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Visual and Chemosensory Pathways Associated With Male Courtship Decisions in
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Successful mating in diverse animal species often depends on ritualistic sequences of

spatially and temporally coordinated behavioral elements. Yet, the sensory cues and

neural circuits that mediate optimal mating display patterns are largely unknown. The

courtship ritual in Drosophila melanogaster consists of a well-studied sequence of be-

havioral elements including orienting, chasing, tapping, singing, and licking that are

known to depend on several sensory modalities, including both vision and chemosen-

sation. However, the specific sensory inputs utilized by males to direct the spatial and

temporal transitions between different elements of the courtship ritual are not well under-

stood. In this thesis, I therefore first develop a new computational tool to quantitatively

characterize male courtship behaviors with a high spatial and temporal resolution. Sub-

sequently, I use this tool, in conjunction with genetic and microscopy approaches to map

the visual and chemosensory neural pathways that drive some of the patterned behav-

ioral elements of the male courtship ritual. I demonstrate that whereas visual circuits are

important for mediating both spatial and temporal components of male mating behaviors,

chemosensory circuits are mostly required for enhancing the duration and intensity of

courtship bouts. Further, I identify a male-specific axonal architecture present in subpop-

ulations of foreleg chemosensory neurons which is important for helping to sustain mating

x



behaviors. This thesis examines the inputs, processing centers, and neural architectures

required for the proper organization of innate mating behaviors and should provide in-

sight into understanding how animals transform sensory stimuli into complex behavioral

outputs, which is a major goal in modern neuroscience.

xi



Chapter 1: Introduction

All organisms are constantly tasked with making decisions. Some of these are concep-

tually simple and innate, such as a bacterium avoiding a toxic chemical within the envi-

ronment [Tso and Adler, 1974]; whereas others are more complex and require learned

or stored information, such as an animal navigating a maze [Morris, 1981, Krumin et al.,

2018]. Regardless of the complexity, most decisions require that sensory stimuli be trans-

formed into some form of motor output (as a behavioral response) that benefits the organ-

ism. While studies of unicellular organisms have provided great insight into the molecu-

lar mechanisms of simple, reflexive decisions [Bi and Sourjik, 2018], the sensorimotor

pathways and neural circuit-level mechanisms that give rise to more complex choices in

animals are less well understood.

In animals, environmental information is detected by sensory receptors that are present

as part of either the peripheral (PNS) or central nervous system (CNS) and is transmitted

along nerve fibers to central processing centers. Once in the CNS, sensory signals are

thought to be integrated to help form or alter an animal’s internal model of its environ-

ment [Gold and Shadlen, 2007, Huda et al., 2018]. These signals, along with subsequent

proprioceptive signals from motor movements, ultimately feed into this internal model to

coordinate subsequent behavioral outputs [Huda et al., 2018]. Much work has gone into

understanding neural correlates of decision making [Platt and Glimcher, 1999, Padoa-

Schioppa and Assad, 2006], and while these experiments have been instrumental in de-

veloping models of action selection in animals, many previous studies were not designed

to identify specific neural circuits that regulate sensorimotor decisions.

Here, I help to further develop Drosophila melanogaster as model for understanding sen-

sorimotor decision making. I highlight mating behaviors, and the male courtship ritual in

particular, as a valid system for parsing the sensory and circuit-level mechanisms that

1



mediate particular behavioral states. Finally, I describe the current state of knowledge

about neural circuits in the fly that lead to the generation of specific behaviors, with an

emphasis on visual and chemosensory circuits.

1.1 Mating Behaviors as a Model for Understanding Decision Mak-
ing

Mating behaviors provide a unique lens through which to examine decision making. These

behaviors have an extremely rich diversity and are found across the animal kingdom, from

the birds of paradise [Irestedt et al., 2009] to simpler invertebrates such as the fruit fly

[Greenspan and Ferveur, 2000]. An important aspect of most mating behaviors is their

innateness; these behaviors are not learned, but they are rather ingrained into an an-

imal’s behavioral repertoire from birth. That mating behaviors are innate makes them

ideal targets for understanding the neural circuits that direct them, as these circuits are

hard-wired into the animal. Therefore, one should be able to systematically identify all of

the neurons involved in the decision to engage in a mating behavior, from the sensory

stimuli important for its initiation to central and motor neurons required for its execution.

Indeed, recent studies have taken advantage of the relatively simple nervous system of

the model organism Caenorhabditis elegans to map all of the individual neurons that co-

ordinate innate behaviors such as egg laying [Schafer, 2006, Collins et al., 2016], and

studies in D. melanogaster have started to dissect the neural circuits underlying specific

aspects of some mating behaviors [Ruta et al., 2010]. Further, unlike many other behav-

ioral outcomes that involve simply deciding between one alternative or another, mating

behaviors are often temporally linked into distinct sequences, collectively referred to as

courtship rituals, where animals must choose between multiple behavioral outputs over

time. Both their innateness and temporal relatedness make mating behaviors an interest-

2



ing and useful system for studying how animals choose between alternative behaviors.

1.2 The Courtship Ritual in Drosophila

The courtship ritual in the fly has been used as a tool for investigations into the genetics

underlying behavior since at least the middle of the 20th century [Ehrman, 1960, Crossley

and Zuill, 1970], and its behavioral components have been well described [Spieth, 1974,

Greenspan and Ferveur, 2000, Sokolowski, 2001]. While the behavioral aspects of the

male courtship ritual have been extensively addressed, female-specific courtship behav-

iors have not been well-studied and are, in general, less complex and more difficult to

observe. Therefore, in this dissertation, I only examine male-specific courtship behaviors.

The male courtship ritual is composed of a series of stereotyped behaviors, often begin-

ning with the male orienting towards the female (Figure 1.1). During orienting, the male

visually fixates on the female and positions his body such that his antero-posterior body

axis is aimed towards the female. Subsequently, the male may chase and sing towards

the female, both behaviors which rely on visual inputs [Agrawal et al., 2014, Coen et al.,

2014, 2016, Clemens et al., 2018]. As the female stops moving, the male can approach

and tap and lick her to sample the chemical environment on the cuticle of the female

[Vosshall, 2008, McKinney et al., 2015]. Finally, the male may attempt to copulate with

the female. If copulation occurs, the courtship ritual ends; if not, then the male may enter

into any of the behavioral states previously described, and the ritual may continue.

An important aspect of the male courtship ritual, which has made it immensely useful

as tool for behavioral genetics research, is the fact that it is innate. Indeed, a male that

has been isolated since eclosion, will engage in all of the behaviors of the courtship ritual

immediately after being exposed to a female conspecific, even though he has never en-

gaged in or observed any of these behaviors previously [Greenspan and Ferveur, 2000].

3



Figure 1.1: Overview of the male courtship ritual. The male courtship ritual in the
fly consists of a male orienting towards, chasing, tapping, singing towards, licking, and
attempting to copulate with a female courtship target. The sensory modalities utilized by
the male to gain information about the female are colored in blue.

In addition to simply displaying these behaviors, the male courtship ritual also occurs with

a specific temporal sequence [Markow and Hanson, 1981]. Even though these aspects

of courtship suggest that there is a single, hardwired circuit which controls all aspects

of male mating behaviors, loss of specific sensory stimuli can lead to alterations in the

temporal sequencing of these behavioral displays [Markow, 1987]. Thus, the courtship

ritual is plastic, and the interplay between various sensory circuits can direct alternative

courtship decisions in the fly.

The courtship ritual in Drosophila relies on the proper acquisition of various sensory stim-

uli about the female, which the male can utilize to optimize his reproductive success.

Indeed, the courtship ritual has long been used as a model for understanding the genetic

and neural basis of chemosensation [Gailey et al., 1986, Ferveur et al., 1997, Lu et al.,

2012, Thistle et al., 2012, Clowney et al., 2015], and has more-recently begun to be uti-

lized to understand how visual signals and circuits coordinate behavioral responses [Pan
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et al., 2012, Agrawal et al., 2014]. While other sensory modalities also mediate various

courtship decisions in male flies [Tauber and Eberl, 2001, Ejima and Griffith, 2008], both

vision and chemosensation have been shown to play dominant roles in these processes,

and I therefore describe the function of each sensory modality in courtship in the following

sections.

1.3 Visual Signals and Circuits Underlying Courtship Decisions in
the Fly

Visual signals are utilized across the animal kingdom to regulate various mating behaviors

[Gonzalez-Bellido et al., 2016, Darmaillacq et al., 2017, Ligon et al., 2018]. For instance,

in many insects species, males often take advantage of motion-based cues to track, inter-

cept, and mate with female conspecifics [Boeddeker et al., 2003]. And Drosophila males

have also been shown to visually track the motion of a female to chase and court her [Ko-

hatsu and Yamamoto, 2015, Ribeiro et al., 2018]. While motion-based cues have been

presumed to be the predominant visual cue utilized by males during courtship [Greenspan

and Ferveur, 2000], previous studies have also suggested the presence of other visual

cues on the female that could direct courtship displays [Kimura et al., 2015], though none

have been identified. Here, I describe the current state of knowledge about the various

visual circuits that detect female-specific visual cues and direct male courtship decisions

in the fly.

Recent advances in high-resolution mapping of neural circuits in the fly brain [Jenett et al.,

2012, Zheng et al., 2018] have revealed distinct visual pathways that contribute to the reg-

ulation of various behaviors, including courtship. The fly visual system is composed of five

layers of interconnected neurons that function together to collect light and process various

visual stimuli. The first layer is the retina which contains photoreceptors, and the next four
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layers include the lamina, medulla, lobula, and lobula plate and are contained within the

optic lobes of the fly’s brain [Borst and Helmstaedter, 2015]. While the photoreceptors and

neurons present in more superficial layers of the visual system respond to more primitive

forms of visual stimuli, such as changes in luminance, more selective responses to spe-

cific visual stimuli, including motion direction selectivity, start to appear at the level of the

lobula and lobula plate where visual projection neurons (VPNs) reside [Krapp et al., 1998,

Joesch et al., 2008]. VPNs have been well described both anatomically and physiolog-

ically [Fischbach and Dittrich, 1989, Krapp and Hengstenberg, 1996, Haag et al., 1999]

and link visual processing with other brain centers [Otsuna and Ito, 2006, Strausfeld and

Okamura, 2007, Wu et al., 2016]. Due to their anatomic location, response properties,

and connectivity, VPNs have therefore been thought to be positioned such that they could

mediate behavioral responses to visual stimuli. Indeed, recent studies have demonstrated

that specific populations of VPNs respond to looming stimuli and directly induce escape

behaviors (Figure 1.2A) [Sen et al., 2017, von Reyn et al., 2017, Ache et al., 2019]. In par-

ticular, looming-responsive VPNs were shown to directly synapse onto the giant fiber in

the fly, which when depolarized, initiates a jump and flight response important for preda-

tor avoidance [Allen et al., 2006]. Thus certain VPNs themselves seem to function as

decision centers that initiate innate behavioral responses to specific visual stimuli. Simi-

lar to initiating escape responses, VPNs have started to be investigated for their roles in

coordinating mating behaviors in the fly, as I discuss below [Ribeiro et al., 2018].

Female motion is one of the best studied visual cues that helps to direct male courtship

behaviors. In particular, both female and female-like motion entice males into chase be-

haviors [Cook, 1979, 1980, Agrawal et al., 2014, Kohatsu and Yamamoto, 2015], which

were recently shown to require a subclass of VPNs termed Lobula Columnar (LC) cells

[Ribeiro et al., 2018]. LC cells themselves have been extensively characterized and con-

sist of at least 22 distinct neuronal populations (LC1-22) that are classified by their mor-

phologies [Wu et al., 2016]. While LC neurons were originally classified by morphology,

6



they also show distinct physiological responses to various visual stimuli; moreover, ectopic

activation of specific classes of LC neurons results in unique innate behavioral responses,

such as backwards walking, reaching, and jumping [Wu et al., 2016]. Within the context

of mating behaviors, Ribeiro et al. [2018] recently demonstrated that LC10 neurons are

physiologically responsive to female-like movements and are required for males to chase

and court females appropriately (Figure 1.2B). It is not known whether any other LC cell

populations mediate male courtship behaviors, though several respond to common visual

stimuli, such as looming, which are likely to be encountered by males during courtship.

In addition to motion cues, the visual system in the fly is also responsive to other stimuli

such as shape, color, and pattern [Borst et al., 2010]; whether any of these features

mediate male courtship decisions has not been well studied. However, at least one group

found that the size, number, and spread of abdominal bands on a moving, robotic ‘female’

fly did not have an effect on male chase behaviors, though the physical size of the robot

did [Agrawal et al., 2014]. Along with abdominal bands present on the female, the eyes

are a prominent visual feature that could be utilized by males to direct certain aspects

of courtship, though no studies have specifically addressed this question. Further, the

specific neural circuitry that might underlie the detection of these features are not known.

In subsequent chapters, I address how static visual features present on a female mediate

male courtship decisions.

1.4 Chemosensory Signals and Circuits Underlying Courtship Deci-
sions in the Fly

The mating ritual in Drosophila is also regulated by diverse gustatory and olfactory cues,

termed pheromones. These structurally-diverse chemical compounds are present on the

cuticle of flies, many of which originally evolved to function as anti-desiccants, that were

subsequently co-opted to function in insect social communication [Yew and Chung, 2015].
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Figure 1.2: VPNs help coordinate behavioral responses to visual stimuli. (A) Lobula
columnar (LC) and lobula plate/lobula columnar (LPLCs) cells detect looming stimuli and
connect to the fly’s escape circuitry by directly synapsing onto the giant fiber (GF) [von
Reyn et al., 2017, Klapoetke et al., 2017, Ache et al., 2019]. Escape image modified
from von Reyn et al. [2017]. (B) LC10 detects female-like movements and helps males
engage in chase behaviors [Ribeiro et al., 2018]. The post-synaptic partners of LC10,
which mediate behavioral responses, are not known.
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Chemosensory receptor neurons are responsible for sensing different pheromones and

translating their detection into neural impulses that can signal the saliency of a particular

compound or potential mate. These neurons are distributed across the body of the fly

and consist of gustatory receptor neurons (GRNs), which detect non-volatile compounds,

and olfactory receptor neurons (ORNs), which detect volatile molecules. Both GRNs and

ORNs participate in the detection of male- and female-specific pheromones and can ei-

ther promote or inhibit various aspects of the male courtship ritual. The dual roles of

chemosensory receptors, and their pheromonal agonists, in modulating courtship behav-

iors makes them prominent targets for interrogating the sensory mechanisms underlying

decision making in the fly.

A major class of pheromones utilized by males during courtship are the cuticular hydro-

carbons (CHCs), which are long-chain, non-volatile hydrocarbons covering the cuticles of

flies. While there are approximately 30 distinct CHCs within various Drosophila species

[Ferveur, 2005], the most abundant CHC present on females is 7,11-heptacosadiene

(7,11-HD), which has been shown to promote courtship in males [Antony et al., 1985].

This pheromone is detected via a specific class of foreleg GRN that expresses the tran-

scription factor fruitless (fru), which is a neuro-developmental gene that includes perhaps

the entirety of the central and peripheral circuitry required for the initiation and mainte-

nance of courtship along with other sex-specific behaviors such as aggression [Lee et al.,

2000, Manoli et al., 2005, Vrontou et al., 2006]. While the specific identity of the chemore-

ceptor responsible for the detection of 7,11-HD in GRNs is not known, the expression of

the degenerin/epithelial sodium channel pickpocket23 (ppk23) has been shown to specif-

ically overlap with fru in GRNs, and exogenous application of 7-11HD onto ppk23+ gus-

tatory sensilla leads to depolarization of these cells [Lu et al., 2012, Thistle et al., 2012,

Toda et al., 2012]. Nevertheless, following activation of fru/ppk23+ GRNs in the forelegs,

pheromonal signals propagate along ascending interneurons in the ventral nerve cord

(VNC) of the male until they reach P1 neurons, which also express fru and act as a
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Figure 1.3: Foreleg GRN circuitry regulating male courtship behavior. (A) Schematic
of neural circuitry, with approximate anatomic locations, that detects the female-specific
pheromone 7,11-HD. fru/ppk23+ GRNs initially detect 7,11-HD at the periphery, and the
signal is subsequently sent through ventral abdominal 3 (vAB3) and medial antero-lateral
(mAL) interneurons before arriving at P1 neurons in the brain. P1 neurons ultimately reg-
ulate male courtship drive. (B) Same as in (A), but shown as a simplified circuit diagram
with chemosensory inputs and behavioral outputs.

central processing center to manage the sexual state of the male (Figure 1.3) [Kohatsu

et al., 2011, Kallman et al., 2015]. Specifically, depending on the activity of P1 neurons,

the male’s sexual drive can change, such that lower activity within these neurons corre-

sponds to lower levels of courtship and vice versa. Interestingly, the P1 neuronal cluster

has been shown to not only respond to multiple chemosensory signals propagated by

ORNs and GRNs [Clowney et al., 2015], but it has also been shown to respond to vi-

sual signals [Kohatsu and Yamamoto, 2015, Pan et al., 2012], suggesting that this cluster

could act as a multisensory integration center in the fly brain. Exactly how chemosensory

and visual signals interact within P1 — or other neural integration centers — is unclear.

While CHCs are an important component of the chemical environment to which males

are exposed during the courtship ritual, other classes of volatile pheromones are also

important for regulating courtship behaviors. For example, 11-cis-vaccenyl acetate (cVA)

is a lipid produced in the male ejaculatory bulb that is transmitted from male to female
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following copulation and functions as a volatile pheromone to inhibit courtship of the fe-

male by subsequent males [Butterworth, 1969, Guiraudie-Capraz et al., 2007, Kurtovic

et al., 2007]. Whereas CHCs are largely detected by the contact-chemoreceptor GRNs,

cVA is detected by ORNs in the antennae [Datta et al., 2008]. cVA signals also seem

to converge on P1 neurons in the brain of the male to suppress neural activity and sub-

sequent courtship behaviors [Clowney et al., 2015], suggesting that P1 neurons play an

important role in regulating courtship drive in males. Though it is clear that both GRNs

and ORNs play important roles in directing male courtship behavior, for the remainder of

this dissertation, I will focus on the role of gustatory pheromones and GRN circuitry in

male courtship decisions.

Pheromonal signals must propagate from the periphery into the CNS following a specific

neural code that allows males to decide between engaging in alternative mating behav-

iors. Importantly, neurons must be wired in configurations that allow for the maintenance

of sensory signals along circuits that involve potentially hundreds-to-thousands of synap-

tic connections [Zheng et al., 2018] and which ultimately encode valuable information

about a particular stimulus. Sensory circuits, which often arise from bilaterally-paired

sensory organs, in particular often contain neural circuit architectures which participate in

this process. For example, sensory signals in the avian — and to a lesser extent, mam-

malian — auditory system travel along unique axonal delay lines, which allows for the

parsing of interaural timing differences and determination of the azimuthal direction of a

sound [Carr and Konishi, 1988, McAlpine and Grothe, 2003, Grothe et al., 2010]. Simi-

larly, flies utilize asymmetric synapses in their olfactory circuitry to determine the location

of volatile odorants [Gaudry et al., 2013]. Whether or not the fly pheromonal system con-

tains specific neural circuit architectures which aid in the transmission of social stimuli

remains unknown.

Interestingly, there are aspects of some pheromone-detecting circuits that suggest spe-
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cific circuit configurations could function in the regulation of male courtship behaviors. For

instance, morphological analyses of fru/ppk23+ neurons initially revealed that the axonal

projections of foreleg-specific GRNs are sexually-dimorphic [Possidente and Murphey,

1989, Mellert et al., 2010]. Whereas, GRN axons project contralaterally into and cross

the midline of the VNC in males, these same neurons only project ipsilaterally in females.

As the presence of sexually-dimorphic circuitry usually indicates its utility in sex-specific

behaviors, the role of fru/ppk23+ neurons in the regulation of male courtship behavior

was quickly tested, and these neurons were confirmed to convey mostly excitatory sig-

nals to sustain courtship drive in male flies [Lu et al., 2012, Toda et al., 2012, Thistle

et al., 2012]. While these neurons seem to intensify male courtship — likely by detecting

CHCs, including 7,11-HD [Thistle et al., 2012, Kallman et al., 2015] — the specific role

of midline crossing axons, and their function in directing courtship behaviors, has never

been directly tested. The fact that these foreleg GRNs are present bilaterally, utilized for

collecting chemosensory stimuli, and mediate elevated levels of courtship suggest that

midline crossing axons could be functioning in an important, yet unrecognized, aspect of

neural processing during male mating behaviors.

1.5 Summary and Overview

Understanding how animals make complex decisions is difficult task, however the male

courtship ritual in Drosophila melanogaster provides a rich framework for understanding

the mechanisms of action selection in animals. The courtship ritual consists of several

independent, easily identifiable, and well-characterized behaviors that depend on sev-

eral sensory modalities including vision and chemosensation. In this dissertation, I focus

on delineating the specific sensory cues and circuits — with an emphasis on vision and

chemosensation — that allow for male flies to choose between alternative behaviors dur-

ing courtship.
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In Chapter 2, I first take advantage of recent technological advancements in computer

vision and machine learning to classify fly behaviors from video data. I describe the de-

velopment of software that is capable of tracking the position and body postures of pairs of

courting flies and provide a programmatic interface which allows users to use this data to

classify video frames containing males engaged in specific behaviors. Ultimately, knowing

when and where males participate in behavioral elements of the courtship ritual should

allow for the determination of a rich and high-resolution description of male courtship in

the fly. In subsequent chapters, I show that these data are useful for understanding how

sensory cues and neural circuits affect behavioral decisions during social interactions.

In Chapter 3, I utilize the above software to develop a spatiotemporal description of

the courtship ritual and examine the visual cues and neural circuits that regulate male

courtship behaviors. I find that specific visual cues, unrelated to female motion, are im-

portant for the proper spatial positioning of the male with respect to the female and also

affect the choice to engage in particular behaviors during courtship. I further show that

specific classes of VPNs in the optic lobes of the fly participate in the recognition of female

visual features that coordinate male behavioral displays. These data highlight previously

unknown visual cues and circuits that regulate male courtship and provide new method-

ologies for characterizing the courtship ritual, which should be useful for future studies on

the mechanisms underlying action selection during mating behaviors.

In Chapter 4, I examine how chemosensory cues regulate the male courtship ritual and

show that specific aspects of foreleg GRN circuitry are necessary for regulating male

courtship drive. In particular, I show that manipulations of female pheromones leads to

overall decreases in courtship, but does not effect the spatial positioning or overall tem-

poral structure of male courtship behaviors. Further, I highlight axonal midline crossing

by foreleg GRNs as a necessary component of the male sex circuit which is required for

sustained courtship. Consequently, my findings suggest that excitatory pheromones and
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their sensation by GRNs largely regulate the decision of a male to court a female but do

not impact the choice of which behaviors to engage in following entry into the courtship

ritual.

Together, the findings presented in this dissertation develop the courtship ritual as an im-

portant tool for understanding complex behavioral decisions, as I discuss in Chapter 5.

They suggest that distinct sensory systems can play alternative roles in directing behav-

ioral displays and identify various circuits which mediate these effects. Whereas vision

coordinates both spatial and temporal decisions within the courtship ritual, chemosen-

sation seems to mostly regulate the decision to enter into and remain in a behavioral

state that enhances courtship. These experiments, along with previous studies examining

chemosensory and visual inputs which regulate courtship behavior, provide the founda-

tion for examining exactly how brain circuits combine information across sensory systems

to regulate complex behaviors.
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Chapter 2: A Computational Method to Quantitatively
Characterize Male Courtship Behaviors in Drosophila

Courtship in Drosophila melanogaster has traditionally been hand-scored in a binary

manner, whereby a male fly is either courting or not courting a target female. The vast ma-

jority of studies which use courtship as a behavioral output utilize these simple binary data

to calculate two main parameters: the fraction of time a male spends courting a female

and the time taken for a male to initiate courtship, termed the courtship index (CI) and

courtship latency (CL), respectively. While these parameters have been instrumental in

advancing diverse areas of research, they are not capable of capturing the full complex-

ity of the courtship ritual, especially in the context of understanding the spatiotemporal

relationships between individual behavioral elements of male courtship.

Therefore, in this chapter, I develop computational tools and software designed to help

analyze both individual courtship behaviors and the relationships between them. In par-

ticular, I utilize computer vision techniques to track and analyze videos of courting flies

and subsequently use machine learning algorithms to classify video frames containing

males engaged in specific behavioral elements of the courtship ritual. I am able to iden-

tify video frames containing specific behaviors with high accuracies and can subsequently

use these classifications to examine both durations of time males spend in specific behav-

ioral states and frequencies of transitions from one behavioral state to another. Further,

by mapping frames containing males engaging in a particular behavior back onto the spa-

tial position of the male in that frame, my software enables the examination of the precise

locations of specific courtship behaviors. These tools, in conjunction with the genetic

tools currently available in Drosophila, should enable the courtship ritual to be used as a

model system for understanding the genetics and neural circuits that coordinate complex
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behavioral decisions.

2.1 Introduction

In trying to understand the extremely difficult problem of relating brain function to be-

havior, scientists have often sought to reduce the complexity of both neurophysiological

preparations and behavioral assays [Gomez-Marin et al., 2014, Krakauer et al., 2017].

For instance, the courtship ritual exhibited by Drosophila melanogaster males has been

used for decades as a means to understand the sensory and genetic determinants of

behaviors [Spieth, 1974]. While the courtship ritual is comprised of a rich sequence of

spatiotemporally linked behaviors, it is very often described in the literature by only a

few quantitative parameters, such as the courtship index (CI) and courtship latency(CL)

[Siegel and Hall, 1979, Eastwood and Burnet, 1977]. This has generally been due to the

laborious efforts required to hand-score individual bouts of behavior, rather than a dis-

interest in fully exploring the varied behavioral routines observed during courtship. Yet,

even hand-scoring the times and durations of behavioral epochs is insufficient to capture

the relationships between courtship behaviors; for this, we would need to know both the

position and behavioral state of each individual for every time point during courtship.

With the advent of new technologies, such as video analysis by computer vision algo-

rithms, it has become possible to track an animal’s position and postures throughout ev-

ery frame of a video during a behavior of interest [Kain et al., 2013, Wang and Wang,

2013, Berman et al., 2014, Uhlmann et al., 2017]. Advances in the field of machine learn-

ing have further allowed for the use of position/posture data to be utilized to classify video

frames that contain animals engaging in particular behaviors [Klibaite et al., 2017, Berman

et al., 2014, Robie et al., 2017]. By inputting tracking data into classification algorithms,

it has therefore become possible to determine both positional and behavioral information

about an animal over the course of a video-recorded behavioral trial. While there are sev-
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eral software suites designed to track the positions of Drosophila from videos [Branson

et al., 2009, Dankert et al., 2009], most are not designed to incorporate tracking, behav-

ioral classification, and analysis into a single package. Further, the packages that are

available are often written in proprietary languages, such as MATLAB, that do not allow

for use by researchers without a software license [Dankert et al., 2009, Kabra et al., 2013,

Swierczek et al., 2011].

In this chapter, I describe the development of a software package, written in the open-

source Python programming language, that allows for a user to (1) track pairs of courting

flies, (2) classify behaviors, and (3) analyze spatiotemporal behavioral sequences. This

package not only enables use in a pure Python environment, but provides a graphical

user interface (GUI) that enables tracking and analysis in a more user-friendly manner.

In this and subsequent chapters, I use this package to quantitatively describe the spatial

and temporal characteristics of individual male courtship behaviors and their relationships

to one another.

2.2 Methods

The software described in this chapter has a particular use case: to track a male fly that

is courting a stationary female target. Therefore, pairs of flies must be setup as follows.

2.2.1 Video Recording Chamber

In order to ensure a high quality video recording that was usable for tracking, we built

a custom video-recording chamber (Figure 2.1). We first built a light box containing an

array of white light emitting diodes (LEDs) and mounted a light diffuser on top of the

box. We then adhered a single female fly to a transparent piece of plastic using UV-

hardening glue (RapidFix) and placed the female onto the center of the light box. We built
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Figure 2.1: Video recording chamber used for tracking. (A) Side view of the recording
chamber. It consists of a light box with white LEDs, a courtship arena, and an overhead
camera. (B) Top-down view of the recording chamber showing the position of male and
female during recording.

custom courtship arenas which were made from 38mm x 38mm x 6.5mm thick pieces

of transparent plexiglass and contained a circular hole in the middle which was 23mm in

diameter. We placed this arena on top of the female and covered the chamber with a

piece of transparent plastic. Finally, we mounted a camera (Raspberry Pi NoIR) above

the arena and surrounded the entire apparatus with a cloth box to eliminate shadows from

overhead lights.

2.2.2 Videos

Videos were recorded for 10 minutes at 24 frames per second using a Raspberry Pi NoIR

camera, though any camera can be used for this task. We recorded videos at a resolution

of 640 pixels x 480 pixels and tried to assure that each fly occupied ∼1500 pixels in each

frame. We initially recorded videos in .h264 format, and subsequently converted videos to

.fmf format using custom scripts before tracking [Straw and Dickinson, 2009]. For tracking

with the provided GUI, all videos must first be converted to .fmf format.
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2.2.3 Tracking Algorithms

Videos were converted to a single color channel before tracking, and a single background

image from the video was calculated by taking the mean pixel intensity across 200 ran-

domly selected images.

Female Position. Since each female was immobilized and fixed to the center of the

courtship arena, their detection was accomplished by allowing users to specify an elliptical

region that fully enclosed the female through use of the GUI (see Section 2.2.4). Since

there could be variation in the user-defined ellipse surrounding the female from trial to

trial, the absolute position of the female within the ellipse was further refined by first

thresholding and then binarizing the image based on a user-defined value. The largest

area of connected pixels within the user-defined ellipse was defined as the ‘female’ (Figure

2.2). An ellipse was then fit to this region of connected pixels and its centroid, major axis

length, minor axis length, and orientation were calculated using Scikit-image [van der Walt

et al., 2014]. The female’s head and rear positions were also calculated as the extremities

of the fitted ellipse’s major axis length, and directionality was determined via user input.

Male position. To calculate the position of the male, the ellipse fitted to the female was

first excluded from the frame. A user-defined threshold was applied to the image and all

pixels were converted to binary values. The largest region of connected pixels within the

courtship arena — and outside of the ellipse fit to the female — was taken as the ‘male’.

An ellipse was fit to this region and the centroid, major axis length, minor axis length, and

orientation were recorded.

The wing positions on the male were then calculated by (1) subtracting the current frame

from the background image, (2) subtracting off the pixels occupied by the male’s body

position (which was calculated above), and (3) binarizing the resulting image based on
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Figure 2.2: Determining female position during tracking. (A) Background-subtracted
image of female. (B) User-defined ellipse; the filled red circle highlights the head of the
female. This ellipse is slightly larger than the actual size of the female, which could affect
male tracking and subsequent classification. (C) Refined ellipse. The ellipse has been
tightened to the female based on the user-defined ellipse. Refining the ellipse in this
manner ensures consistent tracking results from video to video.

a second user-defined threshold (see Figure 2.3). A small (100 pixel x 100 pixel) region

containing the male was then cropped and the male was rotated such that his major axis

aligned with the image’s horizontal axis. The image was summed along the horizontal

axis, and the appropriate orientation of the male was determined based on the half of the

body containing more non-zero pixels: the head was defined as the half containing less

pixels and the rear was defined as the half containing more pixels (Figure 2.3A-3). The

image was then oriented such that the male’s posterior-anterior axis was facing from left

to right along the horizontal axis (Figure 2.3A-4), the image was split into quarters (Fig-

ure 2.3A-5), the two right-most quarters were discarded (Figure 2.3A-6), and an ellipse

was fit to the areas with the greatest number of connected pixels in the top left and bot-

tom left quarters (Figure 2.3A-7). These two regions represent the left and right wings,

respectively.

Finally, head and rear positions of the male were assigned according to the distal most

points along the major axis of the ellipse fitted to the male. Head and rear were distin-

guished from one another based on wing position (calculated above), where the head
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Figure 2.3: Determining male position during tracking. (A) Overview of algorithm
used to determine male position. (1) Background-subtracted image of male. (2) Image of
male rotated such that the male’s major axis is aligned with the image’s horizontal axis. (3)
Binarized image of male with body pixels subtracted. The plot along the top of the image
shows the summed pixels along the horizontal axis. Since more pixels were present in
the right half of the image, the male is facing towards the left. (4) Same as in (3), except
rotated so that the male is facing towards the right. (5) Same as in (4), split into quarters.
(6) The right two quarters are excluded from further consideration. (7) Ellipses are fit to
the regions containing the greatest number of connected pixels in the top left and bottom
left quarters. These are the left (red) and right (blue) wings. (B) Raw image and tracked
and modeled fly. Ellipse and points shown in pink represent the male’s body (triangle:
head, circle: centroid, square: rear). Ellipses and points shown in red and blue represent
the male’s left and right wings, respectively.
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Figure 2.4: Main graphical user interface (GUI) window. The main window within the
GUI allows a user to load and play through a single tracked or untracked video.

position was the point furthest from the wings. All points that were tracked and modeled

on the male fly are shown in Figure 2.3B.

2.2.4 Graphical User Interface

In order to facilitate ease of tracking by users, we designed a custom GUI (Figure 2.4).

Within the GUI, a user can load and track either a single or multiple video files. Following

tracking, the GUI can be used to visualize the tracked position of the male overlaid on

each frame of the video as well as per-frame tracking statistics (see Section 2.2.6) and

behavioral classifications for the male fly.

The ability to track multiple videos simultaneously is an important consideration when

designing software for experimental biologists. Since user input is required for the appro-

priate tracking of pairs of courting flies, we designed a “Batch Processing” dialog window,
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Figure 2.5: Batch processing dialog windows. (A) The user is prompted to load a
batch of video files for tracking and specify their output format and save location. (B)
The user designates the perimeter of the courtship arena for each video. (C) The user
designates the ellipse which defines the stationary female for each video. (D) The user
defines a pixel threshold used to identify the body of the male fly. (E) The user defines a
pixel threshold used to identify the wings of the male fly. (F) The user can assign a group
label to each video and then begin tracking. Tracking logs are outputted to the text box on
this window.

where the user is able to load and setup tracking parameters for multiple video files (Fig-

ure 2.5). For each video, the user is allowed to specify: the save format, the perimeter

of the courtship arena, the ellipse which defines the stationary female, a threshold for

determining the pixels which represent the male’s body, a threshold for determining the

pixels which represent the male’s wings, and an experimental group label (ie. ‘control’ or

‘experimental’) for the courting pair. When all parameters have been set, the user can be-

gin tracking, and tracking will continue until all videos have been processed. The duration

of time required to track a single video is approximately equal to the duration of the video.
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2.2.5 Tracking Output

Tracked files may be saved as either Microsoft Excel spreadsheets (.xlsx) or as serialized

Python objects (.fcts, for Fixed Courtship Tracking Summary). For further analysis in

Python, it is recommended to save files in .fcts format; this substantially decreases the

load times for importing these files into a Python environment. Nevertheless, both files

contain the fields listed in Tables A.1-A.2, and can be loaded and accessed in Python as

object attributes.

2.2.6 Python Package and Behavioral Classification

Having access to fly positions over the course of a courtship trial not only allows for

the user to calculate simple statistics about spatial locations and movements, but these

data can also be used to predict when and where a fly is located when it is engaged in

particular behaviors by using classification algorithms. In particular, recent studies have

shown that boosted decision trees are especially useful at making accurate predictions

from animal tracking data [Branson et al., 2009, Kabra et al., 2013]. Therefore, within the

software presented here, we implement boosted decision trees using Scikit-learn [Freund

and Schapire, 1997, Pedregosa et al., 2012]. In particular, we built a Python package

using Python 2.7 that enables users to input tracking data into this classification algorithm

and train and predict the occurrence of specific behaviors within video data. From this

classification data, our package also enables users to map flies spatial locations during

behavioral occurrences, calculate the relative proportions of time spent within specified

behavioral states, and calculate the rates of transitioning between multiple behaviors. A

list of the tracking features used to generate specific behavioral classifiers is shown in

Table A.3, and the package is freely available, along with documentation and examples

at: http://github.com/regginold/drosophila-courtship.
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2.3 Results

2.3.1 Male and Female Positions Are Accurately Tracked During Courtship Trials

To ensure that our tracking algorithms were reliable, we video recorded pairs of courting

flies and compared tracking results to hand-annotated positions (Figure 2.6). Specifically,

we calculated the tracking error as the total distance, in pixels, between the tracked and

hand-annotated positions. For males, our tracking software was capable of tracking the

body, head, rear, left wing, and right wing positions with mean tracking errors of less

than 6 pixels (n=10 randomly selected frames per video, N=5 videos; Figure 2.6A,C), a

distance approximately equal to 1/5 of the body length of the male fly. Similarly, the mean

tracking error in determining the body, head, and rear positions of the female was less

than 3 pixels (N=5; Figure 2.6B,D). These results suggest that our tracking algorithms

work reliably in our experimental setup. Example output from the full courtship trial, along

with various statistics calculated from these tracking data, are further shown in Figure 2.7.

2.3.2 Behavioral Classifiers Can Be Used to Accurately Predict Different
Courtship Behaviors

We next used our tracking software to track courting flies and classify video frames con-

taining several common non-courtship-specific and courtship-specific behaviors (Figure

2.8). We first built a classifier to detect video frames containing males engaging in any

form of body centroid movement, including forwards, backwards, or sideways walking.

The mean accuracy of this classifier, validated across 5 videos and 1,742 frames, was

100% (Figure 2.8A), suggesting that non-courtship-specific behaviors could be reliably

classified. Next, we generated a classifier to detect video frames containing male flies

engaging in any courtship behavior. Surprisingly, this classifier also achieved a very high
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Figure 2.6: Tracking male and female body position is reliable. (A-B) Tracked posi-
tions of male (A) and female (B) flies are shown along with hand-annotated positions for a
single randomly-selected video frame from 5 different videos. (C) The mean tracking error
for the body, head, rear, left wing, and right wing of male flies was less than 6 pixels (n=10
frames/video, N=5 videos). (D) The mean tracking error for the body, head, and rear of
female flies was less than 3 pixels (n=1 frame/video, N=5 videos). Error bars represent
the standard error around the mean.
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Figure 2.7: Examples of tracking output. (A-C) Tracked body centroid positions of
different males are shown over the course of a 10-minute courtship trial. The position and
orientation of each female is shown by an arrow. (D) Example of a video frame showing
the tracked body centroid position of the male over a 1-second period of the courtship trial
(same male as in C). (E) Various statistics calculated from tracking data are shown over
a 60-second period (same male as in C).
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accuracy (mean accuracy validated across 5 videos and 4,238 frames: 99.3% Figure

2.8A), suggesting that classifiers could be generated which detected not only single be-

haviors, but groups of behaviors. Finally, we generated two classifiers to detect individual

courtship behaviors, including touching and singing. We defined touching to include any

frame where the male was close enough to reach out and physically contact the female

with any part of his body, including his forelegs or proboscis. This classifier was capable

of correctly classifying video frames with a mean accuracy of 95.4%, a false negative rate

(FNR) of 1.1%, and a false positive rate of 3.5% (cross validated against 5 videos includ-

ing 2,596 frames, Figure 2.8A,B,D). We next defined singing as any behavior where the

male was extending and vibrating either wing and made a behavioral classifier to iden-

tify video frames containing singing males. This singing classifier was again capable of

classifying video frames with high accuracies (accuracy: 91.2%, FNR: 3.5%, FPR: 5.9%;

Figure 2.8A,C,E). These results suggest that our software can be used to generate accu-

rate and predictive classifiers to identify video frames containing many different behaviors

of interest.

To ensure that our classifiers were utilizing appropriate tracked features to classify be-

haviors, and were not fixed on features that were predictive but irrelevant to the behavior,

we examined the feature importance of touching and singing classifiers. Feature impor-

tance is proportional to the weight that each classifier attributes to a specific feature when

making a prediction [van der Walt et al., 2014]. Whereas the touching classifier was heav-

ily reliant on tracked features that included some transformation of the distance between

the male and female (Figure 2.8B), the singing classifier was more reliant on features

that monitored the intra-wing distances or minor axis length of the male fly (Figure 2.8C).

These data suggest that our software generates behavioral classifiers that are both highly

accurate and which predict behaviors based on relevant tracking statistics.
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Figure 2.8: Behavioral classifiers can be used to predict different courtship behav-
iors. (A) Classifier accuracy (top), false positive rates (FPR, middle), and false negative
rates (FNR, bottom) are shown for movement, courtship, touching, and singing classi-
fiers. Bar heights represent the mean classifier accuracy across 5 different videos; error
bars represent standard error around the mean (SEM). (B-C) Feature importance for the
touching (B) and singing (C) classifiers. Features listed to the left of each plot indicate
that some transformation of the specified feature was important for classifier prediction.
Note that the x-axis is an arbitrary scale showing the relative importance of each feature,
and all feature importance sum to 1. (D) Random video frames from 5 flies showing pos-
itively classified video frames containing touching. (E) Random video frames from 5 flies
showing positively classified video frames containing singing. The image bordered in red
was mis-classified.
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2.4 Discussion

Previous studies that have utilized courtship as an assay for investigations into the genet-

ics or neural circuits involved in regulating social behaviors have often examined simple

temporal characteristics of the courtship ritual, such as the CI and CL. Here, we have

developed quantitative tools necessary for describing the courtship ritual in a much more

rich and detailed manner, which allows for the mapping of both the spatial distributions

and temporal inter-relationships between courtship behaviors. Along with developing a

graphical user interface to allow users to easily track many videos of pairs of courting

flies, we have also built a Python package to allow for users to easily classify behaviors

and analyze their tracking results. Together, these tools should enable researchers to

investigate the mechanisms underlying more complex forms of social interaction.
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Chapter 3: Visual Cues Regulate Spatiotemporal
Courtship Decisions in Drosophila

Like many other mating behaviors, the courtship ritual exhibited by male Drosophila in re-

sponse to the presence of a virgin female is comprised of temporal and spatial sequences

of stereotypic innate behavioral elements. Yet, the specific signals and neural circuits that

determine when and where behavioral elements are released by males during courtship

are not well understood. Consequently, we investigated the role of visual object recogni-

tion in the selection of specific mating behaviors by males during bouts of courtship. By

using novel computer vision and machine learning based approaches for high resolution

analyses of the male courtship ritual, we show that the release of distinct elements of the

male courtship ritual occurs at stereotyped locations around the female and depends on

the ability of males to recognize visual landmarks present on the female. Specifically, we

show that independent of target motion, males utilize several populations of visual projec-

tion neurons to recognize the location of females’ eyes, which is essential for the release

of courtship behaviors at appropriate spatial locations. Together, these results provide a

mechanistic explanation for how relatively simple visual cues could play a role in driving

both spatially- and temporally-complex social interactions.

3.1 Introduction

Courtship and other social interactions between conspecifics often depend on ritualis-

tic spatio-temporal transitions between distinct innate behavioral elements [Markow and

Hanson, 1981, Krstic et al., 2009]. Yet, the specific sensory stimuli and neuronal circuits

that drive the spatial and temporal aspects of social behaviors remain unknown for most

species. During courtship behaviors, many animals rely on the visual system to identify

salient patterns, colors, or motion cues that promote (or inhibit) copulation [Elias et al.,
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2012, Irestedt et al., 2009]. In insects, motion cues have been shown to be particu-

larly important for male chase behaviors during courtship [Boeddeker et al., 2003, Cook,

1979, 1980, Agrawal et al., 2014, Kohatsu and Yamamoto, 2015]. These motion cues

are detected and processed by visual projection neurons in the brain, which connect to

downstream motor centers to generate relevant behavioral outputs [Wu et al., 2016, Sen

et al., 2017, Ribeiro et al., 2018]. While motion cues are important for keeping a male

close to a moving female during courtship, how specific visual cues and neural pathways

might regulate the proper spatio-temporal coordination of other mating displays remains

largely unknown.

In the fruit fly Drosophila melanogaster, the copulation success of males depends on

a pre-mating courtship ritual that consists of a sequence of stereotyped behavioral ele-

ments including chasing, orienting, singing, scissoring, tapping, licking, and attempted

copulation [Greenspan and Ferveur, 2000, Sokolowski, 2001, 2010]. Although different

courtship elements are somewhat independent of one another, there is a strong temporal

inter-relationship between each of these behaviors, where the probability of transitioning

from one behavior to another is relatively fixed [Markow and Hanson, 1981]. However,

sensory deficits can lead to alterations in these transitions and can also have an effect on

both courtship latency and intensity [Markow, 1987, Wilhelm and Doschek, 1979, Krstic

et al., 2009]. Similarly, male mating behaviors include important spatial components which

support successful copulation, including extension of the wing nearest the female’s body

to allow auditory cues to be heard more clearly [Markow, 1987, Kohatsu and Yamamoto,

2015, Pan et al., 2012]. However, the specific sensory cues that drive the appropriate

spatial and temporal transitions between individual elements of the male courtship ritual

are not well understood.

Previous work has suggested that visual recognition of female motion is sufficient to trig-

ger male courtship and that males use motion cues to orient towards and chase their
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target females [Kohatsu and Yamamoto, 2015, Ribeiro et al., 2018, Cook, 1979, 1980,

Agrawal et al., 2014]. Recently, a subset of visual projection neurons in the Lobula Column

(LC) of the male brain was shown to be tuned to female-like movements and specifically

required for the proper orientation of a male towards a female during courtship [Ribeiro

et al., 2018]. However, which and how other motion-independent visual cues contribute

to male courtship remains mostly unknown.

Here we investigate the visual features and neural circuits that regulate both spatial

and temporal components of the courtship ritual in Drosophila males. By using com-

puter vision- and machine learning-based analyses of male courtship behaviors towards

motion-less female targets, we demonstrate that the timing and positioning of males dur-

ing specific courtship elements depends on visual signal processing. Specifically, we

show that males use the eyes of their courtship targets as a visual guide to release bouts

of tapping, scissoring, and orienting at appropriate times and spatial locations surround-

ing the female. Further, we find that the spatial positioning of the male depends on the

activity of several classes of LC neurons in the visual system. Together, these data sug-

gest that Drosophila males use specific visual features present on the female’s body to

regulate appropriate spatio-temporal distributions of courtship behavioral elements.

3.2 Methods

3.2.1 Flies

Animals were housed at 25 oC and 70% humidity under a 12h:12h light:dark cycle, and

reared on a corn-meal based food (Archon Scientific). All flies used in this study are

available from Bloomington Drosophila Stock Center (BDSC) (see Table 3.1).

Canton-S male and female flies were used for courtship experiments under white and red
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BDSC # Description Reference Figure(s)
NA Canton-S (CS) NA 3.1-3.12
NA CS; w1118 (wCS) NA 3.5, 3.8

68259 LC4 Wu et al. [2016] 3.10-3.12
68342 LC9 Wu et al. [2016] 3.10-3.12
68337 LC10-1 Wu et al. [2016] 3.10-3.12
68331 LC16 Wu et al. [2016] 3.10-3.12
68356 LC17 Wu et al. [2016] 3.10-3.12
28996 UAS-TNT− Sweeney et al. [1995] 3.10-3.12
28841 UAS-TNT+ Sweeney et al. [1995] 3.10-3.12

Table 3.1: Fly lines used in chapter 3.

light (Figures 3.1-3.4) and for decapitation and head-transplantation experiments (Figure

3.5A-J). White-eyed females were derived from w1118 flies that had been back-crossed into

Canton-S for at least 6 generations, and these flies, along with their red-eyed Canton-S

counterparts, were used as courtship targets in the red- versus white-eyed experiments

(Figure 3.5K-O). Canton-S females were used as courtship targets in the LC-inactivation

experiments (Figures 3.10-3.12), and males were derived from crosses between each

LC-GAL4 line (LC4, BL68259; LC9, BL68342; LC10-1, BL68337; LC16, BL68331; LC17,

BL68356) and flies containing either the active (UAS-TNT+, BL28996) or inactive (UAS-

TNT−, BL28841) version of the Tetanus Toxin gene [Wu et al., 2016, Sweeney et al.,

1995].

3.2.2 Courtship Assay

All courtship trials were conducted at Zeitgeber Time (ZT) 1–5, using 4–6 day old virgin

male and female flies. Both males and females were collected immediately following

eclosion and moved into 25 mL plastic vials containing corn-meal-based food. Both males

and females were kept in single-sex groups of 10–12 for two days, at which time individual

males were moved into 5 mL glass vials containing a small amount of fly food and isolated

for at least two additional days before testing. On test day, legs and wings were surgically

removed from each female target, which was subsequently adhered to a rectangular piece
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of plastic weigh-boat (approx. 30mm x 30mm) using UV-hardening glue (RapidFix). A

circular courtship arena (approx. 23mm diameter x 6mm height) was placed over the

fixed female, and males were aspirated into the chamber and allowed to freely court the

female for 10 minutes. The orientation of the antero-posterior body axis of each target

female was random across trials.

3.2.3 Video Recordings

Videos were recorded on a Raspberry Pi NoIR camera with a Navitar 8–48 mm lens for 10

minutes at 24 frames per second and were backlit using LEDs. To record under red-light

conditions, LEDs were covered with long-pass, red filters (Neewer).

3.2.4 Tracking and Behavioral Classification

All videos were analyzed on a per-frame basis using custom software that tracks body

and wing positions of courting flies and subsequently classifies whether or not a male

was engaging in a particular behavior (see Chapter 2). Three classifiers were created

for identifying frames that contained males engaging in bouts of (1) tapping or touching,

(2) stationary orienting, and (3) stationary scissoring/wing extensions. For each frame,

several features were calculated from tracking data for use in an AdaBoost decision tree

classifier (see Table 3.2). These features were selected based on both previous studies

and empirical classifier cross-validation which yielded greater accuracies [Freund and

Schapire, 1997, Branson et al., 2009, Kabra et al., 2013].

Classifiers were created for each experiment by hand-scoring a subset of frames from at

least 4 videos containing control males and 4 videos containing experimental males. All

classifiers had accuracies >95% (see Table 3.3-3.4). To further improve classification ac-

curacies, all videos were hand-scored for bouts of courtship, and any positive behavioral
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Tap Ori Sci Feature Description units
X θwings Angle between CLW > Cbody > CRW rad
X θLW Angle between CLW > Cbody > x-axis rad
X θRW Angle between CRW > Cbody > x-axis rad
X ALW Area of left wing mm2

X ARW Area of right wing mm2

X Dwing Total distance between CLW , Cbody, CRW mm
X X X DCC Male-to-female distance (centroid) mm
X X X DHE Male-head to female-ellipse distance mm
X X X DRE Male-rear to female-ellipse distance mm
X X X ∆D DRE −DHE mm
X X X ΘRel Relative heading of male w.r.t female rad
X X X |ΘRel| Absolute value of ΘRel rad
X X X vΘ Angular velocity of male rad/sec
X X X |vΘ| Absolute value of vΘ rad/sec
X X X |vC | Velocity of male centroid mm/sec
X X X Lmaj Maj. axis length of male ellipse mm
X X X Lmin Min. axis length of male ellipse mm
X X X A Area of male ellipse mm2

X X X Θ Angle of male ellipse w.r.t. x-axis rad
X X X DCE Male-centroid to arena edge distance mm

Table 3.2: Features used to generate behavioral classifiers. First and second deriva-
tives, as well as windowed statistics, were calculated for all features. Abbreviations are as
follows: CLW , centroid of male fly’s left wing; CRW , centroid of male fly’s right wing; Cbody,
centroid of male fly’s body. Windowed statistics, are shown in Table A.4 and were also
calculated for all features listed in this table.

36



Nframes Scored Cross Validation
Classifier Nvideos Scored + - Acc (%) FPR (%) FNR (%)

Tap 8 1137 1431 95.92± 1.14 2.21± 0.74 1.86± 0.74
Ori 8 4243 4412 97.59± 1.57 0.62± 0.58 1.79± 1.55
Sci 8 4277 5248 98.18± 1.03 1.37± 0.95 0.46± 0.18

Table 3.3: Behavioral classifier cross-validations. Leave-one-out cross validation was
used to determine classifier accuracies, false positive rates (FPRs), and false negative
rates (FNRs), as well as standard errors around the mean (± SEM) for each of the be-
havioral classifiers.

Classifier Acc (%) FPR (%) FNR (%)
Tap 99 0.763 0.211
Ori 99.4 0.128 0.507
Sci 98.9 0.696 0.434

Table 3.4: Behavioral classifier testing. Each classifier was tested on 17,000 hand-
scored frames from a single video which was not included in each classifier’s training
data set.

classifications falling outside of courtship were discarded.

Each of the individual courtship behaviors we classified were defined to be mutually exclu-

sive of one another. We specified a behavioral hierarchy whereby tapping/touching took

the highest precedence, followed by scissoring/wing extensions, and then orienting. If a

video frame contained multiple behavioral classifications, we used the behavioral hierar-

chy to determine which behavior to retain and eliminated all other classifications from that

frame. This was done to eliminate the strong overlap between bouts of scissoring and

orienting and allowed for us to more easily determine when a fly transitioned from one

behavior to another. Further, this let us calculate pertinent spatial correlations between

behaviors (see Figure 3.2).

3.2.5 Data Analysis

Prior to each analysis, the orientation of the female in the courtship arena (along with all

tracking data) was rotated such that the females antero-posterior body axis was aligned
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along the x-axis, with the head centered at 0 radians and facing to the right (as shown in

Figure 3.1A-B).

Courtship Path. The courtship path of each male was calculated by dividing the angular

space surrounding the female into 50 bins and taking the mean centroid-to-centroid dis-

tance between the male and female during bouts of courtship. For some experiments,

both control and experimental males attempted to copulate with the female for extended

periods of time. While these males were not physically able to copulate since the female

was fixed in place, these long durations of minimal movement had a significant effect

on the courtship path, and for our purposes, represented bouts of copulation; they were

therefore removed from all analyses.

Anterior-Posterior Distance Ratio (DA/DP ). The DA/DP ratio was calculated as the ratio

of the maximum courtship path when the male was on the front half of the female (−π/2 <

θmale < π/2) to when the male was on the rear half of the female (θmale < −π/2 or

θmale > π/2).

Angular Locations of Courtship Elements. The mean angular position of the male with

respect to the female was calculated across all frames containing positive classifications

for each behavior of interest. Rayleigh values (represented as arrow length in circular

plots) were calculated for populations of males.

Bimodal Rayleigh Test. Raw angular distributions were first compared to uniformity using

the Rayleigh test. If no significant difference was found, we then tested for bimodality

as follows. Angular distributions were transformed using the following equation, as in

[Landler et al., 2018]: θ = 2t mod 2π, where t are the original angles and θ are the trans-

formed angles. This distribution was subsequently compared to the uniform distribution

using a Rayleigh Test.
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Courtship Latency and Index. The courtship index was calculated as the total fraction of

time a male spent courting a female from the first occurrence of any courtship element

until the end of the 10-minute trial (tcourting/(tend−trial − tstart−courtship)). The courtship la-

tency was calculated as the time taken until the first occurrence of courtship during the

trial.

Behavioral Indexes. Behavioral indexes were calculated for each of the classified be-

havioral states. These indexes represent the fraction of time a male spent in a par-

ticular behavioral state with respect to the duration of time the male spent courting

(tin−state/tcourting).

Behavioral Transitions. The frequency of transitioning from one behavior to another was

calculated by taking the number of transitions between each behavior over the total num-

ber of behavioral transitions (nb1→b2/ntotal, nb2→b3/ntotal, etc.).

All software and scripts used for tracking, classification, and data analysis were written in

Python and are freely available at www.github.com/regginold/drosophila-courtship.

3.3 Results

3.3.1 Male Courtship Behaviors Occur at Stereotyped Locations Around the Fe-
male

Female motion is an important visual cue which male flies use to initiate and direct chase

behaviors during bouts of courtship [Agrawal et al., 2014, Cook, 1979]. However, whether

other visual cues also play a role in regulating spatial or temporal aspects of courtship ele-

ments is mostly unknown. Therefore, here we hypothesized that in addition to responding

to female motion, males also use visual features present on the female’s body to direct

courtship elements at distinct spatial locations. To separate the effects of female body
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morphology from motion on the spatial positioning of the male during courtship, we devel-

oped a simplified courtship paradigm which eliminates female motion-related visual cues

and used custom tracking and behavioral classification software to determine the spatial

localization of males during specific elements of the courtship ritual (see Section 3.2.4;

Figure 3.1A).

Using this assay, we first characterized the spatial aspects of male courtship behaviors

in wild-type Canton-S males. We found that males take an asymmetric and stereotyped

path around the female during courtship whereby they position themselves ∼1.5 times

further away from the female’s head than her abdomen (p < 0.001, 1-Sample T-Test; Fig-

ures 3.1B-C). We further trained and used classifiers to identify video frames containing

males engaging in three easily-recognizable courtship behaviors: (1) tapping or touch-

ing, (2) orienting, and (3) scissoring or wing extension (Figure 3.2A-E). In our paradigm,

these behaviors accounted for ∼95% of the time that males were actively courting (Figure

3.2F). Spatial analyses of these three courtship elements indicated that bouts of tapping

largely occurred when the male was on the posterior half of the female, whereas bouts of

orienting and scissoring occurred when the male was on the anterior half of the female

(Figure 3.1D). Accordingly, tapping positions were largely anti-correlated with scissoring

and orienting positions, whereas orienting and scissoring positions were highly correlated

with one another (Figure 3.2H-I). This was likely the result of a high frequency of tran-

sitions between orienting and scissoring bouts (Figure 3.2G), often with little to no male

movement occurring during transitions between these two courtship elements.

3.3.2 Visual Inputs Are Required for Stereotyped Behavioral Positioning During
Courtship

We next sought to determine whether vision was driving the differential spatial positioning

of males during specific courtship elements by comparing males courting females under
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Figure 3.1: Male courtship behaviors occur at stereotyped locations around the fe-
male. (A) Overview of algorithm used to determine locations of male mating behaviors
during courtship: (1) a female is first fixed to the center of a courtship arena, and then a
male is introduced and allowed to court the female for 10 minutes; (2) the male is tracked;
(3) tracked features are used in a boosted decision tree classifier to predict frames con-
taining a behavior of interest; (4) the position of the male in positively-classified frames is
determined, and the mean behavioral position over the trial is recorded. (B) The average
courtship path of Canton-S males (n=62) over the course of a courtship trial. Each thin
gray line represents the average path of an individual male. The thick black line repre-
sents the mean of all males. Note that for each behavioral trial, all male tracks have been
rotated with respect to the female such that the females anterior-posterior axis is aligned
along the horizontal with the anterior end near 0 and the posterior end near ±θ rad. (C)
The mean courtship path (same as in B) of Canton-S males, shown in Cartesian coordi-
nates. (Inset) The ratio of the maximum male-female distance when the male is on the
anterior half of the female (DA) to when the male is on the posterior half of the female
(DP ). Note that this is significantly greater than 1 (p < 0.001, 1-Sample T-Test). Caption
continued on next page.
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Figure 3.1: (D) Examples of individual frames containing positively-classified behaviors
are shown above mean angular locations, across flies, for each behavior. Each black point
represents the mean behavioral location of an individual fly, and the direction of the arrow
represents the mean behavioral location of all flies. The length of the arrow is proportional
to the Rayleigh R-value for the total population of flies. The median and 95% confidence
intervals surrounding the median are shown as a gray point and lines just beneath the
points representing the individual flies.

either red light (limited vision) or white light (intact vision; Figures 3.3-3.4). We found that

in contrast to white light conditions, males courting under red light positioned themselves

more distant from the posterior end of females (p < 0.001, 1-Sample T-Test; Figure 3.3A-

C), tapped females on both the posterior and anterior ends (p < 0.001, Bimodal Rayleigh

Test; Figure 3.3D), and oriented towards the posterior end of females (p < 0.05, Rayleigh

Test; Figure 3.3D). Similar to tapping, males courting under red light also showed a bi-

modal distribution in their scissoring locations (p < 0.05 Bimodal Rayleigh Test; Figure

3.3D). Further, we found that although red light conditions reduced the overall courtship

index of males (Figure 3.4D), the relative time spent tapping was increased, scissoring

was decreased, and orienting remained constant (Figure 3.4E). Consistent with these re-

sults, under red light conditions, the frequency of transitioning from orienting to tapping

increased whereas orienting to scissoring decreased (Figure 3.4F-H). These data sug-

gest that although vision is not required for courtship in general, nor for the release of

any of its individual behavioral elements, visual cues provide important sensory input for

directing spatiotemporal courtship displays. Furthermore, males seem to have the re-

markable ability to compensate for the loss of visual sensory information by increasing

chemo- and/or tactile sensory inputs via increased physical contact through tapping.

3.3.3 The Eyes of the Female Are Used as a Visual Marker for Directing Male
Courtship Behaviors

Having established that vision plays an important role in regulating the spatiotemporal

patterns of male courtship, we next asked which specific morphological features of the
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Figure 3.2: Relationships between individual courtship elements. (A) Examples of
some of the important features extracted from tracking data. (B) Frames classified as
Scissoring, Orienting, or Touching/Tapping are shown for an individual male over the
course of 1 minute. Behavioral epochs classified as Scissoring are associated with large
increases in the angle defined by the males left wing, right wing, and body centroid as
well as low velocities. Those classified as Orienting are associated with no changes in
the wing angle and low velocities. And those classified as Tapping/Touching are associ-
ated with decreased distances between the male and female. (C-E) Locations of the male
during each of the behavioral epochs from (A-B) are shown along with the track (gray line)
produced by the male during the 1 minute segment of courtship. (F) Each of the three
classified behaviors account for 95% of the behaviors occurring during the courtship rit-
ual. The remaining time is largely spent transitioning between behaviors. (G) Transitions
between each of the three classified behaviors. (H) Mean Scissoring and Orienting posi-
tions are highly correlated with one another. (I) Mean Scissoring and Tapping positions
are highly anti-correlated with one another.
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Figure 3.3: Spatially-stereotyped courtship elements depend on vision. (A) Average
courtship path for Canton-S males that were allowed to court under either white- (black
line) or red-light (red line) (n=32/group). (B) Same as (A), shown in Cartesian coordi-
nates. (C) Maximum distance ratio of male on anterior versus posterior end of female.
Males allowed to court under white light had a DA/DP > 1 (p < 0.001, 1-Sample T-Test),
whereas males courting under red light had a DA/DP < 1 (p < 0.001, 1-Sample T-Test).
(D) Average angular positions of males during individual courtship behaviors under either
white- or red-light. Under white-light, males positioned themselves to the posterior side
of the female during bouts of Tapping/Touching (p < 10−5, Rayleigh Test), whereas they
positioned themselves to the anterior side of the female during bouts of either Orienting
or Scissoring (Orienting: p = 0.08; Scissoring: p < 0.01; Rayleigh Test). Males courting
under red light displayed Tapping and Scissoring behaviors which were bimodally dis-
tributed along the anterior-posterior axis of the female (p < 0.001 for Tapping/Touching
and p < 0.05 for Scissoring; Bimodal Rayleigh Test). Additionally, these males oriented
towards the female while on her posterior half (p < 0.01; Rayleigh Test). Note that the
female is oriented as in (A).
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Figure 3.4: Overall courtship drive and the relative frequencies of individual
courtship elements depend on visual inputs. Caption on next page.
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Figure 3.4: (A) Behavioral ethograms are shown for Courtship, Tapping/Touching, Ori-
enting, and Scissoring. Each row represents a courtship trial for one male; areas of black
represent frames where the male was engaging in the specified behavior. (B) Total frac-
tions of males engaging in each behavior over time. (C-D) Males courting in red light take
longer to start courting females (C, p < 0.05, Kruskal Test) and court for shorter periods of
time (D, p < 0.01, Kruskal Test). (E) Behavioral indices are shown for each of the classified
behaviors as a fraction of total courtship. Males courting in red light had greater levels of
tapping (p < 0.001, Kruskal Test) and lower levels of Scissoring (p < 0.001, Kruskal Test)
than males courting in white light. (F-H) Transitions between individual courtship behav-
iors. Behavioral transitions from Orienting to all other behavioral states are significantly
different between males courting in either white or red light (p < 0.001, Kruskal Test).

female body might serve to visually guide males during courtship. We hypothesized that

anatomical features with high visual contrast could serve as salient spatial landmarks

to delineate the body axis and orientation of courted females. Specifically, because the

red-pigmented eyes of flies are highly contrasted with the lighter-colored cuticle, we hy-

pothesized that they could serve as a robust visual marker for the antero-posterior body

axis of courted females.

To test this hypothesis, we first asked whether the head of females is necessary for regu-

lating any spatial aspects of the male courtship ritual (Figure 3.5A-E and Figure 3.6). We

found that when courting headless females, male courtship paths were symmetric and

equidistant from either end of the antero-posterior body axis of females (Figure 3.5A-D),

and the mean angular positions of tapping, orienting, and scissoring behaviors were ei-

ther bimodally or uniformly distributed around the female (p < 0.05 for tapping, Bimodal

Rayleigh Test; p > 0.05 for orienting and scissoring, Rayleigh Test; Figure 3.5E). While

the overall courtship latencies and indices were unaffected for males courting headless

females (Figure 3.6A-D), these males exhibited a decreased scissoring frequency, sug-

gesting that the female head is particularly important for visually triggering for the release

of this specific courtship element (p < 0.05, Kruskal Test; Figure 3.6E-H).

Next, to determine whether visual cues associated with the female head are sufficient for
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Figure 3.5: The female’s head and eye coloration are important visual features for
proper male positioning during courtship. (A) Average courtship paths of males court-
ing either intact females (“Head-Intact”, n=32, black line), or females that had been de-
capitated (“Head-Decap”, n=32, green line). (B) Manipulations for intact and decapitated
females. Arrows show the anterior-posterior axis of the female as it has been plotted in
(A). (C) Average courtship paths of males courting either intact or decapitated females
(same as in A), shown in Cartesian coordinates. (D) Maximum distance ratio of male on
the anterior (DA) versus posterior (DP ) end of the female. Males courting intact females
positioned themselves significantly further from the females anterior end versus their pos-
terior end (p < 10−5, 1-Sample T-Test). However, males courting decapitated females did
not position themselves significantly further when on either side of the female (p > 0.1,
1-Sample T-Test). Thus, males courting intact females had a significantly greater DA/DP

ratio than males courting decapitated females (p < 10−4, One-way ANOVA). (E) Behav-
ioral locations of males courting either intact or decapitated females (asterisks denote
significance at p < 0.05, Rayleigh Test or Bimodal Rayleigh Test). Note that females are
oriented as in (A). (F) Average courtship paths of males courting either intact females
(“Anterior”, n=64, black line), or females that had their heads transplanted to their poste-
rior end (“Posterior”, n=63, blue line). (G) Female manipulations of either the “Anterior”
or “Posterior” group. Note that arrows are the same as in B. Caption continued on next
page.
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Figure 3.5: (H) Average courtship path of males courting either “Anterior” or “Poste-
rior” females (same as in F), shown in Cartesian coordinates. (I) DA/DP ratio for males
courting either Head-Anterior (“Anterior”) or Head-Posterior (“Posterior”) females. “An-
terior” males positioned themselves significantly further from the females anterior rather
than posterior end (p < 10−5, 1-Sample T-Test), whereas “Posterior” males positioned
themselves significantly more distant from the females posterior rather than anterior end
(p < 0.01, 1-Sample T-Test). (J) Behavioral locations of males courting either “Anterior”
or “Posterior” females (asterisks same as in E). Note that females are oriented as in (F).
(K) Average courtship path of males courting either females with red eyes (“Red-Eyed”,
n=47, black line) or white eyes (“White-Eyed”, n=48, orange line). (L) Female manipu-
lations of Red-Eyed and White-Eyed groups. Arrows same as in B. (M) Same as in K,
shown in Cartesian coordinates. (N) DA/DP ratio for males courting either Red-Eyed or
White-Eyed females. Both groups have ratios significantly different from 1 (Red-Eyed,
p < 10−5; White-Eyed, p = 0.03; 1-Sample T-Test); however, males in the Red-Eyed group
have significantly greater ratios than males in the White-Eyed group (p < 10−5, One-way
ANOVA). (O) Behavioral locations of males courting either Red-Eyed or White-Eyed fe-
males (asterisks same as in E). Note that females are oriented as in (K).

regulating the spatiotemporal patterns of individual courtship elements, we examined the

behavior of males courting females whose head had been transplanted from the anterior

to posterior end. We found that although head position had no effect on the overall lev-

els of courtship or on the frequencies of expressing individual courtship elements (Figure

3.7), males that courted females with a posterior head position (“Head-Posterior”) exhib-

ited an asymmetric courtship path that was biased towards greater distances from the

posterior, rather than the anterior, end of her body axis (Figure 3.5F-I). Thus, males uti-

lize the head as a visual marker to delineate the antero-posterior body axis of the female

during courtship. Further, we found that when courting “Head-Posterior” females, males

switched their tapping location to the anterior end of the female body axis. In contrast,

the spatial distributions of orienting or scissoring behaviors towards “Head-Posterior” fe-

males were randomly distributed (tapping: p < 0.05, Rayleigh Test; orienting and scissor-

ing: p > 0.05, Rayleigh Test; Figure 3.5J). These results indicate that the location of the

female head is required and sufficient to drive the spatial release of tapping behaviors

during courtship. However, female head location is required, but not sufficient, to drive
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Figure 3.6: The female’s head is important for mediating temporal aspects of
courtship. Caption on next page.
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Figure 3.6: (A) Behavioral ethograms for males courting either Intact or Decap females
(n=32/group). Each row represents an individual fly and each column represents a video
frame that has been classified as containing (black) or not-containing (white) a specified
behavioral state. (B) Fractions of flies engaging in each behavioral state shown in (A)
over time. (C-D) Courtship latency (C) and courtship index (D) are not significantly differ-
ent between groups (p > 0.05, Kruskal Test). (E) Behavioral indices for touching/tapping
and orienting are not significantly different between groups, but males courting decapi-
tated females have lower levels of scissoring (p < 0.05, Kruskal Test). (F-H) Transitions
between individual states of courtship. Males courting decapitated females transition from
tapping to orienting less frequently than controls (p < 0.05, Kruskal Test), but are other-
wise normal.

the appropriate spatial release of orienting or scissoring behaviors.

Because one of the most striking visual features of the fly head is the contrast between the

red-pigmented eyes and the surrounding cuticle, we next hypothesized that males specif-

ically use the eyes of females as a visual landmark to determine the antero-posterior

body axis of their courtship targets. To test this hypothesis, we generated two congenic

lines of wild-type flies that differed in a single mutation in the white gene, resulting in

red- and white-eyed females with inverted visual contrasts made between the eyes and

surrounding cuticle (Figure 3.9). We found that although both female genotypes elicited

asymmetric courtship paths, the distances of males from the anterior end of white-eyed

females were significantly reduced when compared to males courting red-eyed females

(p < 0.05, Student’s T-Test; Figure 3.5K-N). Further, we observed that while males court-

ing white-eyed females tapped mostly at the posterior end, the mean angular locations of

both orienting and scissoring bouts were bimodally distributed around the antero-posterior

axis of the female (p < 0.001 for tapping, Rayleigh Test; p < 0.001 for orienting and scis-

soring, Bimodal Rayleigh Test; Figure 3.5O). In addition, while the relative durations of

tapping and orienting were not affected by female eye color, we found that males courting

white-eyed females spent significantly less time scissoring (p < 0.01, Kruskal Test; Fig-

ure 3.8). These data are similar to, though less pronounced than, those observed when

males courted headless females, which suggests that males use the eyes of the female
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Figure 3.7: The position of the female’s head is not required for temporal elements
of the courtship ritual. Caption on next page.
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Figure 3.7: (A) Behavioral ethograms for males courting either Head-Anterior (“Anterior”,
n=64) or Head-Posterior (“Posterior”, n=63) females. Each row represents an individ-
ual fly and each column represents a video frame that has been classified as containing
(black) or not-containing (white) a specified behavioral state. (B) Fractions of flies engag-
ing in each behavioral state shown in (A) over time. (C-D) The courtship latency (C) and
courtship index (D) are not significantly different between groups (p > 0.05, Kruskal Test).
(E) Behavioral indices for tapping/touching, orienting, and scissoring are not significantly
different between groups (p > 0.05, Kruskal Test). (F-H) Behavioral transition frequencies
are shown for each group. Males courting “Posterior” females show a small but signifi-
cant increase in transitioning from scissoring to tapping when compared to males courting
“Anterior” females (p = 0.047, Kruskal Test).

as an important visual landmark for coordinating both spatial and temporal aspects of the

courtship ritual.

3.3.4 LC Neurons Are Necessary for Spatiotemporal Aspects of Courtship

Our behavioral data suggest that males use a simple visual landmark, the red pigmented

eyes of females, to define the antero-posterior body axis of courted females. Several

recent studies have indicated that ectopic activation of specific classes of Lobula Colum-

nar (LC) visual projection neurons can trigger various behaviors [Wu et al., 2016, Sen

et al., 2017], including mediating responses to motion during courtship [Ribeiro et al.,

2018]. Therefore, we next hypothesized that the spatiotemporal regulation of individual

male courtship elements depends of the activity of a specific visual neuronal pathway for

body axis recognition.

Based on previously published data, we chose to focus our investigation on four classes of

LC neurons that could be involved in regulating various courtship behaviors, including: leg

reaching (LC10), forward walking (LC17), backward walking (LC9, LC10, LC16, LC17),

turning (LC16, LC17) [Wu et al., 2016]. We additionally chose to examine LC4 neurons

because they have been shown to function in detecting looming stimuli [Wu et al., 2016,

von Reyn et al., 2017], which is a visual feature that is likely to be encountered by males

as they approach female courtship targets.
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Figure 3.8: Female eye color is important for mediating temporal aspects of male
courtship behavior. Caption on next page.
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Figure 3.8: (A) Behavioral ethograms for males courting either Red-Eyed (n=47) or
White-Eyed (n=48) females. Each row represents an individual fly and each column rep-
resents a video frame that has been classified as containing (black) or not-containing
(white) a specified behavioral state. (B) Fractions of flies engaging in each behavioral
state shown in (A) over time. (C-D) The courtship latency (C) and courtship index (D)
are not significantly different between groups (p < 0.05, Kruskal Test). (E) Males courting
White-Eyed females spend less time scissoring compared to controls (p < 0.01, Kruskal
Test). (F-H) Behavioral transition frequencies are shown for each group. Males courting
White-Eyed females tend to make more tapping→tapping transitions than males courting
Red-Eyed females (shown in F; p < 0.05, Kruskal Test).

Figure 3.9: Red-eyed and white-eyed females have inverted eye color contrasts. (A)
Images of the heads of Canton-S (CSw+) and congenic females with a single mutation in
the white gene (CSw−) are shown next to a schematic of flies with varying eye contrasts.
(B) Contrast ratios for CSw+ and CSw− flies (n=6/group). Ratios were calculated by con-
verting images to luminances and comparing pixels comprising the eyes (Leye) to pixels
comprising the cuticle surrounding the eyes (Lcuticle).

We found that synaptic silencing of populations of LC neurons by using targeted trans-

genic expression of Tetanus Toxin (TNT) led to distinct courtship deficits across all lines

we examined. Specifically, we found that different LC neuron subtypes play various roles

in mediating both spatial and temporal aspects of the courtship ritual, including regulating

the latency to court, fractions of time spent exhibiting each courtship element, and the

transition frequencies between each behavioral state (Figure 3.10 and Figure 3.11). Im-

portantly, the behavioral deficits we observed were different from line to line, suggesting

that each subpopulation of visual descending neurons is involved in coordinating distinct

behaviors based on the unique visual features they detect.

54



Figure 3.10: Visual projection neurons are important for directing the spatial local-
ization of male courtship behaviors. (A-E) Average courtship paths, ratios of the maxi-
mum male-to-female distance when a male is on either the anterior or posterior end of the
female (DA/DP ), and average angular positions of the male during Tapping/Touching, Ori-
enting, and Scissoring are shown for each LC line expressing either an inactive (Control,
n=32 per line) or active (Experimental, n=32 per line) version of the Tetanus toxin gene
(TNT). Asterisks on DA/DP plots represent significant differences between Control and
Experimental groups (p < 0.05, One-way ANOVA). Asterisks on circular plots highlight
distributions that were significantly different from uniformity (p < 0.05, Rayleigh Test or Bi-
modal Rayleigh Test). (F) (Left) Solid black squares denote LC lines that engaged in the
specified behavior upon neural activation in the absence of a specific behavioral context
(data from [Wu et al., 2016]). (Right) Gray and colored squares denote whether an LC line
differed from controls in their spatial positioning during courtship following neural inacti-
vation (data from this paper). (G) Summary plot showing which LC lines were important
for the proper spatial positioning of males during Tapping, Orienting, and Scissoring.
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Figure 3.11: LC neurons are required for temporal aspects of the courtship ritual.
(A) Inactivation of all LC lines led to significant increases in courtship latencies when
compared to controls (p < 0.05, Kruskal Test). (B) Courtship indexes were mostly unaf-
fected by LC inactivation (there were significant differences following inactivation of LC16
(p = 0.049) and LC17 (p < 0.001); however removal of outliers before statistical test-
ing eliminated this effect). (C) Behavioral indexes for Tapping/Touching, Orienting, and
Scissoring are shown for each LC inactivation. Asterisks represent significant differences
between groups (p < 0.05, Kruskal Test). (D) Frequencies at which flies transitioned be-
tween each of the behavioral states during courtship are shown for each LC inactivation.
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LC4 neurons have been previously shown to respond to looming stimuli and elicit jumping

behaviors [Wu et al., 2016, von Reyn et al., 2017]. We reasoned that as a male ap-

proaches a female, she may appear as a looming object and thus require specific loom-

ing detection neurons to mediate appropriate behavioral responses during courtship. We

found that while inactivation of LC4 neurons did not lead to any deficits in the distances

that males placed themselves around the female, it did lead to deficits in their angular po-

sitioning during bouts of orienting and scissoring, but not tapping (p > 0.05 for Orienting

and Scissoring, p < 0.05 for Tapping, Rayleigh Test; Figure 3.10A). These results suggest

that males utilize LC4 neurons for the identification of visual features, possibly includ-

ing looming stimuli, that are required for proper spatial positioning during bouts of specific

courtship elements. Further, we found that inactivation of LC4 neurons leads to increased

courtship latencies, decreased times spent tapping, and increased times spent orienting

toward females (Figure 3.11). Together, these results suggest that LC4 visual projection

neurons are an important feature detector for the spatial and temporal organization of

courtship behaviors.

An important component of male behaviors during the courtship ritual includes sideways

and backward movements that help males push themselves away from the female to

release courtship elements at their appropriate spatial positions. Activation of several

classes of LC neurons, including LC9, LC10, LC16, and LC17, was recently shown to

elicit backwards walking behaviors in males [Wu et al., 2016, Sen et al., 2017]. We found

that inactivation of each of these subpopulations of neurons in males led to both spatial

and temporal courtship deficits, as follows.

LC9 inactivation led to decreased distances between males and their courtship targets

when the male was on the anterior half of the female (DA/DP , p < 0.05, One-Way ANOVA;

Figure 3.10B). Further, males positioned themselves on the posterior, rather than anterior,

half of the female during bouts of orienting (p < 0.05, Watson-Williams Test) and showed
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randomly distributed angular positions during bouts of scissoring (p > 0.05 for Scissoring,

Rayleigh Test; Figure 3.10B). Finally, males displayed longer latencies to court but did not

differ in their fractions of time spent engaging in any of tapping, orienting, or scissoring

behaviors, following LC9 inactivation (Figure 3.11).

LC10 inactivation led to overall increased distances between males and females during

courtship, while maintaining an asymmetric courtship path (DA/DP > 1, p < 0.05, 1-

Sample T-Test; Figure 3.10C), and resulted in normal angular positioning during tapping

and scissoring, but not during orienting bouts (p < 0.05 for Tapping and Scissoring, p >

0.05 for Orienting, Rayleigh Test; Figure 3.10C). Further, inactivation of LC10 resulted in

longer latencies to court and decreased fractions of time males engaged in tapping, while

increasing the time males engaged in both orienting and scissoring behaviors (Figure

3.11). In addition, the altered times spent in each behavioral state were likely the result

of different transition frequencies from tapping to each other state (Figure 3.11D). Along

with evoking backwards walking upon activation, LC10 neurons have been implicated in

generating leg reach behaviors [Wu et al., 2016]. That both the male-to-female distance

increased and overall levels of tapping decreased during courtship and following LC10

inactivation, suggest that LC10 could be important for bringing the male within reach of

the female and initiating tapping behaviors.

We found that LC16 neurons were important for all spatial aspects of courtship we ex-

amined, as inactivation of LC16 altered the courtship path and eliminated stereotypy in

tapping, orienting, and scissoring locations (Figure 3.10D). Specifically, while males were

able to maintain asymmetry in their courtship paths and distance themselves further from

the females anterior end, the effect was much smaller than controls (p < 0.05, One-Way

ANOVA; Figure 3.10D). Additionally, the mean angular position of males during bouts of

tapping, orienting, and scissoring were randomly distributed in males that had LC16 cells

inactivated (p > 0.05, Rayleigh Test; Figure 3.10D). Finally, LC16-inactive males had in-
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creased latencies to court, increased levels of scissoring, and significantly different levels

of transitions between each of the courtship elements (Figure 3.11). These results sug-

gest that LC16 is a critical visual cell type that is responsible for both spatial and temporal

courtship decisions in male flies, which functions in eliciting backwards and/or sideways

motor movements necessary for the coordination of courtship displays.

Finally, LC17 was also shown to generate sideways and backwards walking following

neural activation [Wu et al., 2016], and we identified several spatio-temporal courtship

deficits in males with synaptically-inactive LC17 neurons. Specifically, we found that

LC17-inactive males positioned themselves at appropriate distances around the female,

but did not display orienting or scissoring bouts along specific angular locations (p > 0.05

for Orienting and Scissoring, Rayleigh Test; Figure 3.10E). Temporally, LC17-inactive

males tended to initiate courtship at later times and engage in higher levels of orient-

ing and scissoring than controls (p < 0.05 for Orienting and Scissoring, One-Way ANOVA;

Figure 3.11). Taken in whole, these results suggest that LC17, as well as other visual LC-

subpopulations whose activation drives sideways and backwards movements, are critical

for the appropriate spatial and temporal coordination of male courtship elements.

3.3.5 LC Neurons Mediate Stereotyped Courtship Movements

To begin to determine which visual features these LC neurons might be responding to in

the spatiotemporal regulation of male courtship, we examined average movement speeds

of males at different angular positions around female courtship targets. We found that

control males had very stereotypical movement patterns around the female, where they

accelerated and achieved high velocities while on either side of the females medial-lateral

axis (VML, areas shown in green in Figure 3.12B); an effect which was mostly mediated

via sideways movement (Figure 3.12A-C). These males then slowed down to much lower

velocities when on either the female’s anterior (VA) or posterior (VP ) sides. In contrast,
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males with inactive populations of LC neurons moved slower than controls overall, and

while they were capable of speeding up when alongside the female’s medial-lateral axis

(with the exception of LC16), they failed to slow down to the same extent as controls when

near the female’s head (as shown by decreased VML/VA ratios; Figure 3.12D). Interest-

ingly, males courting decapitated females showed similar movement phenotypes (Figure

3.12E-G). These results again suggest that the female’s head is an important visual signal

— in part detected by LC cells — which males use to coordinate their movements during

bouts of courtship.

3.4 Discussion

Innate behaviors, such as the courtship ritual in Drosophila melanogaster, provide unique

opportunities to study the sensory cues and circuits that direct sophisticated behavioral

motifs. In this paper, we developed computational tools to quantitatively characterize both

spatial and temporal components of the male courtship ritual in the fly and highlighted the

significant role that visual signals play in directing spatiotemporal aspects of the courtship

ritual. Further, we identified several classes of visual projection neurons that recognize

cues present on female courtship targets that are important for coordinating behavioral

positioning. This work demonstrates that even simple visual cues, such as eye color, are

salient enough signals to direct multiple aspects of complex and innate behaviors.

Visual cues present on the female are important not only for directing males to specific

locations around the female, but they are also direct a specific ’mode’ of courtship with

enhanced scissoring and diminished tapping displays. While these results are most strik-

ingly observed between males courting under either white or red light (Figure 3.3 and

Figure 3.4), males courting either decapitated females or females with white eyes were

also seen to have lower levels of scissoring and increased (though not significantly) levels

of tapping (Figure 3.5 and Figures 3.6 and 3.8). From the male’s perspective, these re-
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Figure 3.12: Visual projection neurons mediate movements during courtship. (A)
Schematic showing the breakdown of the males velocity vector (v) at a specific time point
(ti) into forward (vforward) and sideways (vsideways) components. (B) Schematic highlighting
the four spatial quadrants surrounding the female. (C) Line plots showing the average
velocity (±SEM) of each population of males at each angular bin surrounding the female.
Areas of green correspond to the spatial quadrants on either side of the female along
the medial-lateral axis; areas of white correspond to spatial quadrants on either side of
the anterior-posterior axis. Forward and sideways velocities are affected following the
inactivation of most LC lines; however, the most severe deficits occur when males are
along either side of the female along the medial-lateral axis. Caption continued on next
page.
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Figure 3.12: (D) Relative velocities showing both (1) the mean sideways velocity when the
male is on either side of the females medial-lateral axis (VML) to the sideways mean veloc-
ity when the male is within the females anterior quadrant (VA) and (2) the sideways mean
velocity when the male is on either side of the females medial-lateral axis to the mean
sideways velocity when the male is within the females posterior quadrant (VP ). Inactiva-
tion of all lines leads to decreased VML/VA ratios when compared to controls (p < 0.001,
One-way ANOVA). (E-F) Similar plots to those shown in (C) but for males courting females
that were either intact or decapitated (see Figure 3.5). (G) Males courting decapitated fe-
males show a significantly smaller VML/VA than controls (p < 0.05, One-way ANOVA).

sults could suggest that in the absence of vision, the male is trying to compensate for the

loss of input through one sensory modality with increased input through others [Kupers

and Ptito, 2014]. Therefore, males lacking visual inputs increase their levels of tapping

to increase their tactile and/or chemosensory inputs. Alternatively, from the female’s per-

spective, scissoring displays could be important for female acceptance and transitioning

from courtship into copulation. In the absence of light, the female would not gain any

information about the male’s fitness via his displays of scissoring, which could be another

reason for altered modes of courtship. Though not mutually exclusive, it would be inter-

esting to try and parse the reasons for alternative modes of courtship in light and dark.

In this paper we focused on the role of the female’s head in coordinating male spatial

positioning during courtship, though there are other visual signals present. Three inde-

pendent experiments showed that the females head is important for this positioning, and

highlighted the female’s eye color as a one salient feature which provides information

about female orientation (Figure 3.5). However, transplantation of the female’s head onto

her abdomen did not lead to a full reversal of male spatial positioning (Figure 3.5F-J),

and eliminating pigment from the female’s eyes did not lead to full loss of the male’s abil-

ity to localize the female (Figure 3.5K-O). These results suggest that while female head

and eye color are important visual features that allow males to spatially orient themselves

during courtship displays, they are not the only features. The only other area of the fe-

male’s body that contains significant pigmentation is the banding pattern on the female’s
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abdomen. Though we did not directly test the significance of this banding pattern on male

spatial positioning, the evolution of pigmentation patterns is under strong sexual selection

[Protas and Patel, 2008, Wittkopp and Beldade, 2009], suggesting that it plays a role in

courtship success. Nonetheless, our results suggest that there is likely an interplay be-

tween the pigmentation on both the abdomen and eyes that males utilize to direct their

mating displays, though future experiments should more thoroughly address this issue.

LC neurons have previously been shown to be important for initiating behavioral re-

sponses to visual stimuli [Wu et al., 2016, Sen et al., 2017]. Here, we examined whether

specific subsets of LC neurons were important for the detection of visual stimuli present on

the female during courtship. Surprisingly, we found that synaptic inactivation of all LC lines

we tested led to deficits in the spatial positioning of the male during courtship. Perhaps

surprisingly, inactivation of LC4 — important for detecting looming stimuli and initiating an

escape jump response [von Reyn et al., 2017] — also led to behavioral deficits. During

approach behaviors, the female’s image generated on the male’s retina would appear to

be looming, and thus neurons detecting looming might be expected to play a role in the

behavioral coordination of courtship. LC4 neurons have been demonstrated to be directly

wired to the giant fiber in Drosophila [von Reyn et al., 2017], which has been shown to

be important for escape responses [Wyman et al., 1984, Card, 2012]. That inactivation

of LC4 during courtship also leads to behavioral deficits suggest that parallel circuits,

responding to similar visual stimuli, direct alternative behaviors in different contexts. Per-

haps less surprising is the fact that manipulating visual circuits that help to direct reaching

(LC10), backward walking (LC9, LC10, LC16, LC17), and turning (LC16, LC17) lead to

behavioral defects in male positioning during courtship as these are all behaviors which

occur during courtship. Further, though we attempted to limit the amount of visual stimuli

present on or surrounding the female during courtship by studying males courting immo-

bile females, there are still many visual signals both present on the female and generated

by male-produced ego-motion that males need to account for during courtship. Each of
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the LC neuron subtypes we examined likely responds to some of these features, which

is why a wide array of LC neurons is required for the coordination of courtship behaviors.

Studies have started to look at understanding exactly which features some of the neurons

are responding to [Wu et al., 2016, Ribeiro et al., 2018], and future studies will likely tell

the precise visual stimuli responsible for activation of the other cell types. Importantly, this

study should place some ethological context onto the specific visual stimuli detected by

LC neurons and their roles in directing behavioral outputs.

The courtship ritual entails one of the most well-understood behavioral sequences in the

fly, and it has a long history of usefulness into investigations of the genes and circuits

underlying the generation of specific behaviors [Sturtevant, 1915]. While the importance

of vision in mediating courtship has also been known for some time [Spieth and Hsu, 1950,

Connolly et al., 1969, Markow, 1975], the courtship ritual has been most often used in the

study of other sensory modalities. With the advent of new methods for reliably tracking

and classifying behavioral motifs in animal models [Dankert et al., 2009, Branson et al.,

2009, Kabra et al., 2013], courtship has started to become a useful model for investigating

the role of vision in Drosophila mating behaviors [Agrawal et al., 2014, Ribeiro et al., 2018].

We hope that the findings presented in this chapter will enable the courtship ritual to

become a valuable system for exploring the role of visual processing in action selection.
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Chapter 4: A Sex-Specific Neural Architecture in
Foreleg Gustatory Neurons Regulates Courtship Drive in

Drosophila

The detection and processing of pheromonal stimuli is crucial for appropriate behavioral

decision-making in many insect species; yet, how specific neural circuit architectures

function to relay chemosensory stimuli and convert these into specific behavioral out-

puts is largely unknown. Here, we highlight the necessity of an architectural feature of

the sex circuit in Drosophila melanogaster — axonal midline crossing by foreleg gusta-

tory receptor neurons (GRNs) in the ventral nerve cord — in mediating sustained bouts of

courtship by male flies. Foreleg GRNs detect contact chemosensory stimuli on a female’s

cuticle during courtship and relay this information to central processing centers in the

brain via ascending pathways that send sensory stimuli to both halves of the central ner-

vous system. Our results show that the processing of contralateral chemosensory stimuli

by foreleg GRNs is required for a male to fully engage in and maintain heightened levels

of courtship, and without axonal midline crossing, courtship levels are severely impacted.

The data presented in this chapter therefore identify a specific morphological feature of a

neural circuit whose presence is required for the appropriate processing of social stimuli

by enhancing levels of arousal in male flies.

4.1 Introduction

Pheromones are important for the regulation of social interactions in diverse insect

species, including courtship behaviors in Drosophila melanogaster males. During

courtship, males approach a female and use chemosensory cues, detected by in part

by gustatory receptor neurons (GRNs) in the forelegs, to direct specific temporal aspects

of the courtship ritual, such as the time taken to initiate and the total duration of courtship.

Indeed, specific populations of foreleg GRNs have been shown to be important for detect-
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ing multiple classes of pheromonal stimuli and regulating the excitatory state of central

neurons which ultimately determine a male’s level of arousal [Clowney et al., 2015, Lu

et al., 2012, Thistle et al., 2012, Koh et al., 2014, Starostina et al., 2012, Toda et al., 2012].

Much research has gone into the genetic identification of foreleg GRNs that function to

control male courtship levels, and the transcription factor fruitless (fru), along with several

protein channels including pickpocket23 (ppk23), has been shown to play a significant

role in mediating arousal in males during courtship [Lee et al., 2000, Manoli et al., 2005,

Demir and Dickson, 2005, Lu et al., 2012]. At the circuit level, these foreleg GRNs send

axonal projections into the ventral nerve cord (VNC), where they make synaptic contacts

with ascending interneurons that direct pheromonal stimuli to the brain which can ulti-

mately place a male into an excitatory behavioral state [Clowney et al., 2015]. While the

identification of specific genetic- and circuit-level elements has revealed much about how

animals translate pheromonal stimuli into behavioral outputs, how specific morphological

features of neural circuits play a role in these processes is still largely unknown.

One of the characteristic morphological features of foreleg GRNs that play a role in me-

diating male courtship behaviors is the presence of sexually-dimorphic axonal fibers that

project into and cross the midline of the VNC within the prothoracic neuromere. The ge-

netics underlying whether a GRN axonal fiber will cross the midline at this region has

been at least partially worked out and depend on the transcriptional repression of the

chemotrophic factor roundabout1 (robo1) by fru [Orgogozo et al., 2004, Mellert et al.,

2010, Neville et al., 2014, Ito et al., 2016]. While the mechanisms controlling the crossing

status of a foreleg GRN’s axonal projections have started to be determined, the behavioral

and functional significance of these midline-crossing axons are not well understood.

Sensory systems often contain elements within their neural circuits that function to extract

meaningful information from the environment. For instance, bilaterally-encoded auditory

stimuli are sent along axonal ‘delay lines’ that parse interaural timing differences to local-
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ize sounds in birds [Jeffress, 1948, Carr and Konishi, 1988, Stern et al., 1988]. Specific

elements of olfactory circuits in flies have also been shown to extract location information

about the source of odors [Louis et al., 2008, Duistermars et al., 2009, Gaudry et al.,

2013]. Whether gustatory chemosensory cues traveling along GRNs are processed sim-

ilarly to those of olfactory stimuli in Drosophila males to localize specific elements of the

female during courtship are unknown, as are the specific circuit elements which might

regulate GRN-mediated chemolocation. Alternative to the localization of sensory stimuli

in the environment, bilateral chemosensory stimuli detected by GRNs could simply be a

redundant mechanism to ensure that the entry into or maintenance of courtship remains

intact following injury to one foreleg. Whether midline-crossing axons from foreleg GRNs

function in either chemolocation or sensory redundancy is not known.

To determine whether midline-crossing axons play a role in either chemolocation or sim-

ply function as a redundant mechanism for eliciting courtship behaviors in males, we ex-

amined the spatiotemporal consequences of eliminating GRN foreleg axonal projections

(GRNfap) from the male’s sex circuit. We initially show that pheromonal stimuli hold both

spatial information about a female’s position and promote the maintenance of courtship

behavior by males, but demonstrate the GRN-detected pheromones do not play a role

in the spatial localization of a female; rather, they function to sustain courtship bouts.

Further, we highlight the separate roles of foreleg GRNs that contain axonal projections

which cross the midline (GRNfap+) from foreleg GRNs which do not contain crossing

midline-crossing axonal projections (GRNfap−), and show that GRNfap+ neurons, but not

GRNfap− neurons, are important for courtship maintenance. Finally, we specifically in-

hibit axonal crossing from GRNfap+ neurons and show inhibition of crossing axons also

leads to a reduced ability of males to maintain courtship. Together, the experiments in this

chapter demonstrate the importance of GRNfap+ neurons for maintaining male courtship

behaviors in the fly.
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4.2 Methods

4.2.1 Flies

All flies were housed at 25 oC and 70% humidity on a 12h:12h light:dark schedule, and

reared on a standard corn-meal based food from Achron Scientific. All flies, except for the

ppk23GAL4 line [Lu et al., 2012] and the ppk23GAL80 line described below, are available

from Bloomington Drosophila Stock Center (BDSC) and are listed in Table 4.1.

The ppk23GAL80 line was generated by amplifying the 2.6 kb promoter sequence up-

stream of the ppk23 genomic region from Canton-S flies and flanked by the following

EcoRI-tagged primers: ACTCATCGCTCTGTAAGCTTCT (forward) and GTTCAGGGAG-

GTCAAAATCC (reverse). This PCR product was moved into the pENTR-1A vector (Ther-

moFisher) at EcoRI sites, and then the ppk23 promoter was subsequently moved into the

vector pBPGAL80Uw-6 [Pfeiffer et al., 2010] (Addgene #26236) via an LR Clonase (Ther-

moFisher) reaction. This construct was injected into BDSC line 24483 for integration onto

the second chromosome at the attP cytological marker 51D9 and backcrossed into w1118

flies before use.

4.2.2 Courtship Assays

All spatial courtship assays were performed as described in Section 3.2.2. For exper-

iments that only measured non-spatial parameters, courtship trials were run as follows.

Males and females were collected upon eclosion and moved into same-sex grouped hous-

ing (10–12 individuals per 25 mL vial). When males were 2 days old, they were isolated

and moved into individual, 5 mL glass vials. When flies were 4–6 days old, males and fe-

males were moved into circular arenas (13 mm in diameter) and were allowed to court for

10 minutes. Videos were recorded of courting flies using back-lighting from white LEDs,
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BDSC # Description Reference Figure(s)
NA Canton-S (CS) NA 4.1-4.9

65406 desatGAL4; tubGAL80ts Billeter et al. [2009] 4.1-4.2
65403 UAS-hid Billeter et al. [2009] 4.1-4.2
41263 R44C09 Jenett et al. [2012] 4.3
50210 R44E04 Jenett et al. [2012] 4.3
46607 R69E01 Jenett et al. [2012] 4.3
50051 R39E06 Jenett et al. [2012] 4.3, 4.5-4.6
48454 R11D04 Jenett et al. [2012] 4.3, 4.5-4.6
39323 R64H04 Jenett et al. [2012] 4.3, 4.5-4.6

NA R47D04 Jenett et al. [2012] 4.3, 4.5-4.6
38824 R52C06 Jenett et al. [2012] 4.3, 4.5-4.6
48698 R15F02 Jenett et al. [2012] 4.3, 4.5-4.6, 4.7
49690 R31H02 Jenett et al. [2012] 4.3, 4.5-4.6
50150 R42C06 Jenett et al. [2012] 4.3, 4.5-4.6
39847 R74C07 Jenett et al. [2012] 4.3, 4.5-4.6
39078 R54F03 Jenett et al. [2012] 4.3
50199 R44B02 Jenett et al. [2012] 4.3
45796 R13B12 Jenett et al. [2012] 4.3
39201 R58H10 Jenett et al. [2012] 4.3
48673 R15A08 Jenett et al. [2012] 4.3
38829 R52D09 Jenett et al. [2012] 4.3
39465 R68C02 Jenett et al. [2012] 4.3
50014 R38F11 Jenett et al. [2012] 4.3
39078 R54F03 Jenett et al. [2012] 4.3
32185 UAS-mCD8::GFP NA 4.4, 4.8-4.9
32198 UAS-myr::GFP NA 4.4

NA ppk23GAL4 Lu et al. [2012] 4.3-4.4, 4.5-4.6, 4.7
NA poxnGAL4 (6-9) Boll and Noll [2002] 4.3, 4.8-4.9
NA UAS-kir ; tubGAL80ts Baines et al. [2001] 4.5-4.6, 4.7
NA UAS-Robo1 Evans et al. [2015] 4.8-4.9

Table 4.1: Fly lines used in chapter 4.
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and all bouts of courtship were hand-scored from these videos. Videos were recorded

using either a Raspberry Pi NoIR camera or a Logitech C920 webcam.

For some experiments, a “Maintenance” index was calculated as the total number of

males engaging in courtship at any particular time as a fraction of the cumulative number

of males that had started to court. All other courtship parameters, including the courtship

index and latency, were calculated as in Section 3.2.5.

4.2.3 Immunohistochemistry and Imaging

Ventral nerve cords were dissected and stained using 1:1000 rabbit anti-GFP primary

antibody and 1:500 donkey anti-rabbit secondary antibody (ThermoFisher) as in [Wu and

Luo, 2006]. VNCs were mounted ventral side up into slide wells (Electron Microscopy Sci-

ences, EMS) containing either phosphate buffered saline (PBS) or hard-mounting medium

(Vectashield), and imaged with a 20x oil-immersion objective using a Nikon A1 confo-

cal microscope and a 1 mm step size in the Z-plane. All VNC images are shown as

maximum-intensity projections along the Z-plane (Z-stacks). For some VNCs, a “Cross-

ing Score” was calculated from this Z-stack as the pixel intensity (I) of GFP signal at the

midline of the prothoracic neuromere relative to the pixel intensity of all neurites on either

side of the prothoracic midline, as in [Mellert et al., 2010], and shown by Eq. 4.1:

Crossing Score = (Imidline − Ibackground)/((Ileft + Iright − 2Ibackground)/2) (4.1)

Note that Ibackground was determined by taking the average GFP signal from four regions

within the VNC that were surrounding, but which did not include, the axonal projections of

interest.

Images of GRNs in the forelegs were collected by rearing flies expressing either UAS-
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myr::GFP or UAS-mCD8::GFP for at least 2 days at 30 oC to increase expression in the

extremities, then amputating foreleg tarsal segments and mounting and imaging raw GFP

signal as above. All images of forelegs are shown as maximal intensity projections.

4.3 Results

4.3.1 Female Pheromones Direct Spatial and Temporal Aspects of Male Courtship

Pheromones are comprised of a diverse array of chemical compounds including hydro-

carbon alkanes and alkenes. These chemicals are present on the cuticles of flies and are

produced, in part, by fat-like cells called oenocytes, which contain desaturase enzymes

that are involved in the production of pheromonal hydrocarbons [Ferveur, 2005, Marcillac

et al., 2005, Krupp et al., 2008]. By over-expressing the pro-apoptoic gene head involution

defective (hid) under the control of the desaturase-1 (desat1) gene’s regulatory elements,

prior research has shown that oenocyte-specific ablation leads to a strong reduction in

the overall levels of pheromones present on the cuticle of adult flies [Billeter et al., 2009].

We took advantage of this genetic manipulation to ask whether pheromones present on

female flies were important for regulating either the ability of males to sustain bouts of

courtship or coordinate spatial mating displays.

We found that ablation of female oenocytes led to both decreased levels of courtship in

males and impaired their ability to engage in behavioral elements of the courtship ritual at

appropriate locations (Figures 4.1 and 4.2). Specifically, while males courting oenocyte-

less (oe-) females showed an asymmetric courtship path that resembled those of controls

(Figure 4.1A-B), they were unable to release orienting and scissoring behaviors at specific

angular locations around the female (p > 0.05, for Orienting and Scissoring, Rayleigh Test;

Figure 4.1C). Further, males courting oe- females had a significantly decreased courtship

index compared to controls (p < 0.05, Kruskal Test; Figure 4.1D), though their latency to
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court was unaffected (p > 0.05, Kruskal Test; Figure 4.1E). Nonetheless, males courting

oe- females did not show any differences in their levels of tapping, orienting, or scissoring

as a fraction of overall levels of courtship (p > 0.05, Kruskal Test; Figure 4.1F), nor were

transitions between individual courtship elements greatly affected (Figure 4.2). These

results suggest that female pheromones regulate both spatial elements of the courtship

ritual as well as overall levels of male courtship, by sustaining courtship bouts at elevated

levels, but they do not bias the mode of courtship towards one that favors any individual

courtship element.

4.3.2 There Are Two Major Morphological Classes of Foreleg Chemosensory Neu-
rons

Pheromones are detected by several groups of chemosensory neurons which are dis-

tributed across the body of the fly, including GRNs located within the legs. We hypothe-

sized that there are multiple classes of leg gustatory neurons that serve distinct functions

in directing specific aspects of the male courtship ritual: whereas one class might regulate

its temporal aspects, such as courtship intensity, another class might regulate its spatial

aspects. To determine if multiple such classes of leg chemosensory neurons exist, we first

screened populations of genetically distinct, GAL4 reporter lines [Jenett et al., 2012] for

specific morphological features. Subsequently, we inactivated each of these lines by over-

expressing an inwardly-rectifying potassium channel (kir2.1) in a temperature-dependent

manner and searched for associations between morphology and behavior.

We initially screened 21 different GAL4 reporter lines that were driving the expression of

a membrane-bound green fluorescent protein (GFP) and qualitatively scored each line for

fluorescence expression in (1) foreleg tarsal neurons (Foreleg Tarsi), (2) axonal neurites

which cross the midline of the VNC in the prothoracic neuromere (Midline Crossing), (3-5)

axonal neurites that project into the prothoracic (Prothorax), midthoracic (Midthorax), or
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Figure 4.1: Pheromones are important for spatial aspects of the courtship ritual and
regulate courtship intensity. (A) Average courtship paths of males courting pheromone-
deficient females and their controls (color legend is shown in subplot C). (B) Same as (A),
shown in Cartesian coordinates. (C) Average angular position of males during Tapping,
Orienting, and Scissoring. Males courting oe- females did not display Orienting or Scis-
soring along locations significantly different from those of a uniform distribution (p > 0.05;
Rayleigh Test). (D) The courtship index of males courting oe- females was significantly
less than controls (p < 0.05; Kruskal Test with Bonferroni correction). (E) The courtship
latency was not different between groups. (F) The fractions of time that each group spent
in Tapping, Orienting, or Scissoring were not different between groups.
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Figure 4.2: Pheromones are important to sustain overall levels of courtship. (A)
Ethograms of bouts of Courtship, Tapping (Tap), Orienting (Ori), and Scissoring (Sci)
(genotypes are shown in legend to the right). (B) Fractions of males engaging in
Courtship, Tap, Ori, and Sci are shown over the entire duration of the courtship trial.
(C-E) Behavioral transition frequency for flies transitioning from (C) Tap, (D) Ori, and (E)
Sci to each of the behavioral states are shown for all groups. (C) Males courting oe- fe-
males transitioned from Tap to Tap more frequently than controls (p < 0.05; Krukal Test
with Bonferroni correction) and transitioned from Tap to Sci less frequently than controls
(p < 0.05; Krukal Test with Bonferroni correction).
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hindthoracic (Hindthorax) neuromere in the VNC, and (6-7) axonal neurites that project

into either the dorsal (Dorsal) or ventral (Ventral) portions of the VNC (Figure 4.3). Based

on these various morphological characteristics, we were able to assign a hypothetical

functional type to each cell population and identified 9 lines that marked neurons present

in male legs with a likely sensory cell function (Figure 4.3A). The morphological feature

that could best divide these sensory cells into the two biggest sub-groups was the pres-

ence (or absence) of ‘Midline Crossing’ neurites. We thus labeled these two groups as

GRNs with foreleg axonal projections that cross the midline as GRNfap+ neurons and

those that do not cross the midline as GRNfap− neurons.

Previous studies have identified genetic markers that are expressed in leg neurons with

GRNfap+ morphologies, including pickpocket23 (ppk23), and have shown that ppk23+

neurons are involved in mediating male courtship behaviors [Lu et al., 2012, Toda et al.,

2012, Thistle et al., 2012, Lu et al., 2014]. However, whether ppk23+ neurons encompass

the entire population of GRNfap+ cells is not know. Therefore, we generated a transgenic

line of flies that expresses that GAL4 inhibitor, GAL80, under the control of the ppk23 pro-

moter (ppk23GAL80) to test the hypothesis that ppk23+ cells include all GRNfap+ cells. We

crossed this line to flies expressing GFP under the control of both GAL4 and the pox neuro

(poxnGAL4) promoter, which is a transcription factor expressed in every GRN, and found

that no fluorescence was observable from midline-crossing neurites in offspring (Figure

4.3B). These results suggest that all GRNfap+ neurons are also ppk23+ neurons, though

we did not determine whether ppk23+ cells are exclusively GRNfap+ cells. Nevertheless,

ppk23 can be used as a genetic marker for GRNfap+ cells (Figure 4.3).

We next sought to determine whether GRNfap+ cell bodies were enriched along any of

the tarsal segments in male forelegs in an effort to better understand the organization

of this group of neurons. To achieve this, we bilaterally amputated each of the foreleg

tarsal segments in flies expressing GFP under the control of the ppk23 promoter and then
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Figure 4.3: There are two morphological classes of gustatory foreleg neurons. (A)
A morphological screen of 21 different Flylight lines revealed that foreleg sensory neu-
rons come in two main classes: (1) those with axons that project across the midline
of the VNC (GRNfap+) and (2) those with axons that do not project across the midline
(GRNfap−). (B) All GRNfap+ neurons are encompassed by the ppk23 promoter. Top im-
age (poxn>myr::GFP) shows axonal projections in the VNC from foreleg GRNs. Bottom
image (poxn>myr::GFP; ppk23-GAL80) shows axonal projections from foreleg GRNs, ex-
clusive of ppk23 neurites. (C) Confocal images (maximal intensity projection, Z-stacks)
of axonal neurites projecting into the VNC from GRNfap− neurons. Images are shown
for neurons emanating from the forelegs (top), midlegs (middle), and hindlegs (bottom)
for each line. (D) Same as in (C), shown for GRNfap+ neurons. (E) Confocal images of
ppk23+ axonal projections into the VNC.
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quantified the amount of midline crossing (as GFP signal, termed the “Crossing Score”)

present in the VNC (Figure 4.4). We found that as you sequentially amputate each of the

tarsal segments (from T5 to T1), there is a near-linear decrease in the number of axonal

fibers that cross the midline (Figure 4.4D). As ppk23+ cell bodies are also distributed

evenly across the tarsi (Figure 4.4B-C), these results suggest that GRNfap+ neurons are

not enriched in any particular tarsal segment, but that they are distributed evenly across

all tarsi.

4.3.3 GRNfap+ Neurons Regulate Courtship Maintenance

We next performed a neural inactivation screen on all of the sensory cell lines we identified

in Section 2.3.2 and examined the effects of inactivation on courtship behavior. Specifi-

cally, we over-expressed the inwardly-rectifying potassium channel, kir2.1, in each of the

GRNfap+ and GRNfap− cell populations in a temperature-sensitive manner and recorded

bouts of male courtship. We found large effects on the courtship index, but not on either

the latency to court or the fraction of males engaging in courtship, following inactivation

of GRNfap+ cells, but not GRNfap− cells (Figure 4.5A). Further, the decrease in courtship

index was a result of the inability of males to maintain bouts of courtship (Figure 4.6).

Together, these results suggest that midline-crossing axons are an important feature of

male foreleg GRNs that support sustained periods of courtship.

4.3.4 GRNfap+ Neurons Regulate Male-Female Distance, but Not Other Spatial or
Temporal Aspects of Courtship

We then asked whether GRNfap+ neurons are important for regulating either the spa-

tial positioning of males or the durations of time males spend within or transitioning be-

tween individual courtship elements. We therefore selected two GRNfap+ lines, ppk23

and R15F02, along with a UAS-kir2.1 control, and tracked and classified male bouts of
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Figure 4.4: GRNfap+ neurons are not enriched in any of the foreleg tarsi. (A) Con-
focal images (maximal intensity projection, Z-stacks) of ppk23+ axons projecting into the
prothoracic neuromere of the VNC. Images are from flies that had not undergone tarsal
amputation at the time of VNC dissection (Control), or from flies that had undergone bi-
lateral amputation at their T5, T4, T3, T2, or T1 tarsi three days prior to VNC dissection.
Crossing scores were calculated from these images and are approximately equal to the
pixel intensity ratio of an area containing only GRNfap+ neurites to surrounding areas (see
Eq. 4.1). (B) Schematic of the foreleg tarsal segments. (C) Total cell count of ppk23+
neurons in each tarsal segment. (D) Crossing scores calculated following ablation of se-
quential tarsi. There is a mostly linear decrease in the crossing score, suggesting that
GRNfap+ neurons are equally distributed across tarsi.
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Figure 4.5: GRNfap+ neurons regulate courtship intensity. (A) Temperature-
dependent inactivation of GRNfap+ neurons, but not GRNfap− neurons, leads to large
deficits in the courtship index. All flies in each comparison were the same genotype and
included the inwardly-rectifying potassium channel, kir2.1, and the temperature-sensitive
GAL80 (GAL80ts), which inhibits the expression of GAL4 at 25 oC, but not at 30 oC. Thus
flies that were reared at 25 oC for the three days prior to the experiment do not express
kir2.1, but those reared at 30 oC do express kir2.1. (B-C) Courtship latencies (B) and total
fractions of flies engaging in courtship (C) were not associated with GRNfap± neurons.
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Figure 4.6: GRNfap+ neurons are important for sustaining overall levels of
courtship. (A) Courtship ethograms for control (top, black) and experimental (top, blue)
flies, along with total fractions of flies courting over time (middle) and maintenance in-
dexes (bottom) are shown for the parental control, UAS-kir, and positive GRNfap+ control
ppk23. (B) Same as in (A), shown for GRNfap− lines. (C) Same as in (A), shown for
GRNfap+ lines.
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tapping, scissoring, and orienting during courtship trials following temperature-dependent

inactivation of neurons by kir2.1 (Figure 4.7). We found that there were deficits in the

distances that males positioned themselves from females during courtship; more specifi-

cally, inactivation of both ppk23+ and R15F02+ neurons led to increases in male-female

distance (p < 0.05 for mean distance across all angles, One-way ANOVA; Figure 4.7A).

However, the mean angular locations of male tapping, orienting, and scissoring were un-

affected following neural inactivation in all lines we examined (p > 0.05, Watson-Williams

Tests comparing control to experimental groups for each genotype; Figure 4.7A). Oddly,

the mean tapping locations for both temperatures in the control genotype (UAS-kir ) were

directed towards the anterior end of the female (p < 0.05, Rayleigh Test; Figure 4.7A,

left panel). While we currently do not have an explanation for this, the background of the

UAS-kir line appeared to have lighter-colored eyes than resultant offspring from crosses

with ppk23/R15F02 flies (data not shown); it is possible loss of visual acuity due to de-

creased eye pigmentation [Burnet et al., 1968] led to these deficits. Nevertheless, since

both groups in the UAS-kir experiment were not different from one another, our findings

that spatial courtship parameters are mostly unaffected following neural inactivation of

GRNfap+ remains valid.

We further examined the fractions of time that males spent in each behavioral state during

courtship and found no differences between control and experimental groups for all lines

we examined (Figure 4.7B). Accordingly, the frequencies of transitioning from one behav-

ioral state to another were similar between control and experimental groups for each line,

though there were some minor differences (Figure 4.7C). These data, together with the

data shown in Section 2.3.3, suggest that while GRNfap+ neurons regulate overall levels

of courtship, they do not regulate most spatial aspects of courtship (with the exception

of distance), nor do they regulate the time or frequency of transition between individual

behavioral states. Rather, GRNfap+ neurons — and the pheromones they detect — are

important for generating the drive to remain within a mating state that promotes courtship.
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Figure 4.7: GRNfap+ neurons regulate male-female distance, but not other spa-
tiotemporal courtship parameters. (A) Male-to-female distances during courtship and
mean angular locations of males during bouts of tapping (Tap), orienting (Ori), and scis-
soring (Sci) for UAS-kir controls and the GRNfap+, ppk23, and R15F02 lines. Asterisks
in distance plots signify that there was a significant difference in the average (across
all angles) male-female distance between control (black) and experimental (blue) groups
(p < 0.05, One-way ANOVA). Asterisks in angular plots signify that behavioral locations
were significantly different from uniformity (p < 0.05, Rayleigh Test). Caption continued on
next page.
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Figure 4.7: (B) Individual levels of different courtship elements are shown for UAS-kir,
ppk23, and R15F02 lines. There were no significant differences between any of the
experimental and control groups for each genotype. (C) Transitions between Tap, Ori,
and Sci, are shown for each line. Asterisks signify significant differences between groups
(p < 0.05, One-way ANOVA).

The subsequent decision to engage in any particular mode of courtship, for instance, one

which biases the display of scissoring over tapping, seems to be dependent on other sen-

sory circuits. Since we did not find robust spatial deficits that aligned with those following

ablation of female pheromone-producing cells (Figure 4.1), we decided to focus specif-

ically on the role of GRNfap+ neurons in the regulation of courtship drive, as described

below.

4.3.5 GRNfap+ Midline-Crossing Axonal Projections Regulate Courtship Mainte-
nance

We then asked whether the regulation of courtship maintenance by GRNfap+ neurons was

specifically due to signaling mediated via midline-crossing axonal projections. Previous

research has shown that midline-crossing by foreleg axonal projections in the VNC is

regulated, in part, by the chemotrophic factor roundabout-1 (robo1) [Mellert et al., 2010,

Ito et al., 2016] and that over-expression of robo1 in poxn+ neurons prevents axonal

midline-crossing [Mellert et al., 2010]. We therefore prevented axonal projections from

crossing the midline during development by over-expressing robo1 in poxn+ neurons and

examined the effects on male courtship behavior (Figure 4.8).

We found that eliminating midline-crossing from GRNfap+ neurons led to a significantly

decreased courtship index when compared to controls (p < 0.05, Kruskal Test; Figure

4.8B), but it did not impact the latency at which males started to court females (p > 0.05,

Kruskal Test; Figure 4.8C). Further, the decrease in courtship index was a result of an in-

ability of males to maintain long bouts of courtship; whereas control males displayed rela-
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Figure 4.8: GRNfap+ axonal midline crossing is necessary for the maintenance of
courtship. (A) Over-expression of Robo1 in poxn+ neurons prevents axonal midline
crossing in GRNfap+ neurons. (Left) GFP expression in poxn+ neurons. (Right) GFP ex-
pression in poxn+ neurons over-expressing Robo1. (B) The courtship index is decreased
in CS; poxn>Robo1 males (p < 0.01, Kruskal Test), but (C) the courtship latency is in-
tact (p > 0.05, Kruskal Test). (D-E) Ethograms showing bouts of courtship for CS and
CS;poxn>Robo1 males. (F) Fractions of males engaging in courtship over time (thick
lines) shown along with cumulative fractions of males engaging in courtship (thin lines) for
each group of flies. (G) Courtship maintenance is impaired in CS;poxn>Robo1 males.
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Figure 4.9: Inhibiting midline crossing in GRNfap+ neurons does not lead to cell
death. (A-B) Confocal images (maximal projection, Z-stack) of poxn+ neurons in control
flies (A, poxn>GFP) and in flies that overexpress Robo1 in poxn+ neurons (B, poxn>GFP,
Robo1). (C) Quantification of poxn+ cells in each tarsal segment in poxn>GFP and
poxn>Robo1, GFP flies.

tively uninterrupted courtship, the bouts of experimental male courtship were fragmented

(Figure 4.8D-G). Importantly, while cell death can result as a consequence of improperly

formed synapses [Hyman and Yuan, 2012], cell death did not result in GRNs following the

over-expression of Robo1 (Figure 4.9). These results suggest that VNC midline-crossing,

specifically, from foreleg GRNs is required for males to maintain courtship.

4.4 Discussion

In this chapter, I examined the roles of both female pheromones and foreleg GRNs in

directing specific aspects of the male courtship ritual. Using the quantitative methodolo-

gies for characterizing spatiotemporal aspects of courtship I developed in Chapters 2–3,

I demonstrated a novel role for female pheromones in directing male spatial displays dur-
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ing courtship. While previous work has shown that various female pheromones can either

increase or decrease levels of male courtship, no work has previously shown that female

pheromones can alter the behavioral positioning of males during courtship displays [Fer-

veur, 2005, Billeter et al., 2009]. Additionally, I highlighted two distinct classes of foreleg

GRNs — GRNfap+ and GRNfap− — that serve varied roles in mediating mating behaviors

in male flies. Along with distinguishing between their roles in driving courtship behaviors

in Drosophila males, I also identified a unique morphological feature of GRNfap+ neurons

that functions to sustain levels of courtship: the sexually dimorphic axonal midline cross-

ing of GRNs within the prothoracic neuromere of the VNC. The results presented in this

chapter build upon previous research in the field of behavioral neuroethology and add new

data and approaches for trying to understand how specific neural circuit architectures can

lead animals to make specific behavioral decisions.

The behavioral data presented in this chapter suggest that female oenocyte-generated

pheromones play a role in directing the spatial release of specific courtship displays by

males; however, we did not investigate the identity of that compound. The pheromonal

profile of the female fly is quite complex and consists of many different classes of chemical

compounds [Antony and Jallon, 1982, Everaerts et al., 2010, Yew et al., 2008]. Previous

research has shown that the most abundant compound present on and specific to the fe-

male fly is the hydrocarbon 7,11-heptacosadiene (7,11-HD) and most GRNfap+ cells seem

to be responsive to this pheromone [Toda et al., 2012, Pikielny, 2012, Kallman et al., 2015,

Liu et al., 2018, Kimura et al., 2018]. While 7,11-HD has been shown to act as an exci-

tatory pheromone by functioning to stimulate male courtship [Toda et al., 2012], it’s role

in coordinating the location of spatial courtship displays in male flies remains unclear. It

would be interesting to try and determine the specific identity of the female pheromone(s)

responsible for mediating this effect. While studies have examined whether 7,11-HD can

function as a chemoattractant, there have been no indications that it plays a role in direct-

ing the spatial positioning of males during courtship or other social interactions [Agrawal
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et al., 2014]. Identifying those compounds that provide spatial information during complex

behaviors could be an exciting area of investigation in future studies.

Our results also suggest that in addition to providing behavioral stimulation to males dur-

ing courtship, GRNfap+ cells require commissural connections for proper courtship main-

tenance. While 7,11-HD could be a key pheromone providing this excitatory input, the ex-

act circuit-level mechanisms that sustain courtship are not known. We did not test whether

contralateral GRNfap+ axons make synaptic connections with one another, but if this were

the case, axo-axonal excitation may be an important component of this circuit which fuels

increased courtship drive. Alternatively, contralateral inputs to any downstream neurons

could provide this excitatory input. Either way, upon unilateral pheromonal stimulation,

contralateral connections could place the entire nervous system into an excitatory state;

without these connections half of the drive needed to maintain courtship might be lost,

thus leading to decreased levels of courtship (as seen in Figure 4.8). Though we did

not investigate the exact mechanisms by which GRNfap+ projections regulate the main-

tenance of courtship, it will be important for future studies to address this question for

understanding both general circuit function and behavioral decision making.
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Chapter 5: Conclusions and Future Directions

Mating rituals vary across diverse animal species, yet they retain many common fea-

tures which make them interesting systems within which to study decision making. Male

Drosophila are particularly well-suited for determining the sensory and circuit-level mech-

anisms that direct mating displays. They engage in a stereotyped and complex courtship

ritual when exposed to female conspecifics, and the neural circuitry that underlies some

of these mating behaviors has started to be worked out. Within this dissertation, I have

developed tools to help quantify the courtship ritual more easily and with a higher spa-

tiotemporal resolution than previously and identified and furthered our understanding of

the various visual and chemosensory cues and circuits that mediate behavioral choice

in male flies. These results should provide insight for subsequent research aimed at de-

termining how animals choose to engage in alternative behaviors when presented with

specific environmental scenarios.

Both visual and chemosensory cues are crucial to the mating success of male flies

[Greenspan and Ferveur, 2000]. Here, I demonstrated that whereas visual cues seem

to mediate both spatial and temporal aspects of male courtship, chemosensory cues —

signalled through GRNs with axonal projects that cross the midline of the VNC — seem

to be involved in mainly increasing the sexual drive of a male towards a virgin female fly.

While I present a simplified model and description of my findings in Figure 5.1, there are

many aspects of this work that warrant further research as I discuss below.

Starting with early investigations into the visual acuity of the fly [Hecht and Wald, 1934],

researchers have been interested in understanding how visual stimuli are processed to

produce behavioral responses. One behavioral response that has been particularly impor-

tant for our understanding of how the fly visual system works is the optomotor response

(OR) [Borst et al., 2010, Haikala et al., 2013]. In the OR, a fly adjusts its heading in re-
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Figure 5.1: A model of visual and chemosensory inputs related to male courtship.
(A) Both vision and chemosensation play roles in mediating the temporal aspects of the
male courtship ritual. A schematic of the behavioral components of the courtship ritual
are shown by inter-connected arrows within each circle: the size of each circle is propor-
tional to the total amount of time a male spent in courtship; the size and direction of the
arrows within each circle are proportional to the fraction of transitions between behavioral
elements; and the size of the behavioral label (‘tapping’, ‘orienting’, and ‘scissoring’) is
proportional to the amount of time a male spent in each behavioral state during courtship.
Caption continued on next page.
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Figure 5.1: Colored arrows signify changes in the proportion of transitioning between spe-
cific behavioral elements following sensory- or circuit-level manipulations. Whereas sup-
pressing chemosensory signalling through GRNfap+ neurons seems to simply decrease
the overall amount of courtship, without changing the the amounts of time spent in any
particular behavioral state, inhibiting visual signalling both deceases overall courtship and
alters the transitional and temporal structure of the courtship ritual. (B) Visual signalling,
but not chemosensory signalling through GRNfap+ neurons, alters the spatial positioning
of males during courtship. Blue shaded regions represent location distributions around the
female where tapping occurs; pink shaded regions represent location distributions around
the female where orienting/scissoring occur. With vision intact, males tap the female on
the posterior end and orient/scissor towards the female on the anterior end. Inhibiting
visual signalling leads to either complete loss of directionality in orienting/scissoring loca-
tions or directs these behaviors to either end of the female’s antero-posterior body axis.

sponse to moving bars of alternating light and dark such that the rotation of its body aligns

with the direction of the bars’ movement. While the ethological purpose of this behavioral

response is not entirely clear, it is interesting to consider whether the OR plays a natural

role mediating male behavior during the courtship ritual. In particular, the banding pattern

on the abdomen of the female closely resembles the contrasting bars of light presented

to a fly during the OR. Does the ego-motion of a male around a female during courtship

make this banding pattern appear to be moving and thus initiate a rotational response by

the male? This would assure that the male’s heading remains directed at his courtship tar-

get. Further, previous research has shown that ego-motion visual cues, which are sensed

as optic flow across the retina, are encoded by visual descending neurons to control flight

patterns in the fly [Suver et al., 2016]. Are there similar visual neurons that encode for

ego-motion-induced optic flow to generate an OR-like response in males as they engage

in courtship? My results presented in Chapter 3 suggest that while the head of the female

plays a crucial role in the spatiotemporal dynamics of male courtship, it is not the only

visual signal required for appropriate behavioral responses. It would be interesting for

future studies to try to determine the identity of these other visual signals and to connect

the OR to naturalistic behaviors espoused by males during courtship.

The neuronal architecture that regulates mating decisions in the fly is complex, and in-
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cludes many features which likely play distinct roles in mediating different aspects of be-

havior. While my results overall suggest that GRNfap+ neurons are important for increas-

ing courtship drive in males, the precise role(s) of GRNfap− neurons in courtship behavior

are largely unknown. For instance, while some GRNfap− have been shown to express fru

[Kimura et al., 2018], and are thus a component of the male sex circuit, we do not know

the behavioral role of these particular cells. It is possible that these neurons actually in-

hibit courtship behaviors. Indeed, previous work has shown that fru/ppk23+ neurons are

responsive to pheromones that can either increase or decrease levels of male courtship

[Thistle et al., 2012, Kallman et al., 2015]. Do fru/ppk23+ GRNs with different axonal

architectures play alternative roles in the detection of pheromones? For instance, do

GRNfap+ cells detect excitatory pheromones which promote courtship whereas GRNfap−

detect inhibitory ones which suppress it? Unfortunately, my work could not determine this

due to a ceiling effect in the courtship index, where control flies were almost always court-

ing. Experiments examining male courtship towards mated females could distinguish

between these two scenarios, as males tend to court mated females less than virgins;

thus, a ceiling effect should be preventable. Future research should provide insights into

the specific cell types that detect various pheromones and how these neurons regulate

social behaviors.

Recent work has started to examine how signals from disparate sensory circuits inter-

act with one another to produce behavior [Stein et al., 2014]. In particular, the fly has

started to be used as a model for this research as the neural circuits that coordinate

various behavioral responses have become better characterized [Duistermars and Frye,

2010, LaRue et al., 2015, Hu et al., 2017]. In my work, I demonstrated that both visual

and non-GRN chemosensory cues are likely utilized by males for localization of female

body axis during courtship. While my experiments were not designed to directly test in-

teractions between visual and chemosensory circuits, we did find that even when visual

inputs are intact, loss of female pheromonal cues leads to disrupted male spatial posi-

91



tioning. These results suggest that concurrent inputs from both sensory modalities are

required for appropriate mating decisions. Future experiments could examine how these

inputs are integrated in the nervous system to generate specific behavioral responses. In

particular, P1 interneurons in the brain have been shown to respond to both visual and

chemosensory stimuli [Pan et al., 2012, Kohatsu and Yamamoto, 2015, Clowney et al.,

2015] and are known to be important for regulating overall courtship drive; however, the

physiology of these neurons in response to both visual and chemosensory inputs has not

been examined. As P1 neurons are believed to be the central integration center for com-

manding male sexual behavior, understanding the circuit-level mechanisms that allow for

these neurons to coordinate multiple aspects of courtship will be an important goal for the

field in the future.
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Appendix A: Tables Related to Tracking Software

Metadata Feature Python Accessibility

Arena Center Pixel, Column summary.arena.center pixel cc

Arena Center Pixel, Row summary.arena.center pixel rr

Arena Diameter (mm) summary.arena.diameter

Arena Radius (mm) summary.arena.radius

Arena Shape summary.arena.shape

Arena Vertices summary.arena.vertices

Software Date Tracked summary.software.date tracked

Software Loose Threshold summary.software.loose threshold

Software Tight Threshold summary.software.tight threshold

Software Version summary.software.version

Video Total Frames summary.video.duration frames

Video Total Seconds summary.video.duration seconds

Video Start Time summary.video.start time

Video Start Time summary.video.end time

Video Frames per Second summary.video.fps

Video Timestamps summary.video.timestamps

Video Filename summary.video.filename

Video Pixels per mm summary.video.pixels per mm

Experiment Group summary.group

Table A.1: Metadata stored in tracking output. Note that for ‘Python Accessibility’, this

assumes that the user has loaded a .fcts file into the variable summary.
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Fly Part Tracked Feature Python Accessibility

Body Centroid Pixel Column summary.male.body.centroid.col

Body Centroid Pixel Row summary.male.body.centroid.row

Body Head Pixel Column summary.male.body.head.col

Body Head Pixel Row summary.male.body.head.row

Body Ellipse Major Axis Length summary.male.body.major axis length

Body Ellipse Minor Axis Length summary.male.body.minor axis length

Body Ellipse Orientation summary.male.body.orientation

Body Rear Pixel Column summary.male.body.rear.col

Body Rear Pixel Row summary.male.body.rear.row

Body Ellipse Rotation Angle summary.male.body.rotation angle

Left Wing Centroid Pixel Column summary.male.left wing.centroid.col

Left Wing Centroid Pixel Row summary.male.left wing.centroid.row

Left Wing Ellipse Major Axis Length summary.male.left wing.major axis length

Left Wing Ellipse Minor Axis Length summary.male.left wing.minor axis length

Left Wing Ellipse Orientation summary.male.left wing.orientation

Right Wing Centroid Pixel Column summary.male.right wing.centroid.col

Right Wing Centroid Pixel Row summary.male.right wing.centroid.row

Right Wing Ellipse Major Axis Length summary.male.right wing.major axis length

Right Wing Ellipse Minor Axis Length summary.male.right wing.minor axis length

Right Wing Ellipse Orientation summary.male.right wing.orientation

NA Timestamp of Video Frame summary.male.timestamps

Table A.2: Tracking data stored in tracking output. This data is available for both the

male and female fly in each pair, though the Python Accessibility is only shown for the

male. Note that for ‘Python Accessibility’, this assumes that the user has loaded a .fcts

file into the variable summary.
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Feature Description units
θwings Angle between CLW > Cbody > CRW rad
θLW Angle between CLW > Cbody > x-axis rad
θRW Angle between CRW > Cbody > x-axis rad
ALW Area of left wing mm2

ARW Area of right wing mm2

Dwing Total distance between CLW , Cbody, CRW mm
DCC Male-to-female distance (centroid) mm
DHE Male-head to female-ellipse distance mm
DRE Male-rear to female-ellipse distance mm
∆D DRE −DHE mm
ΘRel Relative heading of male w.r.t female rad
|ΘRel| Absolute value of ΘRel rad
vΘ Angular velocity of male rad/sec
|vΘ| Absolute value of vΘ rad/sec
|vC | Velocity of male centroid mm/sec
Lmaj Maj. axis length of male ellipse mm
Lmin Min. axis length of male ellipse mm
A Area of male ellipse mm2

Θ Angle of male ellipse w.r.t. x-axis rad
DCE Male-centroid to arena edge distance mm

Table A.3: General features input into behavioral classifiers. First and second deriva-
tives were calculated for all features. Abbreviations are as follows: CLW , centroid of male
fly’s left wing; CRW , centroid of male fly’s right wing; Cbody, centroid of male fly’s body.
Windowed statistics, as shown in Table A.4 were also calculated for all features listed in
this table.

Statistic Window Sizes DI Description
Mean 3, 11, 21 NA Mean value of sliding window

Median 3, 11, 21 NA Median value of sliding window
Max 3, 11, 21 NA Maximum value of sliding window
Min 3, 11, 21 NA Minimum value of sliding window

Median diff 3, 11, 21 0, i/2, i Diff. between window median and value at DI
Max diff 3, 11, 21 0, i/2, i Diff. between window max and value at DI
Min diff 3, 11, 21 0, i/2, i Diff. between window min and value at DI

Table A.4: General windowed statistics input into behavioral classifiers. Each
tracked feature consisted of an array of N video frames. We applied sliding windows
to these arrays to extract informative features which could be used in a boosted decision
tree. These windows were of varying sizes (shown above) and were similar to those used
in [Branson et al., 2009]. Note that DI stands for “Difference Index”, and i in this context
refers to the size of the window.
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