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ABSTRACT OF THE DISSERTATION 

 

Mesothelium-derived factors shape tissue resident macrophages 

by 

Chin-Wen Lai 

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2019 

Professor Thaddeus S. Stappenbeck 

  

The studies outlined in this thesis provide several new insights into Msln-related pathways 

necessary for peritoneal immune responses and mucosal repair. We found that Msln and its 

binding partner mucin 16 from mesothelium influenced peritoneal and pleural macrophage 

differentiation. We found that Msln was required for proper tissue repair after colonic biopsy 

injury and was required for maximal polyp growth in APCMin/+ mice. Overall, this work describes 

mesothelial and epithelial-derived factors that are important for tissue resident macrophage 

differentiation and wound repair after colonic mucosal injury. Understanding the complex 

interactions between stromal cells and immune cells will lead to better treatments for intestinal 

diseases such as inflammatory bowel disease and tumor associated macrophage-mediated 

tumorigenesis. 
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CHAPTER ONE: INTRODUCTION 

 

Development of Tissue Resident Macrophage  
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Chapter 1: Introduction 
 
Tissue resident macrophages  

Macrophages were first described by Élie Metchnikoff in 18831. They are widely distributed 

throughout the body and are present in the lymphoid organs, liver, lungs, gastrointestinal tract, 

central nervous system, bone, and skin. Macrophages are critical components of the innate and 

adaptive immune responses, and they are the first line of defense against foreign invaders through 

phagocytosis of pathogens2,3. The recent outburst of interest in genetic, evolutionary, and 

biochemical aspects of host-pathogen interactions has rekindled scientific interest regarding 

macrophages. Macrophages display great phenotypic and functional diversity due to their 

adaptation to their microenvironment. At the beginning of macrophage studies, researchers used 

bone marrow-derived macrophages (BMDM), which are primary macrophages derived from bone 

marrow (BM) cells in vitro in the presence of growth factors Macrophage colony-stimulating 

factor (M-CSF)4. BM yielded the most macrophages with the best homogeneity but it does not 

represent adequate in vivo primary responses. In the past decade, new insights have been expanded 

in the origin of tissue-resident macrophages. First, these cells are derived from three progenitors, 

including yolk sac macrophages, fetal liver monocytes and circulating monocytes5,6, which 

replenish the niches consistently since embryogenesis. Second, even residing in distinct 

microenvironments, tissue-resident macrophages have several common features: the ability to 

phagocytize pathogens and dying cells, the production of cytokines and chemokines to initiate 

immune responses, and the expression of markers such as CD11b, F4/80 and CD64 on the cell 

surface of murine tissue-resident macrophages7-10.  
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Next to these common features, each tissue resident macrophage population has a unique identity 

and function. Interestingly, this functional specialization is dependent on the tissue in which they 

reside. For example, tissue resident macrophages located in the brain, called microglia, are small 

star-shaped cells and involved in brain surveillance by constantly sensing the cellular environment. 

They play important roles in brain development and homeostasis by regulating the synaptic carving 

during postnatal development11. Another example is the lung alveolar macrophages which are 

responsible for the clearance of alveolar surfactant12. The tissue-specific function of these 

macrophages implies that they must have a different functional identity. Furthermore, tissue-

specific signals which regulate the expression or activity of signal-dependent transcription factors 

(TFs) govern this functional specialization and adapt the core macrophage program by activating 

functional modules, which gives macrophages their functional identity. Niche signals from unique 

microenvironment also guide the differentiation and development of tissue resident macrophages. 

 
Transcription factors and niche signals involved in tissue-resident macrophage 

development 

Macrophages form a diverse group of mononuclear phagocytes. Regardless of this heterogeneity, 

all macrophage populations share a large transcriptional network and epigenetic landscape. This 

core macrophage program is established by a group of lineage-determining TFs which perform a 

general role in myelo-monocytic development by determining stem cell fate. 

 

PU.1 is one of the most well studied principal regulators in macrophage development13. PU.1 

determines myeloid progenitor fate in a concentration-dependent manner in the process of the early 

stages of myeloid cell development. A high level of PU.1 leads to the macrophage development 

whereas a low amount of PU.1 is necessary for B cell development14. In the detailed regulation, 
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this concentration-dependent effect can result from the numerous low- and high-affinity PU.1 

binding sites present in the genome15. The low-affinity binding sites are only bound by PU.1 when 

it reaches a certain threshold concentration. One of the major target genes of PU.1 in macrophage 

development is Csf1r, which encodes the receptor for M-CSF (M-CSFR/CD115) and interleukin-

34 (IL-34). M-CSF is critical in survival, maintenance and proliferation of most mononuclear 

phagocytes, whereas IL-34 is specifically required for the development and maintenance of 

Langerhans cells and microglia16,17. Together, PU.1 and Csf1r are essential for the formation of 

yolk sac macrophages18. Generally, PU.1 regulates tissue-resident macrophage development by 

acting as a scaffold for histone modifiers. In addition, many TFs involved in tissue-resident 

macrophage development, function and activation perform their function through interaction with 

PU.1. For instance, it was shown that c-Jun can enhance the ability of PU.1 to drive expression of 

M-CSFR19.  

 

Upon terminal differentiation, MafB expression drives tissue-resident macrophages to exit the cell 

cycle20. MafB, synchronizing with c-Maf, desensitize macrophages from the M-CSF-mediated 

proliferative effect by blocking the expression of self-renewal genes such as Myc, Klf2 and Klf421. 

This acts through direct inhibition of macrophage enhancers, including PU.1. In self-maintaining 

tissue-resident macrophage populations, differentiated tissue-resident macrophages can re-enter 

the cell cycle by temporarily pausing the inhibition of these enhancers. Contrary to regenerative 

processes, dedifferentiation of the tissue-resident macrophages does not happen22. In addition, 

MafB plays a key role in F4/80 maturation23 and involves in actin remodeling24. 
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Other lineage-determining TFs have been mentioned, including Batf3, Pparg, Irf825. However, it 

is not clear whether these factors are essentially required for macrophage development. Moreover, 

it is unknown whether macrophages require continuous expression of these factors for their 

function, maintenance, or survival. Together, these lineage-determining TFs establish the core 

macrophage program, including Cx3cr1, phagocytic receptors, Fcγ receptors (e.g. Fcgr1, encoding 

CD64), pattern recognition receptors, Mertk and Adgre1 (F4/80) in the pre-macrophage 

commitment by almost all macrophage populations8,25-27. Additionally, these lineage-determining 

TFs can shape the epigenome and form an anchor point for signal-dependent TFs accordingly. 

 

Although sharing many similarities, identity and function among all the macrophages are very 

diverse and unique for each tissue, implicating that the core macrophage program has to be adapted 

in a tissue-dependent manner. According to the niche hypothesis28, the particular niche provides 

physical support and nurtures the local tissue resident macrophages through the production of 

niche signals. By driving signal-dependent TF expression or activation, cytokines, metabolites, 

and cell-cell contacts may all be the niche signals which initiate tissue-specific transcriptional 

networks in the pre-macrophages upon emigration29. These local signal-mediated TFs orchestrate 

with lineage-determining TFs to fine-tune the core macrophage program and imprint a unique 

transcriptional program in the tissue-resident macrophage. This is done through direct activation 

of signature genes or by inducing chromatin remodeling which enables signal-dependent TFs to 

active signature genes. These signature genes are often necessary for the functional maturation 

and/or survival of tissue-resident macrophages to meet the tissue-specific prerequisites.  

Peritoneal macrophage 
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As a cellular source, scientists have performed studies using peritoneal macrophages and we have 

gained a representative portion of the current knowledge regarding macrophage biology, such as 

their function, specialization, and development. However, it was described recently the existence 

of two resident macrophage subsets present in the peritoneal cavity. According to their size, these 

macrophage subsets were labeled LPM and SPM30. In addition to the size, they were designated 

by their differential expression of F4/80 and CD11b, where SPMs show F4/80lowCD11blow 

phenotype while LPMs express high levels of F4/80 and CD11b. F4/80, a 160 kD glycoprotein 

from the epidermal growth factor-transmembrane 7 (TM7) family, is expressed by macrophages 

in most organs, and it is not detected on lymphocytes, polymorphonuclear cells, and fibroblasts31. 

To be noted, peritoneal eosinophils show low levels of F4/8030 and some macrophage 

subpopulations exhibit low levels or do not express F4/80, such as white pulp and marginal zone 

splenic macrophages32. CD11b is an integrin that, together with CD18, forms the CR3 

heterodimer33, but is not exclusively expressed on macrophages and is found on several others cell 

types, including polymorphonuclear cells34, DCs35, and at low levels on B lymphocytes36,37. The 

other marker for LPM is ICAM2, a member of the intercellular adhesion molecule (ICAM) family, 

while SPMs express low ICAM227. All ICAM proteins are type I transmembrane glycoproteins, 

contain 2-9 immunoglobulin-like C2-type domains, and bind to the leukocyte adhesion LFA-1 

protein38,39. It mediates adhesive interactions important for antigen-specific immune response, 

NK-cell mediated clearance, lymphocyte recirculation, and other cellular interactions important 

for immune response and surveillance. It showed that retinoic acid regulates ICAM2 expression 

in LPMs40. SPMs phagocytose bacteria and make large amounts of nitric oxide30. Compared to 

SPMs, LPMs make much less nitric oxide and have less capacity to phagocytose bacteria. However, 

LPMs phagocytose apoptotic cells more effectively41. 



7 
 

 

At steady state, LPMs appear to be maintained by self-renewal and independent of 

hematopoiesis42,43, whereas SPMs are originated from circulating monocytes. Dates from Schulz 

et al. suggest that, in general, F4/80 expression by tissue macrophages correlated with yolk sac 

(F4/80high) and not hematopoietic (F4/80low) progenitors44. By using CX3CR1CreRosa26R-FGFP 

mice which mark the active and past expression of CX3CR1, the presence of GFP+ cells was found 

within DC, SPM, and LPM populations. Conversely, the presence of GFP+ cells was in DC and 

SPM pool, but not in the LPM population in the CX3CR1GFP/WT mice. These data indicate that 

SPMs are short-lived cells, whereas LPMs have a more dynamic ontogenic relationship with a 

CX3CR1+ progenitor. Meanwhile, in chimeric C57BL/6-CD45.2 mice reconstituted with 

C57BL/6-CD45.1 BM, the majority of LPMs and SPMs are CD45.1-derived cells, demonstrating 

that both macrophage subsets differentiate from BM precursors after irradiation-induced 

macrophage ablation43. The other group suggests that Ly6C+ monocytes recruited during 

inflammatory conditions could give rise to SPMs30 in a CCR2-dependent manner45. 

 

Data with mice lacking CCAAT/enhancer binding protein (C/EBP)beta also support the idea that 

LPMs and SPMs represent distinct ontogenies, because without this transcription factor, there are 

no LPMs and increased numbers of SPMs in the peritoneal cavity43. Interestingly, adoptively 

transferred SPMs differentiated into LPMs in Cebpb−/− mice. However, in control mice that have 

normal numbers of LPMs, only a small frequency of transferred SPMs acquired the 

F4/80hiMHCIIlow phenotype of LPMs. These results indicated that SPMs appear to contribute in 

only a small way to generate LPMs at homeostasis, but SPMs could maintain the pool of LPMs in 

severe situations such as under inflammatory conditions or following radiation ablation43. The 
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findings of Yona et al.42 also demonstrated monocyte-derived LPMs presented 8 weeks after 

thioglycollate injection. Together with LPMs, a subset of proliferating BM-derived inflammatory 

macrophage has also been associated with self-renewal mechanisms during the resolution of 

peritonitis induced by zymosan and thioglycollate46. Conversely, LPMs do not seem to contribute 

to the SPM pool, even during inflammation. 

 

Intestinal macrophage 

Macrophages play a variety of roles to maintain intestinal homeostasis. Like their counterparts in 

other tissues, intestinal macrophages are avidly phagocytic. However, intestinal macrophages-

mediated phagocytosis in both mouse and man does not cause an overt inflammatory response47-

51. Consistent with this role, intestinal macrophages display high expression of genes associated 

with phagocytosis, such as Mertk, Cd206, Gas6, Axl, Cd36, Itgav, and Itgb552,53. Integrins αv and 

β5 dimerize to form αvβ5, which is involved in efferocytosis54. Notably, Lys2 deletion of integrin 

αv in myeloid cells results in the accumulation of apoptotic cells in the intestine55, and Itgb5 

deficiency predisposes to increased susceptibility to DSS-induced colitis, highlighting a 

particularly important role for this pathway in efferocytosis. The sub-epithelial positioning of 

lamina propria (LP) macrophages locates them to control bacteria invasion through epithelial 

barrier. In addition, murine studies have shown that they are able to sample luminal bacteria by 

transepithelial dendrites, cellular processes that cross the epithelial barrier without perturbing tight 

junctions and epithelial integrity and depend on the CX3CL1-CX3CR1 axis56,57.  

 

Though a peripheral monocyte to macrophage differentiation continuum exists in the intestinal LP, 

a process which is known as the monocyte “waterfall”9,48, almost all other tissues contain locally 
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maintained macrophage populations that coexist with monocyte-replenished cells at homeostasis. 

It was not until recently that Tim-4+CD4+ gut macrophages were found to be locally maintained58, 

while Tim-4–CD4+ macrophages had a slow turnover from blood monocytes. TGFβR signaling is 

essential for the terminal differentiation of intestinal macrophages. In particular, upregulation of 

genes associated with the homeostatic profile of intestinal macrophages, such as Cx3crl, Itgb5, 

and Il10 relies on the TGFβ-TGFβR axis52. TGFβ-expressed intestinal macrophages in mucosa 

themselves may be important because efferocytosis is known to induce TGFβ expression in 

macrophages59 and, at least in man, macrophages may activate TGFβ signaling pathway through 

integrin β860. The high expression of CX3CR1 by murine intestinal macrophages and their 

positioning adjacent to CX3CL1-producing epithelial cells also imply the possibility of CX3CL1-

CX3CR1-mediated macrophage differentiation56,57. 

 

In both ulcerative colitis (UC) and Crohn's disease (CD), accumulation of CD14hiCD11chi 

monocytes/immature macrophages that come to outnumber CD64+HLA-DRhiCD14lo resident 

macrophages48,50,61-63 is one of the features. In contrast to their homeostatic counterparts, these 

CD14hi cells in the gut produce pro-inflammatory cytokines and chemokines, such as TNFα, IL1β, 

IL6, IL12, and CCL1162,63, display respiratory burst activity64 and respond to commensal bacteria 

abnormally. In addition, they express high levels of TREM1, which can potently amplify pro-

inflammatory responses65. Importantly, mucosal healing in IBD patients receiving anti-TNF has 

been shown decreased CD14hi cells and increased pro-reparative CD206+ macrophages66. 

 

Gata6 
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The GATA zinc finger transcription factors regulate the development and differentiation of several 

tissues. Through a conserved Cys-X2-Cys-X17-Cys-X2-Cys zinc finger protein motif, these 

factors bind the basic consensus sequence A/TGATA/G. Three members of the family, GATA1, 

GATA2 and GATA3, are all expressed in the haematopoietic system and a number of other tissues. 

Each appears to have a different function in the haematopoietic system. The other members of 

family, GATA4, GATA5 and GATA6, also show a partially overlapping expression pattern in the 

heart and the intestinal tract67,68. Murine GATA6 has been reported to be restricted to precardiac 

mesoderm, the embryonic heart tube and the primitive gut. It is also expressed in the developing 

respiratory and urogenital tracts, arterial smooth muscle cells, the bronchi, the urogenital tract and 

the bladder. Overexpression of GATA6 in the cardiac cells at a time when its expression normally 

declines (i.e. before the appearance of terminally differentiated markers) results in arrest of 

cardiomyogenic differentiation, indicating that the GATA6 gene may act in Xenopus to maintain 

the precursor status69. Thus the available data indicates that GATA6 may be important for heart 

development. The transcriptional factor Gata6 is specifically expressed by self-renewing 

peritoneal macrophages but not by monocytes recently recruited into the peritoneum after 

challenge. Gata6 deficiency impairs peritoneal macrophage renewal during steady state and in 

response to inflammatory challenge compromising the resolution of inflammation. Gata6 targets 

genes involved in cell proliferation since their expression is altered in macrophages from Gata6-

deficient mice. 

 

Mesothelium 

The structure of mesothelium is a single layer of thin plate-like cells. The squamous mesothelia 

are polarized with their apical microvilli and cilia-rich surfaces toward the coelomic space70,71. 
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Tight junctions located on the lateral aspect of the cell maintain apical/basal polarity and create a 

diffusion barrier between the coelomic space and the submesothelial connective tissue of the organ 

or body wall. Cytokeratins (mostly subtypes 8, 18, and 19) provide structural support and E-

cadherin confers further cell-cell adhesion72,73. A basement membrane is produced by and 

underlies the mesothelium separating it from the sub-mesothelial connective tissue space. In 

mammals, separation of the common embryonic coelom gives rise to pericardial, pleural and 

peritoneal cavities. To further subdive, mesothelial cells lining the organs are referred to as visceral 

mesothelia while parietal mesothelia cover the organs cavities/body walls. Visceral mesothelium 

covering the heart is referred to as the epicardium while pleural mesothelium covers lungs. Serosal 

mesothelium covers the organs of the alimentary canal within the abdominal cavity/coelom. 

Despite the multiple names, mesothelium has a relatively consistent structure in each of the 

coelomic cavities.  

 

The most conspicuous function of mesothelia in the adult is to produce a non-adhesive surface 

which allows frictionless movement of the organs within the coelomic cavity. The secretion of an 

apical glycosaminoglycan layer and production of a small amount of circulating coelomic fluid to 

provide lubrication are the key for this dynamic movement74,75. Submesothelial lymphatic vessels 

connect with gaps in the mesothelial monolayer called stomata on the surface of the diaphragm70. 

Mesothelium not only regulates ionic and protein composition of coelomic cavity fluid but also 

the passage of inflammatory cells76,77. Additionally, mesothelium is crucial to the injury response 

and is thought to both prevent and promote scarring depending on the injury and to promote 

neovascularization78-80. These and many other studies have provided growing evidence for the 

dynamic role of mesothelium in both normal and abnormal physiologic states in the adult81. 
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Msln and Mucin 16 

Msln is a glycophosphatidylinositol (GPI) –linked cell-surface glycoprotein. It is synthesized as a 

71-kD precursor protein and is then cleaved by the endoprotease furin to release the secreted N-

terminal region, called megakaryocyte potentiating factor (MPF), whereas the 41-kD mature Msln 

remains attached to the membrane82,83. The remaining GPI-linked mature Msln can also be shed 

from the cell through the action of the tumor necrosis factor α–converting enzyme protease84. The 

normal physiologic distribution of Msln identifies it as a differentiation factor for mesothelial cells, 

but the biologic role that Msln plays in these cells remains unclear. Database searches reveal that 

Msln is remotely homologous to two inner ear proteins of unknown structure and contains no 

conserved consensus domains85. Three-dimensional structure prediction programs have 

determined that Msln consists of a superhelical structure with armadillo-type repeats86. No crystal 

structure has yet been determined for the whole protein, but the structure of an N-terminal fragment 

bound to a Fab of the SS1 antibody has been obtained87. Furthermore, Msln knockout mice grow 

and reproduce normally and have no detectable phenotype88. 

 

Msln is expressed by many solid tumors, with particularly robust expression in mesothelioma, 

epithelial ovarian cancer, and pancreatic adenocarcinoma89-92. Higher expression of Msln has been 

correlated with poorer prognosis for patients with ovarian cancer93, cholangiocarcinoma94, lung 

adenocarcinoma95, triple-negative breast cancer96, and resectable pancreatic adenocarcinoma97. In 

the neoplastic setting, Msln is known to bind to the ovarian cancer antigen Muc16 (cancer antigen 

125)98. Muc16 is a membrane spanning mucin that is expressed on ovarian, endometrial, tracheal, 

and ocular surface epithelial cells. This mucin is initially expressed on the surface and then shed 

in the extracellular milieu following proteolytic cleavage. The two proteins are frequently 
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coexpressed, and binding of Msln and Muc16 has been shown to induce cell-to-cell adhesion in 

these cell types99. Muc16 expressed on cancer cells can also facilitate cancer cell attachment to the 

Msln-expressing serosal surfaces in the pleura and peritoneum, possibly contributing to peritoneal 

seeding and metastatic spread. In addition, signaling mediated by Msln and Muc16 binding has 

been reported to increase cellular resistance to anoikis100, upregulate matrix metalloproteinases 

important in cellular invasion and metastasis101, and induce secretion of autocrine growth factors 

by constitutively activating nuclear factor kappa B (NF-κB)102,103. However, it seems that Msln 

expression may also trigger signaling events independent of Muc16 binding90. The exact 

mechanics of these pathways and how Msln interacts with components of the tumor micro-

environment, including stromal cells, the extracellular matrix, and immune-cell populations, are 

not known.  

 

Why Msln, a glycoprotein normally restricted to serosal cells of the pleura, peritoneum, and 

pericardium, is expressed in a wide variety of adenocarcinomas is not clear at this time. However, 

regulation of Msln expression in tumors has been assessed in several studies and seems to be cell-

type specific. At the epigenetic level, it was found that hypomethylation did not correlate with 

Msln expression in ovarian or endometrial cancer specimens or in mesothelioma104. However, 

hypomethylation of the promoter was noted in Msln-expressing pancreatic cancer specimens, and 

treatment of a nonexpressing pancreatic cancer cell line with demethylating agents could induce 

expression of Msln, suggesting that epigenetic mechanisms may regulate Msln expression in this 

cell type89. Transcription of Msln is driven by a TATA-less promoter located upstream of the 

transcriptional start site. Enhancers responsible for initiating strong expression in normal serosal 

cells and cancers derived from them (eg, mesothelioma and ovarian cancer) are unknown. Cancer-
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specific ectopic upregulation in pancreatic and cervical cancers has been attributed to the 

transcriptional enhancer factor 1 (TEF-1) transcription factor binding to a conventional MCAT 

sequence within an upstream enhancer region called CanScript. However, TEF-1 expression itself 

is necessary but not sufficient to induce Msln expression, suggesting an unknown cofactor is also 

required105. Similarly, the yes-associated protein 1 (YAP1) transcription factor binds to an SP-1 

motif within the CanScript and is also required but insufficient for MSLN expression106. Further 

study will be required to delineate this mechanism. More recently, it was discovered that Msln is 

reciprocally regulated at the post-transcriptional level by mIR-198 as part of a feedback loop that 

involves NF-kB and the homeobox transcription factors octamer transcription factor 2 (OCT-2), 

pre–B cell leukemia homeobox 1 (PBX-1), and valosin-containing protein107. 

 

Recently more researches delineate the role of Msln in non-tumorigenesis condition. One group 

determined that Msln facilitates both TGF-β1–induced activation of activated portal fibroblasts 

(aPFs) and FGF-induced proliferation of aPFs108. And the mice lacking Muc16 had similar results 

in the murine liver fibrosis model. They also detected a similar upregulation of Msln+ aPFs in 

patients with biliary fibrosis of different etiologies. The other group found up-regulation of Msln 

in both human and murine peritoneal adhesions, which indicated that Msln expression correlated 

to injury-induced inflammation109. Upon injury, many activated fibroblasts share similar 

mesothelial markers. And one of the studies demonstrate that human Muc16 inhibits the cytolytic 

functions of both human and murine NK cells and macrophages to a similar degree. These studies 

are important steps in using mouse models to delineate the immuno-regulatory roles of 

Msln/Muc16 that provide immune protection to ovarian and other epithelial tumors. Several recent 

studies highlight the need to investigate the effects of Muc16 on immune cells110. Most importantly, 
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the correlation of decreased therapeutic responses of farletuzumab and amatuximab in patients 

with higher circulating levels of Muc16 and the ability of this mucin to perturb interactions 

between therapeutic antibodies and Fc-γ receptors are raising the possibility that Msln/Muc16 and 

other mucins could influence the success of some anti-cancer immunotherapies111. 

 

Model of peritonitis 

Infectious peritonitis triggered by the injection of pathogens into the peritoneal cavity has been 

used as a model to study innate immunity during acute inflammation since the time of Mechnikov. 

However, infectious peritonitis models are hard to control because the exact time course of the 

inflammatory response depends on both the pathogenicity and growth rate of the 

specific microorganisms used and the magnitude and efficacy of the host immune responses. 

Experimental animal models can be used to study specific aspects of the pathophysiology of 

peritonitis as it presents in the clinic, and these models provide platforms for illuminating the 

general mechanisms of inflammation and testing novel anti-inflammatory strategies. For instance, 

the cecal ligation and puncture (CLP) model mimics the polymicrobial sepsis112.  

 

The intraperitoneal injection of a wide range of irritants leads to an acute inflammatory response 

that peaks within hours, including thioglycollate broth113 and inflammatory cytokines114. Injection 

of zymosan, the insoluble polysaccharide cell wall component derived from Saccharomyces 

cerevisiae, is a popular self‐resolving model of peritoneal inflammation in mice, which induced 

all the hallmarks of acute inflammation, including pain, leukocyte infiltration, and synthesis of 

inflammatory mediators including leukotrienes and prostaglandins115. It provides a direct 

analog of many of the features observed in in vitro zymosan-treated macrophages. Macrophage 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/growth-rate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/microorganism
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/zymosan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/polysaccharide
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/saccharomyces-cerevisiae
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/saccharomyces-cerevisiae
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recognition of unopsonized zymosan in vitro is β‐glucan receptor dectin‐1 dependent116; whereas 

collaborative signaling from TLR2 by an MyD88‐dependent signaling pathway induces the 

generation of inflammatory mediators. In vivo Peritonitis experiments also show dectin-1 

recognized zymosan and controlled fungal infection117. 

 

Zymosan-induced peritonitis model has several advantages over other reagents. First, the mild‐to‐

moderate severity of the injury (which can be varied with the dose of zymosan) means that 

inflammation self‐resolves within 48 to 72 h, mimicking the normal inflammatory response of an 

immunocompetent individual. Second, the model allows collection of a reasonable amount of 

exudate for analyzing multiple inflammatory mediators. Third, injection into a serosal cavity 

means that leukocytes exit from the site of inflammation by way of their natural conduits to the 

draining lymph node118,119. Finally, this model enables a wide range of researches due to the 

relative technical simplicity and reproducibility. In addition, because peak neutrophil levels occur 

within 3-4 h of a 2x106 zymosan particles injection, it is convenient to generate and analyze data 

within a short time frame. 

 

Models of colonic injury  

The tube-shaped colon is composed of several layers. The inner-most layer is the epithelial layer, 

which separates the contents of the lumen from the host. The mesenchymal layer which includes 

neuronal, stromal, and hematopoietic cells is adjacent and supporting the epithelial layer. Together, 

these two layers are called the mucosa. The next radial layer is the submucosa composed of 

muscularis propria, including the circular and longitudinal muscle layers. The outer-most radial 

layer of the colon is the single-mesothelial-cell serosal layer. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/beta-glucan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tlr2
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
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The colonic epithelium is composed of many invaginations called crypts of Lieberkuhn. The 

highly proliferative epithelial stem cells reside at the base of the each crypt and divide to produce 

progenitors and more stem cells. The progenitors divide and differentiate into absorptive 

enterocytes, secretory goblet cells, or enteroendocrine cells. The mature epithelial cells move up 

from the crypt to reach the top and undergo apoptosis. Their migration away from canonical Wnt 

signaling that enriches at the base of the crypts drives the differentiation of progenitors and benefits 

the maintenance of homeostasis; however, during inflammation or infection, the compromised 

barrier function drives mucosal repair through the overwhelming epithelial renewal. Various injury 

models in mice have been used to study the mechanisms for colonic immune-epithelial interaction 

after injury and to gain novel treatments to stimulate intestinal repair. 

 

Many animal models of inflammatory bowel disease (IBD) recapitulate certain aspects of the 

human disease120. For instance, administration of chemicals like dextran sodium sulfate (DSS)121 

or 2,4,6-trinitrobenzene sulfonic acid (TNBS)122 leads to significant epithelial damage and 

inflammation. Other models of IBD include cell transfer models (adoptive transfer of 

CD4+CD45RBhigh T cells)123 and genetic models (e.g. IL-2 or IL-10 KO mice). There are other 

models of intestinal epithelial damage such as radiation, ischemia/reperfusion, and Clostridium 

difficile infection that all lead to intestinal inflammation and/or loss of crypts. Given IBD results 

from abnormal crosstalk between genetics and the environment, these models help identifying 

important mediators of inflammation such as cytokines and bacterial products.  
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Our lab has used the murine colonic biopsy injury system to study mechanisms of epithelial 

repair124. To create mucosal wounds, we insert a pair of forceps into the colon of an anesthetized 

mouse and remove around 300 crypts and the mesenchymal layer but not cause perforation. This 

system is ideal for studying the mechanisms of temporal and spatial mucosal repair. This system 

can be used to study mice that are genetically deficient for genes that are known to be important 

in mucosal repair and discover novel genes important in mucosal repair.  
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CHAPTER TWO 

 

Mesothelial niche Msln and mucin 16 shape tissue resident macrophage differentiation 
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Chapter 2: Abstract 

The local cellular environment of each tissue is thought to play a role in shaping resident 

macrophage differentiation state. In the peritoneal cavity, dietary retinoic acid has previously been 

shown to polarize macrophages in this location through the reversible induction of a transcription 

factor which defines LPM identity, Gata6. We hypothesized that local factors in the peritoneum 

could also support tissue-specific differentiation of macrophages.  We found that soluble proteins 

from the peritoneum upregulated Gata6 expression in stimulated LPMs. We investigated 

mesothelial cells because of their known function in secreting factors into the peritoneal fluid and 

their interactions with resident immune cells. Analysis of their global gene expression highlighted 

Msln and its binding partner Muc16 as candidate ligands to regulate Gata6 expression in LPMs. 

We found that mice deficient for either of these molecules showed diminished Gata6 and F4/80 

positive LPMs in homeostasis. Pleural cavity macrophages, similarly to LPMs, display lower 

Gata6 and F4/80 expression in Msln-/- and Muc16-/- mice, suggesting that Msln and Muc16 exhibit 

generalizable effects across cavities derived from the intraembryonic coelom. Compared to wild-

type recipient mice, lethally irradiated Msln-/- and Muc16-/-  mice reconstituted with wild-type bone 

marrow have lower Gata6 and F4/80 expression in LPMs and pleural cavity macrophages. 

Similarly, during the resolution of zymosan-induced inflammation, repopulated LPMs expressed 

diminished Gata6 and F4/80 in the absence of Msln or Muc16, suggesting these ligands have the 

extrinsic impact on resident macrophage differentiation. Overall, we found novel tissue-specific 

factors that regulate differentiation of resident macrophages in mesothelium lined cavities.   
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Chapter 2: Introduction 

Macrophages are members of the mononuclear phagocytic system that reside in every organ3,125,126. 

These cells play important roles in a variety of important processes including the initial control of 

infection and response to tissue damage. To execute their functions in the context of specific organs, 

tissue resident macrophages (TRMs) must adapt to their local environment27,127-130. The 

specialization of TRMs occurs by the instruction of specific transcription factors that are induced 

by factors within the microenvironment131. TRM phenotypes can be defined by a combination of 

multiple transcription factors that control the functional programs of these cells.  

 

In the peritoneal cavity, LPMs are the dominant TRMs that functionally mediate type 2 immunity, 

facilitate the tissue repair of the mesothelium, and protect against peritoneal fibrosis30,132,133. LPMs 

require the induction of transcription factors, including C/EBPβ43 and Gata640,134,135. Gata6 

deficiency results in dysregulated peritoneal macrophage proliferative renewal during homeostasis 

and in response to inflammation, which is associated with delays in the resolution of 

inflammation135. 

 

Previous studies have shown that local factors play key roles in promoting the ontogeny and 

phenotype of TRMs133,136. Among factors known to be important for LPM function40,134,135,137, 

omentum-derived retinoic acid (RA) induces Gata6 expression in LPMs40,127 which in turn 

regulates gene expression of factors that define peritoneal macrophages. It is still unclear whether 

RA is the sole local factor that regulates Gata6 expression in LPMs.  
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Mesothelial cells are important tissue factor producers due to their immediate proximity to the 

serosal cavities. In addition to roles in the pleura and pericardium70,138, mesothelial cells line the 

entire peritoneal cavity and produce a protective, non-adhesive barrier against physical and 

biochemical damage from infection and surgery76,77. Mesothelial cells play key roles in fluid 

transport and inflammation, as reflected in their expression of proteins such as solute transporters, 

adhesion molecules, cytokines, growth factors, and reactive oxygen species. These cells also 

express a wide range of lineage markers, including the adhesion protein mesothelin (Msln)139 and 

its binding partner mucin 16 (Muc16)140.  

 

We hypothesize that mesothelial cells can communicate with LPMs to affect their differentiation 

state and function through modulation of Gata6 expression. We found that a high molecular-weight 

complex in the peritoneal fluid contains the secreted proteins, Msln and Muc16, which preserve 

Gata6 expression in isolated and cultured LPMs. We further identified that Msln and Muc16 play 

key roles during in the extrinsic control of Gata6 expression in LPMs and pleural macrophages 

during homeostasis and injury. Collectively, these data delineate a role for soluble, micro-

environmental factors in regulating tissue macrophage identity.  

 
Chapter 2: Methods and Materials 

Methods  

Mice 

C57BL/6J (CD45.2) and B6.SJL (CD45.1) mice were obtained from Jackson Laboratories. Msln–

/– 88 and Muc16–/– mice141 on the C57BL/6 background were provided by Dr. Ira Pastan (National 

Cancer Institute, USA) and Dr. Robert C. Bast (MD Anderson Cancer Center, USA), respectively. 

Lyz2 Cre x Gata6flox/flox and Gata6flox/flox littermate controls were provided by Dr. Gwendalyn J. 
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Randolph and generated as previously described134. All mice were used for experiments were 

between 8 and 12 weeks of age unless otherwise stated and were maintained in one of two specific 

pathogen-free barrier facilities. Sex-matched littermates were used for experiments whenever 

possible, although in some cases mice from multiple litters were used in a single experiment. All 

animal experiments were approved by the Animal Studies Committee of Washington University 

in St. Louis. 

 

Leukocyte Collection 

Peritoneal and pleural cells were collected from body cavities by lavage with 0.5% BSA and 2 

mM EDTA in 1x PBS (FACS buffer). Spleen and Peyer’s patches were excised, placed in sterile 

FACS buffer, and finely minced. Cellular suspensions were passed through a 70 μm cell strainer 

before analysis. If lysis of red blood cells was necessary, cell suspensions were treated with Red 

Blood Cell Lysis Buffer (Sigma) according to the manufacturer’s protocol. Live cells were counted 

with Countess II FL cell counter (Invitrogen) using a Trypan Blue stain for dead cell exclusion. 

 

Flow Cytometry 

Cells were stained for surface markers by blocking with α-CD16/32 (clone 2.4G2, Tonbo) for 10 

minutes at 4 ⁰C followed by staining for 20 min at 4 ⁰C before running on a flow cytometer in 

FACS buffer. Cells which were to be stained intracellularly were first stained for surface markers 

and then were stained as indicated by the FoxP3/Transcription Factor Staining Buffer set 

(eBioscience). In brief, surface stained cells were fixed, permeabilized, and stained with either 

Gata6 or Ki67 for 20 min at 4 ⁰C, followed by washing once in 1x Perm/Wash buffer and then 

resuspension in FACS buffer before flow cytometric analysis. 
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Single-cell preparations were stained with antibodies to the following markers: anti-B220 (clone 

RA3-6B2; BioLegend), anti-CD3 (clone 17A2; BioLegend), anti-CD4 (clone RM4-5; BioLegend), 

anti-CD5 (clone 53-7.3; BioLegend), anti-CD8a (clone 53-6.7; BioLegend), anti-CD11b (clone 

M1/70; BioLegend), anti-CD11c (clone N418; BioLegend), anti-CD19 (clone 1D3; BioLegend), 

anti-CD45.1 (clone A20; BioLegend), anti-CD45.2 (clone A104; BioLegend), anti-

CD102/ICAM2 (clone 3C4; BioLegend), anti-CD105 (clone MJ7/18; BioLegend), anti-CD115 

(clone AFS98; BioLegend), anti-CD117 (clone 2B8; BD), anti-CD135 (clone A2F10.1; BD), anti-

CD138 (clone 281-2; BioLegend), anti-F4/80 (clone BM8.1; eBioscience), anti-Gata6 (clone 

D61E4; Cell Signaling Technologies), anti-GL7 (clone GL7; BD), anti-MHC-II (clone 

M5/114.15.2; BioLegend), anti-Ki67 (clone SolA15; eBioscience), anti-Ly6C (clone HK1.4; 

BioLegend), anti-Ly6G (clone 1A8; BioLegend), anti-GPM6a (clone 321; MBL), anti-NK1.1 

(clone PK136; Tonbo), anti-Pdpn (clone 8.1.1; BioLegend), anti-SiglecF (clone E50-2440; BD), 

anti-streptavidin (Thermo), anti-TER119 (clone TER-119; BioLegend), and anti-Tim4 (clone 

RMT4-54; BioLegend). 

 

In experiments to assess cell death, cell suspensions were washed once in 1x PBS, resuspended in 

Annexin binding buffer, and stained with FITC-conjugated Annexin V and Propidium Iodide as 

per the manufacturer’s instruction (BD). Flow cytometry was performed on FACS Canto II, LSR 

Fortessa, LSR Fortessa X20, or LSR II instruments (BD). FlowJo software (Treestar) was used for 

analysis.  
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All cells were first gated on a FSC/SSC gate and a FSC-W/FSC-A singlet gate. Peritoneal and 

pleural macrophages were gated as CD115+ CD11b+ and then divided into ICAM2+ MHC-IIlo large 

macrophages or ICAM2- MHC-II+ small macrophages. Peritoneal eosinophils were gated as 

Siglec-F+ CD11bint, and peritoneal B cells were gated as CD115- CD19+ MHC-II+. In the spleen 

and Peyer’s patches, B cells were gated as B220+ CD3-, plasma cells as B220+ GL7+, and germinal 

center B cells as B220- CD138+. CD4+ T cells were gated as CD3+ CD4+, and CD8+ T cells as 

CD3+ CD8+. NK cells were gated as NK1.1+ CD3-, and neutrophils were gated as Ly6C+ Ly6G+. 

Red pulp macrophages were gated as F4/80hi CD11blo MHC-IIlo CD11clo. Common monocyte 

precursor (cMoP) cells were gated as cKitlo Flt3- CD115+ Ly6chi CD11b+ CD11c- Ly6G-. 

 

LPM and BM-Monocyte Sorting 

Large peritoneal macrophages were sorted from peritoneal exudate cells using a CD11b+ ICAM2+ 

F4/80+ gating strategy. Monocytes were isolated from red blood cell lysis buffer–treated bone 

marrow cell suspensions using immunomagnetic depletion of T cells, B cells, DCs, granulocytes 

and natural killer cells with anti-rat immunoglobulin-coated magnetic beads (Invitrogen) at a 7:1 

bead-to-cell ratio. Immunomagnetic beads were prepared by incubation with rat anti-mouse 

monoclonal antibodies conjugated against the lineage defining markers CD3, CD19, CD105, 

TER119 and Ly6G. Lineage depleted cell suspensions were sorted for monocytes using a CD11b+ 

CD115+ Flt3- cKit- Lineage- gating strategy. Monocyte preparations had a purity of greater than 

90% as measured by post-sorting flow cytometry. Cells were sorted on a FACS Aria Fusion or an 

Aria II flow cytometer (BD). 

 

Bone-marrow-derived Macrophage Culture  
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Femurs and tibia were removed from CD45.1 wild-type or CD45.2 wild-type, Msln-/-, or Muc16-/- 

mice and flushed with FACS to remove the bone-marrow. Bone-marrow cells were pelleted, 

resuspended with RPMI (Gibco) + 10% FBS + 20ng/mL M-CSF (Biolegend), seeded onto 

untreated petri dishes, and cultured for 6 days. Cells were removed mechanically by scratching 

into 1x PBS before adoptive transfer experiments. 

 

Adoptive Transfer 

For the transfer experiment, 2X105 cells were injected intraperitoneally into the recipient mouse 

and collected 12 days later for flow cytometric analysis. 

 

Peritoneal Lavage Preparation and Treatment on LPM 

Mice were injected intraperitoneally with 2 ml of DMEM (Sigma) supplemented with 1% 

penicillin–streptomycin (Sigma). After gently massaging the mouse for 30 seconds, the lavage 

fluid was removed, centrifuged at 1500 rpm and 4˚C for 5 min, and the cell-free supernatant was 

collected for further experiments. Lavage fluids were boiled to denature proteins by incubation at 

95˚C for 10 min. 

 

Ex Vivo Stimulation 

For experiments requiring culturing, 200,000 sorted LPMs were seeded onto tissue-culture treated 

96-well plates and maintained in DMEM + 1% penicillin-streptomycin. Cells that were to be used 

as no-culture controls were fixed immediately after sorting using 4% (v/v) paraformaldehyde and 

kept until analysis. Cells in experimental groups were cultured for 24hrs before harvesting for 

protein analysis or for 6hrs before qRT-PCR analysis. In experiments with the blockade of Msln, 
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LPMs were treated with un-fractioned peritoneal lavage fluid plus either 25μg/ml Msln blocking 

or isotype control antibodies (Antibody 1: MBL and Antibody 2: Abbiotec) for 24 hours before 

collection. Amicon Ultra-15 100K MWCO (Millpore) was used to size fractionate the peritoneal 

lavage fluid according the manufacturer’s protocol. 

 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

RNA was isolated from sorted LPMs with the NucleoSpin RNA kit (Macherey-Nagel), and cDNA 

was synthesized with iScript cDNA kit (Bio-Rad). qRT-PCR was performed with TB Green qPCR 

premix (Clontech) using an Eppendorf Master-cycler. Relative expression levels were normalized 

to Hprt which was expressed at similar levels in all samples. The following primers were used: 

Hprt, forward 5′-TCAGTCAACGGGGGACATAAA-3′, reverse 5′-GGGGCTGTACTGCTTA 

ACCAG-3′; Gata6 forward 5’- TTGCTCCGGTAACAGCAGTG-3’ reverse 5’- GTGGTCG 

CTTGTGTAGAAGGA-3’. Cebpb forward 5’-GGAGACGCAGCACAAGGT-3’ reverse 5’- 

AGCTG CTTGAACAAGTTCCG-3’; Bhlhe40 forward 5’- CGTTGAAGCACGTGAAAGCA-3’ 

reverse 5’- TCCCGACAAATCACCAGCTT-3’; Rarb forward 5’- ACATGATCTACACTTGC 

CATCG-3’ reverse 5’- TGAAGGCTCCTTCTTTTTCTTG-3’; Nfe2 forward 5’- TCCTCAGCA 

GAACAGGAA CAG-3’ reverse 5’- GGCTCAAAAGATGTCTCACTTGG-3’. 

 

Primary Peritoneal Mesothelial Cell Isolation 

Mesothelial cells for RNA sequencing were isolated from 8 to 12 week-old wild-type or Msln–/– 

mice using a previously described protocol142. Briefly, mice were sacrificed, and their peritoneal 

cavities were exposed. The peritoneal cavities were washed with injecting 10 ml of 1x PBS 

(Sigma) via a syringe equipped with a 25G×5/8″ needle (BD). After gently shaking for 30 seconds, 
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the fluid was removed and discarded. The peritoneum was filled with 5 ml of 0.25% 

Trypsin/EDTA solution (Gibco). The corpse was then maintained at 37°C for 20 min in a tissue-

culture incubator before removal of the fluid. The detached cells were pelleted by centrifugation 

at 300×g for 10 min and resuspended in FACS buffer. The mesothelial cells were sorted from the 

cell suspension as CD45- PDPN+ GPM6a+ cells into DMEM + 10% FBS on a FACS Aria II flow 

cytometers (BD). 

 

RNA-sequencing and Analysis 

Primary mesothelial cells were collected from 10 week old mice as mentioned above.  Total RNA 

was extracted using NucleoSpin RNA kit (Macherey-Nagel). RNA-sequencing libraries from 

peritoneal mesothelial cells were generated and sequenced at the Genome Technology Access 

Center (GTAC) at Washington University. Pooled libraries were sequenced on an Illumina HiSeq 

2500 using 1x50 single end sequencing. Transcript abundance was estimated using Kallisto 

software 143 and the Gencode M14 annotation (GRCm38.p5 assembly).  Transcript abundances 

were summarized at the gene-level using the R package tximport (Soneson), and then pre-

processed and normalized using packages edgeR and Limma (Robinson, Ritchie).  Raw sequence 

data from published studies of murine large peritoneal macrophages and inguinal adipose tissue 

was downloaded from the NCBI Short Reads Archive. Transcript abundance was estimated and 

summarized in an identical fashion.  Differential expression testing was performed with Limma, 

using cut-off values 10-4 for adjusted p-value and 4 for log2 fold change. 

 

Msln and TNFα ELISA 
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Peritoneal lavage was prepared from naïve wild-type and Msln-/- mice as described above and 

measured for Msln concentration using a Msln ELISA kit (Abcam) according to manufacturer's 

instructions. . For TNFα ELISA, peritoneal exudate cells were prepared from naive wild-type and 

Msln-/- or Muc16-/- mice. 200,000 cells were seeded onto tissue-culture treated 96-well plates and 

stimulated with 1μg/ml LPS in DMEM + 10% FBS for 24 hours. Supernatant was measured for 

TNFα concentration using a TNFα ELISA kit (Biolgend) according to manufacturer's instructions. 

The signals were measured by Cytation 5 (Biotek). 

 

In situ Hybridization 

Tissues were fixed in 4% (v/v) paraformaldehyde at 4⁰C for 18 to 24 hours, dehydrated with 20% 

sucrose in 1x PBS, and embedded in OCT (Sakura Finetek). Tissue sections were cut at a thickness 

of 5 µm and were used for RNAscope based in situ hybridization according to the protocols 

recommended by the manufacturing company (Advanced Cell Diagnostics). The RNAscope 

probes used were Mm-MSLN and Mm-MUC16.  

 

Zymosan-induced Peritonitis 

Peritonitis was induced by intraperitoneal injection of 2x106 zymosan particles (Sigma). Peritoneal 

exudate cells were collect by peritoneal lavage as described earlier after 3 hours or 7 days as 

indicated. 

 

Bone Marrow Chimeras 

Recipient CD45.1 or CD45.2 mice were lethally irradiated with a single dose of 1050 rads from a 

gamma irradiator and after an overnight rest period were reconstituted intravenously with 10 
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million bone-marrow cells from the indicated donor animals. Mice were allowed to reconstitute 

their hematopoietic compartment for at least 8 weeks before experimentation. 

 

Statistical Analysis 

All data are from at least two independent experiments, unless otherwise indicated. Pairwise 

comparison data were analyzed by unpaired two-tailed Mann-Whitney U-tests. Statistical 

significance between multiple groups was evaluated by one-way ANOVA followed by Tukey’s 

multiple comparisons post-hoc test. Data analysis was conducted in Prism 8 (GraphPad Software, 

Inc.).  A p-value of less than or equal to 0.05 was considered significant. 

 

Data Availability 

The data that support the findings of this study are available from the corresponding author upon 

request. The RNA sequencing data are deposited under the GEO repository accession codes GSE 

129391. 

 
Chapter 2: Result 
 

Mesothelium-derived protein Msln and Mucin 16 sustains Gata6 expression in LPMs 

LPMs require Gata6 expression for maintenance of their function40,134,135. Addition of retinoic acid 

to LPMs in vitro can stimulate a detectable increase in Gata6 expression in LPMs40,127. Using this 

experimental system, we cultured sorted LPMs (FSClntCD11b+ICAM2+F4/80+) in serum-free 

media and found that Gata6 protein expression in LPMs was not maintained after 24 hours of 

culture (Fig 1A-C). Under these experimental conditions, we found that additional treatment of 

LPMs with peritoneal lavage fluid from wild-type (WT) mice could partially preserve Gata6 
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protein levels in LPMs. This activity appeared to be due to protein factor(s) as heat denaturation 

diminished the effect of the peritoneal lavage fluid in this assay. The effects of the peritoneal 

lavage fluid similarly affected Gata6 mRNA expression after 6 hours of culture (Fig 1D).  

 

Due to their immediate proximity to the peritoneal cavity, we propose that mesothelial cells can 

produce and secrete proteins into the peritoneum144 to maintain Gata6 expression by LPMs. We 

used comparative transcriptomics to identify secreted factors that were specifically and highly 

expressed in primary mesothelium.  We performed bulk RNA-sequencing of mesothelial cells 

from 10 week old healthy mice. Using publicly available data-sets from healthy mice, we identified 

genes that were expressed at significantly greater levels in mesothelial cells as compared to two 

other peritoneal cell types, adipocytes and LPMs127,145. Transcripts from 315 genes were 

significantly enriched in mesothelial cells using cut-off values 10-4 for adjusted p-value and 4 for 

log2 fold change. As expected, this list included known mesothelial markers including Wt1 and 

Gpm6a. Two genes, Msln and Muc16, were among the most highly enriched genes that were 

predicted to be secreted from mesothelial cells (Fig. 1E and Supplementary Fig 1A).  

 

One candidate, Msln was of interest as it is specifically expressed by mesothelial cells146 and not 

immune cells in the peritoneal cavity (Supplementary Fig 1B, C), and it has been shown by 

previous work to be a secreted protein147-150. In addition, in vivo and in vitro tools have been 

developed previously to study its function151. Using the model of cultured LPMs as above, we 

blocked Msln function by mixing the lavage fluid from WT mice with Msln blocking antibodies. 

We used two antibodies that recognize different epitopes of Msln and both antibodies inhibited the 
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maintenance of Gata6 expression in isolated and cultured LPMs while isotype controls had no 

detectable effect (Fig. 1F, G).  

 

We next evaluated the expression of Msln. By ELISA, we detected Msln protein in peritoneal 

lavage fluid of WT but not Msln-/- mice (Fig. 1H). Because a mature 30kD Msln protein has been 

described to function in a complex with other proteins such as Muc16 (MW >250kDa), we 

performed size selection on the peritoneal lavage fluid from WT mice and found proteins in a 

fraction >100kD contained the majority of Msln while the smaller sized fraction (<100kD) 

contained lower levels of Msln. We found that the >100kDa fraction contained the activity required 

to preserve Gata6 expression at an RNA and protein level (Fig. 1I, J). Muc16 has been proposed 

to be a co-factor for Msln in cancer cells 98,152 and is known to have a secreted form 153. Similar to 

Msln, it is specifically expressed by mesothelial cells but not immune cells (Supplementary Fig 

1D, E). These data create the hypothesis that Msln and Muc16 produced by mesothelial cells are 

important local factors for the preservation of the expression of the transcription factor Gata6 in 

LPMs, suggesting a possible role that is similar to a previously described role for retinoic acid 

40,127. Our results show that proteins (Msln and Mucc16) in the peritoneal fluid can maintain Gata6 

expression in ex vivo cultured LPMs. 

 

Msln 
-/-

 mice have lower expression of specific markers of LPMs 

We analyzed LPMs and other immune cells in the peritoneal cavities in Msln-/- and Msln+/+ 

littermate control adult mice. The number of LPMs was similar in Msln-/- mice and controls 

(Supplementary Fig 2A). However, the Gata6 and F4/80 levels of expression of LPMs isolated 

from Msln-/- mice were lower than controls (Fig 2A-E). Macrophages in the lung pleural space of 
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Msln-/- mice also showed lower levels of Gata6 and F4/80 expression as compared to littermate 

controls (Fig 2F-H). To determine if Msln has an effect on peritoneal cavity inflammation, we 

injected zymosan into the peritoneal cavity of mice which induces neutrophil infiltration in WT 

mice within 3 hours46. Msln-/- mice had increased neutrophil infiltration in response to zymosan 

injection as compared to littermate controls and this effect was comparable to the effects of 

zymosan injection into Gata6 conditional knockout in macrophages (Gata6f/f, LysM-Cre) mice135 

(Fig 2I). We also used zymosan treatment to stimulate the loss of macrophages in the peritoneal 

space and to study macrophage repopulation from blood derived monocytes154. As expected, >99% 

of LPMs were no longer detected in the peritoneal lavage of treated WT and Msln-/- mice after 3 

hours of zymosan treatment 46. We found that in zymosan treated Msln-/- mice, the LPMs that 

repopulated the peritoneal cavity had a lower proportion of Gata6-positive, F4/80-positive cells as 

compared to similarly treated WT littermates (Fig 2J-L). This finding suggests that Msln can 

influence TRM identity in mesothelium-lined compartments at both the steady state and during 

inflammation.  

 

        To investigate the effects of Msln on LPMs during development, we analyzed immune cells 

from the peritoneal cavity of two week old littermate WT and Msln-/- mice. Surprisingly, the 

expression of F4/80 and Gata6 in LPMs from Msln-/- mice was comparable to WT controls 

(Supplementary Fig 2B, C). The percentage of Gata6 and F4/80 low LPMs in two-week old Msln-

/- mice was also comparable to controls, suggesting that Msln affects LPM identity after this 

developmental time period. Using LPMs in adult Msln-/- naïve mice, we found no defects in LPM 

proliferation (Ki67+) or cell death (AnnexinV+PI+) (Supplementary Fig 2D, E). Amongst the 

other immune populations of peritoneal exudate cells, splenocytes, and lymphoid cells in Peyer’s 
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Patches, we observed no difference in the abundance of these cells in Msln-/- mice (Supplementary 

Fig 2F-J). These results were replicated in a second facility with a distinct microbiome155, 

suggesting that this phenotype is not dependent on differences in gut microbes (Supplementary 

Fig 2K). We also examined Gata6 and other LPM-related gene expression in LPM by qRT-PCR 

and found that Msln deficiency affected not only Gata6 but also Bhlhe40, a tissue-specific 

transcriptional regulator of LPM proliferation156 (Supplementary Fig 2L). Overall, we found that 

adult Msln-/- mice have abnormal TRMs in mesothelium-lined compartments and these cells 

express lower levels of identity defining markers Gata6 and F4/80.  

 

Msln acts extrinsically on Gata6 expression during TRM differentiation in bone marrow 

chimeras 

Based on these findings, we hypothesized that Msln produced by mesothelial cells acts locally in 

the peritoneal cavity to influence Gata6 expression in LPMs and that continuous exposure of LPMs 

to Msln is needed for optimal expression of Gata6. We first excluded a developmental role for 

Msln in bone marrow (BM), as both  WT and Msln-/- mice had similar numbers of common 

monocyte progenitors (cMoPs)157 (Fig 3A). We next reconstituted irradiated WT and Msln-/- 

CD45.2 mice with WT CD45.1 bone marrow in order to determine extrinsic versus intrinsic effects 

of Msln. The CD45.1 macrophages expressed less Gata6 in Msln-/- recipient mice as compared to 

WT recipients (Fig 3B, C, Supplementary Fig 3A-C), consistent with our model that mesothelial 

cells acted as an extrinsic source of Msln to impact macrophage differentiation. Additionally, 

analysis of  ‘reversed’ chimeric mice  excluded intrinsic effects of Msln on LPMs as BM transfer 

from Msln-/- CD45.2 mice into WT CD45.1 recipients had Gata6 expression in LPMs and lung 
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pleural macrophages that was similar to that of BM derived LPMs from littermate WT CD45.2 

mice (Fig 3D, Supplementary Fig 3D, E).  

 

         We used a second approach to test the role of Msln on LPM Gata6 expression that did not 

involve irradiation needed to produce BM chimeras. Adapting a technique used to show the 

acquisition of the TRM features of alveolar macrophages by macrophage precursors129, we 

adoptively transferred either WT monocytes or bone marrow derived macrophages (BMDMs) 

intraperitoneally into untreated Msln-/- or WT littermates. We then harvested peritoneal exudates 

12 days post injection. The percentage of the total pool of LPMs represented by the transferred 

CD45.1 cells ranged from 0.5 to 1%. Further analysis of the CD45.1 transferred cells showed that 

they had acquired features of LPMs (ICAM2+) in both Msln-/- and WT recipient mice.  However, 

the CD45.1 LPMs in the Msln-/- recipient mice expressed less Gata6 than in WT recipients (Fig 

3E-H, Supplementary Fig 3F, G). The percentage and absolute numbers of LPMs were 

comparable between WT and Msln-/- mice. Taken together, Msln acts extrinsically to modulate the 

expression of Gata6 in TRMs found in mesothelial cell lined cavities. 

 

Muc16 deficiency recapitulates the effects of Msln deficiency on tissue resident macrophages 

We identified both Msln and Muc16 as secreted candidates in regulating Gata6 expression in 

LPMs. Given its potential interaction with Msln98,152, expression in mesothelial cells (Fig 1E) and 

high molecular weight (>2 million Da), we tested if Muc16 was also necessary for Gata6 

expression in LPMs. Similar to the Msln-/- mice, the LPMs and pleural macrophages from Muc16-

/- mice had lower Gata6 expression as compared to littermate controls (Fig 4A, B, Supplementary 

Fig 3H, I). Zymosan-induced peritonitis in Muc16-/- mice showed an increase in recruited 
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neutrophils that was similar in magnitude to Msln-/- mice (Fig 4C). Additionally, seven days post 

zymosan challenge, Muc16-/- mice contained fewer Gata6+ LPMs, similar to Msln-/- mice tested in 

this way (Fig. 4D, Supplementary Fig 3J). 

 

We next tested whether the effect of Muc16 deficiency was extrinsic. Repopulation of 

Muc16-/- mice with WT bone marrow cells led to a decrease in Gata6 expression in LPMs and 

pleural macrophages as compared to WT recipient mice, an effect similar to repopulation of the 

BM in Msln-/- mice (Fig 4E, Supplementary Fig 3K-M). Next, analysis of ‘reversed’ chimeras 

further excluded intrinsic effects of Muc16 on LPMs as BM transfer from Muc16-/- CD45.2 mice 

into WT CD45.1 recipients had comparable effects on Gata6 expression in LPMs as BM from 

littermate WT CD45.2 mice (Fig 4F). After adoptively transferring CD45.1 monocytes and 

BMDMs, donor-derived LPMs also expressed lower F4/80 and Gata6 in the Muc16-/- recipient 

mice compared to WT (Fig. 4G, H, Supplementary Fig 3N, O). These results support a role for 

Muc16 in addition to Msln to promote Gata6 expression in LPMs. 
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Figure 2.1 Soluble proteins in peritoneal lavage fluid sustains Gata6 expression in LPMs 

(A) Representative FACS plots of isolated LPMs (CD11b+F4/80+ICAM2+). (B) Representative 

histograms of Gata6 expression from isolated LPMs (no culture) or LPMs cultured for 24 hours 

in media alone (no addition), or media lavaged in the peritoneal cavity (un-fractioned and with 

heat denaturation). (C) Average mean fluorescence intensity (MFI) ± SEM of Gata6 for the four 

groups of LPMs displayed in B. (D) Average relative expression ± SEM of Gata6 (by qRT-

PCR) for the four groups of LPMs in B except that LPMs were cultured for 6 hours.  (E) The 

diagram depicting the number of genes that were expressed at significantly greater levels in 

isolated mesothelial cells compared to two other peritoneal cell types, adipocytes and LPMs. 

The number of genes making secretory proteins were generated by the gene ontology resource 

and literature review. (F) Representative histogram of Gata6 expression from WT LPMs treated 

with peritoneal lavage for 24 hours plus either Msln blocking or isotype control antibodies. (G) 

Average MFI ± SEM of Gata6 for the experimental design in F. Two different blocking 

antibodies directed against Msln (25ug/ml, Antibody 1 and Antibody 2) and their isotype 

controls were used.  (H) Average expression of soluble Msln ± SEM (by ELISA) from the 

peritoneal lavage of WT and Msln-/- mice. The WT lavage was fractionated into >100kD and 

<100kD. Dash line labels the limit of detection. (I) Average MFI ± SEM of Gata6 from WT 

LPMs treated with unfractionated lavage and fractions >100kDa and <100kDa for 24 hours. (J) 

Average expression ± SEM of Gata6 mRNA (by qRT-PCR) in peritoneal lavages: 

unfractionated and fractions >100kD and <100kD. Statistical significance in C, D, G-J 

determined by a one-way ANOVA followed by Tukey's multiple comparisons post hoc tests. 

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (N = 3 independent experiments) In E 
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determined by cut-off values 10-4 for adjusted p-value and 4 for log2 fold change to get mesothelial 

cell specific genes. 
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Figure 2.2. Msln-/- mice have lower expression of specific markers of LPMs  

(A) Representative FACS plots of Gata6 and F4/80 expression in isolated LPMs 

(CD11b+CD115+MHCIIloICAM2+) from adult Msln-/- and littermate mice. (B) Representative 

histograms of Gata6 expression in LPMs from adult Msln-/- and littermate mice. (C) Average 

percentage ± SEM of Gata6+ LPMs, (D) average relative MFI expression ± SEM of Gata6 for 

LPMs, and (E) average percentage ± SEM of F4/80+ LPMs from adult Msln-/- and littermate 

mice. (F) Average percentage ± SEM of Gata6+ lung pleural macrophages 

(CD11b+CD115+MHCIIloICAM2+), (G) average relative MFI expression ± SEM of Gata6 for 

lung pleural macrophages, and (H) average percentage ± SEM of F4/80+ lung pleural 

macrophages from adult Msln-/- and littermate mice. (5 pooled experiments, N = 19 to 20 

mice/group). (I) Average number of neutrophils in the peritoneal cavity from zymosan (2×106 

particles) -stimulated Msln-/- and littermate 3 hours post injection (3 to 4 pooled experiments, N 

= 9 to 12). (J) Average percentage ± SEM of Gata6+ LPMs, (K) average relative MFI 

expression ± SEM of Gata6 for LPMs, and (L) average percentage ± SEM of F4/80+ LPMs 

from adult Msln-/- and littermate mice 7 days post zymosan (2×106 particles) intraperitoneal 

injection. (3 pooled experiments, N = 11 to 14). Statistical significance in C-L determined by a 

two-tailed unpaired U-test. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2. 3. Msln acts extrinsically on Gata6 expression in the process of TRM 

differentiation 

(A) Average number of cMoPs (cKitlo Flt3- CD115+ Ly6chi CD11b+ CD11c- Ly6G-) from Msln-/- 

and littermate. Data are representative of two independent experiments. (B) Representative 

histograms of Gata6 expression in CD45.1 LPMs in congenically distinct recipients (CD45.2 

Msln-/- and littermate) 8 weeks after irradiation and reconstitution. (C) Average relative MFI 

expression ± SEM of Gata6 for CD45.1 LPMs from Msln-/- and littermate recipients. (3 pooled 

experiments, N = 10). (D) Average relative MFI expression ± SEM of Gata6 for CD45.2 LPMs 

in congenically distinct recipients (CD45.1 WT) 8 weeks after irradiation and reconstitution 

with Msln-/- and littermate BM. (2 pooled experiments, N = 10). (E) Representative FACS plots 

of CD45.1 LPMs (CD11b+CD115+MHCIIloICAM2+) from adult CD45.2 Msln-/- and littermate 

mice 12 days post monocyte (2X105 cells per mouse) intraperitoneal injection. (F) 

Representative histograms of Gata6 expression in CD45.1 and CD45.2 LPMs displayed in E. 

(G) Average relative MFI expression ± SEM of Gata6 for CD45.1 LPMs in congenically 

distinct recipients (CD45.2 Msln-/- and littermate) (2 pooled experiments, N = 10). (H) Average 

relative MFI expression ± SEM of Gata6 for CD45.1 LPMs in congenically distinct recipients 

(CD45.2 Msln-/- and littermate) 12 days post BMDM (2X105 cells per mouse) intraperitoneal 

injection. (3 pooled experiments, N = 12 to 14). Statistical significance in C, D, G, H determined 

by a two-tailed unpaired U-test. **P < 0.01, ****P < 0.0001. 
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Figure 2. 4. Muc16 deficiency recapitulates the effects of Msln deficiency on resident 

macrophages 

(A) Average relative MFI expression ± SEM of Gata6 for LPMs and (B) average relative MFI 

expression ± SEM of Gata6 for lung pleural macrophages from adult Muc16-/- and littermate 

mice. (3 to 5 pooled experiments, N = 25 to 31). (C) Average number of neutrophils in the 

peritoneal cavity from zymosan (2×106 particles)-stimulated Muc16-/- and littermate 3 hours 

post injection (3 pooled experiments, N = 9). (D) Average relative MFI expression ± SEM of 

Gata6 for LPMs from adult Muc16-/- and littermate mice 7 days post zymosan (2×106 

particles) intraperitoneal injection. (E) Average relative MFI expression ± SEM of Gata6 for 

CD45.1 LPMs from Muc16-/- and littermate recipients 8 weeks after irradiation and 

reconstitution. (3 pooled experiments, N = 10). (F) Average relative MFI expression ± SEM 

of Gata6 for CD45.2 LPMs in congenically distinct recipients (CD45.1 WT) 8 weeks after 

irradiation and reconstitution with Muc16-/- and littermate BM. (2 pooled experiments, N = 

10).  (G) Average relative MFI expression ± SEM of Gata6 for CD45.1 LPMs in congenically 

distinct recipients (CD45.2 Msln-/- and littermate) 12 days post monocytes (2X105 cells per 

mouse) intraperitoneal injection. (2 pooled experiments, N = 7 to 9) (H) Average relative MFI 

expression ± SEM of Gata6 for CD45.1 LPMs in congenically distinct recipients (CD45.2 

Msln-/- and littermate) 12 days post BMDM (2X105 cells per mouse) intraperitoneal injection. 

(3 pooled experiments, N = 7 to 11). Statistical significance in A-H determined by a two-

tailed unpaired U-test. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Supplementary Figure 1. Msln and Muc16 expression in peritoneal mesothelial cells and 

LPMs 

(A) 29 genes making secretory proteins among 315 mesothelial cell specific genes. (B) Average 

relative expression ± SEM of Msln (by qRT-PCR) in LPMs and isolated peritoneal mesothelial 

cells. (C) Representative RNA scope images for Msln in fresh-frozen intestine section. Black 

arrowheads indicate Msln-positive mesothelial cells. (D) Average relative expression ± SEM of 

Muc16 (by qRT-PCR) in LPMs and isolated peritoneal mesothelial cells. (E) Representative 

RNA scope images for Muc16 in fresh-frozen intestine section. Black arrowheads indicate 

Muc16-positive mesothelial cells. Statistical significance in B, D determined by a two-tailed 

unpaired U-test. ND: non-detectable. 
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Supplementary Figure 2. The impact of Msln is restrict to tissue resident macrophages 

(A) Average number of LPM from Msln-/- and littermate (5 to 7 pooled experiments, N = 20 to 

25). (B) Average relative MFI expression ± SEM of Gata6 for LPMs and (C) average percentage 

± SEM of F4/80+ LPMs from 2-week-old Msln-/- and littermate mice. (3 pooled experiments, N 

= 15). (D) Average percentage ± SEM of Ki67+ LPMs and (E) AnnexinV+PI+ LPMs from 

adult Msln-/- and littermate (5 to 7 pooled experiments, N = 23). (F, G) Average percentage ± 

SEM of immune cell populations in spleen, Peyer’s patches from small intestine from adult 

Msln-/- and littermate. (2 pooled experiments, N = 4 to 10) (H-J) Average number ± SEM of 

total peritoneal exudate cells, peritoneal eosinophils, and peritoneal B cells from adult Msln-/- 

and littermate. (3 to 5 pooled experiments, N = 10 to 26). (K) Average relative MFI expression 

± SEM of Gata6 for LPMs from adult Msln-/- and littermate mice in the other facility. (3 to 5 

pooled experiments, N = 11 to 14) in different facility. (L) Average relative expression ± SEM 

of Gata6, Bhlhe40, Cebpb, Nfe2, and Rarb (by qRT-PCR) for LPMs from adult Msln-/- and 

littermate mice. (2 5 pooled experiments, N = 4) Statistical significance in A-L determined by 

a two-tailed unpaired U-test. *P < 0.05, **P < 0.01, ****P < 0.0001.  
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Supplementary Figure 3. Mice with Muc16 deficieny phenocopies mice lacking of Msln 

(A) Average percentage ± SEM of Gata6+ CD45.1 LPMs from Msln-/- and littermate recipients 

8 weeks after irradiation and reconstitution. (3 pooled experiments, N = 10). (B) Average 

percentage ± SEM of Gata6+ CD45.1 lung pleural macrophages and (C) average percentage ± 

SEM of Gata6+ CD45.1 lung pleural macrophages from A. (3 pooled experiments, N = 10). (D) 

Average percentage ± SEM of Gata6+ CD45.2 lung pleural macrophages and (E) average 

percentage ± SEM of Gata6+ CD45.2 lung pleural macrophages in congenically distinct 

recipients (CD45.1 WT) 8 weeks after irradiation and reconstitution with Msln-/- and littermate 

BM. (3 pooled experiments, N = 10) (F) Average percentage ± SEM of Gata6+ CD45.1 LPMs 

in congenically distinct recipients (CD45.2 Msln-/- and littermate) 12 days post monocyte 

(2X105 cells per mouse) intraperitoneal injection.  (G) Average percentage ± SEM of Gata6+ 

CD45.1 LPMs in congenically distinct recipients (CD45.2 Msln-/- and littermate) 12 days post 

BMDM (2X105 cells per mouse) intraperitoneal injection. (3 pooled experiments, N = 12 to 14). 

(H, I) Average percentage ± SEM of Gata6+ LPMs and average percentage ± SEM of Gata6+ 

pleural macrophages from adult Muc16-/- and littermate mice. (3-5 pooled experiments, N = 25 

to 31). (J) Average percentage ± SEM of Gata6+ LPMs from adult Muc16-/- and littermate mice 

7 days post zymosan (2×106 particles) intraperitoneal injection. (3 pooled experiments, N = 11 

to 12). (K) Average percentage ± SEM of Gata6+ CD45.1 LPMs from Msln-/- and littermate 

recipients 8 weeks after irradiation and reconstitution. (3 pooled experiments, N = 10). (L) 

Average percentage ± SEM of Gata6+ CD45.1 lung pleural macrophages and (M) average 

percentage ± SEM of Gata6+ CD45.1 lung pleural macrophages from K. (3 pooled experiments, 

N = 10) (N) Average percentage ± SEM of Gata6+ CD45.1 LPMs in congenically distinct 

recipients (CD45.2 Muc16-/- and littermate) 12 days post monocyte (2X105 cells per mouse) 
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intraperitoneal injection.  (O) Average percentage ± SEM of Gata6+ CD45.1 LPMs in 

congenically distinct recipients (CD45.2 Muc16-/- and littermate) 12 days post BMDM (2X105 

cells per mouse) intraperitoneal injection. (3 pooled experiments, N = 7 to 11). Statistical 

significance in A-O determined by a two-tailed unpaired U-test. **P < 0.01, ***P < 0.001, 

****P < 0.0001.  
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Chapter 2: Discussion 
Local environment determines the identity of tissue resident macrophages. Here we show that, in 

the pleural and peritoneal cavities, Msln and Muc16 derived from mesothelial cells modulates the 

expression of Gata6 in macrophage precursors in an extrinsic manner and has functional 

consequences in acute peritonitis.  

 

Our results highlight the potential for a potential interaction between Msln and Muc16. In cancer 

biology, Msln expression is elevated in several tumor types and is associated with increased tumor 

invasion and poor clinical outcome151. However, its role outside of cancer biology is less well-

defined, in part because mice lacking Msln were not found to display a phenotype in homeostasis 

88. As a membrane-anchored glycosylphosphatidyl inositol–linked 71-kDa membrane protein 

(Msln precursor), Msln is proteolitically cleaved to generate mature Msln (40 kDa) and MPF (30 

kDa) that is secreted from the cells147-150.  

 

Msln is known to bind the cell-surface protein Mucin 16 (Muc16) in an N-glycosylation dependent 

manner. Muc16 is a membrane spanning mucin that is expressed on ovarian, endometrial, tracheal, 

and ocular surface epithelial cells158-160. This mucin is initially expressed on the surface and then 

shed in the extracellular milieu following proteolytic cleavage153. Individually, Msln and Muc16 

are biomarkers for peritoneal and tumor metastases98,152,161. Despite their influence on 

tumorigenesis, we have a poor understanding of the role of Msln and Muc16 in shaping the 

microenvironment in the peritoneum and other mesothelium-containing tissues for myeloid cell 

differentiation. Given that Muc16-Msln is thought to be ligand-receptor combination, we 

examined the effect of Muc16 deficiency on mesothelial-associated TRM identity and found that 

mice with loss of Muc16 phenocopied Msln-/- mice.  
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The nature of the Msln/Muc16 interaction is still unclear. Previous studies have indicated their 

shedding from mesothelium84, while our data suggests that these may form a high molecular 

complex. Additionally, the receptor and signaling mechanism in LPMs that leads to the effect of 

Msln and Muc16 on Gata6 expression remains to be identified. Other than the interaction between 

Msln and Muc16, CD206 (Mannose receptor, Mrc1) has been reported to engage with Msln and 

Muc16162,163. One of the features of Gata6f/f, LysM-Cre mice is CD206 positivity of LPMs134, and 

in this study we found more CD206+ LPMs in Msln-/- and Muc16-/- animals (data not shown). 

Whether there is a direct interaction between CD206 and Msln/Muc16 remains to be studied. 

Another candidate Msln/Muc16 receptor is sialic acid binding Ig-like lectin E (Siglec-E). Siglec-

9, the human Siglex-E homologue, has be identified as the immune cell receptor for MUC16 in 

human NK cells and monocytes164-166. Siglec-E changes phosphorylation of Syk and p38 mitogen-

activated protein kinase in neutrophils and phosphorylation of Syk in macrophage-mediated 

inflammatory responses and diseases167. The exact receptor will need to be determined in future 

studies. 

 

Monocytes extravasate through mesothelium into peritoneum in a CCR2-dependent manner168 and 

become macrophages42,169. In homeostasis, most LPMs are derived from embryonic precursors 

seeded during fetal development42,154,170. Though few in number, Ly6C+ monocytes constitutively 

enter the peritoneal cavity in a CCR2-dependent manner and act as precursors of LPMs171. We 

have demonstrated that Msln/Muc16 interact with LPMs along their differentiation axis to promote 

TRM identity. However, the timing of this interaction along the developmental trajectory of 

macrophages and the organism remains unknown. Additionally, whether the cells interacting with 
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Msln/Muc16 are in the fluid phase or are adherent to the mesothelium is also unclear. We examined 

the capability of peritoneal fluid to induce Gata6 in monocytes and did not detect significant 

upregulation (data not shown). At the steady state in adult mice, while a majority are embryonically 

derived, a small proportion come from the periphery as monocytes154. In young mice, however, 

almost all LPMs are embryo-derived44,172 and do not experience a monocyte stage. We hypothesize 

that this potentially explains why we do not detect a difference in Gata6 expression in young mice 

and why the effect becomes more significant when original LPMs are replenished by peripheral 

monocytes in the settings of aging, irradiation, and inflammation-induced cell death. While we 

have identified the importance of Msln and Muc16, the role of other factors from the local 

peritoneal environment in defining the identity of TRM remains to be studied. 

 

Msln was first studied as a pro-tumorigenic protein and used as a tumor biomarker. However, the 

roles of Msln in other cell types were not well studied108. During homeostasis, expression of Msln 

is limited to cavities derived from the intraembryonic coelom which may explain the localized 

effect of knocking out Msln and Muc16 at steady state. In contrast to its effect on macrophages, 

the loss of Msln seems to have limited effects on mesothelium at the level of proliferation, cytokine 

secretion, and adhesion (data not shown). Prior to our study, peritoneal mesothelium was known 

to produce M-CSF and other growth factors to support TRM differentiation144. Beyond the role as 

an adhesion protein173,174, Msln affected macrophage adhesion, migration, and other macrophage 

biology and did not find any difference (data not shown). It was previously reported that Gata6 

controls the survival of LPM134,135. However, we did not observe any defect in proliferation and 

survival in LPMs from mice lacking Msln/Muc16, even though they shared several features with 

Gata6f/f, LysM-Cre mice. We observed fewer Gata6+ LPMs in mice lacking Msln/Muc16, but the 
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lower magnitude of the effect may explain why Msln-/- and Muc16-/- mice do not recapitulate every 

phenotype in Gata6f/f, LysM-Cre mice, including cell number and certain surface markers40,134,135. 

Given that the difference in Gata6+ LPM was greater in mice challenged with different model 

injuries, we hypothesis that Msln and Muc16 may play an even more important role outside of 

homeostasis that is yet unrecognized.  

 

In the zymosan-induced peritonitis model, we found more neutrophils infiltrated into the peritoneal 

cavity in the acute phase46 and less mature macrophages were present in the resolution phase in 

both Msln-/- and Muc16-/- animals. However, it is still not clear whether this is due to mesothelial 

or myeloid cells, as Msln blockade in surgery-induced peritoneal adhesions109 eliminated adhesion. 

Regardless, the interaction between mesothelial cells and LPMs175 and the role of peritoneal 

macrophages in peritoneal dialysis patients176 suggests that Msln could be a potential therapeutic 

target. Future studies of Msln should clarify its biochemical interactions with Muc16 and potential 

receptors, illuminate its role in modulating Gata6 and tissue-specific transcription factors, and 

determine its importance outside of homeostasis.  
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CHAPTER THREE 

 

Msln orchestrates mucosal repair and tumorigenesis in a macrophage-dependent manner  
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Chapter 3: Abstract 
Msln is expressed in many different carcinomas, however little is known about the function and 

influence of Msln in immune cells residing in the tumors. We found that Msln was one of the most 

upregulated genes in epithelial cells after colonic biopsy injury. To determine whether Msln had a 

function in this model, we injured WT and Msln-deficient mice. We found that Msln-deficient 

mice had more proinflammatory cells in the wound bed. We next hypothesized that Msln had a 

similar role in modulating immune cells in APCMin/+ mice to allow for larger polyp growth. We 

found that Msln-deficient APCMin/+ mice had on average smaller polyps and the maximum 

diameter of polyp in each mouse was smaller than in WT APCMin/+ mice. These results suggest that 

epithelial-derived Msln may be functioning to promote a pro-regenerative, pro-tumor 

microenvironment by immunosuppression.  
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Chapter 3: Introduction 
Msln is expressed in many cancers including intestinal cancers in humans177, though its role in 

promoting intestinal cancer is unknown. One model of intestinal cancer is the APCmin/+ mouse 

model of intestinal polyposis178. In this mouse model, one allele of adenomatous polyposis coli 

(APC) is mutated and polyps start to form throughout the small and large intestine over time by 

loss of heterozygosity. The majority of the polyps form throughout the small intestine and several 

polyps typically form in the colon. Loss of APC leads to stabilization of β-catenin and activation 

of the Wnt signaling pathway.  

 We were interested in the role of Msln because we found that it was one of the most 

upregulated genes in WAE cells compared to uninjured epithelial cells after biopsy injury. Due to 

its purported role in adhesion, proliferation, and cancer, we hypothesized that Msln would be 

important for proper healing after intestinal epithelial injury. We made Msln conditioned knockout 

mice and injured these mice to look for intestinal healing defects. Surprisingly, the major defects 

we found were in the mesenchyme within the wound bed once the epithelium-derived Msln was 

depleted. There were more Ly6G+ neutrophils within the wound beds compared to WT mice. 

These results suggested that Msln was important for controlling inflammation after intestinal 

mucosal injury. We also crossed Msln-/- mice with APCmin/+ mice to examine the role of Msln in 

intestinal cancer formation and growth. We found that Msln-/- mice had smaller polyps in the small 

intestine compared to Msln+/+ mice in this model. These results suggest that Msln may be 

important for recruiting and/or maintaining the tumor microenvironment in mesothelin-expressing 

carcinomas.  
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Chapter 3: Methods and Materials 

Mice 

Animal experiments were performed in accordance with approved protocols from the Washington 

University School of Medicine Animal Studies Committee. APCmin/+ mice were obtained from 

Jackson labs and were bred to generate APCmin/+ mice that were WT, heterozygous, or knockout 

for Msln. 

 

Polyinosinic-polycytidylic acid [poly(I:C)] injury  

Blunted villi were induced by intraperitoneal injection of Poly(I:C) (Sigma) 0.5mg/25g mouse.  

 

Colonic biopsy 

We used a high-resolution miniaturized colonoscope system to visualize the lumen of the colon 

and discretely injure the mucosal layer in 10-16 week old anesthetized mice. After inflating the 

colon with PBS, we inserted 3 French flexible biopsy forceps into the sheath adjacent to the camera. 

We removed 3-5 full-thickness areas of the entire mucosa and submucosa that were distributed 

along the dorsal side of the colon. All mice were injured with the same technique. For this study, 

we evaluated wounds that averaged ~1 mm2, which is equivalent to removal of ~300 crypts.  

 

Colonic tissue preparation   

For fixed-frozen sections, wounded mice were sacrificed and perfused transcardially with 4% 

paraformaldehyde (PFA).  After dissection, the colon was inflated with 4% PFA, opened 

longitudinally, and pinned flat in 4% PFA overnight. The following day the fixed colons were 
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incubated in 20% sucrose-PBS for 6 hours. For frozen sections, colons were removed, washed in 

PBS, and placed in OCT compound (Tissue-Tek).  

 

For both procedures, each wound bed, including 1-2 mm of adjacent uninjured area, was removed 

with a razor blade and frozen in OCT compound. For each individual wound, the material was 

oriented so that serial 5-µm-thick sections were obtained in a proximal to distal manner with 

respect to the orientation of the in vivo colon. Each wound bed was completely sectioned. To 

standardize our analysis, we evaluated the 5-10 sections in the central (largest) portion of a given 

wound bed as determined by light microscopic views of unstained sections. Serially numbered, 

unstained sections were stored at -80°C until use. One of these sections was stained with 

hematoxylin/eosin to confirm orientation. 

 

In situ hybridization 

Tissues were fixed in 4% (v/v) paraformaldehyde at 4⁰C for 18 to 24 hours, dehydrated with 20% 

sucrose in PBS, and embedded in OCT. Tissue sections cut at a thickness of 5 µm were processed 

for RNA in situ detection using the RNAscope 2.5 HD Assay–RED according to the 

manufacturer’s instructions (Advanced Cell Diagnostics). RNAscope probes used were Mm-

MSLN (Cat No. 443241). 

 

Immunofluorescence 

Fresh-frozen sections of wounds were used for immunofluorescence. Sections were fixed in 4% 

PFA, rinsed in PBS, blocked in 3% BSA/0.1% Triton-X for 20 minutes and incubated with primary 

antibody for one hour. Slides were then rinsed with PBS, incubated with secondary antibody 
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followed by bis-benzimide staining and mounting with Mowiol 4-88 (Calbiochem). Sections were 

viewed with a Zeiss Axiovert 200 with Axiocam MRM camera.  Antibodies used were rat 

monoclonal anti-CD31 (MEC 13.3; BD Biosciences), rat monoclonal anti-KI67 (TEC-3; DAKO), 

monoclonal rat anti-F4/80 (CI:A3-1;Caltag Laboratories), and rabbit polyclonal anti-β-catenin 

(Sigma). All primary antibodies were used at 1:100 dilution. Appropriate donkey anti-rat or anti-

rabbit secondary antibodies conjugated to Alexa Fluor 488 or Alexa Fluor 594 (Invitrogen) were 

used at 1:500 dilution to visualize staining.  

 

Quantification of polyps from APCmin/+ mice.  

Mice were sacrificed at four months of age, the small intestine was removed and flushed with PBS, 

and the small intestine was inflated with 4% PFA for 30 seconds. The small intestine was then 

opened longitudinally and pinned open in 4% PFA and fixed overnight at 4°C. The intestine was 

then examined under a stereoscope and each polyp was photographed (Olympus, Tokyo, Japan). 

The size and number of each polyp was recorded for each mouse. 

 
Chapter 3: Results 

We started our investigation on Msln first because it was one of the most highly upregulated genes 

in wound-associated epithelial cells compared to uninjured epithelial cells upon biopsy injury. To 

confirm that Msln was expressed specifically in epithelial cells, we performed in situ hybridization 

on WT wounds four days after injury (Figure 3.1.A). We found that Msln was only expressed in 

WAE cells and was not expressed in any mesenchymal cells. We have also utilized a well-

characterized poly(I:C)-mediated injury model, known to selectively ablate the small intestinal 

villus epithelium with sparing of crypts and showed that Msln was expressed in the WAE cells 
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(Figure 3.1.B). As a positive control, Msln expression could be observed in mesothelial cells 

lining the outer layer of the intestine.  

 To study the role of Msln in wound-associated epithelial cells, we obtained and injured 

VilCre X Mslnf/f and Mslnf/f mice. We found that injured VilCre X Mslnf/f mice had more Ly6G+ 

neutrophils 4 days after biopsy injury (Figure 3.2). However, the wound healed comparably 

between VilCre X Mslnf/f and Mslnf/f mice by day 12. Taken together, these results suggest that 

Msln has an anti-inflammatory role on promoting wound repair.  

 We next wanted to determine the role of Msln in promoting intestinal polyp formation in 

the APCMin/+ model. We crossed APCMin/+ mice with Msln+/- mice to generate APCMin/+ mice that 

were wildtype (WT), heterozygous (Het), or knockout (KO) for the Msln gene. We sacrificed mice 

at four months of age and counted and measured the size of all polyps in the small intestine. We 

found that Msln-/- mice had fewer large polyps (>2 mm diameter) and the largest polyp (maximum 

diameter) was smaller compared to WT mice (Figure 3.3). These results suggest that Msln is 

required for maximal polyp growth in the APCmin/+ model of intestinal polyposis. 
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Figure 3.1. Msln expression in the wound  

(A) Representative RNA scope images for Msln in fresh-frozen intestine section. Black 

arrowheads indicate Msln-positive wound-associated epithelial cells Poly(I:C) 24 hr post ip. 

(B) Representative RNA scope images for Msln in fresh-frozen intestine section. Black 

arrowheads indicate Msln-positive wound-associated epithelial cells 4 day post biopsy. 



65 
 

 

Figure 3.2. More Ly6G+ neutrophils accumulate in the wound bed in Msln-deficient mice 

Sections of colons from (A) VilCre X Mslnf/f and (B) Mslnf/f mice 3 days post-biopsy. The 

sections were stained with anti-Ly6G (grey) to detect neutrophils, anti-α-SMA antisera (red) to 

detect muscularis propria, anti-β-catenin (green) to detect the epithelium, and bis-benzamide to 

label nuclei (blue). 
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Fig 3 Msln expression in the WAE-like cell and the impact on the number of polyps  

(A) Representative RNA scope images for Msln in fresh-frozen intestine section. Black 

arrowheads indicate Msln-positive WAE-like cells (B) Graph of the average number of small 

intestinal polyps less than 1 mm, 1-2 mm, and greater than 2 mm in ApcMin/+ mice sacrificed at 4 

months of age. n=13 WT, n=20 Het, n=17 KO mice. ANOVAs were run between WT, Het, and 

KO for each category of size of polyps and only polyps greater than 2 mm had a significant 

difference. ****P<0.0001 by Tukey's post-test. 
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Chapter 3: Discussion  

 We showed the impact of Msln on tissue resident macrophage differentiation in the 

peritoneum. In other microenvironments, e.g. epithelium, Msln may also modulate the 

differentiation of infiltrated monocytes. Msln is known to be expressed by intestinal epithelium in 

a YAP dependent manner during Apc mutant aberrant crypt foci179 and by wound associated 

epithelial-like cells in our in vitro primary epithelial cell culture system180. We hypothesized that 

understanding the role of Msln in colonic wound repair would also shed light on the role of Msln 

during cancer. Our data would suggest that this may interact with tissue-resident or infiltrating 

myeloid cells and modulate their function. Tumors have been described as wounds that do not heal 

because many of the processes required for wound repair are also required for tumor growth181. In 

APCMin/+ mice, there was no significant difference in the number of small or medium sized polyps, 

suggesting that Msln is not required for the initiation of polyps but instead is important for their 

growth above 2 mm. Although speculative, our work would indicate that Msln may function in 

cancer to adjust the tumor microenvironment to produce a M2-skewed macrophage phenotype 

which is beneficial to the tumorigenesis.  

 

 Msln was originally discovered as a cytokine that could act similarly to IL-6 in a 

megakaryocyte colony-forming assay149, though the majority of the recent research on this gene 

has been investigating its role as a membrane protein expressed on cancer cells182. It is also 

utilized as a target for antibody-based cancer immunotherapies. Our results suggest that Msln 

may be acting as a cytokine in our wound healing and tumorigenesis model because the major 

defects were seen in cell types that do not express Msln. Future studies should determine which 

portions of Msln were required for granulation tissue formation (MPF, mature Msln, or both); 
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which cell type(s) are influenced by the different microenvironments. Additionally, direct 

blockade of Msln using neutralizing antibodies may be an attractive therapeutic approach for 

Msln-expressing cancers, since Msln is not thought to have any role under homeostatic 

conditions88.  
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CHAPTER FOUR 

Summary and Future Directions  
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Summary 
 

As a heterogeneous population of immune cells, TRMs fulfill tissue-specific and niche-specific 

functions. These cover from well-regulated homeostatic functions to central roles in tissue immune 

surveillance, response to infection and the resolution of inflammation. Recent studies highlight 

marked differences in the origins of tissue macrophages that arise from hematopoietic versus self-

renewing embryo-derived populations. Understanding the mechanisms that dictate TRM 

heterogeneity should explain why conventional models of macrophage activation, i.e. BMDM, do 

not interconvert the extent of heterogeneity seen in vivo. 

 

In addition to delineating transcriptional modulation within tissue resident macrophages, we 

provide new insights about the role of niche factors in shaping the identity of these unique cells. 

Dietary derived retinoic acid induces LPM-specific TF Gata6 expression. We hypothesized that 

microenvironment also imprints the TRMs because of proximity. We accessed the effect of soluble 

proteins from mesothelium-lining serous cavities on Gata6 regulation. We next did informatics 

analysis to identify potent candidates. We also applied both BM chimera and adoptive transfer 

approaches to validate if the mechanism of Msln/Muc16-mediated Gata6 regulation acts 

extrinsically. We found that mesothelial derived Msln and Muc16 induce Gata6 expression at both 

steady state and inflammation, which further influence the immune responses to sterile 

inflammation and pathogen infection. Targeting both ligands may provide a new therapeutic 

approach for macrophage-related diseases. 

 

On the other side, there are many macrophage-related intestinal diseases that are characterized by 

inflammation and loss of crypts, though the mechanisms by which the mucosa regenerates after 
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injury are unclear. We utilized a colonic biopsy injury system to create focal wounds in the distal 

colon of mice to study the mechanisms of mucosal repair. We hypothesized that understanding 

mucosal repair would provide insight into the mechanisms of intestinal diseases that involve loss 

of crypts and/or incomplete healing such as IBD. 

 

We evaluated epithelial-derived genes stimulated after injury and surprisely found that Msln was 

upregulated during inflammation. We found that Msln-deficient mice had more proinflammatory 

cells in the wound bed. Also, Msln-deficient APCMin/+ mice had smaller polyps in the small 

intestine than APCMin/+ mice. It suggests that Msln is an epithelial-derived factor that is required 

to stimulate tissue repair after epithelial injury or carcinoma.  

 

 The findings described in this thesis suggest that tissue-specific factors are critical for TRM 

differentiation and colon regeneration after mucosal damage. These results may eventually lead to 

therapies that establishing macrophages for repair (locally-injected recombinant Msln) or inhibit 

pro-tumorigenesis to limit tumor growth (anti-Msln therapy).  
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Future directions 

Msln and Mucin16 as targets for tissue immunity 

 

We found that mesothelial cell-derived Msln and Muc16 imprint Gata6-positive TRMs and WAE 

cell-derived Msln modulates the microenvironment in the wound bed. But the signaling pathways 

for both phenomena are still unknown. Given that Gata6 defect results in abnormal immune 

responses during inflammation, we presumed that both proteins immune-modulate the TRMs to 

resolve the inflammation properly. We are continuing to generate recombinant Msln and MPF to 

rescue the defect we found in mice lack of Msln and Muc16.  

 

The other direction is to find the receptor for both Msln and Muc16. The receptor and signaling 

mechanism in LPMs that leads to the effect of Msln and Muc16 on Gata6 expression remains to 

be identified.  By literature research, we found two candidates, Mrc1 and Siglece, which interact 

with either Msln or Muc16. We found that both WT and Mrc1-/- CD45.2 BM-derived cells 

colonized the peritoneum and pleura of WT CD45.1 recipient mice to produce comparable number 

of Gata6+ tissue resident macrophages in the peritoneum and lung pleura. After adoptively 

transferring either CD45.2 WT or Mrc1-/- monocytes and BMDMs, donor-derived LPMs has 

similar F4/80 and Gata6 expression in the WT recipient mice. To examine the other target, we are 

planning to get Siglece reagents.  

 

The other part is to figure out which portions of Msln have the bioactivity in modulating Gata6 

expression in tissue resident macrophages. We are currently generating MPF, mature Msln, or full-

length non-cleavable forms of Msln so that we can purify the proteins and test their ability to 
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directly stimulate pre-macrophages such as monocytes and BMDMs. These experiments should 

provide some clues as to which portions of Msln are responsible for LPM differentiation.  

 

We hypothesize that there is a common mechanism for the accumulated pro-inflammatory cells 

seen in colonic wounds and the smaller polyps seen in APCMin/+ mice. Msln expression is 

associated with a worse prognosis in cancer patients and Msln is commonly thought to function as 

a cell-intrinsic tumor-promoter182. Although Msln expression appears to be important for cell-

intrinsic effects in cancer, our wounding experiments suggest that Msln may have an effect on a 

broader range of cell types than previously appreciated. Our hypothesis is that Msln has anti-

inflammatory capability and its expression in carcinomas is important for recruitment and/or 

establishment of the tumor microenvironment. Macrophages are one of the major cell types that 

are recruited to both colonic wounds and tumors. Tumor associated macrophages are required for 

tumor growth and may explain why polyps were smaller in Msln-/-;APCMin/+ mice compared to 

WT;APCMin/+ mice. Future studies should investigate whether there are reduced macrophages in 

Msln-/- polyps, and whether blocking Msln may be an effective approach to treating Msln-positive 

tumors. 
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