extant datasets of fMRI data acquired from a variety of patient populations. 

Network variant analysis of these datasets is low hanging fruit. One interesting possibility 

follows from the work of Eve Marder and colleagues, who demonstrated that there is a range of 

‘acceptable’ temperatures (subject to neuromodulatory tone) for the maintenance of a healthy 

pyloric rhythm in the crab stomatogastic ganglion (Kushinsky et al., 2019). A similar principle 

may be at play with respect to network variants. There could be a range of ‘acceptable’ variant 

location and network re-assignment distributions, with deviations outside of the range coinciding 

with disease. For example, network variants located in primary sensorimotor cortex may 

coincide with related diseases (e.g., blind or vision-impaired individuals may have network 
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variants in V1). Since network variants rarely occur in these regions, such an observation would 

be considered a deviation outside of the network variant location distribution. Likewise, 

idiosyncratic re-assignment of network variants that includes an unusual distribution of networks 

(e.g., a large amount of parietal memory and parietal occipital network) may be associated with a 

particular disorder. 

 

The result of distinct sub-groups of individuals provides the most leverage for translational 

neuroscience questions, in my opinion. In Chapter 3, we described two distinct sub-groups of 

individuals (with some evidence for four sub-groups) identified via differences in network 

variants. These findings replicated across three independent datasets of unrelated individuals, 

and the percent of individuals in each sub-group was approximately 50%. It may be the case that 

individuals with a given neurologic or psychiatric disease are systematically shifted towards one 

sub-group. Alternatively, a novel sub-group, present in patients only, may be identified. It is 

possible that either of these results may already be evident at the group-average level. However, 

such differences may be hidden at the group-average level, as described at the end of the 

Summary and Interpretation section. 

 

For instance, previous investigations have shown that there are functional connectivity 

differences in right dorsolateral prefrontal cortex in individuals with Schizophrenia compared to 

healthy controls (Lawrie et al., 2002; Lynall et al., 2010). Given that these differences were 

observed at the group-average level, it is almost certain that there will be differences in network 

variants in these same regions (and preliminary evidence suggests that this is the case). The more 

interesting question is if network variants in individuals with Schizophrenia are systematically 
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shifted towards one sub-group (or individuals with Schizophrenia are in their own sub-group), 

are there further sub-types in terms of network variants. If so, what are the characteristics of 

those sub-types. For a disease like Schizophrenia, with large individual differences in behavioral 

manifestations (e.g., positive versus negative symptoms), such a result may map onto distinct 

disease sub-types. Moreover, differences in network variants between individuals with 

Schizophrenia may provide novel insight for individual-specific, personalized treatment 

protocols and neurobiological targets for intervention (e.g., transcranial magnetic stimulation). 
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