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ABSTRACT OF THE DISSERTATION
Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior
Using Mouse Models and Human Genetics
by
Nathan Kopp
Doctor of Philosophy in Biology and Biomedical Sciences
Human and Statistical Genetics
Washington University in St. Louis, 2019

Professor Joseph D. Dougherty, Ph.D. Chair

Williams syndrome is a neurodevelopmental model caused by the deletion of 26-28 genes on
chr7q11.23. The loss of these genes affects multiple organ systems resulting in severe
cardiovascular disease, craniofacial dysmorphology, intellectual impairment, a specific Williams
syndrome cognitive profile made up of deficits in visual-spatial processing with preserved
language skills, and a characteristic hypersocial personality. The reciprocal duplication occurs at
a lower frequency and manifests with diametric phenotypes to the deletion. This suggests that
this locus harbors dosage sensitive genes that play a role in neurodevelopment. Large efforts
have been taken to identify which genes are responsible for causing the different aspects of the
disorder. Only the cardiovascular phenotype has been linked to the hemizgosity of the ELN gene.
In order to incorporate the complexity of genetic contributions to complex traits, we synthesize
genetic and behavioral analyses in both humans and mouse models. We performed whole exome
sequencing on 85 individuals with Williams syndrome to test the hypothesis that genetic

variation on the remaining chr7q11.23 allele contributes to variation in the social phenotype. We

xii



show that the social phenotype consists of deficits in several aspects of social behavior, but
social motivation is preserved in Williams syndrome. Whole exome sequencing revealed that
there is little common variation contribution to the variability of the social phenotype but did
suggest involvement of SNPs in the BAZIB and GTF2IRD1 genes. Using mouse models, we
generated three new mouse lines to test the hypothesis that two genes in the syntenic region,
Gtf2i and Gtf2irdl1, share overlapping DNA targets and both contribute to overlapping behavioral
phenotypes suggesting an oligogenic contribution of these genes to phenotypes relevant to WS.
Finally, we show that loss of function mutations in both G#f2i and G#f2ird] are not sufficient to
reproduce the full phenotype that is produced by deleting the entire syntenic Williams syndrome
critical region in mice. Taken together these data suggest an oligogenic pattern of contribution to

the phenotypes seen in WS.
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Chapter 1: Introduction

The aim of human genetics is to identify the genes that contribute to human biology. This
approach will allow us to study the underlying mechanisms that manifest as interesting human
phenotypes, such as our complex central nervous system, which gives rise to many diverse
behaviors. Geneticists have developed and employed many approaches to elucidate genes that
are important for specific human traits. These include linkage analysis, genome-wide association,
whole-exome sequencing studies, and whole-genome sequencing studies. These tools have
driven the progress of genotype-phenotype correlations and resulted in many important

discoveries.

Along with sophisticated approaches, human genetics has been informed by identifying
genes that cause human diseases. The underlying genetic causes of the disorder highlights the
functional pathways in which the causal gene plays an important role. From these natural
experiments the genetic search space is narrowed from the 3 billion base pairs that make up the
human genome to a specific gene that can then be studied at different levels of genomic and
biological organization. Some disorders are not caused by the disruption of one gene, but by a
change in the dosage of many contiguous genes. These copy number variation disorders point to
a region in the genome that affect multiple aspects of human development, such as
neurodevelopment, cardiovascular development, and craniofacial development. However, copy
number disorders offer a unique challenge, because while they emphasize the importance of a

specific genomic region, there are still many genes and many phenotypes to disentangle. The



question then becomes, which genes in the region are responsible for causing the specific

phenotypes seen in the disorder.

Williams-Beuren syndrome (WS) is one such copy number variation disorder. It is
caused by the deletion of chromosome 7q11.23, referred to as the Williams syndrome critical
region (WSCR), and results in a constellation of phenotypes that include cardiovascular disease,
craniofacial dysmorphology, a specific cognitive profile, and a characteristic hypersocial
personality (1, 2). There are 26-28 genes that are commonly deleted in WS. Large efforts have
been put forth to connect specific genes in the region to specific phenotypes in the syndrome.
The only substantiated monogenic contribution of a causal gene in the WSCR is to the
cardiovascular phenotype driven by the elastin gene (ELN) (3), leaving much more work to be
done to understand how the genes in this region affect complex phenotypes such as cognition

and social behavior.

The research presented in this thesis uses both human genetic techniques as well as
mouse models to dissect the effect of genes in the WSCR on different aspects of behavior. I
analyzed the whole-exome sequences of 85 individuals with WS to test if variation on the
remaining chr7ql1.23 allele, as well as exome-wide variation, contributes to the social
phenotype, providing the largest genetic analysis of individuals with WS. I have also leveraged
the experimental advantages of the mouse model organism to ask how two genes in the WSCR,
Gtf2i and Gtf2irdl, interact in the developing mouse brain. I go on to show that in the mouse,
these genes are not sufficient to produce the behavioral and transcriptional phenotypes of the full
deletion. I have tested several longstanding hypotheses in the field of Williams syndrome
genetics through my experiments and provide evidence that the genetic risk for the phenotypes

observed in WS are not solely driven by these two transcription factors.
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1.1 History and description of Williams syndrome
Williams-Beuren syndrome (OMIM #194050) was first recognized as a syndrome by two

physicians in the early 1960’s. First, in 1961 Williams ef al. described four cases of children that
were being treated for supravalvular aortic stenosis (SVAS). Williams observed that the children
were “mentally deficient” and had similar facial features. He thought the similarities could be a
part of a previously unrecognized syndrome (4). In 1962 Bueren ef al. described three more
patients that had SVAS, intellectual disability, and craniofacial features that were remarkably
similar to the patients described by Williams et al. Beuren mentioned that all the children had a
friendly nature and “loved everyone” (5). This observation is the first description of the
gregarious personality that is now recognized as a hallmark of WS.

Since the association between the cardiovascular disease, intellectual disability, and
craniofacial features made by Williams and Beuren, the genetic etiology of WS has been well-
defined. The ELN gene on chromosome seven was discovered to be the cause of familial SVAS ,
in a linkage analysis of one kindred (6). Subsequently, it was shown that individuals with WS
were hemizygous for the ELN gene and that the hemizygosity extended beyond the ELN locus,
suggesting that WS is caused by a contiguous deletion on chromosome seven (3). These findings
lead to the use of ELN FISH probes as the first clinical genetic test for WS (7). Using artificial
chromosomes the 1.5Mbp region on chromosome seven that is deleted in WS has been
delineated (8—10). The region contains 26 genes that are commonly deleted and two more genes
that are deleted in the longer 1.8Mbp version of the deletion. The WSCR was found to be
demarcated by three regions of low copy repeats: the centromeric, medial, and distal regions (9,
11). Within each region there are three blocks that consist of repeated genes. Block A contains

the three pseudogenes of the STAG3 gene, PMS2L, and GATS. The medial block B contains the



functional genes GTF2I, NCF1, and GTF2IRDZ2, where the centromeric and telomeric block B
contains the corresponding pseudogenes. Block C contains POM121, NSUNS, and TRIMS50 (11).
The low copy repeat blocks themselves are demarcated by Alu repeats. These low copy repeats
facilitate non homologous allelic recombination (NHAR), which leads to the recurrent deletion
and duplication of the region (12). The most common 1.5Mbp deletion, which occurs in about
95% of cases, is caused by misalignement of the B centromeric and B medial blocks, which have
99.6% sequence identity. The less common larger 1.8Mbp deletion, with a prevalence of 3-5% of
cases, occurs by the misalignment of the A centeromeric and A medial blocks, which have
98.2% sequence identity (13). This well-defined and common genetic cause of most cases of WS
makes studying this disorder an excellent opportunity to make genotype-phenotype correlations.

Along with the well-characterized genetic cause of WS, the phenotypic spectrum of the
constellation of symptoms in WS has been thoroughly described and reviewed by many
researchers (1, 2, 13—16). The cardiovascular disease in WS manifests as SVAS as well as other
focal artery stenoses and affects all elastic vessels. Other issues also relate to connective tissues
such as lax skin and join hypermobility have been attributed to ELN haploinsufficiency. The
facial dysmorphology consists of periorbital fullness, long philtrum, full lips, stellate irises, low
nasal bridge, micrognathia, microcephaly, and dental problems. The deletion also affects the
endocrine system and results in precocious puberty, subclinical hypothyroidism, and an
increased prevalence of diabetes milletus. Neurological symptoms include poor balance and
coordination, hypotonia, and hyperacusis.

Of particular interest to this thesis are the cognitive and behavioral phenotypes of WS.
The deletion of the WSCR has a specific effect on cognition and this gestalt is termed the

Williams syndrome cognitive profile (WSCP). Individuals with WS have a wide range of



intellectual ability as measured by different tests for intelligence quotient (IQ). IQ scores span
from severe intellectual disability (ID) to average scores of IQ. Despite overall lower levels of 1Q
the WSCP consists of relative strengths in auditory rote memory and verbal skills coupled with
impairment in visual spatial construction. The definition of the WSCP was standardized by
Mervis et al. (17). Along with a specific cognitive profile, WS is associated with a characteristic
hypersocial personality (14). The social aspect of WS consists of increased attention to faces.
Eye tracking studies have shown that individuals with WS fixate on eyes for longer periods of
time compared to typically developing children (18). In observational studies, children with WS
tend to focus on the experimenter rather than toys (14). Individuals with WS are more likely to
approach strangers and have overall increased global sociability as measured by the Salk
Institute Sociability Questionnaire (19). While there are prosocial aspects to the hypersocial
phenotype of WS, it also consists of a maladaptive component. Individuals with WS have
difficulties in social cognition and responding appropriately in social situations (20). Beyond
differences in sociality, individuals with WS have other psychiatric comorbidities, that include
anxiety, specifically non social anxiety, phobias, and attention deficit/hyperactivity disorder
(ADHD) (21, 22). Thus, the constellation of symptoms that make up WS gives geneticists a
unique window into the genetic underpinnings of many different aspects of human cognition and
behavior.

The presence of the low copy repeats that are responsible for the recurrent deletion of the
WSCR should also predispose the region to duplications. The first case of an individual with the
duplication was described in 2005 (23). The duplication of the region results in dup7q11.23
syndrome (OMIM #609757). The symptoms of 7q11.23 have been described by Mervis and

Morris (24, 25). The phenotypes are generally more mild than in the deletion of the region. Mild



craniofacial dysmorphology has been reported but it is not as consistent as in WS. There are
some cases that have cardiovascular anomalies that present as dilated blood vessels. However,
the most consistent phenotype of the duplication is language delay. The duplication has been
associated with autism spectrum disorders (ASD) (26), but in a rigorous study of ASD
symptomology in 7q11.23 dup syndrome and WS, it was found there is a similar prevalence of
ASD diagnosis in both disorders (27, 28). However, in contrast to the social fearlessness in WS,
it was reported that there is a higher proportion of children with the duplication that have
separation anxiety (29). The observation of some diametric phenotypes in 7q11.23dup syndrome
compared to WS corroborates the idea that genes in this region are dosage sensitive and affect
aspects of human behavior. One goal of the work I have done was to use human genetics to

provide evidence for the role of specific genes in the WSCR to the behavioral phenotypes.

1.2 Genotype-phenotype correlations using human genetics
The knowledge that the WSCR causes WS and dup7q11.23 has launched many efforts to

try and dissect the region to identify which genes are responsible for specific symptoms in each
disorder. One avenue of research has been to make these genotype-phenotype correlations
directly in humans. Human research in WS has employed three strategies: 1) compare
individuals with atypically small deletions of the WSCR to individuals with the typical deletion
to ask what the differences are when some genes are spared, 2) use iPSC lines derived from
patients with WS, dup7q11.23, and atypical deletions to test molecular and cellular effects of the
region, and 3) using classical human genetic strategies to identify variation in the general
population in this region that is associated with phenotypes of interest. While each strategy has
unique benefits and limitations, each has provided insight into the genetic contributions of the

WSCR to different phenotypes seen in WS.



1.2.1 Atypical deletions
WS is caused by the deletion of 1.5Mbp, which covers 26 genes, in 95% of cases. In 3-

5% of cases of WS, a 1.8Mbp deletion removes one copy of two more genes, NCF[ and
GTF2IRD2. In addition, there are a very small percentage of cases that are caused by atypically
small deletions that maintain the normal copy number of a subset of genes. Researchers have
explicated the different phenotypes of individuals with atypical deletions to understand the

contribution of the spared genes to the phenotypes observed in typical cases of WS.

While most cases of WS are caused by de novo deletions, there are instances of smaller
inherited deletions that allow the study of atypical deletions across several family members. Two
families were ascertained based on the presence of SVAS and only a few clinical features of WS.
These families were tested to show that they had smaller deletions that encompassed the ELN
gene and the LIMK gene. The phenotypes of the family members that had the deletion included
cardiovascular disease, usually SVAS, a few of the craniofacial features of WS but not all of
them, and deficits in their visual spatial cognition with auditory rote memory similar to the
unaffected family members, consistent with the WSCP (30). This, along with expression data
showing that LIMK1 is present in the brain, led the authors to conclude that the LIMK gene is
important for the manifestation of the visual spatial impairment (30). Another study analyzed the
two aforementioned families and three more kindred with inherited small deletions. The three
new deletions all included ELN and LIMK, and either extended centromerically or
telomerically. All of the family members had two copies of the GTF2I gene. The affected
members in each kindred had some craniofacial features, and fit the WSCP with poor visual
spatial cognition. All affected family members had similar overall IQ that was in the normal

range. These data gave further support that the LIMK1 gene is sufficient to cause the visual



spatial deficit, and since none of the deletions included the GTF2I gene, this gene was
considered important for contributing to intellectual disability (31). In contrast to the above
families that support the hypothesis that LIMK]1 is sufficient to cause the visual spatial
phenotype, another study that described four new patients (including two brothers with the same
inherited deletion) with small deletions that cover LIMK I showed that they had no visual spatial
deficits (32). None of the individuals described in the study had the characteristic facial features
or intellectual disability. These conflicting results highlight the complexity of using humans with
atypical deletions to make conclusive genotype-phenotype correlations. The conflicting results
could be due to confounds from incomplete penetrance of these genes, environmental factors,

and contributions from other genetic loci in the genome.

Other atypical deletions in patients have led to the hypothesis that most of the genetic risk
of the region is harbored in the telomeric end of the deletion. This is supported by the lack of any
phenotypes besides SVAS in on of the patients described above that had the typical centromeric
breakpoint that extended to LIMK1 (32, 33), and three patients described by Botta et al. (34) and
Heller et al. (35) that had the typical telomeric break point that extended through ELN but spared
STX1A, who presented with the full phenotypic spectrum of WS. This pattern is also mentioned
by Hirota et al. (36), who detailed the lack of the WSCP and most craniofacial features in three
cases with typical centromeric breakpoints but telomeric breakpoints that extend through ELN
but spare GTF2I in all cases. These findings, as well as others that are reported (2, 37—40) have
lead the field to focus on two paralogous transcription factors in the telomeric end of the

deletion, GTF2IRD1 and GTF2I as major contributors to the WS profile.

Two case studies provide specific support for the role of GTF2IRD1 in craniofacial

development and GTF2I in the intellectual disability and social phenotypes. Tassabehji et al.
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(39) analyzed the facial features of a patient with a typical centromeric breakpoint and telomeric
breakpoint that falls within GTF2IRD1 deleting its transcription start site, leaving GTF2/ intact.
The patient did not have the hypersocial phenotype, yet her language development was delayed,
and she had visual spatial deficits, however, not to the same extent that is normally seen in
typical WS. Her facial features were intermediate of what is typically seen in WS. Dai et al. (38)
described another patient with the typical centromeric break point that extended through
GTF2IRDI and spared only GTF2I. This patient had all the typical craniofacial features of WS
and performed higher on verbal tasks but still had difficulty with some spatial tasks, but not as
large of a deficit as seen in typical WS. Finally, the patient did not show the hypersocial

phenotype, which led the authors to conclude that GTF21 plays an important role in this domain.

Larger deletions that delete the NCFI and GTF2IRD?2 as well as the typical genes in the
WSCR, can provide insight into the contribution of these two genes. In general individuals with
larger deletions tend to have more cognitive difficulties (37, 41). Comparing the larger deletion
groups with a typical deletion group showed similar overall cognitive functioning, but specific
areas of further deficit in the larger deletion group. These areas pertained to cognitive flexibility
and spatial perception (41). Individuals with larger deletions also had more social cognition
problems and obsessive behaviors than the typical deletion (42). The GTF2IRD?2 gene has been
suggested to cause the slightly more severe phenotype because of its similarity to the other
member of the GTF2I family and the evidence that it is expressed in the brain. The NCFIgene
has been shown to modify the cardiovascular phenotype, and deletion of this gene is protective
against hypertension in WS (43). These studies show that the larger deletion further exacerbates
the cognitive phenotypes of the typical deletion and modifies the cardiovascular phenotype,

suggesting that multiple genes contribute to multiple phenotypic domains in WS.
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Studying atypical deletions in patients with WS has provided insight into the contribution
of loci within the region to phenotypes in specific cases. This study design has several inherent
limitations that should caution the field from making too strong of conclusions. First, the atypical
deletions are rare events and each patient represents a unique deletion, except in the case of
inherited deletions. This makes it impossible to generalize the conclusions from one case to the
others and limits the potential to perform and make statistical inferences. Second, there is an
ascertainment bias towards individuals with ELN deletions, which means the atypical deletions
rarely affect just one of the genes in the region, making it difficult to test if one gene is sufficient
to cause a specific phenotype. Third, these studies ignore the consequences of environmental and
background genetic variation. It would be beneficial to be able to compare typical and atypical
deletions to their parent’s data to get an idea of the effect size of the deletion in the context of
other inherited genetic variation. Finally, each of the cases is described by different clinicians
with different and biased expertise for specific phenotypes. This makes it difficult to directly
compare phenotypes across studies especially when some of the phenotypes weren’t
investigated. Overall, the study of atypical human deletions consistently shows that several genes
can contribute in some degree to many phenotypes, such as craniofacial features, the WSCP, and
overall cognitive ability. The telomeric end of the deletion seems to harbor the largest risk for
most of the phenotypes observed in WS (2, 34, 36, 38).

1.2.2 Human induced pluripotent stem cell (iPSCs) studies

Patients with atypical deletions of WS allows for the study of the effects of specific genes
or sets of genes on observable clinical phenotypes, but does not permit the study of underlying
cellular or molecular changes. The advent of human derived induced pluripotent stem cells

(iPSCs) as a model for human disease circumvents the need to obtain specific tissues from a
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human patient — particularly a challenge for the brain — and let’s researchers query cellular
morphology and function, and look at the disruption of different molecular pathways. The
Williams syndrome field has adopted these approaches to study the effects of the deletion and
duplication of the region at a cellular level in different affected tissues (44—49). This strategy has
highlighted the roles of GTF2I (44) as well as other genes, such as BAZIB (49) and FZD9 (46).
Two early iPSC studies looked at the effect of the typical deletion on cardiovascular (47)
and neuronal phenotypes, establishing this technique as a model for the study of WS (48).
Kinnear et al. used iPSC to test the cardiovascular phenotype of cells with the WSCR. They
showed that when the cells were differentiated into vascular smooth muscle cells, the WS cell
lines were more immature based on lower expression of markers in mature smooth muscle cells.
They went on to show that rapamycin can rescue this immaturity phenotype (47). Khattak et al.
used the same patient’s cells to investigate the functioning of iPSC derived neurons with the WS
deletion. The main electrophysiological deficit was in the repolarization of the cells due to lower
expression of potassium channels. This study also profiled the transcriptomes of the WS derived
neurons and wild type (WT) derived neurons and found that synaptic genes were among the most
differentially expressed (48). Since these studies used stem cells from the same patient that was
selected for severe cardiovascular disease, they don’t represent independent biological
experiments. Further, the patient was also diagnosed with clinical autism, which has a higher
prevalence in WS, but this could affect the interpretation of the neural phenotypes that are not
generalizable to typical cases of WS. These studies show the potential for identifying
physiological differences at the cellular level in cases of typical deletions, however they did not

attempt to make specific genotype-phenotype correlations.

11



iPSCs can be used to make assertions about the contribution of specific genes to specific
cellular phenotypes, which helps understand the functional roles of genes in the WSCR. Adamo
et al. performed RNA-seq experiments in iPSCs from four separate patients with WS, two
patients with 7q11.23dup syndrome, and three related normal controls and three external control
cell lines, and showed that there were symmetrical changes in expression of genes in disease
related pathways. They performed a similar experiment after differentiating the iPSCs into
neurons, and observed enrichment of genes involved in axon guidance, cell polarity, and
transmission of nerve impulses. To test the specific contributions of G7F2I, they performed
RNAIi knockdown of GTF2I in the 7q11.23dup and WT cell lines, and showed that about 10-
20% of the transcriptional changes observed in the full WS deletion can be attributed to GTF21.
They went on to show that GTF2I interacts with the chromatin modifiers LSDI1, a histone
demethylase, and HDAC?2, a histone deacetylase (44). They argue that most the transcriptional
changes caused by decreased dosage of GTF2! are indirect, and propose that the dysregulation of
the GTF2I target, BEND4, is a likely candidate that contributes to the downstream transcriptional
changes. They remark that there is considerable variation between patient cell lines and the
expression of BEND4, which highlights the importance of considering the genetic background.
Overall, this study does suggest that GTF2I plays a role in the transcriptional phenotype, but
does not account for all of it.

Additional iPSC studies provided evidence for functional roles of genes on the
centromeric end of the deletion in neuronal phenotypes (46, 49), which the atypical deletion
human studies have suggested do not contribute to the phenotypic spectrum of WS. Neural
progenitor cells derived from typical deletion WS cases showed increased apoptosis that was not

seen in cell lines derived from WT or an atypical case, whose deletion spanned from CLDN3 to
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RFC2. Reasoning that FZD9, which is not deleted in the atypical case, and regulates
programmed cell death, the authors showed that knocking down FZD9 in the WT cell lines could
recapitulate the apoptosis phenotype and overexpressing FZD9 in the WS cell lines could
ameliorate the apoptosis phenotype (46). Transcriptional profiling of WS and WT derived
neuronal cell lines along with BAZIB knockdown showed as much as 42% of the transcriptional
difference between WS and WT neurons were caused by decreased expression of BAZIB. The
transcriptional changes along with genes bound by BAZ1B, suggested a role for this gene in the
regulation of Wnt signaling as well as synaptic development. Decreased expression of BAZIB
resulted in neural progenitor cells maintaining a proliferative state, which prevented proper
differentiation into neurons. This phenotype could be rescued by antagonizing Wnt/Beta-catenin
signaling (49). Together, these two iPSC studies strengthen the evidence for genes in the
centromeric end of the deletion to play an important role in neural development, which could
lead to the striking cognitive and behavioral phenotypes of WS. They also further implicate
specific pathways such as Wnt signaling and synaptic functioning in the pathogenesis of WS.

It has been shown for WS that iPSCs are a valuable model to understand cellular and
molecular phenotypes caused by the typical deletion as well as by specific genes in the region.
While this model has its advantages it also has several limitations. iPSCs study designs allow for
the testing of disease relevant tissues using human cells, however, the cells are artificially
differentiated outside the context of the organ-specific microenvironment. This can lead to
unforeseen changes in the biological functioning of the cells. Further, the study of cells in vitro
precludes making associations with the cellular changes directly to behavior at the organismal
level. For example, iPSC differentiated neurons do not form the complex anatomical circuits

equivalent to what is seen in the brain in vivo. In spite of these limitations, in the case of WS
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these studies have provided further insight into genes such as FZD9, BAZIB, and GTF2I, and
suggest that they all contribute to neuronal phenotypes.
1.2.3 Human general population association studies

Another strategy that employs human genetics to identify genotype-phenotype
correlations of genes in the WSCR, is to test variation in these genes for association with traits in
the general population, both in samples of individuals with WS and in case-control designs. The
duplication of the WSCR was found to be significantly associated with autism spectrum disorder
(ASD) diagnosis in a case-control study design (26). Association analyses have further
implicated the general transcription factor 2i family of genes in social and cognitive phenotypes
(50-53). The advent of next generation sequencing technology offers new potential to implicate

not only common variants, but also rare variants in the pathogenesis of WS (54).

Candidate gene associations have implicated two single nucleotide polymorphisms
(SNPs) in the GTF2I in ASD as well as in neural phenotypes related to social cognition (50, 51).
While these studies were not unbiased screens of the whole genome, the authors reasoned that
the WSCR contains loci that affect social behavior. When variants in STX1A4, CLIP2, and GTF2[
were tested for association with ASD diagnosis in families with at least one affected child, only
two SNPs in GTF2I, rs4717907 and rs13227433, were found to be over transmitted in the
probands (50). Using this previous finding, these two SNPs were further associated with a metric
that captures the low social anxiety and reduced social communicative skills of individuals with
WS in a sample of 488 individuals attending university (53). The imputed rs13227433 genotype
was also found to be associated with reduced amygdala reactivity to threatening stimuli, a neural
phenotype that has been documented in WS (51) in a sample of 808 university students. Finally

the SNP, 152267824, located within the GTF2IRDI gene, was associated with a metric that
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captures the neuroanatomical gestalt of the WS brain in a sample of 1,863 people from the
general population, suggesting that it contributes to brain anatomy that is specifically observed in
individuals with WS (52). These candidate gene focused studies corroborate the role of both

GTF2I and GTF2IRDI in behavior and brain development related to WS.

Association studies are valid study designs to identify genomic loci that correlate with a
trait of interest, but they have several limitations. The detection of a significantly associated
variant does not mean the causal variant has been detected. Rather, in most cases an association
elucidates a region in the genome that contains the causal variant. In addition, association studies
based on genotyping with SNP-chips are only able to test common SNPs, which are expected to
have small effect sizes, so in order to detect these effects large sample sizes are required. To
overcome this, next generation sequencing technologies can be used to query the role of rare
variants in modifying the phenotypes of WS. Since WS is caused by the contiguous deletion of
1.5-1.8Mbp on chromosome seven, individuals with WS only have one remaining copy of the
region, which could unmask the effects of recessive alleles (55). This hypothesis was tested for
the cardiovascular phenotype, looking specifically at variants in the ELN. With a sample size of
55 individuals, no one specific variant associated with severity of the cardiovascular disease
(56). This approach could be applied to other genes in the WSCR as well as other phenotypes in
the region to understand how the genetic variation associates with different aspect of the

disorder.

The human approaches taken to study the genotype-phenotype correlations within WS
has, so-far, have highlighted the variability of the phenotypes and a complex relationship with
the genes in the region. My work has focused on describing how genetic variation within the

WSCR and in the whole exome can modify the social phenotype of WS. I analyzed the whole
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exome sequencing data of 85 individuals with WS to associate genetic variants with the social
phenotype. I can use the variation across individuals with WS that have received the same
standardized social questionnaire to ask how much does genetic variation contribute to the social
phenotype. This allowed me, in an unbiased, way to test for genes in the WSCR and the whole
exome that are important for modifying social behavior in WS, which could inform clinicians
taking care of individuals with WS as well as inform genes involved social behavior in the

general population.

1.3 Introduction to the general transcription factor 21 family

Performing gene associations in humans, while informative on what locations of the
genome are important for different traits, are not conducive to conducting controlled experiments
that could lead to a mechanistic understanding of how genes exert their effects on behavior.
Along with the human studies I did, I leveraged the experimental advantages of the mouse model
to focus on the interactions of two genes in the WSCR, G#f2i and Gtf2ird]. I chose to investigate
these genes to test the hypothesis that they contribute to the cognitive and behavior phenotypes
as the human literature has suggested and to extend the current research by testing how they
interact. This family is made up of three paralogous transcription factors that are located in the
WSCR. GTF2[ and GTF2IRD] are deleted in the 1.5Mbp deletion, and GTF2IRD? is deleted in
the larger 1.8Mbp deletion. These transcription factors have been extensively studied in different
model systems, including cell lines and mouse models, usually focusing either on GTF2I or
GTF2IRDI1. Since both seem to contribute to overlapping phenotypes and they share overlapping

DNA binding targets, these transcription factors merit further investigation.
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1.3.1 General background on the GTF2I family
Different groups discovered the GTF2I family of genes independently. GTF2I was

discovered in several contexts, including a target of Bruton’s tyrosine kinase in B-cells (BAP-
135) (57), a protein that stabilizes the serum response factor complex (SPIN) (58), and as a
transcription factor in the WSCR that can bind to the E-box and /nr element (59), which were all
shown to be the same GTF2I protein. GTF2IRD] has a similar history in which it was discovered
many independent times as a gene expressed in the muscle (MusTRD1) (60) as well as a

transcription factor in the WSCR (WBSCR11) (61, 62).

All three are multiexonic genes that are subject to extensive alternative splicing. GTF21 is
made up 35 exons, GTF2IRD] contains 27 (63), and GTF2IRD?2 has only 16 exons due to the
replacement of the 3’prime end of the gene with a CHARLIES transposon (64). The sequence
features that distinguish these genes as a family are the I repeats, of which GTF2I contains 6,
GTF2IRDI contains 5, and GTF2IRD?2 has 2. These are helix-loop-helix domains that are
thought to be important for protein-protein interactions and DNA binding (65). They also have a
conserved N-terminal leucine zipper (66, 67), that is involved in homo and heterodimeriziation
that can affect DNA binding function. The evolutionary history of these genes points to
GTF2IRDI as the ancestral gene that was duplicated to produce GTF2I. These two genes are
present in all land mammals with the duplication and inversion of GTF2[ giving rise to
GTF2IRD2, which is present in all placental mammals (68). This conserved evolutionary history
in mammals makes studying these genes tractable in mouse models. The mouse Gtf2ird1 and
human GTF2IRD1 share 87.9% amino acid identity and the mouse Gtf2i and human GTF2I

share 97.3% amino acid identity (69). Given the similar evolutionary history of these genes, it is
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important to understand to what extent these genes share overlapping function, as well as how

they differ.

GTF2I was the first gene discovered and has been the best studied, probably due to its
higher abundance in many different tissues and due to the availability of effective antibodies.
The expression of GTF2[ is described as ubiquitous, with higher expression early in
development. In the mouse, G#f2i mRNA is maternally deposited by the mother in the fertilized
egg and is highly expressed in the inner cell mass, and continues to be highly expressed
throughout development (70, 71). In situ hybridization experiments in the mouse brain showed
uniform expression of G#f2i from embryonic day 18.5 to postnatal day seven, with enhanced
expression of the mRNA in Purkinje cells, the hippocampus, and cerebral cortex in the adult
brain, all of which was described as neuronal. The protein showed a similar expression pattern,
with protein detected in both the nucleus and the cytoplasm, with enrichment in the hippocampus
and cerebellum (72). The presence of GTF2I in both the nucleus and the cytoplasm suggests that

this transcription factor has functions beyond regulating nuclear transcription.

Along with its roles as a basal transcription factor, GTF2I plays a role in the cytoplasm
that allows it to convey cellular information to the nucleus. GTF2I was first discovered due to its
ability to bind the Inr element at transcription start sites but also at upstream enhancers (73). It
was shown that some of its transcriptional activity was due to tyrosine phosphorylation by SRC
that allowed cytoplasmic GTF2I to translocate to the nucleus, suggesting that GTF2I can induce
transcriptional changes based on signal transduction pathways (74). Interestingly Src knockout
mouse models show phenotypes such as hyperactivity and hypersociability, suggesting that
disruption of this gene and its downstream pathways can recapitulate some features of G#f2i

knockout models (75). Another effect that phosphorylation of GTF2I by SRC has is to inhibit
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agonist induced calcium entry (76). The cytoplasmic phosphorylated GTF2I competes with
TRPC3 protein, a calcium channel, to bind PLC-y, which prevents the localization of TRPC3 to
the membrane and inhibits calcium entry into the cell. This was shown to affect neuron
morphology and calcium electrophysiology in neurons that are missing one copy of G#f2i. The
neurons with less G#f2i had more complex axons and increased calcium entry (77). These studies
have elaborated the complex cellular role that GTF2I plays in both transcription and signal
transduction and how it can affect neural phenotypes, which may contribute to phenotypes in
WS. No studies have been done that show what happens to transcription genome-wide in the
brain when G#/f2i is increased or decreased, which the work I present in chapter three describes.
Also, given the dual role of this transcription factor the paucity of data concerning its effect on
transcription makes it difficult to disentangle which functionality of G#/2i is contributing to

affect behavior.

In contrast to the extensive transcriptional roles and signal transduction function of
GTF2I, GTF2IRD1 has mostly been characterized as having a role in transcriptional regulation.
The expression of this gene was described using a lacZ reporter in the mouse. Ubiquitous
expression was seen at embryonic day 7.5 with more localized expression occurring after
organogenesis. In the developing brain it is expressed most highly in the pituitary, developing
hypothalamus and thalamus, and hindbrain with little expression in the telencephalon. The gene
is expressed less in adulthood across all tissues, and within the brain it is the most highly
expressed in the olfactory bulbs, Purkinje neurons, and neurons of the piriform cortex. It is
highly expressed in adult brown adipose tissue (78). The low expression of this gene in vivo
along with poor antibodies has made this protein difficult to study in vivo. However, work in

cells that highly express this gene show that is mostly localized to the nucleus in a punctate
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pattern and in close proximity to other chromatin regulators such as SP1 and H3K27Me2/3 and
H3K4Me3 marks. A yeast 2 hybrid screen further suggested that GTF2IRD1 interacts with
chromatin modifiers such as ZMYM?2 and ZMYM3 along with proteins involved in ubiquitin
pathways such as USP20 and USP33 (79). These data suggest that it plays a role in

transcriptional regulation.

Other studies have shown that GTF2IRD1 binds to specific genomic regions to affect
transcription and the G#f2irdl genes is under tight transcriptional and posttranslational
regulation. In the mouse retina Gtf2ird1 binds to the LCR enhancer and promoter regions of
opsin genes to promote transcription (80). Hasegawa et al. showed that Gtf2ird1 expression is
induced in mouse brown adipose tissue in cold conditions and associates with the PRDM16
complex to repress fibrotic gene transcription (81). In addition, GTF2IRD1 has been shown to
negatively autoregulate its own transcription. The N-terminal leucine zipper was proposed to
increase binding to its own upstream regulatory element and mutating the leucine zipper resulted
in a difference in bind affinity to the sequence (66). Finally, GTF2IRD] is post translationaly
modified by the addition of a SUMO group that alters its protein-protein interactions and targets
the protein for degradation (82). The extensive roles of Gtf2ird] in transcriptional regulation and
its tightly regulated mRNA and protein expression suggest that this gene plays an important

biological role that could contribute to the phenotypes of WS.

The DNA binding of these two transcription factors has been studied genome-wide in
different model systems. The core binding motifs for the fourth I repeat of GTF2I and
GTF2IRD1 was identified as RGATTR using the SELEX method (83). In a similar experiment
the binding site of the full length GTF2IRD1 was determined to be

GGGRSCWGCGAYAGCCSSH (65). Chip-Chip experiments in mouse embryonic stem cells
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revealed 5,744 binding peaks for Gtf2i and 625 binding peaks for Gtf2ird1, most of which were
located in promoters of genes. When binding was investigated in embryonic craniofacial tissue
they identified 1,181 Gtf2i binding peaks and 1,520 Gtf2ird1 binding peaks, again most were
located in promoter regions. They showed examples of sites where both proteins were located at
the same promoter regions suggesting they can overlap in the genes they regulate. Most of the
binding sites were located in areas of bivalent chromatin marks (84). GTF2I binding has been
assessed in human iPSC cells using ChIP-seq and was found to bind 1,554 genes at their
promoters. About half of these binding sites were also targets of the LSD1 histone demethylase
(44). Gtf2i has also been shown to help target CTCF to promoter regions. Genome-wide binding
analysis of Gtf2i and Gtf2ird1 show that they have overlapping targets and cooperate with other
chromatin regulators. Further study of the binding patterns of these proteins in vivo in other
relevant tissues will continue to elucidate the role these genes play in transcription regulation and

downstream affected pathways.

Given that both GTF2I and GTF2IRD]1 are transcription factors and they bind many
genes in the genome, their affects on transcription genome wide have been minimally described
and with contrasting results. Gtf2ird1 overexpression in mouse embryonic fibroblasts led to
around 1,000 upregulated genes and 1,000 downregulated genes covering pathways such as
ubiquitin cycle, RNA binding, and cell cycle (85). In contrast, Gtf2i overexpression in mouse
embryonic fibrobalsts led to fewer changes with only 90 genes upregulated and 68 genes
downregulated. These genes made up categories such as transcription regulation, immune
response, and apoptosis (86). The effects of knocking out each transcription factor was assessed
in embryonic day 9.5 mouse models. In the G#/2i null embryos there were 217 upregulated and

2,356 downregulated genes spanning categories such as cytoskeleton remodeling, cell cycle,
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transcription, and the ubiquitin cycle. However, G#f2ird] null embyros showed only 38
upregulated genes and 498 downregulated genes that did not show any enrichment for specific

GO categories (87). These findings somewhat mirror the overexpression data.

Another Gtf2ird] mouse model profiled the transcriptomes of the developing brain at
embryonic day 15.5 and postnatal day 0 and showed no significantly differentially expressed
genes (88). Yet another G#f2ird1 model that showed overgrown lip epidermal tissue revealed
1,165 upregulated genes and 1,073 down regulated genes. Gene set enrichment analysis on the
upregulated genes highlighted pathways such as cell cycle, the ribosome, proteasome, and
ubiquitin mediated proteolysis. Down regulated genes showed enrichment in calcium signaling,
oxidative phosphorylation, and cardiac muscle contraction (89). Finally, transcriptome profiling
of the hippocampus in a mouse model that has the entire syntenic WSCR deleted showed down

regulation of genes in the Pik3 kinase pathway as well as Bdnf (90, 91).

Overall, transcriptional studies of G#f2i and Gtf2irdl seem to be dependent on many
factors that include tissue type, stage in development, how the genes are mutated, and mouse
strain. The transcriptome data generated in the E9.5 embryos should be cautiously interpreted
since both the G#f2i and G#2ird1 null mutants described were embryonic lethal and showed
neural tube closure defects as well as vascular defects. Comparing these very severe embryos to
the WT embryos show that many of the transcriptional changes detected are probably
consequences of the disrupted development of the embryo, which make teasing out the direct and
indirect effects of reducing the expression of Gtf2i and Gtf2ird1 difficult. The discrepancy
between the transcriptome findings of the brain and the lip tissue could arise for several reasons.
Different mutants were used and in vivo analysis of the Gt2ird1 protein was lacking in both

studies. It would be beneficial to know how the mutations are affecting the protein levels as well
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as the normal WT levels of protein expression between these two tissue types. The lip tissue also
showed a clear morphological phenotype that specifically affected the epidermal tissue and not
the dermal tissue, cartilage, or underlying muscle. The striking difference between genotypes in
the lip tissue could be driven by a clear disruption of a specific cell type (92), while in the brain
there could be more subtle effects in different cell types diluting the signal. Incorporating
multiple levels of information such as ChIP-seq, RNA-seq, and tissue specific expression of
these genes will aid in constructing a more complete understanding the role of these transcription
factors.
1.3.2 Mouse models of Gtf2i and Gtf2irdl

Along with understanding what the molecular functions of these two transcription factors
are, in order to provide useful insight into the etiology of WS, the affect these two transcription
factors have on behavior should also be studied. Previously, I have described the evidence that
supports the functioning of these genes in behavior, cognition, and physical attributes that we
have gleaned from human studies. As mentioned, human studies come with their own
limitations: in rare partial deletions one is making inferences based on single individuals.
Likewise, one is unable to model behavioral consequences in iPSCs. Model organisms,
specifically the mouse, have been instrumental in understanding both the functional roles of
genes as described in the previous section and the consequences of dosage changes of genes on
behavior. The mouse is an attractive model in which to model WS for several reasons: 1) a
region of chromosome five in the mouse is syntenic to the WSCR in humans, 2) geneticists have
a large tool kit in which to accurately modify the mouse genome to test specific mutations or sets
of mutations, 3) mice are able to be bred so that the same mutation can be studied in a large,

controlled sample allowing for statistical inferences, and 4) mice are social animals that display
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behaviors in domains that are disrupted in WS. Many different mouse models have been used to
try and understand the behavioral consequences of genes in the WSCR, with varying degrees of
face validity to WS. The strain of mouse and how the mutations were generated play a large role
in the manifestation of phenotypes in mouse models. This makes synthesizing the data from

different labs and experiments difficult, but consistent phenotypes across many different models

can provide strong corroborative evidence for genotype-phenotype correlations.

Large deletion mouse models

The mouse model with the highest construct validity is a hemizygous deletion of the
syntenic WSCR on the mouse chromosome five and is termed the complete deletion (CD) mouse
(93). The mouse was generated using the cre-lox system with a loxP site situated in exon two of
Gtf2i and the other loxP site in intron five of Fkbp6 on the C57BL/6J background. This mouse
model showed phenotypes that are consistent with most of the phenotypes of WS that can be
tested in the mouse. The physical features include mild cardiovascular phenotypes, smaller
skulls, reduced brain size, decreased volume of hippocampus, and more immature neurons in the
dentate gyrus as determined by doublecortin immunostaining. A battery of behavior tests in the
CD mice showed deficits in motor coordination, decreased motor tonicity strength, increased
startle response to stimulus noise, and a decreased habituation to a social stimulus (93). Another
study of the CD mice showed deficits in working memory as tested by the spontaneous
alternating T-maze and novel object recognition, which was reported as normal in a previous
study. The social phenotype was replicated as well as a decrease in the number of marbles buried
in the marble burying task (91). Finally, the role of G#/2i in the manifestation of the behavioral
phenotypes in the CD animal was tested by delivering adeno-associated virus 9 (AAV9) that
carried the mouse G#f2i cDNA into the cisterna magna of CD mice. The addition of G#/2i cDNA
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rescued the increased social phenotype, partially rescued the motor coordination, but did not
affect the marble burying deficits (90). This mouse model showed deficits in motor coordination
and increased startle to a stimulus noise. Humans with WS are known to have poor balance as
well as hyperacusis. The mice also recapitulated the hypersocial phenotype of WS as tested in
these behavioral tasks using only male mice. The CD model is a great tool to understand how the
entire WSCR affects mouse behavior and the underlying mechanisms. However, the work done
in the CD mouse should be expanded to include female mice to understand any sex or sex by
genotype interactions. This would also inform how robust the phenotypes are. For instance the
social phenotypes have only been tested in males using an unconventional method. Including
social tasks that probe different aspects of sociality would help pinpoint the specific pathways

involved in manifesting the disorder.

There are two other large deletion models that attempt to localize which genes are
involved in specific mouse behaviors by splitting the WSCR into two halves and deleting each
half (94). These mice were generated using the cre-lox system on the C57BL/6J background. The
proximal deletion mice (PD) are hemizygous for G#f2i through Limkl. The distal deletion mice
(DD) are hemizygous for Trim50 through Limkl. Breeding the PD and DD mice together results
in four littermate genotypes, which include a mouse that is hemizygous for the whole region on
two different chromosome and is homozygous null for Limkl, this is called the P/D mouse. The
DD and P/D mice showed similar shortened skulls with more severe differences in the P/D mice.
This indicates that genes on the distal half of the deletion contributing to the craniofacial
phenotypes, but perhaps genes in the proximal half can exacerbate the phenotype. There were
mixed results on a series of behavior tasks that probe social behavior. The partition task showed

all three genotypes spent more time at a partition that held a social stimulus than WT littermates.
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A direct social task showed only the PD mice spent more time investigating a conspecific
compared to WT littermates. The three chamber social approach task showed a significant
preference for the social stimulus in the PD and P/D mice but no such preference in the WT or
DD animals. Finally in a test of social dominance the PD and P/D mice had a decrease win ratio
suggesting reduced dominance behavior. The P/D mice showed decreased locomotor activity and
poor balance, and the partial deletions had intermediate values. Altered response to sensory
stimuli was tested using the acoustic startle response and pre-pulse inhibition. This was only
altered in the PD mice with no phenotype in the P/D or DD genotypes. In a learning and memory
task, the DD mice showed decreased freezing in contextual and cued fear memory. Studying the
two half deletions can help further localize the genes involved in specific phenotypes. These
studies suggest that the DD genes are involved in the craniofacial phenotypes and fear memory
recall. The PD genes affect, in some tasks, social behavior and the response to sensory stimuli
(94). Genes in both halves of the deletions may contribute to balance deficits, which is more
affected when both halves are deleted. Overall, it seems like some phenotypes such as the

balance and craniofacial differences are being influenced by multiple genes.

Gtf2i and Gtf2ird]l mouse models

The larger mouse models of WS test the affects of knocking out the entire region on
mouse behavior. One of the advantages of mouse models is the wide range of tools geneticists
have at their disposable to manipulate the genome, permitting the study of very specific
mutations of single genes. Single gene knockout mice exist for several different genes in the
WSCR, with many genes having multiple different mouse models (95). For G#f2i there are two
mouse models that decrease the expression of Gtf2i to varying degrees. One model has a gene
trap cassette in intron 3 of G#f2i (thQiGt(YTA%S)Byg/ B) that has been characterized in (29, 87, 96,
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97) and results in a null allele. The second G#f2i model has a targeted deletion of exon 2
(Gtf2i***%), which contains the canonical translation start codon, and produces an N-terminally
truncated protein that begins at a methionine in exon five and is described in (67, 90). The
former model is embryonic lethal in the homozygous state (29, 87, 96) and the latter model
produces viable homozygous animals at a lower than expected Mendelian ratio (67). There are
four different mouse models of G#f2ird] that have been described in the literature: 1) the
Gtf2ird1*"*%° model has a gene trap lacZ cassette located in intron 22 (87), which makes a fusion
protein, 2) the G#f2irdl Tg(Alb1-Myc)166.8 model has a myc transgene that randomly integrated
into the locus replacing the transcription start site and the first exon of Gtf2ird1(39, 98-100),

1" model was made by homologous

which has no detectable expression, 3) the Gtf2ird
recombination removing exon 2, which contains the canonical translation start codon, and has
increased expression of G#f2irdl transcript but produces an N-terminally truncated protein at 3%
of WT levels (66, 78, 92), and 4) the Gtf2ird1™"® model was made by homologous
recombination removing exons 2,3,4 and part of 5, which still makes an aberrant Gtf2ird1
transcript but protein analysis was not done (101). All of the Gtf2ird1 models can produce viable
homozygous animals except for Gtf2ird1*"** which expire embryonically. This more severe
phenotype has been attributed to the production of a fusion protein whose function is unknown
(88). While there are many mouse models of both of these genes that have been tested on

different mouse backgrounds and on different behavioral tasks, synthesizing the data across all

the experiments can provide strong evidence of the roles of these genes on behaviors.

The two mouse models of G#f2i have shown hypersocial phenotypes (90, 96, 97). The
specific social phenotypes queried by the specific tasks differ. In two experiments the G#f2i

heterozygous mutants display a lack of habituation to a social stimulus that is normally observed
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in WT littermates (96). Another experiment using the N-terminally truncated protein, and
showed that heterozygous and homozygous mutants investigate a social stimulus for more time
compared to WT littermates (90). The most convincing experiment employed a social operant
learning paradigm, in which the heterozygous mutants will work harder for more social rewards
(97). Besides the social phenotypes other behaviors have been documented such as impaired
novel object recognition, increased anxiety, motor coordination marble burying in homozygous
animals, and smaller craniums (67, 90, 96). The work done in single G#f2i mutants supports its
role in the social aspect of WS, and potentially in anxiety, motor ability, and the craniofacial

features.

The several Gtf2irdl mutant mouse models show many behavioral and physical deficits,
but in some models exhibited findings that contrast other models. Furthermore, some of the
phenotypes are only seen in the homozygous knockouts, which don’t reflect the gene dosage
effects that are expected to be seen in humans with WS. One consistent phenotype seen in two
models of G#f2ird] is a motor coordination deficit, which was also seen in the larger deletions of
the WSCR and in one G#/2i model (92, 100). Other phenotypes such as activity levels and
anxiety-like behaviors are discrepant across models. Some models report increased activity and
decreased anxiety, while another reports the opposite (92, 100, 101). Social behavior has only
been tested in one Gtf2ird] mouse model, using the resident intruder paradigm, which showed
decreased aggression, but an increase is social investigation by the G#f2ird1 heterozygous and
homozygous mutants (101). Two models have reported facial dysmorphisms in the mice, one
which affects the cranium and the other affects the soft tissue of the face (39, 92). The
contrasting evidence in these mouse models could be due to the mouse background on which

each model was made or how the gene itself is disrupted. The evidence shows that this gene may
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also contribute to motor deficits, the social phenotype, and the craniofacial phenotype that is

observed in WS.

Overall, single gene knock out models of both G#f2i and G#f2irdl show overlapping
behavior phenotypes, specifically in social and motor deficits. However, these genes have not
been studied in combination, which is what is expected in the deletion of WS. This leaves open
the question if this two paralogous transcription factors can interact with each other to
synergistically affect behavior? Understanding how these genes function together will give a
more complete understanding of how genes in the WSCR interact to produce the full phenotypic

spectrum of WS. These hypotheses are addressed in chapters three and four of this thesis.

1.4 Conclusions

Both human and mouse genetic experiments have demonstrated that the WSCR is an
important genomic region for a variety of traits, such as craniofacial development, cardiovascular
health, cognition, anxiety, and social behaviors. The field has employed many different strategies
to further understand the genes responsible for causing the phenotypes of WS and thus providing
insight on the biological mechanisms of different human characteristics. Still the only strong
monogenetic contribution of a gene in the WSCR to a specific phenotype of WS is the role ELN
plays in the cardiovascular disease. Even this monogenic contribution can be modified by
another gene in the region NCFI. There is evidence for the role of several genes contributing to
several different phenotypes. This oligogenic hypothesis may help the field further understand
how the genes in the WSCR work together to produce the WS phenotypes, as has been shown for
other copy number variation disorders (102, 103). The work I describe in this thesis uses both
human genetics and mouse models to expand the knowledge of how genes in the WSCR affect

behavior. I use whole-exome sequencing to analyze the largest genetic dataset of individuals
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with WS, to test the hypothesis that variation in the remaining WSCR allele and exome-wide can
modify the social phenotype. I then use newly generated mouse models to understand where
Gtf2i and Gtf2ird] bind genome-wide in the developing brain and what are the transcriptional
and behavioral consequences on mutating these genes. I am able to test the hypothesis that these
genes both affect the same phenotypes, testing the oligogenic contribution of these genes on
behavior. Finally, I use mouse models to directly compare the affects of both G#f2i and Gtf2ird1
to the affects of the entire WSCR to test if these two genes, which have been highly speculated in
the literature as driving the phenotypes of WS, are sufficient to replicate the phenotypes
produced by all the genes in the WSCR. My data suggest that these genes do contribute to
behavior, but other genes in the region or the effect of deleting the entire WSCR has more
striking behavioral consequences. This leads me to conclude that the complex phenotypes that
are disrupted in WS are caused by complex genetic interactions of genes in the region and
require more than loss of just these two genes. Further testing of the oligogenic relationship of

genes will highlight the complex biology of human traits and the pathobiology of WS.

30



Chapter 2: Exome sequencing of 85 Williams
Beuren syndrome cases rules out coding
variation as a major contributor to
remaining variance in social behavior
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2.1 Abstract

Large, multigenic deletions at chromosome 7q11.23 result in a highly penetrant constellation of
physical and behavioral symptoms known as Williams Beuren syndrome (WS). Of particular
interest is the unusual social-cognitive profile evidenced by deficits in social cognition and
communication reminiscent of autism spectrum disorders (ASD) that are juxtaposed with normal
or even relatively enhanced social motivation. Interestingly, duplications in the same region
also result in ASD-like phenotypes as well as social phobias. Thus, the region clearly regulates
human social motivation and behavior, yet the relevant gene(s) have not been definitively
identified. Here, we deeply phenotyped 85 individuals with WS and used exome sequencing to
analyze common and rare variation for association with the remaining variance in social
behavior as assessed by the Social Responsiveness Scale. We replicated the previously reported
unusual juxtaposition of behavioral symptoms in this new patient collection, but we did not find
any new alleles of large effect in the targeted analysis of the remaining copy of genes in the
Williams syndrome critical region. However, we report on two nominally significant SNPs in
two genes that have been implicated in the cognitive and social phenotypes of Williams
syndrome, BAZIB and GTF2IRDI. Secondary discovery driven explorations focusing on known
ASD genes and an exome wide scan do not highlight any variants of a large effect. Whole exome
sequencing of 85 individuals with WS did not support the hypothesis that there are variants of
large effect within the remaining Williams syndrome critical region that contribute to the social
phenotype. This deeply phenotyped and genotyped patient cohort with a defined mutation
provides the opportunity for similar analyses focusing on noncoding variation and/or other

phenotypic domains.
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2.2 Introduction
Williams Beuren syndrome (WS) (OMIM #194050) is a neurodevelopmental disorder

caused by a 1.5 to 1.8 Mbp deletion on chromosome 7q11.23. The deletion causes a constellation
of symptoms that include cardiovascular pathology, craniofacial dysmorphology, and a unique
cognitive and personality profile(4, 14, 17). The well-defined genetic lesion that causes WS is
an opportunity to assess genotype-phenotype correlations. To date, only the cardiovascular
phenotype has been convincingly linked to the haploinsufficiency of a single gene - the ELN
gene(6, 104). Studying rare events that result in atypical deletions sparing different genes in the
Williams syndrome critical region (WSCR), as well as single gene knock out studies in mouse
models, have suggested that GTF2IRDI and BAZIB play a role in the craniofacial
abnormalities(39, 105). Likewise, the genes STX/A4, LIMKI, CYLN2, BAZIB, GTF2IRDI, and
GTF2I (31, 38, 49, 96, 99, 106-109) have been implicated in the cognitive and behavioral

phenotypes.

Understanding contributions to social phenotypes in particular for WS may define genes
that regulate human social behavior, providing insight not only into WS, but also in other
disorders as well as possible modifiers of social behavior in the general population. Deleting one
copy of the genes in the WSCR produces the personality profile observed in WS, which consists
of prosocial behaviors such as gregariousness, empathy, retained expressive language skills, and
low levels of social anxiety, in spite of high anxiety in other domains(14, 19, 110-112). Despite
the high social motivation of individuals with WS, they exhibit deficits in social cognition and
communication(20, 113, 114). The Williams syndrome critical region duplication, 7q11.23
duplication syndrome (Dup7) (OMIM#609757), conversely, is characterized by diametric social
behaviors to those seen in WS, including separation anxiety, poor eye contact, and language
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impairment, as well as overlapping phenotypes such as restricted and repetitive behavior and
poor social communication (27). It has also been shown that the prevalence of ASD in WS and
Dup?7 is higher than in the general population and the male sex bias for ASD diagnosis is present
among individuals with Dup7(27, 115). The similarities and differences in the social
communication domains of WS and ASD have been described, and suggest that while both
disorders show deficits in social communication, the WS group was not as impaired as the ASD
group (113, 114). Unlike ASD, there is no sex bias in the frequency of WS and severity of social

and cognitive phenotypes are similar across both sexes (21, 116).

As in many diseases of haploinsufficiency, within WS there remains considerable
variability in expressivity of the phenotypes, despite the very homogeneous genetic cause. It is
thought that both genetic background and the environment introduce variation in the expression
of a phenotype. The fact that individuals with WS are hemizygous for 26-28 genes has led to the
assertion that variation in the remaining allele could contribute to the severity of symptoms in
WS(13, 56). The presence of only one copy of genes in the WSCR could unmask the effects of
recessive alleles in the region that are more difficult to detect in a diploid setting. Indeed, this
logic has been applied to investigate the variability in the cardiovascular phenotype. Delio et al.
2013 sequenced the exons that make up the ELN gene in a sample of 55 individuals with WS, but
found no clear link between severity of phenotype and remaining genetic variation. However, no
similar studies have investigated the social profile of WS, in spite of the fact that there is some
evidence that common variation in the region can influence social behavior in the general
population. For example, variation in the GTF2[ gene has been associated with the WS
cognitive profile, autism, oxytocin reactivity, amygdala activity, and social anxiety(53, 117, 117,

118). Furthermore, genes outside of the WSCR are also likely to affect aspects of social
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behavior. In particular genes that are associated with ASD have a profound effect on social

interaction and could harbor variants that modify the phenotype of individuals with WS.

Here, we employ whole exome sequencing to understand how genetic variation within
the WSCR, and other protein coding genes, impacts the severity of the WS social phenotype. We
generate a rich catalogue of genetic variants identified from 85 individuals with the typical WS
deletions; each individual has also been assessed with the Social Responsiveness Scale-2 (SRS)
questionnaire, a quantitative measure of reciprocal social behavior. The SRS was first developed
to quantify autistic traits in both the general and clinical populations(119, 120). SRS scores have
also been used to describe different aspects of the social phenotype in WS (20). We then employ
a three-tiered approach to screen for the existence of alleles that contribute to SRS scores in the
context of a potentially sensitizing WSCR deletion, ordering the analyses to conserve statistical
power. First, we describe the genetic variants observed in the remaining WSCR and test if they
can explain the variance in the SRS scores. We find little evidence that these common or rare
variants in the region are associated with SRS scores. Next, we go beyond the WSCR and test
variants in 71 genes known to be associated with ASD (121), reasoning variation that contributes
to autistic features in non-WS children may modify autistic features in the WS cohort as well.
Finally, we test variants throughout the whole exome. We find no genetic variants of sufficient
effect size to support the hypothesis that they contribute to the social phenotype in this sample of
individuals with WS. However, we have more thoroughly described the variation in the WSCR
region as it relates to social behavior and provide the largest genetic dataset to date of individuals

with typical WS deletions for future analyses of other phenotypic domains.
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2.3 Results

2.3.1 SRS variability in Williams syndrome

The unique social profile of Williams syndrome includes increased social motivation
(e.g. indiscriminate approach to strangers), strong eye contact, use of affective language,
emotional sensitivity as well as poor social judgment and restricted interests(19, 110-113, 122).
Many comorbidities, such as specific phobias, ADHD, and anxiety, have been commonly
reported in WS as well(21, 22, 123-125). To quantify social features in our WS cohort, we used
a standard instrument for assessing social reciprocity, parent-reported SRS scores from 85

individuals with WS.

We examined the SRS and its subscores in depth. In our sample, the SRS T-scores are
continuously distributed in the WS population with a male mean T-scorexSD of 64.58+12.28
(mean male raw score=SD 74.53+32.03) and female mean T-score+SD of 62.94+11.04 (mean
female raw scorexSD 67.08+26.04) (Figure 1). There is no significant difference in SRS T-
scores (t79.76=0.6365, p=0.52) or raw scores (Zs5.907—=1.1445, p=0.257) between sexes. To
benchmark the WS values, Constantino and Todd, 2003 measured raw SRS scores in 788 twin
pairs from the general population ranging in ages between 7 and 15 and estimated the mean male
raw scorexSD as 35.3+22.0 and the female mean raw score+SD as 27.5+18.4; males and
females were significantly different. In our analysis, we show that individuals with WS have
SRS scores that are shifted towards the more impaired end of the spectrum, and we do not
detect any significant sex differences in WS, which has been observed in the general

population.

36



Our results largely replicate the results seen in Klein-Tasman et al. 2010. The overall
T-score distribution reveals that 40% of our samples fall into the no clinically significant
impairment range, followed by 41.1% with mild to moderate deficits, and 18.9% with
severe deficits. The number of individuals showing no clinical signs in our sample is higher
than the 13.4% observed when the parents completed the SRS in Klein-Tasman et al. 2010,
but more similar to the teacher reported results of 38.8%. The sub scores also follow a
similar pattern to what has been reported previously (20). There is a significant effect of
sub scale on the T-scores (Fs420 = 24.759, p < 0.001)(Figure 1B). Post hoc Tukey all-
pairwise comparisons show that social motivation has significantly better T-scores than all
other sub scales, consistent with Klein-Tasman et al. 2010. The social awareness and
communication scales are not different from each other, but both show less impairment
than social cognition and restricted and repetitive behaviors. Social cognition and
restricted and repetitive behaviors were significantly more impaired than all other sub

scales, but not each other.

The distribution of SRS scores in WS point to the possibility of additional genetic
variants that modify the social phenotype. First, we see a larger standard deviation in the
SRS data in our sample compared to that of the norming population from Constantino and
Todd 2003. The extra variance suggests individuals with WS are more sensitive to genetic
or environmental factors that modify social behavior. Second, in our sample there are only
two individuals that show severe social motivation deficits, and these individuals also show
severe deficits in the total SRS T-score as well as all other sub scales. These outliers also

suggest some individuals may harbor additional rare variants of large effect size resulting
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in a phenotype that is more frankly autistic. To test these two hypotheses, we generated

and analyzed exome sequence from this cohort of WS patients.

2.3.2 Identification of variants in the Williams syndrome critical region
Williams syndrome individuals are hemizygous for 1.5-1.8Mbp on chromosome 7q11.23.

Since they only have one remaining allele, our primary hypothesis was that second hits in genes
believed to impact social phenotypes within the WSCR would produce more extreme social
phenotypes. We performed whole exome sequencing on 85 individuals, all of whom have an
SRS score. We called 120 variants in the remaining WSCR and annotated them with the allele
frequency in our sample, EXAC allele frequency, mutation consequence, clinical significance as
assessed by ClinVar, and scores that assess deleteriousness of missense variants catalogued in
dbNSFP. (Supplemental Table S1). Table I shows the 55 exonic variants discovered in the
region. For display purposes we have only included the CADD PHRED score and the MetaLR
score, which is a composite score that incorporates information from nine other measures of
deleteriousness and has been shown to have more predictive power than the individual

component scores(126).

We first examined this set of variants to determine if any loss-of-function variants might
be present in individuals with particularly severe SRS scores in our sample. Upon inspection of
the exonic variants, we notice no severe likely protein truncating variants. As homozygous nulls
for at least two genes in this region(ELN and GTF2I) are expected to be lethal(96, 127), we also
assessed missense mutations in these genes that might alter function. Based upon the predictions
of MetaLR all the missense mutations called are expected to be tolerated. None of the variants
were reported as pathogenic in ClinVar. The highest CADD scores observed are a novel variant

and SNP rs35607697, both located in the 7BL2 gene. Another novel variant was identified as a
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synonymous change in the BAZI1B gene. Similar results are found for non-exonic variants in the
region (Supplemental Table S1). This suggests that beyond the reduced copy number of the
entire WSCR, neither a second rare deleterious coding variant nor any common missense
mutations in the WSCR explain individuals with outlier SRS scores. It should be noted that we
did not identify any variants in GTF2I, one of the primary candidates for mediating the social

cognitive profile.

2.3.3 Association analyses

To test the hypothesis that individual variants in the WSCR can explain the variance in
the SRS scores in our sample, we perform classic quantitative trait loci associations. Rare disease
populations by definition will have small sample sizes such as in this study. We calculated the
power of our current study to be able to detect variants with different effect sizes and also
calculated the number of samples that would be needed to reach a certain power given an effect
size (Figure 2). We calculated the power for analyzing variants in the WSCR, variants in 71
ASD genes, and the remaining variants identified throughout the exome. Since we are
conducting fewer tests in the WSCR, we have the most power in this analysis, however we are
still only powered to detect very large effect sizes that might be unmasked by the hemizygosity
of the region, such variants would need to explain more than 10% of the heritability of the trait to
achieve 80% power. Most effect sizes for common variants in diploid regions of the genome
typically assessed by GWAS for complex traits explain around 1% of the heritability of the
trait(128). In order to be able to detect variants that explain 5% of the variance of the trait with

80% power using only variants in the WSCR would require 312 individuals (Figure 2B).

39



We then performed a quantitative trait association analysis of common variants in the
WSCR on the SRS T-scores from the whole cohort. We used PLINK to test for an association on
each of the 34 common variants in the WSCR, defined as MAF > 0.05, which corresponds to an
allele count of at least four in the WSCR due to the hemizygosity of the region. We adjusted for
age, sex, and ancestry. We found no association between any SNP and SRS that survived
multiple comparison corrections (Figure 3A). The top five SNPs are displayed in Table II.
Interestingly, the most significant SNP, rs2074754, is located in the BAZIB gene, which has been
previously implicated in contributing to the cognitive phenotypes in WS (49). Furthermore, the
next most nominally significant SNP is rs61438591, an intronic variant in the GTIF2RD] gene,

another gene highly implicated in the cognitive and social phenotypes seen in WS(92, 99—-101).

Since the common variants in WSCR showed no association, we wanted to test for the
possibility that rare variants could contribute to the variability in SRS T-scores. To test this, we
used SKAT-O, which tests all variants in the region at once and weights each variant by its
minor allele frequency. Similarly, we included age, sex, and ancestry as covariates. We tested
each gene in the WSCR independently, because we hypothesized only certain genes in the
region, such as STXI/A, LIMKI1, CYLN2, BAZIB, GTF2IRDI (31, 38, 49, 96, 99, 106-109) that
have been implicated in the cognitive phenotypes would contribute to the social phenotype rather
than the entire region. While no gene p-value survives multiple testing corrections, the ELN gene

has the most nominally significant p-value of 0.013

The results of our analysis of variation in the WSCR suggest that common and rare
variants in the remaining allele do not strongly influence social behavior in WS. This does not
exclude the possibility that a second deleterious hit or common variation in other genes outside

the region contributes to the variation in the SRS T-scores. To test this, we next examined
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variation in 71 genes known to be associated with autism spectrum disorders(121). These genes
should be enriched for loci that affect social behavior and genetic variation in these genes could
contribute to variability seen in WS. We called 1,367 variants in the 71 genes (Supplemental
Table S2). We annotated the variants as above, with clinical significance and measures of
deleteriousness compiled in dbNSFP. There are 313 (22.9%) variants that had at least one
submission to ClinVar. None of these variants had previous evidence to support pathogenicity.
There are 33 missense variants predicted to be deleterious by MetalLR that are seen in 36
individuals in our sample. Despite having a putatively deleterious variant the distribution of SRS
T-scores is similar between individuals either carrying or lacking deleterious variants in these
genes (t32.999=0.6878, p-value=0.4935). There are seven variants that should result in a truncated
protein, one stop gain in the USP45 gene and six frameshift mutations. Only one sample
harboring one of these mutations has a severe SRS T-score of 77. All of these protein-truncating

mutations are also observed in the EXAC cohort.

We next tested for associations of each of the 381 common variants (MAF> 0.05) in
these genes. No SNP was significant after multiple testing corrections (Figure 3B). The top five
SNPs are located in Table II. Since each of these genes has been associated with ASD, we
hypothesized that rare and common variants in each of the genes could contribute to SRS. We
performed SKAT-O on the variants located in the autosomal ASD genes altogether, which also
showed that there is little evidence to support variants in these 68 ASD genes have a strong

effect on SRS T-scores, p=0.431

While it would be underpowered for any but the largest effect sizes (Figure 2A), for
thoroughness we did an unbiased scan of the whole exome. We also examined the polygenic

contribution of common variants to the SRS. The common variant analysis was performed on
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66,620 variants (Figure 3C). The most nominally significant single SNP is rs527221 located in
the DMPK gene, which is responsible for causing type 1 myotonic dystrophy (129) (Table II).
While there is suggestive evidence for single variants such as rs527221, we calculated the
polygenic risk scores (PRS) for each of the individuals in our sample to test if exome wide there
are many SNPs of small effect that contribute to the social phenotype in WS. We used the
summary statistics from the most recent PGC GWAS on autism spectrum disorders to calculate
the PRS for our sample(130). We reasoned the polygenic risk of autism would be correlated with
the SRS because this is a questionnaire used to assess behaviors that are affected by autism.
Variants from the PGC GWAS were included if the p-value for the variant was under the
threshold determined by the high resolution screen in the PRSice software(131). Interestingly,
only the PRS for the motivation sub score was nominally significant (p=0.033), but after
permutation to determine an empirical p-value it was not significant (p=0.308). The correlations
of the PRS for each of the samples and the sub score as well as total SRS are shown in
supplemental figure 1. Counterintuitively, there is a negative correlation between the PRS and
motivation sub score. While this is the largest correlation between the PGS and sub scores it
implies that more genetic risk for autism leads to a lower and less impaired social motivation T-
score. However, given the small sample size and small number of SNPs available from whole
exome sequencing compared to whole genome genotyping we are wary of making strong

conclusions from this analysis.

We and others (20) have shown that individual sub scores of the SRS are affected
differently by the deletion of the WSCR. Therefore, we wanted to rule out the possibility that
variants are indeed affecting specific sub scales of social behavior, but that testing the total SRS

score is masking those effects. Thus, in an exploratory manner, we repeated the quantitative trait
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loci associations for each of the sub scores of the SRS using the variants in the WSCR, 71 ASD
genes, and the remaining whole exome variants. Since the sample size is small we conducted
these associations for exploratory and hypothesis generating purposes. The top five SNPs from
each association are reported in supplemental tables 3-5. For each of the analyses we see similar
variants showing the highest association as were associated with the total SRS, likely due to the
high correlation between the SRS and the sub scores (Supplemental Figure 2). Thus, an

analysis of the total SRS was not masking independent genetic effects on each sub scale.

2.4 Discussion

Phenotypic variability has been appreciated in many of the symptom domains of WS
including the cardiovascular phenotypes, the unique cognitive profile, and in social
behavior(132—-134). Here, we have described the variability of reciprocal social behavior in a
sample of 85 individuals with the typical WS deletion using the SRS-2. Our results replicate the
findings of Klein-Tasman et al. 2010, revealing that overall individuals with WS have SRS
scores that are shifted to the more socially impaired end of the distribution, with most problems
relating to the social cognition and restricted and repetitive behavior sub scales of the SRS while

social motivation is spared.

We also note that sex differences in the general population have been reported
previously in the literature for SRS. These sex differences were not consistent with different
genetic factors contributing to the SRS in boy and girls, but due to discrepant effects of common
genetic and environmental factors on SRS, such as differences in sensitivity to environmental
factors or the X-inactivation phenomenon (119). However, we do not see evidence of sex effects
in our sample of individuals with WS. The magnitude of the difference between males and

females in our sample is similar to what was reported in the general population, so our lack of a
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significant finding could be due to our small sample size. The standard deviation of the SRS is
large in both the general population and still larger in the WS population, so it may also be that
larger sample sizes are needed to overcome the considerable variance in the data. The fact that
the WS population has a larger standard deviation could also suggest that individuals with the
deletion are sensitized to other factors that contribute to variation in the SRS such as background

genetic variation or environmental factors.

We performed whole exome sequencing on our sample of 85 individuals to test for
additional genetic contributions to the variability seen in social behavior in individuals with WS.
We used the identified variants to test the hypothesis that genetic variation in the remaining
WSCR allele can explain some of the variability in SRS T-scores. Genes in this region have a
dosage sensitive effect on social behavior evidenced from the contrasting social phenotypes of
the WS deletion and the reciprocal duplication, suggesting that variants in the remaining WSCR
allele that affect expression or function of the genes could further contribute to the social
phenotype(13). We called 120 variants in the WSCR with 55 variants being exonic. We used
evidence such as the amino acid change, clinical significance suggested by the ClinVar database,
and multiple algorithms to predict the consequences of the variants. Within the WSCR we do not
find any variants that cause protein truncation. None of the missense variants are predicted to be
deleterious based on the MetalLR composite score. Of the nine variants that have been submitted
to ClinVar, all were described as benign or likely benign. A quantitative trait association analysis
using the common variants in the region resulted in no SNP that survived multiple testing
corrections. The most significant SNP, rs2074754, is a synonymous SNP in the BAZIB gene.
This gene encodes for a protein product in the bromodomain protein family that modifies

chromatin to affect transcription and has been implicated in the cognitive phenotypes in WS.
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Knocking down this gene in human derived induced pluripotent stem cells upregulates genes
involved in mitosis as well as downregulating genes that are involved in the development of the
nervous system(49) The second most nominally significant SNP, rs61438591, is an intronic
variant in GTF2IRDI1, which encodes for a transcription factor that has been suggested to
contribute to the cognitive and social behavior deficits (38, 39, 49, 92, 100, 101). If future
studies with increased power replicate this association, it would suggest that noncoding variation,
perhaps controlling the expression of this gene, might contribute to variation is social behavior.
We also tested the association of all variants in the WSCR using SKAT-O. This test indicated no

variants with sufficient effect size were detected in the WSCR.

While we have not shown evidence that variants in the remaining WSCR contribute to
the social phenotype in WS, we cannot conclusively discard this hypothesis. However, our study
does clearly indicate that the alleles genotyped here are either not causative or exert too small an
effect size on SRS for our current power (Figure 2), but it does not rule out variants of small
effect on social behavior in the region. Research on other copy number variants associated with
ASDs showed that larger CNVs tended to have genes of smaller individual effect size and
suggests the phenotype of the overall CNV is due to the cumulative effect of each of those
genes(121). Further we did not detect any variants in the gene GTF2I, which has been highly
suspected of contributing to the social behaviors in WS(31, 38, 53, 90, 96). The lack of variant
calls in our sample could be due to the fact that GTF2I is under stringent purifying selection.
Indeed, looking at the ExAC data covering this gene, they show that there are fewer missense
variants than expected by chance. EXAC discovered 62 synonymous and 56 missense mutations
in 60,706 people(135). In our sample of 85 individuals we would expect to see variants in EXAC

that have an allele frequency of greater than 0.0059, which is an allele count of one in our
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sample. There are ten variants with an allele frequency greater than 0.0059 detected in EXAC,
only three of which are exonic. Thus, we would need a much larger sample size to investigate
coding variants in GTF2I. The two linked variants in GTF2I that have previously been associated
with oxytocin responsiveness and amygdala reactivity, rs1322743 and rs4717907, are intronic

and were not covered in our sequencing(51, 118).

We further used the genetic data to investigate the role of variation in 71 genes that have
been associated with ASD. WS and ASD do show phenotypic overlap(114, 136), and we
reasoned that these genes should be enriched for functional roles in social behaviors. Likewise,
the presence of outlier scores on the SRS that indicated severe impairment, suggested there could
be possible second deleterious hits on top of the WS deletion in our dataset. Second hits are
expected to be rare but have been observed in WS to explain a case of a child with comorbid
seizures(54). Inspecting the 1,367 variants discovered in the ASD genes, 313 variants have been
previously submitted to ClinVar, none of which show evidence for any pathogenicity. We
observed seven protein-truncating mutations that do not associate with severe SRS T-scores.
Several missense mutations were predicted to be deleterious, but there was no association
between individuals that had a putative deleterious variant and a more impaired SRS score.
Testing the common and rare variants in these genes showed no associations with the social
phenotype. Similar results were found when we performed the association analyses on all of the
variants discovered in the cohort. The most significant SNP was rs527221, a nonsynonymous
variant in the DMPK gene, which is responsible for causing type 1 myotonic dystrophy, severe
childhood forms of which have been associated with ASD(137). We also tested if polygenic risk

for increased ASD liability is associated with the SRS T-score and sub scores. This boosts our
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ability to detect the impact of many loci with small effects. The largest correlation was between

the PRS and the social motivation sub score, although this was not significant.

WS seems to affect specific domains of social behavior as evidenced by significant
differences between the sub scores of the SRS. This observation led us to an exploratory
examination of associations with the sub scores of the SRS and test if different genetic variants
contribute to each sub score. Overall using variants from the WSCR, ASD genes, or the whole
exome identified the same variants as nominally significant. The SRS and the sub scores are very
correlated, but the social motivation in the WS sample is the least correlated to all other scores.
This reflects that fact that social motivation tends to be rated within the normal range in WS,
while the other scores are often higher. Interestingly, the whole exome association on the
motivation T score leads to the lowest FDR values compared to the other scores, suggesting that
there may be more genetic signal when using this sub scale. Indeed, this decoupling of the social
motivation subscale from other SRS items highlights the possibility that the social motivation
subscale might provide useful clinical information going forward; individuals carrying the
WSCR deletion yet not showing a spared social motivation might warrant a deeper examination

for additional factors impacting their presentation.

There are several limitations to our current study that should be addressed in future
research. First the current study genotyped and assessed only the probands and not their parents.
Having genetic information from trios would allow us to distinguish between variants that are
inherited or de novo, which would aid in interpretation and prioritization of variants. Further,
being able to compare the SRS score of the individual with WS to biparental SRS mean would
let us control for effects of background genetic variation(120). Second, we are limited to

investigating exonic variation. While interpretation of exonic variants is more straightforward
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because they potentially disrupt coding sequences, and can aid in the detection of deleterious rare
variants, we could be missing important regulatory information that is located in promoters or
introns of genes. Third, we were not able to control for intellectual functioning of the individuals
with WS. The SRS has been reported to not correlate with intellectual functioning(138), but
Klein-Tasman et al. 2010 found significant negative correlations between intellectual functioning
and the total SRS T-score when parents completed the report, but not when teachers completed
the report. SRS values have been shown to be dependent on levels of expressive language,
nonverbal 1Q, and behavioral problems. A subset of SRS questions was selected to ameliorate
these dependences(139). The short form of the SRS as well as other questionnaires that assess
adaptive skills and social behaviors could be used in the future to provide supporting information
about the social phenotype and underlying genetics in WS. Finally, while our study represents
the largest single collection of WS samples reported to date, it is only powered to detect strong
effects of common variants due to our small sample size. This is challenging to overcome due to

the low prevalence of WS.

In conclusion, we have tested the hypothesis that variation in the remaining WSCR allele
affects the social phenotype of individuals with WS, by applying whole exome sequencing to a
sample of 85 individuals with typical WS deletions. We show that common and rare variants in
the region do not associate with SRS T-scores in our sample. Further, we show that variation
outside of the region does not account for the social variability. This is not to say that genetic
variation does not play a significant role in phenotypic variability in WS, but that it will require
larger sample size to detect. In the future, applying whole genome sequencing to a sample of
individuals with WS might elucidate the roles of genetic variation in the regulatory elements.

Whole genome data could also allow for more accurate breakpoint determination. Redundant
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sequences in the low copy number repeat areas at either end of the WS deletion prevent accurate
end point detection by CMA. This will be an interesting avenue to pursue in order to investigate
how deletion size variation among individuals with typical 1.5 to 1.8 MB deletions contributes to
social behavior. For example, Porter ef al. showed that those with larger (1.8Mb deletions) had
decreased executive functions(41). It is also worth noting that the current genetic data set has
additional clinical data available, which can be queried in the future for the presence of more

substantial associations with other WS related phenotypes.

2.5 Materials and Methods

Ethical Compliance and samples

This study was conducted with approval of the IRBs at Washington University School of
Medicine and the National Institutes of Health. Consent was obtained prior to inclusion in the
study. Once enrolled, participants provided a DNA sample by blood or saliva and their care-
givers filled out health related questionnaires. The 85 individuals that make up our sample have
ages that range from 2.5 to 65.5 years with a mean of 16.1 years. Caregivers provided a self-
reported ethnicity. The majority of the sample was reported as white (77 individuals). There are

two individuals that are African American, three Chinese, and three others.
Confirmation of diagnosis

WS diagnosis and typical deletion size was confirmed using either chromosomal microarray or
quantitative PCR. In some cases, clinical microarray results were derived from the medical
record. Array type varied by individual. For the remaining individuals, some received a
research array (Cytoscan HD, Applied Biosystems) with analysis using the accompanying ChAS

software. Others underwent deletion size assessment using quantitative PCR for genes within
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and outside of the Williams region using Tagman copy number probes (Thermo-Fisher, AUTS2:
Hs04984177 cn, CALNI1: Hs04946916 cn, FZD9: Hs03649975 cn, CLIP2: Hs00899301 cn,
HIP1: Hs00052426 cn, POM121C: Hs07529820 cn). Copy number analysis was done
according to the manufacturer’s instructions and output data analyzed using their Copy Caller
software. All individuals were confirmed to have deletions that included the WSCR genes ELN,
FZD9 and CLIP2, but did not include genes external to the typical deletion such as CALN,

AUTS2, POM121C or HIP1 (data not shown).

Social Responsiveness Scale

The social responsiveness scale-2 (SRS) is a 65-item questionnaire that measures aspects of
social interaction that make up the core symptoms of autism spectrum disorders. The output is a
total raw score as well as a T-score that is adjusted for sex, age, and the relationship of the
reporter to the proband. The total score is made up of the scores of five subcategories that are
impaired in ASDs: social awareness (AWR), social cognition (COG), social motivation (MOT),
social communication (COM), and behaviors typical of autism such as restricted interests and
repetitive behaviors (RRB). The response to each question ranges from 1 (not true) to 4 (almost
always true). The T-scores are binned into four groups: normal < 59, mild between 60 and 65,
moderate between 66 and 75, and severe > 76. For this study, the age-specific (pre-school,
school age, or adult) SRS-2 was completed by the participant’s caregiver and analyzed as a T-
score that is adjusted for sex, age, and the relationship of the reporter. We provide values from

the general population that have been previously reported for comparison (119, 138).

Sequencing and Variant calling

50



Whole exome sequencing and alignment was performed at Washington University in St. Louis
by the McDonnell Genome Institute on 85 DNA samples from individuals with WS. Exomes
were captured using Nimblegen SeqCap EZ Choice HGSC Library version 2.1, which targets
45.1 Mbp covering 23,585 genes and 189,028 non-overlapping exons. Exomes were aligned to
the GRCh37-lite genome using bwa —mem v0.7.10(140) default settings, samtools v0.1.19(141)
was used to assign mate pairings, sort, and index the bam files. Duplicates were marked using

Picard MarkDuplicates v1.113.

Variant calling was done following GATK best practices on the aligned exomes (142). Briefly,
using GATK v3.6.0 indels were realigned and the base quality scores recalibrated. Variants were
initially called per sample using the haplotype caller tool, followed by jointly calling variants. To
improve variant calls, we recalibrated variants and used a truth sensitivity tranche of 97 for
SNPs, and a truth sensitivity tranche of 94 for indels. These thresholds were chosen to maximize
the number of known and novel variants while still being stringent enough to limit the number of
false positive variant calls. To further filter the variants we used the VariantFiltration tool to
filter variant sites that had lower than a 10x average coverage or an inbreeding coefficient less
than -0.20 to remove sites with excess heterozygosity. Genotype calls were filtered and
considered to be missing if they had a genotype quality score of less than 20, which refers to a
99% probability that the call is correct. Finally, using vcftools v0.1.14(143), we removed sites
that had a genotype missing rate of greater than 10%, as well as sites that no longer showed any
variation. This produced a call set of 202,820 variant sites. The final call set has a Ti/Tv ratio of
2.76 and a dbSNP rate of 88.5%. These metrics are consistent with quality variant calls and a low

false positive rate.

Variant annotation
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The variant call set was split into three groups using vcftools: 1) variants in the Williams
syndrome critical region (WSCR) defined by hgl9 coordinates chr7:72,395,660-74,267,841 2)
variants located in 71 genes associated with ASD(121), and 3) the remaining non-overlapping
variants. All sets include exonic variants as well as variants located in introns that are pulled
down by the capture reagents. Bcftools v1.2(141) was used to split multiallelic sites into
separate lines for each allele and left normalized so positions would be compatible with
ANNOVAR annotation files version 2016-02-01(144). The ANNOVAR table annovar.pl
function was used to annotate all three variant call sets with the RefSeq gene annotation, variant
consequence, EXAC allele frequency(135), sample specific allele frequency, dbsnpl47 name,
clinical significance assessed by ClinVar(145). Missense variants were also annotated with
measures of deleteriousness compiled in dbNSFPv3.3a(146). We highlight the CADD PHRED
score and MetaLLR as two measures of variant deleteriousness. CADD scores are defined at each
base in the genome and for every possible single nucleotide change(147). CADD scores compare
65 annotations, including functional data as well as conservation scores, between fixed human
derived alleles and simulated variants. Deleterious variants should be depleted in the observed
fixed alleles and not in the simulated variants. CADD PHRED scores represent the relative rank
of a CADD score compared to all other possible allele CADD scores; a CADD score of 10
means this allele is ranked as the top 10% of all possible CADD scores. Larger CADD PHRED
score indicates an increased predication of deleteriousness. MetaLLR uses logistic regression to
incorporate information from 9 other variant annotations that consider function as well as
conservation(126). The model was trained on true deleterious variants and true neutral variants
described in the Uniprot database. The composite MetaLR score was found to have greater

predictive ability than any of the single scores that make up MetaLR.
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Power Analysis

We performed a power analysis to provide the limits of genetic effects that we would be able to
detect given our cohort size. For future studies we also calculate the sample sizes that would be
needed to detect different magnitudes of genetic effects. We used the Genetic Power Calculator
(148). We calculated the predicted power of the current sample size n=85 using a p-value
threshold corresponding to the Bonferroni corrected alpha for each set of analyses (WSCR 34
variants, alpha=0.00147, ASD 381 wvariants, alpha=0.000131, WEX 66620 variants,
alpha=7.5x10”. Our main hypothesis is variants on the remaining WSCR allele affect the social
phenotype; we wanted to calculate the sample sizes that would be required to detect different
size genetic effects in the WSCR at different levels of power. We again used the alpha threshold
based on the 34 common variants we identified in the exons of the WSCR and report the sample

size required to achieve a specific power.
Association analyses
Common variant analysis

The variant call files were converted to plink binary bed format using the GATK tool
VariantToBinaryPed. We used PLINK v1.9(149) --linear option to conduct a quantitative trait
association using the SRS T-score as the quantitative trait. Ancestry was controlled for by
including the first four principle components, determined by the --pca function in PLINK, as
covariates along with sex and age. We used alleles that had a minor allele frequency (MAF) of
0.05 or greater. We performed the association analyses on the three separate groups of variants
described in the previous section. It should be noted that allele frequency in the Williams

syndrome critical region is inflated because of the hemizygous state of the region in individuals
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with WS. A MAF of 0.05 in this region corresponds to an allele count of four. In all cases we
report the effect size of a variant under an additive model. Though the small sample size of this
study limits power, in an exploratory fashion we also performed the same quantitative trait
analysis on each of the sub scores of the SRS using variants in the WSCR, ASD genes, and the

whole exome.

SKAT-O

SKAT-O (150)was implemented in the R v3.1.3 environment. SKAT-O fits a multiple linear
regression of all SNPs located in a user provided region. The framework in SKAT-O allows for
correlation between SNPs in a region, where if all SNPs are perfectly correlated this would
become a burden test, but also allows SNPs in the same region to have effects in opposite
directions. Significance is assessed by region rather than by SNP. We considered each gene that
harbors a variant in the WSCR as a separate region for a total of 26 regions. To test for an overall
effect of variants in the ASD genes we collapsed the 61 autosomal genes into one region. We
used the beta function shape parameters (1,50) to put more weight on SNPs that have lower
minor allele frequency, reasoning that rare causal alleles potentially have a greater effect size.

We again controlled for age, sex, and the first four principal components.

Polygenic Risk Score

Polygenic Risk Scores (PRS) can be used to test if there is a contribution of many loci of small
effect on the phenotype of interest by summing the effects of variants that may have not reached
genome-wide significance. For a discovery set, we used the publically available summary
statistics from the most recent Psychiatric Genome Consortium genome wide association study

(GWAS) of autism spectrum disorder (130), reasoning that genetic risk for autism would
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contribute to SRS scores. The best-fit PRS was determined using the high-resolution
functionality in the PRSice software(131). All of the variants identified throughout the exome
with a MAF >0.05 and that are also present the in the discovery set were used to calculate the
PRS. Sex, age, and the first four PCs were included as covariates. After clumping there were a
total of 23,191 variants used to calculate the PRS. PRSice was used to calculate the significance
of the PRS at the best-fit p-value threshold using 10000 permutation to determine an empirical p-
value. PRS for each of the samples was calculated for the total SRS T-score as well as the sub

scores.
Other statistical analyses

All remaining statistical tests were done in the R v3.1.3 environment. Two sample t-tests were
used to compare the means of two groups. ANOVA was used to test differences in mean of sub
scales of SRS. TukeyHSD post hoc comparison was performed using the multcomp package.

The qgman(151) package was used to generate manhattan and qq plots.
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Figure 1: Distribution of Social Responsiveness in 85 individuals with typical WS deletion. A Distribution of
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Figure 2: Power analysis. AThe power to detect variants of different effect sizes for the current study. The alpha
for the three different sets of analyses was determined by using the Bonferroni correction based on the number of
SNPs tested in each analysis. (WSCR: variants in the WSCR, ASD: variants in the 71 ASD genes, WEX: all
remaining variants exome wide). B The predicted sample sizes that would be required to achieve different levels of
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Figure 3: Variants in the WSCR, ASD genes, or whole exome do not contribute to SRS variability in a sample
of WS with typical deletions. A qq plot showing distribution of p-values for common variants in the WSCR. Locus
zoom plot showing the SNPs tested in the WSCR, highlighting the most nominally significant SNP in BAZI/B. B qq
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and manhattan plot for variants called in 71 genes associate with ASD from Sanders et al. 2015. C qq and manhattan
plot for variants exome wide. Blue line demarcates a suggestive p value threshold of 1x107.
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Supplemental Figure 1: Polygenic Risk Score correlation with SRS and SRS subscores. A-F Panels show the
correlation between the polygenic risk score (PRS) for the sub scores of the SRS calculated using variants from the
PGC ASD GWAS that fall below the p-value threshold calculated from the best-fit PRS. Pearson correlation values

60



between the samples PRS and the SRS subscore shown as the inset.
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Supplemental Figure 2: SRS and sub scales are correlated. Heatmap display of the Pearson correlation values of
the SRS and sub scale T-scores in 85 individuals with WS. Values of the correlation are labeled in the plot.
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Table 1: Annotation of 55 exonic variants discovered in the WSCR

MetalLR  MetalR CADD

o s PHRED

r Start avsnpl47* Alt MAF  Transcript  Gene  Consequence

7 72717686 rsl45622470 T 001176 M 00116834 NSUNS P399P 8.726

7 72738534 rs371073794 T 001176 M 00128145 TRIMSO PS4P 15.11

i | |

7 72738762  rs6980258 T 09882 M 00128145 TRIMSO LSL 0.46

7 72744246 rs200493820 T 001176 M 0012813C FKBP6 T90M 0.492 13.74

7 72856676 1178978

-3

001176 NM 032408 BAZIB 143 . . 11.69

7 72891754 rs2074754 0.4 NM 032408 BAZIB .S679S . 10.13

7 72951640 rs142166738 001176 M 00119724 BCL7B ALR2A . 7.437

‘

7 72987758 . 001176 NM 012453  TBL2 FI6AV 0.154 273

7 73010754 61738649 005882 NM 032951 MLXIPL L6261 2.706

7 73020301 rs79157 09647 NM 032951 MLXIPL .S2538 2.151

7 73020439 12539160 001176 NM 032951 MLXIPL LA207 1268

Bk B
>

73097082 79849491 002353 NM 032317 DNAJC3O F224F 0.66

7 73122977 rs2229854 A 005882 M 0011659 STXIA NSON 11.25

7 73245591 rs142910620 T 001176 NM 001305 CLDN4 LA20A 1787

7 73275565 11770052 0.7647 NM 182504 WBSCR28 114N 0 T 1545

7 73279413 rslIB088869 003529 NM 182504 WBSCR28 RSSW 0.0 1549

7 7366285  rs69T9TRK 001176 M 00127891  ELN A271A . L5l

7 73474268 rs200512332 001176 M 00127891  ELN VaosV 9.149

7 73474825 17855988 007059 M 00127891  ELN GSO0OR 0.007 232

7 73631177 rsl44269935 002353 NM 014146  LAT2 139M 0.013 259

7 73663362  rsI805395 005882 M 00127876  RF(C2 E3E

7 73811479 76865959 001176 NM 003388  CLIP2 .R897 4.969

7 73814749 rs2522943 09647 NM 003388  CLIP2 R942P 0 1833

7 73932488 rsl12098981 001176 M 00119920 GTF2IRDI  p.AIT9A . 9.272

7 73932560 17851629

02118 M 00119920 GTF2IRDI E203E .

7 73944095 61744518 002353 M 00119920 GTF2IRDI P406P .

C .
G .
C . . .
C . .

C i T

G .

G .

T .

T

73953017 55634982 001176 M 00119920 GTF2IRDI .S5178 .

* " Refers to information that is not anolicable
* T the missense mutation is oredicted to be Tolerted



Table 2: Top five SNPs from quantitative trait locus associations

onfid Analysh
MAF Tramscript® Gene Comequence Beta anc e T FDR

SNP

z
i

nol43859 1

L]
<
[

GTF2IRDI intronic 3506 046486 547 0.0267 04542 WSCR
3812316 0.11 NM_ 032951 MLXIPL QMIH 3402 -0.7692 - 1.512 01141 0 8466 WSCR
12983010 007 NM 14469 CAPNI2 C2IR 9286 196 - 1658 00151 0.6587 ASD

131 40682 048 NM_ 000810 GABRAS V22V 4377 =78 - 08801 0.0164 0.6587 ASD

3

[~} I (=~}

r3l 12318565 ARIDIB inkronic 10.22 1.918 - I18.51 00182 0.6587 ASD

2546028 C 054 . ZNF792 UTRS 695 4801 - 409 i ‘i |i¢ 015822 WEX
I8l G 046 NM 00109437 ZINF30 QIMR 7.166 41161022 Al 10 015822 WEX
* = Refers w information that is not aolicsble
" WSCR( Williams svadrome critical Region). ASD (71 genes sssociaied with ASDL. WEX (variants across Whok: Exome)
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Supplemental Table S1: Annotation of 120 variants discovered in the Williams syndrome critical region

Genic Sample ExAC . cAbD
Che Start Alt avsnp147 Gene Consequence’ AA change Metal R

location freq freq prediction PHRED

7 72413057 A 157826 18986 exonic POMI21 nonsynonymous SNV p.SSTIN 0.005882 0.0625 T 0.006

7 72718187 A 5147531105 intronic NSUNS . . 0.02353 0.0025

7 72722565 G 5199740800 intronic NSUNS 0.01176 0.0006

7 72732712 S 5192182316 intronic TRIMS0 . . 0.01176 0.0022

7 72732785 T 5183981056 intronic TRIMS50 . . 0.02353 0.0175

7 72738561 T 361741334 exonic TRIMS0 synony mous SNV pa7s1 0.04706 0.0204

7 72738763 G 56980124 exonic TRIMS0 nonsynonymous SNV p.L8P 0.9882 0.9993

7 72744143 G 153950375 intronic

g
E

0.01176 0.0108

7 72754645 A 1356301507 exonic

;
j
:

p.LI6SL 0.01176 0.0622

7 72850178 S 1178947 UTR3

3

02

7 72850305 A rs113683726

2
g

001176

7 72857049 G rs1178977 BAZIB . . 0.1882 0.1678

H

7 72874088 A ;5799215 BAZIB . . 00176 0.0039

HS

7 72925046 A 15377098092 BAZIB 0.01176 8.24E-06

2

7 72951640 G 5142166738

BCL7B synonymous SNV PAI2A 0.01176 0.0029

7 72987758 S

g
-
"~
]
P

TBL2 nonsynonymous SNV pFl64V 0.01176

7 73008330 A 572649011 MLXIPL 0.01176 0.003

2

7 73011163 G rs782188633 MLXIPL . . 001176 1.14E-05

ES

7 73019975 G 361010704 MLXIPL . . 0.2353 0.2325

Z

7 73020337 G 3812316

2
H

MLXIPL nonsynonymous SNV p.Q24IH 0.1059 0.1352 T 19.07

7 73021654 T 15200438567 MLXIPL 0.01176 0.0036 T 1.28

ES

g
i
3
@
E

7 73083889 T 1361743139 synonymous SNV P.ADA 0.02353 0.0144

7 73084316 A 5185557423

;
3
@
3

0.01176 0.004

7 73097238 A 131569062

:
:
i
%
K

pYIT2Y 0.3294 0.3043

7 73107003 A 2293490

!
5

03412 03022

7 73114829 A r$45549734

|
:

0.02353 0.0147

7 73122977 A 2229854

2
H

STXIA synonymous SNV p.NSON 0.05882 0.0762

7 73245591 T 5142910620

CLDN4 synonymous SNV p.A20A 0.01176 0.0007

7 73246496 T 51127156

:

CLDN4 . . 0.7647

7 73246727 -

:

CLDN4 0.005882

7 73275501 c 311770024

3

WBSCR28 . . 0.7765 0.6655

7 73275565 A 511770052 exonic WBSCR28 nonsynonymous SNV plIaN 0.7647 0.6563 T 1545

7 73279413 T rs 118088869 exonic WBSCR28 nonsynonymous SNV pRSSW 0.03529 0.0257 T 15.49

7 73449750 A . intronic ELN . . 0.01176

7 73452140 A 2301995 intronic ELN . . 0.02353

7 73457506 T S5 5868272 intronic ELN . . 0.02353 0.016

7 73470714 A 2071307 exonic ELN nonsynonymous SNV p.G412S 0.4706 0.3262 T 6674

7 73472050 T 28763986 intronic ELN . . 0.6 0.5933
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7 73474367 A 561734584 exonic ELN synonymous SNV p.GHIG 0.01176 0.003

7 73477524 A rs140425210 exonic ELN nonsynonymous SNV p.G529S8 0.01176 0.0011

-
8
3

7 73480258 G rsd5618836 intronic ELN . . 0.01176 0.0279

7 73481028 T 53757587 intronic ELN . . 0.1059 0.1084

7 73588650 A 5531201818 upstream EIF4H . . 0.01176

7 73605599 T 56971711 ncRNA_exonic MIR590 . . 0.01176 0.0067

7 73636045 C 5201410958 intronic LAT2 . . 0.01176 0.0167

7 73638035 G 5112055519 intronic LAT2 . . 0.04706 0.0433

7 73651743 C 53135688 exonic RFC2 synonymous SNV p-V160V 0.01176 0.0372

7 73654225 T 1573129384 intronic RFC2 0.04706 0.0385

7 73663362 C rs1805395 exonic RFC2 synonymous SNV pE3E 0.05882 0.0306

7 73664115 A rs1805391 intronic RFC2 . . 0.01176 0.0237

7 73666853 T 577326053 intronic RFC2 . . 0.01176 0.0234

7 73811479 C 576865959 exonic CLIP2 synonymous SNV p-R8ITR 0.01176 0.0057

7 73814749 C rs2522943 exonic CLIP2 nonsynonymous SNV p.R942P 0.9647 0.9822

-

1833

7 73932488 G 5112098981 exonic GTF2IRD1 synonymous SNV pAIT9A 0.01176 0.0017

7 73932560 G 517851629 exonic GTF2IRD1 synonymous SNV p.E203E 02118 0.2026

7 73933793 T 15148463467 exonic GTF2IRD1 synonymous SNV p.V252v 0.01176 0.0001

7 73944185 C 52240357 exonic GTF2IRD1 synonymous SNV p.Y436Y 0.2353 0.2462

7 73953017 T 1555634982 exonic GTF2IRD1 synonymous SNV p.S517S 0.01176 0.0064

7 73971959 T 1576184137 intronic GTF2IRD1 . . 0.04706 0.0321

7 74211576 C 5587728502 exonic GTF2IRD2 nonsynonymous SNV p-M759V 0.01176 0.001 T 0.893
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Supplemental Table S2: Genetic variants in 71 genes associated with autism spectrum
disorder

ExAC
Chr Start Al avspld? genkc location eme consequence AA change Sample_freq MetaLRpred  CADD PHRED

1 150239722 A 1140561586 intronic APHIA . . 001176 0.0012

1 150241230 T n22757%0 UTRS APHIA . . 009412 0.1662

1 151378214 T 116755407 exonic

g

syonymous SNV PEIGIE 0.005882 0.0014

1 151379137 G 754254486 intronic

:
:

A 4E-08

1 151379699 T 112534709 intronic

g
:
:

1 151380736 G n762774439 intronic

:
:
:

1 151384258 AGG 201882243 intronic

:
:
;

1 151384734 A 184678605 intronic

g
g
g
i

1 151396037 c n2274534 intronic

g
i

1 151400771 A 749391687 exonic

g

synonymous SNV pTIAT 0.005882 0.0002

1 151413367 < n201418770 intronic

£
§
g
;
&8

1 153636466 - . intronic LR . . 0.07059

1 153636469 - I T6RSRS289 intronic LR . . 005294 0.0278

1 153636472 ACC n527872479 intronic LR . . 0.005882 0.0142

1 153636860 G 14351684 intronic R . . 0.5059 0.5939

1 153638078 < 116679182 intronic LR . . 0.005882

1 153641058 c 114292408 intronic LR . . 001176

1 155313481 T n748779793 ‘exonic ASHIL

E
ki
:
g
i
H

1 155319323 T 185392232 intronic ASHIL . . 0.005882 0.0042

1 155327559 G 60211142 intronic ASHIL . . 0.005882

:

1 155348199 G 139363488 intronic ASHIL . . 001765 0008

1 155408636 T 161732805 exonic ASHIL syonymous SNV PVITIOV 002353 0.009%

1 155420725 C 131 0908466 intronic ASHIL . . 03 0.3301

1 155451719 T 115200829 exonic ASHIL synonymous SNV PpAILAA 0.005882 0.0021

1 202700209 - 745309787 intronic KDMSB . . 0.005882 BRIE-06 . .
L mmee e aumMz e KOMS L eesmeen L
1 202703053 A nA310498 intronic KDMSB . . 08118 0.8126 . .
L1 mmse @ asnTn ame KDMS omemewSNV. pAGA sz e L L
1 202705455 c 1141109 exonic KDMSB synonymous SNV priosor 0.7529 0.7394 . .
L1 wmse @ wsem ke KOMB L L eesmeem L L
1 202710776 T 111464225 ‘exonic KDMSB synonymous SNV PASSEA 0.005882 0.0023

1 202711778 A TS 6042155 intronic KDMSB . . 002353 0.0235

1 202718028 G 1892163 intronic KDMSB . . 07 0.67

1 202718069 c 61751237 intronic KDMSB . . 001176 0.0058

1 202718310 c 151 0920472 intronic KDMSB . . 0.04706

5

1 20272949 c BI69961856 intronic KDMSB

g
Z
i

1 202729678 c 1149504096 ‘exonic KDMSB synonymous SNV plilan 0.005882

|

é

1 202733178 G 161749325 exonic KDMSB syonymous SNV PN26IN 003529

1 202743892 c 1517497253 intronic KDMSB . . 0.2588 0.2471

1 202177215 A 151 2028388 intronic KDMSB . . 005294 0.0805
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2 162274680 [ 15 SAREROSEY intronic TRRY . . Q008K 0006 . 5

2 162276712 G SN examic THRI symonymons SNV PTATST Q005882 0006 . .

2 16280748 A RN0T6 UTRY ThRY . . ax176 oxm . .

2 166152651 A 1115385588 ntroni: SON2A . . QO0S 8K 0w . .

2 16a1 64048 A w2401 ronk SON2A . . QOS8R O . .

2 166168503 G w2016 ntronk: SON2A . . aonte 007 . .

2 166172313 T 189735691 i ronk SON2A - - Q0S8R 0006 . .

2 1661 9650 T wISATSO4 ntroni; SON2A . . 06059 05208 . .

2 1661 8006 1 G . ronk SON2A . . Q0S8R . . .

2 166223900 G 5142439830 ntroni: SON2A . . 001768 0004 . .

2 16A224076 G B ISAIRRS ronk SON2A . . 01588 02490 . .

2 151791498 T 113570684 ntronic NCKAPL . . aonte 00046 . .

2 1851795820 T s Ss0T ronk NCKAPL . . QO0S K2 0000 . .

2 1379570 G 139260477 imtronic NCKAPL . . aonte oo . .

2 13817473 G 5 I8K2S 1808 intronic NCKAPL . . QO0S K2 0om7 . .

2 1818074 < BTS04

2 128274 [ w2688 intronic NCKAPL . . QoS24 0058 . .

Z
§
g
i
Z
Z
H
g
i

2 1K3848114 [ 1400130 mronk NCKAPI . . 0242 0227 . .
e e
2 13867004 A 141187393 troni NCKAPML . . oims 0.0 . .
[ T TR TS . S —
2 2839134 < . ronk cus . . QO0S K2 . . .
[ s e e e O e sV g eren e L
2 228346804 G 11 28708 mtroni: cu . . QO0S SR 0.00m . .

2 2965109 A s413T 148 exaaic cus symaymons SNV PALIA 001765 00143 . .

2 2816821 G w1738951 mronk: cu . . 44 oS . .

2 28176004 A sl 1686067 ronk cus . - a14m 01888 . .

2 20783 . w1KW0176 tronic cu . . axmn 028 . .

2 225431679 T 5142512548 ntroni; cu . . aonte . . .

2 20612268 A AR T UTRY TRIPI2 . . oims

-
H

2 210643350 AAMACAAA 777010656 imtroni; TRIPI2 . . QO0S 8K

]

2 210856014 A s I4TI3ER ronk TRIFI2

g
[
;

2 210663576 T BOT20 868 ntroni; TRIPI2 . . 03471 [RILA) . B

2 2U0868KEK < w 13018957 exomic TRIFI2 sy mmymons SNV prsaTT 04768 o482 . .

2 20668968 A w49T2915 ronk TRIPI2 . . Ox1x o0MIs . .

i
H
i

2006 7040¢ . SSTIOMOS TRIFI2 . . &2

2 20672404 T s ATISA459 imtronic TRIPI2 . . QO0S K2 42608 . .

2 210695872 < 15081174 TRIFI2 . . O00S K2 007 . .

2 20724301 G IS TRIPI2 . . QO0S K2 00004 . .

3 T2 T = 1708016 tronk SETDS . . sy . . .
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Supplemental Table S3: Top 5 SNPs for each SRS subscore for variants in the Williams syndrome Critical
Region

0,
SNP Alt allele MAF Transcript* Gene Consequence Beta % A».Conﬁdence Raw FDR SRS sub
interval _value category

rs13235543 T 0.12 NM_032954 MLXIPL p.P342P 3.399 0.05103-6.746 0.05016 0.5083 AWR

rs61438591 C 0.2 . GTF2IRD1 intronic 2.426 -0.3677 - 5.22 0.09284 0.5083 AWR

rs2074754 T 0.4 NM_032408 BAZIB p.S679S 4.145 1.496-6.794 0.003006 0.1022 COG

rs17851629 G 0.21 NM_016328 GTF2IRD1 E171E 3.129 -0.1129 - 6.37 0.06229 0.706 COG

rs7795181 C 0.22 . VPS37D intronic -2.082 -5.346-1.183 02153 0.8179 COG

rs61438591 C 0.2 . GTF2IRD1 intronic 3.732 0.7711 - 6.692 0.01573 0.2675 COM

rs3812316 G 0.1 NM_032951 MLXIPL p.Q241H 3.122 -0.995 —7.238 0.1414 0.7693 COM

12074754 T 0.4 NM_032408 BAZIB p-S679S 2.411 0.301 —4.521 0.02808 0.8893 MOT

rs17851629 G 0.21 NM_016328 GTF2IRD1 E171E 1.862 -0.6716 —4.396 0.1538 0.8893 MOT

1s2240357 C 0.23 NM_016328 GTF2IRD1 p.Y404Y 1.745 -0.7424 — 4.232 0.1731 0.8893 MOT

rs61438591 C 0.2 . GTF2IRD1 intronic 2.762 -0.4886 — 6.012 0.09996 0.7104 RRB

rs61010704 G 0.25 . MLXIPL intronic 2.476 -0.6671 —5.619 0.1269 0.7104 RRB

* «” Refers to information that is not applicable
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Supplemental Table S4: Top 5 SNPs for each SRS subscore for variants in 71 genes associated with Autism
spectrum disorder

o,
SNP Alt allele MAF Transcript® Gene Consequence Beta 95 Ail?t:::i;ence Raw FDR cszesg:)l:l:
p-value ”

1545599933 A 0.06 5 CAPNI2 intronic 11.72 4.596 - 18.85 0.001854 0.1735 AWR
rs12983010 G 0.07 NM_144691 CAPNI2 p.C287R 10.47 4.028 -16.91 0.002085 0.1735 AWR
1s3733615 G 0.16 NM_001148 ANK2 p-Q2370Q 6.806 2.486 - 11.13 0.0028 0.1735 AWR
1533966911 T 0.11 NM_001148 ANK2 p.P1823P 7.609 2.764 —12.45 0.002885 0.1735 AWR
rs28377576 (© 0.11 NM_001148 ANK2 p-V2369A 7.578 2.734-12.45 0.002991 0.1735 AWR
153750354 T 0.39 . PHF2 intronic -6.727 -10.58 —-2.875  0.0009956 0.1897 COG
17036592 T 0.39 5 PHF2 intronic -6.727 -10.58 —-2.875  0.0009956 0.1897 COG
rs10992813 A 0.37 . PHF2 intronic -6.476 -10.43 —-2.527 0.001922 0.2441 COG
153763605 G 0.63 5 PHF2 intronic 541 1.399 - 9.421 0.009964 0.5607 COG
rs3750358 C 0.63 . PHF2 intronic 5.311 1.276 —9.345 0.01178 0.5607 COG
rs112318565 G 0.06 5 ARIDIB intronic 11.63 3.582-19.67 0.005892 0.8653 COM
1512553775 A 0.11 . PHF2 intronic 7.386 1.482-13.29 0.01647 0.8653 COM
rs140682 Cc 0.48 NM_000810 GABRAS p-V202V -4.218 -7.659 —-0.7778  0.01867 0.8653 CoOM
154351684 G 0.51 . ILF2 intronic -4.662 -8.546—-0.7782  0.02119 0.8653 COM
rs1805482 A 0.35 NM_000834 GRIN2B p.S5558 4.615 0.6839 —8.546 0.0241 0.8653 COM
30612 C 0.84 NM_007118 TRIO p-T1700T 6.392 2.773 -10.01 0.0008803 0.3354 MOT
rs12983010 G 0.07 NM_ 144691 CAPNI2 p.C287R 8.842 2.839-14.84 0.005044 0.6218 MOT
145599933 A 0.06 . CAPNI2 intronic 9.766 3.115-16.42 0.005181 0.6218 MOT
rs7005873 A 0.74 5 CHD7 intronic -4.68 -7.972 --1.388  0.006735 0.6218 MOT
1527100 T 0.43 . TRIO intronic -4.171 -7.182—-1.161 0.008161 0.6218 MOT
rs7005873 A 0.74 . CHD7 intronic -6.41 -10.54 —-2.279 0.00323 0.5602 RRB
51805482 A 0.35 NM_000834 GRIN2B p.S5558 6.074 1.944 - 10.2 0.005112 0.5602 RRB
15112318565 G 0.06 5 ARIDIB intronic 12.3 3.682-20.91 0.006502 0.5602 RRB
157844902 G 0.72 . CHD7 intronic -5.388 -9.483 —-1.294 0.01186 0.5602 RRB
155891777 TGGACT 0.74 5 CHD7 intronic -5.144 -9.263 —-1.025 0.01665 0.5602 RRB

"« Refers to information that is not applicable

Supplemental Table S5: Top 5 SNPs for each SRS subscore for variants discovered across the whole exome

SNP Altallele  MAF Transcript Gene  Consequence Beta 95 /"ili':'r"';eme Raw FDR fﬁfgzt:
p-value

1535430620 i 0.79 } PCTP intronic 9,39 57671301 257606 0.1711 AWR
153803300 c 0.84  NM 001137601  ZBTB42 UTR3 -11.08 1571 --6.448  120E-05 03714 AWR
Var-6-31322340 A 0.07 . HLA-B intronic 1276 1821--7318  167B05 03714 AWR
151804020 A 027  NM 001014972  ZFN63S  p.V1726M 8316 12,03 --4.604  3.55E-05 04874 AWR
152960061 @ 0.85 . PCTP intronic 10.29 560149  3.66E05 04874 AWR
15527221 c 0.11 NM 001288765  DMPK p.L334V 16.4 10.69-22.12 29407 001959  COG
15572634 © 0.11 . DMPK intronic 14.76 9.043-2048  2.80E-06  0.09309  COG
152292288 G 0.43 unknown SYNM unknown -8.746 1254996 181E05 04029 COG
152305914 il 0.08 . WBP2 intronic -15.78 22.86--8704  3.85E-05  0.6403 COG
151064512 c 0.08 NM 003038 SLCIA4 p.G37R 13.12 7061 ~19.18  6.14E-05 08187 COG
152076404 A 0.69 . TGM6 intronic 8,695 1235--5.038  130E-05 04552 coM
152546028 c 0.55 NM 175872 ZNF792 UTRS -6.561 9394--3728  2.05E-05 04552 COM
152546029 G 0.55 NM 175872 ZNF792 UTRS 6.561 93943728  2.05E-05 0.4552 CcoM
15491873 T 0.59 . TUBA3C intronic 7,645 211034258 3.06E-05  0.5256 COM
rs1811 G 046  NM 001099437  ZNF30 p.Q124R 6.464 3404-9.524  881E05 0734 CcoM
152651080 c 031 NM 175872 ZNF792 p.T333T 8.116 5113-11.12  1.09E06 002169  MOT
151345658 A 046  NM 001099437  ZNF30 pR380K 6.535 407-9001  1.63E06 002169  MOT
rs1811 G 046  NM 001099437  ZNF30 p.Q124R 6.535 407-9.001  1.63E06 002169  MOT
152651079 0 0.46 NM 175872 ZNF792 PRIT7Q 6.535 407-9.001  1.63E-06 002169  MOT
152651109 c 046  NM 001099437  ZNF30 p.S2155 6.535 407-9.001  1.63E-06 002169  MOT
152546028 @ 0.55 NM 175872 ZNF792 UTRS 6773 98313715 426605 05321 RRB
152546029 G 0.55 NM 175872 ZNF792 UTRS 6773 9831 --3715  426E05  0.5321 RRB
152059404 A 0.58 . ARID2 intronic 8358 1216 --4558 47505 05321 RRB
157315731 T 0.42 NM 004719 SCAFII p.V6271 8358 1216 -4558  4.75E05  0.5321 RRB
1513044892 A 0.06 . ATP9A intronic -16.79 2458 -9.000  657E-05  0.5321 RRB

* «” Refers to information that is not applicable
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Chapter 3: The effects of Gtf2irdl and Gtf2i
DNA binding on transcription and behavior
supports the important function of the N-
terminal end of Gf2irdl.

Nathan Kopp, Katherine McCullough, Susan E. Maloney, Joseph Dougherty
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3.1 Abstract

The two transcription factors Gtf2i and Gtf2ird1 have been thought to play a role in the
craniofacial, cognitive, and behavioral phenotypic domains of WS. There exist many mouse
models of each of these transcription factors that show behavioral phenotypes. Further, some
phenotypes such as balance, anxiety, and social behavior, mouse models of both transcription
factors show deficits in the same direction, however the affect of these genes on behavior have
not been studied in combination. To examine how these genes could mediate behavioral
consequences we described the genomic binding sites of these transcription factors in the
developing brain. We then characterized two new mouse models generated using the
CRISPR/Cas9 system to test how mutating both G#/2i and G#f2irdl can modify the
transcriptional and behavioral phenotype observed in a single G#f2irdl mutant. The Gtf2ird1
mutant was shown to make a N-truncated protein that has decreased capacity to bind the
promoter of Gtf2ird1 but still can bind genome-wide. Despite little differences in DNA-binding
and transcriptome-wide expression, the mutation still caused balance, marble burying, and
activity phenotypes, supporting a functional role for the N-terminus of Gtf2ird1. Mutating both
Gtf2i and Gtf2ird] did not modify the transcriptomic or behavioral phenotypes, suggesting that

Gtf2ird ] mutation largely drives the behavioral phenotypes observed.

3.2 Introduction
The Williams syndrome critical region (WSCR) contains 26 genes that are typically

deleted in Williams syndrome (WS) (OMIM#194050). The genes in this region are of interest for
their potential to contribute to the unique physical, cognitive, and behavioral phenotypes of WS,
which include craniofacial dysmorphology, mild to severe intellectual disability, poor visual

spatial cognition, balance and coordination problems, and a characteristic hypersocial personality
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(2,13, 15). Single gene knock out mouse models exist for many of the genes in the region, with
differing degrees of face validity to the phenotypes of WS (92-96, 101). Two genes have been
highlighted in the human and mouse literature as playing a large role in the social and cognitive
tasks, Gtf2i and Gtf2irdl. Mouse models of each gene have shown social phenotypes as well as
balance and anxiety phenotypes (92, 96,97, 101, 152, 153). Since there is evidence that each
gene affects similar behaviors, we set out to test the hypothesis that that knocking down both
genes simultaneously would lead to more severe phenotypes, suggesting that multiple genes in
the WSCR locus affect similar behaviors. Investigating both genes together, rather than
individually could provide a more complete understanding of how the genes in the WSCR

contribute to the phenotypes of WS.

Gtf2i and Gtf2ird] are part of the General transcription factor 2i family of genes. A third
member Gtf2ird?2 is located in the WSCR that is variably deleted in patients with WS that have
larger deletions(41). This gene family has arisen from gene duplication events, which resulted in
high sequence homology between the genes (68). The defining feature of this gene family is the
presence of the helix-loop-helix I repeats, which are involved in DNA and protein binding (154).
Gtf2i has roles that include regulating transcriptional activity in the nucleus, but this
multifunctional transcription factor also resides in the cytoplasm where it conveys messages
from extracellular stimuli and regulates calcium entry into the cell (74, 76). So far, Gtf2ird] has
only been described in the nucleus of cells and is thought to regulate transcription and associate
with chromatin modifiers (79). The DNA binding of these two transcription factors has been
studied in ES cells and embryonic craniofacial tissue. They recognize similar and disparate
genomic loci, suggesting that both genes interact to regulate specific regions of the genome (84,

155). However, the DNA binding of these genes has not been studied in the developing brain,
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which could provide insight on how the general transcription factor 2i family contributes to

cognitive and behavioral phenotypes.

We performed ChIP-seq on Gtf2i and Gtf2ird] in the developing mouse brain to define
where these genes bind and also to test the downstream consequences of disrupting the binding.
We used the CRISPR/Cas9 system to make a mouse model with a mutation in just G#f2ird] and
a mouse model with mutations in both G#/2i and Gtf2ird] to test how adding a G#f2i mutation
modifies the affects of G#f2ird] mutation. We showed that the mutation in G#f2ird! resulted in
the production of an N-truncated protein that disrupts the binding of Gtf2ird1 at the Gtf2ird1
promoter and deregulates the transcription of Gtf2ird1. While there are mild consequences of the
mutation on transcription genome-wide the mutant mouse exhibited clear balance and marble
burying deficits, as well as increased activity. Comparing the single gene mutant to the double
mutant did not reveal more severe transcriptional changes or behavioral phenotypes. This
suggests that Gtf2ird1 drives the majority of the phenotypes observed in the current studies, and

the N-terminal end of this protein has functional consequences on DNA-binding and behavior.

3.3 Results

3.3.1 Gtf2i and Gtf2irdI bind at active promoters and

conserved sites

The paralogous transcription factors, G#f2i and Gtf2ird1, have been implicated in the
craniofacial and behavioral phenotypes seen in humans with WS as well as mouse models (38,
96, 97, 100, 101, 153). However, the underlying mechanisms by which the general transcription

factor 2i family acts are not well understood. One approach to begin to identify how these
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transcription factors can regulate phenotypes is by identifying where they bind in the genome.
This has been done in ES cells and embryonic facial tissue and revealed that both of these
transcription factors bind to genes involved in craniofacial development (84). However, these are
not relevant tissues that could explain their affects on brain development and subsequent
behavior. To overcome this we performed ChIP-seq for Gtf2ird1 and Gtf2i in the developing

embryonic day 13.5 (E13.5) brain, a time point when both of these proteins are highly expressed.

We identified 1,410 peaks that were enriched in the Gtf2ird1 IP samples compared to the
input. The Gtf2ird1 bound regions were strikingly enriched in the promoter of genes and along
the gene body, more so than would be expected by randomly sampling the genome (Figure 1A)
(x*=1537.8, d.f. =7, p < 2.2x10™'°). The bound peaks were found mostly in H3K4me3 bound
regions (Fisher’s exact test, p<2.2x107'%), suggesting that they are in active sites in the genome.
While the Gtf2ird1 bound regions were also enriched in repressed regions of the genome as
defined by H3K27me3 marks (Fisher’s exact test, p< 2.2x10™'°), 94% of the peaks were in
H3K4me3 regions opposed to the 11% of Gtf2ird1 peaks found in H3K27me3 regions (Figure

1B), suggesting the Gtf2ird1 may have more of a role in activation than repression.

To understand the common function of the genes that have Gtf2ird1 bound at the
promoter we performed GO analysis. The top ten results were consistent with the functions
previously described for Gtf2ird1, specifically regulation of transcription and chromatin
organization, and we highlighted new categories, such as protein ubiquination (Figure 1C). To
further test if these regions have functional consequences we compared the conservation of the
Gtf2ird1 peaks to a random sample of the genome and found that the Gtf2ird1 peaks are more
conserved (t=18.131,d.f.=2403, p < 2x10™'%) (Figure 1D). We conducted motif enrichment

analysis using HOMER to identify other factors that share binding sites with Gtf2ird1 (Figure
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1E). The GSC motif, which is similar to the core RGATTR motif for Gtf2i and Gtf2ird1, was
identified in 4.64% of the targets (65). Interestingly, the CTCF motif was found at 11% of the

Gtf2ird1 targets, further supporting its role in chromatin organization.

Gtf2i Chip-seq showed similar results to that of Gtf2ird1. We identified 1,755 WT Gtf2i
peaks that had significantly higher coverage in the WT IP compared to the KO IP
(Supplemental Figure 1A). These peaks were significantly enriched for promoter regions as
well as the gene body when compared to random genomic targets (Figure 2A)(x>= 911.63,
d.f=7, p <2.2x107"°). Similar to Gtf2ird1, the majority of the Gtf2i peaks (78.7%) overlapped
H3K4me3 peaks (Fisher’s exact test, p< 2.2x107'%), with a smaller subset of peaks (20.7%)
overlapping with the H3K27me3 mark (Fisher’s exact test p<2.2x10™'°). This suggests that these
peaks are located mainly in active regions of the genome (Figure 2B). Summarizing the
common functions of these target genes by GO analysis, showed enrichment for biological
processes such as intracellular signal transduction and phosphorylation (Figure 2C). For
example, Gtf2i binds within the gene body of the Src gene (Figure 2D), which has been shown
to phosphorylate Gtf2i itself to activate its transcriptional activity as well as regulate calcium
entry into the cell (74, 76). Along with binding to gene promoters, the Gtf2i binding sites are
significantly more conserved than random sampling the genome, further suggesting important
functional roles of these regions (Figure 2E). Motif enrichment of the Gtf2i peaks revealed GC
rich binding motifs such as for the KLF/SP family of transcription factors. Interestingly, the Lhx
family of transcription factors motif is enriched. Finally, we see an enrichment of the CTCF
motif, which Gtf2i has been shown to help target CTCF to specific genomic regions (156)

(Figure 2F).
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3.3.2 Gtf2i and Gtf2ird] binding sites have distinct features yet overlap at a

subset of promoters
One way in which Gtf2i and Gtf2ird]1 can interact is by binding the same sites in the

genome. We set out to determine how the binding regions of these two genes were similar or
different, as well as directly scanning for shared targets. First, we compared the Gtf2i and
Gtf2ird1 chip peaks and found that the proportion of annotations of the binding sites are
significantly different (x> = 282.84, d.f.=7, p < 2.2x10™'®) (Figure 3A). While both transcription
factors mainly bind in promoters and the gene body, G#f2ird[ has a higher proportion of peaks at
the promoter compared to G#/2i, whereas G#f2i has more peaks that fall in intergenic regions
when compared to Gtf2ird]. Interestingly, when we compared them directly to each other the
Gtf2ird1 bound peaks were significantly more conserved than the Gtf2i bound peaks
(t=7.81,d.£=2736.5, p=8.2x10"") (Figure 3B). Next, to identify common targets, we looked at
the overlap of the genes that had either of the transcription factors at their promoter, and we
identified a significant overlap of 148 genes (Fisher’s exact test p < 1x10~*) (Figure 3C). The
GO functions of the overlapped genes highlight specific roles in synaptic functioning and signal
transduction (Figure 3D). The Mapki4 gene is an example of a gene involved in signal
transduction that has both G#/2i and G#f2ird1 bound at its promoter (Figure 3E). Interestingly,
Mapk14 is known to phosphorylate Baz1b (157), another transcription factor in the WSCR.
Shared targets such as this one suggest there are points of convergence where having both genes
deleted, such as in WS, might result in synergistic downstream impacts, and further implicates

another gene in the WSCR.

91



3.3.3 Frameshift mutation in G#f2irdl results in truncated protein and affects

DNA binding at the G#f2irdl promoter
To investigate the functional role of G#f2irdl and Gtf2i at these bound sites and

understand how these two genes interact, we set out to make loss of function models of Gtf2ird1
individually and a double mutant with mutations in both G#/2i and Gtf2irdl. We designed two
gRNAs, one for G#f2irdl and one for Gtf2i, and injected them simultaneously into FVB mouse
embryos, to obtain single gene mutations, as well as double gene mutations. We first
characterized the consequences of a one base pair adenine insertion in exon three of G#f2ird .
This is an early constitutively expressed exon, and the frameshift mutation introduced a
premature stop codon in exon three, which we expected to trigger nonsense-mediated decay
(Figure 4A). We crossed heterozygous mutant animals to analyze Gtf2i and Gtf2ird] transcript
and protein abundance in heterozygous and homozygous mutants compared to WT littermates
(Figure 4B). The western blots and qPCR were performed using the whole brain at embryonic
day 13.5 (E13.5). As expected, the Gtf2ird]l mutation did not affect the protein or transcript
levels of G#f2i (Figure 4C,D). Contrary to our prediction that the frameshift mutation would
cause nonsense-mediated decay, we observed an ~0.8 CT increase in G#f2ird] transcript with
each copy of the mutation and a 40% reduction of the protein in homozygous mutants compared
to WT with no significant difference between the WT and heterozygous mutants (Figure 4E, F).
This suggests that the mutation did have an effect on protein abundance and disrupted the normal

transcriptional regulation of the gene.

Similar results were reported in a mouse model that deleted exon two of G#f2ird1, which
showed reduced levels of an N-terminally truncated protein caused by a translation re-initiation
event at methionine-65 (66). We noticed a slight shift in the homozygous mutant band, which

may correspond to the loss of the N-terminal end of the protein. The N-terminal end codes for a
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conserved leucine zipper, which participates in dimerization as well as DNA-binding (66, 158).
Mutating the leucine zipper was shown to affect binding of the protein to the Gtf2ird1 upstream
regulatory (GUR) element that is located at the promoter of Gtf2ird1 (Figure 4G). Given the
previous findings that Gtf2ird1 negatively autoregulates its transcription and mutating the
leucine zipper affects binding to the GUR, we hypothesized that the frameshift mutation
diminished the ability of Gtf2ird1 to bind to its promoter resulting in increased transcript
abundance. We tested this by performing ChIP-qPCR in the E13.5 brain in WT and Gtf2ird1”
mutants. In the WT brain, Gtf2ird1 IP enriched for the GUR 13-20 times over off-target
sequences, which was significantly higher than the Gtf2ird1 IP in the G#f2irdl”" brain (Figure
1H,I). Taken together, nonsense transcripts of Gtf2irdl with a stop codon in exon three can
reinitiate at a lower level to produce an N-truncated protein with diminished binding capacity at
the GUR element.
3.3.4 Truncated Gtf2ird1 does not affect binding genome wide

Given that the one base pair insertion did not result in a full knock out of the protein, but
did affect its DNA binding capacity at the GUR of Gtf2ird1, we tested whether the mutant was a
loss of function for all DNA binding. We performed ChIP-seq in the E13.5 G#f2ird1”” mutants
and compared it to the WT Chip-seq data to test the consequences of the mutation on DNA
binding genome-wide. The ChIP-seq data confirmed the decrease in binding at the TSS of
Gtf2ird, however, a small peak is still present at the TSS in the mutant animal, suggesting that
the mutation has greatly decreased the binding at this locus (Figure 4J). We compared the
coverage of the genomic regions identified in the WT ChIP-seq data as bound by Gtf2ird1 in the
mutant and WT samples. Surprisingly, the only peak that was identified at an FDR < 0.1 as

having differential coverage between the two genotypes was the peak at the TSS of Gtf2ird1
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(Figure 4K). This suggests that this frameshift mutation has a very specific consequence on how
the protein binds to its own promoter that does not affect its binding elsewhere in the genome.
The Gtf2ird]1 promoter has two instances of the R4 core motif in the sense direction and one
instance of the motif in the antisense orientation. We searched the sequences under the identified
peaks for similar orientations of the binding motif and found only three other peaks, of which
none showed any difference in coverage between genotypes. None of the three other peaks
matched the exact spacing of the three motifs found in the Gtf2ird1 promoter. This suggests that
the leucine zipper is important for a specific configuration of binding sites that is only present in
this one instance in the mouse genome.
3.3.5 Gtf2ird1 frameshift mutation shows mild transcriptional differences

The N-truncated Gtf2ird1 clearly affected the expression levels of G#f2irdl and affected
its binding at the promoter of Gtfi2rdl. Although we didn’t see binding genome-wide perturbed,
, it is possible losing the N terminal altered the proteins ability to recruit other transcriptional co-
regulators, and thus impact expression. Therefore, we tested the effects of this mutation on
transcription genome-wide in the E13.5 brain. We compared the whole brain transcriptome of

WT littermates to either heterozygous or homozygous mutants.

Strikingly similarly to the ChIP-seq data, the only transcript with an FDR < 0.1 is
Gtf2ird1, which was in the same direction as we saw in the qPCR (Figure 4L and Supplemental
Figure 2A). We leveraged the WT ChIP-seq data to see if the presence of Gtf2ird1 at a promoter
correlates with gene expression. Binning the genes according to expression level showed that the
distribution of Gtf2ird1 targets was different than expected by chance (x* = 48.83, d.f=3 p <
1.42x10™'%), suggesting that highly expressed genes are more likely to have Gtf2ird1 bound at

their promoters (Figure 4M). To see if there was a more subtle general effect below our
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sensitivity for a single gene, we tested if the bound Gtf2ird] targets that are expressed in the
brain at E13.5 as a population had their expression shifted. However, we saw only a small trend
towards significance between the bound genes and unbound genes, with a mean increase in
expression of 0.014 log2 CPM fold change in Gtf2ird] targets (Kolgmogorov-Smirnov test
D=0.038, p=0.079). While this is perhaps unsurprising, because the frameshift mutation did not
disturb binding genome wide (Figure 4N), the homozygous mutant do have an overall decrease
of ~ 50% protein levels which should mimic a WSCR deletion. Thus, transcriptional
consequences of haploinsufficiency of this gene might be similarly small.
3.3.6 Frameshift mutation in G#f2irdl is sufficient to affect behavior

Although we observed small differences in DNA binding and overall brain transcription,
another Gtf2ird1 model also reported no little effects of Gtf2ird1 on expression transcriptome
wide in the brain, yet the model still showed behavioral phenotypes (88, 101). Therefore we
tested if our mutation had downstream consequences on adult mouse behavior. There are many
single gene knock out models of G#f2ird[ and they each show distinct behavioral differences and
in some instances the results are contradictory (39, 92, 100, 101). One consistent phenotype
across models is motor coordination deficits, which is also an area of difficulty in individuals
with WS. Similarly, we observed a significant effect of genotype (H,=7.88, p =0.01945), on how
long the animals could balance on a ledge. Homozygous animals fell off the ledge sooner than
WT littermates (p=0.021) (Figure SA). Marble burying has not been reported in other G#f2ird1
models, but in larger WS models that either delete the entire syntenic WSCR or delete the
proximal half of the region that contains G#f2irdl have shown decreased marble burying
phenotypes (90, 93). We observed a similar significant effect of genotype on the number of

marbles buried (F5.75=7.92, p =0.00076), with the G#f2ird]”" mutants burying fewer marbles than
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WT (p=0.0176) and Gtf2ird1"" littermates (p=0.00067) (Figure 5B). Reports of overall activity
levels in Gtf2ird] mouse models have been discrepant (92, 100). Here we showed that there was
only a trend towards a significant main effect of genotype (F».71=2.97, p=0.057) on total distance
traveled in a one hour locomotor task, but there is a main effect of sex (F;7;=18.77, p=4.76x10")
and a genotype by sex interaction (F»7,=4.98, p=0.0095) (Figure 5C). Activity levels were
increased in the female G#f2irdI” mutants at later time points compared to WT females, and to
an intermediate extent in the G#f2ird 1" mutants (Supplemental Figure 3A). There were no
differences in total distance traveled between the male genotypes (Supplemental Figure 3B).
The time spent in the center of an open field is used as a measure of anxiety-like behavior in
mice. Anxiety-like behaviors in G#/2ird] models have also been discrepant in the literature
(101). Here we showed that there was only a trend for a main effect of genotype when we

controlled for sex (F,7,=3.070, p=0.0526) (Figure SD and Supplemental Figure3C, D).

Finally, as individuals with WS also show high prevalence of phobias, as well as
intellectual disability, we tested learning and memory using the conditioned fear task (2, 21). On
day one the mice were trained to associated a tone with a footshock and we observed that the
mice increased their freezing over time (F2,12,=26.77, p=2.28x10""%), as expected, and there was a
time by genotype interaction (F4,12,=3.99, p=0.004) where the WT mice froze more during the
last five minutes of the task compared to both the G#f2ird1™" (p=0.007) and the Gtf2irdl”
mutants (p=0.002) (Figure 5E). On the second day, contextual fear memory was tested. We
placed the mice in the same chamber in which they were delivered the footshock and measured
their freezing behavior in the absence of the footshock and the tone. All genotypes exhibited a
fear memory response as indicated by the significant effect of the context compared to baseline

of day one (F16=31.83, p=4.63x10") but no main effect of genotype (F26=1.24, p=0.30). Each
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genotype group froze more during the first two minutes of day two than on day one (WT:
p=4.7x10, Gtf2ird1"": p=0.034, Gtf2ird1”": p=0.0061) (Supplemental Figure 3E). When we
analyzed the entire time of the experiment of contextual fear we similarly saw no main effect of
genotype (F2.61=2.36, p=0.010), but a significant effect of time (F7.427=4.43, p=9.14x10”) and a
time by genotype interaction (F14427=2.19, p=0.0077), suggesting that the freezing behavior of
the genotypes differ at certain time points during the task. Post hoc analysis showed that during
minute two the WT animals are freezing significantly more than the Gf2ird1""™ mutants
(p=0.0008) suggesting a reduced contextual fear memory response (Figure S5F). On day three of
the experiment, we tested cued fear by placing the animals in a different context but played the
tone that was paired with the shock on day one. All genotypes had a similar response to the tone
(F261=1.12, p=0.334) (Figure 5G). These differences could not be explained by differences in
shock sensitivity (flinch: H,=3.34, p=0.19, escape: H,=2.98, p=0.23, vocalization: F; 5s=4.24,

p=0.12) (Supplemental Figure 3F).

Overall, these behavior analyses show that the N-terminal truncation and/or the decreased
total protein levels of the G#f2irdl mutant can still result in adult behavioral phenotypes,
specifically in the domains such as balance, activity, and marble burying. The most severe
phenotypes were observed in the homozygous mutants.

3.3.7 Generation of G#f2i and Gtf2ird]l double mutant

The evidence that this frameshift mutation in G#/2irdl has functional consequences on
some of its DNA binding capacity as well as leads to behavioral phentoypes led us to
characterize a double mutant that was generated during the dual gRNA CRISPR/Cas9 injection.
This mutant allowed us to test the effects of knocking out G#/2i along with mutating Gtf2ird1, as

well as test the consistency of the previous G#f2irdl phenotypes across different mutations. The
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double mutant described here has a two base pair deletion in exon five of G#f2i and a 590 base
pair deletion that encompasses most of exon three of Gtf2irdl (Figure 6A). We carried out a
heterozygous cross of the double mutants to similarly test the protein and transcript abundance of
each gene in the heterozygous and homozygous state. The homozygous double mutant is
embryonic lethal due to the lack of G#f2i, which has been described in other G#f2i mutants
(Figure 6B) (87, 96). We were able to detect homozygous embryos up to E15.5. Thus we
focused molecular analyses on E13.5 mice for the reasons mentioned above. The two base pair
deletion in exon five of G#f2i leads to a premature stop codon and is a full knock out of the
protein, and decreases the transcript abundance consistent with the degradation of the mRNA due
to nonsense-mediated decay (Figure 6C,D). The 590 base pair deletion in G#f2ird] removes all
of exon three except the first 14 base pairs. This mutation has a larger effect on protein levels
compared to the one base pair insertion, but a small amount of a truncated protein is still made at
about 10% of the level of WT protein. We observed the same increase in transcript abundance

that was detected in the one base pair insertion mutation (Figure 6E,F).

3.3.8 Knocking down both G#f2i and Gtf2irdl produces mild transcriptome

changes
To test if having both G#f2i and Gtf2ird] mutated had a larger effect on the transcriptome

we performed whole brain RNA-seq analysis on WT E13.5 brains and compared them to G#/2i™"
/Gtf2irdl " littermates. There were only mild differences between the transcriptomes of the two
genotypes similar to what was seen when we compared WT littermates to Gtf2ird1 “ mutants
(Figure 6G). We also compared WT transcriptomes to the homozygous double mutants, which
showed a greater difference between genotypes. However, this is probably due to the fact that the
homozygous double mutants have a very severe phenotype, which includes neural tube closure

defects. The GO terms suggested that overall nervous system development and glial cell
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differentiation is disrupted (Supplemental Figure 4A,B). We also coupled the Gtf2i ChIP-seq
data with the RNA-seq data. Unlike what we saw with Gtf2ird1 bound genes, there was
association between the expression levels of genes and the presence of Gtf2i (x> = 6.58, d.f.=3
p=0.086) (Figure 6H). This is consistent with a previous report of G#f2i ChIP-seq data. There is
a slight but significant shift to higher expression of genes of about 0.02 log2 CPM fold change
that are bound to Gtf2i compared to genes that are not bound (Kolgmogorov-Smirnov test

D=0.075, p=9.50x107°) (Figure 6I).

3.3.9 Double mutants show similar behavioral consequences similar to single

Gtf2ird] mutants
To test the effects of mutating both G#f2i and Gtf2irdl we crossed the heterozygous

double mutant to the single G#f2irdl heterozygous mouse (Figure 7A). This breeding strategy
produced four littermate genotypes, WT, Gif2ird1"", Gtf2i""/GtRird1"", and Gtf2i""/Gf2ird 1™
for direct and well-controlled comparisons. To test the effects of adding a G#/2i mutation along
with a G#f2ird] mutation we compared the Gf2ird1 ™" to their Gtf2i""/Gtf2ird1"" littermates. The
final genotype tested the effects of the heterozygous G#f2i mutation in the presence of both the
Gtf2ird1 mutations. To be thorough we tested the protein and transcript abundance of each gene
in the four genotypes. As expected all genotypes with the G#/2i mutation showed decreased
protein and transcript levels. The G#f2ird1 results reflected what was previously shown for each
mutation, however, the G#/2i""/Gtf2ird1”" did not show any further detectable decrease in protein

abundance compared to the G#f2i "/Gtf2ird1"" genotype (Supplemental Figure 5A-D).

We repeated the same behaviors that were performed on the one base pair Gtf2ird
mutants. We saw a similar significant effect of genotype on balance (Hs=10.68, p=0.014), with

the G1f2i""/Gtf2ird1”" falling off sooner compared to WT littermates (p=0.025) (Figure 7B).
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There was no significant difference between the G#f2ird! ™" and G#f2i""/Gtf2ird]™" genotypes,
suggesting that in the heterozygous state decreasing the dosage of G#f2i does not strongly modify
the G#f2irdl™" phenotype. These results were replicated in a subsequent cohort (Supplemental
Figure SE). There was a significant effect of genotype on the number of marbles buried
(F3.76=2.93, p=0.039). Post hoc analysis showed a significant difference between only the
Gtf2irdl *and th2i+/ /Gtf2irdl “ littermates (p=0.050) (Figure 7C), with a trend in the same
direction as was previously seen in the G#f2ird]”” mutants. We saw a main effect of genotype on
activity levels in the one hour locomotor task (F3 ¢=3.22, p=0.028), but we did not see the same
main effect of sex (F; 6=2.29, p=0.14), or a sex by genotype interaction (F3 ¢=1.82, p=0.15);
however we did see a three way sex by time by genotype interaction (F5345=1.95, p=0.018). The
combined sex data showed that the G#f2i""/Gtf2ird]™" travel more distance in the later time
points than the WT and G#f2ird1"" at time point 40 (Figure 7D). When we looked at the data by
sex we saw a larger effect in the females with the G#f2ird1™" and G1f2i""/Gtf2ird1"™" intermediate
to the G1f2i""/Gtf2ird1”" (Supplemental Figure 5F, G). There was also a main effect of
genotype on the time spent in the center of the apparatus (F3 6=3.60, p=0.018). The G#/2i""
/Gtf2ird1”" spent less time in the center during the first ten minutes of the task compared to WT
(p=0.0019) littermates with the Gtf2ird1 “and Gtf2i +/'/th?ird] " showing intermediate values

(Figure 7E).

Finally, we repeated the conditioned fear memory task using this breeding strategy. All
genotypes increased their freezing after each foot shock on day one as expected. The WT
animals exhibited higher freezing during minute one of baseline, but this difference diminished
during minute two (Figure 7F). All animals showed a contextual fear memory response when

they were re-introduced to the chamber on day two (F ¢=81.21, p=3.21x10") (Supplemental
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Figure SH) but there was no main effect of genotype (F;¢3s=1.61, p=0.19) (Figure 7G). On day
three, when cued fear was tested, there was a significant effect of genotype on the freezing
behavior (F365=3.17, p=0.030) and a time by genotype interaction (F2; 476=1.63, p=0.040).
During minute five of the task the G#f2i""/Gtf2ird1”” mutants froze significantly more than the
WT (p=0.030) as did the Gtf2irdl " (p=0.024) (Figure 7H). The cued fear phenotype could not

be explained by differences in sensitivity to the foot shock (Supplemental Figure 5I).

By crossing these two mutant lines we tested the hypothesis that the double heterozygous
mutant would be more severe than a mutation only affecting Gtf2ird1. Comparing the Gtf2ird1 "
and Gif2i""/G2ird1™", showed mild deficits compared to WT littermates that in some cases
were intermediate to phenotypes of the G#2i""/Gtf2ird1”". There were no instances when either
the G1f2ird1™" or Gtf2i""/Gtf2ird1"" genotype was significantly different than the other,
suggesting that in the behaviors that we have tested, G#f2i mutation does not modify the effects
of a Gtf2ird] mutation. This unique cross also allowed us to characterize a new mouse line
G1f2i""/Gtf2ird1”", which had the largest impact on behaviors. The phenotypes of G#f2i"™”
/Gtf2ird]”" were always in the same direction as the phenotypes in the G#f2ird1”” mouse model,
but we also saw a significant cued fear deficit when the G#/2i mutation was added. This further
supports that the behaviors tested here, such as activity levels, balance, anxiety-like behaviors,
marble burying, and learning and memory are largely affected by homozygous mutations in

Gtf2irdl.

3.4 Discussion
We have described the in vivo DNA binding sites of Gtf2ird]1 and Gtf2i in the developing

mouse brain. This is the first description of these two transcription factors in a tissue that is

relevant for the behavioral phenotypes that are seen in mouse models of WS. Gtf2ird1 showed a
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preference for active sites and promoter regions. The conservation of the Gtf2ird1 targets was
higher on average than would be expected by chance, which provides evidence that these are
functionally important regions of the genome. The functions of genes that are bound by Gtf2ird1
include transcriptional regulation as well as post translational regulation. A role for Gtf2ird1 in
regulating genes involved in protein ubiquniation has not been described before. Genes involved
in chromatin organization were also found to be bound by Gtf2ird1. This supports the role of
Gtf2irdl in regulating chromatin by transcriptionally controlling other chromatin modifiers.
Along with its localization pattern in the nucleus and its direct interaction with other chromatin
modifiers such as ZMYMS (79, 82), this data suggests that Gtf2ird] can exert its regulation of
chromatin at several different levels of biological organization. The motif enrichment of Gtf2ird1
peaks showed that CTCF may be present along with Gtf2ird1, further implicating the importance
of Gtf2ird1 in chromatin biology. Interestingly, Gtf2i has been show to interact with and target
CTCEF to specific sites in the genome (156). It would be interesting to test if Gtf2ird1 has a

similar relationship with CTCF and targets it to unique genomic loci.

Overall, Gtf2i showed a similar preference for promoters and active regions, although it
had more intergenic targets than Gtf2ird1, and the conservation of Gtf2i peaks was significantly
lower than the Gtf2ird1 peaks. The genes bound by Gtf2i were enriched for signal transduction
and phosphorylation. Interestingly, Gtf2i was bound to the gene body of the Src gene. Src is
known to phosphorylate Gtf2i to induce its transcriptional activity (74). Phosphorylation of Gtf2i
by Src also antagonizes calcium entry into the cell (76). While, knocking out Gtf2i did not affect
the expression of Src, it would be interesting to understand the functional consequence of Gtf2i
bound to Src, especially since knockout mice of Src exhibit similar behaviors as G#f2i knock out
mice (75).
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The overlap of targets of Gtf2i and Gtf2ird1 was significant, and the genes that did
overlap were enriched for synaptic activity and signal transduction. This was evidence that these
genes could interact via their binding targets to produce cognitive and behavioral phenotypes. To
test how mutating both Gtf2i and Gtf2ird1 would modify the phenotypes of just Gtf2ird1 we
characterized two new mouse models. We used the CRISPR/Cas9 system to generate multiple
mutations in the two genes individually as well as together from one embryo injection. The ease
and combinatorial possibilities of this technology will be amenable to testing many unique
combinations of genes in copy number variant regions, which will be important to fully

understand the complex relationships of genes in these disorders.

We saw that a frameshift mutation that we expected to trigger non-sense mediate decay in
Gtf2ird1 did not and resulted in a mild reduction in protein levels in the homozygous mutant and
an N-terminal truncation. Even making a larger 590bp deletion of exon three in Gtf2ird1 did not
result in the degradation of the mRNA, but did have a larger effect on the protein, even though
some protein product was still made. This phenomenon has been seen in at least two other mouse
models of Gtf2ird1 (66, 101). These were made using classic homologous recombination
removing either exon two or exon two through part of exon five. In both models Gtf2ird1
transcript was still made, but no in vivo protein analysis was done due to poor quality antibodies
and the low expression of the protein. The presence of an aberrant protein that can still bind the
genome, as the mutant described here can, could explain the lack of transcriptome differences in
the brain shown here as well as in (88). It could also be that the mutant protein can still interact
with other binding partners and be trafficked to the appropriate genomic loci. This mutation did

disrupt the binding of Gtf2ird1 to its own promoter, which resulted in an increase in transcript
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levels. The property that specifies the Gtf2ird1 binding to its own promoter must be very unique,

as DNA binding genome-wide was not perturbed in the mutant.

Nonetheless, the mutated Gtf2ird1 protein was still sufficient to cause adult behavioral
abnormalities. This supports the hypothesis that the N-terminal end of the protein has other
important functions beyond DNA binding. Similarly, the N-truncation of Gtf2i did not affect
DNA-binding, but still resulted in behavioral deficits (67). The single Gtf2ird1 homozygous
mutant showed balance deficits, which is consistent across many mouse models of WS. We also
observed decreased marble burying. This task is thought to be mediated by hippocampal
function, suggesting a possible disruption of the hippocampus caused by this mutation (159). We
saw an increase in overall activity levels in female Gtf2ird1 mutants. This could relate to the

high prevalence of Attention Deficit/Hyperactivity Disorder seen in WS (22).

Given the prior evidence that these two transcription factors are both involved in the
cognitive and behavioral phenotypes of WS (34, 95), and the evidence that their shared binding
targets regulate synaptic genes, we tested if having both Gtf2i and Gtf2ird1 mutated could
modify the phenotype seen when just Gtf2ird1 was mutated. Contrary to our prediction, we did
not see a large effect of adding a Gtf2i mutation to differences in transcriptome wide expression
or behavioral phenotypes. This was also surprising given that we successfully reduced G#f2i
protein and it has been described in the literature as regulating transcription (58). It could be that
by using the whole E13.5 brain we are diminishing the effects of transcriptional differences seen
in a specific rare cell types. This potential confound could be overcome using single cell

sequencing technologies in the future.
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When Gtf2i was knocked down it the presence of two Gtf2irdl mutations, we saw
phenotypes in the same direction as the homozygous one base pair insertion G#f2irdl mutant as
well as significant results in the cued fear memory task. Thus, the behaviors tested in this study
seem to be mainly driven by Gtf2ird]1 homozygosity, which is consistent across the two different
mutations. This does not exclude the possibility that Gtf2i can modify the phenotype of Gtf2ird1
knockdown in other behavioral domains. For example, it would be interesting to see the effect of

adding Gtf2i on top of a Gtf2ird1 mutation on social behaviors.

Our study has provided the first description of the DNA-binding of both Gtf2i and
Gtf2irdl in the developing mouse brain and showed that they have unique and overlapping
targets. These data will be used to inform downstream studies to understand how these two
transcription factors interact with the genome. We generated two new mouse models that tested
the importance of the N-terminal end of Gtf2ird1 and the affect of mutating both G#/2i and
Gtf2irdl. We provided evidence that despite either gene having little effect on transcription the

Gtf2ird1 mutation affects balance, marble burying, activity levels, and cued fear memory.

3.5 Materials and Methods

Generating genome edited mice

To generate unique combinations of gene knockouts we designed gRNAs targeting early
constitutive exons of the mouse G#f2i and Gtf2irdl genes. The gRNAs were tested for cutting
efficiency in cell culture by transfecting N2a cells with the pX330 Cas9 expression plasmids
(Addgene) that had each gRNA cloned into it. The DNA was harvested from the cells and
cutting was detected using the T7 endonuclease assay. The gRNAs were in vitro transcribed

using the MEGAShortScript kit (Ambion) and the Cas9 mRNA was in vitro transcribed using the
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mMessageMachine kit (Ambion). The two gRNAs and Cas9 mRNA were then injected into FVB
mouse embryos and implanted into donor females. FVB mice were used for their large pronuclei
and large litter sizes. The resulting offspring were genotyped for mutations by designing gene
specific primers that had the illumina adapter sequences concatenated to their 3’ prime end to
allow for deep sequencing of the amplicons surrounding the expected cut sites. The large 590 bp
deletion was detected by amplifying 3.5kb that included exon two, exon three and part of intron
three then using a Nextera library prep (Illumina) to deep sequence the amplicon. We described
two founder mice obtained from these injections. Each founder line was bred to FVB/ANTJ mice
to ensure the mutations detected were in the germline and on the same chromosomes in the case
of founders with mutations in both genes. The mice were also crossed until the mutations were
on a complete FVB/ANT]J background, which differs from the FVB background at two loci;
Tyr", which gives the chinchilla coat color of FVB/ANTJ and 129P2/OlaHSd Pde6b allele,
which the FVB/ANTJ are WT for and prevents them from becoming blind in adult hood. The
coat color was genotyped by eye, and the Pde6b gene was genotyped using the primers provided

by the Jackson Laboratory website.
Western blotting

Embryos were harvested on embryonic day 13.5 (E13.5) and the whole brain was
dissected in cold PBS and flash frozen in liquid nitrogen. The frozen brains were stored at -80° C
until they were to be lysed. The frozen brain was homogenized in 500ul of 1xRIPA buffer
(10mM Tris HCI pH 7.5, 140mM NaCl, ImM EDTA, 1% Triton X-100, 0.1% DOC, 0.1% SDS,
10mM Na3; V04, 10mM NaF, 1x protease inhibitor (Roche)) along with 1:1000 dilution of
RNAase inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific). The

homogenate incubated on ice for 20 minutes and was then spun at 10,000g for 10 minutes at 4° C
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to clear the lysate. The lysate was stored as two aliquots of 100ul in the -80° C for protein
analysis and 250ul of the lysate was added to 750ul of Trizol LS and stored at -80° C for later
RNA extraction and qPCR. Total protein was quantified using the BCA assay and 25-50ug of
protein in 1x Lamelli Buffer with B-mercaptoethanol was loaded onto 4-15% TGX protean gels
from Bio-Rad. The protein was transferred to a .2um PVDF membrane by wet transfer. The
membrane was blocked with 5% milk in TBST for one hour at room temperature. The membrane
was cut at the 75KDa protein marker and the bottom was probed with a Gapdh antibody as an
endogenous loading control, and the top was probed with an antibody for either Gtf2i or
Gtf2ird1. The primary incubation was performed overnight at 4° C. The membrane was then
washed three times in TBST for five minutes then incubated with a secondary antibody HRP
conjugated antibody diluted in 5% milk in TBST for one hour at room temperature. The blot was
washed three times with TBST for five minutes then incubated with Clarity Western ECL
substrate (Bio-Rad) for five minutes. The blot was imaged in a MyECL Imager (Thermo
Scientific). The relative protein abundance was quantified using Fiji (NIH) and normalized to
Gapdh levels in a reference WT sample. The antibodies and dilutions used in this study were:
Rabbit anti-GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD
Transduction Laboratories, BAP-135), and Mouse anti-Gapdh (1:10,000, Sigma Aldrich,
G8795), HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRP-

conjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516).

Transcript abundance using RT-qPCR

RNA was extracted from Trizol LS using the Zymo Clean and Concentrator-5 kit with on
column DNAase-I digestion following the manufacturer’s instructions. The RNA was eluted in

30ul of RNAse free water and quantified using a Nanodrop 2000 (Thermo Scientific). One ug of
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RNA was transcribed into cDNA using the qScript cDNA synthesis kit (Quanta Biosciences).
The cDNA was used in a 10ul PCR reaction with 500nM of target specific primer and the
PowerUP Sybr green master mix (Applied Biosystems). The primers were designed to amplify
exons that were constitutively expressed in both G#/2i (exons 25 and 27) and G#f2ird1 (exons 8
and 9) and span an intron. The RT-qPCR was carried out in a QuantStudio6Flex machine
(Applied Biosystems) using the following cycling conditions: 95° C 20 seconds, 95° C 1 second,
60° C 20 seconds, repeat steps 2 through 3 40 times. Each target and sample was run in triplicate
technical replicates, with three biological replicates for each genotype. The relative transcript

abundance was determined using the delta CT method normalizing to Gapdh.

ChIP

Chromatin was prepared as described in (160). Briefly, frozen brains were homogenized
in 10mL of cross-linking buffer (10mM HEPES pH7.5, 100mM NaCl, ImM EDTA, 1mM
EGTA, 1% Formaldehyde (Sigma)). The homogenate was spun down and resuspended in SmL
of 1x L1 buffer (S0mM HEPES pH 7.5, 140 mM NaCl, ImM EDTA, ImM EGTA, 0.25% Triton
X-100, 0.5% NP40, 10.0% glycerol, ImM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM
NaF, 1x protease inhibitor (Roche)) to release the nuclei. The nuclei were spun down and
resuspended in SmL of L2 buffer (10mM Tris-HCI pH 8.0, 200mM NaCl, ImM BGP, 1x Na
Butyrate, 20mM NaF, 1x protease inhibitor) and rocked at room temperature for five minutes.
The nuclei were spun down and resuspended in 950ul of buffer L3 (10mM Tris-HCI pH 8.0,
ImM EDTA, ImM EGTA, 0.3% SDS, ImM BGP, 1x Na Butyrate, 20mM NaF, 1x protease
inhibitor) and sonicated to a fragment size of 100-500bp in a Covaris E220 focused-
ultrasonicator with 5% duty factor, 140 PIP, and 200cbp. The sonicated chromatin was diluted in

with 950ul of L3 buffer and 950ul of 3x covaris buffer (20mM Tris-HCI pH 8.0, 3.0% Triton X-
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100, 450mM NaCl, 3mM EDTA). The diluted chromatin was pre-cleared using 15ul of protein G
coated streptavidin magnetic beads (ThermoFisher) for two hours at 4° C. For IP, 15ul of protein
G coated streptavidin beads were conjugated to either 10ul of Gtf2ird1 antibody (Rb anti
GTF2IRD1 NBP1-91973 LOT:R40410) or 10ul of Gtf2i antibody (Rb anti GTF2I Bethyl
Laboratories) for one hour at room temperature. 80ul of the pre-cleared lysate was saved to be
the input sample. 400ul of the pre-cleared lysate was added to the beads and incubated overnight
at 4° C. The IP was then washed two times with low salt wash buffer (10mM Tris-HCI pH 8.0,
2mM EDTA, 150mM NaCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer
(10mM Trish-HCI pH 8.0, 2mM EDTA, 500mM NacCl, 1.0% Triton X-100, 0.1% SDS), two
times with LiCl wash buffer (10mM Tris-HCI pH 8.0, ImM EDTA, 250mM LiCl (Sigma), 0.5%
NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCI pH 8.0, ImM EDTA)
buffer. The DNA was eluted off of the beads with 200ul of 1x TE and 1% SDS by incubating at
65° C in an Eppendorf R thermomixer shaking at 1400rpm. The DNA was de-crosslinked by
incubating at 65° C for 15 hours in a thermocycler. RNA was removed by incubating with 10ug
of RNAse A (Invitrogen) at 37° C for 30 minutes and then treated with 140ug of Proteinase K
(NEB) incubating at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was
extracted with 200ul of phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using the
Qiagen PCR purification kit and eluted in 60ul of elution buffer. Concentration was assessed

using the highsensitivity DNA kit for qubit (Thermo Fisher Scientific).

ChIP-qPCR

Primers were designed to amplify the upstream regulatory element of G#f2irdl. Two off
target primers were designed that are 10kb upstream of the transcription start site of Bdnf and

7kb upstream of the Pchp3 transcription start site. The input sample was diluted 1:3, 1:30, and
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1:300 to create a standard curve for each primer set and sample. Each standard, input, and IP
sample for each primer set was performed in triplicate in 10ul reactions using the PowerUP Sybr
green master mix (Applied Biosystems) and 250nM of forward and reverse primers. The
reactions were performed in a QuantStudio6Flex machine (Applied Biosystems) with the
following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes, 95° C 15 seconds, 60°
C for 1 minute, repeat steps 3 through 4 40 times. The relative concentration of the input and IP
samples were determined from the standard curve for each primer set. Enrichment of the IP
samples was determined by dividing the on target upstream regulatory element relative

concentration by the off target relative concentration.
ChIP-seq

ChIP-seq libraries were prepared using the Swift Accel-NGS 2S plus DNA library prep
kits with dual indexing (Swift Biosciences). The final libraries were enriched by thirteen cycles
of PCR. The libraries were sequenced by the Genome Technology Access Center at Washington

University School of Medicine on a HiSeq3000 producing 1x50 reads.

Raw reads were trimmed of adapter sequences and bases with a quality score less than 25
using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 genome
using the default settings of bowtie2 (162). Reads that had a mapping quality of less than 10
were removed. Picard tools was used to remove duplicates from the filtered reads
(http://broadinstitute.github.io/picard). Macs2 was used to call peaks on the WT IP, G#f2ird]”
IP, and th2i‘/ /Gtf2irdl “ IPs with the corresponding sample’s input as the control sample for
each biological replicate (163). Macs2 used an FDR of 0.01 as the threshold to call a significant

peak. High confidence peaks were those peaks that had some overlap within each biological
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replicate for each genotype using bedtools intersect (164). The read coverage for the high
confidence peaks identified in the WT IPs was determined using bedtools coverage for all
genotypes. To identify peaks with differential coverage, we used EdgeR to compare the WT
peaks coverage files to the corresponding mutant peak coverage and differential peaks were
defined as having an FDR < 0.1 (165). The peaks with FDR < 0.1 and log2FC > 0 fine the Gtf2i
high confidence peaks calls, since this mutation represents a full knockout of the protein.
Annotations of peaks and motif analysis was performed using the HOMER software on the high
confidence peaks (166). Peaks were annotated at the transcription start (TSS) of genes if the peak
overlapped the +2.5kbp or -1kbp of the TSS using a custom R script. GO analysis on the ChIP
target genes was performed using the goseq R package. We used E13.5 H3K4me3 and E13.5
H3K27me3 forebrain narrow bed peak files from the mouse ENCODE project to overlap with
our peak datasets (167). Deeptools was used to generate bigwig files normalized to the library
size for each sample by splitting the genome into 50bp overlapping bins (168). Deeptools was
used to visualize the ChIP-seq coverage within the H3K4me3 and H3K27me3 peak regions.
PhyloP scores for the WT ChIP-seq peaks and random genomic regions of the same length were
retrieved using the UCSC table browser 60 Vertebrate Conservation PhyloP table. The

Epigenome browser was used to visualize the ChIP-seq data as tracks.

RNA-seq

lug of E13.5 whole brain total RNA extracted from Trizol LS was used as input for
rRNA depletion using the NEBNExt rRNA Depletion Kit (Human/Mouse/Rat). The rRNA
depleted RNA was used as input for library construction using the NEBNext Ultra I RNA
library prep kit for Illumina. The final libraries were indexed and enriched by PCR using the

following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds, 65° C 1 minute and
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15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times. The libraries were
sequenced by the Genome Technology Access Center at Washington University School of

Medicine on a HiSeq3000 producing 1x50 reads.

RNA-seq analysis

The raw RNA-seq reads were trimmed of [llumina adapters and bases with quality scores
less than 25 using Trimmomatic Software. The trimmed reads were aligned to the mm10 mouse
genome using the default parameters of STARv2.6.1b (169) . We used HTSeq-count to
determine the read counts for features using the Ensembl GRCm38 version 93 gtf file (170).
Differential gene expression analysis was done using EdgeR. We compared the expression of
genes that are targets of either Gtf2ird1 or Gtf2i to non-bound genes by generating a cumulative
distribution plot of the average log CPM of the genes between genotypes. GO analysis was

performed using the goseq R package.

Behavioral tasks

Animal statement

All animal testing was done in accordance with the Washington University in St. Louis
animal care committee regulations. Mice were group housed in same-sex, mixed-genotype cages
with two to five mice in a cage in standard mouse cages with dimensions 28.5 x 17.5 x 12 cm
with corn cob bedding. The mice had ad libitum access to food and water and followed a 12 hour
light-dark cycle with the lights on from 6:00am-6:00pm. The rooms the animals were housed in
were kept at 20-22° C and a relative humidity of 50%. All mice were maintained on the

FVB/AntJ ((171)) background from Jackson Labs. All behaviors were done in adulthood
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between ages P60-P130. A week prior to beginning behavior testing the mice were handled by
the male experimenter. On days of testing the mice were moved to the testing room and allowed
to habituate to the room and the male experimenter for 30 minutes before testing started. The

number of mice and behaviors are listed in Table 1 and Table 2.

Ledge

To test balance, we timed how long a mouse could balance on a plexiglass ledge with a
width of 0.5cm and a height of 38cm as described in (171). The mice were timed up to 60
seconds. If the mouse fell off within the first five seconds the time was restarted and the mouse
was given another attempt. If after the third attempt the mouse fell off within the first five
seconds that time was recorded. We tested all mice on the ledge and then allowed for a 20
minute rest time then repeated the testing on all the mice for a total of two trials for each mouse.

The average of the two trials were used in the analysis.

One hour locomotor activity

We assessed activity levels in a one hour locomotor task, as previously described (171).
Mice were placed in the center of a standard rat cage with dimensions 47.6 x 25.4 x 20.6cm. The
rat cage was located inside of a sound-attenuating box with white light set to 24 lux. The mice
could freely explore the cage for one hour. A plexiglass lid with air holes was placed on top of
the rat cage to prevent the mice from jumping out of the cage. The position and horizontal
movement of the mice was tracked using the ANY-maze software (Stoelting Co.: RRID:
SCR_014289). The apparatus was divided into two zones, the edge zone was 5.5cm bordering
the cage, and a 33 x 11cm center zone. The animal was considered in a particular zone if 80% of

the mouse was detected in the zone. ANY-maze recorded the time, distance, and number of
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entries into each zone. After the task, the mouse was returned to its home cage and the apparatus

was thoroughly cleaned with 70% ethanol.

Marble burying

Marble burying is a species-specific task that measures the compulsive digging behavior
of mice. Normal hippocampal is thought to be required for normal marble burying phenotypes.
We tested marble burying as previously described (171). A rat cage was filled with aspen
bedding to a depth of 3cm and placed in a sound-attenuating box with white light set at 24 lux. A
5 x 4 grid of evenly spaces marbles was laid out on top of the bedding. The experimental mouse
was placed in the center of the chamber and allowed to freely explore and dig in the chamber for
30 minutes. A plexiglass lid with air holes was placed on top of the rat cage to prevent the mice
from escaping. After 30 minutes the animal was returned to their home cage. Two scorers
counted the number of marbles not buried. A marble was considered buried if two-thirds of the
marble was covered with bedding. The number of marbles buried was then determined, and the
average of the two scorers was used in the analysis. After the marbles were counted the bedding

was disposed of and the rat cage and marbles were cleaned with 70% ethanol.

Contextual and Cued Fear Conditioning

Learning and memory were tested using the contextual and cued fear condition paradigm
as previously described (172). Contextual fear memory is thought to be driven by hippocampal
functioning whereas cued fear is thought to be driven by amygdala functioning. On day one of
the experiment, animals were placed in a Plexiglas chamber (26cm x 18cm x 18cm; Med
Associates Inc.) with a metal grid floor that had an unobtainable peppermint odor. A chamber

light was on for the duration of the five-minute task. During the first two minutes, the animal
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freely explored the apparatus, and this was considered the baseline. An 80dB white noise tone
was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the five-minute
task. During the last two seconds of the tone, the mice received a 1.0mA foot shock. The tone is
the conditioned stimulus (CS) and the foot shock is the unconditioned stimulus (UCS). The
animal’s freezing behavior was monitored by the FreezeFrame (Actimetrics, Evanston, IL)
software in 0.75s intervals. Freezing was defined as no movement besides respiration, and was
used as a measure of the fear response of mice. After the five-minute task the mice were returned
to their home cage. On day two, we tested contextual fear memory. The mice were placed in the
same chamber as day with the unobtainable peppermint odor, and the freezing behavior was
measured over the eight-minute task. The first two minutes of day two were compared to the first
two minutes of day one to test for the acquisition of the fear memory. The mice were then
returned to their home cage. On day three, to test cued fear, the mice were placed in a new black
and white chamber that was partitioned into a triangle shape and had an unobtainable coconut
scent. The mice were allowed to explore the chamber and the first two minutes were considered

baseline. After minute two the 85 dB tone (CS) was played for the remaining eight minutes.

Statistical Analysis

All statistical analyses were performed in R v3.4.2. All statistical tests are reported in
Supplemental Table 1. The ANOVA assumption of normality was assessed using the Shapiro-
Wilkes test and manual inspection of qqPlots, and the assumption of equal variances was
assessed with Levene’s Test. When appropriate ANOVA was used to test for main effects and
interaction terms. Post hoc analyses were done to compare between genotypes. If the data
violated the assumptions of ANOVA non-parametric tests were performed. If the experiment

was performed over time, linear mixed models were used to account for the repeated measures of
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an animal using the Ime4 R package. Post hoc analyses were then conducted to compare between
genotypes within time bins. Post hoc analyses were done using the multcomp R package (173).
Animals were removed from analysis if they had a value that was 3.29 standard deviations above

the mean or had poor video tracking and could not be analyzed.
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Figure 1: Gtf2ird1 binds preferentially to promoters in conserved, active sites in the genome. A Gtf2ird1
binding peaks are annotated primarily in promoters and gene bodies. The distribution of peak annotations is
significantly different from random sampling the genome. B Gtf2ird1 peaks were enriched in H3K4me3 sites
marking active regions of the genome and to a lesser extent in H3K27me3 marking repressed regions. C GO
analysis of genes that have Gtf2ird1 bound to the promoter. D The conservation of sequence in Gtf2ird1 bound
peaks is significantly higher than expected by chance. E Motifs of transcription factors enriched under Gtf2ird1
bound peaks.
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Figure 2: Gtf2i binds at promoters in conserved, active sites in the genome. A Gtf2i binding sites are annotated
mostly in gene promoters and the gene body. The distribution of peaks is significantly different than would be
expected by chance. B 78.7% of Gtf2i peaks overlap with H3K4me3 peaks marking active regions. 20.7% of the
Gtf2i peaks fall within H3K27me3 peaks marking inactive regions. C GO analysis of genes that have Gtf2i bound at
the promoter. D Epigenome browser shot of Gtf2i peak bound within the Src gene. E Genomic sequence under Gtf2i
peaks are more conserved than we would expect by chance. F Motifs of transcription factors that are enriched in
Gtf2i bound sequences.
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Figure 3: Comparison of Gtf2ird1 and Gtf2i binding sites. A Gtf2i and Gtf2ird] have different distributions of
annotated binding sites. B Gtf2ird1 bound sequences are more conserved than Gtf2i bound sequences. C The
overlap of genes that have Gtf2i and Gtf2ird1 bound at their promoters. D GO analysis of genes that have both Gtf2i
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Figure 4: Frameshift mutation in Gtf2ird1 exon three results in a decreased amount of an N-truncated
protein with diminished binding at Gtf2ird1 promoter and has little effect on transcription in the brain. A
The sequence of exon three of Gtf2ird1 that was targeted by the gRNA underlined with the PAM sequence in blue.
The mutant allele contains a one base pair insertion of an adenine nucleotide that results in a premature stop codon.
B Breeding scheme of the intercross of Gf2irdIl ™" to produce genotypes used in the experiments. C, D Mutation in
Gtf2ird1 does not affect the protein or transcript levels of G#f2i. E Frameshift mutation decreases the amount of
protein in G#f2ird1”" and causes a slight shift to lower molecular weight. F The abundance of G#/2ird1 transcript
increases with increasing dose of the mutation. G Schematic of Gtf2ird1 upstream regulatory element (GUR) that
shows the three Gtf2ird1 binding motifs. The arrows indicate the location of the primers for amplifying the GUR in
the ChIP-qPCR assay. H,I WT ChIP of Gtf2ird1 shows enrichment of the GUR over off target regions. There is
more enrichment in the WT genotype compared to the G#/2ird1” genotype. J Profile plots of Gtf2ird] ChIP-seq data
confirms diminished binding at the Gtf2ird1 promoter. K Differential peak analysis comparing WT and G#f2ird 1™
ChIP-seq data showed only the peak at G#f2ird] is changed between genotypes with an FDR <0.1. L Differential
expression analysis in the E13.5 brain comparing WT and G#/2ird1”" showed only G#f2ird] as changed with FDR <
0.1. M The presence of Gtf2ird1 at gene promoters is not evenly distributed across expression levels. N The
expression of genes bound by Gtf2ird1 is not different compared to all other genes between WT and Gtf2ird1”"
mutants.
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Figure 5: Homozygous Frameshift mutation in G#f2ird1 is sufficient to cause behavioral phenotypes. A
Homozgyous mutants have worse balance than WT littermates in ledge task. B Homozygous mutants bury fewer
marbles than WT and heterozygous littermates. C Overall activity levels are not affected when both sexes are
combined. D There is no difference in time spent in the center of the apparatus between genotypes. E Acquisition
phase of fear condition paradigm. WT animals freeze more during the last five minutes of the task. F WT animals
showed greater freezing in contextual fear memory task than G#f2ird1"". G There were no differences between

genotypes in cued fear.
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Figure 6: Mutating both Gtf2i and Gtf2irdl does not result in larger differences in brain transcriptomes. A
Generation of double mutant. gRNA target is underlined in exon five of G#f2i with the PAM sequence in blue. The
two base pair deletion results in a premature stop codon within exon five. The G#f2ird] mutation is a large 590 base
pair deletion covering most of exon three as shown in the IGV browser shot. B Heterozygous intercross to generate
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genotypes for ChIP and RNA-seq experiments. The homozygous double mutants are embryonic lethal but are
present up to E15.5. C The two base pair deletion in G#f2i decreases the protein by 50% in heterozygous mutant and
no protein is detected in the homozygous E13.5 brain. D The mutation decreases the abundance of G#f2i transcript
consistent with nonsense-mediated decay. E The 590 base pair deletion in Gtf2ird1 leads to decrease protein levels
in heterozygous and homozygous mutants. There is still a small amount of protein made in the homozygous mutant.
F The 590 base pair deletion increases the amount of G#f2ird! transcript. G Volcano plot comparing the expression
in the E13.5 brain of WT and heterozygous double mutants. The highlighted genes represent an FDR < 0.1. H The
presence of Gtf2i at the promoters does not correlate with the expression of a gene. I The fold change of genes
between WT and homozygous double mutants that have Gtf2i bound at their promoters were slightly upregulated
when compared to the fold change of genes that did not have Gtf2i bound.

A

k.
rg
L,

Gtf2i*/Gtf2ird1*

g

N a

AN

Gtf2i*/Gtf2ird1+ Gtf2i*/Gtf2ird1*
Gtf2ird1
o _
© ewr n=22
® GHf2i*/GHf2irg1 ¥~ N=20
o ® Gif2ird1*” n=17
n ® Gtf2i"/Gf2ird1™" n=18
= O
£ < 7 A
- ,n-.
@ O I e
o Q4 3 b
§°1 g #
g g #
a «N
o
o -
r T T T T 1
10 20 30 40 50 60
G Time (10 minutes)
o _
< wr n=18
® o GGz~ n=21
* Gtf2ird 1" n=17
® Gi2i*/GHi2ird1™ n=16
o
2 ® 7
N
3
s o4 ]
oy (8}
£
._ o E T
o\c - { ﬂ} ’j :& cd 4
3 { Ul fﬁ
o
| IS I I R B N —
1 2 3 4 5 6 7 8

Time (minute)

B

Time on ledge (s)

Gtf2i*/Gtf2ird1

E

150 250
1 1

Time spent in center (s)
50

100
|

60

% Time freezing
40

20

60 80
L

40
)

20

= wr n=22
= G2 /GHRid1” n=23
= Gi2ird1*~

= Gi2i*/GH2ird1 ™

n=17
n=18

owr n=22

® Gf2i*/GHf2ird1

* GH2ird1
® Gtf2i" /Gf2ird1 ™"

o wr

® GH12i*/Gif2ird1 "~
® G2ird1*~
® GHi2i"/Git2ird1 ™"

baseline

¥ n=20
n=17
n=18

3
§ V' " S .
{ Y }:&} iﬁ

r T T T T
10 20 30 40 50
Time (10 minutes)

60

n=18
n=21
n=17
n=16
Tone

i .

Moo

1

Time (minute)

C

% Time freezing
10 20 30 40 50 60

Number of marbles buried

0

T = wr

= G2i"/Gtf2ird 1"
= Gird1 = 22
- = G2 /Gtiird1™" n=23
n=17
n=18
et
D
4 b . ST T
|
. 1
1 1
I
T l ol
et e
J 2k
- WT n=18
® G2 Giaird1 - =21
- *atrrar™ n=17
® G2 /GH2id1 =16
T/f T/S
TS { S {
. Baseline .I,
4
n pe:
L ¥
. = S
r T T T .
1 2 3 4 5

Time (minute)

Figure 7: Gtf2i does not modify the phenotype of Gtf2ird1 mutation. A Breeding scheme for behavior
experiments. B The G#f2i""/Gtf2ird1™" animals fell off ledge sooner than WT littermates. C There was main effect of
genotype on marbles buried. Post hoc analysis showed that the G/2i""/Gtf2ird1”" buried fewer marbles than the
Gif2ird1”" genotype. D The Gf2i""/Gtf2ird]”" had increased overall activity levels in a one hour activity task. E
The G#f2i""/G1f2ird]”" showed decreased time in the center of the apparatus compared to WT, with the G#f2ird1""
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and Gif2i""/Gtf2ird]"" having intermediate values. F All genotypes showed increased freezing with increased
number of footshocks. G All genotypes showed a similar contextual fear response. H There was a main effect of
genotype on cued fear with the G#f2ird1™" and G#f2i""/Gtf2ird]”" showing an increased fear response compared to
WT.
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Supplemental Figure 1: Differential peak binding comparing the WT and homozygous Gtf2i IP. A The
highlighted peaks have an FDR < 0.1 and a log2FC > 0. These were used as the high confidence Gtf2i peaks.
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Supplemental Figure 2: RNA-seq analysis of E13.5 brain comparing the WT and G#f2ird]"” mutants. A Only
Gtf2irdl showed a difference with FDR < 0.1.
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Supplemental Figure 3: The effects of frameshift mutation in G#f2irdI. A Female heterozygous and homozygous
mutants have increased activity levels. B There is no difference in activity levels in male mice. C There is no
difference between genotypes in females with respect to the time spent in the center of the apparatus. D There is no
difference between genotypes in males with respect to the time spent in the center of the apparatus. E All genotypes

showed a contextual fear response. Baseline refers to the first two minutes of the task on day one and context refers
to the first two minutes of the task on day two. F There was no difference in shock sensitivity between genotypes.
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Supplemental Figure 4: RNA-seq analysis of homozygous double mutant. A The homozygous double mutant
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FDR < 0.1 and a 1og2FC > 1 or log2FC < -1. B GO analysis of all nominally significant genes.
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Supplemental Figure 5: Biochemical and behavioral characterization of the Gtf2ird1"" x Gtf2i”/Gtf2irdl™" . A,
B Western blot and qPCR confirm decrease in Gtf2i protein and mRNA. C Western blot shows that the large
Gtf2ird1 deletion decreases the protein, but adding the one base pair insertion mutation does not further decrease the
protein made. D Gtf2ird]1 mutation increases mRNA abundance. E Replication of ledge task in independent cohort.
F Gtf2i+/-/Gtf2ird1-/- females have increased activity levels. G Gtf2i+/-/Gtf2ird1-/- males to a lesser extent have
increased. H All genotypes showed a contextual fear memory response. I There is no difference between genotypes
in shock sensitivity.

Table 1: Behavior and animal cohort for Gleird1+/' x Gtf2irdl k

Male Female
Behavior WT Gtf2ird1"” Gtf2ird1” WT Gtf2ird1”"  Gtf2ird1”
One hour activity 3 20 16 10 22 6
Ledge 2 20 16 11 23 6
Marble burying 3 20 16 11 22 6
Condtioned Fear 3 16 12 11 17 5
Shock Sensitivity 3 20 16 11 22 6
Table 2: Behavior and animal cohorts for the Gtf2ird1™ x Gtf2i"/Gtf2ird 1™
Behavior Male Female
Cohortl WT Gtf2ird1”"  Gtf2i” /Gtf2ird1” Gtf2i” /Gtf2ird1” WT Gtf2ird1”"  Gtf2i”/Gtf2ird1” Gtf2i"” /Gtf2ird1”
One hour activity 8 8 11 7 14 9 9 11
Ledge 8 8 12 7 14 9 11 11
Marble burying 8 8 12 7 14 9 11 11
Cohort2
Ledge 13 5 12 6 11 15 13 12
Condtioned Fear 11 4 9 5 7 13 12 11
Shock Sensitivity 12 6 10 6 10 15 13 12
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Supplemental Table S1: Table of summary statistics and statistical tests
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Chapter 4: Gtf2i and Gtf2ird]l mutation are
not sufficient to reproduce mouse phenotypes
caused by the Williams syndrome critical

region

Nathan Kopp, Katherine McCullough, Susan E. Maloney, and Joseph D. Dougherty
From a manuscript submitted and is in review at Human Molecular Genetics as:

Kopp N., McCullough, K., Maloney, S.E., and Dougherty, J.D. Gtf2i and Gtf2ird] mutation are
not sufficient to reproduce mouse phenotypes caused by the Williams syndrome critical region

(2019) In review.
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4.1 Abstract

Williams syndrome is a neurodevelopmental disorder caused by a 1.5-1.8Mbp deletion on
chromosome 7q11.23, affecting the copy number of 26-28 genes. Phenotypes of Williams
syndrome include cardiovascular problems, craniofacial dysmorphology, deficits in visual-spatial
cognition, and a characteristic hypersocial personality. There are still no genes in the region that
have been consistently linked to the cognitive and behavioral phenotypes, although human
studies and mouse models have led to the current hypothesis that the general transcription factor
2 I family of genes, GTF2I and GTF2IRD], are responsible. Here we test the hypothesis that
these two transcription factors are sufficient to reproduce the phenotypes that are caused by
deletion of the Williams syndrome critical region (WSCR). We compare a new mouse model
with loss of function mutations in both G#/2i and Gtf2ird] to an established mouse model lacking
the complete WSCR. We show that the complete deletion model has deficits across several
behavioral domains including social communication, motor functioning, and conditioned fear
that are not explained by loss of function mutations in G#f2i and Gtf2ird1. Furthermore,
transcriptome profiling of the hippocampus shows changes in synaptic genes in the complete
deletion model that are not seen in the double mutants. Thus, we have thoroughly defined a
set of molecular and behavioral consequences of complete WSCR deletion, and shown that
genes or combinations of genes beyond Gtf2i and Gtf2ird1 are necessary to produce these

phenotypic effects.

4.2 Introduction

Contiguous gene disorders provide a unique opportunity to understand genetic
contributions to human biology, as their well-defined genetic etiology delimits specific genomic

regions strongly affecting particular phenotypes. Williams syndrome (WS; OMIM #194050) is
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caused by a 1.5-1.8Mbp deletion of 26-28 genes on chromosome 7ql11.23 in the Williams
syndrome critical region (WSCR). Williams syndrome is phenotypically characterized by
supravalvular aortic stenosis, craniofacial dysmorphology, and a distinct cognitive profile
consisting of intellectual disability, severe visual-spatial deficits, yet relatively strong language
skills. Other common cognitive and behavioral difficulties include high levels of anxiety,
specific phobias, and a characteristic hypersocial personality manifested as strong eye contact,
indiscriminate social approach, and social disinhibition (see (2, 14, 15) for reviews). Despite
increased social interest, individuals with Williams syndrome have difficulties with social
awareness and social cognition (20, 174). In contrast, the reciprocal duplication results in
dup7q11.23 syndrome (OMIM #609757), which presents with both similar and contrasting
phenotypes to WS, such as high levels of anxiety yet less social interest (175). It is also
associated with autism spectrum disorders (121). The recurrent deletion and duplications of
chr7q11.23 indicate that one or more genes in this region are dose sensitive and have a large

effect on human cognition as well as human social behavior.

Substantial efforts have been taken to understand which genes in the WSCR contribute to
different aspects of the phenotype. Three approaches have driven advances in genotype-
phenotype correlations in the WSCR: phenotyping individuals with atypical deletions in the
region, human induced pluripotent stem cell models, and mouse models. Patients with atypical
deletions have firmly connected haploinsufficiency of the elastin (ELN) gene with supravalvular
aortic stenosis and other elastic tissue difficulties in WS (6, 104). However, human studies have
not conclusively linked other genes to specific phenotypes. Three atypical deletions that span the
ELN gene to the typical telomeric breakpoints showed the full spectrum of the WS phenotype,

suggesting that most of the phenotypes are driven by the telomeric end of the deletion, which
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contains genes for two paralogous transcription factors GTF2I and GTF2IRD1 (34, 35). Indeed,
most of the atypical deletions that have been reported that delete the centromeric end of the
region and don’t affect the copy number of GTF2I and GTF2IRD1, show mild to none of the
characteristic facial features or cognitive and behavioral phenotypes of WS (31-33, 36-40, 99).
While there are contrasting examples of deletions that spare GTF2/ and still have mild facial
characteristics of WS, lower 1Q, and the overfriendly social phenotype (40, 176), the
preponderance of evidence from these rare partial deletions have led to the dominant hypothesis
being that GTF2] and GTF2IRDI mutation are necessary to cause the full extent of the social,
craniofacial, visual-spatial and anxiety phenotypes. However, there are limitations to these
human studies, primarily due to the rarity of partial deletions. First, because of the variable
expressivity of the phenotypes even in typical WS, it can be difficult to confidently interpret any
phenotypic deviation in the rare partial deletions (20, 56, 174). Second, given the rarity of WS
and partial deletions, and lack of relevant primary tissue samples, it is challenging to link genetic
alterations to the specific downstream molecular and cellular changes that could mediate the

organismal phenotypes.

To overcome this second barrier, researchers have turned to using patient induced
pluripotent stem cells to study the effects of the WSCR deletion and duplication on different
disease relevant cell types (44, 45, 47-49). While linking molecular changes to organismal
behavior is not possible with cell lines, this approach is amenable to studying cellular and
molecular phenotypes, such as changes to the transcriptome and cellular physiology. By studying
differentiated neural precursor cells from an individual with a typical WS deletion and an
individual with an atypical deletion that spares the copy number of the FZD9 gene, Chailangkarn

et al. (45) showed that FZD9 is responsible for some of the cellular phenotypes, such as
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increased apoptosis and morphological changes. Lalli et al. (49) used a similar approach to show
that knocking down the BAZIB gene in differentiated neurons was sufficient to reproduce the
transcriptional differences and deficits in differentiation that were observed in WS differentiated
neurons. Finally, Adamo et al. (44) studied the effects of GTF2I on iPSCs from typical WS
deletions, dup7q11.23, and typical controls. By overexpressing and knocking down GTF2! in the
three genotypes, they showed that GTF2I was responsible for 10-20% of the transcriptional
changes. Overall, using iPSCs from patients with WS has highlighted a role for both the GTF2/
family and other less appreciated genes in the molecular consequences of the WSCR mutation.
This suggested the possibility that several genes may play a role in the cognitive phenotypes and
GTF2I alone may not be sufficient for all neural molecular changes and hence cognitive
phenotypes. However, iPSC studies face the limitation that they cannot be used to model whole
organismal effects like anxiety or social behavior. Further, while some cellular and molecular
phenotypes can be evaluated, both gene expression and cellular physiology using in vitro
differentiation systems do not perfectly reflect the phenotype of mature neural cells, fully

integrated into a functioning or dysfunctioning brain.

Mouse models have been used to link genes in WSCR to specific molecular and cellular
phenotypes, as well as to the functioning of conserved organismal behavioral circuits that could
be related to human cognitive phenotypes. Mouse models are particularly suitable because a
region on mouse chromosome five is syntenic to the WSCR, enabling models of corresponding
large deletions, including a mouse line with a complete deletion (CD) of the WSCR genes that
shows both behavioral disruptions and altered neuronal morphology (93). In addition, a key
advantage over human partial deletions is that researchers can easily manipulate the mouse

genome to delete targeted subsets of genes in the locus, and generate large numbers of animals
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with identical partial mutations, enabling statistical analyses to overcome variable expressivity.
For example, there are mouse models of large deletions that show that genes in the distal and
proximal half of the region may contribute to separate and overlapping phenotypes (94).
Likewise, many single gene knockouts exist that show some phenotypic similarities to the human
syndrome, though a limitation is that some of these studies model full homozygous loss of
function, rather than a hemizygous decrease in gene dose. Nonetheless, specifically for Gtf2ird1
(92, 100, 101) and G#f2i (29, 67, 96), multiple mouse models of either gene have shown
extensive behavioral deficits including social and anxiety-like behaviors, some of which present
contrasting evidence. However, each of these studies has been conducted in isolation, by
different labs, with fairly different phenotyping assays, making it difficult to directly compare

findings to other mouse models of WS.

Mouse models uniquely enable a direct way to test the sufficiency of individual
mutations to recreate the organismal phenotypes detected when the entirety of the WSCR is
deleted. By crossing different mutant lines together, we can create genotypes unavailable in
human studies and conduct a well-powered and controlled study to directly test if specific gene
mutations are sufficient to reproduce particular phenotypes of the full deletion. Since both human
and mouse literature suggest that GTF2IRDI and GTF2I each contribute to the molecular,
cognitive, and social phenotypes, we set out here to test if loss of function of both of these genes
is sufficient to recapitulate the phenotypes of the entire WSCR deletion at both the molecular and
behavioral circuit levels, or if instead, as hinted by the iPSC studies and other human mutations,
other or more genes may be involved. Using CRISPR/Cas9 we generated a new mouse line that
has loss of function mutations in both G#2i and Gtf2irdl on the same chromosome. We then

crossed them to the CD full deletion model to directly compare behavior and transcriptomes of
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the Gtf2i/Gtf2ird] mutants to both WT and CD littermates. Examining both previously defined
and newly characterized behavioral and molecular disruptions, we demonstrate that mutation of
these two genes is not sufficient to replicate any of the CD phenotypes. In contrast to a dominant
hypothesis arising from human partial deletions, this study provides strong evidence that
Gtf2i/Gtf2ird] mutation alone may not be responsible for key WS cognitive and behavioral

phenotypes.

4.3 Results

4.3.1 Generation and validation of G#f2i and Gtf2ird]I loss of function mutation

on the same chromosome.
Prior work from comparing phenotypes of humans with partial deletions of the WSCR

highlighted GTF2I and GTF2IRD]1 as likely involved in cognitive phenotypes in WS (34, 38,
39). Likewise, single gene mutant mouse models of both genes showed that each may contribute
to relevant phenotypes (92, 96, 97, 100, 101). We wanted to test if heterozygous loss of function
mutants of both G#/2i and Gtf2irdl are sufficient to replicate the phenotypes that are caused

when animals are hemizygous for the entire WSCR (Figure 1A).

Therefore, to test the sufficiency of these genes, we generated a mutant of G#f2i and
Gtf2irdl genes on the same chromosome using CRIPSR/Cas9. Two gRNAs were designed to
target constitutive exons of Gtf2i or Gtf2irdl (Figure 1B) and were co-injected with Cas9
mRNA into the eggs of the FVB strain. Of the 57 pups born we detected 21 editing events using
the T7 endonuclease assay. From these animals PCR amplicons around each targeted site were
deeply sequenced and mutations were characterized via manual inspection of the reads in IGV.
Of the founders there were five that only had mutations in G#/2i, five with mutations only in
Gtf2irdl, and 15 that had mutations in both genes (Supplemental Figure 1A). Most founders
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had more than one allele within a gene indicating high rates of mosaicism (60%, 15/25 mice).
Breeding a selection of the mosaic founders to WT animals revealed that some of the founders
were mosaic in the germline as well (40%, 4/10 mice), with one founder transmitting three

different alleles.

To test if haploinsufficiency of both Gt#f2i and Gtf2irdl is sufficient to replicate the
phenotype of hemizygosity of the entire WSCR, we moved forward with characterizing a mouse
line that has a G > C polymorphism followed by an eight base pair insertion in exon five of G#/2i
and a five base pair deletion in exon three of Gtf2irdl; these will be referred to as the Gif2i*
mouse line (Figure 1B). These mutations are inherited together indicating that they are on the
same chromosome. The mutations cause frameshifts and introduce premature stop codons in
early constitutive exons (Figure 1B), and were thus expected to trigger nonsense mediated decay
and lead to loss-of-function alleles, mimicking the effective gene dosage of WSCR region

deletions for these two genes.

We first performed RT-qPCR and western blots to confirm the effects of the frameshift
mutations at the transcript and protein levels in embryonic day 13.5 (E13.5) littermates that were
WT, heterozygous, and homozygous mutant at the locus. We used E13.5 brains for two reasons
1) homozygosity of Gtf2i null mutants is embryonic lethal (87, 96) and 2) both Gtf2i and
Gtf2ird1l proteins are more highly expressed during embryonic time points in the brain, with

undetectable levels of Gtf2ird1 in the WT adult mouse brain (Supplemental Figure 1B and C).

The frameshift mutation in exon five of G#/2i reduced the amount of transcript detected
by qPCR, consistent with nonsense mediated decay. This mutation led to a 50% decrease of the

protein in heterozygous animals and no protein in homozygous mutants (Supplemental Figure
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1D). Indeed we were not able to recover pups that were homozygous for the G#f2i* mutations
after birth, but we were able to harvest homozygous embryos up to E15.5. The embryos had

exencephaly consistent with other G#/2i mouse models (87, 96).

In contrast, the frameshift mutations in exon three of G#f2irdl increased the amount of
transcript, as expected. Increases in transcript of G#f2irdl due to a loss of function mutation have
been described in another G#f2irdl mouse model, and both EMSA and luciferase reporter assays
indicated that Gtf2ird1 protein represses the transcription of the G#f2irdl gene (66). The increase
in transcript was commensurate with the dosage of the mutation (Supplemental Figure 1E).
However, we saw that the protein levels in our mutants did not change with dosage of the

mutation and did not follow the trend of the transcript (Supplemental Figure 1E).

Production of detectable protein after the frameshift was surprising, especially since the
increased Gtf2ird] mRNA levels were indeed consistent with prior studies of loss of functional
Gtf2ird1 protein, so we investigated this phenomena further. We noticed that the homozygous
Gtf2ird1 protein bands looked slightly shifted in the western blots. This lead us to hypothesize
that there could be a translation reinitiation event at the methionine in exon three downstream of
the frameshift mutation in a different open reading frame (Supplemental Figure 1F). In another
targeted mutation of G#f2ird1, where the entire exon two, which contains the conical start codon,
was removed, the authors noted that there was still three percent of protein being made, and the
product that was made was similarly shifted (66). From our mutation we would expect a 65aa N-
terminal truncation, which corresponds to a 7KDa difference between WT. We ran a lower
percentage PAGE gel to get better separation between WT and homozygous animals and we saw
a slight shift, suggesting that there was reinitiation of translation at methionine-65 in a different

open reading frame (Supplemental Figure 1G). This was indicative of the loss of the N-
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terminal end of the protein, which contains a leucine zipper that is thought to be important in

DNA binding (66). This is consistent with the mRNA evidence that the allele is loss of function.

We therefore tested the hypothesis that we had abolished the DNA binding capacity of
the truncated protein, to confirm loss of function. We performed ChIP-qPCR and pulled down
DNA bound to Gtf2ird1 protein and then amplified the promoter region of G#f2irdl, which has
previously been shown to be bound by the Gtf2irdl protein. We compared this to two off-target
regions in the genome near Bdnf and Pcbp3. We performed this experiment in E13.5 brains of
WT and homozygous Gtf2i* embryos. There was a 15-20 fold enrichment of the on target
Gtf2irdl promoter region compared to the off target regions in the WT animals, while the
truncated protein did not show any enrichment (Supplemental Figure 1H,I). This suggested
that while a truncated protein was still being made it did not have the DNA binding functionality
of the WT protein. This indicated that the frameshift mutation in exon three of G#f2irdl was a
loss-of-function mutation and provided evidence that the N-terminal end of the protein, which
contains a leucine zipper, is necessary for DNA binding. Thus, we confirmed we had generated a

mouse line with loss of function alleles on the same chromosome for these G#f2i* genes.

To test the sufficiency of mutation in these two transcription factors to replicate
phenotypes observed by deleting the entire WSCR, we crossed the G#f2i* mutant to the CD
mouse (Figure 1C), which is hemizygous from exon five of Gtf2i to Fkbp6 (Figure 1A). The
Gtf2i* mutants were generated on the FVB/Ant] background, whereas the CD mice were
generated on the C57BL/6J background. Therefore, we only used the first generation from this
cross for all experiments to ensure all mice had the same genetic background. As above, we
assessed the transcript and protein levels of genotypes from this cross to confirm loss of function.

Again, the CD/Gtf2i* genotype was embryonic lethal, but we did observe that genotype up to
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E15.5. The levels of Gtf2i transcript and protein were similar between CD heterozygous and
Gtf2i* heterozygous animals (Figure 1D). The levels of Gtf2irdl transcript increased in Gtf2i*
animals similar to what was seen in Gtf2i* heterozygous animals on the pure FVB/Ant]
background. In contrast, the CD heterozygous animals had decreased levels of Gtf2irdl
transcript. In the CD/G#f2i* animals the level of transcript returned to WT levels. Again, the
levels of Gtf2irdl transcript were not reflected in the protein levels. We saw a trend to similar
slight decreases in protein levels in the both heterozygous genotypes; however, they were not
significantly different from WT levels. This was interesting because in the CD animals were
missing one entire copy of this gene, opposed to a frameshift mutation. This also suggested that
the frameshift mutation in exon three of G#f2irdI did affect the amount of protein being made,
but not drastically. We did see a significant decrease in protein levels (60% of WT) in the
CD/Gtf2i* genotype (Figure 1E). Again suggesting that the frameshift mutation was decreasing

the levels of protein.

4.3.2 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated

alterations of vocal communication
We next tested if haploinsufficiency for both genes would recapitulate behavioral

phenotypes seen in mice hemizygous for the entire WSCR (CD mice) (Table 1). Since single
gene knockout studies of both G#2i and Gtf2irdl, and larger deletion models showed evidence
for disrupted social behavior we wanted to directly compare the effects of Gif2i*

haploinsufficiency to the effects of hemizygosity of the entire WSCR on social behavior.

We first measured maternal separation induced ultrasonic vocalizations (USVs) in
postnatal day three and postnatal day five pups. This is a form of developmental communication

and was shown to be increased in mice that had three or four copies of G#f2i compared to mice

143



with normal copy number or only one functional copy (29). We saw a significant effect of day
(F1.11600=5.43, p=0.021) and genotype on the call rate (Fy607= 6.09, p=0.004), as well as a
genotype by day interaction (F261.64=6.80, p=0.002). Post hoc analysis within day showed that on
day five CD mice made fewer calls than WT littermates (p<0.001) and G#f2i* mutant littermates
(p=0.045) (Figure 2A). We included the weight of the mouse as a covariate to make sure the
decrease in call number was not due to differences in weight. We saw that weight has a trending

effect (F1.7545=3.95, p =0.05), but the day by genotype interaction term remained significant.

We also observed differences in the temporal and spectral features of the calls. There was
a significant effect of genotype on pause length between bouts (F26=11.9069, p=4.31e-5), with
CD mice exhibiting longer pauses on day five compared to WT mice ( p=0.0004) and G#f2i*
mice (p=0.0014); this is correlated with fewer calls produced by CD animals (Supplemental
Figure 2A). There was a also significant genotype by day interaction for the duration of a call
bout (F2,6:1=7.26, p=0.001), with CD mice exhibiting a shorter duration on day five compared to
WT (p=0.046) (Supplemental Figure 2B). Overall, our study of vocalization provides evidence
that G#f2i and Gtf2ird] mutation alone are not sufficient to produce a CD-like deficit in this

behavior.

Maternal-separation induced USVs are only produced during a transient period of
development from postnatal day three to postnatal day 10, peaking at postnatal day seven and
postnatal day nine in FVB/Ant] and C57BL/6J strains, respectively (177). Therefore the
alteration in the CD animals could reflect an overall shift in developmental trajectory. To assess
this, we checked weight gain and developmental milestones in our cohorts. No differences in
developmental weights were observed between genotypes. The detachment of the pinnae at

postnatal day five, a physical milestone, was similar across all genotypes (x*=2.593, p=0.4628,
144



Supplemental Table 1). However, there were weight deficits in CD animals in adulthood
(Supplemental Figure 2C). There was a significant effect of day on weight (F4240=1610.9, p <
2.2e-16), a significant effect of genotype (F260=7.2059, p=0.001568), and a significant day by
genotype interaction (Fs240=6.9258, p=3.332e-8). These data suggest that gross developmental

delay in CD animals does not explain the observed communication deficit.

4.3.3 Gtf2i* mutation is not sufficient to reproduce WSCR-mediated

alterations of social behavior
We went on to test adult social behaviors. We first applied the standard three-chamber

social approach, which has not been reported in CD mice. In this task the mice are allowed to
freely explore an apparatus with three chambers: a center chamber, a social chamber that
contains a cup with a sex and age-matched mouse, and an empty chamber that only contains an
empty cup (Figure 2B). This test measures the voluntary social approach of mice. We saw the
expected preference for the social stimulus across all mice (F;53=83.2013, p=1.894x10"'%), with
no impact of genotype (F,s53=1.1516, p=0.3239) or genotype by stimulus interaction
(F2,53=0.5845, p=0.5609). Post hoc comparisons within genotypes confirmed that all genotypes
spent significantly more time investigating the social stimulus than the empty cup (WT p <0.001;
Gtf2i* p < 0.001; CD p=0.00456; Figure 2C). Thus, sociability as measured in this task is not

sensitive enough to discern a hypersocial phenotype in these animals.

In a test for social novelty, a novel stranger mouse was then placed in the empty cup. All
genotypes showed the expected preference for the novel stimulus animal (F;s53=50.3816,
p=3.137x10"), again with no effect of genotype (Fs53=1.3948, p=0.2568) or genotype by
stimulus interaction (F,s53=0.5642, p=0.5722). Post hoc comparisons showed that all the

genotypes spent significantly more time investigating the novel stimulus (WT p <0.001; G#f2i*

145



p =0.00321; CD p=0.0012; Supplemental Figure 2D). Additionally in this task, we did notice a
significant effect of genotype on overall distance traveled (F»53=3.98, p 0.024) with the G#f2i*
mutants traveling further distance than the WT animals in the sociability trial (p=0.0305;
Supplemental Figure 2E), and a corresponding trend during the social novelty trial (F»53=2.87,
p=0.115). This suggests that the double mutants have a slight hyperactive phenotype in this task

that is not seen in the CD mutants.

Previous reports on social phenotypes in mouse models of WS have described a lack of
habituation to a social stimulus. To test this we repeated the three-chamber social approach task
in a new cohort of animals with an extended sociability trial to test if the G#f2i* mutants or the
CD animals showed the preference for the social stimulus after the prolonged amount of time.
Similar to the classic three-chamber results we saw a significant effect of the social stimulus in
the first five minutes (F;s56=19.3683, p=4.891e-5), there was a trend of a genotype effect
(F2,56¢=3.098, p=0.053) and no interaction (Fs5,=0.4650, p=0.6350). Interestingly, we observed a
significant preference for the social chamber in the WT and G#/2i* mutants, but the CD animals
only trended in this direction (Supplemental Figure 2F). To determine if the CD mutants do
indeed maintain a prolonged social interest compared to WT littermates, we examined the last
five minutes of the 30 minute sociability trial. While there was a significant effect of stimulus
(F15¢=4.82, p=0.03), there was still no effect of genotype (F2s56=0.0523, p=0.949) or an
interaction (F,s56=0.454, p=0.637). In fact, the significant effect of chamber was driven by the
proportion of animals investigating the novel empty cup more than the social stimulus
(Supplemental Figure 2G). These data lead us to conclude that the double mutants and CD

animals show a WT-like habituation to social stimulus in this task.
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We also tested social dominance in the tube test in these mice. Previous studies using
partial deletions of the WSCR showed that the proximal deletion which contains G#f2i and
Gtf2irdl as well as deletions of both the proximal and distal regions in mice resulted in different
win/loss ratios than WT mice and mice lacking just the distal end of the WSCR (94). In contrast,
here, the G#f2i* and CD animals did not exhibit dominance behavior different than chance would
predict (WT vs Gtf2i* p=0.8318, WT vs CD p=1). Gtf2i* and CD animals also had similar

proportions of wins when paired together (G#f2i* vs CD p=0.6291) (Figure 2D).

The contrasts in our findings with those reported in prior papers could be due to
differences in background strain. Different inbred mouse strains show different dominance
behavior (178), and other phenotypes, such as craniofacial morphology in WS models has been
shown to be strain dependent (39, 95, 101). We tested the effects of the background strain of the
Gtf2i* and CD models by performing the same task on the respective background of each line
and comparing them to their WT littermates. Thi showed that the G#/2i* mutants had a WT-like
phenotype while the CD mice had a submissive phenotype with significantly more losses to WT
littermates (Supplemental Figure 2H). Thus, the submissive phenotype of the CD allele is

dependent on strain which is not observed in the G#f2i* mutants.

Finally, we tested the male mice in a resident-intruder paradigm. In this task, male mice
were singly housed for 10 days to establish their territory and, in a series of three test days, novel
WT C57BL/6J animals were introduced into their territories as intruders. This task measures
both social interactions and bouts of aggression between two freely moving animals (Figure 2E).
In our study, only one mouse showed aggressive behavior towards the intruder mouse, so we did
not further quantify this behavior. Assessment of the social interactions showed a significant

main effect of genotype (F,31=5.241, p=0.011) with no effect of day (F»,=2.470, p=0.093) or
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day by genotyping interaction (F46,=0.1095, p=0.978). Post hoc tests within each day showed
that the CD animals spent less total time on day two (p=0.0248) and day three (p=0.0318)
engaged in anogenital sniffing compared to the WT animals (Figure 2F). These differences
could not be explained by differences in total activity levels between the genotypes (F»31=1.399,
p=0.262; Supplemental Figure 2I). The decrease in total time spent in anogenital sniffing was
driven by a shorter average bout time (F,3,=5.852, p=0.007, Supplemental Figure 2J) and not
the number of times the animals initiated the sniffing behavior (F,3;=2.7961, p=0.0765;
Supplemental Figure 2K). The same differences also held for nose-to-nose sniffing (Figure
2G). There was a significant effect of genotype (F23:= 3.737, p=0.0352) and no effect of day
(F2.60=3.01, p=0.056) or day by genotype interaction (F46,=0.8156, p=0.520). Post hoc analysis
showed that on day two the CD animals participated in nose-to-nose sniffing significantly less
than the WT animals (p=0.0160), while the trend was present in the other days but was not
significant. These results indicated that some aspect of social behavior was disrupted in these
animals and G#f2i* mutants could not recapitulate the full CD phenotype. While we predicted
that the WS models would show increased social interest similar to the human condition,
individuals with WS have difficulties with other aspects of social behavior, such as social

cognition and social awareness (20, 174), which may be reflected in these data.

4.3.4 Gtf2i* mutation is not sufficient to reproduce WSCR mediated

alterations of motor behavior
Along with a characteristic social behavior, WS also presents with other cognitive

phenotypes including poor coordination, increased anxiety, specific phobias, repetitive
behaviors, and mild intellectual impairment (21). Human studies and mouse models have
suggested that GTF2[ and GTF2IRD1 contribute in aspects of the visual-spatial deficits and other

cognitive phenotypes (36, 38). These genes are also highly expressed in the cerebellum, which
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could contribute to the coordination problems (72, 78). Therefore, we next tested if CD mice had
any motor phenotypes and if haploinsufficiency of these two transcription factors were sufficient

to reproduce any deficits.

We performed a sensorimotor battery to assess balance, motor coordination and strength
in mutants and WT littermates. All genotypes were similar in the time to initiate walking, and
reach the top of a 60 degree inclined screen or a 90 degree inclined screen. All genotypes were
able to hang onto an inverted screen for the same amount of time (Supplemental Figure 3A-D).
CD animals were significantly quicker on turning around on a pole and quicker to get off of the
pole than WT animals (Supplemental Figure 3E-F), which may be related to body size. There
was a significant effect of genotype on time to fall in the ledge task (H>=12.505,p=0.001925), in
which CD animals fell off the ledge faster than either WT (p=0.0071) or Gtf2i* (p=0.0069)
littermates (Figure 3A). Similarly, there was a significant effect of genotype on the time spent
balancing on a platform task (H,= 7.1578, p=0.02791) (Supplemental Figure 3G). Despite their
comparable performance in strength and coordination tasks, the CD animals tended to have
poorer balance, while the double mutants performed similar to WT animals. These findings

suggest that other genes in the WSCR contribute to this balance deficit.

To test motor coordination in a more sensitive manner, we evaluated the mice on an
accelerating rotarod. This task was performed over three days and tests coordination by
quantifying how long a mouse can stay on a rotating rod. There was a main effect of day (F2.39
= 81.58, p< 2.2x10'® ) and a main effect of sex (F14=10.0227, p = 0.002383), but no main
effect of genotype (F26:=2.0394, p=0.13861). We did not observe a sex by genotype interaction
(F263=0.8155, p=0.447035) but did see a day by genotype interaction (Fi333=3.6270,

p=0.006558). A post hoc comparison between genotypes within each day of testing showed that
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Gtf2i* animals fell off more quickly compared to CD animals on day three (p=0.04) with no
difference between WT and CD animals (Supplemental figure 3H). In contrast to the balance
deficit seen on the ledge task but consistent with pole and screen performance, the rotarod results

showed that all genotypes have similar motor coordination.

Marble burying is a species-specific behavior that assesses the natural tendency of mice
to dig. This task also requires motor skills and has been used as a proxy for repetitive behaviors
(179), which are seen in individuals with WS. It has been previously shown that CD animals
bury fewer marbles than WT littermates (90, 91). Here we similarly show that there was
significant effect of genotype in this task (Fa6=15.243, p=3.61x10°). CD animals buried fewer
marbles than both WT (p<0.001), and G#f2i* mutants (p=0.000265) (Figure 3B), indicating
that G#f2i* mutation is not sufficient to recapitulate CD phenotype. The differences in marble
burying was not explained by any differences in activity levels between the genotypes during the
task (F265=0.8974, p=0.4126; Supplemental Figure 3I). However, we did see a significant
effect of genotype on distance traveled in the center of the apparatus (F, =13, p=0.0015), with
CD mice traveling less distance in the center compared to WT (p=0.0301) and G#f2i* (p=0.002)
littermates (Figure 3C). There was also a corresponding significant effect of genotype on time
spent in the center (F»6=14.389, p=0.00075) with CD mice spending less time in the center than
WT (p=0.0079) and G#f2i* (p=0.0017) littermates. Avoidance of the center is generally
interpreted in rodents as an increase in anxiety-like behavior (Figure 3D). Thus, these results
provided further support to the hypothesis that genes besides G#f2i* contribute to an anxiety-
related phenotype. It also suggested that the decreased marbles buried may be secondary to the
decreased time in center and could reflect a phenotype secondary to anxiety rather than a direct

stereotypy phenotype.
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Finally, to test if the mutants have normal sensorimotor gating we looked at PPI. Similar
to other tasks, contrasting evidence has been observed in WS mouse models in this task. Mouse
of models of just G#f2i showed no phenotype (96), whereas the proximal deletion mice showed
decreased PPI; however, when combined with the distal deletion the phenotype that was
suppressed (94). Here we show that all genotypes exhibited the expected increased PPI with an
increasing pre-pulse stimulus (F,1,=620.61, p < 2e-16), but with no effect of genotype
(F256¢=0.7742,p=0.466) or a pre-pulse by genotype interaction (F4;1,=1.926,p=0.111)
(Supplemental Figure 3J). A decrease was observed for overall startle response to the 120dB
stimulus by CD animals, but when we included weight in the statistical model this effect
disappeared (genotype Fss=1.48, p=0.2365; weight F;5s=26,001, p=4.34e-6). Thus, the only
phenotypic difference seen simply reflected the smaller size of the CD mice and not a change in
sensorimotor gating (Supplemental Figure 3K).

4.3.5 WSCR mutation does not produce robust anxiety-like behaviors

WS patients have heightened anxiety (21), and mouse models of Gtf2i (67, 96) and
Gtf2irdI (100, 101) mutations have produced mixed evidence to support the role of these genes
in anxiety phenotypes. Larger deletion models that have either the proximal or distal regions
deleted showed anxiety-like phenotypes in the open field, but not in light-dark boxes (94).
Similarly the CD model has been shown to not have any differences in the open field task (93).
We wanted to directly compare animals with G#f2i and Gtf2irdl mutations to CD animals in the
same tasks to test exploratory and anxiety-like phenotypes. First, we looked at the behavior of
the mice in an one hour locomotor activity task. We did not see any effect of genotype on the
total distance traveled (F,6=0.6324, p=0.53449), however there was a trend towards a time by

genotype interaction (Fjo330=1.7817, p=0.06283; Figure 3E) with the G#f2i* mutants traveling
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further distance. This was consistent with the behavior observed during the three-chamber social
approach task. In contrast to the marble burying task, here we did not see a significant main
effect of genotype on the time spent in the center of the chamber (F,¢=2.3104, p=0.10720)
though we observed a trend in the first ten minutes for CD mice to spend less time in the center
(Figure 3F). However, the G#f2i* mice did not show a similar trend. To further test for anxiety-
like phenotypes, we performed elevated plus maze testing. Across the three days of testing, all
genotypes spent similar percent time in the open arms of the apparatus (F,:=0.6351, p=0.5332;
Supplemental Figure 3L). Overall, our experiments indicate there may be a subtle increase on
some tasks in anxiety-like behavior in CD mice. However, if there is such a phenotype, we see

no evidence that G#f2i* mutations are sufficient to produce it.

4.3.6 Gtf2i* mutation is not sufficient to reproduce WSCR mediated

alterations of fear conditioning
Finally, as patients with WS have both intellectual disability and increased prevalence of

phobias (21, 180), we tested associative learning and memory of the mice using a contextual and
cued fear conditioning paradigm. These behaviors are also mediated by brain regions that have
shown to be altered in mouse models of WS and human patients, namely the amygdala and
hippocampus. Individuals with WS have altered structural and functional reactivity in the
hippocampus and amygdala as reviewed in (15) compared to typically developing controls. Both
of these regions play a role in both contextual and cued fear conditioning (181). Likewise, CD
mice have been shown to have altered morphology and physiology in the hippocampus (93, 182),

thought to be important in contextual fear conditioning.

We therefore tested associative learning and memory of the animals using a three day

conditioned fear task (Figure 4A). During the conditioning trial on day one we saw a significant
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difference in baseline freezing during the first two minutes, when the mice were initially
exploring the apparatus. There was a main effect of genotype (F»53=5.31,p=0.00794) and a main
effect of minute (F; 53=7.28, p=0.009), with the CD animals freezing more than the WT animals
(p=0.04) and the G#f2i* mutants (p=0.05) during minute one prior to any shock. By minute two
of baseline, all animals showed similar levels of freezing. During the pairing of the foot shock
with the context and tone during minutes three through five, we saw a significant effect of time
(F2.106=100.3071, p < 2.2x10"°) and genotype (F,.53=3.4304, p=0.039723) as well as a time by
genotype interaction (F4,106=3.9736, p = 0.004812). Specifically, all mice increased the amount
of freezing after each foot shock, but after the last foot shock the G#2i* mutants froze less than
the CD animals (p=0.002; Figure 4B), but similarly to the WT littermates. On the subsequent
day, to test contextual fear memory, mice were put back in the same apparatus and freezing
behavior was measured. Comparing the average of the first two minutes of freezing during fear
memory recall on day two to the baseline of the conditioning day, we saw that all genotypes
exhibited contextual fear memory; indicated by the increased levels of freezing when put back in
the same context they were conditioned in (F53=36.4882, p=1.56x10""; Supplemental Figure
4A). Looking across time during the fear memory recall we saw a significant effect of time
(F7371=2.7166, p=0.009291) with no main effect of genotype (F»s53=1.2507, p=0.294625), but a
time by genotype interaction (Fj4371=2.499, p=0.002085). Post hoc analysis within time showed
that CD mice froze more than WT and G#f2i* littermates during minute three of the task (Figure

40).

To test cued fear conditioning, on the subsequent day the mice were put in a different
context and were played the tone that was paired with the foot shock during the conditioning

day. All animals had similar freezing behavior during baseline (F,s53=1.061, p=0.353). For the

153



duration of the tone, there was a significant effect of time (F7371=21.5824, p<2x10™'®) but no
effect of genotype (F,s53=0.3014, p=0.741) or genotype by time interaction (Fi437,=0.2128,
p=0.999) (Figure 4D). Finally, the differences in freezing behavior could not be explained by
sensitivity to the foot shock as all mice showed similar behavioral responses to increasing shock
doses (F2s56=1.4521, p=0.2427; Supplemental Figure 4B). Overall, CD mice showed an
enhancement of fear response to a contextual fear memory, and mutations in G#f2i* were not

sufficient to reproduce this phenotype.

4.3.7 Gtf2i* mutation is not sufficient to reproduce WSCR mediated

alterations of hippocampal gene expression.
In addition to permitting behavioral phenotyping, mouse models also allow for well-

powered and controlled examination of the molecular consequences of mutation in the
environment of a fully developed and functioning central nervous system. Therefore, we turned
from behavioral phenotyping of cognitive tasks to molecular phenotyping in the brains of these
mice to 1) identify candidate molecular mediators of the behavioral phenotypes and 2) determine
to what extent any transcriptional phenotype of WSCR mutation might be mediated by the
haploinsufficiency of these two transcription factors. We specifically focused on the
hippocampus, since we saw deficits in marble burying and differences in contextual fear
memory, two behaviors thought to be mediated by hippocampal function (159, 181). Other
studies in the CD animals have also shown there to be differences in LTP in the hippocampus as
well as differences in Bdnf levels (91, 182). Yet the transcriptional consequences genome-wide

of WSCR loss hav not been characterized in the hippocampus.

First, we conducted a targeted analysis of the genes in the WSCR locus. Of the 26 genes

that make up the WSCR, only 15 were measurably expressed in the adult mouse hippocampus.
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Consistent with expectation, all genes in the WSCR region showed a decrease in RNA
abundance in the CD animals, and genes that lie immediately outside the region were not
affected. Gt#f2i* mutants only showed disruption of G#f2i and Gtf2irdl in directions consistent
with what was previously seen in our RT-qPCR. This confirmed the genotype of the samples,
and indicated that these transcription factors are not robust trans regulators of any other genes in

the locus (Figure SA).

Next, we conducted differential expression analysis comparing WT to CD littermates to
identify the molecular consequences of WSCR loss. At an FDR < 0.1 we found 39 genes to be
differentially expressed. Of the 39 genes, 15 were genes that are located in the WSCR. This
small number of differentially expressed genes was surprising given that several of the WSCR
genes are described as transcription factors. In addition to these differentially expressed genes,
the magnitude of the changes were small (Figure 5B and Supplemental Figure 5A).
Interestingly, Slc23al showed to be slightly but consistently more lowly expressed in the CD
animals compared to the WT animals. This is a GABA transporter, suggesting that inhibitory
signaling could be altered in the hippocampus. This gene has also been shown to decreased in
WS-derived cortical neurons (45). Also of note, the Iggap2 gene was shown to be elevated in the
CD animals compared to WT animals. This gene was also upregulated in WS iPSCs (44). We
also looked at genes that have been investigated previously in the CD mouse, such as Bdnf and
Pi3kr (90, 91) and we show that there was little change in gene expression between genotypes

(Supplemental Figure 5SB).

To determine if G#f2i* loss is sufficient to drive these transcriptional changes, we next
examined differential expression comparing G#f2i* mutants to WT littermates. In contrast to

WSCR mutation, we found only G#f2i and G#f2irdl to be differentially expressed at an FDR <
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0.1 (Figure 5C). To get a broader idea of how similar the transcriptomes of the two genotypes
are we compared the genes that are nominally up and downregulated between each mutant line
and WT controls. We saw that there was about a 9% overlap between CD and G#f2i* up and
down regulated genes (Figure 5D). This is slightly below the amount of genes shown to be
changed by GTF2I in iPSCs (44). Again this suggests that other genes in the WSCR are driving

90% of the transcriptional changes in the CD hippocampus.

To understand what role the nominally changed genes have in common we conducted a
GO analysis. The biological processes that the CD genes were found to be involved in included
synaptic functioning as well as nervous system differentiation. Interestingly processes that
control balance were enriched and we and others have reported on balance deficits in CD
animals (Figure 5E). When comparing these to 1000 random differential gene lists these
biological processes are very specific to the genotype comparisons. For instance, out 1000
random test, positive regulation of excitatory synapses only occurred in the top 10 enriched GO
terms two times (Supplemental Table 2). The cellular components that the genes are enriched
for are extracellular, which is a similar result to the iPSC studies (44), as well as synapses. The
molecular function ontologies, which are enriched for the differentially expressed genes included
calcium binding (Supplemental Figure 5). When comparing these to randomly determined
gene expression changes, all but the extracelluar components seem to be specific to the CD
versus WT comparison (Supplemental Table 2). In contrast, the G#/2i* GO analysis showed
that these genes are enriched for more general organ system development and are not very

nervous system specific (Figure SF and Supplemental Table 3).

Overall, we have shown that the hemizygous loss of the WSCR has a mild but significant

effect on the hippocampal transcriptome. Yet, the changes that do occur point to aberrations in
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synapses and nervous system development. Furthermore, loss of function mutations in G#f2i and
Gtf2irdl have an even smaller effect on the transcriptome and can only account for 9% of the

changes incurred by loss of the WSCR.

4.4 Discussion
Contiguous gene disorders such as WS provide insight into regions of the genome that

have large effects on specific aspects of human cognition and behavior. The specific cognitive
profile of WS is characterized by deficits in visual-spatial processing with relative strengths in
language, and the archetypal behavioral profile consists of increased social interest, strong eye
contact, high levels of anxiety, and in some cases specific phobias and hyperactivity. Here we
used a new mouse model to test if loss of the paralogous transcription factors G#/2i and Gtf2irdl
are sufficient to phenocopy the behaviors and transcriptomic changes of mice that lack the entire

WSCR.

Overall, CD mice consistently have more severe phenotypes than the G#f2i* mutants. We
saw that the CD animals have a deficit in social communication as measured by maternal
separation induced pup ultrasonic vocalizations. The G#f2i* mutants on average make fewer calls
than the WT littermates, however not significantly so, but this may suggest that these two
transcription factors contribute slightly to this phenotype but other genes in the region are
necessary to produce the full phenotype seen in the CD animals. Previously it was shown that
animals that have increased copy number of G#f2i increased the number of pup USVs emitted
while animals with only one copy produced similar number of calls to WT animals (29). This
was interpreted as increased separation anxiety. Here we see that lower copy number of the
entire region produces the opposite effect of increased G#f2i copy number. Decreased USVs

could mean there is a lack of motivation to make the calls or an inability to make as many calls.
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A model of Gtf2ird] mutant animals was shown to have different USV production due to a
difference in the muscle composition of the larynx (92). This has not been shown in the CD
animals but it could contribute to the phenotype as well as differences in the skull morphology
(93). Another possible explanation is that since the production of USVs is a developmentally
regulated trait, it could be that deleting 26 genes could disrupt typical developmental trajectories.
While we do not see any gross developmental problems such as lower weight or delayed
detachment of pinnae, the deletion could have a more severe effect on brain development, thus

affecting developmentally regulated behavioral traits.

To our surprise, there was no detectable social phenotype in the G#/2i* mutants or CD
animals in the classical three-chamber social approach assay. Our results showed that all
genotypes on average prefer to investigate the social stimulus for a similar amount of time. The
preference for social novelty is also intact across all the groups. In an attempt to test if the WS
models fail to habituate to a social stimulus we showed that after thirty minutes of having the
opportunity to investigate an unfamiliar mouse or an empty cup, all genotypes habituate to the
social stimulus and by the end of the thirty minutes seem to have a small preference for the
empty cup. The three-chamber social approach task has been done in the larger partial deletion
models where they have shown that the proximal deletion and the trans full deletion models have
a significant preference for the social stimulus, and the WT and distal deletion mice do not show
a preference, suggesting that the proximal deletion, which harbors genes such as G#f2i and
Gtf2irdl, are involved in this social task (94). Mouse models that are haploinsufficient for only
Gtf2i have shown in the three-chamber approach task that after eight minutes WT animals
investigate a novel object the same amount as a social stimulus, but the G#f2i mutants still have a

significant preference suggesting a lack of habituation (96). In another G#f2i model, Martin et al.
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compared animals with one, two, three, and four copies of G#f2i in the three-chamber social
approach task, and showed that only animals with one and three copies of Gtf2i displayed a
significant preference for the social stimulus (97), but WT animals did not. These three-chamber
social approach tests are interpreting a lack of significance as evidence for increased social
behavior and not directly comparing the levels of investigation between genotypes (183).
Furthermore, in some cases the WT controls are not showing the expected preference for the

social stimulus, thus, possibly confounding interpretation of the mutant preference.

The three-chamber social approach assay has come under recent criticism due to how
dependent it is on activity levels of mice and its lower heritability compared to tests of direct
social interaction (184). The CD animals had not previously been tested in this procedure
exactly, but have been tested in a modified social approach where the time spent investigating a
mouse in a cup is measured but with no competing non-social stimulus (90, 91, 93). The data
showed that the CD animals investigated the social stimulus for more time than the WT animals
and delivery of Gtf2i cDNA by AAV9 via the magna cisterna can return the investigation time to
normal levels (90). Here, we showed that all animals preferred the social stimulus. It is possible
that the standard social approach suffers from several confounding factors, such as lower
heritability, as well as activity and anxiety-like components that make this task less sensitive to
detect a hypersocial phenotype in WS models. It could also be that the three-chamber social task
does not test the specific aspects of social behavior that are disrupted in WS models. For
example, newer tasks, such as social operant tasks that test motivation to receive a social
stimulus may more directly test the aspects of social behavior that are affected in WS. This task
has been performed on G#/2i mutants and mice that have only one copy of G#f2i will work harder

to receive a social reward (97).
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Direct social tasks have higher heritability than the three-chamber social approach and
offer a more natural social experience (184), which may make them a more sensitive assay for
testing social behaviors. Direct tasks have shown that G#/2i models have increased nose-to-nose
investigation time (97), mouse models lacking the proximal end of the region have increased
investigation frequency (94), and Gtf2ird] mutants make fewer aggressive actions but show
increased following time (101). We employed the resident-intruder paradigm as a full contact
social assay. While we did not see bouts of aggression from any of the genotypes, we could see
differences in social investigation. To our surprise, the CD animals spent less time overall in
anogenital sniffing and nose-to-nose sniffing of the intruder animals when compared to WT
littermates. The double mutants were not significantly different from the WT animals but had
intermediate values between the WT and CD animals. This phenotype was being driven by the
decreased time per bout of investigation in the CD animals, as all genotypes had a similar
frequency of the sniffing behavior. This result was contrary to what would be predicted from the
human condition and previous mouse results. However, while individuals with WS are described
as having prosocial behavior in terms of increased social approach and friendliness (19), they
also have difficulties maintaining long term relationships because of deficits in other aspects of
social behavior (20, 27, 28, 174), and on scales measuring social reciprocity often score in the
autistic range (174). In addition, there is a high co-morbidity with ADHD which has features of
impulsiveness (22). While the CD animals did not show the expected increase in social interest,
this may be a manifestation of attention deficits that are present from deleting the 26 genes in the
WSCR, but this needs to be examined. Loss-of-function mutations in G#f2i and Gtf2irdl were
not sufficient to produce as strong an effect in these investigative behaviors. However, the

somewhat intermediate effect suggests they could contribute to it.

160



One limitation of our study is that some aspects of the social phenotype in the models
tested here could be masked by the mouse background strain. While we have controlled for
mouse background strain in our experiments by only using the F1 generation of the FVB/AntJ
and C57BL/6J cross, the hybrid background may prevent the manifestation of a social phenotype
caused by the mutations tested. For example, it has been documented that craniofacial
phenotypes in Gtf2ird] models are sensitive to background strain (39, 78, 95, 101). Here, the
double mutants and CD animals on the hybrid background showed no dominance phenotype in
the tube test. However, when we tested each mutation on the respective mouse background
strain, we saw that the CD animals had a submissive phenotype, but the double mutants did not.
Studies done in the larger partial deletions have shown altered win/loss ratios in the tube test in
the proximal deletion and full trans deletion models (94), suggesting that the CD models on the
C57BL/6J background can replicate this phenotype, but other genes in the proximal region

besides G#f2i and Gtf2irdl are also required.

In this study, we have replicated several of the phenotypes previously seen in the CD
animals, such as marble burying and balance deficits (91, 93, 182). It was shown that CD
animals bury fewer marbles than WT animals and rescuing the G#f2i levels in the hippocampus
did not rescue this phenotype. Both the results presented here and in Borralleras et al. suggest
that other genes in the region beyond G#f2i and Gtf2ird] are important in this behavior. Here we
have extended the results to suggest that there could be an anxiety-like component to the marble
burying deficit. By tracking the animals during the task we see that CD animals spend less time
and travel less distance in the center of the apparatus. This could preclude them from burying as
many marbles in the center. It could also be that the CD animals do not show the normal

motivation to dig.
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CD animals showed difficulty in balancing tasks, but normal motor coordination. Motor
coordination of WS has been tested using the rotarod. The larger partial deletion models showed
that the distal deletion and proximal deletion mice had intermediate phenotypes with the full
trans deletion mice falling off the rotarod sooner (94). Similarly the CD mice have shown
deficits in the rotarod and addition of G#f2i coding sequence does not rescue this phenotype
(182). The CD mice in this study did not show a deficit in the rotarod despite having poor
balance on the ledge and platform tasks. CD animals were not able to balance on a ledge or
platform as long as their WT and G#f2i* mutant littermates. This suggests that motor
coordination, as tested by our rotarod paradigm, is intact in these WS models, but balance is
specifically affected in the CD animals. The discrepancy could be due to body size. The adult
CD animals are significantly smaller than the WT and G#/2i* mutants, which could make staying
on the wider rotarod less challenging. This study also used a different accelerating paradigm
where the rod itself is continuously accelerating until the mouse falls off while other paradigms

test the mice at different continuous rotation speeds.

Along with balance and coordination problems, individuals with WS tend to have
specific phobias and high levels of non-social anxiety (21). We showed that CD animals had an
altered fear conditioning response. We saw that the CD animals have an increased fear response
in contextual fear but not cued fear. It was previously reported that CD animals showed a slight
decrease in freezing but was not significant (93). Two separate Gtf2ird]l mutations have shown
contrasting results, one showed an increased fear response (99) while another showed decreased
fear response (101). It could be that this hybrid background used here is more sensitive to see
increases in freezing because FVB/AntJ do not exhibit as much freezing in conditioned fear tasks

as C57BL/6J animals (185). The observed increased contextual fear response could be due to
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differences in the hippocampus and amygdala, both regions that have been shown to be disrupted
in WS. We did not see a robust anxiety-like behavior phenotypes in one hour locomotor task or
the elevated plus maze, which is consistent with previous findings in the CD model (93).
However, we did see reduced time and distance traveled in the center during the marble burying
task. Perhaps suggesting that the novel environment in combination with the novel marbles can

induce slightly higher levels of anxiety in the CD model.

Given the behavioral differences in marble burying and contextual fear, two behaviors
thought to be mediated by the hippocampus (159, 181), we examined the transcriptomes of the
hippocampus of the G#2i* mutants and CD animals and compared them to WT littermates. This
provided the first transcriptional profile documenting the consequences of the 26 gene deletion in
a mature brain, and allowed us to determine what portion of that was driven by Gtf2i* proteins.
Surprisingly, we did not see any significantly differentially expressed genes between the G#f2i*
mutants and WT littermates, besides the mutated genes themselves. Looking at the overlap of
nominally differentially expressed genes between CD-WT and G#f2i*-WT comparisons, showed
a small overlap of about 9%. This is slightly less than the estimate from Adamo et al., of 15-20%
of genes dysregulated in WS iPSCs being attributed to reduced levels of GTF2I. Perhaps these
general findings suggest that G#2i and Gtf2ird] contribute to small transcriptional changes
broadly across the genome, and in combination with other genes in the WSCR more profound

neural specific gene disruptions become apparent.

Our transcriptional studies overall showed limited impact of G#/2i* mutation in the brain.
The global brain transcriptome of G#f2i mutants has not been investigated, but brain
transcriptome studies of Gtf2irdl knockout mouse models have not found any evidence of

differentially expressed genes (88). These data suggest that in the adult hippocampus these two
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transcription factors do not greatly affect the transcriptome. There are some limitations to this
negative result. It could be that we are diluting some of the signal because we are studying the
effects on the transcriptome of the whole hippocampus, which has a diverse cellular
composition. Larger effect sizes might be detected in more homogenous cellular populations.
Likewise, if these genes regulate dynamics of gene expression rather than baseline values,
greater differences might become apparent after experimental manipulations that activate

transcription.

One additional limitation of our study is that the mutated G#/2ird1 allele is still producing
an N-terminally truncated protein. However, we show that N-truncated Gtf2ird1 does not bind to
its known target, the promoter region of G#f2ird1, and this absence leads to increased RNA from
the locus, consistent with a loss of its transcriptional repressor function. Thus, we confirmed this
truncated protein is a loss of function for the only known roles for Gtf2irdl. However, it is
possible that the protein does have other unknown functions we could not assay here. It has also
been proven to be a remarkably challenging gene to completely disrupt, across multiple studies
(66, 101). The combination of the upregulation of its RNA upon deletion with the ability to re-
initiate at a variety of downstream codons is intriguing. One possibility is that Gtf2ird1 has an
unusual amount of homeostatic regulation at both transcriptional and translational levels that are
attempting to normalize protein levels. Another possibility is that these kinds of events are
actually quite common across genes, but that they are detected in Gtf2irdl because the WT
protein is at such low abundance it is on par with what is actually an infrequent translation re-
initiation event. Our detection of Gtf2ird] protein in the brain required substantial optimization
and is still only apparent in younger brains. Indeed, in validations of mutations of more abundant

proteins, the immunoblots may not be routinely developed long enough to see a trace re-

164



initiation event that might occur. Regardless, future studies aimed at understanding the

transcriptional and translational regulation of this unusual gene would be of interest.

Examining the profile of CD mutants compared to WT littermates, we do define a
number of transcriptionally dysregulated genes. Of the genes in WSCR that are expressed in the
hippocampus all had decreased expression in the CD animals. In addition, there were 24 genes
outside the WSCR that had a FDR < 0.1 between CD and WT controls. Among these genes is
Slc23al, the GABA vesicle transporter, which is down regulated in CD animals. Interestingly
this gene was also found to be down regulated in human iPSC derived neurons from individuals
with WS (45). This points to aberrant inhibitory activity in the CD brain, which could lead to
functional deficits. Also consistent with other human WS derived iPSC studies, the gene Iggap?
was shown to be upregulated in the CD hippocampus (44), and has the potential to interact with
the cytoskeleton through actin binding (186). Broadening the analysis to include nominally
differentially expressed genes and conducting systems-level analyses, the CD-WT comparison
highlighted genes involved in the positive regulation of excitatory postsynaptic potential.
Chailangkarn et al. showed that WS derived iPSC neurons had increased glutamatergic synapses.
Our data also showed some signal in the GO term for postsynaptic density assembly. Taken
together these data suggest abnormal synapse functioning in the CD animals and potentially
altered inhibitory/excitatory balance. This also suggests pharmacological agents that increase
GABA tone may be of use in reversing some WS phenotypes. The RNA-seq data also had signal
in neuromuscular processes controlling balance. Altered gene expression in the CD animals
could be contributing to the balance deficits. In contrast to the synapse and neural specific GO

term enrichment seen in the CD-WT comparison, comparing the transcriptomes of the G#f2i*
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mutants and WT shows signal in more general organ development, such as ossification and eye

development.

Taken together, our results support the hypothesis that other genes in the WSCR besides
Gtf2i and Gtf2irdl are necessary to produce some phenotypes that are seen when the entire
WSCR is deleted. While these two transcription factors have been highlighted in the human
literature as large contributors to the WS phenotype, the literature is also consistent with a model
where most genes contribute to aspects of different phenotypes in WS, but the full phenotypic
effects occur when all the genes are deleted (Figure 6). Studying patients with atypical deletions
highlights the variability of the region. Even within families that have inherited small deletions
some of the cardiovascular, cognitive, and craniofacial phenotypes have incomplete penetrance
(31, 32, 40). Comparing the deletion sizes and corresponding phenotypes shows a large overlap
of genes that are deleted, but no clear pattern of which specific phenotypes are affected. Many of
atypical deletions described to date that do not have G#f2i and Gtf2irdl deleted show no
overfriendly phenotype, but there are examples where this is not true. Recent work in zebrafish
that was done to dissect which genes in the 16pl1.2 region contribute to craniofacial
dysmorphology led to a similar conclusion, that multiple genes in the region contribute to the
phenotype but in combination some have synergistic effects and others have additive effects
(102). Sanders et al. also suggested that copy number variations with higher gene content are
more likely to have several genes of smaller effect sizes suggesting an oligogenic pattern of
contribution (121). Our data suggests that looking beyond the general transcription factor 2I
family at possible combinations of more genes in the region may more completely reproduce the

WS phenotype. Given the ease of making new mouse models with current genome editing
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technology, a combinatorial dissection of the region is feasible and could lead to interesting new

insight into the underlying mechanisms that contribute to the phenotypic spectrum of WS.

4.5 Materials and Methods

Generating genome edited mice

sgRNAs were designed to target early constitutive exons of the mouse G#/2i and Gtf2ird1
genes. The gRNAs were cloned into the pX330 Cas9 expression plasmid (Addgene) and
transfected into N2a cells to validate the cutting ability of each gRNA using the T7 enzyme
assay. Primers used to amplify target regions tested by the T7 enzyme assay are in Supplemental
Table 4. One guide was selected for each gene based on cutting activity (Supplemental Table 4).
The gRNAs were in vitro transcribed using MEGAShortScript (Ambion) and Cas9 mRNA was
in vitro transcribed, G-capped, and poly-A tailed using the mMessageMachine kit (Ambion). The
mouse genetics core at Washington University School of Medicine co-injected the Cas9 mRNA
(25ng/ul) along with both gRNAs (13ng/ul of each gRNA) into FVB/NJ fertilized eggs and
implanted the embryos into recipient mothers. This resulted in 57 founders. Founders were
initially checked for any editing events using the T7 assay. There were 36 animals with no
editing events. We deep sequenced the expected cut sites, as described below, in the remaining
21 founders to identify which alleles were present.. Founders were crossed to wild type (WT)
FVB/Ant] (https://www.jax.org/strain/004828) animals, which are different from FVB/NJs at
two loci; Tyr”" results in a chinchilla coat color and they are homozygous WT for the
129P2/0OlaHSd Pde6b allele, which prevents them from developing blindness due to retinal
degeneration. Coat color was visually genotyped and the functional FVB/Ant] Pde6b allele was

genotyped using primers recommended by Jackson labs (Supplemental Table 5). The mice
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were crossed to FVB/Ant] until the mutations were on a background homozygous for the

FVB/AntJ coat color and Pde6b alleles.

Genotyping

Initial founder genotyping was performed by deep sequencing amplicons around the
expected cuts sites of each gRNA. Primers were designed around the cut sites using the NCBI
primer blast tool. To allow for Illumina sequencing we concatenated the Illumina adapter
sequences to the designed primers (Supplemental Table 5). The regions surrounding the cut
sites were amplified using the following thermocycler conditions: 95° C 4 minutes, 95° C 35
seconds, 58.9° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72°
C for 7 minutes, hold at 4° C. A subsequent round of PCR was performed to add the requisite
Ilumina P5 and P7 sequences as well as sample specific indexes using the following
thermocycler conditions: 98° C 3 minutes, 98° C 10 seconds, 64° C 30 seconds, 72° C 1 minute,
repeat steps 2 through 4 20 times, 72° C 5 minutes, hold 4° C. The PCR amplicons were pooled
and run on a 2% agarose gel and the expected band size was gel extracted using the NucleoSpin
gel extraction kit (Macherye-Nagel). The samples were sequenced on a MiSeq. The raw fastq
files were aligned to the mm10 genome using bwa v0.7.17 —mem with default settings (140), and
the bam files were visualized using the integrated genome visualizer (IGV )v2.3.29 to determine

the genotype.

Once the alleles of the founder lines were shown to be in the germline, we designed PCR
genotyping assays that can distinguish mutant and WT alleles. Since the G#/2i mutation and the
Gtf2ird] mutation are in linkage and are always passed on together, primers were designed that

would only amplify the five base pair deletion in exon three of Gtf2irdl. The primer was
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designed so that the three prime end of the forward primer sits on the new junction formed by the
mutation with an expected size of 500bp. Beta actin primers, with an expected size of 138bp,
were also used to help ensure specificity of the mutation specific Gtf2irdI primers as well as act
as a PCR control (Supplemental Table 5). The CD animals were genotyped using primer
sequences provided by Dr. Victoria Campuzano and primers that amplify the WT Gtf2ird] allele

as a PCR control (Supplemental Table 5).

PCR was performed on toe clippings that were incubated overnight at 55° C in tail lysis
buffer (10mM Tris pH 8, 0.4M NaCl, 2mM EDTA, 0.1% SDS, 3.6U/mL Proteinase K (NEB)).
The proteinase K was inactivated by incubation at 99° C for 10 minutes. lul of lysate was used
in the PCR reactions. Two bands indicated a heterozygous mutation in G#f2i and Gtf2irdl. The
cycling conditions for the Sbp G#f2irdI deletion were: 95° C 4 minutes, 95° C 35 seconds, 66.1°
C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C for 7 minutes,
hold at 4° C. The cycling conditions for the CD genotyping were: 95° C 4 minutes, 95° C 35
seconds, 58° C 45 seconds, 72° C 1 minute 15 seconds, repeat steps 2 through 4 35 times, 72° C

for 7 minutes, hold at 4° C.

Western blotting

E13.5 whole brains were dissected in cold PBS and immediately frozen in liquid nitrogen
and stored at -80°C until genotyping was performed. Frozen brains were homogenized in 500ul
of 1x RIPA buffer (10mM Tris HCI pH 7.5, 140mM NaCl, ImM EDTA, 1% Triton X-100, 0.1%
DOC, 0.1% SDS, 10mM Na3;V0s;, 10mM NaF, 1x protease inhibitor (Roche)) and RNAase
inhibitors (RNasin (Promega) and SUPERase In (Thermo Fisher Scientific) and incubated on ice

for 20 minutes. Lysates were cleared by centrifugation at 10,000g for 10 minutes at 4° C. The
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lysate was split into two 100ul aliquots for protein analysis and 250ul of lysate was added to
750ul of Tizol LS (Thermo Fisher Scientific) for RNA analysis. Protein concentration was
quantified using a BCA assay and loaded at 25-50ug in 1x Lamelli Buffer with B-
mercaptoethanol onto a 4-15% TGX protean gel (Bio-Rad). In some experiments to achieve
greater separation to detect the N-truncation, the protein lysates were instead run on a 7.5% TGX
protean gel (Bio-Rad). The protein was transferred to PVDF 0.2um membrane by wet transfer.
The membrane was blocked for one hour at RT with TBST 5% milk. The membranes were cut at
75KDa, and the top of the membrane was probed for either Gtf2i or Gtf2ird1, and the bottom of
the membrane was probed for Gapdh, with the following primary antibodies: Rabbit anti-
GTF2IRD1 (1:500, Novus, NBP1-91973), Mouse anti-GTF2I (1:1000 BD Transduction
Laboratories, BAP-135), and Mouse anti-Gapdh (1:10,000, Sigma Aldrich, G8795). Primary
antibodies were incubated overnight at 4° C in TBST 5% milk. We used the following secondary
antibodies: HRP-conjugated Goat anti Rabbit IgG (1:2000, Sigma Aldrich, AP307P) and HRP-
conjugated Goat anti Mouse IgG (1:2000, Bio Rad, 1706516) and incubated for 1 hour at room
temperature. Signal was detected using Clarity Western ECL substrate (Bio-Rad) in a MyECL
Imager (Thermo Scientific). Quantification of bands was performed using Fiji (NIH) (187)

normalizing to Gapdh levels and a WT reference sample.

Transcript measurement using RT-qPCR

Total RNA from E13.5 brains lysates was extracted from Trizol LS using the Zymo
Clean and Concentrator-5 with on column DNAase I digestion and eluted in 30ul of water. RNA
quantity and purity was determined using a Nanodrop 2000 (Thermo Scientific). cDNA was
prepared using lug of total RNA and the gscript cDNA synthesis kit (Quanta Biosciences). 25ng

of cDNA was used in a 10ul RT-qPCR reaction with 2x PowerUP SYBR Green Master Mix
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(Applied Biosystems) and 500nM primers that would amplify constitutive exons of Gtf2irdl
(exons 8/9), Gtf2i (exons 25/27) or Gapdh (Supplemental Table 5). The RT-qPCR was carried
out in a QuantStudio6Flex machine (Applied Biosystems) with the following cycling conditions:
95° C 20 seconds, 95° C 1 second, 60° C 20 seconds, repeat steps 2 through 3 40 times. There
were three biological replicates per genotype in all experiments and each cDNA was assessed in
triplicate technical replicates. Relative transcript abundance of G#2i and Gtf2irdl was

determined using the deltaCT method normalizing to Gapdh.

ChIP-qPCR

Chromatin preparation

Chromatin was prepared by homogenizing one frozen E13.5 brain in 10mL of 1x cross-
linking buffer (10mM HEPES pH7.5, 100mM NaCl, 1mM EDTA, 1mM EGTA, 1%
Formaldehyde (Sigma)) using the large clearance pestle in a Dounce homogenizer and allowed
to crosslink for 10 minutes at room temperature with end-over-end rotation. The formaldehyde
was quenched with 625ul of 2M glycine. The cells were spun down at 200g at 4° C and the pellet
was washed with 10mL 1x PBS 0.2mM PMSF and spun again. The pellet was resuspended in
SmL L1 buffer (50mM HEPES pH 7.5, 140 mM NaCl, ImM EDTA, ImM EGTA, 0.25% Triton
X-100, 0.5% NP40, 10.0% glycerol,ImM BGP (Sigma), 1x Na Butyrate (Millipore), 20mM
NaF, 1x protease inhibitor (Roche)) and homogenized using the low clearance pestle in a Dounce
homogenizer to lyse the cells and leave the nuclei intact. The homogenate was spun at 800g for
10 minutes at 4° C to pellet the nuclei. The pellet was washed in SmL of L1 buffer and spun
again and resuspended in SmL of L2 buffer (10mM Tris-HCI pH 8.0, 200mM NaCl, 1mM BGP,

Ix Na Butyrate, 20mM NaF, 1x protease inhibitor) and incubated at room temperature for 10
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minutes while shaking. The nuclei were pelleted by spinning at 800g for 10 minutes and
resuspended in 950ul of L3 buffer (10mM Tris-HCI pH 8.0, ImM EDTA, 1mM EGTA, 0.3%
SDS, 1mM BGP, 1x Na Butyrate, 20mM NaF, 1x protease inhibitor) and transferred to a
milliTUBE ImL AFA Fiber (100)(Covaris). The sample was then sonicated to a DNA size range
of 100-500bp in a Covaris E220 focused-ultrasonicator with 5% duty factor, 140 PIP, and
200cbp. The sonicated samples were diluted to 0.1% SDS using 950ul of L3 buffer and 950ul of
3x Covaris buffer (20mM Tris-HCI pH 8.0, 3.0% Triton X-100, 450mM NaCl, 3mM EDTA).
The samples were spun at max speed in a tabletop centrifuge for 10 minutes at 4° C to pellet any
insoluble matter. The supernatant was pre-cleared by incubating with 15ul of protein G coated

streptavidin beads (ThermoFisher) for two hours at 4° C.

Chromatin IP

GTF2IRD1 antibody (Rb anti GTF2IRD1 NBP1-91973 LOT:R40410) was conjugated to
protein G coated streptavidin beads by incubating 6ug of antibody (10ul) with 15ul of beads in
500ul TBSTBp (1x TBS, 0.1% Tween 20, 1%BSA, .2mM PMSF) and end-over-end rotation for
one hour at room temperature. The antibody-conjugated beads were washed three times with
500ul of TBSTBp. 400ul of the pre-cleared lysate was added to the antibody-conjugated beads
and rotated end-over-end at 4° C overnight. 80ul of the pre-cleared lysate was added to 120ul of

Ix TE buffer with 1% SDS and frozen overnight to be the input sample.

The TP was washed two times with a low salt buffer (10mM Tris-HCI pH 8.0, 2mM
EDTA, 150mM NacCl, 1.0% Triton X-100, 0.1% SDS), two times with a high salt buffer (10mM
Trish-HCI pH 8.0, 2mM EDTA, 500mM NacCl, 1.0% Triton X-100, 0.1% SDS), two times with

LiCl wash buffer (10mM Tris-HCI pH 8.0, ImM EDTA, 250mM LiCl (Sigma), 0.5%
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NaDeoxycholate, 1.0% NP40), and one time with TE (10mM Tris-HCI pH 8.0, ImM EDTA)
buffer. The samples were eluted from the beads by incubating with 100ul of 1x TE and 1% SDS
in an Eppendorf thermomixer R at 65° C for 30 minutes, mixing at 1400rpm. This was repeated
for a total of 200ul of eluate. The samples and input were then de-crosslinked by incubating in a
thermocycler (T1000 Bio-Rad) for 16 hours at 65° C. The samples were incubated with 10ug of
RNAseA (Invitrogen) at 37° C for 30 minutes. The samples were then incubated with 140ug of
Proteinase K (NEB) at 55° C in a thermomixer mixing at 900rpm for two hours. The DNA was
extracted using phenol/chloroform/isoamyl alcohol (Ambion) and cleaned up using Qiagen PCR
purification kit and eluted two times using 30ul of buffer EB for a total of 60ul. The
concentration was assessed using the highsensitivity DNA kit for qubit (Thermo Fisher
Scientific). A portion of the input DNA was run on a 2% agarose gel post stained with ethidium

bromide to check the DNA fragmentation.

ChIP ¢PCR

Primers were designed to amplify the region around the G#f2irdl transcription start site
(TSS), which has been shown to be a target of Gtf2ird1 binding (66). Two primer sets were also
designed to amplify off target regions, one 10kb upstream of the Bdnf TSS and one 7Kbp
upstream of the Pcbp3 TSS. These were far enough away from any TSS that it would be unlikely
that there would be a promoter region. The primers can be found in Supplemental Table 5. A
standard curve was made by diluting the input sample for each IP sample 1:3, 1:30, and 1:300.
The input, the input dilutions, and the IP samples for each genotype condition were run in
triplicate using the Sybr green Power UP mastermix (AppliedBiosystems) and primers at a final
concentration of 250nM. The PCR was carried out in a QuantStudio6Flex machine (Applied

Biosystems) with the following cycling conditions: 50° C for 2 minutes, 95° C for 10 minutes,
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95° C 15 seconds, 60° C for 1 minute, repeat steps 3 through 4 40 times. Relative concentrations
for the IP samples were determined from the standard curves for that sample and primer set. The
on target relative concentration for each genotype was divided by either off target relative

concentration to determine the enrichment of Gtf2ird1 binding.

Hippocampus RNA-sequencing

Library preparation

The hippocampus was dissected from adult animals of the second behavior cohort
(Tablel). We used six animals of each genotype, three males and females of the WT and CD
animals and two males and four females of the G#f2i* genotype. The hippocampus was
homogenized in 500ul of 1x RIPA supplemented with two RNAse inhibitors, RNAsin and
SUPERase In, and 250ul of the homogenate was added to 750ul of Trizol LS and stored at -80°
C until RNA extraction. RNA was extracted using the Zymo clean and concentrator-5 kit
following the on column DNAse I digestion protocol and eluted in 30ul of water. The quality and
concentration of the RNA was determined using a nanodrop 2000 and Agilent RNA
Highsenstivity Tape screen ran on the TapeStation 2000 (Agilent). All RINe scores were above

seven.

lug of RNA was used as input and rRNA was depleted using the NEBNext rRNA
Depletion kit (Human/Mouse/Rat). RNA-seq libraries were prepared using the NEB Next Ultra
IT RNA library Prep Kit for Illumina. The final uniquely indexed libraries for each sample were
amplified using the following thermocycler conditions: 98° C for 30 seconds, 98° C 10 seconds,
65° C 1 minute and 15 seconds, 65° C 5 minutes, hold at 4° C, repeat steps 2 through 3 6 times.

Each sample had a unique index. Samples were pooled at equal molar amounts and 1x50 reads
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were sequenced on one lane of a HiSeq3000 at the Genome Technology Access Center at
Washington University School of Medicine. The RNA-seq data is available at GEO with

accession number (submitted, waiting on accession number).

RNA-seq analysis

The raw reads were trimmed of Illumina adapters and bases with base quality less than 25
using the Trimmomatic Software (161). The trimmed reads were aligned to the mm10 mouse
genome using the default parameters of STARV2.6.1b (169). Samtools v1.9 (141) was used to
sort and index the aligned reads. Htseq-count v0.9.1 (170) was used to count the number of reads

that aligned to features in the Ensembl GRCm38 version 93 gtf file.

The htseq output was analyzed for differential gene expression using EdgeR v3.24 (165).
Lowly expressed genes were defined as genes that had a cpm less than two across all samples.
Lowly expressed genes were then filtered out of the dataset. We used the exactTest function to
make pairwise comparisons between the three groups: WT versus G#f2i*, WT versus CD, and

CD versus Gtf2i*. Genes were considered differentially expressed if they had an FDR<0.1.

GO analysis was performed using the goseq R package (188). Nominally significant up
and down regulated genes for each comparison were considered differentially expressed genes
and the background gene set included all expressed genes after filtering out the lowly expressed
genes. The top 10 most significant go terms for each ontology category were reported. To test
how unlikely it is to see these go terms given the differentially expressed genes from the
genotype comparisons, we shuffled the genotypes among the samples and repeated the
differential expression analysis and go term analysis 1000 times and counted how many times

the same go terms were identified in the top ten most significant go terms.
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Behavioral tasks

Animal statement

All animal testing was done in accordance with the Washington University in St. Louis
animal care committee regulations. Mice were same sex and group housed with mixed genotypes
in standard mouse cages measuring 28.5 x 17.5 x 12cm with corn cob bedding and ad libitum
access to food and water in a 12 hour light dark cycle, 6:00am-6:00pm light. The temperature of
the colony rooms was maintained at 20-22° C and relative humidity at 50%. Two cohorts of mice
were used in the behavior and RNA-seq experiments. The CD animals (Del (5Gtf2i-
Fkbp6)1Vcam) were a gift from Dr. Victoria Campuzano and have been previously described
(93) and were maintained on the C57BL/6J strain (https://www.jax.org/strain/000664). The first
behavior cohort (Table 1) used G#f2i* and CD females as breeders. The second behavior cohort
(Table 1) used just CD female breeders as male CD animals were frequently not successful at
breeding. Male and female mice were included in the behavior tasks. Experimenters were blind
to genotype during all testing. Besides the maternal separation induced pup ultrasonic
vocalization, all behaviors were done in adult animals older than 60 days and less than 150 days
old. Mice were moved to the testing facility at least 30 minutes before the test to allow the mice
to habituate to the room. The male experimenter was present during this habituation so the mice
could also acclimate to the experimenter. Sex differences were assessed in all experiments, and
are discussed when they were significant. Otherwise, the data is presented with the males and
females pooled. Animals were removed from analysis if they were outliers, defined as having
values greater than 3.5 standard deviations above or below the mean for their genotype group.
Animals were also removed if the video and tracking quality were too poor to be analyzed. All

filtering was conducted blind to genotype.
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Maternal separation induced pup ultrasonic vocalization

To assess early communicative behaviors we performed maternal separation induced pup
ultrasonic vocalization (USVs). Animals were recorded on postnatal day three and postnatal day
five, days when FVB/AntJ animals begin to make the most calls (177). The parents were placed
in a new cage, and the home cage containing the pups was placed in a warming box (Harvard
Apparatus) set at 33° C for at least 10 minutes prior to the start of recording. Pups were
individually placed in an empty standard-mouse cage (28.5 x 17.5 x 12cm) located in a MDF
sound-attenuating box (Med Associates) that measures 36 x 64 x 60cm. Prior to recording, the
pup’s skin temperature was recorded using a noncontact HDE Infrared Thermometer, as it has
been shown that decreased body temperature elicits increased USVs (189). There was no
difference in body temperature between genotypes (F26:= 2.521, p=0.089)(Supplemental Table
1). USVs were detected using an Avisoft UltraSoundGate CM16 microphone placed Scm above
the bottom of the cage, Avisoft UltraSoundGate 416H amplifier, and Avisoft Recorder software
(gain=3dB, 16bits, sampling rate =250kHz). Animals were recorded for 3 minutes, weighed,
checked for detachment of pinnae, and then placed back into the home cage in the warming
chamber. After all animals had been recorded the parents were returned to the home cage.
Sonograms of the recordings were prepared in MATLAB (frequency range =25-120kHz, FFT
[Fast Fourier Transform] size=512, overlap=50%, time resolution =1.024ms, frequency
resolution = 488.2Hz) along with number of syllables and spectral features using a previously

published protocol (177, 190) based on validated methods (191).

Sensorimotor battery
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We assessed motoric initiation, balance, coordination, and strength as described in (171,
192) over two days using the following tasks: day 1) walking initiation, ledge, platform, pole;
day 2) 60 screen, 90 screen, and inverted screen. Each task was performed once then the animals
were allowed a 20 minute break then the tests were repeated in reverse order to control for
practice effects. The two trials for each task were then averaged to be used in analysis. Walking
initiation was tested by recording the time it takes for the mouse to exit a demarcated 24 x 24cm
square on top of a flat surface. To assess balance, the mice were placed on a plexiglass ledge
with a width of 0.5cm and a height of 38cm. We recorded how long the mouse balanced on the
ledge up to 60 seconds. Another test of balance required the mouse to balance on a wooden
platform measuring 3.0cm in diameter, 3.5cm thick and was 25.5cm high. The amount of time
the animal balanced on the platform was recorded up to 60 seconds. Motor coordination was
tested by placing the mouse at the top of a vertical pole with the head facing upward. The time it
took the mouse to turn so the head was facing down was recorded as well as the time it took the
mouse to reach the bottom of the pole up to 120 seconds. On day two the mice performed screen
tasks that assessed coordination and strength. Mice were placed head facing downward in the
center of a mesh wire grid that had 16 squares per 10cm and was 47cm off the ground and
inclined at 60 degrees. The time it took the mice to turn and reach the top of the screen was
recorded up to 60 seconds. Similarly the mice were placed in the center facing downward of
mesh wire screen with 16 squares per 10cm, elevated 47cm from the surface of a utility cart, and
inclined at 90 degrees. The time it took the mice to turn around and reach the top was recorded
up to 60 seconds. To test strength, the mice were placed in the center of a mesh wire grid used

for the 90 screen task and then inverted so the mouse was hanging from the screen that was
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elevated 47cm. The time the mouse was able to hang onto the screen up to 60 seconds was

recorded.

One hour locomotor activity

We tested the animals’ general exploratory activity and emotionality in an one hour
locomtor activity task (171). Animals were placed in the center of a standard rat cage (47.6 x
25.4 x 20.6cm) and allowed to explore the cage for one hour in a sound-attenuating enclosure
with the lightening set to 24 lux. The one hour sessions were video recorded and the animals
position and horizontal movements were tracked using the ANY-maze software (Stoelting Co.:
RRID: SCR _014289). The apparatus was split into two zones: a 33 x 11cm center zone, and a
bordering 5.5cm edge zone. ANY-maze recorded total distance traveled in the apparatus, and
total distance traveled, time spent, and entries into each zone. The mouse was considered to have
entered a zone when 80% of the body was detected within the zone. The rat cages are thoroughly

cleaned with 70% ethanol between mice.

Marble burying

Marble burying is a task that measures the natural digging behavior of mice and is
correlated to compulsive behaviors and hippocampal function (179). Following our previously
published methods (171), a standard rate cage (47.6 x 25.4 x 20.6cm) was filled with autoclaved
aspen bedding to a depth of 3cm and placed in a sound-attenuating enclosure with lighting set to
24 lux. 20 glass marbles were arranged in 5 x 4 grid on the surface of the bedding. Mice were
placed in the center of the rat cage and allowed 30 minutes to explore and bury the marbles. The
session was recorded using a digital camera and the animals horizontal movements and position

in the apparatus were tracked using ANY-maze with the same center and edge zones as
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described in the one hour activity task. After 30 minutes mice were put back in their home cage
and the number of marbles not buried was counted by two observers. A marble was considered
buried if 2/3 of the marble was underneath the bedding. The average of the two scorers was used
to calculate the average number of marbles buried. The marbles and rat cages were thoroughly

cleaned with 70% ethanol between mice.

Three-chamber social approach

To assess voluntary sociability and preference for social novelty we used the three-
chamber social approach assay as previously described (171, 193, 194). The task took place in a
plexiglass arena with two partitions with rectangular openings (5 x 8cm) dividing the arena into
three chambers that each measure 19.5 x 39 x 22cm. The openings could be closed using
plexiglass doors that slide into the openings. The task consisted of four consecutive 10 minute
trials. During trial one the animals were habituated to the middle chamber with the openings to
the side chambers closed. In trial two the animals were allowed to explore the entire apparatus.
Trial three was the sociability trial. In one side chamber there was an empty steel pencil cup
(Galaxy Pencil/Utility Cup, Spectrum Diversified Designs, Inc.) that was placed upside with an
upside clear drinking cup secured to the top to prevent animals from climbing on top of the cup;
this was the empty side. In the other side chamber there was an identical pencil cup that housed
an age- and sex-matched, sexually naive, unfamiliar C57BL/6J stimulus animal; this was the
social side. The pencil cups allowed sniffing behavior to occur and exchange of odor cues, but
limited physical contact to prevent aggressive behaviors. The experimental animal was allowed
to explore the whole apparatus. The side of the empty cup and social cup were counterbalanced
across all the samples. In trial four we tested preference for social novelty. A new stranger

stimulus animal was placed in the formerly empty cup. All stimulus animals were habituated to
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the apparatus and the cups for 10 minutes one day prior to testing. Each stimulus animal was
used only once per day. During all trials the task was video recorded and the animal’s position,
animal’s head, and movement was tracked with ANY-maze software. We quantified how much
time the animal spent in each chamber, as well as distance traveled and number of entries. A 2cm
area around the cups was defined as the investigation zone, and the animal’s head was used to
determine when it was investigating the stimulus animals or the empty cup. The first five
minutes of the social and novelty trials were analyzed because this is when the majority of the
social investigation occurs (195). The entire apparatus was thoroughly cleaned after each animal

using 2% chlorhexidine (Zoetis). The stimulus cups were cleaned using 70% ethanol.

Modified social approach

To test for habituation to social stimuli over extended amounts of time, we slightly
modified the social approach task. We used the same apparatus as described above. We included
an additional day of habituation to the apparatus for the experimental animals on the day prior to
the actual test to ameliorate novelty induced exploration of the apparatus and to potentiate
exploration of the investigation zones. During the habituation day the animals were placed in the
center chamber for 10 minutes with the doors to the side chambers closed. Next, the animals
were allowed to explore the whole apparatus for 20 minutes. The stimulus animals were
habituated to the cups in the apparatus for 30 minutes prior to the test day. Trial one and trial two
were the same as the social approach described above. For trial three, the sociability trial, the
experimental animals were placed in a cylinder in the center chamber, while the empty cup and
stimulus animal cup were being placed in the side chambers. This ensures a random starting
direction for the experimental mouse so we could make an unbiased measure of which chamber

the experimental mouse chose to enter first. The sociability trial lasted for 30 minutes, in which
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the experimental animal was allowed to freely explore the apparatus and investigate the empty

cup and social cup. The social novelty trial was not conducted.

Tube test of social dominance

The tube test of social dominance tests for social hierarchy behaviors in mice (171, 196).
This task took place over five days. Days one and two were habituation trials. During day one,
the animals were placed in the left entrance of a clear acrylic tube measuring 3.6cm in diameter
and 30cm in length and allowed to walk through the entire tube and exit the tube on the right
side. Day two was the same but the mice started on the opposite side of the tube. These two
habituation days allow the mice to acclimate to the tube, and potentiates task performance. On
each of three consecutive test days, two mice of different genotypes were placed in the entrances
to the tube and allowed to meet in the middle, at a clear acrylic partition. When both mice were
at the acrylic partition, it was removed and the trial began. The trial ended when one mouse was
pushed out or backed out of the tube so that all four paws were out of the tube, or two minutes
had passed. The mouse that remained in the tube was considered the dominant winner and the
mouse that was no longer in the tube was considered the submissive loser. If both mice were still
in the tube after two minutes it was considered a tie. Each mouse was tested only once each day,
and the mice were tested against a novel mouse each day. After each test, the tube was cleaned
with 2% chlorhexidine (Zoetis) solution. All of the test sessions were recorded using a USB

camera connected to a PC laptop (Lenovo). The observer scored the test from the videos.

Rotarod

The accelerating rotarod (Rotamex-5; Columbus Instruments, Columbus, OH) tests

motor coordination, motor learning, and balance. We used a previously published rotarod
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paradigm (172, 197, 198) that tests animals on three conditions: 1) stationary rod 2) continuous
rotation and 3) accelerating rotation during three different sessions that were separated by three
days to minimize motor learning. During each day the animals had five trials; one stationary
trial, two continuous trials, and two accelerating trials. During the stationary trial, the animals
were placed on the stationary rod and the time that the animals stayed on the rod was recorded up
to 60 seconds. During the continuous trials, the animals were placed on the rod rotating at three
rotations per minute. The time the animals stayed on the rotating rod was recorded up to 60
seconds. In the accelerating trials, the animals were placed on the rod that was rotating at two
rotations per minute. Once the animals were on the rotating rod, the rod began to accelerate at
0.1rpm and reached 17rpm at 180 seconds. The time the animals stayed on the rod up to 180
seconds was recorded. The two trials for the continuous rotation and accelerating rotation during
each session were averaged for analysis. If an animal fell off the rod during any session within
the first five seconds, the animal was placed back on the rod and the time was reset up to two

times. If the mouse fell off within five seconds on the third try that time was recorded.

Elevated Plus Maze

The elevated plus maze was used to assess anxiety-like behaviors in mice using
previously published protocols (152, 194, 199). The apparatus had two closed arms that
measured 36 x 6.1 x 15cm, two open arms, and a central platform that measured 5.5 x 5.5cm.
The time spent in the open arms was used as a measure of anxiety-like behavior in mice, since
mice prefer to be in an enclosed area. Each mouse was tested once per day for three consecutive
days. During the test the animals had five minutes to freely explore the apparatus. The animals
position, movement, entries into each arm, and time spent in each arm were determined by beam

breaks of pairs of photocells arranged in a 16 (x-axis) x 16 (y-axis) grid. Beam breaks were
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monitored by the Motor Monitor software (Kinder scientific). The test was conducted in the dark

with black lights, and was recorded by an overhead digital camera using the night vision setting.

Pre-pulse inhibition (PPI)

To test for normal sensorimotor gating and normal acoustic startle response we
performed PPI on the animals. Mice were placed in a cage located on top of a force transducer
inside of a sound-attenuating box with a house light on (Kinder Scientific). The force transducer
measured the startle response of the animals in Newtons. We used a protocol adapted from (194,
200). The protocol was run using the Startle Monitor II software (Kinder scientific). The protocol
started with five minutes of acclimation to the 65dB background white noise, which is played
continuously throughout the procedure. After acclimation there were 65 trials that pseudo-
randomly alternated between different stimulus conditions, beginning with five consecutive trials
of the startle stimulus, which was a 40msec 120dB pulse of white noise. The middle trials cycled
through blocks of pre-pulse conditions, blocks of non-startle conditions, where only the
background noise is played, and two blocks of startle conditions. Each block consisted of five
trials. The testing ended with single trials of pulses played at 80dB, 90dB, 100dB, 110dB,
followed by five more startle trials of 120dB. There were three different pre-pulse conditions,
where a pulse of 4dB, 8dB, or 16dB white noise above the background sound was played
100msec preceding the 120dB startle stimulus. The average startle response during the middle
two blocks of startle trials was considered to be the animal’s acoustic startle response(ASR).
Each trial measured the startle of the animal for 65msec after the stimulus, and the average force
in Newtons across this time was used as the startle response. The pre-pulse inhibition was

calculated as the difference of the average ASR and the startle response during the respective
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pre-pulse trial (PP) divided by the ASR of the startle trials multiplied by 100: ((ASR —

PP)/ASR)*100.

Contextual and Cued Fear Conditioning

Contextual and cued fear conditioning were used to assess associative learning and
memory. We followed a previously published method (172, 201). The test occurred over three
days. A camera placed above the apparatus recorded the session. Freezing behavior during each
minute was detected in .75s intervals using the FreezeFrame (Actimetrics, Evanston, IL)
software. Freezing behavior was defined as no movement except for normal respiration, and is
presented as percent time freezing per minute. During day one, animals were allowed to explore
the Plexiglas chamber (26cm x 18cm x 18cm; Med Associates Inc.) with a metal grid floor and a
peppermint scent that was inaccessible to the animals. A trial light in the chamber turned on for
the duration of the five minute trial. During the first two minutes animals were habituated to the
apparatus, and freezing during this time was considered the baseline. An 80db white noise tone
was played for 20 seconds at 100 seconds, 160 seconds, and 220 seconds during the test. During
the last two seconds of the tone (conditioned stimulus CS) a 1.0mA foot shock (unconditioned
stimulus UCS) was delivered. The mice were returned to their home cage at the end of the five
minute trial. On day two contextual fear memory was tested. The animals were placed into the
same chamber with peppermint scent and the illuminated light and no tone or shock was
delivered. Freezing behavior was measured over the eight minute task. The amount of time
freezing in the first two minutes on day two was compared to the baseline freezing on day one to
test the effects of the contextual cues associated with the UCS from day one. On day threed the
animals were placed in a new context, a chamber with black walls, and a partition that creates a

triangle shaped area and an inaccessible coconut odor. During this 10 minute task, the trial light
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was on for the entire duration. The animals explored the apparatus for the first two minutes to
determine baseline freezing and then the same 80dB (CS) tone from day one was played for eight
minutes. The freezing behavior during this time tested the effects of the CS associated with the
UCS shock from day one. Shock sensitivity was tested for each mouse three days after the cued
fear test following the procedure previously described in (172). Mice were placed in the chamber
with the wire grid floor and delivered a two second shock of 0.05mA. The mA of the shock was
increased by 0.05mA up to 1.0mA. At each shock level the animal’s behavior was observed and
the current level at which the animal flinched, exhibited escape behavior, and vocalized was
recorded. Once the animal had exhibited each of the behaviors the test ended. Shock sensitivity
assessment served to confirm differences in conditioned fear freezing were not confounded by

differences in reactivity to the shock current.

Resident intruder

The resident-intruder paradigm, as described previously (202), was used as a direct social
interaction test. Only males were used in this experiment. Male mice were individually housed in
standard mouse cages for 10 days. Cages were not changed so the mice could establish a
territory. The testing took place over three days in which the home cage of the experimental
animal was placed in a sound-attenuating box in the dark with two infrared illuminators placed in
the box. A clear Plexiglas covering with holes was placed over the cage to prevent animals from
jumping out of the cage. A digital camera using the night vision setting recorded the task. On
each day a WT C57BL/6J stimulus animal (intruder), age and sex matched was introduced into
the experimental animal’s (resident) home cage. The animals were allowed to interact for 10

minutes after which the stimulus animal was removed from the cage. A stimulus animal was only
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used once per day. The testing was repeated for two more days, during which the experimental

animals were paired with novel intruders.

The videos were tracked using Ethovision XT 13 software (Noldus Information
Technology) using the social interaction module. This module allows for simultaneous tracking
of two unmarked animals. The initial tracking was further corrected manually using the track
editing tools, to ensure the head and the tail points were oriented correctly. All of the video
tracks were smoothed first with the loess method and then with the minimal distance moved
method. The variables of interest were the mean bout of time, frequency, and the cumulative
duration of time that the experimental animal’s nose was less than 0.6cm from the stimulus
animal’s nose, interpreted as nose-to-nose sniffing, or when the experimental animal’s nose was
less than 0.45cm from the tail base of the stimulus animal, interpreted as anogenital sniffing.
These distance thresholds were determined by an experimenter blind to genotype, examining the
videos using the plot integrated view functionality to ensure that the events called by the

software accurately defined the social behavior.

Statistical Analysis

All statistical tests were performed in R v3.4.2. Western blots and qPCR were analyzed
using a one factor ANOVA and the post hoc Tukey all pairwise comparison test was used

determine differences between groups using the multcomp package (173).

For all behavior tests the data was assessed for univariate testing assumptions of
normality and equal variances. Normality was assessed using the Shapiro-Wilkes test as well as
manual inspection of qq plots. Equality of variances was tested using the Levene’s test.

Behaviors that violated these assumptions were analyzed using non parametric tests. Repeated
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measures were analyzed using linear mixed models with the animal as the random effect.
Significance of fixed effects were tested using the Anova function from the Car (203) package in
R. Post hoc testing was done using the Tukey HSD test from the multcomp package. Tukey HSD
test ‘within time point’ was used for post hoc repeated measures comparisons, as appropriate.

See Supplemental Tables 1 and 6 for descriptions of all statistical tests.
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Figure 1. Generation of double mutant G#f2i* model. A Schematic of the syntenic WSCR in mouse on
chromosome 5. The two transcription factors being tested here are highlighted in grey and the genes that are deleted
in the CD animals are highlighted in yellow. B Gene models of G#f2i and Gtf2irdl showing the multiple isoforms of
each gene. The WT sequences with the gRNA target underlined and the PAM highlighted in blue with the mutant
sequences below along with the corresponding amino acid sequence. C Breeding scheme for the behavior tasks D.
E13.5 whole brain Gtf2i western and qPCR of G#f2i* x CD. Gtf2i protein and transcript are similarly reduced in the
Gtf2i* and CD animals. E E13.5 whole brain Gtf2irdl western and qPCR of G#2i* x CD. Gtf2irdl protein is
slightly reduced in the G#f2i*/CD brain compared to WT. Gtf2irdl transcript is increased in the G#f2i* genotype,
decreased in the CD genotype, and returns to WT levels in G#f2i*/CD genotype. * p < 0.05, ** p < 0.01, *** p <
0.001
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Figure 2. CD mice have deficits in ultrasonic vocalizations and decreased social investigation. A Callrate across
two days shows that on postnatal day 5 CD animals produce fewer ultrasonic vocalizations than either WT or G#/2i *
littermates. B Schematic of the three-chamber social approach task. C All genotypes show preference for social
stimulus in three-chamber social approach assay. D G#f2i* and CD animals show similar dominance behavior to WT
animals in the tube test for social dominance. E Schematic of the resident intruder paradigm. F CD animals show
decreased time engaged in anogential sniffing in resident intruder task. G CD animals show decreased time engaged
in nose-to-nose sniffing in resident intruder task. * p < 0.05, ** p < 0.01, *** p < (0.001 Sample sizes are shown as
numbers in parentheses
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Figure 3. CD mice have motor deficits. A CD mice fall off a ledge sooner than WT or G#/2i* mutants. B CD mice
bury fewer marbles than either the WT or G#f2i* mutants. C CD mice travel less distance in the center during marble
burying task D CD animals spend less time in the center during marble burying task. E All genotypes travel similar
distance in open field. F All genotypes spend similar time in the center during open field. * p < 0.05, ** p < 0.01,
*** p < 0.001 Sample sizes are shown as numbers in parentheses
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Figure 4. CD mice have more severe contextual fear phenotypes than double mutants. A The conditioned fear
task design. Day one animals are delivered a tone and then a footshock throughout the five minute task. Day twp the
animals are put in the same context without a footshock to measure contextual fear memory. Day three animals are
put in a new chamber and delivered the tone to measure cued fear memory B Percent time freezing during
conditioned fear acquisition. CD mice have increased baseline freezing during minute one and G#f2i* mutants show
decreased freezing during minute five C Percent time freezing during contextual fear memory recall. CD mice show
elevated freezing during fear memory recall. D Percent time freezing during cued fear memory recall. All animals
show increased freezing when the tone is played. * p < 0.05, ** p < 0.01, *** p < 0.001 Sample sizes are shown as
numbers in parentheses
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Figure 5. CD mice have altered mRNA for synaptic genes in a hippocampus transcriptome. A CD animals
show decreased expression of the WSCR that are expressed in the hippocampus. B volcano plot comparing CD and
WT differentially expressed genes. WSCR genes are highlighted in yellow and genes with FDR < 0.1 are highlighted
in red. C Besides Gtf2i and Gtf2irdl there are no significantly differentially expressed genes D There is a 9%
overlap between nominally significantly up and down regulated genes between CD and G#f2i* comparisons to WT
controls. E CD differentially expressed genes are enriched for GO biological processes involved in synapses and

nervous system development. F G#f2i* differentially expressed genes are enriched for GO biological processed
involved in more general organ development.
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Figure 6. Human atypical deletions support oligogenic contribution of genes in the WSCR to phenotypes.
Schematic of the WSCR on chr7q11.23. The arrows indicate the regions of low copy repeats. The typical deletion is
demarcated using the yellow box. Atypical deletions demarcated in blue show no contribution to the WSCP.
Atypical deletions demarcated in green show contribution to the WSCP. Atypical deletions demarcated in purple
provide evidence of deletions that spare GTF2[ and GTF2IRDI that show contributions to across phenotypic
domains including social behavior. Atypical deletions demarcated in red provide evidence that the telomeric region
is sufficient to produce the full spectrum of phenotypes. The large amount of overlap of all deleted regions and the
mild phenotypes present across the atypical deletions suggests an oligogenic pattern. SVAS (supravalvular aortic
stenosis), WSCP (Williams syndrome cognitive pfofile) ID (intellectual disability) NT (Not tested), - absent, +
present, -/+ milder than typical WS.
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Supplemental Figure 1. Generation of loss of function mutations in Gtf2i and Gtf2ird1. A The number of
founders from gRNA injection shows that two gRNAs are efficient at mutating both targets and have high rates of
mosaicism. B Gtf2i protein is more highly expressed in the embryonic brain and is detectable in the adult brain, each
time point includes two biological replicates. C Gtf2ird1 protein is more highly expessed in the embryonic brain and
not detectable in the adult brain, each time point includes two biological replicates. D Gtf2i protein and transcript
levels are decreased in the heterozyous Gtf2i* mice and not detectable in the homozygous Gtf2i* E13.5 brain. E
Gtf2ird]1 protein is not decreased in heterozygous or homozygous Gtf2i* E13.5 brain, but the transcript is increased
in heterozygous and homozygous animals. F Schematic of the consequences of the 5 bp deletion in Gtf2ird1
showing the potential translation re-initation methionine in a new open reading frame. G A slight shift of Gtf2ird1
protein in animals homozygous and hemizgyous for the 5 bp deletion in exon 3 of Gtf2ird1, suggesting an N-
terminal truncation of Gtf2ird1. H ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence
(GUR) over an off target sequence 7kbp upstream of Bdnf transcription start site in WT versus Gtf2i* homozygous
E13.5 brain. I ChIP qPCR of the enrichment of the Gtf2ird1 upstream regulatory sequence (GUR) over an off
target sequence 10kbp upstream of Pcbp3 transcription start site in WT versus Gtf2i* homozygous E13.5 brain. * p
<0.05, ** p <0.01, *** p < 0.001
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Supplemental Figure 2. Social behaviors in CD and Gtf2i* mutants. A CD animals have increased pauses
between bouts of USVs. B CD animals have decreased duration of USVs. C CD animals have decreased weight in
adulthood, developmental weight does not explain differences in USV. D All genotypes show preference for social
novelty. E Double mutants show increased activity in the social approach and social novelty trials of three
chambered social appraoch. F WT and double mutants show social preference in the first 5 minutes of the extended
social approach, but the CD mice are trending. G None of the genotypes show preference for social stimulus during
the last 5 minutes of the extended social approach. H CD mice on C57BL6/J background show a submissive
phenotype in tube test of social dominance while the double mutants show no phenotype on FVB/ANT]J
background. I All genotypes travel similar distance in the resident intruder task. J CD animals have decreased mean
bout time of anogenital sniffing in the resident intruder task. K However all genotypes have similar frequencies of
anogential sniffing. * p<0.05, ** p <0.01, *** p <0.0001. Sample sizes are shown as numbers in parentheses
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Supplemental Figure 3. Motor and anxiety phenotypes in double mutants and CD animals. A All animals
show similar time to initiate walking. B All animals reach the top of a 60 degree inverted screen in similar amounts
of time. C All animals reach the top of a 90 degree inverted screen in similar amounts of time. D All animals can
hang onto an inverted screen for similar amounts of time. E CD animals are able to turn their bodies 180 degrees on
a pole quicker than WT animals. F CD animals are able to reach the bottom of a pole quicker than WT littermates.
G CD animals tend to fall off a platform more than double mutants. H On day 3 of the rotorod task double mutants
fall off sooner than the CD animals. I All genotypes travel similar total distances in the marble burying assay. J All
genotypes show normal PPI. K CD animals have decreased startle to 120dB stimulus overall but this is due to
decreased weight. L. All genotypes spend similar amounts of time in the open arm during elevated plus maze. * p<
0.05, ** p <0.01, *** p <0.0001. Sample sizes are shown as numbers in parentheses
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Supplemental Figure 5. Small changes in hippocampal transcriptomes of WS models. A

Fold change of differentially expressed genes between WT and CD animals at an FDR < 0.1

normalized to WT levels. B Fold change of genes previously tested in CD hippocampus RNAseq
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from Ortiz-Romero et al. 2018. C The top ten enriched Cellular Component gene ontologies for
genes that are nominally up or down regulated between CD and WT animals. D The top ten
enriched Cellular Component gene ontologies for genes that are nominally up or down regulated
between Gtf2i* and WT animals. E The top ten enriched Molecular Function gene ontologies for
genes that are nominally up or down regulated between CD and WT animals. F The top ten
enriched Molecular Function gene ontologies for genes that are nominally up or down regulated
between Gtf2i* and WT animals

Table 1: Behavior and animal cohorts for the thZi* x CD

Behavior Male Female
Cohort 1 WT Gtf2i* cD WT Gtf2i* cb
Pup USV P3 and P5 11 12 8 12 12 9
Sensorimotor battery 12 15 7 13 11 11
Elevated plus maze 12 13 7 12 12 10
1 hour locomotor activity 12 14 8 13 12 10
Marble burying 12 14 8 13 12 10
Rotarod 12 14 8 13 12 10
Three-chamber social approach 10 12 6 10 8 10
Resident intruder 12 14 8 NA NA NA

Cohort 2

Modified three-chamber social approach 10 3 9 11 14 12
Tube test of social dominance 11 3 9 11 14 12
Pre-pulse inhibition 10 3 9 11 14 12
Conditioned fear 9 3 8 10 14 12
Shock sensitivity 10 3 9 11 14 12
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Supplemental Table 1: Supplemental figures statistic table
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Supplemental Table 2: Random GO enrichments for CD-WT comparison

number of times seen in

ontology CD_go_terms CD_log_p 1000 random DE lists
(cS extracellular matrix 5.299763321 184
cc extracellular space 4.709714152 343
cc neuron projection 3.459856842 28
CcC synaptic membrane 2.699392237 6
cc extracellular region 2.688790717 337
cc lamellar body 2.324190197 9
cc glucosidase Il complex 2.304084642 2
CcC synapse 2.286313736 22
(dc synaptic vesicle 2.258909614 4
cC mitochondrial respiratory chain complex | 2.193353178 28
MF calcium ion binding 3.774528557 70
MF GKAP/Homer scaffold activity 3.593061599 59
MF structural constituent of cytoskeleton 3.342895657 55
MF G protein-coupled glutamate receptor binding 2.394858721 4
MF ornithine decarboxylase inhibitor activity 2.217525626 3
MF selenocysteine insertion sequence binding 2.21096167 1
MF cytokine activity 2.186438203 20
MF nuclear hormone receptor binding 1.98850255 4
MF calcium-release channel activity 1.947608066 8
MF ryanodine-sensitive calcium-release channel activity 1.939022155 3
BP positive regulation of excitatory postsynaptic potential 4.084162987 2
BP central nervous system neuron differentiation 3.642462175 4
BP postsynaptic density assembly 3.593042668 1
BP negative regulation of smoothened signaling pathway involved in dorsal/ventral neural tube patterning 3.590087957 3
BP positive regulation of transporter activity 3.479515877 1
BP lipid storage 2.921534374 2
BP positive regulation of calcium ion-dependent exocytosis 2.735510193 6
BP chromatin remodeling 2.665586516 9
BP positive regulation of axon extension 2.592558674 1
BP neuromuscular process controlling balance 2.585323612 4
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Supplemental Table 3: Random GO enrichments for Gtf2i*-WT comparison

number of times seen in

ontology Gtf2i*_go_terms Gtf2i*_log_p 1000 random DE lists

cc extracellular space 9.998750285 343
cc extracellular region 9.414445338 337
cc extracellular matrix 7.439719124 184
cc collagen-containing extracellular matrix 7.170561483 248
cc basement membrane 3.833411616 163
cc brush border 3.42003544 18
cc collagen type IX trimer 3.200408002 16
cc cell surface 2.708057445 110
cc apicolateral plasma membrane 2.609972709 11
cc microvillus 2.328482848 16
MF heparin binding 4.212498792 69
MF polysaccharide binding 3.905475505 19
MF scavenger receptor activity 3.572999245 20
MF insulin-like growth factor binding 3.524711392 47
MF extracellular matrix binding 3.450116983 53
MF metallodipeptidase activity 3.249120219 16
MF phosphodiesterase | activity 2.785797036 5

MF guanine/thymine mispair binding 2.769210919 0

MF mu-type opioid receptor binding 2.526203229 10
MF extracellular matrix structural constituent 2.49719731 151
BP ossification 3.685648093 23
BP eye development 3.661194591 2

BP angiogenesis 3.590308052 14
BP extracellular matrix organization 3.496345482 14
BP female gonad development 3.363933991 7

BP somatic stem cell population maintenance 3.355276999 8

BP regulation of vascular endothelial growth factor receptor signaling pathway 3.347530325 4

BP positive regulation of substrate-dependent cell migration; cell attachment to substrate 3.302955283 25
BP negative regulation of transforming growth factor-beta secretion 3.302955283 23
BP response to glucocorticoid 3.263966662 0

Supplemental Table 4: Primers for CRISPR sgRNA, validation, and IVT

target cloning oligos PAM
Gtf2i_exon5_up_b CACCGGTTGCGAGGTCGTAATGTTC CGG
Gtf2i_exon5_lw_b AAACGAACATTACGACCTCGCAACC
Gtf2ird1_exon3_up CACCGCTCATTGTGTACCGCCACGC AGG
Gtf2ird1l_exon3_lw AAACGCGTGGCGGTACACAATGAGC
target T7 endonuclease assay primers
Gtf2i_exon5_b_F AGCATAACAGCGTCTGCATT
Gtf2i_exon5_b_R CACGCGTGGGTCATGCTAAT
Gtf2ird1_exon3_F TATTGGGCCTCAGTGTTCCC
Gtf2irdl_exon3_R GTTCCAGGCTGGTCTTGACT
target IVT primer
T7-gRNA-gtf2iex5b-For TTAATACGACTCACTATAGGGGGTTGCGAGGTCGTAATGTTC
T7-gRNA-IRD1ex3-For TTAATACGACTCACTATAGGGGCTCATTGTGTACCGCCACGC
Zhang-IVT-gRNA-Rev AAAAGCACCGACTCGGTGCC
T7-Zhang-CO9WT-For TAATACGACTCACTATAGGGAGAATGGACTATAAGGACCACGAC
T7-Zhang-C9WT-Rev GCGAGCTCTAGGAATTCTTAC
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Supplemental Table 5: Genotyping and RT-qPCR primers

Target Pde6b genotyping primers
0IMR2093 AAGCTAGCTGCAGTAACGCCATTT
0IMR2094 ACCTGCATGTGAACCCAGTATTCTATC
0IMR2095 CTACAGCCCCTCTCCAAGGTTTATAG

Target Gtf2ird1l exon 3 5bp deletion

Gtf2ird1_5bp_del_F GCTCTCATTGTGTACCGCAGGC
Gtf2irdl_wt_R ACGCTTTGCTGCAAATGCTTG
Bactin_F AGAGGGAAATCGTGCGTGAC
Bactin_R CAATAGTGATGACCTGGCCGT

Target CD genotyping primer
hprtVcam_F CTCTGAGGCTTCAAAGGTTC
hprtVcam_R AATCCAGCTTGTTTGGGCTA

Target gPCR primers

gapdh_F AGGTCGGTGTGAACGGATTTG
gapdh_R GGGGTCGTTGATGGCAACA

Gtf2ird1l_ex8/9 F

TTTAACAGCAGATACGCGGAAG

Gtf2ird1_ex8/9_R

CGTAAGTACAGGGTCGCTTGAA

Gtf2i_ex25/27 R

GCACCTCTTCCAAAAGCCCTCCA

Gtf2i_ex25/27 R GGTCGTTGACCTGCTCCCGC
Target ChIP enrichment gPCR primers condition
Gtf2irdl_GUR_F GGTTCTAATCCGTGGCTGGGG on target
Gtf2irdl_GUR_R TTGGCTGTCATTTACATACGGGA on target
bdnf_us_F GGCCAAGGTGAATTGGGTAT off target
bdnf us_R TGATGGCAGCAATGTTTCTC off target
pcbp3_us_F CCCAAAGGATGATGTGGTTT off target
pcbp3 us_R AGGGCACTACACATGCACAC off target

target amplicon-sequencing primer

Gtf2i_exon5_seq_F

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcacatgaacaatctgtgacggg

Gtf2i_exon5_seq_R

ACACTCTTTCCCTACACGACGCTCTTCCGATCTcctgtgccatatgagaagatge

Gtf2ird1_exon3_seq_F

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcatagggtactcacggcagaa

Gtfi2rd1l_exon3_seq_R

ACACTCTTTCCCTACACGACGCTCTTCCGATCTtccaggctggtcttgacttag
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Supplemental Table 6: Main figures statistic table
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Chapter 5: Conclusions and Future

Directions
Nathan Kopp
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5.1 Significance
In this thesis I have tested three extant hypotheses in the field of Williams syndrome

biology, using both human and mouse genetics. First, I showed that variation on the remaining
WSCR allele does not largely modify the social phenotype of individuals with WS as measured
by the SRS. The study highlighted two SNPs in BAZIB and GTF2IRD1, both of which have
been implicated in the cognitive phenotypes of WS, providing further support for their
importance in the pathogenesis of WS. I used the data to further describe the genetic variation
within the exonic compartment of the WSCR, which can be queried to test for associations with
other clinical phenotypes of WS. While 85 individuals is a small sample size to detect variants
that have low effect sizes, this was the largest genetic dataset of WS analyzed, and will exist as a

foundation to which other larger studies can build.

The second hypothesis I tested was how do the transcription factors Gtf2i and Gtf2irdl
interact to affect behavior. These genes have been thought to contribute to the behavioral,
cognitive, and craniofacial aspects of WS, but their affects on behavior have not been studied
together. I leveraged the advantages of the mouse model system to study these genes. First, I
generated a dataset that describes where these transcription factors bind in the developing brain
and then tested the consequences of mutating just G#f2ird1 or both transcription factors together
to examine how they interact to potentially affect transcription and behavior. Surprisingly, I
showed that both transcription factors have little consequence on whole brain transcription, but
mutating them still results in behavioral deficits mainly driven by homozygosity of Gtf2ird1
mutations. The work I have done is some of the first in vivo biochemical analysis of Gtf2ird1,
and I showed that G#/2ird] is a difficult gene to knockout. These results help interpret the

findings of other G#f2ird1 mouse models that still show some Gtf2ird] transcription and protein
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product (66, 101). The Gtf2ird] mouse model I characterized provided data that supports the
functional role of the N-terminal end of the protein in behavior, although it did not result in
decreased DNA binding genome wide. My data and methods will be useful to consider when
designing future experiments around this gene. I also showed that knocking out G#/2i along with
Gtf2irdl did not result in more severe phenotypes in the heterozygous state. This suggests that
Gtf2ird] is the main driver of the phenotypes tested in this study. Overall, I have created two
new mouse lines to further model and study Williams syndrome and provided genomic datasets

that can be used to generate future hypotheses concerning these two transcription factors.

Finally, I used another G#/2i/Gtf2irdl double mutant mouse model and a mouse model
that has the entire WSCR deleted (CD mouse) to test the current leading hypothesis that these
two transcription factors are sufficient to replicate the phenotypes that are caused by deleting the
whole region. My data suggests that these genes are not sufficient, which implicates the role of
other genes in the region or an oligogenic contribution of several genes in the region. I also
analyzed the adult hippocampal transcriptome of both mouse models and showed differences in
synaptic genes in the CD compared to the double mutant, suggesting that synaptic functioning
might be impaired in the CD animals that is not caused by G#/2i or Gtf2ird1. These data should
encourage studying the effects of other genes in the WSCR. Using the CRISPR/Cas9 technology
will allow for the quick generation of mouse models with unique combinations of genes mutated
so we can begin to dissect the interactions of the genes in the region, similarly to what has been

done for other copy number disorders (102, 103, 204).

Overall, this thesis has generated human and mouse genomic datasets that can be used to
design future studies to elucidate genetic influences on WS phenotypes. It also describes three

new mouse models that can be used in to further understand how the general transcription factor
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2i family contributes to WS phenotypes. Finally, it supports a role for genes outside of the
general transcription factor 2i family, encouraging further characterization of single gene knock

out mouse models as well as models with combinations of genes knocked out.

5.2 Future directions

5.2.1 Human studies
I described the analysis of the whole exome of 85 individuals with WS and tested for

genetics associations with the social phenotype. The exome enriches for variants in the coding
regions of genes, which aids in the interpretation of their effects. However, the exome covers
only 1% of the genome and with the growing number of whole genome studies, the human
genetics field is learning more about the consequences of non coding variation. Thus, it would be
beneficial to use whole genome sequencing to analyze how the full spectrum of genetic variation
could modify the phenotypes in WS. First, it would be interesting to catalogue the non-coding
variation of the WSCR and couple that with the exonic data to look for modifiers within the

locus.

Next, we could use the dense genotype data genome wide to calculate polygenic risk
scores for different phenotypes of interest within the WS sample. I did this using the Psychiatric
Genomics Consortium GWAS on ASD using the whole exome data, but this misses a lot of the
common, noncoding variation that was genotyped. Using the whole genome data we could get a
better understanding contribution of genomic variants to social behavior. Recently, it has been
shown that high polygenic risk scores can convey similar risk to disease as monogenic causes
(205). This information could be used to help explain the large variability of the social phenotype

and other phenotypes of WS.
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Finally, the genome data could be used to identify the breakpoints of the deletion in
patients. This is important, because the current diagnostic method, clinical microarray, has
difficulty accurately identifying the size of the deleted region due to the low copy repeats. I
attempted to use the whole exome data to determine copy number of the NCF'] alleles by using
the ratio of the two base pair deletion that distinguishes the pseudogenes from the functional
copy. This gave promising results, but this strategy cannot distinguish the exact break point of
the deletion. Since whole genome sequencing provides even coverage it could be used to detect
the size of the deletion, which has been shown to affect cognitive and behavioral phenotypes
(41). I have preliminarily tried to call the deletion size using the coverage from the whole
genome sequencing data. I was able to identify atypical deletions, but the typical deletions all
had similar profiles with drops in coverage in the area in the low copy repeats. We could
potentially use the polymorphisms that distinguish between the functional and pseudogenes of
the regions, but short read whole genome sequencing data may not be able to overcome the
challenges of the repetitive regions. Long read technology could be used to try and surmount the
difficulty of mapping to the region to better detect the breakpoints.

5.2.2 Gtf2i and Gtf2irdl mouse studies

I have generated several new mouse models that can be used as tools to understand G#f2i
and Gtf2ird]I biology. One of the more interesting findings from the mutations in Gtf2irdl was
not expected, and that is that this is a difficult protein to knock out. Two separate frameshift
mutations that create premature stop codons with exon three, and a large deletion removing all
but 14 base pairs of exon three of G#f2ird1 resulted in more Gtf2ird1 transcript and slightly lower
levels of a N-truncated protein. The tight regulation of the transcript and protein levels of

Gtf2ird] hints at a conserved important function. It would be interesting to further understand
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how this transcript and protein are regulated. We have data to suggest that G#f2ird1 transcripts
that contain the mutant alleles are more stable than the WT transcript. Studying the mRNA
dynamics and stability of G#f2ird1 could provide insight on how it is regulated and lead to
further investigation about why it is regulated so tightly. We have looked into using click-it
technology to determine the half-life of the WT and mutant mRNA and have the potential to
clone the mutated alleles into a plasmid vector, which could then be manipulated. This would
also allow us to directly test if the N-truncated mutation is caused by the hypothesized translation
re-initiation event at a downstream methionine using pharmaceutical manipulations in cell

culture.

I was initially interested in phenotyping these mouse models for social behaviors, as other
models knocking out G#f2ird] and Gtf2i have shown social phenotypes. In the social tasks we
have done which include the three chamber social approach, tube test, and resident intruder, we
have seen either no difference between genotypes, strain dependent effects, social effects in the
opposite direction, or non replicable phenotypes. The CD model on the C57B1/6J background
should have the largest social phenotype as described in the mouse literature. The Dougherty lab
has a new social operant paradigm that would allow us to test the social motivation of the CD
animals, which we would predict to have increased motivation. We could then run our other WS

models through this paradigm as well to test specifically for social motivation deficits.

We also see a conditioned fear response in the CD animals and the G1f2i™"/Gtf2ird1”"
genotype. The oxytocin system has been largely speculated to contribute to the phenotypes in
WS (118, 206) and it has been shown to affect conditioned fear in mice (207). I have generated
preliminary data that suggests oxytocin is slightly upregulated in the hypothalamus of CD

animals, however, I have not noticed an increased in oxytocin positive neurons in the
212



hypothalamus. We can manipulate the oxytocin system, genetically or pharmaceutically, in CD
animals to test if this rescues or exacerbates the behavioral phenotypes. I have also generated
RNA-seq data from the adult hypothalamus of the CD and the G#/2i* animals. This can further
inform the involvement of oxytocin and vasopressin in behavioral phenotypes and be used to

design downstream experiments regarding these neuropeptides.

I am also interested in understanding how other genes in the WSCR could possibly
modify the effects of the general transcription factor 2i family. I have generated a new mouse
model that has a frameshift mutation in just G#f2i. Characterizing this model will let us
understand the effects of G#f2i on behavior without a G#/2ird] mutation. In collaboration with
Dr. Kozel, we could cross our single mutants, double mutants, and the CD animals to a Bazlb

knock out line to test how this chromatin modifier affects behavior.

5.3 Summary

This thesis used both human and mouse genetics to further understand genetic
contributions of the WSCR to behavior. I have analyzed the largest genetic dataset of humans
with WS and showed that variants on the remaining WSCR allele do not largely affect the social
phenotype, but there is suggesting evidence for the role of variants in the BAZI1B and GTF2IRD1
genes. This dataset can be used to query other clinically relevant phenotypes of WS. Further, 1
have generated and characterized new mouse models of G#/2i and Gtf2irdl and showed that
other genes in the WSCR are critical for causing the phenotypes seen when the whole region is
deleted. The data produced here can be used to appreciate the genetic complexity of the WSCR

and encourage research that looks at the interaction of the genes in the region.
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