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ABSTRACT OF THE DISSERTATION
Force Requirements and Force Generation During Endocytosis in Yeast
by
Jonah Kyle Scher-Zagier
Doctor of Philosophy in Physics
Washington University in St. Louis, 2019

Professor Anders Carlsson, Chair

Endocytosis is a process by which cells bring external materials into the intracellular envi-
ronment and perform other essential biological functions. The main drivers of endocytosis
include clathrin and actin, which help shape the membrane and form the endocytic invagina-
tion. In mammalian cells and other cells lacking a wall, the primary barriers to endocytosis
are the bending rigidity of the cell membrane and surface tension. However, in cells with
a rigid cell wall, such as those of yeast, this process is opposed by a substantial pressure
within the cell, known as the turgor pressure, which is generated by a difference in the con-
centration of osmolytes such as glycerol across the membrane. In order to understand yeast
endocytosis, it is necessary to understand how force and curvature generators behave under
conditions of high turgor pressure, as well as other possible mechanisms cells may employ to

reduce or overcome the turgor pressure barrier.

In this thesis, we model the generation of these high turgor pressures through osmolyte
diffusion and accumulation, as well as examining the production of forces by curvature-
generating molecules (CGMs) under high turgor pressure. We first investigate the possibility
of reducing the turgor pressure barrier to endocytosis by modeling the steady-state reduction
of the glycerol concentration, and thus the turgor pressure, in a cell with a single region of

increased permeability, corresponding to a cell with a single endocytic zone. We then extend

x1



this model to cells with multiple endocytic zones, as well as to the time dependence of
the glycerol concentration. We also model the behavior of idealized curvature-generating
molecules under high-turgor pressure conditions in the presence of a stiff cell wall. We find
that small numbers of channels can produce up to a 50% reduction in the turgor pressure.
We also find that model CGMs analogous to clathrin can produce forces nearly sufficient to

overcome the turgor pressure.
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Chapter 1

Introduction

1.1 Endocytosis in Yeast

Endocytosis is a process through which cells bring in external material via deformation of
the membrane. First, an indentation, known as an invagination, forms on the surface of
the cell (Figure 1.1). The size of the invagination varies depending on the type of cell and
endocytic process: In human cells, it has an initial radius of approximately 100 nm, which
decreases to around 50 nm by the neck formation stage (Figure 1.2), while the invagination
depth increases to around 70 nm [7], while by contrast in yeast cells the size of the endocytic
invagination is under 50 nm [75|. The invagination then lengthens (the previously mentioned
neck formation or elongation stage), and finally pinches off into a spherical lipid vesicle (the
scission stage). The entire process, from the initial accumulation of proteins on the membrane

to scission and vesicle formation takes place on a timescale of around 40-130 seconds [80].

Yeast, particularly the baking yeast Saccharomyces cerevisiae, is an ideal model system for

understanding endocytosis due to the relative simplicity of its genome, about 12 million



Figure 1.1: Electron tomography images of an endocytic patch at various points in its
development, from initial invagination (A) to the beginning (D, E) and completion (F) of
scission. Scale bar 50 nm [20].
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Figure 1.2: Size of endocytic indentations in nanometers in human cells. Frame C shows the

constancy of surface area and Frames D and E show the change in the radius of curvature
as endocytosis progresses [7].



base pairs relative to humans’ 3.2 billion, and of its structure, since unlike plant or animal
cells, it does not form complex differentiated multicellular structures [44, 84| . In yeast
cells, the primary form of endocytosis is clathrin-mediated endocytosis (CME), a form of
endocytosis that involves the assembly of cage of clathrin triskelia on the interior surface of
the cell, which help promote the formation of the invagination by their intrinsic curvature.
Clathrin recruitment precedes membrane deformation, although the precise time of

bending after clathrin recruitment begins is variable [116].

This process serves a variety of physiological functions. It can incorporate bound
receptor-ligand complexes into the cell, allowing the ligands to be brought into the
cytoplasm and the receptors to be reincorporated into the membrane. CME can change the
surface properties of the membrane, allowing for modulation of signal transduction, and
also serves to recycle synaptic vesicles. Due to this versatility, however, it is also exploited

by pathogens such as viruses and bacteria to gain access to cells [87].

Endocytosis involves a wide array of proteins (Figure 1.3). The formation of the
invagination is preceded by the accumulation of coat proteins, including clathrin, Sla2, and
Entl and Ent2. The nucleator Las17 and and the branching protein complex Arp 2/3
promote polymerization of actin. The protein Sla2 plays an essential role by binding actin
to the endocytic patch by means of interactions with epsin [121, 141, 146]. The epsins Entl
and Ent2 are adaptor proteins that bind clathrin to the cell membrane, as well as possibly

generating curvature independently [37, 69].

The primary force-generating protein associated with CME is actin. Networks of
filamentous actin (F-actin) generated by Lasl7-activated Arp 2/3 complex accumulate

around the vicinity of an endocytic patch [103]|. Actin generates the necessary forces
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through polymerization of actin monomers, with thermal fluctuations of the membrane
providing a gap for additional monomers to polymerize and thus displace the membrane.
Rather than polymerizing away from the membrane, actin polymerizes at the membrane
and thus pushes on it directly [27]. This actin network around endocytic patches may form
a variety of shapes during endocytosis, starting as a ring during the initial stages, while
transitioning to a trailing tail-like structure during the latter stages [103]. The network also

plays a role in vesicle scission, pinching off the neck of the vesicle.

Endoctytic scission has its own associated proteins, in addition to actin. Among these are
yeast dynamin-associated GTPase Vpsl, which plays a role in membrane tubulation and
also assists in the removal of coat proteins post-scission [139]. Clathrin also affects scission,

possibly regulating the time and location at which scission is initiated [76].

There are several force barriers to endocytosis, including surface tension, membrane
curvature and osmotic pressure. In mammalian cells, the former two are the primary
barrier to endocytosis, since they resist the changes in the area and curvature necessary to
produce an invagination [142]. In cells possessed of a rigid cell wall, such as yeast and plant
cells, the osmotic pressure difference between the exterior and interior of the cell, known as

the turgor pressure, usually is the primary obstacle.

Models of endocytosis have typically focused on actin force generation,
curvature-generating proteins, and membrane deformation. For instance, one model
considered the balance between the effects of surface tension and polymerization of the
CGP clathrin in forming endocytic buds [111]. It found that membrane tension opposed
endocytosis, not only directly, but by inhibiting the polymerization of clathrin and thus the

generation of curvature, which was validated by experiments on vesicles. Thus, in different



regimes of clathrin polymerization energy and membrane tension, the endocytic process

would proceed to different stages (Figure 1.4).

Other models have also focused on the balance between surface tension and clathrin
bending energy. For instance, Hassinger et al. analyzed a continuum model of endocytic
bud formation based on the Helfrich energy [50] (see further discussion of the Helfrich
energy in section 1.2), which took into account membrane tension, intrinsic curvature
generation by clathrin, and the intrinsic bending energy of the membrane. They found that
the process of transition from a flat membrane to an invagination and then an endocytic
bud depends on the balance between surface tension ¢ and the coat rigidity s, to which
clathrin-membrane interactions are a major contributor: at high ratios of o/k, there is a
rapid transition between the flat and budded shapes, characterized by the presence of a
snap-through instability, whereas at low values of o/k, the transition is gradual and
continuous. Other models have examined the effects of tension in conjunction with actin
forces or clathrin curvature generation, again finding snap-through instabilities in the

shape dependent on surface tension [138].

Most of these models, including the previous ones, have not directly treated the turgor
pressure or the effect of the cell wall. Some have, such as the model of Dmitrieff et al [33],
which examined the dynamics of endocytosis using a bending energy approach that
incorporated surface tension, the intrinsic curvature of clathrin, and actin force generation
modeled as a point force. They found that pressure and bending rigidity had a greater
effect on the shape of endocytic pits than surface tension, and estimated that the curvature
energy of clathrin was not sufficient to overcome the turgor pressure barrier. As with
various previous analyses, they also observed a snap-through instability. They also found
that certain types of curvature-generating proteins could help stabilize the shape, which

agrees somewhat with the previous results of Hassinger et al.
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1.2 Membrane Shape and Deformation

Biological cells such as §. cerevisiae are surrounded by a fluid lipid bilayer membrane,
which serves to separate the intracellular fluid from the external environment. This
membrane is composed primarily of phospholipids. Membrane lipids tend to have a
hydrophobic tail, which is isolated from the intracellular and extracellular fluid in the
interior of the bilayer, and a hydrophilic head, which is exposed to the internal and
external aqueous environments. This hydrophobicity effect causes membrane lipids to
aggregate and form a bilayer. The cell membrane lipid density is about 5 x 10° per square
micron, and about 50% of its mass is lipids. However, the membrane also contains a
variety of proteins (Figure 1.5). Among the most important for the purpose of endocytosis
are channel proteins, which allow water, ions, and larger molecules to pass through the

membrane into the cytoplasm.

The dynamics of the lipid bilayer membrane play a central role in yeast endocytosis. It has
a surface tension, which resists attempts at deformation, as does the bending rigidity of the
membrane. The membrane may also be shaped by the presence of clathrin or other
curvature-generating molecules, including preferentially curved lipids. The lipid bilayer
behaves fluidly in response to in-plane stresses, but deforms elastically under out-of-plane
forces. In the case of endocytosis in yeast or plants, the cell membrane is also subject to a
substantial turgor pressure, on the order of 0.2 MPa in budding yeasts [45], and a confining
potential due to the presence of the rigid cell wall. This recent measurement of the turgor
pressure was published as we were finishing the work described in Chapter 2. In that work
we used an average over existing measurements. More recently, we have come to feel that

the recent measurement is the most reliable one.



Figure 1.5: Schematic of lipid bilayer membrane with included proteins (Wellcome Images)
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The statics and dynamics of a cell membrane can be modeled by the so-called Helfrich
membrane energy, which treats the bilayer as a single thin shell subject to perpendicular
bending forces and moments. This energy employs the fluid mosaic model, which suggests
that there is little resistance to shearing of the bilayer and thus neglects tangential shear
forces. The Helfrich membrane energy for the general case (not including the effects of the

cell wall) can be written

U:2m/dA[(o—co)2+a} +/dVH (1.1)

Here C' is the curvature associated with a given conformation of the cell membrane, and Cj
is the intrinsic curvature associated with the presence of CGMs; both of these may be
functions of the body coordinates of a given point. The volume integration is over the
space enclosed by the lipid bilayer membrane, and the area integration is over the surface

of the same.

In the case of the early stages of endocytosis, this equation can be greatly simplified by the
Monge representation, which parametrizes the membrane deformation in terms of a single
radially dependent height, z(r), thus implicitly describing a situation in which the
membrane height is single-valued. In this representation the Gaussian curvature C' can be

written in terms of z as:

05 () o

The Monge representation typically further makes use of the small-displacement

approximation, by which /1 + (Vz)2 = 1+ $(Vz)2

11



In the absence of turgor pressure or a cell wall, the equation of shape derived by setting the
variation of the Helfrich energy to zero and using the Monge approximation factors into the
product of a Helmholtz and a Laplacian operator (Helmholtz-harmonic), such that the

solution to this equation is given by

z2(r) = ag + a1 Inr + asly(ér) + asKo(Er), (1.3)

where £2 = Cf + o/k and [y and K, are the modified Bessel functions of the first and
second kind, respectively. However, this solution is of limited applicability to endocytosis

in yeast, since it neglects the contribution of the turgor pressure.

The presence of the cell wall may be modeled in several ways in the Monge representation.
The simplest is to use a single potential proportional to z? to model the effects of the cell
wall. The resulting equation is of biharmonic type and has a simple analytic solution.
However, if a potential of this form is used for z > 0, it effectively overestimates the turgor
pressure (if employed in conjunction with a turgor pressure potential), or further
inaccurately represents its dependence on height, if a single quadratic potential is used to

represent the combined effects of the wall and turgor pressure.

A more accurate strategy is to model the portion of the membrane above the cell wall and
the portion below separately, with the assumption that there is at most one intersection.
This renders analytic computation of the coefficients of the two solutions difficult, however,

and necessitates numerical computation of the intersection radius by an iterative procedure.

The shape of the lipid bilayer membrane is not fully described by the Helfrich model,

however. Even within a continuum description, the bilayer nature of the membrane causes

12



deviations from the simple Helfrich model. For instance, there exist viscous forces between
the leaflets of the bilayer, which become non-negligible in the limit of large inter-leaflet
relative velocity. These interlayer drag forces play a role in phenomena such as tether
formation in a pipette, when the viscous forces due to interlayer drag may be tens of times
larger than those due to a thin-shell description based on the neutral surface of the bilayer
[36]. At a local scale, individual lipids are not static, but undergo rapid movement,
including rotations, displacement, lateral diffusion within a bilayer leaflet and even
diffusion between leaflets of the bilayer. Many of these processes occur rapidly: for
instance, the diffusion coefficient for lateral movement within a bilayer is around 1078

cm? /s, corresponding to diffusing about 100 nm in a second [4].

1.3 Clathrin and Other Curvature-Generating Molecules

Curvature-generating molecules (CGMs), specifically curvature-generating proteins
(CGPs), play a fundamental role in endocytosis, since to initiate endocytosis the endocytic
region must attain a curvature opposite in sign to that of the cell membrane as a whole,
which then must tubulate and pinch off into a free vesicle. Among the CGMs involved in
endocytosis are proteins such as clathrin and epsin, which are present in clathrin-mediated
endocytosis, and proteins such as cavin and caveolin, which help promote
clathrin-independent endocytosis pathways [81]. The most important of these CGMs is
clathrin, a triskelial molecule (Figure 1.6) which forms roughly hemispherical cages around
endocytic zones. These cages change shape as endocytosis proceeds, eventually becoming

coats around the detached endocytic vesicles before decoating [110].

Other curvature-generating molecules and methods of curvature generation exist and

contribute to endocytosis. For instance, BAR-domain proteins (Figure 1.7) generate
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Figure 1.7: Image of human F-BAR domain protein (a) and yeast F-BAR domain protein
(b) [53, 96]

directionally-biased curvature, having a different radius of curvature in different directions
along the surface of the endocytic patch. This class of proteins may generate curvature
through causing the membrane to conform to its geometry, as in the case of clathrin, or
through methods such as the insertion of amphipathic helices [94]. The
curvature-generating behavior of BAR-domain proteins varies based on several factors,
such as the density of proteins on the membrane and the membrane surface tension. At
high protein density, BAR domain proteins sort according to membrane curvature, whereas

at high tension, they promote tubulation and fission [118].

Not all curvature-generating molecules are proteins. Lipids, for instance, can have a

preferred curvature due to asymmetries. If the headgroups or tailgroups of lipids are of
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different sizes, giving them essentially conical shapes, they will induce a curvature in the
membrane. The accumulation of lipid species of differing preferred curvature in the two
leaflets of the membrane can reinforce this tendency [88]|. Some experimental evidence

suggests that preferentially curved lipids may play a role in endocytosis |58, 59].

Although molecules such as clathrin and BAR domain proteins generate curvature through
their specific folded structure, some methods of curvature generation are independent of
the physical structure and arrangement of charged domains in the CGMs. For instance, if
there is an excess of proteins on one leaflet of the membrane, the pressure generated from
collisions between these molecules can induce membrane curvature, a process known as
protein crowding. This process has been demonstrated for various proteins, including
epsin, Sarlp and green fluorescent protein [127]. Although there is little apparent
dependence on hydrophobicity or other specific features of the molecules involved, larger
molecules require lower concentrations to achieve the same degree of crowding, and

similarly for molecules that have a higher affinity for membrane binding.

1.4 Elasticity of the Cell Wall

To properly understand the dynamics of endocytosis in systems such as yeast cells and
plant cells, it is necessary to account for the dynamics of the stiff cell wall. The cell wall of
S. cerevisiae and other yeasts (Figure 1.8) is central to the structural integrity of the cell.
It is is composed of a variety of molecules, principally glycoproteins and polysaccharides; of
these, the polysaccharides comprise the majority of the cell wall mass, with polymers of
glucose and mannose predominating. The composition of the cell wall, however, is variable,
with the percentage of the various components changing in response to changes in the

acidity or nutrient content of the external environment, as well as temperature 3], which

16



may cause variation in mechanical properties such as as the cell wall rigidity. The cell
membrane also contains mechanosensing proteins, which interact with the cell wall and
may produce conformational changes in the cell wall or in its mechanical properties in
response to external forces [72]. The thickness of the cell wall is also highly variable, and
depends on the specific environment experienced by the cell. For instance, in the presence
of the enzyme Zymolyase, S. cerevisae cell walls are thinner and weaker, whereas the
presence of diamide causes oxidative stress that leads to cell walls up to 40 nm thicker than
in its absence [35]. Another yeast species, Kluyveromyces lactis, has a cell wall whose
thickness varies from approximately 64 + 10 nm in the presence of glucose to 105 4= 18 nm
in the presence of ethanol, and whose thickness also shows a spatial variation over the
surface of the cell [8]. Despite this variation, the thickness of the cell of S. Cerevisae tends
to be approximately 100 nm, with different experiments measuring 100 & 15 nm [8], or
102.12 + 3.38 nm [82], but other studies finding numbers as high as 200 nm for the
membrane-wall complex [93|, which given the membrane thickness of around 10 nm

corresponds to a wall thickness of nearly 200 nm [115].

The mechanical properties, such as the Young’s modulus, can be determined by a variety of
probes. For instance, one such experiment measured the response of stationary-phase 9.
cerevisiae cells to compression forces up to the point of failure, finding an average Young’s
modulus of 127 4+ 4 MPa for cell walls with an average thickness of 90 nm [122, 124, 125].
The measurements also showed that the cell wall had a breaking strain of 75%. Another
experiment determined the Young’s modulus of S. cerevisiae to be 112 +£6 MPa in the
exponential growth phase and 107 + 6 MPa in the stationary phase, corresponding to no
statistical difference and suggesting the the mechanical properties of the yeast cell wall are
constant across different growth phases, as well as roughly agreeing with the previous

measurement. This latter experiment found a breaking strain of about 82% [125]. In
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Figure 1.8: Image of yeast cell wall (white) in C. utilis at various pH levels [21]
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contrast, later research using population averages of the various cells found a Young’s
modulus of approximately 185 MPa and a breaking strain of 67%. It also found that failure

of cells occurred around the equator [129].

In the case of S. cerevisae, since the radius of the cell is about 3 um and the endocytic
region is about 100 nm in diameter, the surface of the cell wall can be approximated as
flat. The local behavior of the cell wall, such as that of interest in the vicinity of a single
endocytic patch, can be modeled as an elastic half-space. The accuracy of this
approximation depends on the ratio of size of the region of interest to the thickness of the
wall, which for an endocytic patch whose radius is about 50 nm is 0.5. This is an
acceptable approximation but may produce some error. Since the thickness of the cell wall
is approximately 100 nm, if we take the Young’s modulus to be 127 MPa, the Hookean

approximation to the wall force is:

F,=Y/t)z (1.4)
where z is the displacement and ¢ is the cell wall thickness. The displacement under the

turgor pressure, which is approximately 0.2 MPa, can be estimated by equating this force

to the turgor pressure, giving

20 =11ty (1.5)

which for the given parameter values is approximately 0.002¢. As such, the thickness of the

cell wall is roughly 500 times the displacement under the turgor pressure.
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Various models, in fact, treat the cell wall as an elastic half-space; for instance,

measurements of the stiffness of the cell or cell wall through AFM indentation [40].

1.5 Turgor Pressure Generation and Measurement

Osmotic pressure refers to the difference in pressure between two regions filled with solvent
and solutes and separated by a semipermeable membrane, through which only the solvent
can pass. This is particularly relevant in biological systems, in which the polar lipid bilayer
membrane behaves as a semipermeable membrane that allows the passage of water but not
large polar molecules such as glycerol, partly due to different effective permeabilities from
the presence of aquaporins, aquaglyceroporins, and other channel proteins.

If we consider a system with two regions, the first (region 1) containing pure solvent, and
the second (region 2) containing a mixture of solvent and solute, we can derive the
equilibrium osmotic pressure by considering the chemical potential of the solvent,

My = o + RT' Inx,,, where R is the ideal gas constant, 7' is the temperature, and z,, is
the mole fraction of solvent. Here f,, ¢ is the chemical potential of the pure solvent, i.e. for
z, = 1. Since the solvent can flow freely across the lipid membrane, the chemical potential

of the solvent in the two regions must be equal:

L0 (P) = tow(p + 1) = pyo(p + 1) + RT In x,, (1.6)

The definition of the differential chemical potential is, in terms of the entropy per molecule

and molecular volume [9]:
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which holds for any component ¢ of a mixture. Thus, when temperature does not vary and
the molecular volume does not depend on pressure, we can integrate dy,, from p to p + II,

giving (for the solvent):

frw,0(p + 1) — piy 0(p) = VII (1.8)

— RTInz, =VII (1.9)

Since x,, + xs = 1, in the limit of low solute concentration we can take In(x,,) ~ —x;,

giving the osmotic pressure as:

Il =RTz,/V (1.10)

The molecular-level origin of osmotic pressure is complicated, and may vary from system to
system. The simplest model explains osmotic pressure by analogy to the case of an ideal
gas, to which the definition of osmotic pressure for the case of low solute concentration
bears a close resemblance. Because the membrane is permeable only to the solvent
molecules, the solvent diffuses freely between the two regions separated by the
semipermeable membrane until the density of molecules on either side is equal. By contrast,
the solute molecules remain in one region, and this, combined with the equal density of
solvent molecules, results in a density in the region with solute, and thus more collisions

and a higher pressure. However, this model has limited explanatory power; some have
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noted that it does not account for the much stronger intermolecular interactions in liquids,
and that it supposes a diffusive mechanism whereas osmotic flow is too rapid for diffusion.
Alternatively, other models have proposed that the osmotic pressure may arise from
statistical-mechanical interactions; with the osmotic pressure being due to interactions
between molecules [19].

Another model proposes that in the case of solute molecules that are larger than the
solvent molecules, which will generally be the case with solutions of water and organic
molecules, interactions with the membrane will cause these larger solute molecules to be
further from the membrane, on average, than the solvent molecules. This is hypothesized
to create a negative pressure gradient in the direction perpendicular to the membrane,
since there are fewer molecules closer to the wall, which in turn produces a net flux of
solvent through the membrane [5|. Clearly, this mechanism might not apply to systems
where the solute and solvent are of more comparable size, or where the nature of the
interactions with the membrane is more complicated.

The term turgor pressure refers to the difference in osmotic pressure between the interior
and exterior of a walled cell. The yeast cell has a high turgor pressure, which serves as the
primary barrier to endocytosis. This turgor pressure is generated primarily by the presence
of the osmolyte glycerol. While in mammalian cells and other cells lacking a wall, endocytic
force generators primarily need to overcome the surface tension and bending rigidity of the

lipid bilayer membrane, turgor pressure forces in yeast pose a significantly higher barrier.

Although the turgor pressure in yeast cells is clearly high, the question of how to measure
its actual value is non-trivial. Some of the earliest methods of measuring turgor pressure
including looking at the collapse of gaseous vesicles in cells [60, 71|, or even examining the

bulk properties of multiple cells in solution [79].
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Later, osmotic shock experiments became the primary means of measuring yeast turgor
pressure. This involves placing the yeast cell in a hyperosmotic environement, i.e. one
enriched in glycerol. Water will then permeate into the intracellular fluid through
aquaporins or aquaglyceroporins. The change in volume of the cell is related to the turgor

pressure by the linear formula [90]:

IT—Tlp = e(AV/V)

Here Vj is the baseline volume and € is an elastic modulus. This method is widely used and
popular, but suffers from the problem of osmoregulation. Cells regulate the activity of their
membrane transporter molecules, and thus their permeability and cell volume, in response
to the external osmotic environment. Appreciable adaptation to osmotic shock in the yeast
S. cerevisiae, for instance, occurs on a timescale of at most minutes [97]. As such, osmotic

shock techniques may provide an overestimate of the true osmotic pressure [14].

A more accurate method of measuring the turgor pressure is atomic force microscopy
(AFM) indentation experiments. Unlike osmotic shock experiments, the cell may not be
able to adapt its turgor pressure to indentation, if done quickly enough. Given the wide
range of measured turgor pressures for osmotic shock experiments, between 0.05 MPa and
1 MPa, indentation experiments offer a potentially more accurate method of estimating
yeast turgor pressure. The turgor pressure can be approximated from the stiffness of the
cell and the radius of the indentation as approximately IT = £ [137]. One AFM
indentation experiment found a yeast turgor pressure of 0.21 4+ 0.05 MPa [45]. This method

has also been applied to other cells with high turgor pressure, such as plant cells [13].
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1.6 Solute Reaction-Diffusion Processes in Cells

A variety of processes are involved in the transport of molecules in yeast through
endocytosis, both active and passive. Diffusion of water and glycerol, however, is the most
important in generating the turgor pressure, the primary barrier to invagination and the
most prominent factor differentiating yeast endocytosis from mammalian. Further,
production, association and dissociation of molecular species also play a central role: for
instance, glycerol is produced inside the S. cerevisiae cytoplasm and actin monomers
polymerize in order to generate forces that drive endocytosis, processes which require the
modeling of a reaction-diffusion system. In the case of glycerol in yeast, synthesis occurs
proximally through dihydroxyacetone phosphate (DHAP) reduction, and ultimately

through the metabolism of environmental glucose, glycolysis [42, 101].

On the theoretical side, the simple case of the diffusion of a single molecule of diffusion

coefficient D can be described by the classic diffusion equation.

oC

— = DAC 1.12

ot (1.12)
When chemical reactions between molecules lead to changes in molar quantity, the

diffusion equation becomes instead a reaction diffusion equation. For a general system of N

molecular species with possible coordinate and time dependence, this is (vectors in bold):

%—? — DAC +Q(C,r,1) (1.13)
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The term Q(C,r,t) can have any dependence on molecular concentration, time, or spatial
coordinates, but most common reactions are polynomial in the concentration with no
explicit spatial or temporal dependence, of the form Q(C) = ). A;C™ for a collection of

tensors A,; and orders n;.

The special case of a zeroth-order spatially-dependent term, i.e. one of the form «(r),
indicates the presence of a source or sink of concentration. Typically this indicates that the
formation of the molecule is being treated implicitly, although it can also represent the

physical introduction or removal of a solute. In this case, the equation reduces to:

% = DAC + «(r) (1.14)

For instance, in the case of uniform glycerol production within a yeast cell, the term «(r)

would be constant for r < R..; and zero for r > R .

Since cells maintain a homeostatic environment, we will frequently be interested in an
steady-state version of the reaction diffusion equation, i.e. DAC + Q(C,r) =0. A
steady-state reaction-diffusion equation can be solved for various boundary conditions,
such as Dirichlet boundary conditions (specified concentration) or Neumann boundary
conditions (specified molecular current). A particular type of boundary condition of great
relevance to endocytosis, however, is the permeability boundary condition, of the form (for

a single molecular species):

oC
P —Cip) =D— 1.1
(Cout Cz ) on ( 5)
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Here g—g represents the normal derivative, and both it and the difference C,,; — C;, are
taken across a surface S, and P is the permeability. This corresponds to the idealization of
an infinitesimally thin permeable or semipermeable membrane, such as a lipid bilayer.
Constancy of the current also implies continuity of the normal derivative, i.e.

% out = %]m, assuming equal diffusion coefficients in the intracellular and extracellular
fluid. As the permeability approaches infinity, the concentration difference across the
membrane surface goes to zero. Similarly, in the case of zero permeability, this boundary
condition simply reduces to the Neumann boundary condition dC/dn = 0, corresponding
to no current across the membrane, such that the interior and exterior solutions are

decoupled.

The permeability boundary condition also corresponds to a discontinuity in pressure across
the boundary, which defines the turgor pressure, proportional to the difference between the

osmotic pressures of the external and internal environments.

1.7 Scope

This thesis deals with theoretical modeling and simulation of the forces and conditions
involved in clathrin-mediated endocytosis in yeast cells, specifically S. cerevisiae,
sometimes called brewer’s yeast or baker’s yeast. Previous research has focused primarily
on the contributions of curvature-generating molecules and force generation by actin
polymerization, but has made simplistic assumptions about the effects of turgor pressure
and cell wall forces, as well as those of curvature-generating proteins under such forces. We
seek to address the question of how CME can proceed under high-turgor conditions. Are
there any mechanisms that might plausibly reduce the high turgor pressure barrier to

endocytosis? What would they look like, and how would they affect the internal

26



environment of the cell? How do CGMs like clathrin behave under these high-turgor
conditions, and how do they affect the shape of the endocytic region? Can they overcome

the turgor pressure, alone or in conjunction with other molecules?

In the second chapter, we address the possibility of local permeability reduction serving as
a mechanism for the reduction of the turgor pressure barrier to endocytosis. We develop a
model of a yeast cell with a region of increased membrane permeability, roughly
corresponding in size to the ribosome-free actin-rich zone of an endocytic patch. We use
spherical Fourier series methods to model the spatial dependence of the equilibrium
concentration, and assess the plausibility of generating such permeability increases with
channels present in S. cerevisae, as well as evaluating the dependence of the permeability

reduction on potentially variable parameters such as endocytic patch size.

In the third chapter, we extend the permeability-reduction model of the first chapter using
a finite-element analysis technique. We are able to test the previous model against a
different method of evaluating the turgor pressure and equilibrium concentration. We also
examine the time-dependence and equilibration behavior of a system representing a cell
with one or more permeable regions, in addition to looking at the deformation and stresses
induced in this system. Since this method allows us to treat multiple permeable patches,
we investigate interaction effects between two or more patches, such as whether the average
concentration depends on the distribution of patches or how the permeability of one patch

is correlated with the concentration at another.

In the fourth chapter, we treat the behavior of model curvature-generating molecules under
high-turgor, stiff-wall conditions. We consider a minimal model of clathrin-like molecules
as rods with preferred top and bottom distances. We also model the behavior of the lipid

bilayer membrane and the cell wall under high-turgor conditions, especially insofar as they
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interact with the curvature-generating molecules, allowing us to evaluate the distribution of
forces generated by CGMs, as well as the extent to which they can overcome the turgor
pressure; this model also allows us to determine the profile of the CGM-membrane
complex. We assess the dependence of CGM-membrane profile height and force generation
on a variety of parameters of interest, such as the turgor pressure itself or the bending
rigidity of the CGMs. We also establish the possibility of a stable energetically preferred

patch size through a simple attractive energy model.

In the fifth chapter, we summarize the results discussed in the previous three chapters, as
well as discussing possible future work, including extensions to the models discussed in

Chapters 2-4.

28



Chapter 2

Local Turgor Pressure Reduction via

Channel Clustering

2.1 Introduction

Clathrin-mediated endocytosis (CME) contributes to numerous biological processes, such
as cell growth, viral invasion, and neural signaling [87|. It involves the inward bending of a
portion of the lipid bilayer, which subsequently pinches off to form a vesicle that moves
into the cytoplasm. CME has been studied extensively in yeast, due to the ease of genetic
manipulation and fluorescent labeling. In yeast, CME involves actin poymerization as well
as clathrin and BAR-domain proteins, which help drive invagination through a non-zero
preferred curvature. It is believed [22, 33, 41, 68] that growing actin filaments exert pushing
forces on the membrane, which drive the actin network into the cytoplasm. This motion of
the actin network exerts pulling forces to drive invagination, through a coupling via the

adapter protein Sla2. Recent theoretical work on CME in yeast has treated the mechanics
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of forces generated by actin polymerization, as well as the intrinsic curvature of the
clathrin coat that accumulates on the cell membrane [33, 63, 78, 147|. To date, however, it
is not known how actin and other curvature-generating proteins can produce enough force
to overcome the large turgor pressure in yeast [1, 12|. Here we explore the hypothesis that
increasing the membrane permeability at the endocytic site can locally reduce the turgor
pressure and thus facilitate endocytosis. The work discussed here has been published as
“Local Turgor Pressure Reduction via Channel Clustering,” by Jonah K. Scher-Zagier and

Anders E. Carlsson, (Biophysical Journal, 2016, vol. 111.12, pp. 2747-2756).

The turgor pressure II [12] pushes the plasma membrane against the cell wall and thus
helps the cell maintain its shape and rigidity. It is generated through the larger internal

concentration of glycerol, the main osmolyte in yeast, relative to the outside.

The magnitude of II is determined by the requirement that the chemical potential of the
solvent (water) be constant across the membrane. For a dilute solution, the solvent
chemical potential is u(P, T, C) = uo(P,T) — (C/Csowent ) kT [77]|, where P is pressure, T is
temperature, and C' and Cyyen are the solute and solvent concentrations respectively. The
chemical potential varies with pressure according to duo(P,T)/OP = 1/NaClsopent |77),
where N4 is Avogadro’s number and Cigpens 1S given in molar units. Thus the constancy of

w implies [54] that between any two points,

AP = NaksTAC. (2.1)

If the points are on opposite sides of the membrane, this implies that the turgor pressure is

Il = NokgTAC, (2.2)
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where AC' = C;,, — C,,+ is the concentration difference across the membrane.

and plant turgor pressures are comparable to these [13]. As our baseline value, we use the
value 0.6 MPa obtained by a systematic fit using thermodynamic modeling [113|. In the
scenario treated here, where a permeable patch leads to large concentration gradients inside
the cell, Eq. 2.1 implies corresponding internal gradients of the pressure. Thus pressure
does not equilibrate, even at long times, as long as the concentration gradient is maintained
by the continuing production of osmolyte inside the cell. The pressure gradient does not
cause macroscopic fluid flow, because there are additional forces on water molecules due to
the osmolyte concentration gradient. The situation is analogous to that of water in a
swimming pool. The pressure is greater at the bottom, but yet there is no macroscopic flow
because the water molecules at the bottom have lower gravitational potential energy. In
the present case, the gravitational potential energy variation is replaced by variation in the

free energy of water molecules resulting from the inhomogeneous osmolyte concentration.

Can established mechanisms, including curvature-generating proteins and actin
polymerization, provide enough force to overcome the turgor pressure barrier? The driving
forces from curvature-generating proteins and actin, along with opposing forces from
surface tension and turgor pressure, are encapsulated in the “Helfrich" membrane

deformation energy:
U= / [26(H — Ho)? 4 0 — factinz]dS + IV (2.3)
S

Here k is the bending modulus, II is the turgor pressure, dS is an element of membrane
area, V' is volume of the invagination, H is the mean curvature, H is the spontaneous
curvature, o is the surface tension, z is the inward displacement of the membrane, and f,in

is the pulling force density from actin. We estimate whether it is energetically favorable for
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a hemispherical invagination of radius of R; = 30 nm [75] to form in the presence of
accepted values of the turgor pressure. We take k = 285kgT [64], and I1=0.6 MPa in the
middle of the range of experimental values [31, 45, 90, 95, 113]. Then the stabilizing
contribution from the curvature-generating proteins is = —2wR?x/R? = —1800kgT (the
negative of the curvature energy of the flattened membrane), while the opposing
contribution from the turgor pressure is (27/3) R = 8250kpT, leaving

8250kgT — 1800kgT = 6450kgT to be supplied by actin pulling forces.

It is unlikely that actin polymerization can supply such a large energy. The above
calculation suggests that about 22% of the opposing force from turgor pressure is canceled
by the curvature-generating proteins, leaving a residual pressure of about 0.47 M Pa to
generated by actin polymerization. This corresponds to a total force of

0.47TM Pa x 7(30 nm)? = 1300 pN. This force must come from the polymerization of actin
filaments around the invagination [22, 33]. The number of growing actin filaments is
estimated to be 100-150 [140], so forces of about 10 pN per filament would be required.
But the stall force estimated for a 2 pM free actin concentration A [140] is only

fstan = (kgT/dIn (AJA.) ~ 5pN [56], using a critical concentration of 0.1uM [105] and a
polymerization step size 0 = 2.7nm. Thus actin polymerization cannot generate the 10 pN
per filament force required. The 10 pN estimate is sensitive to the number of growing
filaments; a filament number two to three times larger than the estimated value would
reduce the force per filament below the stall force. However, it is unlikely that the
growing-filament number exceeds our estimate. Ref. [120] estimated the upper bound of
the number of growing filaments to be 140, by subtracting the number of capping protein
molecules present from the number of Arp2/3 molecules, where the latter number was
assumed to correspond to the number of actin filaments. Ref. [17] estimated only 8

growing filaments on the basis of polymerization-dynamics experiments.
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Previous work has also suggested that known mechanisms of actin polymerization are too
weak to drive endocytosis. A finite-element calculation [22]| found that the actin
polymerization pressure was too small to overcome the turgor pressure, and that
overcoming a turgor pressure of just 0.1 MPa requires an actin network stiffer than any
that have been studied to date. Another calculation based on membrane elasticity theory
and an actin point force suggested that the required force is even larger than our estimate
[33]. Finally, calculations using somewhat different approaches [12] found it implausible
that actin polymerization can overcome the turgor pressure. We note, however, that the
insufficiency of actin polymerization forces cannot be taken as rigorously proved, because
there are substantial uncertainties in all of the quantities used to estimate the slowing of

polymerization.

Thus for endocytosis to proceed against current estimates of the turgor pressure, rather
extreme assumptions about actin polymerization forces and elastic properties would likely
have to hold. A local reduction of the turgor pressure, in the vicinity of the endocytic site,

provides a possible alternative to unphysically large actin polymerization forces.

2.2 Materials and Methods

To see how much the turgor pressure might be reduced by a physically reasonable
distribution of membrane channels, we solve two diffusion-based models of yeast
membranes with locally enhanced permeability. The assumption of a locally enhanced
permeability is supported by the observation of patches of the glycerol transporter Fpsl at
the cell membrane in budding yeast [134]. However, it is not known whether these patches

coincide with endocytic sites.
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2.2.1 Assumptions

Model 1 assumes a spherical cell with the membrane permeability increased in a narrow
circular patch (see Figure 2.1). Glycerol, the main osmolyte, is produced at a rate,
constant in both time and space within the cell. The turgor pressure is determined by a
balance between production and leakage. We assume azimuthal symmetry about the center
of the permeable patch, and define the angle € relative to this center. To optimize
numerical convergence, we assume a smoothly varying permeability profile of the form
P(0) = P, + B, exp[—6%/(A6)?]. For ease of comparison with our analytic Model 2 below,

we also fit this to a model with a discontinuous permeability, having the form:

P(6) = (2.4)

The coefficients F,; of the continuous permeability are chosen so that
P(0) = P, P(m) = P,. We then choose Af so as to optimize the fit to the discontinuous

permeability. For conceptual clarity, we present our results below in terms of 6y, P, and P;.

Model 2 assumes an infinite, impermeable plane, with two long-distance concentrations
Cin, Cout, and a perfectly permeable hole of radius a (we take Cpy = 0 in our results
presented below). These approximations allow for an analytic solution. Model 2 is a good
approximation to Model 1 in certain parameter ranges, since the size of the permeable

patch is small relative to the size of the cell, and the permeability in the middle of the
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Figure 2.1: Model 1 - spherical cell with permeable patch, and Model 2 - plane with hole

patch is much larger than that far from the patch. In relating Models 1 and 2, we find that

a good match is obtained by taking a = 1.30y R, where R is the cell radius.

In both models, the varying concentrations of glycerol cause a spatially varying hydrostatic
pressure because of the constraint of spatially constant chemical potential. The effects of
the pressure on the water and glycerol diffusion coefficients, and possible pressure gradient

terms in the glycerol current, are assumed small and are neglected.

2.2.2 Equations

In Model 1, the steady-state distribution of glycerol C(r) is governed by the

reaction-diffusion equations:

DV*C(r)+a = 0 (r<R) (2.5)

DV*C(r) = 0 (r>R) (2.6)
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where r is distance from the center of the cell, D is the diffusion coefficient, and « is the
rate of glycerol production. The boundary conditions, taking into account the definition of
the permeability as the ratio of current density to concentration discontinuity, are

(80

% )yer = —P(0)(1/D)AC,

(2.7)
lim, o C(r,0) =0

where AC' = lim._o [C(R — €,0) — C(R +¢,0)] is the concentration discontinuity.

Since Model 2 assumes asymptotic concentrations rather than a production rate, there is
no « term, and we have

DV?C(r) = 0. (2.8)

The boundary conditions are

¢

Clz=0%,p)=C(2=07,p) for p<a

(BC

E)Z:O:Oforp>a

(2.9)
lim, o C(z,p) = Cou

\

Here z is the coordinate perpendicular to the plane (at z = 0), and p is the radial

coordinate, measured from the z-axis going through the center of the hole.

2.2.3 Solution of Model 1

Model 1 has the general solution
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C(r,0) = 6Dr —i—ZCl r/R)'P(cosf) r<R (2.10)
aR3 > lOl I+1
C(r,0) = D 2751 (R/r) ™" P/(cost) r > R. (2.11)

Here we have expanded P(6) as P(0) = >",°, A/Fi(cos ), where Pj(cos ) is the Legendre
polynomial of order [ and 4; = [(21 + 1)/2] [ df cos(8) P(8) P,(cos 6); the relationship
between the coefficients of P, for > R and r < R results from the continuity of 0C'/0r at
R. Integrating the first of Eqs. 2.7 with Py(cos#) and employing the orthogonality

properties of the Legendre polynomials, we see that the C; in (2.10) and (2.11) satisfy

20+ 1 EC, 2 aR? 24, 2aR
(1/D) Iy _ 9.12
W/D)D_ D> T CilimeAn + 5557 = S5 251 T 3D 0% (2.12)

=0 m=0
where (in terms of the Wigner-3j symbol) [66]:

2

1 l k
J— / d(cos ) P(cos ) P,,(cos 0) P(cos ) = 2 " (2.13)
~1 0 0 O

The 3j-symbols are nonzero only when J =1+ m + k is even, and were calculated from the

identity

Lomo ko [(2g = 2D))(2g — 2m)!(2g — 2k)! g!

00 0 = 1)\/ (29 +1)! (9 —DNg —m)l(g — k)" (214)
where g = J/2.

To calculate the coefficients numerically, we approximate the infinite-dimensional system
with one of finite dimension by truncating the summation at L coefficients, resulting in an

L x L system (600 by 600, unless otherwise mentioned) to be solved for the coefficients C;.
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The A; were obtained as numerical integrals. We find that the solution to the truncated
system converges as L increases. As a measure of the convergence of the solution we used
the variation of the concentration difference across the membrane. The choice of L = 600 is
justified by Figure 2.2, which indicates that the solution converges for about L > 150 for
the baseline parameters; for the slowest converging cases the error is less than 1%. Thus we
see that the approximate solution of Equations 4 and 5 provides an accurate solution to the

problem.

2.2.4 Solution of Model 2

The solution to Model 2 uses the solution for the case Cj, = —C,y; given in Ref. [28]. We
summarize the method used to obtain the solution. The approach uses the correction to
the solution that would hold if no hole were present. The sign of the correction is opposite

on each side. We thus have

Cin—C(z,p) 2<0
C(r) = (2.15)

Cout + é(z,p) 2> 0,

where C/(z, p) is the correction for z > 0.

At z = 0, the boundary conditions (Eq. 2.9) require that C'(r) be continuous inside the

hole, while outside the hole % = 0. In terms of the correction, this becomes

C(0T, p) = (1/2)(Ciy, — Couy) for p < a, (%)220 =0 for p > a.
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Figure 2.2: Concentration difference at § = 0 vs L, using baseline parameters. L is the
numerical cutoff for Eq. 2.12, and the plot shows that the results are well converged already
when L > 150.
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Eq. 2.8 for C is solved in the Supplementary Material by an expansion in Bessel functions.

The result, for C\,; = 0, is

C’m—c—itan1< i) 2z <0
C(r) = 4 VEFA (2.16)
Con, > .
T o (\/H—A> i

where A = (1/a®)(p* + z* —a?) and ( = (A2 + %2)1/2

This model is expected to reproduce the spherical-model results in certain limits. In the
spherical model there is a finite discontinuity across the hole, while in the planar model,
the concentration is continuous. In the spherical model, there is some membrane current
outside the patch, whereas in the planar model there is none. Finally, the spherical model
has a curved geometry, while that in the planar model is flat. We thus expect the planar
model to approximate the spherical one well only if Pia/D is large, P,R/D is small, and
a/R is small. The second and third conditions hold for all our parameter sets, but the first

holds only at the upper end of the values of P; that we have treated.

2.3 Results

2.3.1 Model 1 - spherical cell

The parameter values are given in Table 2.1. We vary 6, and P, since their values are
poorly known. In choosing our range of values for 6y, we note that the radius of the
invagination is about 30 nm, corresponding to ¢ = 0.01, while the radius of the
ribosome-free zone around the invagination indicating the presence of F-actin is about 100
nm |75], corresponding to # = 0.033. The value of 6, is likely not much smaller than the

radius of the invagination region, because the turgor pressure needs to be reduced over the
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whole invagination region. However, portions of the permeable region outside the
invagination region can contribute to the turgor pressure reduction in the invagination
region. Thus we used a range of 8y values between 0.006 and 0.03. As a baseline value, we

use 6y = 0.02.

We base our range of values of P; on P,, the single-channel permeability of a channel
protein such as Fpsl in S. Cerevisiae, which can transport glycerol to the outside of the
cell. We are not aware of experimental estimates of the single-channel permeability of Fpsl
or other glyceroporins. The value of P, was thus determined as being in the middle of the
range of water permeability values quoted in Ref. [145], noting that glycerol permeability
values are similar to water permeability values [15]. To estimate P from P., we assume a

constant density of channels. The permeability is taken to be

P =(1-nA.)P,+n.P.~n.P, (2.17)

where n, = N./A, is the channel number density per unit area and A. is the area per
channel. The term with the minus sign is the total area taken up by the channels, and is
included to avoid double-counting of the permeability. The second relation holds
approximately because P; >> P,. Our range of P, values corresponds to values of the
center-to-center channel distance ranging down to 10 nm; the baseline value of 4 x 1072
cm/s corresponds to a spacing of 16 nm. Because the measured global permeability values
[70] include the effects of channels such as Fpsl, and P, corresponds to regions of the
membrane where channels are depleted by clustering into patches in other regions, we

choose our value of P, at the lower end of the values quoted in Ref. [70].
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Cell radius, R 3 um [126]

Patch angular radius, 6 0.02 radians (varied) [75]

Single-channel permeability, P. 1.0 x 107 Bcem3 /s [145]

Patch permeability, P; 4x107% ecm/s (varied) | From assumed spacing of 16 nm

Membrane permeability, P, 4x107% cm/s [70]
Glycerol diffusion coefficient, D 1.1x107°% cm?/s 10% of value in 23]

Turgor pressure, 11 0.6 MPa [113]
Glycerol production rate, « 30 mM/s (see section 2.7) Determined from II

Table 2.1: Parameter values for spherical-cell model. For parameters that are varied we give
baseline values used in most of the plots.

In choosing D, we assumed a cytoplasmic value ten times smaller than the water value
given in Ref. [23]. This value is somewhat uncertain, and we treat the effects of varying D
in the Discussion. The production rate o was obtained by imposing the constraint
kgTN4AC(m) = II. We note that because all concentrations in the model are proportional

to a, changes in « will not affect fractional reductions in turgor pressure.

Figure 2.3a shows the typical behavior of the concentration as a function of radius, going
from inside the cell, through the cell membrane r = 3 um, and continuing outside the cell.
Each of the curves shows a dropoff in C' approaching the membrane from the inside, with a
corresponding feature outside the membrane. This leads to a reduction in the discontiniuty
AC, which causes a corresponding reduction in the turgor pressure II according to Eq. 2.2.
As seen in the figure, the effect is smaller when the patch width 6 is reduced and larger
when P; is increased. Figure 2.3b shows AC' as function of angle relative to the patch
center. The maximum reduction in AC, 31%, occurs at the center § = 0 of the patch, but
the effect is also pronounced for 6 > 6y; at 8 = 0y the reduction is 22%. Thus significant

local reductions in turgor pressure occur for our baseline parameter values.
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Figure 2.4a shows the concentration difference reduction as a function of P, for a range of
values of 6y. All the curves have a similar shape, with the reduction becoming larger as 6

increases.

2.3.2 Scaling form for concentration difference reduction

The model has two small dimensionless parameters: P,R/D = 1.1 x 1073, and

a/R = 1.30y ~ 0.008 — 0.04. The smallness of these parameters suggests that the ratio of
AC at the center of the patch to AC at the other end of the cell, jc = |AC(0)/AC(7)|,
might depend only weakly on P, and R, provided that a is kept constant. As mentioned
above, there is no dependence on «, since increasing « by a certain factor changes both
AC(0) and AC(m) by the same factor. If P, and R have only weak effects on dc, then dc
will be determined almost entirely by Pj, a, and D. There is only one dimensionless

combination of these parameters that could enter dc, so a relation of the form

dc = f(Pia/D) (2.18)

should hold to high accuracy, where f is an unknown function. This relation makes two
predictions. i) That dc is independent of P». We have tested this prediction by increasing
and decreasing P, by a factor of two, and as expected found changes of only 0.5%. ii) If
P is the value of P; required to achieve a 50% reduction in AC, so that dc¢ = 0.5, then
P o 1/a. Our test of this prediction is given in Fig. 2.4b, which shows that the
relationship

PY% = 0.44D/a (2.19)

holds to an accuracy of 2%.
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Figure 2.3: a) Concentration vs. radius for various values of 6, and P;. Parameters are
baseline except for the following. Red line: 6 = 0.006. Black line: P, = 0.08 cm/s. b)
Concentration difference vs. angle for baseline parameters.

44



2.3.3 Model 2 - planar geometry

Figure 2.5a shows results for Model 2. It is seen that the concentration drops over a range
of values of z comparable to the hole width a. We compared these results to those for the
spherical model by identifying a with 1.30gR, z with » — R, C;,, with the concentration at
the center of the cell, and taking C,,; = 0; the prefactor in a optimized the agreement
between the models. We also used a large value of P;, to optimize agreement with the
planar case. The agreement is quite good, with the main difference being that the
discontinuity AC' vanishes in the planar model while it has a small nonzero value in the

spherical model.

2.3.4 Analytic theory of patch current and reduction in concentra-

tion difference

For the purposes of finding a simple formula for the reduction of AC(0) in Model 1, we
first develop an expression for the total current I through the patch. We calculate I in
Model 2 as a starting point. Inspection of Eq. 2.16 shows that if C'(7, p) is the solution for
a hole of radius a, then C(7/n, p/n) is the solution for a hole of radius na. In other words
the spatial scale of the solution is proportional to a. Since the current density in the hole is

1

proportional to DAC/dz x a~!, and the area of the hole is proportional to a?, it follows

that I o< a. Inserting the additional proportionality to C;, and D, we obtain

I =vDaCy, (2.20)

where v = 1.98 is obtained numerically from the solution given in Eq. 2.16.
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We next calculate the current I through the permeable patch in Model 1 in two limiting
cases. We assume that the permeability has the constant value P; over a disk of radius a,
and the value P, outside that disk, and use AC(7) as a measure of the bulk concentration
discontinuity. In the limit of low permeability Pia/D << 1, AC should be constant over
the interior surface of the cell, because diffusion will eliminate concentration gradients.
Then [ = Pyra*AC(rw). In the high-permeability limit Pia/D >> 1, the planar model is
applicable, and we use Eq. 2.20. We identify C;, in Eq. 2.20 with AC(7), since the
concentration outside the cell at § = 7 is very small, so that C' ~ AC'". Thus

I = vDaAC(m).

To construct a formula for intermediate values of Pya/D, we view osmolytes flowing
through the patch as experiencing two resistances in series, corresponding to diffusion to
the patch and subsequent permeation of the patch. Each process is defined by a resistance
AC(m)/I. The resistance to diffusion is the total resistance for very large P, which from
the discussion above is 1/vDa. Similarly the resistance to permeation is obtained by taking
Pya/D very small, and equals 1/P ma®. Adding the resistances, we obtain

AC(m)/I =1/vDa+ 1/Piwa?, or

vP,Dra?

I = A0 S hra

(2.21)

Finally, I is related to AC, the average of AC over the permeable patch. By the definition

of the permeability, I = ma>P,AC. Putting this into Eq. 2.21, we have

AC 1
AC(m) 1+ =he

(2.22)
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As seen in Figure 2.5b, this formula gives an excellent description of the simulation results,
provided that we use a fitted value of v = 2.9. It emphasizes the role of the key

dimensionless parameter Pya/D.
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Figure 2.4: a) Concentration difference at § = 0, relative to bulk membrane value, vs.
permeability. Curves (top to bottom) have 6y ranging from 0.006 to 0.03, with spacing

0.003. b) Value of P; required to reduce AC(0)/C(m) by 50%, as function of patch radius
a. Solid line denotes fit of form Psgy = 0.44D/a.
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spherical model, plot is radial and » = R + 2. b) Reduction in average concentration over
permeable patch as function of P;. Dots are numerical results and line is analytic theory
from Eq. 2.22, using a = 1.30gR and a fitted value v = 2.9.
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2.4 Discussion

2.4.1 Extent of turgor pressure reduction in yeast

To evaluate the potential relevance of local turgor pressure reduction to endocytosis in
yeast, we estimate a plausible value of P;. Superresolution imaging of aquaporin clusters in
brain cells [123] found an area of 36 nm? per aquaporin, corresponding to a
center-to-center spacing of 6 nm. Because endocytic protein patches contain a number of
other membrane proteins, we use a conservative estimate of a 10 nm center-to-center
spacing, corresponding to a channel density n, of 10'2 em~2. Taking the single-channel
permeability to be 1.0 x 107 3¢m ™3 (Table 2.1), we find P, = 0.1cm/s. Above in Fig. 2.4b,
we found that for this value of P;, a 50% reduction in the turgor pressure will occur as long
as the patch radius is 45 nm or greater. Thus patches only slightly larger than the
invagination size can reduce the turgor pressure significantly. A patch of 45 nm would
contain about 60 channels. This number is comparable to the counts of the coat proteins
known to be important for endocytosis in budding yeast. For example, the maximum count
of the linker protein Sla2 is about 50 [104]. In addition, this channel cluster size is similar

in magnitude to the 35-channel aquaporin clusters previously observed [123].

Eq. 2.22 shows that the turgor pressure reduction is enhanced if D is smaller than the
value given in Table 2.1. It will also be enhanced if diffusion in the cell wall outside the
membrane is slower than in the cytoplasm. Since treating a cell wall with finite thickness
would be significantly more complicated than the calculations we have done, we instead
have considered a model in which the diffusion coefficient is reduced uniformly outside the

membrane. This corresponds to changing the boundary conditions in Eqs. 2.7. We find

50



that if the outside value of the diffusion coefficient is reduced by 50%, Psgy is reduced by
55%.

For the turgor pressure reduction to facilitate endocytosis, it must persist when the
membrane is bent inward, up to the point where a tubule forms and late-arriving
curvature-generating proteins assist the process. We see no mathematically practical way
of performing the calculations for an inward-bent membrane. However, we note that
diffusion currents in general are much more sensitive to the maximum size of their target
than to its shape. For example, the diffusion current to a perfectly absorbing cylindrically
symmetric ellipsoid of semimajor axis a and semiminor axis b,with a >> b, differs from the
current to a perfect absorbing sphere of radius a by only a logarithmic factor of
(1/1n(2a/b)) [16]; the current to a disk of radius a differs from that to a sphere of radius a
by only a factor of (2/7) [28]|. Therefore the current I from the inside of the cell through
the permeable patch should depend mainly on the maximum dimension of the patch rather
than its deformation. Further, I = N,P,AC where N, is the number of channels, P. is the
single-channel permeability, and AC is the average concentration difference across the
membrane over the area of the patch. If N, and P. are constant, then AC will also be
relatively independent of patch deformation. Thus the turgor pressure reduction will

persist even when the membrane is bent inwards, until it forms a tubule.

The presence of permeable patches can also cause a substantial decrease in the bulk turgor
pressure if « is unaffected by the patches. Using the maximum estimate of P; = 0.1cm/s,
together with the corresponding patch radius of 45 nm, we find a global turgor pressure
reduction of 52%. This does not affect our key results because we focus on the ratio of the
turgor pressure at the permeable patch to that in other parts of the cell. Because the
permeable patch is small, the measured turgor pressure corresponds to the calculated value

away from the patch. The effect on the bulk turgor pressure will be reduced if P, is larger
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than is assumed in Table 2.1, because a lower fraction of the total osmolyte current will
flow through the patch. It will also be reduced if D is smaller, because this reduces the

required values of P, and a, according to Eq. 2.19.

2.4.2 Relation to experiments

We are not aware of experiments currently in the literature that can test the hypothesis of
local turgor pressure reduction in yeast. However, the efficiency of invagination is greatly
reduced in deletion mutants of the channel Fpsl [1], an effect that could increase turgor
pressure either locally or globally. Fpsl localizes in membrane patches [134]. To establish
the extent of channel clustering at endocytic sites, one could use two-color fluorescence
imaging to measure colocalization of Fpsl and with endocytosis markers such as the early
scaffold protein Edel or the polymerized-actin proxy Abpl. Colocalization of channel
patches with endocytic proteins would indicate that the turgor pressure is locally reduced
around the endocytic site. Appearance of the channels before Edel would suggest that the
channels have a function in marking the endocytic site. On the other hand, appearance of
the channels after Abpl could mean that polymerized actin is important for recruiting the
channels. Such a possibility is suggested by the documented effects of polymerized actin on
channel dynamics in other types of cells [49, 86, 148]. If the channel patches do colocalize
with endocytic sites, superresolution measurements of the distribution of channels could

provide a concrete test of our hypothesis.

Previous experiments have demonstrated that the effect described here, variations of
osmotic pressure difference across the membrane caused by variations in channel density,
does function on larger spatial scales. For example segregation of aquaporins and Na™/H™
channels to the leading edge of cancer cells led to osmolyte concentration gradients over the

length of the cell, which in turn created internal pressure gradients that drove migration
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through artificial channels [130]. Here we predict that gradients of osmolytes over much
smaller distances, caused by higher densities of channels, will lead to osmotic pressure

variations over these smaller distances.

2.4.3 Application to plant cells

The high turgor pressure in plants also poses conceptual difficulties in rationalizing the
mechanobiology of endocytosis, and some early papers actually doubted the existence of
the process for this reason |51, 100]. Endocytosis in plants has some parallels to the process
in yeast, in particular its polymerized-actin dependence [10, 11]. The difficulties of
overcoming high turgor pressure in plants by an actin-dependent process might thus be

eased by a local turgor pressure reduction mechanism like that we discuss here for yeast.

2.4.4 Alternative mechanisms

There are several other possible mechanisms that might deal with the difficulty of
generating sufficient force via actin polymerization and curvature-generating proteins. A
calculation based on the total number of type-I myosins in fission yeast [12]|, assuming that
each one can generate 2 pN of force, suggested that they could overcome the turgor
pressure, but only over a smaller region of radius 10 nm. The geometric arrangement of
myosins that would supply forces with the correct orientation and distribution is also not
known. One possibility is that the myosins turn actin filaments into "superpolymerizers"
by i) binding the filaments to the membrane and ii) moving to the growing tip of the actin
filament after each polymerization event and keeping it far enough from the membrane
that new subunits can be added freely [133|. In this hypothesis, myosins act somewhat like
formins, which drive processive elongation of actin filaments while bound to the membrane.

An alternate possibility is one analogous to tubulation of giant unilamellar vesicles driven
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by type-1 myosin [144], where the driving force for tubulation came from myosin motion
along a preexisting actin scaffold. We are not aware of measurements of the
force-generating capability of yeast type-1 myosins, but mammalian type-1 myosins are
able to generate up to 5 pN of force per molecule [48]. Tt is also possible that there are
growing actin filaments that were not detected in the previous filament counts based on
Arp2/3 complex mediated branching [120, 140]. These could, for example, be generated by

domains on the actin nucleator Las17 that act independently of the Arp2/3 complex [136].

It has also been suggested that polymerization of actin filaments along the membrane could
generate much larger forces in a wedge-like geometry [34]. The transmission of such forces
to the membrane would require a vary stiff actin gel [22]. There is no proof that a gel with
such properties exists, but the high crosslinking fraction in endocytic actin patches could

make them much stiffer than other forms of polymerized actin.

Another possibility is that curvature-generating proteins (CGPs) could be providing a very
large fraction, say 90% of the force overcoming turgor pressure. However, if this were the
case, one would expect that the large heterogeneity between cells, and between endocytic
events in the same cell, would often lead to the CGPs exerting sufficient force to drive the
process by themselves, in the absence of actin polymerization. Correlative
electron-microscopy and light-microscopy experiments [75] have shown that this is not the

case: substantial membrane deformation seldom or never occurs without polymerized actin.

Finally, the global turgor pressure could be overestimated. The turgor pressure is typically
measured indirectly [113], by exposing the cell to increasing solute concentrations and
measuring the volume change. The turgor pressure is proportional to the minimal external
solute concentration increase that causes the cell wall to collapse, on the assumption that

the membrane collapses at zero turgor pressure. These methods could overestimate the
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turgor pressure because cells react to increasing external solute concentration by increasing
the internal solute concentration, thus requiring higher external concentrations for collapse
[134]. Osmoregulation could also confound mechanically based turgor pressure
measurements [95], if internal osmolytes are upregulated in response to force opposing cell
growth. Direct methods using an indentor that penetrates the cell wall are impractical in
yeast because of the small system size. But experiments in plant cells [13] have shown good
consistency between indirect and direct methods. Therefore, for the global turgor pressure
in yeast to be strongly overestimated, osmoregulation mechanisms in yeast would have to

be more efficient than in plants.
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2.7 Erratum

The default value of the glycerol production rate used in the figures, except for Figure 2.5a,
is not 30 mM/s, but rather 18.6 mM /s. This corresponds to the production rate that
makes the concentration on the side of the cell opposite the permeable patch
approximately equal to 242 mM, corresponding to 0.6 MPa. The value given in Table 2.1,
30 mM/s, is several times too large. The value of alpha for Figure 2.5a corresponds to a
concentration of 88 mM, or about 0.2 MPa, on the side of the cell opposite the patch. This
value is likely more accurate, since it corresponds to the turgor pressure determined

through indentation experiments on S. Cerevisiae.
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Local Turgor Pressure Reduction

by Channel Clustering
Supplementary Material

Solution of planar model

Since there are no sources in this model, the concentration is described by Laplace’s

equation, V2C(z, p) = 0. From the cylindrical symmetry of the problem about the z-axis,

the general form of the correction to the concentration may be written as

[e.o]

Cleap) = [ db AW (0p)

0

(2.23)

Here Jy(kp) is the zeroth-order Bessel function of the first kind. The integral form of the

boundary conditions is

o0

1
/dk; A(k)Jo(kp) = E(COUt —Cyp) for p<a
0

[e.e]

/dk: kA(k)Jo(kp) =0 for p>a

0

We make the substitutions p = az,t = ka, A(k) = a'%22=%=) f(¢) We then have

™

(e 9]

/dtf(t)Jo(xt) = e <

0

o0

/dttf(t)Jo(:Bt) =0 for x> 1
0

o7

(2.24)

(2.25)

(2.26)

(2.27)



The solution to this equation is outlined in [85]. We write:

0o 1
1d
/dttf(t)]o(xt) = ds%7

0

(2.28)

where is a function to be determined. This only holds for 0 < x < 1, else the left-hand side
is zero by Eq. 2.27. Inverting the Hankel transform, integrating by parts, and recalling
that Jo(0) =1 and Jj = —J;, we have

1 1 p 1 s(s) )
f() O/dl’ Jo l’t JI;@/ m J dz J()(th) ds————— _1'2

/ds¢() /d:v— (xt)] dsm J dsw / / \S/t% s) =

—/dsz/;(s)—i—/ds sw() ACORNTP

\/7
0 0
From the relation [47]
/dq: J12( )2 2sin?(st/2) 1—cos(st), (2.30)
s§4— st st
0
we have
1
£#) = — / ds 1(s) cos(ts). (2.31)
0
Then (2.30) becomes
= — iy s Jo(xt)(s s) = — I sﬂ
/2 = O/dto/d Jo(xt)ib(s) cos(ts) = O/d Nt (2.32)
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where we have used the relation [47]

oo

/dt Jo(xt)cos(st) =

0

x21_ - (x> s); (2.33)

for x < s the integral vanishes. The solution to Eq. 2.32 is ¢(s) = —1, or f(t) = 2L . We

t

then have A(k) = (CO“;—_C’”)%, and the correction is

cW = / dk we—kizuo(kp) = sin!

0

2a

VE +(p+a)? + k4 (p—a)?

. (2.34)

where the second equality is obtained from Ref. [47|. Algebraic manipulations show that

this is tan~! (, /CJ%\ ), justifying Eq. 15.
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Chapter 3

Time-Dependent Analysis of
Permeability-Increase Mechanism for

Endocytosis

3.1 Introduction

As discussed above, endocytosis is a process by which cells incorporate material from the
external environment, or from the cell’s own lipid membrane, into the extracellular fluid. It
serves a variety of purposes, including incorporating food molecules, modulating the
properties of the membrane to facilitate signal transduction, and providing a pathway that
can be exploited by pathogens to enter the cell, such as allowing viruses access for the
purposes of replication [87|. This process involves an assembly of dozens of specialized
proteins, notably actin, which generates forces through polymerization of monomers;

clathrin and other curvature-generating proteins, which stabilize and promote the curved
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shape of the endocytic vesicle; molecules that promote attachment to the plasma

membrane; and a variety of signaling molecules [67, 106].

The primary obstacle to endocytosis in yeast is the turgor pressure, the difference in
osmotic pressure between the extracellular fluid and the external environment.
Measurements of turgor pressure in yeast are difficult because of the presence of the stiff
cell wall [124] and because of the capability of yeast cells to osmoregulate, adjusting their
internal glycerol levels in response to external osmotic stimuli [6, 112]. However, AFM

indentation experiments have estimated a turgor pressure of 0.2 MPa [45].

In the previous chapter, we considered the possibility of local turgor pressure reduction by
a single endocytic patch in a steady-state situation [114]. In real cells, endocytosis is a
dynamic mechanism that takes place over various timescales, depending on the type of
endocytosis: for instance, certain forms of CME in neurons take anywhere from less than
one second to 50 seconds [128|, whereas the whole process CME in yeast can occur in
40-120 seconds [80], although the membrane deformation may occur faster, on the scale of
15-30 seconds [75]. In addition, a single endocytic zone constitutes a small fraction of the
total cell area; as such, there is usually more than one endocytic event occurring at any
given time in a single cell. Some estimates of endocytic event frequency in yeast protoplasts
are around 2 events per minute, depending on factors such as the concentration of glucose
in the environment [25]. Endocytic frequency also depends heavily on the cellular
membrane composition [32]. Thus, if regions of reduced turgor pressure are associated with

endocytic patches, there could be several permeable patches present simultaneously.

The primary osmolyte in yeast is glycerol, which generates turgor pressure through

chemical potential differences across the cell membrane. The glycerol concentration profile
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is determined by the diffusion of glycerol through the intracellular and extracellular fluid,
which corresponds to a multilayer diffusion problem, where the intracellular and
extracellular fluid constitute separate layers, and the cell membrane can be modeled as
either an additional, thinner layer or as an interface condition between the other two
layers. Multilayer diffusion, including the analogous case of heat diffusion, has been
extensively studied, particularly from a theoretical perspective. For instance, for a
one-dimensional system of an arbitrary number of layers, the critical time has been found
to depend not only on the diffusion coefficients of the layers, but also on their spatial
ordering [55]. Non-Euclidean geometries have been studied as well, usually with some type
of simplification, such as assuming spherical symmetry or limiting the treatment to certain

types of boundary conditions [24, 39].

3.2 General Equations

We model the diffusion of glycerol in a spherical cell with a spatially and temporally
constant production rate, as well as the surrounding fluid. The cell is permeable to
glycerol, and has one or more regions of increased permeability. This corresponds to

solving the equation

DV?C(r,t) + a(r) = % (3.1)

subject to the permeability boundary condition

oC(r,0,¢,t)

P(Q, ¢)(CDUt(R7 97 ¢7 t) - Cm(R7 97 ¢7 t)) = or >
r=R

(3.2)
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continuity of the normal derivative at » = R, and other appropriate boundary conditions

depending on the specifics of the system, such as finiteness at the origin.

Our primary model uses the finite element software FEBio [83] to model the behavior of
glycerol diffusion in a spherical model yeast cell with a rigid cell wall. This package can
model the time dependence and steady-state behavior of the solute concentration of a
multiphasic system consisting of one of more diffusing solutes, corresponding to the
previous equations, as well as the deformation of the system. We modified the the software
with a custom-written plugin that imposes a spatially varying, angularly dependent
permeability on the surface of the cell. This permeability is chosen to match the functional
form previously used in the semi-analytic steady-state model of a permeable cell with a

single permeable patch. That is, it is of the form:

P(0,9) = a+ bexp[—dr?(0, ¢)], (3.3)

where ¢ is related to the angular size of the patch, and is determined by the best fit to a
discontinuous permeable patch of the same angular size 6y; (6, ¢) is the great-circle
distance between the point on the surface of the sphere defined by (6,r) and the center of
the permeable patch, (6y, ¢g). The parameters a and b are chosen such that the
permeability at the center of the patch has the increased value P;, whereas the
permeability opposite the patch has the baseline membrane value P,. The cell is treated by
a three-component model, consisting of an interior component that represents the
intracellular fluid, a component of finite thickness that represents the membrane-cell wall
complex, with the diffusivity and hydraulic permeability of the cell wall, and an exterior
component, roughly ten times larger than the interior, that represents the extracellular

fluid. Glycerol production occurs at a constant rate « in the interior of the cell, chosen to
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correspond to the production rate that produces a turgor pressure of 0.2 MPa for a cell
with a spatially homogeneous permeability. We generally use zero-concentration and
zero-pressure conditions on the surface of the extracellular fluid domain, far from the

glycerol-producing intracellular region.

We also compare this to our previous model [114], which used a semi-analytic solution
through Fourier-Legendre polynomials of the equilibrium diffusion equation with an
isotropic source term inside the cell to determine the steady-state behavior of a cell with a
single permeable patch. We further extend this model to treat a case with an arbitrary
varying permeability dependent on the angle 6, in particular the case of two permeable
patches at opposite sides of the cell. Finally, we extend the previous semi-analytic model to

treat the case of a time-dependent concentration.

3.3 Simulation results

One purpose of the finite element model is to provide a test of the validity of our previous
semi-analytic model, which predicted the steady-state distribution of glycerol in a cell with
a single permeable region as a function of radius and angle. Although we cannot accurately
analyze patch sizes as small as those treated in our previous work, around 0.02 radians or
60 nm in radius, we can test the validity of this model and the previous by comparing the
finite-element simulation for somewhat larger patch sizes, around 0.2 radians or 600 nm in
radius, and correspondingly smaller permeabilities, about 1/10 the physical value shown in
the table. The finite-element model for a single patch of angular radius 0.2 radians, the
default permeability, and an initial intracellular and extracellular concentration of zero
(Figure 3.1) gives a maximum steady-state concentration C,,,, of 7 mM, attained at 0 = 7,

opposite the permeable patch, whereas the semi-analytic model gives 7.12 mM, a difference
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Parameter Default Value

Diffusion coefficient, D 1.1x107" m?/s
Glycerol production rate, « 10 mM/s

Patch permeability, Py 4 x 1072 cm/s

Cell permeability, P, 4 x107% cm/s
Cell wall rigidity, £ 127 MPa

Membrane thickness, & 10 nm
Membrane-wall hydraulic permeability, Pyyqr | 2.17x107 um*/(N - s)

Glycerol molar mass, m 92 grams,/mol
Glycerol density, mgy, 1.26 g/cm?
Cell radius, R 3 microns

Table 3.1: Parameter values for time-dependent spherical cell model. The hydraulic perme-
ability, the wall rigidity, the glycerol density, and the glycerol molar mass apply only to the
finite-element model.

Figure 3.1: Steady-state concentration profile of cell with a single patch of angular radius
0.2 radians and default permeability at ¢ = 31.18 s.
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of about 2%. However, for a permeability 90% smaller, the semi-analytic model predicts a
maximum concentration of 24.3 mM, whereas the finite-element model gives 26.6 mM,

nearly a 10% difference.

In our previous work, we treated the case of a single permeable patch, in contrast to the
more realistic situation in which multiple endocytic patches are present. The finite element
analysis treats a system with an arbitrary permeability distribution on the surface of the
cell. Further, the semi-analytic model with an azimuthally symmetric permeability is
readily extended to a situation with two patches at opposite sides of the cell (i.e. at

0 =0, 7). Figure 3.2 shows the angular dependence of the concentration just inside the cell
as predicted by the semi-analytic theory for a cell with two permeable patches of angular
radius 0.2 rad and permeability 0.1F;, and the same dependence predicted by the
finite-element model. The semi-analytic model has some noise, which is due to the error in
the Fourier-Legendre series approximation. If we compare this with the results of the FEM
model for the same parameters (Figure 3.3), we see that the FEM concentration profile
differs by approximately 10%, suggesting some inaccuracy, but that the general shape of

the profile of concentration versus angle is similar.

Figure 3.4 shows the angular dependence of the concentration difference in the
semi-analytic model for the more physical case corresponding to the default permeability
and angular size. We see that the larger patch sizes significantly reduce the bulk
concentration. As in the case of a single patch, the dimensionless parameter Pya/D
determines the value of concentration ratios like 6C = C'(0,0)/C(R, ), the ratio of the
concentration near a patch to the concentration far from the patch; however, the
dependence AC(0)/AC(w) = f(Pya/D) clearly does not hold, since the concentration
difference near both patches is of course identical in the case of two patches. Moreover, the

value of 6C does not seem to depend on the number of patches, assuming sufficiently small
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Figure 3.2: Steady-state concentration vs. angle of cell with two patches of size 0.2 radians
and permeability 0.1P; (semi-analytic model)

patch sizes. That is, 0C' is the same between, for instance, a cell with a single patch with
default parameter values and one with two patches with the same parameter values, in
spite of the fact that the center concentration C(0,0) varies substantially with patch
number. Further, the average concentration does not depend strongly on the distribution
of patches: for instance, displacing the ¢-center of a patch /4 radians does not produce an

appreciable alteration.

As mentioned above, our finite-element model also allows us to characterize how rapidly
the concentration difference will be reduced after the appearance of a permeable patch,
relative to the time scale of the endocytosis. For a single patch of angular radius 0.2
radians and permeability 4 x 1073 cm/s, equal to 0.1 times the default value, the

concentration at the center of the cell takes about ten seconds to equilibrate from its initial
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Figure 3.3: Steady-state concentration Cs(#, R) in the FEM model vs. angle for a cell with
two patches of size 0.2 radians and permeability 0.1 P;
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Figure 3.4: a) Steady-state concentration vs. angle of cell with two patches of default size
and permeability (semi-analytic model). b) Concentration vs. angle near one of the patches
for same parameter values (semi-analytic model).
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Figure 3.5: Concentration at r = 0,¢ = 0 (orange) and best-fit curve of the form a + be™*

(blue) versus time for a cell with a patch of permeability 0.1P; and angular size 0.2 radians
(FE model)

concentration of 80 mM, corresponding to a 0.2 MPa pressure difference across the
membrane, to its final steady-state concentration of 27 mM. The concentration at the
center of the cell shows the same time dependence: at ¢t = 10 s, it is only 5% higher than
its final steady-state value (Figure 3.5). The semi-analytic solution of the reaction-diffusion
equation for this case, described in Section 3.6, predicts that the concentration over time at

any given point will be of the form

Ct) =Y e(N)e™ (3.4)

For the case of a single cell with maximum patch permeability 0.1P;, 0y = 0.2 radians, the

interior concentration is well-described by a single eigenvalue, i.e. the time dependence is of
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Figure 3.6: Concentration at r = 3.65 (black) and best-fit curves of the forms a + be=*

(orange) and a + bye~ ! — bye 2! (green) versus time for a cell with a patch of permeability
0.1P; and angular size 0.2 radians (FE model)
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Figure 3.7: Concentration at 7 = 3.65 nm (black) and best-fit curves of the forms a + be™*

(orange) and a + bye~ ! — bye 2! (green) versus time for a cell with a patch of permeability
0.1P; and angular size 0.2 radians; zoom view (FE model)
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the form C(0,t) = a + be™* | as shown in Figure 3.5. This form holds for general points
within the cell, i.e. for r < R, with a time dependence described by a single eigenvalue,

A = 0.35/s. However, this description breaks down for short times at certain points outside
the cell; since the external environment is relatively far from its steady-state concentration,
the concentration outside the cell undergoes an initial increase for ¢ < 0.1 due to
permeation of solute from within the cell, whereas after this time diffusion dominates over
permeation and the concentration decreases exponentially with the same time dependence
as the internal concentration. In this case the concentration is well-described by two
eigenvalues, i.e. C(t) = a+ bje ™ — bye 2! (Figures 3.6, 3.7) The initial increase
corresponds to the second, larger eigenvalue Ay whereas the long-time behavior is described

by A1, which is approximately the same as the interior time eigenvalue.

3.4 Conclusions

We developed a finite element model that allows for several extensions of our previous
analysis of the glycerol concentration and turgor pressure distribution in a permeable cell
with a single permeable patch and internal glycerol production, extending it to consider a
more arbitrary angular distribution of patches, including multiple patches, as well as
considering the equilibration behavior of the system. These changes render it closer to the
situation in actual yeast cells. We further developed an analytic framework for an arbitrary
angularly-dependent permeability (Section 3.5) and for the time-dependence of the

concentration (Section 3.6).

We found that certain properties of the system are not strongly dependent on patch
number; for instance, the presence of multiple patches does not change §C, the ratio of the

concentration near a patch to the concentration far from a patch, which also retains its
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dependence on Pya/D. We further compared the semi-analytic theory and a new
finite-element model and found good agreement, providing support for the consistency of

both models.

We examined the time-dependent behavior of the system for a single permeable patch,
finding that equilibration times are around 10 seconds after the permeability of the patch is
increased, corresponding, for instance, to channel activation. This time is smaller than the
timescale of endocytosis, suggesting that increasing local permeability, and the
concomitant local turgor pressure reduction, could provide a viable mechanism to facilitate
endocytosis. We also were able to describe the time evolution in terms of exponential decay
with a small number of eigenvalues A, although the analytic theory allows for a continuous
spectrum. We thus found that the concentration outside the cell has both a
permeation-dominated and diffusion dominated timescale; during the first approximately
0.1 seconds, permeation of glycerol produced within the cell dominates, whereas for longer

times the removal of glycerol through diffusion is more important.

3.5 Semi-analytic theory of steady-state concentration

with general angularly-dependent permeability

We can extend our model of the steady-state concentration profile of a spherical cell with a
permeable patch to the case of an arbitrary permeability profile P(6, ¢) on the surface of
the cell, where @ is the polar angle and ¢ is the azimuthal angle. In this case, the system

satisfies the equations:
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DV2C + a(r) =0

ac _oc
or lr=R_ — Or lr=R+

D], = P(0,6)(Cout(r.6,8) — Cin(r.6,6))

44 77

Here

and «(r) is a constant « for r < R and zero otherwise.

OC’!’

The particular solution to this equation inside the cell is —¢5.

general solution as:

out - z Z a lr_H_lYl (0 ¢>

Omf—l

Cin = +Z Z b Y;3,(0, ¢)
=0m=-I

where Y| are the spherical harmonics.

The first boundary condition gives:

00 l 00 1
Y aml+1)RTTYL(6,¢) = —g‘—ﬁ )0 by (60, 9)

=0 m=-1 =0 m=—

l+1 aR3
m, A0 = —— R~ Dy, 3D

We expand the permeability as a sum of spherical harmonics, i.e. P(60,¢) =

Z Z dpir'Y! (6, ¢). Then the permeability boundary condition gives us:
=0m=-1

5

We can then write the

(3.5)

and “out” denote the interior and exterior solutions at » = R, defined limit-wise,

(3.6)



O‘—R2+DZ > W )b RYY (0, 6) =
2 L+ 1 T T

lh=0mi=—-0l
) [es) l
Lb lg lylg d Yl
S + 2 mglg m2 mlT
lo=0mo=-I2 =0 m=-1

Multiplying by a third spherical harmonic Yg%(e, ¢) and using orthogonality of the

spherical harmonics, this becomes:

m ad m R mimom
VTR + l;%DS —dlsngISZ 1o ZZhbzlml iyt R I

l1m1 lams

where

pramama _ / / d8 dgsin0Y5 (6, )2 (6, 6)Y5 (0, &)

which can be written in terms of Clebsch-Gordon coeflicients as:

\/(2l1+1)(2l2+1)(2l3+1)(ll ly l3>( Lol s )
am 00 0

my Mo Mg

Although the previous solution satisfies the equation and boundary conditions, its

complexity prevents its numerical evaluation for physically realistic patch sizes. In

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

particular, while the coefficients of the azimuthally symmetric solution, I;,;,;, , depend on
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three indices that vary from 1 to a number N determined by the size of the patch, the

[mlmgmg

Lints 5 of which three vary from

coefficients of this general solution depend on six, that is
—2N to 2N. For the N needed to obtain acceptable precision for the single-angle case

(N > 100), this would require calculating over 10'? coefficients. However, by exploiting the
symmetry of the system and the properties of the Clebsch-Gordon coefficients, this
computational load could be lowered significantly: approximately 99.9% of the coefficients

are zero, and the others satisfy various symmetries such as invariance under interchange of

columns, evident from the definition of the integral.

3.6 Semi-analytic theory of azimuthally symmetric time-

dependent concentration profile

Our previously published model deals with a steady-state situation, where the glycerol
production within the cell is balanced by its outflux. As in section 3.3, we extend this
model to incorporate time dependence of the concentration, in this case by using a similar
semi-analytic approach to that employed for the steady-state profile. We consider a
spherical cell with a spatially varying, azimuthally symmetric permeability P(#). The

interior and exterior concentration satisfy the system:

DV2Cm +oa= 9c

ot
Dv2cout - %_?
ICout | __ 0Cin
or r=R_ — Or r=R+ (3 14)

D% . = P(0.6)(Cou(R.0,t) — Cin(R, 6,1))
Ci”(ﬁ 07 O) = gzn<r)
Cout(r,0,0) = Gour (1)
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We use the established approach of writing the solution as the sum of a particular solution
of the inhomogeneous equation and a solution of the homogeneous equation that gives the
correct boundary conditions. We write each concentration as the sum of a steady-state
term that depends only on the spatial coordinates and a transient term:

C’in(ra 97 t) = Sin(ra 9) + ‘/in(ra 67 t): C’out (717 67 t) = Sout (Ta 6) + ‘/out<r7 97 t)

Since the boundary conditions must be valid at all times, the steady-state terms satisfy:

DV2Sm +a=0
DVQSout - 0

asout I aSzn

or |r:R_ T or (315)

r=R+

D% . = P(0,6)(Sou(R,0) = Sin(R,0))

The solution to this is simply the concentration given by the model from our previous
paper:

3Dr

Sout = 2B 4 > > dirPy(cos(0))

L= (3.16)

Sn =55+ H%R”“dlrlPl(cos(H))
1=0

The transient terms satisfy:
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DVQV;R _ oC

Bt
DVQ‘/out = %
Wous| iy
or Ilr=R_ or |lr=R+
D%| = P(0,)(Vou(R.0,t) — Vin(R,0,1)) (3.17)

Cin(r,0,0) = gin(r) — Sin(r,0)
Cout(ra ‘97 0) = gout(r) - Sout (T7 Q)
V:)ut(Rmax7 9) = O

The interior and exterior transient equations are identical. We seek a solution to this

equation of the form C(r,t) = ¥(r)7'(¢). This gives, by separation of variables:

or

(1/)DV = (1/T) - =

-\ (3.18)
where \ is a positive, real separation constant to ensure boundedness at infinite time.

The solution of the temporal component is T(t) = ce~*. The spatial portion becomes

or

VU = (1/T)E =—(\/D)¥ (3.19)

which we recognize as the Helmholtz equation, whose azimuthally symmetric solutions are

\I/l(T’, 9) = (aljl(\/ )\/DT’) + blyl(\/ )\/DT))B(COS ‘9) (320)

The functions j;,y; are the spherical Bessel functions of the first and second kinds
respectively and the P, are the Legendre polynomials. Separating the eigenfunctions into

interior and exterior components, and noting that the interior solution cannot contain ,,
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due to the latter being non-finite at » = 0, we have:

Uit = a;(N)ji(n/A/ Dr)P,(cos )

(3.21)
Uouts = biji(\/ A/ Dr) + eyi(\/A/Dr))P,(cos 0)
where we have arbitrarily chosen the coefficient of the interior ¥ to be 1.
Applying the derivative continuity condition, we have
ar(N) (VA Dr) = binjn (VA Dr) + ey (v/ A/ Drr) (3.22)

which gives us b;(A) = a;(A) — @i(N)er(N) for ¢;(N) = yj(\/A/DR)/j;(\/A/DR). The
permeability condition mixes together different values of [, and thus cannot be imposed on

the individual eigenfunctions W;,; but rather applies to the sum ) W;. That is, at r = R,
I

Z in,d — out l Z \Ilzn l (323)

1
We expand the permeability as P(6) = > fiPx(cosf), giving us
k
ZZPk (cos @) P(cos8) fret(N) [yi(n/ A/ DR)—piji(\/A\/DR)] = Zal V DMj(\/A\/DR)P,(cos0)
I
(3.24)

Multiplying by P, (cos ), substituting in Equations 3.21 and 3.22, and using orthogonality

of the Legendre polynomials, this becomes

2n—|—

MVDXG,(VADR) =3 > (N Tuan faer(A) (3.25)
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1
where Iy, = [ dxPy(z)P(z)P,(x) and
“1

n(A) = u(VA/DR) = wuji(vVA/DR) (3.26)

This is a set of equations that defines a;()) in terms of ex(\) for all A, &, 1.

We can then write the general solution as

‘/out = f dAX Z ‘Pout,l(r>6_>\t
l (3.27)
Vi = [dAX Y Wi y(r)e™
l

Note that any prefactor ¢(\) in these solutions can be incorporated into the coefficients

a;(A) etc.

The initial conditions are:

V(1 0, 0) = / DAY W) = gin(r) — Sn(r,0), (3.28)
l

and similarly for V,,;. We can write the conditions for Vj,, V,,; in a single line as:

V(r,0,0) = / DAY Wi(r,0) = g(r) — S(r,6), (3.29)

where for instance W,(r,0) = W;,,;(r,8) for r < R and W, ,(r, 0) for r > R and similarly for

the other functions. If we choose the interior and exterior initial conditions to be exactly
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equal to the angular component of the steady-state concentration S(r, ), this becomes:

/ AN Wy(r,0) = h(r) (3.30)

for a function h(r) equal to the radial term in the initial conditions. Using orthogonality of

Py.(cos()), this becomes:
2

T | PAT(r) = h(r) (3.31)

for all k, where W, is the radial component of the eigenfunction and h(r) is the

appropriate initial data, or:

¥, - aji(x/A/Dr) r <R (3.52)

[ (X) = @l(N)es(M)]5(v/ A/ Dr) + e (v/A/ Dr) r>R

When combined with Equation 3.25 this determines a;(\).

82



Chapter 4

Force Generation by Curvature-Inducing

Molecules in Cells with Turgor

4.1 Introduction

The previous chapters have treated the origins of the forces opposing the central process of
clathrin-mediated endocytosis [87]. This process involves the invagination of a portion of
the cell membrane, driven by curvature-generating proteins (CGMs) and in many cases the
the polymerization of actin. Under some conditions, the dimple eventually lengthens and
pinches off into a free vesicle which moves into the cell. CME has been observed in many
biological systems, from animal cells to yeast cells [80] and plant cells [26], in processes
varying from viral transport [102] to mammalian nervous activity [62, 92]. Forces opposing
endocytosis include the bending rigidity of the membrane, surface tension, and (in some

types of cells) turgor pressure.
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CGMs play a key role in CME, as well as in various other processes in a wide variety of
cells, such as cell-cell fusion and curvature sensing |74, 109]. Among those with a role in
CME, the most studied is clathrin, which has been shown to sense and influence membrane
curvature, and likely plays a critical role in generating curvature and even forces [57|.
However, other curvature-generating proteins can also affect endocytosis [65]. For example,
BAR-domain proteins, which induce an asymmetric curvature [119, 131], have been shown
to colocalize with clathrin-coated pits [117]. They can also affect endocytosis in a variety of
ways, for example by stabilizing or destabilizing the invagination, potentially leading to
pinch-off in later stages [138]. Epsin contributes to CME [30, 91] , possibly by inducing a
high degree of curvature in conjunction with clathrin [98|. Curvature may also be induced
by other factors, such as the presence of curved lipids asymmetrically distributed between
the two leaflets of the lipid bilayer [58], or hydrophobic insertion [132|. In addition, protein
crowding, in which a curved membrane favors greater numbers of attached proteins than a

flat membrane, may be important [127].

CME in yeast presents additional challenges not present in, for example, mammalian cells,
due to the presence of a high turgor pressure and a stiff cell wall. The primary barrier to
yeast endocytosis is the turgor pressure [1|, which may attain values as high as 0.6 MPa in
budding yeast [113] and 1 MPa in fission yeast [12]. We use 0.2 MPa as a baseline value,
since this value was determined from very rapid indentor experiments, rather than from
slower osmotic shock experiments, which may trigger osmoregulation that confounds the
experiment [45]. This turgor pressure is continuously generated by osmolytes, primarily
glycerol [99], and is balanced by the high yield strength of the cell wall. If the applied
pressure on the cell wall exceeds its stiffness; it will rupture [124]. In order to withstand
the turgor pressure, the yeast cell wall is stiffened by agents such as chitin and (-glucan |3,

143] .
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Previous simulations of actin growth suggest that actin can generate a maximum useful
force of up to 360 pN [22], which can effectively cancel out a substantial portion of the
turgor pressure. When spread over a region corresponding to our default CGM radius of 36
nm and area of 3300 nm? for a hexagonal patch with amputated corners, this corresponds
to a pressure of approximately 0.11 MPa directed out of the cell, reducing the pressure that

must be overcome by the CGMs from 0.2 MPa to 0.09 MPa.

Some previous estimates have found that CGMs lack the ability to overcome turgor
pressure on the scale of that in yeast [33]. As an first estimate of the CGMs’
force-generating capability, we consider a flat patch of area A, composed of CGMs of

intrinsic curvature Cy with bending rigidity k; it will preferentially form a spherical cap

_A

2R Since there is no stretching

corresponding to a sphere of radius Ry = 1/Cj and height

and thus the surface area remains constant. The energy of this system is:

U:%/dA[(C—CO)QJra} +/dVH (4.1)

Thus the bending energy difference between the flat and curved states is 2k ACE, the turgor

pressure energy difference is zero since the area stays constant, and the turgor pressure

. . 2
energy difference is IV, yrveq :%E—%(?)Rg —

A

5-7- ), Which leads to an estimate of the
mRo

maximum turgor pressure that can be overcome by CGMs as

247K
A(3Cy T — A)

2

Hmax =

In particular, for our hemispherical clathrin patch of radius A = 3273 nm, intrinsic

curvature Cy = 0.02/nm, and bending rigidity 300k,T,[64] this is roughly equal to the
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turgor pressure, 0.2 MPa. Thus, it would appear that the CGMs could almost overcome
the turgor pressure by themselves. In addition, II,,,, is enhanced by x and Cj, but reduced

by increasing A.

Several previous theoretical works have looked at the effects of CGMs on membrane
bending [29, 33, 43, 50, 108, 111, 138]. Much of this has dealt with the specific case of
clathrin. These models have often found that clathrin by itself can produce an invagination
[43]. Other models of clathrin bending have utilized a wide variety of mechanisms,
including equilibrium, dynamic, and stochastic approaches [2, 61]. There also exist models
incorporating the effects of epsin [18], BAR domain proteins, and other curvature
generators. These works have characterized various features of CME, such as the balance
between surface tension and curvature generation, and the presence of instabilities in

invagination shape.

However, such models have often neglected the influence of the high turgor pressure present
in yeast. Some models have either modeled only turgor pressure and not the cell wall force,
and thus simply restricted the position of the membrane to be above the cell wall [33]. In
other cases, they have approximated the turgor pressure energy with a simplified quadratic
form, or modeled the cell wall as infinitely hard [89]. This does not take into account the
nearly discontinuous effects caused by presence of the cell wall, and can also be a major
source of inaccuracy, since the cell wall stiffness is much higher than the turgor pressure
(approximately 80-250 times the magnitude). In this paper, we address this issue with an
energy function that shows a smooth, but nonetheless rapid force transition as the
membrane presses into the wall. This allows us to correctly treat the approximately linear
form of the turgor pressure energy as a function of displacement, while simultaneously

considering a cell wall interaction that is essentially a contact force.
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Many previous models have used functional minimization of the continuous Helfrich energy
[52], applied to CGMs, to calculate membrane shapes. While this has the benefit of

computational speed and ease of understanding, and occasionally admits analytic solutions,
it obscures effects from the physical discreteness of CGM molecules. For example, bending
moments in continuum models correspond to pairs of forces in discrete models, which could

have measurable effects in a biological system.

We seek to understand the strength and distribution of forces generated by CGMs and
their dependence on key interaction parameters. To this end, we develop a discrete model
of interacting CGM molecules subject to a high turgor pressure and bounded by a stiff cell
wall. The CGMs also interact with an idealized lipid bilayer membrane, which is modeled
according to Helfrich membrane theory. We use energy minimization algorithms to find the
equilibrium state of the CGM system. We also look at a simple continuous model of a
CGM-covered membrane in a potential with quadratic and linear components,
corresponding to the cell wall force when in contact and to turgor pressure respectively.
The resulting discrete-model shapes agree well with continuous models of the shape for low
turgor pressure, but diverge more for high turgor pressure. We observe several
discontinuous transitions in the force and CGM height as a function of key physical
parameters, corresponding to the CGM patch overcoming turgor pressure and lifting off
from the cell wall. We find that the CGMs alone are sufficient to overcome about half of
the turgor pressure, and are sufficient to overcome the full turgor pressure once the actin
contribution is considered. Additionally, the force distribution predicted by the model is
compared to previous continuous estimates of the force distribution, showing moments at
the edges rather than a spread-out force for large enough areas. Finally, we note that the
presence of a preferred molecular number can follow from an appropriate attractive

interaction.
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4.2 Materials and Methods

4.2.1 Discrete model

In developing a discrete model, one is faced with a choice of molecule shapes. CGMs and
other curvature-inducing molecules vary widely in shape, from the triskelial shape of
clathrin [73] to the more linear shape of BAR domain proteins, or the rod-like shape of
curvature-inducing lipids. These shape differences induce some protein-specific effects on
CGM assembly and curvature induction, as for example the interactions between different
portions of clathrin legs. For maximum generality, we do not treat these in our model,
considering instead a simple shape that leads to curvature, rod-like CGMs with different
preferred top and bottom spacings. This simplification leads to some limitations, since it
does not consider any of the specific shape or chemistry-influenced interactions of actual

proteins, but we argue below that our results are generally applicable.

We calculate the equilibrium shape of a collection of rod-shaped CGMs whose centers are
arranged in a hexagonal lattice in a system with a high turgor pressure and a stiff cell wall,
as shown in Figure 4.1. The molecules interact through their tops, bottoms, and centers.
The membrane is assumed to follow the motion of the bases of the CGMs whereas the cell
wall reacts to the CGM forces transmitted through the membrane according to elastic

theory.

We assume that the CGM energy is of the form:

U = Uccu + Un + Uy + Uy, + U, (4.3)
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Figure 4.1: Schematic of model, showing membrane with attached CGMs and the cell wall.
The turgor pressure is II, and the strength of the interaction with the cell wall is k,. The
top and bottom preferred distances are a + € and a respectively, with an interaction spring
constant k.
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Here Ugcgys is the energy due to curvature-generating proteins, Uy is the energy due to the
turgor pressure, U, is the energy due to the interaction with the cell wall, U, is the energy
of the lipid membrane beyond the CGM region (including cell wall interactions) and U, is a
number-dependent attractive term.

The interaction energy due to the curvature generating proteins is
_ 1 2 2 1 2
Ucayn = 5 Z Ky {[dij,top — (a4 €)]" + [dijpottom — @] } + §kc(dij,cen - €)% (4.4)
(i)

Here d;j cen is the displacement vector between the centers of molecules ¢ and j (and
similarly for d;; o, and d;jpee. The preferred distances of the tops and bottoms of the
molecules are a + € and a respectively. Thus the first two terms in the CGM energy are
responsible for the intrinsic curvature of the membrane-CGM complex. In addition, e;; is
the average of the orientation vectors of the two interacting molecules. Thus this last term
is a shear energy, which prevents the centers of the molecules from slipping relative to each
other. The strength of the bending energy is given by k;, and the strength of the

anti-slipping interaction is given by k..

We assume a constant turgor pressure force, leading to a linear term in the energy, of the

form

ITA
Un = Z Wzi,bot (4-5)

%

Here A is the projected area in the z-y plane (the local plane of the membrane and the cell
wall) and N is the number of molecules. We consider CGM profiles that are close to flat,
such that the pressure acts vertically and each molecule can be assumed to have equal

molecular area.
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The elastic interaction between the CGMs and the cell wall has two terms, both derived
from linear elastic theory (see Section 4.7): direct interaction of a molecule with the
membrane, and the force experienced by one molecule due to the interaction of the

membrane with neighboring molecules.

1 1
U = 5 (ko + 6k1) Z{ZZbot[l — H(zip0)]}* — Sk ; ZipotZjbot (1 — H (2ipot)) (1 — H(2jpot))
7 3
(4.6)

Here ky and kq are defined in terms of the cell wall thickness ¢ and the CGM lattice
parameters by equation 4.13, and H(z) is the unit step function. The H(z) factors restrict

the elastic terms to z > 0.

The attractive number-dependent energy, describing binding between neighboring CGMs,

has the form:

Us=—Y ke, (4.7)
(i)

where k, is an unknown constant. Since this term does not have any coordinate or angle
dependence, it only influences the number dependence of the energy, and not the

minimum-energy structure for a given number.

Finally, we model the lipids outside the CGM layer according to the Helfrich membrane
theory (Section 4.8). In the region with CGMs (7 < Rcgar), where Rogay is the maximum
radius of the hexagonal CGM array before corner regularization, the membrane is
considered bound to the CGMs and is not treated explicitly. Outside this region, it is
subject to a surface tension o, a bending rigidity sy, and a wall potential k,,, as well as the

turgor pressure II. Since CGMs are absent on the bare portion of the membrane, the
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membrane height z(r) obeys equation 4.19 for zero intrinsic curvature, and thus has a

solution given by 4.21.

The height and slope must be continuous at the interface between the CGM network and
the membrane, and the membrane profile must decay to zero at infinity. Thus equations
4.21, 4.22 become z(r) = asKy(c17) + ayKo(cor), where ag, ay may be complex, and satisfy
azKo(c1R) + asKo(c2Rean) = zoam(Reaum ), asKi(c1Roou) + asK(c2Rean) =

2oam (Reaa ), where the second equation is the derivative continuity condition.

Here 2z (Rogar) is the average CGM orientation, given by

2oam(Ream) = — Y. tan(¢) cos(d — 6,), where the global radial angle is given by

6, = arctan(y/x), tb:l?ril(gythe quadrant into consideration. Here z,y are the coordinates
describing the position of the center of a CGM in the plane defined by the cell wall, and

0, ¢ are respectively the azimuthal and polar angles describing the orientation of the

rod-shaped CGM molecule.

From the membrane profile, we obtain the membrane energy resulting from its interaction

with the CGMs:

U, - / dS[2KC? + o + %W 11 (4.8)
S

Here the height profile z(r) is determined by the boundary conditions given by z(Rcgar)
and z'(Rcgar), and the integration is taken from Reogys to an appropriately distant cutoff

radius (10,000 nm).

The total energy is numerically minimized for various choices of parameters and numbers

of molecules through descent algorithms (conjugate gradient and trust-NCG methods).
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Our baseline number of molecules is 121, with a height of 10 nm and a preferred bottom
spacing of 6 nm and top spacing of 7.5 nm, and with the total area of the molecules, 3300

nm?, roughly corresponding to measured sizes of clathrin patches.

4.2.2 Continuous model of CGMs

For the purpose of comparison, we also examine a simple continuous model of

CGM-membrane bending in the presence of a wall and turgor force. This corresponds to
equation 4.19 for the case of non-zero intrinsic curvature. The model treats the region of
the membrane covered by CGMs. It is thus subject to the following boundary conditions,

derived from the general boundary conditions in Section 4.8:

2'(0) =0
Z//I(O) — 0 (4 9)
L2(R) + 2"(R) = C '

(L +€*R)2(R) — R2"(R) — 2"(R) =0

This allows for a second estimate of the effect of the inclusion of the membrane on the
CGM height and force profile. This model, however, does not take into account the effect

of the CGM-free membrane region.

4.3 Results

The default parameter values are given in Table 4.1. We analyze the CGM behavior for a
variety of parameters; however, our default values correspond to those typical of yeast
endocytosis. For instance, the cell wall stiffness comes from direct measurements of yeast

cell walls, the turgor pressure comes from values determined by AFM indentation
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Parameter Default value
Patch dimension, D 6
Molecule height, { 10 nm
Area, A 3300 nm?
Bending rigidity, & 300 kpT [64]
Cell wall stiffness, G 50.8 MPa [124]
Cell wall potential coefficient, k,, 0.00127 J/nm?*
Poisson ratio, v 0.25
Attractive interaction, k, 0 kgT
Bending coefficient k; 2.3x1073 kg/s?
Anti-slipping interaction, k. 2.3x1073 kg/s*
Preferred top spacing, d; 7.5 nm
Preferred bottom spacing, d» 6 nm
Difference between spacings, € 1.5 nm
Intrinsic curvature, Cj 0.02 per nm [64]
Turgor pressure, 11 0.2 MPa or 0.09 MPa (actin force incorporated)
Membrane stiffness, x,, 30 kpT [64]
Membrane preferred position, zg -0.15 nm
Membrane surface tension, o 0.0005 N/m

Table 4.1: Parameter values for the discrete and continuous CGM models. For parameters
that are varied we give the default values.

experiments, and the CGM bending rigidity comes from measurements of clathrin-coated
vesicles, as does the intrinsic curvature. Some values are more uncertain, however: for
instance, the value of the membrane surface tension is unknown. We have chosen the patch
size to roughly match the measured size of endocytic invaginations, and the molecular
length to be close to the thickness of the clathrin coat. The intermolecular interaction
coefficient k, was determined by equating the calculated energy of a flat patch with the
known formula %anA, and the difference between the preferred top and bottom distances,
€, was chosen so that the tops of two molecules located and oriented at their preferred
distances would intersect at a length, equal to Cy' | thus ensuring that an array of such

molecules would have an average radius approximately equal to the radius of curvature.
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At the physically realistic turgor pressure of 0.20 MPa, the CGM-membrane complex is
mostly flat, with the center pressed into the cell wall (z = —0.0367), while the maximum
height (attained near the edges) is z = 0.144 (Figure 4.2a). The profile for the

corresponding k,, in the continuous model is much higher (Figure 4.2b).

The presence of the part of the lipid bilayer membrane outside of the CGM shell, as
modeled by the Helfrich energy contribution, has a substantial effect on these profiles, and
thus on the depth of the indentation that the CGMs can generate. At the reference turgor
pressure of 0.2 MPa, the inclusion of the membrane energy produces a 20% reduction in
the maximum height of the CGM bottoms, 2,,.., relative to the membrane-free system,
and a 16% reduction in the vertical extent of the CGMS, 24z — Zmin; further, at zero
turgor, the membrane causes an 12% reduction in z,,, and a 23% reduction in the vertical
extent. The CGM forces for high turgor pressure are mainly distributed at the edges, in
the form of bending moments. This corresponds to the results predicted by the continuous
model, which predict only bending moments (and no forces) for a flat, intrinsically curved

membrane.

By contrast, for low turgor pressure (Figures 4.3), the shape is determined primarily by the
intrinsic curvature of the CGMs. For a radius of curvature of 50 nm, the maximum
displacement of the center of the CGM patch is about 10.5 nm (Figures 4.3b, 4.3a), which

it attains in the limit of zero turgor pressure.

At low turgor pressure, the majority of the CGMs are not in contact with the cell wall, and
so the force distribution is essentially flat, balancing the turgor pressure (Figure 4.4a), with
opposing forces at the edge where the molecules press into the wall. As the turgor pressure

increases, the center of the CGMs buckles, causing a dip to appear in the CGM profile and
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the force profile (Figure 4.4b). Eventually, at very high turgor pressure (greater than 0.2
MPa or so), this dip spreads out laterally, such that only the edges of the CGMs are
substantially above the cell wall (Figure 4.2a), with the forces (Figures 4.5a, 4.5b)

effectively being concentrated at the edges in the form of bending moments.

This is reasonably similar to the form of the CGM forces predicted by previous models. For
example, Tweten et al. derived forms for the force resulting from several continuous CGM
profiles [135]. One of their force profiles had the form

%Hosech2 [v(r = 79)] (s tanh[y(r — r¢)] — 1) , shown in Figure 4.5a for several values of .
The profiles in Figures 4.4, 4.5 suggest that CGMs can produce a substantial force density,
comparable to the turgor pressure. The maximum turgor pressure that can be overcome by
a given CGM force density, II,,,., is defined as the pressure at which the center of the
CGM patch shows appreciable (5%) liftoff relative to its maximum (zero-pressure) height.
An energetics calculation based on comparing the bending energy and the turgor pressure
energy for a flat configuration and one at the preferred curvature Cy, respectively
(Equation 4.2), predicts that at default parameter values I1,,,, = 0.2 MPa. This equation
is based on a membrane-free calculation, so it may not predict the correct prefactors. It
also predicts a linear dependence on bending rigidity «, and an area dependence of the
form [4(3Cy" — 4£2)]7!, or proportional to 1/A for small ACZ. Figures 4.6, 4.7 show that
it overestimates Il,,,, by about a factor of 2. However, the general form of the area
dependence of the simulations is approximately I1,,..(x) o< 1/A for larger areas (Figure

4.6), and I1,,,4, (k) is fairly linear over a wide range of bending rigidities (Figure 4.7).

The discrete CGM model also allows us to ascertain the parameter dependence of the
central force and total pulling force for CGM patches of various parameter values, as well

as their profiles.
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Figure 4.2: a) Clathrin network profile for k, = 0.002296 kg/s, G = 50.8 MPa, II = 0.2
MPa (high turgor pressure case). b) Continuous membrane profile for x = 300kgT, Kk, =
0.00127 J/nm*, T = 0.2 MPa (high turgor pressure case).
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Figure 4.3: a) Discrete model network profile for k, = 0.002296 kg/s, G = 50 MPa, Il =

0.00002 MPa (low turgor pressure case). b) Continuous profile for k = 300kgT, kK, =
0.00127 J/nm*, IT = 0 MPa (low turgor pressure case).
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Figure 4.4: CGM force density vs. radius for II = 0.02 MPa. b) CGM force density profile
vs. radius for Il = 0.12 MPa.
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Figure 4.5: a) Continuous CGM force density profiles (purple, v = 0.13; green,y = 0.167)
and discrete profile (red) vs. radius at 0.2 MPa. b) Discrete CGM force density profile vs.

radius at 0.4 MPa.
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Figure 4.6: Maximum turgor pressure CGMs can overcome vs. area. The blue curve is the
maximum turgor pressure II,,,, from the simulations, the orange curve is the best fit of the
form a/A, and the green curve is the unfitted prediction (Equation 4.2).
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Figure 4.7: Maximum turgor pressure CGMs can overcome vs. . The black dots are the
actual maximum turgor pressure Il,,.., the orange curve is the best fit of the form bk, and
the green curve is the unfitted prediction (Equation 4.2).
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The area dependence of the CGM center force for the default parameters exhibits a
transition between A = 1400 nm? and 2200 nm? (Figure 4.8a). This corresponds to the
area becoming sufficiently large that the bending forces are not strong enough to overcome
the turgor pressure and detach the CGM patch center from the cell wall; at smaller areas,
the center is not in contact with the wall (z > 0), and the force density at the center is
approximately equal to the turgor pressure. The total pulling force increases sublinearly
with area.

Figure 4.8b shows the dependence of the center and maximum displacement on A. For
physically realistic areas (A > 1400 nm?) and the corresponding number of molecules

(N > 55), the center of the patch does not detach from the cell wall for physical values of
the bending rigidity and turgor pressure. Indeed, save for near small areas, the maximum
and center height of the CGM patch decrease with increasing area, implying that the
overall profile is flattening. This suggests that smaller CGM patches would successfully

detach the membrane under pressures that might prevent larger patches from lifting off.

Figure 4.9 shows the dependence of CGM forces and displacements on preferred curvature.
The force on the center of the CGM patch starts small but increases slowly with preferred
curvature, up to a point. Around 0.04/nm curvature (for the other parameters default), the
patch undergoes a transition, with the center detaching from the membrane (Figure 4.9a),
which causes the load at the center of the CGM patch to approach its turgor-pressure-only
value of 0.2 MPa, with the center force correspondingly approaching —PA/N. This
suggests that the presence of CGMs alone might be sufficient to lift the center of an
endocytic region off the cell wall, contrary to what might be expected from the presence of
moments only at the edges in continuum theory. However, this occurs at a curvature of
0.043 per nm, significantly greater than our default value, which corresponds to the

curvature of a clathrin-coated vesicle (0.02 nm). In addition, at a sufficiently high
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Figure 4.8: a) CGM force at CGM patch center (dashed) and total pulling force (solid) for
varying area, with spacing constant. b) Center height (dashed) and maximum height (solid)
for varying area, with spacing constant.
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Figure 4.9: a) CGM force on center (dashed) and total pulling force (solid) vs. curvature.
b) Height at center of patch (dashed) and maximum height (solid) vs. curvature
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(unphysical) value of the intrinsic curvature, the molecules will be almost antiparallel, and
the displacement will approach a maximum value. The total pulling force again increases

sublinearly with curvature. A transition is also seen in the displacements (frame b)

As the bending rigidity x increases, the CGM force on the center undergoes a rapid
transition. At a certain critical value of k, approximately 600 kg7, the CGM-membrane
patch lifts off the cell wall altogether (Figures 4.10b, 4.10a), indicated by the center force
approaching a constant value of, corresponding to the force density per area approaching
0.2 MPa, equal to the magnitude of the turgor pressure (Figure 4.10a). The total pulling
force also approaches a constant value of around 500 pN for high &, indicating a maximum
pulling force that can be generated at a given pressure regardless of stiffness, as well as
suggesting that approximately 76% of the CGM molecules, or 92, are not in contact with
the cell wall and thus generating the pulling forces. It is worth noting that the functional
form of z.., as a function of increasing x (Figure 4.10b) does not have the same shape as
its behavior with respect to the curvatu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>