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The work described in this dissertation has been accomplished by using solid-state nuclear mag-

netic resonance (SSNMR) spectroscopy to investigate CO2 mineralization and to refine the posi-

tions of protons in the crystalline system. The reaction of forsterite (Mg2SiO4) and 13CO2 is pre-

sented here, which is measured using in-situ 13C NMR spectroscopy without removing the sam-

ple from the reactor. 29Si SSNMR is used to investigate the reaction of forsterite with 13CO2 in 

the presence of water or NaCl brine as a function of depth in the sample. Additionally, we also 

show that NMR crystallography can significantly improve structure refinement of hydrogens’ 

positions in hydrated materials. 13C{1H} rotational-echo double-resonance (REDOR) and 13C 

chemical shift anisotropy (CSA) tensor values from SSNMR are exploited as the standard in 

NMR crystallography. The optimized atomic coordinates are validated by comparing DFT pre-

diction to experimental data through 13C{1H} REDOR and 13C CSA tensors. The research pre-

sented herein demonstrates that solid-state NMR is a useful tool for studying the CO2 mineraliza-

tion mechanism and the understanding of the crystalline structure of CO2 mineralization prod-

ucts. 
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Chapter 1: 

Introduction 
 

1.1 CO2 Capture and Storage 
 

The excessive emission of CO2 into the atmosphere may lead to severe environment issues by 

global warming. Over the past 150 years, human activity has made the most substantial contribu-

tion to increasing level of CO2 in the atmosphere.1 The IMO Marine Environment Protection 

Committee has made a proposal to reduce CO2 output by 50 percent by 2050, which requires an 

extensive portfolio of CO2 capture and storage technologies, if we continue to use fossil fuels as 

an energy source.  

Geological carbon sequestration (GCS) is one approach to mitigate atmospheric CO2 by storing 

it deep underground and has significant economic potential in the future.2 GCS offers several 

trapping mechanisms: (1) stratigraphic and residual entrapment (stuck beneath the low-

permeability caprocks); (2) solubility entrapment (dissolution of CO2 in aqueous phases under-

ground); (3) hydrodynamic entrapment (storage as the supercritical CO2 phase underground); (4) 

mineral entrapment (where CO2 forms stable solid carbonate precipitates). Currently, most of the 

completed and ongoing geologic carbon sequestration projects inject CO2 into sandstone because 

of its large storage capacity for CO2 storage.3,4 For instance, since 1996, StatoilHydro has been 

injecting 1 million metric tons of CO2 into a sandstone reservoir, which is 1000 m below the sea 
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surface in the North Sea.5 In Canada, the world’s first commercial post-combustion coal-fired 

carbon capture and storage projects were started in 2014.6  

GCS is a promising strategy for mitigating the impacts of anthropogenic CO2 emissions on glob-

al climate change. The ultimate fate of injected carbon includes free supercritical CO2 trapped 

within pores and beneath capping formations, dissolved CO2 in aquifers, and carbonate minerals 

formed upon CO2-water-rock reactions.7,8 Most geologic systems currently used or proposed for 

carbon sequestration are sandstone and carbonate saline aquifers.9 These systems are attractive 

because they have porosity and permeability that facilitate injection of CO2, but they have lim-

ited capacities for mineral trapping because of the dearth of silicate minerals that contain the Ca, 

Mg, and Fe necessary for carbonate mineral formation. However, Mg- or Ca-rich basalts are tar-

get systems that can provide excellent mineral carbonation. 10–13  

Nuclear magnetic resonance (NMR) spectroscopy is an inherently element-selective, powerful 

and non-destructive analytical technology. Solid-state NMR (SSNMR) can identify the various 

carbonate species in the mineralization process (bicarbonate, CO2 gas, supercritical CO2, solid-

state carbonate and amorphous or crystalline species), which are often impossible for powder X-

ray diffraction (PXRD) to characterize. Our group has been focusing on developing SSNMR 

methods for investigating CO2 mineralization. We first reported a home-built elevated pressure 

and temperature probe in 2013 (shown schematically in Figure 1.1) and used it to monitor miner-

alization in an unmixed, batch reactor by static NMR.14 The pH, which is very important for 

mineralization, was also determined by using 13C NMR measurement in this probe.15 Some rep-

resentative static 13C NMR results are shown in Figure 1.1 simply to illustrate the kind of data 

one can collect. 
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Figure 1.1 Zirconia high-pressure vessel used in the NMR sample space for in-situ 13C static NMR of 13CO2 intro-

duced to a slurry of water and brucite (Mg(OH)2). The spectrum was recorded after 58 hours at 80°C and 88.5 bar 

pressure.  

However, our limited understanding of the extent and mechanisms of carbon sequestration in 

fractured basalts poses challenges to accurately estimate the CO2 storage capacity and ultimately 

to ensuring GCS security. Also, the geological sequestration of CO2 is improved by obtaining a 

fundamental understanding of the structure and bonding of carbonate minerals. Such fundamen-

tals can help to develop the predictive simulations and thermodynamic models to optimize the 

conditions for carbonate formation and a more in-depth understanding of the mechanism of CO2 

mineralization. Thus, in this project, we are focusing on two targets. First, we are studying a 

GCS reaction in forsterite (Mg2SiO4) with the groups of Prof. Daniel Giammar (Washington 

University in St.Louis) and Prof. Brian Ellis (Michigan State University) at elevated tempera-

tures and pressures to understand better the location of carbonate minerals in fractures and the 

macroscopic changes in morphology of the starting minerals. We are also focusing on the study 

of the structure of CO2 mineralization products, such as hydromagnesite and nesquehonite, using 

“NMR Crystallography” techniques to determine precise atomic coordinates.  
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1.2 Nuclear Magnetic Resonance 
 

After the first detection of magnetic resonance in 1937 by Rabi,16 NMR has experienced a steady 

increase in popularity. The rapid development of NMR is spurred by the invention of new tech-

niques that enable high resolution to be achieved. Today, NMR spectroscopy has been widely 

applied in many fields, such as chemistry, physic, biology, pharmacy, and materials science. 

NMR is a powerful characterization tool, in that it monitors the local bonding environment sur-

rounding an isotope of interest. This section will provide the necessary introduction of the theory 

of NMR and some definitions of NMR terms used in this dissertation.  

 

1.2.1  Spin Quantum Number 

 

NMR is performed in the presence of an external magnetic field, denoted as Bo. In the presence 

of an external magnetic field, the nuclear spin states are split into two or more energy levels due 

to interaction between the spin magnetic moment and the external magnetic field. For nuclei with 

non-zero spin angular momentum (I), there will be (2I+1) energy levels in the presence of the 

magnetic field given by the equation 1.1: 17 

                                                       (1.1) 

where mI is z-component of spin angular momentum and has the value of -I, -I+1,…..I-1,  or I; γ 

is the magnetogyric ratio of nuclei (ratio of magnetic moment to angular momentum), which is 

nuclear isotope specific; and ħ is the Planck's constant divided by 2π; Bo is the external magnetic 

field. A simple example will be for spin =1/2 nuclei, such as 13C. For 13C, there will be two ener-
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gy levels due to the external magnetic field, which corresponds to parallel and anti-parallel state. 

The energy difference between these two energy states is called the Zeeman splitting, and is giv-

en by equation 1.2  

                                             (1.2) 

where ωo is the Larmor frequency. Figure 1.2 shows the energy of the spin state splitting in an 

external magnetic field.  

 

Figure 1.2 Energy levels for nuclei with spin number I=1/2 in an external magnetic field (Bo) 

NMR requires a population difference between the spin states. In the presence of a magnetic 

field, the equal population differences can be described by equation 1.3.  

                                                          (1.3) 

where nα/nβ is the population ratio between two nuclear spin states, k is Boltzmann constant and 

T is the temperature of the sample. From the definition of population ratio, we find that the 

population can be manipulated by two factors, Bo and T. Therefore, scientists have been working 
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on building higher magnetic field magnets (such as 36T in the National High Magnetic Field 

Laboratory)18 or decreasing the temperature of the sample (such as lowering temperature of 

NMR experiment by cryogenic liquids) to improve the NMR signal. Besides that, dynamic nu-

clear polarization can increase the population differences by transferring the polarization from 

electron to nuclei.19 

1.2.2  NMR Hamiltonian   

 

In this section, we will focus on the basic theory of SSNMR. The total Hamiltonian (ĤNMR) for 

SSNMR is the sum of multiple interactions, which can shift, broaden or split the NMR signal. 

Equation 1.4 can describe the total Hamiltonian relevant for NMR: 

                                  (1.4) 

The first term is the Zeeman Hamiltonian for the splitting of the nuclear spin state in the magnet-

ic field. It is the dominant interaction in the NMR Hamiltonian and determines the Larmor fre-

quency. It is described by equation 1.5:  

                                                    (1.5) 

where ÎZ is the spin operator in the Z-direction.  

The second term is the chemical shift Hamiltonian, and it is used to describe the chemical shift 

interaction. It can be depicted by equation 1.6: 

                                                      (1.6) 
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The chemical shift Hamiltonian is due to the secondary magnetic field generated by the electrons 

surrounding the nuclei. This field tends to shield the nucleus from the external magnetic filed Bo, 

and the interaction between this field and the nuclei is the shielding interaction. In general, the 

electron distribution around the nuclei in a molecule is not spherically symmetric. Therefore, the 

size of the shielding interaction will depend on the orientation of the molecule in the magnetic 

field. The shielding tensor, σ, is a second rank tensor and describes the orientation dependence of 

the chemical shielding interaction with the external magnetic field. A matrix usually represents 

the shielding tensor σ:17 

 

The shielding tensor includes an isotropic and anisotropic portion. By diagonalizing the matrix, 

the system is transformed from lab frame to fixed molecular frame (also called as principal axis 

system). As a result, the principal value of the chemical shielding tensor can be defined with ma-

trix elements denoted by ,  and , and all off-diagonal elements, like , will be zero.  

In the static SSNMR experiment, the chemical shift anisotropy (CSA) lineshape of SSNMR can 

be described by the three-principal chemical shifts tensor elements, δXX, δYY and δZZ. In this study, 

the Haeberlen convention20 is applied and defined in the following equations (from 1.7 to 1.10) 

to depict the chemical shift anisotropy. One series of simulated CSA-broadened lineshapes for 

different values of ηCSA are represented in Figure 1.3 

                                                   (1.7) 

                                                          (1.8) 
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                          (1.9) 

                                                             (1.10) 

 

Figure 1.3 Series of static NMR lineshapes with different ηCSA values, from 0 to 1.0. 

The third term is the dipolar Hamiltonian. It is used to describe the through space interaction be-

tween two nuclei. For instance, if there are two different nuclei (denoted I and S), the dipolar in-

teraction Hamiltonian between them is, to first order, given by equation 1.11:17 

                                     (1.11) 

where r is the distance between the two nuclei;  and   are the gyromagnetic ratios of nuclei I 

and S; θ is the angle between the internuclear vector and the external magnetic field Bo; ÎZ and ŜZ 

are the spin operators in the z-direction of both nuclei. This interaction will also introduce broad-

ening to the SSNMR signal. Two common techniques can be applied to eliminate the dipolar 

coupling: one is magic angle spinning (MAS) NMR,21 and another is decoupling.  



9 

 

Because the dipolar interaction is related to the distance between two nuclei, it is also used to 

measure the distance for structural information. Several NMR pulse sequences have been devel-

oped to re-introduce the dipolar interaction as a tool to obtain the distance between interesting 

nuclei during MAS, such as rotational echo double resonance (REDOR)22 and radio frequency 

driven recoupling (RFDR).23 In the following section, a detail of REDOR pulse sequence will be 

discussed.   

The fourth term is the J-coupling between two nuclear spins. J-coupling occurs through the 

bonding between two nuclei. The J-coupling between two nuclei can be described by equation 

1.12:  

                                                             (1.12) 

where J is the J-coupling constant. In SSNMR, J-coupling is usually not observed since its 

strength is too small compared to other interactions. Therefore, we do not discuss J-coupling too 

much here.  

The fifth term is the quadrupolar Hamiltonian for nuclei with spin number > ½. This Hamiltoni-

an is used to depict the interaction between a nuclear electric quadrupole moment and an electric 

field gradient. The electric field gradient comes from the distribution of other nuclei or electrons 

in the sample. In the periodic table, 74 % of NMR active nuclei have a spin number >1/2. 

Equation 1.13 describes the quadrupolar Hamiltonian:24 

                                         (1.13) 

where eq is the electric field gradient (EFG) at the nuclei (I); Î is nuclear spin operator, and Q is 

the nuclear quadrupole moment. Quadrupolar interaction contains the first-order and second-



10 

 

order interactions, which always broadens the SSNMR lineshape. The first-order quadrupolar 

Hamiltonian can be averaged out by MAS since it also contains 3cos2θ-1 in the expression. 

However, the second-order quadrupolar Hamiltonian has higher order related to angle θ. There-

fore, it can’t be simply averaged out by MAS. Multiple quantum magic angle spinning (MQMAS) 

and double rotation (DOR)25 have been developed to solve this problem.  

1.2.3  Magic Angle Spinning   

 

To improve the resolution of the SSNMR signal, magic angle spinning was developed by E.R. 

Andrew.26 In the experiment, the NMR rotor spins at an angle θm (54.7°) between the rotor and 

the external magnetic field Bo. θm is called the magic angle and leads to a result through equation 

1.14:  

                                                  (1.14) 

Figure 1.4 shows the magic angle spinning set for a spin rotor, and it is depicted in the laboratory 

frame. ωr is the rotor’s spinning angular frequency.  

 

Figure 1.4 Relative position of a spinning rotor in an external magnetic field (Bo). The vector T could be the 

internuclear vector for dipolar interaction, the principal Z axis for the EFG tensor and the principal axis for the 

chemical shift tensor. 
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To prove this, the lab frame is tilted and shown in Figure 1.5, where i, j, k, h, r1, and r2 are unit 

vectors along each orientation.  

 

Figure 1.5 Tilted relative position of a spinning rotor in an external magnetic field (Bo). 

The equations (from 1.15 to 1.20) are used to prove that the Hamiltonian is zero in one spin cycle 

rotor.27  

                                 (1.15) 

      (1.16) 

                          (1.17) 

                 (1.18) 

           (1.19) 

   (1.20) 



12 

 

Tr is the time for one spin cycle and ωr*Tr equals 2π. As we prove here, the average of 3cos2θ – 1 

over one spin cycle is zero. Equation 1.19 could be applied to the dipolar interaction, the chemi-

cal shift anisotropy, and the first-order quadrupole interaction through MAS. 

1.2.4  Spin Process and Detection   

 

In the absence of a magnetic field, all the magnetic moments are randomly orientated. As a result, 

they will cancel each other out, and there is no net moment. However, in the presence of a 

magnetic field, there is a net magnetization along the magnetic field direction (the Z-axis) at 

equilibrium, which can be represented by a magnetization vector. In the NMR experiment, an 

external radio frequency pulse (RF, denoted as B1) is applied perpendicular to the external filed 

Bo. It will rotate the net magnetization to a single plane. Once the pulse B1 is stopped, the nuclear 

spin in the plane will process at Larmor frequency. This process will induce a current in the coil, 

which is measured by the spectrometer as a function of time. It will result in a signal known as 

the free induction decay (FID). The FID will be Fourier transformed into the frequency domain, 

which is a typical NMR spectrum. The equation 1.21 can express the angle of nuclear spin 

rotation by the pulse B1: 
17 

                                                           (1.21) 

where α is the degree of rotation and γ is the gyromagnetic ratio, tp is the pulse length, B1 is the 

pulse strength in Tesla. As the vector model illustrated in Figure 1.6, a 90 ° pulse will yield the 

largest amount of signal, and 180 ° pulse will completely flip magnetization to the -z axis and 

generate a zero signal, because only the magnetization in xy-plane will be detected by the NMR 
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coil. The classical evolution of magnetization is formally described by the Bloch equations, 

which will not be discussed in detail here. We will also not discuss the density matrices here.  

 

Figure 1.6 Basic vector model of NMR represents the changing of bulk magnetization after 90° pulse. 

After the 90 ° pulse, the net magnetization is along the y axis. The transverse components of 

magnetization (Mxy, the magnetization in the xy-plane) will decay or dephase by the interactions 

among the spins of different nuclei. This relaxation time is called T2 (spin-spin relaxation time or 

transverse relaxation time) The expression for T2 can be found in equation 1.22: 

                                                           (1.22) 

where Mxy is the magnetization of spins in the xy-plane for a give delay time, t, and M0
xy repre-

sents the full magnetization of spin at time following B1 pulse.  

In addition, after the pulse, the net magnetization in z-axis will return to its initial maximum val-

ue parallel to Bo in the presence of the external magnetic field. The recovery of longitudinal 

component of magnetization (Mz) is accompanied by the interactions between the nuclei and the 
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system around it, known as the “lattice”. This relaxation time for this is named as T1 (spin-lattice 

relaxation time or longitudinal relaxation time) and expressed in Equation 1.23: 

                                                           (1.23) 

where Mz
(t) is the longitudinal magnetization along the Bo at a time t, and Mz

(0) is the represents 

the initial maximum magnetization before B1. In solid state NMR, T2 and T1 have different val-

ues. The typical T2 has a value of several milliseconds, but T1 could be as long as hours. Both T1 

and T2 both contribute to the decay of the NMR signal resulting from the precession of magneti-

zation after B1. 

1.3 NMR Pulse Sequence 

1.3.1  Bloch Decay 

 

Bloch decay (also known as “pulse and acquire” or “one-pulse NMR”) is achieved by acquiring 

the NMR signal after a single pulse. The pulse width can be varied, and different intensities of 

the NMR signal will be observed. The signal intensity will be a sine curve related to the pulse 

width, which is known as a nutation curve. The NMR scientist usually applies this experiment to 

find the pulse duration for 90° pulse, which gives the maximal magnetization signal. Figure 1.7 

shows the pulse sequence of “Bloch decay”. The angel α means the alternation of angle for the 

nuclear spin after pulse. For instance, 90° pulse means the nuclear spin will be change from z 

axis to xy plane after pulse, as described in the previous section.  
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Figure 1.7 Schematic of the NMR pulse sequence—Bloch decay. The blue box represents the α angle pulse. 

1.3.2  Hahn Echo 

 

Different from the Bloch decay, the pulse sequence of the Hahn echo consists of two pulses in 

one sequence. The first Hahn echo experiment was detected by Erwin Hahn in 1950.28 The typi-

cal pulse sequence of the Hahn echo is expressed in Figure 1.8.  

 

Figure 1.8 (a) Schematic of the NMR pulse sequence—Hahn Echo. The resulting echo is formed after time τ. (b) 

The basic vector model for Hahn Echo. 

In Figure 1.8a, the first excitation pulse is a 90° pulse, followed by a time interval τ, and the 

second pulse is a 180° refocusing pulse. This type of pulse sequence results in an echo forming 
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at time τ after the second pulse. Figure 1.8b shows the vector model for Hahn echo after the 90° 

pulse. The 180° pulse is used to rephase the magnetization. The Hahn echo pulse sequence can 

be used to refocus the signal and remove the processing in the offset of the NMR receiver during 

the experiment. It is also used to determine the T2 of the NMR signal. Besides, in combination 

with the phase cycle, Hahn echoes are used to suppress signals generated by imperfections in the 

spectrometer hardware or acoustic ringing.  

1.3.3  Rotational Echo Double Resonance 

 

REDOR is one of the most widely used and reliable methods to measure the distance between 

nuclei.22,29 It can provide the interatomic distance between a pair of nuclei up to an accuracy of 

0.1 Å. Typically, it consists of two parts: So and S. Figure 1.9 shows the typical pulse sequence 

of REDOR. 180° pulses (also called as dephasing pulse) are present in the middle of each rotor 

cycle on the nuclei I. When the dephasing pulse is off, the sequence gives a full-echo spectrum 

of S spin (So). By flipping the spin population on nuclei I, the 180° dephasing pulse will re-

introduce the dipolar coupling and decrease the intensity of the signal to S (∆S=So – S). The in-

ternuclear distance can be obtained by plotting the ∆S/So versus the dephasing time.  

 

Figure 1.9 Schematic of the pulse sequence for REDOR. The number in the axis is the number of spin rotor cycles. 

In the schematic, it is a 10Tr evolution time for REDOR. Tr is one spin rotor time. 
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The heteronuclear dipolar Hamiltonian can be expressed in the following equations (from 1.24 to 

1.25):  

                                                (1.24) 

                                        (1.25) 

When the sample is spinning at magic angle in the magnetic field, we can substitute equation 

1.19 for equation 1.25 and will get the time-dependent (equation 1.26): 

         (1.26) 

The dipolar coupling Hamiltonian in one rotor spin cycle is averaged out by magic angle spin-

ning and is proved by the following equation 1.27 and 1.28: 

                 (1.27) 

        (1.28) 

As a result, we can find that the average dipolar Hamiltonian during one complete rotor cycle is 

0, which implies there is no dipolar evolution. On the contrary, when the dephasing pulse is on 

and in the center of one rotor cycle ( , the average dipolar Hamiltonian is non-zero and can 

be proved by equations 1.29: 

                         (1.29) 
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The negative sign in front of the second term in equation 1.29 arises from the I-spin π pulse,30 

which flipped the net magnetization of the nuclei I and the sign of the interaction. The average 

dipolar coupling in one rotor spin cycle will be as equation 1.30: 

                                              (1.30) 

The dephased signal (S) in one rotor spin cycle with dephasing pulse can then be simplified into 

equation 1.31:29  

                                                      (1.31) 

where So is the signal without dephasing pulse. A powder sum over the angles α and β provides 

the normalized dipolar dephased intensity ratio S/So. The results for several rotor spin cycles (N) 

are shown as equation 1.32:22 

             (1.32) 

where J is the Bessel function of the first kind; D is in the unit of Hertz; N is the number of spin 

rotor cycles. Because the dephased REDOR signal ratio is only related to the evolution time NTr 

and dipolar coupling strength (D), a plot of REDOR dephasing curve with evolution time NTr 

can be fitted to equation 1.36 to extract the internuclear distance between I and S.  

1.4 NMR Crystallography 
 

NMR crystallography combines NMR, X-ray diffraction (XRD) and computational chemistry 31–

38 to resolve atomic positions within crystals. A strength of this scheme is using NMR chemical 
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shifts and dipolar couplings between nuclei to validate ab inito quantum calculations for refining 

atom positions that are (in some cases) invisible to XRD.39–41  

Structural analysis of crystalline materials generally employs XRD to determine atomic coordi-

nates of crystal structures,42,43 which is unparalleled in determining long-range crystalline 

order.44 In comparison, NMR spectroscopy excels at determining local site symmetry.45 XRD 

suffers, however, from being insensitive to low atomic number (Z) nuclei, such as hydrogen; 

hence, in some cases, the structural models produced by XRD are not sufficiently accurate for 

understanding how the resulting chemistry is directed by coordination.46 Creative efforts in the 

emerging field of “NMR crystallography” 47–51 have pushed the use of NMR as a complementary 

tool for elucidation of precise atomic coordinates, especially protons, in the unit cell.  

Generally, isotropic chemical shifts (δiso) are used to identify spin-1/2 (nuclear spin, I=1/2) NMR 

active species in structures, because they are the most readily observed in NMR spectra. Howev-

er, the use of these δiso values alone disregards the precision that is afforded when the full CSA 

tensor is determined. These tensors sensitively reflect the local electronic environment surround-

ing the nucleus being probed, including small perturbations by the NMR-active species in the 

vicinity. Getting accurate CSA information, therefore, increases the precision of the structural 

model being determined. It is worthwhile to note, that while δiso values are used ubiquitously by 

the NMR community, they have two limitations. For instance, to acquire high resolution 1H 

NMR of solids requires very fast spinning rates (80 kHz, or higher) to average out the network of 

strong dipolar couplings among protons. In addition, under high spinning rates, structurally in-

formative interactions of chemical shift anisotropy and first-order quadrupolar couplings are av-

eraged.52 All these interactions contain detailed information about the three-dimensional shape 

and chemical bonding network.  
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Atomic positions can be optimized with computational chemistry, such as density functional the-

ory (DFT),53,54 and these calculations can be validated by comparison with experimental data.55,56 

Facelli and Grant gave an early demonstration that the combination of calculated ab initio chem-

ical shift tensors and experimentally measured 13C chemical shift tensors can be used together to 

provide structural models.57  

DFT is widely used to study structure, bonding and properties of solids.58 DFT calculations 

based on generalized-gradient approximation (GGA)59 exchange-correlation functionals have 

been widely applied and demonstrated to yield high accuracy for a wide variety of materials sys-

tems, displaying a range of bonding types.60,61 However, these semi-local functionals are known 

to not describe weak bonding interactions well, including in particular dispersion forces. Several 

“van der Waals” corrected approaches have been developed to better describe such non-bonded 

interactions within DFT. 62–64 It can be expected that hydrated carbonate minerals provide an in-

teresting test case for such approaches, since they feature a variety of chemical bonding envi-

ronments, spanning strong covalent and ionic interactions to weaker interatomic forces including 

hydrogen-bonding and dispersion. In this thesis, we will illustrate the influence of different func-

tionals on the calculation of NMR tensors, and are evaluated by comparison to experimental 

CSA tensors.  

1.5 Conclusions 
 

The following chapters will discuss the use of SSNMR to study the CO2 mineralization process 

and products. The samples studied here are either crystalline or amorphous. In chapters 2 and 3, I 

will show the results of in-situ SSNMR of CO2 mineralization. These chapters include 13C and 
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29Si NMR to investigate the formation of products, and changes to starting materials. In chapters 

4 and 5, I applied NMR crystallography to investigate the structure of CO2 mineralization prod-

ucts—hydromagnesite and nesquehonite. NMR crystallography will provide a foundation for 

understanding CO2 mineralization mechanisms and products.  

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

Chapter 2: NMR Study of Magnesium Car-

bonate Formation Through In-Situ Solid-

State NMR 
 

The material in this chapter is adapted with permission from Rachel K. Wells, Wei Xiong, Erika 

Sesti, Jinlei Cui, Daniel Giammar, Philip Skener, Sophia E. Hayes, Mark S. Conradi, Geo-

chimica et Cosmochimica Acta, 2017. 204, 252 and Erika L. Sesti, Jinlei Cui, Sophia E. Hayes, 

Mark S. Conradi, Journal of Magnetic Resonance, 2017, 282, 136. Copyright 2017 Geochimica 

et Cosmochimica Acta and Journal of Magnetic Resonance.  

 

2.1 Introduction 
 

Forsterite (Mg2SiO4) is a reactive mineral envisioned for carbonate mineral formation with disso-

lution-precipitation reactions. Forsterite is the pure Mg end member of olivine ((Mg, Fe)2SiO4), 

and commonly found in basalts and peridotites, which are formations envisioned for geologic 

carbon sequestration applications. This mineral has been frequently studied in term of its reac-

tions with CO2.
65 Research has been conducted at elevated temperature and pressure to mimic 

GCS conditions. Such elevated temperature and pressure reactions are also studied in saline aqui-

fers in the presence of forsterite or olivine using injected CO2.  

Lackner et al. were perhaps the first to suggest forsterite carbonation for CO2 mineralization.66  

Mineralization is based on dissolution-precipitation reactions and can be explained by the fol-

lowing coupled chemical equations.67  

CO2(g) ↔ CO2(aq) (1) 
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CO2(aq) + H2O ↔ HCO3
-  + H+ ↔ CO3

2-  + 2  H+ (2) 

Mg2SiO4(s) + 4H+ ↔ 2Mg2+  + H4SiO4 (3) 

Mg2+  + CO3
2- 

 ↔ MgCO3(s) (4) 

H4SiO4 ↔ SiO2(s) + 2H2O (5) 

Hanchen et al. demonstrated that forsterite dissolution is the first rate-limiting step, and magne-

site (MgCO3) precipitation is the second rate-limiting step in the overall process of carbonation 

of olivine.68 There are multiple factors which can affect the dissolution processes, such as tem-

perature, pH, and CO2 concentration.  

This study is focused on the spatial and geochemical interaction between forsterite and CO2-rich 

fluids, and there are two objectives. First, this study is to observe the precipitation growth 

through time, characterize the composition of the precipitates, and determine their spatial distri-

bution in the samples in a batch reaction. We reacted sintered forsterite cylinders in water at 

100°C equilibrated with 100 bar (the pressure about 1 km depth underground) CO2 for up to 52 

days. Post-reaction samples were characterized using optical and electron microscopy, and ex-

situ SSNMR spectroscopy. Second, in CO2 sequestration, CO2 gas is pumped into underground 

geological formations, especially aquifers and understanding how this flow of CO2-loaded fluid 

affects mineralization is essential. Characterizing the flow of CO2-rich fluids in reactive geologi-

cal storage “reservoirs” is vital for understanding the details of the dissolution of minerals and 

precipitation of carbonates. Therefore, a flow-through elevated-temperature and -pressure NMR 

apparatus was built to monitor CO2 reactions with forsterite. 
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2.2 Experimental methods 
 

2.2.1  Probe Design for In-Situ Solid-State NMR in Batch Reactions 

 

This section describes the probe designed and built by Andy Surface.69 The NMR coil in probe is 

a tank circuit with an Alderman-Grant design,70 which is tuned to 89.07 MHz for 13C in an 8.3 T 

magnetic field by two non-magnetic 0.8-10 pF variable Polyflon capacitors. The coil has a 0.7-

inch inner diameter and 1-inch in length.  

The high-pressure reaction vessel is made of yttria-stabilized zirconia called AmZirOx 86 (sold 

by AstroMet Inc. Cincinnati, Ohio). It consists of 95% zirconia and 5% yttria, and can withstand 

400C temperature and 400 bar pressure. The reaction vessel has a lot of advantages: non-

conductive, high-tensile strength, containing no carbon, unreactive to most chemicals, imperme-

able to gas, and 0% water retention. The NMR coil is set to ½ inch above the bottom of the reac-

tion vessel to reduce susceptibility inhomogeneity caused by position at the bottom of the tube 

within the ‘fixing range’ of shims. The temperature in the probe is monitored via two Type K 

thermocouples. One is in the heated zone of the probe to the monitor temperature in the reaction 

vessel. Another one is near the variable tuning capacitor to monitor the temperature of the NMR 

circuitry in the cooling region of the probe. Figure 2.1 shows the details of the in-situ 13C NMR 

probe and the high-pressure zirconia reaction vessel.  
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Figure 2.1 The elevated pressure, elevated temperature NMR probe, including a zirconia reaction vessel, NMR coil, 

heat box, capacitors and thermocouples 

The high-pressure tubing and associated valves, capacitor tuning rods, thermocouple wires, RF 

cables and cooling tubes enter from the top of the probe. The heating tube and vent tube enter 

from the bottom of the probe. Heating is accomplished by flowing heated air from the pipe to 

heated region. Cool air is blown over temperature-sensitive variable tuning capacitors and pro-

tects them against damage from overheating (The maximum operating temperature of capacitors 

is 125C). The pressure in the zirconia tube is monitored via an MSP-300 pressure transducer 

(Measurement Specialties Inc.). The high pressure of 13CO2 is created by cryogenic pressuriza-

tion. A recollection vessel is submerged in liquid nitrogen (LN2) to freeze CO2(g) from a CO2 

source. When the recollection vessel is closed, a hand-held hair dryer is used to heat it and build 
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high pressure in the vessel before opening the valve to the probe. Figure 2.2 displays the sketch 

of the in-situ NMR probe with the high pressure 13CO2 manifold. More details about the coil de-

sign and gas manifold can be found in a previous publication.14,69 

 

Figure 2.2 Schematic of the in-situ NMR probe with the high-pressure 13CO2 manifold 

2.2.2  Probe Design for Flow-Through NMR Apparatus  

 

 

Figure 2.3. Schematic of the flow-through, elevated temperature and pressure NMR apparatus. 

The flow-through, elevated pressure and temperature NMR apparatus consists of four main in-

terconnected parts: a gas manifold, a gas and solution mixing vessel, a flow pump, and an NMR 
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probe capable of elevated temperature and pressure.71 It was designed and built by Prof. Mark 

Conradi and Dr. Erika Sesti. The schematic of the flow-through NMR apparatus is shown in Fig-

ure 2.3. All components are connected through 1/16’’ OD 316 stainless steel tube (High-Pressure 

Equipment Company), selected because it is much more resistant to corrosion from the CO2-

infused solutions (i.e., acidic conditions) than other types of steel.  

 

Figure 2.4. Schematic (left) and photo (right) of the elevated pressure and temperature, flow-through NMR probe. 

The schematic shows the coil region and the high-pressure reaction vessel, minus the copper “can” probe head caps 

that contain the heated air (the inner cap), and the insulation (the outer cap).  Some of the hardware shown in the 

photo includes fixed capacitors (yellow disks), not shown in the schematic. 

The schematic and photo of the NMR probe are shown in Figure 2.4. The single-channel, elevat-

ed temperature and pressure NMR probe is “home built” and capable of observing liquids, gases, 

supercritical fluids and solids. The sample holder is fabricated from zirconia. The NMR electron-

ics are comprised of a tuned circuit and a radio-frequency (RF) solenoid coil, which is tuned to 

89.07 MHz for 13C in an 8.3 Tesla magnetic field. Tuning of the probe is accomplished by two 

non-magnetic 5-25 pF variable capacitors (Polyflon), which have a maximum working voltage of 

3 KV and maximum operating temperature of 125°C. 
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The high-pressure reaction vessel within the coil region has a 1.2 cm outer diameter and 0.66 cm 

inner diameter. To maintain the high-pressure environment, we used two titanium alloy (6Al-4V) 

plates on either end held together with two titanium alloy screws. A machined fitting (AF1, 

High-Pressure Equipment Co.) was used to join the 1/16” 316 stainless steel tube to each of the 

titanium plates. The assembly can withstand 400 bar of pressure and is rated to 400 °C. The 

NMR coil is a 2-turn coil, which can form a low-inductance/high capacitance tuned circuit. The 

design of temperature control and cooling air is similar to the static probe. 

  

Figure 2.5. Schematic of the gas manifold. 

The gas manifold for the flow probe was assembled using commercial components for delivering 

CO2 to the mixing vessel, and is shown schematically in Figure 2.5. The “High-P (pressure) Gas 

Loading” vessel is designed to be submerged in liquid nitrogen to freeze CO2(g) from the mani-

fold at the pressure of a conventional (medium pressure) gas cylinder, as seen on the schematic 

of the gas manifold. An MSP-300 pressure transducer (Measurement Specialties Inc., 0-172 bar, 

1-5 V), is used to monitor the pressure in the system electronically, while multiple additional 
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mechanical pressure gauges are installed at the indicated points for watching various portions of 

the manifold pressure independently.  

A gas-liquid mixing vessel was fabricated to provide a reservoir for mixing liquids and gases at 

elevated pressures. The schematic of the mixing vessel is displayed in Figure 2.6. The vessel has 

a 10 mL volume and capitalizes on a large diameter that permits a high surface area between liq-

uid and gas layers. This aspect helps to reach equilibrium quickly between these two phases. The 

heater in the base of the mixing vessel is used to maintain the partial pressure of 13CO2 in the liq-

uid phase, since the temperature in the circulating line should be same as that of the reaction ves-

sel as much as possible. For avoiding corrosion by these acidic solutions, the base and O-ring-

sealed cap are made of the titanium alloy (6Al-4V). There are two ports on the top cap: one is for 

the introduction of gas into the vessel, and the other is for returning solution to the mixing vessel 

after passing through the NMR probe. Two ports also exist on the base: one comes from the bot-

tom of the vessel and is connected to the flow pump. Another side port on the wall is used as a 

solution level indicator. Temperature regulation is carried out through a cartridge heater (Omega) 

in the base of the vessel, which is controlled by a temperature controller.  

 

Figure 2.6. Schematic of the titanium mixing vessel. 
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The flow pump is an HPLC-style pump (Waters 6000). The pump has an operating pressure 

range of 0-414 bar and a flow rate range from 0.1 to 9.9 ml/min with variability of 0.1 ml/min 

increments. The solution enters the pump from the base of the mixing vessel, and goes into the 

sample space of the NMR probe, notably outfitted so that this can be accomplished while the 

probe is inside the magnet.  

2.2.3  Synthesis of Starting Materials  

 

All experimental samples were synthesized by our collaborator, Dr. Rachel Wells (Department 

of Earth & Planetary Sciences, WUSTL). The samples were prepared from pure synthetic for-

sterite powders (Fo100) (Mg2SiO4; 99 % purity; Alfa Aesar), which was sieved to yield particles 

smaller than 44 μm. The pure forsterite was chosen to avoid the interference between paramag-

netic iron and collection of NMR spectra. The powders were pressed and vacuum-sintered fol-

lowing established procedures.72  

For the batch reaction, the cylindrical pellet was made with a 13 mm diameter die mold (3.7 mm 

length). The pellet was then vacuum-sintered at 1300°C for 48 h at a pressure of less than 10-5 

Torr. Under these conditions, no evidence of grain growth was observed. After that, the sample 

was cut in half along the diameter, yielding two semi-circular “half” cylinders (6.5 mm width for 

each pellet). 

For the flow-through reaction, the sample was also prepared with the same procedure as 

described previously. The compressed pellet was cut in half, and one side was milled. Finally, a 

pure forsterite monolithic sample with a 2 mm thick fracture was prepared. The information of 

samples and pressure/temperature conditions for the reaction are summarized in Table 2.1.  
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Table 2.1 Samples for in-situ SSNMR in batch and flow-through reaction  

Experiments Sample 

ID 

Geometry Width, 

Length  

(mm) 

Temperature 

(°C) 

Starting 

Pressure 

(bar) 

Final 

Pressure 

(bar) 

Flow 

Rate 

(ml/min) 

Reaction 

Time 

(days) 

1 (batch) Fo100_f Cylinder 

with saw 

cut 

6.5, 3.7 100 100 100 -- 53 

2 (flow) Fo100_fr Cylinder 

with frac-

ture 

4, 13, 0.2 100 100 100 0.1  38  

 

2.2.4  In-Situ Solid-State 13C NMR Experiment 

 

For batch reaction: elevated pressure 13C-enriched CO2 gas (99% purity from Sigma Aldrich) 

was loaded into a small volume vessel attached to the manifold, and then released into the probe. 

Fo100_f cylinders were submerged in 2 mL of ultrapure water (resistivity >18.2 MΩ) and then 

heated to a constant temperature of 100 °C. Fo100_f cylinder was cut in half, and each side was 

placed side-by-side to simulate a fracture. The sample was placed freestanding on a spacer. The 

pressure was observed to be stable within 1 hr at 100 bar. The sample was monitored throughout 

53 days, and the pressure was kept at 100 bar. At the end of the experiment, the vessel was 

cooled to room temperature over 1–2 hr, and any remaining enriched 13CO2(g) was collected. For 

this sample (Fo100_f), 13C NMR experiments were conducted at a Larmor frequency of 89.07 

MHz with no 1H decoupling. For in-situ static 13C NMR experiment, the Hahn echo NMR pulse 

sequence with a π/2 pulse of 16.85 μs, a π pulse of 33.7 μs, and a τ delay of 130 μs were used. 

The recycle delay was 30 s, and the number of transients recorded was 1440. The spectra were 

referenced using the 13CO2(g) peak at 128.6 ppm for these experimental conditions.69  
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For flow-through reaction: the forsterite monolithic sample (Fo100_fr) was reacted within the zir-

conia reaction vessel in situ, in the flow-through NMR probe. The fractured piece was 

submerged in a solution of water (resistivity >18.2 MΩ), and the reaction was kept at a pressure 

of 100 bar and a temperature of 100°C. 13CO2 was refilled during the experiment to keep the 

pressure constant. The reaction was finished after 38 days since no significant growth of solid 

carbonate signal was observed. In-situ static 13C NMR spectra were recorded with a 13C Hahn 

echo pulse sequence at a Larmor frequency of 89.07 MHZ. Typical conditions utilized π/2 pulses 

of 7 μs and π pulses of 14μs, with a τ delay value of 130 μs. 1024 transients were recorded for 

each time point, with a recycle delay (between transients) of 60 s. Schematic of the batch and 

flow-through reaction with samples are shown in Figure 2.7. 

 

Figure 2.7. Schematic of forsterite cylinder with 13CO2 inside (a) static batch probe and (b) flow-through probe. 

2.2.5  Ex-Situ Solid-State 13C NMR Experiment 

 

For the batch reaction: ex-situ 13C{1H} MAS and static 13C{1H} NMR spectra were acquired on 

a Chemagnetics 4 mm MAS triple resonance probe using a Larmor frequency of 74.18 MHz. 13C 

static and MAS experiments were conducted using a Hahn echo sequence with π/2 pulses of 4.23 
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μs, π pulses of 8.46 μs, a rotor-synchronized τ delay of 193.65 μs and a recycle delay of 30s. 

1440 transients were acquired for the static experiments, and 256 scans were recorded for the 

MAS spectra.  

For flow reaction: ex-situ static 13C{1H} and 13C MAS NMR were also performed on the 7 T 

magnet with same equipment using a Larmor frequency of 74.18 MHz. The static 13C experiment 

was conducted using a Hahn echo sequence with π/2 pulses of 3.5 μs, π pulses of 7 μs, and a τ 

delay of 30 μs. The data were acquired with 1440 transients with a 60 s recycle delay. 13C MAS 

NMR was performed with π/2 pulses of 3.5 μs with 64 transients using a 60 s recycle delay.  

The 1H decoupling strength for all experiments was 58.8 kHz at a 1H Larmor frequency of 

294.97 MHz. The spinning frequency for MAS experiments were 5 kHz. All spectra were 

referenced to adamantane at 38.48 ppm. 

2.2.6  Microscopy of Reacted Sample 

 

The reacted Fo100_f was cut in half horizontally and the lower part was analyzed by electron 

microscopy (JEOL 7001LVF FE-SEM; FEI Nova 230, studied by our collaborator, Dr. Rachel 

Wells). Backscatter electron (BSE) and secondary electron (SE) imaging were used to document 

microstructures.  
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2.3 Results and Discussion 
 

2.3.1  Fractured Cylinder Experiment  

 

Figure 2.8 In-situ static 13C NMR spectra of sample Fo100_f at different reaction times, held at 100 °C and 100 atm 

(13CO2 pressure). A broad resonance consistent with solid-state carbonate formation (most evident peaked around 

195 ppm) grows in over time. Other resonances are HCO3
−

(aq) and CO2(aq).  

As the cut Fo100 cylinder (Fo100_f) was reacted within the in-situ 13C NMR batch probe, we ob-

served the growth of the carbonate mineral resonance as a function of time (Figure 2.8). A small 

broad resonance became evident (around 195 ppm) after 5 days, and this feature is indicative of a 

CSA lineshape that becomes increasingly intense over time. Throughout the reaction, an axially-

symmetric carbonate CSA powder pattern became more apparent. Change in the solution-state 

bicarbonate resonance (at 161 ppm) was observed, which indicates that the pH of system chang-

es. At the beginning of experiment, CO2(g) is dissolved into the water and converts to bicar-

bonate which increases initially (from 5 days to 11 days). After 16 days, the increasing signal of 

solid phase carbonate was observed, which is due to conversion from carbonate/bicarbonate ions 
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in the solution. Therefore, the bicarbonate signal decreases after 16 days. Note: there was some 

small instrumental noise or artifacts in the 5- and 11-days spectra that were not present in other 

experiments. Those unassigned peaks are not genuine signals.  

 

Figure 2.9 (a) Pictures of the Fo100_f after the reaction. New white precipitation is found between two pellets (red 

box) and in the bottom of the glass tube (white box). There is a white zirconia spacer between them. (b) Schematic 

of the cut sample before and after the reaction.  

After the reaction, the reaction vessel was taken out. White powder was found between the two 

semi-circular pellets of Fo100_f and at the bottom of the glass tube, which is shown in the photo 

of Figure 2.9a. The reacted sample was bisected in half, as shown in Figure 2.9b. Ex-situ NMR 

analyzed the top half, and the lower half was tested through electron microscopy; photos of the 

reacted sample are shown in Figure 2.10. All sides of the Fo100_f sample are coated in precipi-

tates that are easily observed in optical microscopy, as shown in Figure 2.10a and b. The vertical 

sides and curved underside are covered in a precipitate, which is shown to be magnesite 

(MgCO3) by ex-situ 13C MAS NMR and will be discussed below. The fine magnesite grains also 

fill the gap between the two halves of the sample.  

Backscatter electron (BSE) pictures of the Fo100_f (lower half after bisection) are shown in Fig-

ure 2.10c and d. Within one side of the fractured Fo100_f cylinder, we observe a transition from a 

magnesite-rich area (gray particles outside the sample) to an amorphous silica-rich area (dark 

coat) that is oriented approximately parallel to the edge of sample (Figure 2.10c). Magnesite 
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forms an intergranular cement around the host forsterite grains, only rarely as cement near amor-

phous silica, and is more common on the edge of the sample (Figure 2.10c). The amorphous sili-

ca is present in a thick layer (200 um) on the fracture side (Figure 2.10c). Moving further from 

the surface of sample, the homogeneous amorphous silica layer translates into a mix of 

 

Figure 2.10 Optical photomicrograph of (a) the sample Fo100_f after reaction and (b) cross-section after cutting. 

The BSE images of (c) the edge of the Fo100_f and (d) the area that Fo100 observed inside amorphous silica. Cartoon 

schematic for photo (a)-(c) of sample is shown in the right.  

amorphous silica with Fo100 centers (Figure 2.10d). The larger grains as a light particle on the 

edge of the forsterite are primarily Zn-carbonates (Figure 2.10c). The zinc comes from the 

unintentional dissolution of a brass piece of the probe located near the inlet of the NMR reactor.  

In CO2 sequestration, any structural heterogeneity (e.g., intergranular and interconnected porosi-

ty, fractures) of the host material may also, over time, contribute to the complexity of the texture. 

Preexisting pores and fractures, and the interconnection between these spaces create zones for 

diffusive transport of solutes, which result in areas more favorable for magnesite precipitation. In 

experiments where there are no limited diffusion zones and the surface area-to-volume ratio is 

low,67,73 the time needed to reach supersaturation is slow, compared to samples where these 
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zones or high surface area-to-volume ratios are present. In the reaction of Fo100_f with 13CO2, the 

high surface-to-volume ratio in the zone between two pellets will help to precipitate magnesite. 

 

Figure 2.11 Schematic of cutting of the sample after reaction (Fo100_f) 

The top part of the reacted sample was split into three sections as shown in Figure 2.11. Ex-situ 

13C{1H} NMR of the central part in Fo100_f after the reaction is shown in Figure 2.12. 13C{1H} 

MAS NMR of the central part in Fo100_f shows a single 13C isotropic peak at 169.5 ppm under 

MAS (figure 2.12b). This peak is assigned to magnesite (MgCO3). The unique resonance means 

there was no detectable formation of other solid carbonates, such as hydromagnesite or 

nesquehonite. Static 13C NMR powder pattern for the central part of the sample is shown in Fig-

ure 2.12a, which is deconvoluted in Dmfit (red curve). The lineshape has a ηCSA value of 0.32, 

δaniso value of -57.6 ppm and is centered at δiso = 169.5 ppm. The near-axially symmetry powder 

pattern (Figure 2.12a), is similar to what has been assigned as magnesite (ηCSA = 0.14, δaniso = -

54.5 ppm) previously. 
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Figure 2.12 Ex-situ 13C{1H} NMR of the central part of reacted Fo100_f sample are shown in (a) static 13C (with 1H 

decoupling) lineshape, experimental data is shown in black and simulation by Dmfit is shown in red. and (b) 
13C{1H} MAS spectrum. * indicates the spinning sidebands.  

Ex-situ 13C{1H} NMR analysis of the powder in the bottom of the glass tube is shown in Figure 

2.13. The 13C MAS spectrum was collected on this sample, and the 169.5 ppm isotropic reso-

nance was found, consistent with MgCO3 (Figure 2.13b). The single resonance also suggests that 

there is only one carbon site, similar to what was found from the central part of the reacted sam-

ple. Static 13C NMR spectra is exhibited in Figure 2.13a with Dmift deconvolution. The model 

gives an ηCSA value of 0.33 and δaniso value of -56.6 ppm, centered at δiso = 169.5 ppm. The 

agreement of ex-situ 13C NMR between the middle of the reacted sample and powders in the 

bottom of the glass tube indates there is no obvious differences between them.   

 

Figure 2.13 Ex-situ 13C{1H} NMR of white powder in the bottom of the glass tube of the reacted Fo100_f sample are 

shown in (a) static 13C (with 1H decoupling) lineshape, experimental data is shown in black and simulation by Dmfit 

is shown in red. and (b) 13C{1H} MAS spectrum. * indicates the spinning sidebands 
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2.3.2  Fracture Cylinder Sample in Flow-through Experiments  

 

A pure sintered forsterite sample with a 2mm width artificial fracture (with dimensions 4 mm 

(OD) x 13 mm) was reacted at 100°C and 100 bar 13CO2 in ultrapure water within the flow-

through NMR probe. The reaction was monitored for more than one month, and the recorded in-

situ static 13C NMR spectra are shown in Figure 2.14. Evidence for solid-state carbonate for-

mation (a broad axially-symmetry lineshape with a peak near 195 ppm) was distinguishable as 

early as 5 hours of reaction, which is more rapid than found in previous batch reaction experi-

ments. The reason for the faster formation of solid-state carbonate signal could be due to the 

higher surface area-to-volume ratios in the fracture, which can shorten the time to reach super-

saturation of Mg2+. In addition to the solid-state carbonate, resonances for solution-phase bicar-

bonate (at 162 ppm) and dissolved CO2 (at 125 ppm) are also evident. 

  

Figure 2.14 In-situ static 13C NMR spectra of Fo100_fr at different reaction times, held at 100 °C and 100 atm (13CO2 

pressure). A broad near axially-symmetric resonance consistent with carbonate formation (most evident around 195 

ppm) grows in over time. Other resonances are identified, HCO3
−

(aq) and CO2(aq). 
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We also noted that the (dissolved) 13CO2(aq) NMR resonance decreased after 10 days in one of 

the experiments. This find suggests a hardware issue because the 13CO2 is always replenished in 

the mixing vessel of the flow-through probe apparatus. By monitoring the CO2(aq) and bicar-

bonate resonances, we could determine there was a blockage in the inlet of the pump, and this 

blockage might have caused the pump to separate the gas inadvertently, leading to less transport 

of 13CO2(aq) through the system. Thus, the faster decay of the bicarbonate may be not entirely due 

to conversion to solid-state phases.  

When the sample was removed from the NMR probe, many translucent particles (around 25 μm) 

were found inside the fracture of Fo100_fr, which proved to be pure magnesite by Raman spec-

troscopy and shown in the Figure 2.15b. The euhedral grains of magnesite are similar to what Dr. 

Xiong Wei has observed in the reaction of fractured olivine with CO2 in a stirred solution. In 

their study, the surface in the fracture will reduce the free energy barrier for nucleation, which 

facilities nucleation rate and growth of crystal.74 The euhedral grains of magnesite indicate the 

crystal growth following heterogeneous nucleation.  

 

Figure 2.15 (a) Photo of sample Fo100_fr, the forsterite monolith sample after the reaction(38 days) in water and 
13CO2. (b) Microscope image: solid-state carbonate crystals found on the fracture surface of this forsterite sample. 
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Ex-situ 13C static and MAS NMR spectroscopy were performed on the reacted forsterite sample 

after the in-situ experiments (removing the sample at 38 days from the flow probe). The data are 

depicted in Figure 2.16. One resonance centered at 169.7 ppm is found at 13C MAS NMR and 

assigned to magnesite (MgCO3). The static 13C NMR also has a characteristic near-axially-

symmetry lineshape. The shape and the width are consistent with other reports of magnesium 

carbonates (Moore et al., 2015), with an ηCSA value of 0.22, and δaniso value of -52.1 ppm.  

 

Figure 2.16 Ex-situ 13C{1H} NMR of the reacted Fo100_fr sample are shown in, (a) static 13C (with 1H decoupling) 

lineshape (experimental data is shown in black and simulation by Dmfit is shown in red). and (b) MAS spectrum.  

The results of the batch and flow-solution reactions demonstrated the ability of custom NMR 

probe. Using the custom probe, we can study the CO2 mineralization at real time by in-situ 13C 

NMR without taking out the sample. The final products are magnesite for both reactions under 

the condition of elevated temperature and pressure.  

2.4 Conclusions 
 

In-situ NMR is a useful tool in documenting the formation of bicarbonate and carbonates, which 

occur within a few days from the start of each experiment at elevated temperature and pressure. 

Compositional analysis of the reaction products found no other magnesium carbonate phases 
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(e.g., nesquehonite, hydromagnesite) except magnesite (MgCO3) under these high-temperature 

conditions. At lower temperatures (<100 °C) and pressures, nesquehonite and hydromagnesite 

are more likely to precipitate than magnesite.75–77 Xiong and Giammar (2014) documented the 

occurrence of hydromagnesite within 5 days of reaction using packed forsterite powder beds at 

100°C, but hydromagnesite was not observed in those samples reacted for more extended peri-

ods.78 These observations suggest that there might also be a time component to the formation of 

magnesite, or the dehydration from hydromagnesite to magnesite. All samples within this study 

were reacted at 100°C, which is more likely for magnesite. All the magnesite as final products 

display a 13C carbonate lineshape with a mild “axial asymmetry”, which could be possible due to 

the distortion by a fraction of water molecules that are present in the MgCO3 structure. For the 

reaction of Fo100 with 13CO2, pre-existing structures (the channel between two pellets in the batch 

reaction, and the artificial fracture in flow-through reaction) therefore must act as limited 

diffusion zones for carbonate precipitation. Localized precipitation of magnesite occurred within 

fractures.  

Here, we also reported a new home-built apparatus to conduct in-situ NMR flow experiments at 

elevated temperatures and pressures. The probe can monitor the reactions of minerals with a 

13CO2/water solution and the effects of flow on mineralization. In-situ 13C NMR of the reactions 

of forsterite with 13CO2 demonstrates the ability of the flow-through probe for investigating CO2 

sequestration reactions. Compared with the batch reaction, crystalline particles of magnesite with 

diameters around 25 μm are found inside the fracture.  
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Chapter 3: Evidence from 29Si Solid-State 

NMR of Dissolution-Precipitation Reactions 

of Forsterite 
 

The material in this chapter is adapted with permission from Jinlei Cui, Erika Sesti, Jeremy K. 

More, Daniel Giammar and Sophia E. Hayes, Environmental Engineering Science, 2016, 33. 10. 

Copyright 2016 Environmental Engineering Science.  

 

3.1 Introduction 
 

The objective of this chapter is to characterize the silicon chemical species present during a reac-

tion of CO2 with forsterite (Mg2SiO4) as well as the solid state carbonate. The solid silica that is 

formed in CO2 mineralization is believed to be amorphous,79 and possibly a gel.80 The formation 

of the amorphous silica can be envisioned as the condensation /polymerization and dehydration 

of the orthosilicic acid, H4SiO4. The resulting silica is polymerized on the surface of forsterite 

when the Mg2SiO4 is dissolved79. This phenomenon has been observed for forsterite dissolution 

under conditions with pH < 9.81 In 2011, Daval observed the formation of amorphous silica lay-

ers of 15 to 40 nm by TEM, which causes the dissolution rate of olivine to decrease dramatical-

ly.79 In experiments with forsterite dissolution in the presence of high-pressure CO2, declining 

dissolution rates could be explained by the changes in surface area and pH with reaction extent, 

attributable to the possible formation of such a layer.82  The amorphous silica on the surface is 

believed to stop the formation of MgCO3,
10 which is an unfavorable situation in conditions 

where mineralization is desired. However, in the previous chapter, the amorphous silica does not 
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seem to stop the reaction of minerals with 13CO2. Thus, we want to use 29Si NMR in this instance 

(on forsterite) to characterize the silica that is present.  

In this chapter, forsterite samples were reacted with 13CO2 at elevated temperatures and pressures 

(to mimic GCS conditions) in both water and brine (dissolved NaCl) as a packed bed, which can 

be analyzed as a function of depth of the sample. We have been able to detect (semi-

quantitatively) with 29Si NMR both the silicate mineral dissolution, as well as the precipitation of 

amorphous silica as a function of depth in the reacting column. The carbonate precipitate was 

also monitored as a function of depth by 13C solid-state NMR. We are reporting on NMR con-

ducted “ex-situ”, performed on solids collected from the inner reactor of the in-situ NMR probe 

but studied by conventional solid-state NMR. In doing so, we can then have the combination of 

both measurement schemes—comparing results from in-situ studies with higher-resolution spec-

tra from ex-situ MAS solid-state NMR to refine the results from static experiments. 

3.2 Experimental methods 
 

3.2.1  Reactions of Forsterite with 13CO2 under Elevated Temperature and 

Pressure 

 

Forsterite (Mg2SiO4) powder (Alfa Aesar, Stock # 43807 ), sample size of 1.902 g, was mixed 

with 1.138 mL ultrapure water (resistivity 18.2 MΩ-cm) to make a slurry and loaded into the 

NMR sample space (a cylindrical space 4.3 cm in length and 10 mm in diameter) as reported 

previously.15 In reactions with NaCl, a 1.0 M solution (in ultrapure water) was mixed into the 

forsterite. The sample, a slurry, was pressurized and maintained with a pressure transducer at 100 

atm 13CO2, (99% 13C-labeled gas, Sigma Aldrich), and the temperature was set to 100°C.  After 
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equilibrating at that temperature and pressure for several hours, the reaction was allowed to pro-

ceed for 25 days. (The sample that was reacted with the 1.0 M NaCl solution was reacted for 29 

days). The solid remaining after the reaction was removed from the liquid, dried, and appor-

tioned into 2 mm-thick disks for (ex-situ) SSNMR analysis of the 29Si species. For example, the 

sample labeled “2 mm” extends from the top of the sample (0 mm) to a depth of 2 mm below the 

surface. 

Figure 3.1 is a schematic of the sample space in the homebuilt elevated-temperature and -

pressure in-situ NMR probe, which can perform with reaction conditions (temperature up to 

250°C, pressure up to 300 bar) meant to mimic geological sequestration environments. As shown 

in the schematic, the packed bed of forsterite was separated into 2 mm-thick samples after reac-

tion, and those analyzed here are at depths (from the top of the reaction bed) of 0 to 2 mm (“2 

mm”), 4 to 6 mm (“6 mm”) and 14 to 16 mm (“16 mm”).  

 

 

Figure 3.1 Schematic of the in-situ reaction vessel for the forsterite slurry and elevated-pressure 13CO2. 
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3.2.2  29Si {1H} MAS NMR 

 

Solid-state 29Si{1H} MAS NMR (with proton decoupling) was used to probe the silicon-

containing reaction products from the dissolution of forsterite. (The use of proton decoupling 

was necessary to observe resonances from the amorphous silica that were broadened by nearby 

protons.) The experiments were performed in a commercial HXY Chemagnetics MAS 4 mm 

probe on a Tecmag spectrometer at a resonance frequency of 58.6 MHz for 29Si (with 294.97 

MHz for 1H decoupling) at 7 T. Magic-angle spinning (MAS) was carried out at a 14 kHz rota-

tion frequency. Typical data acquisition used 4-step phase cycle spin echo experiments with π/2 

pulse lengths of 4.4 μs, a rotor-synchronized τ delay of 136.2 μs, and recycle delays of 390 s, 

which is approximately 2*T1 time for forsterite and more than 5*T1 for amorphous silica (de-

tailed in the section below). The number of transients recorded was 800 per 29Si{1H} spectrum. 

1H decoupling was used in the experiments with B1 field strengths of 18 kHz; in the absence of 

decoupling, portions of the amorphous silica spectra were obscured by heteronuclear dipolar 

coupling to nearby protons. The spectra were referenced to tetramethylsilane (TMS) at a 29Si 

chemical shift of 0.0 ppm. 

NMR data integration was completed using the peak fitting software Dmfit. All the peaks were 

fit using Gaussian functions.  

The T1 spin-lattice relaxation time was measured for 4 of the 6 samples reported here by satura-

tion recovery. The forsterite T1 for the three samples with the highest signal-to-noise ratios are 

136 – 153 s; a fourth sample with a much weaker signal has such a poor signal-to-noise ratio as 

to undermine the accuracy of the measurement. The amorphous silica all have shorter T1 times, 

measured as 19-80 s. 
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3.2.3  13C{1H} MAS Solid-State NMR 

 

The solid-state 13C{1H} MAS NMR (with proton decoupling) was used to probe magnesium car-

bonate precipitates from the reaction of forsterite and 13CO2. The experiments were performed in 

a commercial HX Doty 5mm MAS probe on a Tecmag spectrometer at a resonance frequency of 

75.4 MHz for 13C (with 299.67 MHz for 1H decoupling). MAS was carried out at a 5 kHz rota-

tion frequency. Typical data acquisition was using 4-step phase one-pulse experiments with π/2 

pulse lengths of 8.8 μs. The T1 spin-lattice relaxation time is very long, estimated to be (5-

20min). Owing to the isotopic 13C enrichment, a single transient was recorded after holding the 

sample for 45 minutes in the field to allow the sample to magnetize. 1H decoupling was used in 

the experiments; typical B1 field strengths of 29.4 kHz were used. The spectra were referenced to 

adamantane at a 13C chemical shift of 38.48 ppm for the –CH2 resonance. 
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3.3 Results and Discussion 

3.3.1  The Silica-Rich Layer  

 

Figure 3.2 is a diagram of sites typically found in silica and silicates, categorized by the bonding 

environment of the silicon and labeled by the terms “Q1, Q2, Q3 and Q4.” Q4 silicon has 4 Si-O-Si 

bonds without any protons. A Q3 site has 3 Si-O-Si bonds and a single Si-OH bond, a Q2 site has 

2 Si-O-Si bonds and 2 Si-OH bonds, and a Q1 site has just one Si-O-Si and 3 Si-OH bonds. For-

sterite has been studied by 29Si NMR previously,83–85 and the resonance observed at ~-61ppm is 

representative of SiO4
4– tetrahedra that are interspersed with the Mg2+ cations, sometimes re-

ferred to as “Q0” units, following the nomenclature above. It has been well established that the 

Q1
 to Q4 sites in amorphous silica may be assigned based on their isotropic chemical shifts, fall-

ing into ranges that reflect the presence of protons as well as the O-Si-O bonding angles.86 

 

Figure 3.2 A schematic for nomenclature used for the sites present in silica: Q1, Q2, Q3 and Q4. 
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However, 29Si SSNMR has a set of experimental challenges that make this isotope less-

commonly studied and difficult to quantitative characterization. 29Si experiments are complicated 

by samples with long T1 spin-lattice relaxation times, making quantitative characterization very 

difficult. Also, mineral species such as forsterite (Mg2SiO4) and Q4 sites in amorphous silica both 

suffer from a lack of protons that can’t be exploited for cross-polarization experiments. 

3.3.2  T1 Measurement of Forsterite and Amorphous Silica  

 

Figure 3.3 29Si{1H} MAS spectra with 1H decoupling for the forsterite reacted in water at a sample depth of 2 mm.  

 

Figure 3.3 exhibits a 29Si{1H} rotor synchronized spin echo NMR spectrum of the 2 mm slice in 

the reaction of forsterite with 13CO2 with water. There are two resonances present: one is around 

-61 ppm and assigned to forsterite; another is around -110 ppm and assigned to amorphous silica.  

The measurement of 29Si spin-lattice relaxation times (T1) used the saturation recovery sequence. 

M is the magnetization at the infinite time (after full relaxation), and Mt is the magnetization at 

different t (delay times) used in the pulse sequence.  It is significant that we have found a better 

fit to the stretched exponential function for silica (and silicates) as reported by Stebbins and co-



51 

 

workers.84 Both the exponential growth curves and the semilog (linear) plots were fit using this 

revised functional form:   

 

The stretched exponent was fit with a fixed value of n = ½.  The stretched exponential fit was 

found to be more appropriate for relaxation in solid silicates and amorphous silica than a 

conventional exponential expression for which n=1, isotropic relaxation. The exponential growth 

curve and linear T1 plot for forsterite reacted in both water and brine in 0-2 mm and 4-6 mm slic-

es are shown in Figure 3.4 and Figure 3.5, respectively. The exponential growth curve plots of T1 

for amorphous silica at different depths are shown in Figure 3.6. It turns out that the last delay of 

390 s is about 2*T1 of forsterite and more than 5*T1 of amorphous silica.  

 

Figure 3.4 The exponential growth curve of the forsterite 29Si NMR resonance from the 0-2 mm slice for the reac-

tions in water and brine are shown. The semi-log plot of the same data is also exhibited for reference. The 29Si T1 

values extracted from the stretched exponential plots are 153 s for water and 293 s for the brine. The values from the 

semi-log plots are 180 s (±11 s) for water and 181 s ( ± 33 s) for brine. 
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Figure 3.5 The exponential growth curve of the forsterite 29Si NMR resonance from the 4-6 mm slice for the 

reactions in water and brine are shown. The semi-log plot of the same data is also displayed for reference. The 29Si 

T1 values extracted from the stretched exponential plots are 136 s for water and 153 s for the brine. The values from 

the semi-log plots are 159 s (± 8 s)for water and 289 s (± 11 s) for brine.  

 

Figure 3.6 The exponential growth curve of the amorphous silica 29Si NMR resonance(s) of the 0-2 mm and 4-6 mm 

slices for the reactions in water and brine are shown. The T1 values extracted from the stretched exponential plots 

are 19 s for water and 80 s for brine (for the 0-2 mm slices).  The T1 values derived from the stretched exponential 

plots are 20 s for water and 63 s for brine (for the 4-6 mm slices).  Semi-log plots are not helpful here, because the 
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poor signal-to-noise ratios lead to large errors in the estimate of the infinite time magnetization, M.  Consequently, 

the linear (semi-log) plots were less reliable at giving estimates of the T1 values. 

3.3.3  29Si{1H} MAS NMR as a Function of Depth 

 

 

Figure 3.7 29Si{1H} MAS spectra with 1H decoupling for the reacted forsterite at sample depths 2 mm, 6 mm and 16 

mm, (a) in water and (b) with 1.0 M NaCl (brine). 

Figure 3.7(a) shows the 29Si {1H} MAS NMR spectra for the reaction of forsterite with 13C la-

beled 13CO2 in water. The resonance at -61.70 ppm is assigned to forsterite, similar to prior re-

ports.83 The resonance has a narrow linewidth (0.74 ppm) that agrees well with these reports, 

consistent with a polycrystalline high-purity solid. A broad resonance centered at approximately 

-110 ppm is typical amorphous silica. Figure 3.7(b) shows the 29Si {1H} MAS NMR spectra for 

the same reaction mixture in the presence of NaCl brine. The smaller peak area for the forsterite 

resonance means more extensive dissolution near the top of the packed bed (2 mm). These peak 

areas are recorded with recycle delays that are approximately 2*T1 relaxation time for forsterite 

because of the need to record many transients and the inability to signal average over very long 

periods. (A recycle delay of 765 s would be required for the spectrum to be quantitative.) There-

fore, the peak areas are not quantitative, but they may be used qualitatively.  
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While not rigorously quantitative (which would require a recycle delay of 5*T1 between transi-

ents), the relative areas of these peaks can be readily compared. The relative intensities within 

the series shown in Figure 3.7 (a) and (b) are meaningful, as well as the comparison between 

them. Table 3.1 presents the values for the integrated area of the (reactant) Mg2SiO4 
29Si reso-

nance and the precipitated amorphous 29Si resonances for each of the slices. The amorphous sili-

ca that is formed (as a percentage of the total 29Si signal) through dissolution-precipitation is 

larger in the 6 mm slice, as shown in Table 3.1, which matches the trend found for the forsterite 

dissolution, with more dissolution found closer to the surface of the packed bed.  

Table 3.1 Deconvoluted peak areas of 29Si{1H} MAS NMR for different sample slices, with or without 

NaCl. 

Sites In water In NaCl brine 

29Si 

(mm) 

Mineral start-

ing materials 

area 

Amorphous 

product 

Total area Mineral start-

ing materials 

area 

Amorphous 

product 

Total area 

2 mm 2166-2716 6005 8171-8721 1010-1475 5811 6821-7286 

6 mm 5445-6672 6689 12134-13361 1335-1674 6639 7974-8313 

16 mm 5839-7299 3552 9391-10851 5638-7048 2904 8542-9952 

*Forsterite mineral “starting materials” columns give a range of areas, considering that they are recorded with recy-

cling delays less than 5*T1. Areas have been scaled from ~2*T1 to 5*T1 based on their projected magnetization 

buildup.  

The 29Si{1H} NMR and the data in Table 3.1 demonstrate the dramatic differences observed in 

the presence of NaCl: the NaCl leads to a greater extent of forsterite dissolution but not to a cor-

respondingly higher amount of amorphous silica precipitation. A larger amount of forsterite dis-

solved in the 2 mm and 6 mm samples in brine compared to the reaction in water, indicating that 

NaCl facilitates the dissolution of forsterite. These observations are consistent with an earlier 

batch dissolution study of forsterite in CO2-saturated solutions that found greater extents of dis-
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solution in NaCl solution than in a more dilute solution.82 We surmise that in the process of min-

eralization, the pH drops upon CO2 exposure, and the Na+ present reacts with Si-OH to form Si-

ONa,87 which could inhibit the formation of amorphous silica by preventing its condensation 

polymerization from building the silica network. As a result, more orthosilicic acid would be 

released from the packed bed in the 2 mm and 6 mm samples. Notably, the 6 mm slice in Figure 

3.7(b), does show a somewhat larger 29Si amorphous silica resonance compared to others in this 

packed bed, but it is not substantially more significant for the water-only sample. These results 

suggest that while more forsterite has dissolved at 6 mm in the presence of NaCl brine, it does 

not lead to a concurrently larger amorphous product. 

Also, while there is significant forsterite dissolution in the water-based slurry, the amorphous 

silica is not proportionally greater in the topmost layer. The amorphous silica component is simi-

lar between 2 mm and 6 mm samples, even though there is significantly less dissolution deeper 

in the packed bed. It is possible that at the top (0 to 2 mm), the orthosilicic acid (H4SiO4) can dif-

fuse out of the sample. A similar process of reactant diffusion out of the topmost layers of the 

packed bed has been suggested by reactive transport modeling88 to limit magnesite precipitation 

in this layer with the greatest magnesite accumulations occurring somewhat more in-depth into 

the bed. 

3.3.4  Analysis of Qn Sites in Amorphous Silica  

 

With the help of {1H} decoupling, we could identify Q3 sites. However, Q1 and Q2 resonances 

are not evident here. 29Si{1H} CPMAS spectra, as one more piece of evidence, were recorded 
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Figure 3.8 29Si{1H} CP MAS of representative slices of the packed bed reactor of forsterite (a) in water and (b) in 

brine: 0-2, 6-8, and 24-26 mm.  

and are shown in Figure 3.8 to show the absence of Q1 and Q2. While CPMAS is not quantitative 

(owing to different coupling strengths to protons that may be distant—as for the Q4 species), it 

can serve to identify the various types of silica sites that are present. The different positions for 

Q1, Q2, Q3 and Q4 amorphous silica sites are shown by the vertical bars. Importantly, the pres-

ence of Q3 silica is seen in all the water-reacted forsterite, and it is only absent in the deepest (24-

26 mm) slice from the brine-reacted sample. The resonance that appears between Q2 and Q3 is 

assigned to a distortion of the O-Si-O bonding angle for Q3. From these spectra, we know of the 

presence of Q3, and 29Si{1H} MAS NMR can help us to quantify different Qn signal. To best re-

solve the carbonation reaction in brine versus a water-only slurry, we used the DMFIT program 

to deconvolute the amorphous silica resonances from 29Si{1H} MAS into Q3 and Q4 sites. Figure 

3.9 shows the deconvolution of the amorphous silica 29Si NMR resonance into multiple Gaussian 

peaks. While a Q3 species was fit to both sets of samples, the water-only packed bed had more 

intensity of Q3 resonances overall, which is due to the effect of Na+ as discussed above. In the 

NaCl-brine, Q3 sites were fit to the amorphous region based on the same chemical shift and peak 
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width, yet there is only minor evidence of its presence given the low signal-to-noise ratios for Q3 

in the 6mm and 16mm samples. 

 

Figure 3.9 Deconvolution of amorphous silica 29Si{1H} MAS NMR resonance by Dmfit into two Gaussian line-

shapes. (a-c) are from the slurry with water only, no NaCl, and (d-f) are from the slurry with 1.0 M NaCl present.  

Previous studies have shown the dissolution of amorphous silica was affected by the pH, metal 

cation(s) present, and temperature.89,90 At the surface of the packed bed, the pH of the solution is 

estimated to be approximately 3.2,78 which will affect the top 2 mm sample. Consequently, the 

Q3 silica will be the most stable.10,90 These conditions lead to the high relative Q3 content for the 
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top layer. Also, there is increasing pH as a function of depth, creating conditions that differ at the 

surface. For the samples in the packed bed, the pH will increase with depth, favoring deprotona-

tion of Q3, –SiO– over –SiOH. Thus, there is lower Q3 signal in 6 mm and 16 mm slices.  

3.3.5  13C{1H} MAS NMR  
 

 

Figure 3.10 13C{1H} MAS NMR of the 6 mm sample for the reaction of forsterite and 13CO2 in pure H2O as de-

scribed previously. The resonance is assigned based on the chemical shift to MgCO3. Spinning sidebands are 

marked by “*”. 

Figures 3.7 shows a diminution of forsterite dissolution as a function of depth in the column of 

the reacting slurry—as evidenced by the intensity of its 29Si NMR resonance. The dissolution of 

forsterite is most extensive in the regions closest to the CO2-saturated water because the pH will 

be lowest in this zone, especial in the 2 or 6 mm section. Investigating the formation of solid-

state carbonate as a function of depth is also useful to accompany the 29Si spectra. 13C{1H} MAS 

NMR of the 6 mm slice for the reaction of forsterite with 13CO2 in water is shown in Figure 3.10. 

There is a single 13C resonance around 170 ppm, and assigned to magnesite.91 The spectra of 13C 

NMR for different slices are the same for both samples in water or NaCl solution, implying a 

single type of carbonate is formed. The 29Si{1H} and 13C{1H} MAS NMR integrated peak areas 

as a function of depth in the packed bed are shown in Figure 3.11. This plot permits comparison 
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between the single-shot 13C MAS NMR data and the intensity of forsterite silicon or amorphous 

silica as a function of depth. In Figure 3.11, the magnitude of the 13C signal is related to the pre-

cipitation of carbonate after dissolution of forsterite. For the reaction with water, the intensity of 

13C decreases going to the deeper slices, which is a result of decreasing forsterite dissolution. 

The maximum signal for 13C is found in 6-8 mm slices for the reaction of forsterite with 13CO2 in 

NaCl solution, since NaCl can facilitate the dissolution of forsterite.  

 

Figure 3.11 29Si{1H} and 13C{1H} MAS NMR integrated peak areas of as a function of sample depth in the packed 

bed. The 29Si data are shown in the upper figures--forsterite is shown as black triangles (giving a range of values to 

reflect the incomplete relaxation of this resonance), and amorphous silica is shown as red circles. The 13C NMR data 

are shown in the lower figures with data points circumscribed by a shape to indicate the corresponding slices where 

29Si was also analyzed (a) from the reaction of forsterite with 13CO2 in water and (b) from the reaction of forsterite 

with 13CO2 in brine.   
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3.4 Conclusions 
 

We have undertaken an NMR study of two packed beds of forsterite reacted with 13CO2:  one 

with a water-slurry and one with a 1.0 M NaCl brine-slurry, reacted with elevated-temperature 

and -pressure conditions. We have evaluated 29Si SSNMR of the packed beds as a function of 

depth for three samples: at 0-2 mm, at 4-6 mm, and 14-16 mm for typical amorphous silica. Re-

lated 13C SSNMR data for the precipitated MgCO3 are also reported as a function of depth for 

comparison. The maximum magnesite formation was found in the range of 4 mm – 8 mm, with a 

decrease in total magnesite as a function of depth. We have conducted a series of experiments 

with a relatively long recycle delay (390 s) to achieve sufficient signal-to-noise ratios to qualita-

tively probe the identity of silicon-containing reaction products from forsterite dissolution, in-

cluding amorphous silica that has been challenging to identify using other techniques.  

The fate of the silicon from forsterite (Mg2SiO4) is essential to determine since the precipitation 

of amorphous silica can affect forsterite dissolution. The 29Si NMR data show both dissolutions 

of the forsterite and condensation of amorphous silica—as both Q3 and Q4 silica species. NaCl-

containing brine enhances dissolution of forsterite deeper in a packed bed than water alone. The 

water-only reactions favor the formation of both Q3 and Q4 amorphous silica, whereas there is 

less Q3 silica in the presence of the brine. NaCl appears to inhibit the formation of the Q3 species. 

Even with the enhanced dissolution of forsterite in NaCl-brine, it is notable that the amounts of 

amorphous silica found were not concomitantly larger, suggesting some of the silica may have 

dissolved into the liquid phase.  
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Chapter 4: NMR Crystallography: Evalua-

tion of Hydrogen Positions in Hydromagne-

site 
 

The material in this chapter is adapted with permission from Jinlei Cui, David L. Olmsted, An-

il .K. Mehta, Mark Asta and Sophia E. Hayes, Angewandte Chemie, 2019, 58. 4210. Copyright 

2019 Angewandte Chemie International Edition.  

 

4.1 Introduction 
 

Structural information of hydrogen positions is a critical aspect of materials science,92 biochem-

istry93,94 and the growing field of crystal engineering.95 Physical and chemical properties of sol-

ids are strongly influenced by atomic positions that dictate coordination geometry and hydrogen 

bonding.96,97 One example is divalent metal carbonates, which have garnered interest for geolog-

ical sequestration of CO2 as solid-state carbonate minerals.98,99 Although magnesite (MgCO3) is 

considered the most thermodynamically stable carbonate product from sequestered CO2, differ-

ent thermodynamically stable hydrated carbonates including hydromagnesite 

[4MgCO3
.Mg(OH)2•4H2O]75 form under various conditions.100,101 Determining the atomic struc-

ture of hydrated carbonate minerals will lead to an improved understanding of how coordination 

and H-bonding stabilizes the magnesium carbonates on the pathway to full dehydration to the 

MgCO3 endmember. This has been a long-standing geochemical question addressed by research-

ers seeking to explain cation (i.e., Mg2+ and Ca2+) hydration and  its role in crystallization as hy-

droxy-hydrated carbonate structures.102–105   
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In this chapter, we apply NMR crystallography principles to hydromagnesite to adjust hydrogen 

atomic positions in the unit cell to better reflect the experimental data. Structure refinement was 

evaluated with SSNMR and computational methods. Hydromagnesite offers a unique opportuni-

ty for study because the hydrogen sites (as H2O and OH– moieties) are sufficiently sparse to ena-

ble us to probe them through heteronuclear dipolar interactions to carbon via 13C observe, 1H 

dephase rotational-echo double resonance (13C{1H} REDOR) NMR22,106. Dipolar coupling be-

tween 13C and 1H is normally complicated to measure, as protons are typically strongly coupled 

to each other via homonuclear dipole-dipole interactions. The sparse density of hydrogens in hy-

dromagnesite and other minerals diminishes such 1H-1H influence and offers a unique opportuni-

ty to probe 13C-1H interactions. This hydromagnesite study is one of only a few REDOR exam-

ples involving 1H--from a search of the literature, we have found only 16 reports of 1H-dephased 

REDOR, and only 4 of those are between 1H and 13C.107–110  

4.2 Experimental methods 
 

4.2.1  Preparation of 10% 13C Enriched Hydromagnesite 

 

10% 13C enriched hydromagnesite was prepared as previously reported.91 0.011g of 98% 13C en-

riched NaH13CO3 (Sigma) and 0.096g natural abundance NaHCO3 (Sigma) were added to a solu-

tion of 2.5 mmol MgCl2·6H2O in 7.8 ml of de-ionized (DI) water. 10% 13C enrichment was cho-

sen to diminish the 13C-13C homonuclear dipole-dipole interaction for the 13C{1H} REDOR ex-

periments.110 After 1 minute of mixing, the solution was heated and held at 92°C for four days in 

a closed vessel. Upon cooling, the precipitate was rinsed with DI water and dried under vacuum 

at room temperature for one day.  
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4.2.2  Powder XRD  

 

Powder X-ray diffraction (PXRD) of the 10% 13C enriched hydromagnesite was obtained with a 

Bruker d8 Advance X-ray diffractometer using Cu-Kα radiation at 40 kV and 40 mA. The sam-

ple was held in a Plexiglas PXRD slide. Data were collected over a 2θ range from 5° to 90° with 

a step size of 0.019°.  

4.2.3  Solid-State NMR 

 

Static 13C (74.18 MHz) NMR spectra with 1H (294.97 MHz) decoupling were collected in an 

Oxford superconducting 7.05 T magnet with a Tecmag (Houston, TX) console equipped with a 

Chemagnetics 4 mm MAS HXY probe. 13C spectra were acquired using a Hahn-echo pulse se-

quence 28,111(π/2-τ-π-τ-echo) with a π/2-pulse of 4 μs, a π-pulse of 8 μs, and a τ delay of 30 μs. 

720 transients were recorded with a recycle delay of 480 s, which is approximately 3 times the 

spin-lattice relaxation time.91 1H decoupling was applied with an RF strength of νRF = 42 kHz. 

The static 13C NMR spectrum was fit using Dmfit112 to obtain principal values of the chemical 

shift tensor: δxx, δyy and δzz, which are reported using the Haeberlen convention.20   

13C (148.34 MHz) and 1H (589.84 MHz) NMR spectra with MAS were recorded on a 13.8 T Ox-

ford superconducting magnet using a Bruker 2.5 mm HX MAS probe. 1H MAS NMR spectra 

were acquired using a rotor-synchronized Hahn-echo with a π/2-pulse length of 4.9 μs, π-pulse 

length of 9.8 μs, MAS rotation frequency (νr) of 25kHz, and a τ delay of 32.65 μs to center the π-

pulse at the middle of the rotor period. 1H MAS spectra were recorded with 32 transients and a 

10 s recycle delay. 13C{1H} CPMAS spectra were acquired with an initial 1H π/2 pulse width of 
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3.4 μs, 1H-13C cross-polarization Hartman-Hahn contact time of 750 μs, 64 transients and a recy-

cle delay of 10 s. The MAS rotational frequency was maintained at 25 kHz with a Tecmag MAS 

controller. 

13C{1H} REDOR29 measurements were acquired with 13C π-pulse widths of 10.8 μs and 1H π-

pulse widths of 6.8 μs. Observe spin (13C) refocusing pulses were centered every rotor period, 

and dephasing (1H) pulses were centered halfway through the rotor period for maximum dephas-

ing. XY-4 phase cycling of the rotor-synchronized 13C and 1H π-pulses was used to minimize 

artifacts from RF-inhomogeneity and resonance frequency offsets during the REDOR evolution 

time.113 The MAS rotational frequency was maintained at 25 kHz with a Tecmag MAS control-

ler.  

For all NMR experiments, 13C chemical shifts were referenced to adamantane as an external sec-

ondary reference with the 13CH2 resonance set to 38.48 ppm. 1H chemical shifts were referenced 

to liquid tetramethylsilane (TMS) at 0 ppm.  

13C{1H}REDOR simulations of the 10-spin systems (1 carbon and 9 nearest hydrogens) were 

carried out using SIMPSON114. The maximum time step (max dt) over which the Hamiltonian is 

approximated to be time-independent was set to 1 µs in SIMPSON. XY-4 phase cycling of the 

rotor-synchronized 13C and 1H π-pulses was used to simulate the real experiment. Finite pulse 

widths were assumed. All calculations contained negligible imaginary contributions, and the ini-

tial amplitudes of the real parts were taken for REDOR analyses. Data convergence was checked 

by repeating selected calculations using smaller max dt (maximum time step over which the 

Hamiltonian is considered time independent) and more extensive powder averaging schemes. 
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RMSE values are computed between the experimental data and the REDOR curve, and are de-

noted on the figure to assess quality of the match. 

4.2.4  DFT Calculations  

 

All of the DFT calculations were performed using the Vienna Ab initio Simulation Package 

(VASP)115, versions 5.3.5 and 5.4.4.18Apr17-6-g9f103f2a35 by collaborators Mark Asta and 

David Olmsted (UC Berkeley). These calculations made use of the projector-augmented wave 

(PAW) method116,117 and Perdew−Burke−Ernzerhof (PBE)59 GGA based potentials from the 

VASP library. All calculations were non-spin-polarized. In the structural optimizations, the PBE-

GGA functional was used, as well as 2 different functionals incorporating van der Waals (vdW) 

interactions within DFT. They include the vdW-DF118–120 and vdW-DF2118–121 functionals.  

The electronic wave functions were expanded in a plane-wave basis set, using a kinetic-energy 

cutoff of 610 eV. In the structure optimization calculations, cell parameters and atomic positions 

were relaxed until the components of the stress tensor were less than 0.1 kbar, and force on each 

atom was less than 0.001 eV/Å in magnitude. During the structural relaxations of the hydromag-

nesite compound (which has a finite bandgap), the sampling of the Brillouin zone was performed 

using the tetrahedron method with Blöchl corrections and a k point density of 2x2x2.122  

To provide input files for VASP, the Materials Project “Crystal Toolkit” 123 was employed to 

convert structure files (.cif) to VASP input format. We note that this conversion interchanged the 

definition of the a and c axes, causing these to be reported differently between the ICSD data and 

that shown in Table 4.3.  
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The calculation of NMR chemical shifts made use of the linear response formalism124,125 imple-

mented in VASP, within the PBE-GGA functional.  In these calculations use was made of a 

Gaussian smearing of 0.1 eV set to ensure negligible partial occupancies of the electronic states. 

Convergence was tested with respect to the k-point grid, the real-space grid, and the plane wave 

cutoff.  Using higher levels of convergence only led to small changes in calculated NMR CSA 

parameters:  the largest variation in ηCSA was 0.002, and the largest variation in δiso or υ was 1 

ppm. (see the equations in chapter 1)   

We find that the calculated structures for hydromagnesite obtained with some of these vdW func-

tionals, when used as the basis for the NMR chemical shift calculations, yield improved agree-

ment with experimentally measured CSA parameters relative to calculations based on the struc-

ture derived from semi-local GGA-PBE. Other vdW functionals lead to agreement no better than 

structures from GGA-PBE. The version 2 (vdW-DF2),118–121 was found to yield the best agree-

ment with experimental measurements, and is the focus of the calculation results presented in the 

main text.  
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4.3 Results and Discussion 

4.3.1  XRD of Synthesized Hydromagnesite  

 

The powder XRD (PXRD) pattern of the synthesized sample is shown in Figure 4.1, along with 

the reference patterns of hydromagnesite126,127 in red (ICSD 920) and nesquehonite128 in blue 

(ICSD 91710). There is good agreement between the PXRD pattern of the synthesized sample 

with 10% 13C enrichment and that of the hydromagnesite reference, indicating that hydromagne-

site is formed and no other crystalline phases of hydrated magnesium carbonate.  

 

 

Figure 4.1 Powder XRD characterization of synthesized hydromagnesite. Top (black) diffraction pattern is 

experimental data, middle (red) pattern is the hydromagnesite reference diffraction pattern,126 and bottom (blue) is 

the diffraction pattern of nesquehonite, another potential byproduct of the reaction. The XRD pattern matches well 

to that of the hydromagnesite crystal structure, and the experimental data show that nesquehonite was not formed.  
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4.3.2  13C MAS NMR and 1H MAS NMR  

 

Hydromagnesite possesses two distinct carbon sites in its lattice. While both are nominally car-

bonates (CO3
2–), they are magnetically inequivalent, and through their 13C NMR spectra one can 

distinguish specific interactions with water molecules and hydroxides (OH–). The two sites are 

highlighted (by ovals) in the crystal structure of hydromagnesite, published by Akao,127 in Figure 

4.2.  

 

Figure 4.2 Crystal structure of hydromagnesite (two-unit cells shown, side by side). Magnesium is shown in green 

(spheres), oxygen is red, hydrogen is white, and carbon is gray. The blue and yellow oval shapes added to highlight 

representative carbon atoms correspond to the two types of carbon environments, Carbon 1 and Carbon 2, 

respectively. 

Consistent with prior results91 two 13C solid-state NMR resonances are observed (Figure 4.3a ) 

with isotropic chemical shifts of 163 ppm (hereafter “Carbon 1”) and 165.3 ppm (“Carbon 2”). 

The peak areas are approximately in a 1:1 ratio. The protons are separated in well-defined crys-

tallographic sites, such that they are not subject to significant 1H homonuclear dipole-dipole in-

teractions. Two well-resolved 1H resonances are observed in the 1H spin-echo MAS NMR spec-

trum (Figure 4.3b) at -1.7 ppm assigned to OH−, and at 5.0 ppm assigned to H2O.129 
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Figure 4.3 SSNMR of 13C-enriched hydromagnesite powder. (a) {1H}13C CPMAS (νr=25 kHz), and (b) 1H rotor-

synchronized Hahn echo MAS  (νr=25 kHz). * denotes spinning side bands of H2O. 

 

4.3.3  Static 13C NMR and Slow Spinning 13C CPMAS NMR  

 

Of particular utility are the static carbonate 13C lineshapes that are dominated by CSA broaden-

ing of the local carbon environment, especially how the oxygens of the carbonate interact with 

nearby water and hydroxide protons. The static 13C NMR spectrum (with 1H decoupling) at 

7.05T for 10% 13C-enriched hydromagnesite is shown in Figure 4.4 (in black).  

The static lineshape reflects the values of the 13C CSA tensor and is related to the local geometric 

and electronic structure that distorts the carbonate from ideal axial (D3h) symmetry. This line-

shape therefore is sensitive to structural changes such as torsion angles and hydrogen-bonding.  
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Figure 4.4 13C static NMR spectra of hydromagnesite. Experimental 13C data are shown in black, the simulated 

CSA-broadened lineshapes for Carbon 1 in blue and Carbon 2 in green, and the sum of both carbons in red. The 

spectrum was fit using Dmfit, denoted “Exp Deconvolution”. 

Using the 2008 IUPAC conventions130 (that derive from the Haeberlen convention20), we can 

describe the CSA lineshapes from elements of the diagonalized chemical shift tensor: the asym-

metry parameter (ηCSA), isotropic chemical shift (δiso) and reduced anisotropic chemical shift ( 

δaniso ) expressed as:  

   (1) 

   (2) 

   (3) 

The value for ηCSA provides insights about the local symmetry of a carbon site. For instance, the 

existence of a high-symmetry C3 axis leads to an ηCSA value of 0, and any lowering of that 3-fold 

symmetry leads to a nonzero ηCSA value (0 ≤ ηCSA ≤ 1.0). 

Deconvolution of the static 13C NMR spectrum into individual lineshapes corresponding to the 

two carbon sites is performed with Dmfit and also shown in Figure 4.4. These are the best fits 

assuming that the areas under both curves are equal, finding the best static CSA-broadened line-

shape that matches the experimental spectra (values shown in Table 4.1). Blue and green line-
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shapes are the two CSA powder patterns for Carbon 1 and Carbon 2, respectively. The red spec-

trum is the sum of the fits for both carbons.  

 

Figure 4.5 Slow spinning 13C{1H} CPMAS NMR (νr = 2 kHz) of hydromagnesite and the simulation of the spectrum 

by Dmfit. Experimental 13C data are shown in black, Carbon 1 in blue, Carbon 2 in green, and their sum in red. The 

ηCSA of Carbon 1 and Carbon 2 is 0.54 and 0.15, respectively, and the δaniso of Carbon 1 and Carbon 2 is -47.0 and -

46.8 ppm, respectively. 

Slow spinning 13C{1H} CPMAS NMR (νrotation = 2 kHz) performed by Ivan Hung (NHMFL, 

Florida) and simulation of the spectrum are also shown in Figure 4.5 as evidence to confirm the 

CSA tensor from static lineshape. These data further confirm the ηCSA value for Carbon 1. Three 

elements of the diagonalized chemical shift tensor determined by 13C static NMR and slow spin-

ning 13C{1H} CPMAS NMR are summarized in Table 4.1. Carbon 1 (in blue) has the largest 

asymmetric distortion (ηCSA value of 0.55). Such a distortion implies that the proximity of OH– 

and/or H2O to the CO3
2– group alters the electronic environment around the carbon.131 
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Table 4.1 13C Chemical shift tensor elements determined from slow spinning (νr = 2 kHz) 13C{1H} 

CPMAS NMR and static NMR. 

 δXX (ppm)  

δ11 (ppm)* 

δYY (ppm)  

δ 22 (ppm)* 

δZZ (ppm)  

δ 33 (ppm)* 

Carbon 1  

Slow MAS NMR 199.2 173.8 116 

Static NMR 201.8 174.3 113 

Carbon 2  

Slow MAS NMR 192.2 185.2 118.5 

Static NMR 192.5 185.4 117.9 

*we are presenting both “standard” notation δ11, δ22 and δ33, (ordered by frequency from high to low) and the 

Haeberlen notation δXX, δYY and δZZ, (where | δZZ - δiso | ≥ | δXX - δiso | ≥ | δYY - δiso | ≥) for the diagonalized chemical 

shift tensor values. 

 

4.3.4  Chemical Shift Computation by DFT and Simulation of Static Line-

shape  
 

Table 4.2 Experimentally and computationally (VASP) determined 13C NMR CSA parameters for 

hydromagnesite using XRD atomic coordinates and atomic structures derived from DFT relaxation using 

different functionals. 

Sites Method δiso (ppm) δaniso (ppm) ηCSA  

Carbon 1 Exp 13C NMR deconvolution 

(Dmfit) 

163.0 50 0.55 

Carbon 2 165.3 -47.4 0.15 

Carbon 1 DFT (XRD) 154.1 -45.5 0.70 

Carbon 2 161.4 -49.0 0.19 

Carbon 1 DFT (GGA-PBE) 161.8 -47.7 0.28 

Carbon 2 165.2 -49.1 0.14 

Carbon 1 DFT (vdW-DF2) 165.0 -47.7 0.47 

Carbon 2 167.8 -49.7 0.13 

 

CSA paramters can also be calculated using quantum mechanical methods that reflect the atomic 

and electronic structure. The results of such calculations depend not only on the local environ-

ment but the extended 3D network found in crystals. Using atomic coordinates from the hydro-
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magnesite crystal structure from the published X-ray refinement in the ICSD,127 Vienna Ab initio 

Simulation Package (VASP)115 calculations of the 13C CSA tensors were performed using the 

GGA-PBE functional. To convert the calculated chemical tensors to predicted chemical shift for 

hydromagnesite, a linear relationship between calculated CSA tensors and experimentally deter-

mined chemical shift of magnesite, hydromagnesite and nesquehonite is shown in Figure 4.6. All 

the DFT calculations are run using GGA-PBE functional-relaxed structure. The CSA parameters 

from DFT calculations are shown in Table 4.2. The XRD crystal structure leads to predictions of 

NMR tensors that do not agree well with the experimental data: the prediction of the δiso and val-

ues for ηCSA both deviate from experimental measurements.  

 

Figure 4.6 Linear rescaling of 13C chemical shift tensor values. Experimentally measured values of diagonalized 

tensors are plotted versus VASP calculated values for magnesite (MgCO3), hydromagnesite and nesquehonite. The 

experimental data of magnesite and nesquehonite are from a previous publication.91  

To further refine the CSA tensor calculations, the atomic coordinates are optimized using the 

GGA-PBE functional. The results of the DFT calculations derived from the GGA-PBE relaxed 

structure are also shown in Table 4.2 (labeled as DFT (GGA-PBE)). The isotropic chemical shift 

of Carbon 1 and Carbon 2 through GGA-PBE atomic coordinates match experimental data better 

compared to the XRD-determined atomic coordinates. However, for Carbon 1, the computed re-
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sult predicts a much higher-symmetry environment than XRD crystal structure and experiment 

(an smaller ηCSA value of 0.28); hence, the surrounding H2O and OH− species are predicted to in-

teract less strongly with the carbonate represented by Carbon 1. The effects of such interactions 

are depicted in the lineshapes shown in Figure 7c (discussed below). 

As described above, modifications of DFT have been proposed to more accurately model sys-

tems where weak interactions such as hydrogen bonding and dispersion forces are important. We 

optimized the atomic coordinates with in VASP for the hydromagnesite structure using multiple 

vdW-corrected functionals. The overall best agreement with both the CSA lineshape and iso-

tropic chemical shift is obtained using the relaxed geometries obtained from the vdW-DF2 func-

tional. The DFT calculation results from vdW-DF2 functionals are shown in Table 4.2, which 

gives a reasonably good match to experimental data for δiso and ηCSA. 

To depict the static lineshapes, we simulated the 13C static NMR lineshape through DFT calcula-

tion results. Given the precision of the isotropic chemical shift values, in the simulation of the 

static CSA lineshapes, the δiso is constrained to the experimentally-measured value, while the 

values for ηCSA and δaniso matched those determined by DFT. Figure 4.7. shows (a) the deconvolu-

tion result by Dmfit from experiment, simulated 13C static lineshape from (b) DFT calculation 

using atomic coordinates from X-ray diffraction, (c) relaxations to atomic coordinates using 

GGA-PBE functional in VASP, and (d) using the vdW-DF2 functional in VASP. The simulation 

is done under the consideration of equal intensity for Carbon 1 and Carbon 2. For the XRD crys-

tal structure, Carbon 1 indicates a higher asymmetry lineshape, and the sum of two carbons (red) 

does not match well with the experiment data (Figure 4.7b). The simulation of 13C static line 

from GGA-PBE functional is shown in Figure 4.7c. We find that Carbon 1 has less asymmetry 

than the experimental deconvolution. Compared with others, the vdW-DF2 exhibits the best 
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agreement from the simulation to the experimental curve. The best agreement with the experi-

mental CSA lineshape data is found for the vdW-DF2 functionals. 

 

 

Figure 4.7 13C static NMR spectra of hydromagnesite and computed 13C chemical shift tensors. Experimental 13C 

data are shown in black, the simulated CSA-broadened lineshapes for Carbon 1 in blue and Carbon 2 in green, and 

the sum of both carbons in red. Best fit using: (a) Dmfit, denoted “Exp Deconvolution”; and simulated from NMR 

tensors determined (b) from VASP calculations using atomic coordinates from X-ray diffraction, (c) from relaxa-

tions using the GGA-PBE functional, and (d) from relaxations using the vdW-DF2 functional. δiso, ηCSA and δaniso 

determined by the simulations are shown in Table 4.2.  
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4.3.5  13C{1H} REDOR and SIMPSON Simulation  

 

Besides the CSA lineshape and DFT calculation of chemical shift tensors, we also tested the 

atomic coordinates by 13C{1H} REDOR, which is used to measure the distance between 1H and 

13C in hydromagnesite. To locate hydrogens of the H2O and OH‒ groups surrounding the car-

bonate positions in the lattice, we determined 1H-13C distances by measuring the 13C-1H hetero-

nuclear dipolar coupling using the NMR sequence, 13C{1H} REDOR.132–134The 13C{1H} REDOR 

experiment reintroduces the 1H-13C dipolar coupling that is averaged to nearly zero by MAS.29,59  

 

Figure 4.8 Pulse sequence of 13C{1H} REDOR NMR. 1H is used as the dephasing channel, and 13C is the observe 

channel. XY-4 phase cycling is used to minimize the influence of resonance off-set and inhomogeneities of B1. “ct” 

stands for contact time, “Acq” for acquisition, “Tr” for rotor period, and “τ” for the evolution time for each 

successive loop number. 

13C{1H} REDOR data are collected in two sets of experiments (Figure 4.8): a full-echo (So) 

spectrum with rotor-synchronized π-pulses on the 13C observe spin to account for the effects of 

T2 relaxation, and the S spectrum with dephasing π-pulses on the 1H channel which reintroduces 

the 13C-1H dipolar coupling. The intensity difference (ΔS = So - S) between the full-echo (So) and 

the dephased (S) spectra reflects the influence of 1H-13C dipolar coupling. So and S spectra are 

deconvoluted with Dmfit with the isotropic chemical shift and linewidth for each carbon held 
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constant, allowing only the intensity to vary. Figure 4.9 shows 13C{1H} REDOR dephasing 

(ΔS/So) as a function of REDOR evolution time for Carbon 1 and Carbon 2.  

 

Figure 4.9 13C{1H} REDOR NMR data (black squares and circles for Carbon 1 and Carbon 2, respectively) and 

calculated dephasing for (a) Carbon 1 at 163 ppm (blue line) and (b) Carbon 2 at 165.3 ppm (green line). The 
13C{1H} REDOR simulations use atomic coordinates from the published crystal structure refined from X-ray 

diffraction (XRD) measurements.127 RMSE values are given in the legend, comparing the agreement of the 

calculated REDOR curve to the experimental data. 

First, from the atomic coordinates in the XRD crystal structure, 13C{1H} REDOR curves are 

simulated with SIMPSON114 using the positions of the closest H2O and OH− species, amounting 

to 9 hydrogens specified by the published crystal structure (ICSD 920),127 which is shown in 

Figure 4.10. Simulated 13C{1H} REDOR curves for both carbons exhibit an overall shape that 

agrees relatively well with the experimental data, especially at longer (> 1.2 ms) REDOR evolu-

tion times, where 13C-1H spin interactions from multiple distant 1H spins dominate. However, the 

region just after initial slope of the simulated 13C{1H} REDOR dephasing curves for both Car-
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bon 1 (shown in blue, Fig. 4.9a) and Carbon 2 (shown in green, Fig. 4.9b), underestimates the 

experimental dephasing, suggesting that the position of hydrogen atoms–especially those in close 

proximity whose interactions dominate the initial portion of the REDOR curve—are inaccurately 

specified. In addition, the XRD structure (ICSD 920) yields computationally (VASP) determined 

tensors that predict 13C δiso (Table 4.2) that deviate substantially (5 – 10 ppm) from those found 

by experiment. The 13C CSA lineshape (Figure 4.7b), DFT predicted chemical shift (Table 4.2) 

and simulation of 13C{1H} REDOR (Figure 4.9) both suggest that the hydrogen positions are not 

accurately determined in hydromagnesite.  

 

Figure 4.10 Positions of the nine hydrogens on the closest H2O and OH− species (pink) from the XRD crystal 

structure (ICSD 920) surrounding (a) Carbon 1 (black) and (b) Carbon 2 (black) used in the calculation of REDOR 

dephasing. Oxygens are colored red. Distances from each carbon to the two closest protons are indicated, and all 

other distances are listed in Table 4.4. The hydrogens are denoted by numbers for Carbon 1 and alphabetical letters 

for Carbon 2 to distinguish easily between sets. 5 hydrogens from H2O and OH¯ are selected from each, plus 4 

hydrogens that are part of the pair present in water molecules.  

13C{1H} REDOR dephasing curve of Carbon 1 and Carbon 2 are also simulated for the atomic 

coordinates GGA-PBE relaxed structure and shown in Figure 4.11. There is a poorer match to 
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the Carbon 1 experimental data (RMSE = 0.0505) over-estimating the initial slope of the exper-

imental data curve, which is dominated by 13C-1H dipolar interactions of the protons closest to 

Carbon 1. In addition, the prediction of ηCSA for Carbon 1 by GGA-PBE is also 50% lower than 

experimental determination. Considering the 13C CSA lineshape, CSA asymmetry parameter 

(ηCSA) and 13C{1H} REDOR, these all suggest that the relaxed structure obtained from the GGA-

PBE functional does not accurately represent the atomic coordinates in hydromagnesite.  

 

Figure 4.11 13C{1H} REDOR NMR data (black squares and circles for Carbon 1 and Carbon 2, respectively) and 

calculated dephasing for (a) Carbon 1 at 163 ppm (blue line) and (b) Carbon 2 at 165.3 ppm (green line). The 
13C{1H} REDOR simulations use atomic coordinates from relaxed crystal structure using GGA-PBE functional 

RMSE values are given in the legend, comparing the agreement of the calculated REDOR curve to the experimental 

data. 

13C{1H} REDOR dephasing curves of Carbon 1 and Carbon 2 are also simulated for the vdW-

DF2 relaxed structure and shown in Figure 4.12. The close match of the 13C{1H} REDOR 

dephasing of Carbon 1 and Carbon 2 calculated using the atomic coordinates from vdW-DF2 re-
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laxed geometry with experimental data suggests that hydrogen positions are more accurately rep-

resented by this functional compared with GGA-PBE and the XRD crystal structure.  

 

 

Figure 4.12 13C{1H} REDOR NMR data (black squares and circles for Carbon 1 and Carbon 2, respectively) and 

calculated dephasing for (a) Carbon 1 at 163 ppm (blue line) and (b) Carbon 2 at 165.3 ppm (green line). The 
13C{1H} REDOR simulations use atomic coordinates from relaxed crystal structure using vdW-DF2 functional 

RMSE values are given in the legend, comparing the agreement of the calculated REDOR curve to the experimental 

data. 

 

 

 

 

 

 



82 

 

4.3.6  Comparison between Experimental XRD curve and Prediction 

 

 

Figure 4.13 Comparison of powder-X-ray diffraction (PXRD) patterns:  a) experimentally measured PXRD data 

(shown in black), and simulated powder patterns b) for the atomic coordinates determined from a published structure 

of hydromagnesite “Simulated PXRD (literature values)” (shown in red), and c) for the VASP calculation from the 

structure relaxation using the vdW-DF2 functional “DFT-predicted powder diffraction (vdW-DF2)” (shown in blue). 

The CrystalMaker program was used to generate simulated PXRD patterns.   

In the computation, the unit cell and atomic coordinates are allowed to be relaxed for geometry 

optimization. Consequently, it is better to compare the prediction of PXRD after geometry opti-

mization with the experimental XRD pattern. Figure 4.13 shows the comparison of PXRD 

among experiment (room temperature), simulated PXRD from the published XRD structure, and 

simulated PXRD using atomic coordinates from the vdW-DF2 functional optimized structure (0 

K). The results indicate there is good agreement between the optimized structure using vdW-DF2 

functionals and experimental data.  
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Meanwhile, the lattice parameter differences are also considered in the comparison. In Table 4.3, 

we show the lattice parameter values, including a, b and c. In previous studies, less than 2% al-

teration is expected to be reasonable for comparison between experiment and DFT computations. 

In our results, the lattice changes of vdW-DF2 is less than 2% for each lattice parameter.135,136 

By comparison, the difference of lattice parameter b is around 2.7% for GGA-PBE relaxed struc-

ture, showing those coordinates are not as good as of a match. 

Table 4.3 Lattice parameters (Å) from the powder XRD and DFT calculations. 

 
 Crystal structure (Ref. 4) at 

room temperature from pow-

der XRD 

DFT-predicted atomic coordi-

nates (vdW-DF2) at 0 Kelvin 

DFT-predicted atomic coordi-

nates (GGA-PBE) at 0 Kelvin 

a* 8.378 Å 8.431 Å  (0.63%) 8.421 Å  (0.51%) 

b 8.954 Å 9.115 Å  (1.80%) 9.198 Å  (2.73%) 

c* 10.105 Å 10.184 Å (0.78%) 10.146 Å (0.41%) 

Percent error is indicated in parentheses. * Lattice parameter a and c are interchanged to match the output of VASP, 

as described in the text (sextion ) 

 

4.3.7  Comparison of vdW-DF2, GGA-PBE Optimized Structures and XRD 

Crystal Structure  

 

Here, we have a unique opportunity with hydromagnesite, because there are two magnetically 

inequivalent carbon sites that have multiple interstitial water molecules (in common), the effects 

of which are encoded in both the CSA and 13C-1H distance measurement by NMR. Atomic coor-

dinates should yield good agreement for the 13C-1H distances of all nearby H2O and OH‒ species 

(by 13C{1H} REDOR), and the spatial arrangement of these moieties will be accurately reflected 

by the CSA lineshapes.  
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Figure 4.14 Graphical depiction of differences in atomic coordinates between published XRD structure of 

hydromagnesite (ICSD 920)127 (shown in green) and VASP-computed (vdW-DF2 functional) atomic coordinates, 

where carbon is gray, oxygen is red, and hydrogen is blue. The two circled water molecules show the largest change 

and interact with both carbons, such that a deflection of the position of H2O influences both carbonate sites. A 

distance between protons and carbon are shown in the picture for vdW-DF2 functional optimized structure. 

The difference in atomic coordinates from the published XRD structure to that predicted by 

vdW-DF2 is depicted in Figure 4.14. The multi-color structure is the vdW-DF2 predicted struc-

ture, and shown in green is the X-ray crystal structure (ICSD 920).  While the carbonates (shown 

in red and gray) have only small deviations in their atomic coordinates, several of the hydrogens 

(shown in blue) move substantially. There are displacements of up to 0.34 Å between hydrogen 

coordinates, when comparing the two structures.  

When the H2O positions are adjusted using the model provided by the vdW-DF2 relaxed struc-

ture, the calculated 13C{1H} REDOR curves have better agreement with the experimental data. 

The vdW-DF2-relaxed structure brings several H2O species into closer proximity with Carbon 2. 

Notably, the CSA lineshape for Carbon 2 does not deviate substantially, though 13C{1H} 

REDOR dephasing is affected. For Carbon 1 however, the 13C CSA lineshape is strongly influ-

enced by the movement of water in close proximity to it, leading to both an adjusted CSA line-

shape and REDOR dephasing behavior. Ultimately, the new positions of all the surrounding spe-

cies, lead to a better agreement in both 13C{1H} REDOR and 13C CSA lineshape data for both 
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carbon sites. A comparison of distances between the 9 hydrogens near to Carbon 1 and Carbon 2 

is summarized in Table 4.4.  

Table 4.4 Distances between the 9 hydrogens and carbons in hydromagnesite surrounding Carbon 1 and 

Carbon 2 from the X-ray crystal structure, and VASP calculations from relaxations using the GGA-PBE 

functional and vdW-DF2 functional. Hydrogens surrounding Carbon 1 are numbered, and those surround 

Carbon 2 are lettered. Hydrogens are all from H2O unless noted for hydroxide (H3 and Hg) 

 

 

 

 X-ray Diffraction GGA-PBE vdW-DF2 

 Internuclear 
pair 

Bond Dis-
tance (Å) 

Internuclear 
pair 

Bond Dis-
tance (Å) 

Internuclear 
pair 

Bond Dis-
tance (Å) 

Carbon 1 C1-H1 3.52 C1-H1 3.61 C1-H1 3.73 

C1-H2 2.62 C1-H2 2.41 C1-H2 2.52 

C1-H3 (OH‒) 3.81 C1-H3 (OH‒) 3.78 C1-H3 (OH‒) 3.78 

C1-H4 2.49 C1-H4 2.41 C1-H4 2.42 

C1-H5 3.60 C1-H5 3.66 C1-H5 3.67 

C1-H6 3.30 C1-H6 3.37 C1-H6 3.41 

C1-H7 3.90 C1-H7 3.86 C1-H7 4.08 

C1-H8 4.20 C1-H8 4.49 C1-H8 4.46 

C1-H9 3.38 C1-H9 3.45 C1-H9 3.42 

Carbon 2 C2-Ha 3.27 C2-Ha 3.27 C2-Ha 3.22 

C2-Hb 4.23 C2-Hb 4.23 C2-Hb 4.16 

C2-Hc 4.42 C2-Hc 4.52 C2-Hc 4.56 

C2-Hd 3.45 C2-Hd 3.57 C2-Hd 3.53 

C2-He 3.11 C2-He 2.99 C2-He 2.91 

C2-Hf 4.13 C2-Hf 4.44 C2-Hf 4.34 

C2-Hg (OH‒) 2.80 C2-Hg (OH‒) 2.72 C2-Hg (OH‒) 2.76 

C2-Hh 4.11 C2-Hh 4.33 C2-Hh 4.22 

C2-Hi 3.14 C2-Hi 3.20 C2-Hi 3.14 
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4.4 Conclusions 
 

In summary, NMR as “a crystallographic refinement tool” can provide significant insight into 

molecular structure, especially in hydrated systems such as hydromagnesite. The combination of 

13C{1H} REDOR to measure 13C-1H distances and the 13C static CSA lineshapes to determine 

tensor values is a powerful way to probe local structures. When used in combination with DFT 

calculations, an accurate map of hydrogen positions can be obtained.13C static NMR spectra of 

carbonate minerals can yield insight into the organization of chemical entities such as H2O and 

OH– around a carbonate group through their influence on the 13C tensor—reflected in both the 

isotropic chemical shift and the value for ηCSA. Measurement of 13C-1H dipolar couplings with 

13C{1H} REDOR in minerals such as hydromagnesite is feasible for probing 13C-1H distances 

because the protons are sufficiently isolated to not be broadened by 1H-1H homonuclear dipole-

dipole interactions. Multiple hydrogens differ in position by as much as 0.34 Å between XRD 

and NMR-predicted structures. The work presented here demonstrates how the combination of 

XRD, SSNMR (chemical shift anisotropy and dipole-dipole coupling), and computational chem-

istry leads to improved determinations of hydrogen atomic coordinates. 

In addition, since many chemical properties are dependent on a material’s structure, there is an 

urgent need for improvement in the accuracy of computations. An important benefit of this NMR 

crystallography study is the ability to demonstrate the efficacy of different DFT functionals, 

ultimately to implement improved computational tools when dispersive bonding interactions 

need to be considered. Such interactions govern not only hydrated minerals and materials, but 

also biological materials.  
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Chapter 5: NMR Crystallography Study of 

Nesquehonite - Implication for the Chemical 

Formula 

5.1 Introduction 
 

Nesquehonite is one of several magnesium carbonate minerals that are the products for geologi-

cal carbon dioxide sequestration reactions.137,138 There are about 470 papers and patents studying 

the properties and application of nesquehonite according to Scifinder.139–141 The chemical formu-

la of nesquehonite has been a controversial issue since 1890,142 debated to be 

MgCO3·3H2O
128,143–145 or Mg(HCO3)(OH)·2H2O

146,147. Some studies have used infrared spec-

troscopy (IR), Raman spectroscopy, and thermogravimetric analysis (TGA) to determine the 

presence of bicarbonate and hydroxide.146–148 However, the bicarbonate and hydroxide were not 

observed in a similar study that also used IR and Raman spectroscopy.149 Additional X-ray dif-

fraction (XRD) studies for structure refinement did not show the presence of bicarbonate or hy-

droxide.128,145 In 2015, G. Jauffret et al. indicated that previous investigations proposing the 

chemical formula for nesquehonite, Mg(HCO3)(OH)·2H2O, could be wrong due to a tempera-

ture-induced phase change.150 Until now, there remains an ongoing debate about the true chemi-

cal formula of nesquehonite.  

In this study, we apply NMR crystallography to resolve the controversial chemical formula for 

nesquehonite. The 13C{1H} REDOR experiment introduces the ability to distinguish bicarbonate 

and carbonate in the solid-state sample. NMR enables a better understanding of the structures of 

hydrated materials or organic/biological samples.  
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5.2 Experimental methods 
 

5.2.1  Preparation of 10% 13C Enriched Nesquehonite 

 

10% 13C enriched nesquehonite was synthesized by adding 0.044g of 98% 13C-enriched 

NaH13CO3 and 0.394g natural abundance NaHCO3 to a solution of 1.050g MgCl2·6H2O in 9.18 

ml of de-ionized  (DI) water.91 After 1 min. of mixing, the solution was sealed and kept at room 

temperature for three days. The precipitate was then rinsed with DI water and dried under 

vacuum oven at 40°C for 10 mins. The powder was air-dried overnight. The rinsing and drying 

process was repeated twice to remove impurities in the sample. 

5.2.2  Powder XRD  

 

Powder X-ray diffraction (PXRD) of the 10% 13C enriched nesquehonite was obtained with a 

Bruker d8 Advance X-ray diffractometer using Cu-Kα radiation at 40 kV and 40 mA. The sam-

ple was held in a Plexiglas PXRD slide. Data were collected over a 2θ range from 5° to 90° with 

a step size of 0.019°. The PXRD pattern of the synthesized sample is shown in Figure 5.1 along 

with the reference pattern of nesquehonite128 (ICSD 91710).  

5.2.3  Solid-State NMR 

 

Static 13C (74.18 MHz) NMR spectra with 1H (294.97 MHz) decoupling were collected in an 

Oxford superconducting 7.05 T magnet with a Tecmag (Houston, TX) console equipped with a 

Chemagnetics 4 mm MAS HXY probe. 13C spectra were acquired using a Hahn-echo pulse se-

quence 28,111(π/2-τ-π-τ-echo) with a π/2-pulse of 4 μs, a π-pulse of 8 μs, and a τ delay of 30 μs. 
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1440 transients were recorded with a recycle delay of 180 s, which is approximately five times of 

the spin-lattice relaxation time.91 1H decoupling was applied with an RF power of νRF = 42 kHz. 

The static 13C NMR spectrum was fit using Dmfit112 to obtain principal values of the chemical 

shift tensor: δxx, δyy and δzz, which are reported using the Haeberlen convention.20   

13C (148.34 MHz) and 1H (589.84 MHz) NMR spectra with MAS were recorded on a 13.8 T Ox-

ford superconducting magnet using a Bruker 2.5 mm HX MAS probe. 1H MAS NMR spectra 

were acquired using a rotor-synchronized Hahn-echo with a π/2-pulse length of 6 μs, π-pulse 

length of 12 μs, MAS rotation frequency (νr) of 25 kHz, and a τ delay of 31 μs to center the π-

pulse at the middle of the rotor period. 1H MAS spectra were recorded with 8 transients and a   

10 s recycle delay. 13C{1H} CPMAS spectra were acquired with an initial 1H π/2 pulse width of 

3.4 μs, 1H-13C cross-polarization Hartman-Hahn contact time of 2 ms, 64 transients, and a recy-

cle delay of 10 s. The MAS rotational frequency was maintained at 25 kHz with a Tecmag MAS 

controller. 

13C{1H} REDOR29 measurements were acquired with 13C π-pulse widths of 15 μs and 1H π-pulse 

widths of 7.5 μs. Observe spin (13C) refocusing pulses were centered every rotor period, and 

dephasing (1H) pulses were centered halfway through the rotor period for maximum dephasing. 

(It is as same as to the Figure 4.8). XY-4 phase cycling of the rotor-synchronized 13C and 1H π-

pulses was used to minimize artifacts from RF-inhomogeneity and resonance frequency offsets 

during the REDOR evolution time.113 The MAS rotational frequency was maintained at 25 kHz 

with a Tecmag MAS controller.  
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For all NMR experiments, 13C chemical shifts were referenced to adamantane as an external sec-

ondary reference with the 13CH2 resonance set to 38.48 ppm. 1H chemical shifts were referenced 

to liquid tetramethylsilane (TMS) at 0 ppm.  

13C{1H}REDOR simulations of the 11-spin systems (1 carbon and 10 nearest hydrogens) were 

carried out using SIMPSON114. The maximum time step (max dt) over which the Hamiltonian is 

approximated to be time-independent was set to 1 µs in SIMPSON. XY-4 phase cycling of the 

rotor-synchronized 13C and 1H π-pulses was used to simulate the real experiment. Finite pulse 

widths were assumed. All calculations contained negligible imaginary contributions, and the ini-

tial amplitudes of the real parts were taken for REDOR analyses. Data convergence was checked 

by repeating selected calculations using smaller max dt and more extensive powder averaging 

schemes. RMSE values are computed between the experimental data and the REDOR curve and 

are denoted to assess the quality of the match. 

5.2.4  DFT Calculations  

 

All of the DFT calculations were performed using the Vienna ab initio simulation package 

(VASP)115, versions 5.3.5 and 5.4.4.18Apr17-6-g9f103f2a35. These calculations made use of the 

projector-augmented wave (PAW) method116,117 and Perdew−Burke−Ernzerhof (PBE)59 GGA 

based potentials from the VASP library. All calculations were non-spin-polarized. In the struc-

tural optimizations, use was made of the PBE-GGA, as well as two different functionals incorpo-

rating van der Waals (vdW) interactions within DFT, which are the vdW-DF118–120 and vdW-

DF2 118–121 functionals.  
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The electronic wave functions were expanded in a plane-wave basis set, using a kinetic-energy 

cutoff of 610 eV. In the structure optimization calculations, cell parameters and atomic positions 

were relaxed until the components of the stress tensor were less than 0.1 kbar, and the force on 

each atom was less than 0.001 eV/Å in magnitude. During the structural relaxations of the 

nesquehonite compound (which has a finite bandgap), the sampling of the Brillouin zone was 

performed using the tetrahedron method with Blöchl corrections and a k-point density of 

3x2x1.122  

The calculation of NMR chemical shifts made use of the linear response formalism124,125 imple-

mented in VASP.  In these calculations, a Gaussian smearing was used of 0.1 eV set to ensure 

negligible partial occupancies of the electronic states. Convergence was tested for the k-point 

grid, the real-space grid, and the plane wave cutoff.  Using higher levels of convergence only led 

to small changes in calculated NMR CSA parameters: the largest variation in ηCSA was 0.002, and 

the largest variation in δiso or  was 1 ppm.   

The vdW-DF functional was found to yield the best agreement with experimental measurements 

and is the focus of the calculation results presented in the main text.  
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5.3 Results and Discussion 

5.3.1  XRD of Synthesized Hydromagnesite  

 

The powder XRD (PXRD) pattern of lab-synthesized nesquehonite is shown in Figure 5.1, along 

with the reference pattern of nesquehonite128 (ICSD 91710). There is good agreement between 

the powder XRD (PXRD) pattern of the synthesized sample (with 10% 13C enrichment) and that 

of the reference, indicating that nesquehonite is formed with no other phases of hydrated magne-

sium carbonate.  

 

 

Figure 5.1 Powder XRD characterization of synthesized nesquehonite. The top (black) diffraction pattern is 

experimental data, and the bottom (red) pattern is the nesquehonite reference diffraction pattern.(ICSD 91710)  

 

5.3.2  13C CPMAS NMR and 1H MAS NMR  
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Consistent with prior results91, only one 13C NMR resonance is observed (Figure 5.2a) with an 

isotropic chemical shift of 165.2 ppm, which is consistent with the single carbon site present in 

the XRD crystal structure of nesquehonite published by Giester.128 In Figure 5.2b, a single 1H 

resonance is observed in the 1H spin-echo MAS NMR spectrum at 6.0 ppm, which is assigned to 

H2O.129 There is no obvious evidence of the existence of hydroxide according to the 1H MAS 

NMR. 

.  

Figure 5.2 SSNMR of 10 % 13C-enriched nesquehonite powder. (a) 13C{1H} CPMAS (νr=25 kHz), and (b) 1H rotor-

synchronized Hahn echo MAS  (νr=25 kHz). * denotes spinning sidebands of H2O. 

The crystal structure of nesquehonite published by Giester (2000) is shown in Figure 5.3. In the 

crystal structure of nesquehonite, there is only one chemically distinct carbon site and there is a 

question in the literature as to whether it is a carbonate or a bicarbonate.146 However, to 
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distinguish bicarbonate from carbonate merely from its 13C isotropic chemical shift may be 

precarious, since the isotropic chemical shift of either bicarbonate or carbonate can be anywhere 

in the range between 160 and169 ppm depending on the pH.151  

 

Figure 5.3 Crystal structure of nesquehonite. Magnesium is shown in green (spheres), oxygen is red, hydrogen is 

white, and carbon is gray.  

 

5.3.3  Static 13C NMR and Slow Spinning 13C{1H} CPMAS NMR  

 

The static 13C NMR spectrum (with 1H decoupling) at 7.05T for 10% 13C-enriched nesquehonite 

is shown in Figure 5.4 (in black). Using the 2008 IUPAC conventions130 (that derive from the 

Haeberlen convention20), we can describe the CSA lineshape by algebraic expression from  ele-

ments of the diagonalized chemical shift tensor: the asymmetry parameter (ηCSA), isotropic chem-

ical shift (δiso) and reduced anisotropic chemical shift (δaniso), which was discussed in Chapter 4. 

Deconvolution of the static 13C NMR  
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Figure 5.4 Static 13C (with 1H decoupling) NMR spectrum of nesquehonite. Experimental 13C lineshape is shown in 

black, simulated CSA-broadened lineshape is shown in red, the difference between experimental data and simulation 

is shown in purple.   

spectrum is performed with Dmfit (Figure 5.4). The fitting of static 13C NMR of nesquehonite 

yields a ηCSA value of 0.54 and δaniso value of -47.09 ppm. The ηCSA value of 0.54 indicates a rela-

tively asymmetric local environment for carbon in nesquehonite, meaning the site lacks a high 

symmetry rotation axis, such as the C3 of carbonate. However, such asymmetry could be due to 

two possibilities: one is from water creating a distortion around carbonate, and another is that the 

species is bicarbonate. Thus, it is impossible to distinguish the chemical formula for nesquehon-

ite just from the static 13C lineshape.   

 

Figure 5.5 Slow spinning 13C{1H} CPMAS NMR (νr = 2 kHz) of nesquehonite and the simulation of the spectrum 

by Dmfit. Experimental 13C spectrum is shown in black, and the simulation is shown in red. The ηCSA  and the δaniso of 

carbon is 0.53 and -48.4 ± 0.1 ppm, respectively. 
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Slow spinning 13C{1H} CPMAS NMR of nesquehonite (νrotation = 2 kHz) and the simulation of 

the spectrum are also shown in Figure 5.5 as evidence to confirm the ηCSA and reduced δaniso value 

for 13C. Experimental 13C data are shown in black, and the simulation is shown in red. The ηCSA of 

13C in nesquehonite from slow spinning 13C{1H} CPMAS is 0.53 and δaniso is 48.40 ppm. Three 

elements of the diagonalized chemical shift tensor determined by static 13C NMR and slow spin-

ning 13C{1H} CPMAS NMR are summarized in Table 5.1. There is good agreement between 

static 13C NMR and slow spinning 13C{1H} CPMAS NMR for the three values in nesquehonite. 

We will use the CSA parameters from static 13C NMR for discussion later.  

Table 5.1 13C chemical shift tensor elements determined from slow spinning (νr = 2 kHz) 13C{1H} 

CPMAS NMR and static NMR for nesquehonite 

 δ11 (ppm)* 

δXX (ppm) 

δ 22 (ppm)* 

δYY (ppm) 

δ 33 (ppm)* 

δZZ (ppm) 

Slow MAS NMR 202.2 176.6 116.8 

Static NMR 201.5 176.0 118.1 

*we are presenting both “standard” notation δ11, δ22 and δ33, (ordered by frequency from high to low) and the 

Haeberlen notation δXX, δYY and δZZ, (where | δZZ - δiso | ≥ | δXX - δiso | ≥ | δYY - δiso | ≥) for the diagonalized chemical 

shift tensor values. 

5.3.4  13C{1H} REDOR and SIMPSON Simulation  

 

It is not reliable to discriminate the chemical formula of nesquehonite from MgCO3·3H2O to 

Mg(HCO3)(OH)·2H2O merely by the 13C NMR isotropic chemical shift. Thus, complementary 

information from the the 1H-13C distance was sought by measuring the 13C-1H heteronuclear di-

polar coupling using the NMR sequence, 13C{1H} REDOR. 132–134  

13C{1H} REDOR data is collected in two sets of experiments (same pulse sequence as shown in 

Figure 4.6): a full-echo (So) spectrum with rotor-synchronized π-pulses on the 13C observe spin 

to account for the effects of T2 relaxation, and the S spectrum with dephasing π-pulses on the 1H 
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channel, which reintroduces the 13C-1H dipolar coupling. The intensity difference (ΔS = So - S) 

between the full-echo (So) and the dephased (S) spectra reflects the 1H-13C dipolar coupling. So 

and S spectra were deconvoluted with Dmfit. Figure. 5.6 shows 13C{1H} REDOR dephasing 

(ΔS/So) as a function of REDOR evolution time for carbon (black squares) in nesquehonite.  

 

Figure 5.6 13C{1H} REDOR NMR data black squares and the simulation curve (red curve). The 13C{1H} REDOR 

simulation uses atomic coordinates from the DFT (GGA-PBE functional) optimized structure. The dashed line 

represents the 13C{1H} REDOR simulation curve between one spin pair, with an internuclear distance of 1.96 Å. 

RMSE value of simulation REDOR curve of GGA-PBE functional optimized structure is 0.0407. 

The 13C{1H} REDOR curves were also simulated with SIMPSON152 using the positions of the 

ten closest protons specified by the DFT-optimized crystal structure. DFT optimization was 

made in the Vienna Ab-initio Simulation Program (VASP)115 using the GGA-PBE functional,59 

which has worked well for solid-state systems in the last twenty years.60,61 The atomic coordi-

nates of published crystal structure of nesquehonite (MgCO3·3H2O) was imported into VASP for 

DFT optimization.128  
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Figure 5.7 Positions of the ten hydrogens (shown in pink) from the GGA-PBE functional optimized structure used in 

the calculation of REDOR dephasing. Oxygens are colored red. Distances of the five closest protons are exhibited 

by dashed lines in the picture. 

Once an optimized structure is obtained, the 10 close hydrogens (5 closest protons from the sur-

rounding water, and plus 5 hydrogens in same water molecules) around one carbon (11 nuclei 

total in the simulation, shown in Figure 5.7) are imported to  SIMPSON152 to simulate the 

13C{1H} REDOR curve.  

The simulated 13C{1H} REDOR curve from atomic coordinates optimized using the GGA-PBE 

functional (solid red curve in Figure 5.6) exhibits an overall shape that agrees relatively well to 

the experimental data (black squares). In nesquehonite, the first initial decay results from dipolar 

coupling between carbon and the nearest hydrogens, which have distances of 2.49, 2.67 and 2.71 

Å in nearby water molecules. The 13C{1H} REDOR curve is consistent with the crystal structure 

of nesquehonite being MgCO3·3H2O. Also, a simulated 13C{1H} REDOR curve of a single 13C-

1H spin pair, with a distance of value of 1.96 Å, is also shown in Figure 5.6 to test the other 

model structure. If the chemical formula of nesquehonite is Mg(HCO3)(OH)·2H2O, the closest 

distance between carbon and proton will be around 1.96 Å for HCO3
¯ (typical distance in an 

HCO3
¯ structure). This shorter distance should dominate the initial slope of the REDOR curve, 

which would adopt a sharper initial dephasing behavior than the experimental data shown here. 
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The discrepancy between this simulation of REDOR with one spin pair and experimental data 

allows us to rejects the chemical formula of Mg(HCO3)(OH)·2H2O. Additionally, the chemical 

formula of Mg(HCO3)(OH)·2H2O is not reasonable from an NMR perspective, because there is 

no 1H resonance for OH- observed in the 1H MAS NMR. Here, we can safely conclude that 

SSNMR is a powerful tool to directly distinguish bicarbonate and carbonate by measuring the 

1H-13C dipolar coupling strength through 13C{1H} REDOR, and we conclude the chemical for-

mula of nesquehonite is MgCO3·3H2O. 

 

Figure 5.8 13C{1H} REDOR NMR data black squares and simulation curve use atomic coordinates from vdW-DF 

functional optimized structure (blue curve) and X-ray diffraction (XRD) measurements (green curve). RMSE value 

of simulation REDOR curve of vdW-DF functional optimized structure is 0.0246 and 0.0522 for XRD structure. 

However, although the overall shape of simulated 13C{1H} REDOR (red curve, Figure 5.6) of 

nesquehonite (MgCO3·3H2O) shows good agreement with experimental data, the initial slope of 

the simulated REDOR dephasing curve still exhibits a slight deviation from that found by exper-

iment. This discrepancy suggests that the proton coordinates surrounding the carbon could be 

improved using refinement by NMR (“NMR crystallography”).48,153,154 Thus, besides 

confirmation of the chemical formula of nesquehonite, the combination of 13C{1H} REDOR and 

DFT computation can be used to improve the protons’ position, which is similar to the previous 

study of hydromagnesite.153 To improve the protons’ location, in this study, van der Waals inter-
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actions within VASP density functional  theory computations (vdW-DF) and version 2 (vdW-

DF2) are used to optimize the structure, instead of the GGA-PBE functional.118,120,155 It is found 

that the simulations of 13C{1H} REDOR curves from the vdW-DF and vdW-DF2 optimized 

structure are almost the same. Thus, only the simulation of 13C{1H} REDOR curve from the op-

timized structure using the vdW-DF functional is shown here in Figure 5.8. After optimization, 

the closest hydrogen distances become 2.54, 2.77 and 2.79 Å, instead of 2.49, 2.67 and 2.71 Å. It 

is found that simulation of 13C{1H} REDOR curve has a slightly better prediction (RMSE of 

0.0246) compared with the GGA-PBE functional (RMSE of 0.0407).   

A simulation of 13C{1H} REDOR curve generated from the XRD structure (without any geome-

try optimization) is also shown in Figure 5.8 (green line) as a reference. The simulated REDOR 

curve from XRD determined atomic coordinates has a worse match to the experimental data than 

the optimized structure using either the GGA-PBE or vdW-DF functional.  

Table 5.2 Distance between closest hydrogens to carbon in nesquehonite from XRD atomic coordinates 

and atomic structures derived from DFT relaxation using different functionals. The labels of protons are 

shown in Figure 5.7.  

Hydrogen 

Label 

XRD  GGA-PBE vdW-DF 

Bond distance (Å) 

H1 3.127 3.113 3.129 

H2 3.734 3.877 3.896 

H3 4.555 4.646 4.714 

H4 3.465 3.320 3.421 

H5 2.832 2.675 2.766 

H6 3.922 4.050 4.090 

H7 2.871 2.708 2.789 

H8 3.675 3.884 3.920 

H9 2.670 2.487 2.539 

H10 4.079 4.109 4.206 
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The distances of the ten closet protons from the XRD determined crystal structure, GGA-PBE 

and vdW-DF optimized structures are summarized in Table 5.2. Through simulations of 13C{1H} 

REDOR, we found that DFT optimization by vdW-DF functional can slightly improve the 

agreement between simulation and experimental data.  

5.3.5  Chemical Shift Computation by DFT and Simulation of Static Line-

shape  
 

CSA tensors can also be calculated using quantum mechanical methods that reflect the atomic 

and electronic structure. The results of such calculations depend on the atomic coordinates in 

crystals, especially the protons’ positions around the carbonate in nesquehonite. Thus, the CSA 

tensors should be used as a standard for NMR crystallography. The experimentally determined 

CSA parameters from static 13C NMR are shown in Table 5.3. To convert the calculated tensors 

values to the predicted chemical shift for nesquehonite, a linear relationship between calculated 

CSA tensor elements and experimentally determined chemical shifts of magnesite and hydro-

magnesite is shown in Figure 5.9. 
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Figure 5.9 Linear rescaling of 13C chemical shift tensor values. Experimentally-measured values of diagonalized 

tensors are plotted versus VASP calculated values for magnesite (MgCO3) and hydromagnesite 

(4MgCO3.Mg(OH)2•4H2O). The experimental data of magnesite is from a previous publication, and hydromagnesite 

from the previous chapter.  
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In Figure 5.9, experimentally determined chemical shift tensors of magnesite (MgCO3) are from 

a prior publication,91 and hydromagnesite values are from a recent publication.153 Because it has 

been shown the vdW-DF2 functional optimized structure is more accurate, the calculated chemi-

cal shift tensor of hydromagnesite from vdW-DF2 optimization is used in the linear relationship.  

Here, using atomic coordinates from the nesquehonite crystal structure from the published X-ray 

refinement in the ICSD,127 Vienna Ab initio Simulation Package (VASP)115 calculations of the 

13C CSA parameters were performed, values given shown in Table 5.3, focusing on isotropic 

chemical shift (δiso), values for ηCSA and reduces chemical shift anisotropy (δaniso). 

Table 5.3 Experimental and computationally (VASP) determined 13C NMR CSA parameters for 

nesquehonite using XRD atomic coordinates and atomic structures derived from DFT relaxation using 

different functionals 

Method δiso (ppm) δaniso (ppm) ηCSA 

Exp 13C NMR (Dmfit) 165.2 -47.09 0.54 

DFT (XRD) 157.9 -49.80 0.70 

DFT (GGA-PBE) 162.5 -50.39 0.58 

DFT (vdW-DF) 165.3 -50.69 0.58 

DFT (vdW-DF2) 164.5 -52.24 0.57 

 

CSA parameters derived from the GGA-PBE relaxed structure are shown in Table 5.3 (labeled as 

DFT (GGA-PBE)). Through comparison, the δiso of carbonate and ηCSA through GGA-PBE func-

tional match experimental data better compared to XRD determined atomic coordinates. Howev-

er, there is still a 2.7 ppm difference for the isotropic chemical shift between GGA-PBE 

functional optimized structure and experiment. 

CSA parameters calculated by DFT using vdW-DF and vdW-DF2 functionals optimized struc-

ture are also shown in Table 5.3. They both improve the agreement for δiso compared with the 
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XRD determined atomic coordinates or the GGA-PBE functional optimized structure. The over-

all best agreement with the CSA parameter is obtained using the relaxed geometries obtained 

from the vdW-DF functional. δiso is the value known with the standard where good agreement is 

required. Although ηCSA and δaniso could have slightly errors, these values help us select vdW-DF 

as the best agreement to experiment.  

 

 

Figure 5.10 Static 13C NMR spectra of nesquehonite from experiment and simulation. Experimental 13C data are 

shown in black, the simulated CSA-broadened lineshapes for nesquehonite in red. Best fit using Dmfit, denoted 

“Dmfit”; and simulated from NMR tensors determined from VASP calculations using atomic coordinates from X-

ray diffraction, denoted “XRD”, from relaxations using the GGA-PBE functional, denoted “GGA-PBE” and from 

relaxations using the vdW-DF and vdW-DF2 functionals, denoted “vdW-DF” and “vdW-DF2”, respectively.  

Additionally, the static 13C lineshape can be generated through DFT calculated NMR parameters. 

In the simulation of the static 13C CSA lineshape, δiso is constrained to the experimentally-

measured value, while the values for ηCSA and δaniso are from DFT predictions. Figure 5.10 dis-

plays the deconvolution by Dmfit, along with simulated static 13C lineshapes from DFT calcula-

tion using atomic coordinates from X-ray diffraction, from relaxations from using GGA-PBE, 

vdW-DF and vdW-DF2 functionals. For the XRD crystal structure, the simulation of the static 

13C lineshape indicates a higher asymmetry (ηCSA =0.7). However, it is also found that there are 
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slight differences in the simulation of 13C static lineshape between GGA-PBE, vdW-DF and 

vdW-DF2. Therefore, it is decided to explore the three chemical shift tensors from experimental 

deconvolution, the prediction from XRD atomic coordinates, GGA-PBE, vdW-DF and vdW-

DF2 functionals. They are summarized in Table 5.4. RMSE value between the predictions and 

experimental deconvolution indicates the vdW-DF has the best agreement with the experimental 

data.  

 

Table 5.4 Experimental and computationally (VASP) determined 13C NMR diagonalized chemical shift 

tensor values for nesquehonite using XRD atomic coordinates and atomic structures derived from DFT 

relaxation using different functionals 

Method δXX 

δ11 

δYY 

δ22 

δZZ 

δ33 

δiso RMSE (ppm) 

Exp 13C NMR (Dmfit) 201.5 176.0 118.1 165.2 -- 

DFT (XRD) 200.1 165.4 108.1 157.9 8.47 

DFT (GGA-PBE) 202.2 173.2 112.1 162.5 3.87 

DFT (vdW-DF) 205.4 175.8 114.6 165.3 3.03 

DFT (vdW-DF2) 205.4 175.8 112.3 164.5 4.07 

*we are presenting both “standard” notation δ11, δ22 and δ33, (ordered by frequency from high to low) and the 

Haeberlen notation δXX, δYY and δZZ, (where | δZZ - δiso | ≥ | δXX - δiso | ≥ | δYY - δiso | ≥) for the diagonalized chemical 

shift tensor values. 
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5.3.6  Comparison Between Experimental XRD Curve and Prediction 

 

 

Figure 5.11 Comparison of powder-X-ray diffraction (PXRD) patterns:  a) experimentally measured PXRD data 

(shown in black), and simulated powder patterns b) for the atomic coordinates determined from a published structure 

of nesquehonite “Simulated PXRD (literature values)” (shown in red), and c) for the VASP calculation from 

relaxations using the vdW-DF functional “DFT-predicted powder diffraction (vdW-DF)” (shown in blue). The 

CrystalMaker program was used to generate simulated PXRD patterns.   

In the last section, we showed that the vdW-DF functional could lead to a better agreement be-

tween simulation and experiment, using the 13C{1H} REDOR and CSA. However, in the compu-

tation, the unit cell and atomic coordinates are optimized from geometry optimization. Conse-

quently, it is reasonable to compare the predicted XRD patterns with the experimental XRD pat-

terns after geometry optimization. Figure 5.11 shows the comparison of powder XRD patterns 

among experimental data (room temperature), simulated PXRD from the published XRD struc-

ture (0 K), and from the geometry-optimized structure using vdW-DF functional (0 K). There is 

reasonably good agreement between DFT-predicted PXRD using the vdW-DF functional opti-

mized structure and experimental data. In Table 5.5, the lattice parameter changes for each lattice 

constant, including a, b and c, are presented including the percentage change. Using vdW-DF, 
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the change in each lattice parameter is less than 2%. However, the lattice changes from the 

GGA-PBE functional is larger than 2% for lattice parameter c. Generally, a bad computation 

usually change the lattice parameter more than 2%.135,136 

Table 5.5 Lattice parameters (Å) from the powder XRD and DFT calculation. 

 
 Crystal structure at room 

temperature from powder 

XRD 

DFT-predicted atomic coordi-

nates (vdW-DF) at 0 Kelvin 

DFT-predicted atomic coordi-

nates (GGA-PBE) at 0 Kelvin 

a* 5.365 Å 5.466 Å  (1.88%) 5.458 Å  (1.73%) 

b 7.701 Å 7.827 Å  (1.64%) 7.784 Å  (1.08%) 

c* 12.126 Å 12.189 Å (0.52%) 11.851 Å (2.27%) 

Percent error is indicated in parentheses. * Lattice parameter a and b are interchanged to match the output of VASP  

 

5.4 Conclusions 
 

In our prior study, the 13C CSA tensor indicates an asymmetric structure, and it is concluded that 

the chemical formula of Mg(HCO3)OH·2H2O is more accurate, which is also consistent with 

previous studies of nesquehonite.146,147 However, under the 25 KHz spinning rate used in this 

study, the 13C{1H} REDOR curve can determine the distances between the surrounding 1H and 

13C. Here, it has been shown that the chemical formula of MgCO3·3H2O is more reasonable for 

the 13C{1H} REDOR experiment. The asymmetry of the carbonate site (the static 13C NMR line-

shape) is due to the proximity of the waters around the CO3
2- group, which distorts the carbonate 

away from D3h symmetry. The CSA tensors and parameters of carbonate in nesquehonite can 

also be predicted by DFT after structure optimization. It is also found that the optimized structure 

using the vdW-DF functional, can be used to better predict CSA parameters, along with a slight 
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improvement for 13C{1H} REDOR. The combination of static 13C lineshape, 13C{1H} REDOR, 

and DFT calculations suggested that the correct chemical formula of nesquehonite is 

MgCO3·3H2O.  

Finally, two major contributions of this study depend on the experimental results and analysis 

above are summarized as follows: 

a) δiso of 13C NMR is not enough to unambiguously assign carbonate versus bicarbonate. 

Using a combination of 13C{1H} REDOR experiment and SIMPSON simulations of DFT 

optimized crystal structures, those two become distinguishable and favors the chemical 

formula of nesquehonite is MgCO3·3H2O.  

b) The vdW-DF functional can better model weak interactions, such as hydrogen bonding, 

to improve the predictions of hydrogen positions. This aspect can be experimentally 

validated by using REDOR NMR and 13C chemical shift tensors. Such solid-state NMR 

will help to consider the appropriate functionals for structure optimization in the DFT 

community. 
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Appendix A 
 

CO2 Mineralization 
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Figure A.1 ICP-MS results of solution from the batch reaction vessel. 

 

 
 

Figure A.2 SEM pictures of magnesite powder in the bottom of batch reaction vessel. 
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Figure A.3 ICP-MS results of solution from the mixing vessel in flow-through reaction. 
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Appendix B 
 

 

Hydromagnesite 

 

 

Figure B.1 13C static NMR spectra of hydromagnesite and computed 13C lineshapes. Experimental 13C data is shown 

in black, Carbon 1 in blue, Carbon 2 in green, their sum in red, and the residual between experiment and simulation 

is in purple. Deconvolutions: using Dmfit (a); and (b) –(d) simulated from NMR tensors determined from VASP 

calculations using atomic coordinates from X-ray diffraction (b), from relaxations using the GGA-PBE functional 

(c), and from relaxations using the vdW-DF2 functional (d).   
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Figure B.2 Calculated 13C{1H} REDOR curve for different numbers of nearby hydrogens as indicated in the legend 

for hydromagnesite 

 

Table B.1 Three chemical shift tensor components and RMSE values for Carbon 1 and Carbon 2 from the 

X-ray crystal structure, and VASP calculations from relaxations using the GGA-PBE functional and vdW-

DF2 functional. 

 
Carbon 1 δ11 (ppm)* 

δXX (ppm) 

δ22 (ppm)* 

δYY (ppm) 

δ33 (ppm)* 

δZZ (ppm) 

RMSE (ppm) 

GGA-PBE 192.3 179.0 114.1 6.15 

vdWDF2 200 177.8 117.3 3.36 

XRD 192.9 160.8 108.6 9.68 

Experimentally de-
termined 

201.8 174.3 113 ---- 

Carbon 2 δ11 (ppm) 

δXX (ppm) 

δ22 (ppm) 

δYY (ppm) 

δ33 (ppm) 

δZZ (ppm) 

RMSE (ppm) 

GGA-PBE 193.3 186.3 116.1 1.25 

vdWDF2 195.8 189.5 118.1 3.04 

XRD 190.6 181.1 112.3 4.22 

Experimentally de-
termined 

192.5 185.4 117.9 ---- 
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Table B.2 Distances between the oxygen of carbonate and the closest hydrogens from water and hydroxide 

surrounding Carbon 1 and Carbon 2 from the X-ray crystal structure, and VASP calculations from relaxa-

tions using the GGA-PBE functional and vdW-DF2 functional.  

 
O(water or hydroxide) – H – O (carbonate) intermolecular distances 

 X-ray Diffraction GGA-PBE vdW-DF2 

 Intermolecular Bond 
Distance 

(Å) 

Intermolecular Bond 
Distance 

(Å) 

Intermolecular Bond 
Distance 

(Å) 

Carbon 1 H2: OH2 —(CO3
2-) 2.026 H2: OH2 —(CO3

2-) 1.636 H2: OH2 —(CO3
2-) 1.817 

 H4: OH2 —(CO3
2-) 1.781 H4: OH2 —(CO3

2-) 1.658 H4: OH2 —(CO3
2-) 1.692 

Carbon 2 He: OH2 —(CO3
2-) 2.809 He: OH2 —(CO3

2-) 2.729 He: OH2 —(CO3
2-) 2.544 

Hg:OH‒ —(CO3
2-) 2.745 Hg:OH‒ —(CO3

2-) 2.698 Hg:OH‒ —(CO3
2-) 2.710 

 

Table B.3 Intramolecular distances between hydrogen and oxygen in water or a hydroxide ion surrounding 

Carbon 1 and Carbon 2 from the X-ray crystal structure, and VASP calculations from relaxations using the 

GGA-PBE functional and vdW-DF2 functional.  

 
O(water or hydroxide) – H intramolecular distance 

 X-ray Diffraction GGA-PBE vdW-DF2 

 Intramolecular Bond 
Distance 

(Å) 

Intramolecular Bond 
Distance 

(Å) 

Intramolecular Bond 
Distance 

(Å) 

Carbon 1 H2: H — OH 0.820 H2: H — OH 1.020 H2: H — OH 1.001 

 H4: H — OH 0.895 H4: H — OH 1.007 H4: H — OH 1.003 

Carbon 2 He: H — OH 0.802 He: H — OH 0.980 He: H — OH 0.982 

Hg: H — O‒ 0.752 Hg: H — O‒ 0.972 Hg: H — O‒ 0.972 
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