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Abstract of the Dissertation 

Scaling-up Child and Youth Mental Health Services:  

Assessing Coverage of a County-wide Initiative 

by 

Cole Hooley 

Doctor of Philosophy in Social Work 

Washington University in St. Louis, 2019 

Professor Enola K. Proctor, Chair 

 

Over 7 million children and youth have a diagnosable mental illness any given year. There are 

evidence-based treatments (EBTs) to effectively treat these conditions, but these EBTs reach a 

very small percentage of their target population with treatment rates between 1-3%.
1
 We know 

very little about what influences these coverage rates. Beginning in 2009, the Los Angeles 

County Mental Health Department (LACDMH) began an ambitious agenda to scale-up the 

provision of EBTs in child/youth mental health care. The present study seeks to contribute to the 

scale-up literature by examining three questions based on LACDMH’s initiative: 1) To what 

extent have the county’s selected EBTs reached their target population?; 2) Are there differences 

in coverage rates within the county?; and 3) What factors are associated with the coverage rates? 

To answer these questions, the author used small area variation analysis and geospatial methods 

to create coverage scores at the county, service planning area, and clinic service area levels. The 

author aggregated community and clinic characteristics to the clinic service area level (n=254) to 

assess factors related to coverage. The author used LACDMH administrative claims data for FY 

2013-2014 with population data from the American Community Survey 2014 5-yr estimates 

(ACS). The county reached 17% of its target population during FY 2013-2014. Coverage varied 



x 

 

throughout the county. OLS regression results indicated that the proportion of ethnic minorities, 

immigrants and adults with a college degree were negatively associated with clinic service area 

coverage scores.  

.
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Chapter 1: Specific Aims 
 

Mental health evidence-based treatments (EBTs) for children and youth have coverage 

rates as low as 1% to 3%, and we do not know what factors influence those rates.
1
 In the US, 50 

states/territories have engaged in some effort to implement EBTs in their systems of care, with 

36% of those promoting statewide scale-up.
2
 Scale-up refers to efforts to sustain and maximize 

an intervention’s impact at a national/regional level.
3
 The success of scale-up can be 

operationalized as the coverage of a given intervention. Coverage refers to “the proportion of the 

target population who…have received, the service”.
4
 States have employed various strategies 

such as mandates, workforce development, funding, and collaboration to scale up EBTs.
2
 

Notwithstanding these momentous efforts, we do not know the extent to which these EBTs have 

reached their targeted populations, nor do we know what factors are associated with scale-up 

success.
5–8

 While there are existing measurement frameworks that could address these 

questions,
4,9,10

 the most recent mental health services coverage systematic review found they 

have not yet been applied to mental health scale-up initiatives in the US.
8
 A major challenge in 

the mental health services field is lack of knowledge about how to integrate available data to 

appropriately index coverage, particularly within a prevention and early intervention context, to 

subsequently explore drivers of scale-up success.  

The proposed project will help fill these gaps by linking system administrative claims 

data extracted through the NIMH-funded “4KEEPS” study (R01 MH100134) with publicly-

available data from the American Community Survey (ACS) to develop a method to construct 

the necessary variables to assess coverage and then explore coverage predictors. The ExpandNet 
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framework
11

 and other relevant empirical literature guided the selection of coverage predictors 

(e.g. neighborhood factors, agency factors). The proposed project extends the work of the 

4KEEPS study which explored the sustainment of EBTs within the context of a scale-up 

initiative in LA county.
12

 In 2009, LA county rolled out a Prevention and Early Intervention 

(PEI) initiative which included the scale-up of multiple EBTs for children and youth who 

presented with early symptoms of a mental illness or were at risk of developing a mental 

illness.
13,14

 This innovative prevention initiative fills an important gap in the public mental health 

programming landscape.
15

 Additionally, the PEI provides a unique opportunity to examine the 

scale-up of multiple EBTs across the largest county-operated mental health department in the US 

which has served 87,100 children since PEI’s inception.
16

 The proposed study will expand the 

parent grant by examining coverage through the following aims: 

Aim 1: Characterize the coverage of the PEI scale-up initiative and assess variability in 

coverage by geographic locales. Using the empirical and theoretical literature, scale-up 

measurement frameworks,
4,9

 and other services measurement methods,
8,17–19

 this project will 

develop a measurement scheme to calculate coverage and operationalize predictors to assess 

coverage for fiscal year 2013-2014. Once the scoring scheme is in place, the author will use 

network analysis and apportionment to create service area buffers around each clinic providing 

PEI services. The author will then apply the scoring scheme to calculate a coverage score for all 

of the clinic service area buffers using LA County Mental Health Department claims data, 

American Community Survey data, and estimates from the epidemiologic and mental health 

services literature. This aim will generate a coverage score specific to PEI’s targeted population 

for each clinic service area with available data in LA county for fiscal year 2013-2014 and will 

categorize these locales by degree of coverage. 
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Aim 2: Examine potential factors associated with coverage. This aim will use LA County 

Mental Health Department claims data and ACS data to examine the influence of local system 

and community factors on coverage through an Ordinary Least Square regression.
20

 The result 

will be identification of factors that influence coverage and estimates of their contribution to 

variance explained. 

This study is the first (known to the investigator) U.S.-based study to determine the 

coverage of a suite of EBTs, along with determinants of scale-up. The methods could offer 

guidance to others seeking to capture the public health reach of mental health scale-up efforts, 

and the resultant determinants could serve as targets of further measurement/exploration. In so 

doing, this proposed study directly aligns with the NIMH’s strategic priority 4.4 which is to 

“develop new capacity for research that evaluates the public health impact of mental health 

service innovations”.
21
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Chapter 2: Background 
 

In the broadest sense, scaling-up refers to the process of extending the reach of an 

intervention in hopes that more people can receive benefit, to move from a patient-level impact 

to a population-level impact.
3,11,22,23

 Some have gone as far as to suggest that an intervention that 

does not scale “is of little value”.
24

 The National Institute of Mental Health (NIMH) has codified 

its desire to see increased public-level impact in its fourth strategic objective, which is to 

“strengthen the public health impact of NIMH-supported research”.
25

 The Institute of Medicine 

of the National Academies has also convened workshops to address the scaling of interventions 

to increase the population-level impact.
22,26,27

 

2.1 Definitions 
 

The literature has no agreed upon definition of “scale-up” as of this writing. In fact, in the 

author’s review of the mental health service scale-up literature, no empirical articles defined 

scale-up. There are, however, a number of scale-up definitions in the broader public health and 

human services literature.
11,23,28–35

 However, researchers have not used these definitions 

consistently in the literature.
27,29,33

  

Table 2.1 lists several scale-up definitions from various scale-up frameworks. Whereas 

there are notable differences between the definitions, there are a number of unifying elements. 

For example, the definitions address increasing the reach/impact of an intervention. Another 

unifying theme among the definitions is the concept of sustainability.  

Similar to, but distinct from, scale-up is the term “scalability” which is defined as, “the 

ability of a health intervention shown to be efficacious on a small scale and or under controlled 
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conditions to be expanded under real world conditions to reach a greater proportion of the 

eligible population, while retaining effectiveness”.
32

 The difference in terminology between 

scalability and scale-up is analogous to sustainability and sustainment. In that, one is the ability 

of something to be sustained (sustainability) and the other is the state of being sustained 

(sustainment). 

Table 2.1 A selection of scale-up definitions extracted from key scale-up frameworks 
Definition 

“…more quality benefits to more people over a wider geographical area more quickly, more 

equitably and more lastingly” (p.iii-iv)
36

 

“Scaling up is defined as expanding, replicating, adapting and sustaining successful policies, 

programs, or projects in different places and over time to reach a greater number of people” 

(p.8 citing World Bank)
30

 

Involves “the model, innovation or project to be scaled up (what is being scaled up); the 

methods of going to scale (how of scaling up); the organizational roles involved in scaling up 

(the who of scaling up); the dimension(s) along which scaling up occurs (loosely speaking, the 

“where” of scaling up)” (p. 2)
31

 

“Scaling up is the process by which health interventions shown to be efficacious on a small 

scale and or under controlled conditions are expanded under real world conditions into broader 

policy or practice. The concept of scaling up is different from routine adoption as it involves 

an explicit intent to expand the reach of an intervention to new settings or target groups and is 

accompanied by systematic strategy to achieve this objective” (p. 2)
33

 

“… the terms "scale up" and "going to scale" refer to intentional efforts to maximize the 

positive impact of mental health interventions successfully tested in experimental studies in 

order to benefit mental health care at the national level or at a regional level within a country, 

and to foster evidence-based mental health policy and program development on a lasting 

basis.”
3
 

 

“… deliberate efforts to increase the impact of successfully tested health innovations so as to 

benefit more people and to foster policy and programme development on a lasting basis.” (p. 

2)
11

 

“the ambition or process of expanding the coverage of health interventions” (p. 1 citing 

Mangham & Hanson, 2010)
35
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Coverage refers to “the proportion of the target population who can receive, or have 

received, the service”.
4
 Researchers also use the terms “penetration” and “reach” in the literature 

in the same or similar ways. Glasgow described reach as,  

“an individual-level measure (e.g., patient or employee) of participation. Reach refers to 

the percentage and risk characteristics of persons who receive or are affected by a policy 

or program. It is measured by comparing records of program participants and complete 

sample or "census" information for a defined population, such as all members in a given 

clinic, health maintenance organization, or worksite.”
9
  

 

Penetration has been, “defined as the integration of a practice within a service setting and 

its subsystems”.
37

 There is substantial conceptual overlap between these constructs. This paper 

will use the construct “coverage” and its aforementioned definition. The 4KEEPS study has 

already assessed the within-service-system penetration of EBTs using the LACDMH claims data 

(i.e. denominator was clients enrolled in the system).
16

 The present study proposes to examine 

how many children received services relative to the larger targeted population (i.e. total target 

population, not just enrolled clients); therefore, the term “coverage” seemed more fitting. 

For this study, the term evidence-based treatment (EBT) refers to “clearly specified 

psychological treatments shown to be efficacious in controlled research with a delineated 

population.”
38

 This construct differs from the broader term evidence-base practice (EBP) which 

refers to, “the integration of the best available research with clinical expertise in the context of 

patient characteristics, culture, and preferences.”
39

 Providers working from an EBP framework 

would select an EBT based on the best available research which best matches a client’s 

characteristics, culture and preferences.  
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2.2 Need for mental health services scale-up 

2.2.1 Mental illness 
 

Understanding the nature of the target problem is necessary to develop an effective scale-

up strategy. As such, this section aims to elucidate what is known about mental illness. Various 

surveillance methods spanning multiple decades have found that mental illness is prevalent, 

severe, has an early onset, is recurrent, is highly co-morbid, and is disabling.
40–49

  

In the United States the lifetime retrospective prevalence of any mood or anxiety disorder 

for individuals 13-years and older is 49.1%; the 12-month retrospective prevalence for any mood 

or anxiety disorder is 31.6%.
42

 For children between 8 and 15, the 12-month prevalence for any 

disorder is 13.1%.
44

 This means that in any given year there are approximately 61,455,800 adults 

and 7,071,400 children with diagnosable mental illnesses.
43,44,50

  

These estimates increase when individuals with symptomatic impairment, a condition in 

which a person does not meet criteria for a DSM diagnosis yet still experiences “significant 

psychosocial impairment,” are included.
40

 Some symptomatic impairment estimates suggest that 

nearly 50% of children referred for mental health services do not meet the diagnostic threshold, 

and these rates also increase when they are measured prospectively.
40

  

Researchers have also assessed lifetime morbidity rates (LMR) for mental illness.
42

 

Lifetime morbidity rates reflect the estimated number of people who will contract a disorder at 

some point in their lifetime. Kessler and colleagues (2012) found that the LMR for mental 

illnesses exceed their prevalence estimates.
42

 This is to say that many people have a mental 

disorder (prevalence) and even more are going to have one in the future (LMR).   
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Severity estimates of disorders vary. Kessler & Wang (2008) estimated that 22.3% of 12-

month prevalence disorders in adults were serious.
43

 Merikangas et al. (2010) estimated that 

11.3% of 12-month disorders in children were serious.
44

 SAMHSA uses the legislative definition 

of serious mental illness and estimated that there are around 10 million adults with serious 

mental illness (SMI).
46,47

  

The age of onset varies by disorder but, generally, 50% of disorders have onset prior to 

age 14 and 75% have onset by age 24.
40,42,43

 In one longitudinal, prospective study, investigators 

found that 90% of children had either a diagnosable mental illness or symptomatic impairment 

by the time they reached young adulthood, deeming distress caused by mental disorders or 

impairing symptoms almost a universal experience.
40

  

The rates of recurrence in mental illness are high. For example, a systematic review 

found that adults with depression who receive treatment in a specialized mental healthcare 

clinics had recurrence rates ranging from 42% after 5 years to 85% after 15 years.
51

 The rate for 

the general population after 15 years was 35%.
51

 Another review found a recurrence rate of 39% 

for those with depression who had received treatment.
52

 Anxiety had recurrence rates of 23.5% 

after two years in one sample,
53

 and recurrence of mood episodes in bipolar disorder was 44% 

within the first year.
54

 Recurrence rates have also been noted for children.
55,56

   

Mental illnesses are highly co-morbid with other mental illnesses and chronic health 

conditions.
41,43,57

 The lifetime prevalence of two or more mental disorders in adults was 27.7%.
43

 

The 12-month prevalence of any disorder from one analysis was 26.2%, from that group, 11.8% 

had two or more disorders.
43

 A nationally representative survey found that 40% of affected youth 

had more than one disorder.
57

 When other chronic health conditions (e.g. diabetes) are included 
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with mental illnesses, the range of individuals with one or more disorder ranges from 83.6% to 

96.5%, with a mean number of additional disorders ranging from 2.7 to 4.6.
41

  

One of the major contributors to years lived with a disability (YLD) is mental illness, and 

their influence has increased the number of YLD by 37.5% from 1990 to 2010.
49

 YLD has been 

defined as, “time lived in health states worse than perfect health.”
58

 Vos and colleagues 

calculated YLD by multiplying the prevalence of a health sequela by a disability weight.
49

 Based 

on data from 2010, mental illness was the leading contributor to YLD for individuals ages 10 to 

65, for those ages 22 to 29 the contribution is the highest (36%).
49

 In North America, Major 

Depressive Disorder and Anxiety Disorder are the second and fifth leading causes of YLD.
49

 

Four of the top five most burdensome illnesses (measured by YLDs) at the individual level were 

mental illnesses versus physical illness (e.g., cancer, chronic pain, arthritis, diabetes, 

cardiovascular disorders).
41

 After accounting for co-morbidity, mental illnesses still account for 

two of the top five most burdensome disorders.
41

 

Total disability (disability-adjusted life years, DALYs) which is the combination of years 

lived with disability (YLD) and years of life lost (YLL) is another measure of the impact of 

mental illness. The top five mental illnesses/substance abuse disorders account for 153.727 

million DALYs.
45

 In North America, five out of the top 25 DALY contributors are mental 

illnesses, with Major Depressive Disorder ranking #5.
45

 Mental illness DALY contributions are 

significant, and they are growing, DALYs have increased by 37.6% between 1990 and 2010.
45

  

Mental illness also takes a significant economic toll. The United States spent more money 

on mental disorders than any other medical condition.
59

 Health care spending for mental 

disorders was approximately $200 billion, heart conditions ($150 billion), trauma ($148 billion), 
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cancer ($120 billion), and pulmonary conditions ($98 billion) followed.
59

 Mental health 

treatment spending is projected to be $238 billion by 2020.
60

 Medicaid (30%) or private 

insurance (25%) will cover the majority of the projected spending.
60

  

Individuals and society also experience significant economic tolls due to mental illness. 

Individuals with serious mental illness (SMI) in the U.S. made, on average, $16,306 less than 

someone without SMI, which at the society-level equals $193.2 billion lost.
61

 Combining high 

income countries, mental illness will result in a $9 trillion burden due to loss of economic output 

by 2030, which is higher than any other non-communicable disease.
62

  

In summary, the collective impact of mental health need is wide (high prevalence), deep 

(severe), and growing (LMR and disability). These disorders not only result in significant 

burdens for individuals and families, they also represent substantial economic impacts to society. 

The need and costs are high. 

2.2.2 Mental health services 
 

Fortunately, there are treatments to address mental illnesses. Mental health service 

outcome research has demonstrated that psychotherapy is effective.
63–65

 Approximately 67% of 

treated adults will receive the intended clinical benefit.
65

 Psychotherapy is also effective for 

children and adolescents.
66

 While some researchers have challenged psychotherapy effect sizes 

due to publication bias favoring positive trial results, there remains a general agreement that 

psychotherapy is beneficial.
67

  

Efforts to integrate evidence-based treatments (EBTs) have burgeoned to enhance the 

efficacy of psychotherapy.
64

 Researchers have developed and tested hundreds of evidence-based 
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treatment protocols for a variety of mental illnesses.
64,66

 Providers and researchers have 

increased their efforts to transfer these EBTs from clinical trials to real-world settings.
7,64,68

  

Mental health service use has increased over time.
69,70

 The Epidemiologic Catchment 

Area Study (ECAS) in the 1980s reported treatment rates of 19%; the National Comorbidity 

Study (NCS) reported rates of 25% in 1990; the National Comorbidity Study Replication (NCS-

R) reported rates of 41% in 2000.
70

 SAMHSA’s National Survey on Drug Use and Health 

(NSDUH) found that treatment rates were 44.7% in 2013, with rates as high as 68.5% for those 

individuals with serious mental illness (SMI).
46

 Treatment for those with SMI dipped slightly in 

2015 to 65.3%.
47

  

These estimates have varied and are based on different data sources.
69

 All of these data 

are retrospective in nature, and more recent research comparing self-reported rates to actual rates 

based on insurance claims shows that respondents underreport their mental health service use.
71

 

This suggests that service use may be even higher than these estimates. Reports suggest that the 

increase in mental health service use is largely due to the increase of psychopharmacology.
64

  

Notwithstanding the gains in treatment receipt, there has not been the anticipated 

decrease in the prevalence of mental illness.
15,72,73

 In fact, some prevalence estimates show 

increases in prevalence rates.
73

 These results are puzzling given the statistically significant 

increases in the use of psychotropic medications and psychosocial treatments.
73

 The clinical 

trials for these mental health treatments have resulted in shorter episode durations and lower 

rates of recurrence. Given this, why is there not the same population-level response?
15,72

 

Researchers offer a number of hypotheses to explain this discrepancy. The following section 

explains five of those hypotheses.  
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First, the prevalence of mental illness appears to be increasing over time and the 

expansion of service receipt is buffering those increases.
73

 An evaluation found that prevalence 

was, in fact, growing and it was primarily due to the aging of the population.
74

 People’s attitudes 

towards disclosing mental health information has changed over time, making people more 

willing to seek treatment, discuss their problems, and less likely to feel embarrassed if someone 

found out they received services.
75

 Such a shift may also have led to self-reported prevalence 

increases.
75

  

Second, the epidemiological methods deployed to measure population-level change may 

not detect small decreases in prevalence.
72,74

 One simulation showed that scaling-up services 

resulted in a decreased prevalence of about 5%.
74,76

 A change of that magnitude may not be 

captured by the current epidemiologic sampling methods. While 5% does not seem like much of 

a decrease, that would be more than 3 million fewer adults with a mental illness
74

, a number 

larger than the population of 21 states in the U.S.    

Third, this decrease may not have been detected because there are still such large unmet 

needs. Unmet need rates vary in the literature.
46,47,69,70,77–79

 The most recent service data in the 

U.S. for individuals with SMI suggest that 34.7% had not received services.
47

 58% of those with 

any 12-month disorder reported not receiving services in the last NCS-R study.
70

 The argument 

of unmet need is often coupled with issues related to mental health workforce shortages and 

client-level barriers.  

The US has a shortage in the mental health workforce, it is growing, and the shortage 

impacts some communities disproportionately.
80–87

 The Health Resources and Services 

Administration (HRSA) projects that the mental health workforce will be short by over 47,000 
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providers by 2025.
83

 This estimate is a replacement estimate, the number of providers required to 

continue business as usual. However, business as usual currently does not provide services to all 

those in need. The workforce would need at least 253,000 additional providers by 2025 to meet 

all mental health needs.
83

 

Even with sufficient workforce, there are client-level barriers that inhibit service receipt 

and treatment completion.
64,77,84

 In a review of the world mental health services literature, 

Andrade et al. (2014) found that only 27.9% of those with a 12-month disorder received care.
77

 

Of those who did not receive care, 61.5% did not perceive a need for care; perceived need is a 

substantial barrier to mental health service utilization.
77,79

 The 38.5% who did perceive a need 

and did not receive care reported both attitudinal (e.g. want to handle on their own, view that 

problem is not severe, would get better on their own, etc.), and structural barriers (cost, 

transportation, etc.).
69,77

 Attitudinal barriers were larger of the two.
77

 Sadly, there is a pattern that 

the most serious cases had the highest perceived need, and the highest attitudinal and structural 

barriers.
77

  

The fourth hypothesis about why mental health service utilization has increased but 

mental illness prevalence has not decreased is that the services which have been provided have 

not been of high quality, not adhering to treatment recommendations.
15,26,73

 Guideline concordant 

care has been operationalized in epidemiologic studies as number of psychotherapy sessions, and 

number of days with a prescription (if prescribed).
69,70,88,89

 The rates of meeting those bare-

minimum standards are very low, 13% to 32%.
69,70,88

 Researchers have found higher rates of 

concordant care with specialized mental health providers.
70,89

 The general medical sector 

provides the majority of mental health services, and unfortunately, that sector has the lowest 
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concordance rates.
69,70,79,89

 Furthermore, some have argued that even specialized mental health 

settings are not using evidence-based treatments.
26

  

The fifth hypothesis is that some have cited service system inefficiencies as a possible 

explanation about why the prevalence of mental illness has not decreased.
73

 These inefficiencies 

are manifest in the number of resources used to provide care to those who may not have mental 

illnesses.
70,79

 In their nationally representative study, Wang et al. (2005) found that 10% of those 

who received care had no disorder.
70

 Mechanic & Binder (2004) found that 61% of those 

surveyed without a mental illness received care, 29% were even prescribed psychotropic 

medications.
79

 It is certainly possible that these individuals needed care even though they did not 

meet criteria for a disorder.
40

 Priorities may be misplaced: there was a percentage of individuals 

with severe diagnoses who received no care while those with no discernable diagnosis did 

receive care.
47,79

  

These inefficiencies are also manifested by the inequitable access to care.
73

 Racial, 

educational, and socioeconomic disparities in access to care exist, which indicates that certain 

segments of the population who need care are systematically not receiving it.
46,69,81,89–91

 This 

pattern is in part a symptom of service break-downs.   

There are effective tools to mitigate the deleterious impacts of mental illness. More 

people are receiving services than before; yet, there has not been a shift in population-level 

prevalence. As such, making a public-level impact is a key priority to the National Institute of 

Mental Health.
25

 Understanding coverage is a key component to understanding impact.
4
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2.2.3 Factors associated with access to mental health services 
 

Research identifying keep determinants of mental health services coverage is very 

sparse.
8
 The most recent systematic review on the subject found seven articles, worldwide, who 

measured the coverage of a behavioral health intervention or service.
8
 Among the seven articles, 

only one analyzed the impact of predictors on coverage.
92

 They found that clinics who were 

affiliated with the larger government agency, who were open more hours per day, and who 

provided more than two types of comprehensive services had better coverage rates for their 

methadone program.
92

 There are no other predictors, this author is aware of, in the mental health 

coverage literature.  

While empirical research about the determinants of mental health service coverage is 

sparse, a substantial body of research examines the determinants of mental health service access, 

utilization, and engagement. These constructs, though conceptually different from coverage, are 

necessary precursors to coverage.
4
 In order to receive a mental health intervention, the client 

must have access to it and choose to engage. Those who use the service (utilization) become the 

numerator in the coverage calculation. Utilization, however, says nothing about the denominator 

of the target population nor the subsequent proportion of the population receiving the services. It 

is possible that the determinants of access, engagement, and utilization may ultimately be 

associated with coverage. As such, the author reports determinants associated with these 

proximal coverage constructs. 

Researchers have identified characteristics, which have community-level implications, 

associated with residents’ mental health and mental health service use
93–96

 and have hypothesized 

others to test.
97,98

 For example, Cook and colleagues found that neighborhood characteristics like 
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minority density and mental health specialist density impact mental health service initiation.
93

 

Researchers have noted that ethnic minority youth are less likely to receive mental health 

services compared to white youth.
99–102

 Researchers have found that immigrant status is 

associated with lower service utilization.
103–107

 Neighborhood deprivation and lower 

socioeconomic status are connected with higher risk for mental disorders,
95

 and, even after 

controlling for individual characteristics, neighborhood disadvantage remains associated with 

limited access to healthcare
96

 including mental healthcare.
108

 Scores of other researchers have 

found associations between deprivation and negative mental health service outcomes.
108–115

 Not 

having access to transportation negatively impacts access to mental health care.
116–118

 Agencies 

who provide transportation remove distance barriers for clients.
117

 Education level concentration 

in a neighborhood has been associated with lower mental health service utilization.
93

 Higher 

education levels have been associated with greater utilization,
119–122

 and higher service utilization 

is associated with parents having higher education.
121

 Having low English proficiency has been 

associated with longer periods of being untreated and lower mental health service utilization.
123–

125
 There are also determinants of mental health service access at the agency/provider level. 

Additional determinants of mental health service utilization/access include service 

location, staff ethnicity and staff language. Youth are more likely to receive mental health 

services if they are provided in a school compared to other settings.
112,126–128

 Matching client and 

provider ethnicity has resulted in improved mental health service outcomes like utilization, 

satisfaction, and positive perception of the therapist.
129–131

 The literature suggests that being a 

child/youth with lower English proficiency was associated with lower mental health service 

utilization,
106,125,132,133

 and that services are more effective when the therapist provides the 

services in the clients’ native language.
134

 Researchers have included language-match between 
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therapist and client (i.e. client receiving services in their preferred language) in models assessing 

the effectives of psychotherapy.
134,135

 The author will include these provider/agency 

determinants and community-level determinants in the analysis.   

2.2.4 The need for mental health scale-up research 
 

Given the plight of mental illness and the availability of tools, dozens of states have tried 

to scale-up evidence based psychosocial treatments.
3,6,7,136,137

 These efforts, however, have been 

understudied and perhaps are not guided by research.
3,6

  McHugh & Barlow (2010, p. 83) 

succinctly expressed, “Governments, public health authorities, and individuals suffering from 

psychological problems around the world are demanding increased access to psychological 

treatments, and the urgency of this demand has gotten ahead of the determination of best 

practices to achieve it.”
7
 Solid scale-up research is needed to meet this demand and guide these 

efforts to increase the impact of mental health care.
3,29

 

2.3 Current study  
 

In 2009, the LA County Department of Mental Health (LACDMH) embarked on an 

ambitious initiative to scale-up the provision of mental health evidence-based treatments for 

children, adolescents, and transition-age youth.
12–14,16

 This initiative is called the Prevention and 

Early Intervention (PEI) program.
12,14,16

 It focuses on a providing mental health services to 

children and youth who are showing the first signs of a mental illness.
12,13,16

  

One of the key components of the scale-up strategy for PEI is that providers can only be 

reimbursed if they utilize one of the 52 approved EBTs.
16

 LACDMH also selected six of the 52 

interventions of which to provide additional technical assistance and training.
12,16

 Those EBTs 

include: Child-Parent Psychotherapy (CPP), Cognitive Behavioral Intervention for Trauma in 



18 

 

School (CBITS), Managing and Adapting Practices (MAP), Seeking Safety (SS), Trauma-

Focused Cognitive Behavioral Therapy (TF-CBT), and Triple P Positive Parenting Program 

(TPPP).
12,16

 Though the county provided additional implementation support for these six 

interventions, clinicians could still be reimbursed as long as the intervention was on the list of 52 

approved EBTs. 

PEI is a herculean undertaking. LACDMH is the largest county mental health provider in 

the United States.
12,16,138

 Every year LACDMH provides services to approximately 250,000 

residents.
138

 These services are provided through a combination of county-managed clinics and 

contracts with other agencies and individuals.
138

 During the first five years of PEI, 87,000 unique 

children received services.
16

 Previous LACDMH scale-up research has explored the sustainment 

and adaptation of the six supported EBTs
12

 and the penetration of those six interventions within 

the service-provider-system.
16

  

The current study seeks to expand their work
12,16

 by addressing the following research questions:  

(1) To what degree has PEI reached its target population?  

(2) What variation is there in how well PEI has reached its target population? 

(3) What factors are associated with the coverage of the targeted population? 

2.3.1 Conceptual frameworks  
 

Two frameworks guide this study: the Health Services Coverage Framework and the 

ExpandNet framework.
4,11

 The Health Services Coverage framework provides guidance on how 

to operationalize and measure the coverage of scale-up efforts, which is the principal outcome 

for this study, and the ExpandNet framework provides broad categories of determinants that 

influence the scale-up of an intervention.
4,11
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The first framework is the Health Services Coverage framework.
4
 This framework is an 

evaluation framework because it specifies what outcome to measure and how to do so.
139

 The 

framework posits an “intervention needs to be: (i) physically available (available), (ii) financially 

and geographically accessible (accessible), (iii) acceptable, (iv) used (contact coverage), and (v) 

delivered appropriately and effectively (effective coverage)” to obtain a population-level 

impact.
8
  

The current study will be measuring the fourth level of the Health Services Framework, 

contact coverage. Contact coverage refers to the proportion of the target population who receive 

the intervention.
4
 The current study will not be measuring the other levels within the framework 

due to limitations in the existing dataset. However, the author used levels two and three 

(accessibility and acceptability) to locate proximal determinants of contact coverage.  

Tanahashi suggests that an intervention will not be used if the target population finds it to 

be inaccessible and/or unacceptable.
4
 Given the dearth of research on the determinants of contact 

coverage, the author searched for determinants that were associated with constructs that fit 

within the second or third levels of the Health Services Coverage framework (the levels 

immediately preceding contact coverage). Constructs like access, engagement, utilization and 

their attending determinants—explicated in section 2.2.3—are viable targets given their 

theoretical connection to contact coverage.
4
 The Health Services Coverage framework does not, 

however, provide guidance on the category of constructs that would be associated with coverage 

or any of the other levels. The author used a second framework to guide the selection of possible 

determinant categories. 
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The World Health Organization’s (WHO) ExpandNet framework is the second 

framework. It complements the Health Services Coverage framework by providing categories of 

constructs that are associated with scale-up success.
11

 ExpandNet is both a process model 

because it provides a sequence of steps to guide scale-up efforts, and a determinants framework 

because it identifies key constructs that influence scale-up.
11,139

 Scale-up work by Simmons & 

Shiffman form the basis of the framework.
140

 Simmons & Shiffman developed their initial 

framework using a literature review, case studies, a series of meetings held with other scale-up 

experts, and their own professional experience.
140

 The framework is divided into three parts: the 

elements of scaling up, strategic choice areas, and the steps for developing a scaling-up strategy. 

For the purposes of this study, the author used constructs contained within the “elements of 

scaling up” section. 

There are five main constructs in the elements of scaling up section of the ExpandNet 

framework: the innovation, the resource team, the scaling up strategy, the user organizations and 

the environment.
11

 See figure 2.1 for an adapted version of the ExpandNet framework. The 

innovation refers to the intervention/practice/technology/policy/etc. that the resource team is 

scaling up. In the current study, the innovation refers to the LACDMH approved EBTs for the 

PEI initiative. The resource team are those “individuals and organizations who promote and 

facilitate wider use of the innovation.”
11

 The LACDMH, treatment developers, and trainers serve 

as the resource team. The scaling-up strategy includes the “plans and actions necessary to fully 

establish the innovation in policies, programmes, and service delivery.”
11

 The LACDMH have 

deployed a number of strategies to scale-up PEI EBTs: fiscal mandates in the form of 

reimbursement for providing approved EBTs, training in the EBTs, technical assistance in the 

EBTs, implementation teams, etc. User organizations are the entities who will adopt the 
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innovation. In LA, this includes the mental health agencies and their providers. And, the 

environment refers to “the conditions and institutions ... [which are] external to the user 

organizations but fundamentally affect the prospects for scaling up.”
11

 Environment includes 

constructs like “socio-economic and cultural conditions” and “people’s needs, perspectives and 

rights.”
11

 Community characteristics for LA county fit within the “environment” construct.  

 

 

Figure 2.1 Adapted ExpandNet and Health Services Coverage frameworks for the current 
LACDMH PEI initiative scale-up study.4,11 

 

The determinants explicated in the section 2.2.3 all fit within one of the broad constructs 

within the ExpandNet framework.  Figure 2.2 presents the analytic framework for the current 

study. The determinant constructs come from the ExpandNet framework. The author 

operationalized the variables associated with those constructs based on guidance from the 

literature outlined in section 2.2.3. The framework combines the proximal determinants of scale-
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up, nested within the ExpandNet construct categories “environment” and “user organization” 

with the attending outcome constructs from the Health Services Coverage framework, of which 

“contact coverage” is the prime target.  

   

Figure 2.2 An analytic framework which guides the current study based on ExpandNet and the 

Health Services Coverage frameworks   
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Chapter 3: Methods 
3.1 Data sources 

 

Data for this study came from three sources: LACDMH administrative claims data for the 

PEI initiative, LA county population data from the American Community Survey (ACS), and 

geographic files from the census and LA county. There is precedent in the health services 

literature for combining census data with claims data
141

 and using geographic files in 

combination with census data.
142–144

  

The administrative claims data included information about the client, provider, agency, 

and intervention for each PEI-eligible claim.
145

 Mental health providers who sought 

reimbursement from PEI funds submitted a claim demonstrating that the client met criteria for 

PEI services (e.g. age, presenting problem, diagnosis, etc.) and that the clinician used one of the 

approved EBTs (e.g. MAP, TF-CBT, etc.).
16

 Client and staff reimbursement eligibility criteria 

varied depending on the intervention being used.
146

 For example, CPP could be provided to 

children ranging in age from 0 to 5 years-and-11-months.
146

 Overarching PEI eligibility criteria 

included: Medi-Cal eligible and the presenting mental health issue problem was a first-episode 

(early-intervention). While the claims data included multiple fiscal years, this study only 

examined one fiscal year. 

This study used administrative claims data for fiscal year (FY) 2013-2014. Cleaning and 

analyzing the data for nine fiscal years is beyond the scope of this project. The author selected 

FY 2013-2014 because it represented a mid-point in the PEI scale-up initiative and was the fiscal 

year LACDMH provided services to the highest number of PEI child/transitional age youth 



24 

 

clients. This coverage score would be the highest coverage score for the duration of the PEI 

initiative.  

The analytic sample for this study included all qualified claims. Following precedent set 

by others,
16

 qualified claims included psychotherapy claims for clients ages 0 to 25, who 

received an approved EBT. Similar to others, the author excluded claims for services like 

medication management, evaluation and assessment, and case management.
16

 Limiting to 

psychotherapy claims focuses the analysis on the active psychosocial treatment of the EBTs. The 

National Academies has highlighted the need to understand the scale-up of psychosocial 

interventions.
26

  

Most mental health insurance claims data have diagnostic codes, CPT procedurals codes, 

and varying degrees of information about the provider and setting. The LACHMD claims include 

that information and provide additional details about the specific EBT the therapists used during 

the treatment encounter.
145

 Table 3.1 lists data fields this study isolated. 
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Table 3.1 Variables contained in the LACDMH administrative data used in this study 
Variable Description 

Client ID Unique research-generated ID numbers for each level 

Staff ID  

Agency/clinic ID  

 

Service location address 

 

Postal address for service location 

Service location zip code 

 

Postal zip code for service location 

Date of service Date when client received a service from provider 

 

EBT code Nominal – six categories (the approved EBIs) 

 

CPT Procedure code ICD procedural code 

 

Client ethnicity Nominal – White, Latino/a, African American, Asian, 

American Indian/Alaska Native, Native Hawaiian/Pacific 

Islander, Other, and not reported. 

 

Client language Nominal – English, Spanish, Other 

 

Client diagnosis Nominal – Mood, anxiety, disruptive behavior, trauma, 

attention/hyperactive, adjustment, autism/ppd, substance use, 

and other  

 

Client age Continuous – years 

 

Staff language Nominal – English, Spanish, Other 

 

Service setting Nominal – office, school, home, residential, unlisted  

 

 

The American Community Survey (ACS) is the second data source this study utilized. 

The ACS began in 2005 and is a key continuous population survey administered by the United 

States Census Bureau.
147

 Through monthly samples, the survey produces population 

characteristic estimates for varying geographic units (e.g. block, census tract, zip code tabulation 

area). The survey calculates these population characteristic estimates by sampling approximately 

3 million addresses per year. Households receive a survey, phone-call follow-up, and/or field 

visits to complete the survey. The survey includes questions about the house (e.g. number of 
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rooms, type of home), transportation, income and household costs, and household member 

relationships and demographics.
148

  

This study used the 2014 ACS 5-year estimates given their increased accuracy and their 

match with FY 2013-2014 claims data. These ACS estimates are the average of data collected 

from January 2010 to December of 2014.
149

 The ACS dataset was at the block group level 

specific to LA county. There are 6,425 block groups in LA county. The author used block groups 

because they were the smallest geographic size with available census data and could be used to 

aggregate to higher geographic levels for subsequent analyses. Others have used the block group 

level as a proxy for neighborhoods to assess community-level predictors of mental health service 

disparities.
93

 See table 3.2 for community characteristics this study used from LA county ACS 

data. 

Table 3.2 Community characteristic estimates extracted from the American Community Survey 
specific to LA county at the group block level, then aggregated to clinic service areas. 

Variable Description 
Ethnic composition 

 

Continuous – proportion of individuals who identify as an 

ethnic minority 

 

Immigration 

 

Continuous – proportion of individuals born outside the U.S. 

Socioeconomic status Continuous – proportion of individuals below poverty line 

 

Means of transportation Continuous – proportion of households with no access to a 

vehicle 

 

Adult education level Continuous – proportion of adults (>=25 y/o) with at least 

college degree 

 

Language spoken in home Continuous – proportions of households considered limited 

English 

 

Population density Continuous – number of 0 to 24-year-old per square mile 

living in the clinic service area 
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The author combined various geographic shapefiles to create the maps for this study. The 

county block group and service planning area files created the geographic boundaries and the 

road file facilitated the calculation of distance to the clinics. The clinic addresses from the 

LACMDH file served as the center point for the service area buffers, and the street address file 

helped located the addresses on the map. Table 3.3 lists geographic files 

Table 3.3 List of data sources for the geospatial analysis  
File name Type Source Description 

DRP_COUNT

Y_BOUNDAR

Y.shp 

Polygon https://egis3.lacounty.gov

/dataportal/drp_county_b

oundary/ 

LA County boundary file including 

Catalina & San Clemente islands. 

From LA county GIS portal 

  

tl_2014_06_bg.

shp 

Polygon https://www.census.gov/c

gi-

bin/geo/shapefiles/index.

php?year=2014&layergro

up=Block+Groups 

  

California census block groups 

TIGER shapefile for 2014  

Service_Plannin

g_Areas_2012.s

hp 

Polygon https://egis3.lacounty.gov

/dataportal/2012/03/01/se

rvice-planning-areas-spa-

2012/ 

Service planning areas for LA 

county. These areas are used by the 

department of mental health. These 

are aggregated from 2010 census 

tracts and the file was created in 

2012. 

  

tl_2014_06037_

roads.shp 

Line https://www.census.gov/c

gi-

bin/geo/shapefiles/index.

php?year=2014&layergro

up=Roads 

  

All roads LA county from 2014 

TIGER/Line shapefile 

Street_Addresse

s_US.lox 

Point ESRI   ESRI ArcMap 2012 address 

database to match clinic addresses   

DISS-lacmhd-

program-

addresses.csv 

Point LACDMH claims data LA County Department of Mental 

Health agencies who provided PEI 

services during fiscal year 2013-

2014 
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3.2 Unit of analysis 
 

This study used three different geographic units to answer the study’s research questions 

see table 3.4 To determine the coverage of a particular intervention, one must know the number 

of individuals who received the service (numerator), the number of the service’s target 

population (denominator), and the geography on which these numbers are based. The first 

coverage score used the county as the geographic unit. The numerator was all the distinct clients 

who received PEI services and the denominator was the PEI target population for the county. 

This score does not account for boundary crossers--individuals from a neighboring county who 

traveled to LA county to receive services. This score answered the research question about the 

extent to which the target population has received PEI services. The county-level, however, did 

not allow for any comparisons within the county.  

Table 3.4 Unit of analysis and numerator/denominator calculations for each research question. 

Research question Unit of analysis (n) Coverage numerator Coverage denominator 

#1 – PEI coverage County (n=1) Distinct clients who 

received at least one 

psychotherapy session 

within the county 

 

PEI target population 

within county 

#2 - Coverage variation Service Planning Areas 

(SPA) (n=8) 

Distinct clients who 

received at least one 

session within the SPA, 

clients assigned to the 

SPA where they received 

most of their care. 

 

PEI target population 

within SPA 

#3 - Factors associated 

with coverage 

Clinic Service Areas 

(CSA) (n=254) 

Distinct clients who 

received at least one 

session from the clinic. 

PEI target population 

within CSA 
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The next geographic unit was the service planning area (SPA). LACDMH has divided the 

county into eight SPAs (n=8).
150

 Others have noted the utility of using service areas as a 

meaningful geographic level to support behavioral health service planning.
151

 The coverage 

numerator was the number of distinct clients who received services in clinics assigned to each 

SPA. County data analysts designed the borders of the SPAs to coincide with census tracts, so 

the author used census data for these geographic areas to calculate a denominator for each SPA. 

Like the county, this scoring approach assumed that clients lived within the SPA where they 

received services. The SPA-level coverage scores permitted a descriptive-level comparison, but 

the sample size was too small for inferential statistics.  

The final geographic unit was the clinic-service-area (CSA). Ideally, the study would 

base contact coverage scores on the clients’ residence aggregated to meaningful communities. 

However, for privacy reasons, LACDMH did not include client geographic identifiers (e.g. zip 

code) in the dataset. To generate a proxy, the author created a buffer around each clinic based on 

network distance. Walker and colleagues used a similar approach when they assessed mental 

health services across Washington State,
152

 and Guerrro and colleagues used this approach to 

assess access to substance abuse treatment in LA County.
142,143

 Network distance is one measure 

geospatial researchers have used to derive meaningful distances for behavioral health service 

access.
152–154

  

The author used service area network analysis to create the CSAs.
152–155

 Ballas and 

colleagues define a spatial network as “…any representation of movement in a directed 

space.”
155

 Service area network analysis is a method to construct an area within a specified 

distance from a service location like a mental health clinic.
155

 The network accounts for how the 

subjects can move throughout the area. In the present study, the author used LA county streets to 
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create the service area networks. This street network approach differs from the Euclidean (‘as the 

crow flies’) approach, which creates geography by drawing straight-lines from the service 

location rather than accounting for the network of roads.
155

 Figure 3.1 provides an example of a 

clinic service area using network analysis compared to the equivalent Euclidean area.  

 

Figure 3.1 An example of the clinic service area buffer used for this study, compared to a 
Euclidian buffer. 

 

To make the clinic service areas, the author geocoded the clinics in ARCMap 10.6 using 

the clinic’s address and then calculated a 2-mile service area around each clinic using LA County 
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census street maps. The length of street network service area buffers vary in the health services 

literature (e.g. .3 miles, .6 miles, 1.2 miles, 1.9 miles, 2.73 miles, 10 miles, 20 miles).
154,156

 The 

author based the 2-mile buffer for this study on research conducted in LA county which found 

that survey respondents traveled 1.9 miles to receive behavioral health services.
157

 There was 

overlap with some CSAs. The author retained the overlap because the mental health clinics do 

not have prescribed geographic boundaries that determine who they can serve like a school. 

Retaining the overlap assumes that if a potential client lived within close proximity (less than 2 

miles) to two clinics, the client could elect to receive services from either. 

To create the outcome variable and the predictors, the author used apportionment to 

aggregate both the census and clinic data to the CSA-level.
158

 Apportionment is the process by 

which a geographic shape (e.g. CSA) is overlaid onto other geographic shapes (e.g. census block 

groups) and is assigned the portion of data covered by the overlaid shape. For example, in figure 

3.2, the circle is overlaid onto four other polygons. Each of the four polygons contains 

geographically-constrained data (e.g. proportion of people living below the poverty line within 

the polygon). Apportionment assumes that the population characteristics of the underlying 

polygons are evenly distributed across the polygon (e.g. proportion of people living below the 

poverty line are evenly distributed across the area of polygon). The population characteristics of 

the circle would then be the sum of the four portions it covers of the other polygons.  
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Figure 3.2. Example of apportionment. 
 

For this study, the overlaid shape was the clinic service areas (CSA), and the underlying 

shapes were the census block group polygons with their associated community-level census data. 

The center of a CSA was a clinic, so the author aggregated the agency/provider variables 

(client/therapist language match, and proportion of service settings outside the office) from the 

claims level to the CSA level. The resultant product from the apportionment process was a 

dataset where the observations were the CSAs and the predictors were the agency/provider and 

community variables aggregated to the CSA. The following example demonstrates how the 

author aggregated the variables using apportionment.  

For example, to calculate the proportion of individuals living below the poverty line for 

the hypothetical CSA in figure 3.2, the author executed the following steps using ArcMap 10.6. 

First, the author calculated the area of the CSA, the circle in figure 3.2. Second, he calculated the 

area of the segments within the CSA (i.e. pie slices within the circle). Third, he ascertained the 

proportion of the service area covered by each segment by dividing the segments’ area by the 

CSA area. In the figure above, the number within each segment represents the proportion of the 

S1
.10

S4
.40

S2
.20

S3
.30

P1 = .15 P2 = .05
P4 = .02

P3 = .06

Calculating proportion of individuals below poverty 

using apportionment for CSA in fig 3.2 

Proportion of 

CSA for each 

segment 

Proportion 

of polygon 

in poverty 

Proportion of 

segment in poverty 

S1 = .10 P1 = .15 .10 * .15 = .015 

S2 = .20 P2 = .05 .20 * .05 = .01 

S3 = .30 P3 = .06 .30 * .06 = .018 

S4 = .40 P4 = .02 .40 * .02 = .008 

   

CSA proportion under poverty:  

(.015 + .01 + .018 + .008) = .051 
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CSA covered by the segment (e.g. the blue segment is .40 of the service area). After calculating 

the segment area proportion, the author then multiplied each segments’ proportion by the 

proportion of individuals who lived below poverty for the segment’s polygon. The proportion of 

individuals living below poverty line is listed in each polygon in figure 3.2 (e.g. blue polygon p4 

= .02). The calculation for the blue segment would be .40 * .02 (segment proportion * segment’s 

home polygon proportion of individuals below poverty). The resultant weighted proportion for 

the segment would be .008. The author used this calculation for each segment to get their 

weighted proportion and then summed the segments to get the aggregated variable for each CSA. 

The author lists the steps for this example in the call-out box in figure 3.2. The author also 

outlines the final list of variables in table 3.5. The author initially calculated the variables using 

the method outlined in the “calculation” column. He then aggregated the values using the 

apportionment procedures described in the previous paragraph.   
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Table 3.5 Description of variables that author apportioned for final regression analysis 
DV/IV Description Data source Calculation of variable prior to apportionment 
DV CSA coverage score. Claims and 

ACS 

 

Number of distinct clients served by clinic divided 

by number of target PEI population 

  

IV Proportion of claims with 

a language match between 

client and therapist 

 

Claims 

 

Number of claims where therapist language 

matched clients’ language divided by the clinic’s 

total number of claims.
a
 

 

IV Proportion of claims 

provided in a setting 

outside the clinic 

 

Claims Number of claims executed outside of the office 

divided by the clinic’s total number of claims 

 

IV Proportion of population 

who identify as an ethnic 

minority 

 

ACS 1 – proportion of non-Hispanic whites  

IV Proportion of population 

who were born outside the 

U.S.  

 

ACS Number of individuals born outside the U.S. 

divided by the number of individuals 

IV Proportion of the 

population below the 

poverty line 

 

ACS Number of individuals below the poverty line 

divided by the number of individuals 

IV Proportion of households 

without access to a vehicle  

 

ACS Number of households without a vehicle divided 

by the number of households 

IV Proportion of adults (≥25) 

with at least a college 

degree 

 

ACS Number of adults (≥25) divided with at least a 

college degree by the number of adults (≥25) 

IV Proportion of households 

designated as having 

limited English 

 

ACS Number of households designated as limited-

English speaking divided by the number of 

households 

IV Population density of 0 to 

24y/o 

ACS Divide the number of individuals between 0 and 

24 by the area 

a 
all English-speaking clients were considered match regardless of therapists’ listed primary language. 

 

3.3 Aim 1 data analysis 
 

This descriptive aim used geospatial methods and small-area variation analysis (SAVA) 

to calculate a coverage score for LA county, its eight serving planning areas, and the clinic 

service areas buffers for all eligible PEI clinics. These coverage scores were compared to each 

other at the SPA level using descriptive statistics and data visualization. 
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The small-area variation analysis (SAVA) method guided this aim.
159–161

 Small-area 

variations refer to “differences in the rates of use of medical services between geographic 

regions.”
159

 This study used adapted procedures outlined by the Health Services Research 

Group.
159

 Their method includes five steps (1) determine the numerator, (2) determine the 

denominator/specify geographic region, (3) consider rate stability, (4) make adjustments for sex 

and gender, and (5) apply statistical tests.
159

  

SAVA is a fitting method for this aim. John Wennberg, referred to as one of the 

developers of SAVA, enumerated distinguishing characteristics of a SAVA study:
161

 

“First, it provides population-based rates. Second, it focuses on local provider 

communities…with the intent of measuring variability among providers. Third, it can 

provide a comprehensive description of the health care delivery system…Fourth, it seeks 

answers to policy-relevant questions.” 

The current study measured population-based coverage (contact coverage), these scores were 

connected to provider communities (i.e. clinic-service-areas), and the study sought to answer 

policy relevant questions. These characteristics of the current study match well with Wennberg’s 

SAVA characteristics.
161

  

The first step in the Health Services Research Group’s SAVA method is to identify the 

numerator, which is the number of individuals who received the service under examination.
159

 

The index of individuals who have received a service is one of the most important to calculate.
151

 

As explicated in section 3.2, the author calculated the numerator for the county, SPA and CSA 

levels by identifying distinct children and youth in the claims data who received one of the 

approved EBTs during FY 2013-2014. This study counted a child as having received services if 

they had at least one session. The literature on dose-effects in child/youth mental health 

treatment have yielded inconclusive findings, suggesting that number of sessions is not 
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associated with improvement.
162–164

 Furthermore, previous PEI service penetration studies used 

one session as their inclusion rule.
16

 Table 3.6 provides examples of the variation in numerators 

and denominators researchers have used to calculate coverage. 

Table 3.6 Examples of contact coverage operationalization variation.  
Author (year) Numerator Denominator 

DOH (2012)
165

  # of clients treated by 

IAPT program based on 

client database. 

Adult population multiplied by 

epidemiologic prevalence rate from the 

Adult Psychiatric Morbidity Survey, then 

multiplied by 15% (the percentage of adults 

they estimate will seek treatment, receive 

diagnosis, and enroll in services) 

 

Bruns (2016)
1
  # of clients who received 

one of the selected EBTs 

 

# of adults and youth considered to have a 

SMI based on general estimates from state 

mental health department  

 

Graaf (2018)
166

 # of youth who received 

care 

 

Total youth population 

Brown (2014)
97

 # of families who received 

intervention 

 

Did not calculate 

Pirkis (2011)
167

 # of clients receiving 

services captured in 

claims and admin data 

Prevalence of psychiatric disorders from 

2007 national Survey of Mental Health and 

Wellbeing 

 

Araya (2018)
8,168

 National cross-sectional 

survey asking respondents 

whether they had received 

services in connection 

with a depressive episode 

over the past 12 mths. 

 

CIDI-SF diagnostic tool used to establish 12-

month prevalence of depression in cross-

sectional survey 

Aagaard (2004)
169

 # of inactive patients 

based on their activity in 

the national psychiatric 

registry 

 

Prevalence of SMI based on national registry 

(diagnosis + high service utilization) 

Lin (2010)
92

  # of service users taken 

from clinical records 

 

# of opiate addicts registered with local 

police department 
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Martini (1985)
170

 Clients registered as being 

in contact with a case 

manager 

 

Prevalence rates multiplied by population  

Marinoni 

(1983)
171

 

Clients who receive 

services per admin data 

Total population  

   

The second SAVA step is to identify the denominator which also requires specifying the 

geographic area.
159

 As noted in section 3.2, the geographic units are the county, SPA and CSA. 

The denominator can be calculated in several different ways (see Table 3.6).
8
 The most blunt 

measure is multiplying the geographic unit’s population of children/youth by the epidemiologic 

prevalence rates for any mental illness.
8
 The population data for this type of calculation would 

come from the ACS and the prevalence rates would come from the mental health literature.
172,173

 

Other researchers, however, have advocated the importance of modifying the denominator such 

that it more closely reflects the realities of actual service utilization.
8,17,165,174

  

In-line with those recommendations, this study reduced the denominator following a 

process similar to the one used by the Improving Access to Psychological Therapies program
165

 

and others.
17

 The author used a five-step process to specify the denominator (see Table 3.7). Step 

one, obtain the child/youth population estimate for each census block group based on data from 

the 5-yr ACS 2014 dataset. As previously reported in the section 3.1, the 2014 5-year estimates 

average the population characteristics in LA county from January 2010 to December 2014. This 

window of time overlaps with FY 2013-2014 LACDMH claims data, and the 5-year estimates 

provide the most accurate population estimates.
149

 Step two, multiply the child/youth population 

estimate by the percentage of the population in the census block group who were enrolled in 

Medi-Cal
175

 given that PEI services are intended for that population. Step three, multiply the 

Medi-Cal eligible child/youth population by the epidemiologic prevalence rate for any PEI-
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qualifying mental disorder.
172,173

 Step four, multiply the population of children/youth with any 

qualified mental disorder with the prevalence rate for non-serious disorders
176

 because PEI is a 

prevention/early intervention initiative.
13,14

 Step five, multiply the non-severe prevalence 

population by the percentage of youth likely to seek services.
44,99

 Given that the prevalence rates 

of child/youth mental disorders has been relatively stable, the same prevalence percentages will 

be used to cover full fiscal year FY 2013-2014.
177,178

 The author created a denominator for each 

census block group and used apportionment (see section 3.2) to calculate the denominator for 

each CSA. The reduction step proportions, sources of data, and their confidence intervals are in 

Table 3.8.  

Table 3.7 Contact coverage denominator reduction steps using zip code 90011 as an example 
Step Description      
1 Initial denominator (children/youth population)  

 

35,247     

2 Medi-Cal eligible  

 

35,247 x 45.3% = 15,967 

3 Any mental disorder prevalence 

 

15,967 x 32.8% = 5,237 

4 Non-serious disorders 

 

5,237 x 92% = 4,818 

5 Likely to seek services 

 

4,818 x 50.6% = 2,438 

 Specified denominator 

 

2,438     
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Table 3.8 Source, percentage and confidence intervals for denominator reduction steps. 
Step Description % CIa Source 
1 Initial denominator 

(children/youth population)  

 

  Apportioned block group 

to the CSA from 2014 

5yr ACS 

2 Medi-Cal eligible  

 

45.3% 45.4% - 45.2% California Dept. of 

Health
175

* 

3 Any mental disorder 

prevalence 

 

32.8% 31.9% - 33.7% NCS-A
173

** 

4 Non-serious disorders 

 

8% 7.5% - 8.5% NCS-A
173

** 

5 Likely to seek services 

 

50.6% 48.8% - 52.4% NHANES
44

 

a
 the confidence intervals were calculated using p + Z * square root ([p * q] / n).

179
 

*They didn't report the denominator for youth population, but the author retrieved it from the 2011 ACS 5yr estimate data. The report gave the 

raw number of 0-18, and ACS had up to 17, so the estimate is slightly too high. The author divided the ACS 15 to 17 y/o category. Those age 

groups would add around 147,400. Adding that to the denominator the 0-18 estimated enrollment rate is 45.3% 

**NCS-A has an any disorder prevalence estimate of 40.3%, PEI doesn’t cover certain diagnoses included that estimate (e.g. bipolar), so the 

prevalence for those disorders was removed, bringing the prevalence down to 32.8%. 

 

The third SAVA step is to consider the stability of the data.
159

 To assess stability, the 

author examined trends in the data from a published report that assessed the penetration of EBTs 

within the PEI over the first five years of the initiative.
16

 Penetration rates climbed steeply when 

PEI began but soon leveled off and appear to have remained stable.  

The fourth SAVA step is to make adjustments for age and sex.
159

 Rather than providing 

expected estimates of service utilization,
174

 the author reduced the target denominator to make 

the proportion more precise. Green argued to create a denominator that reflects the “fraction of 

the people who assumes the patient role”, which the denominator reduction steps aimed to do.
174

  

The fifth SAVA step is to apply statistical methods for comparison. The author used 

descriptive statistics and data visualization to explore the coverage scores at the county and SPA 

level. The author created a heat map based on the SPA coverage scores to facilitate 

comparison.
180,181

 Heat maps are effective tools for communicating health related information to 
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the public
181

 because they quickly and intuitively depict variation in the intensity of a 

phenomenon within a particular geographic area. The darker the geographic unit on the map, the 

larger their contact coverage score. 

Researchers have deployed a number of statistics to facilitate comparisons between 

small-areas.
182–185

 These descriptive statistics include: extremal quotient, unweighted and 

weighted coefficients of variation, systematic component of variation, chi-squared, and empirical 

Bayes.
182–184

 The type of statistic to deploy depends largely on the characteristics of the data.
182

 

For example, the extremal quotient
186

 is fitting if the sampled geographic units are large and of 

similar size, readmission does not occur, and the expected values are sufficiently large.
183

 In their 

simulation comparison of several SAVA statistics, Ibanez found the empirical Bayes approach to 

be the best among several alternatives (depending the nature of the data).
182

 These approaches 

are beyond the expertise of the author, so between-SPA comparison will be limited to descriptive 

statistics and data visualization. The author used OLS regression to examine predictors at the 

CSA level. 

3.3 Aim 2 data analysis 
 

This aim used LACDMH claims data and ACS data to examine the influence of local 

system and community factors on clinic service area coverage using OLS regression. The results 

were the identification of factors that influence coverage and estimates of their contribution to 

variance explained. 

The unit of analysis for this aim was the clinic-service-area (CSA) as mentioned 

previously. This aim used all qualified claims, even those for the small percentage of clients who 

received services from more than one clinic because the coverage score for this geographic level 
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assumes the perspective of the clinic, and removing the clients who received services from more 

than one clinic would not accurately represent all of the clinics’ coverage scores. Initially there 

were 261 CSAs in the dataset. One of the CSAs was outside LA county, and six additional CSAs 

had buffers which crossed the county line. The census block group data was specific to LA 

county, so those buffers who crossed LA county lacked estimates for the census blocks outside 

the county. The predictors and the coverage denominators for those buffers would be 

underreporting the characteristics of the buffer, as such, the author dropped them from the 

analysis which resulted in a final analytic sample of n=254.   

The author used multivariate OLS regression for this aim’s analysis.
20

 Other SAVA 

studies have used multivariate regression models with varying sample sizes (e.g. 68,
187

 13,
160

 

10,
188

). The dependent variable for the analysis was the contact coverage score for each CSA 

created in Aim 1. While there is empirical guidance on the selection of predictors and correlates 

in the mental health service access literature, as outlined in chapter 2, these predictors have not 

been analyzed in relation to contact coverage. Given the exploratory nature of this study, the 

author will use an iterative regression approach to fit a final regression model.
189

 An iterative 

approach in conjunction with guidance from the literature is fitting for this study given its 

exploratory natue.
190

 The predictor variables are outlined in Table 3.9. 
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Table 3.9 Predictor variables for the Aim 2 analysis. Each predictor was aggregated to the 
clinic service area using apportionment 

Level Predictor Variables Data source 

Clinic Proportion of claims with a 

language match between client and 

therapist 

 

Claims 

 

 Proportion of claims provided in a 

setting outside the clinic 

 

Claims 

Community  Proportion of population who 

identify as an ethnic minority 

 

ACS 

 Proportion of population who were 

born outside the U.S.  

 

ACS 

 Proportion of the population below 

the poverty line 

 

ACS 

 Proportion of households without 

access to a vehicle  

 

ACS 

 Proportion of adults (≥25) with at 

least a college degree 

 

ACS 

 Proportion of households 

designated as having limited 

English 

 

ACS 

 Population density of 0 to 24y/o ACS 

 

The current list of predictors was based on the mental health service literature as reported 

in section 2.2.3. The influence that community and neighborhoods play in mental health and 

mental health service use have been noted by others.
93–96

 Ethnic minorities status,
99–102

  

immigrant status, 
103–107

 socioeconomic status,
95,96,108–115

 access to transportation,
116–118

 education 

level,
119–122

 and English proficiency
123–125

 have been associated with mental health service 

utilization. Others have used similar census-based, community-level predictors in mental health 

service access research
93

 The author selected the clinic service setting because service location 
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can have an impact on access and subsequent coverage.
112,126,127

 In addition, matching client and 

provider language has yielded improved mental health service outcomes (utilization, satisfaction, 

positive perception of therapist, etc.).
129–131

 The population density variable is the number of 0 to 

24-year-olds within the CSA per square mile. The author included this variable as a control. 

Six of the predictors are dichotomized proportions (e.g. proportion of population who 

identify as an ethnic minority, proportion below poverty, etc.). Researchers have tested 

multivariate models in SAVA studies and used a similar approach to construct their 

variables.
174,188

 For example, one SAVA study used the percentage of unemployed and the 

percentage of college-educated per unit of analysis rather than all of the employment and 

education categories because using all of the categories did not add any predictive value.
174

  

The first model used CSA contact coverage score as the dependent variable and the 

predictors listed in Table 9. The author assessed OLS assumptions for the model.
191

 Visual 

inspection and results from the Shapiro-Wilks W test suggested that the distribution of the 

residuals was skewed. Cook’s D test identified a number of influential observations. The 

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity indicated that the model was not 

homoscedastic. The predictor with a variance inflation factor above 10 was the proportion of the 

households identified has having limited English.
20

 This predictor was highly correlated (.894) 

with the proportion of the community who were born outside the U.S. Other predictors were also 

highly correlated (e.g. poverty and having no vehicle, minority status and college education). 

The author assumes some degree of spatial autocorrelation given the close geographic proximity 

and overlap of buffers in certain regions of the county. Visually inspecting the linearity between 

the outcome and predictor variables revealed some departure from linearity. Geospatial 
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regression methods to address these concerns are beyond the author’s scope, so he utilized a 

number of remedial measures to improve the model.  

The author used a series of corrections due to departures from OLS assumptions. The 

author used a log transformation to correct for the skewed distribution of the dependent variable. 

The author retained influential observations after determining that there were no data errors.
20

 

There are some CSAs who had coverage scores above 1.0. Examining those CSAs, it appeared 

that they were located in geographic regions where it is likely that clients from outside the buffer 

came to receive services because there were few alternatives. The author dropped the limited 

English variable from the model given its inflated VIF and high correlation with the immigrant 

variable. The author retained the other variables because they reflect important social 

determinants of mental health service access. The author applied the robust variance estimator to 

minimize the influence of auto correlation in the data and correct for any issues with 

heteroskedasticity.
192–194

 Furthermore, the author added a weighting variable based on the 

number of clients each clinic served in the FY.
192

 The CSA coverage score would largely depend 

on the size and capacity of the clinic. The claims data did not have information sufficient to 

create an accurate agency-size variable. The weight variable attempts to account for that 

influence.  

The author executed a series of models making iterative adjustments to correct for 

assumption violations. The final model reflects the most conservative analytic approach given 

the nature of the data. The final OLS model included a log transformed dependent variable, all 

the predictors in table 3.9 with the exception of household limited-English, with a robust 

variance estimator correction and a weighting variable. These corrections improved the 

assumptions outcome for the model. The residuals appeared much more normal, though still 
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slightly skewed. There were no predictors with a VIF above 10 and no issues with 

heteroskedasticity. There remain influential observations, some issues with linearity, and the 

author assumes that a degree of spatial auto correlation persists even with the correction. The 

author used Stata v. 14.2 (Stata Corp., College Station, TX) for all OLS data management and 

analysis.  

3.5 Protection of human subjects  
 

The data were considered a limited dataset because they contained service dates.
195,196

 

The author received IRB approval for this study from Washington University (#201903099).  
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Chapter 4: Results 
 

4.1 Aim 1 results 
 

Aim 1 addresses the first two research questions, the extent to which PEI has reached its 

target audience and if there were differences between geographic locales in coverage. To answer 

these questions, the author examined the data at two geographic levels, the county and the 

service planning area (SPA).  

4.1.1 County level coverage 
 

The county level assumed the perspective of the LACDMH and the coverage of PEI 

services over the entire county (n=1). The numerator of the county coverage score is the number 

of distinct children served by any of the 261 clinics who submitted PEI-related psychotherapy 

claims in FY 2013-2014. The denominator for the county was 236,312 (after the denominator 

reduction steps). The county coverage score for FY 2013-2014 was 17.0%.  As a point of 

comparison, the coverage score for FY 2010-2011 at the county level was 9.7%.  

Figure 4.1 shows a map of LA County and the 261 clinics who submitted PEI-related 

claims in FY 2013-2014. The spaces in the map without any clinics are largely occupied by state 

parks and national forests shown in Figure 4.2. The clinics cluster in the more urban areas in the 

southern part of the county. Appendix 1 maps clinics in LA County and present population 

density of the census block groups.  
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Figure 4.1 Map of LA county with clinics who received reimbursement for providing PEI 
services in FY 2013-2014 (city locations are only approximations and not to scale) 



48 

 

 

Figure 4.2 Map of LA county with clinics who received reimbursement for providing PEI 
services in FY 2013-2014 with LA county topography  
 

Overall, 40,132 distinct children and transitional age youth received psychotherapy 

services (see table 10 for client descriptive statistics). There were more males (55%) than 

females (45%), most clients identified as Latino/a (71%) followed by African American (15%), 

and the majority listed English as their primary language (72%) followed by Spanish (27%). 

Prevalence of admission diagnoses varied. The most prevalent were mood disorders (30%), 

followed by disruptive behavior disorders (23%), adjustment disorders (12%), anxiety disorders 
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(11%), hyperactive/attention disorders (10%) and trauma (8%). Client average age was 11-years-

old with a range from 0 to 25 (SD= 4.68).  

Table 4.1: County-level PEI client demographic and service statistics for FY 2013-2014 
(n=40,132) 
  N(%) / Median(SD) 

Gender  

Male 22506 (54.9) 

Female 18068 (45.0) 

Missing 8 (.02) 

Ethnicity  

Latino/a 28298 (70.5) 

African American 6122 (15.3) 

White 3056 (7.6) 

Not reported 972 (2.4) 

Other 761 (1.9) 

Asian 669 (1.7) 

American Indian 193 (.5) 

Pacific Islander 61 (.2) 

Primary Language  

English 28898 (72.0) 

Spanish 10666 (26.6) 

Other 430 (1.1) 

Not reported 138 (.3) 

Admission Diagnosis  

Mood 12133 (30.2) 

Disruptive behavior 9224 (23.0) 

Adjustment disorder 4625 (11.5) 

Anxiety 4522 (11.3) 

Attention/Hyperactive 3946 (9.8) 

Trauma 3034 (7.6) 

Other 2452 (6.1) 

Autism/PPD 185 (.5) 

Substance use 11 (.03) 

  

Age (years) 11 (4.7) 

Number of sessions 13 (25.8) 

Number of therapists 1 (1.8) 

Number of clinics 1 (.23) 
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There was a range in the number of sessions clients received and a range in the number of 

therapists they had and clinics they attended. Number of sessions per client ranged from 1 to 703, 

50% of the clients received 13 sessions or less, 75% received 26 sessions or less (see figure 4.2 

for distribution of sessions). The mean number of sessions was 19.8 (SD=25.8) and the median 

was 13. It was not possible to accurately determine the number of therapists each client had 

because there were missing therapist identification numbers from the claims data. There were 21 

clients who did not have a therapist ID associated with any of their claims. If those clients were 

removed, the range of therapists was 1 to 41, 50% of clients had one therapist, the mean was 1.7 

and the median was 1 (see figure 4.2). Clients received services from one to four different 

clinics. The mean was 1.7 (SD=1.8) and the median was 1, 50% of clients received care from 

one clinic and 75% received treatment from three or less (see Figure 4.3).  

Figure 4.3: Distributions of the number of clients’ sessions, number of clients’ therapists, and 
number of clinics clients received services from in FY 2013-2014. 
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Determining the number of distinct therapists was not possible because 1,398 claims did 

not have a therapist identifier. There were 4,798 distinct therapists, which would make the range 

of possible therapists 4,798 to 6,196, assuming that each missing therapist identifier represented 

a distinct therapist. It is unlikely that the missing values all represented a distinct therapist, but it 

is not possible to tell from the claims. Beyond therapist identifiers, there was little information 

about the characteristics of the therapists. 
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Therapist characteristics which could be ascertained from the claims data included 

therapists’ discipline, the therapists’ primary language, number of clinics they worked in during 

the fiscal year, how many clients they served, and how many sessions, overall, they provided 

(see table 11 for therapist characteristics). The five most frequent disciplines among therapists 

was Marriage and Family Therapy (28%), Rehabilitation (22%), Counseling (22%), Social Work 

(10%), and Student Trainees (8%). Over half of therapists listed English as their primary 

language (54%), followed by Spanish (37%) and Other (8%). There was a small number of 

therapists who had two languages listed among their respective claims (n=20, .4%). The number 

of clinics these therapists worked in ranged from 1 to 5, with 75% of therapists working in 1 

clinic. The mean number of clinics the therapists worked in was 1.2 (SD=.51) and median was 1. 

Therapists provided care for 1 to 279 different clients, with 50% of therapists with 10 or less 

clients and 75% of therapists with 20 or less clients. The mean number of clients was 

13.9(SD=14.8) and the median was 10. The range of sessions the therapists provided their clients 

ranged from 1 to 2362. The mean number of sessions was 165.1 (SD=192.7) and the mean was 

93. These figures combined with the client characteristics provided a high-level snapshot of the 

PEI claims. 
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Table 4.2: Therapist characteristics for FY 2013-2014 (n=4,798) 

  

N (%) / 

Median(SD) 

Discipline  

Marriage and Family Therapist 1344 (28.0) 

Rehabilitation Professional 1052 (21.9) 

Counselor 1048 (21.8) 

Social Worker 476 (9.9) 

Student Trainee 375 (7.8) 

Case Manager 257 (5.4) 

Psychologist 148 (3.8) 

Other 47 (1.0) 

Psychiatrist 37 (.8) 

Nurse 14 (.3) 

Primary language  

English 2591 (54.0) 

Spanish 1784 (37.2) 

Other 402 (8.4) 

More than one listed 20 (.4) 

  

Number of clinics  1 (.5) 

Number of clients 10 (14.8) 

Number of sessions 93 (192.7) 

   

The author examined coverage by service planning area in addition to county area to 

assess geographic variation in the degree of coverage. The next section reports PEI claims at the 

SPA level. 

4.1.2 Service planning area level coverage 
 

LA county is divided into eight service planning areas (SPA), 
150

 and the coverage scores 

between these SPAs varied (see table 4.3). The contact coverage scores for this geographic level 

reflect the perspective of the LACDMH. The numerator of the SPAs’ coverage score is the 

number of distinct clients within the county who received at least one psychotherapy session 

from a clinic within the boundaries of the SPA (see table 4.3). There were 1.7% of the clients 
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who received services in more than one service area. The figures in this section are based on 

clients and their subsequent claims being assigned to the service area where they received most 

of their care. There was also one clinic outside all of the SPAs which was not included in the 

numerator calculation. The denominators were based on the target population for each SPA using 

the denominator reduction process described in chapter 3. Figure 4.4 shows a heat map of the 

SPAs with their coverage scores.   

Table 4.3 LA county service planning area (SPA) PEI psychotherapy coverage scores for FY 
2013-2014 

# Service planning area name Numerator Denominator Coverage score 

1 Antelope Valley 2604 10799.95 24.1% 

2 San Fernando Valley 6731 48975.4 13.7% 

3 San Gabriel Valley 7561 40803.38 18.5% 

4 Metro 5157 22828.41 22.6% 

5 West 1198 12421.48 9.6% 

6 South 5681 29922.43 19.0% 

7 East 4101 34166.63 12.0% 

8 

South Bay (includes Catalina 

Island) 6950 36394.63 19.1% 
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Figure 4.4 Coverage scores for the LA county mental health service planning areas for FY 2013-
2014 
 

The SPAs differed across the variables of interest outlined in chapter 3 (see table 4.4). 

The average coverage score was 17.3% (SD=.051) where SPA 1 had the highest coverage score 

(24.1%) and SPA 5 had the lowest (9.6%). Across SPAs the average percentage of the 

community who identified as an ethnic minority was 72% (SD=17.8%), SPA 6 had the highest 

percentage (97.4%) and SPA 5 had the lowest (39.9%). The average percentage of being born 

outside the use was 33.0% (SD=8.2%) where SPA 4 had the highest (44.6%) and SPA 1 had the 

lowest (18.6%). The average percentage living below the poverty line was 19.3% (SD=6.7%), 
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SPA 6 had the highest poverty rate (32.4%) and SPA 5 had the lowest (12.3%). Most households 

in the SPAs had access to a vehicle, the average percentage without a vehicle was 10% 

(SD=5.5%), SPA 4 had the highest percentage of households without a vehicle (20.2%) and SPA 

1 had the lowest (6.0&). The average percentage of limited-English speaking households was 

13.4% (SD=5.8%), SPA 4 had the highest percentage (23.7%) and SPA 1 had the lowest (7.2%). 

On average, 29% of adults across SPAs had a college degree (SD=16.1%). The highest was SPA 

5 (61.4%) and the lowest was SPA 6 (9.6%). On average, 47.7% of the sessions occurred outside 

of the clinic, SPA 8 had the highest percentage of sessions conducted outside the clinic (63.6%) 

and SPA 5 had the lowest percentage (33.6%). The average match between client and therapist 

language was high (89.6%, SD=2.6)% with SPA 1 having the highest proportion (91.9%) and 

SPA 4 having the lowest (83.6%). The client characteristics also differed between SPAs. 

Table 4.4 Coverage scores with clinic and community predictors aggregated to the SPA level, all 
values are percentages (n=8) 

SPA Coverage 

Ethnic 

minority 

Born 

outside 

US  

Below 

poverty 

No 

vehicle 

Limited-

English 

College 

degree 

Sessions 

outside 

clinic 

Sessions 

with 

language 

match 

1 24.1 67.3 18.6 21.3 6.0 7.2 15.6 47.6 91.9 

2 13.7 57.1 37.1 15.0 7.3 13.0 33.7 46.8 88.8 

3 18.5 79.5 38.0 14.0 6.2 14.6 30.7 46.3 90.3 

4 22.6 75.4 44.6 25.1 20.2 23.7 33.1 41.5 83.6 

5 9.6 39.9 26.0 12.3 7.2 6.2 61.4 33.6 91.2 

6 19.0 97.4 35.9 32.4 17.0 17.0 9.6 51.7 90.1 

7 12.0 86.8 35.2 17.4 7.7 16.0 16.6 50.9 91.1 

8 19.1 72.6 28.3 16.9 8.2 9.6 31.7 63.6 89.7 

          

Mean 17.3 72.0 33.0 19.3 10.0 13.4 29.0 47.7 89.6 

Median 18.8 74.0 35.6 17.1 7.5 13.8 31.2 47.2 90.2 

SD 5.1 17.8 8.2 6.7 5.5 5.8 16.1 8.6 2.6 

Note: All values are percentages. 

While the characteristics of the clients differed across SPAs, the demographic patterns 

were very similar (see table 4.5). Across all SPAs, males received more services than females 
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with SPA 2 having the highest percentage of males (57.5%). The most predominant ethnic group 

among SPAs was Hispanic. SPA 7 had the highest percentage of Hispanic clients (87.5%) and 

SPA 1 had the lowest (45.9%). English was the dominant primary language of clients for all 

SPAs. SPA 1 had the highest percentage (89.0%) and SPA 4 had the lowest (62.7%). Admission 

diagnosis profiles varied among the SPAs. Mood disorders had the highest percentage followed 

by disruptive behavior disorders. Admission diagnosis patterns varied after that. For example, 

the third most common admission diagnosis in SPA 1 and SPA 2 was anxiety, for SPA 4, 5, 7, & 

8 it was adjustment disorder, and for SPA 3 and SPA 6 it was hyperactive/attention disorder. 

Average age ranged from 10.5 to 11.7. The median number of sessions ranged from 10 sessions 

(SPA 6) to 15 (SPA 4). The median number of therapists and clinics was one.  
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Table 4.5 Client characteristics by service planning area for FY 2013-2014 
 

  N (%) / Mean (SD) 

  SPA 1 SPA 2 SPA 3 SPA 4 SPA 5 SPA 6 SPA 7 SPA 8 

Gender         
Female 1190 (45.7) 2870 (42.5) 3372 (44.2) 2248 (44.0) 573 (47.8) 2514 (44.3) 1963 (48.7) 3189 (45.8) 

Male 1414 (54.3) 3889 (57.5) 4254 (55.8) 2864 (56.0) 625 (52.2) 3166 (55.7) 2072 (51.3) 3772 (54.2) 

Missing 0 (0) 1 (.01) 1 (.01) 2 (.04) 0 (0) 1 (.02) 0 (0) 3 (.04) 

Ethnicity         
Latino/a 1195 (45.9) 4829 (71.4) 5552 (72.8) 4123 (80.6) 704 (58.8) 3770 (66.4) 3529 (87.5) 4520 (64.9) 

American Indian 20 (.8) 13 (.2) 21 (.3) 75 (1.5) 1 (.1) 7 (.12) 47 (1.2) 8 (.1) 

Asian 19 (.7) 75 (1.1) 287 (3.8) 104 (2.0) 19 (1.6) 21 (.4) 32 (.8) 112 (1.6) 

Pacific Islander 2 (.1) 5 (.1) 7 (.1) 5 (.1) 2 (.2) 7 (.1) 0 (0) 32 (.5) 

African American 827 (31.8) 587 (8.7) 744 (9.8) 355 (6.9) 224 (18.7) 1698 (29.9) 112 (2.8) 1522 (21.9) 

White 430 (16.5) 903 (13.4) 566 (7.4) 161 (3.1) 178 (14.9) 84 (1.5) 188 (4.7) 534 (7.7) 

Not reported 61 (2.3) 132 (2.0) 285 (3.7) 226 (4.4) 17 (1.4) 56 (1.0) 82 (2.0) 111 (1.6) 

Other 50 (1.9) 216 (3.2) 165 (2.2) 65 (1.3) 53 (4.4) 38 (.7) 45 (1.1) 125 (1.8) 

Primary Language         
English 2318 (89.0) 4902 (72.5) 5654 (74.1) 3205 (62.7) 951 (79.4) 3924 (69.1) 2952 (73.2) 4853 (69.7) 

Spanish 275 (10.6) 1702 (25.2) 1786 (23.4) 1831 (35.8) 226 (18.9) 1721 (30.3) 1061 (26.3) 2054 (29.5) 

Other 6 (.2) 127 (1.9) 168 (2.2) 41 (.8) 16 (1.3) 18 (.3) 17 (.4) 37 (.5) 

Not reported 5 (.2) 29 (.4) 19 (.3) 37 (.7) 5 (.4) 18 (.3) 5 (.1) 20 (.3) 

Admission Diagnosis         
Anxiety 360 (13.8) 866 (12.8) 793 (10.4) 638 (12.5) 214 (17.9) 399 (7.0) 449 (11.13) 803 (11.5) 

Attention/Hyperactive 304 (11.7) 517 (7.7) 896 (11.8) 353 (7.0) 102 (8.5) 810 (14.3) 303 (7.5) 656 (9.4) 

Mood 748 (28.7) 2241 (33.2) 2636 (34.6) 1347 (26.3) 283 (23.6) 1605 (28.3) 1343 (33.3) 1867 (26.8) 

Trauma 325 (12.5) 439 (6.5) 504 (6.6) 458 (9.0) 54 (4.5) 527 (9.3) 255 (6.30 464 (6.7) 
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Disruptive behavior 521 (20.0) 1628 (24.1) 1772 (23.2) 1169 (22.9) 261 (21.8) 1253 (22.1) 880 (21.8) 1669 (24.0) 

Substance use 0 (0) 0 (0) 4 (.05) 1 (.02) 0 (0) 1 (.02) 3 (.1) 0 (0) 

Other 119 (4.6) 591 (8.7) 226 (3.0) 402 (7.9) 49 (4.1) 379 (6.7) 168 (4.2) 518 (7.4) 

Adjustment Disorder 221 (8.5) 456 (6.8) 752 (9.9) 715 (14.0) 231 (19.3) 656 (11.6) 617 (15.3) 975 (14.0) 

Autism/PPD 6 (.2) 20 (.3) 44 (.6) 31 (.6) 4 (.3) 51 (.9) 17 (.4) 12 (.2) 

         
Age (years)  10.7 (4.8) 11.6 (4.6) 11.7 (4.5) 10.7 (4.9) 10.7 (4.5) 10.5 (4.5) 11.5 (4.7) 10.7 (4.8) 

Age (years) median 11 12 12 11 11 11 12 11 

Number of sessions 17.6 (17.5) 21.1 (20.4) 25.5 (45.1) 20.4 (19.2) 16.3 (14.5) 15.7 (17.0) 15.1 (13.9) 18.3 (16.3) 

Number of sessions median 14 15 14 15 12.5 10 11 14 

Number of therapists 1.6 (1.2) 1.8 (1.4) 2.0 (2.9) 1.8 (1.5) 1.3 (.7) 1.5 (.9) 1.3 (.7) 1.4 (1.0) 

Number of therapists median 1 1 1 1 1 1 1 1 
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Describing the coverage score of the PEI psychotherapy interventions at the county and 

SPA level answered the question about the extent to which the PEI initiative reached its target 

population and if there were differences between locales (i.e. SPAs). However, the sample size 

of these geographic levels precluded comparing the locales using inferential statistics. Nor did 

the sample size allow an examination of possible factors associated with the range in coverage 

scores. The second aim used the clinic service area (CSA) level to answer the third research 

question about factors associated with coverage score. 

4.2 Aim 2 results 
 
Examining the coverage scores at the CSA level assumed the perspective of the clinic and 

the coverage of PEI services over the clinic’s service area buffer (n=254). The numerator of the 

CSA coverage score is the number of distinct children who received a PEI approved 

psychotherapy EBT during FY 2013-2014 for each clinic. 4.7% of the clients received services 

from more than one clinic (n=1885). Because this coverage calculation was from the perspective 

of the clinic, clients was counted towards the numerator for every clinic they received care. The 

apportionment process described in chapter 3 yielded the denominator for each CSA. 

The coverage scores as well as the values of the predictor variables varied across the 

CSAs (see table 4.6 for descriptive statistics). The average coverage score for CSAs was 14%. 

Some CSAs had very large coverage scores (max 306%), the CSAs with higher coverage values 

increased the average. The median CSA coverage score was 6%. The average percentage of 

individuals within the CSAs who identified as an ethnic minority was 77%. The average 

percentage of individuals within the CSA born outside of the US was 34%. The average 
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percentage of individuals below the poverty line was 20%. Most households across the CSAs 

had access to at least one vehicle, the average percentage of households without a vehicle was 

11%. On average, 26% of the adult population (25 years and older) within the CSAs had a 

college degree. The average percentage of sessions conducted outside of the clinic in CSAs was 

45%. The language match between therapist and client (assuming all English clients received 

services in English regardless of therapist’s primary language) was high, the average was 91%. 

The density of children/youth 0 to 24-years-old ranged from 28 per square mile to 11481 per 

square mile among the CSAs, the average density was 4059 youth/sq. mile. Four of the 

aggregated community and clinic variables were statistically significant in the regression model. 

Table 4.6 Descriptive statistics* for the clinic service areas FY 2013-2014 (n=254). 
  Mean SD Median Min Max 
Coverage score 14.0 30.0 5.8 0.0 305.9 
Ethnic minority 76.8 17.8 78.9 24.2 99.3 
Born outside US 34.3 11.2 32.9 13.0 59.6 
Below poverty 19.8 9.5 17.0 5.0 44.7 
No vehicle 11.1 8.0 8.4 2.1 39.5 
College degree 25.6 14.6 23.5 4.2 66.2 
Sessions outside office 44.9 33.2 43.3 0.0 100.0 
Language match 90.9 9.2 92.6 47.4 100.0 
Population density (per sq mile) 4058.65 2462.44 3390.33 27.58 11480.87 

*All values are percentages except for population density. 

The final regression model included a log transformed coverage score as the dependent 

variable and the predictors listed in table 4.7. The results of the multivariate regression suggested 

that the predictors explain 36.9% of the variance (R2=.37, F(8, 245)=12, p<.001). Specifically, 

the proportion of ethnic minorities in the CSA (ß=-2.68, p<.001), the proportion of immigrants 

(ß=-2.08, p<.013), the proportion of the adult population with a college degree (ß=-3.22, 

p<.001), and the population density of individuals 0 to 24-years-old (ß=-.00, p=.039) predicted 

CSA coverage score (see table 4.7).  The author used guidance from Yang (2012) to interpret the 
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significant predictors of the model with its log transformed dependent variable.197 The higher the 

proportion of ethnic minorities in a CSA, the lower the coverage score. Holding all other 

variables constant, every unit increase in the proportion of ethnic minorities in the community 

resulted in 93% decrease in the coverage score. The higher the proportion of individuals born 

outside the US, the lower the coverage score. The CSA coverage score decreased by 88% for 

every unit increase in the proportion of individuals born outside the US in the community, 

holding all other variables constant. The higher the proportion of individuals with a college 

degree, the lower the CSA coverage score. The coverage score decreased by 96% for every unit 

increase in the proportion of the adult population who have a college degree, holding all other 

variables constant. The more densely populated a CSA, specifically for 0 to 24-year-olds, the 

lower the coverage. The coverage score decreased by .01% for every unit increase in the 

population density of 0 to 24-year-olds in the CSA. In sum, the model suggests that there is an 

association between a CSA’s coverage score and its ethnic composition, immigrant composition, 

level of education, and population density.  

Table 4.7 Regression coefficients of community and clinic predictors on clinic service area 
coverage score (log transformed) for PEI claims FY 2013-2014 

  Coef. 95% CI 
Est. 

change 
Est. change 

95% CI 
Ethnic minority -2.68* -3.88  -1.48 -.93 -1.01 -.85 

Born outside US -2.08* -3.72  -0.45 -.88 -1.08 -.67 

Below poverty -0.76 -4.56  3.04 -.53 -2.30 -1.23 

No vehicle 0.29 -3.80  4.37 .33 -5.08 5.74 

College degree -3.22* -4.81  -1.63 -.96 -1.02 -.90 

Sessions outside office 0.23 -0.23  0.69 .26 -.31 .83 

Language match -1.73 -3.53  0.08 -.82 -1.14 -.50 

Population density (per sq mile) 0.00* 0.00  0.00 -.0001 -.00 -.00 

R2 = .37    
   

N = 254         

* p<.05       
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Chapter 5: Discussion 
 

5.1 Study discussion, implications, and limitations 
 
Child and youth mental illnesses are prevalent, debilitating, and costly.42–44,49,172,198 

Fortunately, there are effective interventions to treat these disorders.66 Systems of mental health 

care across the United States have engaged in various initiatives to implement these effective 

treatments.2 The extent to which these initiatives have reached their target populations and the 

identification of any factors associated with their respective degrees of population coverage are 

largely unknown.1,8 An adapted framework based on ExpandNet and the Health Services 

Coverage frameworks (see figure 2.1) informed the selection of outcome and predictors.4,11 The 

present study sought to address these gaps in the literature by assessing the scale-up of EBTs for 

child and youth mental illnesses in LA county through their PEI initiative. The LACDMH PEI 

initiative is a herculean effort to provide needed mental health services to children and youth.13,14 

The study yielded coverage scores of the PEI initiative at various geographic levels and 

identified community-level factors associated with those scores. 

5.1.1 Coverage rate at the county and SPA levels 
 

The key outcome in this study per the conceptual model is coverage. The first coverage 

score is at the county-level. The LACDMH provided evidence-based, psychotherapy services to 

40,132 children/youth during FY 2013-2014 with each of these clients receiving a median of 13 

sessions. The PEI initiative reached approximately 17% of the target population. It is difficult to 

discern how this coverage score compares to other such initiatives given the dearth of coverage 

score reporting in the mental health services literature.8 One national study found that 

child/youth mental health EBTs in the US had a coverage score of 1% to 3%.1 That study’s 
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denominator was number of youth identified by the state as having serious emotional 

disturbance.1 The coverage score for PEI used a more refined denominator following methods 

suggested by others.8,17,165 The difference between these denominators made the two coverage 

scores difficult to compare. A country-wide effort to increase psychological care for depression 

and anxiety in the UK has reached 16% of the target population which was based on the 

prevalence rate of depression and anxiety in the adult population.18 US-based efforts in the 

Veterans Administration to scale-up trauma care has yielded a range of coverage rates. One 

estimate suggests that of all veterans with a PTSD diagnosis 3%-4% received Cognitive 

Processing Therapy or Prolonged Exposure.199 Others in the Veterans Administration have found 

coverage rates of 6%200,201 and 12%.202 When researchers used veterans with a PTSD diagnosis 

who received psychotherapy as the denominator, instead of veterans with a PTSD diagnosis, the 

coverage rate was 14%-59% (mean 36%).203 These rates, however, are largely informed by a 

computer algorithm that researchers used to detect which intervention the therapists used during 

the session.200,203 EBP note templates became available in 2015, but not all therapists used 

them.203 As a self-comparison, the LA county coverage score during 2010-2011, the year when 

the county rolled out training and implementation support for a suite of EBTs, was 

approximately 10%. Calculating the coverage scores for each of the county service planning 

areas (SPAs) allowed for further descriptive comparisons. 

PEI coverage varied across the county’s SPAs. For example, Antelope Valley (24.1%) 

and the Metro (22.6%) SPAs had the highest coverage scores and the West SPA had the lowest 

coverage score (9.6%). Demographically, communities in the West SPA had the lowest 

proportion of ethnic minorities, the lowest percentage of individuals living below poverty, the 

lowest proportion of households designated as limited-English speaking, and the highest 
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percentage of college graduates among adults compared to the other SPAs. These community 

demographics would typically suggest that this SPA should have had a higher coverage score. 

Researchers have noted that ethnic minorities, immigrants, those living in poverty, and those 

with lower education experience lower mental health service access.93,99,108,121,100–107 The nature 

of PEI services could explain the discrepancy between the West’s coverage score and the 

literature on mental health treatment access/utilization. LACDMH intended PEI services to reach 

impoverished individuals and communities. Medi-Cal was essentially the only insurance 

provider for PEI clients. It is no surprise that a highly affluent SPA, like the West, would have a 

lower coverage score. This conclusion is only anecdotal because it was not possible to use 

inferential statistics at the SPA-level to assess factors that might have influenced the coverage 

score. Examining the data at the clinic service area (CSA) level did allow for this assessment and 

yielded four factors associated with CSA coverage score. These factors largely aligned with the 

descriptive findings at the SPA level. These factors fit with in the “environment construct in the 

conceptual model for the study (fig 2.1). 

5.1.2 Factors associated with coverage 
 
The first factor associated with CSA coverage was CSA ethnicity composition. The 

higher the proportion of ethnic minorities in the CSA, the lower the coverage score. This pattern 

fits with the larger mental health service literature. Ethnic minority children and youth have 

lower mental health service utilization rates99–102, and more broadly, communities with higher 

concentrations of ethnic minorities have lower mental health service access even when 

individual-level and other socioeconomic factors are accounted for.93 A lower coverage score 

was also associated with the proportion of immigrants in the CSA. 
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The second factor associated with coverage, was the percentage of individuals in the CSA 

born outside the US. The higher the percentage of individuals born outside the U.S. in the CSA, 

the lower the coverage score. This pattern is supported by the mental health services literature. 

Immigrants in the US have lower mental health service utilization than non-immigrants.103–107 

There are structural barriers (e.g. cost, insurance, language), cultural norms and attitudinal 

preferences (e.g. stigma, group norms), and systemic discrimination that inform service selection 

and participation by the immigrant community.106 For example, some immigrants prefer to seek 

services from family members, friends, and/or religious leaders rather than formal mental health 

services.106 Others are more willing to seek services from a medical professional and view the 

issue somatically rather than emotionally.106  

The third factor associated with CSA coverage was education. The higher the percentage 

of college educated adults in the CSA the lower the coverage score. This finding, initially, 

appeared counter to the mental health services literature. Mental health service utilization 

researchers have found that lower education typically is associated with lower service 

utilization.93,119–122 Initial research also suggests that children with parents who have higher 

education have higher utilization rates.121 Given this precedent, it was surprising to see education 

negatively associated with coverage. It is possible this phenomenon occurred because PEI 

services were almost exclusively provided to Medi-Cal eligible recipients, and poverty is 

associated with lower college enrollment.204 This suggests that the target population for PEI is 

less likely to have a college education. The negative association with percentage of college 

graduates in the CSA and coverage score could be interpreted as the more college graduates in 

the CSA, the less likely they are to be eligible for Medi-Cal and the less likely they would 

qualify for services which would decrease the overall coverage score.  
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The negative association between the number of adults with a college degree in a CSA 

and coverage rates could be a signal that PEI is reaching its intended population. PEI aimed to 

serve those enrolled in Medi-Cal and those with a college education are less likely to have Medi-

Cal insurance. This suggests that the LACDMH’s approach has an elevated degree of specificity, 

which is to say that their scale-up approach is reaching its intended target. 

The final factor associated with PEI coverage at the CSA level was population density, 

specifically, the density of children and transitional age youth (0 to 24) per square mile. The 

population density of this age group aligns with the ages served by the PEI program. In this 

study, the higher the population density the lower the coverage score. The CSA buffers were the 

same size (i.e. 2 miles) so clinics in densely populated portions of the county would have higher 

denominators than less-densely populated CSAs in the county, And, to reach the increased 

number of potential clients, the clinics in highly populated areas would need increased capacity 

(e.g. more therapists) and the data do not provide that information. The negative association 

between population density and coverage may also be related to clinic clustering. The clinics are 

closer to each other in the southern part of the county. It is possible that a client had multiple 

options within similar distances. Furthermore, others have found a negative association between 

health service access and population density.205,206 

5.1.3 Implications of the current study on practice and policy 
 

The findings from this study suggest a few service and policy implications. First, the 

study demonstrates that meaningful geographic coverage can be calculated with existing 

administrative claims and census data. Though the literature may not provide clear coverage 

comparisons, the LACDMH can use the county coverage score as a benchmark for subsequent 
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planning efforts and goals. For example, the UK monitors their coverage, currently 16% of the 

targeted adult population, with a goal of reaching 25%.18 The differing coverage scores between 

SPAs could lead to subsequent analyses to determine organizational sources of the variation.  

A second service implication is the need to consider ways of improving coverage equity. 

Notwithstanding the explicit focus of PEI reaching historically marginalized groups,13 service 

inequities among ethnic minorities and immigrants persisted. Others have recommended 

increasing the diversity of the mental health workforce to reduce service access disparities.207 

Unfortunately, due to the unreliability of the therapist’s ethnicity variable in the claims data, it 

was not possible to assess whether therapist ethnicity influenced coverage. Improving claims 

data-entry processes to ensure data accuracy would improve the county’s ability to assess and 

improve inequities. Monitoring the composition of those who receive services in relation to the 

composition of the community will allow the LACDMH to make adjustments when inequities 

arise.  

Next, coverage scores would be much more precise if they were based on client 

geography. Understandably, client geographic identifiers were not included in the dataset for 

privacy reasons. To retain client privacy and to improve geographic accuracy, the LACDMD 

might consider releasing aggregated geographic data at various geographic-levels (e.g. census 

block group, tract, service planning area). This would preserve client privacy and allow service 

analysts to examine coverage in more geographically precise ways.  

A final service/policy implication relates to cost. The LACDMH has provided thousands 

of children and youth with evidence-based mental health services, which represent a coverage 

percentage similar to other large-scale initiatives.18 There was large variation in the number of 
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claims submitted by clinics for PEI services. Current audit reports indicate that LACDMH has a 

large surplus of funding.208,209 The variation in coverage scores and the variation in the number 

of claims could identify areas which could benefit from additional support to provide PEI 

services.  

5.1.4 Implications of the current study on scale-up research 

The study also provides implications for scale-up of mental health services research. 

First, SAVA and geospatial methods are underutilized in scale-up mental health research and can 

yield helpful insights,152,188,210–213 and these methods can be used with existing administrative 

and census data for both surveillance and research purposes. The distinction between 

surveillance and research is largely determined by its purpose.214–216 Research has been described 

as, “A systematic investigation, including research development, testing and evaluation, designed 

to develop or contribute to generalizable knowledge.”216 Whereas surveillance has been 

described as, “The ongoing systematic collection, analysis and interpretation of health data, 

essential to the planning, implementation and evaluation of public health practice, closely 

integrated to the dissemination of these data to those who need to know and linked to prevention 

and control.”216 Both approaches may utilize the same methods and approaches. The present 

research study highlighted a need for ongoing mental health service surveillance. The LACDMH 

claims system allows the tracking of intervention, service type, service location, provider 

characteristics and client characteristics. These data could be mapped geographically to inform 

the service provision decisions.  

Second, the study identifies a set of initial predictors that could inform subsequent scale-

up research projects. The constructs from ExpandNet provided a good starting place for predictor 

selection but lacked enough specificity to operationalize the necessary variables.11 The 
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framework might benefit from separating client-specific determinants from the larger 

environment construct and identifying client related characteristics associated with successful 

scale-up. The empirical literature offered a number of candidate predictors, but many of them 

were extrapolated from research on individual-level service utilization. Had this study been 

testing hypotheses based on this existing literature, minority and impoverished communities 

would most likely be those with lower coverage rates.  

Third, the study underscores the importance of explicitly stating the perspective (e.g. 

county vs. clinic), the unit of analysis, and the specification of the numerator and denominator 

when constructing coverage. For example, the coverage score would have been much lower 

without the denominator reduction steps. The coverage score also would have changed if the 

author retained a county perspective rather than a clinic perspective for the CSAs. The clinic 

perspective counted all the distinct clients the clinic served; a county perspective would have 

only counted distinct clients within the county (i.e. clients who received services from more than 

one clinic would be assigned to one clinic). Making and explicitly reporting decisions about 

perspective, unit of analysis, and numerator/denominator construction will support better cross-

project comparison and better fitting interpretations of the data. The Health Services Coverage 

framework clearly identified a meaningful outcome variable for this study (i.e. coverage) and 

provided meaningful guidance for its calculation.4 The present study expands the utility of that 

framework by suggesting researchers specify what perspective they are using when they 

calculate the coverage score, and by offering an example of denominator tailoring steps to more 

closely approximate the target population.  
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5.1.4 Strengths and limitations of the current study 
 

The present study has a number of strengths. This is the first study, known to the author, 

which calculated a coverage score for a mental health scale-up initiative in the U.S. outside the 

Veterans Administration.8 The author was able to make these calculations using available census 

and claims data which exerted minimal burden to LACDMH staff and no burden on service 

providers or clients. In addition, this study created meaningful geography without access to client 

geographic identifiers using GIS methods. This approach facilitated the construction of 

predictors fitting with the extant mental health service literature. The author was able to explore 

possible factors associated with coverage using those predictors. In the most recent review on 

mental health service coverage research, only one study examined predictors of scale-up.8 

Notwithstanding these strengths, the study also has a number of limitations. 

The findings from this study should be viewed within the context of its constraints and 

limitations. This study used administrative data which was not designed for research. However, 

there has been a call to use administrative data to assess the impact of state mental health 

initiatives,217 and multiple states have used administrative data to inform their service and policy 

decisions.218 The data and methods do not allow for a cause/effect determination of the PEI 

initiative on scale-up. A pre/post design would be a possible way to determine the direct effects 

of the LACDMH initiative; however, before the initiative began, there was no formal tracking of 

interventions so it would not be possible to discern the reach of specific EBIs prior to the 

initiative.  

This study used a GIS approach to approximate the coverage of a mental health service 

initiative. The coverage scores would have been more precise if client geographic identifiers, like 
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zip code, would have been available. Notwithstanding this constraint, the author used geographic 

data from LA county-based studies to create meaningful clinic catchment areas.142,143,157 The 

apportionment procedures the author used to create the regression dataset assumed that the 

characteristics of the population within the geographic unit (e.g. census block group, CSA) were 

evenly distributed. This is largely not the case in the real-world. Future research could add land-

use characteristics as a layer in the GIS data to account for where people within the geographic 

unit live. This approach assumed that clients resided in the CSA, which may not have been the 

case. Also, due to the uniform size of the CSAs there may have been portions of the county not 

covered by a CSA. For example, some CSAs had coverage scores over 100%. It appeared that 

several of these clinics were surrounded by areas without another clinic nearby, so it is likely that 

individuals drove to the clinic from outside the catchment area. Though, retaining the 2-mile 

buffer coincided with previous research, approximated the average distance between a large 

sample of the clinics, and prevented total geographic overlap for clinics in highly dense areas. 

The GIS method also did not account for difference in clinic service capacity. The OLS model 

attempted to account for clinic capacity by using a weight variable based on clinic volume.   

The proximity of CSAs to each other introduced spatial autocorrelation. Autocorrelation 

without corrections can lead to errors in significance testing, mean squared error (MSE) 

underestimates, and standard deviation underestimates.20 The model used robust variance 

estimators to correct for autocorrelation but would likely need additional geospatial corrections. 

While the corrections improved the model fit, the geospatial nature of the data warrants using a 

comparison geospatial regression model (e.g. spatial autoregressive model) for sensitivity 

testing. The spatial regression would account for the possibility that CSA characteristics and 

coverage score are related to nearby CSAs due to some geographic proximity effect.  
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And though the author based the denominator reduction steps on the most fitting 

available literature, additional sensitivity testing could also be done with various rates in the 

denominator reduction steps. Notwithstanding these limitations and constraints, this study 

provided one of the very few coverage scores in the mental health literature, offered methods to 

calculate meaningful predictors using census data in relation to the coverage scores, and posited 

initial factors to explore in subsequent scale-up studies.1,8 

5.1.5 Next steps 
 

The findings from the study prompt a number of next steps. The author will apply this 

study’s method to other fiscal years of LACDMH data and compare the coverage scores over 

time. The present study was unable to ascribe causality between the LACDMH’s efforts and the 

resultant coverage score. Comparing coverage over time could show patterns of growth and 

change. Next, the author will apply additional geospatial-specific regression techniques to the 

data for sensitivity analysis. The author will also apply other SAVA statistics to coverage scores 

at the SPA level to see if there are statistically significant differences. SPAs represent a 

meaningful geographic unit for the LACDMH. Moving beyond descriptive statistics and being 

able to indicate if the present differences are significant could inform subsequent planning 

efforts. 

5.2 Conclusion 
 

This study ascertained the coverage of a public mental health early intervention initiative 

in LA County. Overall, the initiative reached 17% of the target population. This rate tracks with 

other large-scale efforts18 and provides an initial benchmark for subsequent efforts to improve 

the reach of evidence-based mental health services for children and youth. There were regional 
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differences in coverage rate. Community-level factors such as the proportion of ethnic 

minorities, immigrants, and individuals with a college degree were negatively associated with 

coverage scores. Fortifying data collection processes would permit a more refined assessment of 

factors related to coverage. This study represents one of the first to examine factors associated 

with the scale-up of evidence-based mental health care and offers methods to calculate 

meaningful coverage scores and predictors based on administrative and publicly available data.  
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Appendix 1 
 

 
Figure A1. PEI reimbursed clinics with the population density of 0 to 24-year-olds (PEI target 
age group) by block group. 
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Appendix 2 
 
 

 
 
Figure A2. LA County and the clinic service areas used for analysis, FY 2013-2014 (n=254) 
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Appendix 3  
 
Table A3.1. Correlation matrix of coverage score and community characteristics at the service-
planning-are (SPA) level, FY 2013-2014 (n=8). 
 

  1 2 3 4 5 6 7 8 9 
1. SPA coverage 1.00         
2. Ethnic minority 0.41 1.00        
3. Born outside US  -0.02 0.41 1.00       
4. Below poverty 0.57 0.68 0.23 1.00      
5. No vehicle 0.38 0.44 0.61 0.80 1.00     
6. Limited-English 0.27 0.61 0.90 0.54 0.79 1.00    
7. College degree -0.51 -0.85 -0.06 -0.66 -0.21 -0.34 1.00   
8. Sessions outside clinic -0.31 -0.55 0.08 -0.20 0.07 0.01 0.58 1.00  
9. Sessions with language match -0.34 -0.09 -0.73 -0.31 -0.76 -0.77 -0.12 -0.15 1.00 

 
 
Table A3.2. Comparison of regression models for analysis 

     
  Model 1 Model 2 Model 3 Model 4 
Ethnic minority *-0.96 -1.71 -1.67 *-2.68 
Born outside US *-1.25 0.06 -1.81 *-2.08 
Below poverty *-1.27 -3.07 -3.40 -0.76 
No vehicle 0.88 4.81 3.68 0.29 
College degree *-1.21 -2.52 -2.29 *-3.22 
Sessions outside office *0.15 *0.90 *0.89 0.23 
Language match -0.27 *-4.59 *-4.67 -1.73 
Population density (per sq mile) -0.00002 *-0.0002 *-0.0002 *-0.0001 
Limited-English *1.209366 -3.259825   

     
R2 0.27 0.23 0.23 0.37 
Model 1 = base model     
Model 2 = log transform DV, robust estimators   
Model 3 = removed limited-English var    
Model 4 = final model add number of clients served weight  
*= p<.05     

 
 


	Scaling-up Child and Youth Mental Health Services: Assessing Coverage of a County-wide Initiative
	Recommended Citation

	Microsoft Word - DISS-v12.docx

