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The grand challenge of biophysics is to use the fundamental laws of physics to predict how 

biological molecules will move and interact. The atomistic HIPPO (Hydrogen-like 

Intermolecular Polarizable Potential) force field is meant to address this challenge. It does so by 

breaking down the intermolecular potential energy function of biomolecular interactions into 

physically meaningful components (electrostatics, polarization, dispersion, and exchange-

repulsion) and using this function to drive molecular dynamics simulations. This force field is 

able to achieve accuracy within 1 kcal/mol for each component when compared with ab initio 

Symmetry Adapted Perturbation Theory calculations. HIPPO is capable of this accuracy because 

it introduces a model electron density on every atom in the molecular system. Since the model is 

built on first-principles physics, it is transferable from small model systems to bulk phase. In the 

first test case, the HIPPO force field for water was able to reproduce the experimental density, 

heat of vaporization and dielectric constant to within 1%. Importantly, HIPPO has been shown to 

be only 10% more computationally expensive than the widely-used AMOEBA force field, 

meaning that more accurate simulations of larger biological molecules are well within reach
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Chapter 1: Introduction 
Our understanding of biology is profoundly incomplete. This seems a strange thing to say 

in an age when we’ve discovered so much. From the structure of DNA to the recent invention of 

a cure for Hepatitis C, the past half century has seen a boom in human understanding of 

biomedicine. Despite this, however, the amount that we don’t understand about our biological 

world still far outweighs what we do understand. We don’t understand how intrinsically 

disordered proteins contribute to health and disease. We only partially understand how the 

ribosome functions. We remain in the dark about how cells regulate traffic across their 

membranes. We are unable to predict the affinity of drug molecules for their biomolecular 

targets. The list is long and humbling. Central to nearly all of these yet unanswered questions, 

however, is one unifying theme: the behavior of molecules at the atomic scale. And it is this fact 

that should give us hope. If we can understand the behavior of molecules, we hold the keys to 

being able to answer some of the most important questions in biology. 

Addressing the behavior of biological molecules is the aim of this dissertation. More 

specifically, the goal is to predict the behavior of and interactions between biomolecules using 

physics-based computer simulations. HIPPO (Hydrogen-like Intermolecular Polarizable 

Potential) is an atomistic model that I have developed in my graduate work specifically for the 

purpose of making these predictions. It is a set of physical models that determines exactly how a 

protein or piece of DNA moves in a computer simulation. Although it contains a multitude of 

approximations, every term of the HIPPO model is derived from first-principles physics. This is 

what makes it unique. There have been many physics-based models for computer simulations of 

biomolecules proposed in the past, but none as rooted in the principles of elementary quantum 
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mechanics. The promise of the HIPPO model is that by staying true to the fundamental laws 

driving the dynamics of every biomolecular system, it should yield predictive biomolecular 

simulations. In this sense, this dissertation should be considered both complete model and part of 

a collaborative work-in-progress effort. The work presented here shows the derivation and 

validation of the HIPPO model. It does not, unfortunately finish the task of constructing and 

validating this model on biomolecular systems like proteins. Assessing the ability of the model to 

predict complicated biomolecular phenomena is an ongoing and broad-ranging research effort. 

What makes this effort important is that it strikes at the core of the central problem of 

biomolecular behavior. It answers the question: “What rules govern the interactions of 

molecules?” HIPPO is an attempt to define those rules and to the extent it does so successfully, 

has the power to help us understand some of the most important molecular phenomena in 

biology. 

 

1.1 The Grand Challenge of Biophysics 
 To motivate the need for a physics-based model for biomolecular simulations, allow 

me to start with defining the “Grand Challenge of Biophysics”. Imagine that we wanted to 

completely understand an arbitrary biological molecule. As an example, take the ribosome, 

pictured in figure 1.1. The structure and function of the ribosome is so important that the 2009 

Nobel Prize in Chemistry was awarded in large part for determining an x-ray crystal structure of 

the molecule.1 It is a complex molecular machine that we only partly understand despite decades 

of molecular biology and structural biology research. At a fundamental level, however, 

understanding the motions of the ribosome is conceptually simple.  
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Figure 1.1 The Grand Challenge of Biophysics.  

Pictured are the ribosome (right), and Sir Isaac Newton (top left) and Erwin Schrödinger (bottom left) along with the 

physical laws for which each are known. The challenge, which HIPPO addresses, is to apply these two fundamental 

laws in an approximate way that is accurate enough to give predictive simulations of biomolecules. 

 

Like every molecule, the ribosome is made up of atoms, and the laws of physics have already 

given us all the rules that govern how atoms interact with each other. Namely, we have 

Schrödinger’s equation which determines the electron density of each atom and Newton’s 2nd 

Law which defines how each atom will move under a given force. In principle these two laws 

give us all the tools necessary to run a simulation of the ribosome (or any other biological 

molecule) that replicates reality. In practice, however, it is virtually impossible to solve 

Schrödinger’s equation completely for systems bigger than a few dozen atoms (the ribosome has 

~250,000), and current computer power limits the time scale for which such simulations can be 

performed. The Grand Challenge of Biophysics is to find a way to apply these two fundamental 

F =ma

H = E
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laws in a way that is approximate, but accurate and computationally efficient enough to be 

predictive. 

1.2  The Importance of the Potential Energy Surface 
 The most important, and consequently the most challenging part of addressing the Grand 

Challenge is approximating a solution to Schrödinger’s equation. This is because the true 

solution to this equation, for a given molecule, defines the potential energy surface on which the 

molecule moves. In other words, the exact solution to Schrödinger’s equation gives the exact 

energy (and thus force) of every atom in the molecular system. In order for a model to replicate 

reality, it must be an accurate approximation of this potential energy surface. For biomolecules 

there is a long history of using classical functions for this purpose. The current standard in the 

field is known as the Point Charge Force Field and it defines the potential energy of every atom 

in a biomolecular system according to a set of classical intramolecular and intermolecular energy 

terms. As illustrated in figure 1.2 the intramolecular terms are harmonic approximations to the 

energy of interaction between atoms that are connected by chemical bonds and the 

intermolecular terms consist of a simple fixed charge model that follows Coulomb’s Law and a 

Lennard-Jones van der Waals model. 
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Figure 1.2 The Point Charge Force Field Energy Model.  

This model is a classical, empirical potential energy surface with intramolecular (first three terms) and 

intermolecular (last two terms) terms. With small variations, this model is used in the vast majority of published 

molecular dynamics simulations of biomolecules. (credit: Michael Levitt) 

 

Despite (or perhaps because of) its simplicity, the Point Charge Force Field has long been the 

standard for biomolecular simulations. In fact, this functional form, which was used on the very 

first published simulations of a protein in 1977, remains the most popular choice of model for 

biomolecular simulation today.2 

 The importance of the accuracy of an approximate potential energy surface is hard to 

understate. At a conceptual level, if the forces generated by the model do not match reality, then 

the motion of the atoms in the simulation will likewise be in error. Multiply these errors by the 

thousands of atoms in a typical protein and the result is simulations that give an incorrect picture 

of molecular motion and interactions. To make the level of accuracy needed in simulations 

concrete, a simple example application is helpful. Take the case of using simulation to predict 

the affinity of a drug for a target protein.  
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Figure 1.3 Importance of Free Energy Estimate in Drug Design.  

Given a particular lead compound, the blue curve shows the probability that an experienced medicinal chemist will 

synthesize a new compound with tighter (more negative) binding free energy. The orange, green and red curves 

indicate the probabilities if those compounds are filtered using simulations that have an accuracy of 2.0 kcal/mol, 

1.0 kcal/mol and 0.5 kcal/mol respectively. The shaded region indicates compound with a factor of 10 tighter 

binding than the lead molecule. One can see that a model capable of even 1.0 kcal/mol accuracy can yield five times 

the number of tighter binding compounds. Reproduced from reference 3.  

  

Figure 1.3 shows the importance of accuracy in predicting the energy of the interaction between 

drug and protein. A model potential energy surface that is capable of predicting the binding 

energy to within 1 kcal/mol error can increase the number of potential drug candidates by 5x.3 

Put another way, Because of the relation DG = -RT log(KD), at room temperature every order of 

magnitude in the binding affinity translates into 1.36 kcal/mol in the free energy of binding. This 

is of great practical importance since a factor of 10 variance in a drug’s binding affinity can be 

the difference between a medicine that hits a specific target vs. one that binds non-specifically. 

These and other considerations lead to the goal of “chemical accuracy”: potential energies that 
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are accurate to within 1 kcal/mol. This level of accuracy matters specifically to binding 

interactions, but it is also applicable to the veracity of biomolecular simulations, generally.  

 Unfortunately, in many cases the point charge force field model is not capable of the 

accuracy necessary to be predictive of biomolecular reality. One concrete example that makes 

this clear is a recent study examining the performance of current force fields for predicting the 

fold of the UUCG RNA tetraloop. This particular RNA structure has been extensively studied by 

NMR (Nuclear Magnetic Resonance) and is known to spend greater than 90% of its time in the 

conformation represented by cluster 5 in figure 1.4.4  

 
Figure 1.4 Structures of UUCG tetraloop as observed in simulations with various force fields.  

No force field predicts the correct structure, cluster 5, shown overlaid in green. Reproduced from reference 4. 

 

As shown in figure 1.4, however, no version of the Amber force field is able to correctly predict 

the fold of the molecule. In fact, only the Amber ff99 + Chen-Garcia model is able to predict that 

the sequence will spend any amount of its time (~10%) in the known structure. This across-the-
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board failure occurs despite the fact that the tested force fields were specifically parameterized 

for RNA. This points to a serious problem with the point charge force field potential energy 

surface. Unfortunately, not all problems can be fixed with new parameterizations of the existing 

functional form. In many cases the problem with the potential energy surface resides in the 

functional form itself. 

1.3  Symmetry Adapted Perturbation Theory 
 This and other failures of Point Charge Force Fields, of course, beg the question: If the 

Point Charge Force Field model is not a sufficient functional form to generate an accurate 

potential energy surface, what is? Because what we need is a classical functional form (solving 

the equations of quantum mechanics directly is too computationally expensive), there is no 

exactly correct or unique answer to this question. The fundamental issue is that classical models 

must split the total energy of interaction into components (e.g. electrostatics and van der Waals 

in standard force fields), but these quantities are not quantum mechanical (QM) observables. 

This means that a particular energy component cannot be measured experimentally. It does not 

mean, however, that such partitions are not possible mathematically. There have been many ab 

initio Energy Decomposition Analysis (EDA) schemes proposed and each partitions the total 

QM interaction energy into physically meaningful components. They include Kitaura–

Morokuma (KM) EDA, Reduced Variational Space (RVS) EDA, Absolutely Localized 

Molecular Orbital (ALMO) EDA and others. For a useful review of EDA methods, see reference 

5. The most powerful for the purposes of determining a force field functional form, however, is 

Symmetry Adapted Perturbation Theory (SAPT). SAPT uses perturbation theory to decompose 

the total ab initio intermolecular energy into electrostatics, induction, dispersion and exchange-

repulsion components.6-8 Because each of these components, as I will show through the course of 
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this dissertation, has a natural, classically derived analog, I choose SAPT as the ab initio method 

against which to develop and parameterize the HIPPO model. Using SAPT in this way gives us 

blueprint for a first principles physics-based functional form to replace the empirical Point 

Charge function. 

 An exhaustive review of the SAPT method is beyond the scope of this dissertation. A 

comprehensive explanation and derivation can be found in reference 6, and a more accessible 

review article in reference 8. It is instructive, however, for the purposes of understanding the 

derivation of the HIPPO potential energy model to lay out a brief explanation of each term in the 

SAPT perturbation theory expansion. Since SAPT is built off of Rayleigh-Schrödinger (RS) 

Perturbation Theory, I will start with overview of the RS method and then proceed to each of the 

SAPT energy terms. 

1.3.1  Electrostatics 
 SAPT is fundamentally a perturbation theory method. Generally, the idea of perturbation 

theory methods is to find the solution to a complex problem by starting from the solution to a 

nearby simple problem and then perturbing the simple solution to fit the complex one. In the case 

of SAPT for intermolecular interactions, where we are attempting to find the full intermolecular 

interaction energy between two molecules, the simple, or unperturbed, problem is monomer 

wavefunctions. To get from isolated monomer wavefunctions to the full, interacting solution, 

SAPT starts with RS Perturbation Theory. 

 In RS Perturbation Theory for intermolecular interactions the goal is to find the solution 

to the equation, 

𝐻Ψ = 𝐸Ψ	 (1.1) 
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where Y is the wavefunction of the dimer system, H is the Hamiltonian of the dimer system, and 

E is the energy of the interaction. Since H is complicated for a molecular dimer, we can define it 

in terms of perturbation theory as, 

𝐻 = 𝐻* + 𝜆𝑉	 (1.2) 

where H0 is the unperturbed Hamiltonian, V is the perturbation and l is a parameter, between 0 

and 1, scaling the magnitude of perturbation. In this case H0 is taken to be 

𝐻* = 𝐻/ + 𝐻0	 (1.3) 

where HA and HB are the unperturbed Hamiltonians of monomers A and B, respectively. This 

means that for l = 0, Y0 = YAYB and E0 = EA + EB. In other words, the zeroth order of RS 

Perturbation theory is the sum of the energies of the two isolated monomers. What we are 

interested in, however, is the intermolecular energy represented by the remaining orders of the 

perturbation theory expansion when l > 0. In this case we can write the energy and wavefunction 

as power series expansions in l, 

Ψ = Ψ* + λΨ3 + λ4Ψ4 +⋯
𝐸 = 𝐸* + λ𝐸3 + λ4𝐸4 + ⋯

(1.4) 

where the infinite order expansion in energy with terms E1 through En represents the exact 

intermolecular energy. In practice only the first few terms in the expansion are needed for a very 

accurate approximation. Unfortunately, the total wavefunction defined by equation 1.4 does not 

follow the antisymmetry requirement imposed by the Pauli Exclusion Rule. This is the root of 

the need for Symmetry Adapted Perturbation Theory over canonical RS perturbation theory. The 

correction that SAPT adds will be explained fully in section 1.3.4. However, the first few terms 

of the RS expansion can tell us a great deal about the physical nature of intermolecular 
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interactions. To derive these terms, we combine together terms with like powers of l (in Dirac 

notation) to give, 

𝐸*78 = ⟨Ψ*|𝐻*|Ψ*⟩
𝐸378 = ⟨Ψ*|𝑉|Ψ*⟩
𝐸478 = ⟨Ψ*|𝑉|Ψ3⟩

⋮
𝐸=78 = ⟨Ψ*|𝑉|Ψ=>3⟩

	, (1.5) 

the energies of each order according to the corresponding n-1 order wavefunction. 

 The first and most important term in the RS expansion, E1RS, represents the electrostatic 

component of the intermolecular interaction. This is apparent when we consider the explicit 

physical form of the intermolecular interaction operator, V, in equation 1.2. This is simply the 

application of Coulombs law, or the operator 1/r. Inserting this into equation 1.5 gives, 

𝐸378 = ⟨ΨAΨ0|𝑉|Ψ/Ψ0⟩ = ⟨ΨAΨ/|𝑉|Ψ0Ψ0⟩ (1.6) 

or in integral form,  

𝐸378 = C𝜌/
1
𝑟 𝜌0𝑑𝑣

4 . (1.7) 

This is the statement of Coulomb’s Law between two charge densities, namely the unperturbed 

electronic charge densities of molecules A and B. SAPT naturally terms this the electrostatic 

energy. It is the portion of the interaction energy due to the Coulomb interaction between the two 

charge densities before they deform in response to each other. 

1.3.2  Induction 
 Of course, in reality the electronic charge densities of interacting molecules deform in 

response to each other. This is where the 2nd order and higher of RS Perturbation Theory comes 

into play. For intermolecular (non-bonding) interactions, the 2nd order term all that it is needed 

for a nearly-complete picture of the interaction. 3rd order and higher SAPT terms do exist, but 
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their classical interpretations become much more complex and their contributions to the energy 

vanishingly small. For these reasons, HIPPO uses only SAPT terms through 2nd order.  The full 

second order energy is defined as, 

𝐸478 = ⟨Ψ*|𝑉|Ψ3⟩, (1.8) 

in terms of the 1st order correction to the wavefunction, Y1. This first order correction can be 

split into two parts. The first, when excitations from the ground state wavefunction Y0 are 

localized exclusively to either monomer A or B. The contributions from these excitations, termed 

YAexcYB and YAYBexc form the SAPT induction energy. The remaining contributions, where 

excitations occur in concert on both monomers are termed dispersion and will be discussed in the 

next section. The induction component can be further subdivided into contributions from 

YAexcYB and YAYBexc respectively, 

𝐸478(𝑖𝑛𝑑) = 𝐸478(𝑖𝑛𝑑, 𝐵 → 𝐴) + 𝐸478(𝑖𝑛𝑑, 𝐴 → 𝐵). (1.9) 

The induction energy of the deformation of A in response to B, the first term in equation 1.9, can 

be written as: 

𝐸478(𝑖𝑛𝑑, 𝐵 → 𝐴) = ⟨ΨAΨP|𝑉|ΨAQRSΨP⟩ = ⟨ΨA|𝜔|ΨAQRS⟩, (1.10) 

where, 

𝜔 = V
1
𝑟 𝜌0𝑑𝑣 .

(1.11) 

This term, w, represents the electrostatic potential of the unperturbed electron density of 

monomer B acting on monomer A. The energy associated with the deformation this causes is 

defined by equation 1.10. The same is true, swapping symbols, for the electrostatic potential of A 

acting on monomer B.  
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 The sum of these two terms gives the SAPT definition of the induction energy. This is a 

natural definition because it matches our classical understanding of induction. When an electric 

field is applied to charge density, that density responds in a predictable way. This is the idea that 

underlies the concept of polarizability, which gives a description of how easily a given density 

will deform. In the case of molecules, rather than an external electric field, the field applied to A 

or B is coming from the other monomer. It is natural to call this component of the intermolecular 

interaction the induction energy. 

1.3.3  Dispersion 
 The induction component of the 2nd order RS Perturbation theory expansion only covers 

part of the full 2nd order energy. In the simplest terms, dispersion is defined as what is left over 

after the induction energy is calculated,  

𝐸478(𝑑𝑖𝑠𝑝) = 𝐸478 − 𝐸478(𝑖𝑛𝑑). (1.12) 

This definition, however, does not give us any physical meaning behind the term. To extract 

physical meaning, we can derive the “left over” component. As described in the previous section, 

this is the contribution to the energy arising from the component of Y1 that involve excitations 

on both monomers, YAexcYBexc. This component of the RS 2nd order energy, 

𝐸478(𝑑𝑖𝑠𝑝) = ⟨ΨAΨP|𝑉|ΨAQRSΨPQRS⟩, (1.13) 

cannot be decomposed into any terms involving simple, unperturbed monomer densities. The 

form of equation 1.13 does, however, give us an understanding of this component. This energy is 

coming from the correlation of instantaneous changes in the wavefunctions (and thus densities) 

of monomers A and B. This is the classical definition of the dispersion energy. In the classical 

Drude oscillator model of London dispersion (see section 4.2.1) the dispersion energy is the 
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energy due to the interaction of instantaneous fluctuations in electron density. SAPT follows this 

rationale and names the “left over” part of the 2nd order RS energy dispersion as well. 

1.3.4  Exchange-Repulsion 
 The electrostatics, induction, and dispersion components of the SAPT decomposition of 

intermolecular interaction energies are derived from straightforward Rayleigh-Schrödinger 

Perturbation Theory. Where SAPT differs, and from whence it draws its name, is its treatment of 

exchange-repulsion. As stated above, the problem with RS Perturbation Theory is that it does not 

yield a final wavefunction (equation 1.4) that is antisymmetric. This cannot be correct, as the 

Pauli Exclusion Principle specifically demands that all valid electronic wavefunctions be 

antisymmetric. To remedy this problem, SAPT introduces an operator call an antisymmetrizer, 

𝒜, which appropriately permutes all pairs of electron labels to yield an antisymmetric 

wavefunction. Operating on the zeroth order H2 wavefunction, for instance, the antisymmetrizer 

gives, 

𝒜[Ψ/(1)Ψ0(2)] = [Ψ/(1)Ψ0(2) − Ψ/(2)Ψ0(1)]. (1.14) 

In the more general case of arbitrary intermolecular interactions, SAPT applies the 

antisymmetrizer to each order wavefunction from RS Perturbation Theory. This gives, 

Ψ=8/]^ = 𝒜Ψ=78, (1.15) 

the symmetry adapted, corrected wavefunction for each order. Each component of the RS 

expansion is then recalculated with these symmetry adapted wavefunctions and the difference 

between these two energies defines the SAPT exchange-repulsion energy: 

𝐸QRS_ =`𝐸a8/]^ − 𝐸a78
4

ab*

. (1.16) 
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In this way the total energy from SAPT is guaranteed to be the energy associated with an 

antisymmetric total wavefunction, but we still retain the physical motivation behind the 

electrostatics, induction and dispersion terms from RS Perturbation Theory. The physical 

intuition behind this energy which SAPT calls “exchange-repulsion” (also referred to as “Pauli 

repulsion”) is less obvious than the other terms in SAPT. A full interpretation is given in Chapter 

5 of this dissertation, but in short, the energy due to forcing antisymmetrization of the 

wavefunction arises from the overlap between the noninteracting monomer densities. The 

overlap in these unperturbed densities violates the Pauli Exclusion Rule and therefore, relative to 

this reference, the density in the overlap region is reduced to accommodate the rule. This 

reduction in density in the internuclear region de-screens the nuclei, resulting in internuclear 

repulsion. This affect is seen clearly if one plots the densities corresponding to Ψ and 𝒜Ψ. An 

example of this for the helium dimer is shown in section 5.2.1. 

1.3.5  Why SAPT is a Natural Fit 
 There are a large number of legitimate ab initio energy decomposition analysis methods 

available. A natural question is, why use SAPT? Although there are many similarities amongst 

the various EDAs, the structure of SAPT makes it particularly well-suited for the purpose of 

constructing a classical force field. Specifically, it is the use of perturbation theory and how it is 

applied in SAPT that makes it a natural fit for building the HIPPO force field. 

 As described above, the reference, or unperturbed, state of the SAPT calculation is the 

two non-interacting monomer wavefunctions. Although this reference state is technically not a 

valid system wavefunction, it does correspond directly to the strategy used to build the 

electrostatics portion of the HIPPO force field. In HIPPO the multipole moments of each atom 

(charge, dipole and quadrupole) are derived directly from the isolated, gas-phase monomer 
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electron density. In other words, HIPPO and SAPT start from the same reference state. The 

other, higher-order terms are in direct correspondence as well. The polarization model of HIPPO 

matches the definition from SAPT of electron density deformation in the presence of an external 

field. The dispersion and Pauli repulsion components likewise correspond directly between 

SAPT and HIPPO. The depth of these associations will be explored in Chapters 2-5 for each 

component, but they stand on the same conceptual foundation. This matters to having an 

interpretable force field. Because HIPPO is a natural fit with SAPT, it allows us to describe in 

quantum mechanical language what the force field is approximating classically. 

1.3.6  A SAPT Example 
 Because SAPT is both a highly accurate ab initio method and because it aligns closely 

with the design principles of classical force field models, we can use it evaluate model 

performance. The body of this dissertation with be full of examples comparing SAPT 

components for molecular interactions to classical models (HIPPO and otherwise), but one 

example at this point will clarify how SAPT can be used. 

 A good example of the utility of SAPT in evaluating force fields is the RNA tetraloop 

mentioned in Section 1.2. A primary driver of nucleic acid structure is the base stacking 

interaction. Thus, work by Parker and Sherrill in reference 9 set out to evaluate how well 

standard force fields performed against SAPT for this particular interaction. Their findings are 

illustrated in figure 1.5. 
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Figure 1.5 SAPT vs. Point Charge Force Field Energy Components for RNA Base Stacking.  

The figure is an illustration of the general trends observed in reference 9. “QM” represents SAPT. The SAPT 

Induction component is omitted since there is no corresponding component in point charge force fields. 

 

Clearly, there are some major issues with the components of the standard force field models. 

First, there is an entire component missing. Point charge force fields do not include polarization, 

so they miss this component of the SAPT EDA. Second, although the components for 

electrostatics, exchange, and dispersion match well at long-range, each diverges at short-range. 

This is particularly true for electrostatics where the divergence is sharp. As I will describe in the 

body of the dissertation, these problems are not unique to RNA. They occur across the space of 

chemical interactions and they are a specific result of point charge force fields neglecting the 

molecular charge density. 

 Point charge force fields typically rely on cancellation of errors in order to cover up these 

two issues, resulting in two further problems. First, the cancellation of errors that works for one 

system may not necessarily work for another system. Second, and more importantly in the case 

of RNA, the functional form of the point charge force field is not flexible enough to cancel errors 

in all distance ranges simultaneously. This is what was observed by Parker and Sherrill. They 
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found that without a charge density model included, the point charge force field model could not 

be reparametrized to obtain accurate total energies across a range of intermolecular interaction 

distances and conformations. 

 This analysis of the atomic-level interactions that drive RNA structure is enlightening, 

particularly in light of the failure of point charge models in reproducing RNA structure shown in 

figure 1.4. One cannot conclusively say that the inability to model base stacking correctly is the 

cause of the structural errors seen in figure 1.4, but the suggestion is strong. The SAPT analysis 

hints that the pathway to more accurate simulations of RNA and biomolecules in general does 

not lie in reparametrizing existing models; it lies in building new models that explicitly include 

the missing physics that is causing the standard models to fail in the first place. 

1.3.7  The S101x7 Database 
 In order to use SAPT to build a model that approximates the EDA energy components, 

the first step was to construct a database of reference data. Since the goal of the HIPPO force 

field is to simulate biomolecules, a database was assembled that included a wide variety of 

intermolecular interactions that are prevalent in biomolecular systems. A total of 101 molecular 

dimers where chosen, as enumerated in figure 1.6.10 
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Figure 1.6 Dimers in the S101 Database.  

Arrows connecting molecules indicate a dimer. The “/2” designation indicates a homodimer. The “/+(-)” designation 

indicates that both a neutral and charged species are included. Reproduced from reference 10. 

  

The database is derived from the widely-used S22 and S66 databases of Hobza and co-

workers.11,12 It includes additions of halogenated systems, phosphates, sulfur-containing 

compounds and amino acid side-chain analogs. 

 In addition to including the equilibrium structure for each dimer, the database was 

expanded to incorporate six additional points along each dimer’s dissociation curve. This yields 

the S101x7 database, which has been used extensively in the development of the HIPPO. The 

points along the dissociation curve are 0.7, 0.8, 0.9, 0.95, 1.00, 1.05, and 1.10 times the 

equilibrium distance. These represent the range of intermolecular distances typically seen in 

condensed phase simulations. The monomer geometries are optimized at the equilibrium distance 

at the MP2/aug-cc-pVTZ level of theory, then held fixed for the other distances.  
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 For each dimer structure, we performed SAPT2+ calculations using the Psi4 quantum 

mechanics software package.13 SAPT2+, as illustrated in figure 1.7, includes electrostatics, 

induction, dispersion and exchange terms as well as some correction terms.14 

 
Figure 1.7 Levels of Symmetry Adapted Perturbation Theory.  

Reproduced from reference 14. 

 

We performed SAPT2+ calculations with two different basis sets: aug-cc-pVDZ and aug-cc-

pVTZ. The former constitutes the “silver” standard according to the reference 14 and the latter 

was computed to estimate complete basis set (CBS) limits. The output of these calculations were 

an electrostatics, induction, dispersion and exchange data point for each of the 707 dimers in the 

S101x7 database. 
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1.4  A New Kind of Force Field 
 For more than three decades the standard of biomolecular simulation has been the point 

charge force field. This model has had many notable successes. Molecular dynamics simulations 

using point charge force fields have successfully folded proteins and reproduced enzyme-

inhibitor binding interactions.15,16 As illustrated with the RNA example above and as will be 

further demonstrated in the body of this dissertation, however, this standard model is missing 

some key physics. The hypothesis of this work is that rather than attempting to cover over these 

insufficiencies, a more productive approach is to derive a model that includes the most relevant 

and important physics from the start. It is this design strategy that has driven the development of 

the model presented in this work. The HIPPO model is a new class of force field. Although it is a 

classical potential energy function, every term is derived, in some fashion, from first-principles 

physics.  

 The HIPPO model is different from the point charge force field model in two subtle, but 

important ways. First, the HIPPO model is derived and parameterized to explicitly reproduce the 

ab initio energy components from Symmetry Adapted Perturbation Theory. This stands in stark 

contrast to the strategy of the standard force fields, which are parameterized empirically, based 

on condensed phase properties. Second, the HIPPO model abandons the atoms-as-points model 

of the standard force field and introduces a model electron density around every atom. As I will 

show, every intermolecular potential energy term is related in some way to the overlap of atomic 

charge densities. Including a model density on each atom allows derivation of the first-

principles-based energy terms of the HIPPO model. 

 These two profound changes that make HIPPO a new class of force field yield a host of 

improvements over conventional models. HIPPO is able to reproduce each separate component 

of the intermolecular energy relative to SAPT within chemical accuracy, or ~1 kcal/mol. 



22 
 

Including a charge density model solves the longstanding “charge penetration problem” in 

molecular modeling (see Chapter 2). The resulting polarization model yields better molecular 

polarizabilities than the leading polarizable force fields (see Chapter 3). The first-principle 

derived dispersion model produces a damping function with true physical meaning (see Chapter 

4). The exchange-repulsion model describes the anisotropy of halogen bonding with drug 

molecules more accurately than any alternative force field (see Chapter 5). And, when all these 

parts are added together, the whole model works naturally for simulating water and a host of 

other organic molecules (see Chapter 6). These successes, as I will show through the course of 

this dissertation are a direct consequence of the physics-first design of the HIPPO model. This is 

not to say that HIPPO is a purely “ab initio” model. The data clearly show that the parameters 

must be tuned to reproduce experimental reality in the same way biomolecular force fields have 

always done. The fact that the model is rooted in its derivation from first principles, however, 

means that it makes the stubborn optimization problem of empirical force fields tractable. The 

direct connection between HIPPO and SAPT acts as a strong set of guidelines for model 

development. We have developed water and small organic molecule HIPPO force fields, but 

work is also underway to build HIPPO models for full protein and nucleic acid simulations. The 

work presented in this dissertation lays the groundwork for HIPPO to produce a new class 

biomolecular simulation. 

1.5  Structure of the Dissertation 
 The dissertation will be laid out in the following manner. This first chapter has served to 

give a motivation, background information and overview of the HIPPO model. Chapters 2-5 will 

explain in detail how each term of the function was derived and parameterized. These will go in 

order of their place in the perturbation theory expansion. Chapter 2 is devoted to electrostatics, 
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Chapter 3 to polarization (induction), Chapter 4 to dispersion and Chapter 5 to exchange-

repulsion (Pauli repulsion). Each chapter will detail how the component was derived and how 

well it matches the SAPT data for that component. Chapters 2, 4, and 5 are taken directly from 

published works of which I am the first author. These chapters will contain an introduction to put 

the paper in context, the full body of the paper and a “Further Work” section that explains any 

parts that subsequently changed. Finally, Chapter 6 will tie the dissertation together by 

presenting simulation results of the full HIPPO model on water. Taken together, this should 

provide a full picture of where the model comes from, how accurate it is, and how we can expect 

it to perform in future applications. 
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Chapter 2: Electrostatics 
 In many ways the electrostatics portion of the HIPPO model is the most important 

component of the whole. There are two reasons for this primacy over the other components. The 

first is conceptual. According to the perturbation theory strategy of Symmetry Adapted 

Perturbation Theory, electrostatics is the first order contribution to the total intermolecular 

interaction energy. Because of this, all of the other terms are built on top of it, making it essential 

that the model be both simple and accurate. The second reason is practical. Decades of 

biomedical research has shown the importance of charged interactions in biomolecular systems. 

This ranges from partial charges interacting between protein sidechains to ions neutralizing 

charged nucleic acid backbones. For these reasons, electrostatics was the first portion of the 

HIPPO model that I addressed. The work in the following published paper lays out the 

foundational idea of the HIPPO model: the atomic charge density.  

At the time the following paper was published, I did not know that the charge density 

would end up being so integral to the overall model. The paper was specifically meant to address 

the narrower problem of “charge penetration” in molecular mechanics force fields. There had 

been some work on this in the literature, but nothing comprehensive for a biomolecular force 

field. This showed that within the context of the AMOEBA (Atomic Multipole Optimized 

Energetics for Biomolecular Applications) force field, a simple charge density model could solve 

the charge penetration problem by applying that charge density to all orders of the AMOEBA 

multipole expansion (charge, dipole, and quadrupole). As I will show in “Further Work” (Section 

2.8), this model was changed slightly for the final HIPPO model. The conclusions of the paper 

remain, nonetheless, unchanged. 
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2.1 Introduction 
A grand challenge of molecular mechanics (MM) force fields is modeling the physics of 

molecular interactions with an accuracy and efficiency that allows realistic, tractable simulations 

of large systems. The goal is not only to correctly capture the physics of molecular interactions, 

but also to be able to answer important practical questions posed by biology, materials science and 

a number of other fields. To do this, MM models make classical approximations to the 1st principles 

quantum mechanics driving the true dynamics of a molecular system. Typically, this is done via a 

set of classical harmonic potential terms describing the intramolecular interactions of bonded 

atoms in the system and a separate set of non-bonded terms to describe intermolecular interactions. 

In particular, the electrostatic nonbonded terms are especially important for accurately modeling 

both short and long range molecular interactions.1 

 The AMOEBA force field is unique in its treatment of these important intermolecular 

electrostatic interactions. Most MM force fields use point charges to approximate the charge 

distribution around atoms in a system and parameterize these point charges based on 

thermodynamic measurements. AMOEBA takes a more physically realistic approach. The 

AMOEBA model approximates the charge distribution around atoms as a point multipole 

expansion of the charge distribution obtained from ab initio quantum mechanics (QM) 

calculations.2,3 Using a multipole expansion derived from ab initio QM calculations provides a 

much more accurate description of electrostatic interactions at medium-range (~2 to 4 times the 

vdW radius), and has been shown to yield satisfactory results for simulations of water, proteins, 

nucleic acids and small molecules.1,2,4,5 

 The multipole approximation of electrostatics, however, starts to break down at short-

range. While the multipole expansion is rigorously correct for interactions of atoms at sufficient 

distance, it is no longer strictly valid once the electron clouds of interacting atoms start to overlap. 
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This phenomenon is known as charge penetration. Charge penetration is simply the change in the 

electrostatic interaction between two atoms due to their electron cloud overlap and the associated 

loss of nuclear screening. It is a simple accounting for the fact that atoms in a system are not points; 

they represent finite charge distributions. Accurately modeling electrostatics has been a priority 

with AMOEBA since its inception. The importance of these interactions was a key motivation for 

the original AMOEBA multipole model. Qualitatively, accounting for charge penetration is the 

logical next step in improving this model.  

 

Figure 2.1 Electrostatic potential as a function of distance.  

An increasing level of theory is needed as the radial distance from an atom of interest decreases.  

 

As depicted in figure 2.1, the current model covers the accuracy of long- and medium-range 

electrostatic interactions. What is needed is a description of charge penetration to accurately model 

short-range interactions. 
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 In addition to being physically relevant, charge penetration has been shown to be an 

important factor in many intermolecular interactions. A particularly instructive set of examples 

lies with what are commonly called “pi-pi” stacking interactions.6 The benzene sandwich dimer, 

as illustrated in figure 2.2, should classically be considered electrostatically repulsive since like 

charges are lined up across from one another. High level ab initio quantum mechanical 

calculations, however, show the counterintuitive result that the benzene sandwich dimer is 

electrostatically attractive.7 This is almost entirely due to charge penetration. 

 

Figure 2.2 Electrostatic energy of the benzene sandwich dimer.  

AMOEBA overestimates the electrostatic energy of the interaction compared with the benchmark QM calculations. 

The error gets progressively worse at short-range.  
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Figure 2.2 shows that the overlap of electron clouds causes the electrostatic energy of the 

interaction to become more negative as the two monomers get closer together. This same 

phenomenon is observed with stacking interactions between nucleobases. Parker and Sherrill have 

recently shown that without charge penetration, it is difficult, if not impossible to accurately 

capture the electrostatics of interacting nucleobases.8 These considerations show that if AMOEBA 

is to be successful in accurately modeling biologically relevant interactions such as nucleic acid 

folding or ligand binding, we must account for the short-range electrostatics of charge penetration. 

 A number of studies have suggested functions for incorporating charge penetration into 

existing molecular mechanics force fields.9-20 The derivation of most of these functions has 

followed the same basic strategy. The electrostatic description of each atom in the system is split 

into two parts. The first is the core charge (often, but not necessarily simply the nuclear charge), 

treated as a point and second a smeared electron cloud charge representing the remaining charge 

of the atom. This splits what was a single interaction into four interactions, as illustrated in figure 

2.3.  
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Figure 2.3 Electrostatic energy of charge penetration-corrected, smeared-charge atomic interactions.  

The total electrostatic energy is split into four parts. The first term is the energy of the core-core, point-point 

interaction. The second and third terms are the energies of each core in the electrostatic potential of the opposing 

smeared charge. The fourth term is the energy of the overlap between smeared charge distributions. 

 

The functions listed in table 2.1 are four methods suggested for how best to handle this four-part 

interaction between atoms.  
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Table 2.1 Proposed methods for incorporating charge penetration into molecular mechanics electrostatic 

energy.  

For consistency, Z is the nuclear charge, ρ is the total charge density of the electrons, q is the total charge of the 

electron cloud, V is the number of valence electrons, c is the partial charge, n is the number of “screening electrons”, 

and r is the internuclear distance.  In the first row, the charge density is either a promolecular charge density 

(Engels) or a density from hermite gaussians in the GEM model (Cisneros). 

 

Tafipolsky and Engels took a more direct approach and calculated a numerical integral between 

spherical pro-molecule charge densities.17 This is similar in spirit to the approach of the GEM 

(Gaussian Electrostatic Model) force field, where hermite gaussians are used to reproduce the ab 

initio electron density.9,21,22 While being physically straightforward, these methods currently lack 

the efficiency needed for simulating large systems. The other three methods use damping functions 
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to approximate how the electrostatic potential of an atom changes in its electron cloud and use 

those damping functions to approximate the value of the overlap integral for U4. 

 In a previous proof-of-principle study, we implemented the form of Piquemal and co-

workers in the AMOEBA force field.23 The study showed that accounting for charge penetration 

can start to recover the true nature of short-range electrostatic interactions between molecules. A 

follow-up study extended the model for use with smooth particle mesh Ewald.24 In the present 

work we seek to develop a comprehensive model based on the previous work that best captures 

the physics of electrostatic intermolecular interactions and the aims of the AMOEBA force field. 

Given the potential improvement our previous work has shown possible in such a model, the 

question becomes: what features would we like the AMOEBA charge penetration model to have? 

In the work presented here we aim to implement a charge penetration function that best meets the 

following criteria: 

1. The model should be physically derived. 

2. The model should be computationally efficient to compute. 

3. The model should be numerically stable. 

4. The model should accurately reproduce ab initio QM measurements for relevant molecular 

interactions. 

5. The model should be consistent with the AMOEBA multipole model. 

In section 2, we present the physical derivation of the models that were considered and derive 

corresponding damping terms for higher-order multipoles. In section 3, the scheme for 

parameterizing the models is presented. Section 4 lays out results comparing the performance of 

the models. Section 5 shows validation that the charge penetration model is capturing physical 

reality. And lastly, section 6 draws our conclusions. 
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2.2 Theory 
Stone illustrated the phenomenon of charge penetration with a simple example.25 Consider 

the interaction of a proton with a hydrogen-like atom with nuclear charge Z. From quantum 

mechanics we know that the wave function of a hydrogen-like atom is 

 𝜓(𝑟) = rst

u
𝑒>sn. (2.1) 

This gives us the electron density of the atom, 

 𝜌(𝑟) = − st

u
𝑒>sn. (2.2) 

This tells us how dense the electron distribution of the atom is as a function of the radial distance 

(r) from its nucleus. To get the potential this density generates, we must apply Poisson’s equation, 

 ∇4𝑉 = >x
yz
, (2.3) 

where 𝜖*is the permittivity of free space. Applying Eq. (2.3) to Eq. (2.2) we obtain 

 𝑉(𝑟) = − 3
n
+ |𝑍 + 3

n
} 𝑒>4sn, (2.4) 

the familiar potential due to the electron density of a hydrogen-like atom. At large distances from 

the atom, the first term in Eq. 2.4 dominates the second term due to the second’s exponential decay 

and we have the classical point charge coulomb approximation of the potential. At closer distances, 

however, as shown in figure 2.4, the second term becomes non-negligible. This second term 

represents the charge penetration. 



34 
 

 

Figure 2.4 Classical coulomb potential vs. Hydrogen-like atom potential.  

Plotted is the electrostatic potential of a point electron vs. the hydrogen-like electron (Z=2 to emphasize the 

distinction). The classical potential diverges from the hydrogen-like result at short-range. 

 

 We can exploit the fact that V(r) converges to -1/r at large distances and rewrite Eq. 2.4 as 

 𝑉(𝑟) = − 3
n
(1 − (1 + 𝑍𝑟)𝑒>4sn) = − 3

n
∙ 𝑓hijk(𝑟) (2.5) 

where, 

 𝑓hijk(𝑟) = 1 − (1 + 𝑍𝑟)𝑒>4sn. (2.6) 

The potential in this form is represented simply as the point charge coulomb potential multiplied 

by a damping function. This is convenient because the damping function has the following 

straightforward properties: 
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1. It approaches a value of one as r becomes large. 

2. It approaches a value of zero as r approaches zero. 

3. It is a direct multiplication of the classical point-charge coulomb potential. 

4. It describes charge penetration as a deviation from the classical potential. 

To this point there are no approximations made in our derivation. Crucially, however, most atoms 

in systems of interest for molecular simulation are not strictly hydrogen-like. This means that 

𝑓hijk for non-hydrogen-like atoms is not exactly given by Eq. 2.6. The properties and form of Eq. 

2.6 are instructive, however. To capture the physics more generally, we introduce a parameter, α, 

in place of the 2Z and remove the prefactor in front of the exponential to obtain 

 𝑓hijk(𝑟) = 1 − 𝑒>�n. (2.7) 

This more general construction of 𝑓hijk retains all of the relevant damping function properties 

listed above and allows us to tune the parameter, α, to reproduce ab initio electrostatic energies. 

This is identical to the damping function proposed separately by both Gordon and co-workers11 

and Piquemal and co-workers.10 

 Using the damping formulation of Eq. 2.7, we have now effectively changed the potential 

due to every atom in a given system. The potential at any point in the system is described by, 

 𝑉(𝑟) = s
n
+ 𝑓hijk(𝑟) ∙ 𝑉Soi��aSio =

s
n
+ (1 − 𝑒>�n) ∙ 𝑉Soi��aSio (2.8) 

where the potential due to the nucleus is unchanged, but the potential due to the electrons now 

accounts for the charge penetration effect. This, however, is not quite enough to get the interaction 

energy between two atoms. Recall from figure 2.3 that although the second and third terms of the 

charge penetration corrected electrostatic interaction energy involve simple point charges 

interacting with the potential due to smeared charge distributions, the fourth term has two smeared 
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charge distributions interacting with each other. In this unique case, we must derive a second 

“overlap” damping function to account for this interaction. 

 For the fourth, overlap term we are attempting to approximate the overlap integral between 

the two charge distributions, 

 𝑈� = 	∫
x�x�
n
𝑑𝑣/𝑑𝑣0 =

3
4
(∫𝜌/𝑉0(𝑨)	𝑑𝑣/ + ∫ 𝜌0𝑉/(𝑩)	𝑑𝑣0), (2.9) 

where 𝑉/ and 𝑉0 are the charge penetration corrected potentials due to atoms A and B respectively. 

Gordon and co-workers approximate this integral using the one-center method given by Coulson26 

to yield 

 𝑈� =
����
n
�1 − ��

�

���
�>��

��
𝑒>��n − ��

�

���
�>��

��
𝑒>��n� = ����

n
∙ 𝑓hijk

lmQnoik3(𝑟) (2.10a) 

where qA and qb are the total electron charges of atoms A and B, for the charge-charge portion of 

the interaction. Piquemal and co-workers take a two-center approach to approximating the integral, 

 𝑈� =
����
n
�1 − 𝑒>��n��1 − 𝑒>��n� = ����

n
∙ 𝑓hijk

lmQnoik4(𝑟) (2.10b) 

where, as laid out in our previous work (Ref. 20), a second parameter is introduced to describe the 

overlap. While the derivations of these formulae are slightly different, mathematically these U4 

overlap damping functions constitute the only functional difference between the models of Gordon 

and co-workers and Piquemal and co-workers. For simplicity’s sake, the approach of Eq. 2.10a 

will be referred to as model 1 and Eq. 2.10b as model 2. They can be implemented, however, in 

an identical manner. These overlap damping functions allow us to calculate the charge penetration 

corrected charge-charge electrostatic interaction between any two sites: 

 𝑈QoQS�nl��i�aS
S_in�Q>S_in�Q = s�s�

n
+ s���

n
𝑓hijk(𝑟) +

s���
n
𝑓hijk(𝑟) +

����
n
𝑓hijk
lmQnoik(𝑟). (2.11) 
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 The AMOEBA model, however, has more than just charges on every atom. It uses a 

multipole expansion representing the charge distribution at every site. The energy between two 

AMOEBA multipole sites, i and j, is given by, 

 𝑈j�o�akloQ = 𝑴a
�𝑻a�Soi��aSio𝑴� (2.12) 

where 𝑴a and 𝑴� represent the multipole moments on atoms i and j respectively, and 

 𝑻a�Soi��aSio =
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is the classical point multipole interaction matrix. We can see in Eq. 2.13 that the interaction 

matrix, 𝑻a�, for AMOEBA without charge penetration is obtained simply by taking repeated 

derivatives of the classical coulomb potential, 1/r.  To account for charge penetration, not just in 

charge-charge interactions, but in all multipole interactions up to arbitrary order, we simply insert 

the charge penetration damped potential in place of the classical potential. This yields the charge 

penetration corrected multipole interaction matrix, 
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where 𝑓hijk is either 1 (for nuclear-nuclear interactions), the damping function from Eq. 2.7 (for 

the second and third terms of the interaction energy), or the overlap damping function from Eqs. 

10a or 10b (for the fourth term of the interaction energy). Using the charge penetration corrected 

multipole interaction matrices, we can express the new AMOEBA multipole interaction energy of 

any two sites as: 

 𝑈QoQS�nl��i�aS£] = s�s�
n
+ 𝑍a𝑻a�

hijk𝑴� + 𝑍�𝑻�a
hijk𝑴a +𝑴a

�𝑻a�
lmQnoik𝑴�. (2.15) 

Eq. 2.15 allows us to account for the effects of charge penetration up to arbitrary order multipole 

expansion.  For AMOEBA, which has multipole interactions up to quadrupole-quadrupole, this 

means that the charge penetration model can be made fully consistent with the multipole model.  

See Appendix A for explicit damping functions for all AMOEBA multipole interaction 

components. 

2.3 Parameterization 
 The goal of including charge penetration in the AMOEBA model is to more accurately 

reproduce the energies of electrostatic interactions between molecules at short range. Because both 

models 1 and 2 contain empirical parameters, we will seek to optimize them by fitting to a database 

of relevant intermolecular electrostatic energies. In our previous work, the S101 and S101x7 

databases where constructed for this purpose.23 The S101 database contains 101 unique pairs of 

both homodimers and heterodimers of common organic molecules. It contains the widely used S66 

database27 along with some additional relevant biomolecular interactions. The S101x7 database is 

constructed by placing each dimer pair from the S101 database at 0.70, 0.80, 0.90, 0.95, 1.00, 1.05 

and 1.10 times their equilibrium intermolecular distance. A schematic representation of all the 

dimer pairs included in the S101 database is shown in figure 2.5.   
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Figure 2.5 Dimer pairs in the S101 database.  

Arrows connect monomers that form dimers.  A “/2” designation indicates a homodimer. A “/+” designation 

indicates both neutral and positively charged forms. Reproduced from reference 20 

 

In all of the parameterization that follows, the entire S101x7 database was used with the exception 

of interactions involving ethyne. The omission of ethyne allows direct comparison with the results 

from our previous work. 

 To parameterize the charge penetration models against the S101x7 database, accurate 

intermolecular electrostatic energies are needed for all dimer pairs. In the previous work, 
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Symmetry Adapted Perturbation Theory (SAPT)28 calculations where performed to obtain these 

energies. SAPT calculations decompose intermolecular energies into physically meaningful 

components; the intermolecular energy between two monomers is broken down into electrostatic, 

induction, exchange-repulsion and dispersion energies. For the S101x7 database, SAPT2+ 

calculations29,30, estimated at the complete basis set (CBS) limit as described in Ref. 22, were 

carried out to return the ab initio electrostatic interaction energy of each dimer pair. 

 The parameters of model 1 and model 2 were optimized by performing a nonlinear least 

squares fit to minimize the difference between the AMOEBA electrostatic energy (with charge 

penetration), 𝑈QoQS�nl��i�aS/¤¥¦0/ , and the SAPT electrostatic energy, 𝑈QoQS�nl��i�aS8/]^ , for each dimer pair.  

For models 1 and 2, two methods of parameterizing are proposed. In the first method one 

parameter, α, is assigned per element. In the second, one α is assigned per charge penetration class. 

These classes, as listed in table 2.2, are simply chosen to allow for different descriptions of atoms 

of the same element but different physiochemical classifications.  
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Table 2.2 Atom classes and fitted parameters for charge penetration models. 
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The choice of classes is based on the knowledge that the electronic structure of an sp2 hybridized 

carbon, for example, will be generally different than that of an aromatic carbon. While it is 

certainly true that differences in electron distribution exist even amongst atoms of the same charge 

penetration class (the electronic structure of every sp2 hybridized carbon is not exactly the same), 

the guiding principle is to include only the minimal level of atomic classification to allow the 

model to be easily transferable. 

 For model 2, the parameter, β, is fixed as a fraction of α, 𝛽 = 𝛾 ∙ 𝛼, where the parameter, 

γ, is taken to be universal to avoid over-fitting. Allowing β to float for every charge penetration 

class has the potential, of course, to improve the overall fit, but at the cost of losing physical 

meaningfulness. Recall from Eq. 2.10b that although the β parameter is specific to the overlap 

function in model 2, the two electron clouds that are overlapping are supposed to already be 

described by the parameter α. Allowing both α and β to float in the fit would allow two different 

parameters to describe essentially the same physics. Instead fitting one universal parameter γ 

simply describes how β should be generally related to α in approximating the overlap between 

molecules.  It should be noted that the parameterization strategy here for model 2 differs slightly 

from previous work.  It is chosen in this way to best fit the AMOEBA multipole model and provide 

for a direct comparison with model 1 on the same test set. 

 The results of fitting model 1 and model 2 are shown in table 2.2. Three fits were performed 

for each model. First the S101x7 database of intermolecular electrostatic energies was fit using 

only charge-charge damping with parameters assigned by element. Next, the same charge-charge 

damping fit was performed with parameters assigned by class. Then the database was fit using 

higher-order damping with damping of all AMOEBA multipole interactions (up to and including 

quadrupole-quadrupole). 



43 
 

 In addition to parameterizing models 1 and 2, a third model, due to Wang and Truhlar18-20 

has been parameterized as well. This model, developed for application in QM/MM calculations, is 

included as a point of comparison. However, it is not developed any further than charge-charge 

damping using parameters assigned by element as it has several properties that make it unsuitable 

for implementation in AMOEBA. First, the model can be unstable with respect to the parameters 

of interacting atoms. If two closely interacting atoms have parameters that are close, but not 

identical, the overlap damping functions of the model breaks down. Second, expanding the model 

to include higher-order damping to make it fully consistent with the AMOEBA multipole model 

is computationally intractable with this model. The expressions that form the overlap damping 

functions, as seen in Eqs. 8 and 9 in Ref. 19 are much more complex functions of the radial distance 

between atoms, r. Taking the successive derivatives necessary for higher-order damping terms 

would produce expressions too expensive to calculate for our purposes. Third, even if such 

derivatives were deemed necessary, the model’s framework is incompatible with higher-order 

damping. The damping functions used in Wang and Truhlar’s model are meant to simulate the 

outer Slater-type orbitals of atoms. With this being the case, rather than treat all of an atom’s 

electrons as damped, the model only treats a maximum of 2 as damped. This treatment is 

acceptable for charge-charge damping since charge is spherically symmetric and one simply treats 

the remaining electrons as part of the “core”. This is, however, problematic for higher-order 

damping because there is no such simple partitioning of the electrons that make up an atom’s 

dipole and quadrupole moment. It would be nonsensical to apply the model’s damping terms meant 

for two electrons, to an atom’s dipole and quadrupole interactions. 

 In the following section the fits produced by the parameterization of all three models is 

presented. The fits of each model to the S101x7 database will be used along with some important 
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validation tests and theoretical arguments to determine which model and which parameterization 

strategy to implement in AMOEBA. 

2.4 Results 
 To understand how charge penetration improves the electrostatic model of AMOEBA, we 

must understand how the current AMOEBA model without a charge penetration correction 

performs. Figure 2.6 shows how AMOEBA’s prediction of intermolecular electrostatic energies 

compares to the SAPT ab initio electrostatic energy values on the S101x7 database.  

 

Figure 2.6 AMOEBA, multipole-only intermolecular electrostatic energy of dimers in S101x7 database.  

The multipole-only electrostatic energy for each dimer is plotted against the benchmark SAPT electrostatic energy. 

The diagonal, y=x line indicates what would be perfect agreement. Compared to the benchmark calculations, the 

multipole-only model systematically overestimates the electrostatic energy.  

 

Figure 2.6 reveals that using only a multipole expansion to describe the electrostatic interactions 

between molecules systematically overestimates the electrostatic energy at short range. The 
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pervasive gap illustrated in figure 2.6 illustrates the need for including charge penetration in the 

electrostatic model of the AMOEBA force field. 

 The most naïve method of applying a charge penetration correction is to assign one 

parameter per element and damp only the charge-charge electrostatic interactions. As a first test 

of the theory, this strategy was implemented for models 1, 2 and 3. Each model was then 

parameterized by fitting to the S101x7 database. The overall results of assigning parameters by 

element and damping only the charge-charge electrostatic interactions are illustrated in the first 

cluster of columns in figure 2.7.  

 

Figure 2.7 Root mean square error of AMOEBA electrostatic energy with charge penetration on S101x7 

database. 

 Multiple charge penetration models were tested. The first cluster of columns represents the results of parameters fit 

by element with charge-charge damping only. The second cluster is the results of having parameters assigned by 

class and charge-charge damping. The third cluster is the results for including higher-order damping in addition to 

having parameters assigned by class. (RMS error of AMOEBA with multipoles-only is 13.4 kcal/mol) 
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It is clear that all three models perform much better than the current AMOEBA multipole only 

model. The RMS error of the multipole-only model for electrostatic energies on the S101x7 

database is 13.4 kcal/mol. Models 1, 2 and 3 bring that error down to 2.1 kcal/mol, 2.1 kcal/mol 

and 4.5 kcal/mol respectively, showing that even a naïve damping strategy starts to capture the 

missing physics. It is also apparent that models 1 and 2 perform much better, even at this low level 

of implementation, than model 3. Additionally, note that despite having fewer parameters, model 

1 performs nearly identically to model 2 for this implementation. Complete statistics for each of 

these fits, including a breakdown by intermolecular distance, are available in Appendix A. 

 While assigning parameters by element produces an improvement over the multipole-only 

AMOEBA model, it ignores some key physiochemical properties of elements in different bonding 

environments relevant to interpreting the α parameter. The α parameter with units, Å-1, can be 

understood as the inverse of the physical extent of the electron cloud of an atom. From ab initio 

electronic structure calculations we know that in general this property can change substantially 

based on the bonding environment of an atom. For this reason, we fit models 1 and 2 with 

parameters assigned by class to the S101x7 as described in the preceding section. The overall 

results of assigning parameters by class and still damping only the charge-charge electrostatic 

interactions are illustrated in the second cluster of columns in figure 2.7. The first thing to note is 

the absence of a fit for model 3. Once the parameter set is expanded to include classes, model 3 

becomes highly unstable. As noted, before this is due to numerical instability when parameters in 

the model become close. This is practically unavoidable for class-based parameters, so model 3 is 

excluded from this point forward. More importantly, however, we notice also that splitting out 

different parameter classes improves the overall fit to the S101x7 database for models 1 and 2. 

Assigning parameters by class improves the performance on the RMS error. Again, despite having 
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fewer parameters, model 1 outperforms model 2 in this case.  This improvement is largely due to 

allowing different classes for the same element. For example, table 2.2 shows that for model 1 the 

parameter for hydrogen in the element based fit splits quite significantly when one allows different 

classes to vary. The element parameter, 4.0 Å-1 splits into parameters of 3.4 Å-1, 3.9 Å-1 and 5.0 Å-

1 for non-polar, aromatic and polar hydrogen respectively. This extra flexibility in the 

parameterization, rooted in basic physiochemical properties improves our overall description of 

the electrostatics. Again, specific statistics for class-based fits can be found in the Appendix A. 

 Splitting out separate chemical classes for parameters improves the performance of our 

charge-charge damping charge penetration model, but it unfortunately does not meet the criteria 

of being fully consistent with the AMOEBA multipole electrostatic model. To test the fully 

integrated model we implemented charge penetration damping for all multipole interaction terms 

(up to and including quadrupole-quadrupole) for both models 1 and 2. We will refer to this model 

as “higher-order” damping. The overall results, illustrated in the third and final cluster of columns 

in figure 2.7, show the improvement that this model brings. Implementing a fully integrated higher-

order damping model with class-based parameters brings the RMS error on the entire S101x7 

database for models 1 and 2 down to 1.31 kcal/mol and 1.52 kcal/mol respectively. Full statistical 

analysis can be found in Appendix A. These numbers represent a dramatic improvement over the 

current AMOEBA multipole-only RMS error of 13.43 kcal/mol. More importantly they also 

improve on the errors from our charge-charge damping implementations. A significant portion of 

the improvement is due to improvement in the performance on the closest dimer pairs in the 

S101x7 database. Among dimers that are separated by 0.70 and 0.80 of their equilibrium distance, 

model 1 with higher-order damping reduced that error from 2.75 kcal/mol to 2.27 kcal/mol, and 

model 2 reduced it from 4.36 kcal/mol to 2.64 kcal/mol. Importantly, this improvement does not 
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sacrifice the fit at more accessible distances. For model 1 the RMS error on dimers with 

intermolecular separations of 0.90 to 1.10 times their equilibrium distance dropped to under 1 

kcal/mol compared with an error of over 4 kcal/mol for the current multipole-only model. Lastly, 

these fits give a slight edge to the simpler model 1 over model 2.  Model 1 performs 16% better 

than model 2 on overall RMS errors in the S101x7 database when higher-order damping is 

included. The absolute percent error of model 2 on the electrostatic energies of the S101x7 

database is 10%, while model 1 gives 7%. 

 Figure 2.7 lays out the overall performance of each of the implementations described 

above. It is clear from this data that model 1 with higher-order damping and parameters assigned 

by class gives the best fit to the electrostatics of the S101x7 database. The improvement this model 

gives on each individual dimer pair is shown in figure 2.8.  
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Figure 2.8 AMOEBA intermolecular electrostatic energy with and without charge penetration of S101x7 

database dimers.  

The AMOEBA electrostatic energy both without (multipole-only) and with (model 1 with charge-charge or higher-

order damping) charge penetration is plotted against benchmark SAPT electrostatic energy calculations. The 

diagonal, y=x line indicates what would be perfect agreement. Including higher-order damping in the charge 

penetration model yields the best agreement with ab initio electrostatic energies. 

 

Figure 2.8 shows that across the board model 1 with higher-order damping is superior to simple 

charge-charge damping and represents a dramatic improvement over the current multipole-only 

model. This is borne out in a handful of important and instructive examples. Figure 2.9 lays out 

the results for fitting the water dimer, figure 2.10 shows two important orientations of the benzene 

dimer and figure 2.11 shows the model’s performance on phosphate ions.  
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Figure 2.9 Water dimer electrostatics.  

AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-

order damping) charge penetration are plotted against benchmark SAPT electrostatic energies. 
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a) 

 

b) 

 

Figure 2.10 Benzene (a) Sandwich and (b) T-shape dimer electrostatics.  

AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-

order damping) charge penetration are plotted against benchmark SAPT electrostatic energies. 
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a) 

 

b) 

 

c) 

 

Figure 2.11 Phosphate-water dimer electrostatics.  

AMOEBA dimer electrostatic energies without (multipoles-only) and with (model 1 with charge-charge and higher-

order damping) charge penetration are plotted against benchmark SAPT electrostatic energies. Results are shown for 

PO4H (a), PO4H2 (b) and PO4H3 (c). 
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These three examples represent important relevant biomolecular interactions that the current 

multipole-only model fails to accurately capture. Moreover, all three also show that an integrated 

higher-order damping model is needed to achieve the highest level of agreement with SAPT 

electrostatic data. These examples show that not only does the model generally improve the quality 

of electrostatics across a wide dataset, but it also performs well on individual examples, such as 

the benzene sandwich dimer, that inspired our investigation of the charge penetration phenomenon. 

 

 

2.5 Validation 
The fit to the S101x7 database with model 1 higher-order damping is a welcome result. 

The model dramatically improves the quality of the electrostatic fit for those electrostatic 

interactions over AMOEBA’s current multipole-only model and it outperforms all of the other 

relevant damping models proposed. There are, however, some considerations that need to be 

addressed to validate model 1 with higher-order damping as the best option for capturing the 

physics of charge penetration. First, we would like to show that in addition to giving the best fit, 

model 1 is also the most robust option. Second, we need to know to what extent this charge 

penetration model is independent of the AMOEBA multipole model. And most importantly, we 

must validate that this model is capturing a real physical phenomenon. 

 It is important our charge penetration model not only provides a good fit to ab initio 

electrostatic data, but also that the model is robust. To evaluate robustness, we must evaluate the 

sensitivity of the model to small changes in the parameters. Model 3 does not pass this parameter 

sensitivity requirement. Figure 2.12 shows the behavior of the oxygen–sulfur electrostatic 
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interaction in the DMSO–water dimer as the difference between oxygen and sulfur parameters gets 

smaller.  

 

Figure 2.12 Charge penetration model stability.  

The oxygen-sulfur electrostatic interaction energy for the water-DMSO dimer is plotted as a function of the 

difference between the oxygen and sulfur charge penetration parameters. As the ratio of the parameters approaches 

unity, model 3 becomes unstable. 

 

Clearly model 3 breaks down as the two parameters get close to one another. Moreover, the 

problem is compounded as the intermolecular distance decreases. Since the zeta parameter 

multiplies the interatomic distance, r, everywhere in the damping function, the problem gets worse 

as monomers get closer together. Model 2 does not suffer from any such numerical instability, but 
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it is sensitive to the parameter, γ, that determines the overlap damping function.  Table 2.3 shows 

that if the closest dimers are left out of our fit to the electrostatic data, γ changes from 0.88 to 0.90.  

 

 

 

 Model 1 Model 2 

Parameters from fit to full S101x7 
database 1.31 kcal/mol 1.52 kcal/mol  

(γ = 0.88) 

Parameters from fit to S101x7 database 
excluding the closest points (0.8 – 1.1) 1.40 kcal/mol 1.83 kcal/mol 

(γ = 0.90) 

 

Table 2.3 Charge penetration model parameter sensitivity.  

Models 1 and 2 were fit to the S101x7 database excluding the closest points (all dimers except those at 0.7 times the 

equilibrium distance). The parameters generated from that fit are then tested on the full database. Model 2, 

particularly the γ parameter, proves to be the more sensitive to this change. 

 

Moreover, if we use the γ that comes out of the fit where we leave out the closest points, the RMS 

error for the full S101x7 database jumps from 1.52 kcal/mol to 1.83 kcal/mol. Model 1 on the other 

hand does not suffer from any such sensitivity. If we leave out the closest dimer pairs and fit 

parameters to our model, table 2.3 shows that those parameters do almost as well as the parameters 

fit to the full S101x7 database. The RMS error for model 1 in this case goes up by less than 0.1 

kcal/mol. By these tests model 1 shows the strength with respect to numerical stability and 

parameter transferability we expect a robust charge penetration model to have. 
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 In addition to being the most robust option, model 1 also shows good model independence 

from the AMOEBA multipole model. AMOEBA follows a defined protocol for determining 

charge, dipole and quadrupole parameters for each monomer2 and we should expect that our model 

should, for the most part, be independent of that specific protocol. In other words, the multipole 

model and the charge penetration model should not depend on each other. To test this, we use the 

toy example, benzene. When determining the electrostatic parameters for benzene, multiple values 

for the opposing charges of the carbons and hydrogens will give nearly identical fits to the 

electrostatic potential on a grid of points around the molecule. Although the AMOEBA multipole 

protocol fixes those charge values semi-arbitrarily, we wanted to see if choosing otherwise would 

break our model 1 charge penetration model. Figure 2.13 demonstrates that model 1 accurately 

reproduces the electrostatic potential regardless of which potential-fitted charge-dipole-

quadrupole model one chooses. This validates an important feature of the model: that it is 

independent of the specifics of potential fitting protocol for the AMOEBA multipole model. 
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Figure 2.13 Charge penetration model independence.  

Three different benzene multipole models were chosen with charges fixed at +/-0.005 e-, +/- 0.15 e-, and 0 e- that 

give roughly equivalent electrostatic potential fits. The charge penetration model was then applied to all three 

models. RMS errors of the electrostatic potential on a grid of points around benzene for each model are plotted. The 

charge penetration significantly lowers the error regardless of multipole model. 

 

 Lastly, but most importantly, for our model to be valid, we must prove that it is capturing 

a real physical effect. At the heart of the charge penetration phenomenon is the fact that the 

electrostatic potential around an atom at short range cannot be reproduced by a simple point 

multipole approximation without accounting for the extent of the atom’s charge density. To 

validate that the model is describing this physics we tested to see if our charge penetration model, 

model 1 with higher-order damping, could accurately reproduce the ab initio electrostatic potential 
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around a molecule at short range. Figure 2.14 shows that without exception the charge penetration 

model dramatically improves the electrostatic potential fit around every monomer in the S101 

database. This is the validation we are looking for. Not only does our model correct the practical 

problem of bad intermolecular electrostatic energies at close range, but it does so by accurately 

capturing the physical reality of molecules’ finite charge distributions. 

 

Figure 2.14 Charge penetration model performance on electrostatic potential of monomers in S101 database.  

The RMS error of the electrostatic potential on a grid of points around each monomer is plotted. Including charge 

penetration improves the fit to the electrostatic potential for every monomer. 

 

2.6 Test Case: Nucleic Acid Base Stacking 
 As stated in the introduction, charge penetration effects are important in a broad range of 

close-contact biomolecular interactions. One essential example is the stacking interactions of 

nucleobases in DNA and RNA sequences. Parker and Sherrill recently showed that without an 

explicit accounting for charge penetration, force fields struggle to accurately reproduce the ab 

initio electrostatic energies of these interactions.8 For instance in an AC:GT base step, the mean 
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absolute errors (MAE) of the AMBER31,32 and CHARMM33 force fields relative to the SAPT 

electrostatic energy were over 20 kcal/mol. Likewise, we find that AMOEBA without charge 

penetration gives an electrostatic energy MAE over 20 kcal/mol as well. However, when we apply 

our charge penetration function with parameters fixed to their values from the S101x7 fit, the MAE 

drops dramatically to nearly 2 kcal/mol. This improvement is not unique to the AC:GT base step. 

As shown in figure 2.15, the MAE of our AMOEBA model with charge penetration is significantly 

lower for every base step combination. 

 

Figure 2.15 Mean absolute electrostatic interaction energy error relative to SAPT0 for ten stacked base steps. 

 Including charge penetration lowers the MAE in the electrostatic interaction energy for every base step 

combination. 

 

 Moreover, this improvement in the electrostatic description of nucleobase stacking holds 

even for non-equilibrium stacking arrangements. Figure 2.16 shows that for the six structural 
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parameters that define the stacking interaction, 34 the AMOEBA + charge penetration model does 

far better than AMBER, CHARMM or the current AMOEBA force field.  

 

Figure 2.16 Mean absolute electrostatic interaction energy error relative to SAPT for six structural 

parameters. 

 Including charge penetration lowers the MAE for variation along every degree of freedom in the nucleobase 

stacking interaction. Inset reproduced from reference 7. 

 

These data confirm, as asserted by Parker and Sherrill, that including charge penetration is an 

absolute necessity for a robust nucleic acid force field model. This imperative is highlighted in two 

standout cases of the TA:TA base step. Figure 2.17 shows the performance of force field models 

against SAPT electrostatics versus the nucleobase rise.  
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Figure 2.17 Electrostatic energy of a stacked TA:TA interaction vs. Rise. 

 Including charge penetration reproduces the ab initio SAPT electrostatic energy over the range of rise parameters. 

The behavior is consistent with that of the benzene dimer interaction (see figure 2.10).  

 

It is immediately clear that the AMOEBA + charge penetration model put forward here is the only 

model that accurately reproduces the electrostatic nature of this interaction. The same is seen in 

figure 2.18 where we examine the electrostatic energy as a function of the tilt parameter.  
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Figure 2.18 Electrostatic energy of a stacked TA:TA interaction vs. Tilt. 

 Including charge penetration reproduces the ab initio SAPT electrostatic energy over the range of tilt parameters. 

Tilt-like interactions are not part of the S101x7 database, so this behavior shows a level of transferability for the 

model. 

 

Again, the model including charge penetration is the only model that agrees with the quantum 

mechanics. This same improvement persists across all structural parameters of the TA:TA base 

step. Figures for the other four parameters can be found in Appendix A. It is worth noting that not 

only is this an important test case because of its direct relation to biomolecular applications for the 

force field. It is also important because it shows that the model, parameterized against a particular 

test set (S101x7) performs well on interactions well outside of that set. These results give us 

confidence in the transferability of our charge penetration model. 

2.7 Conclusions 
 The goal of the AMOEBA force field is to model the physics of biomolecular interactions 

using approximations that make calculations on large systems tractable. Our work here shows that 

to accurately capture the physics of short-range intermolecular interactions a charge penetration 



63 
 

term is absolutely necessary. Without accounting for charge penetration, even an advanced point 

multipole model cannot accurately reproduce electrostatic interactions at short range. These 

discrepancies in intermolecular interactions crucial to biomolecular systems are large enough that 

they cannot be ignored. Fortunately, we have also shown that charge penetration can be corrected 

for with the implementation of a simple set of damping functions.  This is not necessarily a new 

conclusion.  Previous work on AMOEBA as well other classical force field models have 

demonstrated the efficacy of using damping functions to capture charge penetration. We have 

demonstrated here that the higher-order damping functions we have developed for model 1 

represent the best, most integrated method for implementing charge penetration in the AMOEBA 

force field. 

 There are some key reasons why using model 1 with higher-order damping makes the most 

sense for AMOEBA. The first reason is the most obvious. On an extensive test set of relevant 

molecular dimers, model 1 with higher-order damping produced the most accurate results.  We 

have shown that including higher-order damping provides a substantial increase in model accuracy 

and model 1 performs well at this purpose. The practical purpose of including charge penetration 

in the force field is to accurately describe intermolecular interactions and by this direct measure 

model 1 with higher-order damping does the best. 

 The model does more than simply give good numbers, however. Model 1 is derived from 

the fundamental physics of atomic charge distributions. The damping function that describes the 

electrostatic potential around an atom in this model comes directly from the charge distribution of 

a hydrogen-like atom. The overlap damping function comes directly from an approximation of the 

overlap integral between two hydrogen-like charge densities. The model does contain empirical 

parameters, but those parameters are given physical meaning by the derived functions they sit in. 
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 A natural question is why the similar model 2 with one extra parameter does not give better 

results than model 1. The simple answer is that it appears the two models are intrinsically aligned 

with different multipole models. AMOEBA takes a two-step approach to assigning multipole 

parameters. First distributed multipole analysis (DMA) is performed to obtain initial charge, dipole 

and quadrupole parameters. Then, those parameters are optimized by fitting to the electrostatic 

potential on a grid of points around the molecule. Because the overlap function in model 1 is 

constructed starting from a simple one-electron potential, model 1 seems to align nicely with the 

electrostatic potential fit method for determining AMOEBA multipoles.  In contrast it seems that 

the two-center integral method used by model 2 might perform better with multipoles that are not 

potential-fitted. This theory is borne out by the results of figure 2.19. Figure 2.19 illustrates that 

model 2 with its extra free parameter, does perform better on the S101x7 database when simple 

DMA multipoles are used instead of potential fitted ones.  

 

Figure 2.19 Charge penetration model agreement with AMOEBA potential-fit multipole model.  
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Models 1 and 2 are fit to the S101x7 database using either DMA or potential-fit multipoles. RMS electrostatic 

energy error is plotted. Model 2 performs slightly better when DMA multipoles are used, but model 1 with potential-

fit multipoles gives the best overall fit. 

 

Using the AMOEBA potential fitted multipoles however does better overall and much better when 

paired with model 1. The origin of this difference between models 1 and 2 in instructive. It shows 

that despite its relative simplicity, model 1 seems to provide a better intrinsic fit for the AMOEBA 

force field. 

  Not only is the model conceptually aligned with the AMOEBA multipole model, but it is 

fully integrated with it as well. Prior charge penetration models have damped charge-charge 

interactions or a handful of higher order interactions13,14, but here we have derived damping 

functions for multipole interactions up to arbitrary order. This does two important things. First, it 

improves the overall accuracy of our intermolecular electrostatic energies. And second, it gives us 

a fully integrated multipole electrostatic–charge penetration model. The charge, dipole, quadrupole 

moments of a multipole expansion are all functions of the underlying charge density distribution. 

Thus, every interaction of these moments should be damped by the function that describes that 

charge density. Our higher-order charge penetration model satisfies this requirement and does so 

in a simple, straightforward way. 

 Importantly, the charge penetration model doesn’t just fit one set of data. We have 

demonstrated that it passes multiple validation tests. First, the model proved to be robust. There is 

no numerical instability and the parameters are not overly sensitive. Second, the model is 

independent of the multipole model. This means that even if a slightly different set of multipole 

moments that fit the electrostatic potential are chosen for a given molecule, our charge penetration 

model will still give the same improvement in the fit. These validation tests indicate not only that 
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our model is viable, but that it is not beholden to the test set or the multipole model.  In addition, 

we have shown that our charge penetration model has some measure of predictive power.  On the 

biologically significant test of electrostatics in nucleic acid base stacking, our charge penetration 

model accurately predicted the electrostatic energies of base stacking over a wide range of non-

equilibrium structural parameters.  This result displays the promise this model shows in its 

application to simulations of real biological systems. 

 Finally, our higher-order charge penetration model captures a real physical effect. The 

charge penetration phenomenon is a direct result of the fact that atoms have charge distributions 

representing their electron densities. We have shown that our charge penetration function captures 

exactly this physics. When we use our model to fit the electrostatic potential on a grid of point 

surrounding a molecule, the error in the electrostatic fit from the simple point multipole 

approximation goes down for every tested case. This gives us the highest degree of certainty that 

we are doing more than just adding in another degree of freedom to our electrostatic function. The 

damping functions derived for our higher-order damping model accurately describe the 

electrostatic environment around molecules, and since the effect is necessarily short-range, the 

computational cost of accounting for charge penetration in this way is minimal. The damping terms 

can be implemented utilizing a short-range cutoff or can be computed for every pairwise 

interaction in the real-space portion of an Ewald summation approach. In either case, the additional 

cost beyond that of the standard AMOEBA electrostatic model is small. By describing this simple 

physics in a simple way, our model allows us to more accurately predict intermolecular interactions 

between biomolecules. 
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2.8 Further Work 
The work in this chapter demonstrated that model 1 is an effective and efficient way to 

capture the electrostatic interactions between molecules at short range. For the HIPPO force 

field, however, one small change was made. Rather than use the damping function proposed in 

equation 2.7, we choose the similar function, 

𝑓hijk(𝑟) = 1 − �1 +
1
2𝛼𝑟� 𝑒

>�n, (2.16) 

where the only difference is the addition of the polynomial prefactor. This function meets all of 

the criteria required by section 2.2 and the remainder of the derivation in the text is identical. 

 There are two conceptual reasons why equation 2.16 was chosen over the original 

damping function. The first is that it gives a model for the electrostatic potential that is more 

closely aligned with the hydrogen-like atom. Inspection of equation 2.16 compared to equation 

2.6 shows the clear similarity. This similarity is important because it affects the density which 

forms the bedrock for the rest of the model. While equation 2.7, vis a vis Poisson’s equation, 

represents the potential due to the density, 

𝜌(𝑟) =
𝑞𝛼4

4𝜋𝑟
𝑒>�n	, (2.17) 

equation 2.16 corresponds to the density   

𝜌(𝑟) =
𝑞𝛼«

8𝜋
𝑒>�n. (2.18) 

As will be apparent in Chapter 5, for the HIPPO repulsion model we will need terms of the type, 

VΦ/Φ0𝑑𝑣 (2.19) 

 where FA and FB are related to the square roots of the densities on interacting atoms A and B 

respectively. It is a subtle difference, but the integrals of the type ∫𝑒>��n�>��n�𝑑𝑣 that come 
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from the equation 2.18 definition are analytically solvable. Integrals of the type 

∫ 3

√n�
𝑒>��n� 3

√n�
𝑒>��n�𝑑𝑣, corresponding to the equation 2.17 definition, however, are not. This 

makes equation 2.16 a more natural choice as the groundwork for the rest of the HIPPO model. 

 In fact, this alternate model was proposed previously by Slipchenko and Gordon. They 

showed that the differences between the two definitions are small, but the description the 

electrostatic potential around an atom is slightly better with the alternate model.13 My work also 

shows that the differences in how well the model fits the SAPT electrostatic data are small. 

Using the equation 2.16 definition, the RMS error on the S101x7 database is 1.1 kcal/mol as 

compared to 1.3 kcal/mol for the definition in this published work. Because it was found that a 

larger number of atom classes were needed to accurately describe other energy components in 

the model, these classes were likewise used in this parameterization of electrostatics. The classes 

and parameters for the updated model are shown in table 2.4. 
 

Class a (ang-1)  Class a (ang-1) 
1 H (nonpolar) 4.2097 15 N (sp2) 3.9413 
2 H (nonpolar, Alkane) 4.3225 16 N (aromatic) 3.9434 
3 H (polar, NH/N aromatic) 5.5155 17 O (sp3, hydroxyl, water) 4.7004 
4 H (polar, OH) 4.7441 18 O (sp2, carbonyl) 4.2263 
5 H (aromatic, CH) 4.953 19 O (O− in AcO−) 4.0355 
6 H (polar, SH) 4.3952 20 O (O− in HPO42−) 4.4574 
7 C (sp3) 4.2998 21 O (O− in H2PO4−) 4.5154 
8 C (sp3, Alkane) 4.5439 22 O (O in H3PO4) 4.3312 
9 C (sp2, Ethene) 3.5491 23 P (phosphate) 2.813 

10 C (sp2, CO) 5.9682 24 S (sulfide, RSH) 3.362 
11 C (sp) 1000 25 S (sulfur IV, DMSO) 2.7272 
12 C (aromatic, CC) 3.8056 26 F (organofluorine) 5.508 
13 C (aromatic, CX) 3.8066 27 Cl (organochloride) 3.6316 
14 N (sp3) 3.9882 28 Br (organobromine) 3.2008 

 

Table 2.4 Atom classes and parameters for the updated electrostatics (charge penetration) model. 



69 
 

 

Lastly, to avoid problems for larger atoms, the division of core vs. valence electrons was also 

changed. Rather than treat all electrons as part of the model charge density, only the valence 

electrons are included. The remainder are treated as part of the point positive core charge. This 

change is also reflected in the parameters listed in table 2.4.  

2.8 References 
1 Ren, P. & Ponder, J. W. Polarizable Atomic Multipole Water Model for Molecular 

Mechanics Simulation. The Journal of Physical Chemistry B 107, 5933-5947, 
doi:10.1021/jp027815+ (2003). 

2 Ren, P., Wu, C. & Ponder, J. W. Polarizable Atomic Multipole-Based Molecular 
Mechanics for Organic Molecules. Journal of Chemical Theory and Computation 7, 
3143-3161, doi:10.1021/ct200304d (2011). 

3 Stone, A. J. & Alderton, M. Distributed multipole analysis. Molecular Physics 56, 1047-
1064, doi:10.1080/00268978500102891 (1985). 

4 Ponder, J. W. et al. Current Status of the AMOEBA Polarizable Force Field. The Journal 
of Physical Chemistry B 114, 2549-2564, doi:10.1021/jp910674d (2010). 

5 Shi, Y. et al. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. 
Journal of Chemical Theory and Computation 9, 4046-4063, doi:10.1021/ct4003702 
(2013). 

6 Sinnokrot, M. O. & Sherrill, C. D. Highly accurate coupled cluster potential energy 
curves for the benzene dimer: sandwich, T-shaped, and parallel-displaced configurations. 
The Journal of Physical Chemistry A 108, 10200-10207 (2004). 

7 Sherrill, C. D. et al. Assessment of Standard Force Field Models Against High-Quality ab 
Initio Potential Curves for Prototypes of Pi-Pi, CH/Pi, and SH/Pi Interactions. J. Comput. 
Chem. 30, 2187-2193 (2009). 

8 Parker, T. M. & Sherrill, C. D. Assessment of Empirical Models versus High-Accuracy 
Ab Initio Methods for Nucleobase Stacking: Evaluating the Importance of Charge 
Penetration. Journal of Chemical Theory and Computation 11, 4197-4204 (2015). 

9 Piquemal, J.-P., Cisneros, G. A., Reinhardt, P., Gresh, N. & Darden, T. A. Towards a 
Force Field Based on Density Fitting. J. Chem. Phys. 124, 104101 (2006). 

10 Cisneros, G. A. et al. Simple formulas for improved point-charge electrostatics in 
classical force fields and hybrid quantum mechanical/molecular mechanical embedding. 
International Journal of Quantum Chemistry 108, 1905-1912, doi:Doi 
10.1002/Qua.21675 (2008). 

11 Freitag, M. A., Gordon, M. S., Jensen, J. H. & Stevens, W. J. Evaluation of charge 
penetration between distributed multipolar expansions. Journal of Chemical Physics 112, 
7300-7306, doi:Doi 10.1063/1.481370 (2000). 

12 Piquemal, J. P., Gresh, N. & Giessner-Prettre, C. Improved formulas for the calculation 
of the electrostatic contribution to the intermolecular interaction energy from multipolar 



70 
 

expansion of the electronic distribution. Journal of Physical Chemistry A 107, 10353-
10359, doi:Doi 10.1021/Jp035748t (2003). 

13 Slipchenko, L. V. & Gordon, M. S. Electrostatic energy in the effective fragment 
potential method: Theory and application to benzene dimer. Journal of computational 
chemistry 28, 276-291 (2007). 

14 Slipchenko, L. V. & Gordon, M. S. Damping functions in the effective fragment potential 
method. Molecular Physics 107, 999-1016 (2009). 

15 Spackman, M. A. The use of the promolecular charge density to approximate the 
penetration contribution to intermolecular electrostatic energies. Chemical Physics 
Letters 418, 158-162, doi:Doi 10.1016/J.Cplett.2005.10.103 (2006). 

16 Stone, A. J. Electrostatic Damping Functions and the Penetration Energy. Journal of 
Physical Chemistry A 115, 7017-7027, doi:Doi 10.1021/Jp112251z (2011). 

17 Tafipolsky, M. & Engels, B. Accurate Intermolecular Potentials with Physically 
Grounded Electrostatics. Journal of Chemical Theory and Computation 7, 1791-1803, 
doi:Doi 10.1021/Ct200185h (2011). 

18 Wang, B. & Truhlar, D. G. Including Charge Penetration Effects in Molecular Modeling. 
Journal of Chemical Theory and Computation 6, 3330-3342, doi:Doi 10.1021/Ct1003862 
(2010). 

19 Wang, B. & Truhlar, D. G. Partial Atomic Charges and Screened Charge Models of the 
Electrostatic Potential. Journal of Chemical Theory and Computation 8, 1989-1998, 
doi:Doi 10.1021/Ct2009285 (2012). 

20 Wang, B. & Truhlar, D. G. Screened Electrostatic Interactions in Molecular Mechanics. 
Journal of Chemical Theory and Computation 10, 4480-4487, doi:10.1021/ct5005142 
(2014). 

21 Cisneros, G. A., Piquemal, J.-P. & Darden, T. A. Generalization of the Gaussian 
Electrostatic Model: Extension to Arbitrary Angular Momentum, Distributed Multipoles 
and Speedup with Reciprocal Space Methods. J. Chem. Phys. 125, 184101 (2006). 

22 Duke, R. E., Starovoytox, O. N., Piquemal, J.-P. & Cisneros, G. A. GEM*: A Molecular 
Electronic Density-Based Force Field for Molecular Dynamics Simulations. J. Chem. 
Theory Comput. 10, 1361-1365 (2014). 

23 Wang, Q. et al. A General Model for Treating Short-Range Electrostatic Penetration in a 
Molecular Mechanics Force Field. Journal of Chemical Theory and Computation (2015). 

24 Narth, C. et al. Scalable Improvement of SPME Multipolar Electrostatics in Anisotropic 
Polarizable Molecular Mechanics Using a General Short-Range Penetration Correction 
up to Quadrupoles. J. Comput. Chem. 37, 494-506 (2016). 

25 Stone, A. J. In The Theory of Intermolecular Forces.  94 (Oxford University Press Inc., 
1996). 

26 Coulson, C. in Mathematical Proceedings of the Cambridge Philosophical Society.  210-
223 (Cambridge Univ Press). 

27 Rezac, J. & Hobza, P. Extrapolation and Scaling of the DFT-SAPT Interaction Energies 
toward the Basis Set Limit. Journal of Chemical Theory and Computation 7, 685-689, 
doi:Doi 10.1021/Ct200005p (2011). 

28 Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation Theory Approach to 
Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chemical 
Reviews 94, 1887-1930, doi:10.1021/cr00031a008 (1994). 



71 
 

29 Hohenstein, E. G. & Sherrill, C. D. Density fitting of intramonomer correlation effects in 
symmetry-adapted perturbation theory. The Journal of Chemical Physics 133, 014101-, 
doi:doi:http://dx.doi.org/10.1063/1.3451077 (2010). 

30 Parker, T. M., Burns, L. A., Parrish, R. M., Ryno, A. G. & Sherrill, C. D. Levels of 
symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for 
interaction energies. Journal of Chemical Physics 140, 094106 (2014). 

31 Cornell, W. D. et al. A Second Generation Force Field for the Simulation of Proteins, 
Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179-5197 (1995). 

32 Wang, J., Cieplak, P. & Kollman, P. A. How Well Does a Restrained Electrostatic 
Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and 
Biological Molecules? J. Comput. Chem. 21, 1049-1074 (2000). 

33 Foloppe, N. & MacKerell Jr, A. D. All‐atom empirical force field for nucleic acids: I. 
Parameter optimization based on small molecule and condensed phase macromolecular 
target data. Journal of computational chemistry 21, 86-104 (2000). 

34 El Hassan, M. A. & Calladine, C. R. The Assessment of the Geometry of Dinucleotide 
Steps in Double-Helical DNA: A New Local Calculation Scheme. J. Mol. Biol. 251, 648-
664 (1995). 



72 
 



73 
 

Chapter 3: Induction (Polarization) 
 From the perspective of perturbation theory, polarization is the next logical step in 

building a classical force field. After the first order electrostatics, the dominant part of the second 

order in RS perturbation theory is the polarization component. SAPT uses the term “induction” 

for this term. I will explain the subtle, but important differences between the two in this chapter. 

The two, however, are conceptually similar. The basic idea is that the electronic structure of 

molecules should be able to respond to changes in their environment. In this chapter I will start 

by explaining why this is important and then proceed to lay out the HIPPO induction model. 

3.1 Introduction 
 One defining characteristic of biomolecular systems is their heterogeneity. Proteins are 

composed of a wide range of elements in a variety of chemistries. Most important phenomena 

occur in water which has a unique set of molecular properties. Ions are known to play large parts 

in many biomolecular interactions. This diversity of molecules along with the fact that most 

biology occurs in the liquid phase means that often molecules in a given simulation are 

encountering a number of different environments. The way to capture the effect of this 

heterogeneity is by including polarization in the potential energy function. Polarization, simply 

put, allows atoms (and the molecules that they belong to) to respond to their environment. A 

simple, broad example illustrates how important including this feature is. The dielectric constant 

of water is 80, while the dielectric constant of the interior of a protein is 2-5. If one wishes to 

model the behavior of a molecule (a protein-binding drug molecule, for instance) equally well in 

both environments, one must include some function for polarization. 

 Despite the fact that polarization is not included in the standard point charge force field 

model, evidence is mounting that a large number of biomolecular simulation applications need 
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polarization in order to be accurate. Ion channel simulations, for instance, are thought to require 

polarization to accurately reproduce the flux of ions through a membrane.1 Polarization is 

necessary to reproduce many properties of DNA and RNA.2 The charged nature of lipid 

headgroups means that polarization is likely required to reproduce membrane - solvent/protein 

interfaces.3 And polarization is known to be important for accurate simulations of charged 

species, such as ionic liquids.4 This non-exhaustive list of applications underscores the 

importance of polarization in biomolecular simulations. In fact, these reasons lie at the heart of 

why the AMOEBA polarizable force field was first developed.  

HIPPO, which is a direct descendant of AMOEBA, carries forward with this emphasis on 

polarization. As I will show in this chapter, it uses the same point inducible dipole formalism as 

its predecessor, but it uses its definition of a model charge density to produce an even more 

accurate model.  

3.1.1  Overview of Existing Models 
 There are a variety of ways in which a given model can incorporate polarization. For a 

comprehensive overview of methods see references 3 and 5. Briefly, there are three different 

classes of methods of incorporating polarization. The first class is fluctuating charge methods. In 

these models, the charge of each atom in a simulation is changed slightly according to its 

environment. The total charge of the system remains constant, but the distribution of charges 

among atoms changes. Examples are the charge equilibration model, CHEQ, and charge-transfer 

type models.6,7 The second class of methods is Drude oscillator-based approaches. In this method 

a Drude oscillator consisting of a negatively charged particle attached to a spring is affixed to 

each atom in the system. These Drude particles are free to move according to the electric field 

they experience. An example is the CHARMM (Chemistry at Harvard Molecular Mechanics) 
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Drude force field.8 The final class of methods for including polarization is the point inducible 

dipole models. This can be thought of as the analytic equivalent of the Drude oscillator approach. 

Rather than a charge on a spring, each atom has point dipole that is induced by the electric field 

it experiences. Examples of this type of model for polarization are the Amber ff02, MPID 

(Multipole and Induced Dipole) and AMOEBA force fields.9-11  

 All three classes give many-body effects, the primary purpose of any polarization model. 

This means that the total energy of a system is no longer trivially equal to the sum of all pairs of 

interactions. Accurately reproducing these many-body effects is the standard by which 

polarizable models should be judged. Interestingly, recent work has shown that these effects can 

be more or less equally well captured by either fluctuating charge or induced dipole models.12 

Additionally, work on the MPID force field has shown that there exists a direct mapping from 

Drude models to point inducible dipole models.11 Because there are potential numerical and 

practical problems with fluctuating charge and Drude models, and with these equivalencies in 

mind, I choose to build HIPPO with a point inducible dipole model. 

3.1.2  Induction vs. Polarization 
 Up until this point, I have used the terms induction and polarization relatively 

interchangeably. As was stated before, this is because conceptually they are not that different; 

both describe a molecule or atom responding to its environment. However, there is a useful 

distinction to be drawn between these two terms. In SAPT, the induction energy of a dimer pair 

is the energy associated with the rearrangement of monomer A’s electrons in the presence of the 

electric field of monomer B. Qualitatively, there are two effects that can happen in this 

interaction. The first is classical polarization. In this effect, the electrons of monomer A shift 

slightly in response to the influence of monomer B, but remain attached to monomer A. The 
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second is charge transfer. In this effect, some fraction of monomer A’s electrons make the jump 

from monomer A’s electron density over to monomer B’s electron density. In this way these 

electrons (or often just a fraction of an electron) can now be qualitatively assigned to monomer 

B. 

 This distinction between the two effects defines the difference between polarization and 

induction. Induction is the entire interaction (polarization plus charge transfer), whereas 

polarization is only the first response component. As described here, this distinction is 

admittedly mathematically ill-defined. However, in section 3.2, I will describe quantitatively 

how this separation is made. 

 

3.1.3  Overview of HIPPO Induction Model 
 The HIPPO induction model has two parts. The first is a many-body, point inducible 

dipole model for polarization and the second is a pairwise exponential function for charge 

transfer. Both parts contain novel elements for biomolecular force fields. 

 In the polarization component, HIPPO replaces the previous, empirical methods of the 

AMOEBA model with a more physics-based approach. AMOEBA utilized the method of Thole 

to damp dipole-dipole interactions at short range so as to avoid so-called “polarization 

catastrophe”.13,14 This model has been shown to be effective, but lacks a physical rationale for 

the damping function. HIPPO replaces this damping function with a damping function drawn 

directly from the electrostatic work presented in Chapter 2. I will show that in addition to being 

physically motivated, this model produces more accurate molecular polarizabilities and many-

body energies than the previous Thole model. 
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 The HIPPO induction model also includes a function to describe short-range charge 

transfer. As I will show in section 3.4, a simple exponential function is capable of capturing this 

effect quite accurately. Moreover, I will show why the pairwise approximation is a good one for 

this term. Taken together with the polarization function, the total induction model is capable of 

very close agreement with SAPT induction results. 

3.2 Theory 
 The HIPPO induction model consists of two parts: polarization and charge transfer. 

Because these effects are qualitatively different, I will derive the functions for each 

independently. The first section will describe the polarization, which is responsible for the 

entirety of many-body effects in the HIPPO force field and the second will describe the simpler 

charge transfer function. 

3.2.1  HIPPO Polarization Derivation 
 The polarization model of HIPPO is a point inducible dipole model. Each atom in a given 

system has an inducible dipole determined by: 

𝜇= 𝛼𝐸°⃗ (3.1) 

where µ is the induced dipole, a is the polarizability, and E is the electric field at the site. The 

key to solving this equation to find the induced dipoles is in the electric field. The field at a given 

site is: 

𝐸°⃗ �l�io = 𝐸°⃗ kQnj + 𝐸°⃗ a=h�SQh	. (3.2) 

where the permanent and induced fields are separated for clarity. 

The term Eperm in equation 3.2 represents the electric field due to the permanent moments 

on all the other sites, 
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𝐸°⃗ kQnj(𝑅a) =`𝑍�∇T
�²a

+ 𝑀°°⃗ ´∇𝐓∗ (3.3) 

where Z represents the core charge and M represents the vector of the multipole components 

(charge, dipole and quadrupole), 

𝑀°°⃗ = ·𝑄, ¹𝜇R, 𝜇�, 𝜇�º, »
Θ½½ Θ½¾ Θ½¿
Θ¾½ Θ¾¾ Θ¾¿
Θ¿½ Θ¿¾ Θ¿¿

ÀÁ	. (3.4) 

The interaction matrices, T and T* are taken directly from the electrostatics function defined in 

Chapter 2. 

𝑇 =
1
𝑟a�

𝑻∗ = [1 ∇ ∇4] Ã
1
𝑟a�
𝑓a�
hijk(𝑟a�)Ä

(3.5) 

The damping function in equation 3.5 is identical to equation 2.16, defining the electrostatic 

potential in Chapter 2, 

𝑓a�
hijk(𝑟a�) = 1 − �1 +

1
2𝛼�𝑟a�� 𝑒

>��n�� (3.6) 

where the a parameter here is not to be confused with the polarizability. The interpretation for 

this definition of the permanent electrostatic field is simple. It is simply the gradient of the 

electrostatic potential of a set of charge densities defined in Chapter 2. As we will show in 

section 3.4, the alpha parameters that come from the electrostatics model (defined in table 2.3) 

can be used directly for this calculation. 

 The second part of the electric field at any given point comes from the induced dipoles 

themselves. Einduced in equation 3.2 is defined similarly to Eperm as, 

𝐸°⃗ a=h�SQh(𝑅a) =`𝜇�a=h∇4 Å
1
𝑟a�
𝑓a�
lmQnoik�𝑟a��Æ

�²a

(3.7) 
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where µind represents the induced dipole at each site. In this case, rather than the one-center 

damping function that defines the permanent electrostatic potential and field, the two-center, 

overlap function 

𝑓a�
lmQnoik�𝑟a�� == Ç

1 − �1 +
11
16𝛼𝑟a� +

3
16
�𝛼𝑟a��

4
+
1
48
�𝛼𝑟a��

«
� 𝑒>�n��,																										𝛼a = 𝛼�

1 − 𝐴4 |1 + 2𝐵 +
𝛼a
2 𝑟a�} 𝑒

>��n�� − 𝐵4 |1 + 2𝐴 +
𝛼�
2 𝑟a�} 𝑒

>��n��,				𝛼a ≠ 𝛼�
(3.8) 

is used. This is because each induced dipole is represented as part of the same density that 

defines the rest of the atom. Thus, the induced dipole – induced dipole interaction is an 

interaction between two interacting densities. Equation 3.8 again is identical to the overlap 

function set by the electrostatics model in the Chapter 2. Again, the physical rationale is almost 

trivial. Each induced dipole is represented as a density and the size of that density is set by the 

electrostatics model parameterized in Chapter 2. 

 Taken together, the damping functions in equations 3.6 and 3.8 serve a practical purpose 

in addition to satisfying simple physics arguments. The previous AMOEBA induced dipole 

model used an empirical damping method due to Thole for the permanent and induced fields. 

These damping functions effectively replace the old method with physical rationale. The Thole 

approach was designed to prevent polarization catastrophe, and as we will show in section 3.4, 

the HIPPO model achieves the same end with even greater accuracy. 

 Because both sides of equation 3.1 contain the induced dipoles, one must solve a system 

of linear equations in order to find the dipoles. To make this more readily apparent, we can re-

write equation 3.1 in tensor form as, 

𝐓𝝁 = 𝐄𝐩𝐞𝐫𝐦, (3.9) 

where Eperm represents the permanent electrostatic field and, 

𝐓 = 𝛼>3 − 𝒯, (3.10) 
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where 𝒯 is the induced dipole – induced dipole interaction tensor,  

𝒯 =	∇4 Å
1
𝑟a�
𝑓a�
lmQnoik�𝑟a��Æ . (3.11) 

Using this notation, the energy due to the induced dipoles can be written as, 

𝑈klo =
1
2𝝁

𝑻𝐓𝝁 − 𝐄𝒑𝒆𝒓𝒎𝐓 𝝁. (3.12) 

 There are two different options for how to solve this system of equations to get the 

polarization energy in the HIPPO force field. The first is a variational, iterative method. In this 

method we define a residual,  

ℛ ≡ �
d𝑈
d𝝁
�
^

= 𝐓𝝁 − 𝐄𝐩𝐞𝐫𝐦 (3.13) 

and minimize this with respect to the induced dipoles, ultimately requiring this to be zero. In 

practice this is done using an iterative preconditioned conjugant gradient solver. Convergence is 

declared once the RMS change in induced dipoles from one iteration to the next becomes lower 

than some threshold (typically 1x10-5 or 1x10-6 Debye). Because the residual is assumed to be 

very close to zero in this method, the total energy can be re-written in the simpler form: 

𝑈 = −
1
2𝐄𝒑𝒆𝒓𝒎

𝐓 𝝁. (3.14) 

The other method that can be used for the HIPPO polarization model is the OPT method of 

Andrew Simmonett and co-workers.15,16 In this method, rather than require a zero residual as 

with variational approaches, the polarization energy and force is calculated through a 

perturbation theory expansion in the induced dipoles. For a full description of this method, see 

references 15 and 16. In short, however, the induced dipoles are defined in a power series 

expansion as: 

𝝁𝒏 = 𝝁(𝟎) + 𝜆𝝁(𝟏) + 𝜆4𝝁(𝟐) + ⋯𝜆=𝝁(𝒏) (3.15) 
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with the various orders, 

𝝁(𝟎) = 𝜶𝐄𝐩𝐞𝐫𝐦,
𝝁(𝟏) = 𝜶𝓣𝜶𝐄𝐩𝐞𝐫𝐦,

𝝁(𝟐) = 𝜶𝓣𝜶𝓣𝜶𝐄𝐩𝐞𝐫𝐦,
⋮

𝝁(𝒏) = (𝜶𝓣)𝐧𝜶𝐄𝐩𝐞𝐫𝐦.

(3.16) 

With this definition, the energy is: 

𝑈 = −
1
2𝐄𝒑𝒆𝒓𝒎

𝐓 𝝁𝒏. (3.17) 

Typically, the expansion is carried out to either 3rd or 4th order to match the fully converged 

result. This approach is usually faster to compute than fully converged variational methods. 

Work by Simmonett and co-workers has shown, however, that the induced dipoles from 3rd and 

4th order expansions match the variational result for many systems quite well. 

 As with any force field, HIPPO utilizes a set of exclusion rules to determine which 

interactions in a large molecule are treated with intramolecular vs. intermolecular energy terms. 

For polarization these rules merit a brief discussion. There are two sets of rules. One that applies 

just to induced dipole – induced dipole interactions, and one that applies to induced dipole 

interactions – permanent moment interactions. 

 The induced dipole – induced dipole exclusion rules are the simpler of the two. These are 

based on connectivity. For all atoms that are separated by one bond (so-called 1-2 interactions), 

the induced dipole – induced dipole interaction is scaled by 0.2. For all other interactions (1-3, 1-

4, 1-5, etc.) the full interaction is used. This effectively means that for things that are bonded, 

HIPPO is counting on the bond energy term to pick up most of the change in energy as the 

distance between 1-2 atoms changes. Practically, this scaling must be done to avoid polarization 

catastrophe due to atoms that are very close polarizing each other. 
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 The induced dipole – permanent multipole exclusion rules are slightly more nuanced. The 

AMOEBA polarization model introduced the concept of “polarization groups”. These, as 

illustrated in figure 3.1 are groups of atoms that form a cohesive chemical group. 

 

Figure 3.1 Example of polarization group scheme.  

These groups represent the division of the AMOEBA force field polarization model for alanine dipeptide. 

Reproduced from reference 17. 

 

Under this scheme, AMOEBA performed the calculations to obtain the induced dipoles with 

group-based exclusion rules. All intragroup induced dipole – permanent multipole interactions 

were scaled by 0 (completely excluded) and all intergroup induced dipole – permanent multipole 

interactions were scaled by 1 (completely included). (AMOEBA has no exclusion rules for 

induced dipole – induced dipole interactions; everything is completely included.) However, once 

the induced dipoles are obtained, a different set of induced dipole – permanent multipole scaling 

rules is used to compute the AMOEBA polarization energy. These rules are connectivity-based. 

Under these rules 1-2 interactions are scaled by 0, 1-3 interactions are scaled by 0 and 1-4 and 

longer interactions are scaled by 1. The one wrinkle is that in the case of a 1-4 interaction where 

both atoms happen to be in the same group, the scale factor is changed to 0.5 instead of 1. 

Having these dual sets of exclusion rules (one for calculating the dipoles, and one for calculating 



83 
 

the energy) leads to some complications that I have tried to avoid in the HIPPO polarization 

model. 

 The HIPPO polarization model uses a hybrid group-connectivity framework for the 

polarization exclusion rules. Pengyu Ren showed that using polarization groups can lead to good 

transferability of a polarization model.17 The HIPPO model retains the polarization group 

mechanism, but discards the unwieldy elements of having two separate sets of exclusion rules. 

Under this single set of rules, we still define polarization groups and then use those groups to 

define a single set of more nuanced exclusion rules, summarized in table 3.1 

 

 Intra-group Inter-group 
1-2 0.0 0.5 
1-3 0.0 0.5 
1-4 0.5 1.0 
1-5 and beyond 1.0 1.0 

Table 3.1 HIPPO polarization model exclusion rules. 

 

Although these rules have not been thoroughly tested, they give a very close facsimile of the 

original, well-tested AMOEBA rules without incurring the costs of the previous dual-exclusion 

method. 

3.2.2  HIPPO Charge Transfer Derivation 
 The second part of the total HIPPO induction model is the charge transfer. For this 

portion of the induction energy, I choose to use a simple pairwise exponential functional form. 

As we will show in section 3.4, this is a good approximation for most organic systems. The 

functional form is based on the assumption laid out in section 3.1.2 that aside from the 

polarization, the other dominant effect in SAPT induction is charge hopping from an atom in 

monomer A to a different atom in monomer B. 
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 Qualitatively, this charge transfer effect can be shown to be the effect of electron 

tunneling into the nuclear potential well of an opposing monomer.18 Alston Misquitta showed 

that the amount of charge transferred is proportional to an exponential. Because the remainder of 

the induction energy for most intermolecular interactions at distances of consequence in 

biomolecular simulations is quite small, I choose a simple empirical model that captures this 

qualitative observation. The HIPPO charge transfer model is: 

𝑈S� =`−𝐴a𝑒>Þ�n�� − 𝐴�𝑒>Þ�n��
a²�

. (3.18) 

Here, Ai and Aj represent the maximum magnitude of charge that can be transferred from atom i 

and j, respectively, and hi and hj represent the exponentials of the nuclear wells of i and j, 

respectively. For a given pair, the interpretation of equation 3.18 is that the first term gives the 

energy of charge transferring from i to j and the second term gives the transfer in the opposite 

direction. 

3.3 Methods 
 The general strategy I employed for parameterizing the HIPPO induction model falls into 

two parts. The first part is meant to establish the many-body polarization portion of the function. 

This is done first because of the number of direct connections with experimental observables that 

is possible for polarization. The second part is to fill in the difference with charge transfer. 

Although this is certainly an approximation and generalization, the functional form is flexible 

enough to handle this. 

 To parameterize the polarization model, I fit atomic polarizabilities to molecular 

polarizability data. Full anisotropic molecular polarizabilities for the 36 molecules in the S101 

database were calculated using the Psi4 quantum chemistry program using density functional 
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theory (DFT) with the WB97XD functional and the aug-cc-pVTZ basis set. Atomic 

polarizabilities were constrained to the 28 classes defined in table 2.3 of Chapter 2. I used a least 

squares fitting program written in the Tinker molecular mechanics software package to optimize 

these 28 atomic polarizabilities.19 Additionally, I calculated 3- and 4-body energies for a variety 

of molecular clusters. These calculations were performed at the MP2 level of theory with an aug-

cc-pVTZ basis set. 

 After determining the atomic polarizabilities, I proceeded to fit the charge transfer 

function. I performed a log-weighted least squares fit that minimized the residual,  

𝑈a=h(𝑆𝐴𝑃𝑇) − �𝑈klo(𝐻𝐼𝑃𝑃𝑂) + 𝑈S�(𝐻𝐼𝑃𝑃𝑂)� (3.19) 

on each dimer in the S101x7 database. In equation 3.19, Upol(HIPPO) is calculated using the 

polarizabilities determined in the previous step. The parameters optimized in this fit are only the 

A and h parameters from equation 3.18. This least squares fitting program was also implemented 

in Tinker. 

3.4 Results 
3.4.1  Molecular Polarizabilities 
 Because SAPT does not discriminate between polarization and charge transfer type 

excitations, another source of data is needed for the parameterization of the HIPPO polarization 

model. Fortunately, there is an experimental observable quantity available for polarization: 

molecular polarizability. The first step is to calculate molecular polarizabilities for a set of 

molecules. For organic molecules, calculating molecular polarizabilities with high-level ab initio 

methods is known to be nearly identical to experimental polarizabilities and gives the full 

anisotropic polarizability tensor, which is sometimes unavailable from experimental data. I 
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calculated the molecular polarizabilities of every molecule in the S101 database. The results are 

listed in table 3.2.  

Molecules XX 
polarizability 
(ang3) 

YY 
polarizability 
(ang3) 

ZZ 
polarizability 
(ang3) 

Water     1.3853     1.431     1.4918 

MeOH     2.9491     3.022     3.4493 

MeNH2     3.5788     3.675     4.1802 

Peptide     5.8740     7.657     9.1497 

Uracil     6.1162     11.01   13.7840 

Pyridine     6.0438     10.76   11.3683 

AcOH     3.9460     5.478     5.8124 

Benzene     6.6435     11.96   11.9693 

Ethene     3.3782     3.734     5.2637 

Pentane     8.4985     9.107   11.2340 

Neopentane     9.5372     9.539     9.5431 

Cyclopentane     7.8998     9.101     9.1027 

CH3SH     4.9665     5.012     6.3118 

DMSO     6.7630       8.23     8.4210 

PO4H     9.0964     9.256     9.6770 

PO4H2     6.5318     6.671     7.1143 

PO4H3     5.5003     5.596     5.9249 

BenF     6.5209     11.87   12.1878 

BenCl     7.7548     12.97   16.3675 

BenBr     8.5962     13.71   18.3138 
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MeNH3     2.8210     2.853     3.2479 

ImidazolePlus     4.0514     7.109     7.4532 

CN3H6     3.5660     5.917     5.9879 

AcOHMinus     5.1132     7.392     7.6815 

DimethylSulfide     6.2777     7.202     8.3401 

Imidazole     5.0451     8.125     8.5001 

Pyrrolidine     7.6730     8.494     8.8057 

Phenol     6.9451     12.39   13.6796 

Indole     8.8472     15.71   20.5356 

AcNH2     4.4862     6.278     6.6882 

CH2F2     2.4791     2.616     2.7829 

CH2Cl2     5.2380     5.827     8.0503 

CH2Br2     6.9463     7.577   11.1370 

MeF     2.4490     2.449     2.6632 

MeCl     3.8911     3.893     5.3231 

MeBr     4.8358     4.839     6.6588 

Table 3.2 S101 monomer molecular polarizabilities. 

 

The advantage of using ab initio molecular polarizabilities is that it gives the anisotropic 

polarizability tensor. For roughly spherical molecules, like water, this doesn’t matter much, but 

for molecules like benzene, table 3.2 shows how dramatically the polarizability can vary 

depending on the orientation. This orientation-dependent information is crucial to developing a 

polarization model. 
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 With these molecular polarizabilities, the next step is to fit the HIPPO polarization model 

to reproduce them. 28 chemical classes (identical to those laid out in the “Further Work” section 

of Chapter 2) are assigned and then fit with a nonlinear least-squares routine. The optimization 

minimized the residual on each component of the molecular polarizability simultaneously. 

Because the DFT functional is known to have errors for phosphates, the PO4H, PO4H2, and 

PO4H3 compounds were excluded from the fit. The parameters determined from this fit are 

presented in table 3.3. 

class name Polarizability 
(ang3) 

1 H (nonpolar) 0.373 
2 H (nonpolar, Alkane) 0.504 
3 H (polar, NH/N aromatic) 0.005 
4 H (polar, OH) 0.3698 
5 H (aromatic, CH) 0.1106 
6 H (polar, SH) 0.2093 
7 C (sp3) 0.755 
8 C (sp3, Alkane) 0.9354 
9 C (sp2, Ethene) 1.9384 

10 C (sp2, CO) 0.6577 
11 C (sp) n/a 
12 C (aromatic, CC) 1.5624 
13 C (aromatic, CX) 1.2811 
14 N (sp3) 1.4289 
15 N (sp2) 1.4545 
16 N (aromatic) 1.3037 
17 O (sp3, hydroxyl, water) 0.6645 
18 O (sp2, carbonyl) 1.4266 
19 O (O− in AcO−) 1.8809 
20 O (O− in HPO42−) n/a 
21 O (O− in H2PO4−) n/a 
22 O (O in H3PO4) n/a 
23 P (phosphate) n/a 
24 S (sulfide, RSH) 3.1967 
25 S (sulfur IV, DMSO) 2.458 
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26 F (organofluorine) 0.4717 
27 Cl (organochloride) 2.366 
28 Br (organobromine) 3.4458 

Table 3.3 HIPPO atomic polarizabilities from fit to S101 molecular polarizabilities.  

 

The parameters show clear periodic trends and largely agree with chemical intuition regarding 

the relative “sizes” of atoms in various chemical bonding environments. 

 The quality of the fit to the S101 molecular polarizabilities of the parameters shown in 

table 3.3 is plotted in figure 3.2.  

 

Figure 3.2 Molecular Polarizabilities of S101 Monomers.  

Polarizabilities are the average of the three principal components of the molecular polarizability tensor. 

 

The results in figure 3.2 show that the HIPPO model fits the molecular polarizabilities of a wide 

range of molecules very well. Figure 3.2 only shows the isotropic polarizability (average of the 3 

principal components), but the RMS error for the dataset, presented in table 3.4 illustrates that 
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the fit is good across orientations as well. Figure 3.2 also includes the results of using the 

existing AMOEBA Thole model with the atomic polarizabilities allowed to vary across the same 

28 classes as the HIPPO model. Clearly, the Thole model also fits the data well. However, as 

illustrated by the RMS error presented in table 3.4, the fit is slightly worse than the HIPPO 

model.  

 

This gives us a high degree of confidence that using the physically motivated framework of the 

HIPPO model is not detrimental to the accuracy of the polarization component. In fact, it seems 

to perform slightly better. 
 

RMS Error (ang3) 

Thole 0.50 

HIPPO 0.28 
Table 3.4 RMS Error for Molecular Polarizabilities of S101 Monomers 

  

 One example will illustrate an important feature of the HIPPO polarization model. 

Plotted in figure 3.3 are the principal components of the molecular polarizability of benzene. 
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Figure 3.3 Benzene Polarizability Components.  

 

The components in figure 3.3 shows not only how well the HIPPO model fits molecular 

polarizability, but that anisotropic atomic polarizabilities are not necessary for the model. 

Benzene has a large, almost 2-fold, difference between the in-plane (YY and ZZ) and out-of-

plane (XX) components of the polarizability, but the simple isotropic polarizabilities of the 

HIPPO model are sufficient to capture this difference. This example holds for the anisotropic 

polarizabilities of other S101 molecules as well. 

 

3.4.2  SAPT Induction vs. HIPPO Polarization 
 As was stated in the introduction, the HIPPO model draws a distinction between pure 

polarization, or the linear order response to an electric field, and the full induction energy. This 

assertion, however, that there is a meaningful difference between the two has not been backed up 

with data. To investigate this, I compared the polarization energies that come from the 

polarization model fit to molecular polarizabilities to SAPT induction energies. In this test, if the 
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two are close, a distinction between polarization and induction is unnecessary. If, however, they 

are not, it shows that there is a larger issue at play. 

 The start of this investigation is an example. I examined the polarization energy of the 

water dimer at the various distances included in the S101x7 database and compared these 

energies to the SAPT induction energies of the same structures. Shown in figure 3.4 is the result 

of that comparison. 

 

Figure 3.4 SAPT induction vs. HIPPO polarization energy for the water dimer dissociation curve.  

The SAPT induction curve is clearly more attractive, especially at short range, than the HIPPO polarization curve. 

The dotted gray curve shows the difference (SAPT – HIPPO).  

 

The HIPPO polarization curve in figure 3.4 clearly shows the canonical, roughly 1/r3,dipole – 

dipole interaction energy dependence (by construction). The SAPT curve, however, does not 

match the HIPPO curve. Moreover, the difference, also plotted in figure 3.4, reveals that it is not 

a simple scaling or additive factor between the two.  
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To rule out the possibility that the induced dipoles were wrong because the electric field 

is wrong, I plotted the electric field for the water dimer. Shown in figure 3.5 is the magnitude of 

the electric field due to the opposing monomer at each nuclear position. 

 

Figure 3.5 Electric field of the equilibrium water dimer. 

 “AMOEBA 2” references the working title of HIPPO. “MP2” references the level of ab initio theory used. The inset 

shows the numbering of nuclear coordinates. Electric fields are calculated from the static (unperturbed) electron 

density of opposing monomer. 

 

Figure 3.5 shows that the electric field is not what causes the difference seen in figure 3.4. The 

electric field magnitudes (and directional components, not plotted) are very close to the ab initio 

result. This nearly conclusively shows that a simple, linear order polarization model is not 

capturing all of the physics included in the SAPT induction energy. The electric fields and 

polarizabilities are both accurate to within a few percent. There is nothing else that goes in to the 

polarization energy calculation. This must mean that the difference is coming from somewhere 

else. 
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3.4.3  Charge Transfer 
 In recent work Alston Misquitta has shown that the difference between the linear 

response polarization energy and the SAPT induction energy can be largely attributed to charge 

transfer.18 According to this hypothesis the charge transfer energy should be an exponential 

function that described tunneling of electrons on one monomer into the nuclear wells of the other 

monomer. In order words, this describes electrons hopping from one molecule to another rather 

than simply shifting around on their parent molecule. To test this hypothesis, I attempted to fit 

the difference between the SAPT induction and HIPPO polarization energies with a simple 

exponential function (equation 3.18). The results for the water dimer are shown in figure 3.6. 

 

Figure 3.6 Charge transfer function fit to SAPT induction – HIPPO polarization difference. 

 The simple exponential function proposed matches the shape of the difference. CT function defined in equation 

3.18. 

 

Clearly, the difference between induction and polarization follows a straightforward exponential 

dependence. To assess if this relation holds more broadly, I performed a much more exhaustive 

fit to the entire S101x7 database. To do this, I calculated the polarization energy of each dimer 
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with the HIPPO polarization model and subtracted it from the SAPT induction energy. I then 

performed a log-weighted least squares fit, optimizing the 28 A and h parameters that define the 

charge transfer function. The results of this fit are shown in figure 3.7.  

 

 

The trends in figure 3.7 confirm what was observed in the water dimer case study. The HIPPO 

polarization energy is uniformly underbound compared to the SAPT induction energy, and a 

simple pairwise exponential function can effectively fill the gap between the two.  

 

Figure 3.7 HIPPO Polarization + Charge Transfer on S101x7 Database.  
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A simple pairwise exponential function is able to fit the difference between SAPT induction and HIPPO 

polarization. 

 

Figure 3.8 shows that as a complete function the HIPPO Polarization + Charge Transfer model 

can accurately reproduce the SAPT induction energy. This fit has an RMS error of under 1 

kcal/mol, meeting the chemical accuracy requirement.  

 While the success of a simple exponential at fitting the difference between induction and 

polarization is not conclusive evidence for the qualitative interpretation behind the charge 

transfer explanation, it is a strong suggestion. Charge transfer is a necessarily ambiguous 

terminology when it comes to intermolecular interactions. It requires that one partition electrons 

in an unphysical manner. However, all reasonable charge transfer functions proposed are 

exponential in form. The fact that the difference in this case is so purely exponential seems to say 

that qualitatively there is some electron transfer occurring. 

3.4.4  Three and Four Body Energies 
 Beyond polarization’s part in the SAPT expansion, the other major reason to include 

polarization in the HIPPO model is for its many-body effects. The many-body energy is the 

amount of energy missing from a system of particles if one only calculated the energy as the sum 

of all the pair energies. In the case of organic molecules this is known to be a large effect, but it 

is missing (by construction) in the standard pairwise biomolecular force fields. Because 

calculating this many-body energy comes with the large cost associated with solving the system 

of equations for induced dipoles, I set out to check that the many-body energies of the model 

were accurate. 

 As an initial test case I chose the water trimer. I calculated the three-body energy of the 

water trimer for a variety of different intermolecular distances using the MP2 ab initio method 
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and compared those energies to the HIPPO polarization three-body energy. The structures were 

generated starting from the configuration shown in figure 3.8 and varying d1 and d2. Figure 3.10 

shows the resulting three-body energies for a range of intermolecular distances. The three-body 

energies were calculated according to the formula, 

𝐸«0 = 𝐸�l�io −`𝐸a
a

−``𝐸a�
�a

(3.20) 

where Etotal is the total energy of the system, Ei are the monomer energies, and Eij are the 

energies of each pair of monomers. 

 

 

Figure 3.8 Water Trimer Geometry.  

The distances d1 and d2 were varied systematically and three-body energies evaluated. 
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Figure 3.9 Water Trimer Three-Body Energies.  

Each set of columns represents the three-body energy for a given configuration. In the x-axis notation for 

configurations, X_Y, X and Y refer to the percent of the equilibrium distances d1 and d2, respectively. “QM” refers 

to an MP2 calculation with aug-cc-pVTZ basis set and “AMOEBA” refers to the water03 polarization model.10 

 

The results in figure 3.9 show good behavior of the HIPPO three-body energy across a range of 

intermolecular distances. In fact, the three-body energy is consistently closer to the MP2 result 

than the old AMOEBA model. This is not surprising, given that the AMOEBA water molecular 

polarizability is slightly larger and slightly more anisotropic than the experimental polarizability.  

A subtle, but notable feature of figure 3.9 is that for every data point the HIPPO 

polarization model three-body energy is slightly lower in magnitude than the QM result. Given 

the nature of our model, this should be expected. Polarization is not the only many-body effect in 

intermolecular interactions. Dispersion, exchange-repulsion and even charge transfer are all 

known to also have, with the exception of exchange-repulsion, attractive many-body 

components. The QM three-body energy includes all of these phenomena without distinction, so 

we should expect a polarization-only many-body model to slightly underestimate the total three-

body effect. Work from Demerdash and co-workers has shown that the many-body effect of 
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dispersion, exchange-repulsion and charge transfer is small for most organic molecules, 

especially water.20 This, combined with the data observed in figure 3.9, leads to two conclusions. 

First, in agreement with Demerdash and co-workers’ results, we do not need a many-body 

dispersion or exchange-repulsion function for HIPPO. And second, the many-body component of 

charge transfer, although certainly non-zero, is so small that we can chose to effectively ignore it 

for the purposes of an induction model whose goal is accuracy to within 1 kcal/mol. This 

validates the decision made to use a simple pairwise exponential to describe the charge transfer 

effect in this model. It should be noted that since, as stated earlier, the distinction between 

polarization and charge transfer is a matter of taste rather than hard fact, other force fields have 

reached the opposite conclusion. For example, the SIBFA (Sum of Interactions Between 

Fragments Ab Initio Computed) force field uses a computationally expensive many-body charge 

transfer term.21,22 Given the HIPPO definition, however, of the polarization model as the linear 

response molecular polarizability and charge transfer as the remainder, the pairwise 

approximation seems to be a good one. 

To verify that the many-body energy agreement observed in figure 3.9 is not unique to 

this particular configuration of water molecules, I tested the HIPPO polarization model on a 

range of other water clusters. For these larger clusters I also computed the four-body energy, 

𝐸�0 = 𝐸�l�io −`𝐸a
a

−``𝐸a�
�a

−```𝐸a�ã
ã�a

(3.21) 

where the final Eijk term represents the sum of the energies of every set of trimers in the system.  

The results for a number of configurations of the water tetramer are shown in table 3.5. 
 

QM HIPPO  
01 - Prism 

3-body -9.0748127 -8.8611 
4-body -0.6128176 -0.9333 
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02 - Cage 

3-body -9.2219 -9.0533 
4-body -0.6517 -0.7587  

03 - Bag 
3-body -10.4123 -10.3599 
4-body -1.3541 -1.4591  

04 - Cyclic Chair 
3-body -11.5925 -11.9124 
4-body -2.0484 -2.253  

05 - Book 1 
3-body -10.3471 -10.4967 
4-body -1.3316 -1.4523  

06 - Book 2 
3-body -10.1075 -10.1501 
4-body -1.23 -1.3367  

07 - Cyclic Boat 1 
3-body -11.2001 -11.4394 
4-body -1.8828 -2.0472  

08 - Cyclic Boat 2 
3-body -11.1891 -11.4684 
4-body -1.8677 -2.0274 

Table 3.5 Water Tetramer 3- and 4-Body Energies.  

QM results are calculated at the MP2 level of theory. All energies are in kcal/mol. 

 

These tetramer configurations are taken from reference 23 and represent a range of structures 

found in liquid water. The results show that the HIPPO agreement with QM many-body energies 

is accurate across conformations. The same holds true for larger clusters, as well. Shown in table 

3.6 are three- and four-body energies for water clusters with up to eight molecules. 

8-mer  
QM HIPPO 

3-body -15.892902 -15.9016 
4-body -1.1263756 -1.5807    

6-mer  
QM HIPPO 
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3-body -9.0748127 -8.8611 
4-body -0.6128176 -0.9333    

5-mer  
QM HIPPO 

3-body -9.1722077 -9.1677 
4-body -1.309086 -1.5763    

4-mer  
QM HIPPO 

3-body -6.3015546 -6.1326 
4-body -0.5776596 -0.8102 

Table 3.6 Large Water Cluster Many-Body Energies.  

QM results are calculated at the MP2 level of theory. All energies are in kcal/mol. 

 

The structures listed in table 3.6 are also taken from reference 23. Again, the three- and four-

body energies of the HIPPO polarization model match the QM results closely. I also tested the 

model on benzene trimers to see if how it performs on non-polar compounds. The results for a 

range of distances of the benzene trimer are plotted in figure 3.10. 
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Figure 3.10 Benzene Trimer 3-body Energies.  

Across the board, benzene trimers exhibit much less 3-body energy than water trimers. The absolute errors of the 

HIPPO polarization model are similar to those for water. Many-body dispersion likely makes up the remainder of 

the missing 3-body energy in this case. In the x-axis notation for configurations, X_Y, X and Y refer to the percent 

of the equilibrium distances d1 and d2, respectively. “QM” refers to an MP2 calculation with aug-cc-pVTZ basis set. 

 

Although, compared to water, the percent error in the three-body energy is much larger, the 

absolute error is similar. This is because benzene trimers have much lower three-body energies 

in general due to the fact that they are nonpolar. The remaining three-body energy is likely 

primarily many-body dispersion. However, even in this case where many-body dispersion has 

maximum effect, the absolute error is still always less than 1 kcal/mol. This underscores the 

decision to forgo including other many-body effects in the force field. 
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3.5 Discussion and Conclusions 
 The summary of the HIPPO polarization + charge transfer model is fairly simple. It is a 

straightforward application of the atomic density model introduced in Chapter 2 to a polarizable 

induced dipole model. Because we are parameterizing against SAPT induction, this then has a 

charge transfer model layered on top of it. This simple approach yields a model that is physically 

motivated, has few free parameters and gives good results relative to both experiment and ab 

initio computations. 

 The physical interpretation of the polarization model is a big advance over the previous 

AMOEBA polarization model. The AMOEBA method used Thole-style damping to prevent 

polarization catastrophe, but these damping functions were not based in any particular physical 

model. In fact, the damping function used in AMOEBA is just one of the number of empirical 

possibilities suggested in Thole’s original paper.13 HIPPO achieves the same empirical end with 

a model that is rooted in physics. The damping functions, both permanent multipole – induced 

dipole and induced dipole – induced dipole, are derived directly from the electrostatic field 

generated by the atomic electron density model introduced in Chapter 2. In other words, the 

induced dipole is subject to the same electrostatic fields and is represented by the same density 

model as every other particle in the system. This gives some intuition for what the Thole model 

was approximating. Polarization catastrophe is an artifact of the point approximation. The 

HIPPO polarization model removes this artifact in a physically rational manner. 

 A side-effect of this physical motivation is that the HIPPO polarization model reduces the 

number of free parameters in the polarization model. Previously, a damped polarization model 

would need both an atomic polarizability for each atom, along with a damping coefficient. 

HIPPO removes the damping coefficient from the equation because it is set by the electrostatics 
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function determined in Chapter 2. This means that only the atomic polarizabilities need to be fit 

for the model. 

 Despite having this restriction imposed on the function, the HIPPO model performs quite 

well in fitting to experimental data. The polarization model is able to fit a broad range of 

molecular polarizabilities to a high degree of accuracy. An array of 32 molecules from the S101 

database can be fit with just 28 atom classes. In validation tests, it also predicts the many-body 

energies of water and benzene clusters to within 1 kcal/mol. The validation tests suggest that the 

many-body energy, the primary reason to incur the cost of a polarization function in a 

biomolecular force field, is well-reproduced by the HIPPO polarization model. 

 Of course, there are some shortcomings of the model, due to its approximate nature, that 

merit consideration. The first, and most obvious is that it lacks any other many-body terms 

outside of polarization. Work by many groups has shown the importance of many-body 

dispersion and even exchange repulsion in some cases24,25 Whether these matter to biomolecular 

simulations is a matter of much debate. The results here certainly don’t settle the dispute, but 

they do provide an interesting data point. Comparing the water many-body data (where many 

body dispersion and repulsion effects are thought to be small) with the benzene many-body 

(where they are thought to be large), shows that indeed benzene shows a larger percent error in 

the many-body energy with the HIPPO model. This seems to validate the view that many-body 

dispersion is important. However, in absolute magnitude, the effect is still quite small, even in 

benzene. It suggests that for a threshold accuracy of 1 kcal/mol, even for non-polar substances, 

many-body dispersion may not be necessary. 

 Of course, more testing could be done to validate the HIPPO model on many-body 

energies. The present work only explored water and benzene as examples, but a fuller 
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examination would have merit. Because of the computational cost of constructing such a 

database of ab initio calculations, I did not pursue this in the current work. However, such a task 

is not computationally intractable. Further work in the area is highly encouraged. 

 The other lacking physics in the HIPPO polarization model is the truncation of the 

polarization expansion. HIPPO includes only linear order dipole polarizability. However, real 

atoms have higher order multipole (quadrupole, octupole, etc.) polarizabilities and each of these 

also have higher order polynomial (quadratic, cubic, etc.), sometimes called hyper-, 

polarizabilities. SAPT draws no such distinction. The SAPT induction energy includes all orders 

in both dimensions. In effect, the approximation being made by the HIPPO polarization model is 

illustrated graphically in figure 3.11. 

 Linear Quadratic Cubic & beyond 
Dipole 𝝁𝒊𝒏𝒅 = 𝛼𝑬 +𝛽𝑬4 ⋯ 
Quadrupole 𝚯𝒊𝒏𝒅 = 𝐴∇𝑬 +𝐵(∇𝑬)𝟐 ⋯ 
Octopole & beyond ⋮ ⋮ ⋱ 

Figure 3.11 The HIPPO induction model in terms of the infinite-order polarizability expansion.  

The green shaded area represents what is included in the HIPPO polarization model. The red shaded regain 

represents the entire rest of the expansion is covered by HIPPO’s charge transfer model. 

 

The green shaded region represents the portion of the polarization expansion that the HIPPO 

polarization function captures. Clearly, this is only the leading term in an infinitely long 

expansion. This leaves the rest of the expansion to be covered by something else. In the case of 

HIPPO, this is the charge transfer function. There is no doubt that this is an approximation. 

However, there are two pieces of evidence that suggest that it is not a bad one. First, as indicated 

by the many-body calculations here and elsewhere20 the magnitude of these higher-order 

contributions to the many-body energy seems to be small. And second, the remainder of the 

SAPT induction energy is clearly exponential. (If the missing piece was, for instance, quadrupole 
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polarizability, we would expect the remainder to be polynomial.) This fact hints at a possible 

physical interpretation: the two main induction effects in intermolecular interactions may be 

linear order dipole polarization (a relatively small shift in electron density) and large scale 

intermonomer rearrangement (a large shift). In other words, it may be that the medium-order 

terms of the polarization expansion, don’t matter all that much. How to test this hypothesis is not 

clear, but it is an interesting suggestion from the results shown in this work. 

 This leads to our final conclusion about the HIPPO total induction model: the charge 

transfer model empirically works. The remainder of the SAPT induction energy left over after 

linear-order polarization energy is computed is largely exponential and largely pairwise. This 

lends itself to a simple pairwise function, and this work shows that such a function works to 

within the required chemical accuracy for intermolecular interactions. The function is fast 

compute and fits the SAPT data well. This is clearly the least physically motivated term of the 

HIPPO force field, but, as I will show in Chapter 6, tuning to fit condensed phase properties is 

necessary regardless and this charge transfer term make a natural starting point for that tuning. 
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Chapter 4: Dispersion 
 At the time that the polarization model was finalized, the plan was not to replace the 

existing AMOEBA van der Waals model. The model up until this point was still called 

“AMOEBA 2”, since the changes had been modifications of the existing functional form rather 

than wholescale changes. This changed for three reasons. First, I attempted to construct a water 

model by using the electrostatics and polarization functions as described above and 

reparametrizing the existing Buffered 14-7 van der Waals potential. The results were lackluster. 

The water model suffered from the same problems as both published AMOEBA water models: 

the first peak of the oxygen-oxygen radial distribution function was difficult to bring into 

agreement with experiment. Second, the dispersion and exchange-repulsion parts of the Buffered 

14-7 van der Waals function fit the SAPT data very poorly. And third, upon taking a step back, I 

realized that I could actually use the density model I established to model dispersion (and 

subsequently, exchange-repulsion) in a manner that approximates the SAPT perturbation theory 

approach. This decision to overhaul the van der Waals function constitutes the break point 

between “AMOEBA 2” and HIPPO. The name had not been born yet, but, conceptually, the 

groundwork had been established. 

 The following is taken from a published paper in which I describe how the HIPPO 

density model can be used to construct a physically grounded model for dispersion. In particular, 

this model gives physical meaning to the known need for “dispersion damping”. Literature going 

back decades has acknowledged that while the leading dispersion term is proportional to ~1/r6 at 

long range, this term must be modified by an exponential damping function at short range to 

agree with ab initio calculations. What has been lacking, however, is a rationale for why this 
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damping is necessary and what form it should have. The HIPPO dispersion model provides this 

with simple density-based arguments. 

 

4.1 Introduction 
The range of possible problems for molecular mechanics models to solve is immense. For 

problems that are too large to solve with Schrodinger’s equation but too small to be observed 

experimentally, we rely on classical models to make predictions and generate hypotheses. This 

ability has made molecular mechanics force fields integral to the study of problems from RNA 

folding1 to new alloy characterization2. Because they are classical approximations to quantum 

mechanical reality, the success of these models is entirely dependent on how accurate that 

approximation is on a wide variety of systems. To achieve this, most force fields split the 

interaction energies of interacting atoms into physically meaningful components. Among the 

most significant of these components is the dispersion interaction that arises from the correlation 

of instantaneous induced dipoles. 

 No force field can provide fully accurate predictions for every component of the total 

energy of a system. In current models this has been typically handled by careful cancellation of 

errors between the various components (electrostatics, polarization, repulsion, dispersion, etc.). 

More recently, however, a new crop of next-generation force fields is emerging that aim to 

reduce this dependence on error cancellation by comparing directly to ab initio energy 

decomposition analysis data.3-10 We are working on a model with this same objective. Previously 

we have shown that it is possible to accurately model electrostatics (to within 1 kcal/mol) in 

regions where previously error cancellation had long been relied upon, the so-called “charge 

penetration” error.11 In this work we shall demonstrate that the same is possible for the 
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dispersion interaction component. While this does not represent a complete force field capable of 

condensed phase simulations, it is an important step toward such a full model. 

 Accurately modeling dispersion in classical force fields is known to be important, 

particularly for biological systems. On a phenomenological level, dispersion is what causes 

neutral atoms and molecules to be weakly attracted to each other. This makes it essential to 

modeling simple Lennard-Jones fluids such as liquid argon, but it is also critically important to 

more complex systems. Dispersion has been shown to be an essential component of modeling 

nucleic acid structure,12 where it contributes to the so-called stacking energy of nucleic acid 

bases. It is known to play a part in halogen bonding, supporting, along with electrostatics, the 

stabilization energy of the interaction.13,14 Additionally, long-range dispersion is widely 

recognized to be important for the simulation of lipid bilayers.15 This broad spectrum of 

applications motivates the necessity of accurate dispersion models. 

 The history of dispersion models dates back to Fritz London, who first established the 

canonical 1/r6 dependence of the London Dispersion energy. This model has been enormously 

influential. The vast majority of biological force fields in use today still use this simple model 

(Amber16, CHARMM17, etc.), or derivatives thereof such as the attractive part of Halgren’s 

buffered 14-7 potential18 used in the AMOEBA19 force field. It is well known, however, that the 

1/rn potential expansion breaks down for short-range interactions where charge distributions of 

interacting molecules overlap.20 There is a long history of attempts to correct this divergence 

though the use of damping functions. An important early damped dispersion model was the 

empirical HFD (Hartree-Fock-Dispersion) scheme proposed by Scoles and coworkers.21 Another 

notable attempt to describe this phenomenon was undertaken by Tang and Toennies who 

introduced a damping function parameterized to account for the overlap in charge distributions.22 
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A comprehensive review of dispersion damping functions is beyond the scope of this work, but 

the original Tang and Toennies report provides a thorough overview of dispersion damping 

functions up to that point. These types of formalisms have seen the widest use as dispersion 

corrections to DFT calculations.23 DFT-D schemes have used the Tang-Toennies function, as 

well as various other damping functions proposed by Wu and Yang24, Chai and Head-Gordon25, 

and Johnson and Becke26. Despite wide use in the DFT community, damped dispersion functions 

have been taken up in decidedly fewer molecular mechanics models. Notably, the Effective 

Fragment Potential (EFP) model employs a dispersion model that utilizes an overlap-based, 

parameter-free modification of the Tang-Toennies damping function.27,28 And recently, Verma et 

al. proposed using the dispersion part of the DFT-D3 formulation of Grimme23 as a molecular 

mechanics model.29 However, while it has been shown that previous damping functions can 

effectively account for the change in dispersion upon charge overlap, they do so largely 

empirically. In the case of the Tang-Toennies damping function for example, the form is based 

on a Born-Mayer potential described by an empirically fit width parameter. 

 In this paper we propose a damped dispersion function similar in spirit to that of Tang 

and Toennies but rooted in a physical model of charge distribution overlap. In previous work we 

have shown that a relatively simple model can capture the physical extent of atomic charge 

distributions that leads to the so-called charge penetration error in electrostatic interactions 

between molecules.11 Here we will show this same model can be used directly and without 

modification to create a dispersion model that is elegantly unified with the electrostatic model. 

This unification is possible because both the electrostatic and dispersion terms depend on the 

density. The electrostatic term is simply the interaction between two static densities, while the 

dispersion term arises from the interaction of densities associated with instantaneous induced 
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dipoles. In this work we will show that the same rough description of the density can be used in 

both cases to great effect. This will be done in five parts. First, we elucidate the theory that starts 

from dipole-dipole interactions and gives rise to this new damped dispersion function. Second, 

we describe the methods of the study. Third, we evaluate the performance of this function 

against benchmark Symmetry Adapted Perturbation Theory (SAPT) calculations. Fourth, we will 

describe how the model has been implemented with dispersion particle mesh Ewald (DPME) to 

boost its efficiency. And lastly, we will discuss the implications of this work and some general 

conclusions. 

4.2 Theory 
To present our new damped dispersion model, we shall first revisit a simple derivation of 

the original London dispersion model. We do so first and foremost because it forms the basis for 

our damped model, but also because it is instructive. One of the defining characteristics of a 

damped dispersion model, as we shall argue later in the paper, is that it has a straightforward 

physical interpretation. Dispersion is correctly said to be a fundamentally non-classical 

phenomenon, but the model we use to describe it need not to be so bound. We will show that an 

interpretable model of dispersion can be constructed from physical models of atomic 

polarizability and charge density. 

4.2.1  London Dispersion  
 For our description of canonical London Dispersion energy, we will follow that of 

Maitland, Rigby, Smith and Wakeham.30 The dispersion energy between two atoms arises from 

the interaction between instantaneous dipoles of those atoms. To model this system, we consider 

a simplified one-dimensional Drude oscillator model as illustrated in Figure 4.1. 
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Figure 4.1. Classical Model of Dispersion 

 

In this representation each atom is represented by a fixed charge +Q bound by a spring with 

spring constant, k, to and an equal and opposite charge, –Q with mass, M. This model is crude, 

but it captures the essential elements of the dispersion interaction. At any point in time each atom 

has a dipole moment, μ = Qz (dependent on the atomic polarizability determined by k) and those 

dipole moments are free to interact with each other. 

 When atom i and atom j are infinitely separated, the Schrödinger equation for each can be 

written as, 

   ,      (4.1) 

where the potential energy term is merely the energy of a simple harmonic oscillator. The same 

can be written for atom j. The solutions to this equation can be found trivially, yielding ground 

state energies of, 

         and      ,     (4.2) 

where the frequency, ω0 is: 

   .        (4.3) 

In the complete non-interacting limit, the total energy of the system is: 
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   .      (4.4) 

This limit in itself is not useful, but if we consider what happens when the two atoms get closer, 

we shall see that it sets a useful reference for our potential energy function. If we bring the two 

atoms closer so that they do interact, but not so close that their charge distributions overlap, our 

Schrödinger equation is not trivially longer separable. The wave equation for two interacting 

atoms now includes the electrostatic interaction between the two dipoles and becomes, 

  .   (4.5) 

One can see that in addition to the simple harmonic oscillator terms, a new potential appears in 

equation 4.5. This is the potential energy at any given instant between the two interacting 

instantaneous multipole distributions. For the dipole-dipole interaction of the simple Drude 

model of figure 4.1, the form of this potential is easily obtained from simple electrostatics: 

 .  (4.6) 

If we plug in the Drude dipoles from figure 4.1, μ = Qz, equation 4.6 becomes, 

  .    (4.7) 

This dipole-dipole energy is the source, as we shall show, of the canonical 1/r6 leading term 

dependence of the dispersion energy. 

 Combining equation 4.7 with equation 4.5 yields, 

  .   (4.8) 

Following the transformation of variables of Maitland, Rigby, Smith and Wakeham, we define, 
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         (4.9) 

and rewrite equation 4.8 as, 

      (4.10) 

where, 

  .       (4.11) 

Equation 4.10 is simply a transformed version of the original problem of two independent 

harmonic oscillators. It can be solved in the same manner giving, 

  ,        (4.12) 

where, 

  .   (4.13) 

One can see that as r becomes large, ω1 and ω2 converge to ω0 where we recover the 

independent oscillator solution. For small perturbations ω1 and ω2 can be approximated with a 

binomial expansion, 

         (4.14) 

so, the total energy becomes, 

  .       (4.15) 

The final step is to subtract the energy of infinitely separated atoms. This gives the dispersion 

potential energy, 
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  ,     (4.16) 

where the canonical r6 dependence arises from the first non-zero term from the application of the 

binomial expansion.  

 It should be noted that while the dipole-dipole interaction is the dominant electrostatic 

term of equation 4.5, there are terms arising from higher-order multipole interactions as well. 

The dipole-quadrupole and quadrupole-quadrupole interactions giving rise to the 1/r8 and 1/r10 

potentials are derived in Appendix A. There are a number of models that use these terms, 

including EFP, SIBFA, and Misquitta and Stone’s model for small organic molecules.27,31,32 For 

a perspective on the importance of these higher order terms for the case of the neon dimer, the 

reader is directed to the work of Bytautas and Ruedenberg.33 The latter reference showed that 

even for this simple dimer, the 1/r8 and 1/r10 terms are nearly impossible to distinguish at 

reasonable separations. There are odd-power terms (1/r7, 1/r9, etc.) that can be included in the 

expansion as well. These arise from mixing of the even order terms, are highly angularly 

dependent, and spherically average to zero at long range.34 There has also been recent work on 

incorporating these terms into dispersion models,35,36 where these higher-order terms give 

successively better approximations to the exact dispersion energy. As we will show, however, to 

reach the stated accuracy goal of < 1 kcal/mol, only the leading term will be necessary. 

 For most systems the perturbation of the dipole-dipole interaction energy is small 

compared to the energy holding the electrons to their respective atoms. This makes taking only 

the leading r6 term of equation 4.16 a good approximation for most long-range intermolecular 

interactions. In practice this is done by introducing a parameter, C, to capture this dependence, 

  .        (4.17) 
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This model will be referred to throughout the remainder of the paper as the London Dispersion 

model. Unfortunately, this method of approximation starts to break down when the charge 

distributions of interacting atoms start to overlap. We will handle this situation through 

introduction of short-range damping, but rather than rely on empiricism for the damping 

function, we look to the underlying electrostatics to provide a consistent model. 

4.2.2  Short-Range Electrostatics 
 A long-standing problem in the modeling of electrostatics for molecular mechanics 

models is the so-called charge penetration error. The error arises when charge distributions of 

interacting atoms overlap, causing the true electrostatic energy of the interacting densities to 

diverge from the point charge or point multipole approximation. We have shown in previously 

published studies11,37,38 that a simple hydrogen-like approximation of the Coulomb potential does 

a remarkably good job at correcting this error.  

 Why is this germane to a study of dispersion? Dispersion, as shown above, can be 

modeled as arising from a dipole-dipole interaction. In the context of the multipolar AMOEBA 

force field we have shown that the hydrogen-like approximation to the Coulomb interaction can 

be extended to the interactions between higher-order multipole moments. In fact, including these 

corrections for charge-dipole, dipole-dipole, dipole-quadrupole, etc. interactions is essential to 

the transferability and accuracy of the model.11 Here we show that the dipole-dipole interaction 

arising from this earlier model can be used directly to create a new damped dispersion model. 

 To illustrate where the dipole-dipole damping comes from, we follow a similar derivation 

to that of Ref. 11. The potential due to the electrons for this model is defined as, 

          (4.18) 
V (r) = qi

r
1− e−αir( )
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where r is the distance from the center of the charge distribution and α is a parameter describing 

the width of the distribution. Application of Poisson’s equation, 

  ,         (4.19) 

yields the corresponding density, 

  .        (4.20) 

These two quantities can be used to approximate the Coulomb interaction energy between two 

charge distributions, 

 .  (4.21) 

Application of the one-center integral method of Coulson39 gives 

  .    (4.22) 

Equation 4.22 gives the charge-charge electrostatic energy. To get the dipole-dipole energy, 

recall that the full multipole energy of the i-j interaction can be written: 

     (4.23) 

For a point-point interaction Tij is simply 1/r, but for our model direct inspection of equation 4.22 

yields 

  .    (4.24) 
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We can now apply this new relation for Tij to the definition of the dipole-dipole energy from 

equation 4.23. 

    (4.25) 

where f3 and f5 are the damping terms that come from derivatives of the f1damp term of equation 

4.24, 

 . (4.26) 

Now let us compare equation 4.24 and equation 4.6. Clearly the difference between the point 

dipole-dipole interaction and the new model’s dipole-dipole interaction is the damping terms that 

arise from the hydrogen-like model of charge density. For large separations f3 and f5 approach 

one and we recover the point interaction. For small density overlaps, f3 and f5 represent a 

perturbation that damps the point dipole-dipole interaction. 

4.2.3  Overlap Damped Dispersion 
 To derive our damped dispersion model, we start from the earlier derivation of London 

Dispersion. Equations 4.1-4.5 remain the same, but instead of inserting the point dipole-dipole 

interaction energy into equation 4.5, we now substitute our damped dipole-dipole interaction 

from equation 4.25. Following our simple one-dimensional Drude model we obtain 

     (4.27) 
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       (4.28) 

Inserting this into the Schrödinger equation yields 

  . (4.29) 

This can be solved by the same transformation as the non-damped case discussed earlier where, 

  .    (4.30) 

This results in the solution 

  . (4.31) 

Applying the binomial expansion and subtracting the energy of infinitely separated atoms yields 

the damped dispersion energy: 

  .      (4.32) 

Just as before, for small density overlaps the leading term of equation 4.32 dominates. To 

convert this into a parameterized molecular mechanics model we again introduce C6 parameters, 

giving our final model energy: 

         (4.33) 

 This model represents an elegant and simple unification of the electrostatics and 

dispersion models for molecular mechanics force fields. We will refer to this model throughout 

Udipole−dipole = f3
damp µiµ j

r3
− f5

damp 3 µir( ) µ jr( )
r5

1
M
∂2Ψ
∂zi

2 +
1
M
∂2Ψ
∂zj

2 +
2
!2

E − 1
2
kzi

2 −
1
2
kzj

2 − 3 f5
damp − f3

damp( )µiµ j

r3
⎛

⎝
⎜

⎞

⎠
⎟Ψ = 0

k1 = k −
2Q2

r3
fdispersion
damp , k2 = k +

2Q2

r3
fdispersion
damp

fdispersion
damp = 3 f5

damp − f3
damp

E = 1
2
! ω1 +ω2( )

ω1 =
k1
M

=ω0 1−
2Q2

r3k
fdispersion
damp , ω2 =

k2
M

=ω0 1+
2Q2

r3k
fdispersion
damp

Udispersion
damp = −

Q4!ω0

2k2r6
fdispersion
damp( )

2
+…

Udispersion
damp = −

C6
iC6

j

r6
fdispersion
damp( )ij

2



124 
 

the remainder of the paper as the “Overlap Damped Dispersion” model. It has some important 

features: 

 1. The model retains the canonical 1/r6 asymptotic behavior as f tends to unity at large 

separations. 

 2. The damping function has a straightforward physical interpretation: it is the  

 integral of the overlap of between charge distributions on interacting atoms. 

 3. The damping function follows a similar exponential form as other previously  

 proposed dispersion damping functions. 

 4. The damping function has no adjustable parameters. The parameters are  

 fixed from the electrostatics charge penetration damping function. 

As we will show in Section 4, this model, in addition to being theoretically compelling, produces 

good agreement with dispersion energies from ab initio energy decomposition analysis 

calculations. 

4.3 Methods 
The damped dispersion model we propose requires the fitting of C6 parameters. To obtain 

these parameters, validate their robustness and assess the model’s accuracy, we set out a four-

step protocol. First, we assemble a database of representative molecular interactions. Second, we 

perform benchmark ab initio reference calculations on that database. Third, we fit the parameters 

of our model to the reference ab initio data. Fourth, we assess the robustness of the fit by 

validation of the model on systems outside of the database. 

 For the scope of this study we intend to parameterize our model for the chemical space of 

biomolecules. To this end we use the previously constructed S101x7 database 40 for fitting. This 

database consists of 101 distinct pairs of molecular dimers. For each of these dimers, seven 
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points along the dissociation curve are established at 0.7, 0.8, 0.9 0.95, 1.0 1.05 and 1.1 times the 

equilibrium intermolecular distance. Details on how the structures were generated are available 

in Ref. 37. The dimers in this set represent a cross section of typical interactions found in protein 

and nucleic acid systems. We note that the points in the dataset at 0.7x the equilibrium distance 

are important despite the fact that they are rarely sampled in condensed phase simulations for 

most systems. These points are included to ensure that the shape of the potential at the closest 

sampled points (often 0.8x the equilibrium distance) is accurately captured. A summary of all the 

pair interactions is presented in figure 4.2. 

 

Figure 4.2. Dimer pairs in the S101 database.  

Arrows indicate heterodimers, while “/2” indicates a homodimer. Reprinted with permission from Wang, Q. et al. 

General model for treating short-range electrostatic penetration in a molecular mechanics force field. Journal of 

Chemical Theory and Computation 11, 2609-2618. Copyright 2015 American Chemical Society. 
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 In order to parameterize our model, a set of dispersion reference data is required. Because 

dispersion is not a physical observable, we must rely on an ab initio energy decomposition 

analysis (EDA) to generate our reference data. We have chosen Symmetry Adapted Perturbation 

Theory (SAPT)41 for this purpose. SAPT has a number of features that make it a reasonable 

choice. First, SAPT is a perturbation theory approach that takes the electron density of 

monomers as its unperturbed state. This is an exact analogy to molecular mechanics models 

where distributed multipoles are calculated from monomer densities. Second, because of this 

correspondence, SAPT is the theory that was used to generate the parameterization of the 

electrostatic model referenced in Section 2. Using SAPT here as well ensures a straightforwardly 

unified model. Finally, SAPT is a well-established theory with a proliferation of studies 

analyzing its accuracy with respect to various orders and basis sets. We use the SAPT2+ level of 

theory as defined by Sherrill et al.42 with Dunning correlation consistent basis sets43,44 to 

estimate the complete basis set (CBS) limit45 for the SAPT energy components. The SAPT2+ 

method with large, augmented basis sets has been previously shown to give errors relative to 

CCSD(T)/CBS of about 0.3 kcal/mol. This was chosen over the cheaper to compute SAPT0 

method, which gives errors of around 0.5 kcal/mol. In order to minimize the difference between 

our SAPT calculations and gold-standard CCSD(T), we evaluated the residual,  

  ,    (4.34) 

where (Enon-dispersion + Edispersion) represents the total SAPT2+ energy, with a scale factor, c, 

introduced as a parameter. Minimizing this residual with respect to c yielded a scale factor of c = 

0.89 that is used to scale all dispersion energies. For further details on the construction of the 

reference data for S101x7, please see Ref. 37. The Psi4 program was used to perform all SAPT 

calculations.46-48 All structures and reference data are available at the S101x7 online repository.40 

R = Etotal
CCSD(T )/CBS − Enon−dispersion

SAPT 2+/CBS + cEdispersion
SAPT 2+/CBS( )
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 To obtain C6 parameters, we performed a nonlinear least square fit of the SAPT 

dispersion reference data using a Levenberg-Marquardt algorithm implemented in the Tinker 

molecular mechanics software package. To test the robustness of this parameterization we leave 

out some of the data points and repeat the fit. The model with the new parameters is then 

evaluated on the excluded points. As a validation test case, we also evaluate the performance of 

the model on previously published nucleic acid interaction data.49 

 The last part of the study is evaluation of the dispersion particle mesh Ewald (DPME) 

method. DPME has been implemented in a locally modified version of Tinker and is available 

through the Tinker GitHub site.50 To evaluate the efficiency of this implementation, the DPME 

method is tested on a 36 Å periodic cube containing 1,600 water molecules. The PME 

summation was performed with a ~1 Å grid, 5th order B-splines, and an Ewald coefficient of 0.4. 

Timings are computed on a 6-core, 2.66 GHz Intel Xeon processor for 100 energy evaluations 

using standard (non-Ewald) and DPME Overlap Damped Dispersion. 

4.4 Results 
4.4.1  Model Accuracy 
 The question that we are attempting to answer in this study is whether or not a damped 

dispersion model that is consistent with an underlying electrostatic model is demonstrably more 

accurate relative to ab initio data than simpler counterparts. To test this question, we employed a 

two-step approach. First, we compared the pure London Dispersion model with our new Overlap 

Damped Dispersion model on the S101x7 database. Then we compared these models to recently 

published work fitting the S101x7 database with a buffered 14-7 potential function. 
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 To compare the damped and non-damped 1/r6 dispersion potentials we fit both to the 

SAPT2+ dispersion values from the S101x7 database. The results of these fits are presented in 

table 4.1 and figure 4.3. 

 

 London Dispersion Overlap Damped 
Dispersion 

Total Root Mean Square 
Error (RMSE) 1.19 0.52 

Short-range RMSE 
(0.7 – 0.8x equil dist) 1.52 0.65 

Long-range RMSE 
(0.9 – 1.1x equil dist) 1.04 0.46 

Table 4.1. Goodness of Fit on S101x7 Database (kcal/mol). 

 

Clearly the Overlap Damped Dispersion potential performs better on this set of data, displaying a 

total root mean square error of 0.52 kcal/mol as opposed to 1.2 kcal/mol for the pure London 

Dispersion function. Figure 4.3 illustrates how the Overlap Damped Dispersion model 

consistently fits the SAPT dispersion data better than the non-damped model over a range of 

interactions energies.  
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Figure 4.3. Damped and Undamped Dispersion Models against SAPT2+ Dispersion Energies.  

The diagonal, y = x dashed line indicates perfect agreement. The Overlap Damped Dispersion model produces a 

significantly improved fit. 

  

Moreover, the difference in fit quality between the short-range and long-range points shown in 

table 4.1 is much smaller for the Overlap Damped Dispersion model. This seems to indicate that 

the damping is having the short-range effect we hoped it might. This issue will be examined 

further in the robustness tests. 

It is instructive to note exactly what is and is not being fit in these two models. For both 

models the only parameters being fit are one C6 coefficient per atom class. (Atom class 

definitions can be found in table 4.2. They are identical to those defined in Ref. 11.) It bears 

emphasizing that for the Overlap Damped Dispersion model the damping parameters (αi in 
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equation 4.26) are not allowed to vary; they are fixed at the values determined in Ref. 11. These 

values, recapitulated here in table 4.2, 

Element Atom Class α (Å-1) 

Hydrogen (H) 

non-polar 3.2484 

aromatic  3.4437 

polar, water 3.2632 

Carbon (C) 

sp3 3.5898 

aromatic 3.2057 

sp2 3.1286 

Nitrogen (N) 

sp3 4.0135 

aromatic 3.6358 

sp2 3.7071 

Oxygen (O) 

sp3, hydroxyl, 

water 
4.1615 

aromatic 4.3778 

sp2, carbonyl 3.7321 

Phosphorous (P) phosphate 2.7476 

Sulfur (S) 
sulfide 3.3112 

sulfur IV 2.6247 

Fluorine (F) organofluoride 4.4675 

Chlorine (Cl) organochloride 3.4749 

Bromine (Br) organobromide 3.6696 

Table 4.2. Fixed Electrostatic Damping Parameters. 
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describe the physical extent of an atom’s electron distribution. They were fit to the SAPT 

electrostatic energies of the same S101x7 database in the previous study. A comparison of the C6 

parameters between the damped and non-damped models in table 4.3 shows that the Damped 

Dispersion model exhibits a smoother variation within classes. 

 

Element Atom Class 
London Dispersion Damped Dispersion 

C6 (Å6 kcal/mol) C6 (Å6 kcal/mol) 

Hydrogen (H) 

non-polar  3.4118  6.3960 

aromatic   4.7993  5.7678 

polar, water  0.9114  5.1133 

Carbon (C) 

sp3 28.5333 18.1732 

aromatic 23.2125 23.3605 

sp2 26.1301 23.0103 

Nitrogen (N) 

sp3 33.6562 21.4927 

aromatic 18.2114 19.7421 

sp2 30.6586 19.4543 

Oxygen (O) 

sp3, hydroxyl, water 25.5861 15.1656 

aromatic 25.2794 14.8569 

sp2, carbonyl 23.1181 18.4344 

Phosphorous (P) phosphate 46.4113 44.8658 

Sulfur (S) 
sulfide 62.1844 52.8970 

sulfur IV 39.0781 59.2558 

Fluorine (F) organofluoride 15.0568 13.6549 
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Chlorine (Cl) organochloride 44.4420 45.7799 

Bromine (Br) organobromide 59.9587 62.0655 

Table 4.3. Model C6 Parameters 

 

The fact that a similar set of parameters produces a damped dispersion model that yields a fit that 

is 0.5 kcal/mol better than the non-damped model, despite having the exact same number of 

fitting parameters, is instructive. It shows us that the quality is not due to any extra flexibility in 

the fitting procedure. This hints that our model may be seizing some of the same physical reality 

captured in the electrostatics model. 

 The London Dispersion model is widely used, but it is certainly not the only simple 

dispersion model used in molecular mechanics force fields. One alternative is Halgren’s buffered 

14-7 potential.18 As discussed in section 2, the 1/r6 term is only the first term in the expansion of 

the dispersion energy. The buffered 14-7 potential, 

  ,   (4.35) 

attempts to accommodate higher order terms by means of the buffered 1/r7 attractive term to 

describe dispersion. The buffered 14-7 van der Waals potential has been used in a number of 

force fields, including AMOEBA, for which a good amount of analysis involving the S101x7 

database has already been done. In a recent study Qi, Wang and Ren fit the buffered 14-7 van der 

Waals potential to the sum of the exchange-repulsion and dispersion data from the S101x7 

database yielding a model they call “vdw2016”.51 Given the quality of the total van der Waals 

energy reported, we set out to see how the corresponding dispersion energies compared to 1/r6 

derived functions. 
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 To assess the performance of the dispersion part of the vdw2016 model we performed 

calculations using only the attractive part of the buffered 14-7 potential defined in equation 4.35. 

The vdw2016 model differs slightly from the damped and non-damped 1/r6 dispersion models in 

its number of atom classes. Where we define just 18 atom classes for the molecules in S101, Qi, 

Wang and Ren find they need 28 to accurately model the van der Waals energy. For each class 

they allowed two parameters to vary: the well depth, ε, and radius, σ. Despite this greater 

flexibility in parameters, the vdw2016 model performs very poorly on predicting the dispersion 

part of the van der Waals energy. As is clearly seen in figure 4.4, it is not nearly attractive 

enough.  

 

Figure 4.4. vdw2016 against SAPT2+ Dispersion.  

The diagonal, y = x dashed line indicates perfect agreement. The vdw2016 model systematically underestimates the 

magnitude of the dispersion energy. 
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This is unsurprising given the nature of the fit that was performed. Since the target data was the 

sum of the exchange-repulsion and dispersion energies the fit is highly skewed by the exchange-

repulsion energy. The exchange-repulsion can often be an order of magnitude large than 

dispersion, especially at short-range, and thus drives values obtained for the fit. This does not 

mean that vdw2016 does not make an adequate empirical total van der Waals model (indeed 

buffered 14-7 has almost always been used in its totality), but it does mean that this 

parameterization will not work as a stand-alone dispersion model if the goal is to reduce 

cancellation of errors. 

 While the vdw2016 model has been shown to yield good van der Waals energies, it does 

so to the detriment of having a separate and interpretable dispersion model. To attempt to remedy 

this, we performed a second fit of the buffered 14-7 van der Waals form to the S101x7 dataset, 

vdw2017, where the exchange-repulsion and dispersion components were fit independently. The 

results of this fit are shown in figure 4.5.  
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Figure 4.5. vdw2017 Dispersion against SAPT 2+ Dispersion Energies.  

The diagonal y = x dashed line indicates perfect agreement. The vdw2017 model RMS error is 1.6 kcal/mol. 

 

One can see that the systematic deviation in dispersion that plagues the vdw2016 model is 

largely alleviated in the new fit. However, the root mean square error for vdw2107 dispersion 

remains at 1.6 kcal/mol. This occurs despite preserving the extra flexibility of having 28 atom 

classes. This seems to show that while the buffered 14-7 may have a fortunate cancellation of 

errors for the total van der Waals energy, a 1/r6 asymptotic function is a more natural fit to the 

pure dispersion interaction. 

 Comparing the overall fits of the Halgren dispersion potentials to the (damped or non-

damped) London Dispersion potentials it is clear that the latter produce a better fit to the S101x7 
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dataset. Since the empirical buffered 14-7 potential seems to offer no advantage in accuracy for 

dispersion, there is no reason to further pursue it as a viable, interpretable dispersion model for 

the purposes of this study. The next step is to assess whether the advantage in accuracy of the 

damped dispersion model is worth the extra complexity and computational effort. 

4.4.2  Model Robustness 
 Although the Overlap Damped Dispersion model shows a better fit to the S101x7 

dispersion dataset, we would like to be sure that this advantage over the simpler London 

Dispersion model is robust. To test this point, we employed two separate validation assessments. 

First, we interrogated the quality of the fit with regard to intermolecular distance. Here our aim 

was to ascertain which of the two functions is a more natural fit to the data. Second, we applied 

both models to cases outside of the S101 suite of dimers.  

 The S101x7 dataset contains sets of dimers arranged at seven different intermolecular 

distances (0.7, 0.8 0.9, 0.95, 1.0, 1.05 and 1.1 times the equilibrium distance). Because this data 

set includes a good amount of information about close contact points, we want to be sure that our 

models fit the short-range points well without sacrificing asymptotic behavior. To judge the 

long-range fit, we excluded all of the 0.7 and 0.8 times equilibrium data points and then 

reoptimized the parameters. The results, presented in the “Long-range” entries of table 4.4, show 

that for this near-equilibrium regime the London Dispersion and Overlap Damped Dispersion 

models give comparable fits.  

 The test of robustness is to then use the parameters that come out of the near-equilibrium 

fits and evaluate each model on the close-contact points that were left out of the fit. This shows 

how well the shape of the function matches the intrinsic shape of the dispersion dissociation 
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curve at short-range. As can be seen in table 4.4, there is a difference between the London 

Dispersion and Overlap Damped Dispersion models. 

 

 London 
Dispersion 

Overlap Damped 
Dispersion 

Total Root Mean 
Square Error (RMSE) 3.12 0.67 

Total Mean Signed 
Error (MSE) 0.91 -0.31 

Short-range RMSE 
(0.7–0.8x equil dist) 5.55 0.84 

Long-range RMSE 
(0.9–1.1x equil dist) 1.15 0.59 

Short-range MSE 
(0.7–0.8x equil dist) 2.71 -0.12 

Long-range MSE 
(0.9–1.1x equil dist) 0.20 -0.38 

Table 4.4. Dispersion Model Robustness Test (kcal/mol) 

 

The total RMS error of the Overlap Damped Dispersion model increases modestly when the 

close-contact points are included, as should be expected since these points were not included in 

the fit. The total RMS error of the non-damped London Dispersion model, however, rises 

dramatically. While the long-range quality of fit (those points that were included in the fit) is 

good for both models, the short-range quality (those points not included in the fit but included in 

the robustness test) is very different between the two models. The RMS error on the short-range 

test points with the Overlap Damped Dispersion model is less than 1 kcal/mol, but the RMS error 

of the London Dispersion model is over 5 kcal/mol. These errors are clearly caused by the 

inability of a simple 1/r6 function to adequately describe both the asymptotic and overlap 

regimes. Moreover, it is clear from table 4.4 that the Overlap Damped Dispersion model is not 

sacrificing accuracy in the asymptotic regime, where it is actually slightly better than the London 
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Dispersion model. A handful of illustrative examples show how the London Dispersion model fit 

to near-equilibrium points systematically predicts the dispersion energy to be too attractive. 

Figure 4.6 shows three examples where this effect is pronounced. 

 

Figure 4.6. Examples of Dispersion (top row) and Electrostatic (bottom row) corrections for charge density 

overlap in (A) benzene-peptide, (B) pentane-pentane and (C) water-PO4H3 interactions.  

The x-axis indicates dimer intermolecular distance as a fraction of each dimer’s equilibrium separation. In all three 

examples the undamped, “classical” model diverges from the ab initio result at short-range, while the damped model 

follows the ab initio curve closely. 

 

 The pentane-pentane, benzene-peptide and water-PO4H3 interactions are all examples of 

important component interactions in biology. They also exhibit the importance of damping the 

dispersion energy at short range for an ab initio-based force field. Clearly, including the damping 

function from the electrostatic model improves the agreement with SAPT dispersion data at the 

closest points. 
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 We suggest the effectiveness of this damping is fundamentally tied to the overlap in 

charge distributions. If we compare the non-damped London Dispersion curves with their 

corresponding non-damped electrostatic curves (no charge penetration correction) in figure 4.6, 

we see that the divergence of non-damped energies from their SAPT counterparts occurs at 

roughly the same separation. This suggests that deviation from the 1/r6 asymptotic behavior in 

the dispersion energy at short-range is also attributable to the overlap in charge distributions. We 

know the point multipole expansion model for electrostatic interactions is rigorously accurate 

until charge distributions begin to overlap. The fact the divergence in the point dipole derived 

dispersion energy occurs at a similar distance, suggests that the same effect is driving this 

phenomenon. Moreover, the fact that the exact same parameters can be used to accommodate the 

change from the asymptotic behavior for both electrostatics and dispersion indicates that these 

are separate manifestations of the same physical reality. 

 Although the London Dispersion model may be simpler and computationally less 

expensive than the Overlap Damped Dispersion model, it is clear from this robustness test that 

the latter provides a much better description of the dispersion interaction that spans both the 

close contact and asymptotic regimes. For the S101x7 dataset, generally, the 0.8x points 

represent the closest intermolecular distance for liquids at ambient conditions. The robustness 

test shows that a force field using the Overlap Damped Dispersion model will rely less on 

cancellation of errors in this area than an undamped model. Importantly, we note that the 

Overlap Damped Dispersion model retains the 1/r6 dependence at long-range as the damping 

factor quickly approaches unity when charge distributions no longer overlap. This gives us 

confidence that the shape of the function is well suited to the intrinsic shape of the dispersion 

dissociation curve. 
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4.4.3  Model Analysis and Validation 
 Having established the capability of the Overlap Damped Dispersion model for short-

range interactions, we can ask how well this model performs on specific, important systems. 

Dispersion plays an important role in a range of biomolecular interactions and one should hope a 

good model would describe such interactions accurately. Two instructive examples are water-

water interactions and benzene stacking interactions. Both also happen to be instances where 

charge density overlap plays a role in their short-range interactions. 

 The balance between water-water and water-biomolecule interactions is known to be 

important to accurate simulations of biomolecules. Recently, a study by Piana and co-workers 

demonstrated that simulations with a few commonly used water models overpredict the 

compactness of disordered and partially disordered proteins.52 They suggest that this occurs 

because these typical water models underestimate water-water and water-protein dispersion 

interactions relative to ab initio dimer calculations. This conclusion may be overstated, since for 

the TIP3P and SPCE models discussed, this underestimation is largely handled through 

cancellation of errors within the rest of the force field. A goal of our work, however, is to reduce 

this reliance on such cancellation. The Overlap Damped Dispersion model directly addresses this 

problem through accurate prediction of the water dimer dispersion energy curve. As shown in 

figure 4.7, the damped model gives good overall agreement with the shape of the SAPT 

dispersion data.  
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Figure 4.7. Performance of Various Water Dispersion Models against SAPT2+ Dispersion.  

Model dispersion energies are compared to SAPT2+ dispersion energies for a range of intermolecular distance of the 

water dimer. TIP3P53 and TIP4P-D52 are undamped ~1/r6 models, AMOEBA is the attractive, ~1/r7, component of 

the buffered 14-7 potential with parameters from the water03 force field19, and the Overlap Damped Dispersion 

model is from this work. 

 

 Also shown in figure 4.7 is the quality of the fit of the AMOEBA water0319 model. Since 

this AMOEBA model is polarizable, one would expect the dispersion part of its van der Waals 

function should be close to the ab initio dispersion energy due to less reliance on cancellation of 

errors. Indeed, near equilibrium this model produces excellent agreement, but at short range the 

dispersion energy becomes too negative. While the absolute energy error may not be large for 

these close points, one can see that the error in the slope is much greater. At an O-O distance of 
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~2.6 Å, for example – well sampled in ambient water54 – one can see that the water03 dispersion 

force is slightly too attractive. Recent work has suggested that cancellation of errors is 

responsible for the condensed phase behavior of AMOEBA water55,56, but as these compensatory 

components are removed for the next generation of the model, the error in the dispersion 

becomes more important to address directly. It is not novel to suggest that modeling the short 

and long-range dispersion interactions simultaneously requires a damping function. What is 

shown here, however, is that a simple, rationally constructed and minimally parameterized model 

yields excellent agreement for this important interaction. 

 Another example interaction of importance in biomolecular modeling is the benzene “pi-

stacking” interaction. In addition to being an important exemplar for nucleic acid structure and 

drug binding, this interaction falls into the qualitative “dispersion-bound” category57, so 

accurately modeling it is imperative for a dispersion model. Figure 4.8 shows the performance of 

the Overlap Damped Dispersion model against SAPT. 
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Figure 4.8. Benzene Dimer Dispersion.  

Model dispersion energies are compared to SAPT2+ dispersion energies for a range of intermolecular distance of the 

benzene dimer. The AMOEBA model functional form is the same is in figure 4.7, with parameters taken from the 

AMOEBA09 force field. 

 

 One can see that the agreement of the Overlap Damped Dispersion model with the SAPT 

data is excellent across all benzene dimer separations. As was observed for the water dimer, the 

AMOEBA model produces good agreement near equilibrium, but characteristically deteriorates 

at short range. In particular the divergence begins at ~0.85 of the equilibrium separation or a ~3.2 

Å C-C distance. This distance is a close contact for liquid benzene at room temperature and 1 

atm – it falls near the start of the radial distribution function.58 As a model system, it is also close 

to the stacking distance between bases in B-DNA, ~3.3 Å. Figure 4.8 shows that for small, but 
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relevant distances like this the shape of SAPT dispersion is more closely matched by the Overlap 

Damped Dispersion Model. Although less dramatic than with electrostatics, the deviation at 

short-range of the London Dispersion model is due to the same phenomenon that drives the 

divergence in the electrostatics of the benzene dimer. Figure 4.8 shows us that the same 

treatment can be applied to fix the errors in both classical models. 

 Finally, to check that the success at accurately fitting the S101x7 dataset is not the result 

of overfitting, we employ a validation test on a system outside of the training set. For this 

purpose, we chose to test the dispersion component of nucleic acid base stacking interactions. In 

previously published work, Parker and Sherrill performed SAPT energy decomposition analysis 

calculations on a set of nucleic acid structures to evaluate the performance of current force fields. 

In order to assess how well a given model reproduces the energy components of base stacking 

interactions, Parker and Sherrill performed SAPT calculations at equilibrium and near 

equilibrium geometries of all ten possible two base-pair steps of DNA: AATT, ACGT, AGCT, 

ATAT, CATG, CGCG, GATG, GCGC, GGCC and TATA. To generate trial geometries, Parker 

and Sherrill systematically varied the six geometrical degrees of freedom illustrated in figure 4.9 

(shift, slide, rise, tilt, roll and twist) for each base-pair step. See reference 49 for structure 

generation specifics and calculation details. 
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Figure 4.9. Illustration of the six degrees of freedom explored for nucleic acid structures.  

The example shown is for the AC:GT base step. Reprinted with permission from Parker, T. M. & Sherrill, C. D. 

Assessment of Empirical Models versus High-Accuracy Ab Initio Methods for Nucleobase Stacking: Evaluating the 

Importance of Charge Penetration. Journal of Chemical Theory and Computation 11, 4197-4204. Copyright 2015 

American Chemical Society. 

 

To see how our model measures up, we compare the published nucleic acid SAPT dispersion 

energies with the dispersion energies predicted by our Overlap Damped Dispersion model using 

atom types as defined in table 4.3. The results for this test set are shown in figure 4.10. 
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Figure 4.10. Mean Unsigned Error in Dispersion Energy for Nucleic Acid Structures.  

Model error is relative to SAPT for each of the six structural parameters. The Overlap Damped Dispersion model 

reduces the error in the dispersion across all six degrees of freedom. Amber and CHARMM results from Ref. 49. 

 

 There are two important features to point out in the figure. First, one will notice that the 

London Dispersion model performs better than either the Amber or CHARMM nucleic acid 

dispersion models despite having an identical functional form. This, as noted by Parker and 

Sherrill, is primarily due to cancellation of errors in the partial charge models. These models do 

not explicitly include the effects of charge penetration, so the dispersion function is called upon 

to absorb some of the error in the electrostatics. What Parker and Sherrill find, however is that 

while this cancellation of errors strategy produces total energies within 1 kcal/mol relative to 

DW-CCSD(T**) for structures near B-form DNA, the error in the total energy across the range 

of potential energy surface scans is closer to 2 kcal/mol with some errors over 10 kcal/mol even 

for attractive points on the surface. One can see from figure 4.10 that parameterizing a 1/r6 

(London Dispersion) model directly to SAPT reduces some of the need for cancellation of error, 

but not all. The second and more important feature one observes is the agreement throughout the 
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potential energy surface of the Overlap Damped Dispersion model. In addition to relieving itself 

of the cancellation of errors burden, one can see the damped model provides a minimum factor 

of two improvement in the mean unsigned error over the undamped London Dispersion model 

for every degree of freedom. This has little to do with the behavior of the dispersion energy at 

equilibrium; the divergence occurs primarily for structures where the electron densities of the 

two base-pairs start to overlap.  

 As an instructive example, take the change in dispersion energy with respect to tilt angle 

for the CATG base step shown in figure 4.11.  

 

Figure 4.11. Dispersion Energy of CATG Interaction vs. Tilt.  

The non-damped dispersion models uniformly overestimate the magnitude of the dispersion energy as the angle 

varies from equilibrium in either direction. The Overlap Damped Dispersion Model predicts the shape of the SAPT 

curve at both equilibrium and near-equilibrium geometries. 
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 One can see that at equilibrium both the London and Overlap Damped Dispersion models 

predict the SAPT dispersion energy with good precision. However, as one changes the tilt angle 

in either direction, the dispersion energy of the undamped model diverges quickly from the 

SAPT while the Overlap Damped Dispersion model follows the shape of the SAPT curve with 

fidelity. This trend holds across all six degrees of freedom and all ten base pair steps. Plots like 

figure 4.11 for each combination are available in the supplementary information of reference 59. 

The divergence observed for non-damped models matters because it is not simply confined to 

high total energy areas of the DNA potential energy surface. In fact, Parker and Sherrill showed 

that for the stacked A-C pair (one half of the CATG base step) at a tilt angle of -15o the total 

energy is -5 kcal/mol. This is only 0.5 kcal/mol above the minimum total energy of -5.5 

kcal/mol. Figure 4.11 suggests that in order to accurately model this region of the potential 

energy surface without large cancellation of errors a damped dispersion model is necessary. 

4.5 Dispersion Particle Mesh Ewald Summation 
 The accuracy of a molecular mechanics model is important, but so too is its efficiency. A 

good dispersion model must not only be accurate, but also fast to compute. While the accuracy of 

the Overlap Damped Dispersion Model has been solidly established in this paper, the 

exponentials required for its evaluation have the potential to slow potential energy calculations. 

To make the Overlap Damped Dispersion model computationally efficient and tractable for use 

in biomolecular simulations, we have implemented the model with particle mesh Ewald (PME) 

summation in the Tinker molecular mechanics software package. In this section we present a 

brief overview of the damped dispersion PME implementation and show how this 
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implementation provides a substantial speed and accuracy improvement over the standard cutoff-

based van der Waals implementation. 

 Ewald summation is classically considered to be primarily a solution to the pairwise 

long-range electrostatics problem. The Σ1/r electrostatic potential is conditionally convergent 

which makes direct computation of the electrostatic energy of a periodic system difficult. To 

circumvent this problem, Ewald methods split the sum into short-range and long-range parts, 

with short-range part being computed directly and the long-range via Fourier transformation. 

This separation not only makes periodic calculations possible, but also increases the speed with 

which the energy and gradient can be evaluated. 

 The same method can be applied to the dispersion energy calculation. Here we note that 

the following derivation is by no means original. In fact, Essman and co-workers proposed the 

possibility of using particle mesh Ewald summation for dispersion in their 1995 paper describing 

the method of smooth particle mesh Ewald summation.60 We present here a brief summary 

simply to show that the inclusion of a damping term in this case does not change the ability to 

use the method. 

 The total dispersion energy, as given by eq. 33 is: 

   .      (4.36) 

This can be split into a short-range part, a long-range part and a “self” term, 

        (4.37) 
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 (4.38a,b,c) 

Equations 4.38a and 4.38b are commonly known as the direct space sum and reciprocal space 

sum, respectively. The variable, β, is the parameter determining the Gaussian width, m is defined 

by the reciprocal lattice vectors, a, as m = m1a1* + m2a2* + m3a3*, and V is the volume of the unit 

cell. The structure factor, S, is defined for dispersion as, 

    .       (4.39) 

The summation in eq. 38b is handled in the same manner as the reciprocal space sum for 

electrostatics. Tinker uses the FFTW (Fastest Fourier Transform in the West) package to perform 

the needed Fourier transforms.61  To speed the calculation and because the dispersion energy 

decreases quickly with distance, eq. 38a, the direct space sum, is truncated at a fixed distance. 

 For simple dispersion PME the choice of direct space cutoff matters very little; one 

simply chooses a cutoff that balances computational effort between direct space and reciprocal 

space. For Overlap Damped Dispersion PME, however, some care must be taken with the choice. 

This is because eqs. 38a, b and c as written, do not strictly sum to eq. 36. This imbalance is 

caused by the presence of the damping function in the direct space sum, without an equivalent 

component in the reciprocal space. In practice, however, this is easily overcome with a rational 

choice of cutoff distance. The function fdamp goes to unity very quickly with distance (much 
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faster than 1/r6 goes to zero), so reasonable cutoff distances are easy to obtain. Figure 4.12 shows 

dispersion energy as a function of cutoff distance. 

 

Figure 4.12. Cutoff Distance Convergence of the Overlap Damped Dispersion Model.  

The total dispersion energy of a 36 Å water box is shown for the standard and particle mesh Ewald (PME) 

implementations of the Overlap Damped Dispersion model. The cutoff of the PME implementation refers to the 

cutoff of the real space summation. Computational details are enumerated in section 3. 

 

One can see that for cutoffs longer than 6 Å, the energy of the PME implementation is constant, 

due to the fact that fdamp is effectively unity for all atom pairs outside of this radius. For our 

model we chose this cutoff of 6 Å to balance the direct and reciprocal space computational 

effort. Comparing the PME and non-PME curves in figure 4.12 illustrates an obvious advantage 

of using Ewald summation for dispersion interactions. While the non-PME curve converges to 
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the asymptotic total energy very slowly with cutoff distance, the Ewald sum is converged within 

the 6 Å cutoff distance. The slow convergence of the non-Ewald sum is the reason many 

molecular mechanics models use 12 to 16 Å cutoffs or van der Waals corrections term for their 

dispersion interactions.  

 Because our model is not forced to use a longer cutoff distance, it can be faster to 

compute than standard dispersion models. As a point of reference, in the AMOEBA model, the 

van der Waals calculations currently comprises 10-15% of the total calculation time. While this 

is certainly not the bottleneck for efficiency, it is important to keep this relative cost low. In 

figure 4.13 we compare computation times for our PME implementation of the model with the 

standard implementation for various cutoff distances. 

 

Figure 4.13. Computational Effort for Overlap Damped Dispersion.  

The time to complete 100 iterations of Overlap Damped Dispersion and Buffered 14-7 is plotted as a function of 

cutoff distance. 
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 Figure 4.13 shows that for standard implementation cutoff distances of greater than 9 Å, 

the PME implementation of the Overlap Damped Dispersion Model provides a performance 

boost relative to the non-PME implementation. As a point of reference, figure 4.13 also shows 

the speed of the AMOEBA buffered 14-7 van der Waals functional form with its suggested 

cutoff distance of 12 Å. Even compared to this model, which has no required exponential 

evaluation, the Overlap Damped Dispersion PME model provides a factor of 2.5 speed increase. 

The use of particle mesh Ewald summation minimizes the work needed in real space, thus 

enabling the use of our more complicated and accurate functional form without loss of 

computational efficiency. 

 Finally, our model benefits from utilization of simple combination rules. Using a 

multiplicative combination rule as indicated in equation 4.33 makes our DPME method exact. It 

is worth noting that many popular force fields, including all three mentioned in this paper 

(Amber, CHARMM and AMOEBA) use additive combining rules for van der Waals parameters. 

Particle Mesh Ewald methods can be used with additive combining rules in an approximate 

manner first proposed by Erik Lindahl and co-workers.62,63 This method prevents what would 

otherwise be a discontinuity in the forces at the cutoff distance, but does introduce complexity 

when switching from direct to reciprocal space combining rules.15 The Overlap Damped 

Dispersion PME model avoids this by explicitly parameterizing to a multiplicative combining 

rule. This implementation is certainly not unique or novel, but it is important to the future use of 

the Overlap Damped Dispersion model in a complete force field because it shows that the benefit 

of a more physics-based short-range model can be realized at no increase in cost. 
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4.6 Discussion and Conclusions 
 The universe of possible molecular mechanics models is immense. To discriminate 

between models and decide which models work best with each other, we must evaluate them 

based upon the goals they wish to achieve. The goal of our proposed model is use in 

biomolecular modeling, molecular dynamics simulation and free energy calculations. To this end 

it is important for the model to be accurate, transferable and interpretable. Accuracy has obvious 

importance for describing the interactions of biological molecules with fidelity, but 

transferability and interpretability are no less important. In this last section we summarize how 

the Overlap Damped Dispersion model measures on each of these attributes. 

 The data in table 4.1 show that when measured against Symmetry Adapted Perturbation 

Theory, damping is necessary to achieve 1 kcal/mol accuracy for the S101x7 data set. 

Interestingly, the Overlap Damped Dispersion model is also shown to be more accurate than the 

attractive part of the slightly more complex buffered 14-7 potential. The root of this behavior 

seems to lie with the behavior of the dispersion energy at short-range. Figure 4.6 shows that a 

damping function is necessary to fit both close-contact and large-separation dimer points. In 

most force fields this inaccuracy at short-range is handled through cancellation of error. Relying 

on such cancellation, however, will not work as force fields become more accurate and, more 

importantly, is not guaranteed to function favorably across the wide variety of intermolecular 

interactions that occur in biomolecular applications. 

 The transferability of the Overlap Damped Dispersion model is coupled to this idea of 

eliminating a reliance on cancellation of error. The most notable feature of the model, aside from 

its accuracy, is the fact that it has no additional adjustable parameters beyond the simple London 

Dispersion model. The damping function, as presented in section 2, is entirely determined by the 

electrostatic model presented in Ref. 11 with no additional fitting or parameterization. This 
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property of the model suggests two things. First, the Overlap Damped Dispersion model is easily 

transferable to a range of chemical space because of the limited number of parameters. Evidence 

of this is shown in figures 4.10 and 4.11 where the S101-fitted parameters were used to predict 

the dispersion energy of nucleic acid base stacking interactions. Second, it hints at a physical 

reality behind the model. The fact that parameters generated through fitting to intermolecular 

electrostatic interactions, where density overlap is the determining factor in short-range 

interactions, works well for our dispersion model is a strong indicator that the same phenomenon 

is driving short-range dispersion. 

 This physical picture of short-range dispersion is what makes the Overlap Damped 

Dispersion model interpretable. There are many damping functions that can be used to correct 

for the behavior of the dispersion energy at short-range. Several of these damping functions can 

likely be parameterized to yield results against Symmetry Adapted Perturbation theory that are as 

accurate as those presented here. What the current model offers over the alternatives is a physical 

interpretation. In this model the dispersion interaction is the result of the electrostatic interaction 

between the instantaneous induced dipoles of two distinct charge distributions. This 

characteristic of the model is valuable for two reasons. First, it gives us some intuition about the 

nature of intermolecular interactions. Second, the interpretability of the model makes it easier to 

extend the model to new areas of chemical space. We make no claim that the 18 atom classes 

used in this paper will accurately describe the all of the variety of chemistries in organic 

molecules. What is clear, however, is that the interpretation of the damping parameter as a 

measure of an atom’s charge distribution gives a clear path to determining new parameters where 

necessary. In this way the Overlap Damped Dispersion model is systematically improvable. As 

advanced molecular mechanics models evolve this property will be important to their ongoing 
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development. As models grow to explicitly take into account the short-range interactions 

between molecules, this dispersion model fits neatly into that framework. 

 Accurately modeling the short-range interactions between molecules is important to 

making trustworthy predictions on a range of biomolecular problems. drug binding64, 

intrinsically disordered protein behavior65 and nucleic acid structure66 are all areas where 

advanced force fields have been shown to be necessary for correct predictions. As models get 

more complex the tendency is to accumulate additional parameters and with them empiricism. In 

the case of dispersion, this paper shows that a simple physical model can be employed that adds 

no new parameters while reducing the need to rely on cancellation of errors. Moreover, 

combined with a dispersion particle mesh Ewald implementation, the evaluation of the necessary 

equations can be achieved as fast or faster than the standard implementation of simple non-

damped models. This yields a simple, physically interpretable model ready for the next 

generation of advanced molecular mechanics models. We are currently working on incorporating 

this model, along with the previously published charge penetration function, into a complete 

force field. 

4.7 Further Work 
The model presented in this published work uses the first density model as published in 

the work from Chapter 2. However, as explained in the “Further Work” section of Chapter 2, the 

model density has changed slightly. The only part of the derivation that changes is equation 4.26. 

The damping factors are replaced with 
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The remainder of the derivation remains identical to that in section 4.2. 

Just as with the electrostatics, the amount that this changes the quality of fit and 

validation examples is nearly negligible. The updated C6 parameters are tabulated in table 4.5. 

class name C6 

1 H (nonpolar) 6.4475 
2 H (nonpolar, Alkane) 7.0153 
3 H (polar, NH/N aromatic) 2.2238 
4 H (polar, OH) 3.3513 
5 H (aromatic, CH) 4.7752 
6 H (polar, SH) 5.1227 
7 C (sp3) 16.7895 
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8 C (sp3, Alkane) 18.1472 
9 C (sp2, Ethene) 27.5956 

10 C (sp2, CO) 4.1502 
11 C (sp) 20 
12 C (aromatic, CC) 25.1602 
13 C (aromatic, CX) 18.8259 
14 N (sp3) 33.4759 
15 N (sp2) 34.2019 
16 N (aromatic) 33.531 
17 O (sp3, hydroxyl, water) 22.5286 
18 O (sp2, carbonyl) 30.0411 
19 O (O− in AcO−) 33.4521 
20 O (O− in HPO42−) 33.76 
21 O (O− in H2PO4−) 31.3032 
22 O (O in H3PO4) 32.5028 
23 P (phosphate) 3.8493 
24 S (sulfide, RSH) 60.5601 
25 S (sulfur IV, DMSO) 34.642 
26 F (organofluorine) 13.4133 
27 Cl (organochloride) 45.0491 
28 Br (organobromine) 64.3023 

Table 4.5. C6 parameters for final HIPPO dispersion model.  

These use the “new” density model described in the “Further Work” section of Chapter 2. 

 

 The difference in computational cost is likewise insignificant since the damping factors are 

already being computed for electrostatics. The update to the “new” density model, however, is 

important to the consistency of the model. With this update, all of the intermolecular potential 

energy terms in HIPPO are constructed from a singular density model per atom. 
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Chapter 5: Repulsion 
 The final piece of the HIPPO force field is the repulsion model. When the decision to 

abandon the empirical Buffered 14-7 potential was made, that created the need for a repulsion 

model that would match the SAPT exchange-repulsion component. Moreover, I wanted the 

repulsion model to not just fit the SAPT data, but to do so with a function that was derived from 

the physical meaning of exchange-repulsion in the SAPT approach. The result was the HIPPO 

Multipolar Pauli Repulsion model. Throughout this chapter and throughout this dissertation I 

refer to “Exchange-Repulsion” and “Pauli Repulsion” interchangeably. Unlike the distinction 

between induction and polarization, this is purely semantics. The two terms, in the way they are 

used in this dissertation, mean exactly the same thing: the effect on the intermolecular energy 

caused by imposing wavefunction antisymmetry. In simpler terms, molecules repel each other at 

short range because the Pauli exclusion rule prevents molecular densities from overlapping too 

much. This effect and how it can be accounted for in terms of a classical function will be 

explained in detail in this chapter. 

 The following is taken from a published paper in which I describe the Multipolar Pauli 

Repulsion model. It contains a derivation of the functional form as well as practical 

considerations such as agreement with SAPT and computational efficiency. In some ways this 

part of the model is the most novel element of HIPPO. It is the first anisotropic atomic repulsion 

function to ever be included in a biomolecular force field. This is a big leap from the Lennard-

Jones-like van der Waals models that are prevalent in standard molecular mechanics force fields. 

Despite being novel to the field, however, the Multipolar Pauli Repulsion model is not unique in 

the context of HIPPO. The functional form is based on the exact same density model as the rest 

of the force field. This means that every term of the HIPPO functional form is based, in some 
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way, on that density model. So, while the model is notable in its own right, perhaps the most 

important thing about it is that it closes the loop on a simple, but radical interpretation of HIPPO 

as a new class of force field. For 30+ years, the standard force field has relied on the 

approximation that atoms can be represented as points. This assumption permeates both the 

electrostatics and van der Waals terms of these force fields. HIPPO takes one step further. It 

represents each atom as a point core plus an outer electron density. This new assumption 

permeates the entirety of the model in a consistent manner. This chapter sets in place the final 

piece of that model, but what remains to be tested, in the work presented in Chapter 6 and on-

going work, is whether this density approximation will yield more predictive results for 

biomolecular simulations. 

5.1 Introduction 
 The beauty of classical physics models is not that they work for describing most of our 

world, but rather why they work. While it is necessary for physics-based models to be accurate 

and predictive, these qualities alone are not sufficient. A true classical model must also be 

interpretable; that is to say, it must be a derivable approximation from first principles. Good 

classical models of everyday phenomenon are not just lucky; they are the true limiting behavior 

of fundamental physical laws. Nowhere is this principle more essential or more often forgotten 

than in molecular modeling. To solve difficult questions such as drug binding specificity or 

nanotube formation, fields from biology to materials science have come to rely on molecular 

mechanics models, or force fields, to generate hypotheses and make predictions. These 

predictions are only as good as the model used to make them, meaning that every part of the 

force field must contain a sufficient level of accuracy. In particular, one of the most important 

parts of any force field is the term responsible for intermolecular Pauli repulsion. This term, 
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which also goes by the names “steric” or “exchange” repulsion, is too often described as a 

mysterious “quantum mechanical” force. This could not be farther from the truth.1-3 This paper 

intends to show that intermolecular Pauli repulsion is a simple consequence of Coulomb’s law 

and furthermore that this interpretation leads to an accurate classical model of Pauli repulsion. 

 The level of model accuracy needed is always a function of its intended use. For force 

fields this standard is referred to as “chemical accuracy”, which we define here as a fidelity in 

computed energies to within 1 kcal/mol. While this requirement is not universal, and higher 

accuracy may well be required for many applications in molecular interactions, a particular 

example will serve to rationalize its importance. A primary, current use for biomolecular force 

fields is prediction of drug binding affinities. Because of the relation �G = RT log(KD), at room 

temperature every order of magnitude in the binding affinity translates into 1.36 kcal/mol in the 

free energy of binding. This is of great practical importance since a factor of 10 variance in a 

drug’s binding affinity can be the difference between a medicine that hits a specific target vs. one 

that binds non-specifically. One of the most important factors to achieving this level of accuracy 

for atom-based force fields is anisotropy. Work with the AMOEBA (Atomic Multipole 

Optimized Energetics for Biomolecular Applications) force field has shown that adding atomic 

anisotropy via multipoles is an excellent way to make molecular mechanics models more 

accurate. Atomic multipoles are necessary to accurately predict the electrostatic potential around 

drug-like molecules4 and they are needed to reproduce hydrogen bond geometries in water5, 

proteins6 and nucleic acids7. Recent work with AMOEBA, in the SAMPL6 challenge, showed 

that this more accurate model produces generally more accurate binding free predictions than its 

fixed charge counterparts.8  All of this indicates that to reach the goal of “chemical accuracy”, 

the next generation of force fields will need to account for atomic and molecular anisotropy. 
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 While the importance of anisotropy is broadly recognized for the electrostatic portions of 

molecular mechanics models, it is widely overlooked in the other terms, particularly Pauli 

repulsion. The repulsion term is acutely important because in most force fields it is the only 

consistent source of positive energy in the system. This means that in the delicate balance 

between attraction and repulsion that exists in all condensed phase systems, the repulsion term 

shoulders the burden for most of the second half of that equation. In the canonical, minimum 

energy water dimer for example, ab initio Symmetry Adapted Perturbation Theory (SAPT) 

energy decomposition calculations show that while the electrostatic, induction and dispersion 

contributions to the interaction are all negative, the exchange-repulsion is the only source of 

positive energy in the system.9  Despite this, nearly all common biomolecular force fields 

including AMOEBA use relatively simple, isotropic repulsion schemes. Most commonly these 

are the 1/r12 repulsive Lennard-Jones potential, a Buckingham exponential form or, in the case of 

AMOEBA, Halgren’s buffered 14-7 potential. Strong evidence is emerging that these isotropic 

Pauli repulsion functions may not be accurate enough to ensure “chemical accuracy” in 

biomolecular applications. Recent work by Anthony Stone has shown a strong angular 

dependence of the Pauli repulsion energy in halogen bonding interactions.4  Furthermore, these 

sigma hole interactions are vitally important to the drug discovery process10, and evidence has 

emerged that this angular dependence is a large source of the selective binding geometries of 

sigma hole associated drug candidates.10-14 In order meet the standard needed for predictive 

biomolecular applications, we will need an accurate, physics-based, anisotropic Pauli repulsion 

model. 

 This work aims to present a classical Pauli repulsion model that is anisotropic and 

efficient to compute. In previous work we have shown that a rough model of atomic charge 
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density can dramatically improve the accuracy of electrostatic and dispersion models for short-

range intermolecular interactions.15  Here we will show that this same simple density 

formulation, coupled to an atomic multipole model yields a classical, physics-based model for 

Pauli repulsion. In addition to providing a qualitatively different level of accuracy compared to 

standard isotropic empirical models, this model also dispenses with the customary mysticism 

surrounding repulsion models. There is no attempt to write off another empirical model in terms 

of “quantum mechanical forces”; this model simply accounts for the loss in nuclear screening, 

relative to their isolated, unperturbed states, that molecules experience when their charge 

densities start to overlap. We will go about this in four stages. First, we will build out the theory 

underlying the model and its classical electrostatic interpretation. Second, we will describe the 

methods of the study. Third, we will demonstrate the accuracy of our Pauli repulsion model 

against benchmark SAPT data. And lastly, we will present pertinent discussion and conclusions. 

5.1.1  A Brief History of Pauli Repulsion Models 
 Well before the advent of modern quantum mechanics scientists understood that 

molecules repel each other at short-range. Johannes van der Waals won a Nobel Prize in 1910 for 

“his work on the equation of state for gases and liquids”, which postulated intermolecular 

interactions as the source of deviations from the ideal gas law.16  It was not until the statement of 

the Pauli Exclusion Principle by Wolfgang Pauli in 192517 that physicists understood the 

explanation for the repulsive intermolecular interactions that keep molecules separated. The first 

model to approximate this Pauli repulsion phenomenon is due to Sir John Lennard-Jones, a man 

whose name is indelibly linked to the field of molecular modeling. Lennard-Jones first proposed 

a general polynomial form of the van der Waals potential in 192418 and suggested the now 

canonical 6-12 formulation in 1931.19  While the 1/r6 attractive term was taken from London’s 
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earlier work on dispersion20, the 1/r12 repulsive term was chosen primarily out of convenience. 

Empirically, Lennard-Jones found that the 1/r12 term provided an adequate estimate of the 

repulsive forces between closed-shell atoms near equilibrium. It is worth noting that Lennard-

Jones himself had no illusions about the limitations of such a functional form. In his 1931 lecture 

he acknowledges that for simple systems exchange energies fall off as e-ar/r. The Lennard-Jones 

potential, however, in its canonical form has been enormously influential. It was used in some of 

the very first molecular dynamics simulations of biological molecules21 and continues to be the 

van der Waals function of choice for most popular biomolecular force fields including Amber, 

CHARMM, GROMOS and OPLS. 

 The next significant model function for intermolecular repulsion proposed was the simple 

exponential. Credited to Max Born and Joseph Mayer (1932)22, and Richard Buckingham 

(1938)23 this function has the form A e-ar. Both papers built on the work of John Slater, who in 

1928 worked out the repulsive force between two helium atoms.24  Slater found the repulsive 

force to be exponential of the form P(r) e-ar, where P(r) is a polynomial. Slater proposed, 

however, that to a reasonable approximation P(r) could be replaced with a constant. Born and 

Mayer tested this hypothesis on ionic cubic lattices and Buckingham extended their work to ab 

initio noble gas intermolecular forces. It is interesting to note that Lennard-Jones himself actually 

played a significant role in the development of these models. He, in fact, was responsible for 

communicating Buckingham’s 1938 paper to the Royal Society. Despite its more substantial 

theoretical underpinnings, the Buckingham or Born-Mayer exponential functions have been less 

widely utilized in biomolecular force fields. Notably, the MM2, MM3 and MM4 force fields, 

designed for accurate conformational analysis and gas phase thermodynamics of hydrocarbons 

and simple organics, use an exponential repulsion function, however wide-spread adoption for 
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biomolecules was hampered in part due to the increased computational cost of exponential 

evaluation.25-27 

 There is one additional contribution to the class of simple, isotropic repulsion models that 

did not come until much later. In 1992 Thomas Halgren introduced the so-called “buffered 14-7” 

potential in an effort to raise the level of accuracy of van der Waals functions for organic and 

biomolecular force fields.28  This function introduced the idea of buffering constants to fix the 

known systematic short-range over-repulsive nature of the canonical Lennard-Jones function. 

Halgren revisited the rare gas repulsion calculations that had guided Lennard-Jones’s, Born and 

Mayer’s, and Buckingham’s model development with modern electronic structure methods and 

found that the buffered 14-7 form produced better fits than the 12-6 or exp-6 models he tested 

against. While the model yields good agreement with ab initio data, Halgren makes no attempt to 

justify it theoretically other than to present it as a perturbation on top of the accepted Lennard-

Jones form. Henceforth it has commonly been accepted as a simple solution to the known 

problem of the excessive stiffness of the 1/r12 repulsive wall. Despite its lack of rigorous 

theoretical justification, this model has been used with some success in the Merck Molecular and 

the AMOEBA force fields.29-31 

 While these three models account for the vast majority of Pauli repulsion terms in 

biomolecular force fields, there are large number of “boutique” molecular mechanics repulsive 

functions tailored to modeling specific types of compounds. Often intended for specific, high-

accuracy applications, these models are frequently anisotropic with a larger number of 

parameters. While we shall refrain from dissecting every known such potential function, a 

handful of models are notable. Anthony Stone proposed a water model with an atom-atom 

exponential repulsion that varied according to the relative local geometries of the interacting 
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water molecules.32  Similarly, Misquitta and Stone developed a site-site anisotropic repulsive 

potential for pyridine that utilizes distributed densities to generate atomic repulsive “shape” 

parameters that enter the exponential.33  In another example, the SAPT-5s water model uses an 

isotropic repulsive potential with a polynomial prefactor, but requires a number of off-atom sites 

for accuracy.34 Lastly, an anisotropic short-range model that includes Pauli repulsion along with 

other short-range effects has been used to model polycyclic aromatic hydrocarbons.35 

 While the early models of Pauli repulsion acknowledged the general exponential nature 

of the term, it was not until the 1960s that more rigorous justification and specific functional 

dependence was provided. In 1961 Lionel Salem published the foundational paper for what 

would come to be known as the “orbital overlap” model of Pauli repulsion. Salem worked out 

the repulsive force experienced by two interacting helium atoms subject to the Hellman-

Feynman Theorem and showed that the repulsion energy can be accurately modeled by S2/R, 

where S is the overlap integral between the interacting orbitals and R is the distance between the 

atoms.36  Not only did he derive this dependence from first principles, he showed numerically 

that such an approximation is quite good for the He dimer example. This work was followed by 

further validation by Musher and Salem37, Murrell, Randic and Williams38, and Murrell and 

Shaw39. The basis of this model is classical electrostatics. Salem showed unequivocally in the 

case of helium that the repulsive interaction experienced at close approach is caused by a 

depletion in electron density in the overlap region that de-screens the nuclei from each other, 

causing internuclear repulsion. Furthermore, Salem illustrated that the magnitude of this 

depletion is proportional to the square of the orbital overlap integral (S2). Because of the 

essential problem of defining an orbital in a classical force field, this framework for repulsive 

models has been less widely used. Two notable exceptions are the SIBFA (Sum of Interactions 
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between Fragments) and EFP (Effective Fragment Potential) models. The SIBFA repulsive 

potential depends on the overlap between atom centers, bond centers and lone pairs, as well as a 

prefactor that accounts for the relative orientation of the interacting pairs.40,41  EFP uses 

monomer LMOs (Localized Molecular Orbitals), which makes the potential transferable, but too 

expensive for large-scale biomolecular simulations.42,43 

 The final class of Pauli repulsion models that merits consideration are “density overlap” 

models. In 1976, Kita, Noda and Inouye performed molecular beam experiments with Cl--X and 

Br--X, where X = He, Ne, and Ar, and found the repulsive energy was proportional to W, the 

density overlap integral.44  In 1981, Kim, Kim and Lee arrived at the same conclusion upon 

examination of experimental noble gas repulsion data.45  This observation was first turned into a 

molecular mechanics model by Wheatley and Price, whose use of anisotropic atomic densities 

yielded an anisotropic repulsion model.46  This model influenced Stone’s original work on the 

water model mentioned above. It is also the basis for the Pauli repulsion term in the GEM 

(Gaussian Electrostatic Model) force field47-50 and recent force fields developed by J.R. Schmidt 

and co-workers.51,52  Although this model seems to match experimental data well, it has little in 

the way of theoretical grounding. Despite its seeming similarity to the orbital overlap model, the 

density overlap model has a fundamental units problem. This will be discussed in greater detail 

at the end of section 2. Theoretical considerations notwithstanding, the density overlap model 

has been parameterized to meet a range of modeling needs.53-58  Section 2 will shed more light on 

the nature of this model’s empirical success. 

 This history of Pauli repulsion models shows no clear consensus as to which functional 

form is best. The choice of model has posed two typical tradeoffs: first, between computational 

speed and model accuracy and second, between model transferability and number of parameters. 
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These tradeoffs, however, are not endemic to Pauli repulsion models. Here we present an orbital 

overlap model that sidesteps both of them. The result is a fast-to-compute, anisotropic, 

transferable Pauli repulsion function. 

5.2 Theory 
 An explanation of any Pauli repulsion model must start with a basic understanding of the 

Pauli Exclusion Principle. The Exclusion principle is a consequence of two simple facts: 

electrons are fermions and they are indistinguishable. Let us consider a system of two electrons, 

with wave functions, 𝜙/(x1) and 𝜙0(x2). Since these electrons are indistinguishable, we must be 

able to swap labels and still end up with the same density. One can see that for the simple 

solution,  

𝜙(𝑥3, 𝑥4) = 𝜙/(𝑥3)𝜙0(𝑥4) (1) 

this condition is not met since it is not necessarily true that: 

𝜙/(𝑥3)𝜙0(𝑥4) ≠ 𝜙/(𝑥4)𝜙0(𝑥3) (2) 

However, since both sides of equation 2 are solutions to the Schrodinger equation, we can use a 

linear combination to produce the total wave function: 

Φ(𝑥3, 𝑥4) = 𝜙/(𝑥3)𝜙0(𝑥4) 	± 	𝜙/(𝑥4)𝜙0(𝑥3) (3) 

The positive and negative versions of equation 3 correspond to symmetric and antisymmetric 

wave functions, respectively, and define the difference between bosons and fermions. Because 

electrons in nature are always observed to have antisymmetric wave functions, they are classified 

as fermions. The requirement that fermionic wave functions be antisymmetric is the essence of 

the Pauli Exclusion Principle. For an antisymmetric wavefunction if 𝜙/ = 𝜙0, the total 

wavefunction, F, goes to zero, meaning that no two electrons may occupy the same state. 
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 To illustrate how the Pauli Exclusion Principle leads to Pauli repulsion between 

molecules, let us consider the case of the helium dimer. As the simplest closed-shell dimer, He2 

provides a natural, general example for the repulsion between molecules. Our derivation will 

closely follow that of Salem’s 1961 paper. All equations to follow are presented in atomic units, 

with 4pe0 = 1. 

 Consider two helium atoms separated by a large distance, such that they do not interact. 

In this case the two atoms have distinct wave functions, 𝜙/ and 𝜙0 where both are real, 

spherically symmetric, exponentially decaying functions. If these two atoms are brought close 

enough to each other to interact, the total wave function, now a mix of 𝜙/ and 𝜙0, must remain 

antisymmetric because of the Pauli Exclusion Rule. One way to do this is to construct 

orthonormal molecular orbitals from linear combinations of the atomic orbitals, 

𝜓� = (2 + 2𝑆)>3 4ò 	(𝜙/ + 𝜙0)	

𝜓� = (2 − 2𝑆)>3 4ò 	(𝜙/ − 𝜙0) (4) 

where S is the overlap integral,    

𝑆 = V𝜙/𝜙0𝑑𝑣 (5) 

needed for normalization. These molecular orbitals fulfill our requirement that the total 

wavefunction, 

Ψ = 𝜓�(𝑥3)𝜓�(𝑥4) − 𝜓�(𝑥3)𝜓�(𝑥4) = −Ψ (6) 

be antisymmetric. 

 After enforcing the Pauli Exclusion Rule, we can determine the total density that this 

antisymmetric wavefunction defines for the interacting helium dimer. It is worth noting that this 

is slightly different than the exact density because it lacks polarization effects. However, since 
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the effect of polarization is small for the helium dimer. The density is simply the square of the 

wave function, 

𝜌 = 	Ψ∗Ψ = 𝜓�4 + 𝜓�4 (7𝑎)

																													=
𝑍

(1 − 𝑆4)
(𝜙/4 + 𝜙04 + 2𝑆𝜙/𝜙0) (7𝑏)

 

where Z is the nuclear charge. When S, the overlap integral, is small we can approximate the 

prefactor in a binomial expansion, 

1
1 − 𝑆4 = 1 + 𝑆4 + 𝑆� + ⋯ (8) 

This gives us a good approximation to the total density, 

𝜌õ = Z(𝜙/4 + 𝜙04) − 2𝑍𝑆𝜙/𝜙0 + 𝑍𝑆4(𝜙/4 + 𝜙04) + ⋯ (9) 

where terms of order S3 or higher are dropped out. It is worth noting that this is slightly different 

than the exact density because it lacks polarization effects. However, since the effects of 

polarization are small for the helium dimer (as shown by Salem) this approximate density is 

accurate enough to ground a qualitative description of Pauli repulsion. 

 Equation 9 gives us an approximation of the true electron density of the helium dimer. 

Let us compare this result to the density that would have resulted if we had not imposed the Pauli 

Exclusion Principle, 

𝜌* = 	Z(𝜙/4 + 𝜙04) (10) 

It is clear this reference density differs from the true density of equation 9. It is also clear from 

the preceding derivation that the difference between the two is entirely due to the imposition of 

the Pauli Exclusion Principle. We can calculate this difference by subtracting the true density 

from the reference, 

∆𝜌 = 𝜌* − 𝜌õ = 2𝑍𝑆𝜙/𝜙0 − 𝑍𝑆4(𝜙/4 + 𝜙04) (11) 
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This gives us the change in density caused by the Pauli Exclusion Principle. Figure 5.1 shows 

how we can understand this change qualitatively. 

 

Figure 5.1.  Change in electron density for interacting helium dimer.  

(A) Representation of the density difference between the interacting and superimposed non-interacting densities. 

The green and red regions denote areas of electron accumulation and depletion, respectively upon enforcement of 

wavefunction antisymmetry. The distances ra and rd represent characteristic distances to each region from nucleus A. 

(B) Density difference from ab initio calculations. The difference between CCSD densities of the interacting and 

rd

ra

A

B
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non-interacting dimers at an internuclear distance of 1.8 angstroms is shown as a contour plot. Values shown are in 

thousandths of electrons/bohr3. 

 

There are two contributions to the change in density from the two terms in equation 11. The first 

term represents a depletion of electron density in the overlap region between nuclei, indicated by 

the red shaded region of figure 5.1A. And the second term represents an accumulation of 

electron density around the centers A and B, indicated by the green shaded regions of figure 

5.1A. The validity of this spatial decomposition is shown in figure 5.1B. CCSD density 

difference calculations on the helium dimer show a clear pattern of depletion in the internuclear 

space accompanied by an accumulation near the nuclei. It is useful to note that since, 

V∆𝜌𝑑𝑣 = 0 (12) 

these two changes are exactly equal in magnitude, but opposite in sign. Of particular importance 

is the magnitude of the depleted charge in the overlap region. For the helium dimer shown in 

figure 5.1B with an internuclear separation of 1.8 angstroms (0.64 times the consensus He vdW 

diameter of 2.8 Å), the total depleted charge is only 0.01 e–. This depletion, however, is the 

dominant contributor to the total SAPT repulsion energy of ~5 kcal/mol. In fact, if one simply 

computes Coulomb’s law between the nuclei and the depleted “positive” charge located at the 

midpoint between the two nuclei, the result is ~7 kcal/mol, a slight overestimate of the repulsion 

energy. 

 In addition to the qualitative description of how the density changes upon imposition of 

the Pauli Repulsion Principle, we can quantitatively assess how this change affects the energy of 

the system. The change in energy for nucleus A is: 

∆𝐸/ = 𝐸/(𝜌*) − 𝐸/(𝜌õ) = 𝑍V
∆𝜌
𝑟 𝑑𝑣 = 𝑍 �V

∆𝜌h
𝑟 𝑑𝑣 − V

∆𝜌i
𝑟 𝑑𝑣� (13) 
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where ∆𝜌h and ∆𝜌i are the changes in density due to depletion and accumulation, respectively. 

Plugging in the two terms from equation 11 we find the change in energy, 

∆𝐸/ = 𝑍 �2𝑍𝑆V
𝜙/𝜙0
𝑟 𝑑𝑣 − 𝑍𝑆4 V

𝜙/
𝑟 𝑑𝑣 − 𝑍𝑆4 V

𝜙0
𝑟 𝑑𝑣� (14𝑎)

= 𝑍 �2𝑍𝑆V
𝜙/𝜙0
𝑟h

𝑑𝑣 − 𝑍𝑆4 V
𝜙0
𝑟i
𝑑𝑣� (14𝑏)

 

where the middle term of 14a is identically zero by symmetry. Equation 14b introduces the 

notation for 𝑟 illustrated in figure 5.1. The first integral in equation 14b, for small overlaps, is 

approximately zero everywhere except in that small overlap region. Similarly, the second 

integral of equation 14b is approximately zero for all of space except the local density of atom B. 

One can see from figure 5.1 that generally 𝑟h < 𝑟i, meaning that the depletion term of equation 

14b outweighs the accumulation term, leaving 

∆𝐸/ ≈ 2𝑍4𝑆V
𝜙/𝜙0
𝑟h

𝑑𝑣 (15) 

as a good approximation of the change in energy due to the Pauli Exclusion Principle. In his 

original paper, Salem confirmed the validity of this approximation for the helium dimer in the 

region of small overlap, showing that the energy of depletion term is over 10 times larger than 

the accumulation term at the van der Waals minimum. Since we are concerned only with small 

overlaps, a further reasonable approximation is to assume 𝑟h to be constant, 

𝑟h =
𝑅
2

(16) 

where R is the internuclear distance. Plugging this into equation 15, 

∆𝐸/ ≈
𝑍4𝑆
𝑅
V𝜙/𝜙0𝑑𝑣 (17) 

 simplifies the integral to give our final result: 
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𝑈]i�oa =
𝑍4

𝑅
𝑆4 (18) 

This is the simple energy difference caused by the imposition of the Pauli Repulsion Principle on 

our unperturbed reference state. 

 Equation 18 constitutes the “Orbital Overlap” model of Pauli repulsion and it is 

remarkable for three important reasons. First, it gives us a clear definition of Pauli repulsion. 

There is no mysterious “quantum force” that drives molecules apart – equation 18 reveals that 

the repulsion caused by enforcing the Pauli exclusion principle is electrostatic. The form of 

equation 18 bears a striking resemblance to Coulomb’s law, U = qi qj / R, only with a factor of S2 

modulating the interaction. This similarity is not an accident. Figure 5.1 shows quite clearly that 

the main effect of requiring the wavefunction to be antisymmetric is a net loss of electron 

density, relative to the reference state, in the area between the two nuclei. This leads to an 

electrostatic repulsion between nuclei that is proportional to the overlap squared. Second, the 

form of equation 18 fits the asymptotic behavior we expect from a Pauli repulsion function. It is 

positive everywhere, making it indeed repulsive. Moreover, since S is proportional to an 

exponential, the repulsion energy goes to zero at long range and becomes large when molecules 

strongly overlap. Third, the orbital overlap model lends itself to molecular mechanics models 

because of how it was derived. The above derivation relies on a choice of reference state, in this 

case the unperturbed electron densities of the separated helium atoms. This is exactly analogous 

to the strategy of most molecular mechanics models. Partial charges, multipoles, polarizabilities, 

etc. are all assigned to molecules in force fields as gas-phase monomer properties. In other 

words, the unperturbed molecular electron density is also the “reference state” of molecular 

mechanics, making the orbital overlap model inherently consistent with the rest of the force field 

model. 
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 This orbital overlap model of Pauli repulsion is by no means new, but it has not been 

widely taken up by molecular mechanics models. The reason for this is the challenge of 

determining the S2 term for a classical model. Models like SIBFA and EFP have taken the 

strategy of explicitly calculating molecular orbital overlaps to directly obtain S2. These models 

are certainly accurate and have the feature of giving realistic anisotropic repulsion, but they can 

be too slow for large-scale molecular dynamics simulation and pose problems for 

parameterization of biological macromolecules. An alternative is to use an empirical model of 

orbital overlap, but this leaves open the question of how to determine parameters defining the 

anisotropy. We present here a novel approach to this issue – an anisotropic model of Pauli 

repulsion can be faithfully constructed from the anisotropy encoded in an atom’s multipole 

moments. 

5.2.1  Multipole Overlap Pauli Repulsion 
 A model for orbital overlap requires some method for describing the electron distribution 

around a molecule. Previous work has shown that a simple, hydrogen-like model of charge 

density can be used to accurately predict the electrostatic interactions of dimers at short-range.15  

In this model the point Coulomb potential, 	𝑉 = 𝑞 /	𝑟 in atomic units, was replaced by, 

𝑉(𝑅) =
𝑞
𝑟
(1 − 𝑒>�n) (19) 

where a is a parameter introduced to describe the width of the electron density. For the present 

model, we modify this slightly, as suggested by Slipchenko and Gordon.59  The potential 

generated by the electron of a hydrogen-like atom is: 

𝑉(𝑟) =
𝑞
𝑟
[1 − (1 + 𝑍𝑟)𝑒>4sn] (20) 
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where 𝑍 is the nuclear charge. The form of equation 20 differs slightly from equation 19, 

suggesting a better approximation for the model, 

𝑉(𝑟) =
𝑞
𝑟 ù1 − �1 +

1
2𝛼𝑟� 𝑒

>�nú (20) 

that more accurately captures the asymptotic behavior of the potential. From this potential we 

wish to build a model electron distribution. To do this we can apply Poisson’s equation,  

∇4𝑉 = −4𝜋𝜌, (21) 

to obtain the charge density that generates the potential of equation 19: 

𝜌(𝑟) =
𝑞𝛼«

8𝜋
𝑒>�n (22) 

The density, however, does not directly give the information we need. In order to use the orbital 

overlap model of Pauli repulsion, we must have a model for orbitals. To get from a density 

model to an orbital model we apply, 

𝜌 = 𝜙∗𝜙. (23) 

If we impose the restriction that the orbitals be real, then we are left with model pseudo-orbitals: 

𝜙 = û𝜌 = ü𝑞𝛼
«

8𝜋
𝑒
>�n
4 . (24) 

It is important to be clear about the purpose of these model orbitals. What we are interested in for 

Pauli repulsion is the regime of small overlap. Correspondingly, these orbitals are simply meant 

to approximate the form of the outermost extent of an atom’s electron distribution. 

 Within this pseudo-orbital model we can evaluate the overlap integral between 

interacting orbitals, A and B, 

𝑆 = V𝜙/𝜙0𝑑𝑣 =
û𝑞/𝑞0𝛼/«𝛼0«

8𝜋 V𝑒
>��n�>��n�

4 𝑑𝑣 , (25) 
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Performing the integration according to the method of Coulson60 and refactoring yields the 

result, 

𝑆 = ü𝑞/𝑞0𝛼/
«𝛼0«

𝑅
𝑓hijk(𝑅), (26) 

 

where, 

𝑓hijk(𝑅) =

⎩
⎪
⎨

⎪
⎧√𝑅
𝛼«

Ã1 +
𝛼𝑅
2
+
1
3 �
𝛼𝑅
2 �

4

Ä 𝑒
>�7
4 ,																																															𝛼/ = 𝛼0

1
2𝑋«√𝑅

ù𝛼/(𝑅𝑋 − 2𝛼0)𝑒
>��7
4 + 𝛼0(𝑅𝑋 + 2𝛼/)𝑒

>��7
4 ú,			𝛼/ ≠ 𝛼0

. (27)

𝑋 = |
𝛼/
2 }

4
− |

𝛼0
2 }

4

 

There are two important features to note about S. First, it is asymptotically exponential, matching 

our general intuition about orbital overlap. Second, it depends on the respective atomic 

multipoles of A and B. We can elucidate this fact by writing S2 in “Coulombic” form, 

𝑆4 = 𝑞/𝑇ki�oa𝑞0, (28) 

with, 

𝑇ki�oa =
𝛼/«𝛼0«

𝑅 𝑓hijk4 . (29) 

Equation 28 represents the charge-charge overlap term of our Pauli repulsion model. If we wish 

our model to be isotropic, we simply stop here and compute the repulsion energy according to 

equation 18. However, for multipolar force fields we are not bound to simply using the charge-

charge component of the overlap. Following the example of Slipchenko and Gordon,59 we can 

show how to compute the charge-dipole and higher-order multipole terms for orbital overlap as 

well.  
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Consider the overlap at distance, 𝑅, of a charge density, 𝑄 with a finite dipole, µ, where 

the dipole is represented by two equal and opposite charges, 𝑞> and 𝑞þ, separated by a distance, 

d. For this interaction, 

𝑆S_in�Q>hakloQ4 = 𝑆ÿ>�!4 + 𝑆ÿ>�"
4 = 𝑄𝑇ki�oa �𝑅 −

𝑑
2� 𝑞

> + 𝑄𝑇ki�oa �𝑅 +
𝑑
2� 𝑞

þ. (30) 

If we define the dipole moment, 

𝜇 = 𝑞𝑑, (31) 

then equation 30 becomes: 

𝑆S_in�Q>hakloQ4 = 𝑄𝜇
𝑇ki�oa |𝑅 +

𝑑
2} − 𝑇ki�oa |𝑅 −

𝑑
2}

𝑑 . (32) 

If we take the limit as 𝑑 à 0, then 

𝑆S_in�Q>hakloQ4 = 𝑄
𝜕𝑇ki�oa
𝜕𝑅 𝜇. (33) 

Note that this is exactly analogous to the derivation of the electrostatic multipole interaction, 

𝑈QoQS�nl��i�aS = 𝑞/𝑇𝑞0 + 𝑞/∇𝑇𝜇0 − 𝜇/∇𝑇𝑞0 + 𝜇/∇∇𝑇𝜇0 +⋯

with		𝑇 =
1
𝑅

(34)
 

where the only difference is the kernel, 𝑇.  

In the same way we can compute S2 for arbitrarily order multipole orbital overlaps. In the 

current model we shall take this through quadrupole-quadrupole repulsion, yielding: 

𝑆�l�io4 = 𝑞/𝑇ki�oa𝑞0 + 𝑞/∇𝑇ki�oa𝜇0 − 𝜇/∇𝑇ki�oa𝑞0 + 𝜇/∇4𝑇ki�oa𝜇0 + 𝑞/∇«𝑇ki�oaΘ0 −
Θ/∇«𝑇ki�oaq0 + 𝜇/∇�𝑇ki�oaΘ0 − Θ/∇�𝑇ki�oaµ0 + Θ/∇ì𝑇ki�oaΘ0.

(35) 

This is the source of anisotropy in our model. Rather than introduce any new parameters, we 

simply use the shape of the atom encoded in the multipole moments to tell us about the 

anisotropy of repulsion. This result provides a total multipole overlap model of Pauli repulsion: 
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𝑈ki�oa =
𝐾/𝐾0
𝑅 𝑆�l�io4 . (36) 

The parameter, 𝐾, is introduced to set the relative sizes of different atom classes. This model will 

be referred to throughout the remainder of the paper as the “Multipolar Pauli Repulsion” model. 

A variant that uses only the first, charge-charge term of equation 35 will also be discussed. We 

refer to this as the “Isotropic Pauli Repulsion” model. 

 We intend to use this model on a broad array of complicated biomolecular intermolecular 

interactions. To determine the parameters, particularly K, that accurately describe these 

interactions, we have chosen to use ab initio SAPT Exchange Repulsion calculations to generate 

reference data. It should be noted that this is technically an approximation. While our derivation 

relies on a Hellman-Feynman theorem analysis of density differences, the SAPT Exchange 

Repulsion term has no associated density. This approximation, however, is necessary, accurate, 

and consistent with our model. The SAPT Exchange Repulsion energy is a direct approximation 

of the energy increase required to antisymmetrize the wavefunctions of two monomer reference 

states – exactly the quantity that our model is built to reproduce. 

5.2.2  A Note on “Density Overlap” Models 
 The other major class of overlap models for Pauli repulsion utilizes density overlap. In 

these models the Pauli repulsion energy is modeled as, 

𝑈ki�oa = 𝐾a�Ω, (37) 

where, 

Ω = V𝜌a𝜌�𝑑𝑣 . (38) 

This model is supported with some experimental evidence,45,61 but it has serious flaws as an 

interpretable model for Pauli repulsion energy. This is can be simply illustrated with 
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straightforward dimensional analysis. W is the one-center integral of two densities which means 

that it has dimension (in atomic units), 

Ω =
𝑒
𝑎*«

𝑒
𝑎*«
𝑎*« =

𝑒4

𝑎*«
. (39) 

These are not the units of a Coulombic energy (e2 / a0 in atomic units). Although 𝐾a� can be 

given units that yield an energy, this does not make the model Coulombic since the term is a 

constant that does not depend on distance. This is a problem for two reasons. First, it makes the 

model inconsistent with the Hellman-Feynman (Electrostatic) theorem. According to the 

Hellman-Feynman theorem, every intermolecular force is the result of applying Coulomb’s law 

to a change in electron density. This dimensional analysis demonstrates that there exists no 

Hellman-Feynman-based justification for the density overlap model of Pauli repulsion since any 

such rationale must necessarily be Coulombic. It should be noted that there are other Pauli 

repulsion energy models that do not have Coulombic interpretations as well, the simple Lennard-

Jones model among them. However, these models are, by and large, unitless which means that 

they do not suffer from the second and more important reason that the density overlap model is 

problematic – the density overlap model has the wrong distance dependence. Since the density 

overlap is proportional to charge squared over distance cubed, applying the electric constant no 

longer gives units of energy, but energy over distance squared. This is problematic because this 

formulation now explicitly depends on the unit chosen for distance. A consequence of this is that 

the radial dependence of the Pauli repulsion energy will be qualitatively incorrect. This is 

illustrated in figure 5.2 for the case of helium dimer repulsion. Both the S2/R and density overlap 

models are governed largely by exponentials, as shown by the nearly straight lines on the semi-
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log plot. However, the slope of the density overlap exponential function clearly differs from the 

SAPT Exchange Repulsion.  

A simple model system explains this difference in radial dependence of the S2/R and 

density overlap curves. If we assume that both atoms have an isolated electron density described 

by equation 22 (~ e-ar), the resulting Pauli repulsion energies of the density overlap and S2/R 

models respectively will be: 

𝑈hQ=�a��	lmQnoik = 𝐾a� V𝜌a𝜌�𝑑𝑣 = 𝐾a�
𝑞a𝑞�
(8𝜋)4

𝜋
𝛼« �

1 + 𝛼𝑅 +
1
3
(𝛼𝑅)4� 𝑒>�7 (40)	

and, 

𝑈8�/7 = 𝐾a�
1
𝑅 �V𝜙a𝜙�𝑑𝑣�

4
= 𝐾a�

1
𝑅
𝑞a𝑞�
(8𝜋)4

(8𝜋)4

𝛼- �1 +
1
2𝛼𝑅 +

1
12
(𝛼𝑅)4�

4

𝑒>�7. (41)	

For this simple model the arguments of the exponentials of both models are identical, due to the 

orbital overlap, S, being squared. This explains the similarities in the curves in figure 5.2. 

However, the R-dependent, polynomial prefactor of equation 40 clearly differs from equation 41. 

It is this difference that causes the radial divergence illustrated in figure 5.2. We will further 

illustrate this phenomenon in Section 4 with additional noble gas and water dimer calculations. 
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Figure 5.2.  Radial dependence of the S2/R (blue) and density overlap (red) models for the helium dimer.  

The repulsion energy of both models computed from monomer wavefunctions determined with the aug-cc-pVQZ 

basis set is compared to the SAPT2+ repulsion energy (magenta) and plotted on a semi-log scale. The 

proportionality constant of each model was fixed to reproduce the SAPT repulsion energy at 2.4 ang. The SAPT 

Exchange Repulsion curve is almost entirely obscured by the S2/R curve. While the slope of the S2/R curve matches 

that of the SAPT repulsion energy, the slope of the density overlap curve does not. 

 

 Despite this incorrect radial functional dependence, the density overlap model can still 

provide a serviceable empirical model. There are two ways that this has been done in prior 

efforts. The first is to choose the Kij proportionality for a representative interaction distance. 

Since, like the orbital overlap model, the density overlap model is dominated by an exponential 
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term, if the K constant is chosen for a suitable interaction distance, the radial error may not 

become large within the range sampled in application. The other method is to include a distance 

dependent prefactor (1/R, 1/R2, etc.) in the function. This has been proposed by Neyland and 

Toennies, Andreev, and Soderhjelm and co-workers. 62-64  These models explicitly address the 

units of the function, albeit empirically, and have been shown to be valid over a wider range of 

interaction distances than the pure density overlap model. 

 As opposed to unitless models like Lennard-Jones or Buckingham functions which 

sidestep the question, the orbital overlap model explicitly satisfies the dimensional analysis test. 

If we take equation 35 and for simplicity, only consider the charge-charge term of S2 (the same 

holds for the higher-order terms) this gives, 

𝑈ki�oa =
𝑒4

𝑎*
, (42) 

the atomic units of a Coulomb energy. This is fully consistent with the Hellman-Feynman 

theorem interpretation of the Pauli repulsion energy. It is also what we should expect, given that 

the derivation of the orbital overlap model is built on a set of electrostatic interaction arguments. 

This makes the Multipole Overlap Pauli Repulsion model interpretable and, as we shall show in 

Section 4, this interpretability bestows on the model some measure of transferability. 

5.3 Methods 
5.3.1  Parameterization 
 To fit the Multipole Pauli Repulsion model, we utilized the previously published S101x7 

database.65  This database is meant to capture intermolecular interactions that are important for 

biomolecular applications and has been used to parameterize electrostatics and dispersion 

models.15,66 The database contains 101 unique sets of molecular dimers with seven different 

points along the dissociation curve at 0.7, 0.8, 0.9, 0.95, 1.0, 1.05 and 1.1 times the equilibrium 
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distance. See reference 65 for a complete description of the generation of database geometries. 

We augmented the database with a set of methane and formaldehyde homodimers with 

geometries generated in the same manner. We used the publicly available SAPT2+ energy 

decomposition analysis calculations we previously published to extract the Exchange Repulsion 

(Pauli Repulsion) energy of each dimer pair in the database. The SAPT2+ Exchange Repulsion 

energies were computed using the so-called S2 approximation which has been previously shown 

to be accurate for biomolecular fragment interactions.67 

 To fit the parameters of our model we defined 26 unique atom classes. These classes are 

assigned according to the qualitative chemical environment of each atom and are listed in table 

5.1. They are adopted from the atom classes used in a previously published study of van der 

Waals energies of the S101x7 database.68  

 N Pauli Repulsion Class K a q 

  1 H (nonpolar) 2.25 4.63 1.00 

  2 H (nonpolar, alkane) 1.82 4.23 1.00 

  3 H (polar, N−H/N aromatic) 1.11 4.21 1.00 

  4 H (polar, O−H) 1.18 4.20 1.00 

  5 H (aromatic, C−H) 1.24 4.43 1.00 

  6 H (polar, S−H) 1.20 4.01 1.00 

  7 C (sp3) 2.62 4.64 3.41 

  8 C (sp2, alkene) 1.42 3.56 3.92 

9 C (sp2, C=O) 1.31 3.50 2.02 

10 C (aromatic, C−C) 1.37 3.77 4.00 

11 C (aromatic, C−X) 1.37 3.70 3.70 
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12 N (sp3) 3.61 4.16 2.00 

13 N (sp2) 4.62 4.27 2.15 

14 N (aromatic) 3.93 4.40 2.48 

15 O (sp3, hydroxyl, water) 3.57 4.74 3.00 

16 O (sp2, carbonyl) 1.43 4.14 6.00 

17 O (O− in AcO−) 1.19 3.77 5.87 

18 O (O− in HPO4−2) 1.25 3.73 5.82 

19 O (O− in H2PO4−) 1.47 4.02 5.75 

20 O (O in H3PO4) 1.63 4.15 5.78 

21 P (phosphate) 1.74 4.40 4.98 

22 S (sulfide, R−SH) 3.40 3.62 3.39 

23 S (sulfur IV, DMSO) 1.52 3.33 6.00 

24 F (organofluorine) 1.38 4.72 5.05 

25 Cl (organochloride) 1.91 3.76 5.91 

26 Br (organobromine) 2.02 3.52 6.63 

 

Table 5.1.  Atom classes and parameter values for the anisotropic Multipole Pauli Repulsion model.  

Classes are taken from those in reference 68. 

 

For each atom class, the model as defined by equation 35 requires three parameters: the size of 

the atom, 𝐾, the shape of the atom, a (as defined in equation 24), and the number of valence 

electrons, 𝑞 (as defined in equation 35). The purpose of 𝐾 and a is straightforward; together they 

set the strength and shape of the exponential repulsion between atoms. The purpose of q as a 
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parameter is slightly more nuanced. In point force fields (charge-only or multipolar) the atomic 

charges are a combination of the nuclear charge with the net electronic charge on that atom. This 

definition will not work for our model because only the electrons are involved in overlap. 

Furthermore, since we are only interested in the region of small overlaps, it does not make sense 

to use all of the electrons on each atom, as only the outermost part of the electron density is 

involved in overlap. Thus, the parameter, 𝑞, is best thought of as the maximum (not necessarily 

an integer) number of electrons that are involved in overlap for a particular atom. This turns out 

to be an important parameter because it sets how anisotropic the Pauli Repulsion of a specific 

atom will be. A large 𝑞 will make the first, isotropic term of equation 35 large, while a small 𝑞 

will make the first term small relative to the higher-order anisotropic terms. To ward off 

overfitting, 𝑞 for all hydrogens is set to be the negative of the total number of electrons (negative 

one plus the partial charge). Additionally, 𝑞 for heavy atoms is constrained to lie between 2 and 

the number of valence electrons of the element. For the Isotropic Pauli Repulsion model (only 

using the first term of equation 35), 𝑞 is set to be the number of valence electrons, since in the 

isotropic model 𝑞 and 𝐾 are redundant. 

 It is important to emphasize what is not being fit in this model. The dipole and 

quadrupole moments of each atom are taken directly from the Distributed Multipole Analysis 

(DMA) based procedure detailed in the appendix of reference 69. This does two important 

things. First, it makes the Multipolar Pauli Repulsion model consistent with the AMOEBA 

model and future AMOEBA-like models. In particular this means that the model can be used 

along with previously published AMOEBA-like electrostatics15 and dispersion66 models. Second, 

this insulates the Pauli Repulsion Model from the most common problem of anisotropic 

repulsion models: overfitting. The dipole moment of each atom has three independent 
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components and the traceless quadrupole has five. Empirically fitting these parameters would 

result in a massive overfitting problem. Past anisotropic models have either fit very specific 

models (e.g., water) to large datasets32,33 or used explicit atomic orbitals.40,43 This model 

sidesteps the troubles associated with both of those approaches by using the multipoles that come 

from directly fitting the electrostatic potential around a molecule. 

 Because the Pauli Repulsion energy exhibits strong exponential character, we choose to 

perform a natural log fit to obtain parameters for the Multipolar and Isotropic Pauli Repulsion 

models. To do this we minimized the residual, log (SAPT Exchange) – log (model), for each 

dimer data point in the S101x7 dataset using a Levenberg-Marquardt least squares routine in the 

Tinker Molecular Mechanics package.70 This prevents the closest, but rarely accessible, dimer 

points from biasing the fit. A third model, termed vdW2017 was also fit. This model uses the 

AMOEBA standard Buffered 14-7 functional form, 

𝑈mh. = 𝑈nQko��al= + 𝑈ha�kQn�al= = 𝜀a� Ã
1 + 𝛿
𝜌a� + 𝛿

Ä
1

Ã
1 + 𝛾
𝜌a�1 + 𝛾

− 2Ä , (43) 

where d and g are global shape parameters, and e and r are set by the Waldman-Hagler and 

arithmetic combining rules respectively as suggested in reference 68. All four parameters were 

allowed to vary in the fit with e and r for each atom being set by the same atom classes 

presented in table 5.1. Additionally, a fixed “hydrogen-reduction factor” of 0.9 was applied to all 

hydrogens as described in reference 31.  Equation 43 can be split into a positive and negative 

part which represent the contributions to repulsion and dispersion respectively. However, since 

the Buffered 14-7 parameters for the two terms are not independent, a (non-natural log weighted) 

least squares fit was carried out that simultaneously minimized (SAPT Exchange – vdW2017 

Repulsion) and (SAPT Dispersion – vdW2017 Dispersion) for each dimer data point. In both fits, 
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S101 dimers including the triple-bonded ethyne molecule were excluded as was done previously, 

eliminating the S101 class for sp-hybridized carbon from the fitted parameters. 

5.3.2  Computational Details 
 The Multipolar and Isotropic Pauli Repulsion models have been implemented in publicly 

available versions of the Tinker Molecular Mechanics package. 70-72 It is worth noting for future 

force field development that the additional overhead to compute the Multipolar Pauli Repulsion 

model on top of an existing Multipole Electrostatic calculation is small. As the similarity 

between equations 34 and 35 suggests, the intermediate quantities necessary for energy and 

forces are largely identical between the two models. 

 Lastly, we explored calculating the orbital overlap and density overlap directly from 

quantum mechanical calculations. Since the components of interacting dimers each have multiple 

occupied orbitals rather than single model pseudo-orbitals, we must define S2 for this situation. 

Because we are working with orthogonal molecular orbitals in the LCAO (Linear Combination 

of Atomic Orbitals) convention, we use the sum-of-squares definition, 

𝑆4 =``2𝜓a3𝜓�4
4

0

�

/

a

, (44) 

where the A and B represent the two monomers with sums over i and j, the occupied orbitals on 

A and B respectively.62  We express the occupied orbitals in terms of atomic basis functions so 

that equation 44 is invariant under orthogonal transformations of the molecular orbitals. The 

density overlap is calculated on a grid according to equation 37. The QM orbital and density 

overlap calculations using SCF monomer orbitals with an aug-cc-pVDZ basis were performed 

using the Psi4NumPy program.73 
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 The computational cost of the Multipolar Pauli Repulsion model was evaluated on a 

typical computer workstation. The time to complete 100 energy and force evaluations for 

different combinations of models was performed on a four core 3.4 GHz Intel Core i7 processor. 

The test was run on a 25 x 25 x 25 angstrom water box with 500 water molecules. The cutoff 

distance for Pauli repulsion is set to 5 angstroms and dispersion is handled via particle mesh 

Ewald summation.66 For comparison, models including the Halgren buffered 14-7 potential were 

also included. For these calculations a van der Waals cutoff distance of 10 angstroms is used. To 

evaluate the cost in the context of a generalized AMOEBA-like model, timings are also 

presented that include polarization with the induced dipoles convergence criteria set to 10-5 

Debye RMS. 

5.4 Results 
5.4.1  Noble Gas Dimers 
 To assess the validity of the orbital overlap model for Pauli repulsion we first considered 

the case of Pauli repulsion between noble gas dimers. Because they are neutral and have 

spherical symmetry, noble gas dimers are a natural first testing ground for a Pauli repulsion 

model. Specifically, we set out to test the underlying assumption that the Pauli repulsion energy 

should be proportional to S2/R. The results, plotted for a range of distances of the neon and argon 

dimers, are plotted in figure 5.3. 
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Figure 5.3.  Comparison of QM monomer-based methods for estimating Pauli repulsion in noble gas dimers. 

 The natural log of the repulsion energy is plotted against dimer separation distance to illustrate the exponential 

relationship. For a range of distances for Ne–Ne and Ar–Ar dimers, the S2, S2/R, and density overlap methods where 

tested against SAPT Exchange repulsion energy. The proportionality constant for each method was arbitrarily fixed 

to reproduce the middle value of the distance range (3.0 ang for Ne–Ne and 4.0 ang for Ar–Ar). In both cases the 

S2/R method is virtually indistinguishable from the SAPT result. 

 

There are several features worth noting in figure 5.3. The first is that for these simple systems the 

SAPT Exchange repulsion energy is clearly exponential. The plot reveals a near-linear 

relationship between the internuclear distance and the natural log of the SAPT Exchange 

repulsion energy. The second noteworthy feature is the quality of the S2/R model energy 

calculated from SCF monomer orbitals. This is not necessarily surprising, given that the model 

was derived from the ab initio Pauli repulsion of the helium dimer, but agreement is remarkable, 

given that this estimate is obtained without the need for dimer calculations. The third important 

item of note is the poor quality of the density overlap approximation for the Pauli repulsion 

energy. The distance-dependence problem addressed in the preceding section is abundantly clear 

in this simple example. The density overlap is evidently not proportional to the Pauli repulsion 

energy for a meaningful range of distances for noble gas dimers. Although the rapid divergence 

Neon Dimer Argon Dimer
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of the density overlap model at long range for the neon dimer is likely due use of the smaller 

aug-cc-pVDZ basis set, the same qualitatively different radial dependence is observed when the 

overlap is computed with a much larger (aug-cc-pV5Z) basis set. 

The final feature to point out regarding the noble gas dimers is subtle, but important. Also 

plotted in figure 5.3 are the results for assuming that S2, as opposed to S2/R, is proportional to the 

Pauli repulsion energy. The results show that although the agreement might be close over a small 

range of distances, the overall slope is slightly too small. This shows the importance of the 1/R 

factor in the Pauli repulsion expression. There has been some discussion in the literature about 

what, if any, function of R should precede S2 for Pauli repulsion.41,62  These results clearly 

indicate that 1/R is the correct choice. As an empirical matter, of course, for more complicated 

molecules other choices can be made in the context of a total energy model. However, these 

results show the S2/R model to be the most natural fit to the fundamental Pauli repulsion 

phenomenon. 

5.4.2  S101x7 Dataset 
 Having established the validity of the S2/R model for noble gas systems, we set about 

determining whether the model is appropriate for a more complicated dataset. The S101x7 

database was chosen to represent a range of biomolecular dimer interactions and three models 

were fit: Multipolar Pauli Repulsion, Isotropic Pauli Repulsion and a Buffered 14-7 model. As 

stated in the Methods section, the first two repulsion-only models were fit with natural log 

weighted least squares, while the Buffered 14-7 model, termed vdW2017, was fit to unweighted 

SAPT dispersion and exchange repulsion data simultaneously. The results of these fits are given 

in table 5.2 and illustrated in figure 5.4. 
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Total RMSE 

(kcal/mol) 

Short-Range 

RMSE (0.7) 

(kcal/mol) 

Intermediate 

RMSE (0.8 - 

0.95) (kcal/mol) 

Long-Range 

RMSE (1.0 – 

1.1) (kcal/mol) 

Multipolar 

Pauli 

Repulsion 

1.71 4.14 0.99 0.37 

Isotropic Pauli 

Repulsion 
2.37 5.68 1.46 0.44 

vdW2017 

Repulsion 
2.66 5.94 2.02 0.83 

 

Table 5.2.  Root mean square error on S101x7 dataset.  

Shown are the errors relative to SAPT Exchange-repulsion. “Short-Range” indicates data points at 0.7 times the 

dimer equilibrium distance. “Intermediate” indicates data points 0.8 to 0.95 times the dimer equilibrium distance. 

“Long-Range” indicates data points at or beyond the dimer equilibrium distance. Note that all values are absolute 

errors, and not log-weighted. 
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Figure 5.4.  S101x7 Pauli repulsion energy.  

A

B
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(A) Model Pauli repulsion energy plotted against SAPT2+ Exchange repulsion energy for all dimers.  Both model 

and SAPT data are plotted on natural log weighted access for clarity.  Dashed line indicates perfect agreement. (B) 

Model error plotted against absolute (log-weighted) SAPT repulsion energy. 

 

The results show the tradeoff in accuracy that is taken for using an isotropic model. The Isotropic 

Pauli Repulsion and vdW2017 models exhibit similarly large errors for the S101x7 dataset of 

2.37 kcal/mol and 2.66 kcal/mol respectively. This error is driven by the closest contact points in 

the dataset but is still large for intermediate distances as well. Notably, the vdW2017 model has 

an error of close to 1 kcal/mol for points at equilibrium and beyond. To some extent, errors at 

this distance for the buffered 14-7 potential are compensating for the dispersion part of the 

function, but this comes at the detriment of having a separate and interpretable Pauli repulsion 

model. The Isotropic Pauli Repulsion function root mean square error, on the other hand, decays 

more rapidly with distance. 

The quantitative benefit of using an anisotropic Pauli repulsion function is readily 

apparent from table 5.2 and figure 5.4. The Multipolar Pauli Repulsion model requires more 

terms to compute, but it fits the S101x7 nearly twice as well as its isotropic counterpart. The total 

RMSE is being driven almost entirely by the closest-range points (0.7x) in the dataset. For 

intermediate and near-equilibrium points, the Multipolar Pauli Repulsion model gives errors of 

well under 1 kcal/mol. Because the fitting was performed against log-transformed data, it is not 

surprising to see this behavior. Moreover, this behavior should be considered desirable since the 

0.7x points of the dataset largely fall just outside of the realm accessed during molecular 

dynamics simulation under ambient conditions. Figure 5.4 illustrates the tighter fit to SAPT that 

is achieved with the anisotropic Multipolar Pauli Repulsion model. The results of these fits will 

be used to evaluate the models for the remainder of the paper. We will explore the factors 
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contributing to the superior fit of the Multipolar Pauli Repulsion model in the Discussion and 

Conclusions section. 

As can be seen from figure 5.4A, there are some large errors in the fitted S101 dataset, 

particularly for the isotropic and vdW2017 models.  Nearly all of these errors occur at the short-

range 0.7x points of the database where the absolute repulsion energy is very high.  This is 

apparent from the figure 5.4B, which shows the error of each point in the fits plotted against the 

log magnitude of the repulsion energy.  All of the errors greater than 5 kcal/mol occur when the 

SAPT repulsion energy is greater than 50 kcal/mol.  Additionally, many of the dimers where the 

anisotropic Multipole Pauli Repulsion model produces the greatest reduction in the error fit with 

intuition. Some of the largest decreases in error are for the DMSO-DMSO dimer, dimers 

involving phosphate, and pi-pi stacking interactions.  These are all interactions with significant 

electrostatic anisotropy (large dipole and quadrupole moments) and the Multipole Pauli 

Repulsion model fits these data more precisely. 

As stated in the introduction it is important that a repulsion model be interpretable in 

addition to being accurate. One simple measure of interpretability is the reasonableness of the 

fitted model parameters. To assess the sensibility of the parameters for the Multipolar Pauli 

Repulsion model we calculated an atomic “size” for each atom class defined in table 5.1. The 

metric for size, presented in table 5.3, is the atomic radius corresponding to an atom-atom 

homodimer internuclear distance at which the repulsive energy reaches 1.0 kcal/mol. Because the 

Multipolar Pauli Repulsion model is anisotropic, we only include the charge-charge portion of 

the energy to cleanly separate the size from the orientational dependence. 

N Pauli Repulsion Class Radius (Å) 

1 H (nonpolar) 1.12 
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2 H (nonpolar, alkane) 1.16 

3 H (polar, N−H/N aromatic) 1.01 

4 H (polar, O−H) 1.03 

5 H (aromatic, C−H) 1.00 

6 H (polar, S−H) 1.08 

7 C (sp3) 1.48 

8 C (sp2, alkene) 1.73 

9 C (sp2, C=O) 1.50 

10 C (aromatic, C−C) 1.64 

11 C (aromatic, C−X) 1.64 

12 N (sp3) 1.58 

13 N (sp2) 1.63 

14 N (aromatic) 1.58 

15 O (sp3, hydroxyl, water) 1.50 

16 O (sp2, carbonyl) 1.64 

17 O (O− in AcO−) 1.71 

18 O (O− in HPO4−2) 1.75 

19 O (O− in H2PO4−) 1.68 

20 O (O in H3PO4) 1.66 

21 P (phosphate) 1.55 

22 S (sulfide, R−SH) 1.95 

23 S (sulfur IV, DMSO) 2.02 

24 F (organofluorine) 1.40 
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25 Cl (organochloride) 1.87 

26 Br (organobromine) 2.05 

 

Table 5.3.  Atomic “size” for Multipolar Pauli Repulsion atom classes.  

The radius is calculated as half the distance at which an atom-atom homodimer experiences 1.0 kcal/mol of 

repulsion energy. Only the charge-charge component of the repulsion is included. This is equivalent to the repulsion 

energy of the homodimer averaged over all possible dimer orientations at the standard distance. 

 

Broadly, the sizes in table 5.3 show a chemically intuitive picture of atomic size. The sizes 

follow periodic trends and the differences across classes of the same element are reasonable. We 

note that although similar to the “size” (radius) parameter of the Lennard-Jones 12-6 or Halgren 

buffered 14-7 potentials, the size metric here should not be quantitatively compared. The size 

parameters in those van der Waals functions implicitly include the dispersion contribution in 

addition to repulsion. 

The S101x7 database provides extensive coverage for biomolecular chemical space and 

the radial dependence of interactions. The results of the fit show that using an exponential-based 

function matches this radial dependence better than the buffered 14-7 potential. The errors of the 

Isotropic Pauli Repulsion and vdW2017 models are similar for the closest (0.7x) points of the 

dataset. However, at distances just past equilibrium the errors in the Isotropic Pauli Repulsion 

model become asymptotically smaller compared against the buffered 14-7 potential. This 

suggests radial scans of S101x7 are effective at determining the exponential parameter, a, and 

the prefactor, 𝐾. The S101x7 database, however, contains relatively less orientational 

information. This requires us to carefully consider the charge, 𝑞, parameters for heavy atoms that 

are largely responsible for handling the angular dependence of the Multipolar Pauli Repulsion 
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model. In the following test cases we explore a variety of systems that specifically target the 

angular degrees of freedom that are less sampled by the S101 dataset. 

5.4.3  Water Dimers 
 Water is an important case in force field development, for the reason that it is the solvent 

in which interesting biomolecular phenomenon usually occur. In addition to being important for 

applications, water is also curious because of its anisotropic repulsive properties. To examine the 

performance of our model on this system, we shall consider three separate series of water dimers: 

one in which water dimer dissociation is considered, one in which the “flap angle” (defined in 

the inset of figure 5.6) of the water dimer is systematically varied, and one which consists of 10 

well-studied independent stationary points on the water dimer surface. 

 Because water-water interactions are so important to the end goal of biomolecular 

simulations, the quality of the fit to the water dimer dissociation data of the S101x7 dataset is 

instructive. Figure 5.5 shows the performance of a number of repulsion models against reference 

SAPT2+ Exchange Repulsion energies plotted on a natural log scale. 
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Figure 5.5.  Water dimer dissociation Pauli repulsion.  

Water monomer geometries were fixed at equilibrium and placed at distances from 0.7 to 1.1 times the equilibrium 

O–H distance. The SAPT Exchange Repulsion curve is almost entirely obscured by the Multipole Pauli Repulsion 

and Isotropic Pauli Repulsion curves. See text for definition of S2/R and Density Overlap models. 

 

The two Pauli repulsion models parameterized in this work compare quite well with the SAPT2+ 

result. Both the Isotropic and Multipolar Pauli Repulsion models capture magnitude of the 

interaction as well as the shape across the range of distances. This result is borne out by the S2/R 

comparison also shown in figure 5.5. Although this is less straightforward to compute for 

polyatomic molecules, we defined R as the O-O distance and computed S2 according to equation 

44 with each monomer’s MOs. This measure is also in very good agreement with the SAPT 
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results, with the divergence at short range likely due to our neglect of the hydrogens in the 

definition of R. 

 Also shown in figure 5.5 are the results from the QM density overlap calculation. The 

proportionality constant, Kij for this model was chosen (as with the QM S2/R model) to 

reproduce the SAPT repulsion energy at the equilibrium distance. One can see that the 

quantitative agreement is comparably good for this model. However, the density overlap model 

does show the same characteristic distance dependence problem illustrated for the noble gas 

dimers; it is slightly too repulsive at short range and not repulsive enough at long range. This 

erroneous distance dependence arises due to the unit consistency issue identified in Section 2. It 

is worth noting that for practical simulation purposes, this error in the radial dependence may be 

tolerable, given other sources of error in a force field. 

 Another important slice of the water potential energy surface is the “flap angle” energy 

dependence of the water dimer.74,75  High level ab initio calculations predict this angle (q in 

figure 5.6 inset) to be 57o.76,77  Typical 3- and 4-site point charge force fields for water such as 

TIP3P, SPC, and TIP4P generally predict a flap angle to be too flat78 (less than 57o) due to their 

inability to reproduce the molecular quadrupole moment of water. The opposite behavior was 

observed by Ren and Ponder when developing the original AMOEBA water model. Prior to their 

decision to scale down the quadrupole moments, the AMOEBA water model reproduced the 

molecular quadrupole moment very well, but predicted a flap angle of 70o.31 A scaling of the 

quadruple moments by 70% served to correct the angle. Electrostatics, however, are only half of 

the story of the water dimer flap angle. Figure 5.6 shows that, in fact, ab initio electrostatics do 

strongly favor a flap angle of about 70o. 
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Figure 5.6.  Water dimer “flap angle” SAPT energy decomposition analysis.  

While the dispersion and induction components of the total energy are relatively flat across this slice of the potential 

energy landscape, the electrostatic and exchange repulsion change substantially and in opposite directions. The two 

trends largely cancel each other out in the total energy. 

 

However, this does not correspond to the behavior of the total energy surface, which is basically 

flat for angles from 45o to 70o. To get this flat surface requires a compensating contribution from 

Pauli repulsion, and indeed figure 5.6 shows that as the flap angle is increased through this 

range, while the electrostatic energy consistently becomes more negative, the Pauli repulsion 

energy steadily trends more positive. 
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 Which, if any, molecular mechanics models are capable of capturing this kind of 

phenomenon? Shown in figure 5.7 are several water dimer Pauli repulsion models evaluated for 

a range of flap angle values. 

 

Figure 5.7.  Water dimer “flap angle” Pauli repulsion.  

The isotropic models (Isotropic Pauli Repulsion and vdW2017) clearly miss the sensitivity to angle change while the 

anisotropic models mirror the shape of the SAPT Exchange Repulsion. 

 

The Multipolar Pauli Repulsion model as well as the QM-based S2/R and density overlap 

methods all reproduce the shape of the angular dependence of the water dimer repulsion well. 

The Multipolar Pauli Repulsion Model, despite not being fit to any water angular dependence 

data (there are no angular scans in S101x7), reproduces the SAPT data quite well. This is due 
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entirely to the natural description of anisotropy that comes through the atomic multipoles. The 

fact that the electrostatic and exchange repulsion curves in figure 5.6 are nearly mirror images 

for a fixed distance is not a coincidence. The interpretation of this result is that while the 

quadrupole interactions become more attractive as the flap angle is increased, this same overlap 

causes the repulsion to increase as well. It is the same underlying change in overlap that is 

driving both trends. This is again borne out by the ab initio S2/R calculation (evaluated in the 

same way as before) which also mirrors the SAPT result. Interestingly, the density overlap model 

also does very well in describing this angular dependence. This result makes sense because, in 

contrast to the dissociation case, the distance between atoms for this slice of the surface is largely 

unchanged throughout the scan. This means that the density overlap distance dependence 

problem is hidden, while the accounting of anisotropy (in this case implicitly through the 

density) gives the correct angular trend. 

 What is apparent from figure 5.7, however, is that isotropic Pauli repulsion models 

cannot capture the flap angle dependence of the water dimer. Neither the Isotropic Pauli 

Repulsion model nor the vdW2017 model experience any change in the repulsion energy until 

the flap angle becomes large enough that the hydrogen atoms of the acceptor molecule swing 

around to feel the repulsion of the donor oxygen. These models completely miss the quadrupole 

repulsion effect responsible for the shape of the flap angle repulsion curve. 

 The water dimer flap angle provides an excellent test case for cancellation of errors in 

advanced force fields. As force fields work to reproduce energy components individually, care 

must be taken to advance the physical models of each part in concert. If the electrostatic model is 

advanced to include anisotropy without including any such anisotropy in the repulsion, the 

electrostatics part of the force field will accurately capture that component of the energy. 



210 
 

However, for the flap angle degree of freedom, this will incur an error in the total energy of over 

2 kcal/mol over an area in which the total energy should be essentially flat!  Figure 5.7 shows 

that no cancellation of errors scheme for an isotropic repulsion model is sensitive to this degree 

of freedom; the only way to correct it is to include anisotropy in the repulsion as well. This is the 

reason why the original AMOEBA water model deviated from the physically-derived 

electrostatic model and scaled down the quadrupoles. Having a fully anisotropic Pauli repulsion 

function means that these components sit at the same level of theory, and this in turn allows us to 

regain sensitivity to cancellation of errors in the angular degrees of freedom. 

 The angular dependence of Pauli repulsion is not only apparent in the minimum energy 

water dimer. We also considered the ten water dimer structures introduced by van Tschumper, et 

al.77  Figure 5.8 shows the error, relative to the SAPT2+ Exchange Repulsion energy for the 

Multipolar Pauli Repulsion, Isotropic Pauli Repulsion and vdW2017 models. 

 

Figure 5.8.  Pauli repulsion energy error for ten water dimers.  
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The error (SAPT minus model) is plotted for each configuration. The isotropic models exhibit errors of opposing 

sign for dimers 5 and 6 vs. 8 and 9. The Multipolar Pauli Repulsion model does not suffer from this constraint. 

 

The Multipolar Pauli repulsion model displays errors of less than 1 kcal/mol for every dimer 

configuration. The two isotropic models, however, suffer from large, nonrandom errors on 

several of the dimers. Both the vdW2017 and Isotropic Pauli Repulsion models feature large and 

opposing errors on dimers 6 and 8. This indicates an angular repulsion dependence that an 

isotropic model is incapable of capturing. In fact, we attempted to fit the Isotropic Pauli 

Repulsion model directly to Exchange Repulsion energies of the ten water dimers and found the 

same opposing errors for dimers 6 and 8. 

Taken as a whole, all of the data presented for water repulsion interactions tells a 

consistent story – that not including repulsion anisotropy on the water dimer potential energy 

surface will incur errors of 1-2 kcal/mol for accessible dimer configurations. It also shows the 

Multipolar Pauli Repulsion model is capable of bringing those errors down to ~ 0.5 kcal/mol. 

The ability of the model to predict angular dependence that is not in the fitting set, such as the 

flap angle and dimers 2-10, suggests the electrostatic multipole description is a natural fit for 

Pauli repulsion anisotropy. 

5.4.4  The “Sigma Hole” Effect 
 As stated in the Introduction, halogen bonding vis a vis the so-called “sigma hole” effect 

is of particular interest to biomolecular force fields. Over 35% of drugs in clinical phase III trials 

contain at least one halogen atom.10  The “sigma hole” terminology refers to the area of positive 

charge found at the distal tip of the halogen atom in a halogen-containing compound. It has long 

been accepted that this feature suggests the linear halogen B…X–Y bonding geometry 

characteristic of the “sigma hole” effect is driven by electrostatics.79  Anthony Stone showed this 
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assumption is only partially correct. Using simple model systems, Stone showed that while 

electrostatics is indeed responsible for the overall attraction that causes halogen bonds to form, 

Pauli repulsion is largely responsible for the characteristic, often linear, geometry of these 

bonds.4  Given the importance of halogen bond interactions we chose to consider a range of test 

systems to assess the quality of the Multipolar Pauli Repulsion model. We consider a pair of 

representative examples from Stone’s work, a halobenzene example proposed by Nohad Gresh 

and co-workers,13 an acetone-bromobenzene dimer suggested by Hobza and co-workers80 and a 

drug-like dimer system from Alzate-Morales and co-workers.12 

 From Stone’s work we consider two representative halogen bonding configurations: the 

“head-on” ammonia–ClF dimer and the “from the side” ethene–ClF dimer. Figures 5.9 and 5.10 

show the results for the models on ammonia–ClF and ethene–ClF dimer respectively.  
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Figure 5.9.  Variation of the Pauli repulsion energy with respect to tilt angle (B…X–Y) for the ammonia–ClF 

dimer. 

 The N to Cl distance is fixed at 2.376 Å. The Isotropic Pauli Repulsion and vdW2017 lines are indistinguishable. 

 

Figure 5.10.  Variation of the Pauli repulsion energy with respect to tilt angle (B…X–Y) for the ethene–ClF 

dimer. 

 The C=C bond midpoint to Cl distance is fixed at 2.766 Å. 

 

As the B…X–Y angle varies away from linear for both systems the ab initio Pauli repulsion rises 

sharply. The isotropic models miss this entirely. For ammonia–ClF, the repulsion energy of the 

Isotropic Pauli Repulsion and vdW2017 models is virtually flat throughout the scan and for 

ethene–ClF these models only start to vary once the fluorine swings around far enough to 

interact directly with the ethene molecule. This indicates that isotropic Pauli repulsion models 
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will miss the strong linear preference of these halogen-bonded complexes. The Multipolar Pauli 

Repulsion model, however, does not miss this angular effect. In both cases the anisotropic model 

correctly captures the immediate increase in Pauli repulsion that occurs as the halogen bond 

deviates from linearity. Although the Multipole Pauli repulsion model underestimates the 

anisotropy of repulsion in both examples, this is most likely a consequence of the DMA-based 

protocol used for determining multipole moments. For Cl-F the DMA Cl dipole and quadrupole 

moments differ from those of similar halogens in the S101 database. This is likely responsible 

for the difference, since the angular dependence of repulsion is driven by dipole and quadrupole 

interactions.  However, the general qualitative agreement between SAPT and the Multipolar 

Pauli Repulsion model shows that a multipole-based description of electrostatics works well to 

describe the angular dependence of halogen bond repulsion in these cases. 

 The concept that force field anisotropy is necessary to accurately model halogen bonding 

is not new. Recent studies using the AMOEBA force field81 as well as the SIBFA force field13 

have explored this idea. Both works stressed the importance of anisotropic electrostatics, but 

largely neglected a discussion about anisotropic repulsion. In particular the work of Gresh and 

co-workers studied the interactions of halobenzene–water complexes. To examine the repulsive 

contribution to these interactions, we chose the chlorobenzene–water dimer as a test system. 

Figure 5.11 shows the halogen bond angle scan for this system. 
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Figure 5.11. Variation of the Pauli repulsion energy with respect to tilt angle (B…X–Y) for the water-

chlorobenzene dimer.  

The O to Cl distance is fixed at 3.33 angstroms. 

 

Although the energy variation is smaller for this system since the O to Cl contact distance is 

long, at 3.33 angstroms, the model trends are clear. The Multipolar Pauli Repulsion model 

mirrors the immediate change in repulsion energy that is felt when the complex deviates from 

θ
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linear. The two isotropic models, however, do not sense this effect. The energy of these models 

is flat until a rotation of ~ 60 degrees, where steric repulsion begins. 

 Another useful test system for halogen bonding are bromobenzenes interacting with 

acetone. A crystallographic survey by Auffinger and co-workers showed that of the halogen 

bonded structures in the PDB, 70% involved a protein backbone carbonyl oxygen and that of 

those structures, 94% involved a halogen atom bonded to an aromatic or heterocyclic aromatic 

ring.14 Hobza and co-workers proposed the bromobenzene–acetone complex as a simple probe 

for examining this kind of important halogen bonding. We used this probe to assess the quality 

of the carbonyl oxygen containing halogen bond behavior of the Multipolar Pauli Repulsion 

model. Shown in figure 5.12 is an angular scan of the acetone–bromobenzene Pauli repulsion 

energy surface.  
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Figure 5.12. Variation of the Pauli repulsion energy with respect to tilt angle (B…X–Y) for the acetone–

bromobenzene dimer.  

The O to Br distance is fixed at 3.15 angstroms. 

 

Clearly, while the Multipolar Repulsion Model is not in perfect agreement with SAPT, it is the 

only model that captures the angular dependence trend. The preference the acetone–

bromobenzene system shows for the linear configuration is being driven in no small part by this 

angular dependence in Pauli repulsion. The Multipolar Pauli Repulsion model gets this 

θ
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dependence qualitatively right. As expected, the isotropic models miss this variation in the 

rotational degrees of freedom. 

 The final example of halogen bonding we surveyed was a model “drug binding” system 

of N-methylacetamide (NMA) and chlorobenzene proposed by Alzate-Morales and co-workers.12  

This system was chosen to be a close approximation of a drug-like molecule interacting with a 

peptide backbone. Again, we performed SAPT calculations of the Exchange Repulsion energy at 

a range of interaction angles and compared these to the results from each model. 
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Figure 5.13. Variation of the Pauli repulsion energy with respect to tilt angle (B…X–Y) for the NMA-

chlorobenzene dimer.  

The O to Cl distance is fixed at 3.0 angstroms. 

 

The results in figure 5.13 confirm the trend of the other test cases. The Multipolar Pauli 

Repulsion model correctly picks up the trends in both angular directions for the repulsion energy. 

Since NMA is an asymmetric molecule, we performed a scan from 80 to -40 degrees and found 

θ
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that the Multipolar Pauli Repulsion model reproduces the increase in the repulsion energy on 

both sides of the well. The isotropic models both capture the beginning of steric repulsion that 

occurs at each end of the angular scan but are not sensitive to the anisotropic change in repulsion 

in the middle. The anisotropy in the Multipolar Pauli Repulsion model is picking up not only the 

increase in energy associated with rotating away from linear, but also the asymmetry about the 

O…Cl–C angle. 

 Much like hydrogen bonds, halogen bonds can be useful tools for molecular design 

because they are strong and exhibit a marked geometric preference. As has been shown in 

previous work, much of this strength and some of the geometry preference is expressed through 

the electrostatic, dispersion and polarization components of the intermolecular energy. However, 

the component most responsible for enforcing the generally linear geometry of halogen bonds is 

Pauli repulsion. The tests presented in this section show that no isotropic model (without 

employing off-atom repulsion sites) is capable of reproducing this effect. Moreover, this section 

shows that the electrostatic description of monomers via atomic multipole expansions is 

sufficient to capture the signature anisotropy of these interactions. It bears noting that despite the 

repetitive feel of the angular halogen bonding results shown, there are no anisotropic parameters 

being fit. The differences in anisotropy, including the asymmetric shape of the NMA–

chlorobenzene well, are entirely determined by the ab initio derived atomic multipole moments 

of the molecules. The results here show that for “sigma hole” type interactions, the multipole 

moments can simultaneously provide a suitable description of both electrostatic and repulsion 

anisotropy. 

5.4.5  Computational Cost 
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 For any molecular mechanics model that aims to be useful for biomolecular simulation, 

the computational cost must be considered. In particular for the Multipolar Pauli Repulsion 

model, this is a matter of concern because multipole calculations are known to be 

computationally expensive. This model is intended to be used in tandem with a multipole 

electrostatics model; in particular it is parameterized against the AMOEBA multipole model, so 

we tested the computational efficiency in that context. The results in table 5.4 show that the 

additional cost for this model is minimal.  

 

Time for 100 energy 

and force 

evaluations (sec) 

AMOEBA Electrostatics with Charge Penetration 

    + Multipolar Pauli Repulsion + Dispersion 
1.7 

AMOEBA Electrostatics with Charge Penetration 

    + vdW2017 
1.4 

AMOEBA Electrostatics with Charge Penetration 

    + Polarization + Multipolar Pauli Repulsion + Dispersion 
4.6 

AMOEBA Electrostatics with Charge Penetration 

    + Polarization + vdW2017 
4.4 

 

Table 5.4.  Computational cost of the Multipolar Pauli Repulsion model.  

Timings are for 100 energy and force evaluations in a standard Open-MP parallel implementation in Tinker. 

 

When the Multipolar Pauli Repulsion Model is paired with our previously published damped 

dispersion model, the resulting calculations are around 20% slower than the current standard 
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AMOEBA buffered 14-7 van der Waals function. Furthermore, when this cost is put into the 

context of the entire AMOEBA energy function, including polarization, the extra cost become 

nearly negligible. The Multipolar Pauli Repulsion and Overlap Damped Dispersion combination 

yields a model that is 5% slower than its buffered 14-7 counterpart. Polarization is the costliest 

component of the AMOEBA force field, so adding a slightly more expensive Pauli repulsion 

function makes very little difference to the overall computational efficiency of the model. 

 We note here that this kind of computational efficiency is predicated upon two important 

factors. First, it relies upon using a multipole model for electrostatics. If one were to deploy the 

Multipolar Pauli Repulsion model as a stand-alone energy term, it would be an order of 

magnitude more expensive than a standard van der Waals function. When it is used with a 

multipole model and given that the multipole moments are constrained to be identical for the 

electrostatics and Pauli repulsion models, a large amount of the algebra to compute dipole and 

quadrupole forces is shared between the two models. Second, the speed of the model benefits 

greatly from employing cutoffs. The standard van der Waals cutoff for the AMOEBA force field 

is 9 to 12 Å. Because the Multipolar Pauli Repulsion model separates the repulsive and 

dispersive contributions to the van der Waals energy, it is free to use a much shorter cutoff. 

These tests were performed with a conservative truncated cutoff of 5 Å, but even better 

performance can be achieved by shortening this distance and employing a polynomial switching 

function. 

5.5 Discussion and Conclusions 
 Pauli repulsion is one of the most important parts of any classical intermolecular potential 

energy model. In most energy decomposition analyses, it is the only component of the total 

energy that is always positive. This means that for condensed phase systems, total models rely 
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heavily on the Pauli repulsion term to reproduce bulk phase data. For this reason, it is important 

for a good Pauli repulsion model to be both accurate and physically interpretable. We have 

presented here the Multipolar Pauli Repulsion model as an option that fulfills both of these aims. 

 Despite the terms in which it is often discussed, there is nothing mystical about the 

phenomenon of Pauli repulsion. It is true the effect arises from the enforcement of the laws of 

quantum mechanics, but the result can be fully understood within a classical physics 

interpretation. The Pauli Exclusion Principle demands the total wavefunction of an electronic 

system be antisymmetric. If we take as our reference the unperturbed monomer wavefunctions of 

two interacting molecules, then upon overlap the enforcement of antisymmetry will lead to a loss 

in electron density in the overlap region. That loss of electron density, relative to the unperturbed 

reference state, causes a straightforward coulombic repulsion between the two nuclei. The 

Multipolar Pauli Repulsion model presented here follows this explanation and thus gives a 

classical physical interpretation of this quantum mechanical effect. The electrostatic nature of 

this effect is borne out by the success of the model in reproducing the anisotropy of repulsion 

using electrostatic multipole moments. 

 In addition to being physically interpretable, the Multipolar Pauli Repulsion model is 

shown to yield good quantitative fits to ab initio data. The model fits the S101x7 dataset to an 

accuracy of 1.7 kcal/mol and fits the near-equilibrium points of that dataset to an error of much 

less than 1 kcal/mol. This fit spans a large range of chemical space, from hydrogen bonds and 

halogen bonds to pi-pi interactions and charged species. The results are shown to be transferable 

to systems outside of the S101 set as well. Particularly, we have shown that the Multipolar Pauli 

Repulsion model captures the angular dependence of the repulsion energy associated with 

halogen bonding at a range of contact distances. These test systems show the transferability of 
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not only the exponential parameters that were fit, but also justify the claim to atomic multipole 

parameters as a description of anisotropic electron distribution overlap. 

 This work is certainly not the first to acknowledge the importance of the anisotropy of 

repulsion in intermolecular interactions and the Multipolar Pauli Repulsion model is not the first 

model to include such effects. What makes this model noteworthy is that it circumvents two 

obstacles that have traditionally stood in the way of adopting anisotropic models: parameter 

underdetermination and computational cost. Any atomic anisotropic model (repulsive or 

otherwise) requires a local frame and a set of parameters that obey the symmetries of that frame. 

In the absence of any richer set of data, these requirements mean that if one wishes to fit to 

intermolecular energies, there will be a large number of parameters to fit to a (usually small, 

depending on computational resources) set of scalar values. This is a recipe for overfitting and it 

is the reason that anisotropic repulsive models have largely been limited to specific systems for 

which large amounts of dimer data can be generated. The Multipolar Pauli Repulsion model 

evades this problem by constraining the parameters responsible for conferring anisotropy on the 

model to those that are derived from a much richer data source: the molecular density. The 

atomic multipolar parameters that are derived from ab initio monomer calculations not only 

constrain the parameter space of the model to avoid overfitting, but moreover, as shown in the 

Section 2, they do so through a series of theoretically justified approximations. The DMA 

multipoles come from the same monomer wavefunction that is required to calculate S2, and this 

model uses that information to its advantage. This symbiosis not only stands the Multipolar Pauli 

Repulsion model on solid theoretical ground; it also ameliorates the concern of computational 

cost typically associated with anisotropic models. Because the local frames and atomic 

multipoles are identical between the electrostatics and repulsion models, there is very little 
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additional overhead incurred when using the Multipolar Pauli Repulsion model with a multipolar 

electrostatics model. Timings show that the cost of implementing a multipole-based repulsion 

model in an AMOEBA-like force field is minimal. By avoiding the overfitting and cost problems 

that have proved prohibitive, the Multipolar Pauli Repulsion model presented here provides a 

blueprint of one tractable way to include anisotropic repulsion in biomolecular force fields. 

 Not every force field needs the level of detail presented in this model. There are 

undoubtedly applications for which isotropic, point-based force fields are adequate for predicting 

quantities of interest. In fact, even for calculations that will require more advanced force fields, 

the Multipolar Pauli Repulsion model, as presented here is probably insufficient without 

additional tuning– several of the test cases presented, despite qualitative agreement with SAPT, 

fall short of accurately reproducing a truly ab initio potential energy surface. All force fields, 

advanced or not, will require some measure of error cancellation. 

 A final point of this paper is that in order to benefit from cancellation of errors the level 

of detail across different parts of the model must match. The water dimer data presented here 

shows this point nicely. If one uses an anisotropic multipolar description of electrostatics that, 

inevitably, has some error in the associated intermolecular angular degrees of freedom, the only 

way to cancel that error is by having the other components of the force field be sensitive to those 

same degrees of freedom. The water dimer example shows that for this important case (and 

likely many others) it is largely the Pauli Repulsion that provides the balancing force. This is 

specific evidence of the broader truism in molecular modeling that a theoretically “consistent” 

model is a good model. For a point charge force field it is possible that including an anisotropic 

repulsion model might make the model worse by introducing error that cannot be cancelled by 

other components of the force field. Likewise, for force fields based on multipolar electrostatics 
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models, we suggest that the Multipolar Pauli Repulsion model will not just be more accurate 

with respect to energy decomposition analysis, it will also confer the ability to achieve favorable 

cancellation of error across the total model. 

 While the theoretical framework presented here is applicable to any multipolar force 

field, the specifics of the parameterization and testing of the model are aimed at a particular goal. 

The development of the next generation of the AMOEBA force field is underway and the 

Multipolar Pauli Repulsion model has been constructed explicitly for that purpose. It is intended 

to be used with a multipolar description of electrostatics that includes our earlier work on charge 

penetration and in conjunction with our previously published Overlap Damped Dispersion 

model. Code that implements all of these components in the Tinker Molecular Mechanics 

software package is freely available on the web.70 Work combining all of these components into 

a next-generation water model and full biomolecular force field will be reported in due course. 

The Multipolar Pauli Repulsion model provides a cheap, intuitive and interpretable way to put 

this important component of the future force field on an equal footing with its counterparts. 
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Chapter 6: Water 
6.1 Introduction 
 For the most part, biology happens in water. That is to say the behavior of biological 

molecules occurs almost entirely within an aqueous environment. This simple fact makes water 

perhaps the most important molecule to model accurately in simulations of a biomolecular 

system. In all-atom molecular dynamics of proteins, for instance, it is common for >80% of the 

atoms in a simulation to belong to water. Despite its simple molecular structure, water is not a 

spectator to the goings-on of molecular biology. Water’s specific properties and the nature of its 

interactions with biomolecules underpins an immense number of important biochemical 

phenomena, from the hydrophobic effect to screening effects to the concept of “buried pockets”. 

For this reason, it is important for a water model to not only reproduce the properties of liquid 

water, but also for it to be compatible with the other parts of the biomolecular force field 

(protein, nucleic acid, small molecule, etc.). This need for both accuracy and compatibility has 

been a dilemma in the force field development community for decades. In this work, we 

introduce a new class of force field that presents a framework for satisfying both requirements. 

The HIPPO (Hydrogen-Like Intermolecular Polarizable Potential) model uses a groundwork of 

first-principles physics to reproduce the properties of pure water while remaining compatible 

with the broader biomolecular force field. 

 In a sense this work is testing a hypothesis. The proposition is that by grounding a 

classical force field in the first-principles physics of intermolecular interactions, we can produce 

a model that is accurate and efficient enough for use in biomolecular simulations. HIPPO tests 

this premise by introducing two novel features for a biomolecular force field. First, HIPPO 

includes a model atomic density on each atom. And second, HIPPO is derived and parameterized 
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to reproduce the ab initio electrostatic, polarization, dispersion and exchange-repulsion 

components from Symmetry Adapted Perturbation Theory (SAPT). As we will show here and 

have shown in previous works detailing the parts of the model, the former is necessary to achieve 

the latter. The density model makes HIPPO a new class of biomolecular force field, capable of 

accurately capturing the experimental condensed phase properties of water without sacrificing 

the quantum mechanical description of the molecule. 

 There are some good reasons to think that the above hypothesis may prove to be true, and 

that the project of constructing a density-based, first-principles-rooted water model may be worth 

the investment. Conceptually, the HIPPO model sits in a space that, as of yet, has been only 

partially explored by classical force fields for water. As illustrated in figure 6.1, there are two 

wings to the spectrum of current classical water models.  

 

Figure 6.1. The Spectrum of Water Models 

 

On one side is the point charge force field functional form. This is the most heavily explored and 

crowded part of the spectrum. Models like SCP/E, TIP3P, TIP4P and their numerous progeny all 

use the same point charge electrostatics + Lennard-Jones van der Waals energy function with 
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different parameters.1-3 These models are parameterized empirically to reproduce the properties 

of liquid water. On the other side of the spectrum are the boutique classical water models. 

Models like CC-pol and MB-pol take much more complex functional forms that are not 

explicitly tied to a physical explanation.4,5 Instead the high number of parameters are fit to a 

large number of data points on small clusters of water obtained with high-level quantum 

mechanics (QM) calculations. Both ends of this spectrum have problems with regard to having a 

water model that is both accurate for pure water and compatible with biomolecules. The 

empirical side relies on cancellation of errors. Although the cancellation may work in some 

cases, it is not guaranteed to work in all. On the other side, the “ab initio” models suffer from 

specificity. They work well for water but extending them to biomolecular simulations is 

intractable due to the combinatorial explosion of QM data needed to fully characterize complex 

systems. The middle of this spectrum, however, has been explored only sparingly. Toward the 

empirical end sits AMOEBA and the recently published AMOEBA+.6,7 These models use a 

more physics-rich functional form than the point charge force fields but are still parameterized 

largely empirically. HIPPO aims to fill this open space in the spectrum, because it may be where 

an answer to the accuracy vs. compatibility dilemma lies. 

 In order to fill this space, there are several qualities that a force field will likely need. The 

following list is not prescriptive, but years of experience in water models has suggested four 

important guidelines of a good atomistic water force field. 

1. The model should rely only sparingly on cancellation of errors. The proliferation of point 

charge water models and the commensurate lists of compatible biomolecular force fields 

is evidence to this point.  
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2. The model should have some method of constraining parameter space. All general 

biomolecular force fields will require some level of optimization. In order to be 

transferable, that available parameter space for optimization has to be small. 

3. The model should be polarizable. The dielectric of various biomolecules can vary 

dramatically, so any water model should be able to respond to these changes in 

environment. 

4. The model should be anisotropic. The potential energy surface of the smallest unit of 

water, the water dimer is highly anisotropic. The most accurate atomistic interatomic 

potentials have all required some level of atomic anisotropy. 

Importantly, the absolute accuracy of the water model is not an element of this list. While there 

may yet come a day when a fully ab initio model is capable of accurately simulating water and 

the biomolecules it solvates, this is currently intractable. There are dozens of published water 

models with results more in agreement with experiment or QM data than what will be presented 

here. The goal of the HIPPO model is not to best those models in their intended purpose. 

(Although, as we will show, the agreement with experiment is, on the whole, very good.) The 

goal of the HIPPO model is to produce a model that gives satisfactory pure water results, while 

not straying from what makes it a groundwork for the larger project of a full, self-compatible 

biomolecular force field. 

 In this work, we will present a water model that satisfies the blueprint laid out for 

constructing a water model that may be able to solve the accuracy vs. generalizability dilemma. 

The HIPPO water model is based on a simple approximation: that every atom can be represented 

as a point core charge, surrounded by a model electron density. Every term of the force field, 

electrostatics, polarization, dispersion and repulsion, is derived from this density-based model 
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and parameterized against ab initio Symmetry Adapted Perturbation Theory. This ensures not 

only that we reduce the cancellation of errors relative to what is necessary in point charge force 

fields, but also that the parameter space for the model is tight and well-defined. The model 

includes polarization with a polarizable induced dipole model and has atomic anisotropy in the 

electrostatics, polarization and repulsion terms. The hypothesis is that these ingredients, with the 

parameter space restrictions they entail, will be capable of being both accurate for pure water and 

compatible with the rest of the biomolecular force field. This work tests the first part of that 

hypothesis, with the work on the second still in progress. 

6.2 Theory 
 Part of what makes the HIPPO model unique is that it is not only parameterized against 

an ab initio perturbation theory method, but it is derived from a perturbation theory approach. 

This has been detailed for each individual term in our previous works, but a brief summary here 

bears repeating.8-10 The groundwork for the model is the unperturbed monomer. In SAPT, this is 

the monomer electron density. In HIPPO this is represented by a multipole expansion of that 

density. Starting from that base, the first order of perturbation theory is the electrostatic 

interaction between monomer electron densities. HIPPO approximates this by introducing a 

model electron density and computing Coulomb’s law between atomic density sites. The second 

order of perturbation theory consists of the polarization and dispersion. The uncorrelated 

polarization part is simply the response of one monomer’s electron density based on the electric 

fields it experiences. HIPPO represents this naturally with the electric field generated by the 

first-order electrostatic model. Dispersion also involves the overlap of charge densities and 

HIPPO generates just such an approximation using its model densities. Lastly, the perturbation 

theory expansion must be corrected for the Pauli Exclusion Principle. To antisymmetrize the 
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wavefunction, an amount of electron density must be removed from the internuclear region and 

redistributed. The degree of this effect is known to be proportional to the overlap as well, and 

HIPPO uses its model density to approximate this overlap. This is a qualitative description, but it 

captures the essence of the rationale behind the model. What follows is a quantitative 

explanation of each term and how it is represented classically. 

In the HIPPO force field every atom is represented by two components: a core point 

charge and a model valence electron density.  The atomic electron density emulates that of a 

hydrogen-like atom,  

𝜌 =
𝑄𝛼«

8𝜋
𝑒>�n (6.1) 

where Q is the valence charge of the atom and a gives the shape of the density.  This model 

density is used to derive all four intermolecular energy terms that compose the HIPPO force 

field, 

𝑈56]]¥ = 𝑈QoQS�nl��i�aS + 𝑈a=h�S�al= + 𝑈ha�kQn�al= + 𝑈]i�oa	nQk�o�al= (6.2) 

The general forms and derivations of these terms have been described in references 8, 9 and 10 

which describe the piecewise development of the model. To provide a complete picture we offer 

here a comprehensive definition of each term. 

6.2.1  Electrostatic Energy 
Like its progenitor, AMOEBA, the HIPPO electrostatic term is anisotropic with 

multipole moments through quadrupole.  Because each atom in the HIPPO force field is 

represented by a core and a density, the pairwise coulomb interaction has four components.  The 

HIPPO electrostatic energy is defined as, 

𝑈QoQS�nl��i�aS56]]¥ =`𝑍a𝑇a�𝑍�+𝑍a𝑻𝒊𝒋∗ 𝑀°°⃗ � + 𝑍�𝑻𝒋𝒊∗ 𝑀°°⃗ a + 𝑀°°⃗ a𝑻𝒊𝒋
𝒐𝒗𝒆𝒓𝒍𝒂𝒑𝑀°°⃗ �

a<�

(6.3) 
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where the first term represents the core – core repulsion, the second and third terms represent the 

core – density attractions and the fourth term represents the density – density repulsion. The M 

vector contains the multipole moments (charge, dipole and traceless quadrupole) and Q and Z 

represent the core and density charges constrained to satisfy the relation for the total partial 

charge, qi = Zi + Qi. The fdamp and foverlap terms in equations 6.6 and 6.7 are of critical importance.  

They are a direct result of the electrostatic potential generated by the model density, 

𝑉(𝑟) =
𝑄
𝑟 ù1 − �1 +

1
2𝛼𝑟� 𝑒

>�nú (6.8) 

This gives the core – density attractions, 
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1
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yielding the “one-center” damping factor that goes into T*.  The density – density repulsion is 

given by 

𝑈hQ=�a��>hQ=�a�� =
1
2 ùV𝜌a
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where the integrals are evaluated according to the method of Coulson.  The foverlap term is the 

“two-center” damping factor necessary to compute the fourth term of the HIPPO electrostatic 

model.  The higher order terms necessary for higher multipole interactions are obtained by 

successive gradient operations applied to each of the damping factors as specified in equation 

6.7. In the interest of clarity, the explicit equations for all orders of the multipole interaction 

energy are enumerated in Appendix C.  In the limit of large a, both damping factors tend to unity 

and the point multipole interaction energy is recovered.  In practice, the use of finite densities 

remedies the so-called charge penetration problem of electrostatics. In total, the electrostatic 

model has five parameters per atom: a core charge, Z, a valence charge, Q, a dipole moment, µ, a 

quadrupole moment, Q, and a damping parameter, a. 

6.2.2  Induction (Polarization) 
 In addition to the permanent core charge and density-based multipoles, HIPPO includes a 

point inducible dipole at every atomic site.  The induction energy of the model is defined as 

𝑈a=h�S�al=56]]¥ =`
1
2
𝜇⃗aa=h𝐹⃗a

kQnj

a

−`�𝜀a𝑒>Þ�n�� + 𝜀�𝑒>Þ�n���
a<�

(6.13) 

where the first term represents the polarization energy of the induced dipoles interacting with the 

permanent electric field and the second term represents a small pairwise exponential charge 

transfer term.  The polarization energy is the source of many-body energy in the force field. The 

induced dipoles are determined by solving the system of linear equations,	
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𝝁 = 𝜶�𝑭𝒑𝒆𝒓𝒎 + 𝑭𝒊𝒏𝒅� (6.14)	

where the vectors are defined as µ = [µ1, µ2, µ3, …, µn] and similarly for Fperm (the permanent 

field), Find (the induced field) and a (the atomic polarizabilities). This system of equations can 

be solved either with a variational method, like preconditioned conjugate gradient (which is used 

in this work) or an analytical method such as the recently developed OPT or TCG schemes.11-13 

The permanent and induced electric fields are calculated in exactly the same manner, with the 

same parameters, as described in the electrostatic section. For completeness, full equations are 

detailed in Appendix D. The only additional parameter necessary for polarization is the 

polarizability, a, of each atom. The charge transfer function requires two parameters per atom: a 

prefactor, e, and a damping factor, h. 

6.2.3  Dispersion 
 The dispersion interaction between atoms arises from the interaction energy of correlated, 

instantaneous induced dipole moments. In the point approximation this gives the canonical 1/r6 

dependence of London dispersion. Because our model, however, represents atoms’ valence 

electrons as densities, the functional dependence is slightly modified. The dispersion energy 

between two atoms with instantaneous induced dipoles, µi and µj, is found by solving 

Schrödinger’s equation,  
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where, for the case of correlated, parallel dipoles, 
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The damping factors, l3 and l5, that define fdamp for dispersion are derived from the action of the 

gradient operator and are identical to those stated in the dipole-dipole interaction energy defined 

in Appendix C. Solving the Schrödinger equation defined in eq 6.15 yields, 

𝐸 =
1
2ℏ
(𝜔3 + 𝜔4) (6.17)	

𝜔3 = 𝜔*ü1 −
2𝑄4

𝑟«𝑘
𝑓hijk
ha�kQn�al=,					𝜔4 = 𝜔*ü1 +

2𝑄4

𝑟«𝑘
𝑓hijk
ha�kQn�al=	 (6.18)	

This energy expression can be effectively approximated with a binomial expansion, 

√1 + 𝑥 = 1 +
1
2 x−

1
8 x

4 + ⋯ (6.19)	

so the total energy becomes, 

𝐸 = ℏ𝜔* −
𝑄�ℏ𝜔*
2𝑟-𝑘4 + ⋯

(6.20)	

Subtracting the energy of two infinitely separated dipoles (ℏ𝜔*) and substituting the parameter 

C6 for ÿ
�ûℏEz
√4ã

 gives the pairwise dispersion energy, 

𝑈ha�kQn�al=56]]¥ = −`
𝐶-a𝐶-

�

𝑟-
�𝑓hijk

ha�kQn�al=�
G´
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(6.21)	

It is well known that accurate modelling of the dispersion energy at short range requires the use 

of a damping function. This model provides a non-empirical damping function derived from the 

dipole density – dipole density interaction. The model requires only one C6 parameter per atom 

since the parameters for the damping function are fixed to their electrostatic values. 

6.2.4  Repulsion 
 The final element of the HIPPO model is a density-based, multipolar model for Pauli 

Repulsion. Pauli repulsion is a consequence of the rearrangement of electron density that occurs 
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when the Pauli exclusion principle is applied to the electron densities of two unperturbed 

interacting molecules. We have shown that the primary change in electron density upon 

enforcement of antisymmetry, relative to the unperturbed reference state, is an evacuation of 

electron density from the internuclear region. We have also shown that the energy associated 

with this change is proportional to 

𝑈]i�oa	nQk�o�al= ∝
𝑆4

𝑟
(6.22) 

𝑆 = V𝜙a𝜙�𝑑𝑣 (6.23) 

where S is the overlap integral between the atomic orbitals on i and j, and r is the internuclear 

distance. To obtain suitable atomic orbitals to implement this model, we use the rule 

𝜌 = 𝜙∗𝜙 (6.24) 

to define real, atomic pseudo-orbitals as: 
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>�n
4 (6.25) 

We can then use these pseudo-orbitals to define the charge-charge portion of the overlap integral, 
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and, for ai ¹ aj, 
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This allows us to write S2 in the familiar coulombic form, 

𝑆S_in�Q>S_in�Q4 = 𝑄a𝑇ki�oa𝑄� (6.29) 

with, 
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(6.30) 

where Tpauli (and, in turn, S2) is dominated at short range by the exponential frepulsion term. 

 The anisotropy of the HIPPO repulsion model is obtained through the multipole 

moments. Because S2 has a clearly coulombic form, we can include higher order terms in the 

same manner as electrostatics, 
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where the multipole moments are identical to those used in the electrostatics calculation. This 

definition of S2 allows us to establish an anisotropic repulsion model we call the Multipolar Pauli 

Repulsion model, 

𝑈]i�oa	nQk�o�al=56]]¥ =`
𝐾a𝐾�
𝑟a�

𝑆�l�io4

aH�

(6.34) 

For a complete derivation of this model see our recently published work, reference 10. Full 

equations defining the model, with higher-order terms included, are presented in Appendix E. 

The HIPPO repulsion model introduces three additional parameters per atom: The 

proportionality constant, K, the exponential parameter, a, and the valence charge, Q. Note that 
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although similar in spirit to the electrostatics derivation, the parameters a and Q are allowed to 

differ from their values in the electrostatic energy term. 

6.2.5  Rigid vs. Flexible 
 A choice must be made when building a water model of whether to allow the monomer to 

be flexible or not. Previously, the AMOEBA water model allowed monomer flexibility, but this 

required setting some unphysical parameter values. Specifically, the HOH ideal angle had to be 

set to 108.5o, wider than the known gas phase angle of 104.5o or the estimated liquid phase angle 

of ~106o. There are two reasons why employing this kind of empirical fix is problematic. First, 

in the case of water, in order to have the correct broadening of the HOH angle when transferring 

from gas phase to bulk Xantheas and co-workers have shown that coupling between the 

electrostatics and intramolecular energy terms is necessary.14 This kind of detail is beyond the 

scope of the HIPPO model and difficult to generalize. The second reason is less practical and 

more theoretical. The intramolecular vibrational frequencies of the water molecular lie in the 

range 1000-4000 cm-1. However, the value of kBT at room temperature corresponds to a 

frequency of 200 cm-1. This means that not only are these intramolecular vibrations quantized, 

but they are nearly always in their ground state. In other words, it should be impossible for the 

bulk environment of water to store any energy in the intramolecular degrees of freedom. This 

was pointed out most clearly and succinctly by van Gunsteren and co-workers.15 Given these two 

considerations, it is likely that the best approximation to the intramolecular degrees of freedom 

that doesn’t incur a large computational cost is to treat the molecule as rigid. This is what HIPPO 

does. The water monomer is held rigid in the average liquid phase geometry.16 
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6.3 Methods 
6.3.1  Parameterization 

 In this section we will describe how the parameters for the HIPPO water model were 

obtained. The general strategy follows the perturbation theory framework laid out at the top of 

section 6.2. First, we set the reference monomer state by computing an ab initio electron density 

for the water molecule and performing distributed multipole analysis. Second, we fit the electron 

density model and related parameters to reproduce SAPT electrostatic, dispersion and repulsion 

results. Third, we determine the atomic polarizabilities for the water model. These steps give us a 

highly constrained set of starting parameters from which to start condensed phase optimization. 

This optimization was carried out in two stages: an initial global optimization, followed by a 

gradient-based fine-tuning of the model. This parameterization strategy allows us to satisfy the 

first-principles grounding of the model while still yielding a highly accurate condensed phase 

model. 

 The first step of parameterization is to determine the multipole moments of the model. 

HIPPO uses the proven AMOEBA multipole parameterization protocol for this.17 We start with 

an MP2 monomer density calculation, perform Stone’s Distributed Multipole Analysis (DMA) 

and then tune the dipole and quadrupole moments to fit the potential on a grid of points around 

the molecule.18 The final density calculation is performed with an aug-cc-pVTZ basis set and the 

grid for the potential fit is constructed with shells of points starting one angstrom beyond the van 

der Waals surface of the molecule. 

 With the multipole moments established, the next step in parameterization is to set the 

intermolecular energy term parameters. In order to ensure compatibility with the biomolecular 

force fields we are developing in concert with this water model, I fit these terms based on the 
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large S101x7 database of intermolecular interactions, which includes water interacting with itself 

in addition to other biofragment-like molecules. I first fit the electrostatic damping parameters 

(work described in reference 8) and then fit the dispersion C6 parameters (work described in 

reference 9). Finally, I fit the repulsion parameters (work described in reference 10) 

 This left the induction (polarization + charge transfer) as the final portion of the model to 

be determined. SAPT provides no clear metric for separating these two, so I had to choose some 

other data to fit the polarization model to before fitting the sum to the SAPT induction energy. 

The atomic polarizabilities were chosen to match the molecular polarizability of the water 

molecule. I also fit atomic polarizabilities for the other molecules in the S101 database. This set 

the polarization model. I then fit the charge transfer model to fill in the gap between the energy 

of this polarization model and the total SAPT induction energy for the S101x7 database (work 

described in Chapter 3 of this dissertation). 

 This procedure gave a valuable set of initial parameters. As mentioned in the 

introduction, HIPPO is not intended to be an “ab initio” force field, but it does have a relatively 

high number of parameters. This set of initial parameters ensured two things. First, it reduced the 

area of parameter space we had to search in optimization. And second, because the space is 

highly limited, it guaranteed that even with optimization the water model would remain 

compatible with the rest of the force field. 

 The first step of the optimization was to produce good agreement on fundamental 

properties of water at room temperature. Using the SciPy differential evolution optimizer, we 

scanned for models with the best agreement for enthalpy of vaporization and water dimer 

energies. In this procedure, only the dispersion, repulsion and charge transfer parameters were 

allowed to vary. The dispersion and repulsion parameters were constrained to be within 5% of 
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the initial values. The charge transfer parameters were allowed to vary broadly. We then took the 

top five sets of parameters and evaluated these with short liquid simulations. Of these, we 

selected the set that had the best overall agreement on the density, radial distribution function 

and dielectric constant at room temperature as well as agreement with SAPT and CCSD(T) data 

on the ten canonical water dimers.19,20  

 The final step of the optimization was to fine-tune the parameters to reproduce the 

properties of liquid water across a range of temperatures. For this, we used the ForceBalance 

program of Lee-Ping Wang.21 We used data at temperatures of 249.15, 277.15, 298.15 (2x 

weight), and 373.15 K. The objective function was heavily weighted to reproduce the density 

and enthalpy of vaporization across those temperatures. Because we have guaranteed that we are 

close to a minimum, we found that despite these heavy weights on condensed phase data, the 

quality of the agreement with ab initio SAPT and CCSD(T) data degraded negligibly. As of the 

writing of this dissertation, this ForceBalance optimization is not yet complete. For the final 

version of this model, due to be published shortly, we have included data at many more 

temperatures and run longer simulations to converge properties fully. The parameters shown 

here, however, represent a point very near to what will be the final, fully-tuned model. 

6.3.2  Software Implementation 

 A large chunk of the work of making this optimization procedure possible relied on 

efficient software implementations of HIPPO. I implemented the first version of HIPPO in the 

Tinker Molecular Mechanics software package.22 This version, despite its more complicated 

functional form, was only 10% slower than the AMOEBA model. This implementation has been 

cleaned up and is now available in the publicly distributed release version of Tinker on GitHub. 

However, performing ForceBalance optimization requires a large number of long simulations 
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and we quickly found that the CPU-based Tinker implementation was too slow to do this 

effectively. To make the optimization process tractable, I, with assistance from Zhi Wang and 

Roseane Silva, implemented the HIPPO model in OpenMM.23 We did this in a local version of 

our Tinker-OpenMM branch of OpenMM in order to maintain computability with the current 

Tinker-based work flow.24 It can be found on my personal GitHub page at 

https://github.com/JoshRackers/Tinker-OpenMM. This version is over 10x faster than the Tinker 

CPU version and is allowing the current massive ForceBalance parameter fine-tuning. Work on 

an implementation of HIPPO in the main release of OpenMM from Stanford has just been 

completed. 

6.4 Results 
6.4.1  HIPPO Water Model Parameters 

 Listed in table 6.1 are the parameters that define the HIPPO water model. The parameters 

shaded in green are determined entirely by fits to ab initio data (MP2 and SAPT). The 

parameters shaded in red have been optimized according to the procedure laid out above in 

section 6.3.  

parameter units value 
O–H bond length Å 0.97 
H–O–H angle value degree 106.1 
O monopole e -0.3828 
O dipole Z e bohr 0.05477 
O quadrupole XX e bohr2 0.69866 
O quadrupole YY e bohr2 -0.60471 
O quadrupole ZZ e bohr2 -0.09395 
H monopole e 0.1914 
H dipole Z e bohr -0.20097 
H quadrupole XX e bohr2 0.03881 
H quadrupole YY e bohr2 0.02214 
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H quadrupole ZZ e bohr2 -0.06095 
O polarizability Å3 0.795 
H polarizability Å3 0.341 
O Electrostatic Alpha 1/ang 4.7075 
H Electrostatic Alpha 1/ang 4.7909 
O Repulsion Size kcal/mol 2.7502 
H Repulsion Size kcal/mol 1.9337 
O Repulsion Alpha 1/ang 4.5673 
H Repulsion Alpha 1/ang 4.8214 
O Repulsion Charge e -3.2219 
H Repulsion Charge e -0.81 
O Dispersion C6 sqrt(ang^6*kcal/mol) 16.8783 
H Dispersion C6 sqrt(ang^6*kcal/mol) 4.1580 
O Charge Transfer Size kcal/mol 1200.14 
H Charge Transfer Alpha 1/ang 3.3837 

Table 6.1. Parameters of the HIPPO water model.  

Parameters shaded green are fit exclusively to ab initio data. Parameters shaded red are optimized for condensed 

phase results. 

 

The remainder of the results shown in this section are generated from this set of parameters. As 

indicated in section 6.3, the parameters in the red shaded section of table 6.1 have changed by no 

more than 5% from their original values. 

6.4.2  Gas Phase 

 Because the HIPPO model is rooted in quantum mechanics, we should expect the model 

to produce good agreement with gas phase properties of water monomers and dimers. The data 

shown in table 6.2 shows the properties of the HIPPO water monomer against the experimental 

gas phase results. 
 

AMOEBA03 HIPPO experiment 
dipole dz 
(Debye) 

1.771 1.842 1.855 
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Quadrupole (Buckinghams) 
Qxx 2.502 2.592 2.63 
Qyy -2.168 -2.453 -2.5 
Qzz -0.334 -0.138 -0.13 
Polarizability (ang3) 
αxx 1.672 1.539 1.528 
αyy 1.225 1.413 1.412 
αzz 1.328 1.458 1.468 

Table 6.2. Gas phase monomer water molecule properties. 

 

Across the board, HIPPO is in better agreement with experiment for the monomer. This is 

largely because the original AMOEBA multipole parameters were not directly taken from ab 

initio calculations. The quadrupole moments in particular were scaled down by 70% to better fit 

the total water dimer potential energy surface. The other factor at play is the presence of a new 

polarization model in HIPPO. While AMOEBA used a Thole-type model for polarization, 

HIPPO uses a model that is wholly consistent with the electrostatics term of the force field. 

Table 6.2 shows that this yields better agreement with the experimental molecular polarizability 

of water. 

 The first step toward condensed phase from the monomer description is the water dimer. 

Although the water molecule itself is deceptively simple, the water dimer potential energy 

surface is quite complex. The global minimum of this surface is the well-known, canonical 

hydrogen-bonded configuration, but there are a wealth of features outside of this particular 

structure with importance to modeling water. We have examined this potential energy surface in 

a variety of slices. First, we have examined the dissociation curve as one pulls apart two 

monomers from the minimum energy configuration. Second, we have analyzed the angular 

dependency of hydrogen bonding by an angle scan around the minimum energy configuration. 
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And lastly, we have studied the behavior of the model on a set of ten representative low-lying 

potential energy minima structures on the water dimer potential energy surface. 

 The dissociation curve of the water dimer is particularly important because it tells us how 

water behaves as we compress or expand it. Shown in figure 6.2 are the HIPPO energy 

components plotted against their respective SAPT components for a set of seven points along the 

water dimer dissociation curve. 

 

Figure 6.2. Water dimer dissociation energy components.  

The energy components of HIPPO and SAPT are plotted against O-O distance (equilibrium ~2.9 ang). 

 

Inspection of figure 6.2 shows that not only is the total energy of the HIPPO model in good 

agreement with SAPT across the dissociation curve, the components are as well. This a testament 

to the parameterization procedure. Because we established a set of initial parameters whose only 
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requirement was fitting their respective energy components, it appears that the final result has 

strayed very little. 

 The next slice of the dimer potential energy surface we examined is the angular 

dependence of the minimum energy water dimer. To make this slice, we took varying values of 

the water dimer “flap angle”, defined in the inset of figure 6.3. For each angle we computed 

SAPT components and compared them against the HIPPO results. 
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Figure 6.3. Water dimer flap angle energy components.  

The water dimer is held in its equilibrium geometry and the angle q is varied from 0 to 90o. 

 

The data in figure 6.3 tell a clear story. The preference of the water dimer to sit at a flap angle of 

near 57o is the consequence of a tradeoff. The dispersion and induction components of the energy 

are nearly flat across this angular scan, but the electrostatics and repulsion trend in opposite 

directions. The electrostatics gets more attractive as the flap angle is increased. If this were the 

only anisotropic component of the force field, it would push the equilibrium flap angle to 70o or 

more. This is precisely the reason why the original AMOEBA force field reduced the quadrupole 

moments of both oxygen and hydrogen to artificially set the flap angle to 57o. In order to model 

this correctly without scaling, one must include the anisotropic effect of repulsion. We have 

shown in previous work, and figure 6.3 reiterates, that the Multipolar Pauli Repulsion model of 

HIPPO is capable of reproducing this angular dependence where typical van der Waals functions 

are not. This underscores point #4 of our list in the introduction. Anisotropy, and not just in the 

electrostatics, is crucial to correctly modeling the force field energy components in a way that 

prevents the need for large cancellation of errors. 

 The final part of the potential energy surface we assessed is a set of ten well-studied, 

stationary point water dimers. These dimers, illustrated in figure 6.4, represent a diversity of 

important water-water interactions away from the minimum energy configuration. Shown in 

figure 6.5 is the breakdown, by component, of the HIPPO water model against the SAPT 

calculations on these structures. 
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Figure 6.4. Ten water dimer configurations.  

(Reproduced from reference 20) 

 

 

Figure 6.5 Energy component analysis of the ten water dimer configurations. 

 Light shaded bars represent SAPT and dark shaded bars represent HIPPO. 

 

The results show that the HIPPO model is able to reproduce the SAPT energy components across 

a wide variety of intermolecular contacts. Although the only water-water data in the original fit 

was near the minimum energy conformation, the model is clearly able to describe equally well 

dimers with different contacts. Moreover, these are parameters that have been optimized for 

liquid phase properties. The data in figure 6.5 is showing that because we have limited the 
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parameter space to search, the quality of the agreement with SAPT in these dimer configurations 

is essentially unchanged. 

 In addition to the SAPT calculations on the water dimers, Piquemal and co-workers have 

done gold-standard CCSD(T) calculations on these structures. These total energies vary slightly 

from the SAPT results, so we wanted to check how HIPPO compared to these high-level 

calculations. The results are shown in figure 6.6. 

 

Figure 6.6. Total energy of ten water dimer structures.  

Dimer numbers as illustrated in figure 6.4 are displayed across the x-axis. 

 

These data show that although there are some small differences between SAPT and CCSD(T) 

total energies, the magnitudes are small. Furthermore, HIPPO does not appear to exhibit any sort 

of systematic bias relative to the gold-standard calculations.  

 The final element of gas phase data that is relevant to the HIPPO model is calculation of 

the many-body energy of small clusters. This has already been examined at length in Chapter 3, 

section 3.4.4., so I will not recapitulate that data here. It is worth noting that although the HIPPO 
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model has been optimized to liquid phase data, the electrostatics and polarization parameters 

were not included in that protocol. Therefore, all of the data in section 3.4.4. is exactly correct 

for the HIPPO water model. In short, the many-body energies of the HIPPO water model match 

the ab initio results for clusters of 3-8 molecules very accurately. In fact, they are more 

predictive than the original AMOEBA model. 

6.4.3  Condensed Phase 

 The ultimate objective of the HIPPO water model is to use it in liquid phase simulations 

of biological molecules. To this end, the water model should be able to reproduce the 

fundamental properties of pure liquid water. Because most molecular dynamics simulations of 

biological molecules are performed at room temperature, we first analyzed the properties of the 

HIPPO water model at 298 K. Shown in table 6.3 are the relevant condensed phase properties of 

HIPPO water. 

 

 HIPPO Experiment 

Density (g/cm3) 0.994 0.997 

Enthalpy of Vaporization (kcal/mol) 10.7 10.5 

Self-Diffusion Coefficient (10-5 cm2/s) 2.0 2.3 

Dielectric 91 78 

Table 6.3. Liquid phase properties of water at 298 K. 

 

Clearly the model is in excellent agreement with fundamental water properties. In particular, the 

dielectric constant, which varies dramatically across various types of water models, is well 
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reproduced by the HIPPO model. We also compared the water radial distribution functions with 

those from experiment. These results are plotted in figure 6.7.  

 

Figure 6.7. Radial distribution function of water.  

Plots are shown for O-O, O-H, and H-H. X-axis units are angstroms. 
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The HIPPO model reproduces the radial distribution functions at room temperature as well or 

better than any classical force field. Most classical water models (including AMOEBA) predict 

the first peak of the O-O g(r) to be too far to the right and too high. The HIPPO O-O g(r), 

however, has a first peak whose distance and height are quite accurate. Additionally, where other 

models struggle to get relative heights of the first two peaks of the H-H g(r) correct, HIPPO 

correctly predicts the first to be shorter than the second. 

 Lastly, we used ForceBalance to optimize the performance of the HIPPO model across a 

range of temperatures. Shown in figure 6.8 is the temperature dependence of a variety of 

properties of the HIPPO model. 
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Figure 6.8. Temperature dependence of the HIPPO water model.  

The density, enthalpy of vaporization, heat capacity and thermal expansion coefficient are all converged. The 

isothermal compressibility and dielectric constant show erratic behavior, especially at low temperature, because the 

simulations were not run long enough to converge. 
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The results show qualitative agreement with the temperature dependence of water properties. 

Most notably the water model produces a temperature of maximum density that is roughly in 

agreement with experiment. Most water models in use for biomolecular simulation today do not 

exhibit this fundamental behavior. The trend of the enthalpy of vaporization for the HIPPO 

model is correct, but the slope is too steep. This produces a heat capacity that is too high – a 

problem is not unique to HIPPO. In fact, Paesani and co-workers showed that any classical 

model of water will suffer from this problem.25 Even the ab initio MB-pol model suffers from 

this issue. They show that trend of the heat capacity of water is directly related nuclear quantum 

effects. Without performing path integral (PIMD) simulations, classical force fields will always 

overpredict the heat capacity. In a related manner, HIPPO predicts the thermal expansion 

coefficient to be uniformly too low. The isothermal compressibility data requires long 

simulations to be well converged, so it is difficult to draw any conclusions from the data shown 

here. The dielectric constant appears to be near convergence for high temperatures, but not for 

low temperatures. For the high temperature points it appears that the trend for the model is 

correct. The dielectric constant is notoriously sensitive, so reproducing this within +/- 10 near 

room temperature is noteworthy. 

 Unfortunately, the data presented here is an incomplete story. The ForceBalance 

procedure is very computationally expensive. Therefore, the optimization is not yet complete. 

The results presented here are only a point along the optimization path, it is not a minimum. It is 

difficult to predict how much better the model will become. There is certainly room for 

improvement with the model’s agreement with temperature dependent properties. These current 
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results, however, represent a lower bound on how well the model will reproduce the properties of 

liquid water. 

6.5 Discussion and Conclusions 
 The model presented here represents the first step in a larger project of constructing a 

full, self-compatible, first-principles-based force field. The HIPPO model is based on component 

parts that are each individually derived and parameterized to reproduce the physics of 

intermolecular interactions. However, this model is not an “ab initio” force field. It is not 

entirely fit to ab initio data, and it does not predict the properties of liquid water. Rather it is 

optimized to reproduce the properties of liquid water. The reason HIPPO is not an “ab initio” 

force field comes from a series of approximations. Each one stacked on top of the next. 

 The first approximation of the model is the Born-Oppenheimer (BO) approximation. 

Under BO, the nuclei are treated as fixed classical positive point charges relative to the electrons. 

The Schrödinger equation for the electronic wave function is solved under the static electric 

potential of the “clamped” nuclei. This introduces a not insignificant error already at the first 

level of approximation. So-called “nuclear quantum effects” (NQEs) are known to play a large 

part in the behavior of liquid water. They play such a large role, in fact, that the properties of 

D2O at room temperature vary significantly from those of H2O. The magnitude of these effects 

are known to be generally small, but not negligible. 

 The second level of approximation comes with how we practically solve Schrödinger’s 

equation for molecules. The so-called “gold standard” of quantum chemistry, CCSD(T), is not 

exact and thus incurs some error on top of the error already present in the BO approximation. 

Furthermore, while the errors of CCSD(T) are small, SAPT is not in full agreement with 

CCSD(T). We expect that the SAPT total energy will be close to the CCSD(T) result, but there is 
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an error that is incurred here as well. The level of SAPT that was used to parameterize the 

HIPPO model has been shown to have a mean absolute error across a range of databases of ~0.3 

kcal/mol relative to CCSD(T).26 Since the SAPT calculations used here include close contact 

points on the dissociation curve, the error relative to CCSD(T) is likely even larger. 

 Finally, HIPPO is a classical approximation of SAPT. Our previous work has shown that 

the HIPPO model is capable to producing agreement with SAPT to within 1 kcal/mol for each 

component. This incurs an error on top of the approximations already made. Furthermore, an 

error of <1 kcal/mol in each component does not guarantee a total error of <1 kcal/mol, due to 

simple propagation of errors. There are a variety of reasons for this magnitude of error. Although 

the HIPPO model is derived to closely mirror the SAPT energy decomposition, there are certain 

elements that will be impossible to capture classically. Particularly in the components of 

repulsion and dispersion where the fermionic nature of electrons cannot be ignored, some 

amount of error will always be incurred by imposing a classical function. HIPPO is no exception. 

 If condensed phase chemistry were not so delicate, this sequence of approximations 

might be more forgiving. However, the properties of liquids are highly sensitive to small changes 

in intermolecular energies. Changes of fractions of a kcal/mol in the repulsive wall of a 

molecule’s dimer potential energy surface can produce changes of several percent in the density 

of pure liquid. Water models such as MB-pol or CC-pol do not reproduce the properties of liquid 

water by nailing a series of identifiable approximations. These models work by setting out a 

functional form flexible enough, and set of high-level QM data large enough, that they get 

accurate properties via interpolation. HIPPO is not designed to do this. Despite the algebraic 

complexity of the functional form, it is a concrete, fast-to-compute physical model. HIPPO has a 
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clear, traceable lineage back to first-principles physics, even if that lineage prevents it from being 

truly “ab initio”. 

 There are three reasons why this is a sensible strategy for a water model intended for 

biomolecular simulation. The first is empirical accuracy. Even the “ab initio” models of water 

have shortcomings. Because they do not include nuclear quantum effects, and because CCSD(T) 

is not exact, and because interpolation is sometimes in error, there are water properties that these 

models predict incorrectly. By fitting directly to condensed phase data, HIPPO ensures that 

accuracy is obtained where it is needed: for simulations, where thermodynamics matter. HIPPO 

accounts for NQEs and the other sources of error through parameterization. 

 Of course, parameterization against condensed phase data is exactly how standard point 

charge force fields have been dealing with this problem for decades. If HIPPO is doing similarly, 

what makes it different? The distinction is that optimization for HIPPO is occurring in a much 

more limited parameter space. Optimization of point charge force fields suffers from being a 

massively underdetermined problem. The amount of uncorrelated experimental data available for 

fitting is on the same order of magnitude as the number of adjustable parameters. While it may 

seem counterintuitive, even though HIPPO has a larger number of parameters, the space it has to 

search is much smaller. This is because the initial step of fitting to SAPT gives a strong first 

guess and a set of hard guardrails for optimization. It turns what was previously an intractable 

global search into a local optimization problem. 

 The final reason to trust the HIPPO strategy is the capacity for compatibility with a more 

general force field. The protocol for determining the parameters for the HIPPO water model is 

not unique to water. The functional form is unchanged for every other compound that will make 

up the biomolecular part of the HIPPO model. The initial parameters for each of those parts have 
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been determined in the same manner as water: fitting to a database of SAPT intermolecular 

interaction energy components. We cannot show conclusively yet that the HIPPO water model 

will be compatible in condensed phase with these other parts, but there are strong suggestions 

that this will be the case. Conceptually, since all parts of the model are being derived from 

identical sets of approximations, it is not unreasonable to think that these parts will end up being 

compatible with each other. Practically, the liquid optimization procedure for water appeared to 

change the behavior of the individual components only very slightly. Figures provided in the 

results section attest to the fidelity of this optimized model’s continued agreement with SAPT. 

The fact that there is no large-scale shift in the parameters or behavior suggests that the 

underlying compatibility may, in fact, be preserved. 

 As was stated in the introduction, this model is testing a hypothesis. The hypothesis is 

that a model that is built off of an identifiable series of approximations can yield an energy 

function that is both accurate for liquid water and general enough to be transferable to the 

complicated mixtures that biomolecular simulations entail. This work shows the first part of this 

proposition is true. HIPPO represents a “natural” potential energy function for representing 

liquid water. Optimization is certainly required to produce satisfactory agreement with 

experimentally measured condensed phase properties, but it is exactly that: optimization. The 

function is tied closely enough to the underlying quantum mechanics that determines the true 

potential energy surface that the initial parameters put us in the near neighborhood of a minimum 

that gives excellent agreement with experiment. This is by no means guaranteed to be the case. 

In general, given a function and arbitrary set of initial parameters, the probability the local 

minimum of that neighborhood will be a satisfactory condensed phase water model is 

vanishingly small. This suggests that the HIPPO functional form, and particularly its density 
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model on which the parts of the model are based, is a natural description for intermolecular 

interactions. 

 The evidence presented in this work makes a strong case to prove this distinction as a 

natural energy function for water. The second part of the hypothesis, however, remains 

unproven. What this work does give, however, is a suggestion that this behavior may not be 

unique to water. The protocol for determining the starting parameter values of the water model is 

based on the S101 dimer database, of which water-water interactions are only a small part. The 

rest of the database is made up of interactions between other bioorganic compounds required to 

build a full biomolecular force field. The fact that this function and protocol has produced a 

natural model for water suggests that the same may be possible for the other molecules in the 

S101 database. Moreover, since interactions between water and these other molecules is a 

significant part of the database, it is not unreasonable to postulate that these parts my end up 

being compatible as well. 
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Appendix A  
 

Supplementary Information for Chapter 2 
 
1.  Damping Functions for Higher-order Damping 
 

A. One-site damping functions 
 

𝜆3 = 1 − 𝑒>�n 
 

𝜆« = 1 − (1 + 𝛼𝑟)𝑒>�n 
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(𝛼𝑟)4� 𝑒>�n 

 
B. Two site damping functions, 𝛼a ≠ 𝛼ã 

 

𝐴 =
𝛼ã4

𝛼ã4 − 𝛼a4
			,											𝐵 =
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𝛼a4 − 𝛼ã4
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C. Two site damping functions, 𝛼a = 𝛼ã 
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2.  S101x7 SAPT Electrostatics Fit Statistics 
 
Multipole Only 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 24.16611265 
0.9 – 1.1 4.350677453 
Total 13.43047692 

MSE 
(Mean Signed Error) 

0.7 – 0.8 19.15611117 
0.9 – 1.1 3.160407234 
Total 7.730608359 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 19.15611117 
0.9 – 1.1 3.160407234 
Total 7.730608359 

Mean Percent Error 
0.7 – 0.8 0.692902042 
0.9 – 1.1 1.330447394 
Total 57.41457894 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.692902042 
0.9 – 1.1 1.330447394 
Total 57.41457894 

 
Model 1 – Charge-charge – Element-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 3.530462178 
0.9 – 1.1 1.079421339 
Total 2.096053384 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.070609574 
0.9 – 1.1 0.443082553 
Total 0.336661702 

MUE 0.7 – 0.8 2.483826596 
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(Mean Unsigned Error) 0.9 – 1.1 0.699765532 
Total 1.209497264 

Mean Percent Error 
0.7 – 0.8 0.014649782 
0.9 – 1.1 0.083136474 
Total 3.178442377 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.100161271 
0.9 – 1.1 0.247685764 
Total 10.27679545 

 
Model 2 – Charge-charge – Element-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 3.416100288 
0.9 – 1.1 1.196352255 
Total 2.087232479 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.078644681 
0.9 – 1.1 -0.51620766 
Total -0.346249848 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 2.524932979 
0.9 – 1.1 0.885186383 
Total 1.35368541 

Mean Percent Error 
0.7 – 0.8 -0.024265813 
0.9 – 1.1 -0.456742535 
Total -16.65888785 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.110418585 
0.9 – 1.1 0.537220758 
Total 20.76386398 

 
Model 3 – Charge-charge – Element-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 8.245733619 
0.9 – 1.1 1.070226765 
Total 4.499383648 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.988135106 
0.9 – 1.1 0.034202979 
Total 0.306755015 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 3.662237234 
0.9 – 1.1 0.671327234 
Total 1.525872948 

Mean Percent Error 
0.7 – 0.8 0.036913509 
0.9 – 1.1 0.046321109 
Total 2.181661167 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.166713556 
0.9 – 1.1 0.39171247 
Total 16.37135331 
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Model 1 – Charge-charge – Class-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 2.746166031 
0.9 – 1.1 0.989597309 
Total 1.689436504 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.087677128 
0.9 – 1.1 0.396219574 
Total 0.30806459 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 1.970433511 
0.9 – 1.1 0.633159574 
Total 1.015237842 

Mean Percent Error 
0.7 – 0.8 0.00351084 
0.9 – 1.1 0.034173836 
Total 1.270649006 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.081690656 
0.9 – 1.1 0.225204723 
Total 9.210035191 

 
Model 2 – Charge-charge – Class-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 3.038892269 
0.9 – 1.1 1.043989404 
Total 1.848524579 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.03548617 
0.9 – 1.1 -0.415489574 
Total -0.286639362 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 2.32576383 
0.9 – 1.1 0.759034255 
Total 1.206671277 

Mean Percent Error 
0.7 – 0.8 -0.024980534 
0.9 – 1.1 -0.379144054 
Total -13.89772384 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.104954218 
0.9 – 1.1 0.463356585 
Total 18.04779542 

 
Model 1 – Higher-order – Class-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 2.274214573 
0.9 – 1.1 0.566506743 
Total 1.306508613 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.047035638 
0.9 – 1.1 0.013938085 
Total 0.023394529 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 1.529532447 
0.9 – 1.1 0.376271277 
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Total 0.705774468 

Mean Percent Error 
0.7 – 0.8 -0.003770317 
0.9 – 1.1 -0.044059741 
Total -1.627423843 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.061419216 
0.9 – 1.1 0.18531193 
Total 7.495700609 

 
Model 2 – Higher-order – Class-based Parameters 

RMSE 
(Root Mean Square Error) 

0.7 – 0.8 2.639920385 
0.9 – 1.1 0.661324567 
Total 1.517757283 

MSE 
(Mean Signed Error) 

0.7 – 0.8 0.009317553 
0.9 – 1.1 -0.115076596 
Total -0.07953541 

MUE 
(Mean Unsigned Error) 

0.7 – 0.8 1.817476064 
0.9 – 1.1 0.466214043 
Total 0.852288906 

Mean Percent Error 
0.7 – 0.8 -0.013435382 
0.9 – 1.1 -0.151155074 
Total -5.590329517 

Mean Absolute Percent 
Error 

0.7 – 0.8 0.074795428 
0.9 – 1.1 0.248929303 
Total 9.958838368 

 
 
 
3.  TA:TA Step Plots for Nucleic Acid Base Structural Parameters 
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Appendix B  
 

Supplementary Information for Chapter 4 
 

As indicated in the text, the full dispersion interaction between two real atoms also 

includes higher-order components that give rise to 1/r8, 1/r10, etc. terms. These terms come from 

instantaneous higher-order multipole interactions between atoms. Similarly to the 1/r6 term, these 

can be derived from a simple Drude oscillator model of atomic polarizability. As the derivation 

of the origin of these terms is not readily available in the literature, we present here a derivation 

that continues the series started in the text.  

Dipole-Quadrupole Dispersion 

 The derivation of the dipole-quadrupole dispersion energy starts from equation 4.5 in the 

text, where, instead of the dipole-dipole energy, the dipole-quadrupole interaction energy now 

enters into the Schrodinger equation, 

 (1)  . 

For a Drude oscillator dipole, interacting with a linear, Drude oscillator quadrupole, the energy 

of the interaction is given by: 

 (2)   

If we assume the magnitude of the dipole and quadrupole moments on i and j to be identical, 

combining equations 1 and 2 yields, 

(3)  . 

We now follow a similar transformation of variables as in the text and define,  
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(4)   

and rewrite equation 4.8 as, 

(5)   

where, 

(6)   

Equation 5 is again a transformed version of the independent harmonic oscillator problem. It can 

be solved in the same manner giving, 

(7)  , 

where, 

(8)  . 

Applying the binomial expansion, 

(9)   

the total energy becomes, 

(10)  . 

We then subtract the energy of infinitely separated atoms. This gives the dipole-quadrupole term 

of the dispersion potential energy, 
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It should be noted here that the spring constants, k, and frequencies, ω, are not the same as those 

for the dipole-dipole interaction. Therefore, just as with the dipole-dipole term, parameters are 

introduced to give the dipole-quadrupole dispersion model energy: 

(12)  . 

Quadrupole-Quadrupole Dispersion 

 At the risk of repetition, the quadrupole-quadrupole derivation follows almost exactly the 

formulation above. The Schrodinger equation now reads, 

 (13)  . 

In this case we have two linear, Drude oscillator quadrupoles, interacting with each other. The 

energy of the interaction is given by: 

 (14)  . 

Combining equations 13 and 14 yields, 

(15)  . 

The transformation of variables is identical to the dipole-quadrupole case,  
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which gives, 
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(18)   

Equation 17 again gives us the independent harmonic oscillator problem with the solution, 

(19)  , 

where, 

(20)  . 

Applying the binomial expansion as before, the total energy becomes, 

(21)  . 

Subtracting the energy of infinitely separated atoms gives the quadrupole-quadrupole term of the 

dispersion potential energy, 

(22)  . 

Again, the spring constants, k, and frequencies, ω, are placeholders specific to this quadrupole-

quadrupole interaction. To generalize, parameters are introduced to give, 

(23)  , 

the quadrupole-quadrupole dispersion energy. 

 As is apparent from the above sequence of derivations, this pattern of even power 

dispersion coefficients continues indefinitely for as many higher-order multipole moments as one 

wishes to include. (We should note that at 1/r10 terms and higher, multiple multipole interactions 

start to be included in terms. The 1/r10 term, for example, involves a dipole-octopole component 
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as well as quadrupole-quadrupole.)  This pattern allows us to extrapolate to the full, 

parameterized dispersion expansion: 

(24)  . 

  

Uij
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iCk

j

rkk≥6
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∑
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Appendix C  
 
 
Electrostatic Energy of the HIPPO water model. 
 
Core-Core: 
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Appendix D  
 
 
Permanent electrostatic field of the HIPPO water model. 
 
(field at induced dipole i, due to permanent moments of atom j) 
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Induced dipole electrostatic field of the HIPPO water model. 
 
(field at induced dipole i, due to induced dipole j) 
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Appendix E  
 
 
Pauli Repulsion equations for the HIPPO water model. 
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