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Preface

This dissertation is about the abstract Toeplitz operators obtained by compressing the

multishifts of the usual Hilbert spaces of analytic functions onto co-invariant subspaces

generated by polynomial functions. These operators were introduced by Arveson in regard

to his multivariate dilation theory for spherical contractions [6, 7, 8, 10, 11]. The main

technical issue here is essential normality, addressed in Arveson’s conjecture. If this

conjecture holds true then the fundamental tuple of Toeplitz operators associated to a

polynomial ideal I can be thought as noncommutative coordinate functions on the variety

defined by I intersected with the boundary of the unit ball. This interpretation suggests

operator-theoretic techniques to study certain algebraic spaces. More specifically, we are

interested in Douglas’ index problem. These topics are discussed in Chapter 1.

In the special case of monomial ideals we give a new proof for Arveson’s essential

normality conjecture, also answer Douglas’ index problem. Our main construction is a

certain resolution (in the sense of homological algebra) of Hilbert modules. These are

discussed in Chapter 2.

Thinking of the fundamental tuple of Toeplitz operators as noncommutative coordi-

nate functions, we start applying them to study the isolated singularities of algebraic

hypersurfaces. The main extra operator-theoretic ingredient here is a unitary operator,

the holonomy of a certain Gauss-Manin connection induced by the monodromy of the

singularity. We want to understand how this unitary operator interacts with the Toeplitz

operators. This study could lead to an analytic way for detecting exotic smooth structures

on odd-dimensional spheres. These are discussed in Chapter 3.
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A list of the fundamental notations and conventions used throughout the dissertation

is provided on pages vii-x; specially the fundamental concept of the essential normality

of a Hilbert module is defined there.
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Notations and conventions

• N is the set of nonnegative integers.

• an ≈ bn (respectively, an � bn), for number sequences (an)n∈N and (bn)n∈N, means

that the ratio an/bn converges to a nonzero (respectively, possibly zero) finite complex

number.

• m is an arbitrary positive integer fixed throughout the whole dissertation.

• Bm and Bm are respectively the open and closed unit balls in Cm.

• A always denotes the algebra C[z1, . . . , zm] of polynomials in m variables.

• Let I ⊆ A be an ideal.

– V (I) ⊆ Cm is the zero variety defined by I.

– XI := V (I) ∩ ∂Bm.

• C(X) denotes the C*-algebra of complex-valued functions on topological space X.

• The term algebraic spaces generally refers to those ringed spaces whose structure sheaf

might contain nonzero nilpotent germs. Examples are Grothendick’s schemes [64] and

Grauert’s nonreduced analytic spaces [58, Chapter 1][72, Section 43].

• We try to denote Hilbert spaces by uppercase calligraphic letters like A, H, I, M,

N . However, we follow the usual tradition of denoting the Lebesgue, Sobolev, Hardy

vii



and Bergman spaces by L, W , H and La, respectively. (See pages ix-x.) All abstract

Hilbert spaces are assumed to be separable.

• The term operator, unless otherwise stated, refers to linear continuous maps between

Hilbert spaces.

• We try to denote C*-algebras by uppercase fraktur letters like A, B, K, Q, T.

B(H) is the C*-algebra of operators on the Hilbert space H.

K(H) is the C*-algebra of compact operators on the Hilbert space H.

Q(H) := B(H)/K(H) is the Calkin algebra of the Hilbert space H.

• There is a one-to-one correspondence between commuting m-tuples of operators T :=

(T1, . . . , Tm) acting on a Hilbert space H and Hilbert A-module structures (in the sense

of Arveson [11]) on H. This correspondence is given by representing each polynomial

p(z1, . . . , zm) ∈ A by the operator p(T1, . . . , Tm). Conversely, T is identified with the m-

tuple (Mz1 , . . . ,Mzm) ∈ B(H)m of multiplication operators by the coordinate functions,

and is called the fundamental tuple of Toeplitz operators on the Hilbert A-module H.

The C*-algebra generated by {1, T1, . . . , Tm} ∪ K(H) is denoted by T(H) and is called

the Toeplitz C*-algebra of the Hilbert A-module H. Based on this equivalence, the

properties of T are attributed to H and vice versa. For example, H is called essentially

normal if [Ti, T
∗
j ] ∈ K(H) for all i, j = 1, . . . ,m.

• H ⊗ Cr, r positive integer, is the r-fold inflation of Hilbert space H, implemented by

the tensor product or direct sum
⊕

rH of Hilbert spaces. An operator T ∈ B(H)

naturally induces the inflation T ⊗ 1 ∈ B(H⊗ Cr).

• Let Ω ⊆ Cm be a smoothly bounded domain.

– W s
hol(Ω), s ∈ R, is the Bergman-Sobolev space consisting of all holomorphic func-

tions in the L2 Sobolev space W s(Ω). (See [53, 80, 19].) These are also known as

the holomorphic Sobolev spaces.
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– W s
hol(∂Ω), s ∈ R, is the Hardy-Sobolev space consisting of all functions in the

L2 Sobolev space W s(∂Ω) whose Poisson extension to Ω is not only harmonic

but also holomorphic. Alternatively, it is the closure in W s(∂Ω) of the boundary

values of holomorphic functions on Ω which are continuous up to the boundary

[25, 53]. Note that W s
hol(∂Ω) is isometrically isomorphic to the Bergman-Sobolev

space W
s+ 1

2
hol (Ω) through the Poisson extension and trace map [53].

– H2(∂Ω) := W 0
hol(∂Ω) is the Hardy space [75, 93, 98, 32].

– L2
a,s(Ω), s > −1, is the weighted Bergman space consisting of holomorphic func-

tions f on Ω such that
∫

Ω
|f(z)|2ρ(z)sdV (z) <∞, where ρ(z) is a positively signed

smooth defining function for Ω (equivalently, the distance function dist(z, ∂Ω)),

and dV (z) is the Lebesgue measure on Ω normalized such that
∫

Ω
ρ(z)sdV (z) = 1.

(See [19, 53, 104].) Note that L2
a,s(Ω) = W

− s
2

hol (Ω) as sets with equivalent norms

[81, 53, 19].

– L2
a(Ω) := L2

a,0(Ω) is the (unweighted) Bergman space [75, 98, 97].

• H2
m is the Drury-Arveson space of analytic functions on Bm, the one with the repro-

ducing kernel (1− 〈z, w〉)−1. (See [6][2, Chapter 41].) It has the standard orthonormal

basis
{

(n!/|n|!)−1/2 zn : n ∈ Nm
}

. It is also known as the m-shift or symmetric Fock

space.

• H(s)
m , s ∈ R, is the Besov-Sobolev space of analytic functions on Bm, the one with the

reproducing kernel

Ks(z, w) :=


(1− 〈z, w〉)−s−m−1, s > −m− 1,

(−s−m)−1F (1, 1; 1− s−m; 〈z, w〉) , s ≤ −m− 1,

where F (a, b; c; ζ) :=
∑

q∈N
(a)q(b)q
(c)qq!

ζq is the hypergeometric function, and (x)y := Γ(x+y)
Γ(x)

is the Pochhammer symbol. (See [20, 102, 53, 3, 104]; our parameter s+m+ 1 is q in

[20], α + m + 1 in [102, 53], and 2σ in [3]; [104] only studies the s = −m − 1 case.)

ix



H(s)
m has the standard orthonormal basis

{
ωs(n)−1/2zn : n ∈ Nm

}
where

ωs(n) :=


n!(s+m)!

(|n|+s+m)!
, s > −m− 1,

n!(−s−m)|n|+1

(|n|!)2 , s ≤ −m− 1.

Note that ωs(n) ≈ n!
|n|!(|n|+1)s+m

for each s ∈ R. (We will not need the reproducing ker-

nel, but this equivalent norm is enough for our purposes.) We have the identifications:

H(s)
m =



the Bergman-Sobolev space W
− s

2
hol (Bm) (as sets with equivalent norms), s ∈ R,

the Hardy-Sobolev space W
− s+1

2
hol (∂Bm) (as sets with equivalent norms), s ∈ R,

the Drury-Arveson space H2
m (as sets with equal norms), s = −m,

the Hardy space H2(∂Bm) (as sets with equal norms), s = −1

the weighted Bergman space L2
a,s(Bm) (as sets with equal norms), s > −1.

• σe(T ), T operator, is the essential spectrum of T . When T is an m-tuple of commuting

operators acting on a common Hilbert space, σe(T ) is the essential Taylor spectrum

[2, Chapter 42][84]. For Hilbert A-module H, σe(H) is the essential Taylor spectrum

associated to the fundamental tuple of Toeplitz operators of H.

• As the basic setting of this dissertation, in Section 1.1, we associate to each homoge-

neous ideal I ⊆ A the following objects:

– I, QI , I⊥ (Hilbert A-modules)

– TI := T(I⊥) (C*-algebra)

– τI ∈ K1(XI) (odd K-homology class; only defined if I⊥ is essentially normal.)
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Chapter 1

Introduction

This chapter introduces and motivates the main analytic objects we work on throughout

the dissertation. More specifically, in Section 1.1 to each polynomial ideal we asso-

ciate abstract Toeplitz operators, Hilbert modules, C*-algebras and (conjectural) odd

K-homology classes, and state Arveson’s essential normality as well as Douglas’ index

conjectures about them. Sections 1.2 and 1.3, respectively, try to reveal Arveson’s and

Douglas’ path to their conjectures. Some variants of Arveson’s conjecture are discussed

in Section 1.4. Section 1.5 gives a summary of results in this dissertation.

1.1 The basic setting, Arveson’s conjecture, Dou-

glas’ index problem

The commutative algebra of polynomial ideals I ⊆ A := C[z1, . . . , zm] is reflected in the

geometry of their corresponding affine subvarieties V ⊆ Cm. More specifically, there is

a complete algebro-geometric duality between radical ideals and Zariski-closed subspaces

[64, I.1.4], which extends to a complete duality between general ideals and closed sub-

schemes [64, II.5.10, II.2.6, II.4.10]. The main idea of these dualities is to realize the

elements of the quotient A/I as functions living on (some enlargement of) the zero vari-
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ety V . Multivariate operator theory adds a third analytic facet to this duality through

the C*-algebra of abstract Toeplitz operators, which we now describe [10, 11].

The goal is to realize the quotient A/I with operator-theoretic means. We work with

the Drury-Arveson space H2
m, but the constructions below make sense for any of the

analytic Hilbert spaces on page ix. The closure I of I inside H2
m is invariant under the

action of multiplication operators Mp ∈ B(H2
m), p ∈ A. This makes I a Hilbert A-

submodule of H2
m. The quotient Hilbert space QI := H2

m/I has a natural Hilbert module

structure given by p · (f + I) = pf + I, p ∈ A, f ∈ H2
m. Transporting this action to the

orthogonal complement

H2
m 	 I = I⊥ ∼= QI

makes I⊥ a Hilbert A-module. Alternatively, this module structure is given by the com-

pression of multiplication operators:

Tp := PI⊥Mp|I⊥ ∈ B(I⊥), p ∈ A, (1.1)

where PI⊥ is the orthogonal projection onto I⊥. These compressed shifts Tp are called

Toeplitz operators associated to I. The Toeplitz C*-algebra

TI := T(I⊥)

generated by {1} ∪ {Tp : p ∈ A} ∪ K(I⊥) is the analytic facet we talked about. Arveson

[8, 10], based on his work in multivariate dilation theory, conjectured:

Conjecture 1 (Arveson). I⊥ is essentially normal, in other words TI/K is abelian.

Suppose momentarily that this conjecture holds true. Also assume that I is ho-

mogeneous. Then the maximal ideal space of TI/K is homeomorphic via the mapping

ϕ 7→ (ϕ(Tz1), . . . , ϕ(Tzm)) to the essential Taylor spectrum of (Tz1 , . . . , Tzm), which is it-

self identified [37, Corollary 3.10][61, Theorem 5.1] as XI := V (I)∩ ∂Bm. (Note that this

2



early identification indicates how some geometric information is retrieved from the ana-

lytic facet. More is on the way.) The Gelfand-Naimark duality then gives the following

short exact sequence of C*-algebras:

0→ K(I⊥) ↪→ TI → C(XI)→ 0. (1.2)

Let

τI := [TI ]

be the equivalence class represented by this exact sequence in the odd K-homology group

K1 (XI) of Brown-Douglas-Fillmore [29, 30]. Douglas [45] (also see [14, Section 25]) asked

for an explicit computation of this element in other topological or geometric realizations

of K-homology:

Problem 2 (Douglas). Suppose I is homogeneous and I⊥ is essentially normal. Identify

τI ∈ K1 (XI).

More specifically, in the same paper he conjectured that:

Conjecture 3 (Douglas). Let I be the vanishing ideal of a variety V ⊆ Cm which inter-

sects ∂Bm transversally. Then I⊥ is essentially normal, and its induced extension class

is identified with the fundamental class of XI , namely the extension class induced by the

Spinc Dirac operator associated to the natural Cauchy-Riemann structure of XI .

By analogy with the Atiyah-Singer index theorem one expects that this conjecture

would lead to new connections between geometry and operator theory.

Let us review some results about Conjecture 1, Problem 2 and Conjecture 3. (See

also [2, Chapter 41].) Conjecture 1 has been proved for the following cases:

• I is monomial [10, 46];

• I is principal1 [61, 50, 54, 55];

1If I is nonhomogeneous the conjecture has only been verified for the Besov-Sobolev spaces H(s)
m in

the range s ∈ (−1,∞) ∪ ((−3,∞) ∩ [−m,∞)).

3



• I is homogeneous and m ≤ 3 [61];

• I is homogeneous and dimV (I) ≤ 1 [61];

• I has a stable generating set {p1, . . . , pk} of homogeneous polynomials in the sense

that there exists C > 0 such that every q ∈ I can be written as q =
∑

1≤j≤k rjpj

with rj ∈ A and ‖rjpj‖H2
m
≤ C‖q‖H2

m
[91];

• I is the vanishing ideal of a homogeneous variety smooth away from the origin [53].

Also see [49, 51, 101].

In regard to Problem 2 and Conjecture 3 we mention two results. Guo and Wang

[61] computed τI for m ≤ 2, and proved that it is nontrivial for m ≤ 3. Douglas, Tang

and Yu [49] verified Conjecture 3 for complete intersection varieties with only isolated

singularities:

Theorem 4 (Douglas-Tang-Yu). Let I be a not necessarily homogeneous ideal of A which

is generated by polynomials p1, . . . , pc satisfying: (1) c ≤ m− 2; (2) V (I) intersects ∂Bm

transversally; and (3) the Jacobian matrix (∂pi/∂zj) is of maximal rank on XI . Then

I⊥ ⊆ L2
a(Bm) is isomorphic as Hilbert A-module to L2

a,c(V (I)∩Bm)2, both are essentially

normal, and their induced extension class is identified with the fundamental class of XI .

Remark 5. We have followed Arveson to denote his compressed multiplications (1.1) by

Tp [10]. Sp is also used in the literature [61, 53]. �

Remark 6. Here are two reasons why we refer to the compressed multiplications Tp as

Toeplitz operators. First recall that a classical Toeplitz operator is of the form

Tf = PMMf |M

acting on the Hardy or Bergman space M ⊆ L2(Bm), where PM is the orthogonal pro-

jection onto M, and Mf is the multiplication by function f living in some symbol class

2Note that V (I) ∩ Bm might have finitely many isolated singularities. Accordingly, the Bergman
functions are defined as L2 functions which are holomorphic on V (I) ∩ Bm \ {singularities}.
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say C(Bm).3 Boutet de Monvel introduced the so-called generalized Toeplitz operators

of the form

TQ = PQ : W s
hol(∂Ω)→ W s−n

hol (∂Ω)

acting between Hardy-Sobolev spaces, where s ∈ R, Ω is a smoothly bounded strongly

pseudoconvex domain inside some reduced complex-analytic space with no singularity

on ∂Ω, symbol Q is an arbitrary pseudodifferential operator of order n on ∂Ω, and

P : W s−n(∂Ω)→ W s−n
hol (∂Ω) is the (Szegö) orthogonal projection [25, 26].

(1) Englǐs and Eischmeier [53], in the special case that I is the vanishing ideals

of a homogeneous variety smooth away from the origin, linked Arveson’s compressed

multiplications acting on I⊥ ⊆ H2
m to Boutet de Monvel’s generalized Toeplitz operators

of order zero acting on Hardy space H2(XI) = W 0
hol(XI).

(2) From the K-homology point of view there is a common generalization of all oper-

ators Tp, Tf , TQ (Q of zero order) above as well as self-adjoint elliptic pseudodifferential

operators, the so-called abstract Toeplitz operators [66, Definition II.7.7]. (See also [43,

Page 23][14, Sections 20 and 21][15].) Here is this notion. Let ρ : A → B(H) be a ∗-

representation of a C*-algebra A on a Hilbert space H, and let P ∈ B(H) be a projection.

Assume that: P essentially intertwines ρ in the sense that [P, ρ(a)] is compact for any

a ∈ A. Then the abstract Toeplitz operator Ta ∈ B(PH) with symbol a ∈ A is defined4

by Ta = Pρ(a)|PH. �

Remark 7. When the ideal I ⊆ A is homogeneous, the C*-algebra generated by {1} ∪

{Tp : p ∈ A} is irreducible5, hence contains K(I⊥) if I⊥ is essentially normal [61, Page

923][44, Theorem 5.39]. �

Finally, we gather several useful facts about essential normality which will be used

3Some general references: [9, 24, 42, 44, 57, 85, 97, 98, 103]
4Note that then the mapping A→ Q(PH), a 7→ Ta + K, is in fact a ∗-homomorphism, hence induces

an element of the odd K-homology group K1(A). The notion of abstract Toeplitz operators is so general
that the extension classes they induce represent the whole K1(A) when A is commutative [66, Proposition
II.7.10].

5Namely it has no proper reducing closed subspace.
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freely in the future.

Proposition 8 (Arveson-Douglas). (a) Let I ⊆ A be a homogeneous ideal, and let P ∈

B(H2
m) and Q := 1− P be the orthogonal projections onto I and I⊥, respectively. Then

I is essentially normal if and only if I⊥ is essentially normal if and only if all [Mzα , P ],

α = 1, . . . ,m, are compact if and only if all PMzαQ are compact if and only if all [Mzα , Q]

are compact if and only if all QM∗
zαP are compact.

(b) Let M and N be isomorphic Hilbert A-modules. Then M is essentially normal if

and only of N is; if so then they represent the same odd K-homology class.

(c) LetM be an essentially normal Hilbert A-module, and let N ⊆M be a submodule.

Then N is essentially normal if and only if the quotient module M/N is.

(d) Let Ψ : A1 → A2 be a closed-range Hilbert A-module map between essentially

normal Hilbert modules. Then the kernel and range of Ψ are essentially normal.

Proof. (a) Our reference is [10, Theorem 4.3]. Recall that an operator T is compact if

and only if T ∗ is so if and only if TT ∗ is so. Let the module action of p ∈ A on H2
m, I

and I⊥ be denoted by operators Mp, Rp and Tp, respectively. For brevity set Mα := Mzα ,

Rα := Rzα and Tα := Tzα . The last four statements are easily seen to be equivalent. Here

are the reasons. Since I is invariant under Mα we have PMαP = MαP . Then

[Mα, P ] = MαP − PMα = PMαP − PMα = −PMαQ.

The equality P +Q = 1 gives [Mα, P ] = −[Mα, Q]. Also note that (PMαQ)∗ = QM∗
αP .

For the rest we use the fact that H2
m is essentially normal [6], namely that all [Mα,M

∗
β ]

are compact. With a little abuse of language, one says that, as mappings from H2
m to I,

RαP and R∗βP equal PMαP = MαP and PM∗
βP , respectively. Then

[Rα, R
∗
β]P = MαPM

∗
βP − PM∗

βMαP ∼MαPM
∗
βP − PMαM

∗
βP = [Mα, P ]M∗

βP

= −PMαQM
∗
βP = −(PMαQ)(QM∗

βP ) = −(PMαQ)(PMβQ)∗ = −[Mα, P ][Mβ, P ]∗,

6



where ∼ denotes equality modulo compacts. This identity shows that all [Rα, R
∗
β] are

compact if and only if all [Mα, P ] are so. The rest of the proof is dual. As mappings from

H2
m to I⊥, TαQ and T ∗βQ equal QMαQ and QM∗

βQ = M∗
βQ, respectively, and we have

the identity

[Tα, T
∗
β ]Q ∼ [Mβ, Q]∗[Mα, Q]

which proves that all [Tα, T
∗
β ] are compact if and only if all [Mα, Q] are so.

(b, c, d) Refer respectively to [49, Proposition 4.4], [46, Theorem 2.1], [45, Theorem

2.2]. �

1.2 Arveson’s motivation

In operator theory, like many other areas of mathematics, the classification problem

namely finding models for the operators of an appropriately chosen class as well as devel-

oping a complete set of easily computable unitary invariants to distinguish among those

models, is of utmost importance [63, Section 45][64, Section I.8]. Here are some results

in this direction:

• The spectral theorem together with the associated spectral multiplicity theory clas-

sifies normal multioperators up to unitary equivalence.6 The complete classifier here

is the cardinal-valued multiplicity function.

• Weyl, von Neumann and Berg showed that two normal operators are essentially

unitarily equivalent exactly when they have the same essential spectrum [36, 39.8].

(Moreover, any compact subspace of the complex plane is the essential spectrum of

some normal operator.) The odd K-homology functor of Brown-Douglas-Fillmore

classifies essentially normal multioperators up to essential unitary equivalence. (See

Section 1.3 below.)

6Some references: [5, Section II.2][39, II.3.6][35, Section IX.10][63][28][52, Page 919][88, VII.6][62,
VII.22].
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• For each positive integer n there is a certain set of less than 4n
2

numerical invariants

which completely classifies n × n complex matrices up to unitary equivalence [87,

Theorem 2].

• The so-called model theory of Nagy-Foiaş classifies completely nonunitary single

contractions up to unitary equivalence. The complete classifier here is the operator-

valued characteristic function [95, Chapter 6].

Inspired by the work of Nagy-Foiaş above, Arveson [6] developed a model theory

for multivariate spherical contractions. Here are the details. Assume an m-tuple T =

(T1, . . . , Tm) of commuting operators acting on a common Hilbert space H. Consider the

completely positive map PT : B(H) → B(H) given by PT (X) =
∑

1≤j≤m TjXT
∗
j . T is

called a spherical contraction (also row contraction or m-contraction in the literature)

if PT (1) ≤ 1. For simplicity we are going to state Arveson’s model theorem only for

pure finite-rank spherical contractions. Purity means P n
T (1) → 0 in the strong operator

topology as n → ∞. The rank of T is defined as the rank of the defect operator ∆T :=√
1− PT (1). Arveson showed [6, Section 8][2, Chapter 41]:

Theorem 9 (Arveson). Let H2
m be the Hilbert space of analytic functions on Bm ob-

tained by completing the polynomial vector space C[z1, . . . , zm] with respect to the inner

product 〈zα, zβ〉 = δα,β
α!
|α|! . Then any pure m-contraction T of finite rank r is unitar-

ily equivalent to the r-fold inflation Mz ⊗ 1 ∈ B(H2
m ⊗ Cr) of the canonical multi-

shift Mz := (Mz1 , . . . ,Mzm) ∈ B(H2
m)m compressed to the orthogonal complement of

a (Mz ⊗ 1)-invariant subspace M⊆ H2
m ⊗ Cr. In notations T ∼= PM⊥Mz ⊗ 1|M⊥. M is

determined uniquely up to unitary equivalence by the unitary equivalence class of T .

Arveson’s next goal was to develop unitary invariants to distinguish among these

models. First he [7] constructed a real-valued curvature invariant for (pure) finite rank

spherical contractions. This invariant is computed in two different ways in [59, Theorem

5.2] and [56, Theorem 4.5], but is far from being a complete classifier.7

7The formula in the second work equates the curvature of T with (−1)m times the Fredholm index of
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Later Arveson [8] associated an abstract Dirac operator DT to any commuting m-tuple

of operators T acting on a common Hilbert space H. DT acts on H⊗
∧
Cm, where

∧
Cm

is the exterior algebra made into a Hilbert space by declaring the 2m wedge products

1, e1, . . . , em, e1 ∧ e2, . . . , e1 ∧ em, . . . , e1 ∧ · · · ∧ em

to be orthonormal for the standard (or any other) orthonormal basis {e1, . . . , em} of Cm.

DT is defined to be d+ d∗ where d =
∑

1≤j≤m Tj ⊗Cj and the creation operator Cj acts8

as ej ∧ −. For example, when m = 1, DT acts as matrix

0 T ∗

T 0


on H ⊕ H. Two commuting m-tuples are unitarily equivalent exactly when their cor-

responding Dirac operators are isomorphic in the sense that there is a unitary operator

which intertwines not only Dirac operators but also the canonical Clifford structures used

to define them [8, Theorem A]. In other words, DT is a complete classifier for commuting

multioperators, and fills a position analogous to the Nagy-Foiaş characteristic function

of a single contraction (see also [21, 22] for more natural generalizations of the charac-

teristic function.) However it is not a computable classifier, especially, its spectrum is

complicated [8, Page 60]. To extract a computable invariant from DT , Arveson studied

its Fredholmness. Like any other operator, DT is Fredholm exactly when DTD
∗
T is so.

T −λ for any λ ∈ Bm \σe(T ). They also showed that Bm∩σe(T ) is contained in a complex hypersurface.
8Note that d is exactly the differential map of the Koszul complex used to define the Taylor spectrum

of T . This is responsible for the fact that T is Fredholm (in the sense that ker(d)/im(d) is finite
dimensional) if and only if DT is so.
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We have:

DTD
∗
T = dd∗ + d∗d+ d2 + d∗2

=
∑

TjT
∗
k ⊗ CjC∗k +

∑
T ∗kTj ⊗ C∗kCj, d2 = d∗2 = 0 by CAR

=
∑

TjT
∗
k ⊗ (δjk1− C∗kCj) +

∑
T ∗kTj ⊗ C∗kCj, by CAR

=
(∑

TjT
∗
j

)
⊗ 1−

∑
[Tj, T

∗
k ]⊗ C∗kCj,

where CAR stands for the canonical anticommutation relations

CjCk + CkCj = 0, CjC
∗
k + C∗kCj = δjk1, j, k = 1, . . . ,m.

Here comes the main observation [10, Proposition 1.1]: Let T be a finite rank spherical

contraction. Then
∑
TjT

∗
j = PT (1) = 1 − ∆2

T equals the identity minus a finite rank

operator, hence Fredholm. Therefore, the computation above shows that a sufficient con-

dition for the Fredholmness of DT is the essential normality of T . He already knew that

the canonical shift Mz of H2
m was essentially normal [6], and verified that they remained

essentially normal after passing to the quotient by monomial ideals. All these (and maybe

more) lead him to his essential normality conjecture in Section 1.1.

Remark 10. Grothendieck used homological algebra, based on the notions of ringed

spaces, sheaves of OX-modules, resolutions and derived functors, as his language and

machinery to develop the foundations of algebraic geometry. Even before him many im-

portant results in algebra and geometry were homological in essence, for example Hilbert

syzygy theorem, the coherence theorems of Oka, Cousin problems, Cartan theorems A

and B, and Serre’s GAGA paper. Eventually, Grothendieck obtained important group-

valued invariants for algebraic spaces through sheaf cohomology. Arveson [7, Page 174]

and Douglas [48, Page 1], among many others, had in mind to bring into multivariate

operator theory the power of homological algebra. Especially, Arveson’s model theory
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suggests that H2
m is the analytic analogue of the free rank one (algebraic) A-module.9 On

the other hand, Grothendieck was also pioneer applying homotopical algebra techniques

to algebraic geometry. This leads to K-theoretic invariants for spaces, which will be

discussed in Section 1.3 in the context of operator theory. �

1.3 Douglas’ motivation

Recall the classification result of Weyl-von Neumann-Berg in Section 1.2. Brown, Douglas

and Fillmore [29, 30] solved the more natural problem of classifying essentially normal

multioperators up to essential unitary equivalence10. For simplicity we are going to intro-

duce their classifier for single essentially normal operators, but the definitions naturally

generalize to essentially normal multioperators.

Let T ∈ B(H) be an essentially normal operator. Thinking in terms of C*-algebras,

T induces the short exact sequence

0→ K(H) ↪→ T→ C(X)→ 0, (1.3)

where T is the C*-algebra generated by {1, T}∪K(H), and X is the maximal ideal space

of T/K. One says that T is an extension of K by C(X) (also an extension of C(X) by K

in the literature!). Note that X is naturally identified with the essential spectrum of T ,

especially, X ⊆ C and we have access to the coordinate function z. Thinking in terms of

representations, the data in (1.3) is exactly equivalent to the pointed ∗-monomorphism

C(X) → Q(H) which sends the coordinate function z|X to the class T + K of T in the

Calkin algebra. Essentially because the automorphisms of K are spatially implemented

[39, Page 253], if T ′ ∈ B(H′) is another essentially normal operator, T and T ′ are

essentially unitarily equivalent if and only if T ′ has the same essential spectrum X, and

9While there is only one algebraic free module of rank one (namely A itself), there are many in-
equivalent Hilbert modules which can replace H2

m, the so-called graded completions of A [11, Definition
2.2].

10Some other references: [23, 39, 43, 66].
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the induced short exact sequences of T and T ′ are equivalent in the sense that there exists

a ∗-isomorphism T→ T′ such that the diagram

0 // K(H) �
� //

��

T //

��

C(X) // 0

0 // K(H′) � � // T′ // C(X) // 0,

commutes. There is a corresponding notion of equivalence for ∗-monomorphisms. There-

fore, by its very definition, the set

K1(X) := {[T]}

of all these equivalence classes of short exact sequences (or ∗-monomorphisms; or even

∗-homomorphisms [66, 2.6.3]) is a complete classifier for essentially normal operators with

essential spectrum X.

Forgetting about operators, this latter definition makes sense for any topological space

X; just replace T by any C*-algebra of operators on a Hilbert space which fits into

the short exact sequence (1.3). Brown-Douglas-Fillmore made K1 a functor from the

category of compact metrizable spaces into the category of abelian groups, and then used

the methodology of algebraic topology (especially, pairing with the topological K-theory

functor K1, the axioms of generalized Steenrod homology theory, etc.) to compute it

in some cases including spheres and planar subspaces. There is a non-canonically split

short exact sequence, called the universal coefficient theorem, which computes K1(X) in

terms of the topological K-theory groups K0(X) and K1(X) [66, VII.6.1][89]. (See also

[69].) To sum up our presentation of K1(X) so far: for X ⊆ Cm compact, K1(X) is the

universal complete classifier of essentially normal m-multioperators with essential Taylor

spectrum X up to essential unitary equivalence.

Besides the operator-theoretic interpretation above11, the elements of K1(X) has

11In terms of Kasparov’s bivariant theory K1(X) = KK1(C(X),C) [71, 23].
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found other geometric and topological realizations such as:

1. self-adjoint elliptic pseudodifferential operators (for X closed smooth manifold) [14,

Sections 6 and 24][15]; (See also [12, 70].)

2. the so called topological K-cycles; each such cycle is a triple (M,ϕ,E) consisting

of odd-dimensional closed Spinc manifold M , continuous map ϕ : M → X, and

complex vector bundle E over M [14, 18].

The link between two latter realizations is the standard construction of the twisted

Spinc Dirac operator in differential geometry [14, Section 17][97, 12.8]. We sketch the

link between operator-theoretic K-homology and the first realization above12. Let D :

C∞(X;E)→ C∞(X;E) be an elliptic pseudodifferential operator of positive order acting

on the smooth sections of a complex vector bundle E over closed manifold X. Fix some

smooth positive density on X and a smooth Hermitian (inner product) structure on

E such that D is symmetric, namely formally self-adjoint. Most important examples

are the Laplace (dd∗ + d∗d, ∂∂
∗

+ ∂
∗
∂), de Rham (d + d∗), Dolbeault (∂ + ∂

∗
), and

Dirac type operators [13][97, 10.1]. D, as an unbounded operator on the Lebesgue space

L2(X;E), has an orthonormal basis of eigenfunctions13, hence essentially self-adjoint14,

and we denote its unique self-adjoint extension again by D. Let L2
+(X;E) ⊆ L2(X;E)

be the spectral subspace corresponding to [0,∞), namely the range of the orthogonal

projection P := χ[0,∞)(D). Let Tf ∈ B(L2
+(X;E)), f ∈ C(X), be the compression of

the multiplication operator Mf ∈ B(L2(X;E)). Since Mf and P are pseudodifferential

operators of order zero [94][96, 12.1.3], the commutator [P,Mf ] is pseudodifferential of

order ≤ −1, hence compact. Therefore the mapping C(X)→ Q(L2
+(X;E)), f 7→ Tf +K

is ∗-homomorphic, hence we get an element of K1(X) that will be denoted by [D].

Here is the definition of the fundamental class in Conjecture 3. Let Y ⊆ Cm be a

smooth closed oriented real hypersurface. The Cauchy-Riemann structure on Y induces

12Some references: [14, Sections 6 and 20][15][66, II.8.c, X.6]
13Some references: [97, 7.10][41, 23.35.2][92, 8.3][86, XI.14][79, III.5.8][66, X.4.6].
14Some references: [40, 2.2.10][62, 9.25][31][66, X.2.6].
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a canonical Spinc structure on it [97, 10.8], hence a Spinc Dirac operator DY , hence an

element [DY ] ∈ K1(Y ) by the construction in the previous paragraph. This element is

called the fundamental class of Y .

We can now motivate Conjecture 3. Baum and Douglas [14] defended the viewpoint

that an index theorem, namely a formula for the index of a naturally occurring Fred-

holm operator in terms of the underlying topological information, should be understood

as an isomorphism between different realizations of K-homology. They (together with

M. E. Taylor) [14, 15] put into this framework the index theorems of Grothendieck-

Riemann-Roch (possibly singular projective algebraic varieties over C), Atiyah-Singer

(elliptic pseudodifferential operators on closed manifolds), Connes (transversally elliptic

differential operators on foliated manifolds) and Boutet de Monvel (classical Toeplitz

operators on strongly pseudoconvex domains)15. Specially, [15, Proposition 4.5] gener-

alizes Boutet de Monvel’s index theorem to certain classes of smoothly bounded weakly

pseudoconvex domains inside complex manifolds (no singularity is allowed). This result

identifies the extension class represented by the C*-algebra of continuous-symbol Toeplitz

operators with the fundamental class (induced by the Spinc Dirac operator). Conjecture

3 is the analogous statement for possibly singular algebraic varieties. Maybe this is why

Douglas [61, Page 910] suggested that one needs a generalization of the calculus of pseu-

dodifferential operators to the context of algebraic spaces in order to resolve Conjecture

1.

Remark 11. In retrospect, one observes that while the classification of tuples of normal

operators up to unitary equivalence via spectral theory relies on measure theory as its

15Here is a concrete formula from Boutet de Monvel’s work [25, 60, 99]. For any smoothly bounded
strongly pseudoconvex domain Ω ⊆ Cm and any smooth matrix-valued function F ∈ C∞

(
Ω;Mn×n(C)

)
,

n ≥ 1, if F |∂Ω is invertible, then the Toeplitz operator TF ∈ B
(
L2
a(Ω)n

)
with symbol F is Fredholm,

and its index is given by

− (m− 1)!

(2πi)m(2m− 1)!

∫
∂Ω

trace
(
F−1 (dF )

2m−1
)
.

When Ω ⊆ C is the unit disk this statement reduces to the classical Toeplitz index theorem usually
attributed to Gohberg-Krein [9, 4.4.3][44, 7.26].
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fundamental tool, the corresponding perturbation problem of the classification of tuples

of essentially normal operators up to essential unitary equivalence via Brown-Douglas-

Fillmore theory uses algebraic topology as its fundamental tool [66, Page 15][2, Page 967].

From the representation theory standpoint, these two theories classify ∗-representations

of C(X) in B(H) and Q(H), respectively [35, IX.1.14]. �

1.4 Some variations of Arveson’s conjecture

This section gathers several variations of Conjecture 1 that will be needed in the future.

Arveson’s original statement of his conjecture was [8, Problem 2][10, Conjecture A]:

Conjecture 12 (Arveson). Let M be a homogeneous Hilbert A-submodule of H2
m ⊗ Cr,

r > 0. Then M⊥ is essentially normal.

Note that the Hilbert module structure onM⊥ is by the compressions Tp := PM⊥Mp⊗

1|M⊥ , p ∈ A. Homogeneity (or gradedness) means thatM contains all homogeneous com-

ponents of its elements16; then automaticallyM =M∩ (A⊗ Cr), henceM is generated

by finitely many homogeneous (vector-valued) polynomials according to Hilbert basis

theorem. Arveson insisted on his conjecture even for nonhomogeneous submodules gen-

erated by finitely many polynomials [10, Conjecture B]. However an example of Gleason,

Richter and Sundberg [56, Page 72] shows that the conjecture can not be extended to

general submodules.17 “A question seemingly beyond current techniques is whether a

submodule of L2
a(Bm) is essentially normal if and only if it is finitely generated” [50, Page

3179].

Although we do not refer to it but in the literature when people talk about the

Arveson-Douglas Conjecture they mean the following [2, Page 1165]:

16The monomial elements zn ⊗ ξ ∈ H2
m ⊗ Cr are declared to be homogeneous of degree |n|.

17They in fact found a pure 2-contraction of rank 1 which is not Fredholm, hence not essentially
normal.
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Conjecture 13 (Arveson-Douglas). Let M be a homogeneous Hilbert A-submodule of

H2
m ⊗ Cr, r > 0. Then M⊥ is p-essentially normal for all p > dimM.

Here, p-essential normality means that all commutators [Tzi , T
∗
zj

], i, j = 1, . . . ,m,

are Schatten p-summable, namely |[Tzi , T ∗zj ]|
p are trace class. dimM is the complex

dimension of the variety that M lives above namely V (Ann(M)) ⊆ Cm. Algebraically,

dimM equals one plus the degree of the Hilbert polynomial of H2
m ⊗ Cr/M [64, I.7.5].

Douglas [45] even suggests Conjecture 13 for L2
a(Ω), Ω ⊆ Cm smoothly bounded

strongly pseudoconvex domain, instead of H2
m. The convexity assumption can not be

dropped: even the Bergman space over the bidisk is not essentially normal. A complete

characterization of all essentially normal homogeneous submodules of the Bergman space

on the unit polydisk is given in [100].

Remark 14. Arveson [11] showed that to prove Conjecture 12 it suffices to verify it

for homogeneous submodules generated by linear vector-valued polynomials. Shalit [91]

showed that to prove Conjecture 12 it suffices to verify Conjecture 1 for homogeneous

ideals generated by quadratic polynomials.

1.5 A summary of the results in this dissertation

There are two sets of new results in this dissertation, arranged in Chapters 2 and 3:

• Chapter 2. For an arbitrary monomial ideal I ⊆ C[z1, . . . , zm], we resolve I ⊆ H2
m

through essentially normal Hilbert modules and Hilbert module maps between them

(Theorem 15):

0→ I ↪→ A0
Ψ0→ A1

Ψ1→ · · · Ψk−1→ Ak → 0.

Together with Proposition 8.(d) it gives a new proof for Arveson’s essential normal-

ity conjecture. (Compare [10, 46].) Each Aq, q = 0, . . . , k, has a tractable geometry

as the Hilbert space of square-integrable analytic sections of a Hermitian vector
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bundle on a disjoint union of subsets of Bm. As an application of this resolution we

derive an index formula for τI (Theorem 16):

τI :=
[
T(I⊥)

]
=

k∑
q=1

(−1)q−1[T(Aq)] in K1

(
σ1
e ∪ · · · ∪ σke

)
.

This answers Douglas’ index problem in the special case of monomial ideals. Some

ideas to extend these results are discussed in Section 2.8.

• Chapter 3. To analytically study the monodromy of an isolated singularity at

the origin on an algebraic hypersurface V (f) ⊆ Cm, we consider the perturbed

1-parameter family of principal ideals I(t) := 〈f − εeit〉, t ∈ R, ε > 0 small enough.

The family I(t)⊥ ⊆ H2
m of associated Hilbert modules, as a subbundle of the trivial

bundle H2
m×R, is naturally equipped with a metric connection. Of special interest is

the holonomy of this connection, a (conjecturally) unitary operator U ∈ B(I(0)⊥),

and the way it interacts with the Toeplitz algebra TI(0). Our study is at a prelimi-

nary stage. In this chapter we propose a program to study the conjectural holonomy

operator by formulating a series of reasonable conjectures (Conjectures 31, 32, and

34). We are able to test these conjectures for our toy model f := zk1 , k ∈ N. One

of our guidelines is the classical work of Milnor in singularity theory [83]. We hope

to eventually get hands on the Brieskorn polynomials f :=
∑

1≤l≤m z
bl
l , bl ≥ 2;

this study could eventually lead to an analytic way for detecting exotic smooth

structures on odd-dimensional spheres (Section 3.1). Some potential directions for

future works are discussed in Section 3.5.
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Chapter 2

A Toeplitz index theorem for

monomial ideals

In this chapter, we [47] give an answer to Douglas’ index problem for the special case of

monomial ideals. One reason why we care about monomial ideals is that a comprehensive

understanding of the phenomena appearing in this generically nonradical case may lead to

new results beyond the recently established ones about radical ideals [53, 49, 51]. (Notice

that the ideal assumed in Theorem 4 is necessarily radical [49, Page 325].)

One concept we extensively put into action in this chapter is that of jets. Also we prefer

to work with the Bergman space L2
a(Bm) instead of the m-shift space H2

m, although our

results hold for the latter. The reason is that we need weights to make our differentiation

maps between Bergman spaces bounded.1 In the future we wish to understand in a more

abstract framework the rigid structures present in this chapter.

Here is an outline of this chapter. Section 2.1 motivates and states the main results:

a resolution of the closure of a monomial ideal by essentially normal Hilbert modules,

and its resulting K-homology index formula. Section 2.2 introduces the main building

blocks of our resolution: the so-called boxes, and their associated Hilbert modules. The

1Beatrous (among others) taught us that the Bergman weights and Sobolev differentiability indices

do compensate for each other [19]. One realization of this idea is the identification H(s)
m = W

− s
2

hol (Bm),
s ∈ R, between the Besov-Sobolev and Bergman-Sobolev spaces, already mentioned on page x.
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resolution is constructed in Section 2.3, the proof that it is in fact a resolution comes in

Section 2.4. Section 2.5 proves the index formula. Sections 2.6 and 2.7 are devoted to

examples. Section 2.8 gives some directions for future works.

2.1 The main results

We motivate our main results by considering the simplest nonradical ideal I := 〈z2
1〉 ⊆

C[z1, z2]. Here the quotient C[z1, z2]-module QI = L2
a(B2)/I can be identified with the

direct sum A1 := L2
a,1(B1)⊕L2

a,2(B1) in the following way. If Ψ0 : L2
a(B2)→ A1 is defined

by

f 7→
(
f |z1=0,

∂f

∂z1

∣∣∣
z1=0

)
,

then one can easily find a Hilbert C[z1, z2]-module structure on A1 which makes

0→ I ↪→ L2
a(B2)

Ψ0→ A1 → 0 (2.1)

into an exact sequence of Hilbert modules; the Hilbert module structure on A1 is:

z1 · (X(z2), Y (z2)) = (0, X(z2)), z2 · (X(z2), Y (z2)) = (z2X(z2), z2Y (z2)).

Computation with the standard orthonormal basis shows that L2
a(B2) and A1 are essen-

tially normal, hence (2.1) is a resolution of I by essentially normal Hilbert modules and

bounded module homomorphisms between them. Just the existence of such a resolution,

by Proposition 8, implies the essential normality of I and QI . Furthermore, QI and A1

are isomorphic as Hilbert modules, so their Toeplitz extension classes [T(QI)] and [T(A1)]

are identified.

From the geometrical point of view, the resolution (2.1) organizes jets zi 6∈ I living

on the variety V (I) in different co-syzygy levels in order to co-present I. More generally,

we can prove that:
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Theorem 15. Let I ⊆ A = C[z1, . . . , zm] be a monomial ideal. Let I be the closure

of I in L2
a(Bm). Then there exist a positive integer k, essentially normal Hilbert A-

modules A0 := L2
a(Bm), A1, . . . ,Ak, and Hilbert A-module morphisms Ψq : Aq → Aq+1,

q = 0, . . . , k − 1, such that

0→ I ↪→ A0
Ψ0→ A1

Ψ1→ · · · Ψk−1→ Ak → 0 (2.2)

is exact.

We will explain later that each Aq is a direct sum of weighted Bergman spaces

over lower dimensional balls, hence can be geometrized as the Hilbert space of square-

integrable analytic sections of a Hermitian vector bundle on a disjoint union of subsets

of Bm. Regardless of the fine structure of the modules and maps in resolution (2.2), just

the existence of such an exact sequence implies the essential normality of I and QI via

repeated applications of Proposition 8. This is a new proof for Arveson’s conjecture in

the special case of monomial ideals. (Compare [10, 46].) With some extra work we deduce

the following theorem which answers Douglas’ index problem for monomial ideals:

Theorem 16. Assume the notations of Theorem 15. For each q, let T(Aq) and σqe be

respectively the Toeplitz C*-algebra and the essential Taylor spectrum associated to the

Hilbert A-module Aq. Then the identification

τI =
k∑
q=1

(−1)q−1[T(Aq)] (2.3)

holds in K1

(
σ1
e ∪ · · · ∪ σke

)
. (Recall that τI :=

[
T(I⊥)

]
is the Toeplitz class associated to

I⊥.)

Our developments in this chapter is another attempt to apply homological algebra to

multivariate operator theory. (Recall Remark 10. See also [48][2, Chapters 38 and 39].)
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2.2 Boxes and their associated Hilbert modules

This section introduces and studies the main building blocks in the construction of the

resolution (2.2).

Some notations

Recall that the weighted Bergman space L2
a,s(Bm), s > −1, has the standard orthonormal

basis: {
zn :=

zn
1

1 . . . zn
m

m√
ωs(n)

: n = (n1, . . . , nm) ∈ Nm

}
, (2.4)

where

ωs(n) :=
n!(s+m)!

(|n|+ s+m)!
.

For each positive integer q, let Sq(m) denote the set of all q-shuffles of the set {1, . . . ,m},

namely

Sq(m) :=
{
j := (j1, . . . , jq) ∈ Zq : 1 ≤ j1 < j2 < · · · < jq ≤ m

}
.

Whenever necessary we identify shuffles in Sq(m) with subsets of {1, . . . ,m} of size q.

This enables us to talk about the union, intersection, etc. of shuffles of {1, . . . ,m} with

themselves and with other subsets of {1, . . . ,m}.

Boxes and their associated Hilbert modules

To each j = (j1, . . . , jq) ∈ Sq(m) and b = (b1, . . . , bq) ∈ Nq, we associate the box

Bb
j :=

{
(n1, . . . , nm) ∈ Nm : nj

i ≤ bi for i = 1, . . . , q
}
.

To each box Bb
j , we associate the Hilbert space Hb

j ⊆ L2
a(Bm) consisting of functions

X =
∑

n∈Nm Xnz
n satisfying Xn = 0 for n /∈ Bb

j . In other words, Hb
j is the orthogonal

complement

Hb
j = L2

a(Bm)	
〈
zb

1+1
j1 , . . . , zb

q+1
jq

〉
.
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An element X ∈ Hb
j has the Taylor expansion

X =
∑

nj1≤b1,...,njq≤bq

Xn1···nmz
n.

The general construction of Section 1.1 makes Hb
j a Hilbert A-module. More explicitly,

its fundamental tuple of Toeplitz operators are given by

T j,b
zi

(zn) :=

 ziz
n, if (n1, . . . , ni−1, ni + 1, ni+1, . . . , nm) ∈ Bb

j ,

0, otherwise.
, i = 1, . . . ,m.

Some properties of the Hilbert modules associated to boxes

Lemma 17. Each Hb
j is essentially normal.

Proof. Let P be the orthogonal projection from L2
a(Bm) onto Hb

j , and Mzi ∈ B(L2
a(Bm)),

i = 1, . . . ,m, the multiplication by zi. According to Proposition 8.(a), it suffices to check

that each [Mzi , P ] is compact. For each n ∈ Bb
j , we have

PMzi(z
n) =


√

ω0(n1···ni+1···nm)
ω0(n1···nm)

zn
1···ni+1···nm , if (n1 · · ·ni + 1 · · ·nm) ∈ Bb

j ,

0, otherwise,

MziP (zn) =


√

ω0(n1···ni+1···nm)
ω0(n1···nm)

zn
1···ni+1···nm , if (n1 · · ·ni · · ·nm) ∈ Bb

j ,

0, otherwise.

Note that the coefficients
√
· · · appear because of the normalization assumption in (2.4).

Therefore

[Mzi , P ](zn) =



√
ω0(n1···bl+1···nm)
ω0(n1···bl···nm)

zn
1···ni+1···nm , if (n1 · · ·ni · · ·nm) ∈ Bb

j and

∃l such that i = jl, ni = bl,

0, otherwise.
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Since

ω0(n1 · · · bl + 1 · · ·nm)

ω0(n1 · · · bl · · ·nm)
→ 0 as ‖(n1, . . . , bl, . . . , nm)‖ → ∞,

we can conclude that [Mzi , P ] is compact. �

Lemma 18. The intersections of boxes are again boxes.

Proof. It suffices to consider only two boxes Bbi
ji

, i = 1, 2, with ji = (j1
i , . . . , j

qi
i ) and

bi = (b1
i , . . . , b

qi
i ). Let j := (j1, . . . , jq) ∈ Sq(m) be the union of j1 and j2. Define

b := (b1, . . . , bq) ∈ Nq by

bl :=


min(bs11 , b

s2
2 ), jl = js11 = js22 ∈ j1 ∩ j2,

bs11 , jl = js11 ∈ j1 \ j2,

bs22 , jl = js22 ∈ j2 \ j1.

It is easy to check that Bb
j = Bb1

j1
∩Bb2

j2
. �

The geometry of the Hilbert modules associated to boxes

Consider the Hilbert module Hb
j associated to the box Bb

j . Set

Bj := {(z1, . . . , zm) ∈ Bm : zj1 = · · · = zjq = 0} .

Observe that Bj is the unit ball inside the space

{z ∈ Cm : zj1 = · · · = zjq = 0} ∼= Cm−q.

Consider the Hilbert space

H̃b
j :=

⊕
i=(i1,...,iq)∈Nq
i1≤b1,...,iq≤bq

L2
a,q+|i|(Bj),
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and the map Rb
j : Hb

j → H̃b
j given by sending X ∈ Hb

j to Y =
∑
Y i, Y i ∈ L2

a,q+|i|(Bj)

defined by

Y i =

(
m!

i!(m+ |i|)!

) 1
2 ∂|i|X

∂zi
1

j1 · · · ∂zi
q

jq

∣∣∣∣
Bj

.

A straightforward computation with the orthonormal basis shows that: Rb
j is an isomor-

phism of Hilbert spaces.

Now consider the trivial vector bundle Eb
j := C(b1+1)···(bq+1)×Bj over Bj, together with

its standard constant frame

{ei : i = (i1, . . . , iq) ∈ Nq, i1 ≤ b1, . . . , iq ≤ bq}.

Put the following Hermitian structure on Eb
j :

〈ei, ei′〉(z) = δi,i′
(
1− |z|2

)q+|i|
, z ∈ Bj.

The Hilbert space H̃b
j can be identified with the Bergman space of the L2-holomorphic

sections of Eb
j . Consider the Toeplitz algebra T(Eb

j ) generated by matrix-valued Toeplitz

operators on the Bergman space of L2-holomorphic sections. Under the isomorphism

Rb
j , one can easily identify the Toeplitz algebra generated by

{
T j,b
zi

: i = 1, . . . ,m
}

with

T(Eb
j ).

2.3 The construction of the resolution

This section constructs the resolution in Theorem 16. Let the ideal I ⊆ A be generated

by distinct monomials

zαi , αi := (α1
i , . . . , α

m
i ) ∈ Nm, i = 1, . . . , l.
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Let the complementary space C(I) ⊆ Nm be the set of the exponents of monomials that

do not belong to I. Note that the set of monomials belonging to I is a basis of I as a

complex vector space [65, Theorem 1.1.2]. Also note that a monomial u belongs to I if

and only if there is a monomial v such that u = vzαi for some i = 1, . . . , l. (See [65,

Proposition 1.1.5].) Contrapositively, zn
1

1 · · · zn
m

m ∈ C(I) if and only for each i = 1, . . . , l

there is si ∈ {1, . . . ,m} such that nsi < αsii . Consider the finite collection

S(α1, . . . , αl) := {1, . . . ,m}l

of l-tuples s = (s1, . . . , sl) such that 1 ≤ si ≤ m for all i. For each s, let js be the shuffle

associated to the set {s1, . . . , sl}. For each j ∈ js, let bj be the minimum of all αsii − 1,

i = 1, . . . , l, such that si = j. Set bs := (bj)j∈js . The following symbolic logic computation

shows that: C(I) is the union of boxes Bbs
js

, s ∈ S(α1, . . . , αl).

zn
1

1 · · · zn
m

m ∈ C(I)↔
(
n1 < α1

1 ∨ · · · ∨ nm < αm1

)
∧ · · · ∧

(
n1 < α1

l ∨ · · · ∨ nm < αml

)
↔

∨
(s1,...,sl)∈{1,...,m}l

(
ns1 < αs11 ∧ · · · ∧ nsl < αsll

)
.

The construction of modules Aq

From now on and throughout Sections 2.3 and 2.4, fix a finite collection of boxes

Bbi
ji
, i = 1, . . . , k, (2.5)

such that their union equals C(I). For each I ⊆ {1, . . . , k} (note that we are using the

symbol I for two purposes), let

BbI
jI

:=
⋂
i∈I

Bbi
ji

denote the intersection box (Lemma 18). Each box BbI
jI

has a corresponding Hilbert

module HbI
jI

as introduced in Section 2.2. For each q = 1, . . . , k, set:
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Aq :=
⊕

I∈Sq(k)

HbI
jI
.

For convenience, we use A0 to denote the Bergman space L2
a(Bm). Note that each Hilbert

spaceAq is equipped with a Hilbert A-module structure from the corresponding A-module

structure on each component HbI
jI

. It follows from Lemma 17 that each Aq is essentially

normal.

The construction of maps Ψq

To explain our construction, we start with a few examples with a small number k of boxes

(2.5).

When k = 1, there is only one box Bb
j . We have two Hilbert modules A0 = L2

a(Bm)

and A1 = Hb
j . The map Ψ0 : A0 → A1 is defined by sending X ∈ A0 to Y ∈ A1 given by

Yn =

 Xn, n ∈ Bb
j ,

0, otherwise.

When k = 2, there are two boxes Bb1
j1

and Bb2
j2

. Let Bb12
j12

denote their intersection. We

have three Hilbert modules A0 = L2
a(Bm), A1 = Hb1

j1
⊕ Hb2

j2
, and A2 = Hb12

j12
. The map

Ψ0 : A0 → A1 is defined by sending X ∈ A0 to (Y 1, Y 2) ∈ A1, given by

Y 1
n :=

 Xn, n ∈ Bb1
j1
,

0, otherwise,
, Y 2

n :=

 Xn, n ∈ Bb2
j2
,

0, otherwise.

The map Ψ1 : A1 → A2 is defined by sending (X1, X2) ∈ A1 to Y ∈ A2 given by

Yn =

 X2
n −X1

n , n ∈ Bb12
j12
,

0, otherwise.

For arbitrary k, in order to define Ψq : Aq → Aq+1, q = 0, . . . , k− 1, first consider the
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following maps f iq+1 : Sq+1(k) → Sq(k), i = 1, . . . , q + 1. As usual, elements of Sq+1(k)

are identified with subsets Iq+1 ⊆ {1, . . . , k} of size q + 1. f iq+1(Iq+1) is the subset of

{1, . . . , k} obtained by dropping the i-th smallest element in Iq+1. The map Ψq is defined

by sending X =
∑

Iq∈Sq(k) X
Iq ∈ Aq, XIq ∈ HbIq

jIq
, to Y =

∑
Iq+1∈Sq+1(k) Y

Iq+1 ∈ Aq+1,

Y Iq+1 ∈ H
bIq+1

jIq+1
, given by

(
Y Iq+1

)
n

=


∑q+1

i=1 (−1)i−1
(
Xf iq+1(Iq+1)

)
n
, n ∈ B

bIq+1

jIq+1
,

0, otherwise.

Remark 19. Similar to the explanation in Section 2.2, each Hilbert module Aq, q =

1, . . . , k, can be identified with the Bergman space of the L2-holomorphic sections of a

Hermitian vector bundle on a disjoint union of subsets of Bm. Under this identification,

the module morphisms Ψq, q = 0, . . . , k− 1, can be realized as restriction maps of jets of

holomorphic sections to the subsets. Although this geometric picture is not used heavily

in what follows but we believe that such a geometric picture will play a crucial role in

the future study about more general ideals. �

2.4 The proof of Theorem 15

In this section we step-by-step check that the construction of Section 2.3 is a resolution

asserted in Theorem 15.

Proposition 20. Each Ψq is bounded.

Proof. We write X ∈ Aq as a sum

X =
∑

Iq∈Sq(k)

XIq , XIq ∈ HbIq
jIq
.
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By definition, Ψq(X) =
∑

I′q+1
Y I′q+1 , where Y I′q+1 ∈ H

bI′q+1

jI′q+1

is given by

Y
I′q+1
n =


∑q+1

i=1 (−1)i−1X
f iq+1(I′q+1)
n , n ∈ B

bI′q+1

jI′q+1

,

0, otherwise.

The norm of Ψq(X) is computed as

‖Ψq(X)‖2 =
∑
I′q+1

∥∥∥Y I′q+1

∥∥∥2

=
∑
I′q+1

∑
n∈B

b
I′q+1

j
I′q+1

∣∣∣Y I′q+1
n

∣∣∣2

=
∑
I′q+1

∑
n∈B

b
I′q+1

j
I′q+1

∣∣∣∣∣
q+1∑
i=1

(−1)i−1X
f iq+1(I′q+1)
n

∣∣∣∣∣
2

≤
∑
I′q+1

∑
n∈B

b
I′q+1

j
I′q+1

(q + 1)
∣∣∣Xf iq+1(I′q+1)

n

∣∣∣2 , by the Cauchy-Schwartz inequality

≤
∑
I′q+1

∑
n∈B

bIq
jIq

(q + 1)
∣∣XIq

n

∣∣2 , as B
bI′q+1

jI′q+1

⊆ B
bIq
jIq

≤ (k − q)(q + 1)
∑

I∈Sq(k)

∑
n∈B

bIq
jIq

∣∣XIq
n

∣∣2 ,
as every Iq is contained in at most (k − q) number of I ′q+1

= (k − q)(q + 1)‖X‖2.

�

Proposition 21. Each Ψq is a module homomorphism.

Proof. For each I ∈ Sq(k) and XI ∈ HbI
jI

, Ψq(X
I) has the form

∑
1≤s≤k, s/∈I

(−1)sign(I,s)Y I∪{s},
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where Y I∪{s} ∈ HbI∪{s}
jI∪{s}

, s is the α-th smallest number in I ∪ {s}, sign(I, s)=α − 1, and

the function Y I∪{s} is given by

Y I∪{s}
n =

 XI
n , n ∈ B

bI∪{s}
jI∪{s}

,

0, otherwise.

Fix p ∈ {1, . . . ,m}. The zp action on HbI
jI

is implemented by

T jI ,bI
zp

(
XI
)
n1···np+1···nm

=



√
ω0(n1···np+1···nm)

ω0(n1···nm)
XI
n1···np···nm , p /∈ jI ,√

ω0(n1···np+1···nm)

ω0(n1···nm)
XI
n1···np···nm , p = js ∈ jI , np + 1 ≤ bs,

0, otherwise.

From this one observes that the operator T jI ,bI
zp preserves the component HbI

jI
. Similarly,

the zp action on HbI∪{s}
jI∪{s}

is realized by

T
jI∪{s},bI∪{s}
zp

(
Y I∪{s})

n1···np+1···nm

=



√
ω0(n1···np+1···nm)

ω0(n1···nm)
Y
I∪{s}
n1···np···nm , p /∈ jI , p 6= s,√

ω0(n1···np+1···nm)

ω0(n1···nm)
Y
I∪{s}
n1···np···nm , p = jt ∈ jI∪{s}, np + 1 ≤ bt,

0, otherwise.

Using the definition of Ψq(X
I), one can directly check that on each componentHbI∪{s}

jI∪{s}
,

we have (
Ψq

(
T jI ,bI
zp

(
XI
)))I∪{s}

= T
jI∪{s},bI∪{s}
zp

(
Ψq

(
XI
)I∪{s})

,

which shows that Ψq is compatible with the A-module structure. �

Lemma 22. I = ker(Ψ0).

Proof. If f ∈ I, then f has no nonzero component in any of the boxes Bbs
js

, s ∈

S(α1, . . . , αl), hence f ∈ ker(Ψ0). This shows that I ⊆ ker(Ψ0). Conversely, suppose

f ∈ ker(Ψ0). Consider the Taylor expansion f =
∑

n∈Nm fnz
n. As Ψ0(f) = 0, by the
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definition of Ψ0, for any i = 1, . . . , k, and any n ∈ Bbi
ji

, fn = 0. For any positive integer

M , let fM be the truncation of the Taylor expansion of f by requiring n1, . . . , nm < M ,

namely

fM :=
∑
n∈Nm

n1<M,...,nm<M

fnz
n.

It is not hard to see that fM is a polynomial, and has no component in the boxes

Bb1
j1
, . . . ,Bbk

jk
. By the construction of the boxes Bb1

j1
, . . . ,Bbk

jk
, fM belongs to the ideal

I. As M →∞, fM converges to f in L2
a(Bm). Therefore f ∈ I. �

Proposition 23. Im(Ψq−1) ⊆ ker(Ψq), q = 1, . . . , k.

Proof. For each I ∈ Sq−1(k) and XI ∈ HbI
jI

, the image of XI under Ψq−1 is of the form

∑
1≤s≤k, s/∈I

(−1)sign(I,s)Y I∪{s},

where Y I∪{s} ∈ HbI∪{s}
jI∪{s}

, s is the α-th smallest number in I ∪ {s}, sign(I, s)=α − 1, and

the function Y I∪{s} has the form

Y I∪{s}
n =

 XI
n , n ∈ B

bI∪{s}
jI∪{s}

,

0, otherwise.

Similarly, the image of Y I∪{s} under Ψq equals

∑
1≤t≤k, t/∈I∪{s}

(−1)sign(I∪{s},t)ZI∪{s,t},

where ZI∪{s,t} ∈ HbI∪{s,t}
jI∪{s,t}

, t is the β-th smallest number in I∪{s, t}, sign(I∪{s}, t)=β−1,

and the function ZI∪{s,t} is given by

ZI∪{s,t}
n =

 Y
I∪{s}
n , n ∈ B

bI∪{s,t}
jI∪{s,t}

,

0, otherwise.
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Therefore

Ψq

(
Ψq−1

(
XI
))

=
∑

1≤s≤k, s/∈I

(−1)sign(I,s)Ψq

(
Y I∪{s})

=
∑

1≤s≤k, s/∈I

(−1)sign(I,s)

 ∑
1≤t≤k, t/∈I∪{s}

(−1)sign(I∪{s},t)ZI∪{s,t}


=

∑
1≤s 6=t≤k, s,t/∈I

(−1)sign(I,s)+sign(I∪{s},t)ZI∪{s,t}

=
∑

1≤s<t≤k, s,t/∈I

(
(−1)sign(I,s)+sign(I∪{s},t) + (−1)sign(I,t)+sign(I∪{t},s)

)
ZI∪{s,t}.

When s < t, it is not hard to check that:

sign(I, s) = sign(I ∪ {t}, s), sign(I ∪ {s}, t) = sign(I, t) + 1.

Therefore, Ψq(Ψq−1(XI)) = 0. �

Proposition 24. Im(Ψ0) ⊇ ker(Ψ1).

Proof. Consider X := (X1, . . . , Xp) ∈ ker(Ψ1). Define the function ξ ∈ A0 by

ξn :=


Xs

n , there is s such that n ∈ Bbs
js
,

0, otherwise.

Note that ξ is well-defined because if there are two s and t such that n belongs to both

Bbs
js

and Bbt
jt

, then the Hbst
jst

component of Ψ1(ξ) equals Xs
n −X t

n = 0 by the assumption

X ∈ ker(Ψ1). Also note that ‖ξ‖2 = ‖X1‖2 + · · · + ‖Xp‖2, hence ξ ∈ A0. Clearly,

Ψ0(ξ) = X. �

Proposition 25. Im(Ψq−1) ⊇ ker(Ψq), q = 1, . . . , k.

Proof. We prove the proposition by induction on k. For k = 1, we consider the map

Ψ0 : A0 → A1. Computing with the orthonormal basis, it is not hard to observe that
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A1 can be identified with a closed subspace of A0 = L2
a(Bm), and the map Ψ0 is the

corresponding orthogonal projection map. Therefore Ψ0 is surjective. Suppose that

Im(Ψq−1) ⊇ ker(Ψq), q = 1, . . . , k, 1 ≤ k < p.

We prove the statement for k = p. The case q = 1 is proved in Proposition 24, so we are

left with the cases 2 ≤ q ≤ p. We consider the following two collections of p− 1 boxes:

1. the first p− 1 boxes {
Bb1

j1
, . . . ,B

bp−1

jp−1

}
.

Applying the construction in Section 2.3 to these boxes, we get the Hilbert modules

A1
s together with the Hilbert module maps Ψ1

s : A1
s → A1

s+1, s = 1, . . . , p − 2. Set

A1
p := {0} and Ψ1

p−1 = 0;

2. the intersection of the first p− 1 boxes with the last one Bb
jp

{
B

b1p
j1p
, . . . ,B

bp−1p

jp−1p

}
.

Applying the construction in Section 2.3 to these boxes, we get the Hilbert modules

A2
s together with the Hilbert module maps Ψ2

s : A2
s → A2

s+1, s = 1, . . . , p − 2. Set

A2
p := {0} and Ψ2

p−1 = 0.

By the induction assumption we know that

Im
(
Ψ1
q−1

)
⊇ ker

(
Ψ1
q

)
, Im

(
Ψ2
q−1

)
⊇ ker

(
Ψ2
q

)
, q = 1, . . . , p− 1.

Define a map Φt : A1
t → A2

t by

Φt(X
I) = Y I∪{p}, I ∈ St(p− 1),
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where Y I∪{p} denotes the component corresponding to the intersection of the boxes

B
bi1p
ji1p

, . . . ,B
bitp
jitp

with

Y I∪{p}
n :=

 (−1)tXI
n , n ∈ B

bI∪{p}
jI∪{p}

,

0, otherwise.

Similar to Proposition 21, Φt is an A-module map. We leave the detail to the reader.

With the construction above, we can easily check the following identities.

1. Aq = A1
q ⊕A2

q−1 for q = 2, . . . , p;

2. Ψq =

 Ψ1
q 0

Φq Ψ2
q−1

 for q = 2, . . . , p− 1.

These identifications are used to prove Im(Ψq−1) ⊇ ker(Ψq). We split the proof into

three cases.

1. q = 2.

Suppose (X1, X2) ∈ A1
2 ⊕A2

1 = A2 is in the kernel of Ψ2. By the identification above

for Ψq, we have

Ψ1
2(X1) = 0, Φ2(X1) + Ψ2

1(X2) = 0.

By the induction assumption, ker(Ψ1
2) ⊆ Im(Ψ1

1). So there exists Y1 ∈ A1
1 such that

Ψ1
1(Y1) = X1. By Proposition 23 for the morphism Ψ•, we have

(0, 0) = Ψ2

(
Ψ1(Y1, 0)

)
= Ψ2

(
Ψ1

1(Y1),Φ1(Y1)
)

=
(

Ψ1
2

(
Ψ1

1(Y1)
)
,Φ2

(
Ψ1

1(Y1)
)

+ Ψ2
1

(
Φ1(Y1)

))
, Ψ1

1(Y1) = X1, Ψ1
2

(
Ψ1

1(Y1)
)

= 0

=
(

0,Φ2(X1) + Ψ2
1

(
Φ1(Y1)

))
.

Therefore, Φ2(X1) + Ψ2
1

(
Φ1(Y1)

)
= 0. Consider X ′2 := X2 − Φ1(Y1). We have

Ψ2
1(X ′2) = Ψ2

1(X2 − Φ1(Y1)) = Ψ2
1(X2)−Ψ2

1(Φ1(Y1)) = Ψ2
1(X2) + Φ2(X1) = 0,
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since

Ψ2(X1, X2) = (Ψ1
2(X1),Φ2(X1) + Ψ2

1(X2)) = 0.

Using the property that Ψ2
1(X ′2) = 0, we construct an element Y2 ∈ Hbp

jp
by setting

(Y2)n :=

 (X ′2
ip)n, n ∈ B

bip
jip

for some i = 1, ..., p− 1,

0, otherwise.

As Ψ2
1(X ′2) = 0, the definition above of Y2 is independent of the choices of i. It is

not hard to check the norm of Y2 is bounded. (Arguments are similar to the proof of

Proposition 24.) Therefore, Y2 ∈ Hbp
jp
⊆ L2

a(Bm) and Ψ2
0(Y2) = X ′2.

In summary, we have constructed an element (Y1, Y2) ∈ A1 = A1
1⊕H

bp
jp

which satisfies

Ψ1(Y1, Y2) =
(
Ψ1

1(Y1),Φ1(Y1) + Ψ2
0(Y2)

)
= (X1,Φ1(Y1) +X ′2) = (X1, X2).

Therefore (X1, X2) ∈ Im(Ψ1).

2. q = 2, . . . , p− 1.

Suppose (X1, X2) ∈ A1
q⊕A2

q−1 = Aq is in the kernel of Ψq. By the identification above

for Ψq, we have

Ψ1
q(X1) = 0, Φq(X1) + Ψ2

q−1(X2) = 0.

Since Im(Ψ1
q−1) ⊇ ker(Ψ1

q) there is Y1 ∈ A1
q−1 such that X1 = Ψ1

q−1(Y1). Since

Ψq(Ψq−1(Y1, 0)) = 0 we have Φq(X1) + Ψ2
q−1(Φq−1(Y1)) = 0. Therefore

Ψ2
q−1 (X2 − Φq−1(Y1)) = 0.

Since Im
(
Ψ2
q−2

)
⊇ ker

(
Ψ2
q−1

)
there exists Y2 ∈ A2

q−2 such that

Ψ2
q−2(Y2) = X2 − Φq−1(Y1).
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Therefore we have found (Y1, Y2) ∈ Aq satisfying

Ψq−1(Y1, Y2) =
(
Ψ1
q−1(Y1),Φq−1(Y1) + Ψq−2(Y2)

)
= (X1, X2).

3. q = p.

Notice that Ap is the same as A2
p−1. Since Ψ2

p−2 : A2
p−2 → A2

p−1 is surjective, it follows

that

Ψp−1 : Ap−1 = A1
p−1 ⊕A2

p−2 → Ap = A2
p−1

is also surjective.

All cases are exhausted. �

2.5 The proof of Theorem 16

To deduce the index formula in Theorem 16 from the resolution in Theorem 15, we need

the following proposition and its corollary.

Proposition 26. Consider the following exact sequence of essentially normal Hilbert

A-modules and Hilbert module maps between them:

0→M1
W1→M2

W2→M3 → 0.

Suppose that the essential spectra of Mi, i = 1, 2, 3, is contained in the closed unit ball

Bm, and let

αi : C(Bm)→ Q(Mi)

be the ∗-representation of C(Bm) on the Calkin algebra induced by the essential normality

of Mi. There are coisometries U :M2 →M1 and V :M2 →M3 such that

UV ∗ = 0 = V U∗, U∗U + V ∗V = 1,
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and they commute with A-module structures up to compact operators in the sense that

[U ]α2[U ]∗ = α1, [V ]α2[V ]∗ = α3,

where αi(p) = [T ip] ∈ Q(Mi), p ∈ A, is the equivalence class of the multiplication operator

T ip ∈ B(Mi).

Proof. As W2 is surjective, W2W
∗
2 is positive definite. Consider the polar decomposition

W2 = A3V with positive definite A3 =
√
W2W ∗

2 and coisometry V . Since W2 is a module

homomorphism, for each p ∈ A we have

A3V T
2
p = W2T

2
p = T 3

pW2 = T 3
pA3V,

where T 2
p and T 3

p are the multiplication operators onM2 andM3 associated to p. Since

M2 and M3 are essentially normal, T 2
p and T 3

p are normal in the respective Calkin

algebras. By the Fuglede-Putnam theorem

A3V (T 2
p )∗ = W2

(
T 2
p

)∗
=
(
T 3
p

)∗
W2 =

(
T 3
p

)∗
A3V,

all equations modulo compact operators. Taking adjoints:

T 2
p V
∗A3 = V ∗A3T

3
p .

Multiplying on the left by A3V :

A3V T
2
p V
∗A3 = A3V V

∗A3T
3
p = A2

3T
3
p .

Since A3V T
2
p = T 3

pA3V , we conclude from the equation above that

A3V T
2
p V
∗A3 = T 3

pA3V V
∗A3 = T 3

pA
2
3 = A2

3T
3
p .
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Since A3 is positive definite it is safe to conclude

T 3
pA3 = A3T

3
p .

This commutativity plus the equation A3V T
2
p = T 3

pA3V gives

V T 2
p = T 3

p V.

Since V V ∗ = 1, we have

V T 2
p V
∗ = T 3

p ,

which is exactly

V α2V
∗ = α3.

The derivation of Uα2U
∗ = α1 is similar. Here are the details. Since W1 is injective,

W ∗
1W1 is positive definite. Consider the polar decomposition W1 = WA1 with A1 =√
W ∗

1W1 and W :M1 →M2 is an isometry. A similar argument as above for W2 shows

that modulo compact operators, for any p ∈ A,

A1T
1
p = T 1

pA1,

and

W ∗T 2
pW = T 1

p .

Setting U := W ∗ we have UT 2
pU
∗ = T 1

p and UU∗ = 1, which shows

Uα2U
∗ = α1.

Since W2W1 = A3V U
∗A1 = 0, by the invertibility of A1 and A3, we get V U∗ = 0.

Therefore, U∗U and V ∗V are commuting orthogonal projections on M2. To prove that
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their sum is the identity operator, it is sufficient to prove that the kernel of their sum is

trivial. Suppose ξ ∈ M2 such that U∗Uξ + V ∗V ξ = 0. Then U∗Uξ = V ∗V ξ = 0, hence

Uξ = V ξ = 0. Then W2ξ = A3V ξ = 0, and W ∗
1 ξ = A1Uξ = 0. Therefore ξ ∈ ker(W2),

and by exactness, there is η ∈ W1 such that W1η = ξ. As W ∗
1 ξ = 0, W ∗

1W1η = 0, hence

ξ = W1η = 0. �

Still assume the notations in Proposition 26. Let σie be the essential spectrum of the

Hilbert module Mi. The morphisms α1 and α2 factor into ∗-monomorphisms C(σ1
e) →

Q(M1) and C(σ2
e) → Q(M2), respectively. By Proposition 26, α1 = [U ]α2[U ]∗. The

composition of [U ]α2[U ]∗ with α−1
1 is a ∗-homomorphism C(σ2

e) → C(σ1
e), hence we

get a natural map σ1
e → σ2

e . Similar arguments give a natural map σ3
e → σ2

e . By the

functoriality of K1, α1 and α3 induce classes [α1] and [α3] in K1 (σ2
e). Putting all equations

UU∗ = 1 = V V ∗, UV ∗ = 0 = V U∗, U∗U + V ∗V = 1,

[U ]α2[U ]∗ = α1, [V ]α2[V ]∗ = α3,

together we get:

Corollary 27. Assume the notations in Proposition 26. In K1 (σ2
e) we have the formula

[α2] = [α1] + [α3],

where [α1] and [α3] are identified as classes in K1(σ2
e) by the coisometries U and V .

The proof of Theorem 16

The rest of this section is devoted to the proof of Theorem 2.3. To do this we are going to

decompose the long exact sequence in Theorem 2.4 into short exact sequences and apply

Corollary 27. The details follow.

Consider the resolution of I is Theorem 15. For each q = 1, . . . , k, we introduce the
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following closed subspace of Aq:

A−q := Im(Ψq−1) = ker(Ψq).

As Ψk−1 is surjective A−k = Ak. Since Ψq : Aq → Aq+1 is a morphism of A-modules,

the kernel A−q = ker(Ψq) is naturally an A-module. Furthermore, we have the following

exact sequence of Hilbert A-modules:

0→ A−q → Aq → A−q+1 → 0, q = 1, . . . , k − 1, (2.6)

where the first map is the inclusion, and the second map is Ψq.

Lemma 28. Each Hilbert A-module A−q is essentially normal.

Proof. When q = k − 1, as Ψk−1 is surjective, we have the short exact sequence

0→ A−k−1 → Ak−1 → Ak → 0.

Since both Ak−1 and Ak are essentially normal A-modules (Theorem 15), by Proposition

8, A−k−1 is essentially normal. Repeating this argument for the exact sequence

0→ A−k−2 → Ak−1 → A−k−1 → 0,

we conclude that A−k−2 is also essentially normal. We are done by induction. �

Let σqe , q = 1, . . . , k, be the essential spectrum of Aq, and let αq (resp. α−q ) be

the associated ∗-monomorphism C(σqe) → Q(Aq) (resp. C(σq−e ) → Q(A−q )) induced by

essential normality. Applying Corollary 27 to the short exact sequence (2.6) gives

[αq] = [α−q ] + [α−q+1] in K1 (σqe) .
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When q = k − 1, A−k = Ak, and we have

[αk−1] = [α−k−1] + [αk] in K1

(
σk−1
e

)
.

Similarly, for q = k − 2, we get

[αk−2] = [α−k−2] + [α−k−1] in K1

(
σk−2
e

)
.

Combining the previous two equations we conclude that

[αk−1] + [α−k−2] = [αk] + [αk−2] in K1

(
σk−1
e ∪ σk−2

e

)
,

by pushing forward the respective equations in K1

(
σk−1
e

)
and K1

(
σk−2
e

)
into the ones in

K1

(
σk−1
e ∪ σk−2

e

)
via the natural inclusion maps σk−1

e , σk−2
e ↪→ σk−1

e ∪σk−2
e . By induction

we get

[α−1 ] = [α1]− [α2] + . . .+ (−1)k−1[αk] in K1(σ1
e ∪ · · · ∪ σke ). (2.7)

On the other hand, the the exact sequence

0→ I → L2
a(Bm)→ A−1 → 0,

establishes a natural Hilbert A-module isomorphism between the quotient

QI :=
L2
a(Bm)

I
∼= I⊥

and A−1 , hence by Proposition 8 we get τI := [I⊥] = [α−1 ]. Together with (2.7) this gives

the index formula in Theorem 2.5.
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2.6 Examples

This section gives examples for the resolution constructed in Section 2.3.

Example 29. Consider the ideal I := 〈z2
1z

2
2〉 ⊆ C[z1, z2]. The exponents of monomials

in I = 〈z2
1z

2
2〉 comprise the region

{
(n1, n2) ∈ N2 : n1, n2 ≥ 2

}
.

Here, there is only one α = (2, 2). We have two boxes:

Bb1
j1

:=
{

(n1, n2) : n1 ≤ 1
}
, Bb2

j2
:=
{

(n1, n2) : n2 ≤ 1
}
.

The intersection Bb12
j12

:= Bb1
j1
∩Bb2

j2
equals {(n1, n2) : n1, n2 ≤ 1}.

The Hilbert module A1 is the direct sum of two modules A1
1 and A2

1, where A1
1 ⊆

L2
a(B2) is the submodule spanned by {zn2 , z1z

n
2 : n ∈ N}, and A2

1 ⊆ L2
a(B2) is the sub-

module spanned by {zn1 , zn1 z2 : n ∈ N}. The Hilbert module A2 is the subspace of L2
a(B2)

spanned by {1, z1, z2, z1z2}. It is easy to see that A2 = A1
1 ∩ A2

1. �

Example 30. Consider the ideal I := 〈zp1z
q
2, z

r
1z
s
2〉 ⊆ C[z1, z2], p, q, r, s ∈ N, r < p and

q < s. The complementary space C(I) ⊆ N2 is the blue region in the Figure 2.1.

Figure 2.1: Staircase diagram corresponding to I = 〈zp1z
q
2, z

r
1z
s
2〉.
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Here, α1 = (p, q) and α2 = (r, s), and S(α1, α2) consists of four pairs (1, 1), (1, 2),

(2, 1) and (2, 2). The boxes associated to these arrays are:

1. For s = (1, 1), the box Bb11
j11

is {(n1, n2) : n1 < r};

2. For s = (1, 2), the box Bb12
j12

is {(n1, n2) : n1 < p, n2 < s};

3. For s = (2, 1), the box Bb21
j21

is {(n1, n2) : n1 < r, n2 < q};

4. For s = (2, 2), the box Bb22
j22

is {(n1, n2) : n2 < q}.

In Figure (2.1), the boxes Bb11
j11

, Bb12
j12

and Bb22
j22

are respectively marked as region A, C, and

B. Since Bb21
j21

is contained in Bb12
j12

, we do not need to include Bb21
j21

in our construction.

However, we still get a resolution of I.

The Hilbert space A1 is the direct sum of three spaces A11
1 , A12

1 and A22
1 , where

A11
1 ⊆ L2

a(B2) is the subspace spanned by
{
zn2 , z1z

n
2 , . . . , z

r−1
1 zn2 : n ∈ N

}
, A12

1 ⊆ L2
a(B2)

is the finite dimensional subspace spanned by

1, z1, . . . zp−1
1 ,

z2, z1z2, . . . zp−1
1 z2,

...
...

. . .
...

zs−1
2 , z1z

s−1
2 , . . . zp−1

1 zs−1
2 ,

and A22
1 ⊆ L2

a(B2) is the subspace spanned by
{
zn1 , z

n
1 z2, . . . , z

n
1 z

q−1
2 : n ∈ N

}
. The Hilbert

space A2 is the direct sum of three spaces A11
1 ∩A12

1 , A11
1 ∩A22

1 and A12
1 ∩A22

1 . The Hilbert

space A3 ⊆ L2
a(B2) is the subspace spanned by

1, z1, . . . zr−1
1 ,

z2, z1z2, . . . zr−1
1 z2,

...
...

. . .
...

zq−1
2 , z1z

q−1
2 , . . . zr−1

1 zq−1
2 .

�
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2.7 A nonmonomial ideal

This section discusses a nonmonomial ideal which can be reduced to monomials after a

biholomorphic change of variables.

Consider the ideal I := 〈z2
1 , z3 − z2

2〉 ⊆ C[z1, z2, z3]. The biholomorphic mapping

T : C3 → C3, (z1, z2, z3) 7→ (ζ1, ζ2, ζ3) =
(
z1, z2, z3 − z2

2

)
changes I to I ′ := 〈ζ2

1 , ζ3〉 ⊆ C[ζ1, ζ2, ζ3]. The unit ball B3 is mapped to the domain

Ω =
{

(ζ1, ζ2, ζ3) ∈ C3 : |ζ1|2 + |ζ2|2 + |ζ3 + ζ2
2 |2 < 1

}
.

Also, the Hilbert spaces L2
a(B3) and I are mapped isomorphically to L2

a(Ω) and the closure

I ′ ⊆ L2
a(Ω), respectively. These identifications are also valid as Hilbert modules over the

polynomial rings with three variables.

Since I ′ is monomial, we can apply the construction of Section 2.3 with B3 replaced

by Ω. In the following we check that this gives a resolution of I ′. Here we have only one

box

Bb
j = {(n1, n2, 0) ∈ N3 : n1 ≤ 1}, j = (1, 3), b = (1, 0).

Consider the subdomain

Ωj = {(ζ1, ζ2, ζ3) ∈ Ω : ζ1 = ζ3 = 0},

which can be identified with the planar domain

{z2 ∈ C : |ζ2|2 + |ζ2|4 < 1}.

Consider the weighted Bergman space L2
a,s(Ωj), s > −1, of analytic functions on Ωj which

are square integrable with respect to the measure (1− |ζ2|2 − |ζ2|4)
s
dVΩj

, where dVΩj
is
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the normalized Lebesgue measure on Ωj. Our resolution is

0→ I ′ → L2
a(Ω)

Ψ′→ A′ → 0, (2.8)

where

A′ = L2
a,2(Ωj)⊕ L2

a,3(Ωj),

and Ψ′ is given by

Ψ′(f) :=

(
f |ζ1=ζ3=0,

∂f

∂ζ1

∣∣∣∣
ζ1=ζ3=0

)
.

The module structure on A′ is given by

ζ1 · (X, Y ) = (0, X), ζ2 · (X, Y ) = (ζ2X, ζ2Y ), ζ3 · (X, Y ) = (0, 0).

for (X, Y ) ∈ A′. The monomials {ζ i2 : i ∈ N} form an orthogonal basis for both L2
a,2(Ωj)

and L2
a,3(Ωj), and a straightforward computation with them shows that A′ is essentially

normal. Arguments similar to the ones in Section 2.5 show that (2.8) is an exact sequence

of Hilbert modules with bounded module maps.

Under the inverse mapping T−1, the resolution (2.8) gives the following resolution for

I:

0→ I → L2
a(B3)→ A→ 0,

where A is the analogue of A′ with Ωj replaced by T−1(Ωj) = {(0, z2, z
2
2) ∈ B3}. Finally,

we can conclude that I and its associated quotient QI are both essentially normal, with

the following index formula for the Toeplitz extension:

[T(QI)] =
[
T
(
L2
a,2(Ωj)⊕ L2

a,3(Ωj)
)]
.
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2.8 Some potential future directions

Here are some directions for future works:

1. We aim to prove the analogue of Theorem 15 for the egg domains of the form

{∑
aj|zj|pj < 1

}
, aj, pj > 0,

instead of the unit ball {
∑
|zj|2 < 1}. Explicit formulas for the orthonormal basis

of the Bergman spaces on such domains [38] will be useful. It is also interesting to

generalize this theorem to Reinhardt domains of the form

{ψ (|z1|, . . . , |zm|) < 1} ,

where ψ : [0,∞)m → [0,∞) is a smooth function, monotonically increasing in each

argument. Now proving the essential normality of Aq needs ideas from harmonic

analysis in the same spirit as [51].

2. Recall from Section 1.2 that Arveson originally formulated his essential normality

conjecture for homogeneous submodulesM⊆ H2
m⊗Cr (Conjecture 12) instead of the

multiplicity-free version I⊥ ⊆ H2
m (Conjecture 1). It is interesting to find the analogue

of the resolution (2.2) in this generality, and understand its geometry. Now M⊥ can

be geometrized as a Hilbert space of the holomorphic sections of a vector bundle or

more generally a sheaf over the algebraic variety V (Ann(M)) ⊆ Cm.

3. For a monomial ideal I, the intersection V (I) ∩ ∂Bm is singular in general. Several

notions of fundamental class has been defined for singular algebraic varieties [16, 17,

90]. It is interesting to relate the right hand side of the equation (2.3) to these

characteristic classes.
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Chapter 3

A Gauss-Manin connection in

noncommutative geometry and its

holonomy

In this chapter we initiate a project of using the Toeplitz algebras TI of Section 1.1 to

study hypersurface singularities. More specifically, to analytically study the monodromy

of an isolated singularity at the origin on an algebraic hypersurface V (f) ⊆ Cm, f ∈ A =

C[z1, . . . , zm], we consider the perturbed 1-parameter family of principal ideals I(t) :=

〈f − εeit〉 ⊆ A, t ∈ R, ε > 0 small enough. The family I(t)⊥ ⊆ H2
m of associated

Hilbert A-modules, as a subbundle of the trivial bundle H2
m × R, comes equipped with

a natural metric connection. The holonomy of this connection, a (conjecturally) unitary

operator U ∈ B(I(0)⊥), is the main object of study in this chapter. Of special concern

is the interaction of U with the Toeplitz algebra TI(0). We are currently at the stage of

setting the foundations for this study mostly through formulating reasonable conjectures

(Conjectures 31, 32 and 34). In Section 3.1 the motivation of our study is presented.

Some singularity theory backgrounds in differential topology are gathered in Section 3.2.

A proposal about the holonomy operator U is presented with conjectures in Section 3.3.

In Section 3.4 we examine the proposal of Section 3.3 on the toy model f := zk1 ∈ C[z1, z2],
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k ≥ 2, and verify all the conjectures in this special case. Some potential directions for

future works are discussed in Section 3.5.

3.1 Motivation

It is famous that there are exactly 28 oriented smooth structures, up to orientation

preserving diffeomorphisms, on the topological 7-dimensional sphere S7 [73]. Putting the

standard one aside the rest are called exotic spheres. Of all the numerous constructions of

exotic spheres in the literature we are interested in the following algebraic one discovered

by Brieskorn [27, 68]. He showed that as j varies on 1, 2, . . . , 28, if ε > 0 is chosen small

enough such that the zero set V (fj) of the polynomial

fj := z2
1 + z2

2 + z2
3 + z3

4 + z6j−1
5 ∈ C[z1, . . . , z5] (3.1)

intersects transversally in C5 with the sphere S9
ε = {‖z‖ = ε} of radius ε centered at

the origin, then the intersection Kj := V (fj) ∩ S9
ε is homeomorphic to S7, but with its

naturally induced orientation and smooth structure, represents all 28 oriented smooth

classes mentioned above. One way to distinguish among these structures is to use the

so-called Milnor monodromy map associated to the isolated singularity of V (fj) ⊆ C5 at

the origin. More specifically, the Milnor map gives rise to a numerical invariant, called

the Milnor number, which equals 12j − 4, hence completely classifies all the oriented

smooth structures on S7 realized by Brieskorn varieties.

It is interesting to find operator-theoretic invariants capable of detecting exotic spheres

[45, Page 381]. (See [33, 34] for an operator-theoretic study of smooth structures on

Spin manifolds.) Theorem 4 (Section 1.1) applied to the principal ideal Ij := 〈fj〉 ⊆

C[z1, . . . , z5] says that the Toeplitz class τIj is the same as the fundamental class of Kj.

However Kj supports only one Spinc structure because of topological reasons (vanishing

of the first and second cohomologies [79, Page 392]). Therefore Theorem 4, at least in the
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natural setting that comes into mind, can not classify smooth structures. In Section 3.3

we suggest a noncommutative analogue of the Milnor monodromy map which we hope

could eventually lead to an invariant that detects exotic spheres.

3.2 A review of the Milnor fibration in singularity

theory

Let f ∈ A be a complex polynomial in m variables such that the origin is an isolated

singular point of the hypersurface V (f) ⊆ Cm. An interesting example to have in mind

is the Brieskorn polynomials (3.1). Let Bε ⊆ Cm be the open ball of radius ε around the

origin, and set Sε := ∂Bε. To study the topology of K := V (f) ∩ Sε, Milnor brought the

perturbed family V (f − c)∩Bε of spaces into the scene, where the complex parameter c

moves on a small circle around the origin [83]. Here we summarize some of his and other

mathematicians’ results. It is helpful to have Figure 3.1 in mind.

1. There exists ε0 > 0 such that for any 0 < ε < ε0, V (f) intersects Sε transversally,

hence K is a smooth manifold. From now on fix such a sufficiently small ε.

2. Topologically, V (f) ∩ Bε is a cone over K.

3. The mapping

ϕ : Sε \K → S1, z 7→ f(z)/|f(z)|

is a smooth fiber bundle called the Milnor fibration. Consider the fibers Ft :=

ϕ−1 (eit), t ∈ [0, 2π]. The homotopy lifting property of fibrations induces the Mil-

nor monodromy map ht : F0 → Ft, clearly a homeomorphism. It induces the

homomorphism

(ht)∗ : Hm−1(F0;C)→ Hm−1(Ft;C)

at the middle homology level. Set h := h2π.
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4. The closure of each fiber Ft inside Sε is a smooth (2m − 2)-dimensional manifold

with boundary, with the interior Ft and boundary K. Intuitively, the fibers Ft

embrace K the same way as the pages of an open book embrace the spine.

5. Each fiber Ft is diffeomorphic to V (f − c)∩Bε, where c is a small enough complex

number.

6. Each fiber Ft is homotopic to a bouquet of (m−1)-dimensional spheres. The number

of these sphere, namely the middle Betti number of the fibers, is strictly positive.

It is denoted by µ and is called the Milnor number.

7. Here are two other topological and algebraic characterizations of µ: (1) µ is the

multiplicity of 0 as an isolated zero of the system of equations ∂f
∂z1

= · · · = ∂f
∂zm

= 0,

namely the topological degree of the map Sε → S2m−1 sending z to the normalization

of the Jacobian df =
(
∂f
∂z1
, . . . , ∂f

∂zm

)
. (2) µ is the complex vector space dimension

of the quotient of the polynomial algebra C[z1, . . . , zm] by the ideal
〈
∂f
∂z1
, . . . , ∂f

∂zm

〉
.

[4, Chapter 5]

8. Ft is not contractible, and K is not an unknotted sphere in Sε.

9. K is homeomorphic to a sphere (namely S2m−3) exactly when det(1 − h∗) = ±1,

where h∗ is the linear map induced by h at the middle homology level.

One can say more for Brieskorn polynomials f =
∑

1≤l≤m z
bl
l , bl ≥ 2:

1. The Milnor number µ equals
∏

1≤l≤m(bl − 1).

2. Each fiber Ft is homotopic to the join of the finite cyclic groups corresponding to

the bl-th roots of unity, l = 1, . . . ,m.

3. The eigenvalues (counting multiplicity) of the middle homology induced Milnor map

h∗ are the products ω1ω2 · · ·ωm where each ωl ranges over all bl-th roots of unity

that are not equal to 1.
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Figure 3.1: Milnor fibration [83].

3.3 The holonomy operator U

Suppose a polynomial f ∈ A = C[z1, . . . , zm] which vanishes at the origin, and has the

origin as an isolated critical point. In geometric terms the origin is an isolated singularity

of the hypersurface V (f) ⊆ Cm. Consider the family of principal ideals

I(t) := 〈f − εeit〉 ⊆ A, t ∈ R,

where ε is a fixed sufficiently small positive real number. We think of t as the time

variable. Let Pt ∈ B (H2
m) be the orthogonal projection onto I(t)⊥. Let

p : I⊥ → R, I⊥ :=
⊎{

I(t)⊥ ⊆ H2
m : t ∈ R

}
⊆ R×H2

m, p(I(t)) = {t},

and

P : R→ B
(
H2
m

)
, P := (Pt),

be respectively the assembly of Hilbert spaces I(t)⊥ and projections Pt into a rough1

Hilbert bundle and a rough map between Banach spaces. Topologize I⊥ ⊆ R×H2
m with

the subspace topology.

1Namely we are putting continuity or smoothness considerations momentarily aside.
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For the rest of this section we assume without proof that:

Conjecture 31. p is a smooth Hilbert bundle.2

At the moment we can only verify this conjecture for our toy model of Section 3.4

(see Theorem 39). Note that since the base space of p is contractible, even the weaker

assumption that p is a topological vector bundle implies that it is trivial [67, IV.2.5][77,

Corollary 1], hence automatically smooth, and this smooth structure is unique up to

smooth vector bundle isomorphisms [67, IV.3.5]. The set of all (smooth) sections of p is

denoted by C∞(R; I⊥).

Unfortunately P is not smooth in general. (See Section 3.4.3 for a discussion.) Think-

ing of P as a rough connection between nearby fibers I(t)⊥, imitating the standard con-

struction of the Levi-Civita connection for subbundles of Hilbert bundles [74, Example

1.5.14][97, Volume II, Page 540] gives us a rough covariant derivative:

Dξ(t) = Pt

(
dξ

dt

)
, ξ ∈ C∞(R; I⊥). (3.2)

Note that D is called a covariant derivative because it satisfies the Leibniz rule:

D(gξ)(t) = g′(t)ξ(t) + g(t)D(ξ)(t), ∀g ∈ C∞(R;C), ∀ξ ∈ C∞(R; I⊥).

The D-flat sections of p are those ξ ∈ C∞(R; I⊥) which satisfy the evolution equation

Dξ(t) = 0, ∀t ∈ R. (3.3)

For the rest of this section we assume without proof that:

Conjecture 32. The parallel transport equation (3.3) has a unique solution on t ∈ R for

each initial value ξ(0) ∈ I(0)⊥.

2C2-smoothness is enough for our purposes. Standard references for infinite-dimensional differential
geometry are [74, 76, 78]. See also [2, Chapter 7].
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At the moment we can only verify this conjecture for our toy model of Section 3.4

(see Theorem 38). The resulting holonomy map

Ut : I(0)⊥ → I(t)⊥, t ∈ R,

is the one sending the initial value ξ(0) of flat section ξ to its time-t value ξ(t).

Proposition 33. Each Ut is unitary.

Proof. Linearity is immediate from the uniqueness assumption of Conjecture 32. Assume

a flat section ξ. Since ξ and dξ/dt are orthogonal, we have

0 = 2

〈
ξ(t),

dξ

dt

〉
=

d

dt
‖ξ(t)‖2 =

d

dt
‖Utξ(0)‖2 ,

therefore

‖Utξ(0)‖ = ‖U0ξ(0)‖ = ‖ξ(0)‖ .

This shows that Ut is an isometry. For each τ ∈ R, the inverse of Uτ : ξ(0) 7→ ξ(τ) is

given by the parallel translation η(0) 7→ η(τ) along the flat section η(t) := ξ(τ − t). Note

that we are again using the uniqueness assumption of Conjecture 32. �

We are specially interested in U := U2π ∈ B(I(0)⊥). This is our noncommutative

analogue of the Milnor monodromy map h : F0 → F0 of Section 3.2. We expect:

Conjecture 34. U acts by conjugation on the Toeplitz algebra TI(0) in the sense that

UTI(0)U
∗ ⊆ TI(0).

At the moment we can only verify this conjecture for our toy model of Section 3.4

(see Theorem 44).

Remark 35. Assuming Conjecture 34, we get an induced map K
(
TI(0)

)
→ K

(
TI(0)

)
at

the K-homology level. �
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Remark 36. Since I⊥ is trivial a rough section of p is an expression of the form

ξ :=
∑
n∈Nm

xnz
n, zn :=

zn1
1 · · · znmm√
ω(n)

, ω(n) := ‖zn1
1 · · · znmm ‖

2
H2
m

=
n!

|n|!
,

where each xn : R→ C is a function of t, and ξ(t) :=
∑
xn(t)zn is formally orthogonal to

whole I(t) for each t. Smooth sections are those rough sections such that for each t ∈ R,

each series ξ(l)(t) :=
∑

n∈Nm
dlxn
dtl
zn, l ∈ N, of term-by-term time derivatives lives in H2

m,

and
∥∥ξ(l)(t+ h)− ξ(l)(t)− hξ(l+1)(t)

∥∥
H2
m
→ 0 as h→ 0. �

3.4 A toy model

We use the notations of Section 3.3, more specifically, polynomial f , small positive number

ε, Hilbert bundle I⊥ (more precisely, p : I⊥ → R) and holonomy operator U . Fix integer

k ≥ 2. For the toy model f := zk1 ∈ C[z1, z2], we find explicit formulas for U and the

fundamental Toeplitz operators associated to I(0)⊥, and study their interaction.

3.4.1 The holonomy operator U

We first find an explicit smooth orthonormal frame for our Hilbert bundle

I⊥ =
⊎{
〈zk1 − εeit〉⊥ ⊆ H2

2 : t ∈ R
}
.

We start with a computational lemma.

Lemma 37. Let E be a complex number with |E| < 1. Set

F := E
1
k ,

ζj := ei
2π
k
j, j = 0, . . . , k − 1,

aj := 1− ζjF, j = 0, . . . , k − 1.
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(1) We have: ∑
q∈N

(
n+ r + kq

n

)
Eq = k−1F−r

k−1∑
j=0

ζ−rj a−n−1
j ,

∑
q∈N

(
n+ r + kq

n

)
Eqq = k−2F−r

(
−r

k−1∑
j=0

ζ−rj a−n−1
j + F (n+ 1)

k−1∑
j=0

ζ−r+1
j a−n−2

j

)
,

∑
q∈N

(
n+ r + kq

n

)
Eqq2 = k−3F−r×

r2

k−1∑
j=0

ζ−rj a−n−1
j + F (1− 2r)(n+ 1)

k−1∑
j=0

ζ−r+1
j a−n−2

j + F 2(n+ 1)(n+ 2)
k−1∑
j=0

ζ−r+2
j a−n−3

j .

(2) For any positive integer l we have the asymptotic formula:

∑
q∈N

(
n+ r + kq

n

)
Eqql ≈ nl(1− F )−n, n→∞.

Proof. (1) Note that the sequence of numbers

ψq := k−1

k−1∑
j=0

ζq−rj , q ∈ N,

equals 1 when q has remainder r modulo k, and zero otherwise. Therefore

∑
q∈N

(
n+ r + kq

n

)
Er+kq =

∑
q∈N

(
n+ q

n

)
ZqE

q

= k−1
∑
q∈N

k−1∑
j=0

(
n+ q

n

)
ζq−rj Eq

= k−1

k−1∑
j=0

ζ−rj (1− ζjE)−n−1 ,
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where we have used the negative binomial formula

∑
q∈N

(
n+ q

n

)
Gq = (1−G)−n−1

in the last line. This gives the first formula. The other two are followed by differentiation

with respect to E.

(2) By induction find a general formula for the left hand side, and then note that

when n → ∞ the dominant summand in each
∑

0≤j≤k−1 ζ
−r+m
j a−n−m−1

j , m ∈ N, is the

one with smallest |aj|, so the one with j = 0. �

Having this lemma at hand we can prove:

Theorem 38. Set

F := ε
2
k ,

ζj := ei
2π
k
j, j = 0, . . . , k − 1,

aj := 1− ζjF, j = 0, . . . , k − 1,

J :=
{

(r, n) ∈ N2 : 0 ≤ r ≤ k − 1
}
.

(1) A smooth orthogonal frame for the Hilbert bundle I⊥ is given by

α :=

{
αr,n(t) :=

∑
q∈N

ω−1
r+kq,nε

qe−iqtzr+kq1 zn2 : (r, n) ∈ J, t ∈ R

}
, (3.4)

where

ωm,n = ‖zm1 zn2 ‖2
H2

2
=

(
m+ n

m

)−1

.

(2) A smooth orthonormal frame for the Hilbert bundle I⊥ is given by

β :=

{
βr,n(t) :=

αr,n(t)

‖αr,n(t)‖
: (r, n) ∈ J, t ∈ R

}
, (3.5)
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where

‖αr,n(t)‖2 =
∑
q∈N

ω−1
r+kq,nε

2q = F−rk−1

k−1∑
j=0

ζ−rj a−n−1
j . (3.6)

(3) The holonomy operator Ut : I(0)⊥ → I(t)⊥ acts diagonally by

Ut (βr,n(0)) = eifr,ntβr,n(t), (3.7)

where frequencies fr,n are given by

fr,n =

∑
q∈N ω

−1
r+kq,nqε

2q∑
q∈N ω

−1
r+kq,nε

2q
=

−r
k−1∑
j=0

ζ−rj a−n−1
j + F (n+ 1)

k−1∑
j=0

ζ−r+1
j a−n−2

j

k
k−1∑
j=0

ζ−rj a−n−1
j

. (3.8)

(4) When n→∞, fr,n varies asymptotically like:

fr,n ≈
F

k(1− F )
n+

F

k(1− F )
− r

k
. (3.9)

(5) A smooth orthonormal parallel frame for the Hilbert bundle I⊥ is given by

γ :=
{
γr,n(t) := eifr,ntβr,n(t) : (r, n) ∈ J, t ∈ R

}
. (3.10)

Proof. (1) We first check the smoothness. For comparison purposes observe that any

one-variable power series of the form

∑
q∈N

R(q)ζq, R ∈ C[ζ] a polynomial in single variable ζ, (3.11)

has radius of convergence equal to one, hence absolutely and uniformly convergent on any

compact subset of the open unit disk of the complex ζ-plane. The formal power series of

term-by-term time derivative of each αr,n of order l ∈ N, as well as its H2
2 -norm are given
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by:

dlαr,n
dtl

:=
∑
q∈N

(
kq + r + n

n

)
(−iq)le−iqtεqzr+kq1 zn2 ,

∥∥∥∥dlαr,ndtl

∥∥∥∥2

H2
2

:=
∑
q∈N

(
kq + r + n

n

)
q2lε2q.

Comparison with (3.11) shows that for any ε < 1 and any t ∈ R, each dlαr,n
dtl

(t) is an

analytic function on B2 with finite H2
2 -norm, hence lives in H2

2 . That αr,n lives in I(t)⊥

is immediate from our derivation of αr,n in the next paragraph, but here is a direct

verification. For each (M,N) ∈ N2, αr,n(t) and zM1 z
N
2

(
zk1 − εeit

)
has no monomial in

common (hence orthogonal) except when N = n and r equals the remiander of M in

division by k. For this exceptional case, assuming M = kQ+ r, Q ∈ N, we have

〈
αr,n, z

M
1 z

N
2

(
zk1 − εeit

)〉
= εQ+1e−i(Q+1)t − εQe−iQtεe−it = 0.

By Taylor’s theorem, we have

∥∥∥∥αr,n(t+ h)− αr,n(t)− hdαr,n
dt

(t)

∥∥∥∥2

=
∑
q∈N

(
kq + r + n

n

)
ε2q
∣∣e−iq(t+h) − e−iqt + hiqe−iqt

∣∣2
≤
∑
q∈N

(
kq + r + n

n

)
ε2q
(
h2

2!
q2

)2

,

which shows that αr,n : R→ H2
2 is first-order differentiable. The same line of arguments

proves the smoothness.

Next we show that sections of I⊥ are linear combinations of αr,n. A section of I⊥ has

the form

ξ(t) =
∑
m,n≥0

xm,n(t)zm1 z
n
2 , (3.12)

and satisfies the orthogonality equations:

0 =
〈
ξ(t), zm1 z

n
2

(
zk1 − εeit

)〉
= xm+k,nωm+k,n − xm,nωm,nεe−it, ∀m,n ≥ 0,
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or equivalently

xm+k,nωm+k,n = xm,nωm,nεe
−it, ∀m,n ≥ 0. (3.13)

Assuming

Xm,n := xm,nωm,n,

this latter recursive equation becomes

Xm+k,n = Xm,nεe
−it,

hence

Xr+kq,n = Xr,nε
qe−iqt, r = 0, 1, . . . , k − 1, q, n = 0, 1, 2, . . . . (3.14)

This shows that

{Xr,n : (r, n) ∈ J}

are basic Taylor coefficients of ξ in the sense that they linearly determine all the other

coefficients, and there are no nontrivial linear equations among them. Note that αr,n is

the section with Xr,n = 1, and all other basic coefficients vanish. Working backwards,

this shows that (3.4) is a basis for I(t)⊥. Any two αr,n and αr′,n′ , (r, n) 6= (r′, n′), are

orthogonal because they have no monomials in common, and we know that monomials

constitute an orthogonal basis for H2
m.

(2) Lemma 37 gives (3.6). Since ‖αr,n(t)‖ does not depend on t, the rest follows

immediately from part (1).

(3) A flat section of I⊥ has the form η(t) =
∑
ym,nz

m
1 z

n
2 such that η̇ =

∑
ẏm,nz

m
1 z

n
2

lives in I(t)⊥⊥ for each t. In other words the inner product 〈η̇, ξ〉H2
2

is zero for every

section ξ as in (3.12). Equivalently, in terms of Taylor coefficients, we have

∑
m,n

ẏm,nXm,n = 0,
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for all Xm,n satisfying (3.14). Rewriting this in terms of basic Taylor coefficients we get

∑
0≤r<k
q,n≥0

ẏr+kq,nXr,nε
qeiqt = 0.

Since this is true for any choice of basic coefficients Xr,n, (r, n) ∈ J , we should have

∑
q∈N

ẏr+kq,nε
qeiqt = 0, (r, n) ∈ J. (3.15)

Since η is a section its Taylor coefficients satisfy

yr+kq,n = yr,n
ωr,n

ωr+kq,n
εqe−iqt, (r, n) ∈ J, q ∈ N.

(Recall (3.13).) Plugging this into (3.15) yields

∑
q∈N

(ẏr,n − iqyr,n)
ωr,n

ωr+kq,n
ε2q = 0, (r, n) ∈ J.

Therefore we have the explicit evolution laws

ẏr,n = yr,nifr,n, (r, n) ∈ J, (3.16)

where

fr,n =

∑
q∈N
(
n+r+kq

n

)
qε2q∑

q∈N
(
n+r+kq

n

)
ε2q

. (3.17)

Evolution equations (3.16) are solved as

yr,n(t) = yr,n(0)eifr,nt, (r, n) ∈ J,

hence (3.7). Lemma 37 computes fr,n.

(4) When n → ∞ the dominant summands in the numerator and denominator of
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fr,n in (3.8) are those with the smallest |aj|, so those with j = 0. Therefore fr,n varies

asymptotically like

fr,n ≈
−ra−n−1

0 + F (n+ 1)a−n−2
0

ka−n−1
0

= − r
k

+
F

k(1− F )
(n+ 1).

(5) By (3.7), we have

Ut(γr,n(0)) = γr,n(t),

hence γ is a parallel frame. Smoothness is the result of the smoothness of β and the

asymptotic formula (3.9) for fr,n. �

Theorem 39. The Conjecture 31 holds true for the toy model.

Proof. Assume I⊥ ⊆ R×H2
2 with the subspace topology as a rough Hilbert bundle over

R. Recall that J := {(r, n) ∈ N2 : 0 ≤ r ≤ k − 1} is the index set of the orthonormal

frame β in Theorem 38. Since each β(t), t ∈ R, is an orthonormal basis for the fiber

I(t)⊥, the mapping

Φ : R× l2(J)→ I⊥,
(
t, (ar,n)(r,n)∈J

)
7→

t, ∑
(r,n)∈J

ar,nβr,n(t)

 ,

trivializes I⊥ as a topological vector bundle, namely Φ is a homeomorphism and the

triangle

R× l2(J) Φ //

prR
��

I⊥

p
zzR

commutes. Since this trivialization is given by a single chart, it also gives I⊥ the structure

of a smooth vector bundle. �

Remark 40. (1) Lemma 37 also gives the following formula for αr,n:

αr,n(t) = F−
r
2k−1e−

irt
k zn2

k−1∑
j=0

ζ−rj

(
1− ζjF

1
2 e−

it
k z1

)−n−1

.
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(2) If one thinks of the unitary operator Ut : I(0)⊥ → I(t)⊥ as an integral operator

Utη(z) =

∫
w∈B2

K(z, w)η(w)dw,

then, since Ut acts diagonally on the orthonormal basis βr,n with the corresponding eigen-

values eitfr,n , the kernel is given by

K(z, w) =
∑

(r,n)∈J

eitfr,nβr,n(z)βr,n(w).

Plugging from Theorem 38 and the previous part we get:

K(z, w) =
∑

(r,n)∈J

eitfr,n (z2w2)n

k−1∑
j,l=0

ζ−rj−l

((
1− ζjF

1
2 e−

it
k z1

)(
1− ζ−lF

1
2 e

it
k w1

))−n−1

k−1∑
j=0

ζ−rj (1− ζjF )−n−1

.

We will not need this expression in this dissertation. �

3.4.2 The interaction of U with the Toeplitz algebra

Consider the Toeplitz algebra TI(0) associated to the ideal I(0) = 〈zk1−ε〉 ⊆ C[z1, z2]. It is

the C*-algebra generated by {1, Tz1 , Tz2}∪K(I(0)⊥) where Tzj , j = 1, 2, is multiplication

by coordinate function zj compressed to I(0)⊥. For brevity we set Tj := Tzj , j = 1, 2.

Proposition 41. Assume the notations of Theorem 38. T1, T2 and their adjoints are

weighted shifts given by:

T1βr,n = F
1
2

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2

(∑k−1
j=0 ζ

−r−1
j a−n−1

j

) 1
2

βr+1,n,

T2βr,n =

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2

(∑k−1
j=0 ζ

−r
j a−n−2

j

) 1
2

βr,n+1,
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T ∗1 βr,n = F
1
2

(∑k−1
j=0 ζ

−r+1
j a−n−1

j

) 1
2

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2

βr−1,n,

T ∗2 βr,n =

(∑k−1
j=0 ζ

−r
j a−nj

) 1
2

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2

βr,n−1.

Proof. Each βr,n is a sum of monomials zr+kq1 zn2 , q ≥ 0. Since distinct monomials are or-

thogonal to each other in H2
2 , z1βr,n is orthogonal to all elements βr′,n′ of our orthonormal

basis except for βr+1,n. Therefore T1βr,n is just the orthogonal projection of z1βr,n onto

βr+1,n, namely

T1βr,n = 〈z1βr,n, βr+1,n〉βr+1,n.

To compute the weight 〈z1βr,n, βr+1,n〉, substitute βr,n from Theorem 38 and apply

Lemma 37:

〈z1βr,n, βr+1,n〉 =

∑
q∈N ω

−1
r+kq,nε

2q

F−r−
1
2k−1

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2
(∑k−1

j=0 ζ
−r−1
j a−n−1

j

) 1
2

= F
1
2

(∑k−1
j=0 ζ

−r
j a−n−1

j

) 1
2

(∑k−1
j=0 ζ

−r−1
j a−n−1

j

) 1
2

.

The rest is straightforward. �

Proposition 42. Assume the notations of Theorem 38. We have:

U∗T1Uβr,n = ei2π(fr,n−fr+1,n)T1βr,n,

U∗T ∗1Uβr,n = ei2π(fr,n−fr−1,n)T ∗1 βr,n,
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U∗T2Uβr,n = ei2π(fr,n−fr,n+1)T2βr,n,

U∗T ∗2Uβr,n = ei2π(fr,n−fr,n−1)T ∗2 βr,n.

Proof. Immediate from Proposition 41. �

We need to understand the asymptotic behavior of the factors appearing in Proposi-

tion 42 when n grows large. Recalling the asymptotic formula (3.9) for fr,n one expects:

Lemma 43. Assume the notations of Theorem 38. Then

fr,n − fr−1,n → −
1

k
, fr,n − fr,n−1 →

F

k(1− F )
,

as n→∞.

Proof. By (3.8), k (fr,n − fr,n−1) equals

−r
k−1∑
j=0

ζ−rj a−n−1
j + F (n+ 1)

k−1∑
j=0

ζ−r+1
j a−n−2

j

k−1∑
j=0

ζ−rj a−n−1
j

−
−r

k−1∑
l=0

ζ−rl a−nl + Fn
k−1∑
l=0

ζ−r+1
l a−n−1

l

k−1∑
l=0

ζ−rl a−nl

=

Fn
k−1∑
j,l=0

ζ−r+1
j a−n−2

j ζ−rl a−nl − Fn
k−1∑
j,l=0

ζ−rj a−n−1
j ζ−r+1

l a−n−1
l + F

k−1∑
j,l=0

ζ−r+1
j a−n−2

j ζ−rl a−nl

k−1∑
j,l=0

ζ−rj a−n−1
j ζ−rl a−nl

.

We need to find the dominant terms in the numerator and denominator of the latter

fraction when n grows large. The dominant summand in the denominator is the one with

smallest |aj||al|, which is the one with j = l = 0, namely

ζ−r+1
0 a−n−1

0 ζ−r0 a−n0 = (1− F )−2n−1.
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We have three summations in the numerator with dominant terms

Fn(1− F )−2n−2, n(1− F )−2n−2 and F (1− F )−2n−2,

respectively. The first two cancel each other, and all the remaining summands in the first

two summations are dominated by the dominant term of the denominator (1− F )−2n−1.

Therefore the dominant term of the numerator is F (1− F )−2n−2. Therefore

lim
n→∞

k (fr,n − fr,n−1) = lim
n→∞

F (1− F )−2n−2

(1− F )−2n−1
=

F

1− F
.

Using (3.8), k (fr,n − fr−1,n) equals

−r
∑
ζ−rj a−n−1

j + F (n+ 1)
∑
ζ−r+1
j a−n−2

j∑
ζ−rj a−n−1

j

−
−(r − 1)

∑
ζ−r+1
l a−n−1

l + F (n+ 1)
∑
ζ−r+2
l a−n−1

l∑
ζ−r+1
l a−n−1

l

=
−
∑
ζ−rj ζ−r+1

l (ajal)
−n−1 + F (n+ 1)

(∑
ζ−r+1
j a−n−2

j ζ−r+1
l a−nl − ζ

−r
j ζ−r+2

l (ajal)
−n−1

)
∑
ζ−rj a−n−1

j ζ−r+1
l a−n−1

l

.

When n grows large the dominant terms in the numerator and denominator of the

latter fraction are

−(1−F )−2n−2+F (n+1)×
(
exponentially smaller than (1−F )−2n−2

)
and (1−F )−2n−2,

respectively. Therefore k (fr,n − fr,n−1) tends −1. �

Proposition 42 and Lemma 43 gives:

Theorem 44. As before F := ε
2
k . The unitary operator U acts by conjugation on the
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Toeplitz algebra TI(0) in the sense that U∗TI(0)U ⊆ TI(0). In more details

U∗T1U − ei
2π
k T1, U∗T ∗1U − e−i

2π
k T ∗1 , U∗T2U − e−i

2πF
k(1−F )T2, U∗T ∗2U − e

i 2πF
k(1−F )T ∗2 ,

are all compact.

3.4.3 The smoothness of P

Recall the projection assembly map P : R→ B(H2
2 ) acting between Banach spaces. We

now prove what we mentioned before:

Proposition 45. P is not smooth.

Proof. According to Theorem 38.(4), each

δr,n := eifr,ntαr,n, (r, n) ∈ J,

is a flat section of I⊥, namely satisfies the equations

Ptδr,n(t) = δr,n(t), Ptδ̇r,n(t) = 0.

Suppose by contradiction that P is smooth. Differentiating the first equation and plugging

from the second gives

Ṗtδr,n(t) = δ̇r,n(t).

However the ratio

∥∥∥δ̇r,n(t)
∥∥∥

‖δr,n(t)‖
=
‖ifr,nαr,n(t) + α̇r,n(t)‖

‖αr,n(t)‖
=

(∑
q∈N ω

−1
r+kq,nε

2q(fr,n − q)2∑
q∈N ω

−1
r+kq,nε

2q

) 1
2

=

(
f 2
r,n − 2fr,n

∑
q∈N ω

−1
r+kq,nε

2qq∑
q∈N ω

−1
r+kq,nε

2q
+

∑
q∈N ω

−1
r+kq,nε

2qq2∑
q∈N ω

−1
r+kq,nε

2q

) 1
2

(3.18)
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asymptotically behaves like n
1
2 as n→∞, hence Ṗt would be unbounded. Here are more

details. By Lemma 37 and the asymptotic formula for fr,n in (3.9), the three consecutive

terms a, b and c in the last expression (a− b+ c)1/2 in (3.18), asymptotically behave

like a2n
2 + a1n, b2n

2 + b1n and c2n
2 + c1n, where aj, bj and cj are nonzero constants

(with respect to n) satisfying a2 − b2 + c2 = 0 and a1 − b1 + c1 6= 0. (Here by saying

that a behaves asymptotically like a2n
2 + a1n we mean that a ≈ n2, a − a2n

2 ≈ n and

a− a2n
2− a1n� 1. Likewise for b and c.) This shows that (a− b+ c)1/2 asymptotically

behaves like n1/2. This contradiction shows that P is not even first differentiable. �

We can fix this problem by using weights to compensate for differentiation [19]. More

precisely, viewing the Drury-Arveson space H2
2 = H(−2)

2 as a member of the Besov-Sobolev

scale H(s)
2 , s ∈ R, of Hilbert spaces, we have:

Theorem 46. (1) The modification P̃ : R → B
(
H(−2)

2 ,H(4)
2

)
of P where P̃t is the

composition of Pt with the inclusion H(−2)
2 ↪→ H(4)

2 is first differentiable.

(2) Suppose positive integer l and positive real σ. Then the modification P̃ : R →

B
(
H(−2)

2 ,H(2l+1+σ)
2

)
of P where P̃t is the composition of Pt with the inclusion H(−2)

2 ↪→

H(2l+1+σ)
2 is l-th differentiable.

Proof. (1) We have a corresponding version of Theorem 38 forH(4)
2 instead of H2

2 = H(−2)
2 ,

where ωr+kq,n is replaced by

ω̃r+kq,n :=
∥∥∥zr+kq1 zn2

∥∥∥
H(4)

2

=
(r + kq)!n!6!

(r + kq + n+ 6)!
= S(n)ωr+kq,n+6,

and

S(n) :=
6!n!

(n+ 6)!
≈ n−6.

Let

{
em,n := ω

− 1
2

m,nz
m
1 z

n
2 : (m,n) ∈ N2

}
and

{
ẽm,n := ω̃

− 1
2

m,nz
m
1 z

n
2 : (m,n) ∈ N2

}
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be the time-independent standard orthonormal bases of H(−2)
2 and H(4)

2 respectively. We

first compute the matrix coefficients of P̃t with respect to these bases. Note that for each

(m,n) ∈ N2, em,n is orthogonal to all members of the orthonormal frame β̃ except for

β̃r,n, where

m = kQ+ r, Q, r ∈ N, 0 ≤ r < k,

is the unique division of m by k. Therefore

P̃t (em,n) = 〈em,n, βr,n〉 βr,n = ω
− 1

2
m,n ‖αr,n‖−2 〈zm1 zn2 , αr,n〉αr,n

= ω
− 1

2
m,n ‖αr,n‖−2 εQeiQt

∑
q∈N

ω−1
r+kq,nω̃

1
2
r+kq,nε

qe−iqtẽr+kq,n

=

∑
q

ω
− 1

2
m,nω

−1
r+kq,nω̃

1
2
r+kq,nε

Q+qei(Q−q)tẽr+kq,n∑
q

ω−1
r+kq,nε

2q

=
√
S(n)

∑
q

ω
− 1

2
m,nω

−1
r+kq,nω

1
2
r+kq,n+6ε

Q+qei(Q−q)tẽr+kq,n∑
q

ω−1
r+kq,nε

2q
.

Therefore the formal matrix
˙̃
P t of entry-by-entry differentiation of Pt equals

˙̃
P t (em,n) :=

√
S(n)

∑
q

ω
− 1

2
m,nω

−1
r+kq,nω

1
2
r+kq,n+6ε

Q+qi(Q− q)ei(Q−q)tẽr+kq,n∑
q

ω−1
r+kq,nε

2q
.

From this expression the Hilbert-Schmidt norm of
˙̃
P t can be computed as:
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∥∥∥ ˙̃
P t

∥∥∥2

HS
:=
∑
n,r

S(n)

∑
Q,q

ω−1
r+kQ,nω

−2
r+kq,nωr+kq,n+6ε

2Q+2q(Q− q)2

(∑
q

ω−1
r+kq,nε

2q

)2

≤
∑
n,r

S(n)

∑
Q,q

ω−1
r+kQ,nω

−1
r+kq,nε

2Q+2q (Q2 + q2)(∑
q

ω−1
r+kq,nε

2q

)2 =
∑
n,r

2S(n)

∑
q

ω−1
r+kq,nε

2qq2∑
q

ω−1
r+kq,nε

2q

≈
∑
n

S(n)n2 ≈
∑
n

n−4 <∞. By Lemma 37

This especially shows that
˙̃
P t is bounded (in operator norm) [9, 2.8.4][97, Volume I, A.6].

With the same line of arguments along with Taylor’s theorem, for any h ∈ R we have:

∥∥∥P̃t+h − P̃t − h ˙̃
P t

∥∥∥2

HS
≤
∑
n,r

S(n)

∑
Q,q

ω−1
r+kQ,nω

−2
r+kq,nωr+kq,n+6ε

2Q+2q(Q− q)4
(
h2

2!

)2

(∑
q

ω−1
r+kq,nε

2q

)2

�
∑
n,r

S(n)h4

∑
q

ω−1
r+kq,nε

2qq4∑
q

ω−1
r+kq,nε

2q
�
∑
n

S(n)h4n4 = h4
∑
n

n−2.

This finishes the proof that P̃ is first differentiable.

(2) Imitating the proof in (1), set

ω̃r+kq,n :=
∥∥∥zr+kq1 zn2

∥∥∥
H(2l+1+σ)

2

=
(r + kq)!n!(2l + 3 + σ)!

(r + kq + n+ 2l + 3 + σ)!
= S(n)ωr+kq,n+2l+3+σ,

where

S(n) :=
(2l + 3 + σ)!n!

(n+ 2l + 3 + σ)!
≈ n−2l−3−σ.

For any j = 1, . . . , l, and any h ∈ R, we get estimates:

∥∥∥∥∥djP̃tdtj

∥∥∥∥∥
2

HS

�
∑
n

S(n)n2j ≈
∑
n

n−3−σ−2(l−j) <∞,
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∥∥∥∥∥dj−1P̃t+h
dtj−1

− dj−1P̃t
dtj−1

− hd
jP̃t
dtj

∥∥∥∥∥
2

HS

�
∑
n

S(n)h2j+2n2j+2 ≈ h2j+2
∑
n

n−1−σ−2(l−j),

which implies that P̃ is l-th differentiable. �

Remark 47. Recall the identification H(s)
m = W

− s
2

hol (Bm), s ∈ R, between Besov-Sobolev

and Bergman-Sobolev spaces (Page x). Theorem 46.(2) says that by taking l-th derivative

of P we lose differentiability by order no worse than l+ 2. We do not know whether this

estimate of differentiability loss is optimal. �

Remark 48. Suppose a section ξ ∈ C∞(R, I⊥). Proposition 46.(2) shows that dlPt
dtl

(ξ(t))

lives in H(2l+1+σ)
2 . Similar arguments shows that for each s ≤ −2, if ξ(t) ∈ H(s)

2 then

dlPt
dtl

(ξ(t)) in fact lives in H(s+2l+3+σ)
2 . Here is a corollary. If S denotes the set of all

sections ξ such that for each t, ξ(t) and all its time derivatives live in
⋂
s∈RH

(s)
2 , then the

connection D (3.2) maps S to itself. �

3.5 Some potential future directions

Here are some directions for future works:

1. Study Conjectures 31, 32 and 34 for general ideals. In particular we plan to extend

our study of the toy model f := zk1 of Section 3.4 to the Brieskorn polynomials f :=∑
1≤l≤m z

bl
l , bl ≥ 2.

2. It is interesting to study the asymptotic behavior of the unitary operator U when

ε → 0. More specifically, note that in Theorem 44 there appears the phase factor

exp 2πiF
k(1−F )

where F = ε
2
k . When ε→ 0, this factor varies like

exp

(
2πi

k
ε

2
k

)
.

For another toy model f := z1z2 ∈ C[z1, z2], our computations (not included in this
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dissertation) shows that the phase factor equals

exp

(
2πi

1−
√

1− 4ε2√
1− 4ε2

)
= exp

(
4πiε2 +O

(
ε4
))
.

It is desirable to understand these phase factors in the general case.

3. It is interesting to extend the study in this chapter about isolated singularities on

hypersurfaces to complete intersection analytic sets. See [82].
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Birkhäuser Verlag, Basel, 1996.

[99] Venugopalkrishna, U., Fredholm operators associated with strongly pseudoconvex

domains in Cn, J. Functional Analysis 9 (1972), 349–373.

[100] Wang, P., Zhao, C., Essentially normal homogeneous quotient modules on the poly-

disc, Adv. Math. 339 (2018), 404–425.

[101] Wang, Y., Xia, J., Essential normality for quotient modules and complex dimen-

sions, J. Funct. Anal. 276 (2019), no. 4, 1061–1096.

79



[102] Zhao, R., Zhu, K., Theory of Bergman spaces in the unit ball of Cn, Mém. Soc.

Math. Fr. (N.S.) 115 (2008), 103 pp.

[103] Zhu, K., Operator theory in function spaces, Marcel Dekker, Inc., New York, 1990.

[104] Zhu, K., Spaces of holomorphic functions in the unit ball, Springer Verlag, New

York, 2005.

80


	Index Theory for Toeplitz Operators on Algebraic Spaces
	Recommended Citation

	Acknowledgments
	Preface
	Notations and conventions
	Introduction
	The basic setting, Arveson's conjecture, Douglas' index problem
	Arveson's motivation
	Douglas' motivation
	Some variations of Arveson's conjecture
	A summary of the results in this dissertation

	A Toeplitz index theorem for monomial ideals
	The main results
	Boxes and their associated Hilbert modules
	The construction of the resolution
	The proof of Theorem 15
	The proof of Theorem 16
	Examples
	A nonmonomial ideal
	Some potential future directions

	A Gauss-Manin connection in noncommutative geometry and its holonomy
	Motivation
	A review of the Milnor fibration in singularity theory
	The holonomy operator U
	A toy model
	The holonomy operator U
	The interaction of U with the Toeplitz algebra
	The smoothness of P

	Some potential future directions

	References

