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ABSTRACT OF THE DISSERTATION
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Endocytosis is a process by which cells bring external materials into the intracellular envi-

ronment and perform other essential biological functions. The main drivers of endocytosis

include clathrin and actin, which help shape the membrane and form the endocytic invagina-

tion. In mammalian cells and other cells lacking a wall, the primary barriers to endocytosis

are the bending rigidity of the cell membrane and surface tension. However, in cells with

a rigid cell wall, such as those of yeast, this process is opposed by a substantial pressure

within the cell, known as the turgor pressure, which is generated by a difference in the con-

centration of osmolytes such as glycerol across the membrane. In order to understand yeast

endocytosis, it is necessary to understand how force and curvature generators behave under

conditions of high turgor pressure, as well as other possible mechanisms cells may employ to

reduce or overcome the turgor pressure barrier.

In this thesis, we model the generation of these high turgor pressures through osmolyte

diffusion and accumulation, as well as examining the production of forces by curvature-

generating molecules (CGMs) under high turgor pressure. We first investigate the possibility

of reducing the turgor pressure barrier to endocytosis by modeling the steady-state reduction

of the glycerol concentration, and thus the turgor pressure, in a cell with a single region of

increased permeability, corresponding to a cell with a single endocytic zone. We then extend

xi



this model to cells with multiple endocytic zones, as well as to the time dependence of

the glycerol concentration. We also model the behavior of idealized curvature-generating

molecules under high-turgor pressure conditions in the presence of a stiff cell wall. We find

that small numbers of channels can produce up to a 50% reduction in the turgor pressure.

We also find that model CGMs analogous to clathrin can produce forces nearly sufficient to

overcome the turgor pressure.
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Chapter 1

Introduction

1.1 Endocytosis in Yeast

Endocytosis is a process through which cells bring in external material via deformation of

the membrane. First, an indentation, known as an invagination, forms on the surface of

the cell (Figure 1.1). The size of the invagination varies depending on the type of cell and

endocytic process: In human cells, it has an initial radius of approximately 100 nm, which

decreases to around 50 nm by the neck formation stage (Figure 1.2), while the invagination

depth increases to around 70 nm [7], while by contrast in yeast cells the size of the endocytic

invagination is under 50 nm [75]. The invagination then lengthens (the previously mentioned

neck formation or elongation stage), and finally pinches off into a spherical lipid vesicle (the

scission stage). The entire process, from the initial accumulation of proteins on the membrane

to scission and vesicle formation takes place on a timescale of around 40-130 seconds [80].

Yeast, particularly the baking yeast Saccharomyces cerevisiae, is an ideal model system for

understanding endocytosis due to the relative simplicity of its genome, about 12 million
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Figure 1.1: Electron tomography images of an endocytic patch at various points in its
development, from initial invagination (A) to the beginning (D, E) and completion (F) of
scission. Scale bar 50 nm [20].
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(a)

Figure 1.2: Size of endocytic indentations in nanometers in human cells. Frame C shows the
constancy of surface area and Frames D and E show the change in the radius of curvature
as endocytosis progresses [7].
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base pairs relative to humans’ 3.2 billion, and of its structure, since unlike plant or animal

cells, it does not form complex differentiated multicellular structures [44, 84] . In yeast

cells, the primary form of endocytosis is clathrin-mediated endocytosis (CME), a form of

endocytosis that involves the assembly of cage of clathrin triskelia on the interior surface of

the cell, which help promote the formation of the invagination by their intrinsic curvature.

Clathrin recruitment precedes membrane deformation, although the precise time of

bending after clathrin recruitment begins is variable [116].

This process serves a variety of physiological functions. It can incorporate bound

receptor-ligand complexes into the cell, allowing the ligands to be brought into the

cytoplasm and the receptors to be reincorporated into the membrane. CME can change the

surface properties of the membrane, allowing for modulation of signal transduction, and

also serves to recycle synaptic vesicles. Due to this versatility, however, it is also exploited

by pathogens such as viruses and bacteria to gain access to cells [87].

Endocytosis involves a wide array of proteins (Figure 1.3). The formation of the

invagination is preceded by the accumulation of coat proteins, including clathrin, Sla2, and

Ent1 and Ent2. The nucleator Las17 and and the branching protein complex Arp 2/3

promote polymerization of actin. The protein Sla2 plays an essential role by binding actin

to the endocytic patch by means of interactions with epsin [121, 141, 146]. The epsins Ent1

and Ent2 are adaptor proteins that bind clathrin to the cell membrane, as well as possibly

generating curvature independently [37, 69].

The primary force-generating protein associated with CME is actin. Networks of

filamentous actin (F-actin) generated by Las17-activated Arp 2/3 complex accumulate

around the vicinity of an endocytic patch [103]. Actin generates the necessary forces

4



(a)

Figure 1.3: Schematic of stages of endocytosis in yeast [46].
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through polymerization of actin monomers, with thermal fluctuations of the membrane

providing a gap for additional monomers to polymerize and thus displace the membrane.

Rather than polymerizing away from the membrane, actin polymerizes at the membrane

and thus pushes on it directly [27]. This actin network around endocytic patches may form

a variety of shapes during endocytosis, starting as a ring during the initial stages, while

transitioning to a trailing tail-like structure during the latter stages [103]. The network also

plays a role in vesicle scission, pinching off the neck of the vesicle.

Endoctytic scission has its own associated proteins, in addition to actin. Among these are

yeast dynamin-associated GTPase Vps1, which plays a role in membrane tubulation and

also assists in the removal of coat proteins post-scission [139]. Clathrin also affects scission,

possibly regulating the time and location at which scission is initiated [76].

There are several force barriers to endocytosis, including surface tension, membrane

curvature and osmotic pressure. In mammalian cells, the former two are the primary

barrier to endocytosis, since they resist the changes in the area and curvature necessary to

produce an invagination [142]. In cells possessed of a rigid cell wall, such as yeast and plant

cells, the osmotic pressure difference between the exterior and interior of the cell, known as

the turgor pressure, usually is the primary obstacle.

Models of endocytosis have typically focused on actin force generation,

curvature-generating proteins, and membrane deformation. For instance, one model

considered the balance between the effects of surface tension and polymerization of the

CGP clathrin in forming endocytic buds [111]. It found that membrane tension opposed

endocytosis, not only directly, but by inhibiting the polymerization of clathrin and thus the

generation of curvature, which was validated by experiments on vesicles. Thus, in different

6



regimes of clathrin polymerization energy and membrane tension, the endocytic process

would proceed to different stages (Figure 1.4).

Other models have also focused on the balance between surface tension and clathrin

bending energy. For instance, Hassinger et al. analyzed a continuum model of endocytic

bud formation based on the Helfrich energy [50] (see further discussion of the Helfrich

energy in section 1.2), which took into account membrane tension, intrinsic curvature

generation by clathrin, and the intrinsic bending energy of the membrane. They found that

the process of transition from a flat membrane to an invagination and then an endocytic

bud depends on the balance between surface tension σ and the coat rigidity κ, to which

clathrin-membrane interactions are a major contributor: at high ratios of σ/κ, there is a

rapid transition between the flat and budded shapes, characterized by the presence of a

snap-through instability, whereas at low values of σ/κ, the transition is gradual and

continuous. Other models have examined the effects of tension in conjunction with actin

forces or clathrin curvature generation, again finding snap-through instabilities in the

shape dependent on surface tension [138].

Most of these models, including the previous ones, have not directly treated the turgor

pressure or the effect of the cell wall. Some have, such as the model of Dmitrieff et al [33],

which examined the dynamics of endocytosis using a bending energy approach that

incorporated surface tension, the intrinsic curvature of clathrin, and actin force generation

modeled as a point force. They found that pressure and bending rigidity had a greater

effect on the shape of endocytic pits than surface tension, and estimated that the curvature

energy of clathrin was not sufficient to overcome the turgor pressure barrier. As with

various previous analyses, they also observed a snap-through instability. They also found

that certain types of curvature-generating proteins could help stabilize the shape, which

agrees somewhat with the previous results of Hassinger et al.

7



Figure 1.4: Different types of endocytic invaginations form in different regimes of membrane
tension and clathrin polymerization [111]
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1.2 Membrane Shape and Deformation

Biological cells such as S. cerevisiae are surrounded by a fluid lipid bilayer membrane,

which serves to separate the intracellular fluid from the external environment. This

membrane is composed primarily of phospholipids. Membrane lipids tend to have a

hydrophobic tail, which is isolated from the intracellular and extracellular fluid in the

interior of the bilayer, and a hydrophilic head, which is exposed to the internal and

external aqueous environments. This hydrophobicity effect causes membrane lipids to

aggregate and form a bilayer. The cell membrane lipid density is about 5 × 106 per square

micron, and about 50% of its mass is lipids. However, the membrane also contains a

variety of proteins (Figure 1.5). Among the most important for the purpose of endocytosis

are channel proteins, which allow water, ions, and larger molecules to pass through the

membrane into the cytoplasm.

The dynamics of the lipid bilayer membrane play a central role in yeast endocytosis. It has

a surface tension, which resists attempts at deformation, as does the bending rigidity of the

membrane. The membrane may also be shaped by the presence of clathrin or other

curvature-generating molecules, including preferentially curved lipids. The lipid bilayer

behaves fluidly in response to in-plane stresses, but deforms elastically under out-of-plane

forces. In the case of endocytosis in yeast or plants, the cell membrane is also subject to a

substantial turgor pressure, on the order of 0.2 MPa in budding yeasts [45], and a confining

potential due to the presence of the rigid cell wall. This recent measurement of the turgor

pressure was published as we were finishing the work described in Chapter 2. In that work

we used an average over existing measurements. More recently, we have come to feel that

the recent measurement is the most reliable one.

9



Figure 1.5: Schematic of lipid bilayer membrane with included proteins (Wellcome Images)
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The statics and dynamics of a cell membrane can be modeled by the so-called Helfrich

membrane energy, which treats the bilayer as a single thin shell subject to perpendicular

bending forces and moments. This energy employs the fluid mosaic model, which suggests

that there is little resistance to shearing of the bilayer and thus neglects tangential shear

forces. The Helfrich membrane energy for the general case (not including the effects of the

cell wall) can be written

U = 2κ

∫
dA
[(

C − C0

)2
+ σ
]

+

∫
dV Π (1.1)

Here C is the curvature associated with a given conformation of the cell membrane, and C0

is the intrinsic curvature associated with the presence of CGMs; both of these may be

functions of the body coordinates of a given point. The volume integration is over the

space enclosed by the lipid bilayer membrane, and the area integration is over the surface

of the same.

In the case of the early stages of endocytosis, this equation can be greatly simplified by the

Monge representation, which parametrizes the membrane deformation in terms of a single

radially dependent height, z(r), thus implicitly describing a situation in which the

membrane height is single-valued. In this representation the Gaussian curvature C can be

written in terms of z as:

C = ∇ ∙

(
∇z

√
1 + (∇z)2

)

(1.2)

The Monge representation typically further makes use of the small-displacement

approximation, by which
√

1 + (∇z)2 ≈ 1 + 1
2
(∇z)2.
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In the absence of turgor pressure or a cell wall, the equation of shape derived by setting the

variation of the Helfrich energy to zero and using the Monge approximation factors into the

product of a Helmholtz and a Laplacian operator (Helmholtz-harmonic), such that the

solution to this equation is given by

z(r) = a0 + a1 ln r + a2I0(ξr) + a3K0(ξr), (1.3)

where ξ2 = C2
0 + σ/κ and I0 and K0 are the modified Bessel functions of the first and

second kind, respectively. However, this solution is of limited applicability to endocytosis

in yeast, since it neglects the contribution of the turgor pressure.

The presence of the cell wall may be modeled in several ways in the Monge representation.

The simplest is to use a single potential proportional to z2 to model the effects of the cell

wall. The resulting equation is of biharmonic type and has a simple analytic solution.

However, if a potential of this form is used for z > 0, it effectively overestimates the turgor

pressure (if employed in conjunction with a turgor pressure potential), or further

inaccurately represents its dependence on height, if a single quadratic potential is used to

represent the combined effects of the wall and turgor pressure.

A more accurate strategy is to model the portion of the membrane above the cell wall and

the portion below separately, with the assumption that there is at most one intersection.

This renders analytic computation of the coefficients of the two solutions difficult, however,

and necessitates numerical computation of the intersection radius by an iterative procedure.

The shape of the lipid bilayer membrane is not fully described by the Helfrich model,

however. Even within a continuum description, the bilayer nature of the membrane causes
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deviations from the simple Helfrich model. For instance, there exist viscous forces between

the leaflets of the bilayer, which become non-negligible in the limit of large inter-leaflet

relative velocity. These interlayer drag forces play a role in phenomena such as tether

formation in a pipette, when the viscous forces due to interlayer drag may be tens of times

larger than those due to a thin-shell description based on the neutral surface of the bilayer

[36]. At a local scale, individual lipids are not static, but undergo rapid movement,

including rotations, displacement, lateral diffusion within a bilayer leaflet and even

diffusion between leaflets of the bilayer. Many of these processes occur rapidly: for

instance, the diffusion coefficient for lateral movement within a bilayer is around 10−8

cm2/s, corresponding to diffusing about 100 nm in a second [4].

1.3 Clathrin and Other Curvature-Generating Molecules

Curvature-generating molecules (CGMs), specifically curvature-generating proteins

(CGPs), play a fundamental role in endocytosis, since to initiate endocytosis the endocytic

region must attain a curvature opposite in sign to that of the cell membrane as a whole,

which then must tubulate and pinch off into a free vesicle. Among the CGMs involved in

endocytosis are proteins such as clathrin and epsin, which are present in clathrin-mediated

endocytosis, and proteins such as cavin and caveolin, which help promote

clathrin-independent endocytosis pathways [81]. The most important of these CGMs is

clathrin, a triskelial molecule (Figure 1.6) which forms roughly hemispherical cages around

endocytic zones. These cages change shape as endocytosis proceeds, eventually becoming

coats around the detached endocytic vesicles before decoating [110].

Other curvature-generating molecules and methods of curvature generation exist and

contribute to endocytosis. For instance, BAR-domain proteins (Figure 1.7) generate
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Figure 1.6: Image of clathrin molecule with labeled regions [38]
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(a)

(b)

Figure 1.7: Image of human F-BAR domain protein (a) and yeast F-BAR domain protein
(b) [53, 96]

directionally-biased curvature, having a different radius of curvature in different directions

along the surface of the endocytic patch. This class of proteins may generate curvature

through causing the membrane to conform to its geometry, as in the case of clathrin, or

through methods such as the insertion of amphipathic helices [94]. The

curvature-generating behavior of BAR-domain proteins varies based on several factors,

such as the density of proteins on the membrane and the membrane surface tension. At

high protein density, BAR domain proteins sort according to membrane curvature, whereas

at high tension, they promote tubulation and fission [118].

Not all curvature-generating molecules are proteins. Lipids, for instance, can have a

preferred curvature due to asymmetries. If the headgroups or tailgroups of lipids are of
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different sizes, giving them essentially conical shapes, they will induce a curvature in the

membrane. The accumulation of lipid species of differing preferred curvature in the two

leaflets of the membrane can reinforce this tendency [88]. Some experimental evidence

suggests that preferentially curved lipids may play a role in endocytosis [58, 59].

Although molecules such as clathrin and BAR domain proteins generate curvature through

their specific folded structure, some methods of curvature generation are independent of

the physical structure and arrangement of charged domains in the CGMs. For instance, if

there is an excess of proteins on one leaflet of the membrane, the pressure generated from

collisions between these molecules can induce membrane curvature, a process known as

protein crowding. This process has been demonstrated for various proteins, including

epsin, Sar1p and green fluorescent protein [127]. Although there is little apparent

dependence on hydrophobicity or other specific features of the molecules involved, larger

molecules require lower concentrations to achieve the same degree of crowding, and

similarly for molecules that have a higher affinity for membrane binding.

1.4 Elasticity of the Cell Wall

To properly understand the dynamics of endocytosis in systems such as yeast cells and

plant cells, it is necessary to account for the dynamics of the stiff cell wall. The cell wall of

S. cerevisiae and other yeasts (Figure 1.8) is central to the structural integrity of the cell.

It is is composed of a variety of molecules, principally glycoproteins and polysaccharides; of

these, the polysaccharides comprise the majority of the cell wall mass, with polymers of

glucose and mannose predominating. The composition of the cell wall, however, is variable,

with the percentage of the various components changing in response to changes in the

acidity or nutrient content of the external environment, as well as temperature [3], which
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may cause variation in mechanical properties such as as the cell wall rigidity. The cell

membrane also contains mechanosensing proteins, which interact with the cell wall and

may produce conformational changes in the cell wall or in its mechanical properties in

response to external forces [72]. The thickness of the cell wall is also highly variable, and

depends on the specific environment experienced by the cell. For instance, in the presence

of the enzyme Zymolyase, S. cerevisae cell walls are thinner and weaker, whereas the

presence of diamide causes oxidative stress that leads to cell walls up to 40 nm thicker than

in its absence [35]. Another yeast species, Kluyveromyces lactis, has a cell wall whose

thickness varies from approximately 64 ± 10 nm in the presence of glucose to 105 ± 18 nm

in the presence of ethanol, and whose thickness also shows a spatial variation over the

surface of the cell [8]. Despite this variation, the thickness of the cell of S. Cerevisae tends

to be approximately 100 nm, with different experiments measuring 100 ± 15 nm [8], or

102.12 ± 3.38 nm [82], but other studies finding numbers as high as 200 nm for the

membrane-wall complex [93], which given the membrane thickness of around 10 nm

corresponds to a wall thickness of nearly 200 nm [115].

The mechanical properties, such as the Young’s modulus, can be determined by a variety of

probes. For instance, one such experiment measured the response of stationary-phase S.

cerevisiae cells to compression forces up to the point of failure, finding an average Young’s

modulus of 127 ± 4 MPa for cell walls with an average thickness of 90 nm [122, 124, 125].

The measurements also showed that the cell wall had a breaking strain of 75%. Another

experiment determined the Young’s modulus of S. cerevisiae to be 112 ± 6 MPa in the

exponential growth phase and 107 ± 6 MPa in the stationary phase, corresponding to no

statistical difference and suggesting the the mechanical properties of the yeast cell wall are

constant across different growth phases, as well as roughly agreeing with the previous

measurement. This latter experiment found a breaking strain of about 82% [125]. In
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Figure 1.8: Image of yeast cell wall (white) in C. utilis at various pH levels [21]
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contrast, later research using population averages of the various cells found a Young’s

modulus of approximately 185 MPa and a breaking strain of 67%. It also found that failure

of cells occurred around the equator [129].

In the case of S. cerevisae, since the radius of the cell is about 3 μm and the endocytic

region is about 100 nm in diameter, the surface of the cell wall can be approximated as

flat. The local behavior of the cell wall, such as that of interest in the vicinity of a single

endocytic patch, can be modeled as an elastic half-space. The accuracy of this

approximation depends on the ratio of size of the region of interest to the thickness of the

wall, which for an endocytic patch whose radius is about 50 nm is 0.5. This is an

acceptable approximation but may produce some error. Since the thickness of the cell wall

is approximately 100 nm, if we take the Young’s modulus to be 127 MPa, the Hookean

approximation to the wall force is:

Fw = (Y/t)z (1.4)

where z is the displacement and t is the cell wall thickness. The displacement under the

turgor pressure, which is approximately 0.2 MPa, can be estimated by equating this force

to the turgor pressure, giving

z0 = Πt/Y (1.5)

which for the given parameter values is approximately 0.002t. As such, the thickness of the

cell wall is roughly 500 times the displacement under the turgor pressure.
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Various models, in fact, treat the cell wall as an elastic half-space; for instance,

measurements of the stiffness of the cell or cell wall through AFM indentation [40].

1.5 Turgor Pressure Generation and Measurement

Osmotic pressure refers to the difference in pressure between two regions filled with solvent

and solutes and separated by a semipermeable membrane, through which only the solvent

can pass. This is particularly relevant in biological systems, in which the polar lipid bilayer

membrane behaves as a semipermeable membrane that allows the passage of water but not

large polar molecules such as glycerol, partly due to different effective permeabilities from

the presence of aquaporins, aquaglyceroporins, and other channel proteins.

If we consider a system with two regions, the first (region 1) containing pure solvent, and

the second (region 2) containing a mixture of solvent and solute, we can derive the

equilibrium osmotic pressure by considering the chemical potential of the solvent,

μw = μw,0 + RT ln xw, where R is the ideal gas constant, T is the temperature, and xw is

the mole fraction of solvent. Here μw,0 is the chemical potential of the pure solvent, i.e. for

xw = 1. Since the solvent can flow freely across the lipid membrane, the chemical potential

of the solvent in the two regions must be equal:

μw,0(p) = μw(p + Π) = μw,0(p + Π) + RT ln xw (1.6)

The definition of the differential chemical potential is, in terms of the entropy per molecule

and molecular volume [9]:

dμi = −S̄idT + V̄idp, (1.7)
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which holds for any component i of a mixture. Thus, when temperature does not vary and

the molecular volume does not depend on pressure, we can integrate dμw from p to p + Π,

giving (for the solvent):

μw,0(p + Π) − μw,0(p) = V̄ Π (1.8)

Or:

− RT ln xw = V̄ Π (1.9)

Since xw + xs = 1, in the limit of low solute concentration we can take ln(xw) ≈ −xs,

giving the osmotic pressure as:

Π = RTxs/V̄ (1.10)

The molecular-level origin of osmotic pressure is complicated, and may vary from system to

system. The simplest model explains osmotic pressure by analogy to the case of an ideal

gas, to which the definition of osmotic pressure for the case of low solute concentration

bears a close resemblance. Because the membrane is permeable only to the solvent

molecules, the solvent diffuses freely between the two regions separated by the

semipermeable membrane until the density of molecules on either side is equal. By contrast,

the solute molecules remain in one region, and this, combined with the equal density of

solvent molecules, results in a density in the region with solute, and thus more collisions

and a higher pressure. However, this model has limited explanatory power; some have
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noted that it does not account for the much stronger intermolecular interactions in liquids,

and that it supposes a diffusive mechanism whereas osmotic flow is too rapid for diffusion.

Alternatively, other models have proposed that the osmotic pressure may arise from

statistical-mechanical interactions; with the osmotic pressure being due to interactions

between molecules [19].

Another model proposes that in the case of solute molecules that are larger than the

solvent molecules, which will generally be the case with solutions of water and organic

molecules, interactions with the membrane will cause these larger solute molecules to be

further from the membrane, on average, than the solvent molecules. This is hypothesized

to create a negative pressure gradient in the direction perpendicular to the membrane,

since there are fewer molecules closer to the wall, which in turn produces a net flux of

solvent through the membrane [5]. Clearly, this mechanism might not apply to systems

where the solute and solvent are of more comparable size, or where the nature of the

interactions with the membrane is more complicated.

The term turgor pressure refers to the difference in osmotic pressure between the interior

and exterior of a walled cell. The yeast cell has a high turgor pressure, which serves as the

primary barrier to endocytosis. This turgor pressure is generated primarily by the presence

of the osmolyte glycerol. While in mammalian cells and other cells lacking a wall, endocytic

force generators primarily need to overcome the surface tension and bending rigidity of the

lipid bilayer membrane, turgor pressure forces in yeast pose a significantly higher barrier.

Although the turgor pressure in yeast cells is clearly high, the question of how to measure

its actual value is non-trivial. Some of the earliest methods of measuring turgor pressure

including looking at the collapse of gaseous vesicles in cells [60, 71], or even examining the

bulk properties of multiple cells in solution [79].
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Later, osmotic shock experiments became the primary means of measuring yeast turgor

pressure. This involves placing the yeast cell in a hyperosmotic environement, i.e. one

enriched in glycerol. Water will then permeate into the intracellular fluid through

aquaporins or aquaglyceroporins. The change in volume of the cell is related to the turgor

pressure by the linear formula [90]:

Π − Π0 = ε(ΔV/V0)

Here V0 is the baseline volume and ε is an elastic modulus. This method is widely used and

popular, but suffers from the problem of osmoregulation. Cells regulate the activity of their

membrane transporter molecules, and thus their permeability and cell volume, in response

to the external osmotic environment. Appreciable adaptation to osmotic shock in the yeast

S. cerevisiae, for instance, occurs on a timescale of at most minutes [97]. As such, osmotic

shock techniques may provide an overestimate of the true osmotic pressure [14].

A more accurate method of measuring the turgor pressure is atomic force microscopy

(AFM) indentation experiments. Unlike osmotic shock experiments, the cell may not be

able to adapt its turgor pressure to indentation, if done quickly enough. Given the wide

range of measured turgor pressures for osmotic shock experiments, between 0.05 MPa and

1 MPa, indentation experiments offer a potentially more accurate method of estimating

yeast turgor pressure. The turgor pressure can be approximated from the stiffness of the

cell and the radius of the indentation as approximately Π = k
πr
[137]. One AFM

indentation experiment found a yeast turgor pressure of 0.21± 0.05 MPa [45]. This method

has also been applied to other cells with high turgor pressure, such as plant cells [13].
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1.6 Solute Reaction-Diffusion Processes in Cells

A variety of processes are involved in the transport of molecules in yeast through

endocytosis, both active and passive. Diffusion of water and glycerol, however, is the most

important in generating the turgor pressure, the primary barrier to invagination and the

most prominent factor differentiating yeast endocytosis from mammalian. Further,

production, association and dissociation of molecular species also play a central role: for

instance, glycerol is produced inside the S. cerevisiae cytoplasm and actin monomers

polymerize in order to generate forces that drive endocytosis, processes which require the

modeling of a reaction-diffusion system. In the case of glycerol in yeast, synthesis occurs

proximally through dihydroxyacetone phosphate (DHAP) reduction, and ultimately

through the metabolism of environmental glucose, glycolysis [42, 101].

On the theoretical side, the simple case of the diffusion of a single molecule of diffusion

coefficient D can be described by the classic diffusion equation.

∂C

∂t
= DΔC (1.12)

When chemical reactions between molecules lead to changes in molar quantity, the

diffusion equation becomes instead a reaction diffusion equation. For a general system of N

molecular species with possible coordinate and time dependence, this is (vectors in bold):

∂C

∂t
= DΔC + Q(C, r, t) (1.13)
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The term Q(C, r, t) can have any dependence on molecular concentration, time, or spatial

coordinates, but most common reactions are polynomial in the concentration with no

explicit spatial or temporal dependence, of the form Q(C) =
∑

i AiC
ni for a collection of

tensors Ai and orders ni.

The special case of a zeroth-order spatially-dependent term, i.e. one of the form α(r),

indicates the presence of a source or sink of concentration. Typically this indicates that the

formation of the molecule is being treated implicitly, although it can also represent the

physical introduction or removal of a solute. In this case, the equation reduces to:

∂C

∂t
= DΔC + α(r) (1.14)

For instance, in the case of uniform glycerol production within a yeast cell, the term α(r)

would be constant for r < Rcell and zero for r > Rcell .

Since cells maintain a homeostatic environment, we will frequently be interested in an

steady-state version of the reaction diffusion equation, i.e. DΔC + Q(C, r) = 0. A

steady-state reaction-diffusion equation can be solved for various boundary conditions,

such as Dirichlet boundary conditions (specified concentration) or Neumann boundary

conditions (specified molecular current). A particular type of boundary condition of great

relevance to endocytosis, however, is the permeability boundary condition, of the form (for

a single molecular species):

P (Cout − Cin) = D
∂C

∂n
(1.15)
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Here ∂C
∂n
represents the normal derivative, and both it and the difference Cout − Cin are

taken across a surface S, and P is the permeability. This corresponds to the idealization of

an infinitesimally thin permeable or semipermeable membrane, such as a lipid bilayer.

Constancy of the current also implies continuity of the normal derivative, i.e.

∂C
∂n

|out = ∂C
∂n

|in, assuming equal diffusion coefficients in the intracellular and extracellular

fluid. As the permeability approaches infinity, the concentration difference across the

membrane surface goes to zero. Similarly, in the case of zero permeability, this boundary

condition simply reduces to the Neumann boundary condition ∂C/∂n = 0, corresponding

to no current across the membrane, such that the interior and exterior solutions are

decoupled.

The permeability boundary condition also corresponds to a discontinuity in pressure across

the boundary, which defines the turgor pressure, proportional to the difference between the

osmotic pressures of the external and internal environments.

1.7 Scope

This thesis deals with theoretical modeling and simulation of the forces and conditions

involved in clathrin-mediated endocytosis in yeast cells, specifically S. cerevisiae,

sometimes called brewer’s yeast or baker’s yeast. Previous research has focused primarily

on the contributions of curvature-generating molecules and force generation by actin

polymerization, but has made simplistic assumptions about the effects of turgor pressure

and cell wall forces, as well as those of curvature-generating proteins under such forces. We

seek to address the question of how CME can proceed under high-turgor conditions. Are

there any mechanisms that might plausibly reduce the high turgor pressure barrier to

endocytosis? What would they look like, and how would they affect the internal
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environment of the cell? How do CGMs like clathrin behave under these high-turgor

conditions, and how do they affect the shape of the endocytic region? Can they overcome

the turgor pressure, alone or in conjunction with other molecules?

In the second chapter, we address the possibility of local permeability reduction serving as

a mechanism for the reduction of the turgor pressure barrier to endocytosis. We develop a

model of a yeast cell with a region of increased membrane permeability, roughly

corresponding in size to the ribosome-free actin-rich zone of an endocytic patch. We use

spherical Fourier series methods to model the spatial dependence of the equilibrium

concentration, and assess the plausibility of generating such permeability increases with

channels present in S. cerevisae, as well as evaluating the dependence of the permeability

reduction on potentially variable parameters such as endocytic patch size.

In the third chapter, we extend the permeability-reduction model of the first chapter using

a finite-element analysis technique. We are able to test the previous model against a

different method of evaluating the turgor pressure and equilibrium concentration. We also

examine the time-dependence and equilibration behavior of a system representing a cell

with one or more permeable regions, in addition to looking at the deformation and stresses

induced in this system. Since this method allows us to treat multiple permeable patches,

we investigate interaction effects between two or more patches, such as whether the average

concentration depends on the distribution of patches or how the permeability of one patch

is correlated with the concentration at another.

In the fourth chapter, we treat the behavior of model curvature-generating molecules under

high-turgor, stiff-wall conditions. We consider a minimal model of clathrin-like molecules

as rods with preferred top and bottom distances. We also model the behavior of the lipid

bilayer membrane and the cell wall under high-turgor conditions, especially insofar as they
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interact with the curvature-generating molecules, allowing us to evaluate the distribution of

forces generated by CGMs, as well as the extent to which they can overcome the turgor

pressure; this model also allows us to determine the profile of the CGM-membrane

complex. We assess the dependence of CGM-membrane profile height and force generation

on a variety of parameters of interest, such as the turgor pressure itself or the bending

rigidity of the CGMs. We also establish the possibility of a stable energetically preferred

patch size through a simple attractive energy model.

In the fifth chapter, we summarize the results discussed in the previous three chapters, as

well as discussing possible future work, including extensions to the models discussed in

Chapters 2-4.
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Chapter 2

Local Turgor Pressure Reduction via

Channel Clustering

2.1 Introduction

Clathrin-mediated endocytosis (CME) contributes to numerous biological processes, such

as cell growth, viral invasion, and neural signaling [87]. It involves the inward bending of a

portion of the lipid bilayer, which subsequently pinches off to form a vesicle that moves

into the cytoplasm. CME has been studied extensively in yeast, due to the ease of genetic

manipulation and fluorescent labeling. In yeast, CME involves actin poymerization as well

as clathrin and BAR-domain proteins, which help drive invagination through a non-zero

preferred curvature. It is believed [22, 33, 41, 68] that growing actin filaments exert pushing

forces on the membrane, which drive the actin network into the cytoplasm. This motion of

the actin network exerts pulling forces to drive invagination, through a coupling via the

adapter protein Sla2. Recent theoretical work on CME in yeast has treated the mechanics
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of forces generated by actin polymerization, as well as the intrinsic curvature of the

clathrin coat that accumulates on the cell membrane [33, 63, 78, 147]. To date, however, it

is not known how actin and other curvature-generating proteins can produce enough force

to overcome the large turgor pressure in yeast [1, 12]. Here we explore the hypothesis that

increasing the membrane permeability at the endocytic site can locally reduce the turgor

pressure and thus facilitate endocytosis. The work discussed here has been published as

“Local Turgor Pressure Reduction via Channel Clustering,” by Jonah K. Scher-Zagier and

Anders E. Carlsson, (Biophysical Journal, 2016, vol. 111.12, pp. 2747-2756).

The turgor pressure Π [12] pushes the plasma membrane against the cell wall and thus

helps the cell maintain its shape and rigidity. It is generated through the larger internal

concentration of glycerol, the main osmolyte in yeast, relative to the outside.

The magnitude of Π is determined by the requirement that the chemical potential of the

solvent (water) be constant across the membrane. For a dilute solution, the solvent

chemical potential is μ(P, T, C) = μ0(P, T )− (C/Csolvent)kBT [77], where P is pressure, T is

temperature, and C and Csolvent are the solute and solvent concentrations respectively. The

chemical potential varies with pressure according to ∂μ0(P, T )/∂P = 1/NACsolvent [77],

where NA is Avogadro’s number and Csolvent is given in molar units. Thus the constancy of

μ implies [54] that between any two points,

ΔP = NAkBTΔC. (2.1)

If the points are on opposite sides of the membrane, this implies that the turgor pressure is

Π = NAkBTΔC, (2.2)
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where ΔC = Cin − Cout is the concentration difference across the membrane.

and plant turgor pressures are comparable to these [13]. As our baseline value, we use the

value 0.6 MPa obtained by a systematic fit using thermodynamic modeling [113]. In the

scenario treated here, where a permeable patch leads to large concentration gradients inside

the cell, Eq. 2.1 implies corresponding internal gradients of the pressure. Thus pressure

does not equilibrate, even at long times, as long as the concentration gradient is maintained

by the continuing production of osmolyte inside the cell. The pressure gradient does not

cause macroscopic fluid flow, because there are additional forces on water molecules due to

the osmolyte concentration gradient. The situation is analogous to that of water in a

swimming pool. The pressure is greater at the bottom, but yet there is no macroscopic flow

because the water molecules at the bottom have lower gravitational potential energy. In

the present case, the gravitational potential energy variation is replaced by variation in the

free energy of water molecules resulting from the inhomogeneous osmolyte concentration.

Can established mechanisms, including curvature-generating proteins and actin

polymerization, provide enough force to overcome the turgor pressure barrier? The driving

forces from curvature-generating proteins and actin, along with opposing forces from

surface tension and turgor pressure, are encapsulated in the “Helfrich" membrane

deformation energy:

U =

∫

S

[
2κ(H − H0)

2 + σ − factinz
]
dS + ΠV (2.3)

Here κ is the bending modulus, Π is the turgor pressure, dS is an element of membrane

area, V is volume of the invagination, H is the mean curvature, H0 is the spontaneous

curvature, σ is the surface tension, z is the inward displacement of the membrane, and factin

is the pulling force density from actin. We estimate whether it is energetically favorable for
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a hemispherical invagination of radius of Ri = 30 nm [75] to form in the presence of

accepted values of the turgor pressure. We take κ = 285kBT [64], and Π=0.6 MPa in the

middle of the range of experimental values [31, 45, 90, 95, 113]. Then the stabilizing

contribution from the curvature-generating proteins is = −2πR2
i κ/R2

i = −1800kBT (the

negative of the curvature energy of the flattened membrane), while the opposing

contribution from the turgor pressure is (2π/3)R3
i Π = 8250kBT , leaving

8250kBT − 1800kBT = 6450kBT to be supplied by actin pulling forces.

It is unlikely that actin polymerization can supply such a large energy. The above

calculation suggests that about 22% of the opposing force from turgor pressure is canceled

by the curvature-generating proteins, leaving a residual pressure of about 0.47 MPa to

generated by actin polymerization. This corresponds to a total force of

0.47MPa × π(30 nm)2 = 1300 pN . This force must come from the polymerization of actin

filaments around the invagination [22, 33]. The number of growing actin filaments is

estimated to be 100-150 [140], so forces of about 10 pN per filament would be required.

But the stall force estimated for a 2 μM free actin concentration A [140] is only

fstall = (kBT/δ ln (A/Ac) ' 5pN [56], using a critical concentration of 0.1μM [105] and a

polymerization step size δ = 2.7nm. Thus actin polymerization cannot generate the 10 pN

per filament force required. The 10 pN estimate is sensitive to the number of growing

filaments; a filament number two to three times larger than the estimated value would

reduce the force per filament below the stall force. However, it is unlikely that the

growing-filament number exceeds our estimate. Ref. [120] estimated the upper bound of

the number of growing filaments to be 140, by subtracting the number of capping protein

molecules present from the number of Arp2/3 molecules, where the latter number was

assumed to correspond to the number of actin filaments. Ref. [17] estimated only 8

growing filaments on the basis of polymerization-dynamics experiments.
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Previous work has also suggested that known mechanisms of actin polymerization are too

weak to drive endocytosis. A finite-element calculation [22] found that the actin

polymerization pressure was too small to overcome the turgor pressure, and that

overcoming a turgor pressure of just 0.1 MPa requires an actin network stiffer than any

that have been studied to date. Another calculation based on membrane elasticity theory

and an actin point force suggested that the required force is even larger than our estimate

[33]. Finally, calculations using somewhat different approaches [12] found it implausible

that actin polymerization can overcome the turgor pressure. We note, however, that the

insufficiency of actin polymerization forces cannot be taken as rigorously proved, because

there are substantial uncertainties in all of the quantities used to estimate the slowing of

polymerization.

Thus for endocytosis to proceed against current estimates of the turgor pressure, rather

extreme assumptions about actin polymerization forces and elastic properties would likely

have to hold. A local reduction of the turgor pressure, in the vicinity of the endocytic site,

provides a possible alternative to unphysically large actin polymerization forces.

2.2 Materials and Methods

To see how much the turgor pressure might be reduced by a physically reasonable

distribution of membrane channels, we solve two diffusion-based models of yeast

membranes with locally enhanced permeability. The assumption of a locally enhanced

permeability is supported by the observation of patches of the glycerol transporter Fps1 at

the cell membrane in budding yeast [134]. However, it is not known whether these patches

coincide with endocytic sites.
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2.2.1 Assumptions

Model 1 assumes a spherical cell with the membrane permeability increased in a narrow

circular patch (see Figure 2.1). Glycerol, the main osmolyte, is produced at a rate,

constant in both time and space within the cell. The turgor pressure is determined by a

balance between production and leakage. We assume azimuthal symmetry about the center

of the permeable patch, and define the angle θ relative to this center. To optimize

numerical convergence, we assume a smoothly varying permeability profile of the form

P (θ) = Pa + Pb exp[−θ2/(Δθ)2]. For ease of comparison with our analytic Model 2 below,

we also fit this to a model with a discontinuous permeability, having the form:

P (θ) =






P1 θ < θ0

P2 θ > θ0

(2.4)

The coefficients Pa,b of the continuous permeability are chosen so that

P (0) = P1, P (π) = P2. We then choose Δθ so as to optimize the fit to the discontinuous

permeability. For conceptual clarity, we present our results below in terms of θ0, P1 and P2.

Model 2 assumes an infinite, impermeable plane, with two long-distance concentrations

Cin, Cout, and a perfectly permeable hole of radius a (we take Cout = 0 in our results

presented below). These approximations allow for an analytic solution. Model 2 is a good

approximation to Model 1 in certain parameter ranges, since the size of the permeable

patch is small relative to the size of the cell, and the permeability in the middle of the
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Figure 2.1: Model 1 - spherical cell with permeable patch, and Model 2 - plane with hole

patch is much larger than that far from the patch. In relating Models 1 and 2, we find that

a good match is obtained by taking a = 1.3θ0R, where R is the cell radius.

In both models, the varying concentrations of glycerol cause a spatially varying hydrostatic

pressure because of the constraint of spatially constant chemical potential. The effects of

the pressure on the water and glycerol diffusion coefficients, and possible pressure gradient

terms in the glycerol current, are assumed small and are neglected.

2.2.2 Equations

In Model 1, the steady-state distribution of glycerol C(r) is governed by the

reaction-diffusion equations:

D∇2C(r) + α = 0 (r < R) (2.5)

D∇2C(r) = 0 (r > R) (2.6)
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where r is distance from the center of the cell, D is the diffusion coefficient, and α is the

rate of glycerol production. The boundary conditions, taking into account the definition of

the permeability as the ratio of current density to concentration discontinuity, are






(
∂C
∂r

)
r=R

= −P (θ)(1/D)ΔC,

limr→∞ C(r, θ) = 0

(2.7)

where ΔC = limε→0

[
C(R − ε, θ) − C(R + ε, θ)

]
is the concentration discontinuity.

Since Model 2 assumes asymptotic concentrations rather than a production rate, there is

no α term, and we have

D∇2C(r) = 0. (2.8)

The boundary conditions are






C(z = 0+, ρ) = C(z = 0−, ρ) for ρ < a

(
∂C
∂z

)
z=0

= 0 for ρ > a

limz→∞ C(z, ρ) = Cout

limz→−∞ C(z, ρ) = Cin

(2.9)

Here z is the coordinate perpendicular to the plane (at z = 0), and ρ is the radial

coordinate, measured from the z-axis going through the center of the hole.

2.2.3 Solution of Model 1

Model 1 has the general solution
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C(r, θ) = −
α

6D
r2 +

∞∑

l=0

Cl(r/R)lPl(cos θ) r < R (2.10)

C(r, θ) =
αR3

3Dr
−

∞∑

l=1

lCl

l + 1
(R/r)l+1Pl(cosθ) r > R. (2.11)

Here we have expanded P (θ) as P (θ) =
∑∞

l=0 AlPl(cos θ), where Pl(cos θ) is the Legendre

polynomial of order l and Al = [(2l + 1)/2]
∫

dθ cos(θ)P (θ)Pl(cos θ); the relationship

between the coefficients of Pl for r > R and r < R results from the continuity of ∂C/∂r at

R. Integrating the first of Eqs. 2.7 with Pk(cos θ) and employing the orthogonality

properties of the Legendre polynomials, we see that the Cl in (2.10) and (2.11) satisfy

(1/D)
∞∑

l=0

∞∑

m=0

2l + 1

l + 1
ClIlmkAm +

kCk

R

2

2k + 1
=

αR2

2D

2Ak

2k + 1
+

2αR

3D
δk0 (2.12)

where (in terms of the Wigner-3j symbol) [66]:

Ilmk =

∫ 1

−1

d(cos θ)Pl(cos θ)Pm(cos θ)Pk(cos θ) = 2






l m k

0 0 0






2

(2.13)

The 3j-symbols are nonzero only when J = l + m + k is even, and were calculated from the

identity






l m k

0 0 0




 = (−1)g

√
(2g − 2l)!(2g − 2m)!(2g − 2k)!

(2g + 1)!

g!

(g − l)!(g − m)!(g − k)!
, (2.14)

where g = J/2.

To calculate the coefficients numerically, we approximate the infinite-dimensional system

with one of finite dimension by truncating the summation at L coefficients, resulting in an

L × L system (600 by 600, unless otherwise mentioned) to be solved for the coefficients Cl.
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The Al were obtained as numerical integrals. We find that the solution to the truncated

system converges as L increases. As a measure of the convergence of the solution we used

the variation of the concentration difference across the membrane. The choice of L = 600 is

justified by Figure 2.2, which indicates that the solution converges for about L > 150 for

the baseline parameters; for the slowest converging cases the error is less than 1%. Thus we

see that the approximate solution of Equations 4 and 5 provides an accurate solution to the

problem.

2.2.4 Solution of Model 2

The solution to Model 2 uses the solution for the case Cin = −Cout given in Ref. [28]. We

summarize the method used to obtain the solution. The approach uses the correction to

the solution that would hold if no hole were present. The sign of the correction is opposite

on each side. We thus have

C(r) =






Cin − C̃(z, ρ) z < 0

Cout + C̃(z, ρ) z > 0,

(2.15)

where C̃(z, ρ) is the correction for z > 0.

At z = 0, the boundary conditions (Eq. 2.9) require that C(r) be continuous inside the

hole, while outside the hole ∂C
∂z

= 0. In terms of the correction, this becomes

C̃(0+, ρ) = (1/2)(Cin − Cout) for ρ < a,
(∂C̃(z,ρ)

∂z

)
z=0

= 0 for ρ > a.
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Local Turgor Pressure Reduction via Channel Clustering 9

Figure 2. Concentration difference at θ = 0 vs L, using baseline parameters. L is
the numerical cutoff for Eq. 11, and the plot shows that the results are well converged
already when L > 150.

L

Figure 2.2: Concentration difference at θ = 0 vs L, using baseline parameters. L is the
numerical cutoff for Eq. 2.12, and the plot shows that the results are well converged already
when L > 150.
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Eq. 2.8 for C̃ is solved in the Supplementary Material by an expansion in Bessel functions.

The result, for Cout = 0, is

C(r) =






Cin −
Cin

π
tan−1

(√
2

ζ + λ

)

z < 0

Cin

π
tan−1

(√
2

ζ + λ

)

z > 0

(2.16)

where λ = (1/a2)(ρ2 + z2 − a2) and ζ =
(
λ2 + 4z2

a2

)1/2
.

This model is expected to reproduce the spherical-model results in certain limits. In the

spherical model there is a finite discontinuity across the hole, while in the planar model,

the concentration is continuous. In the spherical model, there is some membrane current

outside the patch, whereas in the planar model there is none. Finally, the spherical model

has a curved geometry, while that in the planar model is flat. We thus expect the planar

model to approximate the spherical one well only if P1a/D is large, P2R/D is small, and

a/R is small. The second and third conditions hold for all our parameter sets, but the first

holds only at the upper end of the values of P1 that we have treated.

2.3 Results

2.3.1 Model 1 - spherical cell

The parameter values are given in Table 2.1. We vary θ0 and P1 since their values are

poorly known. In choosing our range of values for θ0, we note that the radius of the

invagination is about 30 nm, corresponding to θ = 0.01, while the radius of the

ribosome-free zone around the invagination indicating the presence of F-actin is about 100

nm [75], corresponding to θ = 0.033. The value of θ0 is likely not much smaller than the

radius of the invagination region, because the turgor pressure needs to be reduced over the
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whole invagination region. However, portions of the permeable region outside the

invagination region can contribute to the turgor pressure reduction in the invagination

region. Thus we used a range of θ0 values between 0.006 and 0.03. As a baseline value, we

use θ0 = 0.02.

We base our range of values of P1 on Pc, the single-channel permeability of a channel

protein such as Fps1 in S. Cerevisiae, which can transport glycerol to the outside of the

cell. We are not aware of experimental estimates of the single-channel permeability of Fps1

or other glyceroporins. The value of Pc was thus determined as being in the middle of the

range of water permeability values quoted in Ref. [145], noting that glycerol permeability

values are similar to water permeability values [15]. To estimate P1 from Pc, we assume a

constant density of channels. The permeability is taken to be

P1 = (1 − ncAc)P2 + ncPc ≈ ncPc, (2.17)

where nc = Nc/Ap is the channel number density per unit area and Ac is the area per

channel. The term with the minus sign is the total area taken up by the channels, and is

included to avoid double-counting of the permeability. The second relation holds

approximately because P1 >> P2. Our range of P1 values corresponds to values of the

center-to-center channel distance ranging down to 10 nm; the baseline value of 4×10−2

cm/s corresponds to a spacing of 16 nm. Because the measured global permeability values

[70] include the effects of channels such as Fps1, and P2 corresponds to regions of the

membrane where channels are depleted by clustering into patches in other regions, we

choose our value of P2 at the lower end of the values quoted in Ref. [70].
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Cell radius, R 3 μm [126]
Patch angular radius, θ0 0.02 radians (varied) [75]

Single-channel permeability, Pc 1.0 × 10−13cm3/s [145]
Patch permeability, P1 4×10−2 cm/s (varied) From assumed spacing of 16 nm

Membrane permeability, P2 4×10−6 cm/s [70]
Glycerol diffusion coefficient, D 1.1×10−6 cm2/s 10% of value in [23]

Turgor pressure, Π 0.6 MPa [113]
Glycerol production rate, α 30 mM/s (see section 2.7) Determined from Π

Table 2.1: Parameter values for spherical-cell model. For parameters that are varied we give
baseline values used in most of the plots.

In choosing D, we assumed a cytoplasmic value ten times smaller than the water value

given in Ref. [23]. This value is somewhat uncertain, and we treat the effects of varying D

in the Discussion. The production rate α was obtained by imposing the constraint

kBTNAΔC(π) = Π. We note that because all concentrations in the model are proportional

to α, changes in α will not affect fractional reductions in turgor pressure.

Figure 2.3a shows the typical behavior of the concentration as a function of radius, going

from inside the cell, through the cell membrane r = 3 μm, and continuing outside the cell.

Each of the curves shows a dropoff in C approaching the membrane from the inside, with a

corresponding feature outside the membrane. This leads to a reduction in the discontiniuty

ΔC, which causes a corresponding reduction in the turgor pressure Π according to Eq. 2.2.

As seen in the figure, the effect is smaller when the patch width θ0 is reduced and larger

when P1 is increased. Figure 2.3b shows ΔC as function of angle relative to the patch

center. The maximum reduction in ΔC, 31%, occurs at the center θ = 0 of the patch, but

the effect is also pronounced for θ > θ0; at θ = θ0 the reduction is 22%. Thus significant

local reductions in turgor pressure occur for our baseline parameter values.
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Figure 2.4a shows the concentration difference reduction as a function of P1 for a range of

values of θ0. All the curves have a similar shape, with the reduction becoming larger as θ0

increases.

2.3.2 Scaling form for concentration difference reduction

The model has two small dimensionless parameters: P2R/D = 1.1 × 10−3, and

a/R = 1.3θ0 ≈ 0.008 − 0.04. The smallness of these parameters suggests that the ratio of

ΔC at the center of the patch to ΔC at the other end of the cell, δc = |ΔC(0)/ΔC(π)|,

might depend only weakly on P2 and R, provided that a is kept constant. As mentioned

above, there is no dependence on α, since increasing α by a certain factor changes both

ΔC(0) and ΔC(π) by the same factor. If P2 and R have only weak effects on δc, then δc

will be determined almost entirely by P1, a, and D. There is only one dimensionless

combination of these parameters that could enter δc, so a relation of the form

δc = f(P1a/D) (2.18)

should hold to high accuracy, where f is an unknown function. This relation makes two

predictions. i) That δc is independent of P2. We have tested this prediction by increasing

and decreasing P2 by a factor of two, and as expected found changes of only 0.5%. ii) If

P 50%
1 is the value of P1 required to achieve a 50% reduction in ΔC, so that δc = 0.5, then

P 50%
1 ∝ 1/a. Our test of this prediction is given in Fig. 2.4b, which shows that the

relationship

P 50%
1 = 0.44D/a (2.19)

holds to an accuracy of 2%.
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a)

b)

Figure 2.3: a) Concentration vs. radius for various values of θ0 and P1. Parameters are
baseline except for the following. Red line: θ = 0.006. Black line: P1 = 0.08 cm/s. b)
Concentration difference vs. angle for baseline parameters.
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2.3.3 Model 2 - planar geometry

Figure 2.5a shows results for Model 2. It is seen that the concentration drops over a range

of values of z comparable to the hole width a. We compared these results to those for the

spherical model by identifying a with 1.3θ0R, z with r − R, Cin with the concentration at

the center of the cell, and taking Cout = 0; the prefactor in a optimized the agreement

between the models. We also used a large value of P1, to optimize agreement with the

planar case. The agreement is quite good, with the main difference being that the

discontinuity ΔC vanishes in the planar model while it has a small nonzero value in the

spherical model.

2.3.4 Analytic theory of patch current and reduction in concentra-

tion difference

For the purposes of finding a simple formula for the reduction of ΔC(0) in Model 1, we

first develop an expression for the total current I through the patch. We calculate I in

Model 2 as a starting point. Inspection of Eq. 2.16 shows that if C(~r, ρ) is the solution for

a hole of radius a, then C(~r/η, ρ/η) is the solution for a hole of radius ηa. In other words

the spatial scale of the solution is proportional to a. Since the current density in the hole is

proportional to D∂C/∂z ∝ a−1, and the area of the hole is proportional to a2, it follows

that I ∝ a. Inserting the additional proportionality to Cin and D, we obtain

I = νDaCin (2.20)

where ν = 1.98 is obtained numerically from the solution given in Eq. 2.16.
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We next calculate the current I through the permeable patch in Model 1 in two limiting

cases. We assume that the permeability has the constant value P1 over a disk of radius a,

and the value P2 outside that disk, and use ΔC(π) as a measure of the bulk concentration

discontinuity. In the limit of low permeability P1a/D << 1, ΔC should be constant over

the interior surface of the cell, because diffusion will eliminate concentration gradients.

Then I = P1πa2ΔC(π). In the high-permeability limit P1a/D >> 1, the planar model is

applicable, and we use Eq. 2.20. We identify Cin in Eq. 2.20 with ΔC(π), since the

concentration outside the cell at θ = π is very small, so that C ' ΔC. Thus

I = νDaΔC(π).

To construct a formula for intermediate values of P1a/D, we view osmolytes flowing

through the patch as experiencing two resistances in series, corresponding to diffusion to

the patch and subsequent permeation of the patch. Each process is defined by a resistance

ΔC(π)/I . The resistance to diffusion is the total resistance for very large P1, which from

the discussion above is 1/νDa. Similarly the resistance to permeation is obtained by taking

P1a/D very small, and equals 1/P1πa2. Adding the resistances, we obtain

ΔC(π)/I = 1/νDa + 1/P1πa2, or

I = ΔC(π)
νP1Dπa2

νD + P1πa
. (2.21)

Finally, I is related to ΔC̄, the average of ΔC over the permeable patch. By the definition

of the permeability, I = πa2P1ΔC̄. Putting this into Eq. 2.21, we have

ΔC̄

ΔC(π)
=

1

1 + πP1a
νD

(2.22)
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As seen in Figure 2.5b, this formula gives an excellent description of the simulation results,

provided that we use a fitted value of ν = 2.9. It emphasizes the role of the key

dimensionless parameter P1a/D.
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a)

b)

Figure 2.4: a) Concentration difference at θ = 0, relative to bulk membrane value, vs.
permeability. Curves (top to bottom) have θ0 ranging from 0.006 to 0.03, with spacing
0.003. b) Value of P1 required to reduce ΔC(0)/C(π) by 50%, as function of patch radius
a. Solid line denotes fit of form P50% = 0.44D/a.
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a)

b)

Figure 2.5: a) Planar model concentration (black) and spherical model concentration (blue)
along line through center of hole/patch, for P1 = 1.0cm/s and a = 1.3θ0R = 78nm. In
spherical model, plot is radial and r = R + z. b) Reduction in average concentration over
permeable patch as function of P1. Dots are numerical results and line is analytic theory
from Eq. 2.22, using a = 1.3θ0R and a fitted value ν = 2.9.
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2.4 Discussion

2.4.1 Extent of turgor pressure reduction in yeast

To evaluate the potential relevance of local turgor pressure reduction to endocytosis in

yeast, we estimate a plausible value of P1. Superresolution imaging of aquaporin clusters in

brain cells [123] found an area of 36 nm2 per aquaporin, corresponding to a

center-to-center spacing of 6 nm. Because endocytic protein patches contain a number of

other membrane proteins, we use a conservative estimate of a 10 nm center-to-center

spacing, corresponding to a channel density nc of 1012 cm−2. Taking the single-channel

permeability to be 1.0 × 10−13cm−3 (Table 2.1), we find P1 = 0.1cm/s. Above in Fig. 2.4b,

we found that for this value of P1, a 50% reduction in the turgor pressure will occur as long

as the patch radius is 45 nm or greater. Thus patches only slightly larger than the

invagination size can reduce the turgor pressure significantly. A patch of 45 nm would

contain about 60 channels. This number is comparable to the counts of the coat proteins

known to be important for endocytosis in budding yeast. For example, the maximum count

of the linker protein Sla2 is about 50 [104]. In addition, this channel cluster size is similar

in magnitude to the 35-channel aquaporin clusters previously observed [123].

Eq. 2.22 shows that the turgor pressure reduction is enhanced if D is smaller than the

value given in Table 2.1. It will also be enhanced if diffusion in the cell wall outside the

membrane is slower than in the cytoplasm. Since treating a cell wall with finite thickness

would be significantly more complicated than the calculations we have done, we instead

have considered a model in which the diffusion coefficient is reduced uniformly outside the

membrane. This corresponds to changing the boundary conditions in Eqs. 2.7. We find
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that if the outside value of the diffusion coefficient is reduced by 50%, P50% is reduced by

55%.

For the turgor pressure reduction to facilitate endocytosis, it must persist when the

membrane is bent inward, up to the point where a tubule forms and late-arriving

curvature-generating proteins assist the process. We see no mathematically practical way

of performing the calculations for an inward-bent membrane. However, we note that

diffusion currents in general are much more sensitive to the maximum size of their target

than to its shape. For example, the diffusion current to a perfectly absorbing cylindrically

symmetric ellipsoid of semimajor axis a and semiminor axis b,with a >> b, differs from the

current to a perfect absorbing sphere of radius a by only a logarithmic factor of

(1/ ln (2a/b)) [16]; the current to a disk of radius a differs from that to a sphere of radius a

by only a factor of (2/π) [28]. Therefore the current I from the inside of the cell through

the permeable patch should depend mainly on the maximum dimension of the patch rather

than its deformation. Further, I = NcPcΔC̄ where Nc is the number of channels, Pc is the

single-channel permeability, and ΔC̄ is the average concentration difference across the

membrane over the area of the patch. If Nc and Pc are constant, then ΔC̄ will also be

relatively independent of patch deformation. Thus the turgor pressure reduction will

persist even when the membrane is bent inwards, until it forms a tubule.

The presence of permeable patches can also cause a substantial decrease in the bulk turgor

pressure if α is unaffected by the patches. Using the maximum estimate of P1 = 0.1cm/s,

together with the corresponding patch radius of 45 nm, we find a global turgor pressure

reduction of 52%. This does not affect our key results because we focus on the ratio of the

turgor pressure at the permeable patch to that in other parts of the cell. Because the

permeable patch is small, the measured turgor pressure corresponds to the calculated value

away from the patch. The effect on the bulk turgor pressure will be reduced if P2 is larger
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than is assumed in Table 2.1, because a lower fraction of the total osmolyte current will

flow through the patch. It will also be reduced if D is smaller, because this reduces the

required values of P1 and a, according to Eq. 2.19.

2.4.2 Relation to experiments

We are not aware of experiments currently in the literature that can test the hypothesis of

local turgor pressure reduction in yeast. However, the efficiency of invagination is greatly

reduced in deletion mutants of the channel Fps1 [1], an effect that could increase turgor

pressure either locally or globally. Fps1 localizes in membrane patches [134]. To establish

the extent of channel clustering at endocytic sites, one could use two-color fluorescence

imaging to measure colocalization of Fps1 and with endocytosis markers such as the early

scaffold protein Ede1 or the polymerized-actin proxy Abp1. Colocalization of channel

patches with endocytic proteins would indicate that the turgor pressure is locally reduced

around the endocytic site. Appearance of the channels before Ede1 would suggest that the

channels have a function in marking the endocytic site. On the other hand, appearance of

the channels after Abp1 could mean that polymerized actin is important for recruiting the

channels. Such a possibility is suggested by the documented effects of polymerized actin on

channel dynamics in other types of cells [49, 86, 148]. If the channel patches do colocalize

with endocytic sites, superresolution measurements of the distribution of channels could

provide a concrete test of our hypothesis.

Previous experiments have demonstrated that the effect described here, variations of

osmotic pressure difference across the membrane caused by variations in channel density,

does function on larger spatial scales. For example segregation of aquaporins and Na+/H+

channels to the leading edge of cancer cells led to osmolyte concentration gradients over the

length of the cell, which in turn created internal pressure gradients that drove migration
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through artificial channels [130]. Here we predict that gradients of osmolytes over much

smaller distances, caused by higher densities of channels, will lead to osmotic pressure

variations over these smaller distances.

2.4.3 Application to plant cells

The high turgor pressure in plants also poses conceptual difficulties in rationalizing the

mechanobiology of endocytosis, and some early papers actually doubted the existence of

the process for this reason [51, 100]. Endocytosis in plants has some parallels to the process

in yeast, in particular its polymerized-actin dependence [10, 11]. The difficulties of

overcoming high turgor pressure in plants by an actin-dependent process might thus be

eased by a local turgor pressure reduction mechanism like that we discuss here for yeast.

2.4.4 Alternative mechanisms

There are several other possible mechanisms that might deal with the difficulty of

generating sufficient force via actin polymerization and curvature-generating proteins. A

calculation based on the total number of type-I myosins in fission yeast [12], assuming that

each one can generate 2 pN of force, suggested that they could overcome the turgor

pressure, but only over a smaller region of radius 10 nm. The geometric arrangement of

myosins that would supply forces with the correct orientation and distribution is also not

known. One possibility is that the myosins turn actin filaments into "superpolymerizers"

by i) binding the filaments to the membrane and ii) moving to the growing tip of the actin

filament after each polymerization event and keeping it far enough from the membrane

that new subunits can be added freely [133]. In this hypothesis, myosins act somewhat like

formins, which drive processive elongation of actin filaments while bound to the membrane.

An alternate possibility is one analogous to tubulation of giant unilamellar vesicles driven
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by type-1 myosin [144], where the driving force for tubulation came from myosin motion

along a preexisting actin scaffold. We are not aware of measurements of the

force-generating capability of yeast type-1 myosins, but mammalian type-1 myosins are

able to generate up to 5 pN of force per molecule [48]. It is also possible that there are

growing actin filaments that were not detected in the previous filament counts based on

Arp2/3 complex mediated branching [120, 140]. These could, for example, be generated by

domains on the actin nucleator Las17 that act independently of the Arp2/3 complex [136].

It has also been suggested that polymerization of actin filaments along the membrane could

generate much larger forces in a wedge-like geometry [34]. The transmission of such forces

to the membrane would require a vary stiff actin gel [22]. There is no proof that a gel with

such properties exists, but the high crosslinking fraction in endocytic actin patches could

make them much stiffer than other forms of polymerized actin.

Another possibility is that curvature-generating proteins (CGPs) could be providing a very

large fraction, say 90% of the force overcoming turgor pressure. However, if this were the

case, one would expect that the large heterogeneity between cells, and between endocytic

events in the same cell, would often lead to the CGPs exerting sufficient force to drive the

process by themselves, in the absence of actin polymerization. Correlative

electron-microscopy and light-microscopy experiments [75] have shown that this is not the

case: substantial membrane deformation seldom or never occurs without polymerized actin.

Finally, the global turgor pressure could be overestimated. The turgor pressure is typically

measured indirectly [113], by exposing the cell to increasing solute concentrations and

measuring the volume change. The turgor pressure is proportional to the minimal external

solute concentration increase that causes the cell wall to collapse, on the assumption that

the membrane collapses at zero turgor pressure. These methods could overestimate the
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turgor pressure because cells react to increasing external solute concentration by increasing

the internal solute concentration, thus requiring higher external concentrations for collapse

[134]. Osmoregulation could also confound mechanically based turgor pressure

measurements [95], if internal osmolytes are upregulated in response to force opposing cell

growth. Direct methods using an indentor that penetrates the cell wall are impractical in

yeast because of the small system size. But experiments in plant cells [13] have shown good

consistency between indirect and direct methods. Therefore, for the global turgor pressure

in yeast to be strongly overestimated, osmoregulation mechanisms in yeast would have to

be more efficient than in plants.
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2.7 Erratum

The default value of the glycerol production rate used in the figures, except for Figure 2.5a,

is not 30 mM/s, but rather 18.6 mM/s. This corresponds to the production rate that

makes the concentration on the side of the cell opposite the permeable patch

approximately equal to 242 mM, corresponding to 0.6 MPa. The value given in Table 2.1,

30 mM/s, is several times too large. The value of alpha for Figure 2.5a corresponds to a

concentration of 88 mM, or about 0.2 MPa, on the side of the cell opposite the patch. This

value is likely more accurate, since it corresponds to the turgor pressure determined

through indentation experiments on S. Cerevisiae.
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Supplementary Material

Solution of planar model

Since there are no sources in this model, the concentration is described by Laplace’s

equation, ∇2C̃(z, ρ) = 0. From the cylindrical symmetry of the problem about the z-axis,

the general form of the correction to the concentration may be written as

C̃(z, ρ) =

∞∫

0

dk A(k)e−k|z|J0(kρ) (2.23)

Here J0(kρ) is the zeroth-order Bessel function of the first kind. The integral form of the

boundary conditions is

∞∫

0

dk A(k)J0(kρ) =
1

2
(Cout − Cin) for ρ < a (2.24)

∞∫

0

dk kA(k)J0(kρ) = 0 for ρ > a (2.25)

We make the substitutions ρ = ax, t = ka,A(k) = a (Cout−Cin)
π

f(t).We then have

∞∫

0

dtf(t)J0(xt) =
π

2
for x < 1 (2.26)

∞∫

0

dt tf (t)J0(xt) = 0 for x > 1 (2.27)
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The solution to this equation is outlined in [85]. We write:

∞∫

0

dt tf (t)J0(xt) =
1

x

d

dx

1∫

x

ds
sψ(s)

√
s2 − x2

, (2.28)

where is a function to be determined. This only holds for 0 < x < 1, else the left-hand side

is zero by Eq. 2.27. Inverting the Hankel transform, integrating by parts, and recalling

that J0(0) = 1 and J ′
0 = −J1, we have

f(t) =

1∫

0

dx J0(xt)x
1

x

d

dx

1∫

x

ds
sψ(s)

√
s2 − x2

=

1∫

0

dx J0(xt)
d

dx

1∫

x

ds
sψ(s)

√
s2 − x2

=

−

1∫

0

ds ψ(s)−

1∫

0

dx
d

dx
[J0(xt)]

1∫

x

ds
sψ(s)

√
s2 − x2

= −

1∫

0

ds ψ(s)+

1∫

0

dx

x∫

1

ds
stJ1(xt)
√

s2 − x2
ψ(s) =

−

1∫

0

ds ψ(s) +

1∫

0

ds stψ(s)

s∫

0

dx
J1(xt)

√
s2 − x2

(2.29)

From the relation [47]

s∫

0

dx
J1(xt)

√
s2 − x2

=
2 sin2(st/2)

st
=

1 − cos(st)

st
, (2.30)

we have

f(t) = −

1∫

0

ds ψ(s) cos(ts). (2.31)

Then (2.30) becomes

π/2 = −

∞∫

0

dt

1∫

0

ds J0(xt)ψ(s) cos(ts) = −

x∫

0

ds
ψ(s)

√
x2 − s2

, (2.32)
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where we have used the relation [47]

∞∫

0

dt J0(xt)cos(st) =
1

√
x2 − s2

(x > s); (2.33)

for x < s the integral vanishes. The solution to Eq. 2.32 is ψ(s) = −1, or f(t) = sin t
t
. We

then have A(k) = (Cout−Cin)
π

sin ka
k
, and the correction is

C(1) =

∞∫

0

dk
sin(ka)

k
e−k|z|J0(kρ) = sin−1

[
2a

√
k2 + (ρ + a)2 +

√
k2 + (ρ − a)2

]

, (2.34)

where the second equality is obtained from Ref. [47]. Algebraic manipulations show that

this is tan−1

(√
2

ζ+λ

)

, justifying Eq. 15.
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Chapter 3

Time-Dependent Analysis of

Permeability-Increase Mechanism for

Endocytosis

3.1 Introduction

As discussed above, endocytosis is a process by which cells incorporate material from the

external environment, or from the cell’s own lipid membrane, into the extracellular fluid. It

serves a variety of purposes, including incorporating food molecules, modulating the

properties of the membrane to facilitate signal transduction, and providing a pathway that

can be exploited by pathogens to enter the cell, such as allowing viruses access for the

purposes of replication [87]. This process involves an assembly of dozens of specialized

proteins, notably actin, which generates forces through polymerization of monomers;

clathrin and other curvature-generating proteins, which stabilize and promote the curved
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shape of the endocytic vesicle; molecules that promote attachment to the plasma

membrane; and a variety of signaling molecules [67, 106].

The primary obstacle to endocytosis in yeast is the turgor pressure, the difference in

osmotic pressure between the extracellular fluid and the external environment.

Measurements of turgor pressure in yeast are difficult because of the presence of the stiff

cell wall [124] and because of the capability of yeast cells to osmoregulate, adjusting their

internal glycerol levels in response to external osmotic stimuli [6, 112]. However, AFM

indentation experiments have estimated a turgor pressure of 0.2 MPa [45].

In the previous chapter, we considered the possibility of local turgor pressure reduction by

a single endocytic patch in a steady-state situation [114]. In real cells, endocytosis is a

dynamic mechanism that takes place over various timescales, depending on the type of

endocytosis: for instance, certain forms of CME in neurons take anywhere from less than

one second to 50 seconds [128], whereas the whole process CME in yeast can occur in

40-120 seconds [80], although the membrane deformation may occur faster, on the scale of

15-30 seconds [75]. In addition, a single endocytic zone constitutes a small fraction of the

total cell area; as such, there is usually more than one endocytic event occurring at any

given time in a single cell. Some estimates of endocytic event frequency in yeast protoplasts

are around 2 events per minute, depending on factors such as the concentration of glucose

in the environment [25]. Endocytic frequency also depends heavily on the cellular

membrane composition [32]. Thus, if regions of reduced turgor pressure are associated with

endocytic patches, there could be several permeable patches present simultaneously.

The primary osmolyte in yeast is glycerol, which generates turgor pressure through

chemical potential differences across the cell membrane. The glycerol concentration profile
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is determined by the diffusion of glycerol through the intracellular and extracellular fluid,

which corresponds to a multilayer diffusion problem, where the intracellular and

extracellular fluid constitute separate layers, and the cell membrane can be modeled as

either an additional, thinner layer or as an interface condition between the other two

layers. Multilayer diffusion, including the analogous case of heat diffusion, has been

extensively studied, particularly from a theoretical perspective. For instance, for a

one-dimensional system of an arbitrary number of layers, the critical time has been found

to depend not only on the diffusion coefficients of the layers, but also on their spatial

ordering [55]. Non-Euclidean geometries have been studied as well, usually with some type

of simplification, such as assuming spherical symmetry or limiting the treatment to certain

types of boundary conditions [24, 39].

3.2 General Equations

We model the diffusion of glycerol in a spherical cell with a spatially and temporally

constant production rate, as well as the surrounding fluid. The cell is permeable to

glycerol, and has one or more regions of increased permeability. This corresponds to

solving the equation

D∇2C(r, t) + α(r) =
∂C(r, t)

∂t
(3.1)

subject to the permeability boundary condition

P (θ, φ)(Cout(R, θ, φ, t) − Cin(R, θ, φ, t)) =
∂C(r, θ, φ, t)

∂r

∣
∣
∣
∣
r=R

, (3.2)
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continuity of the normal derivative at r = R, and other appropriate boundary conditions

depending on the specifics of the system, such as finiteness at the origin.

Our primary model uses the finite element software FEBio [83] to model the behavior of

glycerol diffusion in a spherical model yeast cell with a rigid cell wall. This package can

model the time dependence and steady-state behavior of the solute concentration of a

multiphasic system consisting of one of more diffusing solutes, corresponding to the

previous equations, as well as the deformation of the system. We modified the the software

with a custom-written plugin that imposes a spatially varying, angularly dependent

permeability on the surface of the cell. This permeability is chosen to match the functional

form previously used in the semi-analytic steady-state model of a permeable cell with a

single permeable patch. That is, it is of the form:

P (θ, φ) = a + b exp[−δr2(θ, φ)], (3.3)

where δ is related to the angular size of the patch, and is determined by the best fit to a

discontinuous permeable patch of the same angular size θ0; r(θ, φ) is the great-circle

distance between the point on the surface of the sphere defined by (θ, r) and the center of

the permeable patch, (θ0, φ0). The parameters a and b are chosen such that the

permeability at the center of the patch has the increased value P1, whereas the

permeability opposite the patch has the baseline membrane value P2. The cell is treated by

a three-component model, consisting of an interior component that represents the

intracellular fluid, a component of finite thickness that represents the membrane-cell wall

complex, with the diffusivity and hydraulic permeability of the cell wall, and an exterior

component, roughly ten times larger than the interior, that represents the extracellular

fluid. Glycerol production occurs at a constant rate α in the interior of the cell, chosen to
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correspond to the production rate that produces a turgor pressure of 0.2 MPa for a cell

with a spatially homogeneous permeability. We generally use zero-concentration and

zero-pressure conditions on the surface of the extracellular fluid domain, far from the

glycerol-producing intracellular region.

We also compare this to our previous model [114], which used a semi-analytic solution

through Fourier-Legendre polynomials of the equilibrium diffusion equation with an

isotropic source term inside the cell to determine the steady-state behavior of a cell with a

single permeable patch. We further extend this model to treat a case with an arbitrary

varying permeability dependent on the angle θ, in particular the case of two permeable

patches at opposite sides of the cell. Finally, we extend the previous semi-analytic model to

treat the case of a time-dependent concentration.

3.3 Simulation results

One purpose of the finite element model is to provide a test of the validity of our previous

semi-analytic model, which predicted the steady-state distribution of glycerol in a cell with

a single permeable region as a function of radius and angle. Although we cannot accurately

analyze patch sizes as small as those treated in our previous work, around 0.02 radians or

60 nm in radius, we can test the validity of this model and the previous by comparing the

finite-element simulation for somewhat larger patch sizes, around 0.2 radians or 600 nm in

radius, and correspondingly smaller permeabilities, about 1/10 the physical value shown in

the table. The finite-element model for a single patch of angular radius 0.2 radians, the

default permeability, and an initial intracellular and extracellular concentration of zero

(Figure 3.1) gives a maximum steady-state concentration Cmax of 7 mM, attained at θ = π,

opposite the permeable patch, whereas the semi-analytic model gives 7.12 mM, a difference
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Parameter Default Value
Diffusion coefficient, D 1.1×10−11 m2/s

Glycerol production rate, α 10 mM/s
Patch permeability, P1 4 × 10−2 cm/s
Cell permeability, P2 4 × 10−6 cm/s
Cell wall rigidity, E 127 MPa
Membrane thickness, δ 10 nm

Membrane-wall hydraulic permeability, Phydr 2.17×10−1μm4/(N ∙ s)
Glycerol molar mass, mgl 92 grams/mol
Glycerol density, mgl 1.26 g/cm3

Cell radius, R 3 microns

Table 3.1: Parameter values for time-dependent spherical cell model. The hydraulic perme-
ability, the wall rigidity, the glycerol density, and the glycerol molar mass apply only to the
finite-element model.

Figure 3.1: Steady-state concentration profile of cell with a single patch of angular radius
0.2 radians and default permeability at t = 31.18 s.
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of about 2%. However, for a permeability 90% smaller, the semi-analytic model predicts a

maximum concentration of 24.3 mM, whereas the finite-element model gives 26.6 mM,

nearly a 10% difference.

In our previous work, we treated the case of a single permeable patch, in contrast to the

more realistic situation in which multiple endocytic patches are present. The finite element

analysis treats a system with an arbitrary permeability distribution on the surface of the

cell. Further, the semi-analytic model with an azimuthally symmetric permeability is

readily extended to a situation with two patches at opposite sides of the cell (i.e. at

θ = 0, π). Figure 3.2 shows the angular dependence of the concentration just inside the cell

as predicted by the semi-analytic theory for a cell with two permeable patches of angular

radius 0.2 rad and permeability 0.1P1, and the same dependence predicted by the

finite-element model. The semi-analytic model has some noise, which is due to the error in

the Fourier-Legendre series approximation. If we compare this with the results of the FEM

model for the same parameters (Figure 3.3), we see that the FEM concentration profile

differs by approximately 10%, suggesting some inaccuracy, but that the general shape of

the profile of concentration versus angle is similar.

Figure 3.4 shows the angular dependence of the concentration difference in the

semi-analytic model for the more physical case corresponding to the default permeability

and angular size. We see that the larger patch sizes significantly reduce the bulk

concentration. As in the case of a single patch, the dimensionless parameter P1a/D

determines the value of concentration ratios like δC = C(0, 0)/C(R, π), the ratio of the

concentration near a patch to the concentration far from the patch; however, the

dependence ΔC(0)/ΔC(π) = f(P1a/D) clearly does not hold, since the concentration

difference near both patches is of course identical in the case of two patches. Moreover, the

value of δC does not seem to depend on the number of patches, assuming sufficiently small
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Figure 3.2: Steady-state concentration vs. angle of cell with two patches of size 0.2 radians
and permeability 0.1P1 (semi-analytic model)

patch sizes. That is, δC is the same between, for instance, a cell with a single patch with

default parameter values and one with two patches with the same parameter values, in

spite of the fact that the center concentration C(0, 0) varies substantially with patch

number. Further, the average concentration does not depend strongly on the distribution

of patches: for instance, displacing the φ-center of a patch π/4 radians does not produce an

appreciable alteration.

As mentioned above, our finite-element model also allows us to characterize how rapidly

the concentration difference will be reduced after the appearance of a permeable patch,

relative to the time scale of the endocytosis. For a single patch of angular radius 0.2

radians and permeability 4 × 10−3 cm/s, equal to 0.1 times the default value, the

concentration at the center of the cell takes about ten seconds to equilibrate from its initial
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Figure 3.3: Steady-state concentration Cs(θ, R) in the FEM model vs. angle for a cell with
two patches of size 0.2 radians and permeability 0.1P1
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(a)

(b)

Figure 3.4: a) Steady-state concentration vs. angle of cell with two patches of default size
and permeability (semi-analytic model). b) Concentration vs. angle near one of the patches
for same parameter values (semi-analytic model).
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Figure 3.5: Concentration at r = 0, φ = 0 (orange) and best-fit curve of the form a + be−λt

(blue) versus time for a cell with a patch of permeability 0.1P1 and angular size 0.2 radians
(FE model)

concentration of 80 mM, corresponding to a 0.2 MPa pressure difference across the

membrane, to its final steady-state concentration of 27 mM. The concentration at the

center of the cell shows the same time dependence: at t = 10 s, it is only 5% higher than

its final steady-state value (Figure 3.5). The semi-analytic solution of the reaction-diffusion

equation for this case, described in Section 3.6, predicts that the concentration over time at

any given point will be of the form

C(t) =
∑

c(λ)e−λt (3.4)

For the case of a single cell with maximum patch permeability 0.1P1, θ0 = 0.2 radians, the

interior concentration is well-described by a single eigenvalue, i.e. the time dependence is of
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Figure 3.6: Concentration at r = 3.65 (black) and best-fit curves of the forms a + be−λt

(orange) and a + b1e
−λ1t − b2e

−λ2t (green) versus time for a cell with a patch of permeability
0.1P1 and angular size 0.2 radians (FE model)
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Figure 3.7: Concentration at r = 3.65 nm (black) and best-fit curves of the forms a + be−λt

(orange) and a + b1e
−λ1t − b2e

−λ2t (green) versus time for a cell with a patch of permeability
0.1P1 and angular size 0.2 radians; zoom view (FE model)
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the form C(0, t) = a + be−λt , as shown in Figure 3.5. This form holds for general points

within the cell, i.e. for r < R, with a time dependence described by a single eigenvalue,

λ = 0.35/s. However, this description breaks down for short times at certain points outside

the cell; since the external environment is relatively far from its steady-state concentration,

the concentration outside the cell undergoes an initial increase for t < 0.1 due to

permeation of solute from within the cell, whereas after this time diffusion dominates over

permeation and the concentration decreases exponentially with the same time dependence

as the internal concentration. In this case the concentration is well-described by two

eigenvalues, i.e. C(t) = a + b1e
−λ1t − b2e

−λ2t (Figures 3.6, 3.7) The initial increase

corresponds to the second, larger eigenvalue λ2 whereas the long-time behavior is described

by λ1, which is approximately the same as the interior time eigenvalue.

3.4 Conclusions

We developed a finite element model that allows for several extensions of our previous

analysis of the glycerol concentration and turgor pressure distribution in a permeable cell

with a single permeable patch and internal glycerol production, extending it to consider a

more arbitrary angular distribution of patches, including multiple patches, as well as

considering the equilibration behavior of the system. These changes render it closer to the

situation in actual yeast cells. We further developed an analytic framework for an arbitrary

angularly-dependent permeability (Section 3.5) and for the time-dependence of the

concentration (Section 3.6).

We found that certain properties of the system are not strongly dependent on patch

number; for instance, the presence of multiple patches does not change δC, the ratio of the

concentration near a patch to the concentration far from a patch, which also retains its
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dependence on P1a/D. We further compared the semi-analytic theory and a new

finite-element model and found good agreement, providing support for the consistency of

both models.

We examined the time-dependent behavior of the system for a single permeable patch,

finding that equilibration times are around 10 seconds after the permeability of the patch is

increased, corresponding, for instance, to channel activation. This time is smaller than the

timescale of endocytosis, suggesting that increasing local permeability, and the

concomitant local turgor pressure reduction, could provide a viable mechanism to facilitate

endocytosis. We also were able to describe the time evolution in terms of exponential decay

with a small number of eigenvalues λ, although the analytic theory allows for a continuous

spectrum. We thus found that the concentration outside the cell has both a

permeation-dominated and diffusion dominated timescale; during the first approximately

0.1 seconds, permeation of glycerol produced within the cell dominates, whereas for longer

times the removal of glycerol through diffusion is more important.

3.5 Semi-analytic theory of steady-state concentration

with general angularly-dependent permeability

We can extend our model of the steady-state concentration profile of a spherical cell with a

permeable patch to the case of an arbitrary permeability profile P (θ, φ) on the surface of

the cell, where θ is the polar angle and φ is the azimuthal angle. In this case, the system

satisfies the equations:
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D∇2C + α(r) = 0

∂C
∂r

∣
∣
r=R−

= ∂C
∂r

∣
∣
r=R+

D ∂C
∂r

∣
∣
r=R

= P (θ, φ)(Cout(r, θ, φ) − Cin(r, θ, φ))

(3.5)

Here “in” and “out” denote the interior and exterior solutions at r = R, defined limit-wise,

and α(r) is a constant α for r < R and zero otherwise.

The particular solution to this equation inside the cell is −αr2

6D
. We can then write the

general solution as:

Cout =
∞∑

l=0

l∑

m=−l

amlr
−l+1Y l

m(θ, φ)

Cin = −αr2

6D
+

∞∑

l=0

l∑

m=−l

bmlr
lY l

m(θ, φ)

(3.6)

where Y l
m are the spherical harmonics.

The first boundary condition gives:

∞∑

l=0

l∑

m=−l

aml(l + 1)R−l+2Y l
m(θ, φ) = −

αR

3D
+

∞∑

l=0

l∑

m=−l

bmlr
lY l

m(θ, φ) (3.7)

Or:

alm, a00 =
l + 1

l
R−(2l+1)blm,

αR3

3D
(3.8)

We expand the permeability as a sum of spherical harmonics, i.e. P (θ, φ) =
∞∑

l=0

l∑

m=−l

dmlr
lY l

m(θ, φ). Then the permeability boundary condition gives us:
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αR2

2
+ D

∞∑

l1=0

l1∑

m1=−l1

(
l1

l1 + 1
− 1

)

bm1l1R
l1Y l1

m1
(θ, φ) = (3.9)

−
αR

3D
+

∞∑

l2=0

l2∑

m2=−l2

l2bm2l2r
l2−1Y l2

m2
(θ, φ)

∞∑

l=0

l∑

m=−l

dmlr
lY l

m(θ, φ) (3.10)

Multiplying by a third spherical harmonic Y l3
m3

(θ, φ) and using orthogonality of the

spherical harmonics, this becomes:

√
παRδm3,0

l3,0 +
αdl3m3R

2

3D
− dl3m3R

l3
1

l3 + 1
=
∑

l1m1

∑

l2m2

l1bl1m1dm2l2R
l1−1Im1m2m3

l1l2l3
(3.11)

where

Im1m2m3
l1l2l3

=

∫ 2π

0

∫ π

0

dθ dφ sin θY l1
m1

(θ, φ)Y l2
m2

(θ, φ)Y l3
m3

(θ, φ) (3.12)

which can be written in terms of Clebsch-Gordon coefficients as:

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)

(3.13)

Although the previous solution satisfies the equation and boundary conditions, its

complexity prevents its numerical evaluation for physically realistic patch sizes. In

particular, while the coefficients of the azimuthally symmetric solution, Il1l2l3 , depend on
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three indices that vary from 1 to a number N determined by the size of the patch, the

coefficients of this general solution depend on six, that is Im1m2m3
l1l2l3

, of which three vary from

−2N to 2N . For the N needed to obtain acceptable precision for the single-angle case

(N > 100), this would require calculating over 1012 coefficients. However, by exploiting the

symmetry of the system and the properties of the Clebsch-Gordon coefficients, this

computational load could be lowered significantly: approximately 99.9% of the coefficients

are zero, and the others satisfy various symmetries such as invariance under interchange of

columns, evident from the definition of the integral.

3.6 Semi-analytic theory of azimuthally symmetric time-

dependent concentration profile

Our previously published model deals with a steady-state situation, where the glycerol

production within the cell is balanced by its outflux. As in section 3.3, we extend this

model to incorporate time dependence of the concentration, in this case by using a similar

semi-analytic approach to that employed for the steady-state profile. We consider a

spherical cell with a spatially varying, azimuthally symmetric permeability P (θ). The

interior and exterior concentration satisfy the system:

D∇2Cin + α = ∂C
∂t

D∇2Cout = ∂C
∂t

∂Cout

∂r

∣
∣
r=R−

= ∂Cin

∂r

∣
∣
r=R+

D ∂C
∂r

∣
∣
r=R

= P (θ, φ)(Cout(R, θ, t) − Cin(R, θ, t))

Cin(r, θ, 0) = gin(r)

Cout(r, θ, 0) = gout(r)

(3.14)
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We use the established approach of writing the solution as the sum of a particular solution

of the inhomogeneous equation and a solution of the homogeneous equation that gives the

correct boundary conditions. We write each concentration as the sum of a steady-state

term that depends only on the spatial coordinates and a transient term:

Cin(r, θ, t) = Sin(r, θ) + Vin(r, θ, t), Cout(r, θ, t) = Sout(r, θ) + Vout(r, θ, t).

Since the boundary conditions must be valid at all times, the steady-state terms satisfy:

D∇2Sin + α = 0

D∇2Sout = 0

∂Sout

∂r

∣
∣
r=R−

= ∂Sin

∂r

∣
∣
r=R+

D ∂S
∂r

∣
∣
r=R

= P (θ, φ)(Sout(R, θ) − Sin(R, θ))

(3.15)

The solution to this is simply the concentration given by the model from our previous

paper:

Sout = αR3

3Dr
+

∞∑

l=1

dlrPl(cos(θ))

Sin = −αr2

6D
+

∞∑

l=0

l
l+1

R2l+1dlr
lPl(cos(θ))

(3.16)

The transient terms satisfy:
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D∇2Vin = ∂C
∂t

D∇2Vout = ∂C
∂t

∂Vout

∂r

∣
∣
r=R−

= ∂Vin

∂r

∣
∣
r=R+

D ∂C
∂r

∣
∣
r=R

= P (θ, φ)(Vout(R, θ, t) − Vin(R, θ, t))

Cin(r, θ, 0) = gin(r) − Sin(r, θ)

Cout(r, θ, 0) = gout(r) − Sout(r, θ)

Vout(Rmax, θ) = 0

(3.17)

The interior and exterior transient equations are identical. We seek a solution to this

equation of the form C(r, t) = Ψ(r)T (t). This gives, by separation of variables:

(1/))D∇2Ψ = (1/T )
∂T

∂t
= −λ (3.18)

where λ is a positive, real separation constant to ensure boundedness at infinite time.

The solution of the temporal component is T (t) = ce−λt. The spatial portion becomes

∇2Ψ = (1/T )
∂T

∂t
= −(λ/D)Ψ (3.19)

which we recognize as the Helmholtz equation, whose azimuthally symmetric solutions are

Ψl(r, θ) =
(
aljl(

√
λ/Dr) + blyl(

√
λ/Dr))Pl(cos θ) (3.20)

The functions jl, yl are the spherical Bessel functions of the first and second kinds

respectively and the Pl are the Legendre polynomials. Separating the eigenfunctions into

interior and exterior components, and noting that the interior solution cannot contain yn
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due to the latter being non-finite at r = 0, we have:

Ψin,l = al(λ)jl(
√

λ/Dr)Pn(cos θ)

Ψout,l = bljl(
√

λ/Dr) + elyl(
√

λ/Dr))Pl(cos θ)
(3.21)

where we have arbitrarily chosen the coefficient of the interior Ψ to be 1.

Applying the derivative continuity condition, we have

al(λ)j ′n(
√

λ/Dr) = bmnj′n(
√

λ/Dr) + emny′
n(
√

λ/Dr) (3.22)

which gives us bl(λ) = al(λ) − ϕl(λ)el(λ) for ϕl(λ) = y′
l(
√

λ/DR)/j ′l(
√

λ/DR). The

permeability condition mixes together different values of l, and thus cannot be imposed on

the individual eigenfunctions Ψin,l but rather applies to the sum
∑

l

Ψl. That is, at r = R,

P (θ)
∑

l

(Ψin,l − Ψout,l) = D
∂

∂r

∑

l

Ψin,l (3.23)

We expand the permeability as P (θ) =
∑

k

fkPk(cos θ), giving us

∑

k

∑

l

Pk(cos θ)Pl(cos θ)fkel(λ)[yl(
√

λ/DR)−ϕljl(
√

λ/DR)] =
∑

l

al(λ)
√

Dλj ′l(
√

λ/DR)Pl(cos θ)

(3.24)

Multiplying by Pn(cos θ), substituting in Equations 3.21 and 3.22, and using orthogonality

of the Legendre polynomials, this becomes

2

2n + 1
an(λ)

√
Dλj ′n(

√
λ/DR) =

∑

n

∑

l

νl(λ)Iklnfnel(λ) (3.25)
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where Ikln =
1∫

−1

dxPk(x)Pl(x)Pn(x) and

νl(λ) = yl(
√

λ/DR) − ϕljl(
√

λ/DR) (3.26)

This is a set of equations that defines al(λ) in terms of ek(λ) for all λ, k, l.

We can then write the general solution as

Vout =
∫

dλλ
∑

l

Ψout,l(r)e
−λt

Vin =
∫

dλλ
∑

l

Ψin,l(r)e
−λt

(3.27)

Note that any prefactor c(λ) in these solutions can be incorporated into the coefficients

al(λ) etc.

The initial conditions are:

Vin(r, θ, 0) =

∫
dλλ

∑

l

Ψout,l(r) = gin(r) − Sin(r, θ), (3.28)

and similarly for Vout. We can write the conditions for Vin, Vout in a single line as:

V (r, θ, 0) =

∫
dλλ

∑

l

Ψl(r, θ) = g(r) − S(r, θ), (3.29)

where for instance Ψl(r, θ) = Ψin,l(r, θ) for r < R and Ψout,l(r, θ) for r > R and similarly for

the other functions. If we choose the interior and exterior initial conditions to be exactly
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equal to the angular component of the steady-state concentration S(r, θ), this becomes:

∫
dλλ

∑

l

Ψl(r, θ) = h(r) (3.30)

for a function h(r) equal to the radial term in the initial conditions. Using orthogonality of

Pk(cos(θ)), this becomes:
2

2l + 1

∫
dλλΨr,k(r) = h(r) (3.31)

for all k, where Ψr,l is the radial component of the eigenfunction and h(r) is the

appropriate initial data, or:

Ψr,l =






aljl(
√

λ/Dr) r < R

[al(λ) − ϕl(λ)el(λ)]jl(
√

λ/Dr) + elyl(
√

λ/Dr) r > R

(3.32)

When combined with Equation 3.25 this determines al(λ).
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Chapter 4

Force Generation by Curvature-Inducing

Molecules in Cells with Turgor

4.1 Introduction

The previous chapters have treated the origins of the forces opposing the central process of

clathrin-mediated endocytosis [87]. This process involves the invagination of a portion of

the cell membrane, driven by curvature-generating proteins (CGMs) and in many cases the

the polymerization of actin. Under some conditions, the dimple eventually lengthens and

pinches off into a free vesicle which moves into the cell. CME has been observed in many

biological systems, from animal cells to yeast cells [80] and plant cells [26], in processes

varying from viral transport [102] to mammalian nervous activity [62, 92]. Forces opposing

endocytosis include the bending rigidity of the membrane, surface tension, and (in some

types of cells) turgor pressure.
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CGMs play a key role in CME, as well as in various other processes in a wide variety of

cells, such as cell-cell fusion and curvature sensing [74, 109]. Among those with a role in

CME, the most studied is clathrin, which has been shown to sense and influence membrane

curvature, and likely plays a critical role in generating curvature and even forces [57].

However, other curvature-generating proteins can also affect endocytosis [65]. For example,

BAR-domain proteins, which induce an asymmetric curvature [119, 131], have been shown

to colocalize with clathrin-coated pits [117]. They can also affect endocytosis in a variety of

ways, for example by stabilizing or destabilizing the invagination, potentially leading to

pinch-off in later stages [138]. Epsin contributes to CME [30, 91] , possibly by inducing a

high degree of curvature in conjunction with clathrin [98]. Curvature may also be induced

by other factors, such as the presence of curved lipids asymmetrically distributed between

the two leaflets of the lipid bilayer [58], or hydrophobic insertion [132]. In addition, protein

crowding, in which a curved membrane favors greater numbers of attached proteins than a

flat membrane, may be important [127].

CME in yeast presents additional challenges not present in, for example, mammalian cells,

due to the presence of a high turgor pressure and a stiff cell wall. The primary barrier to

yeast endocytosis is the turgor pressure [1], which may attain values as high as 0.6 MPa in

budding yeast [113] and 1 MPa in fission yeast [12]. We use 0.2 MPa as a baseline value,

since this value was determined from very rapid indentor experiments, rather than from

slower osmotic shock experiments, which may trigger osmoregulation that confounds the

experiment [45]. This turgor pressure is continuously generated by osmolytes, primarily

glycerol [99], and is balanced by the high yield strength of the cell wall. If the applied

pressure on the cell wall exceeds its stiffness, it will rupture [124]. In order to withstand

the turgor pressure, the yeast cell wall is stiffened by agents such as chitin and β-glucan [3,

143] .
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Previous simulations of actin growth suggest that actin can generate a maximum useful

force of up to 360 pN [22], which can effectively cancel out a substantial portion of the

turgor pressure. When spread over a region corresponding to our default CGM radius of 36

nm and area of 3300 nm2 for a hexagonal patch with amputated corners, this corresponds

to a pressure of approximately 0.11 MPa directed out of the cell, reducing the pressure that

must be overcome by the CGMs from 0.2 MPa to 0.09 MPa.

Some previous estimates have found that CGMs lack the ability to overcome turgor

pressure on the scale of that in yeast [33]. As an first estimate of the CGMs’

force-generating capability, we consider a flat patch of area A, composed of CGMs of

intrinsic curvature C0 with bending rigidity κ; it will preferentially form a spherical cap

corresponding to a sphere of radius R0 = 1/C0 and height A
2πR0

, since there is no stretching

and thus the surface area remains constant. The energy of this system is:

U = 2κ

∫
dA
[(

C − C0

)2
+ σ
]

+

∫
dV Π (4.1)

Thus the bending energy difference between the flat and curved states is 2κAC2
0 , the turgor

pressure energy difference is zero since the area stays constant, and the turgor pressure

energy difference is ΠVcurved = 1
12

ΠA2

πR2
0
(3R0 − A

2πR0
), which leads to an estimate of the

maximum turgor pressure that can be overcome by CGMs as

Πmax =
24πκ

A(3C−1
0 − AC0

2π
)

(4.2)

In particular, for our hemispherical clathrin patch of radius A = 3273 nm, intrinsic

curvature C0 = 0.02/nm, and bending rigidity 300kbT ,[64] this is roughly equal to the
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turgor pressure, 0.2 MPa. Thus, it would appear that the CGMs could almost overcome

the turgor pressure by themselves. In addition, Πmax is enhanced by κ and C0, but reduced

by increasing A.

Several previous theoretical works have looked at the effects of CGMs on membrane

bending [29, 33, 43, 50, 108, 111, 138]. Much of this has dealt with the specific case of

clathrin. These models have often found that clathrin by itself can produce an invagination

[43]. Other models of clathrin bending have utilized a wide variety of mechanisms,

including equilibrium, dynamic, and stochastic approaches [2, 61]. There also exist models

incorporating the effects of epsin [18], BAR domain proteins, and other curvature

generators. These works have characterized various features of CME, such as the balance

between surface tension and curvature generation, and the presence of instabilities in

invagination shape.

However, such models have often neglected the influence of the high turgor pressure present

in yeast. Some models have either modeled only turgor pressure and not the cell wall force,

and thus simply restricted the position of the membrane to be above the cell wall [33]. In

other cases, they have approximated the turgor pressure energy with a simplified quadratic

form, or modeled the cell wall as infinitely hard [89]. This does not take into account the

nearly discontinuous effects caused by presence of the cell wall, and can also be a major

source of inaccuracy, since the cell wall stiffness is much higher than the turgor pressure

(approximately 80-250 times the magnitude). In this paper, we address this issue with an

energy function that shows a smooth, but nonetheless rapid force transition as the

membrane presses into the wall. This allows us to correctly treat the approximately linear

form of the turgor pressure energy as a function of displacement, while simultaneously

considering a cell wall interaction that is essentially a contact force.
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Many previous models have used functional minimization of the continuous Helfrich energy

[52], applied to CGMs, to calculate membrane shapes. While this has the benefit of

computational speed and ease of understanding, and occasionally admits analytic solutions,

it obscures effects from the physical discreteness of CGM molecules. For example, bending

moments in continuum models correspond to pairs of forces in discrete models, which could

have measurable effects in a biological system.

We seek to understand the strength and distribution of forces generated by CGMs and

their dependence on key interaction parameters. To this end, we develop a discrete model

of interacting CGM molecules subject to a high turgor pressure and bounded by a stiff cell

wall. The CGMs also interact with an idealized lipid bilayer membrane, which is modeled

according to Helfrich membrane theory. We use energy minimization algorithms to find the

equilibrium state of the CGM system. We also look at a simple continuous model of a

CGM-covered membrane in a potential with quadratic and linear components,

corresponding to the cell wall force when in contact and to turgor pressure respectively.

The resulting discrete-model shapes agree well with continuous models of the shape for low

turgor pressure, but diverge more for high turgor pressure. We observe several

discontinuous transitions in the force and CGM height as a function of key physical

parameters, corresponding to the CGM patch overcoming turgor pressure and lifting off

from the cell wall. We find that the CGMs alone are sufficient to overcome about half of

the turgor pressure, and are sufficient to overcome the full turgor pressure once the actin

contribution is considered. Additionally, the force distribution predicted by the model is

compared to previous continuous estimates of the force distribution, showing moments at

the edges rather than a spread-out force for large enough areas. Finally, we note that the

presence of a preferred molecular number can follow from an appropriate attractive

interaction.
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4.2 Materials and Methods

4.2.1 Discrete model

In developing a discrete model, one is faced with a choice of molecule shapes. CGMs and

other curvature-inducing molecules vary widely in shape, from the triskelial shape of

clathrin [73] to the more linear shape of BAR domain proteins, or the rod-like shape of

curvature-inducing lipids. These shape differences induce some protein-specific effects on

CGM assembly and curvature induction, as for example the interactions between different

portions of clathrin legs. For maximum generality, we do not treat these in our model,

considering instead a simple shape that leads to curvature, rod-like CGMs with different

preferred top and bottom spacings. This simplification leads to some limitations, since it

does not consider any of the specific shape or chemistry-influenced interactions of actual

proteins, but we argue below that our results are generally applicable.

We calculate the equilibrium shape of a collection of rod-shaped CGMs whose centers are

arranged in a hexagonal lattice in a system with a high turgor pressure and a stiff cell wall,

as shown in Figure 4.1. The molecules interact through their tops, bottoms, and centers.

The membrane is assumed to follow the motion of the bases of the CGMs whereas the cell

wall reacts to the CGM forces transmitted through the membrane according to elastic

theory.

We assume that the CGM energy is of the form:

U = UCGM + UΠ + Uw + Um + Ua (4.3)
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Figure 4.1: Schematic of model, showing membrane with attached CGMs and the cell wall.
The turgor pressure is Π, and the strength of the interaction with the cell wall is kw. The
top and bottom preferred distances are a + ε and a respectively, with an interaction spring
constant kb.
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Here UCGM is the energy due to curvature-generating proteins, UΠ is the energy due to the

turgor pressure, Uw is the energy due to the interaction with the cell wall, Um is the energy

of the lipid membrane beyond the CGM region (including cell wall interactions) and Ua is a

number-dependent attractive term.

The interaction energy due to the curvature generating proteins is

UCGM =
1

2

∑

〈ij〉

kb

{
[dij,top − (a + ε)]2 + [dij,bottom − a]2

}
+

1

2
kc(dij,cen ∙ eij)

2. (4.4)

Here dij,cen is the displacement vector between the centers of molecules i and j (and

similarly for dij,top and dij,bot. The preferred distances of the tops and bottoms of the

molecules are a + ε and a respectively. Thus the first two terms in the CGM energy are

responsible for the intrinsic curvature of the membrane-CGM complex. In addition, eij is

the average of the orientation vectors of the two interacting molecules. Thus this last term

is a shear energy, which prevents the centers of the molecules from slipping relative to each

other. The strength of the bending energy is given by kb, and the strength of the

anti-slipping interaction is given by kc.

We assume a constant turgor pressure force, leading to a linear term in the energy, of the

form

UΠ =
∑

i

ΠA

N
zi,bot (4.5)

Here A is the projected area in the x-y plane (the local plane of the membrane and the cell

wall) and N is the number of molecules. We consider CGM profiles that are close to flat,

such that the pressure acts vertically and each molecule can be assumed to have equal

molecular area.
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The elastic interaction between the CGMs and the cell wall has two terms, both derived

from linear elastic theory (see Section 4.7): direct interaction of a molecule with the

membrane, and the force experienced by one molecule due to the interaction of the

membrane with neighboring molecules.

Uw =
1

2
(k0 + 6k1)

∑

i

{z2
i,bot[1 − H(zi,bot)]}

2 −
1

2
k1

∑

〈ij〉

zi,botzj,bot(1 − H(zi,bot))(1 − H(zj,bot))

(4.6)

Here k0 and k1 are defined in terms of the cell wall thickness t and the CGM lattice

parameters by equation 4.13, and H(z) is the unit step function. The H(z) factors restrict

the elastic terms to z > 0.

The attractive number-dependent energy, describing binding between neighboring CGMs,

has the form:

Ua = −
∑

〈ij〉

ka, (4.7)

where ka is an unknown constant. Since this term does not have any coordinate or angle

dependence, it only influences the number dependence of the energy, and not the

minimum-energy structure for a given number.

Finally, we model the lipids outside the CGM layer according to the Helfrich membrane

theory (Section 4.8). In the region with CGMs (r < RCGM ), where RCGM is the maximum

radius of the hexagonal CGM array before corner regularization, the membrane is

considered bound to the CGMs and is not treated explicitly. Outside this region, it is

subject to a surface tension σ, a bending rigidity κb, and a wall potential κw, as well as the

turgor pressure Π. Since CGMs are absent on the bare portion of the membrane, the
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membrane height z(r) obeys equation 4.19 for zero intrinsic curvature, and thus has a

solution given by 4.21.

The height and slope must be continuous at the interface between the CGM network and

the membrane, and the membrane profile must decay to zero at infinity. Thus equations

4.21, 4.22 become z(r) = a3K0(c1r) + a4K0(c2r), where a3, a4 may be complex, and satisfy

a3K0(c1R) + a4K0(c2RCGM ) = zCGM (RCGM ), a3K1(c1RCGM ) + a4K1(c2RCGM ) =

z′CGM (RCGM ), where the second equation is the derivative continuity condition.

Here z′CGM (RCGM ) is the average CGM orientation, given by

z′CGM (RCGM ) = −
∑

boundary

tan(φ) cos(θ − θg), where the global radial angle is given by

θg = arctan(y/x), taking the quadrant into consideration. Here x, y are the coordinates

describing the position of the center of a CGM in the plane defined by the cell wall, and

θ, φ are respectively the azimuthal and polar angles describing the orientation of the

rod-shaped CGM molecule.

From the membrane profile, we obtain the membrane energy resulting from its interaction

with the CGMs:

Um =

∫

S

dS[2κC2 + σ +
1

2
kwz2 + Πz] (4.8)

Here the height profile z(r) is determined by the boundary conditions given by z(RCGM )

and z′(RCGM ), and the integration is taken from RCGM to an appropriately distant cutoff

radius (10,000 nm).

The total energy is numerically minimized for various choices of parameters and numbers

of molecules through descent algorithms (conjugate gradient and trust-NCG methods).
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Our baseline number of molecules is 121, with a height of 10 nm and a preferred bottom

spacing of 6 nm and top spacing of 7.5 nm, and with the total area of the molecules, 3300

nm2, roughly corresponding to measured sizes of clathrin patches.

4.2.2 Continuous model of CGMs

For the purpose of comparison, we also examine a simple continuous model of

CGM-membrane bending in the presence of a wall and turgor force. This corresponds to

equation 4.19 for the case of non-zero intrinsic curvature. The model treats the region of

the membrane covered by CGMs. It is thus subject to the following boundary conditions,

derived from the general boundary conditions in Section 4.8:

z′(0) = 0

z′′′(0) = 0

1
R
z′(R) + z′′(R) = C0

( 1
R

+ ξ2R)z′(R) − Rz′′(R) − z′′′(R) = 0

(4.9)

This allows for a second estimate of the effect of the inclusion of the membrane on the

CGM height and force profile. This model, however, does not take into account the effect

of the CGM-free membrane region.

4.3 Results

The default parameter values are given in Table 4.1. We analyze the CGM behavior for a

variety of parameters; however, our default values correspond to those typical of yeast

endocytosis. For instance, the cell wall stiffness comes from direct measurements of yeast

cell walls, the turgor pressure comes from values determined by AFM indentation
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Parameter Default value
Patch dimension,D 6
Molecule height, l 10 nm

Area, A 3300 nm2

Bending rigidity, κ 300 kBT [64]
Cell wall stiffness, G 50.8 MPa [124]

Cell wall potential coefficient, kw 0.00127 J/nm4

Poisson ratio, ν 0.25
Attractive interaction, ka 0 kBT
Bending coefficient kb 2.3×10−3 kg/s2

Anti-slipping interaction, kc 2.3×10−3 kg/s2

Preferred top spacing, d1 7.5 nm
Preferred bottom spacing, d2 6 nm
Difference between spacings, ε 1.5 nm

Intrinsic curvature, C0 0.02 per nm [64]
Turgor pressure, Π 0.2 MPa or 0.09 MPa (actin force incorporated)

Membrane stiffness, κm 30 kBT [64]
Membrane preferred position, z0 -0.15 nm
Membrane surface tension, σ 0.0005 N/m

Table 4.1: Parameter values for the discrete and continuous CGM models. For parameters
that are varied we give the default values.

experiments, and the CGM bending rigidity comes from measurements of clathrin-coated

vesicles, as does the intrinsic curvature. Some values are more uncertain, however: for

instance, the value of the membrane surface tension is unknown. We have chosen the patch

size to roughly match the measured size of endocytic invaginations, and the molecular

length to be close to the thickness of the clathrin coat. The intermolecular interaction

coefficient kb was determined by equating the calculated energy of a flat patch with the

known formula 1
2
κC2

0A, and the difference between the preferred top and bottom distances,

ε, was chosen so that the tops of two molecules located and oriented at their preferred

distances would intersect at a length, equal to C−1
0 , thus ensuring that an array of such

molecules would have an average radius approximately equal to the radius of curvature.
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At the physically realistic turgor pressure of 0.20 MPa, the CGM-membrane complex is

mostly flat, with the center pressed into the cell wall (z = −0.0367), while the maximum

height (attained near the edges) is z = 0.144 (Figure 4.2a). The profile for the

corresponding kw in the continuous model is much higher (Figure 4.2b).

The presence of the part of the lipid bilayer membrane outside of the CGM shell, as

modeled by the Helfrich energy contribution, has a substantial effect on these profiles, and

thus on the depth of the indentation that the CGMs can generate. At the reference turgor

pressure of 0.2 MPa, the inclusion of the membrane energy produces a 20% reduction in

the maximum height of the CGM bottoms, zmax, relative to the membrane-free system,

and a 16% reduction in the vertical extent of the CGMs, zmax − zmin; further, at zero

turgor, the membrane causes an 12% reduction in zmax and a 23% reduction in the vertical

extent. The CGM forces for high turgor pressure are mainly distributed at the edges, in

the form of bending moments. This corresponds to the results predicted by the continuous

model, which predict only bending moments (and no forces) for a flat, intrinsically curved

membrane.

By contrast, for low turgor pressure (Figures 4.3), the shape is determined primarily by the

intrinsic curvature of the CGMs. For a radius of curvature of 50 nm, the maximum

displacement of the center of the CGM patch is about 10.5 nm (Figures 4.3b, 4.3a), which

it attains in the limit of zero turgor pressure.

At low turgor pressure, the majority of the CGMs are not in contact with the cell wall, and

so the force distribution is essentially flat, balancing the turgor pressure (Figure 4.4a), with

opposing forces at the edge where the molecules press into the wall. As the turgor pressure

increases, the center of the CGMs buckles, causing a dip to appear in the CGM profile and
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the force profile (Figure 4.4b). Eventually, at very high turgor pressure (greater than 0.2

MPa or so), this dip spreads out laterally, such that only the edges of the CGMs are

substantially above the cell wall (Figure 4.2a), with the forces (Figures 4.5a, 4.5b)

effectively being concentrated at the edges in the form of bending moments.

This is reasonably similar to the form of the CGM forces predicted by previous models. For

example, Tweten et al. derived forms for the force resulting from several continuous CGM

profiles [135]. One of their force profiles had the form

κbγH0

s
sech2[γ(r − r0)](γs tanh[γ(r − r0)] − 1

2
) , shown in Figure 4.5a for several values of γ.

The profiles in Figures 4.4, 4.5 suggest that CGMs can produce a substantial force density,

comparable to the turgor pressure. The maximum turgor pressure that can be overcome by

a given CGM force density, Πmax, is defined as the pressure at which the center of the

CGM patch shows appreciable (5%) liftoff relative to its maximum (zero-pressure) height.

An energetics calculation based on comparing the bending energy and the turgor pressure

energy for a flat configuration and one at the preferred curvature C0, respectively

(Equation 4.2), predicts that at default parameter values Πmax = 0.2 MPa. This equation

is based on a membrane-free calculation, so it may not predict the correct prefactors. It

also predicts a linear dependence on bending rigidity κ, and an area dependence of the

form [A
π
(3C−1

0 − AC0

2π
)]−1, or proportional to 1/A for small AC2

0 . Figures 4.6, 4.7 show that

it overestimates Πmax by about a factor of 2. However, the general form of the area

dependence of the simulations is approximately Πmax(κ) ∝ 1/A for larger areas (Figure

4.6), and Πmax(κ) is fairly linear over a wide range of bending rigidities (Figure 4.7).

The discrete CGM model also allows us to ascertain the parameter dependence of the

central force and total pulling force for CGM patches of various parameter values, as well

as their profiles.
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(a)

(b)

Figure 4.2: a) Clathrin network profile for kb = 0.002296 kg/s, G = 50.8 MPa, Π = 0.2
MPa (high turgor pressure case). b) Continuous membrane profile for κ = 300kBT , κw =
0.00127 J/nm4, Π = 0.2 MPa (high turgor pressure case).
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(a)

(b)

Figure 4.3: a) Discrete model network profile for kb = 0.002296 kg/s, G = 50 MPa, Π =
0.00002 MPa (low turgor pressure case). b) Continuous profile for κ = 300kBT , κw =
0.00127 J/nm4, Π = 0 MPa (low turgor pressure case).

98



(a)

(b)

Figure 4.4: CGM force density vs. radius for Π = 0.02 MPa. b) CGM force density profile
vs. radius for Π = 0.12 MPa.
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(a)

(b)

Figure 4.5: a) Continuous CGM force density profiles (purple, γ = 0.13; green,γ = 0.167)
and discrete profile (red) vs. radius at 0.2 MPa. b) Discrete CGM force density profile vs.
radius at 0.4 MPa.
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Figure 4.6: Maximum turgor pressure CGMs can overcome vs. area. The blue curve is the
maximum turgor pressure Πmax from the simulations, the orange curve is the best fit of the
form a/A, and the green curve is the unfitted prediction (Equation 4.2).
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Figure 4.7: Maximum turgor pressure CGMs can overcome vs. κ. The black dots are the
actual maximum turgor pressure Πmax, the orange curve is the best fit of the form bκ, and
the green curve is the unfitted prediction (Equation 4.2).
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The area dependence of the CGM center force for the default parameters exhibits a

transition between A = 1400 nm2 and 2200 nm2 (Figure 4.8a). This corresponds to the

area becoming sufficiently large that the bending forces are not strong enough to overcome

the turgor pressure and detach the CGM patch center from the cell wall; at smaller areas,

the center is not in contact with the wall (z > 0), and the force density at the center is

approximately equal to the turgor pressure. The total pulling force increases sublinearly

with area.

Figure 4.8b shows the dependence of the center and maximum displacement on A. For

physically realistic areas (A > 1400 nm2) and the corresponding number of molecules

(N > 55), the center of the patch does not detach from the cell wall for physical values of

the bending rigidity and turgor pressure. Indeed, save for near small areas, the maximum

and center height of the CGM patch decrease with increasing area, implying that the

overall profile is flattening. This suggests that smaller CGM patches would successfully

detach the membrane under pressures that might prevent larger patches from lifting off.

Figure 4.9 shows the dependence of CGM forces and displacements on preferred curvature.

The force on the center of the CGM patch starts small but increases slowly with preferred

curvature, up to a point. Around 0.04/nm curvature (for the other parameters default), the

patch undergoes a transition, with the center detaching from the membrane (Figure 4.9a),

which causes the load at the center of the CGM patch to approach its turgor-pressure-only

value of 0.2 MPa, with the center force correspondingly approaching −PA/N . This

suggests that the presence of CGMs alone might be sufficient to lift the center of an

endocytic region off the cell wall, contrary to what might be expected from the presence of

moments only at the edges in continuum theory. However, this occurs at a curvature of

0.043 per nm, significantly greater than our default value, which corresponds to the

curvature of a clathrin-coated vesicle (0.02 nm). In addition, at a sufficiently high
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(a)

(b)

Figure 4.8: a) CGM force at CGM patch center (dashed) and total pulling force (solid) for
varying area, with spacing constant. b) Center height (dashed) and maximum height (solid)
for varying area, with spacing constant.
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Figure 4.9: a) CGM force on center (dashed) and total pulling force (solid) vs. curvature.
b) Height at center of patch (dashed) and maximum height (solid) vs. curvature

(a)

(b)
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(unphysical) value of the intrinsic curvature, the molecules will be almost antiparallel, and

the displacement will approach a maximum value. The total pulling force again increases

sublinearly with curvature. A transition is also seen in the displacements (frame b)

As the bending rigidity κ increases, the CGM force on the center undergoes a rapid

transition. At a certain critical value of κ, approximately 600 kBT , the CGM-membrane

patch lifts off the cell wall altogether (Figures 4.10b, 4.10a), indicated by the center force

approaching a constant value of, corresponding to the force density per area approaching

0.2 MPa, equal to the magnitude of the turgor pressure (Figure 4.10a). The total pulling

force also approaches a constant value of around 500 pN for high κ, indicating a maximum

pulling force that can be generated at a given pressure regardless of stiffness, as well as

suggesting that approximately 76% of the CGM molecules, or 92, are not in contact with

the cell wall and thus generating the pulling forces. It is worth noting that the functional

form of zcen as a function of increasing κ (Figure 4.10b) does not have the same shape as

its behavior with respect to the curvature (Figure 4.9b). This shows that the combination

κC0 used by Tweten et al. is not an accurate predictor of curvature-generating strength

[135]. Further, the bending rigidity necessary to cause the membrane to lift off of the cell

wall is much higher, relative to the corresponding biological values, than the intrinsic

curvature necessary to do so: the critical value of κ is about 1950 kBT (more than six

times greater than the value of 300kBT corresponding to the bending rigidity of a

clathrin-coated vesicle, for instance), while the critical value of C0 is about 0.043 per nm,

which is only twice the intrinsic curvature of clathrin.

The center height also shows a rapid transition as a function of turgor pressure (Figure

4.11b). It changes from its maximum value of 10.5 nm (lifted off the cell wall) to being

essentially flat against the membrane over a range of 0.12 MPa. For all values of the turgor

pressure within a physically plausible range, the membrane-CGM complex is essentially
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Figure 4.10: a) Force at center of patch (dashed) and total pulling force (solid) vs. κ. b)
Center height (dashed) and maximum height (solid) vs. κ.

(a)

(b)
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Figure 4.11: a) CGM force at center of patch (dashed) and total pulling force (solid) vs.
turgor pressure. This includes the contribution from the turgor pressure itself. b) Center
height (dashed) and maximum height (solid) vs. turgor pressure.

(a)

(b)
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flat, again exhibiting the insufficiency of CGMs with comparable bending rigidity to that of

clathrin to overcome turgor pressure on their own. On the other hand, the CGM force on

the center of the patch (Figure 4.11a) increases up to the transition point of 0.12 MPa. It

then exhibits a transition to negative values as the the pressure pushes the center of the

CGMs into the cell wall, but then slowly increases as the complex is pressed further into

the cell wall, since the magnitude of the wall force increases quadratically. This has little

effect on the behavior of the total pulling force, however, which increases uniformly with

pressure, since it is mostly unaffected by fluctuations in the sign of the height of individual

molecules.

In order to see whether the combination of an attractive interaction between CGMs and

the other mechanical interactions can lead to a preferred CGM patch size, we calculated

the total CGM energy as a function of size for several values of ka, the strength of the

attractive interaction (see equation 4.7). The magnitude of the ka term has no effect on the

equilibrium configuration of the CGM-membrane complex for a given N . However, it does

influence the number dependence of the energy, and thus the equilibrium number of

molecules in the system. For small values of ka, the energy increases without bound,

indicating that the system will not grow at all if starting from a system of minimal size

(Figure 4.12a).

Intermediate values, however, produce a minimum at physically realistic numbers of

molecules (Figure 4.12b). As ka increases, the optimal number of molecules grows. For

ka/nm2 = 0.8kb, the minimum is at 31 molecules, occupying an area of about 280 nm2.

Around ka/nm2 = kb, the optimal number increases rapidly, with an equilibrium at around

163 molecules or 4490 nm2. An equilibrium corresponding to the default number and area
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occurs slightly below ka/nm2 = kb. However, the optimal number can exceed 121; the data

for this case is not present in the figure.
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(a)

(b)

Figure 4.12: a) Total equilibrium energy vs. number of CGM molecules for ka/nm2 = 0,
0.5kb, 0.8kb, kb (red, purple, green, and blue). Plot starts at 13 molecules. b) Optimal CGM
number vs. ka

kb∙nm2 .
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4.4 Discussion

4.4.1 Conclusions

The results of the simulations and analytic theory suggest that CGMs may play a major

role in producing membrane curvature, and by extension in driving processes such as

endocytosis. For CGMs with a bending rigidity corresponding to that of clathrin, the

stiffness is about 16% of that needed to lift the membrane-CGM complex 8 nm, or about

80% of its maximum zero-turgor height, off the cell wall against a turgor pressure of 200

kPa. If we consider the effects of actin, we see that a CGM with properties comparable to

clathrin is sufficient to lift the membrane about 2 nm off the cell wall, or 20% of its

maximum height, in the presence of an effective turgor pressure corresponding to the

presence of actin. However, to successfully lift the lipid bilayer off the cell wall by itself, a

CGM would have to have an intrinsic curvature twice that of clathrin, or have about six

times the bending rigidity of the clathrin-membrane complex.

It is also clear that CGMs do not merely produce moments at the edges of a CGM patch,

as continuous models might suggest (Section 4.9), but also produce a substantial force at

the center of the endocytic region, thus providing a portion of the force necessary to

initiate endocytosis. We found that a reasonably accurate continuous approximation to the

CGM force is given by the force corresponding to a tanh distribution of CGMs.

Further, the simulations suggest that the transition from on-wall to off-wall behavior is

quite rapid. The membrane transitions from being pressed into the cell wall (z < 0) to 1

nm above the cell wall over a pressure range of about 0.1 MPa, or a curvature range of

about 0.01 per nm. It is thus likely that once a certain critical load is reached (whether

112



from CGM accumulation, actin nucleation, or even local reduction of the turgor pressure),

endocytosis proceeds rapidly. This is also borne out by the discontinuous transition of the

forces as a function of various parameters. Part of this comes from the nature of the cell

wall interaction as a contact force, a feature which is lost in treatments of the wall-turgor

interaction as quadratic.

4.4.2 Limitations

The examined models in this paper, both discrete and continuous, are equilibrium models

that ignore time-dependent fluctuation effects. In particular, the size of the average

fluctuation of a membrane in a linear pressure potential near a hard wall, as in our model,

is given by [89]:

σ =

[
(kBT )2

64c⊥κ

]1/3

P−1/3 (4.10)

Here c⊥ = 1.81. For the typical case of a clathrin-coated membrane in a yeast cell,

κ = 300kBT and P = 0.2 MPa, producing an average fluctuation size of 0.08 nm. Given

this small magnitude relative to the displacement of the CGMs, it is probably legitimate to

neglect fluctuations.

Our assumption of rod-shaped rod-shaped molecules with differing preferred distances

between the top and bottom is a minimal model for generating intrinsic curvature, but it

does not accurately correspond to any particular curvature-inducing molecule. Clathrin, for

instance, actually forms from triskelial molecules, and also has specific interactions between

portions of the triskelion legs. The linear shape is perhaps most similar to

intrinsically-curved lipids, which may not have much influence on membrane curvature

during endocytosis. However, this limitation is also a strength, insofar as the results may

be applicable with some degree of accuracy to all CGPs.
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The turgor pressure is treated statically, not dynamically, and assumed to be uniform. The

uniformity of the turgor pressure is not certain: as we have suggested in our previous paper

[114], it is possible for local channel accumulation to induce a spatially varying turgor

pressure.

Most of the model parameters are derived from measured quantities such as the bending

rigidity of clathrin or the yeast turgor pressure. However, the extent of the kc anti-slipping

interaction in particular is uncertain. It roughly corresponds to the shear strength, but to

our knowledge there are not any experiments directly measuring this for clathrin-coated

vesicles.

4.4.3 Relation to experiment

Measuring the variation of the shape of CGP complexes on the scale predicted by this

model is difficult, particularly in the case of endocytosis. Live-cell imaging typically has a

resolution of no better than 60 nm, and the height variations predicted by this model range

from approximately 4 nm (in the zero-turgor case) to a few tenths or hundredths of a

nanometer in the case of more realistic turgor pressure, on the order of 0.2 MPa. As such,

it may be virtually impossible to directly confirm the structures predicted here via light

microscopy. However, electron microscopy may be able to elucidate the coarsest features.

The force profiles generated by those shapes are also difficult to measure because of the

small lateral size. However, the maximum center force generated by CGPs under

high-turgor versus low-turgor conditions could potentially be measured. There are some

force-sensing molecules suitable for measuring intracellular forces [107], such as

fusion-protein based sensors. It could be possible to engineer sensors to measure forces at

the CGM-membrane contacts.
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The relationships between the various parameters and CGM complex detachment from the

cell wall are easier to test. Previous research has examined the effect of varying turgor

pressure on the depth of membrane invagination in fission yeast [12]. Some aspects of these

results might be predicted quantitatively by our model, if the effects of actin forces can be

subtracted off (potentially effectively equivalent to a reduced value of Π in our model). The

effect of stiffness on membrane displacement could be measured by varying the composition

of the cell wall. Finally, comparison of the magnitude of membrane displacement produced

by different CGPs could provide confirmation or disconfirmation of the effects of intrinsic

curvature on membrane displacement predicted by our model.
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4.7 Cell wall elastic theory

We derive the energy of interaction of the CGMs with the cell wall by considering two

easily treatable cases. We have a collection of molecules indexed by i. The molecules are

arranged a on a square lattice, and the cell wall has thickness t and is assumed to be
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infinite in extent. First, let us consider the case in which all the molecules have an equal

displacement, i.e. ui = u. Then, from the definition of the Young’s modulus Y , the areal

force density is f = Y u/t, and thus the force on each molecule is simply this scaled by the

area per molecule, Fi = Y Amui/t.

Let us next consider the case where the displacement of the molecules alternates, i.e.

ui = u0e
iq∙r, where the exponential alternates between ±1. In this case we assume a

semiinfinite cell wall because the molecule spacing is much smaller than the thickness.

Then the the Fourier transform of the force density is f = Y kuk, which gives

Fi = −
√

2πY Amui/a, (4.11)

where a is the intermolecular spacing.

We fit these two results to a harmonic force of the form:

Fi = −k0ui + k1

∑

j∈〈nn〉

(uj − ui) (4.12)

This gives

k0, k1 =
AmY

t
,
AmY

6

(
π

√
2a

−
1

t

)

(4.13)

This thus corresponds to an energy of
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Ui =
1

2
(k0 + 6k1)u

2
i −

1

2
k1

∑

j∈〈nn〉

uiuj (4.14)

It is important to note that this form of the energy, used in our simulations, only strictly is

valid in the interior of the CGM patch. At boundary points, where molecules have less

than the full number of nearest neighbors, it is somewhat inaccurate, which could lead to

overestimation of the effective wall force experienced by these molecules.
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4.8 Helfrich membrane theory with wall potential

A lipid bilayer can be modeled as a thin membrane subject to bending forces (strength κ),

and surface tension (strength σ). In yeast, this membrane also experiences force from high

turgor pressure and a rigid cell wall. This is modeled by a quadratic potential per area

1
2
κwz2, corresponding to the wall force, and a linear potential Πz corresponding to the

turgor pressure. The wall force potential is only present for z < 0. The Helfrich membrane

energy for the portion of the system below the cell wall is:

U =

∫

S

dS[2κ(C − C0)
2 + σ +

1

2
kwz2 + Πz] (4.15)

For the portion above the cell wall, the quadratic term is not present. A similar equation

has previously [147] been described and analyzed for a clathrin-coated membrane, but the

above equation incorporates the effects of turgor pressure and wall forces, leading to a

different equation of shape.

We use the Monge parametrization, i.e. z = z(x, y), and the small-displacement

approximation, i.e. dS = 2πr[1 + 1
2
(5Sz)2]dr).

This leads to the equation of shape:

z′′′′+
2

r
z′′′− (

1

r2
+ξ2)z′′+(

1

r3
−

ξ2

r
)z′+

κw

κb

[z−
1

2
(z′)2 +

1

2
z2z′′+

1

2
z2z′]

[1
2
−

1

2
H(z)

]
+Π/κ = 0

(4.16)

where ξ2 = 2C2
0 + σ

κb
.
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However, for computational convenience and improved convergence, we use the linearized

version:

z′′′′ +
2

r
z′′′ − (

1

r2
+ ξ2)z′′ + (

1

r3
−

ξ2

r
)z′ +

κw

κb

z
[1
2
−

1

2
H(z)

]
+ Π/κ = 0 (4.17)

which corresponds to:

54 z − ξ 52 z +
κw

κb

z
[1
2
−

1

2
H(z)

]
+ Π/κ = 0 (4.18)

Or:

1

ζ
54 z −

ξ2

ζ
52 z + z

[1
2
−

1

2
H(z)

]
+ Π/κ = 0 (4.19)

where ζ = κw

κb
.

This is equivalent to

(1 − c15
2)(1 − c25

2)z + Π/κ = 0 (4.20)

For c1, c2 = 1
2ζ

(ξ2 ±
√

ξ4 − 4ζ).

For k = 5904, corresponding to low turgor pressure, this simplification changes the center

height by less than 0.3%, and for high turgor pressure (k = 0.66) it changes the center

height by about 0.009%.

Equation 4.19 has the solution
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z(r) = a1I0(ξr) + a2K0(ξr) + a3 ln r + a4 +
Π

4κξ2
r2 (4.21)

above the cell wall, and

z(r) = b1I0(c1r) + b2I0(c2r) + b3K0(c1r) + b4K0(c2r) − Π/κ (4.22)

below the cell wall. Here I0, K0 are the modified Bessel functions of order zero.

The four (possibly complex) coefficients are determined by the boundary conditions, the

form of which is determined by the type of system being considered. They can either be

derived from the Helfrich energy density, the physical constraints imposed upon the

system, or a combination thereof. In particular, for a fixed radius of integration R, consider

the energy:

U =

R∫

0

drL(r, z, z′, z′′) (4.23)

The shape equation is given by

δU = lim
ε→0

d

dε
U(z + εδz) = 0 (4.24)

We can thus write:

δU =

R∫

0

dr
[∂L

∂z
δz +

∂L

∂z′
δz′ +

∂L

∂z′′
δz′′
]

(4.25)
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Applying integration by parts, we are left with

δU =

[(
∂L

∂z′
−

d

dr

∂L

∂z′′

)

δz(r)

]r=R

r=0

+

[
∂L

∂z′′
δz′(r)

]r=R

r=0

+

R∫

0

dr

[
∂L

∂z
−

d

dr

∂L

∂z′
+

d2

dr2

∂L

∂z′′

]

δz (4.26)

The last term is simply the familiar Euler-Lagrange equation, which in the Monge

parametrization corresponds to Equation 4.16. The other four terms provide the natural

boundary conditions: either a term’s coefficient is zero, or the corresponding variable in the

variation is constant: e.g. either z′(R) is constant or the bending moment is zero. The first

two terms correspond to line or point forces, and the last two correspond to bending

moments, as expanded upon in the next section.

For the function to be symmetric and not have a cusp, it is necessary that z′(0) = 0. For

all the other cases, we choose the natural boundary conditions corresponding to the

coefficients of the boundary variations being zero.

4.9 Forces and Bending Moments in the ContinuumModel

with CGMs

In the case of a continuum model of a CGM patch of stiffness κ1 and intrinsic curvature on

a membrane of stiffness κ2 and zero intrinsic curvature C0 , neglecting Gaussian curvature

and line tension, which do not change the final result, the energy is [147]:

U =

R∫

0

L1dr +

∞∫

R

L2dr (4.27)
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where

L1 = πκ1r

[(1

r
z′ + z′′

)2

− 4C0

(1

r
z′ + z′′

)
+ ξ2

1(z
′)2 + 2ξ2

1

]

(4.28)

and

L2 = πκ2r

[(1

r
z′ + z′′

)2

+ ξ2
2(z

′)2 + 2ξ2
2

]

(4.29)

The system is subject to the following forces and moments in the z-direction: A force

density per area, which is simply the variational derivative of the energy with respect to

displacement that gives the Euler-Lagrange equations, δU
δz
, a point force at the center,

δU
δz

∣
∣
r=0
, a line force at the interface between the two regions δU

δz

∣
∣
r=R
, and a bending moment

at this same interface, δU
δz′

∣
∣
r=R
.

Now,

∂L1

∂z
= 0

∂L1

∂z′
= 2πκ1

(
1
r
z′ + z′′

)
+ 2πκ1ξ

2
1rz

′ − 4πκ1C0

∂L1

∂z′′
= 2πκ2r

(
1
r
z′ + z′′

)
− 4πκ1C0r

(4.30)

The expressions for the second Lagrangian are easily obtained by substituting C0 = 0. The

first variational derivative is then simply

∂L1

∂z
−

∂

∂r

∂L1

∂z′
+

∂2

∂r2

∂L1

∂z′′
(4.31)
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The radial derivative eliminates the curvature terms from equation 4.30, and then all the

remaining terms are zero since they contain powers of z(n), which are zero for an identically

flat membrane.

The term corresponding to δz(R) is ∂L1

∂z′
− ∂

∂r
∂L1

∂z′′
, or the equivalent for L2. In this case the

term −4πκ1C0 from ∂L1

∂z′
is cancelled out by the corresponding term in ∂

∂r
∂L1

∂z′′
, which also

implies that the term in the variation corresponding to δz(0) is zero. These terms

correspond to a line force density and a point force per length, respectively. However, ∂L1

∂z′′

is −4πκ1RC0 at r = R. The bending moment is therefore ∂L1

∂z′′
− ∂L2

∂z′′
= −4πκ1RC0. The

bending moment density per length around the boundary will then be −4κ1C0.

Thus, for the case of a continuum Helfrich-theory model of a flat membrane, the CGMs

generate no forces, and only generate bending moments concentrated at the edges.
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Chapter 5

Summary and Future Directions

In this thesis, we considered theoretical models of various aspects of endocytosis in cells

with high turgor pressure. First, in Chapter 2, we considered the barrier to endocytosis

posed by the high osmotic pressure in yeast cells, roughly proportional to the difference in

osmolyte concentration between the interior and exterior, which a rough estimate suggested

could not be overcome by actin and clathrin alone. To investigate the possibility that cells

might reduce this turgor pressure barrier in the vicinity of the endocytic zone, we

developed a semi-analytic model of the diffusion of the osmolyte glycerol consisting of a

single spherical cell with a spatially varying permeability, which we solved using a

Fourier-Legendre series method. This allowed us to characterize the radial and angular

distribution of glycerol in the system inside and outside the cell. We found that physically

reasonable numbers of patches could produce a substantial turgor pressure reduction,

around 50%. Finally, we characterized the dependence of the steady-state concentration

profile on various parameters of interest, such as the patch size and the patch permeability,

providing and testing simple analytic estimates of the dependence of quantities such as the
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average concentration. We also compared this description to a fully analytic solution in the

vicinity of the patch under certain simplifying approximations.

We then extended this model. In Chapter 3 we examined glycerol diffusion models with an

arbitrary angularly-dependent permeability, corresponding to the presence of multiple

endocytic patches. We also were able to incorporate the time evolution of the glycerol

concentration. We examined these aspects primarily through finite-element modeling,

although we also extended our semi-analytic theory to a more general angular dependence

and incorporated time dependence. In the case of a single permeable patch, we found that

the equilibration time was approximately 10 seconds, less than the time scale of

endocytosis.We found that we were able to describe the equilibration of the system in terms

of a small number of eigenvalues, one interior and one exterior. We also found that for

small numbers of permeable patches, the total number and distribution of patches has little

effect on the ratio of the concentration near a patch to the concentration far from a patch.

Finally, in Chapter 4 we modeled a system of idealized rod-shaped curvature-generating

molecules under high turgor pressure in the presence of a stiff cell wall. We calculated the

steady-state configuration of this system, which incorporated simple intermolecular

interactions that generated curvature and resisted shear forces, turgor pressure, lipid

membrane, and wall forces. Further, we developed an analytic model of the system based

on Helfrich membrane theory. We found that, contrary to the basic estimate at the start of

Chapter 3, CGMs with a stiffness comparable to that of clathrin cannot fully overcome the

turgor pressure, although they come closer to overcoming a effective reduced turgor

pressure incorporating the presence of actin. We modeled the differences between

CGM-membrane profiles and force distributions under high and low turgor pressure,

corresponding for instance to yeast and mammalian cells, noting that the turgor pressure

significantly reduced the height of the CGMs profiles relative to the turgor-free case. We
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compared the force distributions to previous analytic estimates of CGM forces. We were

also able to look at the parameter dependence of the positions and forces in this system,

allowing the results to be generalized to CGMs with curvature or stiffness different from

those of clathrin. Finally, we demonstrated the presence of a stable molecule number with

a simple number-dependent attractive interaction.

There are several potential research directions we could follow to extend this work. First,

although the analytic theory of a spherical cell with multiple endocytic regions is

straightforward, the estimation of the concentration for physical patch sizes presents

difficulties when using the most obvious methods of calculation. However, it might be

possible to simplify the formula to reduce computational difficulty and calculate the

concentration semi-analytically, which would allow for comparison with FE element

formulations of the problem. As well, certain simple approximate analytic formulas could

be derived from the formulas given in Chapter 3 for multiple patches or time-dependent

systems. We could also potentially incorporate the time dependence into this formulation,

although practically this provides another layer of computational difficulty.

The FEM formulation of the glycerol diffusion problem readily lends itself to examining the

forces and stresses that occur during the equilibration process. Future models could be

extended to incorporate these variables. In addition, some previous papers have suggested

that local changes in the turgor pressure may provide a mechanism of cellular locomotion.

By incorporating hydrodynamics into the FeBio FEM model, we could potentially look at

how local permeability increases could cause a cell to migrate.

With regard to our model of curvature-generating molecules, we have modeled the CGMs

as rod-shaped molecules with very general interactions. Although this may improve the

generality of the model, and may be accurate for certain molecules such as preferentially
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curved lipids, real CGMs, in particular clathrin, have more complicated interactions. We

could consider molecules with a different geometry, such as the triskelial geometry of

clathrin, and different interactions between the various zones. We could also do a full

molecular dynamics simulation of the system, which would allow us to consider both its

time evolution, and to treat the effect of thermal fluctuations on the equilibrium profile of

the CGM region. In addition, we could extend the analytic model to incorporate the

portion of the membrane beyond the CGM-coated region.
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