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Microbially catalyzed oxidation-reduction reactions drive nutrient cycling and energy 

flux on Earth. Photoautotrophs, which include the cyanobacteria (oxygenic) and purple and green 

sulfur bacteria (anoxygenic), transform light energy into chemical energy and are responsible for 

substantial global primary productivity. Anoxygenic phototrophs, in particular, play a crucial 

role in biogeochemical cycling in anoxic illuminated environments because of their ability to 

oxidize an array of inorganic compounds for CO2 fixation. Electron donors include molecular 

hydrogen, nitrite, and reduced sulfur compounds. Recent evidence has also suggested that solid-

phase conductive substances (SPCSs), including rust (mixed-valent iron minerals) and their 

proxies (poised electrodes), can serve as electron donors for anoxygenic phototrophs. This 

phenomenon is called phototrophic extracellular electron uptake (EEU) and is the reverse 

process of extracellular electron transfer (EET) performed by metal-reducing bacteria. While 

numerous examples of microbes performing EET to minerals/electrodes exist and the molecular, 

physiological, and ecological role of this process is well-studied, very little is understood about 

EEU. The objectives of this research were to use purple nonsulfur bacteria as a model system to 



xiii 

 

address key knowledge gaps in our understanding of EEU. In Chapter 1, I provide the first 

experimental evidence that EEU is linked to photosynthetic electron transfer, energy 

transduction, and the generation of cellular reducing equivalents in the phototrophic Fe(II)-

oxidizing bacterium Rhodopseudomonas palustris TIE-1. Furthermore, I show that the Calvin-

Benson-Bassham (CBB) cycle (the most broadly distributed CO2 fixation pathway on Earth) is 

the primary electron sink for phototrophic EEU. In Chapter 2, I expand our understanding of the 

diversity of organisms known to engage in EEU by isolating and characterizing a new EEU-

capable bacterium Rhodovulum sulfidophilum AB26. Using whole-genome- and transcriptome-

sequencing, and biochemical approaches, I explore the electron-transfer pathways involved in 

EEU. This work sets the stage for physiological and genetic studies of this organism. Overall, the 

findings from this thesis advance our understanding of the physiology of microbial EEU, its 

diversity, and its role in biogeochemical cycling.
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Chapter 1: Introduction 
Bacteria that donate or accept electrons from solid phase conductive substances (SPCSs), 

such as iron or sulfide minerals, substantially influence geochemical cycles on a global scale1-3. 

This microbially-mediated phenomenon is broadly termed extracellular electron transfer (EET)1. 

EET-capable microbes transfer electrons out of the cell during respiration (to reduce SPCSs) or 

can take up electrons from SPCSs (thus oxidizing them). For example, metal-reducing microbes 

such as Shewanella and Geobacter can use SPCSs as electron sinks for metabolism in 

environments devoid of soluble terminal electron acceptors (e.g. molecular oxygen)4-7. Genetic 

and biochemical studies of metal-reducing microbes have revealed the mechanistic 

underpinnings of EET in detail3,8. The role of EET in facilitating microbial extracellular electron 

uptake (EEU) from solid electron donors, however, is incompletely understood. 

Microbe-electrode interactions have been fundamental towards understanding EET in 

metal-reducing microbes9,10. Electrodes mimic microbial interactions with SPCSs, wherein an 

electrode can operate as an electron sink (anode), or as an electron source (cathode) for microbial 

metabolism. Inspired by studies of anode-respiring microbes, geomicrobiologists turned to 

bioelectrochemistry within the last decade to better understand the bioenergetic and molecular 

underpinnings of EEU11. This was a paradigm shift for EEU research because it equipped 

researchers with controlled systems to cultivate metal-oxidizing microbes and to begin to 

understand how solid substrate oxidation is linked to cellular metabolism. This work led to the 

discovery of EEU by iron-reducers12,13, methanogens14,15, acetogens16,17, sulfate-reducers18,19, 

neutrophilic iron-oxidizers20,21, and recently, anoxygenic phototrophs22-24. Collectively, these 
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discoveries link EEU to biogeochemical cycling in aquatic sediments and subsurface 

environments. 

Because of the nascency of microbial EEU research there is limited information on the 

molecular mechanisms involved and few microbes in pure culture. Subsequently, identifying 

EEU-potential in environmental microbiological samples using existing genetic biomarkers is 

challenging. This has hindered our understanding of the role of these microbes in 

biogeochemical processes. The objectives of this thesis were to use purple nonsulfur bacteria 

(PNSB) as a model system to understand: (1) the bioenergetic underpinnings of EEU; (2) the 

relationship between EEU and cellular metabolism; and (3) the ecology and evolution of EEU. 

These objectives were addressed using a combination of genetic, physiological, biochemical, 

geochemical, and bioelectrochemical studies in the model phototrophic iron-oxidizing bacterium 

Rhodopseudomonas palustris TIE-1. In addition, this thesis led to the isolation and 

characterization of a new EEU-capable marine phototrophic sulfur-oxidizing bacterium 

(Rhodovulum sulfidophilum AB26). This is the first phototrophic marine organism capable of 

EEU thus far characterized. Using whole genome and transcriptome-sequencing I provide the 

basis for molecular and biochemical studies in this organism. Overall, this work expands our 

understanding of the physiology and diversity of EEU. 

1.1 Reductive extracellular electron transfer 

EET is well-studied in microbes that transfer electrons out of the cell to reduce SPCSs 

(i.e. reductive EET). Metal-reducing bacteria catalyze organic matter oxidation coupled to the 

reduction of minerals or solid-phase humic substances in the natural environment3. 

Subsequently, metal-reducers play an important role in carbon cycling in anoxic ecosystems, 
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such as freshwater and marine sediments, replete with iron- or manganese-oxides25. Several 

mechanisms for EET have been described and are summarized in Figure 1.1. The EET pathways 

of Geobacter sulfurreducens and Shewanella oneidensis MR-1 are the most well-characterized at 

the molecular level. These organisms encode periplasmic and outer membrane bound multiheme 

c-type cytochromes that serve as electron conduits to the extracellular environment. In S. 

oneidensis MR-1 a membrane bound decaheme c-type cytochrome (MtrC) transports electrons 

(e.g. derived from acetate or H2 oxidation) through the periplasmic space via a membrane-

spanning complex consisting of a cytochrome electron shuttle (MtrA) ensheathed in a 

transmembrane β-barrel protein (MtrB) (Figure 1.2a)8,26. Homologs of the Mtr system have been 

identified in Fe(II)-oxidizing bacteria such as R. palustris TIE-127 and Sideroxydans 

lithotrophicus ES-126,28,29. Multiheme c-type cytochromes are a key component of many EET 

pathways30. 

Long-range EET has been described via several mechanisms (Figure 1.1). Some 

microbes secrete endogenously-produced, redox-active soluble mediators. For example, 

Shewanella secretes flavins into the extracellular environment to mediate EET between cells and 

minerals31, or cells and electrodes32-35. So-called bacterial “nanowires” have also been observed 

to mediate long-range EET3,36. This was first characterized in G. sulfurreducens37. G. 

sulfurreducens encodes conductive type IV pili that are essential for iron reduction37. Similarly, 

S. oneidensis MR-1 produces electrically-conductive pilus-like appendages38,39. These extensions 

of the outer membrane contain multiheme c-type cytochromes, including MtrC, and facilitate 

electron transfer to minerals38,39. Nanowires have also been proposed to facilitate electron 

exchange between cells, a process called interspecies electron transfer40. Cells of the filamentous 

sulfur-oxidizing bacterium Desulfobulbaceae extend end-to-end centimeter distances to transport 
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electrons from sulfide minerals in anoxic sediments to reduce O2 in overlying oxic seawater41,42. 

Overall, these long-range EET strategies enable microbes to overcome spatial separation 

between electron-donors and -acceptors. 

A recently explored aspect of microbe-electrode interactions is the contribution of 

extracellular polymeric substances (EPS) to reductive EET43,44 (Figure 1.1). EPS are 

biopolymers produced by a variety of biofilm-forming microorganisms when they colonize 

surfaces45. EPS is composed of protein, polysaccharide, nucleic acids, and lipids, among other 

biologically-produced macromolecules46. Thus, the EPS matrix not only provides constructive 

and protective properties to biofilms, but it can also be utilized by microbes to exchange 

information (e.g. DNA via horizontal gene transfer) and electrons (e.g. electron-transfer via 

cytochrome c proteins)43,44,47. Shewanella biofilms produce EPS48 that has conductive properties 

and can mediate EET between cells and electrodes43,44,49 or cells and minerals50. It has been 

proposed that “electron-hopping” mediated by extracellular c-type cytochromes and flavins 

contribute to electron-transfer through the EPS matrix43. The precise proteins involved in 

electron transfer through EPS, however, have not been fully elucidated51. 

1.2 Oxidative extracellular electron transfer 

1.2.1 Extracellular electron uptake by iron-reducing bacteria 

Oxidative EET (i.e. EEU) allows microorganisms to use SPCSs as electron donors for 

cellular metabolism. Microbial EEU from electrodes was first described in Geobacter species 

from anoxic sediment enrichments12. Pure cultures from these enrichments were capable of 

accepting electrons from graphite electrodes poised at -500 mV vs. Ag/AgCl (~ -705 mV vs. 

Standard Hydrogen Electrode (SHE)) to reduce nitrate to nitrite, and to reduce fumarate to 
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succinate12. In these studies, Geobacter species formed monolayers on the surface of the 

electrodes, suggesting direct contact is important for electron uptake12. In subsequent studies it 

has been shown that electrodes can be used to catalyze microbial reductive dechlorination52 and 

microbial uranium reduction53,54—opening up the possibility for biocathode-driven 

bioremediation. Studies of biocathode microbial communities have also demonstrated that EEU 

is linked to O2 reduction55, denitrification56, and CO2 fixation11,23,57. Cathode-driven 

methanogenesis has also been reported14,15. Although EEU appears to be a physiologically 

diverse process, the molecular and bioenergetic underpinnings of microbial EEU are poorly 

understood. 

One of the first studies to investigate EEU at the molecular level was performed in S. 

oneidensis MR-113. In this study it was shown that the Mtr system could function in reverse to 

facilitate EEU from poised electrodes. This process was mediated by the cytochrome CymA, the 

outer membrane protein MtrB, the ubiquinone pool, and led to cathode-driven fumarate 

reduction via the periplasmic fumarate reductase FccA (Figure 1.2b)13. Furthermore, this study 

demonstrated that deletion of components of the Mtr respiratory pathway, cymA, fccA, or menC 

(encoding a gene involved in menaquinone biosynthesis) eliminated 80-90% of fumarate 

reduction13. Whether EEU could lead to energy production via the respiratory electron transport 

chain, however, remained unclear until a 2018 study by Rowe et al.58. In this study, Rowe et al. 

used electron transport chain (ETC) inhibitor studies, redox-sensitive bioluminescent assays, and 

genetic mutants of the cellular ETC and EET pathways to demonstrate that a proton gradient is 

generated during EEU, ATP is synthesized, and that EEU is correlated with an increase in 

intracellular redox in S. oneidensis MR-158. Overall, this work suggested that bacteria can use 

solid electron donors for energy generation and that EEU may lead to the production of cellular 
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reducing equivalents for metabolism. It is still unclear, however, if EEU by S. oneidensis MR-1 

is connected to cellular growth, or if it is a microbial survival strategy utilized to maintain redox 

balance. 

1.2.2 Extracellular electron uptake by iron-oxidizing bacteria 

Bioelectrochemical studies have shown that chemoautotrophic iron-oxidizers can be 

cultivated using poised electrodes as their sole electron donor (Figure 1.3)20,21. This was first 

reported in the chemoautotrophic Fe(II)-oxidizing bacterium Mariprofundus ferrooxydans PV-

121,59. M. ferrooxydans PV-1 is an obligate, neutrophilic iron-oxidizing bacterium that can accept 

electrons from a graphite electrode poised at -76 mV vs. SHE (a potential low enough to 

preclude H2 gas production at the cathode)21. M. ferrooxydans PV-1 cells formed sparse, 

monolayer-like biofilms on electrodes and reached current densities of 10 µA cm-2 (abiotic O2 

oxidation accounted for nearly ~80% of current consumption)21. Interestingly, under Fe(II)-

oxidizing conditions M. ferrooxydans PV-1 highly expresses a molybdopterin oxidoreductase 

containing an iron-sulfur cluster domain59. Although the involvement of this protein in EEU has 

not been investigated, it may have a role in electron transfer from Fe(II) and/or electrodes59. The 

electron transfer pathways involved in EEU in M. ferrooxydans PV-1 remain poorly understood. 

This is in part because genetic tools are not available for use in this organism. 

To examine how EEU from cathodes is linked to cellular metabolism, Ishii et al. 

performed physiological studies and chemical marking experiments in the chemoautotrophic 

Fe(II)-oxidizing bacterium Acidithiobacillus ferrooxidans20. The iron oxidation pathway of A. 

ferrooxidans is well-studied from a molecular60,61, genomic62,63, and biochemical perspective64,65. 

Fe(II) is oxidized by an outer membrane c-type cytochrome (Cyc 2). Electrons from Fe(II) have 
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two potential paths in the ETC: (1) the “down-hill” (exergonic) pathway; or the (2) “up-hill” 

(endergonic) pathway. The periplasmic blue copper protein, rustacyanin (Rus), is thought to be 

the branch point20. The “down-hill” pathway involves a cytochrome aa3 complex which 

generates a proton gradient. This proton gradient can be utilized by ATP synthase to drive ATP 

production. The “up-hill” pathway, however, relies upon cytochrome bc1-mediated reverse 

electron flow66. This pathway dissipates a portion of the proton gradient to push electrons uphill 

to reduce NAD+.  

Using the Fe(II)-oxidation electron transfer model as a guide for physiological studies, 

Ishii et al. probed the cellular ETC of A. ferrooxidans during EEU from electrodes20. The authors 

showed that A. ferrooxidans could take up electrons from a cathode poised at +400 mV vs. SHE. 

The authors detected a single +820 mV redox peak (in the absence of Fe2+ ions) using cyclic 

voltammetry20. This data suggested that attached cells likely have an extracellular electron 

conduit for EEU independent of cathode-driven iron redox cycling. In vivo monitoring of the 

“down-hill” pathway revealed that cytochrome c proteins are involved in EEU since CO-

inhibition of these proteins caused current uptake to decrease. Furthermore, the authors observed 

a decrease in current uptake upon treatment of cells with the cytochrome bc1 inhibitor antimycin 

A20. This decrease was subtle and transient20. Therefore, it is unclear how active the reverse 

electron flow pathway is during EEU, or if this pathway supplies sufficient reducing power for 

autotrophic CO2 fixation. 
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1.3 Extracellular electron uptake by phototrophic purple 

nonsulfur bacteria 

1.3.1 The phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas 

palustris TIE-1 

The innovative bioelectrochemical work on Shewanella and Geobacter established the 

basis for other groups to investigate the bioenergetic underpinnings of phototrophic Fe(II)-

oxidizing bacteria using electrodes, including the bacterium R. palustris TIE-122. This bacterium 

is the only phototrophic Fe(II)-oxidizer that is genetically tractable, and thus, is a model system 

for studying this process. R. palustris TIE-1 is a freshwater anoxygenic phototroph that was 

originally isolated from an iron-rich mat from School Street Marsh in Woods Hole, MA67. 

Genetic studies of this organism have revealed the loci involved in phototrophic Fe(II)-oxidation 

27, key regulatory elements68, and biophysical details of the electron transfer process69.  

Phototrophic Fe(II)-oxidation occurs according to the following reaction70: 

4Fe2+ + CO2 + 11H2O + hv → [CH2O] +4Fe(OH)3 + 8H+ 

In R. palustris TIE-1, the pio (phototrophic iron oxidation) operon is essential for 

phototrophic Fe(II)-oxidation27. The pio operon encodes three proteins (Figure 1.4). PioA is an 

MtrA-homolog that encodes a periplasmic decaheme c-type cytochrome. PioB is an MtrB-

homolog that encodes a putative outer membrane β-barrel protein. PioC encodes a putative high 

potential iron sulfur protein (HiPIP) that is thought to transport electrons from Fe(II) to the 
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quinone pool for cyclic photosynthetic electron flow27,71. There is also evidence to suggest PioC 

can directly transfer electrons to the photosystem and physically interacts with the reaction 

center during photosynthesis71. Because of the prevalence of the PioABC system in related 

anoxygenic phototrophs, including the photoferrotroph Rhodomicrobium vannielii72,73, this 

module may enable other organisms to perform phototrophic iron-oxidation. However, there are 

many unknowns surrounding the molecular details of photoferrotrophy, including the molecular 

mechanism and whether genes involved in phototrophic Fe(II) oxidation also mediate EEU from 

SPCSs. 

R. palustris TIE-1 utilizes a form of phototrophy called anoxygenic (cyclic) 

photosynthesis (Figure 1.5a)74. This means that the photosynthetic ETC is cyclic and does not 

evolve oxygen (Figure 1.5a). Subsequently, the net output of photosynthesis is the production of 

a proton motive force (Δp) and the synthesis of ATP via cyclic photophosphorylation (Figure 

1.5b, Figure 1.5c). Thus, unlike oxygenic photosynthesis, no reducing power (e.g. NADH) is 

generated from this process. It is for this reason external electron donors, such as Fe(II), are 

required (Figure 1.5). Electrons from external electron donors enter the ETC via soluble electron 

carriers, typically a periplasmic cytochrome c2 (Figure 1.5). In many PNSB, including within the 

Rhodospirillaceae, cytochrome c2 and/or high-potential iron-sulfur proteins (HiPIPs) mediate 

photosynthetic electron transfer between cytochrome bc1 and the reaction-center 

bacteriochlorophyll75. From the reaction center, electrons flow cyclically to the ubiquinone pool 

and can re-oxidize cytochrome bc1 (Figure 1.5). If an electron donor is available for 

photosynthesis, electrons can be used to drive NADH production via NADH dehydrogenase 

(Figure 1.5). 
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In phototrophic Fe(II)-oxidizers, electrons are thought to enter the photosynthetic ETC at 

cytochrome c2 or the ubiquinone pool and then flow in reverse to NADH dehydrogenase to 

reduce NAD+69,71. Reverse electron flow is thought to occur during growth on certain forms of 

iron, such as Fe2+ at pH 2 (Eº = +770 mV); or Fe(II)-nitrilotriacetic acid (Eº = +372 mV) and 

Fe(II)-citrate (Eº = +385 mV) at circumneutral pH69. This is because these electron donors are 

more electropositive than the NAD+/NADH couple (Eº = -320 mV)76 and thus reverse electron 

flow is likely required to push electrons “uphill” against their electrochemical gradient. This 

process is analogous to what is observed in chemoautotrophic Fe(II)-oxidizing bacteria, such as 

A. ferrooxidans. In A. ferrooxidans the “uphill” pathway that produces NADH involves the 

activity of cytochrome bc1 and NADH dehydrogenase77. 

1.3.2 A potential extracellular electron uptake pathway 

In 2014 Bose et al. cultivated R. palustris TIE-1 in bioelectrochemical systems and tested 

whether this organism could perform extracellular electron uptake from a cathode poised at +100 

mV vs. SHE—the midpoint potential of iron oxides22. With a graphite electrode as the sole 

electron donor, Bose et al. observed that R. palustris TIE-1 accepted electrons from a cathode 

with the highest current densities under illuminated conditions22. Furthermore, viable and 

attached cells were observed on the electrodes, suggesting electron uptake may be mediated by a 

direct EET mechanism22. Indeed, the pio operon was highly expressed during EEU22 suggesting 

that the PioABC may be involved in EEU from electrodes, analogous to the Mtr system in S. 

oneidensis MR-113. To directly examine if the pio system also has a role in extracellular electron 

uptake from electrodes, Bose et al. cultivated a pio operon deletion mutant on poised 

electrodes22.  Deletion of the pio operon led to current uptake levels lowering by only ~30%22. 
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The authors also noted a defect in cell-attachment to the electrodes that could explain this 

decrease in current uptake22.  

Because of a lack of a clear phenotype, the precise role of the PioABC system in EEU 

remains unclear. Whether the PioABC system is the electron conduit for solid minerals and/or 

poised electrodes, or only soluble forms of iron, should be investigated in future studies. 

Nonetheless, it is plausible that anoxygenic phototrophs use solid electron donors to generate 

reducing equivalents (e.g. NADH) for cellular metabolism, and that the PioABC system plays a 

role in this process. However, the precise pathway electrons take, and the molecular 

underpinnings of this process are not fully understood. This includes (1) whether electrons from 

the cathode enter the photosynthetic ETC; (2) which soluble electron carrier is responsible for 

delivering electrons to the photosynthetic ETC and/or reaction center; (3) and whether electrons 

are used for NADH production (e.g. via NADH dehydrogenase).  

1.3.3 The physiological electron sinks for phototrophic extracellular electron 

uptake 

Aside from the unknowns surrounding the electron transfer pathway during EEU, even 

less is known about what happens to electrons after their uptake into the cell78. One of the critical 

questions in phototrophic EEU research is whether electrodes can be used by anoxygenic 

phototrophs for CO2 fixation. Bioelectrochemical studies of chemoautotrophic bacteria have 

suggested that cellular growth occurs on cathodes21,57,63 but whether this growth is linked to de 

novo carbon assimilation via EEU is unclear. CO2 fixation has been shown in the acetogen 

Sporomusa ovata grown on cathodes. S. ovata can accept electrons from electrodes poised at -

400 mV vs. SHE for CO2 reduction to acetate via the Wood-Ljungdahl pathway17. Several other 
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acetogens, including several Sporomusa and Clostridium species, produce acetate and various 

other multicarbon compounds via EEU16,17. Whether PNSB, which take up electrons at 

sufficiently more positive electrode potentials, can perform CO2 fixation via EEU should also be 

investigated. 

In R. palustris TIE-1 and many PNSB, CO2 fixation occurs via the CBB cycle. The CBB 

cycle is the primary mechanism for CO2 fixation on Earth and is conserved among 

photosynthetic plants, algae, and cyanobacteria79. Ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) performs the critical CO2 reaction, catalyzing the 

carboxylation of CO2 and ribulose-1,5-bisphosphate (RuBP), forming glyceraldehyde 3-

phosphate (G3P). Some of the G3P formed by the CBB cycle goes to central metabolism, while 

most is used to regenerate the CO2 acceptor molecule (RuBP) to sustain the cycle79. Many 

PNSB, including TIE-1, encode two forms of RuBisCO: forms I and II80. In R. palustris 

CGA009/10, a bacterium closely related to TIE-1, form I ruBisCO is under the regulatory control 

of a three-protein, two-component system called CbbRRS. This system is composed of two 

response regulators (CbbRR1 and CbbRR2) and a hybrid sensor kinase (CbbSR). The CbbRRS 

system has no discernible DNA binding domains and thus indirectly influences form I ruBisCO 

expression through interactions with CbbR81-84. CbbR is a LysR family transcriptional 

regulator84. CbbRRS controls form I ruBisCO expression via CbbR in response to the redox and 

energy status of the cell, specifically the NAD(P)H and ATP levels83. 

To examine if electrons were used for CO2 fixation during phototrophic EEU Bose et al. 

examined the expression of genes encoding the key CO2 fixation enzyme of RuBisCO. Form I 

ruBisCO was highly upregulated during EEU22. However, an increase in cell density was not 

observed during EEU. This suggests: (1) TIE-1 is unable to use electrons from poised electrodes 
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to generate reducing equivalents; (2) electrons are being utilized for redox balance; or (3) the 

detection limit of previous methods used to measure cell growth were not sufficiently sensitive. 

Nonetheless, this data suggests that the CBB cycle may be an electron sink during EEU. Future 

studies, however, should investigate if electrons from the electrode enter the photosynthetic 

electron transport chain for NAD(P)H generation, and whether this NAD(P)H is used for CO2 

fixation. 

1.3.4 The ecology and diversity of purple nonsulfur bacteria 

PNSB are a phylogenetically diverse and a metabolically versatile group of microbes 

(Figure 1.6)85. PNSB participate in anoxic carbon cycling via primary productivity (i.e. 

photoautotrophy) and as consumers of organic compounds (photoheterotrophy85). PNSB have 

been isolated from soil, freshwater, and marine environments85. In these environments they 

oxidize a variety of inorganic electron donors during photoautotrophic growth, including reduced 

sulfur compounds (e.g. sulfide, thiosulfate, elemental sulfur), gaseous-phase compounds (e.g. 

H2), and insoluble minerals (e.g. mixed-valent iron minerals)85. Many PNSB species are also 

capable of N2 fixation and assimilate a variety of nitrogenous compounds85. Thus, PNSB play an 

important role in biogeochemical C, N, S, and Fe cycling. 

Aside from R. palustris TIE-1, Rhodobacter sp. SW2, Rhodovulum iodosum, 

Rhodovulum robiginosum, and Rhodomicrobium vannielii are the only known PNSB capable of 

phototrophic iron-oxidization (Figure 1.6). It is currently unknown whether other PNSB, such as 

Rhodovulum sulfidophilum or Rhodobacter sphaeroides, can carry out phototrophic iron-

oxidation. It is also unknown whether organisms in either of these phylogenetic clades are 

capable of phototrophic EEU. Thus far, Mtr homologs have only been identified in R. vannielii, 
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Rhodovulum sp. PH10, Blastochloris viridis, R. palustris TIE-1, and R. palustris CGA009 

(Figure 1.6). Although the phototrophic iron-oxidation ability of many of these microorganisms 

is unknown, it is clear that Fe(II)-oxidation mechanisms independent of Mtr exist in other 

microorganisms (e.g. R. robiginosum). Thus, other PNSB should be tested in future studies for 

Fe(II)-oxidation activity. Independent of their Fe(II)-oxidation ability, these PNSB should also 

be investigated for EEU-activity. Because of the limited number of organisms investigated for 

these metabolisms, the prevalence of phototrophic EEU is poorly understood and our 

understanding of its ecological role is limited, especially in marine ecosystems. 

Many marine PNSB, however, such as R. sulfidophilum either (a) use elemental sulfur 

(S0) as an electron donor, or (b) produce it externally as a byproduct of sulfide oxidation85. This 

is distinct from purple sulfur bacteria (PSB), which store S0 internally as intracellular sulfur 

globules85. It has been suggested that in chemoautotrophic sulfur-oxidizers, EET mechanisms 

may exist that allow these organisms to use elemental sulfur, and/or sulfide minerals as electron 

donors86-88. In a recent marine bacterial isolate, Thioclava electrotropha, electrodes poised at the 

potential of elemental sulfur (-400 to +200 mV depending on the environmental conditions)88 

could serve as electron donors86. Furthermore, the sulfur-oxidizing bacterium Desulfuromonas 

strain TZ1 can use poised electrodes as electron acceptors for S0-oxidation to sulfate89. Since 

marine PNSB are also capable of S0-oxidation, these organisms might also have EET pathways 

that allow them to use SPCSs as electron donors. 

1.4 Perspectives 

Examining the bioenergetic underpinnings of EEU is essential for understanding: (1) the 

ecological role of this process within microbial communities and (2) its biotechnological 
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applications. Because PNSB are capable of CO2 fixation and are broadly distributed, the 

oxidation of SPCSs may have an important yet overlooked contribution to primary productivity 

in nature. In light of key knowledge gaps in EEU research, this thesis examines how phototrophs 

use solid substrates for cellular metabolism, first in the freshwater iron-oxidizing bacterium R. 

palustris TIE-1, and then in the marine sulfur-oxidizing phototroph, Rhodovulum sulfidophilum 

AB26. 

In Chapter 2, I examine the electron transfer pathways and bioenergetic underpinnings of 

phototrophic EEU using a multidisciplinary approach that combines physiological studies, 

biochemical assays, microfluidics, and microscopy. Here I show that EEU is connected to 

photosynthetic electron transfer in R. palustris TIE-1. I investigate the contribution of key ETC 

proteins to better understand how electrons are used for the generation of reducing equivalents. 

Secondly, I test whether EEU is connected to CO2 fixation using molecular genetics, 

transcriptomics, and geochemical studies. These investigations reveal that EEU is connected to 

CO2 fixation and that the CBB cycle is the primary electron sink. 

In Chapter 3 I use bioelectrochemical approaches to characterize the electroactivity of a 

marine phototrophic sulfur-oxidizing bacterium I isolated, AB26. I show that AB26 can take up 

electrons from a poised electrode over a range of potentials that mimic sulfur-oxidation. I use 

microscopic approaches to characterize the nature of the microbe-electrode interaction. Next, I 

examine the metabolic potential of this organism using whole genome sequencing to shed light 

on its biogeochemical and ecological role in the environment. Lastly, I use whole-genome 

transcriptome sequencing (RNA-Seq) and biochemical approaches as a first step towards 

identification of the molecular components important for EEU by this microbe. This work 

provides the first evidence that marine phototrophic bacteria are capable of EEU. 
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Overall, this thesis provides new insights into the physiology of microbial EEU in 

photoautotrophs. This work provides the first direct evidence for microbial CO2 fixation 

associated with phototrophic EEU and provides a molecular model for how this feat is 

accomplished in the model organism R. palustris TIE-1 (Chapter 2). Lastly, this thesis uses 

bioelectrochemical and systems approaches to characterize an EEU-capable isolate related to R. 

sulfidophilum, a bacterium found broadly in marine ecosystems (Chapter 3). This study expands 

the known diversity of phototrophic EEU-capable microorganisms and provides a new 

genetically-tractable organism for studying this process in the laboratory. 
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1.5 Figures 

Figure 1.1. Microbial extracellular electron transfer (EET) mechanisms. Indirect and direct 

EET mechanisms between microorganisms and solid phase conductive substances (e.g. 

electrodes or metal oxides). Medox: oxidized soluble mediator; Medred: reduced soluble 

mediator.
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Figure 1.2. EET in Shewanella oneidensis MR-1. (a) The Mtr system facilitates EET from 

metal oxides or electrodes, or it can function in reverse (b) to facilitate extracellular electron 

uptake (EEU) from electrodes. For details of the stepwise process please see the text. Mtr system 

(MtrA, MtrB, and MtrC); CymA (tetraheme c-type cytochrome); MQ (menaquinone); NADH 

DH (NADH dehydrogenase). 
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Figure 1.3. Standard bioelectrochemical reactor design. Anodic and cathodic chambers are 

separated by a membrane to allow ionic flow. Reactors are connected to a power supply (i.e. 

potentiostat) that controls the set potential of the working electrode (cathode). Microbial cells 

(purple ovals) in the cathodic chamber accept electrons from the cathode to reduce an 

intracellular electron acceptor (e.g. CO2). e- (electron); A- (anion); H+ (proton). 
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Figure 1.4. Photoferrotrophy via the PioABC system in R. palustris TIE-1. The Pio system 

catalyzes electron transfer from Fe(II) and delivers electrons to the photosystem during 

phototrophic growth via an unknown mechanism. For details about the electron transfer process 

please see the text. PioA (periplasmic decaheme c-type cytochrome), PioB (outer membrane β-

barrel protein), PioC (high-potential iron sulfur protein), ? (electron transfer mechanism 

unknown). 
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Figure 1.5. Anoxygenic photosynthesis. (a) Conceptual model of electron flow in the 

photosynthetic ETC. (b) Potential energy diagram of the anoxygenic photosynthetic ETC, 

including the major protein components. (c) Photophosphorylation. ATP (adenosine 

triphosphate), ADP (adenosine diphosphate ), e- (electrons), P870 (photosystem), P870* (excited 

photosystem), UQ (ubiquinone), bc1 (cytochrome bc1), c2 (cytochrome c2), H+ (protons), hv 

(light), Δp (proton gradient), ATPase (ATP synthase), OM (outer membrane), P (periplasm), CM 

(cytoplasmic membrane) and ICM (inner cytoplasmic membrane). 
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Figure 1.6. Phylogenetic tree of select purple nonsulfur bacteria. Maximum likelihood 

analysis of the 16S rRNA gene sequences of purple nonsulfur phototrophs and related bacteria 

from marine and freshwater environments. C. ferrooxidans was used as an outgroup. Scale bar 

represents amino acid substitutions. 
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2.1 Abstract 

Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from 

solid-phase conductive substances such as metal oxides. EEU is performed by prevalent 

phototrophic bacterial genera, but the electron transfer pathways and the physiological electron 

sinks are poorly understood. Here we show that electrons enter the photosynthetic electron 

transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. 

Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. 

We show that reducing equivalents are used for carbon dioxide (CO2) fixation, which is the 

primary electron sink. Deletion of the genes encoding ruBisCO (the CO2-fixing enzyme of the 

Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that 



33 

 

phototrophs can directly use solid phase conductive substances for electron transfer, energy 

transduction, and CO2 fixation. 

2.2 Introduction 

Microbial phototrophic carbon dioxide (CO2) fixation accounts for substantial primary 

productivity on Earth1. Anoxygenic phototrophs, which include the green and purple sulfur 

bacteria, are metabolically versatile microbes that oxidize an array of inorganic compounds2. 

These include H2S, H2, Fe2+, and intriguingly, solid phase conductive substances (SPCSs) via a 

process called extracellular electron uptake (EEU)3-5. Microbial oxidation-reduction reactions 

with SPCSs play an important role in soil, marine sediments, and deep subsurface microbial 

communities6. The cellular electron transfer and metabolic pathways that allow photoautotrophs 

to utilize SPCSs via EEU, however, are largely unknown. It remains elusive whether electron 

uptake from SPCSs is connected to cyclic photosynthetic electron transfer and/or the generation 

of reducing equivalents for CO2 fixation. Subsequently, the ecological and evolutionary role of 

phototrophic EEU remains poorly understood. 

Poised electrodes in bioelectrochemical systems (BESs) have been used as proxies of 

microbial interactions with natural SPCSs, such as metal oxides5,7. Studies using BESs have led 

to fundamental insights into the molecular underpinnings of extracellular electron transfer in 

mineral respiring microbes4,8. These studies have revealed extracellular electron transfer is a 

widespread process in nature4,5,8. Furthermore, microbe-electrode interactions have been 

leveraged for biotechnological applications such as microbial electrosynthesis9. Our 

laboratory3,10, and others11,12, have recently applied BESs to better understand the molecular 

details of microbial phototrophic EEU. This has led to the discovery of at least two pure cultures 
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capable of EEU from electrodes, the anoxygenic phototrophs Rhodopseudomonas palustris TIE-

13 and Prosthecochloris aestuarii12. Thus far, only R. palustris TIE-1 is genetically tractable13, 

and as such is a model system for studying EEU. 

Here, we use an interdisciplinary approach combining bioelectrochemistry, molecular 

biology, isotope-based geochemistry, nanotechnology and microfluidics, to examine the 

bioenergetic pathways and physiological electron sinks that allow photoautotrophs to use SPCSs 

as electron donors. Using TIE-1 as a model system we show that EEU is linked to the 

photosynthetic electron transport chain (pETC), and that this process leads to cells becoming 

highly reduced with respect to both the intracellular nicotinamide adenine dinucleotide 

[NAD(H)] and nicotinamide adenine dinucleotide phosphate [NAD(P)(H)] pools. We also test 

the ability of TIE-1 to fix CO2 during EEU using labeling studies. These data show that EEU 

results in CO2 fixation to biomass via the Calvin-Benson-Bassham (CBB) cycle. Furthermore, 

using mutant analysis we observe that the CBB cycle is the primary electron sink. Overall, our 

results trace the path of electrons following EEU through the electron transport chain and cellular 

metabolism. 

2.3 Results 

2.3.1 EEU is linked to photosynthetic electron transfer 

EEU from metal oxides or poised electrodes into bacterial cells has been observed in pure 

cultures3-6,12,14-20, and mixed microbial communities4,5,21-23. However, the electron transfer 

pathways that underlie EEU have only been probed in chemotrophic microbes14,15,18,24. In 

phototrophic microbes, it is unknown if electrons from a cathode enter the pETC and if this 

activity is important for the establishment of a proton motive force (PMF), ATP synthesis, or the 
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generation of reducing equivalents. Bioelectrochemical studies traditionally rely upon 

macroscale (>500 mL) or mesoscale (0.2 mL to 500 mL) BESs that are scaled for biomass 

production25. In such BESs it is difficult to isolate the response of surface-attached cells. This is 

because other factors like the influence of planktonic cells3,10, extracellular enzymes26, and 

abiotic reactions confound the interpretation of electrochemical data3,10. Being able to collect 

electrochemical data from surface-attached cells exclusively would shed light on whether EEU 

leads to electron transfer into the pETC. 

To achieve this, we designed and constructed a microfluidic bioelectrochemical cell (µ-

BEC) (Figure 2-1a, Supplementary Figure 2-1). The µ-BEC is a four-chamber, three-electrode, 

small-volume (1.6 µL per well) BES that is compatible with confocal microscopy (Figure 2-1a) 

(see methods for a complete description of the µ-BEC design and assembly). Its major advantage 

is that it allows us to study surface-attached cells exclusively as planktonic cells can be washed 

out with microfluidic control (Figure 2-1b). Appropriately grown microbial cells were incubated 

in µ-BECs for ~120 h at +100 mV vs. Standard Hydrogen Electrode (SHE) under continuous 

illumination. Once we obtained stable current densities under illuminated conditions (~-100 nA 

cm-2), planktonic cells were washed out of the system with microfluidic control. Medium flow 

was turned off following this wash because constant flow led to excessive noise in the 

electrochemical data. To determine that we only had surface-attached cells and no plankton, we 

performed confocal fluorescence microscopy with LIVE/DEAD staining in the intact µ-BEC. 

We observed surface-attached cells in single-layer biofilms (Figure 2-1c and Supplementary 

Figure 2-2a). Previous studies have shown that EEU-capable microbes, including TIE-1, make 

single-layer biofilms on electrodes3,9,27-29. Furthermore, we were unable to detect the presence of 

any motile planktonic cells in the µ-BEC. 
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We used the above approach to obtain surface-attached cells in the µ-BEC and used these 

biofilms to study the influence of light and chemical inhibitors on EEU. Confocal imaging using 

LIVE/DEAD staining was performed in the intact µ-BEC after these tests that typically lasted 

for a few minutes (see methods for details). We observed light-stimulated EEU by pre-

established wild-type (WT) TIE-1 biofilms (Figure 2-1d). Upon illumination, biofilms reached 

stable current densities within ~1-2 seconds and typically reached a maximum of ~ -100 nA cm-2 

(Supplementary Table 2-1,2-2,2-3). Overall, the µ-BEC replicates the biofilm architecture 

reported in bulkier systems and permits reproducible measurements of EEU by surface-attached 

cells. 

To better understand electron flow during EEU we pursued a chemical probe-based 

approach to selectively inhibit key proteins involved in cyclic pETC. TIE-1 and related 

anoxygenic phototrophs use cyclic photosynthesis30 to generate energy (Figure 2-2). The 

photosystem (P870) is reported to be at the potential of +450 mV30. Quinones reduced by the 

photosynthetic reaction center (P870*) donate electrons to the proton-translocating cytochrome 

bc1
31. Electrons are then transferred to cytochrome c2, and cycled back to the reaction center30. 

To test whether cytochrome bc1 is involved in EEU, we used antimycin A, a specific inhibitor of 

cytochrome bc1
32 to block cyclic pETC (Figure 2-2a). Antimycin A is a quinone analog that 

blocks the Qi site of cytochrome bc1, inhibiting electron transfer from ubiquinol to cytochrome b, 

thus disrupting the proton motive Q cycle31,32. We observed a decrease in current uptake with 

antimycin A treatment (Figure 2-2a, Supplementary Table 2-1). Current density became anodic 

(positive current) under phototrophic conditions (12.46  1.34 nA cm-2; P < 0.0001, one-way 

ANOVA) relative to untreated controls (-85.5  5.42 nA cm-2) but reverted to cathodic (negative 

current) densities under dark conditions (-3.46  1.80 nA cm-2; P = 0.0006, one-way ANOVA) 
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(Figure 2-2a). Importantly, we did not observe a difference in the number of live/dead cells 

attached to electrodes in inhibitor treated vs. untreated control reactors (Supplementary Figure 2-

2). These data suggest that electrons enter the pETC and that cytochrome bc1 is involved in 

electron flow during EEU. 

Cyclic electron flow by the pETC is important for the establishment of a proton motive 

force (PMF) that drives ATP production30. To investigate whether a proton gradient is important 

for EEU, we exposed TIE-1 biofilms to the protonophore carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP) (Figure 2-2b). CCCP is a lipid-soluble molecule that dissipates the PMF such 

that electron transfer is uncoupled from ATP synthesis30,33. We observed a decrease in current 

uptake heading toward anodic current under illuminated conditions upon CCCP treatment (21.2 

 9.13 nA cm-2; P < 0.0001, one-way ANOVA) compared to untreated controls (-113.5  21.7 

nA cm-2) (Figure 2-2b, Supplementary Table 2-2). Current uptake was not different between 

CCCP (-18.4  14.0 nA cm-2; P = 0.8666, one-way ANOVA) and untreated controls (-17.52  

3.41 nA cm-2) under dark conditions (Figure 2-2b). These results demonstrate that a PMF is 

required for EEU. Furthermore, dark EEU is not PMF-dependent as EEU can occur in the 

presence of CCCP. 

The proton-translocating NADH dehydrogenase oxidizes NADH to generate a PMF for 

ATP production30. NADH dehydrogenase can also function in reverse to catalyze uphill electron 

transport from the ubiquinone pool to reduce NAD+ in the anoxygenic phototrophs Rhodobacter 

capsulatus34 and R. sphaeroides35. Its activity is linked to redox homeostasis and carbon 

metabolism in these organisms36. To investigate whether NADH dehydrogenase has a role in 

EEU in TIE-1, we treated cells with the NADH dehydrogenase inhibitor rotenone37. Rotenone 

blocks electron transfer from the iron sulfur clusters in NADH dehydrogenase to ubiquinone38 
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(Figure 2-2c). In illuminated biofilms, we observed a ~20% decrease in current uptake with low 

rotenone concentrations (25 µM; -71.8  2.02 nA cm-2; P < 0.0001, one-way ANOVA) 

compared to untreated controls (-94.7  3.61 nA cm-2), and up to a ~50% decrease with exposure 

to high rotenone concentrations (100 µM; -41.6  4.55 nA cm-2; P < 0.0001, one-way ANOVA) 

(Figure 2-2c, Supplementary Table 2-3). The current uptake maxima were markedly lower under 

these conditions (Supplementary Table 2-3). After initial current uptake, we observed that 

rotenone-treated cells showed lowered current uptake post light exposure (Figure 2-2c). It is 

unclear if this reduction is solely due to lowered current uptake or a combination of both lowered 

current uptake and increased electron donation to the electrode. The reduction in current uptake 

could also be a consequence of overreduction of the ubiquinone pool as has been observed in R. 

sphaeroides NADH dehydrogenase mutants38,39. Because we observe only a partial lowering of 

current uptake with NADH dehydrogenase inhibition (Figure 2-2c), the cell likely has additional 

sinks for using reduced ubiquinone. 

CCCP and antimycin A treatment both resulted in anodic current generation under 

illuminated conditions. Although the magnitude of the electrochemical response was different in 

the two cases, these data suggest that when the pETC is inhibited, TIE-1 cells likely transfer 

electrons to the poised electrodes by using them as an electron sink. Overall, our inhibitor studies 

show that (1) electrons enter the pETC of TIE-1 following EEU; (2) PMF is required for light-

dependent EEU; (3) cytochrome bc1 is involved in electron flow; and that (4) NADH 

dehydrogenase plays an important role in EEU. 
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2.3.2 EEU leads to an imbalance in intracellular redox 

Nicotinamide adenine dinucleotide (NAD) and its reduced state NADH are essential 

cofactors for microbes30. NADH can be converted to NAD(P)H via NAD(P)+ transhydrogenase40 

(Rpal_4660-4662). NADH and NAD(P)H are key electron donors for biosynthetic reactions, 

including CO2 fixation. To better understand how the intracellular redox pool is affected by 

EEU, we examined the NADH/NAD+ and NAD(P)H/NAD(P)+ ratios in planktonic cells41. We 

compared these ratios to aerobic chemoheterotrophy (i.e. the inoculum) and phototrophic 

conditions where other electron donors were provided. We observed that the NADH/NAD+ ratio 

in the WT during EEU was higher than aerobic chemoheterotrophic growth (Figure 2-3a). The 

NADH/NAD+ ratio was also higher than phototrophic growth on hydrogen (H2) or 

photoheterotrophic growth on acetate or butyrate (P < 0.0001; Figure 2-3a, one-way ANOVA). 

The NAD(P)H/NAD(P)+ ratio was also highest during EEU compared to other conditions (P < 

0.01, one-way ANOVA; Figure 2-3b). 

Analysis of intracellular redox suggests that EEU may lead to a highly-reduced 

environment in the cell. The lack of NAD+ or NAD(P)+ might require de novo NAD synthesis for 

cellular survival. Therefore, NAD biosynthesis might increase during EEU. We analyzed the 

expression of the de novo (aspartate-dependent) NAD biosynthesis pathway42 in the WT 

transcriptome encoded by nadABCDE. This pathway was not differentially expressed under any 

phototrophic condition, including EEU (Figure 2-3c). NAD kinase which converts NAD+ to 

NAD(P)+ was also not differentially expressed under the conditions tested (Figure 2-3c). These 

data suggest NAD biosynthesis does not increase at the level of gene expression during EEU 

despite a highly reduced redox pool. 
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We reasoned that NAD(P)+ consuming and/or producing reactions might be upregulated 

during EEU to maintain redox balance. Therefore, we assessed the expression of NAD(P)+/H-

requiring reactions across the TIE-1 genome. We observed that the majority of NAD(P)+/H-

requiring reactions were downregulated under phototrophic conditions (Figure 2-3d). 

Interestingly, an NADP-dependent FMN-binding flavin reductase-like protein (fre) was 

upregulated during photoautotrophic growth, increasing ~4-fold during EEU (Figure 2-3d). A 

pair of NAD(P)+/H-dependent oxidoreductases (akr3 and akr4) were also differentially 

expressed (Figure 2-3d). Akr3 was upregulated under all phototrophic conditions whereas akr4 

was specifically upregulated during phototrophic H2 oxidation and EEU. These data suggest that 

under EEU the cells are highly reduced and that the lack of oxidized NAD+ and/or NAD(P)+ is 

not relieved by de novo NAD biosynthesis. However, several NAD(P)+/H-dependent reactions 

are upregulated. 

2.3.3 EEU is linked to CO2 fixation via the CBB cycle 

Our data shows that EEU results in electron transfer to the pETC (Figure 2-2), eventually 

producing NADH and NAD(P)H (Figure 2-3). In anoxygenic phototrophs CO2 fixation is a 

major sink for NAD(P)H30. In our initial study on EEU by TIE-1, we observed that mRNA 

transcripts for genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO) increased during EEU3. RuBisCO catalyzes CO2 fixation in many autotrophic 

organisms as part of the Calvin-Benson-Bassham (CBB) cycle30. Therefore, we asked whether 

CO2 fixation occurs during EEU via RuBisCO. TIE-1 encodes two forms of RuBisCO: forms I 

(cbbLS) and II (cbbM)43. Using transcriptomic analysis, we analyzed the expression of the CBB 

cycle in TIE-1 and observed that form I ruBisCO was upregulated under all phototrophic 

conditions, but its expression was highest during EEU (~6-fold, P < 0.0001, one-way ANOVA) 
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and phototrophic iron oxidation (~7-fold, P < 0.0001, one-way ANOVA) (Figure 2-4a). Form II 

ruBisCO was expressed at similar levels across all phototrophic conditions (Figure 2-4a). The 

other enzyme unique to the CBB cycle, phosphoribulokinase (Prk), was also upregulated during 

EEU (P < 0.0001, one-way ANOVA; Figure 2-4a). Prk catalyzes the synthesis of the CO2 

acceptor molecule, ribulose 1,5-bisphosphate (RuBP)30. 

The expression of genes encoding CBB cycle-specific enzymes, including form I 

ruBisCO, suggests that CO2 fixation occurs during EEU. There are established methods for 

answering whether CO2 fixation is occurring in planktonic cells that can be grown in bulk44,45. 

However, in the case of EEU the cells attach to electrodes, which precludes us from using 

standard methodology. To overcome this, we employed secondary ion mass spectrometry 

(SIMS), and traced 13CO2 assimilation in TIE-1. The WT and a ruBisCO double mutant (∆cbbLS 

∆cbbM) (Supplementary Table 2-4) were subjected to four treatments in BESs as follows: (1) 

poised electrodes with 12CO2; (2) poised electrodes with 12CO2 supplemented with 10% 13CO2 

(poised + 13CO2); (3) electrodes at open circuit with 12CO2 (passing no current; control); and (4) 

electrodes at open circuit with 12CO2 supplemented with 10% 13CO2 (control + 13CO2) 

(Supplementary Figure 2-3). We chose to pre-grow cells under aerobic chemoheterotrophic 

conditions because the ruBisCO double mutant did not have a growth defect here compared to 

the WT (Supplementary Table 2-5). We used bulk BESs (~70 mL) here because they are closed 

systems, and do not lose CO2, unlike the μ-BEC, which is an anoxic microfluidic system under 

intermittent microfluidic flow. 

Cells were cultivated for ~60 hours, and planktonic and surface-attached cells (biofilms) 

were harvested for SIMS analysis. WT cells under poised conditions were enriched in 13C 

relative to the nonamended cells, indicating the assimilation of 13CO2 by both surface-attached 
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and planktonic cells (Figure 2-4b, Supplementary Table 2-6). The WT also increased in biomass 

above open circuit (Supplementary Figure 2-4). In contrast, the ruBisCO double mutant had a 

96% reduction in 13CO2 assimilation compared to WT (Figure 2-4b, Supplementary Table 2-7), a 

reduced capacity to take up electrons (Supplementary Figure 2-3) and no biomass increase 

(Supplementary Figure 2-4). These data demonstrate that EEU and CO2 assimilation are 

connected, and that RuBisCO catalyzes the major CO2 assimilation reaction in this system. 

The planktonic and the surface-attached cells show the same level of 13C assimilation. 

This might be due to surface-attached cells and the plankton interacting dynamically with the 

electrode. To address this, we devised an experiment where pre-established biofilms (from 48-

hour bioreactor runs) on poised electrodes (biocathodes) were transferred into “plankton-free” 

bioreactors with fresh medium (Supplementary Figures 5). We observed that after 48-hours 

current densities in “plankton-free” bioreactors were ~70% lower than the plankton-containing 

bioreactors (P < 0.05, one-way ANOVA; Supplementary Figure 2-5a-e). Plankton increased to 

nearly 0.06 OD660, while the biocathode remained fully colonized (Supplementary Figure 2-5a-c, 

f). In a reciprocal experiment, when new cell-free cathodes were installed in the plankton-

containing bioreactors (used to obtain the biocathodes), current densities resembled the original 

levels (Supplementary Figure 2-5a-e).  This suggests that the plankton retains the ability to attach 

to the electrodes after 48-hours. These data, along with 13CO2 assimilation, suggests that 

planktonic cells in the bioreactors are interacting dynamically with the poised electrodes. 

The uptake of 13CO2 in the ruBisCO double mutant (Figure 2-4b) likely represents CO2 

consuming reactions such as non-autotrophic carboxylases shown in Figure 2-4c. Multiple 

carboxylases in the TIE-1 genome are expressed during EEU, however, many of these reactions 

are downregulated relative to chemoheterotrophic growth (Figure 2-4c). cynS, which encodes 
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cyanase is upregulated during EEU (P < 0.05, one-way ANOVA; Figure 2-4c). Cyanase 

catalyzes the bicarbonate-dependent metabolism of cyanate, that accumulates as a byproduct of 

urea dissociation and/or carbamoyl phosphate decomposition46. Overall, our data suggest that 

RuBisCO is the primary reaction that is catalyzing CO2 fixation during EEU. 

2.3.4 The CBB cycle is a primary electron sink for EEU 

RuBisCO catalyzes a reaction between RuBP and CO2 that results in the formation of 2 

molecules of 3-phosphoglycerate (3-PGA), with no requirement for reducing equivalents30. The 

reactions that follow, however, require ATP and NAD(P)H. Phosphoglycerate kinase (PGK) 

catalyzes the phosphorylation of 3-PGA by ATP, which is converted in the reductive phase of 

the cycle by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) into glyceraldehyde 3-

phosphate (G3P). Thus, the CBB cycle, and not RuBisCO directly, is likely the electron sink for 

EEU. Because ruBisCO is the primary autotrophic carboxylase (Figure 2-4b) and because form I 

ruBisCO was upregulated during EEU (Figure 2-4a), we tested the effect of the lack of ruBisCO 

on this process. 

We grew WT and the ruBisCO double mutant in bulk BESs. We chose this 

bioelectrochemical format because of the need for more biomass for downstream studies. After 

~60 h of incubation in bulk BESs, the peak current density in the WT remained stable at ~ -1.5 

µA cm-2 (Figure 2-5a). The ruBisCO double mutant had a 90% reduction in current uptake vs. 

WT (P < 0.0001, one-way ANOVA; Figure 2-5a). To assess ruBisCO gene expression, we 

performed reverse transcription quantitative PCR (RT-qPCR) on the planktonic cells. In the WT, 

form I ruBisCO was upregulated ~8-fold with an associated downregulation of form II ruBisCO 
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(P < 0.0001, one-way ANOVA; Figure 2-5b). These expression data in the WT coincide with 

previous studies on EEU by TIE-13. 

The ruBisCO mutants did not have a cell viability defect across incubations compared to 

the WT (P = 0.3691, one-way ANOVA; Figure 2-5c, Supplementary Figure 2-6). We also 

assessed NADH/NAD+ and NAD(P)H/NAD(P)+ ratios in the ruBisCO double mutant (lacking 

both form I and form II ruBisCO) and observed that these cells were more reduced under EEU 

compared to aerobic chemoheterotrophic conditions (Supplementary Figure 2-7). However, 

because these cells show very low current uptake (Figure 2-5a), these data are difficult to 

interpret. Additionally, we did not observe a difference in ATP levels in WT and the ruBisCO 

double mutant planktonic cells during EEU (P = 0.2612, one-way ANOVA; Supplementary 

Figure 2-8). 

Upon complementation of the ruBisCO double mutant with form I and/or form II 

ruBisCO (Supplementary Table 2-4), current uptake reached ~-0.75 µA cm-2, similar to EEU by 

the WT (Figure 2-5d). This was above current uptake levels by the ruBisCO double mutant (P < 

0.01, one-way ANOVA; Figure 2-5d). We observed that form I and form II ruBisCO were 

expressed at levels similar to the WT (Figure 2-5e). Similar to the ruBisCO deletion mutants, the 

ruBisCO complementation mutants did not have a cell viability defect compared to the WT (P = 

0.0572, one-way ANOVA; Figure 2-5f, Supplementary Figure 2-6). 

2.3.5 RuBisCO deletion does not affect EEU due to a growth defect 

To determine whether the EEU defect in the ruBisCO double mutant was growth-

dependent, we inoculated WT cells into bioreactors containing a sub-lethal concentration of 

gentamicin to inhibit protein synthesis (Supplementary Figure 2-9). We observed that 
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gentamicin-treated WT cells accepted 80% more electrons during EEU compared to the ruBisCO 

double mutant (P < 0.0001, one-way ANOVA; Figure 2-5g). To assess a potential growth defect 

in the ruBisCO double mutant, we harvested the electrodes at the end of the incubations and used 

5 mm sections as inoculum for chemoheterotrophic growth. We did not observe a growth defect 

in the ruBisCO double mutant upon re-growth compared to the WT (P = 0.8232, one-way 

ANOVA; Figure 2-5h). Planktonic colony forming units (CFUs) for the ruBisCO double mutant 

harvested at the end of incubations in the bulk bioreactors were not different from the WT (P = 

0.0804, one-way ANOVA; Figure 2-5h). These data suggest that the lower EEU activity of the 

ruBisCO double mutant is not due to a growth defect. 

We performed gene expression analysis using a set of genes that have been reported to be 

involved in EEU from electrodes3. We first assessed the expression level of the photosynthetic 

reaction center large subunit (pufL). Gene expression analysis showed a ~5-fold upregulation of 

pufL in the ruBisCO double mutant, very similar to the WT expression (P = 0.0559, one-way 

ANOVA; Figure 2-5i). Because previous mutant studies have shown that the pioABC system, a 

gene operon essential for phototrophic iron oxidation47, also has a role in electron uptake3, we 

performed expression analysis of pioA in the ruBisCO double mutant and the WT. We observed 

that the expression level of pioA in the ruBisCO double mutant was not different from the WT (P 

= 0.0759, one-way ANOVA; Figure 2-5i). 

We also assessed the expression of the systems responsible for energy transduction. The 

TIE-1 genome contains two F-type ATPases: Atp1 and an “alternate” Atp2. atp1 showed lower 

upregulation (~4-fold) than atp2 (~7-fold) in both the WT and the ruBisCO double mutant 

(Figure 2-5i). The WT transcriptomic data corroborate the RT-qPCR data where atp1 is 

downregulated during phototrophic growth conditions, including EEU, whereas atp2 is 
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specifically upregulated during EEU (Supplementary Table 2-8,2-9). These results suggest that 

the atp2 operon plays an important role in ATP synthesis during EEU. Overall, our data suggest 

that the WT and the ruBisCO double mutant do not show any differences in the level of gene 

expression for critical genes required for EEU, pETC, and energy generation. These data, in 

conjunction with the lack of 13CO2 assimilation (Figure 2-4b), suggests the ruBisCO double 

mutant cells may be using cellular reserves to stay viable under the conditions tested. 

2.3.6 The CBB cycle is important for phototrophic H2 oxidation 

The inability of the ruBisCO double mutant to take up electrons from solid electrodes 

suggests that the CBB cycle is the primary electron sink during EEU. This finding underscores 

that CO2 fixation is tightly linked to EEU in these bacteria. In order to probe whether this 

coupling extends to other growth conditions, we examined the ability of the ruBisCO double 

mutant to oxidize H2 under phototrophic conditions. We observed ~80% lower H2 consumption 

in the ruBisCO double mutant compared to the WT (P < 0.05, one-way ANOVA; Figure 2-6a, 

Supplementary Table 2-10) with a concomitant reduction in CO2 consumption (P < 0.05, one-

way ANOVA; Figure 2-6b, Supplementary Table 2-10). We also observed an increase in 

biomass in the WT compared to the ruBisCO double mutant during phototrophic H2 oxidation (P 

< 0.0001, one-way ANOVA; Supplementary Figure 2-10, 11). These data suggest that CO2
 

fixation is an important electron sink under photoautotrophic conditions, where electron donors, 

such as H2, are oxidized to provide cellular reducing power. 

 The ruBisCO double mutant might oxidize less H2 because gene expression of the uptake 

hydrogenase48 is lower. We therefore assessed the expression of the large subunit of the uptake 

hydrogenase (hupL) in the ruBisCO double mutant and found that its expression was not altered 
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compared to WT levels (P = 0.3222, one-way ANOVA; Figure 2-6c). This suggests that the 

level of phototrophic H2 oxidation between the WT and the ruBisCO double mutant should be 

similar. However, our data show a clear reduction in H2 oxidation of ~80% in the mutant strain. 

We also assessed the expression of pufL in the ruBisCO double mutant and found no difference 

in expression vs. the WT (P = 0.0753, one-way ANOVA; Figure 2-6c). In contrast, atp1 gene 

expression was higher in the WT (P < 0.01, one-way ANOVA) while atp2 gene expression was 

higher in the ruBisCO double mutant (P < 0.01, one-way ANOVA; Figure 2-6c). Our data 

suggest that the lack of ruBisCO affects the ability of TIE-1 to accept electrons from other 

electron donors such as H2. 

2.4 Discussion 

Microbes have been known to exchange electrons with SPCSs for nearly a century7. 

Although we know the underlying electron transfer pathways and electron sinks employed by 

microbes that use SPCSs as electron acceptors, these are largely unknown for microbes that use 

SPCSs as electron donors4,8. To fill this knowledge gap, here we used an interdisciplinary 

approach to study the model EEU-capable microbe R. palustris TIE-1. Our data shows that EEU 

from poised electrodes is connected to pETC and CO2 fixation (Figure 2-7). We observe that 

electrons enter the pETC, and eventually these electrons reduce NAD+ for CO2
 fixation via the 

CBB cycle (Figures 7). Furthermore, NADH dehydrogenase plays an important role in EEU 

(Figure 2-2) most likely for generation of reducing equivalents for cellular metabolism. 

Our inhibitor studies (Figure 2-2) and biochemical assays (Figure 2-3) suggest that during 

EEU, electron flow leads to NAD+ and NAD(P)+ reduction. Because the reduction potential of 

the electrode in our experiments is lower than that required to reduce NAD+/ NAD(P)+ directly, 
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reverse electron transfer has to occur. The path of reverse electron transfer has been extensively 

studied in chemolithoautotrophs34,37,39,49. In these bacteria, electrons from soluble ferrous iron 

enter at cytochrome c2. These electrons can reduce oxygen to generate a PMF for ATP synthesis. 

The PMF can also be used to drive reverse electron flow from cytochrome bc1 to NADH 

dehydrogenase to reduce NAD+34,37,39,49. NADH dehydrogenase-mediated reverse electron flow 

has also been observed in R. capsulatus34. This pathway for electron transfer to NAD+
 has also 

been proposed for other anoxygenic phototrophs50,51. Our data implies reverse electron flow is 

also occurring during EEU in TIE-1. 

Interestingly, we observe that EEU is reversible in TIE-1 (Figure 2-2a, b). Although 

artificially induced in our system (i.e. only in the presence of antimycin A or CCCP), the 

reversibility of extracellular electron transfer pathways is broadly observed in bacteria donating 

electrons to SPCSs14,27. For example, Shewanella oneidensis MR-1 uses an electron conduit 

called the Mtr system to transfer electrons to SPCSs14. Mtr can also function in reverse to 

facilitate EEU14. The PioAB system (a homolog of the MtrAB system) in TIE-147 plays a role in 

EEU from poised electrodes3. Anoxygenic photoheterotrophs are known to use CO2 as an 

electron sink to maintain redox balance when growing on highly reduced substrates such as 

butyrate52. In nature, photoheterotrophs may use this reversibility of the EEU pathways and use 

SPCSs as electron sinks. 

SIMS analysis demonstrates CO2 fixation is occurring during EEU primarily via 

RuBisCO (Figure 2-4). We observed 13C assimilation was identical in surface-attached and 

planktonic cells within the bulk bioreactors. Furthermore, reactors with planktonic cells have 

higher current densities versus plankton-free reactors (Supplementary Figure 2-5) suggesting that 

they contribute to EEU via an unknown mechanism (Supplementary Figure 2-12). Previously 
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published work from our laboratory, however, suggests no redox active molecule is detectable in 

the spent-medium3. Our laboratory has also shown that a cathode-driven Fe(II)/Fe(III) redox 

cycle at +100 mV vs. SHE10, is also unlikely. 

The ruBisCO mutant is impaired in using electron donors such as poised electrodes 

(Figure 2-5) and H2 for photosynthesis (Figure 2-6). This implies that the cells ability to fix CO2 

via ruBisCO is relayed to the electron transfer machinery that accepts electrons from these 

electron donors. During EEU we observe both increased ruBisCO expression (Figure 2-4a) and 

an increased NAD(P)H/NAD(P)+ ratio (Figure 2-3b). In R. palustris CGA009/10, which is 

closely related to TIE-1, form I ruBisCO is transcriptionally activated in response to elevated 

NAD(P)H and ATP levels via a regulatory system called CbbRRS53,54. These studies suggest that 

form I RuBisCO may be a sensor of cellular energy and redox balance53,54. In TIE-1, the 

regulatory CbbRRS system may also sense NAD(P)H levels and regulate form I ruBisCO 

expression. Together, this suggests that NAD(P)H is a metabolite that communicates redox status 

to the CBB cycle by controlling ruBisCO expression. This relationship between carbon 

metabolism and electron transfer may be conserved in other organisms, and thus be broadly 

relevant in many ecosystems.  

Our data highlights that photosynthetic EEU is linked to the CBB cycle for CO2 fixation. 

The link between EEU and the CBB cycle is the reducing equivalents produced via the pETC 

(Figure 2-7). Because the CBB cycle1 and EEU4,5 are important processes in nature, primary 

productivity may be attributed to this process. Future studies will focus on quantitative 

measurements of the prevalence of autotrophic EEU such that EEU-linked CO2 fixation can be 

accounted for in global biogeochemical cycles. EEU from natural SPCSs such as rust might 

represent a strategy that autotrophic microbes use to access electrons for microbial survival when 
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other electron donors are limiting or otherwise unavailable due to spatiotemporal constraints. 

Photoautotrophs, which are restricted to the photic zone, are known to exchange electrons with 

SPCSs, including magnetite55. Indeed, studies have shown that SPCSs can potentiate interspecies 

electron transfer55-57. For example, Geobacter sulfurreducens can exchange electrons with TIE-1 

via mixed valent iron oxides55. Furthermore, long distance extracellular electron transfer has 

been observed by various researchers7,8. Although some microbes have evolved specialized 

membranes to facilitate long distance extracellular electron transfer58-60, microbes may also 

utilize electrically conductive minerals to access electrons in deeper sedimentary zones to 

overcome spatial separation from electron donors. Because SPCSs are ubiquitous8,61, EEU might 

be used both for microbial growth and survival. 

2.5 Methods 

2.5.1 Bacterial strains and culture conditions 

All strains used in this study are indicated in Supplementary Table 2-4. The 

Rhodopseudmonas palustris TIE-1 ruBisCO deletion mutants (∆cbbLS, Rpal_1747-1748; 

∆cbbM, Rpal_5122; and ∆cbbLS ∆cbbM) were constructed using a suicide plasmid system 

(Supplementary Table 2-4)13. A complete list of cloning and sequencing primers and restriction 

enzymes can be found in Supplementary Table 2-11. Escherichia coli strains were routinely 

cultivated in lysogeny broth (LB; pH 7.0) in 10 mL culture tubes or on LB agar at 37°C. TIE-1 

was pre-grown chemoheterotrophically at 30°C in YP medium (0.3% yeast extract and 0.3% 

Bacto peptone) supplemented with 10 mM MOPS pH 7.0 (YPMOPS) in the dark. All growth 

experiments were carried out at 30°C unless otherwise noted. All phototrophic growth 

experiments were carried out with a single 60W incandescent light bulb at a distance of 25 cm. 
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For anaerobic photoautotrophic growth TIE-1 strains were grown on 80% hydrogen-20% carbon 

dioxide (H2-CO2) at ~50 kPa in freshwater medium62 (FW) with 20 mM sodium bicarbonate in 

sterile, sealed glass serum bottles. For anaerobic photoheterotrophic growth TIE-1 was grown in 

10 mL FW medium supplemented with 1 mM acetate or butyrate from stock solutions (100 mM, 

pH = 7).  In all cases where a change in culture medium was required cells were washed 3 times 

in basal FW medium post-centrifugation at 5000 x g. Bioelectrochemical reactor studies were 

performed with FW medium lacking exogenous electron donors, and purged with 80%-20% 

nitrogen (N2)-CO2. The complemention experiments were carried out with 1 mM IPTG and 800 

µg mL-1 gentamicin for plasmid selection. Doubling time was calculated using the equation g = 

ln(2)/k, where k was determined from the slope of OD660 versus time on a log10 scale. 

2.5.2 Complementation of ruBisCO knockouts 

The TIE-1 form I ruBisCO (cbbLS) and form II ruBisCO (cbbM) genes were cloned such 

that the start site overlapped with an NdeI restriction site for cloning into pSRKGm 

(Supplementary Table 2-4). A complete list of primers and restriction enzymes used in cloning 

can be found in Supplementary Table 2-11. Post-cloning, the ruBisCO  complementation 

plasmids were conjugated into the ruBisCO double mutant (∆cbbLS ∆cbbM) using the mating 

strain E. coli S17-1/pir and selected on 800 µg mL-1 YPMOPS agar plates. A single colony was 

chosen and grown on 1 mM IPTG. Colonies were PCR screened using the primers in 

Supplementary Table 2-11. The pSRKGm empty vector was introduced into the WT and the 

ruBisCO double mutant to serve as controls (Supplementary Table 2-4). 

2.5.3 RNA isolation and RT-qPCR 

For bioelectrochemical studies, planktonic cells were sampled in an anaerobic chamber 

and immedietly mixed 1:1 with RNAlater (Qiagen, USA). RNA was extracted using the 
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RNeasy Mini Kit according to the manufacturer’s recommendations (Qiagen, USA). DNA 

removal was performed using Turbo DNA-free Kit (Ambion, USA). RNA samples were tested 

for purity using PCR. Gene expression analysis of ruBisCO was performed using RT-qPCR with 

the comparative Ct method. Primer efficiencies were determined according to the manufacturers 

reccommendations. Purified RNA was used to synthesize cDNA with the iScript™ cDNA 

synthesis kit. clpX and recA were used as internal standards based on previous studies3. Primers 

for RT-qPCR outlined in Supplementary Table 2-12 were designed in Primer3 v4.1.0  

(http://primer3.ut.ee) using the programs default parameters. The Bio-Rad iTaq Universal 

SYBR Green Supermix and the Bio-Rad CFX Connect Real-Time System Optics ModuleA 

machine (Bio-Rad Laboratories, Inc., Hercules, CA) were used for all quantitative assays 

according to the manufacturer’s recommendations. 

2.5.4 Differential expression (RNA-seq) analysis 

Transcriptomic data sets were downloaded from NCBI (BioProject: PRJNA417278) and 

differential expression and statistical analysis was performed. Trimmomatic version 0.36 was 

used to trim Illumina sequencing reads (threshold = 20) and length filter (min = 60bp)63. 

Processed reads were mapped to the published R. palustris TIE-1 genome using TopHat2 version 

2.1.1 and the gff3 annotation file as a guide for sequence alignment64. Bowtie 2 version 2.3.3.1 

was used to index the reference genome FASTA file65. The number of reads mapping to each 

feature were counted by HTSeq version 0.9.166. Differentially expressed genes were determined 

in DESEQ2 version 1.16.1 using the HTSeq read counts. To determine if genes were 

significantly differentially expressed an adjusted p-value cutoff of 0.05 was used. Heat maps 

were drawn in R using ggplot267. 
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2.5.6 Quantification of NADH/NAD+ and NAD(P)H/NAD(P)+ ratios 

NADH/NAD+ and NAD(P)H/NAD(P)+ ratios were quantified using the “high-

sensitivity” reagent mixture and sampling procedure41. Briefly, two separate 2 mL cell aliquots 

were sampled in an anaerobic chamber and centrifuged for 1 minute at 21,000 x g to remove the 

supernatant. Cell pellets were then resuspended in 200 µL 0.2 M hydrochloric acid (for NAD+ 

and NAD(P)+) or sodium hydroxide (for NADH and NAD(P)H) for 10 minutes at 50°C, then 

chilled on ice for 5 min. The reaction was then neutralized dropwise with equal volume 0.1 M 

acid or base and centrifuged for 5 min at 21,000 x g. The supernatant was stored at -80°C for no 

more than one week. The enzyme cycling assays were performed on a BioTek Synergy HTX 

96-well plate reader measuring absorbance at 570 nm41. A standard curve of known 

concentrations of NAD+ and NAD(P)+ was used to determine the concentration of samples.  

2.5.7 ATP quantitation 

ATP was extracted using the boiling water method68. Briefly, 2 mL of cells were 

centrigured at 21,000 x g for 1 minute and the cell pellet was resuspended in 50 µL boiling 

sterile-filtered Milli-Q  water and allowed to sit at room temperature for 10 minutes. Samples 

were then centrifuged at 21,000 x g for 1 minute and the supernatant was transferred to fresh 

microcentrifuge tubes and stored at -80°C for no more than one week. The ATP Determination 

Kit (Molecular Probes, Eugene, OR) was used to measure ATP concentrations using a standard 

curve of known concentrations according to the manufacturers reccomendations. Absorbance 

was measured at 560 nm. ATP concentrations were normalized to biomass (OD660). 

2.5.8 Bulk bioelectrochemical system (BES) setup and conditions 

Bioelectrochemical systems (BESs) were configured as previously described10. Briefly, 

FW media (70 mL) was dispensed into sterile, sealed, three-electrode BESs which were bubbled 
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for 60 minutes with 80%:20% N2-CO2 to make remove oxygen, and pressurized to ~50 kPa. The 

three electrodes were configured as follows: graphite working electrodes were approximately 3.2 

cm2; reference eletrodes (Ag/AgCl) were submerged in 3 M KCl; and counter electrodes were 

composed of 5 cm2 platinum foil. Working electrodes were poised at +100 mV versus Standard 

Hydrogen Electrode (SHE) using a multichannel potentionstat (Gamry Instruments, Warmister, 

PA) and operated continuously with a single 60W incandescent light bulb at 26°C. Data were 

collected every 1 minute using the Gamry Echem Analyst (Gamry Instruments, Warmister, 

PA) software package. The biomass (OD660) of inoculated BESs was monitored with a BugLab 

Handheld OD Scanner (Applikon Biotechnology, Inc., Foster City, CA).  

2.5.9 Quantification of live/dead bacteria on electrodes 

Graphite electrodes were washed 3 times with anoxic 1X phosphate-buffered saline 

(PBS) to remove unattached cells in an anaerobic chamber. Sections of the electrode were cut 

with a sterile razor blade and immediately placed in sterile microfuge tubes containing anoxic 1X 

PBS. Prior to imaging, the electrode was immersed in LIVE/DEAD stain (10 µM SYTO 9 and 

60 µM propidium iodide, L7012, Life Technologies) and incubated for 15 min in the dark. 

Samples were then placed in 1X PBS in a glass bottom Petri dish (MatTek Corporation, Ashland, 

MA). For imaging biofilms in the intact µ-BEC, LIVE/DEAD stain was flowed into the µ-BEC 

and allowed to incubate for 15 min in the dark. The excess stain was washed with sterile anoxic 

1X PBS. Electrodes were imaged on a Nikon A1 inverted confocal microscope using 555 and 

488 nm lasers and a 100X objective (Washington University in St. Louis Biology Department 

Imaging Facility). Attached cells were quantified in Fiji v1.0 (https://fiji.sc) using the analysis 

pipeline described below. Briefly, images (n = 3) were inverted then converted to a 1-bit image 

by auto-thresholding. The “Watershed” tool was then applied to separate object edges. The 

https://fiji.sc/
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“Analyze Particles” tool was used to generate cell counts for each image based on an area range 

(min = 16 pixels, max = 210 pixels) that was empirically determined from manually masking 

100 cells. The red and green channels were split, and the “Analyze Particles” tool was used to 

count bacteria on each image (1024 × 1024 pixels). 

2.5.10 Micro-bioelectrochemical cell (µ-BEC) setup and conditions 

The µ-BECs were assembled from polymer fluidic layers, indium tin oxide (ITO) 

coverslips, and a glass layer with integrated reference and counter electrodes. Inlet, outlet, and 

connecting channels were laser cut into a 40 mm × 12.25 mm × 254-µm thick acetal 

polyoxymethylene (POM) adhesive tape. Four 4 mm diameter reaction chambers were cut into a 

second 127-µm thick acetal POM tape, aligned, and bonded to the channel layer using a 

pressure-sensitive acrylic adhesive. Prior to assembly, 1-mm diameter inlet/outlet holes were 

drilled into Borofloat® 33 1.75-mm thick glass capping layer (Schott AG, Mianz, Germany). 

500-µm deep grooves were diced into the glass above the chamber midlines to locate 250-µm 

silver and platinum wires used for reference (RE) and counter (CE) electrodes, respectively 

(Xi'an Yima Opto-electrical Technology Co., Ltd, Shaanxi, China). Each 1.6 μL (0.125 cm2) 

well was enclosed by a 6 mm × 10 mm × 170-µm thick ITO-coated coverslip (30-60 Ω) (SPI 

supplies, West Chester, PA) to serve as the working electrode. Inlet and outlet tubes (Saint-

Gobain TYGON® b-44-3; 1/16" ID x 1/8" OD) (United States Plastic Corp., Lima, OH) were 

attached on the glass capping layer and the 1/16” tube ends were capped with male/female luer 

lock fittings (World Precision Instruments, Sarasota, FL). Microbial samples were injected into 

the µ-BEC using a FLOW EZ™ Fluigent Microflow Controller (Le Kremlin-Bicêtre, France) 

with 5 kPa 80%-20% N2-CO2. Microbial cells were incubated in µ-BECs with working 

electrodes poised at +100 mV vs. SHE for ~120 h under illuminated conditions with a single 
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60W incandescent light bulb at a distance of 25 cm to establish biofilms. Once we obtained 

stable current densities under illuminated conditions (~-100 nA cm-2), planktonic cells were 

washed out of the system with microfluidic control and biofilms were immedietly treated with 

chemical inhibitors under dark conditions. Light “on-off” experiments were subsequently carried 

out at an interval of 10 seconds for a total of 200 seconds. Microfluidic flow was not applied 

during electrochemical data collection. 

2.5.11 Analytical techniques 

In order to quantify the amounts of H2 and CO2 consumption during photoautotrophic 

growth of with H2, gas concentrations in headspace at the initial and final time points were 

measured. 20 µL of gas sample from the headspace was withdrawn using a HamiltonTM gas-tight 

syringe and analyzed using a Tracera GC-BID 2010 Plus, (Shimadzu Corp., Japan) equipped 

with Rt®-Silica BOND PLOT Column (30 m × 0.32 mm; Restek, USA). Based on the measured 

partial pressures of H2 and CO2, their concentrations in headspace (moles of gas) were calculated 

using the ideal gas law (PV = nRT). 

2.5.12 Secondary ion mass spectrometry (SIMS) 

For planktonic assessments, 2 mL of cells were harvested from the bulk BESs and 

centrifuged at 4000 x g for 10 minutes. For biofilm assessments, cells were manually dislodged 

from the electrode by scraping with a sterile razor and resuspended in 950 µL of 1X PBS. Cells 

were then fixed with 50 µL of 20% paraformaldehyde fixative to a 1% final concentration and 

incubated at 4°C for 24 h. After incubation, cells were pelleted by centrifugation, and washed 

with 1X PBS buffer twice to remove any residual fixative. Lastly, the cells were resuspended in 

500 µL 100% ethanol and stored at -20°C. Carbon isotopic compositions of individual cells were 
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measured on a Cameca IMS 7f-GEO (Ametek Inc., USA) secondary ion mass spectrometer. 

Areas of interest (~100 µm2) were selected via scanning ion imaging, using the criterion of 

maximizing cell density, without compromising unambiguous individual cell identification. 

Scanning ion images of 12C14N- were used for this step, which was preceded by several minutes 

of pre-sputtering, in order to overcome the surface ion-yield transient region and achieve steady 

state secondary ion yield. Note that for biological specimens, nitrogen is monitored as CN- which 

provides a strong, unambiguous signal with which to locate the microbes69. Nominal primary ion 

settings were a 1.5-µm diameter, 20-keV net impact energy, 10 pA Cs+ beam rastered over a 

square area 100 microns per side. 12C- and 13C- scanning ion images were acquired, sequentially, 

using magnet switching and a single electron multiplier (EM) detector. In order to avoid EM 

saturation or aging, the instantaneous secondary ion count rate was restricted to <3x105 counts 

per second. A magnetic field settling time of 1 second was included prior to each new image 

acquisition. The acquisition time per image was nominally 5 seconds for 12C- and 55 seconds for 

13C-. Image acquisition cycling continued until most cellular material was sputtered through 

(typically between 2-4 hours). Between 2-6 fields of view were measured for each sample, 

depending on cell spacing. For these specimens, the most egregious isobaric interference was 

12C1H-, which required a mass resolving power (MRP) of 2909 (M/dm) to achieve mass peak 

separation from 13C-. Therefore, the entrance and exit slits were set to achieve a flat-topped peak 

with MRP = 3000. 

2.5.13 SIMS data analysis 

Each region of interest (ROI; i.e. one individual cell) was selected using Cameca 

WinImage software (Ametek Inc., USA), and all count rates were exported for all ROIs for all 

cycles. Electron multiplier dead time and quasi-simultaneous arrival corrections (QSA) were 
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applied70. Note that these corrections made a relative change to the corrected ratio from the raw 

data ratio of only ~ 0.5% and ~ 0.2%, respectively. For each field of view, isotope ratios for all 

ROIs were plotted against cycle number. Based on numerous ‘blank’ analyses of unlabeled 

microbes, isotope ratios are not statistically ‘normally’ distributed around the mean value as the 

cell is sputtered through, being skewed at the onset of sputtering (despite pre-loading with Cs) 

and also when the cell is almost consumed. However, excluding these cycles, histograms of 

percent deviation from natural abundance of populations of ‘blank’ cells are, indeed, statistically 

normal, with a typical relative standard deviation < 1% (1 second, for >100 cells). (Note that a 

1% relative standard deviation indicates, for example, that a 20% measured label isotope ratio 

increase would have a standard deviation of 0.2%). Once the cycles for each field of view were 

chosen, the ratios were averaged across those cycles for each region of interest. The data were 

then translated to deviations from unlabeled. For each test, a reference ratio, that is, the mean 

R13C (i.e., 13C/12C) of the unlabeled data set, is calculated. Then all ratios in that test were 

recalculated as ‰ (permil, or part per thousand) deviations from the unlabeled mean using the 

equation 13Ctest = (R13Ctest/R13Cref - 1)*1000 with Microsoft Excel. 

2.5.14 Electron transport chain inhibitors 

Stock solutions (100X) of rotenone, antimycin A, and carbonyl cyanide m-chlorophenyl 

hydrazine (CCCP) (MilliporeSigma, USA) were solubilized in 100% DMSO and stored as 

aliquots at -20°C for no more than one day before use. For µ-BEC experiments, the stock 

solutions were suspended in 1X PBS before use. 
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2.5.15 Statistical analysis 

All statistical analyses (Student’s t-test, one-way ANOVA with Bonferroni adjustment) 

were performed with Microsoft Excel “Data Analysis” tools. 

2.5.16 Data availability 

All data in this study are available from the corresponding authors upon request. The 

source data underlying Figs 1d, 2a-b, 3a-d, 4a-c, 5a-i, 6a-c; Supplementary Figs 2a-d, 3, 4, 5d-e, 

6a-i, 7a-b, 8-11; and Supplementary Tables 1-3 and 5-7 and 10 are provided as a Source Data 

file. Sequencing reads used for differential expression analysis are available under BioProject 

PRJNA417278. 
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2.6 Figures 

 

Figure 2.1. Extracellular electron uptake in the micro-bioelectrochemical cell. (a) Schematic 

drawing of a single, four-chamber micro-bioelectrochemical (µ-BEC) with (b) microbial cells 

attached to the indium tin oxide (ITO) working electrode (WE). The reference (RE) and counter 

(CE) electrodes are silver and platinum wires, respectively (not drawn to scale). (c) Confocal 

micrograph of R. palustris TIE-1 biofilms attached to the WE under poised conditions using 
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LIVE/DEAD staining. Green cells are viable. Scale bars are 10 µm (d) Current densities for 

TIE-1 wild-type (WT) (black) in the µ-BEC under illuminated and dark conditions (shaded 

regions) compared to a ‘No cell control’ reactor (red). Data shown are representative of three 

experiments. Source data are provided as a Source Data File.
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Figure 2.2. Photosynthetic electron transfer is required for extracellular electron uptake. 

Current densities of TIE-1 wild-type (WT) in response to inhibition of the photosynthetic ETC 

under illuminated and dark (shaded regions) conditions with (a) antimycin A, (b) carbonyl 
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cyanide m-chlorophenyl hydrazine (CCCP), and (c) rotenone. Data shown are representative of 

three experiments. Each current density diagram (left) is followed by the proposed path of 

electron flow (right). The site of chemical inhibition is indicated by a red halo on the electron 

path diagrams. P870 (photosystem), P870* (excited photosystem), UQ (ubiquinone), bc1 

(cytochrome bc1), c2 (cytochrome c2), NADH-DH (NADH dehydrogenase), Δp (proton 

gradient), H+ (protons), hv (light), ? (currently unknown), PMF (proton motive force) and ATP 

(adenosine triphosphate). Source data are provided as a Source Data File. 
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Figure 2.3. Extracellular electron uptake leads to a reducing intracellular redox 

environment. (a) TIE-1 WT NADH/NAD+ and (b) NAD(P)H/NAD(P)+ ratios under various 

growth conditions. Conditions tested: yeast-extract peptone (blue); photoheterotrophy with 

acetate (red) and butyrate (green); and photoautotrophy with H2 (yellow) or a poised electrode 
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(black). Data are means ± s.e.m. of three biological replicates assayed in triplicate. The P values 

were determined by one-way ANOVA followed by a pairwise test with Bonferroni adjustment 

(*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). (c) Transcriptomic analysis of the 

de novo NAD biosynthesis pathway under various photoautotrophic and photoheterotrophic 

growth conditions. (d) Genome-wide transcriptomic analysis of NAD(P)+/H-requiring reactions. 

Source data (and reactions not mentioned in text) are provided as a Source Data File. 
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Figure 2.4. Extracellular electron uptake leads to carbon dioxide fixation. (a) Differential 

expression analysis of genes encoding Calvin-Benson-Bassham (CBB) cycle enzymes in R. 

palustris TIE-1 wild-type (WT) under various photoautotrophic (poised electrodes, iron 

oxidation, and H2 oxidation) and photoheterotrophic growth conditions (acetate and butyrate). 

(b) 13CO2 incorporation under cathodic conditions in R. palustris TIE-1 WT and the ruBisCO 

double mutant (∆form I ∆form II) biofilms and planktonic cells determined by secondary ion 

mass spectrometry (SIMS). Data are means ± s.e.m. of at least 25 cells. The P values were 

determined by one-way ANOVA followed by a pairwise test with Bonferroni adjustment 

(*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). (c) Differential expression analysis 

of CO2 and HCO3
- consuming reactions in R. palustris TIE-1 WT. RuBP (Ribulose 1,5-

bisphosphate), 1,3 BPG (I,3-bisphosphoglycerate), G3P (Glyceraldehyde 3-phosphate), FBP 

(Fructose 1,6-bisphosphate), F6P (Fructose 6-phosphate), X5P (Xylulose 5-phosphate), Ru5P 

(Ribulose 5-phosphate) and R5P (Ribose 5-phosphate). Source data (and reactions not mentioned 

in text) are provided as a Source Data File.
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Figure 2.5. RuBisCO is required for extracellular electron uptake. (a) Endpoint current 

densities for ruBisCO deletion mutants compared to R. palustris TIE-1 wild-type (WT). Data are 

means ± s.e.m. of three biological replicates. (b) ruBisCO mRNA log2 fold change under poised 

current (cathodic) and no current (open-circuit) conditions for TIE-1 WT and ruBisCO deletion 

mutants. (c) LIVE/DEAD staining of electrode-attached cells under cathodic conditions. Data 

are means ± s.e.m. of three biological replicates assayed in triplicate. % represents the percent 

cells in relation to the total number of cells counted. (d) Endpoint current densities for ruBisCO 

complementation mutants. Data are means ± s.e.m. of three biological replicates. (e) ruBisCO 
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mRNA log2 fold change under cathodic conditions for R. palustris TIE-1 WT and ruBisCO 

complementation mutants. (f) LIVE/DEAD staining of electrode-attached cells under cathodic 

conditions. Data are means ± s.e.m. of three biological replicates assayed in triplicate. (g) 

Endpoint current densities under standard conditions (WT) and when treated with gentamicin 

(WT + gentamicin). Data are means ± s.e.m. of three biological replicates. (h) Log10 colony 

forming units (CFU) and generation time (h) of planktonic cells incubated under standard 

conditions (WT) and when treated with gentamicin (WT + gentamicin). Data are means ± s.e.m. 

of at least two biological replicates assayed in triplicate. (i) mRNA log2 fold change of 

photosynthetic reaction center (pufL), pio operon (pioA), and ATP synthase homologs (atp1, 

atp2) in R. palustris TIE-1 WT and the ruBisCO double mutant. RT-qPCR data are means ± 

s.e.m. of two biological replicates assayed in triplicate. The P values were determined by one-

way ANOVA followed by a pairwise test with Bonferroni adjustment (*P < 0.05, **P < 0.01, 

***P < 0.0001; ns, not significant). Source data are provided as a Source Data File.
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Figure 2.6. RuBisCO is important for phototrophic hydrogen (H2) oxidation. (a) Hydrogen 

(H2) oxidation and (b) carbon dioxide (CO2) consumption by the ruBisCO double mutant (∆form 

I ∆form II) as a percent of consumption by R. palustris TIE-1 wild-type (WT). Data are means ± 

s.e.m. of two biological replicates assayed in triplicate. (c) mRNA log2 fold change of 

photosynthetic reaction center (pufL), NiFe hydrogenase (hupL), and ATP synthase homologs 

(atp1, atp2) in WT and the ruBisCO double mutant. RT-qPCR data are means ± s.e.m. of two 

biological replicates assayed in triplicate. The P values were determined by one-way ANOVA 

followed by a pairwise test with Bonferroni adjustment (*P < 0.05, **P < 0.01, 

***P < 0.0001; ns, not significant). Source data are provided as a Source Data File.
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Figure 2.7. Conceptual model of phototrophic extracellular electron uptake. Extracellular 

electron uptake is connected to the photosynthetic electron transport chain (pETC) and carbon 

dioxide (CO2) fixation in R. palustris TIE-1. The CBB cycle (Calvin-Benson-Bassham) uses 

RuBisCO and is the primary sink for electrons that enter the photosystem from poised electrodes. 

The electrons are used by the CBB cycle as NAD(P)H (reduced nicotinamide adenine 

dinucleotide phosphate) that is exchanged with NADH (reduced nicotinamide adenine 

dinucleotide) produced via reverse electron flow. For details please read the text. ATP 

(adenosine triphosphate), e- (electrons), P870 (photosystem), P870* (excited photosystem), UQ 

(ubiquinone), bc1 (cytochrome bc1), c2 (cytochrome c2), H+ (protons), hv (light), ? (currently 

unknown), OM (outer membrane), P (periplasm), CM (cytoplasmic membrane) and ICM (inner 

cytoplasmic membrane). 
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Supplementary Figure 2.1. Micro-bioelectrochemical cell (µ-BEC). (a) Instrument assembly 

with inlet/outlet capped for incubation. (b) Top-down view of four-chamber µ-BEC 

configuration shown with reference electrode (RE), counter counter (CE), and working electrode 

(WE) leads connected to integrated silver (Ag) and platinum (Pt) wires, and indium tin oxide 

(ITO) coverslips (WE). 
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Supplementary Figure 2.2. Fluorescent micrographs of Rhodopseudomonas palustris TIE-1 

wild-type (WT) biofilms in µ-BEC. Representative confocal micrographs of TIE-1 biofilms 

attached to the cathode and stained with LIVE/DEAD dyes. (a) Untreated control, (b) 

antimycin A, (c) carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and (d) rotenone treated 

cells. Data are the mean percentages of live cells ± s.e.m. of three biological replicates assayed in 

triplicate. All cells in the field of view were counted. Image manipulation and cell counts were 

performed in Fiji v1.0 (see Methods). Scale bars are 10 μm. Source data are provided as a Source 

Data File. 

a b66% ± 3 

72% ± 3

66% ± 5

65% ± 4c d
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Supplementary Figure 2.3. Average current densities for R. palustris TIE-1 cells harvsted 

for secondary ion mass spectrometry studies. Current uptake for R. palustris TIE-1 WT and 

the ruBisCO double mutant (∆form I ∆form II) after 60 h incubations in bulk bioelectrochemical 

cells (BECs) with and without 10% 13CO2. Data are means ± s.e.m. of current passed over 60 h 

with a 10 second interval between measurements (number of measurements per condition, n = 

25527). The P values were determined by one-way ANOVA followed by a pairwise test with 

Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source data 

are provided as a Source Data File. 
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Supplementary Figure 2.4. Planktonic cell growth of R. palustris TIE-1 wildtype (WT) and 

the ruBisCO double mutant (∆form I ∆form II) harvested for secondary ion mass 

spectrometry. Initial and final optical density (OD660) in bulk BECs after 60 h incubations under 

open-circuit (OC, reactor not passing current) and standard closed-circuit (CC, reactors passing 

current) conditions with and without 10% 13CO2. Data are means ± s.e.m. of three technical 

replicates. The P values were determined by one-way ANOVA followed by a pairwise test 

with Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source 

data are provided as a Source Data File. 
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Supplementary Figure 2.5. R. palustris TIE-1 wild-type (WT) biocathode seeding in 

plankton-free bioreactors. Representative confocal micrographs of TIE-1 biofilms attached to 

cathode and stained with LIVE/DEAD® dyes. (a) “Control 1” biocathode. (b) “Control 2” 

biocathode.  (c) “Control 3” biocathode. Scale bars are 10 μM. “Control 1” bioreactors were 

seeded with planktonic cells to generate the biocathodes that were then installed into the 

“Control 2” bioreactors. “Control 2” bioreactors are plankton-free and contain only biocathodes 

(with fresh media). “Control 3” bioreactors are the initial “Control 1” bioreactors replaced with 

new, cell-free cathodes (media was not replaced). (d) Mean current densities after 48-hour 

incubations. (e) Mean current density over time. (f) Initial and final optical density (OD660) of 

bioreactors. Data are means ± s.e.m. of three biological replicates. The P values were determined 
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by one-way ANOVA followed by a pairwise test with Bonferroni adjustment (*P < 0.05, 

**P < 0.01, ***P < 0.0001; ns, not significant). ND (not detectable). Source data are provided as 

a Source Data File. 
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Supplementary Figure 2.6. Confocal micrographs of R. palustris TIE-1 wild-type (WT) and 

ruBisCO deletion and complementation mutant biofilms. Representative images of biofilms 

attached to cathode in bulk BECs and stained with LIVE/DEAD® dyes: (a) WT, (b) ∆form I, (c) 

∆form II, (d) ∆form I ∆form II, (e) WT (pSRK), (f) ∆form I ∆form II (Plac::form I), (g) ∆form I 

∆form II (Plac::form II), (h) ∆form I ∆form II (Plac::form I + form II), (i) ∆form I ∆form II 

a b c

d e f

g h i

67% ± 11 72% ± 9 72% ± 4

62% ± 2 62% ± 1 62% ± 4

54% ± 9 72% ± 8 67% ± 10
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(pSRK). Data are the mean percentages of live cells ± s.e.m. of three biological replicates 

assayed in triplicate. All cells in the field of view were counted. Image manipulation and cell 

counts were performed in Fiji v1.0 (see Methods). Scale bars are 10 μm. Source data are 

provided as a Source Data File. 
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Supplementary Figure 2.7. NADH/NAD+ and NAD(P)H/NAD(P)+ ratios from R. palustris 

TIE-1 ruBisCO double mutant (∆form I ∆form II). (a) Log2 NADH/NAD+ and (b) 

NAD(P)H/NAD(P)+ ratios for ruBisCO double mutant cells. Data are means ± s.e.m. of three 

biological replicates assayed in triplicate. The P values were determined by one-way ANOVA 

followed by a pairwise test with Bonferroni adjustment (*P < 0.05, **P < 0.01, *** 

P < 0.0001; ns, not significant). Source data are provided as a Source Data File. 
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Supplementary Figure 2.8. ATP quantitation from planktonic R. palustris TIE-1 wild-type 

(WT) and ruBisCO deletion and complementation. ATP levels from TIE-1 cells after 60 h 

incubations in bulk BECs. Data are means ± s.e.m. of at least two biological replicates assayed in 

triplicate. The P values were determined by one-way ANOVA followed by a pairwise test with 

Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source data 

are provided as a Source Data File. 
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Supplementary Figure 2.9. Minimum inhibitory concentration (MIC) determination for 

photoautotrophically-grown R. palustris TIE-1 wild-type (WT). Optical density (OD660) 

during photoautotrophic growth on 80% hydrogen:20% carbon dioxide (H2:CO2) with increasing 

concentrations of gentamicin. Data are means ± s.d. of at least two biological replicates assayed 

in triplicate. The P values were determined by one-way ANOVA followed by a pairwise test 

with Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source 

data are provided as a Source Data File. 
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Supplementary Figure 2.10. Planktonic cell growth of R. palustris TIE-1 wild-type (WT) 

and ruBisCO double mutant (∆form I ∆form II) during photoautotrophic growth on 

H2:CO2. Initial and final optical density (OD660) from cells used for quantification of H2 and 

CO2 consumption. Data are means ± s.e.m. of three biological replicates assayed in triplicate. 

The P values were determined by one-way ANOVA followed by a pairwise test with Bonferroni 

adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source data are provided 

as a Source Data File. 



83 

 

Supplementary Figure 2.11. Log10 colony forming units (CFU) per mL during 

photoautotrophic growth with H2. Log10 colony forming units of TIE-1 wild-type (WT) and 

ruBisCO double mutant planktonic cells. Cells were plated aerobically onto rich media at the end 

of incubations that typically lasted 60 hours. Data are means ± s.e.m. of three biological 

replicates. The P values were determined by one-way ANOVA followed by a pairwise test with 

Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not significant). Source data 

are provided as a Source Data File. 
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Supplementary Figure 2.12. Potential mechanisms involved in extracellular electron uptake 

(EEU) from a poised electrode by planktonic cells. (1) Indirect electron uptake via a soluble 

redox active compound; (2) Direct electron uptake; (3) Dynamic interaction of planktonic and 

surface-attached cells. 
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Supplementary Table 2.1. Average maximum current density under light and dark 

conditions with antimycin A treatment in µ-BECs for R. palustris TIE-1 wild-type (WT). 

Data are means ± s.e.m. of three biological replicates. The P values were determined by pairwise 

t-test. P-values across rows are for comparisons between light and dark treatments. P-values in 

columns are for comparisons between untreated and treated reactors. Source data are provided as 

a Source Data File. 

  Maximum current density (nA cm-2) Coulombs (C) 

  Light Dark 
P (Light 

vs. Dark) 
Light Dark 

P (Light 

vs. Dark) 

Untreated control  -85.5 ± 21.7 -9.70 ± 3.59 P<0.0001 -121 ± 6.12 -23.5 ± 1.14 P<0.0001 

100 µM antimycin A 12.5 ± 1.34 -3.46 ± 1.80 P<0.0001 4.74 ± 3.34 -2.02 ± 1.14 P<0.0001 

P (untreated vs. 100 

µM antimycin A) 
P<0.0001 P=0.0006  P<0.0001 P<0.0001  
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Supplementary Table 2.2. Average maximum current density under light and dark 

conditions with carbonyl cyanide m-chlorophenyl hydrazine (CCCP) treatment in µ-BECs 

for R. palustris TIE-1 wild-type (WT). Data are means ± s.e.m. of three biological replicates. 

The P values were determined by pairwise t-test. P-values across rows are for comparisons 

between light and dark treatments. P-values in columns are for comparisons between untreated 

and treated reactors. Source data are provided as a Source Data File. 

 

 

 

 

 

 

 

  Maximum current density (nA cm-2) Coulombs (C)  

  Light Dark 
P (Light 

vs. Dark) 
Light Dark 

P (Light 

vs. Dark) 

Untreated control -114 ± 21.7 -17.5 ± 3.41 P<0.0001 -119 ± 3.22 -9.65 ± 1.03 P<0.0001 

25 µM CCCP 21.2 ± 9.13 -18.4 ± 14.01 P<0.0001 6.73 ± 4.31 -7.84 ± 2.44 P<0.0001 

100 µM CCCP 19.3 ± 5.46 -12.9 ±  6.40 P<0.0001 18.3 ± 3.74 0.740 ± 5.21 P<0.0001 

P (untreated vs. 25 

µM CCCP ) 
P<0.0001 P=0.8666  P<0.0001 P=0.0025  

P (untreated vs. 100 

µM CCCP ) 
P<0.0001 P=0.0906  P<0.0001 P<0.0001  
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Supplementary Table 2.3. Average maximum current density under light and dark 

conditions with rotenone treatment in µ-BECs for R. palustris TIE-1 wild-type (WT). Data 

are means ± s.e.m. of three biological replicates. The P values were determined by pairwise t-

test. P-values across rows are for comparisons between light and dark treatments. P-values in 

columns are for comparisons between untreated and treated reactors. Source data are provided as 

a Source Data File. 

  Maximum current density (nA cm-2) Coulombs (C)  

  Light Dark 
P (Light 

vs. Dark) 
Light Dark 

P (Light 

vs. Dark) 

Untreated control -94.7 ± 3.61 -12.0 ± 4.02 P<0.0001 -120 ± 3.73 -16.7 ± 3.73 P<0.0001 

25 µM rotenone -71.8 ± 2.02 -25.2 ± 1.60 P<0.0001 -73.5 ± 2.32 -38.9 ± 3.07 P<0.0001 

50 µM rotenone -60.3 ± 1.81 -19.5 ± 4.94 P<0.0001 -64.6 ± 5.67 -34.3 ± 3.42 P<0.0001 

100 µM rotenone -41.6 ± 4.55 
-25.2 ± 

0.820 
P<0.0001 -60.7 ± 1.88 -26.7 ± 2.41 P<0.0001 

P (untreated vs. 25 

µM rotenone) 
P<0.0001 P<0.0001  P<0.0001 P<0.0001  

P (untreated vs. 50 

µM rotenone) 
P<0.0001 P=0.0050  P<0.0001 P<0.0001  

P (untreated vs. 100 

µM rotenone) 
P<0.0001 P<0.0001  P<0.0001 P<0.0001  
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Supplementary Table 2.4. Strains and plasmids used in this study. 

Strain or 

plasmid 

Genotype and use Source 

E. coli strains   

WM6026 [lacIq rrnB3 ΔlacZ4787 hsdR514ΔaraBAD567 ΔrhaBAD5

68 rph-1 attl∷pAE12(ΔoriR6K-cat∷Frt5) 

ΔendA∷Frt uidA(ΔMluI)∷pir attHK∷pJK1006Δ(oriR6K-

cat∷Frt5;trfA∷Frt)]. Donor strain for conjugation. 

W. Metcalf, University of Illinois, 

Urbana-Champaign 

DH10B F- endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 

Φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-

hsdRMS-mcrBC)  . Used as standard cloning strain. 

Casadaban, M. J. & Cohen, S. N. 

Analysis of gene control signals by 

DNA fusion and cloning in 

Escherichia coli. J.  Mol. Biol. 138, 

179-207 (1980). 

R. palustris 

strains 

  

TIE-1 Wild-type (WT). Isolated from Woods Hole, MA. Jiao, Y., Kappler, A., Croal, L. R. & 

Newman, D. K. Isolation and 

characterization of a genetically 

tractable photoautotrophic Fe(II)-

oxidizing bacterium, 

Rhodopseudomonas palustris strain 

TIE-1. Appl. Environ. Microbiol. 71, 

4487-4496 (2005). 

AB135 ∆cbbLS ∆cbbM (Rpal_1747- Rpal_1748, Rpal_5122) This study 

AB136 ∆cbbLS (Rpal_1747) This study 

AB143 ∆cbbM (Rpal_5122) This study 

AB114 WT TIE-1 with pSRKGm This study 

AB142 AB135 with pSRKGm This study 

AB138 AB135 complemented with pAB721 This study 

AB139 AB135 complemented with pAB709 This study 

AB140 AB135 complemented with pAB720 This study 

Plasmids   

pAB709 pSRKGm with Rpal_1747-1748 (cbbLS) cloned into NdeI 

and SpeI sites using primers cbbL-For/cbbLS-Rev. 

This study 

pAB720 pSRKGm with Rpal_5122 (cbbM) cloned into SpeI and 

SmaI sites using primers pSRKGm-CbbM-For4-AclI-

NdeI/pSRKGm-CbbM-Rev3-AclI-SmaI. 

This study 

pAB721 pSRKGm with Rpal_1747-1748 (cbbLS) and Rpal_5122 

(cbbM). pAB720 insert was digested and cloned into the 

SpeI and SmaI sites of pAB709. 

This study 

pSRKGm Complementation plasmid modified from pBBR1MCS-5; 

GmR. 

Khan, S. R., Gaines, J., Roop, R. M. & 

Farrand, S. K. Broad-host-range 

expression vectors with tightly 

regulated promoters and their use to 

examine the influence of TraR and 
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TraM expression on Ti plasmid 

quorum sensing. Appl. Environ. 

Microbiol. 74, 5053-5062 (2008). 

pJQ200KS sacB, GmR. Suicide vector. Quandt, J. & Hynes, M. F. Versatile 

suicide vectors which allow direct 

selection for gene replacement in 

gram-negative bacteria. Gene 127, 15-

21 (1993). 

pAB621 1 kilobase (kb) upstream and 1 kb downstream of the WT 

Rhodospeudmonas palustris TIE-1 cbbLS gene cloned into 

the NotI and BamHI sites of pJQ200KS using primers 

Rpal_1747_upfor/Rpal_1747_uprev (upstream of cbbL) 

and Rpal_1748_dnfor/ Rpal_1747_dnrev (downstream of 

cbbS). 

This study 

pAB622 1 kilobase (kb) upstream and 1 kb downstream of the WT 

Rhodospeudmonas palustris TIE-1 cbbM gene cloned into 

the NotI and BamHI sites of pJQ200KS using primers 

Rpal_5122upforNotI/Rpal_5122uprev (upstream of cbbM) 

and Rpal_5122dnfor/ Rpal_5122dnrev (downstream of 

cbbM). 

This study 
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Supplementary Table 2.5. Doubling time (hours) for aerobic chemoheterotrophic, 

photoheterotrophic (with butyrate and acetate), and photoautotrophic growth by R. 

palustris TIE-1 wild-type (WT) and ruBisCO deletion mutants. Data are means ± s.d. of three 

biological replicates. Source data are provided as a Source Data File. 

 

 

 

 

 

 

 

 

 

 

 

 

Growth condition WT Δform I Δform II Δform I Δform II 

Yeast-extract peptone 3.1 ± 0.11 3.6 ± 0.17 4.6 ± 0.95 3.2 ± 0.26 

Acetate 5.7 ± 1.1 13 ± 1.4 8.8 ± 1.5 23 ± 0.7 

Butyrate 4.6 ± 0.17 4.9 ± 0.29 4.9 ± 0.84 30 ± 2.5 

Phototrophic H2 oxidation 4.3 ± 0.02 4.3 ± 0.01 8.7 ± 0.05 No growth 
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Supplementary Table 2.6. Average delta 13C/12C ratio values for R. palustris TIE-1 wild-

type (WT). Data are means ± s.e.m. of at least 25 cells. “Non-poised” refers to open-circuit 

conditions. “Plankton” are free-living cells sampled from the bioreactors, whereas “electrode” 

refers to biofilms attached to the cathode (i.e. surface-attached cells). Source data are provided as 

a Source Data File. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Condition Current 13CO2 Delta 13C/12C 

1 Control 1 (electrode non-poised) No No 0.20  0.19 

2 Control 2 (electrode poised) Yes No -0.29  0.21 

3 Control 3 (electrode non-poised) No Yes 14.4  2.67 

4 Test condition 1 (electrode poised) Yes Yes 150  2.81 

5 Control 4 (plankton non-poised) No No 1.55  1.21 

6 Control 5 (plankton poised) Yes No 3.01  1.95 

7 Control 6 (plankton non-poised) No Yes 46.4  3.22 

8 Test condition 2 (plankton poised) Yes Yes 151  2.72 
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Supplementary Table 2.7. Average delta 13C/12C ratio values for R. palustris TIE-1 ruBisCO 

double mutant (∆form I ∆form II). Data are means ± s.e.m. of at least 25 cells. “Non-poised” 

refers to open-circuit conditions. “Plankton” are free-living cells sampled from the bioreactors, 

whereas “electrode” refers to biofilms attached to the cathode (i.e. surface-attached cells). Source 

data are provided as a Source Data File. 

 

 

 

 

 

 

 

 

 

 

 

 

  Condition Current 13CO2 Delta 13C/12C 

1 Control 1 (electrode non-poised) No No ND 

2 Control 2 (electrode poised) Yes No 0.00  0.630 

3 Control 3 (electrode non-poised) No Yes ND 

4 Test condition 1 (electrode poised) Yes Yes 5.91  2.80 

5 Control 4 (plankton non-poised) No No -1.57  0.220 

6 Control 5 (plankton poised) Yes No -1.40  0.240 

7 Control 6 (plankton non-poised) No Yes 18.6  0.420 

8 Test condition 2 (plankton poised) Yes Yes 4.93  0.430 
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Supplementary Table 2.10. Gas chromatography barrier ionization discharge (GC-BID) 

quantification of H2 and CO2 consumption. GC-BID analysis of TIE-1 wild-type (WT) and 

ruBisCO double mutant cells during photoautotrophic growth on H2. Data are means ± s.e.m. of 

three biological replicates. Source data are provided as a Source Data File. 

 

 Strain H2 (µM) CO2 (µM) 

WT 3957  211.3 5395.5  594.0 

Δform I Δform II 717.0  418.0 774.2  8.90 
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Supplementary Table 2.11. Primers used in this study for plasmid construction. 

 

 

 

 

 

 

 

 

 

Primer Sequence 

Plasmid construction  

Rpal_1747_upfor CATATGGCGGCCGCCGCAGGTCCATTGCAGTCGT 

Rpal_1747_uprev CATATGGGATCCGTCGTCCTCCTTGAAAGCCCTGGC 

Rpal_1748_dnfor CATATGGGATCCTACGGAGGCTGATCGTGGAC 

Rpal_1748_dnrev CATATGCTGCAGGACCAAGACGAGCATCAGCGT 

Rpal_5122dnfor CATATGACTAGTTAAGCTGGCCTAGTCGACACG 

Rpal_5122dnrev CATATGGGATCCAGTGCACCGAGACCCGACAG 

Rpal_5122uprev CATATGACTAGTGGTGATCTCCTGCAATGCGAG 

Rpal_5122upforNotI CATATGGCGGCCGCGACATCATGCTGGCGAAGATGAT 

cbbL-For CATATGAACGAAGCAGTCACCAT 

cbbLS-Rev ACTAGTTCAGCCTCCGTAGC 

pSRKGm-CbbM-For4-AclI-NdeI AACGTTCATATGGACCAGTCGAACCGCTACG 

pSRKGm-CbbM-Rev3-AclI-SmaI CCCGGGTTACGCCGCCTGCG 

Plasmid Sanger sequencing  

pSRKGM-For1-seq TATGCTTCCGGCTCGTATGT 

pSRKGM-CbbL-Rev1-Seq GAACTTGTCCATGCGCTCGC 

cbbLS-Rev1-seq TGCAGCAGCTGATGCATCTG 

Rpal_5122-PCR-screen_F CAAAGAGAGCGAGCTGATCG 

Rpal_5122 P6 Knockout Rev TGATTACCGAGGACGCTGCTG 
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Supplementary Table 2.12. Primers used in this study for RT-qPCR. 

Gene name (locus tag) Primer name Sequence 

ruBisCO form I (Rpal_1747) Rpal_1747qPCR_for ACCAAGGACGACGAGAACAT 

ruBisCO form I (Rpal_1747) Rpal_1747qPCR_rev CATGCAGTATTGGAAGCGCT 

ruBisCO form II (Rpal_5122) Rpal_5122qPCR_for GGCGTATCTCAAGCTGTTCG 

ruBisCO form II (Rpal_5122) Rpal_5122qPCR_rev CGATGAAGCCACCGTTGATC 

clpX (Rpal_3308) 
TIE-1clpXqRT-PCRFor GGAGATCTGCAAGGTTCTCG 

clpX (Rpal_3308) 
TIE-1clpXqRT-

PCRRev 
CCGCTTGTAGTGATTGTGGA 

recA (Rpal_4376) 
TIE-1recAqRT-PCRFor ATCGGCCAGATCAAGGAAC 

recA (Rpal_4376) 
TIE-1recAqRT-

PCRRev 
GAATTCGACCTGCTTGAACG 

photosynthetic reaction center L subunit 

(Rpal_1716) 
Rpal_1716_pufL_for GAGAAGAAATACCGCGTTCG 

photosynthetic reaction center L subunit 

(Rpal_1716) 
Rpal_1716_pufL_rev CCGAAGATCCCAACGTAGAA 

F-type H+-transporting ATPase subunit 

beta (Rpal_1057) 
Rpal_1057_atp1_for ATTCTGAACGCCATCGAAAC 

F-type H+-transporting ATPase subunit 

beta (Rpal_1057) 
Rpal_1057_atp1_rev GACGGTCGATTCACCAAGAT 

F-type H+-transporting ATPase subunit 

beta (Rpal_0171) 
Rpal_0171_atp2_for GACGATCGCGGAGTATTTTC 

F-type H+-transporting ATPase subunit 

beta (Rpal_0171) 
Rpal_0171_atp2_rev CAGGCTGGATAACTCGCTTC 

pioA (Rpal_0817) pioAqRTPCRfor 
AAATTTCGACGACACCATCG

A 

pioA (Rpal_0817) pioAqRTPCRrev CTTGGCGGCGAGGATCT 

hydrogenase large subunit (Rpal_1153) 
Rpal_1153qPCRfor GTGCAACTGCTGTCGATCAT 

hydrogenase large subunit (Rpal_1153) Rpal_1153qPCRrev CCAGCACGTTGTCGAGAC 
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Chapter 3: Extracellular electron uptake by a 

phototrophic sulfur-oxidizing bacterium 
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3.1 Abstract 

Phototrophic extracellular electron uptake (phototrophic EEU) is a metabolism that 

allows photoautotrophic bacteria to transport electrons from solid-phase conductive substances 

(SPCSs) into the cell. Although recent work has advanced our understanding of the molecular 

and bioenergetic underpinnings of this process, very little is known about the ecological role that 

phototrophic EEU plays in marine environments. Here we investigated whether electrodes poised 

over a range of potentials that mimic elemental sulfur oxidation could serve as electron donors 

for the phototrophic sulfur-oxidizing bacterium Rhodovulum sulfidophilum AB26. Using multi-

omics approaches, we show that cellular metabolism is activated by this process. We also 

identify EEU-specific electron-transfer proteins upregulated at the protein level. This work 

establishes the basis for molecular, biochemical, and genetic studies of the EEU pathway. 

Overall, these results provide evidence that marine phototrophic bacteria engage in EEU and that 

SPCSs may be important for energy acquisition and CO2 fixation in marine ecosystems.  

3.2 Introduction 

Photoautotrophic organisms perform a complex series of biochemical reactions that 

couple light-energy transduction to CO2 fixation to generate virtually all the biomass that 

supports life on Earth1. In anoxic environments, purple nonsulfur bacteria (PNSB) utilize an 

array of inorganic compounds as their electron donors for photosynthesis. These include soluble 

or gaseous phase compounds (H2, H2S, Fe+2), as well as solid-phase and/or insoluble minerals 

such as rust (mixed-valent iron minerals)2-4, sulfide minerals5,6, or elemental sulfur7. Most 

recently, they have been shown to utilize solid-phase conductive substances (SPCSs) such as 
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poised electrodes8,9 as proxies for minerals. To access insoluble minerals and SPCSs, 

phototrophs typically utilize an extracellular electron transfer process called phototrophic 

extracellular electron uptake (phototrophic EEU)10. Studies have shown that extracellular 

electron transfer to minerals is common in anoxic nutrient-poor environments11. The EEU-

potential of microbes thriving in marine sediments or the photic zone of marine ecosystems, is 

incompletely understood. Knowledge of microbial EEU is critical to our understanding of global 

biogeochemical cycles, the microbial ecology of marine environments, and the evolution of 

microbial EEU. 

Marine sediments are enriched in insoluble iron and sulfur minerals as well as elemental 

sulfur11-13. Anoxygenic phototrophs, such as Rhodovulum species, are broadly distributed marine 

phototrophs that use inorganic sulfur compounds as electron donors for carbon dioxide (CO2) 

fixation7. To understand phototrophic EEU in marine ecosystems we used electrochemical, 

biochemical, bioinformatic, and microscopic approaches to characterize the electron uptake 

process of a genetically-tractable marine phototrophic bacterium, Rhodovulum sulfidophilum 

AB26 (hereafter referred to as AB26). Our data shows that AB26 is EEU-active at -200 mV vs. 

Standard Hydrogen Electrode (SHE), suggesting marine phototrophs may use an extracellular 

electron transfer mechanism to access SPCSs as electron donors for photosynthesis. We 

compared genome-wide transcriptomes of AB26 cultivated under different phototrophic 

conditions, including EEU, and found that genes related to energy-transduction, electron-

transfer, and CO2 fixation were upregulated, supporting this hypothesis. Mass spectrometry 

analysis provides further evidence that electron-transfer proteins, including c-type cytochromes 

and ferredoxins, are upregulated during phototrophic EEU. Lastly, using comparative genomics 
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we examine the metabolic and phylogenetic diversity of Rhodovulum species. These findings 

improve our understanding of biogeochemical cycling and suggest phototrophic EEU might 

represent an important microbial survival strategy in marine ecosystems. 

3.3 Results 

3.3.1 Phototrophic EEU from a poised electrode 

Since the discovery of metal-reducing bacteria, microbe-mineral interactions have been 

shown to play an important role in biogeochemical cycling in marine sediments and subsurface 

marine environments11. The role of microbial EET in facilitating EEU in marine ecosystems, 

where solid-phase reduced sulfur compounds are prevalent13, has recently gained interest14-16. 

Whether phototrophic microbes living in these environments can access SPCSs as electron 

donors, however, has not been evaluated. To investigate if SPCSs can serve as electron donors 

for anoxygenic phototrophs in marine environments, we cultivated AB26 cells 

photoautotrophically in artificial seawater media on poised electrodes in bioelectrochemical 

systems (BESs). BESs mimic microbial interactions with SPCSs, wherein an electrode can 

operate as an electron donor for microbial metabolism8,17. The electrodes were poised from +200 

mV to -200 mV (vs. SHE) to mimic the potential range of solid phase and/or insoluble minerals 

AB26 may utilize in its natural environment. 

We observed the highest current densities on electrodes poised at -200 mV (-126.6 nA 

cm-2 ± 4.81) [an electrode potential slightly higher than the redox couple of S/H2S (E°’ = -274 

mV)]18 (Figure 3.1a). This magnitude of current uptake is similar to that observed for R. palustris 

TIE-1 cells cultivated on electrodes poised at +100 mV10.  We performed cyclic voltammetry of 
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the electrodes at the end of incubations (Figure 3.1b). For electrodes poised at -200 mV, we 

observed increased cathodic current densities in cyclic voltammograms at the end of 45 h 

incubations compared to abiotic control reactors (Figure 3.1b). Cathodic current densities were 

higher than abiotic control reactors from +500 mV to -600 mV and were typically higher at more 

electronegative potentials. We also observed a reversible redox peak with a midpoint potential of 

+450 mV (Figure 3.1b). 

To determine if AB26 releases extracellular redox-active molecules during EEU we 

filtered the spent media after the incubations and performed cyclic voltammetry with sterile 

electrodes. We observed an increase in cathodic current densities in cyclic voltammograms 

between -200mV to -600 mV compared to abiotic control reactors (Figure 3.1c). The increased 

current densities in the cyclic voltammograms could reflect a microbially-produced redox active 

molecule. Over the 45 h incubations there was modest cell growth reflected by an increase in the 

planktonic cell density within bioreactors where electrodes were poised at 0 mV (P < 0.05, one-

way ANOVA) and -200 mV (P < 0.001, one-way ANOVA) (Figure 3.1d). We did not observe a 

significant increase in planktonic cell density in bioreactors where electrodes were poised at 

+200 mV (P = 0.708, one-way ANOVA) (Figure 3.1d). Whether this increase in planktonic cell 

density is a result of direct electron uptake from the electrode, or via an indirect mechanism 

requires further investigation. 

Scanning electron microscopy (SEM) revealed that electrodes poised at 0 mV and -200 

mV were colonized by microbial cells (Figure 3.2b-c). No electrode-attached cells were observed 

on electrodes poised at +200 mV (Figure 3.2a). We observed that cellular aggregates formed on 

electrodes poised at -200 mV (Figure 3.2c). These aggregates appeared to reach several cell-
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layers in thickness and were entirely encapsulated by an extracellular matrix-like substance 

(Figure 3.2c). Microscopy of the biocathodes revealed that this substance contains 

exopolysaccharide and extracellular protein (Supplementary Figure 3.1). We performed viability 

staining on these electrodes using LIVE/DEAD® dyes (Figure 3.2d-f). Viable attached cells 

were observed only on electrodes poised at 0 mV and -200 mV (Figure 3.2d-f). However, 

increased numbers of dead cells were observed on electrodes poised at 0 mV (Figure 3.2e). No 

attached and/or viable cells were observed on electrodes poised at +200 mV (Figure 3.2d). 

Overall, our data indicates that AB26 can utilize solid electrodes for cellular survival and growth 

and suggest that cellular attachment is important for electron uptake. 

3.3.2 Highly responsive and EEU-specific gene expression 

Very few studies have investigated the molecular and bioenergetic pathways that allow 

photoautotrophs to use SPCSs as electron donors19. Subsequently, we have a limited 

understanding of the electron-transfer pathways, physiological electron sinks, and regulatory 

mechanisms that govern this process. To better understand phototrophic EEU in AB26 we 

performed whole-genome transcriptomic analysis (RNA-Seq) (Figure 3.3a). We performed 

RNA-Seq on AB26 cells incubated in bioreactors (where electrodes were poised at -200 mV vs. 

SHE) and under four other growth conditions: (1) anaerobic photoautotrophic growth with H2, 

(2) anaerobic photoautotrophic growth with thiosulfate, (3) anaerobic photoheterotrophic growth 

with acetate, and lastly, (4) aerobic chemoheterotrophic growth (Supplementary Figure 3.1, 

Supplementary Table 3.1,3.2). 
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We performed differential expression analysis of these growth conditions to identify 

genes specifically upregulated during EEU (Figure 3.3b). When cells performed EEU from the 

electrode, 383 out of the 4077 genes in the AB26 genome were EEU-specific (i.e. specifically 

upregulated during EEU when compared to the other growth conditions) (Figure 3.3b). An 

additional 257 genes were upregulated and shared between EEU and phototrophic thiosulfate 

oxidation (Figure 3.3b).  Genes involved in energy metabolism, including F-type ATPase, were 

EEU-specific (~2-fold; P < 0.0001) (Figure 3.3c). Porphyrin, chlorophyll and heme biosynthesis 

genes were also EEU-specific (Figure 3.3c). We observed the EEU-specific upregulation of an 

operon encoding an NAD+-dependent formate dehydrogenase (~2-fold; P < 0.05) (Figure 3.3c). 

Formate dehydrogenase catalyzes formate oxidation to CO2 and H+ but can also function in 

reverse to catalyze CO2 fixation to produce formate20-22. CO2 fixation via formate dehydrogenase 

has been observed in Rhodobacter capsulatus23 and other microbes24,25. Studies have also shown 

that formate dehydrogenase is an electrochemically active enzyme that can participate in direct 

electron uptake from electrodes22,26,27. Together, these data suggest that cellular metabolism is 

activated by the poised electrode. 

Two distinct two-component systems (TCS) were EEU-specific (Figure 3.3c). These TCS 

are arranged in typical gene clusters which encode a sensor histidine kinase adjacent to a DNA-

binding response regulator28. BV509_11515 and BV509_11520 encode a poorly characterized 

TCS called NtrY-NtrX (~3-fold; P < 0.0001) (Supplementary Figure 3.3). NtrY-NtrX has been 

observed to control a variety of cellular processes including cell motility, extracellular polymeric 

substance (EPS) production, and nitrogen metabolism29-32. These genes are immediately 

downstream of NtrB-NtrC. In Rhodobacter capsulatus, NtrB-NtrC is a TCS that controls the 
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expression of a number of genes involved in nitrogen fixation and assimilation30. The other TCS 

(encoded by BV509_19210 and BV509_19215) shares sequence similarity with YesM-YesN 

from Bacillus subtilis (~2-fold; P < 0.0001) (Supplementary Figure 3.3)33. This TCS is 

nonessential in B. subtilis and has an unknown function33. 

3.3.3 Gene expression related to carbon fixation and carbon reserves 

Previous studies have shown that CO2 fixation is an important electron sink in 

anoxygenic phototrophs during EEU. For example, in the phototrophic Fe(II)-oxidizing 

bacterium Rhodopseudomonas palustris TIE-1, CO2 fixation via the Calvin-Benson-Bassham 

(CBB) cycle is the primary sink for phototrophic EEU10. In the genome of AB26, the CBB cycle 

is the sole pathway for CO2 fixation. Form I and form II ribulose-1,5-bisphosphate 

carboxylase/oxygenase (ruBisCO) are organized in gene clusters typical of PNSB 

(Supplementary Table 3.3). Form I ruBisCO, but not form II ruBisCO, was upregulated during 

EEU (~2-fold; P < 0.05) (Figure 3.4a). Each ruBisCO gene is adjacent to a divergently 

transcribed LysR-family transcriptional regulator, CbbR34 (BV509_05530 and BV509_15210). 

The cbbR homolog adjacent to form I ruBisCO in AB26 is expressed highest during EEU, even 

when compared to other phototrophic growth conditions (~3.5-fold; P < 0.0001) (Figure 3.4a). 

CbbR is known to activate the transcription of form I ruBisCO in R. palustris and R. sphaeroides 

in response to the redox, energy, and carbon status of the cell35-37. 

Many microbes synthesize intracellular and/or extracellular carbon storage molecules for 

survival under organic carbon-limiting conditions. These include the intracellular carbon 

polymers polyhydroxybutyrate (PHB) and glycogen, as well as EPS38-41. To determine if AB26 
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synthesizes and/or utilizes carbon reserves during EEU we identified pathways encoding PHB, 

glycogen, and EPS biosynthesis in the AB26 genome and determined their expression. The PHB 

biosynthesis pathway, including a PhaC homolog responsible for PHB polymerization, was 

expressed but typically downregulated during EEU (Figure 3.4b). However, a 

polyhydroxyalkanoate synthesis repressor phaR homolog (BV509_06285) (~0.6-fold; P < 

0.0001) and a PHA depolymerase phaZ homolog (BV509_06270) (~0.4-fold; P < 0.0001) were 

upregulated during EEU and other phototrophic conditions (Figure 3.4b). Furthermore, a phasin-

domain containing protein was highly upregulated during EEU (~4-fold; P < 0.0001) (Figure 

3.4b). Phasins localize to the surface of PHB granules and are synthesized under conditions 

permissive for PHB production42. The glycogen synthesis pathway of AB26 is encoded by an 

ADP-glucose pyrophosphorylase homolog (GlgC: BV509_13230) which is responsible for 

catalyzing the first step in the pathway40. In this gene cluster is also the glycogen synthetase 

(GlgA: BV509_13225), the branching enzyme (GlgB: BV509_13235), and the enzymes 

involved in glycogen degradation, including the glycogen debranching enzyme GlgX 

(BV509_13220) and the glycogen phosphorylase GlgP2 (BV509_13240). The glycogen 

biosynthesis pathway is expressed at low levels under all phototrophic growth conditions (Figure 

3.4b). 

Bacteria produce EPS to aid in biofilm formation43. Genes involved in capsular 

polysaccharide and exopolysaccharide biosynthesis were upregulated during EEU (Figure 3.3c). 

A capsular polysaccharide export protein (BV509_20210) is specifically upregulated during 

EEU (~3-fold; P < 0.0001) (Figure 3.3c). This gene is in a cluster that encodes a variety of genes 

involved in nucleotide sugar metabolism (BV509_20220-BV509_20235). Capsular 
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polysaccharide (CPS) biosynthesis43,44 pathways are present in other gram-negative bacteria, 

including Rhodobacter sphaeroides45. By integrating data for carbohydrate metabolism (based 

on KEGG, GO, and IPS assignments) with RNASeq analysis, we identified a putative EPS 

pathway in AB26 (Supplementary Figure 3.4). This analysis included the identification of 

pathways encoding the enzymes for sugar nucleotide biosynthesis, glycosyltransferases, and 

genes involved in EPS export—including several ABC transporters and a wza homolog 

(Supplementary Figure 3.4). Wza is an outer membrane lipoprotein that is involved in the 

production of the extracellular polysaccharide colanic acid43. These results corroborate our 

microscopic analysis of AB26 biocathodes and suggest that EPS may be an extracellular carbon 

sink during EEU. 

3.3.4 Identification of potential extracellular electron transfer pathways 

EET-capable microorganisms have specialized membranes evolved for electron exchange 

between solid-phase electron-donors and -acceptors. These include diverse molecular 

mechanisms, such as porin-cytochrome-mediated pathways46, nanowires47,48, and multicellular 

filaments49. One common feature between EET pathways is that they require c-type 

cytochromes19. To better understand the extracellular electron transfer pathway in AB26 we 

identified c-type cytochromes in the genome and examined the expression of these genes. We 

identified ~40 heme-binding proteins in AB26 with the characteristic CXXCH motif 

(Supplementary Table 3.4)50. This included many well-characterized c-type cytochromes, such 

as those in the sulfur oxidation (sox) system51, along with diheme cytochrome c peroxidase 

family homologs (BV509_14915, BV509_20295) that are involved in cellular detoxification in 



114 

 

 

related bacteria45. This analysis also identified potential respiratory pathways including a cbb3-

type cytochrome c oxidase (BV509_18680-BV509_18695) and a cytochrome bd respiratory 

complex (BV509_19445-BV509_19455). These oxidases are typically found in PNSB related to 

AB26 and are important terminal oxidases in oxygen-limited environments52,53. We did not 

detect homologs of known c-type cytochromes involved in EET and/or iron-oxidation19. 

We identified several hypothetical cytochrome c-like proteins in the genome of AB26 

that were expressed during EEU. This included multiple monoheme, diheme, and a single 

tetraheme c-type cytochrome. Multiheme c-type cytochrome proteins are typically involved in 

EET19 so we investigated these proteins further. BV509_01335 was the most significantly 

differentially expressed cytochrome c-like gene (~3-fold; P < 0.0001) (Figure 3.5a). This gene is 

a periplasmic diheme c-type cytochrome that is upstream of a transmembrane cytochrome b-

domain containing protein (BV509_01340). BV509_01335 is expressed under all phototrophic 

conditions and is upregulated ~3-fold during EEU (P < 0.0001) (Figure 3.5a). BV509_09650 is a 

diheme c-type cytochrome downstream of the sox operon and is adjacent to a flavocytochrome c 

sulfide dehydrogenase (BV509_09655; ~3-fold; P < 0.0001) and a transmembrane flavin 

reductase-like gene (BV509_09665; ~5-fold; P < 0.0001) (Figure 3.5a). Additionally, several 

diheme c-type cytochromes near gene clusters encoding for metal transport were upregulated. 

This includes BV509_10070 which is a diheme cytochrome c near gene clusters encoding for 

molybdenum, nickel, and cobalt transport (~2-fold; P < 0.0001) (Figure 3.5a). Lastly, a 

hypothetical protein with a single c-type cytochrome domain (BV509_18570) was specifically 

upregulated during EEU (~1-fold; P < 0.05) and phototrophic thiosulfate oxidation (~1-fold; P < 

0.05) (Figure 3.5a). 
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Other electron-transfer proteins identified included iron-sulfur cluster containing 

proteins, such as ferredoxins. Iron-sulfur proteins have been reported to be involved in iron 

oxidation in Fe(II)-oxidizing54,55 and EEU-capable56 bacteria. In some Fe(II)-oxidizing bacteria 

iron-sulfur proteins function to bifurcate electron flow in the periplasm for the generation of a 

proton gradient for ATP production57. Gene clusters containing iron-sulfur proteins have also 

been identified in purple sulfur bacteria within biocathode communities and have been proposed 

to be involved in EEU in these organisms56. We identified 13 iron-sulfur genes in the genome of 

AB26 (Supplementary Table 3.5). These genes did not share significant sequence homology to 

iron-sulfur proteins identified in Fe(II)-oxidizing bacteria in previous studies56. Of note is a 4Fe-

4S ferredoxin-like gene (BV509_04265) that was specifically upregulated during EEU (~2-fold; 

P < 0.0001) and phototrophic thiosulfate oxidation (~2-fold; P < 0.0001) (Figure 3.5b). 

To determine the proteins upregulated during phototrophic EEU, we compared and 

analyzed total protein (soluble and insoluble) fractions of AB26 cells cultivated under different 

phototrophic conditions. We observed a distinct protein band (between 56 and 72 kDa) specific 

to phototrophic EEU in both the soluble and insoluble fractions (Figure 3.5c). Interestingly, mass 

spectrometry analysis of these bands identified the presence of a 61 kDa periplasmic diheme 

cytochrome c (BV509_10070) that was a top hit in both the soluble and insoluble fractions 

(Supplementary Table 3.6,3.7). We also identified a 60 kDa periplasmic 4Fe-4S ferredoxin-like 

protein (BV509_08685) that was a top hit specifically in the soluble fraction (Supplementary 

Table 3.6).  These proteins were also upregulated during phototrophic EEU in our transcriptomic 

analysis (Figure 3.5a).  
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C-type cytochromes are involved in EET pathways in diverse bacterial genera19. 

Interestingly, phylogenetic analysis of BV509_10070 indicates this gene is highly conserved in 

Rhodovulum species (Supplementary Figure 3.6). Homologs of BV509_10070 are also present in 

Rhizobiales, including two R. palustris strains and a Mesorhizobium. BV509_10070 is absent 

from R. palustris TIE-1 and other known phototrophic Fe(II)-oxidizing/EEU-capable bacteria. 

The presence of BV509_10070 in both the soluble and insoluble fractions might suggest that this 

protein could interact with the membrane of AB26. Overall, this data establishes the basis for 

interrogating the electron-transfer proteins important for phototrophic EEU in AB26. 

3.3.5 Comparative genomics and physiology of Rhodovulum species 

We recently sequenced the draft genome of AB26 and two closely related isolates (AB14 

and AB30) from the Trunk River estuary in Woods Hole, MA58. The initial assembly of AB26 

revealed a single chromosome and two extrachromosomal sequences. Here, we provide a further 

analysis of the AB26 genome, its phylogenetic placement, and its metabolic features in light of 

its ability to perform phototrophic EEU. Based upon phylogenetic analysis of its 16S rRNA gene 

AB26 clades with Rhodovulum, which is a genus typically found in marine environments (Figure 

3.6). AB26 has ~99% 16S rRNA nucleotide sequence identity to R. sulfidophilum type-strains 

W4 (DSM 1374) and W12 (DSM 2351). AB26 also has ~99% nucleotide sequence identity to 

new isolates AB14 and AB3058, and SNK001. AB26 clusters outside of clades containing 

phototrophic Fe(II)-oxidizing bacteria: Rhodopseudomonas palustris TIE-159, Rhodovulum 

robiginosum60, Rhodovulum iodosum60, and Rhodobacter sp. SW261 (Figure 3.6). 

As we’ve previously reported, the chromosome of AB26 is ~4.2 Mb, and the genome 



117 

 

 

contains two plasmid-like contig sequences which are ~100 Kb and ~80 Kb, respectively58 

(Figure 3.7a-c). The single chromosome of AB26 shares a high degree of synteny to those of 

other Rhodovulum sulfidophilum strains (Figure 3.7a). BLAST analysis indicates that ~90% of 

protein-coding genes have a top-hit to R. sulfidophilum strains in the NCBI database 

(Supplementary Figure 3.7). The ~80 Kb contig sequence is homologous to “Plasmid 3” from the 

finished genome of R. sulfidophilum DSM 235162 (Figure 3.7b). The ~100 Kb plasmid contig 

sequence (which we refer to here as Plasmid 4), however, does not appear to be conserved within 

the genome of R. sulfidophilum DSM 2351 but instead to a plasmid sequence in the genome of 

Rhodovulum sp. MB263 (Figure 3.7c). 

Rhodovulum species are exceptionally metabolically versatile microbes that play an 

important role in the biogeochemical cycling of C, N, S, and Fe7. To support photoautotrophic 

growth, Rhodovulum are known to oxidize a variety of inorganic compounds as electron donors 

for anoxygenic photosynthesis. This includes molecular hydrogen (H2), reduced sulfur 

compounds, and iron. The ability to oxidize reduced sulfur compounds, including thiosulfate, is 

also broadly conserved among Rhodovulum (Figure 3.6 and 3.7d)7. This process is typically 

carried out by the Sox system63. It has been suggested that the Sox system is also responsible for 

the oxidation of elemental sulfur (S0), however, this process is poorly understood7. Because 

many of the Rhodovulum strains that carry the Sox system cannot carry out S0 oxidation, its role 

in this process is unclear. Some PNSB also encode sulfide:quinone oxidoreductase and sulfide 

dehydrogenase, enzymes involved in sulfide oxidation (Figure 3.7d). Although some 

Rhodovulum species encode these two enzymes, they are absent from AB26 and most R. 

sulfidophilum strains (Figure 3.7d). R. sulfidophilum DSM 1374 is the only sequenced strain that 
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possesses these genes (Figure 3.7d). Interestingly, AB26 is the only R. sulfidophilum stain with 

the metabolic potential for sulfur assimilation via a sulfite reductase homolog (Figure 3.7d)64-66. 

The AB26 genome contains a number of notable features, including the metabolic 

potential to oxidize one-carbon compounds. We identified a gene cluster encoding a methanol 

oxidation system found on Plasmid 4 that shared no sequence homology to the genomes of 

PNSB available in public databases (Figure 3.7d). NCBI BLAST analysis of this region revealed 

>80% nucleotide sequence identity to the methanol oxidation gene cluster of Methylobacterium 

sp. C1. This gene cluster encodes the methanol dehydrogenase (MDH) large and small subunit 

(mxaF: BV509_20585; mxaI: BV509_20600), the MDH-specific cytochrome cL (mxaG: 

BV509_20595), and homologs to its accessory factors (mxaJ: BV509_20590; mxaR: 

BV509_20605; mxaS: BV509_20610; mxaA: BV509_20615; mxaC: BV509_20620; mxaC: 

BV509_20620; mxaK: BV509_20625; mxaL: BV509_20630; mxaD: BV509_20635). These 

results expand our understanding of the metabolic versatility of R. sulfidophilum in marine 

ecosystems. 

3.4 Discussion 

Solid-phase conductive substances (SPCSs), such as iron minerals, are ubiquitous in 

natural environments. Microbes that exchange electrons with these materials via extracellular 

electron transfer (EET) play an important role in biogeochemical cycles19. Recent studies have 

shown that anoxygenic phototrophs can use SPCSs as electron donors for CO2 fixation2,8-10,67. 

The possibility and extent to which this process contributes to primary productivity in marine 

ecosystems, however, is unclear. To better understand this process, we isolated and characterized 
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a PNSB from a marine microbial mat. We demonstrated that R. sulfidophilum AB26 is capable 

of taking up electrons from electrodes poised at -200 mV vs. SHE, close to the redox couple of 

S/H2S (E°’ = -274 mV)]18 (Figure 3.1a). Furthermore, cyclic voltammograms of the spent media 

revealed a cathodic peak ~ -200 mV vs. SHE (Figure 3.1c). Anode-respiring microbes are known 

to secrete redox-active molecules, such as flavins, to mediate EET68-70.  The redox peak we 

observed in our study falls into the range of known EET redox mediators (E°’ = -219 mV (FMN 

and FAD) and E°’ = -208 mV (riboflavin))71. Future studies will characterize the electrochemical 

properties of this redox peak and determine its molecular identity. 

AB26 is distinct from other EEU-capable PNSB in that it can use electrodes at relatively 

low potentials (i.e. -200 mV vs. SHE) and does not contain homologs of known genes involved 

in EET (e.g. the Mtr system of Shewanella oneidensis MR-146). Using transcriptome sequencing 

we identified the expression of c-type cytochromes in the AB26 genome. We identified several 

periplasmic c-type cytochromes that were upregulated during EEU (Fig. 3.6). One periplasmic c-

type cytochrome and a cbb3-type cytochrome c oxidase were specifically upregulated during 

EEU and phototrophic thiosulfate oxidation (Figure 3.5a). This suggests AB26 may use 

conserved electron transfer mechanisms to mediate these two cellular metabolisms. Interestingly, 

we also identified multiple sulfur oxidation genes in our mass spectrometry analysis 

(Supplementary Table 3.8). This data corroborates our transcriptomic data and suggests the 

poised electrode is simulating sulfur metabolism. 

One of the top hits in our mass spectrometry analysis of total protein was a periplasmic 

diheme c-type cytochrome BV509_10070 (Supplementary Table 3.7,3.8). BV509_10070 

contains a Sec-signal peptide and thus is likely a periplasmic protein. Because of its cytochrome 
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c-like properties (Supplementary Figure 3.5), increased transcription (Figure 5a), and distinct 

protein expression (Supplementary Table 3.6,3.7), BV509_10070 may be involved in electron 

transfer during EEU. Future biochemical work needs to be performed to determine whether 

BV509_10070 is heme-attached and if it is a functional oxidoreductase protein. Future genetic 

studies should also determine its involvement in EEU. Because AB26 does not contain known 

EET genes, identification of the extracellular electron pathways in this organism will provide 

new genetic markers for studying EET in the environment. 

EEU-capable microbes identified in previous studies typically make monolayer-thick 

biofilms on electrodes8,10,72. This is consistent with a direct electron uptake mechanism by these 

microbes. In contrast, we observed that AB26 biofilms were several cell-layers in thickness 

(Figure 3.2c). We also identified that AB26 produces an EPS-like substance on electrodes 

(Figure 3.2c and Supplementary Figure 3.1) and that pathways leading to EPS production were 

upregulated during EEU (Figure 3.3c and Supplementary Figure 3.4). Interestingly, EPS has 

been shown to be electrochemically active and to mediate EET in diverse microbial biofilms60,61. 

EPS can also serve as a carbon source for microbial survival73 and studies have shown that EPS 

represents an important source of dissolved organic matter in marine ecosystems41. Future 

studies should determine the role of EPS in AB26 and examine whether it has electron-transfer 

properties. 

Studies have suggested that electroactive bacteria can sense electrically conductive 

surfaces and elicit specific responses that augment their ability to carry out EET. For example, in 

Shewanella, “electrokinesis” has been described as a microbial behavior characterized by 

increased cell swimming speeds and protracted paths of motion in response to minerals and 
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poised electrodes74. Cell tracking analysis with outer-membrane c-type cytochrome mutants of 

Shewanella has furthermore confirmed that this response is likely mediated by extracellular 

electron shuttles (e.g. flavins)75.  Studies have also shown that electroactive bacteria sense 

electrode potentials76 and accordingly regulate catabolic pathways to maximize their growth 

rate77. The molecular details of how EEU-capable bacteria sense and respond to electrically 

conductive surfaces, however, remains unclear.  In our study, we identified TCS that were 

specifically upregulated during EEU (Figure 3.3c). TCS integrate a variety of external inputs to 

induce transcriptional changes and allow the cell to respond to a stimulus28. Although TCS have 

not been identified in EET pathways, because they control a number of cellular processes 

important for biofilm formation and are redox-responsive28, the TCS identified in AB26 may 

play a role in EEU. 

During EEU in AB26 we observe that the gene encoding form I ruBisCO is upregulated, 

whereas form II ruBisCO is expressed at low levels (Figure 3.4a). In R. palustris TIE-1 increased 

expression of form I ruBisCO has also been observed during EEU8,10. Furthermore, CO2 fixation 

(via RuBisCO) is the primary sink for cathodic electrons10. This suggests that form I ruBisCO 

may also be the primary autotrophic carboxylase in AB26 and that electrons from the cathode 

may be used for CO2 fixation. In R. sphaeroides and related microbes the LysR transcriptional 

regulator CbbR is a positive regulator of the CBB cycle operons35,78. The AB26 genomes 

encodes CbbR-homologs adjacent to each CBB cycle operon (Supplementary Table 3.3). The 

expression of these genes is highest during EEU, even when compared to other photoautotrophic 

growth conditions (Figure 3.4a). The involvement of CbbR in activating CBB cycle expression 

and its intracellular signals should be investigated in future studies. 
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CO2 fixation via phototrophic EEU has biotechnological applications because of 

metabolic potential for the production of intracellular polymers, including poly(3-

hydroxybutyrate) (PHB) (Figure 3.4b). R. sulfidophilum W-1S has the capability to accumulate 

PHB under photoheterotrophic conditions, and can use PHB as a substrate for H2 production79. In 

a previous study by our lab, we observed microbial PHB production via phototrophic EEU from 

poised electrodes in R. palustris TIE-167. Others have also observed PHB production via indirect 

EEU from electrodes26,80. Because AB26 has the metabolic potential for PHB production, and is 

capable of EEU from electrodes, microbial PHB production could represent a bioplastic 

production strategy38,39. 

Our data shows that phototrophic PNSB from marine environments are capable of 

accepting electrons from poised electrodes. By using genome and transcriptome sequencing this 

work provides new insights into the molecular and bioenergetic pathways that enable 

photoautotrophs to use SPCSs for cellular survival. This work also expands the known diversity 

of organisms capable of EEU and provides a new microbe for use in electrochemical and 

physiological studies. Furthermore, since AB26 utilizes electrodes poised as sufficiently more 

negative potentials than PNSB previously characterized, this microbe may have utility in 

applications including energy storage, carbon-capture, and microbial electrosynthesis. Future 

studies will characterize the electron-conduit responsible for EEU and examine how this process 

is connected to photosynthesis and carbon fixation. This will enable use of this microbe in 

electrochemical applications and further our understanding of the role of marine PNSB in 

biogeochemical cycles. 
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3.5 Methods 

3.5.1 Microbial isolation and cultivation conditions 

AB26 was isolated in July 2014 from a microbial mat in the Trunk River estuary in 

Woods Hole, MA. Enrichments were cultivated photoheterotrophically in anoxic artificial 

seawater medium supplemented with 20 mM acetate. Enrichments were cultivated with ∼850-

nm light at 30°C and passaged six times, followed by streaking oxically 6 times on Bacto agar 

with Difco marine broth 2216 (BD Diagnostic Systems, Sparks, MD, USA) to isolate single 

colonies. AB26 can oxidize a variety of compounds to support photolithoautotrophy, including 

molecular hydrogen (H2) and reduced sulfur compounds (Supplementary Table 3.1). All growth 

experiments were carried out at 30°C unless otherwise noted. All phototrophic growth 

experiments were performed with a single 60W incandescent light bulb at a distance of 25 cm. 

For anaerobic photoautotrophic growth cells were grown on 80% hydrogen-20% carbon dioxide 

(H2-CO2) at ~50 kPa or 10 mM sodium thiosulfate in artificial seawater (SW) medium with 70 

mM sodium bicarbonate and 1 mM sodium sulfate.  For anaerobic photoheterotrophic growth, 

cells were grown in 10 mL SW medium supplemented with 10 mM acetate from stock solutions 

(1 M, pH = 7).  Anaerobic cultivations were performed in sterile, sealed glass serum bottles. 

Bioelectrochemical studies were performed with SW medium lacking exogenous electron 

donors, and purged with 80%-20% nitrogen (N2-CO2). 

3.5.2 BES setup and conditions 

Bioelectrochemical systems (BESs) were configured as previously described10. SW 

media (70 mL) was dispensed into anoxic, sterile, sealed, three-electrode BESs which were 
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pressurized to ~50 kPa with 80%:20% N2-CO2. The three electrodes were configured as follows: 

indium tin oxide (ITO) working electrodes were approximately 0.28 cm2; reference eletrodes 

(Ag/AgCl) were submerged in 3 M KCl; and counter electrodes were composed of 5 cm2 

platinum foil. Working electrodes were poised using a multichannel potentionstat (Gamry 

Instruments, Warmister, PA). Reactors were operated continuously with a single 60W 

incandescent light bulb at 26°C. Chronoamperometry data were collected every 1 minute using 

the Gamry Echem Analyst (Gamry Instruments, Warmister, PA) software package. Mid-log 

phase H2-CO2 grown cells were used as inoculum for all bioelectrochemical cultivations. The 

biomass (OD660) of inoculated BESs was monitored with a BugLab Handheld OD Scanner 

(Applikon Biotechnology, Inc., Foster City, CA). Cyclic voltammetry (CV) was performed at the 

end of incubations with potential sweep from +800 mV to -900 mV versus SHE and a 5 s scan 

rate. 

3.5.3 Staining of electrodes 

Electrodes were washed twice with anoxic 1X phosphate-buffered saline (PBS) to 

remove unattached cells in an anaerobic chamber. The exposed ITO surface was cut in half with 

a glass cutter and immediately placed in sterile microfuge tubes containing anoxic 1X PBS. Prior 

to imaging, the electrode was immersed in either: (1) LIVE/DEAD stain (10 µM SYTO 9 and 

60 µM propidium iodide, L7012, Life Technologies); (2) Concanavalin A Alexa Fluor™ 488 

Conjugate (100 µg mL-1); or (3) FilmTracer™ SYPRO™ Ruby Biofilm Matrix Stain. Samples 

were incubated for 30 min in the dark. Samples were placed in 1X PBS in a glass bottom Petri 

dish (MatTek Corporation, Ashland, MA) for imaging. Samples were imaged on a Nikon A1 

inverted confocal microscope using 555 and 488 nm lasers and a 100X objective (Washington 
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University in St. Louis Biology Department Imaging Facility). Images were processed in Fiji 

version 2.0.0 to add scale bars81. 

3.5.4 Scanning electron microscopy 

Cells were first fixed in an anaerobic chamber for 30 minutes using 2% formaldehyde 

and 2.5% glutaraldehyde in a 0.05 M sodium cacodylate buffer (pH 7.2) at a 1:1 ratio followed 

by sequential dehydration using varying proportions of ethanol (25%, 50%, 75%, 95%, 100%). A 

few drops of sample suspension were placed over the surface of a glass coverslip followed by 

critical point drying using EMS 850 Critical Point Drier. Critical point dried samples were 

coated with gold (7 nm) using a Leica ACE 600 sputter coater. A JEOL JSM-7001 LVF Field 

Emission SEM coupled with energy dispersive spectroscopy (SEM/EDS) was employed for 

morphological and compositional analyses of cells. 

3.5.5 Molecular phylogenetic analysis 

16S rRNA gene sequences were downloaded from GenBank. Evolutionary analyses were 

conducted in MEGA X82. The evolutionary history was inferred using the Maximum Likelihood 

method and the Tamura 3-parameter model. The tree with the highest log likelihood (-6546.83) 

is shown. The percentage of trees in which the associated taxa clustered together is shown next 

to the branches. Bootstrap values below 50% were omitted. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and 

then selecting the topology with superior log likelihood value. A discrete Gamma distribution 

was used to model evolutionary rate differences among sites (2 categories (+G, parameter = 



126 

 

 

0.7388)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 

33.07% sites). The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. This analysis involved 26 nucleotide sequences. All positions containing 

gaps and missing data were eliminated (complete deletion option). There were a total of 1261 

positions in the final dataset. 

3.5.6 Functional analysis 

The draft genome sequences of AB26 were downloaded from NCBI (BioSample: 

SAMN05876236). Genome alignments were performed with BLAST Ring Image Generator 

(BRIG)83 version 0.95 using the programs default parameters and NCBI BLAST+ version 2.9.0. 

The genome was mapped and annotated with the Blast2GO® bioinformatics platform using the 

programs default parameters. Metabolic pathway analysis was performed using BlastKOALA 

and KEGG-Decoder  version 0.8 

(https://github.com/bjtully/BioData/tree/master/KEGGDecoder) using the programs default 

parameters84. The metabolic pathway definitions used for this analysis can be found at 

https://github.com/bjtully/BioData/blob/master/KEGGDecoder/KOALA_definitions.txt. 

3.5.7 Screening for known iron oxidation genes 

FeGenie version 1.0 (https://github.com/Arkadiy-Garber/FeGenie/) was used to screen 

the genome assembly against known genes involved in iron oxidation using the program’s 

default parameters. 

 

https://github.com/bjtully/BioData/tree/master/KEGGDecoder
https://github.com/bjtully/BioData/blob/master/KEGGDecoder/KOALA_definitions.txt
https://github.com/Arkadiy-Garber/FeGenie/
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3.5.8 RNA isolation 

Microbial cells were sampled in an anaerobic chamber and immediately mixed 1:1 with 

RNAlater (Qiagen, USA). RNA was extracted using the RNeasy Mini Kit according to the 

manufacturer’s recommendations (Qiagen, USA). DNA removal was performed using Turbo 

DNA-free Kit (Ambion, USA). RNA samples were tested for purity using PCR. 

3.5.9 RNA sequencing (RNA-Seq) and differential expression analysis 

Illumina single-end 50-bp libraries were prepared and sequenced at Washington 

University’s Genome Technology Access Center on an Illumina HiSeq3000 (Illumina Inc., San 

Diego, CA, USA). Reads were mapped to the AB26 genome using TopHat2 version 2.1.1 and 

the gff3 annotation file as a guide for sequence alignment. Bowtie 2 version 2.3.3.1 was used to 

index the reference genome FASTA file. The number of reads mapping to each feature were 

counted by HTSeq version 0.9.1. Differentially expressed genes were determined in DESEQ2 

version 1.16.1 using the HTSeq read counts. To determine if genes were significantly 

differentially expressed an adjusted p-value cutoff of 0.05 was used. Marine broth 

(chemoheterotrophy) was used in differential expression analysis to “calibrate” expression values 

for each test condition. Figures were drawn in R. 

3.5.10 Preparation of soluble and membrane fractions for mass spectrometry 

AB26 cells cultivated under phototrophic conditions were harvested and stored at -80°C. 

Cell pellets were thawed on ice for ~30 min, resuspended in B-PER™ Bacterial Protein 

Extraction Reagent (ThermoFisher Scientific, USA), and then sonicated (Branson Ultrasonic 
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Bath, Branson Ultasonics Corp., USA). The lysates were centrifuged at 14,000 rpm for 30 min to 

separate the soluble and membrane fractions. The pellet was solubilized in 3X SDS buffer and 

used as the membrane fraction. The proteins in the soluble and membrane fractions were 

resolved via SDS-PAGE. Distinct protein bands were cut out of the gels, stored at -80°C, and 

sent to the Proteomics and Mass Spectrometry Facility at the Donald Danforth Plant Science 

Center (St. Louis, MO) for sequencing. 

3.5.11 Statistical analysis 

Statistical analyses (Student’s t-test, one-way ANOVA with Bonferroni adjustment) were 

performed with Microsoft Excel “Data Analysis” tools. 

3.5.12 Data availability 

Sequencing reads were deposited in the NCBI database under BioProject PRJNA546270. 

Accession numbers for individual sequencing libraries can also be found in Supplementary Table 

3.2. 
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3.6 Figures 

 

Figure 3.1. Solid electrode as the sole electron donor for anoxygenic photosynthesis. (a) 

Cathodic current densities vs. time at +200 mV, 0 mV, and -200 mV versus SHE. (b) Cyclic 

voltammograms after 45 h of electrochemical incubation at -200 mV versus SHE (blue) 

compared to an abiotic control reactor (grey). (c) Cyclic voltammograms of filtered, spent media 

after 45 h of electrochemical incubation at -200 mV versus SHE (grey) compared to fresh media 

(red). (d) Planktonic cell growth (OD660) in bioreactors. Data are mean  s.d. of at least two 
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biological replicates. The P values were determined by one-way ANOVA followed by a 

pairwise test with Bonferroni adjustment (*P < 0.05, **P < 0.01, ***P < 0.0001; ns, not 

significant). 



131 

 

 

 

Figure 3.2. Bacterial cells attached to electrodes poised at different potentials. Microscopic 

images of bacterial cells attached to electrodes poised at: (a, d) +200 mV, (b, e) 0 mV, and (c, f) -

200 mV versus SHE. (a-c) Scanning electron micrographs. Scale bar is 5 μM. (d-f) LIVE/DEAD 

staining. Green indicates live cells. Red indicates dead cells. Scale bar is 5 μM. Data are 

representative of at least two biological replicates. 
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 Figure 3.3. Identification of EEU-specific differentially expressed genes. (a) Hierarchical 

clustering of expression values (mean fragments per kilobase of transcript per million mapped 

reads, FPKM) of each condition (columns) for all 4077 genes (rows) in the AB26 genome. (b) 

Venn diagram of differentially expressed genes. (c) Genes specifically differentially expressed 
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during EEU. Blue denotes genes with a P ≤ 0.05. Green denotes genes with a P ≤ 0.05 and log2 

fold-change ≥ 2. Red denotes genes with a P ≤ 10-20 and a log2 fold-change ≥ 2. Data are the 

average of at least three biological replicates. 
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Figure 3.4. Expression analysis of carbon fixation and storage pathways. (a) Expression 

analysis of genes encoding the Calvin-Benson-Bassham cycle and (b) potential carbon storage 

pathways in the genome. RuBP (Ribulose 1,5-bisphosphate), 1,3 BPG (1,3-

bisphosphoglycerate), G3P (Glyceraldehyde 3- phosphate), FBP (Fructose 1,6-bisphosphate), 

F6P (Fructose 6-phosphate), X5P (Xylulose 5-phosphate), Ru5P (Ribulose 5-phosphate) and 

R5P (Ribose 5- phosphate). Data are the average of at least three biological replicates. 

 



135 

 

 

 

 

Figure 3.5. Expression of electron-transfer proteins under phototrophic conditions. 

Expression analysis of (a) multiple c-type cytochromes and (b) iron-sulfur cluster genes in the 

AB26 transcriptome. Data are the average of at least three biological replicates. (c) Total protein 

(soluble and insoluble fraction) from AB26 cells cultivated under different phototrophic 

conditions. Mass spectrometry analysis was performed on the bands denoted by the open triangle 

(soluble fraction) and closed triangle (membrane fraction). 
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Figure 3.6. Phylogenetic and metabolic diversity of PNSB related to AB26. Maximum 

likelihood analysis of the 16S rRNA gene sequences of purple nonsulfur and related bacteria 

from marine and freshwater environments. C. ferrooxidans was used as an outgroup. Non-

phototrophic Alphaproteobacteria (included for comparison) are noted in grey. Scale bar 

represents amino acid substitutions. 
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Figure 3.7. Comparative genomics and metabolic potential of Rhodovulum species. (a-c) 

Genome alignments of species related to AB26. (a) Chromosome I. (b) Plasmid 3. (c) Plasmid 4. 

The inner-most ring represents the AB26 sequence. (d) Comparative metabolic pathway analysis 

of AB26 compared to related phototrophic bacteria. A description of the metabolic pathway 

definitions used in this analysis can be found in the methods. AB26 (Rhodovulum sulfidophilum 

AB26), AB24 (Rhodovulum sulfidophilum AB24), AB30 (Rhodovulum sulfidophilum AB30), 

1374 (Rhodovulum sulfidophilum DSM 1372), 2351 (Rhodovulum sulfidophilum DSM 2351), 

SNK001 (Rhodovulum sulfidophilum SNK001), R.r (Rhodovulum robiginosum), R.v. 

(Rhodomicrobium vannielii), SAT37 (Rhodovulum sp. SAT37), TIE-1 (Rhodopseudomonas 

palustris TIE-1).  
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Supplementary Figure 3.1. Fluorescent micrographs of exopolysaccharide and protein 

staining of AB26 biofilms. (a) Biofilms stained with Concanavalin A (green) for labeling 

exopolysaccharides and RedoxSensor Red to denote cells. (b) Biofilms stained with SYPRO 

(red) for labeling proteins and SYTO9 to denote cells. Scale bars are 5 μm. 
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Supplementary Figure 3.2.  Metabolic versatility of AB26. (a) aerobic chemoheterotrophic, 

(b) anaerobic photoheterotrophic, and (c) anaerobic photoautotrophic growth. AB26 can utilize a 

variety of unconventional electron donors to drive anoxygenic photoautotrophic growth, 

including H2 and reduced sulfur compounds (e.g. thiosulfate, sulfide). 
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Supplementary Figure 3.3. InterPro domain analysis of two-component systems (TCS). 

Gene organization and InterPro domain analysis of TCS specifically upregulated during 

phototrophic extracellular electron uptake (EEU). Locus tags are noted within each open-reading 

frame (ORF). Names above the ORFs are the top BLAST hits and below each (bold) are the 

InterPro domains identified. 



142 

 

 

Supplementary Figure 3.4. Putative exopolysaccharide (EPS) biosynthetic pathway. EPS 

pathway predicted using KEGG, GO, and IPS assignments. Expression data is shown as 

heatmaps below the enzymes. GLK (glucokinase), G6PI (glucose-6-phosphate isomerase), MPI 

(mannose-6-phosphate isomerase), PMM (phosphomannomutase), MPG (mannose-1-phosphate 

guanyltransferase), GMD (GDP-mannose 4,6-dehydratase), CLDP (chain-length determining 
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protein), PGM (phosphoglycerate mutase), RFBA (glucose-1-phosphate thymidylyltransferase), 

RMLB (dTDP-D-glucose 4,6- dehydratase), RMLC (dTDP-4-dehydrorhamnose 3,5-epimerase), 

UAP (UDP-N-acetylglucosamine pyrophosphorylase), UGDH (UDP-glucose 6-dehydrogenase), 

GAE (UDP-d-glucuronic acid 4-epimerase). 
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Supplementary Figure 3.5. InterPro domain analysis of top electron transfer proteins 

identified via mass spectrometry. Gene organization and InterPro domain analysis of electron 

transfer proteins. Locus tags are noted within each open-reading frame (ORF). Names above the 

ORFs are the top BLAST hits and below each (bold) are the InterPro domains identified. 
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Supplementary Figure 3.6. Phylogenetic analysis of BV509_10070. Maximum likelihood 

analysis (Whelan And Goldman +G model, (+G, parameter = 0.5384)) of BV509_10070 and 

related gene sequences. The pioA gene from R. palustris TIE-1 was used as an outgroup. Scale 

bar represents amino acid substitutions. The tree with the highest log likelihood (-9413.60) is 

shown. Tree is representative of 100 replicate trees. Bootstrap values <100 were omitted from 

the tree. All positions containing gaps and missing data were eliminated (complete deletion 

option). There is a total of 434 positions in the final dataset. Tree was constructed in MEGA X82. 

 

 



146 

 

 

 

Supplementary Figure 3.7. Species distribution of top BLAST hits. Top NCBI BLAST hits 

for all proteins in the AB26 genome. Analysis was performed in Blast2GO. 
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Supplementary Table 3.1. Doubling time (hours) under aerobic and anaerobic growth 

conditions for AB26. Aerobic chemoheterotrophic (marine broth), photoheterotrophic (acetate), 

and photoautotrophic (molecular hydrogen (H2) and thiosulfate) growth. Data are means ± s.e. of 

three biological replicates. 

Growth condition Doubling time (h) ± s.e. 

Marine broth 33 ± 0.67 

Acetate 3.1 ± 0.11 

H2 21 ± 1.78 

Thiosulfate 14 ± 0.21 
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Supplementary Table 3.2. RNA-Sequencing libraries and NCBI accession numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Library No. of reads NCBI accession no. 

EEU_1 18,096,180 SRR9335485 

EEU_2 25,301,577 SRR9335486 

EEU_3 14,402,767 SRR9335487 

EEU_4 9,363,447 SRR9335488 

EEU_5 7,976,329 SRR9335481 

H2_1 19,276,638 SRR9335482 

H2_2 15,261,784 SRR9335483 

H2_3 15,261,646 SRR9335484 

H2_4 21,641,589 SRR9335479 

Thiosulfate_1 15,563,689 SRR9335477 

Thiosulfate_2 15,928,634 SRR9335478 

Thiosulfate_3 19,422,056 SRR9335489 

Thiosulfate_4 20,705,340 SRR9335490 

Acetate_1 13,481,805 SRR9335493 

Acetate_2 24,775,453 SRR9335494 

Acetate_3 14,738,639 SRR9335475 

Acetate_4 23,880,256 SRR9335476 

Marine_broth_1 12,882,332 SRR9335480 

Marine_broth_2 16,207,138 SRR9335491 

Marine_broth_3 26,980,010 SRR9335492 
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Supplementary Table 3.3. Predicted CO2 fixation cycle in the AB26 genome. 

 

 

 

Annotation Locus tag 

RuBisCO form I small subunit (CbbS) BV509_05520 

RuBisCO form I large subunit (CbbL) BV509_05525 

RuBisCO activation protein (CbbO) BV509_05510 

RuBisCO activation protein (CbbQ) BV509_05515 

RuBisCO operon transcriptional regulator (CbbR) BV509_05530 

RuBisCO operon transcriptional regulator (CbbR) BV509_15210 

Fructose-bisphosphatase class I (Fbp) BV509_15215 

Phosphoribulokinase (PrK) BV509_15220 

Transketolase (Tkl) BV509_15225 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) BV509_15230 

Phosphoglycerate kinase (Pgk) BV509_15235 

Fructose-bisphosphate aldolase class II (Fba) BV509_15240 

RuBisCO form II (CbbM) BV509_15245 

Ribulose-phosphate 3-epimerase (Rpe) BV509_15250 

Ribose-5-phosphate isomerase (Rpi) BV509_06305 

Triosephosphate isomerase (Tpi) BV509_11205 
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Supplementary Table 3.4. Predicted multiheme c-type cytochromes in the AB26 genome. 

 

Annotation Locus tag No. of 

CXXCH 

domains 

No. of 

residues 

Predicted 

molecular 

mass (kDa) 

Hypothetical protein BV509_15885 4 615 63 

Cytochrome c (PufC) BV509_00325 3 355 39 

Cytochrome c family protein BV509_01335 2 203 21 

Cytochrome c peroxidase BV509_02665 2 369 39 

Cytochrome c family protein (SoxA) BV509_09630 2 287 31 

Cytochrome c family protein BV509_09650 2 238 26 

Cytochrome c BV509_10070 2 573 61 

Cytochrome c family protein BV509_12985 2 472 49 

Cytochrome c peroxidase BV509_14915 2 347 37 

Cytochrome c oxidase (Cbb3-Cox) BV509_18680 2 295 32 

Cytochrome c peroxidase BV509_20295 2 439 46 

Methylamine utilization protein (MauG) BV509_14805 2 385 41 
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Supplementary Table 3.5. Predicted iron-sulfur proteins in the AB26 genome. 

 

 

Annotation Locus tag No. of residues Predicted molecular mass 

(kDa) 

4Fe-4S ferrodoxin-like BV509_05760 430 46 

4Fe-4S ferrodoxin-like BV509_10890 551 60 

4Fe-4S ferrodoxin-like BV509_13150 447 47 

4Fe-4S ferrodoxin-like BV509_19200 306 33 

4Fe-4S ferrodoxin-like BV509_04265 386 44 

4Fe-4S ferrodoxin-like BV509_08685 550 60 

2Fe-2S ferrodoxin-like BV509_03085 358 39 

2Fe-2S ferrodoxin-like BV509_04200 99 11 

2Fe-2S ferrodoxin-like BV509_05115 124 14 

2Fe-2S ferrodoxin-like BV509_06340 108 12 

2Fe-2S ferrodoxin-like BV509_12075 681 71 

2Fe-2S ferrodoxin-like BV509_13270 100 10 

2Fe-2S ferrodoxin-like BV509_16175 471 50 

2Fe-2S ferrodoxin-like BV509_21040 359 39 
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Chapter 4: Conclusions and Future 

Directions 

4.1 Summary 

 Microbe-mineral interactions play an important role in biogeochemical processes on 

Earth. Bacteria that are capable of utilizing solid-phase electron-donors via extracellular electron 

transfer (EET) are important for nutrient cycling in soils, marine sediments, and subsurface 

environments. Microbial EET to minerals and electrodes is well-understood at the mechanistic 

level. The molecular and physiological underpinnings of the reverse process, extracellular 

electron uptake (EEU), are poorly understood. In this work, I have shown in the purple nonsulfur 

bacterium (PNSB) R. palustris TIE-1 that EEU is linked to photosynthetic electron transfer, 

energy generation, and CO2 fixation. I show that electrons enter the photosynthetic ETC and that 

cytochrome bc1 is required for this process. I also demonstrate that NADH dehydrogenase plays 

an important role in EEU, likely for the generation of cellular reducing equivalents. Lastly, I 

show that the Calvin-Benson-Bassham (CBB) cycle is the primary electron sink for EEU. 

Furthermore, I observe that the lack of the CBB cycle gene ribulose-1,5-bisphosphate 

carboxylase/oxygenase (ruBisCO) influences the ability of TIE-1 to accept electrons from other 

electron donors, including H2. Overall, this data suggests that carbon metabolism and electron 

transfer are linked. This may be conserved in other bacteria and important for improving our 

understanding of nutrient flow in organic-carbon limited ecosystems.  



164 

 

 

Because phototrophic EEU can be used for microbial CO2 fixation, my work suggests 

that EEU may account for primary productivity in nature. To examine the ecological 

implications of this connection, I tested whether PNSB in marine ecosystems also engage in 

EEU. I show that the marine phototroph Rhodovulum sulfidophilum AB26 (hereafter referred to 

as AB26) is capable of utilizing electrodes poised over a wide range of potentials as electron 

donors. The highest rates of current uptake by AB26 occur at -200 mV vs. SHE, which is in the 

range of geochemically relevant solid-phase and insoluble minerals in marine ecosystems. I also 

show that AB26 cells attach to electrodes and form biofilms composed of exopolysaccharides 

and extracellular proteins. Using functional genomics, I interrogate the electron transfer, 

bioenergetic, and CO2 fixation pathways in AB26. Using functional genomic approaches (whole-

genome and transcriptome sequencing) I show that genes involved in photosynthetic electron 

transfer, energy generation, and CO2 fixation are activated during EEU. This analysis also 

identifies two-component systems (TCS) with EEU-specific expression that may be important 

for sensing electrodes. Lastly, I also show that an uncharacterized di-heme cytochrome c-like 

protein (BV509_10070) is highly expressed during EEU. This protein is broadly conserved in 

Rhodovulum species and non-photosynthetic bacteria. Because multi-heme c-type cytochromes 

are known to be involved in EET in diverse bacterial genera, BV509_10070 may have a role in 

electron-transfer from electrodes. 

4.2 Outlook 

One of the most exciting aspects of my work is that it sets the stage for genetic, 

physiological, and biochemical studies of AB26. This bacterium does not contain homologs of 
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genes known to be involved in EEU and/or phototrophic Fe(II)-oxidation, and thus, elucidation 

of the EEU mechanism(s) in this organism will provide new molecular markers for identifying 

this process in nature. Another consequential aspect of my work is that it provides a detailed 

framework for further investigation into the bioenergetic and electron-transfer pathways 

underlying phototrophic EEU in TIE-1. Significant questions remain related to EEU in TIE-1 

and AB26, and the ecological implications of EEU. Future directions are briefly summarized 

below. 

My electrochemical data shows that AB26 is capable of EEU from electrodes poised at -

200 mV vs. SHE. There is also a limited capacity for EEU at 0 mV vs. SHE. At this potential, 

however, there is both limited cell attachment and cell survival on the electrodes. Does AB26 

take up electrons from electrodes poised at potentials from 0 to -200 mV vs. SHE, or below -200 

mV vs. SHE? The redox potentials with which AB26 can take up electrons likely reflect the 

redox potential of the electron-transfer protein(s) in the outer membrane that facilitate EEU (in 

the case of direct EEU), or a redox-soluble molecule that is reduced by the electrode (in the case 

of indirect EEU). It is also plausible AB26 has multiple extracellular electron pathways. TIE-1 

on the other hand accepts electrons at +100 mV vs. SHE1. Published data on whether TIE-1 can 

accept electrons at other redox potentials is not available. Thus, it is plausible TIE-1 could also 

accept electrons at more electronegative redox potentials. The full range of redox potentials with 

which TIE-1 and AB26 can accept electrons from poised electrodes should be determined in 

future electrochemical studies. This will further our understanding of the solid electron donors 

that PNSB may utilize in the natural environment for photosynthesis. 
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Interestingly, the redox potentials with which AB26 takes up electrons from electrodes 

coincide with a recent marine bacterium Thioclava electrotropha2, as well as chemoautotrophic 

and chemoheterotrophic microbial communities in marine sediments3,4. T. electrotropha is a 

sulfur- and H2-oxidizing chemoautotroph that can use a variety of terminal electron acceptors 

(e.g. SO4
2-, Fe3+, NO3

2-) for EEU2. This microbe was isolated in a recent study of microbial 

communities in marine sediments from Catalina Harbor, CA, USA in the Pacific Ocean4. In this 

study electrodes were poised between -50 to -400 mV vs. Ag/AgCl (~ +149 to ~ -200 mV vs. 

SHE) as the sole electron donor with NO2- or Fe3+ serving as the terminal electron acceptor. 

Because these redox potentials are in the range of relevant electron donors in marine sediments 

(e.g. elemental sulfur, iron oxides, and iron sulfides)4 these data, along with my studies in AB26, 

suggest that solid-phase conductive substances (SPCSs) may contribute to biogeochemical 

cycling in marine ecosystems. 

Microscopic data suggests an extracellular polymeric substance (EPS) substance is 

produced during EEU by AB26. Furthermore, EPS staining suggests that this substance contains 

exopolysaccharides and extracellular protein. TIE-1 is also known to produce EPS that contains 

exopolysaccharides and extracellular proteins1. AB26 biofilms also appear several cell-layers 

thick. This is in contrast to TIE-11 which forms sparse monolayers on electrodes. Recent studies 

have shown that EPS has conductive properties and facilitates extracellular electron transfer 

(EET) from electrodes to a variety of Gram-negative bacteria, including Shewanella oneidensis 

MR-15-7. These studies suggest that soluble proteins in the EPS, such as flavins and extracellular 

c-type cytochromes, contribute to electron transfer to electrodes6. This electrical conductivity is 

hypothesized to allow cells spatially separated from the electrode to exchange electrons. Does 
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the EPS AB26 produces on electrodes also have conductive properties? Does it contain electron-

transfer proteins? If so, this could explain how AB26 cells in biofilms stay viable on the 

electrodes under the cultivation conditions. Characterizing the structure and composition of EPS 

phototrophic bacteria produce will improve our understanding of its role in EEU. 

My data on TIE-1 shows that genetic mutants of the CBB cycle have a ~90% decrease in 

EEU, suggesting the CBB cycle is the primary electron sink. Transcriptomic data shows that the 

CBB cycle enzyme form I ruBisCO is highly expressed during EEU in AB26. I also observe that 

form I ruBisCO is highly expressed in TIE-1. This could suggest that the CBB cycle is also an 

electron sink for EEU in AB26. Direct evidence for CO2 fixation is lacking, however. In order to 

test if CO2 fixation is connected to EEU in AB26, stable isotope studies could be performed to 

examine carbon uptake under this condition. Connecting this activity to autotrophic CO2 fixation 

would require the generation of genetic mutants of the CBB cycle. Lastly, where is the remaining 

~10% of current going in TIE-1? Is this current going to other biosynthetic pathways? Future 

genetic studies could systematically eliminate NADH and/or NAD(P)H consuming pathways to 

elucidate whether TIE-1 has additional electron sinks. A more exhaustive investigation of the 

potential electron sinks in TIE-1 would further its biotechnological and bioenergy applications. 

A key knowledge gap in EEU research is how EEU-capable bacteria sense electrodes. I 

identified EEU-specific two-component systems (TCS) in AB26 through transcriptomic analysis. 

Do these TCS have a role in sensing electrical surfaces? Aside from these uncharacterized TCS, I 

also observed that the CbbRRS TCS in TIE-1 is highly upregulated during EEU. This TCS is 

lacking from AB26. The AB26 genome does contain the LysR-homolog CbbR and this gene is 

upregulated during EEU. CbbR is responsible for activating form I ruBisCO expression in 
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related bacteria, such as R. palustris CGA009/10 and R. sphaeroides8-11. Because TIE-1 and 

AB26 differ in their regulation of the CBB cycle, it is challenging to draw conclusions about the 

role of CbbR. It is likely this system has a role in regulating carbon metabolism in AB26. 

Whether this gene has an EEU-specific role is unlikely, but this question should be investigated 

in future studies. 

Very little is known about the extracellular electron transfer pathways involved in 

microbial EEU. In TIE-1, the pioABC system likely has a role in this process1 but the precise 

molecular mechanism of the pioABC system and whether other EET pathways exist in this 

organism is unclear. My studies on TIE-1 in bulk bioreactors suggest that planktonic electron 

uptake contributes to ~70% of current uptake in the system. How are these cells accessing 

electrons from the electrode? Does TIE-1 have an indirect mechanism (e.g. secretion of 

extracellular flavins) similar to S. oneidensis MR-1? A previous study on TIE-1 did not detect a 

redox-active molecule in the spent media, so the presence of an indirect pathway is unlikely1. It 

is also plausible TIE-1 cells have a dynamic biofilm-plankton lifecycle during EEU. This could 

explain why TIE-1 bioreactors without planktonic cells exhibit less current uptake. In AB26, the 

extracellular electron conduit that transports electrons from the electrode into the cell is 

unknown. AB26 also lacks homologs of known EET pathways. I identified a multiheme c-type 

cytochrome (BV509_10070) that is upregulated at the transcriptional level. This protein also has 

EEU-specific upregulation at the protein level. Does BV509_10070 have a role in EEU? If so, 

what is the extracellular component? Interestingly, I observed a subtle redox peak in the AB26 

cyclic voltammograms of the spent media. Does this peak represent a redox-active molecule? If 
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so, this could explain how AB26 cells access electrons from the electrode without an obvious 

outer membrane protein complex. 

What is the electron transfer pathway post-EEU in AB26 and TIE-1? My studies in TIE-

1 show that electrons from the cathode enter the photosynthetic electron transport chain (pETC) 

and pass through the cytochrome bc1 complex and NADH dehydrogenase. Because the pETC is 

highly conserved in PNSB, antimycin A and rotenone-based electrochemical studies could also 

be applied to AB26. This could reveal whether electrons are also entering the pETC and whether 

electrons are utilized for NADH production. But which electron-transfer components deliver 

electrons to the pETC in the first place? This is unknown for both TIE-1 and AB26. In most 

anoxygenic phototrophs, this is accomplished by cytochrome c2 and/or high-potential iron-sulfur 

proteins (HiPIPs)12. This is thought to be the case for phototrophic Fe(II)-oxidation in TIE-112. 

The pioABC operon (which is essential for phototrophic Fe(II)-oxidation in this organism) 

encodes an HiPIP (pioC) that is thought to transfer electrons to the photosystem12,13. Whether 

PioC is also involved in electron transfer during EEU has not been determined. It is also 

plausible, however, that the redox potential of the electron donor dictates the periplasmic 

electron acceptor, and thus the entry point of electrons into the pETC. For the case of EEU by 

TIE-1 at +100 mV vs. SHE, my data shows that a proton motive force (PMF) is required for 

EEU. This could suggest that reverse electron flow is required to transfer electrons from electron 

donors sufficiently lower than the NAD+/NADH redox couple. Reverse electron flow has been 

shown to be an active pathway in chemoautotrophic Fe(II)-oxidizing bacteria14-17. In these 

microbe’s cytochrome bc1 pushes electron uphill to NADH dehydrogenase to reduce NAD+. 

Reverse electron flow has also been suggested for phototrophic Fe(II)-oxidizing bacteria12. 
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Because reverse electron flow requires the activity of cytochrome bc1, which is an essential 

pETC component, uncoupling its roles in these two processes would be challenging. 

Before this work, the scientific community had only two phototrophic bacterial isolates 

capable of EEU (i.e. TIE-11,18 and Prosthecochloris aestuarii19). The microbial isolation, whole-

genome20 and transcriptome-sequencing, and electrochemical characterization of AB26 will 

improve our understanding of the microbial and mechanistic diversity of EEU.  Furthermore, 

AB26 fills a key knowledge gap in our understanding of the ecological diversity of EEU since 

this is the only marine organism known to carry out this process. What is still unknown is 

whether EEU is conserved among other PNSB. For example, are R. sulfidophilum or R. palustris 

strains other than AB26 and TIE-1, respectively, capable of phototrophic EEU? Are PNSB 

outside of these genera capable of EEU? And, how prevalent is phototrophic EEU among 

anoxygenic phototrophs? Understanding these questions would help us determine the 

quantitative contribution of phototrophic EEU to carbon cycling in anoxic environments. To aid 

in addressing these questions, I isolated and whole-genome sequenced an additional 18 marine 

phototrophic bacteria from Woods Hole, MA (Figure A1). These isolates are primarily PNSB 

(Rhodovulum sulfidophilum (n = 15) and Rhodobacter sphaeroides (n = 4)) but also purple sulfur 

bacteria (PSB) (Marichromatium spp. (n = 2))20-22. These genomes have been deposited in public 

databases and will serve as a resource for genetic and comparative genomic studies of marine 

PSB and PNSB20-22. Overall the work in this thesis, and the questions outlined above, will 

contribute to detailed understanding of how photoautotrophic bacteria oxidize SPCSs and how 

this microbial metabolism influences global biogeochemical cycles. 
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Appendix 
 

 

Figure A1. Maximum likelihood phylogenetic tree of photosynthetic reaction center gene 

pufM from assembled genomes of bacteria isolated from Trunk River, Woods Hole, MA. 

Tree was constructed as described in Chapter 3, section 3.5.5 (“Molecular phylogenetic 

analysis”). Scale bar represents amino acid substitutions. 
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Figure A2. Heme-staining to identify proteins upregulated during phototrophic Fe(II)-

oxidation in Rhodovulum sulfidophilum AB26 (MB#26) and AB14 (MB#14_Pellet), and 

Rhodobacter sphaeroides AB24 (MB#24_Pellet). Cells were pre-grown photoautotrophically on 

80% hydrogen-20% carbon dioxide (H2-CO2) in freshwater (FW) media. Cells were transferred 

1:100 into 50 mL anaerobic serum bottles containing FW media supplemented with 5 mM Fe(II) 

and 10 mM nitrilotriacetic acid (NTA). Cells were harvested once half of Fe(II) was oxidized. 

Preparation of membrane fractions (pellet) was performed as described in Chapter 3, section 

3.5.10 (“Preparation of soluble and membrane fractions for mass spectrometry”). The ~56-72 

kDa band in the coomassie stain for AB26 was used for mass spectrometry analysis in Table A2. 
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Figure A3. Polymerase chain reaction (PCR) of the 16S rRNA gene from select bacterial 

isolates from Trunk River, Woods Hole, MA to determine optimal buffer conditions. 

Letters (A-L) denote the different FailSafe™ 2X PreMix Buffers tested for six different strains. 

Rhodovulum sulfidophilum AB29 (#29 – G1A); Rhodovulum sulfidophilum AB30 (#30 – G1T); 

Marichromatium sp. AB31 (#31 – G2A); Marichromatium sp. AB32 (#32 – G3A); Rhodovulum 

sulfidophilum AB33 (#33 – G3T); Rhodovulum sulfidophilum AB35 (#35 – G4T) 

 

Natalia has all of the strains isolated by Marton revived and all have grown in the media she 

made. We isolated genomic DNA from all of the strains and sequenced 16S rDNA from G4A ­­ 

the acetate­degrading isolate we have a genome for using Taq, Buffer G, and an optimized 

PCR protocol. As you might remember, I was able to detect a single 16S rDNA sequence on a 

single contig from the G4A genome. The 16S rDNA sanger sequence from this strain had 100% 

nt identity and 93% query coverage (1325/1421) to the genomic contig. The 16S rDNA 

sequence best BLAST hit is Rhodovulum sulfidophilum strain DSM 2351. 

 

Natalia made anoxic glycerol freezer stocks (4) of all of Marton’s strains and stored them in a 

box in the ­80C (how should we label these?). 

 

I also setup 10 ul 16S rDNA PCR reactions using the new FailSafe Buffer premixes (A­L) for 6/7 

of Marton’s strains using Taq and the optimized PCR protocol. We will select an improved buffer 

for PCR and send all strains out for sequencing on Monday and plan to send Dianne a frozen 

cell pellet of one of these strains on 7/14. 

 

 



177 

 

 

Table A1. Iron oxidation rates under anoxygenic phototrophic conditions as measured by 

the ferrozine assay. Cells were pre-grown photoautotrophically on 80% hydrogen-20% carbon 

dioxide (H2-CO2) in freshwater (FW) media. Cells were transferred 1:100 into 50 mL anaerobic 

serum bottles containing FW media supplemented with 5 mM Fe(II) and 10 mM nitrilotriacetic 

acid (NTA). Iron-oxidation rates were determined using the ferrozine assay. 

Strain Average rate (mM/day) ± S.E. (n = 3 ) Organism 

AB14 2.11 ± 0.167 Rhodovulum sulfidophilum 

AB15 2.18 ± 0.227 Rhodovulum sulfidophilum 

AB16 2.00 ± 0.129 Rhodovulum sulfidophilum 

AB17 2.09 ± 0.197 Rhodovulum sulfidophilum 

AB18 2.12 ± 0.151 Rhodovulum sulfidophilum 

AB19 1.37 ± 0.278 Rhodovulum sulfidophilum 

AB20 1.48 ± 0.165 Rhodovulum sulfidophilum 

AB21 1.41 ± 0.296 Rhodovulum sulfidophilum 

AB22 1.62 ± 0.233 Rhodovulum sulfidophilum 

AB23 1.76 ± 0.405 Rhodovulum sulfidophilum 

AB24 0.422 ± 0.259 Rhodobacter sphaeroides 

AB25 0.594 ± 0.283 Rhodobacter sphaeroides 

AB26 1.39 ± 0.195 Rhodovulum sulfidophilum 

AB27 0.589 ± 0.269 Rhodobacter sphaeroides 

AB28 1.71 ± 0.199 Rhodovulum sulfidophilum 

AB29 0.425 ± 0.344 Rhodobacter sphaeroides 

AB30 1.82 ± 0.255 Rhodovulum sulfidophilum 

AB32 No data Marichromatium spp. 

AB33 1.85 ± 0.235 Rhodovulum sulfidophilum 

AB34 1.47 ± 0.172 Rhodovulum sulfidophilum 

AB35 1.94 ± 0.534 Rhodovulum sulfidophilum 
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Table A2. Heme-containing proteins identified in mass spectrometry analysis of 

Rhodovulum sulfidophilum AB26 cells cultivated during phototrophic Fe(II)-oxidation. 

Cells were pre-grown photoautotrophically on 80% hydrogen-20% carbon dioxide (H2-CO2) in 

freshwater (FW) media. Cells were transferred 1:100 into 50 mL anaerobic serum bottles 

containing FW media supplemented with 5 mM Fe(II) and 10 mM nitrilotriacetic acid (NTA). 

Preparation of soluble and membrane fractions for mass spectrometry was performed as 

described in Chapter 3, section 3.5.10 (“Preparation of soluble and membrane fractions for mass 

spectrometry”). Mass spectrometry was performed at the Proteomics and Mass Spectrometry 

facility at Donald Danforth Plant Science Center. 

 

 

Locus tag 
Coverage 

(%) 

No. 

CXXCH 

motifs 

Signal 

peptide 

MW 

(kDa) 
BLAST 

BV509_10070 83 2 Sec 61 Hypothetical protein 

BV509_18570 68 3 Sec 67 Hypothetical protein 

BV509_09615 54 1 Sec 16 Sulfur oxidation c-type cytochrome SoxX 

BV509_00835 48 1 Tat 20 Ubiquinol-cytochrome c reductase iron-sulfur 

subunit BV509_15055 46 1 None 75 Threonine--tRNA ligase 

BV509_00825 40 1 Sec 29 Cytochrome c1 

BV509_14485 26 1 None 50 Dihydrolipoyl dehydrogenase 

BV509_00325 23 3 TM 39 Photosynthetic reaction center cytochrome c subunit 

BV509_09630 16 2 Sec 30 Sulfur oxidation c-type cytochrome SoxA  

BV509_16080 11 1 None 60 Acyl-CoA synthetase 

BV509_21435 11 1 Sec 54 Membrane-bound cytochrome c 

BV509_10485 7.8 1 None 107 Ribonuclease 
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Table A3. Characterization of gentamicin sensitivity for Rhodovulum sulfidophilum AB26 

and Rhodobacter sphaeroides AB24. Cells were cultivated on Bacto agar with Difco marine 

broth 2216 (BD Diagnostic Systems, Sparks, MD, USA) for 7 days in the dark under oxic 

conditions. 

 

* = No growth defect compared to untreated (no antibiotic) controls 

# = intermediate growth (10 colonies or less) 

NG = No growth 

ND = No data available 

1Qian & Tabita (1996) J. Bacteriol. 178: 12-18 

2Appia-Ayme et al. (2001) J. Bacteriol. 183: 6107-6118 

 Gentamicin (μg mL-1) 

Strain 0 5 10 25 50 75 100 150 200 300 

R. sphaeroides AB24 * # # # # NG NG NG NG NG 

R. sulfidophilum AB26 * * NG NG NG NG NG NG NG NG 

R. sphaeroides strain HR ND NG1 ND ND ND ND ND ND ND ND 

R. sulfidophilum DSM 1374T ND NG2 ND ND ND ND ND ND ND ND 
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Table A4. Extracellular electron uptake (EEU)-specific upregulated genes in Rhodovulum 

sulfidophilum AB26. Complete list of genes upregulated during phototrophic EEU but not 

upregulated under all other phototrophic growth conditions. Only those genes with log2 fold 

change (FC) ≥ 2 and an adjusted p-value (P-value) ≤ 0.05. EEU (poised electrode), H2 

(photoautotrophic growth with H2 as an electron donor), Thiosulfate (photoautotrophic growth 

with thiosulfate as an electron donor), Acetate (photoheterotrophic growth with 10 mM acetate). 

Methods can be found in Chapter 3, section 3.5.9 (“RNA sequencing (RNA-Seq) and differential 

expression analysis”). 

Locus tag EEU FC P-value H2 P-value Thiosulfate FC P-value Acetate FC P-value 

BV509_09760 6.11 1.05E-27 -2.33 0.37 -0.91 0.82 -2.47 0.29 

BV509_07330 4.90 3.59E-12 -0.26 0.90 2.67 0.05 1.61 0.32 

BV509_15805 4.76 2.41E-28 0.69 0.63 1.76 0.15 1.17 0.49 

BV509_18335 4.59 2.78E-20 1.56 0.20 1.99 0.06 1.14 0.43 

BV509_20215 4.50 1.22E-13 1.29 0.34 1.94 0.08 0.68 0.71 

BV509_07495 4.45 6.76E-33 0.78 0.58 1.57 0.13 1.22 0.42 

BV509_14220 4.19 2.11E-15 0.12 0.92 1.55 0.21 0.41 0.86 

BV509_09195 4.06 3.08E-12 2.02 0.07 1.76 0.06 1.33 0.31 

BV509_08245 3.90 5.74E-10 0.76 0.62 1.62 0.19 -0.66 0.56 

BV509_16075 3.85 8.63E-20 0.24 0.89 0.69 0.46 -0.28 0.80 

BV509_17685 3.79 1.44E-26 0.83 0.48 1.48 0.12 1.21 0.34 

BV509_05655 3.58 7.85E-12 1.16 0.29 1.81 0.07 0.84 0.53 

BV509_10545 3.54 2.85E-14 0.14 0.90 1.45 0.16 0.73 0.62 

BV509_06910 3.48 1.22E-37 0.19 0.92 0.15 0.76 -0.17 0.87 

BV509_09220 3.48 2.98E-39 1.60 0.09 1.25 0.07 1.45 0.14 
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BV509_10785 3.48 7.43E-13 0.84 0.53 1.11 0.23 0.09 0.99 

BV509_19205 3.31 5.98E-33 0.95 0.43 0.91 0.22 0.72 0.61 

BV509_20210 3.30 1.61E-37 0.26 0.87 0.09 0.76 -0.19 0.84 

BV509_06550 3.25 3.07E-26 1.57 0.10 0.90 0.16 1.21 0.25 

BV509_10555 3.21 8.00E-30 1.08 0.37 0.75 0.29 0.66 0.64 

BV509_19540 3.20 1.17E-09 0.63 0.56 1.50 0.09 0.64 0.67 

BV509_14225 3.16 7.69E-14 0.13 0.92 1.11 0.25 0.23 0.93 

BV509_16865 3.13 5.32E-24 -1.47 0.35 -1.24 0.57 -0.48 0.78 

BV509_03570 3.13 2.74E-12 0.09 0.91 1.48 0.09 0.79 0.57 

BV509_07050 3.12 1.36E-21 0.66 0.59 0.43 0.51 0.25 0.92 

BV509_19300 3.08 4.61E-14 1.34 0.16 1.26 0.08 0.97 0.38 

BV509_19360 3.01 4.54E-03 2.63 0.06 2.00 0.08 2.34 0.14 

BV509_06360 3.00 1.66E-17 -0.44 0.86 -0.20 0.94 -0.29 0.82 

BV509_10550 2.95 1.09E-39 0.75 0.51 0.57 0.35 0.57 0.68 

BV509_09670 2.94 4.51E-09 0.54 0.69 1.33 0.12 0.67 0.65 

BV509_14235 2.93 7.79E-22 0.71 0.57 0.77 0.29 0.47 0.77 

BV509_09560 2.91 3.72E-19 0.99 0.47 -0.07 0.82 0.35 0.85 

BV509_11125 2.90 8.66E-09 1.68 0.14 0.90 0.22 0.38 0.85 

BV509_07045 2.89 8.54E-13 1.65 0.07 1.17 0.07 1.03 0.29 

BV509_14210 2.81 5.05E-24 0.42 0.73 0.63 0.34 0.61 0.66 

BV509_07055 2.75 5.84E-40 0.11 0.94 -0.14 0.87 0.21 0.94 

BV509_11520 2.68 4.87E-71 -0.08 0.97 -0.24 0.95 -0.20 0.82 

BV509_15600 2.68 3.31E-08 -0.08 0.97 1.35 0.12 -0.02 0.94 

BV509_04835 2.66 6.08E-07 -0.08 0.99 1.28 0.12 0.50 0.76 

BV509_06555 2.62 2.21E-24 1.20 0.15 0.90 0.12 0.86 0.37 
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BV509_15825 2.59 1.50E-05 -2.02 0.06 0.48 0.57 -0.32 0.81 

BV509_02610 2.59 7.30E-21 0.69 0.52 0.58 0.32 0.61 0.66 

BV509_19700 2.52 9.31E-08 0.71 0.43 1.20 0.10 0.56 0.67 

BV509_08525 2.45 1.59E-13 -0.42 0.74 0.58 0.40 0.15 0.96 

BV509_15935 2.38 9.81E-07 1.28 0.23 0.93 0.18 -0.49 0.45 

BV509_19640 2.37 1.41E-27 1.40 0.06 0.49 0.20 1.11 0.18 

BV509_20075 2.37 1.51E-10 0.64 0.48 1.04 0.10 0.66 0.56 

BV509_18700 2.32 4.40E-16 0.02 0.94 0.53 0.38 0.37 0.81 

BV509_02800 2.31 1.00E-08 0.33 0.74 1.19 0.09 -0.02 0.89 

BV509_15940 2.31 2.53E-07 0.97 0.40 0.62 0.34 -0.63 0.37 

BV509_18710 2.28 6.49E-32 0.48 0.61 0.17 0.56 0.72 0.54 

BV509_04840 2.27 1.79E-06 -0.15 0.95 1.26 0.08 0.69 0.59 

BV509_06560 2.26 2.59E-31 0.90 0.27 0.64 0.20 0.64 0.51 

BV509_13605 2.26 6.21E-26 0.19 0.90 -0.53 0.85 0.16 0.97 

BV509_14915 2.23 4.11E-03 -4.25 0.00 -0.92 0.78 -2.85 0.07 

BV509_02695 2.23 5.09E-06 -1.16 0.43 -0.17 0.92 -1.62 0.14 

BV509_10570 2.20 2.16E-19 0.63 0.54 -0.02 0.74 0.15 0.99 

BV509_01550 2.19 7.28E-18 -0.10 0.95 0.20 0.57 0.55 0.68 

BV509_06885 2.17 6.26E-09 1.36 0.09 1.11 0.05 0.18 0.93 

BV509_05320 2.16 4.66E-18 0.49 0.47 0.96 0.06 1.25 0.11 

BV509_15160 2.15 6.91E-03 -2.09 0.02 1.57 0.16 -0.23 0.85 

BV509_19775 2.15 1.70E-07 -0.04 1.00 1.14 0.07 0.83 0.45 

BV509_10560 2.12 6.79E-09 1.03 0.25 0.80 0.14 1.00 0.32 

BV509_13255 2.11 2.09E-06 -0.16 0.93 0.01 0.75 1.41 0.21 

BV509_03220 2.10 1.37E-17 0.20 0.88 -0.82 0.59 0.05 0.95 
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BV509_06900 2.09 3.35E-10 0.35 0.75 0.85 0.17 0.30 0.84 

BV509_15165 2.08 1.00E-02 -2.24 0.01 1.48 0.19 -0.35 0.80 

BV509_18695 2.07 2.08E-03 -1.36 0.17 1.24 0.18 -0.22 0.84 

BV509_18685 2.07 1.53E-03 -1.43 0.17 1.07 0.28 -0.63 0.57 

BV509_05430 2.06 7.24E-08 -0.33 0.72 0.92 0.14 1.03 0.32 

BV509_04780 2.06 4.24E-29 0.29 0.79 0.19 0.56 0.25 0.89 

BV509_10580 2.06 2.60E-19 0.75 0.48 -0.07 0.76 0.20 0.94 

BV509_10575 2.05 9.75E-11 0.66 0.57 -0.04 0.78 0.22 0.96 

BV509_21655 2.05 5.94E-04 1.34 0.27 -1.28 0.20 0.85 0.57 

BV509_15200 2.03 7.30E-17 -1.13 0.36 -0.66 0.80 -0.60 0.63 

BV509_15155 2.03 1.68E-02 -2.09 0.02 1.84 0.08 -0.31 0.81 

BV509_15815 2.03 2.46E-06 -1.70 0.09 -0.06 0.85 -0.38 0.74 

BV509_12130 2.02 3.08E-08 1.12 0.24 0.42 0.37 0.18 0.97 

BV509_18690 2.01 1.21E-03 -1.15 0.24 1.23 0.16 -0.26 0.80 
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