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ABSTRACT OF THE DISSERTATION

Adiabatic Dark Matter Density Cusps Around Supermassive Black Holes

and Dark Matter Detection by

Augusto Medeiros da Rosa

Doctor of Philosophy in Physics
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Professor Francesc Ferrer (Chair)

The growth of a black hole surrounded by dark matter can lead to a significant enhance-

ment of the dark matter density close to the hole. We investigate this effect, focusing on the

phenomenologically interesting case where the black hole is supermassive and is embedded in

a galactic dark matter halo, although the formalism developed does not depend on that fact.

Due to the enhanced gravitational potential, the dark matter will tend to cluster around the

black hole. The precise details of this clustering will, in general, depend on the formation

process of the black hole. However, if the black hole grows slowly with respect to the orbital

timescales of the local galactic potential, the density cusp only depends on the black hole’s

mass and spin, as well as on the local distribution of orbits.

The density cusp generated by the growing black hole is called an adiabatic spike. In

the context of dark matter density cusps, these spikes were first investigated by Gondolo

and Silk (1999), using a phase space analysis. General relativistic effects originating from

the black hole’s mass were calculated by Sadeghian, Ferrer, and Will (2013), revealing an

enhancement of the density in the spike. Our work extends this calculation to include the

effects of spin. We find a further enhancement to the spike that is strongly dependent on the

black hole’s spin parameter, meaning that it cannot be ignored for rapidly spinning black

holes. We estimate its impact in local annihilation rates for two particular physical processes:

particle dark matter annihilation in the s-channel, and the merger rate of binaries composed

xi



of primordial black holes in the local universe. We also present a derivation of the two-body

collision rate per four-volume in terms of the phase space distribution that can be used in

any coordinate system.
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Whoever, horizon, passes beyond you

Passes from view, not from living or being.

Don’t call the soul dead when it flies away.

Say: It vanished out there in the sea.

—Fernando Pessoa, 1922
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Chapter 1

Introduction

This thesis is concerned with a possible observable connection between the black holes (BHs)

at the centers of galaxies and indirect detection of dark matter (DM). We will begin by

introducing a few of the basic concepts about the evidence for dark matter in the universe,

some proposed candidates for its composition, galactic black holes and the adiabatic growth

model.

We will use units in which ~ = c = 1, but we will not make the gravitational constant

G equal to unity. Our convention for the metric signature is (−+++), meaning that, for

example, the mass shell condition for a particle reads p2 = −m2, where p is the particle’s

4-momentum and m its mass. Note that we will not necessarily attach indices to 4-vector

quantities. When indices are used, the Einstein summation convention for repeated indices

is assumed. We will use greek indices to indicate the components of a 4-dimensional tensor,

and components of a 3-dimensional tensor will be represented by latin indices. A spatial

3-vector quantity in a given frame will be represented in bold face.

1.1 Evidence for Dark Matter

1.1.1 Beginnings, galactic scale evidence

Evidence for a discrepancy between the visible mass and the total mass in the universe like

galaxies and galaxy has been steadily mounting since the 1930s. When these observations

2



Chapter 1. Introduction

were first made, it was possible that this excess mass may have been in the form of cool

stars or planets that could not be observed from the radiation they emit. Cosmological

observations, to be discussed later, show that this is not the case.

More precisely, in the cosmological context, any massive component that has a pressure

negligible compared to its energy density is referred to as matter. What observations have

shown is that not all of the matter in the universe is composed of nuclei and electrons, like

the ordinary matter that the Earth is composed of (see [3, 4, 5] for recent reviews). Nuclei

and electrons are collectively referred to as baryons in the astronomical context.

The dark matter/dark energy paradigm has been successful at describing the bulk of

the available evidence, in what has been called as a “concordance” model [6], and we will

assume in this work that dark matter exists. Nevertheless, efforts have been made to describe

observations with modifications of gravity.

Historically, the first piece of evidence was obtained by Zwicky [7], using observations of

the velocities of galaxies in virialized clusters. The virial theorem, valid for any gravitation-

ally bound system in a steady state1, states that

2T + U = 0,

T = 1
2
∑
i

miv
2
i , U = −1

2
∑
i 6=j

Gmimj

|ri − rj|
. (1.1)

This allows us to estimate the mass of the cluster as follows:

M = 2〈v2〉
G〈1

r
〉
. (1.2)

To estimate 〈v2〉, one can use the spread in the Doppler shift of the galaxies in the

cluster, and 〈1
r
〉 can be measured by the angular separation distance of members of the

cluster, provided that the distance to the cluster is known. Zwicky’s application of this
1 The steady state condition is problematic observationally, as some objects that appear to be members

of the cluster may not necessarily be bound to it.

3



Chapter 1. Introduction

method to the Coma cluster indicated that its mass was many times larger than what could

be accounted for by the visible matter. This observation is independent of the nature of this

“dark matter”, but may be used to estimate how much of it is in the universe.

The starting point is the mass to light ratio M/L (L is the cluster luminosity) that is

usually provided by observations like Zwicky’s. A measure of the luminosity per unit volume

of the universe L would then allow us to obtain the mass density of the universe, if the M/L

value obtained for clusters is universal. By universal, we mean that it should apply not just

across different types of clusters, but also for “field galaxies” that are not bound to a cluster.

This is important since most of the light in the universe comes from these field galaxies.

In terms of the critical density of the universe, defined below by Eq. (1.6), this method

yields ρM ' 0.15ρcrit [8], which is lower than what is implied by other pieces of evidence,

but already large enough to rule out that all the matter in the universe is baryonic since

primordial nucleosynthesis provides an estimate of the baryon density ρB ' 0.04ρcrit.

Observations have also shown a mass discrepancy at galaxy scales through measurements

of galactic rotation curves, a work that was pioneered by Vera Rubin [9]. Modern observations

and modeling of stellar populations in galaxies allow us to determine the presence of a dark

component to galaxies that is roughly 20 times more massive then the visible component

[10, 11].

The basic idea of this method is as follows: if an object is orbiting a galaxy at a distance

r from its center, it does so at a speed V such that the gravitational pull towards the galaxy

provides the centripetal force to keep the object in orbit. Although a detailed mass model

of the galaxy is required to reproduce the full rotation curve V (r), the multipole expansion

of the gravitational potential tells us that, for a distant satellite of the galaxy,

V 2(r) = GM

r
, (1.3)

M being the total mass of the galaxy. If no dark component exists, the rotation curve V (r)

4



Chapter 1. Introduction

should decay like r−1/2 at large distances. Observations show that rotation curves are flat at

large distances, implying a dark component that extends beyond the visible one. If this dark

component is distributed isotropically, we may replaceM byM(r) in Eq. (1.3). The constant

rotation curve (M(r) ∝ r) then tells us that the dark component’s density ρdark(r) ∝ r−2.

Historically, this observation was sharper than the one for clusters, as it gives hints not

only for how much dark matter might be present in a galaxy, but also how it is distributed in

galaxies. Since most of the DMmass is located on the outskirts of galaxies and its distribution

extends much further out than the visible matter, it is said that DM is distributed in galactic

halos. The ability of simulations of structure formation to reproduce this asymptotic behavior

of the density profile is a seeming success of the dark matter picture [12].

1.1.2 Cosmological evidence

The “concordance model” of cosmology mentioned in the previous section assumes that the

universe as a whole, at its largest scales, is spatially homogeneous and isotropic. At the

largest observed scales, galaxy distributions become isotropic [13], and the observed isotropy

of the cosmic wave background provides good evidence that this is a good assumption (see

[14] for a review). The so called “Copernican principle”, i.e the notion that we are not

located at a special position in the universe, coupled with the observed isotropy, would then

imply that the universe is homogeneous. In such a universe, the metric may be written as

ds2 = − dt2 + a2(t)
(

dr2

1−Kr2 + r2 dΩ2
)
, (1.4)

where the constant K ∈ {−1, 0, 1} discriminates between open, flat, and closed universes,

respectively. This metric is known as the Friedmann-Robertson-Walker (FRW) metric.

The coordinate system defined above is called comoving: it defines the observers for

which homogeneity and isotropy holds. The function a(t) is a scale factor that determines

the evolution of physical distances in terms of these comoving coordinates. The normalization

5



Chapter 1. Introduction

of a(t) is arbitrary for flat universes, which are favored by the data and will be implicitly

assumed. If we then set a(t) = 1 at the present time, the scale factor tells us how much the

universe has expanded between a time in the past and now.

Homogeneity and isotropy imply that the energy momentum tensor must be that of a

perfect fluid, which is described by only two parameters: an energy density ρ and a pressure

p. The strong constraints imposed on the metric simplify the Einstein equations to

(
ȧ

a

)2
+ K

a2 = 8πG
3 ρ

ä

a
=− 4πG

3 (ρ+ 3p). (1.5)

We define the Hubble parameter H as ȧa−1. The Hubble constant H0 is the present

value of the Hubble parameter. The critical density is defined as that which implies K = 0,

namely,

ρcrit = 3H2

8πG = 8.68× 10−27kg m−3
(

H

68km s−1Mpc−1

)2

(1.6)

Einstein’s equations imply local conservation of energy, which, for a perfect fluid in the

Friedmann universe, reads

ρ̇+ 3H(ρ+ p) = 0. (1.7)

The thermodynamic relation T dS = dU + p dV , along with the above equation, implies

Ṡ = 0 if we take V ∝ a3(t) and S = V s. Note that we are abusing the notation from

thermodynamics by defining s as the entropy density instead of the entropy per particle.

This result shows that Eq. (1.7) is not conservation of energy but rather conservation of

entropy. The universe’s entropy density s will therefore provide a good fiducial quantity to

which other densities may be normalized. Thus, when we talk about dark matter freeze-out,

it will be useful to define the amount of dark matter per entropy Y = ρDM/s.
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Chapter 1. Introduction

In the standard cosmological model, three components are assumed to contribute to

the energy density: pressureless matter (non-relativistically moving particles), defined by

p = 0; radiation (ultra-relativistically moving particles), which satisfy p = ρ/3; dark energy,

which obeys p = −ρ. Dark energy, which drives the accelerated expansion of the present

universe, could be generated dynamically, from the vacuum energy of some field, or it could

be a fundamental cosmological constant, as allowed by general relativity (see, e.g, [15] for

a discussion). The standard cosmology is at present only concerned with the dark energy

equation of state and not its origin.

If only one energy component is present, Eq. (1.7) yields ρ(t) ∝ a−3(1+w). When all

three components are present, we may take them to evolve independently if they are not

strongly interacting. Furthermore, the different a dependences for ρ(t) imply that we can

divide cosmic history in a radiation dominated period (the first ∼ 100kyr of the universe),

a matter dominated period (until about 5Gyr ago), and a dark energy dominated period

(the present universe). If one energy component overwhelms the others, the independent

evolution approximation is also justified.

This picture in which the universe can be taken as a hot, relativistic fluid, cooling as it

expands, and then growing structures (stars, galaxies, etc) is known as the “thermal history”

of the universe. From our point of view of using cosmology to establish the existence of DM

and placing constraints on models, there are 3 “major events” that happen during expansion

that are worth emphasizing in our introductory discussion: nucleosynthesis, recombination,

and structure formation.

Nucleosynthesis, or the formation of light nuclei in the early universe, provides a handle

on the total amount of baryons in the universe. At very early times, weak interaction

processes can efficiently convert neutrons to protons, and their abundances are similar. The

total baryon density in the early universe is not very large, and nuclei can only form by

two-body processes, which start with the formation of deuterium.

Deuterium, however, is very loosely bound, and the high photon-to-baryon ratio in our
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universe (∼ 1010) means that photons can efficiently break it, preventing the formation of

other nuclei until the universe has cooled to about 0.75MeV. Weak interactions fall out of

equilibrium before this temperature is reached, and neutrons decay into protons for a time

before nuclei can form. In a simplified picture, all the available neutrons then bind in 4He

nuclei.

Detailed nucleosynthesis calculations are much more complex, but the basic idea is that

the known expansion history of the universe provides a relationship between the nuclear

temperature and cosmic time, which determines how many neutrons are available to form

complex nuclei. Coupled with the nuclear physics of the reactions happening in the early

universe, it is then possible to predict the relative abundances of light nuclei given the

baryon-to-photon ratio in the universe [8, 16]. Predicting these abundances was not only a

great success of the standard cosmology, but it provided an important piece of evidence for

not all of the matter in the universe being composed of baryons.

Recombination is the formation of atoms. It marks the transition between an ionized

universe to a mostly neutral, transparent universe, in which the cool photon plasma does

not significantly interact with the matter component of the universe. Those are the oldest

photons that we can observe, and this transition from coupled photons to free-streaming

photons defines a surface of last scattering, observed as the cosmic microwave background: an

isotropic photon gas in thermal equilibrium. Detailed observations of the small anisotropies

in the microwave background [17] allow a global constraint of the standard cosmology’s

parameter space, and its description is arguably the strongest success of our cosmological

model.

The local universe, in which we observe planets, stars, galaxies, etc, is decidedly not

homogeneous. Given the remarkable degree of homogeneity of the early universe, how does

the rich structure that we observe form? This is a challenging problem, but a naive plan

of attack would be as follows: since the standard cosmology works well at large scales, we

may take the FRW metric as a “background” on which small fluctuations in the local mass

8



Chapter 1. Introduction

content grow due to gravity. The collapse of these perturbations would then give rise to the

observed structure in the universe. Once some initial data on the fluctuations is provided,

numerical simulations could then be able to (statistically) reproduce the structure observed

in the local universe. This means not only reproducing the distribution of stars and galaxies

we observe, but also the DM halos mentioned in the previous section.

The cosmic microwave background has been observed sufficiently accurately that it may

be used as initial data for cosmological density fluctuations. The temperature anisotropies

∆T (n̂) can be decomposed in spherical harmonics Ylm(n̂), and each mode l provides informa-

tion about fluctuations at different length scales. Small l modes are large-scale fluctuations,

providing information about modes that are “super-horizon” scale and would be set up, say,

at inflation. Larger l modes correspond to smaller length scales, which are affected by the

interactions between the different matter and radiation components of the universe.

Neither the implementation nor the interpretation of cosmological numerical simulations

is straightforward. The detailed evolution of a fluctuation into a galaxy depends not only on

the large scale gravitational physics but also on smaller scale physics like local interactions

of baryons with radiation or even DM self-interactions, and capturing important physical

effects on such disparate length scales is not straightforward. That said, modern simulations

are capable of capturing such small scale effects and much progress has been made in their

implementation.

Although cosmological simulations have become increasingly complex, it is not clear a

priori which observables obtained from them can discriminate between cosmological models.

It is true, however, that if a DM model cannot reproduce the observed structure in the

universe (provided that the simulations are to be trusted), it must be ruled out. We will

provide a simple analytical example of such an argument in the next section.

9
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1.2 Dark Matter Candidates

Although cosmological observations have constrained the amount of dark matter in the

universe and revealed that it is cold, not much else is known about its nature. The standard

model of particle physics (SM) also has no candidate dark matter particle. In this section,

we will present two distinct possibilities for what DM could be composed of, and briefly

discuss how microscopic models can be linked to cosmological observables like the total dark

matter density.

1.2.1 Particle Dark Matter

1.2.1.1 Generalities

Particle dark matter models make the assumption that DM is composed of some unknown

particle yet to be discovered. Moreover, and more importantly, the main assumption we

will make is that DM particles interact with standard model particles sufficiently strongly

such that, at some point, they are in thermal equilibrium with the SM. These particles are

known as thermal relics and, leaving aside their current distribution in halos, are parame-

terized by the dark matter mass m and their interaction cross section with the SM 〈σv〉.

Another possible parameter is the DM particle lifetime τ , if it is unstable. Observations of

the cosmic microwave background put strong constraints on it, and so we will ignore that

possibility. In the following discussion, we will make some order of magnitude estimates that

link microscopic observables such as 〈σv〉 to cosmological quantities.

The fact that thermal relics are in equilibrium with the SM means that we can link the

DM density to the known thermal history of the universe [8]. Due to the expansion of the

universe, interaction rates will eventually become too small to maintain equilibrium. Since

there will no longer be any interconversion of DM particles and SM particles, the comoving

DM density freezes out to an asymptotic value which must then match the observed density.

A hot relic decouples from the bath when it is still relativistic. It is then particularly
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simple to compute its final cosmological density. The DM density and the photon density

will have a common temperature T at decoupling, and both of these scale like T 3. This

means that the ratio nDM/nγ is given by [18]

nDM

nγ
= gDM

2

(
43/4
geff,dec

)( 4
11

)
. (1.8)

The first factor is simply the ratio of the spin degrees of freedom of the DM (times 7/8 if DM

is fermionic) to those of the photon (2). The other two factors multiplying this expression

have to do with entropy conservation and increases in the photon number. As shown in [16],

the entropy of the universe is dominated by its relativistic degrees of freedom (those that

have E ' p). Since the photon is a relativistic particle in the aforementioned sense, we may

express the entropy density of the universe as s = geffsγ, with geff counting the “effective

number of relativistic degrees of freedom”. For relativistic particles like the photon, it holds

that sγ ∝ nγ.

In thermal equilibrium, reactions like e+ + e− 
 2γ keep the e+, e− abundances stable,

but once the temperature falls below the electron mass this is no longer the case. A typical

photon pair will not have enough energy to produce two electrons, and these particles will

not be replenished. They will also no longer be relativistic and will stop contributing to the

entropy, meaning that geff goes down. To keep the entropy constant, we see that nγ must

go up by precisely the ratio geff,before annihilation/geff,after annihilation. Between the DM particle

decoupling and the present, there are two such “boosts” to the photon density that must be

taken into account. The first one is that all the relativistic degrees of freedom geff,dec will

convert into only photons, electrons, positrons, and neutrinos.

In the SM, there are 3 neutrinos, each with 2 spin degrees of freedom, and electrons

and positrons each have 2 spin degrees of freedom as well. Therefore, when these and

photons are the relativistic degrees of freedom present, we have geff = 2 + 2 × 2 × 7/8 +

3 × 2 × 7/8 = 43/4 = 10.75. When the entire SM is relativistic, geff = 106.75. Later in the
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universe’s thermal history, the neutrinos decouple from the bath entirely, but the electrons

and positrons annihilate into photons. For electrons, positrons and photons, geff = 11/2, and

so the photon number density increases by 11/4 after e± annihilation. This takes care of all

the factors in Eq. (1.8). Since we know the current photon density, we may use this to find

the current DM density in units of the critical density [18]

ΩDMh
2 ≡ ρDM,today

ρcrit,today
' 115
geff,dec

gDM

1.5

(
m

1keV

)
(1.9)

where h = H0/(100km s−1 Mpc−1). The observed value for ΩDMh
2 is ∼ 0.15 [17]. Therefore,

if a hot relic composes all of the dark matter, it must have a mass of around 0.1keV, although

the precise value depends on when it decouples (through geff,dec). The fact that these particles

are moving at the speed of light when they decouple, however, means that even when they

become non-relativistic they can be moving sufficiently fast to escape the gravitational pull

of density perturbations, preventing their collapse into, say, galaxies.

The motion of DM defines a (comoving) length scale lfs, the free streaming length, below

which density perturbations are erased. The idea is that if DM particles can move on

average a distance lfs away from each other as the universe expands, they can escape from

an overdensity localized to that scale, effectively erasing it. Only overdensities that persist

on scales L & lfs can therefore grow and form structure. To estimate this scale, we will

simply look at the geodesic motion of DM particles and see how far they can move between

the epoch of matter domination (when perturbations begin to grow) and the present.

Geodesic motion in a matter dominated universe is simple to describe: particle momenta

(i.e, those satisfying E2 − p2 = m2) simply scale as p ∝ a−1(t). Although we stated that

our DM particles were relativistic when they decoupled, if they are to be the cold DM in

the standard cosmology, they must be non-relativistic by the time the universe is matter

dominated. We may therefore identify p = mv, and the comoving speed will be v(t)/a(t). If

the characteristic DM speed is v(tEQ) at matter radiation equality, the free streaming length
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can be calculated as

lfs =
∫

dt v(t)
a(t) = 3v(tEQ)t1/3EQt

2/3
0 , (1.10)

where we have used a(t) = (t/t0)2/3 for a matter dominated universe and the characteistic

speed is v(t) = v(tEQ)(a(tEQ)/a(t)).

Since t0 and tEQ can be estimated, our goal is to calculate v(tEQ). To obtain it, we will use

the fact that, prior to decoupling, our hot relic is relativistic. Consider, then, its phase space

density dN
d3xd3p

, where x are comoving coordinates but p are physical momenta. Homogeneity

and isotropy imply that this function can only depend on the magnitude of the momentum

of the particle, p. We will therefore denote it by n(p). The phase space volume d3x d3p is

dimensionless, which means that n(p) must be dimensionless as well. If this distribution is

characterized by a temperature T , then, on dimensional grounds, n(p) = F (p/T ), F being

some arbitrary function. The average momentum of this distribution is then proportional

to T . Since we are only interested in order of magnitude estimates, we will assume that all

particles move with momentum p.

If we now assume that the DM decouples instantly at some time tdec and ignore DM self

interactions, the distribution n(p) will evolve in time following the collisionless Boltzmann

equation [19], which reads

∂n(p, t)
∂t

−Hp∂n(p, t)
∂p

= 0,

n(p, tdec) = F
(

p

Tdec

)
. (1.11)

By inspection, we can verify that the general solution to this equation is any function

g(a(t)p). Enforcing the initial conditions, we find
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n(p, tdec) = F
(

p

Tdec

)
= g(adecp),

n(p, t) = g(a(t)p) = g

(
adec

a(t)p
adec

)
= F

 p

Tdec
(
adec
a(t)

)
. (1.12)

As expected, the typical momentum of the DM scales as a−1. Rather than using the

(unknown) decoupling temperature to scale our momenta, we will use a temperature TNR

that marks the transition between the relativistic and the non-relativistic regime. Therefore,

our typical momentum will be TNRaNR/a(t). This temperature is only loosely defined, but

the value TNR ' m/3 is used in the literature [18, 20]. What this means is that we may use

the Stefan-Boltzmann law for the DM density, ρDM(TNR) = π2

30gDMT
4
NR, but still redshift the

DM as pressureless matter, i.e, ρDM(TNR) = ρDM,todaya
−3
NR. This gives us the value of aNR in

terms of m and the observed DM density. Using the known value of aEQ then gives [18]

v(a) ∼ 0.012a−1
(

ΩDMh
2

0.15

)1/3( 1.5
gDM

)1/3(1keV
m

)4/3

km/s. (1.13)

The mass inside a sphere of comoving length lfs is then

Mfs = 4π
3 ρDM,todayl

3
fs ' 8× 108M�

(
ΩDMh

2

0.15

)(
1.5
gDM

)(
1keV
m

)4

. (1.14)

The meaning of Mfs is that structures having mass M < Mfs will not form. The smallest

structures made primarily of DM that we can observe have a mass of about 108M�, which

implies that DM particles must be heavier than about 0.6keV, if we set Mfs = 108M�. Note

that Eq. (1.9) would then imply ΩDMh
2 ' 0.6, contradicting observations. This means that

DM particles in this mass range must have their relic density set by some other mechanism.

These types of bounds on hot thermal relics have led to the dominant hypothesis on

particle DM to be that it is a cold relic. Cold relics decouple from the SM thermal bath

when they are non-relativistic, and are generally taken to be in the mass range of a few
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GeV-TeV. The calculation of their relic density is not as straightforward and depends on the

details of their interactions with the SM [21]. This is because non-relativistic particles in

thermal equilibrium have their abundances exponentially suppressed by a Boltzmann factor,

n ∝ e−m/T [16]. Thus, the relic density is sensitive to the decoupling temperature, which is

set by DM interactions.

The picture, then, is that at early times the DM is in equilibrium with the SM. As the

universe expands and cools, eventually the temperature will fall below the DM mass m,

and DM particles that annihilate will not be replenished, since the SM bath does not have

enough energy to produce them. This does not mean that all the DM will disappear: since

the universe is expanding, the annihilation rate for DM+DM→SM+SM will decrease, and

DM particles will stop annihilating altogether. At this point, the DM density freezes out.

The evolution from being slightly out of equilibrium to freezing out completely can be

described by the following differential equation for n(t) [19]

dn
dt + 3Hn = −〈σv〉

(
n2 − n2

eq

)
, (1.15)

neq being the number density of DM in thermal equilibrium and 〈σv〉 the thermally averaged

cross section for the process DM+DM→ SM+SM. The left hand side of this equation may

be understood as the dilution of particles due to the expansion of the universe, and the right

hand side represents the interaction processes that change the number of DM particles by

annihilation or production from the thermal bath of SM particles.

Since the DM is non-relativistic, a power series expansion of 〈σv〉 in terms of the charac-

teristic DM speeds v is appropriate. To simplify the calculation, we will assume that the DM

annihilation proceeds through an s-wave process, therefore having a 〈σv〉 that is independent

of v and, consequently, of the temperature. Rather than considering the evolution of the DM

density with cosmic time, it is useful to use entropy conservation to consider the evolution

of the variable Y = n/s with respect to the temperature of the microwave background. If
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the DM particle has mass m, we further introduce x = m/T to obtain

dY
dx = −〈σv〉s

Hx

(
Y 2 − Y 2

eq

)
. (1.16)

We now define ∆ = Y − Yeq and assume that the particle is non-relativistic so that Yeq ∝

x3/2e−x [16]. Going through with the algebra leads to

d∆
dx = −dYeq

dx − f(x)∆(2Yeq + ∆),

f(x) ≡
√
πgeff
45

m〈σv〉
G2x2 . (1.17)

Our expectations regarding the physics of this process lead us to define a transition tem-

perature Tf , the freeze-out temperature, and a corresponding variable xf . For x � xf ,

departures from equilibrium should be small and thus we will set ∆ � Yeq and ∆′ = 0,

so ∆ ' −Y ′eq/2f(x)Yeq. On the opposite limit, with x � xf , the departure from equilib-

rium is large and ∆ � Yeq, leading to d∆
dx = −f(x)∆2. In this region, particle creation has

been Boltzmann-suppressed since the SM particles do not have enough energy to create DM

particles, but annihilations are still important. Integrating from xf to infinity gives

1
∆∞
− 1

∆f

=
√
πg∗
45

m〈σv〉
G2xf

. (1.18)

Two approximations may now be made: ∆∞ ' Y∞, since Y∞ � Yeq (Yeq is exponentially

suppressed, while Y is freezing out), and Y −1
∞ � ∆−1

f . This last approximation comes from

the physical fact that annihilations will still be important for sometime after freeze-out,

leading the abundance of DM to be suppressed from that at freeze-out. Using the definition

of Y and ρDM = mn, we now find [21]

ΩDMh
2 = 3× 10−27cm3s−1

〈σv〉
= 2.5× 10−10GeV−2

〈σv〉
, (1.19)
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The cross-section required to get the observed relic abundance is in the order of magnitude

of what is expected of weak-scale processes, and it motivated the search for DM particles

in the GeV-TeV mass scale with weak-scale couplings, known as weakly interacting massive

particles (WIMPs). Such particles would become non-relativistic early in the history of

the universe, fitting nicely with the cold DM paradigm that is obtained from cosmology.

Moreover, heavy particles with order weak-scale couplings arise naturally in supersymmetry

(SUSY), which has been a popular theoretical model for extending the SM.

Supersymmetry’s popularity stems from a few reasons: its non-renormalization theorem

allows it to solve the hierarchy problem coming from the separation of scales between the

higgs boson mass and the scales at which we expect the SM to require completion, say, from

quantum gravity. This scale separation is not radiatively stable [22], so if we envision the SM

as an effective field theory, some mechanism is necessary to make sure that the higgs mass

has the proper value. As mentioned previously, SUSY introduces natural candidates for the

DM. In the context of grand unification, SUSY is also popular as the SM gauge couplings

come closer to having a common value at high energy scales in models with SUSY than in

those without.

1.2.1.2 Supersymmetry

In Chapter 3, we will show how specific models of particle dark matter can be constrained

in the context of SUSY. Thus, we introduce some of the basic language in this section.

A supersymmetry is a hypothetical correspondence between a fermionic and a bosonic

particle. If our universe had unbroken supersymmetry, every fermion of the SM, such as the

electron, would have a scalar partner. These are generally referred to as sfermions: squarks,

sleptons, sneutrinos. Gauge bosons would have spin 1/2 partners named gauginos: photino,

gluino, wino, and bino. The superpartner of the higgs boson is named the higgsino. Formally,

a supersymmetry is a continuous symmetry of the S-matrix [23]. Since this transformation

is continuous, it may be described by infinitesimal generators satisfying certain algebraic
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relations.

Since supersymmetry transformations map a bosonic degree of freedom into a fermionic

one, and vice-versa, the supersymmetry generators must have angular momentum and, there-

fore, transform non-trivially under the Lorentz group. The transformations are generated

by a pair of spin 1/2 operators Qα, Q
†
α̇, where undotted(dotted) indices indicate left(right)-

handed spinors [24], which satisfy the following algebraic relations

{
Qα, Q

†
α̇

}
= −2σµαα̇Pµ, {Qα, Qβ} = 0,

{
Q†α̇, Q

†
β̇

}
= 0

[Qα, P
µ] = 0,

[
Q†α̇, P

µ
]

= 0, [Qα, J
µν ] = i

4(σµσ̄ν − σν σ̄µ)βαQβ[
Q†α̇, J

µν
]

= − i4(σ̄νσµ − σ̄µσν)β̇α̇Q
†
β̇

(1.20)

with σµ = (I,σ) and σ̄µ = (I,−σ). This supersymmetry algebra, which is not the most

general one, is known as N = 1 SUSY. Supersymmetry transformations can be represented

as translations in superspace, an extension of spacetime with extra fermionic coordinates

θα, θ
†
α̇ [25]. To construct a field theory in superspace, one proceeds much like in the case of

a regular field theory: the “elementary” degrees of freedom are the ones that that transform

irreducibly under supersymmetry, and additional internal symmetries, like gauge symmetries,

may be imposed in the lagrangian.

Once this is done, the action can be written as the integral of a superspace lagrangian

S =
∫

d4x d2θ d2θ† L(x, θ, θ†). The fermionic integrals immediately lead to the usual four-

dimensional lagrangian for the particle degrees of freedom contained in the supermultiplets.

To construct the simplest supersymmetric extensions of the SM, two types of supermultiplets

are necessary: the chiral supermultiplet, which consists of a complex scalar and a Weyl

fermion, and the vector supermultiplet, comprised of a Weyl fermion and a massless vector.

Note that these degrees of freedom correspond to those of massless particles. Except for the

Higgs field, the SM Lagrangian is built up from massless particles, electroweak symmetry

breaking being required for mass generation. Usage of these supermultiplets is therefore
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consistent with how we think of the SM “prior” to electroweak symmetry breaking.

In the Minimal Supersymmetric Standard Model (MSSM), the left-handed doublets such

as the lepton multiplet (νL, eL) become a doublet of chiral supermultiplets, and the right

handed eR become part of a different chiral supermultiplet. Thus, each lepton family in the

MSSM is accompanied by three new complex scalars, and each quark family is accompanied

by four. This is necessary for the superpartners of the SM particles to have the same number

of degrees of freedom as the SM fermions: the doublet (νL, eL) has four degrees of freedom,

and the singlet eR has two. Each complex field has two components, and that matches the

fermions degrees of freedom.

In a sense, then, the charged leptons of the SM have two superpartners, but this is only

because we think of the SM fermions in terms of their Dirac spinors and not in terms of the

“more fundamental” chiral structure.

Supersymmetric models have been extensively studied phenomenologically both from

the particle physics and the cosmology sides. In our work, we will consider one of many

theoretical constraints, vacuum stability, in a region of supersymmetric parameter space

that was experimentally motivated [26]. The problem of vacuum stability may be stated as

follows: in a theory with several scalar fields φi, the hamiltonian contains a potential V (φi)

that may have several extrema. If the fields are not varying spatially, as should be expected

in a homogeneous universe, the ground state of our theory (the vacuum state) corresponds

to the global minimum of this potential. The values φi of the fields at the vacuum state are

known as vacuum expectation values. In the SM, the W and Z fields obtain their masses

from the vacuum state of the higgs field not being the trivial h = 0 state. More explicitly, if

we introduce a higgs field that transforms in the doublet representation of the SU(2)L group
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of the SM, the lagrangian contains the terms

Lhiggs =(DαH)†DαH + µ2H†H − λ
(
H†H

)2
, (1.21)

Dα =∂α − ig
σi
2 W

i
α −

ig′

2 Bα, H =

H+

H0

 , (1.22)

where W i, B are the gauge bosons of the SU(2)L and U(1)Y groups, respectively. The W

bosons are (W 1 ± iW 2)/
√

2, and the photon and Z boson are the fields

Aα = cos θWBα + sin θWW 3
α

Zα = − sin θWBα + cos θWW 3
α, (1.23)

with θW the Weinberg angle such that tan θW = g′/g. From the lagrangian, we see that

the higgs potential is V (H) = −µ2|H|2 + λ|H|4, which has a non-trivial minimum at |H| =

µ/
√

2λ ≡ v/
√

2. Using the gauge symmetry of the theory, we can choose our vacuum state

to have a zero “spin-up” component and a purely “spin-down” component. Evaluating the

covariant derivatives in Lhiggs at this minimum gives

H = 1√
2

0

v

⇒ LHiggs = 1
2

(
gv

2

)2
W †
αW

α + 1
2

(√
g2 + g′2v

2

)2

ZαZ
α + constant. (1.24)

These quadratic terms in Lhiggs are masses for the W and Z bosons, and we see that the

photon field remains massless. Furthermore, the Fermi constant, which can be measured

in nuclear processes involving beta decay, is uniquely determined by v as GF = 1/(
√

2v2).

We see that the vacuum structure of the SM is linked to observable quantities, and its

determination is therefore more than just an academic exercise.

This tight link between vacuum expectation values and observable quantities allows to

understand why the introduction of more scalar fields, as in the case of SUSY, can be

problematic. The scalar potential, which is quartic in the fields, can now have many minima
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other than the one with |H| = v/
√

2. It may be the case that one of these potential minima

in the now multidimensional field space has a lower energy than the minimum in which the

W and Z bosons have their correct masses. This is not acceptable because, as the universe

cools during its expansion, the fields in the theory should settle down to their vacuum state.

It is therefore necessary that the vacuum state describe the physics we observe.

Investigating vacuum stability in supersymmetry is a non-trivial task due to the presence

of several scalar fields. We will therefore make several simplifying assumptions to reduce our

problem. If any colored or charged particles acquire a vacuum expectation value, this would

break the SU(3) and U(1) symmetries of the SM, violating color and charge conservation.

We will therefore assume that the charged sfermions do not acquire an expectation value.

We will also impose that the sneutrinos do not acquire a VEV, and thus we will restrict our

analysis to the higgs sector.

The higgs sector of the MSSM contains two higgs doublets due to holomorphicity re-

quirements of the superpotential function, which determines the fermionic mass matrices of

the theory [25]. This means that the lagrangian terms ΨL(iσ2H
∗)ΨR + h.c. that are used in

the quark mass matrix will not be allowed, since the complex conjugate of a field is present.

With two higgs doublets, defined as

Hu =

h+
u

hu

 , Hd =

hd
h−d

 , (1.25)

SUSY models now have at least twice as many higgs degrees of freedom as the SM. As in

the case of the SM, electroweak symmetry breaking implies that 3 of these (say, the charged

and pseudoscalar components of Hd) “go into” the longitudinal degrees of freedom of the

W and Z bosons. We are still left with 5 degrees of freedom: two neutral scalars hu, hd, a

charged component H±, and a pseudoscalar component denoted as A0. None of these are

usually taken to get vacuum expectation values: H± violates charge conservation, and A0

violates CP. The scalar potential of the MSSM is therefore taken to be a function V (hu, hd).
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In Chapter 3, we will consider the vacuum stability of the Next-to-Minimal Supersym-

metric Standar Model (NMSSM), which adds one scalar supermultiplet to the MSSM. The

scalar in this supermultiplet will be allowed to obtain an expectation value, making our

problem three dimensional. There, we will deal not only with the higher dimensionality of

the problem, but also with radiative corrections, which make the potential non-polynomial

and introduce challenges in identifying all extrema.

1.2.2 Primordial Black Holes

In the standard cosmological model, the structures that we observe in the universe like galax-

ies, clusters, and superclusters, form from the gravitational collapse of primordial density

fluctuations. This structure formation is hierarchical: smaller scales collapse first, and then

larger structures are formed from smaller ones.

Within this context, it is natural to ask if a given perturbation could collapse all the

way down to a black hole. Provided that a density fluctuation is large enough, the answer

is affirmative [27]. The black holes formed through this mechanism are a particular case of

what is known as a primordial black hole (PBH), a black hole formed in the early universe,

not originating from stellar evolution. There are many different ways in which PBHs can

form: see, for instance, [28] for a proposal linking PBHs and axions. To get an idea for how

such a black hole might be formed and what mass it may have, we will focus on the idea of

a collapsing overdensity, as that is the simplest formation process.

The basic idea is to study a perturbation on scales that are larger than the Hubble horizon

size (any given perturbation satisfies this at some point in time [29]). Causal processes

do not act on regions larger than the horizon, and this perturbed region may therefore

be modeled as a separate, closed universe. We will not question how these perturbations

are set up, although we point out that inflationary models can account for them [30]. As

we will see, these perturbations grow in time. However, once the universe has expanded

sufficiently so that causal processes can act on scales of the size of the perturbation, we must
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consider mechanisms that prevent the overdensity from collapsing, like pressure support.

This effectively defines a Jeans length [31] ΛJ , and only perturbations in scales L > ΛJ

collapse. As we will show, this implies a lower bound on the overdensities that can form

PBHs.

The separate universe’s expansion is given by the Friedmann equation with curvature

H2 + K

a2 = 8πG
3 ρ, (1.26)

ρ being the total density. At this point, we must make a choice: the scale factor for a

closed universe has dimensions of length, whereas that for an open universe is dimensionless.

Ultimately, all that matters is that K/a2 has the correct units, so instead of taking K = 1 as

is usally done for a closed universe, we will take the curvature to be dimensionful and keep

a dimensionless. This also emphasizes that the induced curvature in the overdense region is

a perturbation, as we will see that it can be linked to the density contrast δ ≡ (ρ− ρ̄)/ρ̄, ρ̄

being the density in the unperturbed region. To forge this link, assume that at some time H2

is equal in the perturbed and unperturbed regions, and that their scale factors are similar

[29]. Using the Friedmann equation for the unperturbed universe then gives.

δ = K

a2H2
unperturbed

. (1.27)

Since H2 ∼ a−4 in the radiation dominated epoch, we see that the density contrast grows

as the universe expands. A positive curvature Friedmann universe begins collapsing when

K/a2 = 8πGρ/3. Substituting K/a2 for δ, we see that this corresponds to δ = 1. For

this perturbation to actually collapse, however, it must not be erased by the pressure. This

means that the overdensity must extend to length scales larger than the Jeans length of

the universe at the time collapse begins (when δ = 1). The Jeans length may be estimated

classically by comparing the time a pressure wave with speed cs moves through a system of

length Λ, tpres, with the time it would take for the a particle at the edge of this system to
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freely fall to its center, tfall. We may estimate tpres = Λ/cs, and tfall ' (Gρ)−1/2 ' H−1. For

the fluctuation to collapse, we then require tfall > tpres ⇒ Λ > ΛJ = csH
−1. In the radiation

dominated era, c2
s = 1/3.

To connect this with the density power spectrum (loosely defined here as the Fourier

transform of the density contrast), consider the fluctuation δ as having an associated co-

moving momentum scale k. The physical length scale associated with k is a(t)/k. In order

for the collapse to happen, this length scale must be greater than the Jeans length of the

background universe csH−1. If the physical length scale is equal to the Jeans length and has

δ = 1 at the collapse time tc, we find

c2
sk

2 = H2a2(tc) = K. (1.28)

This gives us the condition for the PBH to be formed. This can be translated into a require-

ment on the fluctuation δ when the length scale a(t)/k crosses the horizon at the time tk

such that a(tk)/k = H−1. Using Eq. (1.27), we find

δ(k, tk) = K

H2a2 = c2
sk

2

H2a2 = c2
s. (1.29)

Therefore, perturbations with δ(k, tk) > c2
s collapse into PBHs. This condition is more useful

since, if a model for the density perturbations is given, we now know exactly which (and how

many, if we have the distribution of fluctuations) overdensities will form black holes. This

picture also gives us an idea of the mass of the BHs that are formed. Since the fluctuations

must persist on length scales of order H−1, the particle horizon size, the mass of the PBHs

will be of order the horizon mass

MPBH ∼ 1015g
(

t

10−23s

)
∼ 105M�

(
t

1s

)
. (1.30)

We see from the above equation that by tuning the formation time of the PBHs, they can
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be produced with any mass. In particular, LIGO observations of black hole mergers from

BHs with masses of ∼ 30M� raised the possibility that these may be primordial [32]. This

is because, although these large masses are not impossible to obtain from stellar evolution,

they are rare. An appealing hypothesis, then, given the several null results of experiments

trying to detect particle DM, is that these BHs are both primordial and compose the dark

matter in the universe.

One problem with this idea is that observations of the microwave background show tem-

perature fluctuations on the order of ∆T/T ∝ ∆ρ/ρ ∼ 10−5. If the fluctuation spectrum

is scale invariant, which is motivated by the simplest inflation models, as well as gaussianly

distributed, large density contrasts ∼ 1/3 will be exceedingly rare. That said, it is possible

to construct models that are experimentally viable and achieve this [30].

Currently, there are a variety of experimental constraints on the fraction of DM that is

allowed to be PBHs as a function of the PBH mass. These comprise a wide variety of physical

phenomena, such as contributions to background radiation from Hawking evaporation and

disruption of binary stellar systems from three-body encounters. Such constraints typically

assume a monochromatic black hole mass spectrum, and they rule out primordial black holes

as being 100% of the DM. The situation is less clear-cut, however, if one assumes an extended

mass spectrum. Even if PBHs are not all of DM, their existence could still alleviate some of

the problems with structure formation in the standard cosmology [33].

1.2.3 Caveats

In the previous two sections we presented two very distinct candidates for the composition

of DM. That such large uncertainties are present as far as the mass scales and interactions of

DM particles are concerned stems from the fact that, as soon as the assumption of thermal

equilibrium is dropped, many of the constraints from cosmology can be evaded.

For instance, the free-streaming length for light particles that are in thermal equilibrium

with the SM seems to put a strong lower bound on the particle mass. However, the infor-
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mation that this truly provides is that the dark matter is cold. This means that particles

that are not in thermal equilibrium with the SM can evade this bound by becoming non-

relativistic in another way. As an example that has received theoretical attention recently,

a scalar field can behave as pressureless matter regardless of the mass of its quanta. To see

this, let’s consider the lagrangian for a free scalar

L = −1
2∂

µφ∂µφ−
1
2m

2φ2. (1.31)

The energy momentum tensor of this field is given by T µν = ∂µφ∂νφ + gµνL. If we assume

the field to be homogeneous, ∂iφ = 0, we obtain the energy-momentum tensor of a perfect

fluid, with density and pressure given by

ρ = 1
2 φ̇

2 + 1
2m

2φ2; p = 1
2 φ̇

2 − 1
2m

2φ2. (1.32)

In the FRW metric, the Euler-lagrange equation [15] for the homogeneous field reads

∇µ

(
∂L

∂φ,µ

)
= ∂L

∂φ

⇒ φ̈+ 3Hφ̇+m2φ = 0, (1.33)

with ∇µ the covariant derivative and φ,µ = ∂µφ. A homogeneous scalar field therefore

evolves like a damped harmonic oscillator. During both the matter dominated and radiation

dominated eras, the Hubble parameter satisfies H = bt−1. In this case, the differential

equation is a modified Bessel equation, with the explicit solution

φ(t) =(mt)(1−3b)/2
(
c1J(1−3b)/2(mt) + c2Y(1−3b)/2(mt)

)
∼ φ0

(mt)−3b/2 cos(mt− ϕ),mt� 1 (1.34)

where ϕ is a phase. The late time evolution of the field is therefore quite simple and, to
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leading order, the energy density scales as t−3b. From the definition of H, H = bt−1 implies

a ∝ tb. Therefore, the energy density of this field scales as a−3, as expected of cold DM.

Furthermore, the pressure is proportional to cos(2mt) to leading order. Since mt � 1 at

late times, it is reasonable to average the pressure over a period of oscillation of the field,

τ = m−1, which implies that the observed averaged pressure is zero. Again, this is just as

expected of cold DM. To get a feeling for what “late time” means (t� m−1), we note that

m−1 is 1s for a mass m = 4.5× 10−15eV . Only for an exceedingly light particle, then, would

we not satisfy the condition t� m−1 in cosmological timescales.

This is an example of a (rather contrived) way to have a DM particle that is light but

still behaves like pressureless matter in cosmological scales. There are many subtleties that

we are overlooking here, such as the appropriateness of the classical description or how the

initial value of the field could be set up such that the current energy density corresponds

to the observed value of the DM density. However, we point out that in realistic axion

models physical processes similar to the one described here are at play and these difficulties

can be overcome, making axions a viable dark matter candidate [34, 35]. The point of this

discussion is simply to emphasize that there is still much that is not known about the nature

of DM and the cosmological data avaiable can still be explained by a wide variety of models.

1.3 Supermassive Black Holes at the Centers of

Galaxies

It is currently accepted that most galaxies contain a black hole at their center. The history

of these detections dates to the discovery of the first quasars (see [36] for a review) that had

spectral variability on timescales of days or weeks. These timescales imply that these objects

must be at most light-day or light-week sized (1 light day ∼ 10-3 pc). Early attempts at

model building (see [37] for an early review and derivation of accretion efficiencies) quickly

converged on models of galactic nuclei being powered by very massive black holes. Models
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of accretion and direct observation of the nuclear regions of nearby galaxies have somewhat

confirmed these expectations.

For nearby galaxies, the observational goal is mostly straightforward. A point-like new-

tonian mass M generates a potential Φ(r) = −GM/r, and the only velocity scale present

in this problem is vc =
√
GM/r. Thus, direct observation of stellar or gas dynamics in

the nuclear region of a galaxy can reveal the presence of a black hole if a “keplerian rise”

v ∝ r−1/2 is revealed in the data. This is seemingly simple until it is realized how small most

black holes are in the scale of galaxies. The Schwarzschild radius of a spherical black hole

of mass M is given by

rs = 2GM = 1.98× 10−7pc
(

M

4× 106M�

)
. (1.35)

For reference, the OSIRIS camera at Keck observatory can only resolve distance scales

of about 7× 10−4pc. This means that galactic black holes are not resolvable by telescopes,

and must be detected indirectly. That said, due to the black hole’s immense mass, its

gravitational effects are still important at a scale rh > rs, known as the black hole’s influence

radius. Using the above ideas of v2 ∝M/r, rh is defined as

rh = GM

σ2 , (1.36)

where σ is the velocity dispersion observed for a population of stars, gas, etc.

Ignoring radial components to the velocity, σ2 ' 2v2
c , so we see that the radius of influence

roughly defines the distance at which the enclosed mass is twice the black hole mass. For

the black hole at the center of our galaxy, rh ' 2pc, meaning that the influence radius of

the central black hole is very well resolved. In fact, a complete orbit of a star around the

central mass has been observed, which has provided a very precise estimate of M for the

Milky Way’s central black hole [38].

In nearby galaxies, where individual orbits cannot be tracked but stellar motions can
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still be measured, the velocity profile measured, say, by the Doppler broadening of emission

lines, can still be used to model the presence of a black hole [36]. For spherically symmetric

systems, the Jeans equation [31] gives

GM(r) = v2
cr + σ2

rr

[
−d log ρ

d log r −
d log σ2

r

d log r −
(

2− σ2
t

σ2
r

)]
. (1.37)

In the above equation, M(r) is the enclosed mass a distance r from the center of the

galaxy, vc is the circular velocity, ρ is the density of the observed population, and σr, σt

are the radial and tangential components of the velocity dispersion. If it is possible to

observationally determine all of the terms in the previous equation, then a model forM(r) can

be constructed and a black hole might be detected by looking at the limit of M(r) for small

r. If one assumes that the velocity distribution is completely isotropic, then the tangential

velocity dispersion satisfies σ2
t = 2σ2

r , and the above equation simplifies. Furthermore, only

one component of the velocity need be observed, and the line of sight velocity dispersion

can be obtained by looking at how stellar light is doppler shifted. This was used early on

to establish evidence for an SMBH at the center of M87 [39]. More recently, models that

drop the assumption of spherical symmetry have been developed that generalize these ideas

and provide mass models for galaxies, also being able to detect the presence of SMBHs [40].

Currently, SMBHs in the mass range (106 − 1010)M� have been detected.

For distant galaxies, where rh cannot be observed, even more assumptions are necessary

to derive a black hole mass. A typical method is reverberation mapping [41], which uses

the idea that galactic nuclei are powered by accretion to link correlations in the continuum

emission from the nuclear region —which should come from the accretion disk —to variations

in broad line emission from surrounding cooler gas. Using these correlations to estimate the

size of the broad line region, and further assuming that it is virialized, allows for an estimate

of the mass of the black hole once velocity dispersions are obtained from Doppler widths.

Such a wealth of observations has revealed correlations between properties of the central
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black hole and the host galaxy, such as the relation between black hole mass and velocity

dispersion determined in [42]. These have led to the idea that central black holes evolve

jointly with their host galaxies. This is still a topic in which active research is being made,

and this thesis only intercepts that in the sense that we will be investigating a potential

connection between central black holes and their surrounding DM halos.

1.4 Adiabatic Density Cusps Around Black Holes

Although the formation of galactic black holes is not completely understood, estimates of the

timescales for its growth [43] imply that supermassive black holes (SMBH) of mass similar

to that of the one at the center of the Milky Way could be formed in 107 to 108 years.

Taking a DM velocity dispersion of ∼ 30km/s in the central region, which is about 2pc in

size, we see that orbital timescales are much smaller than the timescales in which the SMBH

is growing. Thus, we may consider that the SMBH grows adiabatically, and particle orbits

can instantaneously adjust to the growing SMBH mass.

As first explored by Peebles [44], this slow growth of the black hole meant that even an

initially cored profile with a finite central density could evolve into a singular density cusp

after the growth of the black hole. The resulting density cusp was first considered as a way

to identify the presence of a black hole at the center of a galaxy or globular cluster through

its influence in the surrounding stellar population.

Peebles argued that density cusps could be identified as point sources in photographs of

increasingly shorter exposure of galaxies, and, in the absence of a signal, one could constrain

a central mass by the camera’s ability to resolve the black hole’s radius of influence. Quan-

titavely, what was shown was that a central stellar core would be turned into a cusp with

slope 3/2, a result later strengthened by Young [45] in a self-consistent calculation.

The presence of a cusp, however, is not enough to identify the presence of a black hole.

There are self-consistent density profiles that have density cusps and can be supported by a
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collisionless system, for instance those that are parameterized by the Zhao functional form

[46]

ρ(r) = ρ0

(
R0

r

)γ[1 + (R0/a)α
1 + (r/a)α

](β−γ)/α

. (1.38)

As was pointed out by Quinlan et al. [47], these cusps can be dramatically enhanced in

the presence of a slowly growing black hole, and it is difficult to observationally disentangle

the origin of the cusp. Although the influence of a central BH in a stellar population might

be hard to pinpoint, Gondolo and Silk [1] (GS) argued that its impact on the surrounding

dark matter could be detected if DM particles interact with the SM.

That is because the observed flux of energetic particles such as gamma rays produced from

these interactions scales with
∫
ρ2 ds, where the integral is done over our line of sight to an

observation point. Therefore, if DM particles can annihilate into SM particles, the presence

of the spike would give rise to an observable particle flux that could not be explained by

the surrounding stellar population. If the profiles obtained from simulations (which work

only at large distances from the center of the galaxy) are to be trusted, then we can expect

the DM halo to be described by the Navarro, Frenk, White (NFW) profile [12], obtained by

setting (α, β, γ) = (1, 3, 1) in Eq. (1.38). This “cuspy” profile (ρ ∝ r−1 as r → 0) becomes

even cuspier if adiabatic growth holds (ρ ∝ r−2.33), which would make the GC a bright point

source for gamma rays.

The GS spike produces annihilation fluxes that are dominated by regions having a size of

a few tenths of the central BH’s gravitational radius [1, 48]. This makes these spikes sensitive

to the effects of general relativity (GR), which is the main focus of this thesis. It must be

pointed out, however, that the GS spike is very fragile, and its presence corresponds to the

most optimistic scenario in which we could observe DM annihilations.

This is because, as explained in [47], the presence of an adiabatic spike hinges on an

abundance of cold orbits that are deeply bound to the black hole. Any disturbances, such

as mergers [49], scattering from stars [50], or an initially off-center seed black hole [43] can

kick out these cold particles and prevent the spike from being formed. In particular, the

31



Chapter 1. Introduction

original GS application to our galactic center (GC) has already been ruled out by current

observation [51], as the spike profile that would be consistent with other data would be too

bright. Although some of our motivation originated in the application to the GC, most of

the corrections that we will calculate here can be translated into a simple rescaling of a few

observable quantities, and can therefore be applied to any system where a spike is expected

to be present.
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Chapter 2

The Phase Space Formalism And

Adiabatic Invariance

This chapter studies the phase space distribution of a system of collisionless particles in a

Kerr metric background. The idea is to generalize the distribution f(x,p) from statistical

mechanics to a four-dimensional f(x, p). This object will then allow us to obtain a phase

space distribution f (3)(xu,pu) measured by any observer moving with four-velocity u. The

interpretation of the phase space distribution as the probability of a particle being in the

element of phase space d3xu d3pu tells us that knowledge of f (3) is all we need to calculate any

physical observable like the energy-momentum tensor of the system. Our main results in this

chapter are Eqs. (2.13, 2.20), in which we give, respectively, the mass current density four

vector and the local interaction rate per four-volume — given an interaction cross section σ

— in terms of the conserved quantities of Kerr geodesics. Our work here is a direct extension

of the calculations performed in [52] (SFW heareafter).

2.1 Phase Space Analysis for a Newtonian System

As a prelude to the relativistic calculation, we will review the calculation of a density from

a phase space distribution f(x, p) in newtonian mechanics. Due to the relationship p = mv

between the canonical momentum and the velocity in Cartesian coordinates, it is customary
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to refer to a distribution in velocity space f(x, v), which we will do. Although this object

has a probability interpretation, instead of normalizing it to 1, we will normalize it to the

total mass of the system. Therefore, the mass density is given by

ρ(x) =
∫

d3v f(x, v). (2.1)

Even though the components of the velocity are not coordinates in phase space, this object

is also referred to as a phase-space density or a phase-space distribution function. We will be

interested in time-independent density profiles, which constrain the function f(x, v) to be a

function of the constants of the motion for orbits in the gravitational potential it generates,

a result known as the Jeans theorem [31]. These conserved quantities are, for a spherically

symmetric system

L = x× v, (2.2a)

E = 1
2v

2 + Φ(r), (2.2b)

where r = |x|. From this point forward, we will only consider non-relativistic systems that

are spherically symmetric. This implies that the distribution function can only depend on

E and L, which are invariant under rotations. Changing our phase space coordinates from

(vr, vθ, vφ) to (E,L, Lz) allow us to simplify Eq. (2.1). The components of the velocity in

spherical coordinates are related to the conserved quantities by

vr = ±
√

2(E − Φ(r))− L2

r2 , (2.3a)

vθ = ±1
r

√
L2 − L2

z

sin2 θ
, (2.3b)

vφ = Lz
r sin θ . (2.3c)
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In the above equation, vθ = v · θ̂, vφ = v · φ̂ , instead of θ̇, φ̇ as is usual in relativity. We

do this so that the volume element d3v = dvr dvθ dvφ. The Jacobian matrix ∂(vr,vθ,vφ)
∂(E,L,Lz) is

triangular, so its determinant j can be straightforwardly calculated, and we obtain

j = L

r2 sin θ
√

2(E − Φ(r))− L2/r2
√
L2 − L2

z/ sin2 θ
. (2.4)

Because of the ± in Eqs. (2.3a, 2.3b), each triad (E,L, Lz) corresponds to 4 velocity vectors.

Therefore, to properly integrate over velocity space, we must use 4j instead of j once we

have performed the change of variables in Eq. (2.3). The integration limits are obtained by

requiring that the velocity components are real, and we will also assume that only bound

(E < 0) orbits contribute to the density. The Lz integral may be immediately performed,

giving a factor of π, and we obtain

ρ(r) = 4π
r2

0∫
Φ(r)

dE
r
√

2(E−Φ(r))∫
0

dL Lf(E,L)√
2(E − Φ(r))− L2/r2

. (2.5)

If the velocity distribution is also isotropic, then f can only depend on v, and it will therefore

have no L dependence. The L integral may then be performed, giving

ρ(r) = 4π
∫ 0

Φ(r)
dE f(E)

√
2(E − Φ(r)). (2.6)

In this very special case, Eddington’s method [31] allows us to obtain f(E) directly from the

density profile ρ(r) in a way that is consistent with Poisson’s equation ∇2Φ(r) = 4πGρ(r).
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2.2 Phase Space Distributions in a Relativistic

Background

The phase-space formalism can be applied in GR with only slight modifications to the New-

tonian calculation: a phase space distribution f (4)(x, p) can be defined without any issues,

but the scalar character of the distribution [53] means that some care must be taken in trying

to extract a frame-dependent quantity such as a density from it. The proper way to do this

is by defining a mass-current density 4-vector

Jµ(x) =
∫

d4p
√
−gf (4)(x, p)uµ, (2.7)

where the √−g factor means that we are integrating over contravariant momentum compo-

nents [54] and uµ = pµ/mχ, mχ being the mass of the DM particle. Throughout this work, we

will consider a single species of dark matter, which implies that our phase-space distribution

will only be non-zero for momenta satisfying the mass-shell condition µ̃ ≡ √−gµνpµpν = mχ.

In order to connect with the non-relativistic formalism, we will define

f (4)(x, p) = µ̃−3f(x,p)δ(µ̃−mχ), (2.8)

where p refers to the spatial components of the momentum in a given coordinate system.

This makes it so that the phase space distribution we are defining here has the same units

as the non-relativistic f(x, v), so the relativistic phase space distribution is also normalized

to a mass (see Sec. (2.4) for a more precise definition). We now specialize these definitions

to the Kerr metric in Boyer-Lindquist coordinates, which is given by

ds2 =−
(

1− 2Gmr
Σ2

)
dt2 + Σ2

∆ dr2 + Σ2 dθ2 − 4Gmar
Σ2 sin2 θ dφ dt

+
(
r2 + a2 + 2Gmra2 sin2 θ

Σ2

)
sin2 θ dφ2 . (2.9)
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Here, m is the mass of the black hole, a = J/m, where J is the hole’s angular momentum,

and we have introduced the functions ∆ = r2 + a2 − 2Gmr and Σ2 = r2 + a2 cos2 θ. We

will also define α = a/Gm, a dimensionless Kerr parameter that satisfies 0 ≤ α ≤ 1. The

DM distribution is also a source of gravitational potential, and we should look for self-

consistent solutions of Einstein’s equations including both the BH and the DM. However,

within the radius of influence of the BH, the contribution of the DM to the gravitational

field is negligible and, as such, we are allowed to use the Kerr metric as a fixed background

for our phase space integrations.

Just as in the non-relativistic formalism, if our phase space distribution is to describe an

equilibrium system, it may only depend on constants of the motion. Thus, we will perform a

similar change of variables as was performed in Eq. (2.3) to write the components of the four-

velocity in Boyer-Lindquist coordinates in terms of the conserved quantities. For geodesics

of the Kerr spacetime this is possible as there are four constants of the motion: the specific

energy E , the specific angular momentum Lz, the rest mass µ̃ and the Carter constant C,

which is related to the total angular momentum in the limit a → 0 [55, 52]. The change of

variables reads

E ≡ −ut = −gttut − gtφuφ, (2.10a)

Lz ≡ uφ = gφφu
φ + gtφu

t, (2.10b)

µ̃ ≡
√
−gµνpµpν , (2.10c)

C ≡ Σ4(uθ)2 + L2
z

sin2 θ
+ a2 cos2 θ(1− E2). (2.10d)

Using these definitions, we can convert the momentum space volume d4p to the integration
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volume dE dLz dC dµ̃ by calculating the inverse jacobian J −1

J −1 =
∣∣∣∣∣ ∂(E , Lz, C, µ̃)
∂(pt, pr, pθ, pφ)

∣∣∣∣∣ = µ̃−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−g00 0 0 −gtφ
∂C
∂u0 0 2Σ4uθ ∂C

∂uφ

gtφ 0 0 gφφ

E −ur −uθ Lz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

= −2Σ4∆uruθ sin2 θ

µ̃3 (2.11)

In order to use this expression, we need to manipulate Eqs. (2.10) to find ur, uθ, which are

given by

ur = ±r
2

∆V (r)1/2, (2.12a)

uθ = ±Σ−2
√
U(θ), (2.12b)

V (r) =
(

1 + a2

r2 + 2Gma2

r2

)
E2 − ∆

r2

(
1 + C

r2

)
+ a2L2

z

r4 −
4GmaELz

r3 , (2.12c)

U(θ) = C − L2
z

sin2 θ
− a2 cos2(1− E2). (2.12d)

An important observation is that −V (r) is analogous to the effective potential from classical

mechanics, but with 0 total energy. This identification allows us to qualitatively understand

the radial motion of a Kerr geodesic by looking at a plot of V (r).

As in the newtonian case, the ± above implies that each set (E , C, Lz) is related to four

different 4-momenta. Thus, when we change variables from pµ to (E , C, Lz, µ̃), we must add

a factor of 4 to our result. To obtain a final expression for the currents, we use the fact

that √−g = Σ2 sin θ, and then plug in Eq. (2.8) into Eq. (2.7), using the jacobian and the

four-velocities given in Eqs. (2.11) and (2.12).

The Jr, Jθ components will be identically zero due to the fact that the positive ur, uθ

contributions in the integral have the exact same weights as the negative contributions. For

a Schwarzschild black hole, V (r) is independent of Lz, and Jφ is also zero by parity. For
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the Kerr metric, this is no longer the case, and the Jφ component will be non-zero. We can

interpret this as the “frame-dragging” induced by the spinning black hole. The non-zero

components J(t,φ) are given by

J(t,φ) = 2
r2 sin θ

∫
dE dC dLz

u(t,φ)f(E , C, Lz)√
V (r)U(θ)

. (2.13)

Our calculations in this chapter and the following chapters will all be performed in Boyer-

Lindquist coordinates. Since this is not a familiar coordinate system, some expressions that

we will derive in this section, like Eq. (2.20), seem rather involved. To make the derivation

of these expressions more palatable, we will use two ideas. The first is that we can locally

define any observer by a time-like vector nµ that is normalized: n2 = −1. This is just the

observer’s four-velocity at a given point. The second is that some of the frame dependent

quantities may be expressed as scalars if we make the frame dependence explicit.

As an example, given the mass current four-vector Jµ, the “observer nµ” measures a DM

density ρ(n) = −Jµnµ. Thus, if we have Jµ and nµ in Boyer-Lindquist coordinates, we know

the density observed by nµ. There is a special observer tµ that moves with the average

velocity of the DM distribution. The frame moving with velocity tµ is the rest frame of the

DM. We will refer to the density in that frame as ρ, without any four-vector attached to it.

By definition, Jµ = ρtµ, from which we obtain ρ =
√
−J2. In Boyer-Lindquist coordinates,

introducing Ω ≡ Jφ/Jt, the rest frame density is given by

ρ = |Jt|
√
gφφ − 2gtφΩ + gttΩ2

∆ sin2 θ
. (2.14)

To calculate more complicated observables, we need to go back to the idea that f(x, p) d4p

represents the probability that a particle is in an element d4p of momentum space and under-

stand how a given observer would define her own probability distribution having knowledge

of f(x, p). To simplify the notation, we will refer to the integrand of each current component

in Eq. (2.13) as dJµ. We can use this differential current element to define the fraction of
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particles in a given phase-space element (E , C, Lz), which is a frame-dependent probability

distribution. Since −nµ dJµ is the “differential density element” observed in the frame n, we

may define this probability distribution as

Pn(E , Lz, C) = nµ dJµ
Jαnα

. (2.15)

Although the probability distribution defined above is explicitly frame dependent, we em-

phasize that it is not dependent on any coordinate system. This is because the differential

phase space distribution f(E , Lz, C)J −1 dE dLz dC is a scalar [53]. Physically, this is just a

restatement of the fact that the constants of the motion are uniquely determined by a given

geodesic. Therefore, the above probability distribution provides the “density of particles

following a given trajectory”, which is an explicitly coordinate independent (but frame de-

pendent) quantity. With this definition, it is now straightforward to calculate averages over

phase space. For instance, if we consider quantities x1ptc(E , Lz, C), x2ptc(E , Lz, C, E ′, L′z, C ′)

that depend, respectively, on the phase space coordinates of one and two particles, their

averages will be given by

〈x1ptc〉 =
∫

dE dLz dC Pn(E , Lz, C)x1ptc(E , Lz, C), (2.16a)

〈x2ptc〉 =
∫

dE dLz dC dE ′ dL′z dC ′Pn(E , Lz, C)Pn(E ′, L′z, C ′)x2ptc(E , Lz, C, E ′, L′z, C ′).

(2.16b)

As examples of what the quantities x1ptc, x2ptc may be, x1ptc could be the kinetic energy of

a particle, and x2ptc could be a two-body collision cross-section, which depends on the center

of mass energy of the system, and therefore on a combination of the phase space coordinates

of each colliding particle. In fact, an important application of the second of Eqs. (2.16) is

the calculation of a two-body collision rate per unit four-volume of spacetime, which we will

now derive, as it will be important in later sections.

In order to make this calculation more transparent, we will go one step further than simply
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considering what an observer nµ would measure: we will also define locally flat coordinates

x = (t,x) that have as a time coordinate the proper time measured by the observer nµ. This

will allows to generalize an expression derived in flat spacetime by Weaver [56]. At a given

point, the collision rate of a pair of identical particles χ is [57]

Γ̃ = σuχnχ, (2.17)

with σ the total interaction cross section, nχ the particle number density, and

uχ =

√
(u1 · u2)2 − 1

γ1γ2
, (2.18a)

γi = −ui · n. (2.18b)

The factor uχ in the above equation is known as the Möller velocity, and it is the relativistic

equivalent of the newtonian relative velocity |v1 − v2|, and does not correspond to a physical

velocity [58]. The relative velocity vrel that one of the colliding particles sees the other one

moving with is such that
√

(u1 · u2)2 − 1 = γrelvrel. There are nχ d3x /2 pairs of particles in

a 3-volume around the spacetime point, which gives a collision rate per 4-volume

dN
d4x

=
n2
χσγrelvrel

2γ1γ2
. (2.19)

The above equation assumes that each particle in the pair has fixed four-velocities u1, u2. In

order to obtain the total event rate per four-volume, what we must do is average Eq. (2.19)

over the four-velocities of each particle in the pair. We do this by using Eq. (2.16) with

Eq. (2.19) as the observable x2ptc. We now use the expression for Pn(E , C, Lz), Eq. (2.15),

and the expressions for dJµ. Since the currents are normalized to a mass density, we also
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insert nχ = ρ/mχ, where mχ is the mass of the dark matter particle.

1√
−g

dN
d4x

= 1
2m2

χ

( 2
r2 sin θ

)2 ∫ dE dLz dC
V (r)U(θ)

dE ′ dL′z dC ′
V (r)′U(θ)′ f(E , Lz, C)f(E ′, L′z, C ′)σ(γrel)γrelvrel,

(2.20)

where we have now inserted a factor of (−g)−1/2 —which is simply 1 in our flat coordinate

system —to allow x to refer to any desired set of coordinates. Since this is an event-rate

per spacetime volume, the above expression should be a Lorentz scalar, which it is since the

combination fd3p is a scalar, as pointed out previously. We display Eq. (2.20) in the above

form precisely so that the combination fd3p is easily recognizable and the formalism can be

simply transferred to other background metrics. It is important to stress, however, that our

definition of the currents, Eq. (2.7), contains a factor of √−g. This means that, in an FRW

background, for example, p would be the comoving momentum, not the physical momentum.

In general, p would be the contravariant components of the canonical momentum pµ.

2.2.1 Identifying the Integration Region

The expressions for the four-velocities in Eqs (2.12) show that, once a point (t, r, θ, φ) is

fixed, the constants of the motion (E , Lz, C) are not allowed to vary arbitrarily, just as in

the newtonian case. The components of the four-velocities must be real numbers, and we

must therefore require that V (r) ≥ 0 and U(θ) ≥ 0.

The first constraint provides an upper bound to the Carter constant C ≤ Cmax(E , Lz),

which can be interpreted physically as an angular momentum barrier: if the orbit has an

angular momentum that is too high, it must be farther away from the black hole than the

coordinate r. We will also only consider bound orbits, which implies E ≤ 1. This is different

from the non-relativistic condition E < 0 since the relativistic energy includes the total mass

mχ. Thus, if the particle is bound, the energy per unit mass E ≤ 1.

The last restriction we will impose on our integration over orbits is that only particles that

are not captured by the black hole are counted. Unlike the non-relativistic Kepler problem,
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particles with non-zero angular momentum can reach the singularity, and will therefore not

be a part of the spike, as they are captured in finite time.

We illustrate this in Fig. (2.1): decreasing the Carter constant for fixed E ,Lz takes us

from a bound orbit to a plunge orbit, which falls into the black hole. We denote this critical

Carter constant by Ccrit(E , Lz). In the Schwarzschild geometry, an explicit criterion is known

for determining whether or not an orbit plunges [52], but this is not the case for the Kerr

metric, due to the additional complexity of the potential.

Fig. (2.1) does, however, illustrate a simple method to exclude plunge orbits: we begin

by finding the location of the unstable orbit (the concave down extremum of the potential).

If that point is such that the effective potential −V (r) < 0, then, as we can see from the

figure, the particle will plunge. We therefore require V (r) < 0 at the the unstable orbit.
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Critical orbit
Plunge orbit

Fig. 2.1: A plot of Veff(r) = −V (r) vs. r/Gm with fixed E , Lz. Varying the Carter constant
separates bound and plunge orbits. The blue orbit has C=12.0(Gm)2. Decreasing
C we reach the red line showing the critical orbit with C=Ccrit, which is equal to
Ccrit = 10.3(Gm)2 in this case. For smaller C the orbits plunge into the hole, as
depicted by the dot-dashed red line with C = 9(Gm)2.

Another important point that can be uncovered from the above figure is that the orbits

are not connected, in the sense that, given (E , Lz, C), two bound orbits are actually present,
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due to a potential barrier at very small distances. This potential barrier is not physical:

orbits that are “bound” by it would always have to cross the event horizon of the black hole

[59], and should therefore be excluded as plunge orbits. To exclude these orbits, we calculate

the location runst(E , Lz, C) of the unstable orbit for each phase space point and require that

the point r at which we are evaluating the currents is such that r > runst. See Fig. (2.2) for

a graphical identification of these features.
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Fig. 2.2: A plot of Veff = −V (r). The shaded regions correspond to where the particle
is allowed to move. The unstable particle orbit at runst is shown, along with the
event horizon. This figure illustrates that, generically, the correct bound orbit
must have r > runst.

Fig. (2.3) shows a typical slice of the phase space region at fixed energy, comparing it to

the corresponding Schwarzschild case. The upper curve in that figure corresponds to V (r)=

0, and the two parabolic branches to the left and right correspond to U(θ)= 0. The bottom

curve, corresponding to the boundary of captured orbits, is in fact a double constraint: since

our criterion for a particle not to plunge is that, at the extremum point runst, for which

V (runst, E , C, Lz)′ = 0, V (runst) > 0, the separation between stable and plunge orbits occurs

whenever V (runst, E , C, Lz)′ = V (runst) = 0. Note that this orbit does not have to be located
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at the coordinate r where we are evaluating the currents. Anticipating the results that shall

be explicitly obtained further on, we note that there are two main effects to the addition

of spin to the calculation: preferential capture of counter-rotating orbits [60] and enhanced

binding of co-rotating orbits. We will show that the latter effect is dominant, which will lead

to an enhancement of the density.
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Lz/(Gm)
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Fig. 2.3: The blue region shows a phase space slice of fixed energy, E = 0.98, at r/Gm = 20
on the equatorial plane for a Kerr hole with α = 0.5. The upper dashed line
corresponds to V (r) = 0 for r = 20Gm, and the lower dashed line corresponds
to the capture condition for E = 0.98, both in the Schwarzschild case. The red-
shaded lower-left region shows the counter-rotating orbits that are lost due to
capture by the hole, which are compensated by the tightly bound co-rotating
orbits in the dark blue-shaded region.

When all four constraints are saturated simultaneously, we have an energy slice that

would consist of a single point: this is the minimum allowed energy Emin(r, θ). The four

constraints described above give us a set of polynomial equations that can be solved for a set

(Emin, Cmin, L
∗
z, r
∗
unst). We use the values of Emin and Cmin to bound our phase space region.

Since the boundaries of the integration region cannot be determined analytically, no

simplifying change of variable can be made to speed up the calculations, and we therefore
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use monte carlo (MC) integration to overcome this difficulty. Most MC integrators require

that the region be mapped into a cube, and in order to do that we use the following change

of variables

E = x+ (1− x)Emin,

C = yCmax + (1− y)Cmin,

Lz = (2z − 1) sin θ
√
C − a2 cos2 θ(1− E2), (2.21)

which maps the integration region to [0, 1] × [0, 1] × [0, 1]. Cmax is found by noting that,

from the positivity of U(θ) one obtains C ≥ sin2 θL2
z for bound orbits. Thus, substituting

Lz = − sin θ
√
C and E = 1 in the constraint V (r) ≥ 0, we find

−
(

∆− a2 sin2 θ

r4

)
C + 4a sin θ

r3

√
C +

(
1 + a2

r2 + 2Gma2

r3 − ∆
r2

)
≥ 0. (2.22)

Reversing the sign of the inequality, we find

γC − δ
√
C + β ≤ 0,

γ = r2 − 2Gmr + a2 cos2 θ

r4 , δ = 4Gma sin θ
r3 , β = 2Gm

r

(
1 + a2

r2

)
. (2.23)

The coefficient γ > 0 outside of the ergoregion, the region in which particles are forced

to spin in the direction of the SMBH’s spin [15]. We will treat points inside that region

separately. Outside of that region, the above inequality is satisfied for
√
C− ≤

√
C ≤

√
C+,

with

√
C+(r, θ) = δ +

√
δ2 + 4βγ
2γ (Gm). (2.24)

This allows us to find an upper bound for C everywhere outside the ergoregion. Inside of

the ergoregion, what bounds C is the capture condition: we may always find a plunge orbit
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with E = 1 and V (r) = 0 there, and this provides an upper bound on C.

In the Schwarzschild geometry, there is a special circular orbit at r = 4Gm which has

E = 1. This is known as the marginally bound orbit, and any particle orbit that gets closer

to the black hole than this is either unbound or a plunge orbit. The location of the equivalent

orbit in the Kerr geometry is known for equatorial orbits [61], and we can find the marginally

bound orbit for an arbitrary inclination by setting Emin(rmin(θ), θ) = 1. As in the spherical

case, any orbit with r < rmin(θ) is either unbound or a plunge orbit, which means that

the dark matter density is zero inside the surface r < rmin(θ). See Fig. (2.4) for a plot of

rmin(θ) With this information in hand, we know where the density is non-zero, as well as the

appropriate set of orbits to integrate over, and we may now begin to explore various choices

for the phase space distribution f(E , C, Lz).
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Fig. 2.4: The radial coordinate of the surface of marginally bound orbits rmin(θ) for two
values of the dimensionless spin parameter.
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2.2.2 Axial Orbits

Similarly to Newtonian mechanics, any orbit with Lz 6= 0 cannot cross the axis θ = 0. This

means that the phase space for these orbits should be effectively two-dimensional, which

simplifies calculations greatly. Moreover, since uφ = Lz, Jφ = 0 along the axis, and the

calculation of the current density is further simplified.

Using the change of variables from Eq. (2.21), we have

Jµ = 2(1− Emin)(Cmax − Cmin)
r2

1∫
0

dx dy dz uµf(E , C, Lz)√
V (r)

√
z(1− z)

. (2.25)

In the limit sin θ → 0, our change of variables forces Lz → 0 everywhere, and once that is

done the z dependence in the integral comes strictly from the factor (z(1− z))−1/2. This can

be integrated explicitly to give a factor of π. For clarity, we can now “undo” the change of

variables in Eq. (2.21) to find

Jt = −2π
r2

1∫
Emin

dE
Cmax∫

Ccrit(E)

dC Ef(E , C)√
V (r)

. (2.26)

Referring to Eq. (2.12), we see that the potential can be written as p(r)/r4, where p is a

polynomial in r. With Lz fixed to 0, there is an alternative method of finding Ccrit which

allows us to simplify the integration region: a plunge orbit has V (r) = rV (r)′ = 0, which

implies p = rp′ = 0. This condition implies that the polynomial p(r) has a double root,

further implying that its discriminant vanishes. Setting the discriminant to zero gives a fifth

order polynomial equation in C, which can be solved numerically. In general, this equation

will have 3 positive roots, corresponding to the three extrema of the potential that can be

set to 0 potential. The second largest root is the one that sets the unstable orbit to have

V (r) = 0, and thus this gives us a method to find Ccrit(E). This allows a further change of
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variable

E = x+ (1− x)Emin(r), (2.27a)

C = yCmax(E) + (1− y)Ccrit(E). (2.27b)

This change of variables fully constrains the integration region to [0, 1]× [0, 1], which allows

us to use efficient grid-based methods rules to perform the integration numerically. Noting

that we can write V (r) = (∆/r4)(Cmax − C), we obtain a simple expression for Jt

Jt = − 2π√
∆

(1− Emin)
1∫

0

dx dy Ef(E , C)
√
Cmax − Ccrit√

1− y . (2.28)

The minimum energy can also be found by a simpler method, since we have a better way of

finding Ccrit. We can just solve the equation Cmax = Ccrit by the bisection method, as this

is now a one-dimensional equation. To find rmin, we can use the fact that, for r < rISCO,

where rISCO is the innermost stable circular orbit for the axis (which, in this case, would be

a spherical orbit), the unstable orbit runst is in fact located at r. This allows us to explicitly

solve for the minimum energy, obtaining

Emin =
√
r∆√

r5 − 3r4 + 2a2r3 − 2Gma2r2 + a4r +Gma4
. (2.29)

Setting Emin= 1 now allows us to find the minimum radius of the spike along the axis and

perform the desired integrations. Due to the angular momentum barrier, we expect that the

density along the axis should provide a lower bound on the density everywhere else, and this

simpler expression provides us with a check that the MC is integrating correctly, both by

checking its θ → 0 limit and by making sure that the density is always larger than what is

obtained along the axis.
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2.3 A Toy Model: Constant Distribution Function

The first application of adiabatic matching was done by Peebles [44], in which he considered

an isothermal distribution f(E) ∝ exp(−E2/σ2
v), where E is the kinetic energy. Only the

most bound orbits should get close to a growing central mass, and therefore it is appropriate

to set E = 0 close to the black hole, which leads to a constant distribution function. The

invariance of the distribution function under adiabatic growth of the point mass implies that

we can take this same constant distribution function as our f(E , C, Lz). In this case, the

density will be proportional to the total phase space volume available at each point. This is

an important quantity on its own, as it quantifies the total number of orbits crossing a given

point. We will therefore focus on the calculation of the currents with a constant distribution

function to gain a physical understanding of the effects of spin.

2.3.1 Restriction to Equatorial Orbits

Far from the black hole (formally, as r → ∞, in the weak field region), the gravitational

field of the black hole can be decomposed into an electric and a magnetic part, the magnetic

part being due to the “frame-dragging” induced by the black hole’s spin [62]. Therefore,

to have some intuition for this problem, it is reasonable to think of the spinning black hole

as a combination of a gravitational “monopole” coming from its mass and a gravitational

“dipole” generated by the spin.

This means that the effective potential will have a magnetic dipole-like term, giving rise

to a “spin-orbit” coupling between the angular momentum of the black hole and the angular

momentum of the orbiting particle. The effects of spin get stronger as we move closer to

the black hole: for instance, observers within the ergoregion are forced to rotate in the same

direction as the black hole is spinning. Since equatorial orbits are the ones that can get the

closest to the event horizon (see Fig. (2.4)), we expect the effects of spin to be enhanced

along the equatorial plane.
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For these orbits, which are planar, we have C = L2
z. Therefore, if we restrict ourselves to

a constant distribution of equatorial orbits by setting f(E , C, Lz) = feqδ(uθ), this will reduce

the phase space integration to two dimensions. The effective potential is also simplified to

the point that most of the calculations can be done analytically. Inserting this into Eq. (2.13)

and expanding the delta function, we find

Jµ = 4feq
r2

∫
dE dC dLz δ(C − L2

z)V (r)−1/2uµ. (2.30)

We will use the delta function to eliminate the Carter constant, but we should keep in mind

that there are two solutions for C = L2
z, one for each sign of Lz. This will naturally separate

our current into a co-rotating contribution and a counter-rotating contribution, as follows

Jµ = 4feq
r2

1∫
Emin

dE

 Lcrit,-
z∫
L−z

dLz
uµ√
V (r)

+
L+
z∫

Lcrit,+
z

dLz
uµ√
V (r)

. (2.31)

In the above equation, L+
z , L

−
z are the solutions to V (r) = 0, once the substitution C = L2

z

has been made, and Lcrit,+
z , Lcrit,-

z , are the critical values of the Lz that determine whether

or not an orbit is captured. Considering a fixed energy slice, as in Fig. (2.3), this procedure

would consist of integrating along the left and right boundaries of the integration region for

each slice. Since we are simply considering a toy-model, it will be more convenient to work

with dimensionless quantities, setting G = m = 1 and, to make it clear that we are working

with a different set of quantities, we will also change r → x. In these coordinates, the event

horizon, located at ∆ = 0, has radial coordinate

xhorizon = 1 +
√

1− a2, (2.32)

and the boundary of the ergosphere is:

xergosphere = 1 +
√

1− a2 cos2 θ = 2. (2.33)
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The effective potential reads

V
∣∣∣∣
C=L2

z

= E
2(x3 + a2(2 + x))− 4aLzE + (2− x)(L2

z + x2)− a2x

x3

= (x− 2)
x3 (L+

z − Lz)(Lz − L−z ). (2.34)

The two roots are given explicitly by

L±z =
−2aE ±

√
x∆((1− E2)x− 2)
x− 2 . (2.35)

The quantity in the square root will be positive so long as E2 > 1 − 2/x. Plugging this

energy into the potential, we find that it gives V < 0, and so we can safely assume that

E2
min > 1 − 2/x. In general, we will have a positive and a negative root for x > 2, and two

positive roots for x < 2. At x = 2, the negative root goes to infinity, but the positive root

tends to a finite limit.

This will not be a problem since, as we will show, there are no counter-rotating orbits

at x ≤ 2. For x < 2, we have L−z > L+
z , so, referring to Eq. (2.34), we see the potential is

positive for Lz < L+
z or Lz > L−z . The orbits with Lz > L−z have V (y) > 0 for y < x, and

are therefore plunge orbits. Inside the ergosphere, therefore, we will only have orbits with

Lcrit,+
z < Lz < L+

z . This is ultimately a consequence of the fact that the marginally bound

counter-rotating orbit occurs at x−mb > 2, which we will now show.

2.3.1.1 Finding the Critical Angular momentum and Energy

In order to find the critical angular momenta Lcrit,±
z (E) and the minimum energy Emin(x),

we must examine the capture criterion for an orbit, which, at fixed E , reads

V (x′) = 0 = dV
dx′ , (2.36)
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where x′ is the location of the unstable orbit in the potential, which, for the critical orbit,

is also a turning point of the motion. It should be clear from the physics, and also from

Fig. (2.1), that x′ is not the point x at which we are evaluating the currents. The equation

for the derivative is a second order polynomial in x, which can be solved to give

dV
dx = 0⇒ x∓ =

(
a2
(
1− E2

)
+ L2

z ∓
√

(L2
z + a2(1− E2))2 − 12(Lz − aE)2

)
/2. (2.37)

Analyzing the sign of the second derivative, or taking the a → 0 limit, shows that it is

the smaller root x− that corresponds to the unstable orbit once we impose the constraint

V = 0. Inserting this value of x− into V = 0 and squaring the obtained equation gives us a

polynomial in Lz.

V
(
x,E , Lcrit

z

)
= 0⇒

0 = −9(Lcrit
z − aE)2×[(

E2 − 1
)
Lcrit
z

6 +
(

36E2 − 27E4 − 3a2
(
1− E2

)2
− 8

)
Lcrit
z

4

+ 36aE
(
2− 5E2 + 3E4

)
Lcrit
z

3 + 4aE
(

8 + 9a2
(
1− E2

)2(
−1 + 3E2

))
Lcrit
z

+
(

2a2
(
10− 91E2 + 162E4 − 81E6

)
+ 3a4

(
E2 − 1

)3
− 16

)
Lcrit
z

2

−16a2E2 − a6
(
1− E2

)4
− a4

(
1− E2

)2(
−1− 18E2 + 27E4

)]
, (2.38)

which contains an unphyiscal solution Lz = aE , and a sixth order polynomial in Lz. This

polynomial can be solved numerically, and, since we know that L−z ≤ Lz ≤ Lcrit,-
z and

Lcrit,+
z ≤ Lz ≤ L+

z , we can find both critical angular momenta by taking the largest positive

root smaller than L+
z and the largest (in magnitude) negative root that is larger than L−z .

As in our discussion of axial orbits in Sec. (2.2), these are, in general, the second largest

roots in magnitude.

Knowing this, we can solve for Emin(x) using a bisection method for the equation Lcrit,+
z =

L+
z . The marginally bound orbits can be found by solving Eq. (2.38) with E = 1, and then
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going back to the solution x−. This is because the marginally bound orbit is itself unstable,

meaning that the location of the unstable orbit will coincide with the point where we are

evaluating the currents. When we set E = 1, we obtain

0 = −9(a− Lz)2
(
−16a2 + 32aLz − 16L2

z + L4
z

)
, (2.39)

which can be solved analytically, giving

Lcrit
z = a, 2

(
1−
√

1− a
)
, 2
(
1 +
√

1− a
)
,

2
(
−1−

√
1 + a

)
, 2
(
−1 +

√
1 + a

)
. (2.40)

This has only one negative solution, corresponding to a counter-rotating marginally bound

orbit at

x−mb = 2 + a+ 2
√

1 + a. (2.41)

Note that x−mb > 2, and recall from our discussion in Sec. (2.2) that any orbit that approaches

the black hole more than the marginally bound orbit is either unbound or plunges. This

implies that the phase-space for counter-rotating orbits will vanish beyond x−mb. In particular,

there are no counter-rotating orbits inside of the ergosphere, as stated previously.

In order to find the marginally bound co-rotating orbit, we calculate x− for each of

the positive angular momenta obtained in Eq. (2.40) The solution for Lz = a occurs at

x = 0, which is clearly not physical. The solutions for Lz =
(
±1∓

√
1∓ a

)
are located at

x = 2± a− 2
√

1± a, which are inside the event horizon. The only physical solution is

x+
mb = 2− a+ 2

√
1− a. (2.42)

Note that, unlike counter-rotating orbits, co-rotating orbits can extend into the ergoregion

for sufficiently large spin parameters.
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2.3.1.2 Calculating the Currents

Now that we know how to find the minimum energy, we can go back to Eq. (2.31) and do

the integration over Lz, which gives

Jt = 4feq√
r

1∫
Emin

dE EIt(E), (2.43a)

Jφ = 4feq√
r

1∫
Emin

dE Iφ(E), (2.43b)

with

It(E) = 2√
|x− 2|

[
θ
(
x− x+

mb

)(
θ(x− 2) arctan 1√

κ+
+ θ(2− x) arctanh 1√

−κ+

)

+ θ
(
x− x−mb

)
arctan 1√

κ− − 1

]
,

Iφ(E) = 1√
|x− 2|

[
θ
(
x− x+

mb

)(
θ(x− 2)

{(
L+
z + L−z

)
arctan 1√

κ+
+
√(

L+
z − L

crit,+
z

)(
Lcrit,+
z − L−z

)}

+ θ(2− x)
{(
L+
z + L−z

)
arctanh 1√

−κ+
−
√(

Lcrit,+
z − L+

z

)(
Lcrit,+
z − L−z

)})

+ θ
(
x− x−mb

){(
L+
z + L−z

)
arctan 1√

κ− − 1
−
√(

L+
z − L

crit,-
z

)(
Lcrit,-
z − L−z

)}]
,

(2.44)

where we have defined

κ+ ≡ Lcrit,+
z − L−z

L+
z − L

crit,+
z

κ− ≡ L+
z − L−z

Lcrit,-
z − L−z

, (2.45)

And θ(x) is the Heaviside function. The Heaviside functions are inserted to make sure that

the co-rotating and counter-rotating contributions to the currents vanish at the appropriate

points, as well as to take into account a change in form for the co-rotating current that

happens inside of the ergosphere. Fig. (2.5) shows the results of the calculation for the

density. The takeaway is that increasing the spin parameter increases the density, and
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Fig. (2.6) is helpful in understanding the physical origin of this effect. As that figure shows,

the density enhancement is coming from co-rotating orbits, which are more deeply bound to

the black hole due to the “spin-orbit” coupling mentioned at the beginning of this section.

This can be further understood by analyzing the circular orbit energy, displayed in Fig. (2.7).

Gondolo and Silk [1] have shown that, in their non-relativistic framework, the density is

proportional to the binding energy of a circular orbit to the power 3/2. This turns out to

also provide a good fit to our calculations, and it makes the physical origin of the density

enhancement very clear - it is due to the increased binding of co-rotating orbits, which can

come closer to the black hole than in the Schwarzschild case. Counter-rotating orbits are

only mildly suppressed, as their binding energy is only slightly lowered. It is important to

note that the boost obtained here is amplified by the fact that the co-rotating equatorial

orbits are the most bound to the black hole, but when we integrate over the full phase space,

the net effect will be the same.
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Fig. 2.5: Density profiles for a distribution of equatorial orbits. The density increases as we
vary the Kerr parameter a = 0 (solid), 0.5 (dashed), 0.8 (dot-dashed) and 0.998
(dotted). Since the latter value is greater than a > 2

(√
2− 1

)
, the spike extends

into the ergosphere (shaded region).
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Fig. 2.6: The corotating (dashed) and counter-rotating (dotted) parts of |Jt| for a = 0.8,
compared with |Jt|/2 for the Schwarzschild case (solid).
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Fig. 2.7: Circular orbit energy for co-rotating (blue) and counter-rotating (purple) orbits
with a = 0.8, compared to the circular orbit energy for a Schwarzschild black hole
(red)
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2.3.2 Full Phase Space

Now that we have obtained a strong understanding of the physical origins of the increased

density, we will calculate the currents for a constant phase space distribution by integrating

over the full phase space, f(E , C, Lz) → f0. For a constant phase space distribution, GS

can perform their calculation exactly, obtaining ρ ∝ r−3/2(1− 8Gm/r)3/2 [1] for the density

obtained from a cored profile. The term 8Gm/r is the binding energy of the circular orbit

of the circular orbit that get captured by the black hole. Motivated by this, we propose

a functional form to fit the Schwarzschild result —obtained by taking the a → 0 limit in

Eq. (2.13) —in which the binding energy of circular orbits determines the main features of

the density profile,

ρ(r) = 4π
3 (2α0)3/2f0

(1− Ecirc(r))3/2(
1 + 4Gm

r

)β0
, (2.46)

where Ecirc is the energy of a circular orbit at coordinate r. We obtain a fit that is reasonable

for astrophysical purposes (∼ 5% errors) with α0 = 2.07 and β0 = 2.247. A similar fit can

be obtained for the Kerr metric by letting Ecirc → Emin(r, θ) and changing the denominator

by letting (1 + 4Gm/r)β0 → (1 + (r+
mb(θ) + a)/r)β1(1 + (r−mb(θ) + a)/r)β2 , with β1, β2 free pa-

rameters and r±mb the co-rotating and counter-rotating marginally bound orbits. This result

is displayed here simply to emphasize the dependence of the density on the binding energy

of a particle orbiting the black hole, which, as shown in Fig. (2.7), increases dramatically

with the spin parameter, leading to a net increase in the density, even once the preferential

capture of counter-rotating orbits, displayed in Fig. (2.3) is included.

As mentioned in Sec. (2.2), the boundaries of the phase space volume are not known

analytically, and we use MC integration in order to efficiently sample the phase space and

extract an estimate for the currents. We used the VEGAS algorithm as implemented by

the CUBA library [63], and verified that the evaluation of the currents led to a Gaussian

distribution of results, implying that the error estimates given by the program are reliable.

Since astrophysical uncertainties are frequently very large, we decided that a 1% numerical

58



Chapter 2. The Phase Space Formalism And Adiabatic Invariance

error for the current components is acceptable.

Now, given a spin parameter α and an inclination θ, we have all the necessary tools

to calculate the current density for any r > rmin(θ), and sample results are displayed in

Figs. (2.8) and (2.9), where, following previous work [52], we used f(E , C, Lz) = f0 =
0.3 GeV/cm3

(2π(100 km/s)2)3/2 = 5.1 × 108 GeV/cm3. Dimensionally, f0 ∼ ρ/v3, so the value we took is

motivated by measurements of the local dark matter density and what we expect the velocity

dispersion to be. The exact value comes from assuming that the phase space distribution

is gaussian. Fig. (2.10) provides a pictorial illustration of the density distribution in two

dimensions, making it clearer where the spike is most enhanced.
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Fig. 2.8: The dark matter density in the equatorial plane increases with the spin parameter,
and the spike gets closer to the hole. The different lines show the Schwarzschild
calculation from SFW (blue, dot-dashed), α = 0.5 (purple, dashed), and α = 0.8
(red, solid).

We observe that the density decreases as we get away from the equatorial plane, which

is expected: recall that an orbit can only cross the axis if Lz = 0 and, unlike the spherical

case, in which the components Lx and Ly of the angular momentum were also conserved,

this restriction effectively reduces the available phase space and, consequently, the density.
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Fig. 2.9: Density anisotropy for α = 0.8. The spike is shown at different angles with respect
to the black hole rotation axis: on axis θ = 0 (blue, dot-dashed), θ = π/3 (purple,
dashed) and equatorial θ = π/2 (red, solid).

In fact, for axial orbits we can perform some of the integrations explicitly by using the

substitutions in Eq. (2.27) and obtain an expression for Jt as

Jt = 4πf0√
∆

1∫
Emin

dE E
√
Cmax(E)− Ccrit(E), (2.47)

Where, as usual, Cmax is obtained from V (r) = 0 and Ccrit is the critical Carter constant.

As mentioned in Sec. (2.2), we find the critical Carter constant by solving a polynomial

equation, and the density can be easily obtained from Eq. (2.14) by setting Ω = 0. We use

this explicit, more numerically reliable form of the current along the axis to check that the

MC integration has the appropriate limit as θ → 0.
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Fig. 2.10: Dark matter density in the r − θ plane for a spin parameter α = 0.8, and a
constant initial distribution function. The axis of the black hole points vertically,
and r/Gm is plotted from 0 to 15. The density is axisymmetric about the spin
axis.

2.4 Adiabatic Matching

2.4.1 Adiabatic Invariants

We will now apply the formalism of adiabatic black hole growth to the determination of the

phase-space distribution f(E , C, Lz). Prior to the formation of the black hole, we will assume

that the dark matter is distributed according to a density profile ρi(r), which we will take to

be spherically symmetric. This density generates a gravitational potential Φ(r), and a phase

space distribution fNR(E) may be determined from it using Eddington’s method [31], where

E is the non-relativistic total energy, which is negative for a bound orbit. Since the potential

has spherical symmetry, particle orbits moving under its influence have three conserved

quantities: the total energy E, the total angular momentum L, and the z-component of the
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angular momentum, Lz. From these, we can calculate the action variables for bound orbits

Ir =
∮

dr pr =
∫

dr
√

2(E − Φ(r)− L2/r2), (2.48a)

Iθ =
∮

dθ pθ =
∫

dθ
√
L2 − L2

z

sin2 θ
= 2π(L− |Lz|), (2.48b)

Iφ =
∮

dφ pφ = 2πLz. (2.48c)

From the Kerr metric, Eq. (2.9), we can calculate the canonical momenta for a geodesic

orbit, and using Eqs. (2.10) we can write the action variables in terms of the constants of

the motion as follows

IKr (E , C, Lz) =
∮

dr pr =
∫

dr r
2

∆V (r)1/2, (2.49a)

IKθ (E , C, Lz) =
∮

dθ pθ =
∫

dθ U(θ)1/2, (2.49b)

IKφ =
∮

dφ pφ = 2πLz. (2.49c)

There are some subtleties in the numerical evaluation of IKr , IKθ , which we now outline. To

evaluate the angular integral, we begin by performing a change of variable v = cos θ. The

angular turning points of U(θ) can be found by setting U(θ) = 0, which gives rise to a quartic

equation in v having the following solutions

v2 =
C + a2(1− E2)±

√
(C + a2(1− E2))2 − 4a2(1− E2)(C − L2

z)
2a2(1− E2) . (2.50)

In the E → 1 limit, the solution is simply v =
√

1− L2
z/C, and so we need to make sure to

pick the solution that joins smoothly to that limit, which is the solution with the minus sign.

The subtraction can also be numerically problematic, and so we use the following equivalent
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expression for v

v2 = 2(C − L2
z)

C + a2(1− E2) +
√

(C + a2(1− E2))2 − 4a2(1− E2)(C − L2
z)
. (2.51)

We will refer to this root as vf , and we will define the second root of Eq. (2.50) as v2. The

orbit is limited by −vf ≤ v ≤ vf , but the symmetry of the integrand allows us to integrate

in the 0 ≤ v ≤ vf domain. The last step is to perform the change of variable v = wvf , which

maps our integration interval to [0, 1]. The final result is

IKθ (E , C, Lz) = 4av2
f

√
1− E2

1∫
0

dw√
1− w2v2

f

√
(1− w2)(v2

2 − w2v2
f ). (2.52)

To evaluate the radial invariant, we recall that the potential can be written as V (r) = p(r)/r4,

with p a polynomial. We will factor p(r) = (1 − E2)(r − r1)(r − r2)(r − r3)(r4 − r), where

ri are the roots of p, ordered so that r1 < r2 < r3 < r4. In general, our orbit is confined to

r3 ≤ r ≤ r4, see Fig. (2.2) for reference: the root r1 is always within the event horizon, and

the “orbit” r1 ≤ r ≤ r2 is unphysical. The physical orbit is between the two larger roots r3

and r4. We have written p(r) in a way that explicitly shows that V (r) > 0 at all points in

the bound orbit. If we then change the integration variable by r = wr4 + (1− w)r3, we can

evaluate the radial integral as

IKr (E , C, Lz) =
√

1− E2(r4 − r3)2
1∫

0

dw
∆(w)

√
w(1− w)(r(w)− r1)(r(w)− r2). (2.53)

Now that we have a simple way to evaluate the action integrals numerically, we will use them

in the process of adiabatic matching to obtain an expression for f(E , C, Lz). It is well known

from classical mechanics that the action variables are constant under adiabatic evolution of

a system [64], and the other fact that we will need in our calculation is the invariance of the

distribution function, first established by Young [45] in the non-relativistic case.

The invariance of the distribution function, which we will establish in the following sec-
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tion, means that we can find f(E , C, Lz) by solving the equations IKi (E , C, Lz) = Ii(E ′, L′, L′z)

for E ′, L′, L′z and then setting f(E , C, Lz) = fNR(E ′). The fact that two of the invariants for

the non-relativistic actions can be calculated in closed form makes this procedure straight-

forward. We being by noting that the Kerr metric is axisymmetric, so, as expected, Lz will

be conserved. Next, we can find L′ by setting L′ = |Lz| + IKθ /(2π). Once L′ and L′z have

been determined, the equation Ir = IKr is a one-dimensional problem, which can be solved

using standard methods such as bisection.

2.4.2 Invariance of the Phase-Space distribution

Before we begin applying this formalism to find the effect of a central black hole on as-

trophysically relevant dark matter distributions, we will finish this chapter by proving that

the distribution function f remains invariant during adiabatic evolution. In order to make

the following arguments clearer, we will present a brief discussion of Liouville’s theorem in

classical mechanics (see, e.g [64] for a review of all the facts stated in this section), which

states that the phase space distribution f(q, p) for a mechanical system evolving under the

influence of a time-independent hamiltonian H satisfies

∂f

∂t
= −{f,H}, (2.54)

with { , } the Poisson bracket. This statement follows from the uniqueness of solutions

of Hamilton’s equations, which implies that trajectories in phase space do not cross, as

well as the fact that hamiltonian evolution is divergenceless in the following sense: given a

hamiltonian H(q, p), Hamilton’s equations read

q̇ = ∂H

∂p
ṗ = −∂H

∂q
. (2.55)

Thus, a hamiltonian defines a vector field in phase space (q, p) that can be seen as the

analogous to the velocity field of a fluid. From Hamilton’s equations (2.55), it follows that
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this field is divergenceless, i.e

∂q̇

∂q
+ ∂ṗ

∂p
= ∂2H

∂q∂p
− ∂2H

∂p∂q
= 0. (2.56)

The divergence-free character of this velocity field implies that evolution driven by it is

volume preserving. Thus, a given phase-space region Ω will evolve into a different region

Ω′(t) that has the same volume. Constancy of the distribution function f can now be

established by using the uniqueness of solutions: a given region Ω will have a number of

particles dN = f dq dp inside of it. Under time evolution, Ω → Ω′, and no trajectories are

allowed to leave the volume Ω(t): if they did, they would have to cross with a different

trajectory, violating the uniqueness of solutions. Thus, dN ′ (t) = dN . Moreover, due to

the volume preserving character of hamiltonian evolution, dp (t) dq (t) = dq dp, from which

f(q(t), p(t), t) = f(q, p, 0), proving the constancy of the distribution.

There is another way to view this result which is particularly helpful in what follows: if

we lump the phase space coordinates (q, p) into a single vector η, Hamilton’s equations may

be written as

η̇i = {ηi, H}. (2.57)

Under an infinitesimal canonical transformation, we have δηi = ε{ηi, G}, where G is a

generating function of the transformation. Infinitesimal canonical transformations take η →

η′, and are volume preserving, i.e
∣∣∣ ∂η
∂η′

∣∣∣ = 1. Thus, time evolution may be viewed as a

canonical transformation of phase space into itself, taking coordinates (q, p) → (q(t), p(t)).

Since canonical transformations are volume preserving, this “coordinate transformation” will

also be volume preserving.

Our proof of the adiabatic invariance of the distribution function will therefore simply

consist of computing the appropriate jacobian determinant connecting two different sets of

canonical coordinates and showing that it is, in fact, 1. What makes this step in our time-

dependent problem permissible is the assumption of slow evolution of the Hamiltonian: if
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H(q, p) also depends on time, it is not guaranteed that trajectories in phase space will not

cross as they evolve in time. However, under adiabatic evolution, the constancy of the action

variables guarantees that trajectories remain separated. In order to cross, two trajectories

would have to have the same action variables, but initially, the triplet Ir, Iθ, Iφ uniquely

labels each orbit.

The application of these ideas to our system reads as follows: before the black hole forms,

we have a certain set of stationary states labeled by their conserved quantities E,L, Lz. If the

growth of the black hole is adiabatic, we know that each trajectory will be uniquely mapped

into another stationary state labeled by E , C, Lz. The total energy will change due to the

addition of a new source of gravitational potential, the black hole, and the total angular

momentum will change because the final metric is not spherically symmetric, meaning that

the black hole will exert a torque on DM particles, but it will not change Lz. This means

that, if N(E , C, Lz) is the number of particles per unit constants of the motion, we are

guaranteed to have

N(E , C, Lz) dE dC dLz = N(E,L, Lz) dE dL dLz . (2.58)

All that is required of us is to then prove that the volume of the phase space elements before

and after the growth of the BH are the same.

Before we prove our result using the full relativistic machinery and the Kerr metric, we

will present a sketch of the derivation for the non-relativistic case. In that case, we can find

N(E,L) by

N(E,L) = 4π
r2 Lf(E,L)× 4πr2

∫
dr 1√

2(E − Φ(r))− L2/r2︸ ︷︷ ︸
dr/dt for the particle with (E,L)

= 8π2LP (E,L)f(E,L). (2.59)
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We obtain this expression by defining N(E,L) to be such that the total number of

particles in the system satisfies 2 ∫ dE dLN(E,L) =
∫

d3x ρ(x) and interchanging the order

of integration once the expression for ρ obtained in Eq. (2.5) is inserted. P (E,L) is the period

of radial motion of the orbit with energy E and angular momentum L. It is also known that

P (E,L) = ∂Ir(E,L)
∂E

. As the system evolves adiabatically, the gravitational potential evolves,

Φ → Φ∗ and the energy changes E → E∗, keeping the action integrals constant. We thus

have
dE∗
dE = ∂Ir

∂E

∂E∗

∂I∗r
= P (E,L)
P ∗(E∗, L) . (2.60)

Substituting E∗ for E inN(E,L) dE dL = N(E∗, L) dE∗ dL and using the fact that Eq. (2.59)

applies for both the “starred” and “unstarred” systems, we obtain our final result.

To prove the invariance of the distribution function in the full relativistic formalism, we

will start by finding an expression for N(E , C, Lz). To do this, we integrate the current

density, Eq. (2.13), to find the total mass3 enclosed in a hypersurface of constant time. The

future-pointing normal vector to the surface is nα = −(gtt)−1/2∂αt, and the three-dimensional

surface element can be written as [65]

d3Sα = −nα
√
gS d3x , (2.61)

where

gS = Σ4

∆ gφφ, (2.62)

is the determinant of the induced metric on the hypersurface. The enclosed mass will there-
2 The non-relativistic phase space distribution is normalized so that its integral over all space gives the

total mass. Since we are considering all the DM particles to have the same mass, this identification simply
multiplies the particle number by a constant.

3 Total rest mass: from the discussion of the non-relativistic case, this is seen to be equal to mχ times
the number of particles. Also, recall from the definition of J that it is the mass-current four vector, not the
energy-current four vector.
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fore be

M = −
∫

d3Sα J
α

=
∫

dr dθ dφ
√
gS√
−gtt

(
gttJ0 + gtφJφ

)
= 2

∫ dr dθ dφ dE dC dLz
r2 sin θ

√
V (r)

√
U(θ)

Σ2√gφφ√
−∆gtt

(
gtφLz − gttE

)
f(E , C, Lz). (2.63)

If we interchange the order of integration, making sure that we respect proper constraints

like V (r) > 0, we obtain a distribution of particles per unit conserved quantity, N(E , C, Lz),

such that M =
∫

dE dC dLz N(E , C, Lz). Using the relation gtt = −gφφ/(∆ sin2 θ) for the

Kerr metric, this is, explicitly

N(E , C, Lz) = 4π
∫ dr dθΣ2

r2
√
U(θ)

√
V (r)

(
gtφLz − gttE

)
f(E , C, Lz). (2.64)

In this expression, the limits of integration are the radial turning points of V (r) and the

angular turning points in U(θ). Under adiabatic evolution, the constants of the motion will

change to E∗, C∗, Lz∗, such that N(E , C, Lz) dE dC dLz = N∗(E∗, C∗, Lz∗) dE∗ dC∗ dLz∗.

The new constants of the motion are determined by the invariance of the action integrals

in Eq. (2.49). The invariance of Iφ gives Lz = L∗z. The remaining two action variables allow

us to relate N and N∗ by using the chain rule of multivariable calculus

∂(E∗, C∗)
∂(E , C) = ∂(E∗, C∗)

∂(I∗r , I∗θ )
∂(Ir, Iθ)
∂(E , C) . (2.65)

Taking partial derivatives in Eq. (2.49), we find:

J ≡ ∂(Ir, Iθ)
∂(E , C) = 2

∫ dr dθ Σ2(Egφφ + Lzgtφ)
r2 sin2 θ∆

√
U(θ)

√
V (r)

. (2.66)

We now use gtt = −gφφ/(∆ sin2 θ), gtφ = gtφ/(∆ sin2 θ). Comparing Eq. (2.66)to Eq. (2.64),we
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obtain

N(E , C, Lz) = 2πJ f(E , C, Lz), (2.67)

with a similar expression for N∗. Equating N dE dLz dC = N∗ dE∗ dL∗z dC∗ and using

Eq. (2.67), we find

2πJ f(E , C, Lz) dE dC dLz = 2πJ∗ f ∗(E∗, C∗, L∗z) dE∗ dC∗ dLz∗

= 2πJ∗ f ∗(E∗, C∗, L∗z)
∂(E∗, C∗)
∂(I∗r , I∗θ )

∂(Ir, Iθ)
∂(E , C) dE dC dLz

= 2πJ∗ f ∗(E∗, C∗, L∗z)
J

J∗
dE dC dLz

= 2πJ f ∗(E∗, C∗, L∗z) dE dC dLz , (2.68)

which demonstrates the adiabatic invariance of the distribution function, f(E , C, Lz) =

f ∗(E∗, C∗, L∗z). We see that the proof hinges on showing that the phase space volume is

unchanged between initial and final states. Now that we have established the invariance of

the distribution function and have laid out a numerical method for evaluating the relevant

action integrals, we will apply this formalism in the following chapters.
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Chapter 3

Particle Dark Matter Models

In this chapter we describe some (partially published) work on different approaches to con-

strain particle DM models. The first one is purely theoretical and is within the framework

of a specific model: the NMSSM. Although that section will not mention DM at all, the

idea here is that when a complete particle model is proposed, many more constraints are

available than the ones described in Chapter 1.

For instance, if the DM is produced by the decay of a heavy particle that couples with

the SM, care must be taken so that its decay does not introduce extra relativistic degrees of

freedom during nucleosynthesis, as that can change the expansion rate of the universe and,

subsequently, the cosmological abundance of 4He.

The constraint we will consider is that of vacuum stability, mentioned in Chapter 1: the

extra scalar particles introduced in the NMSSM can destabilize the electroweak vacuum.

Since the masses of the W and Z bosons depend on the higgs vacuum expectation value,

such models would be excluded.

In a similar vein, if we postulate a DM/SM coupling, the DM that is clustered in galaxies

could still have some residual annihilation into SM particles. This residual annihilation could

lead to the production of particles like photons and neutrinos that could then propagate all

the way to the Earth and be observed. Here, instead of proposing a particle model and

deriving specific constraints, we will take an agnostic approach and use the phase space

formalism developed in Chapter 2 to calculate the effect of a central SMBH on the central
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region of a galactic DM halo. This may then be folded into a specific particle model to

calculate the fluxes that might be observed. This work has been published in [48].

3.1 Vacuum Stability Constraints On

Supersymmetric Dark Matter

3.1.1 The Scalar Potential of The NMSSM

The MSSM has been the subject of intense theoretical and experimental study over the years,

and is severely constrained. In particular, the non-observation of any superpartners at the

LHC has excluded large areas of the MSSM parameter space have been excluded, mostly

the ones that are considered “natural” to have weak-scale SUSY breaking. Restricted to the

fields (hu, hd), the SUSY preserving part of the MSSM potential is [22]

V (hu, hd) = |µ|2
(
h2
u + h2

d

)
+ 1

8
(
g2 + g′2

)(
h2
u − h2

d

)2
. (3.1)

In this equation, g, g′ are, respectively, the electroweak gauge couplings in the SU(2)L and

U(1)Y sectors of the SM. From this, it is seen that the global minimum of this potential is

at hu = hd = 0. In the MSSM, electroweak symmetry breaking must therefore be related to

SUSY breaking in some way.

This leads to a “naturalness problem” [25] of the MSSM, also known as the “little fine-

tuning problem”. The argument is as follows: since electroweak symmetry breaking in the

MSSM comes from SUSY breaking terms, some “conspiracy” must be at place to ensure

that the SUSY-respecting µ-term present in the quadratic Higgs potential combines with

the SUSY-breaking terms in such a way that the masses of the W and Z bosons have their

correct values. In particular, the SUSY preserving µ parameter is constrained to be around

the electroweak scale even though, a priori, there is no relation between the electroweak

symmetry breaking scale and the SUSY scale. Therefore, some “fine-tuning” is required in
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the MSSM to get the correct electroweak symmetry breaking scale.

A way out of this conundrum is to generate the µ-term in the MSSM dynamically, which

we will do by adding a new chiral supermultiplet to the theory. This supermultiplet will be

an SM singlet and interact only with the higgs fields. The model thus defined, known as

the NMSSM, may therefore be seen as a supersymmetric version of the “Higgs-portal” dark

matter models, since the fermion part of the chiral supermultiplet may compose the dark

matter. We will denote the scalar part of the supermultiplet as s.

The full scalar potential of the NMSSM, including SUSY breaking terms, is [66]

V (hu, hd, s) =
(
−λhuhd + κs2 + µ′s+ ξF

)2
+ 1

8
(
g2 + g′2

)(
h2
u − h2

d

)2

+
(
m2
Hu + (µ+ λs)2

)
h2
u +

(
m2
Hd

+ (µ+ λs)
)2
h2
d

m2
ss

2 − 2λAλhuhds+ 2
3κAκs

3 +m′2S s
2 + 2ξss− 2m2

3huhd. (3.2)

We have highlighted in red all the NMSSM contributions to the potential. In this equation,

we still have an explicit µ-term, but, as seen by the highlighted λs terms, an effective µ-

term may be generated dynamically if s acquires a vacuum expectation value. Here we see

in practice the effects of introducing more scalars into a theory: by introducing a single

scalar field, the scalar potential contains many more free parameters and is significantly

more complex. By being defined in a 3D “field space” (hu, hd, s), instead of the 2D space

(hu, hd), we also introduce more extrema in the potential, some of which could have a lower

energy than the physical vacuum. Moving forward, we will consider the so called Z3-invariant

NMSSM, in which µ = µ′ = ξF = m2
3 = m′2S = ξS = 0.

In the MSSM, the tree-level higgs boson mass is bounded from above by the mass of the

Z boson [22], which is observed to be 91.2GeV. Therefore, significant radiative corrections

are required to boost the higgs mass to its observed value of 125GeV. This constrains the

parameter space of the MSSM, but also introduces significant theoretical uncertainties to

the computation of the higgs mass, due to the technical difficulties in computing 2-loop
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corrections. These are important since the diagrams that dominate the one loop corrections,

namely the ones with top-stop loops [25], receive strong interaction corrections at 2-loop

order.

The NMSSM provides an interesting mechanism to boost the higgs boson mass at tree

level. If we parametrize the (hu, hd) vacuum expectation values by vu = v cos β, vd = v sin β,

with v the SM higgs expectation value and β a mixing angle, then the linear combinations

h = hd cos β+hu sin β,H = hd sin β−hu cos β are such that 〈h〉 = v, 〈H〉 = 0. For simplicity,

we will now assume that the H state is heavy and is mostly decoupled from (h, s).

If the s state is lighter than h, the mixing between these two will give rise to level repul-

sion, boosting the higgs mass already at tree level. This means that radiative corrections do

not have to be as large, and this is experimentally interesting because it implies that a second

higgs-like state could be close to experimental detection [26]. We will show, however, that

vacuum stability can be used to effectively constrain this section of the NMSSM parameter

space [67].

3.1.2 Vacuum Stability Analysis

Taking the Z3-invariant NMSSM Lagrangian from [66], the mass matrix of the model can

be approximated to one loop as follows, using the (h,H, s) fields:

M2
hh = M2

Z cos2(2β) + λ2v2 sin2(2β) + (δm2
h) (3.3)

M2
HH = (M2

Z − λ2v2) sin2(2β) + 2Bµ
sin(2β) (3.4)

M2
ss = 1

2λv
2 sin(2β)

(
Λ
vs
− 2κ

)
+ 4κ2v2

s + Aκκvs (3.5)

M2
hH = 1

2(M2
Z − λ2v2) sin(4β) (3.6)

M2
hs = λv(2µ− Λ sin(2β)) (3.7)

M2
Hs = λvΛ cos(2β). (3.8)
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In the above equations, Λ = Aλ + 2κvs, B = Aλ + κvs, and we have highlighted the NMSSM

contributions to the mass matrix elements involving the (h,H) scalars that are present in the

MSSM. We are writing down this mass matrix in the approximation that only the top-stop

loop is important, and it only contributes to δm2
h [26]. The radiative correction δm2

h is given

by

δm2
h = 3g2m4

t

8πm2
W

[
log

(
M2

SUSY
m2
t

)
+ X2

t

M2
SUSY

(
1− X2

t

12M2
SUSY

)]
, (3.9)

with M2
SUSY = mt̃1mt̃2 and Xt = At − µ/ tan β.

The model is now parametrized by λ,Aλ, κ, Aκ, tan β, µ. We will focus on the small λ

region, following Badziak et. al [26]. In this region, h − s mixing at tree level can boost

the value of the Higgs-like mass, meaning that we need smaller contributions from radiative

corrections, which allows for lighter stops. Note that the λv2 term already contributes to

the higgs mass at tree level, so the higgs mass is not only boosted by mixing with s, but

directly by the extra terms in the scalar potential. The reason to consider small λ is to also

keep the s mass below the higgs mass of 125GeV, so as to take advantage of the previously

mentioned level repulsion.

For fixed µ, tan β,Λ, λ, we can find the other parameters by fixing the masses of the

scalar eigenstates, which provides a more physical parametrization for the model. Once this

is done we can proceed to compare each parameter point to experiment. Since our mass

matrix was written at one loop and in an approximate form, it is important to check that

this parametrization is consistent and the radiative corrections that we ignored are small.

We do this using the spectrum generator SPheno [68, 69].

More generally, our purpose here is to check how well this “base-parametrization” can

describe regions of the NMSSM model space which give the correct value of the higgs-like

scalar mass (within theoretical + experimental uncertainties) and are experimentally viable.

Another important check for the model is vacuum stability, which we will show to be very

constraining in this region of parameter space.

Rather than performing an extensive parameter scan as in [67], we have chosen to vary
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tan β and Λ in our work because they directly parametrize h− s mixing. Also, to reduce the

number of free parameters that we are working with, we have taken the limit of no tree-level

squark mixing and degenerate soft masses.

We checked the global stability of the vacuum at tree level using HOM4PS2 [70], a

software package that can numerically solve polynomial equations in multiple variables.

Since the tree level scalar potential is polynomial in the fields, we can use this program to

find all complex extrema of the scalar potential. Once we have all of the extrema we can then

find the true vacuum and check if the EWSB parameters and the singlet VEV are correctly

obtained.

We compared this method with an “NMSSMTools-like” check (see [71] for a reference

on NMSSMTools, a popular spectrum calculator for the NMSSM), in which we minimize

the potential in the vu − vd,vu − s and vd − s planes and check if any of these “extrema”

are at a lower potential then the correct electroweak vacuum. The other check performed

is the positivity of all masses squared in the scalar and pseudoscalar sector. The results

for each method are shown in Fig. (3.1). We see that the full homotopy calculation is only

slightly more constraining than the simple “NMSSMTools-like”check. In Fig. (3.2) we show

the values of the higgs-like scalar mass obtained once all radiative corrections are included.

We see that our parametrization is adequate for moderate tan β and Λ.

In all of our calculations we consider two different models: “Model 1” sets the masses

of the (s,h,H) particles, respectively, to 100GeV, 125GeV, and 500GeV. We also fix λ =

0.06, µ = 150GeV. “Model 2” sets the masses of (s,h,H) to 75GeV, 125GeV, and 1000GeV,

respectively. We keep µ = 150GeV but set λ = 0.08. The upper boundary of our plots was

considered in [26] as being experimentally interesting. Our analysis shows, however, that

vacuum stability would exclude this region, pointing out the importance of performing this

calculation.
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Fig. 3.1: Tree-level analysis of vacuum stability. The colored regions represent the allowed
parameter space given by each method. In interpreting this figure it is important
to note that the green region is contained in the “NMSSMTools-like” check, and
that positivity of masses only excludes the white space.

3.1.3 Comparison with experiment

Using the software HiggsBounds [72, 73, 74, 75] we can quickly go from an the output model

file calculated from SPheno, which provides effective couplings, cross-sections and decay

rates of a variety of processes, to the experimental data that is publicly available from the.

This experimental data consists of LHC and LEP results of searches for new particles in

several final states. With a light scalar in the spectrum, we expect that the most stringent

constrains would come from LEP searches for higgs-like particles decaying to bb̄. However,

as emphasized in [26], the small mixing term with the heavy scalar H can suppress the

couplings of s to bb̄, enabling the LEP constraints to be evaded. In this region, couplings to

cc̄ are enhanced, and that would be an interesting signature of this model.

Going through the comparison between model predictions and data, we see that the model

presented here seems to be severely constrained by experiments, but nevertheless there are

small regions that are not excluded at 95%-CL. The experimentally available regions in

this model are all close to the edge of the negative mass squared region. Throughout the

parameter space that we considered, the particle whose mass squared turns negative in the
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Fig. 3.2: Self-consistency check for the higgs-like particle mass(in GeV), calculated using
SPheno. The green region corresponds to higgs masses that are within theoretical
and experimental errors of the observed values.

forbidden regions is one of the pseudoscalar states. This seems to imply that a signature of

this model would be a light pseudoscalar particle. Moreover, since negative masses squared

are a signal of vacuum instability, this also shows the necessity of performing a more thorough

check of vacuum stability through softwares like Vevacious [76], which can find minima of

the scalar potential including 1-loop corrections.
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Fig. 3.3: Comparison with experimental data using HiggsBounds, overlayed on the vacuum
stability plot. Red points pass experimental constrains, as well as having a higgs
mass within the accepted uncertainty. Black points pass the HiggsBounds tests
but do not have an acceptable mass.

3.2 Indirect Detection of Dark Matter Particles

The WIMP paradigm is powerful because it provides concrete tools to take a given theoretical

model and deduce observable quantities that can be used to constrain it. Fig. (3.4) shows

some simple processes that could be observed if DM particles admit an annihilation channel

to the SM sector. An important consequence of this idea is that all of these processes

are linked by the crossing symmetries of quantum field theory and observing any of these

processes constrains the others (see [77] for some situations where this is not straightforward).

Because of this property, these processes are termed complementary.

Direct detection experiments consist of looking for the scattering of DM particles with

nuclei, and collider production could be observed as missing energy at, say, the LHC. In

this thesis, we will be focusing on quantities that affect indirect detection, which is the

production of SM particles from DM particles, which could be optimally observed from large

concentrations of DM that are close by, like in the GC.
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Fig. 3.4: A Feynman diagram schematically showing the different detection channels for
DM coupling to the SM.

The indirect detection observable is a particle flux to be detected by a satellite or ground-

based observatory. Three quantities are necessary in order to calculate the particle flux from

self-annihilation of DM: the velocity averaged cross section 〈σv〉, the DM density n squared,

and the energy spectrum of the final state produced in the annihilation, dNf / dE. A simple

“derivation” of the particle flux is as follows. At any point a distance s from the Earth, we

will have n〈σv〉 DM particles hitting any given DM particle per unit time. There are a total

of n dV /2 pairs of particles per unit volume. From every collision, only a fraction dNf / dE

of the annihilation products will have energy E and be in the final state f . If we assume

that the final state particles are emitted isotropically, then the particle flux is simply the

total number of collisions per unit time divided by the area of the sphere between the Earth

and the point where annihilations occur, 4πs2. Using dV = s2 ds dΩ, we can find the flux

coming from a direction Ω by integrating over the distance from the observation point:

dNf

dt dA dΩ dE = 〈σv〉
8πm2

χ

dNf

dE

∫
ds ρ2(s,Ω), (3.10)

where we introduced the mass density ρ and the DM particle mass mχ. The integral over s is

known as the J-factor or the line-of-sight integral. This equation has one main assumption,
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namely that 〈σv〉 is independent of position. This can only happen in two cases. The first one

is when 〈σv〉 is velocity independent, as the velocity distribution is tied to ρ by the Jeans

equation. Another possibility, which was considered historically, is that the DM density

follows a singular isothermal density profile ρ ∝ r−2. In this case, the velocity distribution is

the same everywhere, which makes the average independent of position [31]. Nevertheless,

since DM is non-relativistic, that approximation will hold whenever the main annihilation

channel is s-wave.

What is important here is that a separation has been made between the “particle physics

dependence” and the “astrophysical dependence” of the flux. As mentioned in Chapter 1,

〈σv〉 is tied to the observed relic abundance of DM, and its value is therefore constrained to

about a factor of a few in any given model. The biggest source of (particle) model dependence

in the observed fluxes will be in dNf / dE

Indirect detection thus presents the possibility of, having some idea of ρ and 〈σv〉 from

theory or simulations, providing a detection of DM from spectral signatures of the observed

particles. Conversely, given a detection of DM in a collider or direct detection experiment, we

would be able to map out the DM distribution in a new way, as well as check our theoretical

models for consistency across different interaction channels.

There are several challenges to indirect detection that we glossed over in the above discus-

sion: Eq. (3.10) gives the so-called “prompt spectrum”, i.e the energy spectrum of particles

that are generated at the source. In order to correctly predict an observed energy spectrum,

we need an understanding of the interstellar and intergalactic media over which these par-

ticles will propagate. For instance, charged particles will interact with local magnetic fields

and radiate energy, and they can also collide with gas particles. If the final state f includes

quarks, then their hadronization must also be taken into account.

In order to maximize the J-factor, a DM source should be close to the Earth and also

have a high concentration of DM. The most promising source is the GC, but this brings up

a different issue, which is that of astrophysical backgrounds. The GC is a very active region
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over several orders of magnitude in energy, and any attempt of detecting DM through, say,

the gamma-ray spectrum of the GC requires understanding the gamma-rays being emit-

ted by all of the astrophysical sources in that region, which is a daunting task. In spite

of this, analyses of gamma-ray data from the FERMI satellite have revealed an excess of

observed photons relative to models of the known astrophysical backgrounds (see [78] for

the first proposed detection of this signal). As mentioned, this is an excess over models of

known astrophysical backgrounds, and it has been proposed that an unresolved population

of millisecond pulsars could account for the reported excess [79].

Explanations for this excess are still being debated. For this reason, dwarf galaxies,

which are simple, dark matter dominated systems, are considered a better target for indirect

detection of DM, even though their J-factors are smaller than that of the GC. Currently,

there are no convincing detections from those targets. That said, such signals are actively

being searched and some tentative, but heavily contested, detections, have been made [80].

We finish this chapter by considering an important detail to these calculations: the

presence of an adiabatic spike around an IMBH/SMBH could lead to substantially larger

fluxes than would be obtained with a simple NFW profile. Although we will be concerned

with a Milky Way-like SMBH, the proper scaling of the density profiles with the BH mass

has been obtained by GS [1] and it is straightforward to transpose our results to other BH

masses.

3.3 Adiabatic Spikes With WIMPs

Previous work on relativistic corrections to adiabatic spikes focused on applying the matching

procedure to an initial Hernquist profile [52, 48], which is defined by [81]

ρ(r) = ρ0(
r
rs

)(
1 + r

rs

)3 Φ(r) = − GM

rs + r
, (3.11)
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with M = 2πρ0r
3
s the mass of the DM halo, which will be taken to be M = 1012M�. The

scale radius rs, which marks where the logarithmic slope of the profile changes, will be taken

to be 20kpc, and this fixes ρ0. This section reports on our work using this initial profile [48],

which we focused on to make sure that our code could accurately reproduce previous results

before moving on to more general profiles.

The Hernquist model has several attractive features: physically, it has a finite total mass

and is astrophysically motivated [82, 81]. Mathematically, the simple form of the potential

will make our numerical procedures more straightforward and, more importantly, the phase

space distribution function fNR(E) is known analytically:

f(E) = M√
2(2π)3(GMrs)3/2

f̃H(ε̃) ε̃ = −Ers
GM

,

f̃H(ε̃) =
√
ε̃

(1− ε̃2)

(1− 2ε̃)(8ε̃2 − 8ε̃− 3) + 3 sin−1√ε̃√
ε̃(1− ε̃)

. (3.12a)

The DM halos found in simulations can be better fit by an NFW profile [12], which also

has the behavior ρ ∝ 1/r at small distances. As pointed out in [47], the slope of the spike

is completely determined by the behavior of f(E) for the most bound orbits. Since the

Hernquist profile and the NFW profile have similar functional forms at small distances, it is

reasonable to expect that they will produce the same spike if properly scaled.

We will define the following dimensionless quantities:

x = r

rs
L̃ = L√

GMrs
. (3.13)

In terms of these quantities and ε̃, Ir reads

2
√
GMrs

x+∫
x−

dx

√
2x2 − 2ε̃x2(1 + x)− L̃2(1 + x)

x
√

1 + x
, (3.14)

where the limits of integration x± are the (dimensionless) turning points of the motion.
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Looking for turning points leads to a cubic equation in x. In general, this equation will have

three solutions: the two physical turning points x±, and a spurious negative solution xn.

Factoring the polynomial in the square root allows us to write the numerator of Eq. (3.14)

as (2ε̃)1/2((x− xn)(x− x−)(x+ − x))1/2. Doing the change of variable x = tx+ + (1− t)x−,

we find

IHr = 2
√

2GMrsε̃(x+ − x−)2
1∫

0

dt

√
t(1− t)(x− xn)
x
√

1 + x
. (3.15)

To implement the adiabatic matching, we only need an interval in which to constrain ε̃.

Orbits that escape to infinity have ε̃ = 0, and, since rh ≤ rs, it is reasonable to constrain

ε̃ > 0.01. The upper bracketing point is more complicated: for ε̃ = 1, the cubic equation

for the turning points has a single real root, and we cannot evaluate the radial action. We

can find the ε̃ for which the potential turns from having three real roots to a single real

root by setting the discriminant of the polynomial in the numerator of Eq. (3.14) to 0. The

discriminant is

D(V ) = −4
(
2L̃6ε̃+ L̃4(4ε̃(2ε̃+ 5)− 1) + 8L̃2(ε̃− 1)3

)
. (3.16)

This polynomial equation can be solved numerically, but it is important to note that L̃ is,

in general, small. This is because the relevant angular momentum scale around the black

hole is Gm, which, when turned into a dimensionless L̃, will be small. This simply means

that we are mostly considering orbits that are very deeply bound in the initial gravitational

potential. As such, it is appropriate to look for a series expansion solution for the upper

endpoint of our bisection interval as ε̃ = 1 − a1L̃
b + a2L̃

2b + ..., and keep only the first two

terms. A straightforward calculation gives b = 2/3, a1 = 3/2, a2 = 1. This is a simple

expression for the upper endpoint of our bisection method that works very well.

We display the main results of our calculation in Figs. (3.5,3.6,3.7). The first figure

shows the effects of increasing the spin parameter on the density in the equatorial plane.

The second figure shows how the density varies with angle for fixed spin and, finally, the last
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figure shows a two-dimensional density plot to give an idea of where the spike is centered.

A simple summary of the most extreme effects of the calculation is provided by Fig. (3.8).
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Fig. 3.5: Dark matter density in the equatorial plane with increasing Kerr parameter. The
density profile before the black hole grows is given by the Hernquist form described
in the text. The different lines show the Schwarzschild calculation from SFW
(blue, dot-dashed), α = 0.5 (purple, dashed), and α = 0.8 (red, solid).

To estimate the effects of the spike on the dark matter annihilation fluxes we compare

the line of sight integral for a beam of opening angle θ = 1◦ towards the GC, as in [51]

Jα(θ) = 〈σv〉
4πm2

χ

2π∫
0

dφ
θ∫

0

dψ cosψ sinψ
∫

ds ρ2(r, ϑ), (3.17)

with or without the presence of the spike. In Eq. (3.17) r =
√
R2 + s2 − 2Rs cosψ is the

Boyer-Lindquist coordinate, s is the radial coordinate from the Earth to the annihilation

point, R = 8.5 kpc is the distance from the Earth to the GC, and ϑ is the angle relative

to the equatorial plane of the black hole. We write the J-factor as Jα to emphasize the

dependence on the spin parameter of the SMBH when it is present.

We chose the following DM parameters: 〈σv〉 = 3 × 10−26cm3/s, mχ = 100GeV. We
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Fig. 3.6: Density anisotropy for an initial Hernquist profile and α = 0.8. The spike is shown
at different angles with respect to the black hole rotation axis: on axis θ = 0 (blue,
dot-dashed), θ = π/3 (purple, dashed) and equatorial θ = π/2 (red, solid).

then calculated the flux to be 6.3× 10−9 cm−2s−1 for annihilations in the halo with only the

underlying Hernquist profile included.

To evaluate the integral in Eq. (3.17), we fit the profiles that were previously calculated

using MC techniques to the functional form

ρ(r, ϑ) = A

rp

(
1− rmin(a, ϑ)

r

)n
, (3.18)

with all coefficients being allowed to vary with ϑ. The expression in Eq. (3.18) slightly

generalizes Eq. (9) in [1] to allow for a ϑ-dependent end point for the spike. This expression

is then matched to the power law B/rγsp using smooth functions to improve the fit and to

give a reasonable estimate of ρ. We use γsp = 2.33 corresponding to the Newtonian spike

generated by a 1/r NFW or Hernquist cusp [47].

Our calculation of the spike is not self-consistent in two ways: it does not include the

effects of the DM distribution on the metric, and it also does not take into account that DM
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Fig. 3.7: Dark matter density in the r−θ plane for a spin parameter α = 0.8, and an initial
distribution function corresponding to a Hernquist profile.

particles that fall into the BH contribute to the final BH mass. Previous studies have shown

that both effects are small [47, 45], but not having a self-consistent formalism means that

we will not have a correct expression for the spike profile when it begins to transition to the

original profile as the DM dominates the gravitational potential. We extend our spike profile

until the density is equal to that of the underlying Hernquist profile. This happens at 12.4

pc, and we take the fiducial 1/r halo shape beyond this point. Since most of the event rate

is dominated by the inner regions of the spike, this does not affect our calculation of Jα(θ).

Putting all the pieces together, our model for the central part of the halo is equivalent

to the canonical model used in [51], aside from the fact that we are assuming an underlying

Hernquist profile with rs = 20 kpc and the extension of the spike. For the Schwarzschild

geometry, we find a flux that is a factor of 1.93 × 109 higher than when the spike is not

present.

In Tab. (3.1) we present the flux enhancement normalized to the Schwarzschild one, as

that is less sensitive to the normalization of the underlying density profile. In particular,

this quantity also does not depend on the particle physics model.
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Fig. 3.8: Equatorial (solid blue) and on-axis (solid red) density obtained for the near-
extreme black hole, compared with previous calculations assuming a Schwarzschild
hole (dot-dashed purple), and the non-relativistic estimate in [1] (dashed green).
The black hole grows in an initial Hernquist profile shown as the dotted red line.

Spike Jα(θ)/J0(θ)
α = 0.5 1.11
α = 0.6 1.14
α = 0.7 1.22
α = 0.8 1.38
α = 0.9 1.59
α = 0.998 1.97

Tab. 3.1: Boost factors for different Kerr spin parameters α for the full spike

When the DM density gets as high as it is in our spike profiles, DM can self-annihilate

efficiently and level off the spike. SFW followed the strategy used in [1], and considered that

the effect of self-annihilation was to form a core within the radius rann determined by the

location where the density equals ρann = mχ/σvtbh, which for our thermal relic turns out

to be rann = 1.3× 10−2 pc, if we assume that the annihilation process has been acting over

tbh = 1010 yr.

However, it was pointed out in [83] that a plateau is only in equilibrium if all the dark
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matter particles move in circular orbits: the proper profile under the influence of DM self-

annihilation is actually a “weak cusp” ρ ∝ r−1/2 for a more realistic isotropic distribution of

DM velocities. This behaviour has been confirmed by integrating the Boltzmann equation

in [84] for the case of s-wave annihilation.

Regardless of our assumptions on the profile slope once annihilations are included, we

should note that a power-law spike of radius R and slope γ has a J-factor J ∝ R3−2γ. As

long as 3 > 2γ, J will be dominated by the outer regions of the spike, where particles are

non-relativistic, and the effects of GR will not be important. The study done in [51] also

shows that the GC does not present a canonical adiabatic spike and, as such, analyses of spike

profiles should focus on other sources. If relativistic effects are to be important, moreover,

the focus should be on particle physics models that have small interaction cross sections, so

that the effect of self-annihilations does not wash out the spike.
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Primordial Black Hole Dark Matter

In this chapter we will review some of the ways in which the abundances of primordial

black holes have been constrained by astrophysical observations. The formation mechanisms

for PBHs and their relationship to their relic abundance —which may or may not be the

cosmological DM density —is highly model dependent and will therefore not be considered.

Instead, we will focus on the inverse problem of constraining the PBH abudance. The

LIGO observations of gravitational wave events from black hole mergers can also be used to

put strong constraints on the fraction of the DM that is composed of PBHs. We discuss the

present-day merger rate of PBHs and how it may be influenced by adiabatic spikes.

4.1 Observational Constraints of PBH DM

In inflationary scenarios, the link between PBH formation and early-universe density fluc-

tuations means that the observation of a PBH population would provide information about

these fluctuations [85]. This makes the study of PBHs interesting on its own, and there are

several observational limits on the PBH fraction f of the total DM density.

When the LIGO collaboration announced the observation of the first few black hole

merger events, the fact that these black holes had a mass on the order of 30M� seemed

difficult to explain astrophysically. Moreover, the existing observational constraints were

such that a fraction f = 1 of DM in PBHs was still allowed in this mass range. Thus,
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the possibility that LIGO had made an indirect detection of DM could not be ruled out

[32]. Results from [86] added more constraints in the hypothesis of f = 1. The current

status is that f = 1 is excluded except for a small region in which PBHs would have roughly

asteroid masses (see [87] for a review, and [88] for work calling into question the femtolensing

constraints in the asteroid mass region).

These constraints are computed assuming a monochromatic PBH mass spectrum and,

as pointed out in [87], most formation scenarios naturally predict extended mass spectra, in

which PBHs could play multiple roles. Abundant, low mass PBHs could provide the bulk

of the mass that we identify as dark matter, while rare, high mass PBHs could provide the

seeds for the density fluctuations that will eventually form galaxies [33]. If this is taken

into account, it is still possible that PBHs compose all of the dark matter [87]. This means

that PBHs are not yet ruled out as DM candidates, and further investigation is necessary to

better constrain their abundances and understand their role, should they exist, in the global

picture of cosmological models.

Although the high masses reported by LIGO for the merging BHs are difficult to obtain

from stellar evolution, they are not impossible and it is not yet clear what is the contribution

to the observed BH merger rate from astrophysical BHs. Without this input, the strongest

constraint that can be put on PBH abundances from LIGO observations is that their con-

tribution to the merger rate is not greater than the total measured merger rate. This turns

out to be a very strong constraint [89]. We now turn to a description of the basic physics

surrounding this phenomenon.

There are two main channels for PBH binaries that are merging at the present time to

be formed: they can be formed in the early universe and have a lifetime equal to the Hubble

time [89], or they can form in the present day universe and merge [32]. Since PBHs are a form

of non-relativistic matter, they should cluster like cold dark matter and are also susceptible

to form an adiabatic spike. The spike is relevant for mergers of binaries that form in present

day halos [90], so we will consider the formation of those binaries in what follows.
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A black hole binary loses energy and angular momentum from the emission of gravita-

tional waves. For high eccentricity orbits, the coalescense time is given in terms of the semi

major axis a and eccentricity e by [91]

tGW = 3
170

a4(1− e2)7/2

G3M3
PBH

=
(
1.94× 1013Gyr

)
(1− e2)7/2

(
a

1mpc

)4(
MPBH

30M�

)−3

. (4.1)

Although this expression is not correct for all eccentricities, the dimensionful factors

carry the correct scaling with a and MPBH and also correctly display the fact that eccentric

black holes merge much faster that non-eccentric ones. A binary in a Milky Way-like halo,

formed from a collision of two 30M� BHs, will have a semi major axis on the order of 104km

(see Eq. (A.12)), which implies a merger timescale of around 1yr, ignoring the eccentricity

dependence.

This means that we may calculate the merger rate of PBHs in galactic DM halos as

follows: two black holes undergo a gravitational encounter, in which they may radiate their

relative kinetic energy in gravitational waves. The cross section for binary formation through

this channel is given by [92, 32]

σ = 1.37× 10−14
(
MPBH

30M�

)2(
vrel

200km/s

)−18/7

pc2. (4.2)

Since the timescale for these BHs to merge is instantaneous compared with cosmological time,

all binaries formed in this way promptly merge and can be observed by LIGO. Although

binary formation is a non-local event, their semi major axes are so small compared to typical

galactic scales that we may consider the capture process as happening at a point. The

calculation of the merger rate in a halo could then be performed using Eq. (3.10), provided

that the proper averaging over the relative velocity distribution is made.

Due to the ρ2 dependence of the event rate in Eq. (3.10), the merger rate is very sensitive

to PBH clustering. This means that the presence of a density cusp should be taken into

account when estimating the merger rate. Such a calculation was performed in [90], where it

91



Chapter 4. Primordial Black Hole Dark Matter

was shown that, depending on the DM halo parameters, PBH spikes around SMBHs could

explain the observed LIGO event rate.

We now turn to a full calculation of the PBH event from binaries formed in an SMBH

spike, using the formalism developed in Chapter 2. In particular, we will calculate the local

event rate at each point in the spike using Eq. (2.20).

4.2 PBH Mergers In The Local Universe: Adiabatic

Spikes

We will take as our model for the initial DM cusp a general power law

ρ(r) = ρ0

(
r0

r

)γ
, (4.3)

With 0 < γ < 2. A power law has no natural length scale, so, in applications, we may

take r0 to be any length and ρ0 normalizes the density. As an example, if the DM profile

of the Milky Way is described as an NFW, the logarithmic slope γ ∼ 1 for r . 20 kpc. If

we normalize the density so that in the solar neighborhood, r ' 8 kpc, ρ ' 0.3 GeV/cm3,

then it is appropriate to describe the DM density by the above profile with r0 = 8 kpc and

ρ0 = 0.3 Gev/cm3.

The potential Φ(r) generated by this distribution can be found by solving

dΦ
dr = GM(r)

r2 , Φ(0) = 0,

M(r) = 4π
r∫

0

dr′ r′2ρ(r). (4.4)

For the slopes that we are considering, the total mass is infinite, and as such the potential will

be positive and unbounded above. Rather than truncating the distribution and attempting

to find a self-consistent phase space distribution that approximates the truncated one, we
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will simply take this density profile and gravitational potential at face value, as we will be

focusing on distances r � r0, where any truncation effects will not be relevant4. The solution

to Poisson’s equation is

Φ(r) = 4πρ0r
γ
0r

2−γ

(3− γ)(2− γ) = 4πρ0r
2
0

(3− γ)(2− γ)

(
r

r0

)2−γ
≡ φ0

(
r

r0

)2−γ
. (4.5)

The phase space distribution f(E) that generates this initial profile should satisfy the self-

consistency condition (see Eq. (2.6))

ρ(r) = 4π
∞∫

Φ(r)

dE f(E)
√

2(E − Φ(r)). (4.6)

This is slightly different from Eq. (2.6) due to the fact that this potential does not have

a finite total mass, and, as such, Φ(r) → ∞ as r → ∞. Introducing a power-law ansatz

f(E) = f0E
−β, we can do the integral in Eq. (4.6) analytically, obtaining

f(E) = ρ0

(2πφ0)3/2
Γ(β)

Γ(β − 3/2)

(
φ0

E

)β
,

β = 6− γ
2(2− γ) . (4.7)

We will introduce the following dimensionless variables

x = r

r0
ε = E

φ0
l = L

r0
√
φ0

lz = Lz
r0
√
φ0
. (4.8)

To calculate the radial action, Eq. (2.48), we need to know the turning points of an orbit given

E,L, Lz. These cannot be found analytically, but they can be found through a bracketing

algorithm. At a turning point xt,

ε = x2−γ
t + l2

2x2
t

. (4.9)

4 A power law profile does not have any characteristic length scale. More rigorously, if we define a
truncation scale rT � r0, the proper statement is that we are considering the profile in a region r � rT .
Since r0 � rT , r � r0 naturally implies r � rT
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Both terms on the right hand side of the above equation are positive, so we obtain a bound

ε ≥ x2−γ
t ⇒ xt ≤ ε

1
2−γ . We also find ε ≥ l2

2x2
t
⇒ xt ≥

√
l2

2ε , which brackets the two turning

points. We will order the two turning points as x1 < x2. As long as we are not matching Ir

to IKr = 05, we can also find an intermediate bracketing point x1 < xc < x2 by finding the

circular orbit of this potential, which is located at xc = (l2/(2 − γ))
1

4−γ . With the turning

points at hand, we can calculate Ir numerically, given (ε, l, lz). We will also use a bracketing

algorithm to solve for the energy. Once more, as long as we are not matching to IKr = 0,

we know that we will not be integrating over a circular orbit, and thus ε > Φ(xc)/φ0. There

is no analytical upper bound that can be obtained on the energy, but, if we consider the

change of variables E = Φ(r)y in Eq. (4.6), we obtain

ρ(r) = f0Φ(r)3/2−β
∞∫
1

dy y−β
√
y − 1. (4.10)

In our applications, we will be considering a profile with γ = 1, and from Eq. (4.7), we see

that β = 5/2. The exact value of the integral over y is 2/3, and integrating up to y = 150

allows us to obtain this integral to better than 1% accuracy. This means that we are allowed

to truncate this distribution at E ' 150Φ(r). In terms of the variable ε, this is a truncation

at 150Φ(r)/φ0, which is a small number since φ(r) � φ0 for the distances r � r0 that we

will be considering. That said, the MC algorithm will sporadically select very loosely bound

orbits, so we conservatively truncate the distribution at ε = 10.

In Fig. (4.1), spike profiles generated from power laws with different slopes are compared

with an NFW profile (γ = 1). All of these profiles are normalized to have a density of 0.3

GeV/cm3 at a distance r0 =8kpc. In order to provide a simple fitting function for the spike,

we revisited the Schwarzschild background calculation using a general power law profile, and
5 Ir = 0 corresponds to a circular orbit. If Ir 6= 0 then the potential must have two turning points and it

will have an extremum between them.
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obtained the following fitting function for the density

ρ(r) = ρR

(2Rsp

Gm

)γsp (1− Ecirc(r))γsp(
1 + 4Gm

r

)βγ , (4.11)

where Ecirc(r) is the energy of a circular orbit at coordinate r, and ρR, Rsp are given by [1].

See Fig. (4.2) for a comparison between the fitting function and the Schwarzschild spike.
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Fig. 4.1: A comparison of the density profiles generated from adiabatic matching to an
outer profile with scale density 0.3 GeV/cm3 and scale radius 8.0 kpc, but with
a varying initial slope. Shown in the figure are the results of the classic Gondolo
and Silk calculation (red dotted line and green dash-dotted line) and that of a
calculation taking into account the effects of the Kerr metric (solid blue line and
purple dashed line) with dimensionless spin parameter 0.7. We set the mass of
the central black hole to be 4×106M�. To set the scale, an NFW profile with the
same scale density and radius is shown (red, long dashes)

ρR = ρ0

(
r0

Rsp

)γ
Rsp = αγr0

(
M

ρ0r3
0

) 1
3−γ

. (4.12)

The constant αγ is given for a few values of the initial slope γ in [1]. The exponent βγ varies

slowly with γ and is displayed in Tab. (4.1). As we will show, provided that the correct
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density profile is used in Eq. (3.10), there is not a big difference between the full calculation

that we perform here and one that simply uses the newtonian circular velocity to estimate

〈σv〉(r). It is therefore useful to have this expression for the density to estimate event rates

using Eq. (3.10)6, as it is just as easy to use as the fits provided by [1] but more accurate.

This procedure is also computationally more efficient than doing the double phase space

integration required in Eq. (2.20).

γ 0.05 0.2 0.4 0.8 1.0 1.2 1.4
βγ 3.336 3.367 3.393 3.394 3.422 3.504 3.574

Tab. 4.1: Exponent βγ in the fitting function of Eq. (4.12) as a function of the outer slope
γ for a few values of γ.
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Fig. 4.2: A comparison for the density profile obtained numerically for γ = 1, with the
same ρ0, r0 described in the text, and the proposed fitting function.

Having estabilished a method to efficiently calculate the adiabatic invariants, we may

now calculate the event rate per unit volume within the spike using Eq. (2.20). We then use

the axisymmetry of the final distribution and the fact that √−g = (r2 + a2 cos θ) sin θ for
6 With the understanding that 〈σv〉 should now go inside the integral, as it is no longer a constant. We

may also ignore the energy spectrum term.
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the Kerr metric to calculate the total event rate within a halo as

dNspike

dt = 2π
∫

d(cos θ) dr (r2 + a2 cos θ)dN
d4x

(r, cos θ). (4.13)

We perform the double integral by using a 2-dimensional Gauss-Legendre method. In

Fig. (4.3) we show the impact of general relativistic effects on the event rate per unit volume

from a given DM spike. Since the bulk of the event rate comes from contributions at small

distances, it is seen that proper modeling of the spike is crucial. The PBHs considered here

are assumed heavier than the average star, and dynamical friction from stellar encounters

could make them sink to the center and provide another density enhancement, as considered

in [86]. We will quantify these effects in Sec. (4.3).
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Fig. 4.3: Phase-space averaged event rate per unit spacetime volume for the spike matched
to a γ = 1.0 outer profile, with ρo = 0.3 GeV/cm3 and r0 = 8.0 kpc. Results
are shown for the equatorial plane of a Kerr background with dimensionless spin
parameter 0.7 (blue,solid), a Schwarzschild background and the GS calculation
(dotted,red). In all cases, the mass of the SMBH is 4 × 106M�. As discussed in
the text, the impact mostly comes from the density enhancement instead of the
velocity distribution.
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In Tab. (4.2), we present event rates obtained for profiles with varying slopes and black

hole masses. We do this by showing the ratio of our event rates to those obtained from a GS

spike. It is seen that the effect of taking into account the full phase-spaced averaged cross

section instead of simply inserting the newtonian circular velocity in Eq. (4.2) is small. The

determination of SMBH spins is difficult [93], but spin parameters as high as 0.8 have been

reported in the literature [94]. We therefore fix the spin parameter of the SMBH (which sets

the background geometry) in our calculations to 0.7 to get an idea of the size of the boost

to be expected while still being conservative.

Since most of the enhancement is already contained in going from the newtonian profile

to the Schwarzschild background, we consider this a reasonable estimate for the boost factor.

The scaling between the event rate obtained with a GS spike and that obtained from a Kerr

γ GS(yr−1) Sch,Circ Sch,Full Kerr,Circ Kerr,Full
0.5 7.54× 10−10 1.80 1.95 1.89 2.05
1.0 3.73× 10−8 1.84 2.00 1.95 2.13
1.5 3.18× 10−6 1.84 2.00 1.96 2.15

Tab. 4.2: Total PBH merger rate for PBHs merging around the spike of a 4 × 106M�
SMBH, assuming that the spike is composed entirely of PBHs. The second column
shows the result for a GS spike, and subsequent columns display the ratio of
the event rate obtained for that calculation to the GS result. We pick a scale
density of 0.3GeV/cm3 and a scale radius of 8.0kpc. We show results for different
background geometries and also show the effect of including the full phase space
averaged cross section versus using the Newtonian circular velocity.

spike is mass-independent. Therefore, one could adjust the LIGO event rates obtained in [90]

by multiplying them with the corresponding factor in Tab. (4.2). However, as the authors of

[89] point out, there is a dominant effect over this contribution to the merger rate of PBHs

coming from binaries formed in the early universe that are merging today.

We therefore present these results as a mild strengthening of the work of Nishikawa

et.al [90]. The analytical expression for the Schwarzschild spike also provides a simple way

of taking into account general relativistic effects in the calculation of indirect detection

observables, which, as shown here, can be significant.
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The fact that most of the enhancement to the event rate of PBH mergers comes (for

SMBHs with intermediate spin parameters) from the density enhancement rather than from

a modification of the velocity distribution shows that the newtonian circular velocity, taken

in [90] as the representative velocity for the calculation of the merger rate, is an appropriate

choice and should not lead to considerable uncertainties. In the next section we will, however,

point out some flaws in this approach.

4.3 PBH Mergers In The Local Universe: Orbital

Decay and Dynamical Friction

We now turn to the analysis of two effects that can affect the spike profile close to the radius

of influence of the SMBH: gravitational wave emission from the orbital motion of the PBHs

around the SMBH, and dynamical friction from a nuclear star cluster (NSC) close to the

SMBH. The emission of gravitational waves can be appropriately considered by focusing on

the case of a PBH circling the SMBH. The characteristic time for an orbit at radial distance

r to decay is [95]

TGW,SMBH(r) = 5r
256

(
r

Gm

)2 r

GMPBH
= 0.43yr×

(
m

4× 106M�

)(
MPBH

30M�

)−1(
r

Gm

)4
. (4.14)

We note that this timescale is exceedingly short compared to cosmological times on

distance scales r/Gm . 100. This region, however, is where the spike is most concentrated

and is the region responsible for most of the event rate considered in Sec. (4.2). Therefore,

we may conclude that the signal originally considered in the previous section and in [90] is

likely not present, as these PBHs would not make it to the present day to merge.

That said, dynamical friction from the stars on the outer region of the spike could still

provide a mechanism for PBHs in that region to sink toward the SMBH, and this boosted

spike could potentially lead to an enhanced merger rate around the SMBH. We will now
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attempt to quantify this effect but, before moving on, we will state some basic facts about

dynamical friction.

Dynamical friction is the effect emerging from gravitational encounters of objects of mass

MPBH with a population of “field objects” of massm∗ �MPBH. When these objects exchange

energy and momentum, the main effect on the more massive object is that it will lose energy,

experiencing an effective drag force (see [31] for a derivation) in the direction of motion given

by the Chandrasekhar formula

FDF = −4πG2M2
PBHρ log Λ
v2

[
erf(X)− 2X√

π
e−X

2
]
. (4.15)

In the above equation, ρ is the mass density of field objects, X = v/
√

2σ, σ their velocity

dispersion, and log Λ is the Coulomb logarithm, a cutoff parameter to regulate the long-

distance behavior of the gravitational interaction. The parameter Λ is typically estimated as

bmax/b90, where bmax is a cutoff impact parameter (of order the size of the system), and b90

is the impact parameter leading to a 90◦ deflection of the relative velocity. Typical values

for log Λ are between 5 and 10.

Several assumptions go into the derivation of this equation, the most important being

that the velocity distribution of the system is Maxwellian and that the density ρ is constant

everywhere in space. In spite of these very strong assumptions, numerical work shows that

this approximation is able to capture the essential physics of dynamical friction in many

situations. We will therefore assume the validity of the Chandrasekhar formula in the local

density approximation, in which we replace ρ, σ → ρ(r), σ(r). This has been shown in the

literature to be reliable to at least estimate the timescale in which an object might sink due

to dynamical friction [96].

In order to move forward, we require a model for both of these quantites. The Milky

Way’s nuclear star cluster is well described by a broken power-law profile [2]. To do a

calculation applicable to Milky-Way-like galaxies rather than just the Milky Way, we will
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follow the recipe in [97] and assume that the SMBH’s sphere of influence contains a stellar

mass of 2m. We will also assume, following observations, that the inner slope of the stellar

density is γNSC = 1.

With this information in hand, we will assume that the PBHs move in circular orbits and

that the effect of dynamical friction is to introduce a dragging torque, which will cause the

PBHs to sink. We will therefore solve the differential equation

dL
dt = −FDF r, L = MPBHvr = MPBH

√
Gmr. (4.16)

Furthermore, we will assume that, within the SMBH’s radius of influence, the stellar

velocity dispersion may be taken to be of order
√
Gm/r, since the SMBH should dominate

the gravitational potential. This leads to the following differential equation for r(t)

dr
dt ≡ −vDF(r) = −8πMPBH

m
ρ0∗r

5/2
0∗

√
G

m

(
r0

r

)γ−5/2
log Λg(1), (4.17)

with g(X) = erf(X)− 2Xπ−1/2e−X
2 . The parameters r0∗, ρ0∗ are, respectively, the SMBH’s

radius of influence (where we are cutting off the stellar profile) and the stellar density at

that position. This provides us with a local timescale TDF(r) = r/vDF(r), which would be

the time for a PBH to fall to the origin if it sank at constant speed. This does not happen

and, in fact, the time to fall towards the origin diverges, as can be seen by solving Eq. (4.17),

which gives t(rfinal) ∼ r
γ−3/2
final for rfinal � r(t = 0). That said, we can take this as a timescale

in which dynamical friction can efficiently act on the PBHs. We show these timescales on

Fig. (4.4). In that figure, we also show an estimate of the timescale for merger events to

occur. To estimate that timescale, Tmerge, we use the fact that the binary formation rate is

ρ〈σv〉/MPBH, and we take as ρ(r) the initial spike profile.

Let us put Fig. (4.4) in perspective: our guiding assumption is that the PBH spike was

formed sometime early in galactic history, and may have lived for times as long as 10Gyr.

If the spike has survived without significant modification, then Tmerge(r) is the inverse of
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Fig. 4.4: The timescales for orbital decay from gravitational wave emission (solid line),
binary formation (dot-dashed line) and the local dynamical friction timescale
(dashed line)

.

the local binary formation rate in the spike. It can also be interpreted as the average time

between binary formation events. We see that, if the spike is formed early on, it cannot

be “pristine” after 10Gyr: not only is Tmerge � 10Gyr, but also TGW,SMBH � 10Gyr. This

means that binary formation events and plunges into the SMBH would change the spike

profile.

Unlike in the case of WIMP dark matter, however, PBHs that undergo mergers don’t

annihilate away: they turn into a larger BH. If we make the simple assumption that every

merger turns two black holes of mass MPBH into a single black hole of mass 2MPBH, then the

mass density is not changed by mergers. The cross section 〈σv〉 ∝ M2
PBH, so this timescale

would get shorter as black holes continue merging, but we will ignore this and just take Tmerge

as a typical timescale for a merger to occur. The fact that Tmerge � 10Gyr can then be taken

to mean that the mass spectrum of PBHs within the spike could change significantly over
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10Gyr.

Turning now to the timescale TDF(r), that scale shows from which regions in the halo

PBHs could sink significantly in 10Gyr. The sinking of these PBHs would cause the density

to increase, lowering Tmerge and making it so PBHs from the outer spike can now contribute

significantly to the present merger rate.

We are now faced with the following issues: by how much does the spike profile contract,

and does it produce an appreciable boost to the event rate? Furthermore, will the merging

PBHs have the same mass MPBH as the initial PBHs, or will that distribution have signifi-

cantly changed? In estimating these effects, we note from Fig. (4.4) that dynamical friction

is only relevant in the outer regions of the spike. We are thefore permitted to ignore the

effects of spin, using Eq. (4.11) to model the initial spike profile.

To estimate the boost to the present merger rate, as well as to estimate how many

PBHs would undergo at least one merger, we implement the following scheme: we solve the

continuity equation with a source term, ∂ρ/MPBH
∂t

= −∇ · j − 1
2〈σv〉

(
ρ

MPBH

)2
. We will take

j = −vDFr̂ and, from our analysis in the previous section, we will calculate 〈σv〉(r) from

Eq. (4.2) and using the newtonian circular velocity as v(r), since we have verified that this

is appropriate.

The idea behind this analysis is that, ignoring the merger rate term, the continuity

equation provides us with the boost to the density due to the sinking of PBHs from the

outer spike. Inclusion of the merger rate term will remove PBHs from the profile, and will

provide us with an estimate of how many PBHs will merge at least once. If most PBHs

merge, the fact that Tmerge(r) is expected to decrease with repeated mergers would then

allow us to conclude that we can expect the mass spectrum of the presently merging PBHs

to have contributions from multiple masses.

Fortunately, with all of the approximations that we have introduced, the continuity equa-
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tion can be solved analytically, and the solution is

1
n(r, t) = 1

n(ri, 0)

(
r

ri

)α+2
− 〈σv〉0r2v0

(
r
Gm

)β(
r

rinfl

)α(
1−

(
ri
r

)β−1−2α
)

(β − 1− 2α)8πMPBH

m

√
M0∗
m

log Λg(1)
, (4.18)

ṽ0 =
√
GM0∗

r0∗
, M0∗ = ρ0∗r

3
0∗.

In the above expression, β = 11/14 comes from the dependence of the GW capture cross

section on the relative velocity of the two PBHs (σv ∼ v−11/7 and v ∼ r−1/2). The parameter

α = 5/2 − γNSC comes from vDF (r). The distance ri = ri(r, t) corresponds to the radial

coordinate that the PBH currently at coordinate r had at time t = 0. The factor 〈σv〉0 is a

normalization factor for the capture cross section. In Fig. (4.5), we show the combined effect

of mergers and dynamical friction on the density profile, as well as the effect of dynamical

friction acting on the PBH system by itself.

With these profiles in hand, we can calculate the GW merger event rate from them

using Eq. (3.10) and taking advantage of the spherical symmetry that we may assume of

our system. For the density profiles in Fig. (4.5), we obtain merger rates of 6.65× 10−8yr-1,

2.47×10−5yr-1 and 5.48×10−7yr-1 for the pure spike, DF only, and DF with mergers removed

(“Continuity” in Fig. (4.5)), respectively. To put this in perspective, in [90] a merger rate of

of 3.73 × 10−8yr-1 is obtained for the GS spike, so the effects of dynamical friction may be

significant.

Although it may seem like the merger rate for the “Continuity” profile is the one to be

expected as our estimate for the present PBH merger rate, it is important to remember that

black holes that undergo a merger are not removed from the profile, they become a black hole

of a different mass. Therefore, the DF only calculation could provide a reasonable estimate,

since, due to the properties of the binary capture cross section, the integral in Eq. (3.10)

for the pure spike is independent of MPBH. The DF only result is roughly 650 times larger

than that obtained by [90]. For the parameters that we considered, roughly 3/4 of all PBHs
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Fig. 4.5: The original spike profile (continuous line), the spike enhanced by dynamical fric-
tion (dot-dashed line), and the dynamical friction enhanced profile with merging
PBHs removed (dashed). For both of these profiles, we assumed that dynamical
friction acts on the PBHs for 10Gyr.

should participate in at least one merger event.

This “boost factor” that we have obtained should be calculated as a function of SMBH

mass, since the total merger rate that an observatory like LIGO would see is the merger rate

per SMBH folded in with the SMBH mass function. We finish this section by commenting

on some of our expectations for these results. Ultimately, numerical simulations are required

to solve this problem.

The starting point, which may be seen from Eq. (4.17), is that TDF ∝ m3/2. Thus,

dynamical friction can act more efficiently in the NSCs around lighther SMBHs, leading to

larger boosts. Moreover, cutting off the stellar distribution at rinfl is a simplification, and

PBHs could fall from further distances in 10Gyr, as is seen explicitly in [97]. This requires

a more detailed model of what the spike should be beyond rinfl, but here we will make the

simplest possible assumptions.
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It should be stressed that there is no reason to expect the simple analysis performed

here, using the Chandrasekhar formula, to hold in systems around lighter SMBHs, as those

will necessarily contain fewer stars and fewer PBHs. More importantly, the sensitivity of our

results to log Λ implies that a detailed study is needed to properly understand the effects of

dynamical friction on the merger rate.

We conclude by remarking that it would be important to check these calculations with

numerical simulations, as they can provide a reliable value of the boost that dynamical

friction can have to the merger rate around PBH spike and whether or not this could make it

competitive with the rates obtained from binaries formed in the early universe [89]. Moreover,

the broadening of the PBHmass function or other observationally interesting signatures could

be explicitly obtained.

4.4 PBH Mergers In The Early Universe And Future

Perspectives

As Eq. (4.1) shows, only very small, eccentric binaries can merge within a Hubble time.

Binaries that form in our local universe are both [98], and therefore merge very quickly,

within at most a few hundred thousand years 7. The strong dependence on orbital parameters

led to the proposal [99] that MACHOs formed in the early universe could merge within a

Hubble time and be observed by gravitational wave detectors.

In fact, transposing the result in [99] to 30M� PBHs, a merger rate can be obtained

(depending on the fraction of DM in PBHs) that is several orders of magnitude larger than

that inferred by the LIGO collaboration [89]. However, due to their incredibly long lifetimes

and the multitude of perturbations that act on them, it is not entirely obvious that such
7 Eqs. (4.1, A.12) show that there should be a strong dependence on the merger timescale and the halo

velocity dispersion. This upper limit of a few hundred thousand years comes from considering halos with
virial masses of 106M� [32], which have a lower velocity dispersion than the Milky Way, leading to the longer
lifetime
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binaries can survive without being disrupted.

The physical picture that emerges from [89] is, however, surprisingly simple: given a

random distribution of PBHs, those that are tightly bound at early times (prior to matter-

radiation equality) can form stable binaries with a distribution of eccentricities. It is this

property of being tightly bound at such early times that gives these binaries their stability:

being such a strong density perturbation, they are stable against tidal torques from other

objects.

That said, there are significant uncertainties in the analytical estimates performed in

the literature, particularly on three fronts: N-body effects [100] in the formation of the first

PBH halos, dynamical friction from a potential WIMP halo surrounding the PBH binary

[101], and baryon accretion [102]. Most of the follow-ups to [89] seem to at least agree on

the fact that the merger rate obtained from binaries formed in the early universe is still high

enough to exclude PBHs as forming all of the dark matter, if a narrow PBH mass spectrum

is assumed. With regards to these uncertainties, baryon accretion could potentially have the

most impact in the disruption of the binary, but dedicated simulations are still required.

Another issue with the calculation in [89] is the probability distribution that is assumed

for the binary separation: namely, it is taken to be a Poisson process with one binary on

average per volume V = MPBH/ρM . This is the simplest possible assumption for their

distribution, although there is significant discussion as to whether or not PBH clustering

could occur [103, 104, 105]. However, it is agreed upon that the distribution of PBHs

could only be more clustered than the naive Poisson distribution and this strengthens the

constraints that can be imposed from the LIGO merger rate. Overall, the limits on the PBH

fraction obtained from [89], though potentially too restrictive, seem to be robust.

We finish this chapter by proposing a new, yet unexplored (and undeveloped) way that

simulations taking PBH DM seriously could probe their abundance. The idea is as follows:

it is observed that roughly half of all stars are part of binary systems [31], and simulations

show that three-body encounters between a binary of low mass stars and a more massive
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black hole can rapidly lead to exchange encounters where one of the stars in the binary is

replaced by the black hole (see, e.g [106]). In high density environments like galactic nuclei

and globular clusters, such three-body encounters are frequent enough to, in principle, turn

an isolated population of PBHs into black hole-stellar binaries and, potentially, to take this

process a step further and form more PBH binaries.

To estimate this effect, we consider the three-body exchange cross-section to scale as

Σ ∼ G(MPBH+2Mstar)a
V 2 [107]. If we take as our environment the NSC in the Milky Way,

Fig. (4.6), based on the observations of [2] shows how, even for a conservative fraction of

binary systems (10%), the stellar binary density is much larger than the local DM density.

We will therefore take the stellar density to be unperturbed by the relatively few exchanges

with PBHs. A simple estimate of the rate at which stars will be ejected from such systems
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Fig. 4.6: Mass density of stellar binaries and PBHs, with the assumption fbinary = 0.1. The
“Nuker profile” is the functional form used in [2] to fit the observed stellar density
in the Milky Way’s NSC.

is then simply Γ = nstarΣV , and we take V ∼ 30km/s as an estimate of the local velocity
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dispersion in the NSC [38]. Thus, the timescale for an exchange interaction to occur would

be on the order of

tex ∼
2mstarV

fbinaryρstarG(MPBH + 2mstar)a

' (1Gyr)
(
fbinary

0.1

)−1(
mstar

M�

)(
V

30km/s

)(
ρstar

105M�pc−3

)−1(
a

10AU

)−1
(
MPBH

30M�

)−1

. (4.19)

Although the stellar density in the NSC drops off rapidly from the reference value we

took in Eq. (4.19), the smaller densities at larger distances could potentially allow wider

binaries to be present. For instance, taking as a criterion for the maximum binary radii

allowed as a function of r that tidal forces in the local (PBH + NSC + SMBH) gravitational

field be weaker than the internal attraction of the binary, separations of up to 2000AU are

permitted, which could potentially compensate the drop in density and keep the exchange

timescale at around 1Gyr.

Due to the complexities involved and the high densities in the NSC, the study of these

systems should be made through simulations, which could potentially reveal interesting con-

straints on the PBH fraction. This is because, if we assume a constant exchange rate between

PBHs and stars, the total number of binary systems formed should naively scale linearly

with the DM fraction in PBHs, as the total exchange rate per unit volume should simply be

nPBH/tex
8. Such considerations could also potentially allow for cross-checks of models of a

PBH population to be performed by comparing local populations of X-ray binaries (which

would be formed in one step of the exchange processes) with local populations of BH binaries

inferred from mergers, once a sufficient number of these have been observed.

8 This is important because other constraints scale with higher powers of the PBH fraction f and are
potentially less constraining at low f
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Conclusions

The nature of the dark matter and dark energy present in the standard cosmology are

important unsolved problems in physics. Although we have detected their gravitational

effects, nothing is known about how these components of our universe interact with visible

matter. Models have been proposed and parameter space has been carved out, but the

simplest models, such as WIMPs, have yet to be effectively ruled out.

A competing alternative to the inclusion of dark matter in the standard cosmology is

modified gravity, in which it is assumed that GR must be modified. To describe data such

as galactic rotation curves, phenomenological models like Modified Newtonian Dynamics

(MOND) introduce a small acceleration scale (in c = 1 units, acceleration has dimensions of

inverse length) in which the newtonian potential must be modified. It is possible to write

down lagrangians (i.e, “complete theories”) that reproduce the phenomenological newtonian

potential proposed in MOND, but as of yet, there is no corresponding alternative “concor-

dance model” that is able to explain all of the available observations in the way the standard

cosmology can. Should such a model emerge, a critical future issue will be to determine how

to discriminate between such disparate competing models. Modifying gravity, however, is

not the subject of this work.

In this work, we have chosen to follow the mainstream and look for an avenue in which

dark matter could be detected in an astrophysical context. As mentioned in Chapter 1,

SMBHs exist at the center of most galaxies, and those that are less massive, in systems that
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might have not undergone major mergers, it is possible that they grow adiabatically from a

small seed. Under this assumption, the surrounding DM density increases substantially, and

this has a substantial impact on indirect detection observables.

Chapter 2 describes how to use a phase space distribution to describe a relativistic system,

and how to extract observable quantities. We use a framework in which covariant and

invariant quantites (vectors and scalars) are calculated before converting them into observer-

dependent quantities. This procedure has the advantage of making the observer or coordinate

dependence of a given calculation simple to take into account. We finish by generalizing a

proof of the adiabatic invariance of the phase space distribution function to particle motion

around a Kerr metric.

With the setup of Chapter 2, Chapter 3 mostly focuses on the calculation of the adiabatic

spike generated by an initial DM distribution that is a Hernquist profile. We chose that

profile because it has the same slope as the NFW profile but has a phase space distribution

that can be calculated analytically. Since the inner spike profile should only depend on the

slope of the density profile and some normalization, this is appropriate. We then proceed

to calculate the impact of SMBH spin on the particle fluxes coming from a spike, finding a

moderate increase over the Schwarzschild case. The spike profile from WIMPs is expected

to be cutoff by DM annihilations, which washes out the effects of spin, but spikes might still

be present around IMBHs at the centers of dwarf galaxies, should they exist.

Chapter 4 deals with the possibility of DM not being a standard WIMP, but instead

primordial black holes. Such PBHs would be non-relativistic throughout cosmic history and

could cluster in an adiabatic spike. In this case, the equivalent process to WIMP annihilation

is binary BH merger, and instead of producing particles, it generates gravitational waves.

However, due to the short merger timescales of bound PBH binaries, the mathematical de-

scription of this process is similar and a gravitational wave flux can be extracted using the

same formalism developed in Chapter 2. However, emission of gravitational waves from the

PBH orbit around the SMBH is shown to effectively destroy the spike, although dynamical
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friction from a surrounding NSC could generate a significant amount of PBH mergers. Fur-

thermore, binaries formed in the early universe could provide a more constraining channel

on the PBH abundance. That said, adiabatic spikes replenished by dynamical friction could

become an interesting channel to observe the extreme mass ratio inspiral of a PBH into an

SMBH with a space-based gravitational wave observatory like LISA.
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Appendix A

The Black Hole Binary Formation

Cross Section

In this appendix, we will present a derivation of Eq. (4.2), the cross section for the formation

of a PBH binary from the emission of gravitational waves. The main idea of this calculation

[92] is that the pair of black holes is sufficiently separated and slowly moving so that the

gravitational wave emission can be taken care of in the context of perturbation theory.

Typical velocities of galactic objects are small compared to that of light [31], so the second

part of the approximation is certainly guaranteed. We will show that the first part of the

approximation is also reasonable in the derivation of the cross-section.

In the context of these approximations, capture happens when the kinetic energy of the

black hole pair is dissipated by gravitational waves. Since we will be using the quadrupole

formula from perturbation theory [15], it will therefore be permissible to ignore the con-

tribution of the kinetic energy of the pair to the “zeroth-order” orbit, as it will be of the

same order of the perturbative effect of gravitational wave emission. This implies that we

can calculate the emission of gravitational waves by the pair assuming that their relative

coordinate describes a newtonian parabolic orbit.

Since the orbit we are considering is planar, we will use cylindrical coordinates (r, θ, z)
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and set z = 0. The emitted power is given in terms of the traceless quadrupole tensor:

P = −G5
d3Jij
dt3

d3J ij

dt3 , (A.1)

Jij = µ
(
xixj −

1
3r

2δij

)
, (A.2)

where µ is the reduced mass of the system. We denote the mass of each particle in the system

as m1,m2. This is a three-dimensional tensor in flat space, so the metric to be used here is

simply δij. We will begin by considering general masses (m1,m2) and only set m1 = m2 at

the end of the calculation for the cross-section. In terms of the polar coordinates (r, θ), we

have

Jij = µr2

3


3 cos2 θ − 1 3 cos θ sin θ 0

3 cos θ sin θ 3 sin2 θ − 1 0

0 0 −1

. (A.3)

The parabolic orbit is described in polar coordinates as

r(θ) = 2rp
1 + cos θ , (A.4)

where rp is the distance of closest approach, taken to be at θ = 0. The newtonian parabolic

orbit has zero total energy, so using that information along with conservation of angular

momentum gives

θ̇ = l

4µr2
p

(1 + cos θ)2 (A.5)

l2 = 2Gm1m2µrp, (A.6)

l being the relative angular momentum of the system. Inserting Eqs.(A.4, A.5) in Eq.(A.1),
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we find

dE
dt = −G

4µ2(m1 +m2)3

60r5
p

(1 + cos θ)5(13 + 11 cos θ),

dE
dθ = −

√
2(m1 +m2)G7/2(m1m2)2

30r7/2
p

(1 + cos θ)3(13 + 11 cos θ). (A.7)

Integrating from −π to π gives the energy loss from emission

∆E = − 85π
12
√

2
G7/2(m1m2)2(m1 +m2)1/2

r
7/2
p

. (A.8)

The capture criterion |∆E| ≥ 1
2µv

2 gives us a maximum value rp,max = Rp equal to

Rp =
(

85π
√

2G7/2m1m2(m1 +m2)3/2

12v2

)2/7

. (A.9)

The naive cross section would then be given by σ = πR2
p, but we need to take into account

the gravitational focusing effect from the Coulomb potential: certain hyperbolic orbits that

have an impact parameter b > Rp will be focused to have a distance of closest approach

rp < Rp. The actual cross-section is then given by πB2, where B is the value of the impact

parameter such that the distance of closest approach is Rp. This can be straightforwardly

obtained from conservation of energy and angular momentum:

l = µvB = µvpRp ⇒ vp = v
B

Rp

,

1
2v

2 = 1
2v

2
p −G

m1 +m2

Rp

⇒ v2 = v2B
2

R2
p

− 2G(m1 +m2)
RP

⇒ B2 = R2
p

(
1 + 2G(m1 +m2)

v2Rp

)
. (A.10)

The approximation of slow moving masses means that we can ignore the 1 in comparison
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with the second term in the previous equation, obtaining, finally,

σ = 1.37× 10−14
(
MPBH

30M�

)2(
vrel

200km/s

)−18/7

pc2. (A.11)

If we expect our PBHs to have a mass of 30M�, then we can write

Rp = 104km
(

µ

15M�

)2/7
(
MPBH

30M�

)5/7(
v

200km s−1

)−4/7
. (A.12)

The event horizon size for a 30M� spherical PBH is 45km, so we see that capture does indeed

happen at a distance where the effects of general relativity are unimportant. This 104km

capture separation implied by the previous equation is also roughly 600 times smaller than

the event horizon size of a 4× 106M� SMBH, which means that tidal effects from a central

SMBH can also be reasonably be ignored in the Milky-Way-type galaxy considered in the

main text9. For smaller BHs, such as the IMBH that might be present at the centers of

dwarf galaxies [108], tidal effects could be important for the most deeply bound BHs.

We may also use the quadrupole formula to derive Eq. (4.14). In this case, we may simply

plug in θ = ωt for a circular orbit, with ω2 = G(m1 + m2)r−3. If we then assume that GW

emission has the relative coordinate go from one circular orbit to the next10, we may say

that P = Ė, and E can be taken as the energy of a circular orbit, −1
2G(m1 + m2)µr−1.

Evaluating the quadrupole formula and solving for ṙ then gives

dr
dt = −64

5
G(m1 +m2)2µ

r3 . (A.13)

Assuming that m1 � m2, then m1 +m2 ' m1, µ ' m2. We can now integrate Eq. (A.13) to

find the time TGW,SMBH for a circular of initial radius r to decay, which gives Eq. (4.14).

9 That said, the presence of the SMBH can induce a three-body effect known as a Lidov-Kozai resonance,
which can make PBH relative orbits very eccentric. We will ignore this.

10 A detailed analysis of angular momentum losses from gravitational waves shows that their emission tends
to circularize orbits. It is therefore fair to assume that no eccentricity will be added in the secular evolution
of the orbital parameters.
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