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ABSTRACT OF THE DISSERTATION 

 

Isolating Item and Subject Contributions to the Subsequent Memory Effect 

 

by 

 

Jihyun Cha 

 

Doctor of Philosophy in Psychological and Brain Sciences 

Washington University in St. Louis, 2019 

Ian G. Dobbins, Chair  

The subsequent memory effect (SME) refers to the greater brain activation during encoding of 

subsequently recognized items compared to subsequently forgotten items. Previous literature 

regarding SME has been primarily focused on identifying the role of specific regions during 

encoding or factors that potentially modulate the phenomenon. The current dissertation examines 

the degree to which this phenomenon can be explained by item selection effects; that is, the 

tendency of some items to be inherently more memorable than others. To estimate the potential 

contribution of items to SME, I provided participants a fixed set of items during encoding, which 

allowed me to model item-specific contributions to recognition memory strength ratings using a 

linear mixed effect (LME) model. Using these item-based estimates, I was then able to isolate 

two distinct item-related activations during encoding that were linked to item distinctiveness and 

general item memorability, respectively. However, the residual of the LME model which reflects 

recognition strength unaccounted for by the items recovered the majority of original areas linked 
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to subsequent recognition. Thus, I conclude that SMEs are largely attributable to encoding-

related processes unique to each subject. Nevertheless, proper modeling and statistical control of 

item-driven effects afforded detection of originally missed encoding-activations and resulted in a 

SME more robust than the original. Taken together, these findings suggest that the SME reported 

in the literature is largely independent of the specific items encoded and demonstrates the need 

for different functional interpretations of item- versus subject-driven SMEs. 
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Chapter 1: Introduction 
 

One of the most studied memory phenomena in functional brain imaging is the 

subsequent memory effect (SME). Beginning with work by Wagner et al. (1998) and Brewer et 

al. (1998), it was noted that during encoding, words that later go on to be recognized yield higher 

activation than those later forgotten in several brain regions (Figure 1.1) including the left 

inferior frontal cortex (IFC), bilateral fusiform cortex, bilateral hippocampal formation, bilateral 

premotor cortex (PMC) and bilateral posterior parietal cortex (PPC) (Kim, 2011). These findings 

evoked considerable interest because they suggested the possibility of capturing the online 

process of encoding or at least those processes leading to durable encoding.  

 

 

Figure 1.1. Subsequent memory map (adapted from Kim, 2011) 
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As in most cognitive neuroimaging research, studies on the SME have been primarily 

focused on identifying the functional roles of specific regions during encoding. For example, 

SMEs in the medial temporal regions support the general idea that ‘strong’ activation of these 

memory-linked areas promotes durable encoding (Brown & Aggleton, 2001; Davachi, 2006; 

Davachi, Mitchell, & Wagner, 2003; Eichenbaum, Yonelinas, & Ranganath, 2007; LaRocque et 

al., 2013; Liang, Wagner, & Preston, 2012; Squire & Zola-Morgan, 1991). Another line of 

research has been focused on the factors that potentially modulate the phenomenon. For 

example, how the composition of regions demonstrating SME varies via stimulus class or type of 

memory assessed (Kim, 2011; Kirchhoff, Wagner, Maril, & Stern, 2000; Qin, van Marle, 

Hermans, & Fernández, 2011; Uncapher & Wagner, 2009), whether there is an overlap between 

the regions demonstrating SMEs and the regions responding to memory relevant item 

characteristics such as word frequency (Chee, Westphal, Goh, Graham, & Song, 2003) and 

finally, whether the magnitude of SMEs in certain regions of interest (ROIs) changes as a 

function of factors such as phonological familiarity (Clark & Wagner, 2003), arousal (Dolcos, 

LaBar, & Cabeza, 2004), or aging (Daselaar, Veltman, Rombouts, Raaijmakers, & Jonker, 

2003).   

Common to most of these approaches, is an interest in identifying cognitive processes 

that affect encoding that generalize across exemplars of the particular stimulus categories tested. 

In an attempt to achieve this generalizability, the materials are counterbalanced across conditions 

of interest. For example, in a study of cognitive aging and verbal recognition memory, one would 

counterbalance the words across old and new study status, with both young and older adults 

receiving the same counterbalancing. However, because the subjects’ performance at the level of 

items determines the two conditions of primary interest (recognized versus forgotten) the 
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counterbalancing methods, in isolation, can never ensure that the observed activation differences 

are not largely the result of simply comparing more versus less intrinsically memorable items. In 

the case of cognitive aging, this would be potentially confounded by the possibility that this 

potential item selection artifact could differ across cohorts in ways unrelated to encoding 

processes per se. For example, if the vocabularies markedly differ across the two groups in a way 

systematically linked to the characteristics of the items, then SME differences could arise even if 

the effect within each group largely reflected an item selection effect. 

Thus, while a given researcher might conclude that a particular region of activation 

difference in the above example reflect, for example, differences in self-initiated semantic 

elaboration strategies that lead to differences in subsequent memory, they could instead reflect 

the differences between intrinsically more, versus less memorable items. Indeed, as I further 

discuss below, item selection effects in SME designs are pernicious because they could arise 

even if each subject receives a wholly different set of items. All that is required is that one 

assume that items differ intrinsically in memorability. The key challenge posed by these potential 

item selection effects, is that they compete with other process-oriented explanations that should 

span items per se (e.g., self-initiated elaborative strategies). Below I discuss the origins of the 

SME design in more detail, highlighting the potential for item selection effects within the 

designs.  

 

1.1 Challenging Aspects of the Subsequent Memory 

Paradigm: Self-selection by subject  
While motivated by similar phenomena discovered from ERP studies (Paller, Kutas, & 

Mayes, 1987), examination of SMEs with functional magnetic resonance imaging (fMRI) was 
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limited because of the slow temporal dynamics of the BOLD signal, which made it difficult to 

link the response to an event during a specific trial. Thus, the SME in fMRI research was 

originally studied by comparing the two blocks where the participants engage in the different 

encoding processes known to produce higher versus lower level of recollection (e.g., semantic 

versus non-semantic encoding) (See Wagner et al., 1998 for the discussion of this issue). Only 

after the development of event-related designs (Dale & Buckner, 1997), was the trial-wise 

examination of encoding activations made possible via fMRI. Rapidly after this methodological 

advance, two seminal studies ported the SME design of ERP research into fMRI event-related 

designs to document spatially precise SMEs using verbal items (Wagner et al., 1998) and 

pictorial items (Brewer et al., 1998). 

Even with this methodological advance, which allowed researchers to spatially localize 

specific regions demonstrating the SME pattern for specific encoding conditions, the 

interpretation of the SME activations critically depends upon whether one assumes items are 

equally capable of being encoded. If the assumption is true, then the contrast of subsequent hits 

versus misses reveals the recruitment of subject-initiated processes, such as semantic elaboration 

or attentional focus, which facilitate memory encoding. If not however, then the contrast of hits 

versus misses may merely reveal that some items are intrinsically more memorable than others. 

This sort of item selection effect, if present, would challenge interpretations that depend upon 

subject-initiated encoding processes, and instead suggest more passive encoding interpretations 

linked to item properties such as distinctiveness.  

To some extent, the failure to more seriously consider item selection interpretations in 

prior SME research may have reflected the fact that items are invariably counterbalanced across 

old and new stimulus categories, perhaps leading to the tacit belief that item selection effects are 
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therefore minimized. However, the efficacy of counterbalancing is completely negated by the 

fact that subject-selections define the categories of interest and the researchers have no control 

over which item to be later remembered or forgotten. To see why, consider the possibility that all 

items have a normative probability of being well-encoded (viz., item memorability) that ranges 

from 0 to 1. If this were true, the same selection effect would occur across participants even if 

each participant studied an entirely different set of items. Then, his or her performance would 

merely reflect (or be conflated with) the a priori memorability of the items or rank ordering 

across items that he or she was given to study. Thus, as I show below, the only way to effectively 

deal with potential item selection effects, is to directly model their contribution to performance. 

Perhaps, somewhat surprisingly, the simplest way to do so is to give every subject the same set 

of items during encoding.  

To my knowledge, there has not been a single functional imaging study of verbal 

recognition SMEs that has attempted to model the contribution of item selection effects to the 

SME findings (although see Bainbridge, Dilks, & Oliva (2017) for a pictorial recognition work). 

However, behavioral researchers have been interested in the contributions of various normative 

word characteristics that might lead to increased versus decreased recognition. For example, the 

work of Cortese and colleagues (2010; 2015) which I discuss more fully in Section 1.2 might be 

construed as demonstrating that item selection effects in recognition might be quite large and 

those effects are linked to easily identifiable psycholinguistic characteristics of the tested words. 

Briefly, they demonstrated that items can differ in their consensual memorability (probability of 

recognition across individuals) and that a substantial amount of variance for these memorability 

scores can be explained as a function of normative item characteristics such as word frequency 

and imageability. These studies raise the possibility that some part of the SME documented in 
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prior functional imaging research may simply reflect the operation of these item-level 

characteristics rather than subject-initiated processes that govern encoding efficacy (e.g., self-

initiated semantic elaboration).  

Another demonstration of potentially large item selection effects comes from a recent 

methodological paper from Westfall, Nichols and Yarkoni (2016). The researchers’ goal was to 

illustrate the large role that stimulus effects can play in statistical inference if incorrectly 

modelled as a fixed effect (Clark, 1973). Through simulation and re-analysis of extant data, they 

demonstrated that modeling stimulus-level variability in fMRI designs tends to markedly reduce 

the effect sizes attributed to contrasts of conditions across those stimuli. Specifically, to 

demonstrate the magnitude of the ‘stimulus-as-fixed-effect fallacy’ in fMRI, they resorted to one 

of the most well-established findings which is the role of the amygdala in affective processing as 

an example. With the standard model assuming the equal subject’s response to the stimuli within 

each condition, the “emotional faces” (10 exemplars in each emotional class; anger and fear) 

produced a robust amygdala response compared to “geometric shape” (3 exemplars) and a 

smaller but notable increase for “anger faces” relative to “fear faces”. However, even with 111 

participants in the analyses (which is an unusually large sample for typical fMRI studies), the 

revised model assuming random stimulus variability demonstrated an 89% reduction in the effect 

of face vs. shape contrast and 78% reduction in the anger vs fear contrast rendering latter 

ambiguous. Interestingly, Westfall, Nichols and Yarkoni (2016) also demonstrated that the 

concern over item variability may be reduced for designs with large numbers of items in the 

respective classes. This presumably reflects the fact that across-item variability in evoked 

activation becomes increasingly less critical with large numbers of items in each class (i.e., the 

class means are estimated more reliably). Nonetheless, it is important to note that the examples 
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considered in the study did not have a subject-selection component, and hence the findings do 

not directly inform concerns about the interpretation of SMEs in fMRI where each subject 

determines which items fall into the classes of interest. In relevance to the current dissertation, 

Westfall and colleagues also introduced a secondary benefit of modeling random stimulus effect, 

asserting that the inclusion of a separate parameter for each stimulus allows one to estimate the 

brain activation associated with each stimulus. This is consistent to the methodological 

framework of the current dissertation introduced in section 3.2.4, where I estimate the general 

memorability of each item using linear mixed effect (LME) modeling approach and then 

incorporate these estimates as a new parametric modulator to detect a new set of regions 

associated with item effects during encoding. 

The item-focused analyses that I consider in this dissertation can be divided into two 

conceptually distinct approaches based on whether item encoding influences are modeled as 

resulting from normative psycholinguistic characteristics (normative characteristics approach), or 

instead estimated via the aggregate performance of other subjects (item memorability approach).  

 

1. Normative characteristics approach. Analogous to studies in psycholinguistics, I explore 

several normative word characteristics, looking for regions sensitive to trial-wise variation in 

these characteristics during encoding. I then compare these activation maps to the SME map 

defined in the traditional manner by contrasting subsequent hits and misses. The degree to which 

the trial-wise effects of the normative word characteristics overlap the traditional SME, is 

important because it suggests, albeit informally, how concerned one should be that the traditional 

SME may reflect a property of normative item characteristics as opposed to subject-initiated 

cognitive processes that transcend the specific items being encoded (i.e., subject-driven effects).  
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As noted, this type of research has been primarily conducted in psycholinguistics 

(Kronbichler et al., 2004; Pexman, Hargreaves, Edwards, Henry, & Goodyear, 2007; Schuster, 

Hawelka, Hutzler, Kronbichler, & Richlan, 2016; Yarkoni, Speer, Balota, McAvoy, & Zacks, 

2008). These studies have used parametric modulation to model the trial-wise fluctuation in brain 

response in accordance with the fluctuation in each variable. For example, Yarkoni et al. (2008) 

and Schuster et al. (2016) reported that activation in the putative visual word forma area 

(VWFA) showed reliable (negative) correlations with lexical variables such as word frequency, 

suggesting that, in contrast to the original conceptualization of the region as an area dedicated to 

pre-lexical, perceptual processing of word forms (Cohen et al., 2002; Dehaene, Cohen, Sigman, 

& Vinckier, 2005; Dehaene et al., 2002; McCandliss, Cohen, & Dehaene, 2003), its role extends 

to more abstract representations of words (also see Price & Devlin, 2003; Vogel, Petersen, & 

Schlaggar, 2014 for the region's involvement beyond the orthographic features of words). 

Similarly, one goal of this dissertation is to detect regions demonstrating the item-level 

modulation from the normative item variables and to see if they overlap with regions 

demonstrating SME.   

 

2. Item memorability approach. The second approach uses item memorability estimates, 

typically calculated as a simple consensual hit rate of the group as the focus of the analysis. 

Consensuality measures simply record the tendency of observers to respond in the same manner 

for each item (Koriat, 2008), for example, item memorability measured by consensual hit rate of 

Cortese et al. (2015) described below. Given that the scope of this dissertation is limited to 

recognition memory and the SMEs measured by recognition test, by the term “memorability”, I 
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refer to recognition memorability and its relationship to normative variables throughout the 

dissertation. 

In the case of Cortese et al. (2015) the goal was to use normative item characteristic in an 

attempt to explain variation in item memorability scores. A new question I will address in the 

current dissertation instead examines the degree to which consensual memorability scores predict 

individual subject behavior across trials. This question directly examines the degree to which 

each subjects’ responding is, or is not, predictable as a function of the response tendencies of 

others to the same items. As I will discuss in following sections, it is possible to explain a 

considerable amount of variation in item memorability scores (using, for example, normative 

characteristics), even if those memorability scores are not robust predictors of recognition 

decisions across the trials of observers. 

To summarize, I will focus on the two types of item measures, in order to examine: (1) 

How well do the normative characteristics of items (e.g., word frequency) explain variation in 

either consensual memorability scores, or the efficacy of encoding across items? (2) Regardless 

of these characteristics, to what degree can we predict the memory responses of an individual, by 

knowing the consensus responses of others to the items that he or she is being tested on? 

To provide more wholistic picture of item contributions in SME, I will combine these 

item measures within a single LME equation predicting trial-wise subsequent recognition 

memory strength reports. The predictions arising from these two separable constituents of the 

LME model will then be used to parametrically model brain activation during encoding. This 

LME model prediction approach directly addresses the primary question of the dissertation, the 

degree to which traditional SMEs during verbal encoding are subject- versus item-driven 

phenomena. If they were fully the former, then item-based prediction of recognition strength 
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reports would not implicate regions identified through the traditional SME contrast (hits > 

misses). If the traditional SMEs were fully an item-driven phenomenon, then the item-based 

LME model prediction would largely, if not fully, encompass the traditional SME map. In other 

words, the SME would largely reflect item variations in intrinsic memorability.  

Below I take a closer look at behavioral studies suggesting a large item-level 

correspondence between normative lexical variables and recognition memory.  

1.2 Normative Item Characteristics Linked to Recognition 

Memory  
Extending a previous ‘mega-study’ approach of lexical decision-making to recognition 

memory, Cortese and colleagues examined the relationship between several potential item-level 

characteristics (Cortese, Khanna, & Hacker, 2010; Cortese, McCarty, & Schock, 2015; Lau, 

Goh, & Yap, 2018) and the consensual hit rate measured for each item (i.e., item memorability).  

In their recent study using 2,897 disyllabic words (Cortese et al., 2015), the authors 

demonstrated the relative contribution of each normative variable using the multiple regression 

framework. Remarkably, these variables jointly accounted for about 35% of the total variance in 

consensual hit rates as well as the difference between the consensual hit and false alarm rates for 

the items. Table 1.1 summarizes the list of the item variables used in the study and the 

standardized regression coefficients of the variables from the multiple regression model 

predicting consensual hit rates. 
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Table 1.1. Standardized regression coefficients in multiple regression model predicting consensual Hit 
rates at the item-level. (Adapted from Cortese et al., 2015)  

*AoA = age of acquisition; LOD = Levenshtein orthographic distance; LPD = Levenshitein phonological distance. 
 
 
 

As discussed earlier, in explicit memory research (not limited to studies on SME) the 

assessment of item-level effects is infrequent. In accordance with the first, item characteristics 

approach, I will examine whether the findings of Cortese et al. (2015) above generalize to a 

different encoding task and whether the normative word characteristics identified by the authors 

explain SMEs in fMRI data. Additionally, I will compare the memorability scores of items 

across the Cortese study and my current sample, to see if consensuality-based item memorability 

scores are stable and predictive of SMEs. Critically, if the memorability scores derived from one 

set of subjects explain the item memorability effects in a separate group of subjects, it 

necessarily implies that different individuals possess similar mental representations of items that 

are germane to encoding and retrieval of outcomes. Otherwise such regularities could not be 

observed. Bainbridge and colleagues (Bainbridge et al., 2017; Bainbridge & Rissman, 2018) 

pushed this idea to the extreme and argued that memorability itself is intrinsic property of each 

item. I will introduce the findings from these studies below and discuss some of their claims that 

I tested in the following sections.  
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1.3 Memorability as Intrinsic Item Property  
As mentioned above, Bainbridge and colleagues studied “item memorability” as their 

primary variable of interest arguing that memorability tags the statistical distinctiveness of 

stimuli for later encoding. Based on their interest in the question of how perceptual processing of 

visual stimuli (e.g., images for faces and scenes) progresses to encoding, they collected 

memorability scores of 720 images from 800 observers outside the study. They claimed that 

memorability can be used as an intrinsic attribute of the images based on the demonstration that 

the ranking of the images in terms of their memorability is consistent across participants (The 

random split-half reliability –average correlation between the memorability scores based on the 

first half of participants and that of the second half- was .69 for faces and .75 for scenes indicated 

by Spearman’s rank correlation ρ).  

Although their memorability scores (consensual hit rate for each item) were in a 

continuous scale, in their fMRI study on encoding (Bainbridge et al., 2017), they dichotomized 

this variable (memorable versus forgettable images) presumably to match the subsequent 

memory contrast also conducted on these data (his > misses). Both of their univariate and 

multivariate analyses comparing the two constructs (memorability versus subsequent memory) 

consistently demonstrated that neural substrates of memorability were dissociable from those of 

individual participant’s subsequent memory. Specifically, memorability effects were found in the 

ventral visual stream (VVS) and the medial temporal lobe (MTL) whereas SMEs were in the 

prefrontal cortex (PFC). Based on the dissociation between two apparent “memory” related 

constructs, they argued that memorability is a stimulus property that is intrinsic to an item which 

bridges the gap between perception and memory. 
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The claim that memorability is “intrinsic” property of the stimuli per se might be 

reasonable for the perceptual stimuli that Bainbridge and colleagues used. However, it raises 

several questions. First, the degree to which the memorability contrast should overlap with the 

SME contrast, presumably depends on how much memorability (consensually defined) explains 

the recognition decisions of each individual. If memorability scores only explain a small (but 

systematic) proportion of each subject’s subsequent recognition decisions, then it seems unlikely 

that, the two maps would be coincident. Second, whether the memorability of verbal items 

demonstrates such consistency across observers (the very finding that led the authors to conclude 

memorability for images is an intrinsic stimulus property) is unclear. For example, verbal items 

may be less dependent on the “perceptual” or structural qualities of each word (although 

orthographical & phonological aspects may be important) and more dependent on the 

situation/contexts of encoding and retrieval. In fact, numerous studies have demonstrated the 

importance of encoding operations (e.g., levels-of-processing manipulation) or the match 

between encoding and retrieval contexts (e.g., encoding specificity principle and transfer-

appropriate processing) on verbal memory (Craik & Lockhart, 1972; Kolers & Roediger, 1984; 

Morris, Bransford, & Franks, 1977; Thomson & Tulving, 1970; Tulving & Thomson, 1973), 

both of which suggest that the items that are memorable within one context or task might not be 

equally memorable within another. If relative ranking of memorability across items is heavily 

altered via these manipulations, then the claim that memorability is an intrinsic item property is 

tenuous. This said, there do not appear to be studies that specifically look at the rank orderings of 

item memorability estimates under different manipulations or contexts with a goal towards 

showing that memorability is more or less stable across contexts for certain types of materials. 

For example, as mentioned earlier, it is currently unclear whether the ordering of the Cortese et 
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al. (2015) memorability estimates would substantially change across specific encoding tasks or 

manipulations of encoding and retrieval contexts. In this regard, it is important to distinguish 

between the fact that a manipulation can substantially lower or increase net recognition and that 

it can substantially alter the rank ordering of items in terms of consensual memorability.   

To sum up, whether the memorability of verbal items should be viewed as an intrinsic 

property (independent of, say, encoding operations) and whether the brain regions sensitive to 

verbal item memorability estimates are distinct from traditionally defined SME regions, are 

empirical questions to be tested. To address these, memorability scores taken from Cortese as 

well as calculated from the current study will be examined. 

 

1.4 Distinction between Item- and Trial-level Analysis: 

Explaining item effects across versus within observers. 
As discussed earlier, the item characteristics approach tries to explain variation in 

consensual memorability scores using normative item variables such as word frequency or 

imageability. This is conceptually different from explaining the recognition performance of an 

individual across trials by consensual memorability and/or by normative item characteristics 

which may also operate at the level of each trial. Hence, in actual analyses, the same explanatory 

variable such as normative item characteristics can be used to explain both trial-level 

performance and item-level memorability estimates. Thus, it is important to highlight whether 

one is modeling variation across aggregated scores for items (item-level) versus trying to explain 

variation across the trials within observers (trial-level). For example, in Cortese et al. (2015), 

every measurement is collapsed or summarized across subjects for each item so that performance 

of each individual is no longer observable.  



 

 

15 

Even if one finds a set of normative characteristics that explains a considerable 

proportion of variation in consensus scores for an item-level analysis (as in Cortese et al.), this 

does not mean that the consensus scores themselves explain a particularly large amount of 

variation at the level of trial outcomes within individuals. This is because consensus measures 

are aggregates and they can lead to stable relationships with normative variables even if that 

variable only has a minor effect on the trial-wise behavioral outcomes of each individual. In this 

regard, it is important not to conflate the size of normative item characteristic’s contribution in 

explaining consensuality data (item-level) with the ability of that variable to explain variation 

across the recognition trials within individuals (trial-level).  

To claim that an individual’s recognition memory behavior is heavily determined by item 

effects broadly, is to claim that his or her performance can be well predicted by knowing the 

specific items that were studied. This in turn means that his or her performance would be highly 

predictable by knowing the consensus response of others to those same items, if it were the 

normative features of items that produce the effects. Again, knowing how much variance in the 

consensus (item memorability) can be accounted for by normative item variables (as in Cortese 

et al.) does not inform us in predicting each participant’s memory performance across trials, 

except perhaps at the boundary conditions of perfect consensus (i.e., every item has a group hit 

probability of 1 or 0) or no consensus whatsoever (i.e., every item has a group hit probability .5). 

In the former case, we should expect to explain all the variation in each subject’s recognition 

performance, whereas in the latter case, we should expect to explain none of the variance. 

Outside of these extremes, the question of the links between explaining variation across 

consensus measures, versus using consensus measures to explain variation in the trials within 

individuals, is empirical. In this dissertation I will demonstrate that the normative item 



 

 

16 

characteristics identified by Cortese et al., and the consensus item memorability estimates of that 

report (or calculated from the current participants) do not explain much of the recognition 

behavior at the level of trials within participants. 

 

1.5 Research Aims 
In order to examine potential item contribution within SMEs, I will explicitly model the 

items by providing a fixed list of items to the participants. This will allow me to address both 

levels (item versus trial) of item contribution.  

First, with item-level analyses, I will examine the effects of normative characteristics on 

consensus in accuracy for each item (i.e., item memorability as dependent variable). Findings 

from this analysis explore why, in the aggregate, certain items are more memorable than others. 

If one or some combination of normative item characteristics can explain a decent amount of 

variance in memorability of verbal items (as shown in Cortese et al. 2015) and if memorability is 

implicated in the regions demonstrating SMEs (despite the dissociation between memorability 

map and SME map for “pictorial items” reported by Bainbridge et al., 2017), we will be able to 

observe a decent overlap between regions sensitive to those normative contributors and regions 

showing SMEs.  

Also, as an important first step in considering the stability of consensus measures of 

memorability, which must necessarily be high if memorability is an intrinsic property of each 

item, I will compare the consensus hit rates from my sample, which will use deep processing for 

encoding, to those of Cortese, who used unstructured encoding. Critically, if consensus hit rates 

were extremely similar across the Cortese and current data, and if these hit rates predicted 

encoding activations that strongly overlap with those defined using the traditional SME contrast, 
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it would indicate that SME effects are strongly a function of normative item memorability. Also, 

because Cortese et al. were able to account for more than 35% of the variation in consensus hit 

rates using specific normative word characteristics, we would gain insight into the mechanisms 

driving the memorability of verbal items. 

Second, based on item effects analysis, I will address the degree to which the behavior of 

individuals at the level of trials can in fact be explained using consensus memorability estimates. 

Although the literature warning against “item-as-fixed-effect fallacy” (Clark, 1973; Westfall et 

al., 2016) can be taken to suggest the item effects in recognition memory are quite large, as I 

have noted above, this may reflect confusion with the fact that the reliability of consensuality 

measures is large. Thus, I will directly test how effective consensuality measures are in 

predicting trial-level outcomes across individuals. Behaviorally, if there are considerable item 

effects in recognition memory, we will be able to make prediction on one’s recognition 

performance in each trial just by knowing how others have responded to the item. In imaging, 

regions and their magnitude of activation detected by individual’s memory performance (SME) 

should be comparable to those detected by group tendencies. Following recommendations of 

studies emphasizing random stimulus effects (Baayen, Davidson, & Bates, 2008; Barr, Levy, 

Scheepers, & Tily, 2013), an LME modelling framework will be adopted to capture the random 

effect of items and examine the item contributions in the trial-wise recognition behavior of 

individuals scanned during encoding. Components of the model will then be used to isolate 

SMEs that either are, or are not, reliably linked to item effects. Finally, the overall utility of the 

estimates from the framework in imaging analysis will be also discussed.   

To preview, the data suggest that 1) consensuality measures of verbal memorability and 

its relationship to item characteristics may not be highly stable across differences in context, 2) 
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item effects in behavioral recognition performance are quite small, and 3) the SME in functional 

imaging largely reflects subject-driven processes that cannot be explained by knowing which 

particular items a subject is encoding.   
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Chapter 2: Experiment 

2.1 Participants 
 Twenty-five participants from Washington University in St. Louis and the St. Louis 

community were recruited. Participants were right-handed, native English speakers with normal 

or corrected-to normal vision and no history of psychiatric or neurological illness (via self-

report). The participants received $25 per hour (up to three hours) as compensation. All 

participants provided informed consent in accordance with university guidelines. 

 Two participants were excluded due to poor recognition performance (d-primes of .05 

and .37 respectively, with the latter also failing to respond on 188 of 400 encoding trials). 

Another participant was excluded due to severe image artifact (no signal at the superior parts of 

the brain), leaving 22 for the analyses. The remaining participants were 18 – 29 years old (M = 

21.5, SD = 2.96) and nine were female.  

 

2.2 Materials 
 All the tasks were performed on an IBM laptop running PsychoPy (version 1.85.4; 

Peirce, 2009). During scanning, stimuli were presented via an MR-compatible rear projector 

(screen resolution of 1024 x 768 pixels) viewed through a mirror attached to the head coil. All 

encoding items were presented centrally in white on a black background. In-scanner responses 

were made via button press on a response box.    

Outside the scanner, test stimuli were displayed on the built-in display of the laptop 

(screen resolution of 1366 x 768 pixels) and the responses were collected via keyboard. 
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2.2.1 Word list preparation 

600 nouns (400 recognition targets and 200 lures) were drawn from the 2,897 disyllabic 

words of Cortese et al. (2015). The 1,237 available nouns were first sorted into 10 levels in terms 

of their memorability (consensual hit rate) with 60 items randomly drawn from each decile, 

ensuring the resulting 600 items would span a representative range of normative memorability. 

This random selection process was repeated 2,000 times, and the one yielding the strongest 

association between semantic distinctiveness (defined below) and normative memorability was 

retained as the final list for the experiment, maximizing the potential for observing the mediating 

effects of semantic distinctiveness during encoding. Finally, 400 out of 600 selected nouns were 

randomly assigned as the fixed list of encoding materials, with the remaining 200 serving as 

lures during the post-scanning recognition test. 

The original Cortese list was normed for various attributes such as Imageability 

(originally taken from Schock, Cortese, Khanna, & Toppi, 2012; a 1-7 scale, rated by 30 

subjects; IMG for short), Length, Word frequency (Brysbaert & New, 2009; subtitle norms, the 

common log of the frequency per million words estimate; here, I inversed this value [1/word 

frequency] so that its relationship to memorability matches to other variables; InvLogFreq), Age 

of Acquisition (taken from Schock, Cortese, Khanna, and Toppi, 2012; subjective estimate of 

age range in a 1-7 scale, 1 indicating age between 0 and 2, 7 indicating age of 13 or later, rated 

by 32 subjects; AoA), and finally, Orthographic Distinctiveness (measured by Levenshtein 
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orthographic distance; Ortho Dist), and Phonological Distinctiveness (measured by Levenshtein 

phonological distance; Phono Dist)1.  

An additional characteristic considered here was Semantic Distinctiveness (Semantic 

Dist) of the items (The details of the vector smantics approach used to produce the variable are 

described in Appendix I). To quantify semantic distinctiveness of the words, I examined the 

pattern of occurence of each word across a large corpus (N = 100, 000) of movie reviews (Maas 

et al., 2011). Critically, words that have a unique distiribution of occurrence across the reviews 

(relative to the remaining words) were assumed to be semantically distinctive. While treating the 

100,000 movie reivews as an n-dimensional space in which words could cluster or isolate in 

terms of their relative positions (determined by the similarity of the occurrence pattern) I first 

calcuated pairewise cosine similarity of each word with respect to every other word in the set 

(the entire 2,897 disyllabic words from Cortese et al., 2015). The similarity value for each word 

was then translated into a dissimilarity (viz., a distinctiveness score) by subtracting it from 1, the 

highest possible score of similarity. Finally, the mean of these scores was calculated for each 

word so that the mean value can be used as a normative variable linked to the word. A high mean 

indicates that the word was, on average, distributed distinctively across the movie reviews 

presumably due to its distinctive meaning in comparison with the remainder of the set. Note that 

the set of words used for the computation of the pairwise cosine similarities included the entire 

Cortese disyllabic word list. Thus, the resulting semantic distinctiveness measure is the word’s 

 

1 The Levenshtein distances are computed using the number of deletions, substitutions and insertions necessary to 

change one letter string into another, with distinctiveness calculated as the mean Levenstein distance for each word 

to its closest 20 neighbors. Words with higher value are less similar to others (= more distinctive). (Yarkoni, Balota, 

& Yap, 2008). 
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relative distinctiveness within a database of 2,897 words with a wide range of grammatical 

classes, not limited to the selected 400 nouns. This helps ensure the measure is a “normative” 

variable rather than a study-specific variable. Table 2.1 summarizes the seven normative item 

charactersitics considered in the study and Table 2.2 shows the correlations among these 

characteristics for the 400 encoding items.   

 

Table 2.1. Descriptive statistics of seven normative variables for the encoding words (N = 400) 

  IMG AoA Length InvLogFreq* Ortho 
Dist 

Phono  
Dist 

Semantic 
Dist 

Mean 5.084 4.955 6.155 .469 2.300 2.159 .998 

SD 1.298 .915 1.122 .110 .498 .496 .003 
* Note that the Log Word Frequency was inversed (1/WF) to match the direction of other measures, such that a 
larger value (potentially) leads to more distinctive processing and better encoding.  
 

 

Table 2.2. Correlation matrix of seven normative variables used in the study. 

  IMG AoA Length InvLogFreq Ortho 
Dist 

Phono 
Dist 

Semantic 
Dist 

IMG  - -0.61*** -0.05 -0.34*** -0.05 -0.14** 0.08 

AoA   -  0.07 0.58*** 0.18*** 0.19*** 0.32*** 

Length     -  0.02 0.67*** 0.49*** -0.03 

InvLogFreq       -  0.15** 0.16** 0.61*** 

Ortho Dist         -  0.61*** 0.08 

Phono Dist           -  0.05 

Computed correlation used pearson-method with listwise-deletion. 
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2.2.2 Nonword list preparation 

One hundred pronounceable nonwords whose lexical characteristics (number of syllables, 

length, bigram frequency characteristics and the lexical decision performance measures) were 

matched to those of the encoding list were generated from the English Lexicon Project (ELP: 

Balota et al., 2007) website (http://elexicon.wustl.edu/NonWordStart.asp). Nonwords were 

included in the current design as a potential interpretive check on subsequent memory findings. 

For example, if a region demonstrated an SME was also linked to semantic distinctiveness, the 

interpretation that semantic distinctiveness mediated the SME finding would also require that the 

region distinguishes between words and nonwords, since the latter would have minimal semantic 

contributions. 

 

2.3 Procedure  
The experiment consisted of three major phases: incidental encoding within the scanner, 

recognition testing outside the scanner and finally, two short verbal intelligence tests also 

conducted outside the scanner.  

After being situated in the scanner, the participants first underwent the structural 

scanning. This lasted nine minutes for five participants and five minutes for the remainder due to 

switching the scanning protocol after the first five participants to shorten scanning time using a 

parallel acquisition technique for the structural images. Functional images were collected in four 

separate scans constituting four blocks of the encoding task.  

During encoding, participants reported whether the presented word was “pleasant” or 

“not pleasant”. If given a nonword, they were told to report the item as “not pleasant” even if the 

presented nonword resembles or reminds them of some pleasant real word. If a fixation cross 
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was presented on the screen, the participants waited for the next item to appear while remaining 

focused. Stimuli were presented for four seconds during which responses were made via a MR-

compatible response box. Two buttons on the response box were used, each corresponding to 

YES and NO decisions respectively to the question “Is this one pleasant?”. YES was indicated 

using the index finger and NO the middle finger. A brief break was given after finishing each 

block of 125 judgment trials (100 words and 25 nonwords). The entire in-scanner encoding 

phase took approximately an hour for each participant.   

 

 

Figure 2.1. Illustration of the presentation sequence of encoding phase. Each block started with a yellow 
fixation which disappeared with the first scanner pulse signaling the start of each pleasantness judgment 
run. For the words, participants reported whether the word was pleasant or not. Nonwords were to be 
given the ‘NO’ response. Stimuli were presented for 4 seconds during which the judgment was rendered. 
ISI consisting of a fixation cross varied from 0 to 8 seconds.  
 

Immediately following encoding, participants were removed from the scanner and given 

a self-paced recognition memory test in a separate room. The test items consisted of an 

intermixed list of studied and new words. The studied nonwords were not tested. Participants 

indicated if each word was old or new, followed by a three-point (low, medium, and high) 

confidence rating. The recognition test consisted of a total of 600 items (400 studied and 200 
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novel) randomly intermixed. After every 150 trials, subjects were given a brief rest before 

continuing. For the recognition judgment, the participants pressed 1 to indicate the item was 

“old” and 3 to “new”. For confidence, the 1, 2, 3 keys corresponded to each level of confidence.  

After completing the recognition test, two abbreviated verbal intelligence tests were 

conducted. First, the participants were given a computer-based Shipley vocabulary test (Shipley, 

1940). In this test, 40 synonym questions were given during which participants indicated which 

of four words mostly closely matched the meaning of a target word by pressing the number keys 

1 to 4, indicating the position of the chosen synonym. Following this, they were given an 

abbreviated version of North American Adult Reading Test (NAART) which scores the 

pronunciation of 35 words with uncommon pronunciations (Blair & Spreen, 1989; Uttl, 2002). 

After completing all the tasks, the participants were debriefed and thanked for their participation.     

 

 

Figure 2.2. Illustration of task screen during the two computer-based tasks. During the recognition test, 
participants judged each word as “old” (had encountered during the encoding phase) or “new” (had never 
seen during the encoding phase). They also expressed their level of confidence of their judgment 
immediately following each recognition response. During the Shipley vocabulary test, the participants 
were given words among which they had to choose one word that means (nearly) the same thing as the 
word presented in yellow. In this example, “speak” was the right answer for the “TALK” prompt. 
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2.4 Design 
 A major feature of the study design is that every participant was presented with the same 

400 words for encoding (in addition to the same 100 nonwords for encoding and an additional 

200 words for recognition testing). Although the same items were presented, the order of 

presentation was randomized. The distribution of event types (Word, Nonword and the jittered 

ISIs) was determined by four sequences generated using Optseq2 algorithm. The algorithm 

generated fixation ISIs between 0 and 8 seconds (multiples of 2 seconds; With an ISI of 0 

second, the next item immediately followed the previous item without a fixation cross). One of 

four sequences was then assigned to each block for each participant, whose order (which 

sequence for which block) was counter-balanced using a Latin-square method.   

 

2.5 fMRI Data Acquisition 
Images were acquired on a 3T Simens Magnetom Prisma fit MRI scanner (Erlangen, 

Germany) at the Center for Clinical Imaging Research at the Barnes-Jewish Hospital. High 

resolution structural data (1 x 1 x 1mm) were acquired by T1-weighted MP-RAGE sequence. 

The T2*-weighted functional volumes were acquired with in-plane resolution of 4 x 4 mm with 4 

mm slice thickness in the FOV of 256 mm. For each volume, 34 slices were acquired in 

interleaved fashion from inferior to superior (TR = 2000ms, TE = 27ms, with flip angle of 90o).  

 

2.6 fMRI Data Analysis 
Functional images were preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) 

running in MATLAB R2017b (Mathworks Inc.). For motion correction, images were realigned 
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to the first image in each session and then to the mean of all images using a rigid body spatial 

transformation. Slice timing onset differences were corrected using sinc-interpolation where each 

slice was aligned to the middle slice collected (interleaved sequence). High-resolution structural 

images were first co-registered to the mean functional image and were then segmented using 

tissue probability maps. The structural images were spatially normalized to the MNI space with 

forward deformation and the deformation field file created during this step was used to normalize 

the realigned and slice-timing-corrected functional images. The normalized functional images 

were then resampled to 2 x 2 x 2 mm voxels and then smoothed with 6 x 6 x 6 mm FWHM 

Gaussian kernel.   

After preprocessing, a general linear model (GLM) was fitted for each participant’s data 

with two conditions of interest (Words and Nonwords), various parametric modulators for 

“Words” trials, and six head movement parameters as regressors of no-interest. All the 

parametric modulation models included the reaction time for the pleasantness judgment as an 

additional regressor of no-interest, so that the effect of each variable could be examined without 

potential confounding of reaction times. To recover the unique contribution of parametric 

modulators, the default setting of serial orthogonalization of modulators was disabled, such that 

each modulator would reflect the unique contribution of that variable to predicting activation as 

in standard multiple regression analysis (for details, see Mumford, Poline, & Poldrack, 2015). 

All the parametric modulators (including reaction times) were standardized (thus, mean-

centered) so that the estimate of an unmodulated regressor (“Words”) represents the mean 

activation for the condition and the estimates of modulators reflect the parametric effect around 

that mean. 
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Chapter 3: Results 

3.1 Behavioral Results 

3.1.1 Recognition performance: Participant-level analysis 

Table 3.1. summarizes participants’ recognition performance. As expected for the deep 

level of processing, the average d-prime was relatively high. A paired t-test revealed that there 

was no difference in subsequent hit rates between words judged as pleasant versus not pleasant 

during encoding, t(21) = .08, p = .94. This indicates that the participants did not demonstrate a 

congruity effect (Craik & Tulving, 1975; Roediger & Gallo, 2001). 

 

Table 3.1. Summary statistics for performance in the subsequent recognition memory test. 

 d-prime Bias Overall 
Hits 

Pleasant 
Hits 

Not pleasant 
Hits 

False 
Alarms 

Mean 1.96 -.15 .85 .85 .85 .23 

SD .73 .32 .11 .13 .14 .14 

 

 With regard to the reaction times during the encoding task, when judging the words for 

their pleasantness, participants spent longer for the items that were later recognized (M Rating RT = 

1.30, SD = .18) versus forgotten (M Rating RT = 1.25, SD = .22), t(21) = 3.12, p = .005. This may 

reflect greater elaboration at the item level which then leads to the superior subsequent memory.  

 

3.1.2 Effect of normative item characteristics on recognition: Trial-level analysis 

The goal of this analysis was to determine which of the seven normative word 

characteristics reliably predicted subsequent recognition memory. For the measure of subsequent 



 

 

29 

recognition, instead of using dichotomized recognition outcomes (hits versus misses), I 

considered a more continuous measure combining outcomes with confidence ratings. This 

measure, named “subsequent recognition strength”, was coded with a scale of 1 through 6 

spanning the highest confidence misses ‘1’ through the highest confidence hits ‘6’. Using a 

(more) continuous measure rather than a dichotomized one was expected to increase the power 

of the following analyses (Cohen, 1983). 

To predict subsequent recognition strength, each normative characteristic was first 

considered separately in a linear mixed effect (LME) model. For the models, subjects were 

treated as a random effect whose intercept reflecting individual variation in mean recognition 

strength. Additionally, as mentioned in the Introduction, the items were also treated as a random 

effect, with each word modelled as having a separate intercept (Baayen et al., 2008; Freeman, 

Heathcote, Chalmers, & Hockley, 2010). This reflects the assumption that the words can differ in 

their average memorability. As I explain in section 3.2.4, this model term is a type of 

consensuality measure since it reflects a memorability effect of each item, collapsed across 

participants. However, unlike the typical memorability calculation (the proportion of subjects 

who correctly recognized the item), this one controls for other effects that may also be present in 

the data, such as variation in the average strength rating of subjects (viz., the subject intercept). 

All LME analyses were performed with the lme4 package (Bates et al., 2015) in the R 

programming language (R Core Team, 2017). As an example, the model formula examining 

imageability is shown below.  

 

Recognition Strength ~ IMG + (1 | Subject) + (1 | Item) 
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Across the LME models, imageability, phonological distinctiveness and semantic 

distinctiveness yielded reliable predictions of recognition strength (All ps < .05). The positive 

estimates of imageability and semantic distinctiveness suggest that more easily imageable and 

semantically distinctive words were more likely to be recognized in the subsequent memory test 

with higher confidence rating. On the contrary, phonological distinctiveness demonstrated a 

negative relationship with recognition strength rating. The words that are phonologically more 

similar to their 20 closest neighbors, that is, less idiosyncratic in terms of their pronunciation 

were better recognized in subsequent testing with higher confidence.  

These three variables were retained for the fMRI analyses as potential parametric 

modulators of encoding activation. Additionally, despite its non-significance, inverse log word 

frequency was also retained for a separate, subsidiary analysis, for the sake of testing its potential 

confounding with semantic distinctiveness which has been debated in the psycholinguistic 

literature (Adelman, Brown, & Quesada, 2006; Johns, Gruenenfelder, Pisoni, & Jones, 2012). 

Table 3.2. summarizes the estimates of the seven models (one model in each row). 

 

Table 3.2. Estimates of each normative variable within each LME model predicting recognition strength.  

Variable in each model Fixed effect β Std. Beta t-value p-value 

IMG .08 .07 5.22 < .0001 

AoA -.04 -.02 -1.66  .098 

Length -.02 -.02 -1.43 .153 

InvLogFreq .18 .01 1.03 .305 

Ortho Dist .02 .01 .53 .594 

Phono Dist -.09 -.03 -2.33 .020 

Semantic Dist 20.32 .04 2.95  .003 
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Finally, to ensure that the three retained variables uniquely contribute to subsequent 

recognition strength, I entered all three into one LME model (as shown below), again modeling 

both random intercepts of subject and items. The output of this model was also used during the 

functional imaging analysis to capture the joint contribution of the normative characteristics to 

encoding activations. 

 

Recognition Strength ~ IMG + Phono Dist + Semantic Dist + (1 | Subject) + (1 | Item) 

 

As Table 3.3 demonstrates, the variables each made a unique, reliable contribution 

(although it was marginally significant for phonological distinctiveness, p = .067) to predicting 

recognition strength. Although the prediction was reliable, the variance accounted for by these 

fixed effect variables was quite small (Marginal R2 of .007). Together, the two random effect 

terms and the three fixed effect variables accounted for about 12% of the variance within the 

trial-wise recognition strength (Conditional R2)2.  

 
 
Table 3.3. LME model summary with all three significant predictors of recognition strength. 

  Recognition Strength 

    Beta Std.Beta t-value p-value 

Fixed Parts  

(Intercept)   -13.07  -1.96 .051 

IMG   .07 0.06 4.71 < .001 

Semantic Dist   18.21 0.04 2.71 .007 

Phono Dist   -0.07 -0.03 -1.84 .067 

 

2 Marginal R2 indicates the proportion of the total variance explained by the fixed effects whereas conditional R2 

indicates the proportion of the variance explained by both fixed and random effect (Nakagawa, Johnson, & 

Schielzeth, 2017)  
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Random Parts  
σ2    1.678  

τ00, Word    0.061  

τ00, Subject    0.160  

ICCWord    0.032  

ICCSubject    0.084  

Observations    8605  

Marginal R2 / Conditional R2   0.007 / .122  

 

3.1.3 Relationship between normative characteristics and item memorability: Item-level 

analysis 

As mentioned earlier, unlike the trial-level analysis where the performance of individual 

participant in each trial was the unit of analysis, the item-level analysis collapses the 

performance of all the participants for an item into a single measure of consensus (viz. item 

memorability). Thus, the unit of analysis now becomes the item, not the trial. The goal of the 

analysis is to examine the relationship between two different item variables (each of the 

linguistic characteristics and the item memorability score), investigating the factors that 

potentially make some items more memorable than others at the aggregate level.   

Table 3.4 summarizes the simple correlations between each normative item variable and 

memorability scores for the 400 encoding items. Memorability scores were either based on the 

performance of the current participants (N = 22) or taken from Cortese et al. (2015) (N = 60).  

The reliabilities of the normative variables differed somewhat when using the current sample 

versus the Cortes et al. (2015) memorability estimates. When combined in a multiple regression, 

the variables jointly accounted for 27.2% of the variance within the Cortese memorability scores 

(which is remarkable given the 400 nouns in this analysis are only a subset of 2,897 words from 
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the original Cortese list), whereas they accounted for only 6.4% of the variance in the current 

item memorability scores.   

 

Table 3.4. Item-level correlation between each normative variable and memorability scores from two 
studies. 

 Memorability 
(Current study) 

Memorability 
(Cortese et al., 2015) 

IMG .22*** .19*** 
AoA -.08 .18***  
Length -.04 -.09 
InvLogFreq .04 .33*** 
Ortho Dist .03 .08 
Phono Dist -.09 -.01 

Semantic Dist .13** .43*** 
 

Moreover, when directly compared, the two memorability scores were only modestly 

correlated with each other (r = .38, p < .0001), which is why the studies necessarily differ in 

terms of which normative characteristics are most predictive of memorability and how much 

variance in memorability they jointly account for. This modest correlation between the two 

memorability scores suggests that item memorability might be neither “normative” nor “intrinsic 

to the item” as discussed in the Bainbridge et al. (2013; 2017). In other words, the rank ordering 

of memorability of items normed from one study cannot be generalized to another without 

consideration of design and processing differences. In the discussion, I consider several 

differences between the two studies that may have produced the rank ordering differences 

between the studies.  

  It is important to note that the much smaller (compared to Cortese et al. 2015) variance in 

memorability accounted for by the normative characteristics at the item-level does not 
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necessarily mean that there were smaller item memorability effects present in the current study 

across participants at the trial-level. In fact, it suggests that the rank order of items in terms of 

their memorability cannot be fully accounted for by the linguistic and semantic factors that are 

currently known to us. Although trial-level and item-level analyses above have demonstrated the 

relationship between the normative item characteristics and recognition performance, as 

distinguished earlier, they do not directly address the question of how much of individual’s 

recognition outcomes can be explained by the responses that a group of subjects made to the 

same items. Next, I will examine the magnitude of this item memorability effects per se, moving 

away from any consideration of the normative item characteristics. 

 

3.1.4 Item memorability effect within a group predicting individual’s trial-

wise recognition outcomes 

If, on average, a large proportion of each participant’s trial-wise responses can be 

anticipated by the response tendencies of others to the same items, we can conclude that the item 

effects in recognition behavior are large. Such analyses are only feasible in realistic sample sizes 

if all the subjects receive the same words.  

To estimate the size of item effects a leave-one-out procedure was adopted in which each 

participant is removed from the group, and his or her recognition decisions (1=’old’ or 0=’new’) 

are then correlated with the proportions of remaining participants in the group who correctly 

recognized each item. The correlation is then saved, the participant returned, and another 

participant is removed, repeating the procedure. This continues until the sample is exhausted 

leaving N correlation coefficients reflecting the correspondence between each participant’s 

responses and the tendencies of the remaining participants, across the studied items. Critically, if 
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there were no item effects in the data, then this analysis would fail. Moreover, because each 

participant’s own performance is not reflected in the memorability estimates applied to his or her 

prediction, the leave-one-out predictors are statistically independent of the participant’s 

responses. 

The 22 correlation coefficients calculated this way were subjected to a one sample t-test 

following Fisher’s z transformation, demonstrating a reliable item effect in the current sample 

[mean Pearson r = .11 (SD = .05), t(21) = 10.95, p < .0001]. Although the absolute size of the 

correlation was quite small (Mean r = .11), we can say that item effects are nonetheless a robust 

phenomenon because, (a) the Cohen’s d for the one sample t-test is 2.33 (which is “huge” 

according to the rules of thumb for effect size; Sawilowsky, 2009), which reflects the fact that 

most of the sample demonstrates a positive and similarly sized effect. In fact, the responses of 13 

out of 22 participants (59.1%) were reliably predicted by the group tendencies (All ps < .05). (b) 

the recorded correlations are point-biserial correlations which are downwardly biased for 

participants whose recognition performance are either extremely good or bad. For example, a 

participant who correctly recognizes all of the items cannot demonstrate a correlation with the 

proportional response tendencies of the remaining participants because his or her responses have 

no variability. These restriction of range problems may be partially offset by using each subject’s 

strength ratings instead of dichotomous outcomes. However, this would preclude comparison to 

the Cortese et al. (2015) data (described below) whose confidence ratings, necessary for 

‘strength’ calculation, were not collected. Overall, the data demonstrate that a fairly small, but 

reliable proportion of each subject’s responses can be forecasted by knowing the response 

tendencies of the remaining 21 subjects in the sample. 
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I next consider whether the size of item memorability effects in the current sample are 

comparable to those of Cortese et al. (2015), using the same leave-one-out procedure. A one 

sample t-test again revealed that the coefficients were significantly different from zero, [Mean r 

= .16, (SD = .06), t(119) = 29.39, p < .001]3. Again, the Cohen’s d for the one sample t-test was 

huge (2.68) and remarkably, the responses of 97.5% of the participants were reliably predicted 

by the group tendencies (All ps < .05). 

Even though the leave-one-out memorability calculated from Cortese data was based on 

much larger sample size (N = 59, almost three times larger than the current sample), the mean 

point-biserial correlation in this group was not drastically different from that of current data. A 

direct comparison between the two studies indicated that the item memorability effects were 

larger in the Cortese study [two sample t-test: t(140) = 3.24, p < .005] but the difference between 

the mean correlation coefficients was quite small (r = .04). This suggests that the smaller sample 

size in the current study may have led to memorability estimates that are somewhat noisier (i.e., 

more sensitive to each subject’s removal) than in Cortese et al. However, this relatively small 

difference between the two studies, compared to the drastic difference shown in the normative 

 

3 In Cortese et al. (2015), each word was presented as both target and lure to a random set of 60 different 

participants in a group of 120. Given this assignment protocol, no two participants had the same target and lure lists, 

so I could not restrict the analysis to the 400 nouns selected for the current study. Thus, for Cortese data, the leave-

one-out memorability scores are based on the 59 (out of 60) participants who were given the same word as a target. 
To clarify, in Cortese et al., each of 120 participants received 1,500 target words, but each word was given to a set of 

60 random participants. Thus, the leave-one out procedure was performed for a total of 120 participants (hence the 

DF for one sample t-test was 119, not 59) but the memorability calculated for each word was based on 59 

participants, not 119. 
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characteristics approach (section 3.1.2 and 3.1.4) supports the distinction between the item 

memorability approach and item characteristics approach introduced earlier. 

Overall, these results suggest that just by knowing the performance of others within a 

sample, one can reliably predict a portion of each individual’s responses (rs > .11) and do so for 

the majority of the participants in the sample (> 59%). This demonstrates that there are item 

effects based on the item memorability which presumably rely upon the fact people share 

common word representations.    

 

3.1.5 Linking item effects to individual differences in verbal IQ  

If item effects reflect the contribution of linguistic representations to encoding efficacy, 

then the effects are potentially limited by the observer’s familiarity and understanding of verbal 

items (presumably measured via verbal intelligence). For example, a semantically distinctive 

item cannot be encoded as such for a subject who does not know its definition.  

This possibility can be examined by first correlating each participant’s recognition 

strength ratings with each of the three normative variables (IMG, Semantic Dist and Phono Dist) 

that were predictive at the trial-level analysis.4 Thus, for each participant, I obtained three 

correlation coefficients tracking the degree to which his or her recognition strength was 

 

4 Note that the random by-subject slope for each variable in LME model can be also used to address the same 

relationship (Barr et al., 2013). However, among the variable models introduced in the section 3.1.2, only a subset 

converged with the random slope term. Thus, to keep it consistent for every variable, I chose the LME models 

without random slope as the variable selection criteria. This summary approach for the simple correlations is then, 

another way of expressing that the slope/strength of relationship between a recognition response and each variable 

can differ across participants.  
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influenced by each of the three normative item characteristics. The three coefficients were then 

correlated with each subject’s Shipley and NAART35 scores to see whether the influence of the 

normative item characteristics was linked to these short measures of verbal IQ. Before presenting 

that analysis I briefly summarize the group performance on these IQ measures below.  

Overall, the Shipley test yielded an average proportion correct of .82 (SD = .09) and the 

NAART35 yielded a slightly lower score of .72 (SD = .12). One participant with reasonable 

recognition performance (proportion correct = .69 and d-prime = .84) nonetheless demonstrated 

exceptionally low performance for both Verbal IQ tests (.5 for Shipley and .49 for NAART35; 

which is 3 SDs below the mean for Shipley, and 1.9 for NAART35). Because the person’s 

recognition performance did not disqualify him/her for the overall analyses (both behavioral and 

fMRI), below I report the Verbal IQ correlation results with and without the participant’s data. 

Table 3.5 shows the degree to which the three normative variable-to-recognition strength 

correlations for each subject are correlated with their performance on the Shipley vocabulary 

tests. Of the three variables, only the correlation between semantic distinctiveness and 

recognition strength was reliably associated with the observers’ Shipley vocabulary scores, both 

with and without the potential outlier. This suggests that people with better semantic/vocabulary 

knowledge obtain more benefit from variations in semantic distinctiveness of items either during 

encoding and/or retrieval. In other words, the degree to which an individual better recognizes 

semantically distinctive items than less distinctive items depends upon his or her depth of 

semantic knowledge.  

 

Table 3.5. Correlation between individual’s Shipley score and variable-to-recognition correlation 
Influence on 
recognition 

from 

With Verbal IQ outlier Without Verbal IQ outlier 

Pearson r p-value Pearson r p-value 
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IMG -.03 .18 -.27 .24 

Phono Dist .10 .66 -.03 .90 

Semantic Dist .68 < .001 .47 < .05 

 

The procedure was repeated for NAART35 scores, and the findings are summarized in 

table 3.6. As with Shipley scores, imageability and phonological distinctiveness effects were 

again unrelated to individual difference in the NAART35 performance. Partially converging on 

the Shipley findings, semantic distinctiveness effects were reliably correlated with NAART35 

performance. However, this was only reliable when the potential outlier was included in the 

analysis.  

 

Table 3.6. Correlation between individual’s NAART 35 score and variable-to-recognition correlation 
Influence on 
recognition 

from 

With Verbal IQ outlier Without Verbal IQ outlier 

Pearson r p-value Pearson r p-value 

IMG -.04 .85 .03 .90 

Phono Dist -.10 .67 -.18 .42 

Semantic Dist .42 .05 .24 .29 

 

Overall, the data provide some evidence that verbal IQ moderates the influence of 

semantic distinctiveness of items on encoding (although care should be exercised given the 

modest sample size for individual differences analyses). Critically, neither Shipley nor 

NAART35 scores demonstrated a significant correlation with participants’ recognition d-prime 

(all ps > .42), suggesting that the participants’ Verbal IQ had no direct relationship to their 

recognition memory for verbal items. (Note that there are studies reporting a reliable relationship 

between fluid intelligence and recall or associative recognition (Healey, Crutchley, & Kahana, 

2014; Ratcliff, Thapar, & McKoon, 2011). Thus, current findings suggest that the individuals 
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with better verbal IQ do not necessarily have better recognition memory, but they do get more 

mnemonic benefits from semantic distinctiveness of items presumably due to their sensitivity to 

this information.  

 

3.2 fMRI Analysis Results 
The plan of the fMRI data analyses largely parallel those of the behavioral analyses. I 

begin by documenting the basic subsequent memory effect without the consideration of item 

effects, to ensure it replicates prior findings. Analyses concerning item effects will follow, to 

examine the degree to which they account for the basic subsequent memory activation.  

All the activation maps shown below were based on the voxel-wise comparisons 

thresholded at the level of p < .001 (uncorrected) significant for minimum of 5 contiguous 

voxels. Full SPM tables of suprathreshold regions in each activation map (positive effects only) 

are listed in the Appendix II. 

 

3.2.1 The basic subsequent memory effect  

(1) Regions linked to subsequent recognition memory  

As in behavioral analyses, the recognition outcome was re-coded as recognition strength 

(1 = high confidence miss to 6 = high confidence hit) so that it suits later LME modelling 

framework. The strength value was entered as a parametric modulator to identify the regions 

whose activation during encoding, forecast the level of subsequent recognition. The regressor 

yielded reliable positive activations in bilateral PMC/supplementary motor area (SMA) [BA 6, 

8], left IFC [BA 44, 47], bilateral superior parietal lobule (SPL) [BA 7], bilateral angular gyrus 
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(AnG) [BA 39], and bilateral occipital regions [BA 19]. Subsequent recognition strength also 

activated bilateral ventral temporal regions including fusiform gyrus (FuG) [BA 20, 37], 

potentially extending into the hippocampal formation.  

Although the continuous, recognition strength reports were the main regressor throughout 

the analyses, subsequent memory research often focuses on the dichotomous contrast of hits 

versus misses. As Figure 3.1 shows, the two variables yield highly overlapping maps. In the 

bottom row, the contrast map is overlaid with the recognition strength map (indicated by the 

white outline) for visual comparison. More concretely, 78.95 % of the voxels of contrast map fell 

within the strength boundary showing considerable overlap between the two activation maps. 

Thus, hereafter I will refer to the recognition strength map when discussing the subsequent 

memory effect.  

 

 

Figure 3.1. Subsequent memory effect maps defined by continuous recognition strength variable (upper 
panel) and traditional dichotomous contrast (lower panel). In upper, the warmer color indicates regions 
showing greater activity for increasing level of recognition strength (the positive effect) and the cooler 
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color indicates regions showing the opposite effect. In lower panel, the warmer color represents regions 
showing greater activation for subsequently recognized words (hits) than forgotten words (misses), vice 
versa for the cooler color. White outline in the lower panel represents the outlines of regions shown in the 
upper panel, for visual comparison between the two maps.  

 

(2) Comparison to meta-analytic SME map 

The current subsequent memory effects demonstrated overlap with SMEs reported in the 

literature as illustrated by the meta-analysis conducted by Kim (2011). Figure 3.2 shows the 

current recognition strength map (in blue) overlaid with the meta-analysis subsequent memory 

map (in red). There are several areas of overlap including left IFC, SMA/middle cingulate and 

infero-temporal regions. However, it is also clear that the current effects include several areas 

that are not in the meta-analytic map such as bilateral inferior frontal regions including anterior 

insula (aIns)/ posterior orbital gyrus (pOrG), and inferior posterior regions including extrastriate 

and more extensive fusiform areas. These additional activations may have resulted from 

restricting the materials to nouns, insuring through selection that they had a good range of item 

memorability, or from administering the same set of items to all participants. 
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Figure 3.2. Regions shown in blue are the parametric modulation map of recognition strength and the 
regions shown in red are the subsequent memory map from a meta-analysis (Kim, 2011). The meta-
analysis map is based on the studies that used verbal materials as their stimuli and tested for item memory 
(as opposed to associative memory) to match to the current stimuli and procedure.  
 

3.2.2 Parametric modulation via normative item characteristics  

As noted in the behavioral analyses, three normative item characteristics (imageability, 

phonological and semantic distinctiveness) predicted recognition strength ratings (Table 3.2). 

Item effects in the SME activation will be examined first focusing on each in isolation through 

parametric regression of each variable. Figure 3.3 illustrates the effects of each normative 

characteristic during encoding. As a reminder, reaction time for pleasantness judgment was 

included as a covariate of no interest in every analysis, properly partialling out the potential 

confounding of (incidental) encoding duration. Thus, these activations reflect responses not 

attributable to slower judgement. Each parametric modulation map is overlaid with the boundary 

of the subsequent recognition strength map (white outline) for visual comparison.  
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Figure 3.3. Parametric modulation of normative item characteristics. The warmer color represents the 
regions that showed greater activation for increasing value of each variable (positive effect) whereas the 
cooler color represents the regions that showed greater activation for decreasing value of each variable 
(negative effect). The white outlines indicate the boundary of the regions showing the subsequent 
recognition strength effect. 
  

 

Table 3.7 summarizes the pattern of overlap between each parametric modulation map 

and the subsequent recognition strength map. The percent overlap was calculated from the 
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number of voxels falling within the subsequent recognition strength map that are significantly 

activated by the normative characteristic, divided by the number of total voxels activated by the 

normative characteristics.   

 
Table 3.7. Overlap between the normative characteristic maps and the recognition strength map.  

Item Variables* # of  
total voxels 

# of voxels fall within 
the recognition 
strength map 

% Overlap with recognition 
strength map 

IMG 4019 32 0.80% 

Phono Dist 3012 932 30.94% 

Semantic Dist 738 474 64.23% 
    

 

As shown in Figure 3.3, increasing imageability produced activation in dorsal prefrontal 

and lateral parietal areas, along with posterior cingulate and retrosplenial areas. However, despite 

the largest (among the three variables) contribution of imageability in the prediction of 

recognition strength, the positive activation map of imageability did not overlap much with the 

recognition strength map. In fact, in terms of the number of voxels that fell within the 

recognition strength map (Table 3.7), imageability was the variable that showed the least overlap 

(only .8%) with the recognition strength map. 

Phonological distinctiveness showed activation that was quite restricted to the occipital 

lobe. This may suggest that the phonologically more distinctive words required more visual 

processing. The high positive correlation between phonological distinctiveness and orthographic 

distinctiveness (r = .61) suggests that these words might have required more intensive visual 

processing, which again explains the localized activation in the occipital area. In fact, 

orthographic distinctiveness (not shown here) produced activation almost identical to 

phonological distinctiveness map without much unique activation of either when pitted against 
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each other. In terms of overlap with recognition strength map, although about 30% of the voxels 

showing positive effect fell within the recognition strength boundary, this must be interpreted 

with caution given that behaviorally, phonological distinctiveness had a small but negative (not 

positive) effect on recognition strength. Critically, despite the negative relationship between 

phonological distinctiveness and subsequent recognition behavior, there were no suprathreshold 

clusters that tracked a decreasing degree of phonological distinctiveness. 

The semantic distinctiveness produced significant activation in bilateral (but mostly left-

lateralized) IFC and fusiform/parahippocampal area (regions hereafter denoted as ventral MTL). 

Because of the relatively smaller area of activation which fell mostly within the recognition 

strength map, among the three variables, semantic distinctiveness showed the greatest overlap 

with the recognition strength activation in terms of voxel count (Table 3.7).  

Finally, as mentioned earlier, although I regressed out the pleasantness judgment reaction 

time of each participant when modeling parametric modulation of the normative item variables 

as well as when creating the recognition strength map, Figure 3.3 also includes the parametric 

modulation of the reaction time itself producing a robust activation in bilateral ventrolateral and 

dorsomedial prefrontal areas. Thus, the recognition strength map shown in Figure 3.1 is the 

subsequent recognition map after these reaction time influences have been partialled out.  

 

3.2.3 Unique modulations of normative item characteristics  

(1) Three item characteristics that predict subsequent recognition strength 

Behaviorally, the multiple regression model in Table 3.3 demonstrated that three 

normative item characteristics made unique contributions to recognition strength reports. Here, I 

conduct an fMRI analysis analogous to the multiple regression, in order to identify activation 



 

 

47 

during encoding that is uniquely tied to each characteristic by modelling all three characteristics 

simultaneously as parametric modulators. Thus, in this framework, the reliable activations linked 

to any one characteristic represent modulatory effects that are unique in the presence of the other 

two. 

As shown in Figure 3.4, imageability implicated multiple fronto-parietal regions 

including bilateral AnG [50, -4, 36; -42, -76, 32], posterior cingulate/precuneus (PCgG/PCu) [-4, 

-54, 18; 8, -54, 14] and ventral MTL [-32, -34, -14; 32, -32, -18]. The fronto-parietal responses 

may reflect visual processing/inspection processes recruited for highly imageable/concrete items 

in addition to the PCgG/PCu response often linked to visual imagery (Cavanna & Trimble, 2006; 

Fletcher et al., 1995; Ganis, Thompson, & Kosslyn, 2004). The top three scoring items on this 

attribute were ‘blizzard’, ‘bullet’ and ‘cigar’. In contrast, phonological distinctiveness (blue) was 

linked to extrastriate responses [-10, -82, -14; 20, -94, 12] and likely reflects the fact that 

phonologically distinctive items also tend to have unusual word forms. The top three items for 

phonological distinctiveness were ‘platform’, ‘pigsty’ and ‘penguin’. (Note that these items were 

less likely to be subsequently recognized.). Finally, semantic distinctiveness activated left IFG [-

44, 28, 10] and left ventral MTL [-32 -44, -18], both of which fell within the main subsequent 

recognition strength map. The top three items for semantic distinctiveness were ‘tassel’, ‘talcum’ 

and ‘rumba’. Interestingly, Figure 3.4 demonstrates a very proximal region responds to items that 

are increasingly imageable during encoding and suggests that left ventral MTL may be a 

convergence zone for various types of representational distinctiveness; a possibility I consider 

next using LME modeling estimates.   

Critically, this map illustrates the unique influence of these three normative 

characteristics which also behaviorally predict recognition strength outcomes. Nonetheless, 



 

 

48 

because they predominantly fall outside the main subsequent recognition strength map, this 

provides the first piece of evidence that the SME map might largely reflect subject-driven and 

not item-driven encoding phenomena. 

 

 

Figure 3.4.  Parametric modulation map demonstrating the unique influence of three item characteristics, 
overlaid with outline of recognition strength map (white).  
 

(2) Semantic distinctiveness versus word frequency 

Although word frequency is an important predictor for episodic memory (Balota, 

Burgess, Cortese, & Adams, 2002; Balota & Neely, 1980; Criss & Malmberg, 2008; Glanzer & 

Adams, 1985; Hemmer & Criss, 2013; Malmberg & Nelson, 2003; Park, Reder, & Dickison, 

2005), its potential confounding with more semantic measures such as contextual diversity or 

semantic distinctiveness has been a source of debate mostly within the psycholinguistic literature 

(Adelman et al., 2006; Johns et al., 2012), not within the episodic memory literature. In fact, 

there have been very few episodic memory studies that treated word frequency as a continuous 
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variable (Cortese et al., 2015; Hemmer & Criss, 2013; Lau et al., 2018). The current study 

provides a good opportunity to study the issue of potential interaction or dissociation between the 

two variables in memory.  

For the 400 encoding items in current study, (inverse) word frequency showed a fairly 

large positive correlation with semantic distinctiveness (r = .61). Despite their high correlation, 

in a study comparing relative contribution of lexical versus semantic variables, Lau and 

colleagues (2018) suggested that the lexical variables including frequency jointly accounted for 

more variance in recognition than in recall, whereas semantic variables explained additional 

variance in recall on the top of what was explained by lexical variables. Together, these raise a 

possibility that the two variables capture similar but distinguishable psychological processes 

during encoding. 

Given the relationship between frequency and semantic distinctiveness, I tested whether 

the regions displaying semantic distinctiveness effects during encoding (Figure 3.3) remained 

active when pitted directly against inverse log word frequency. As Figure 3.5 demonstrates, in 

the presence of the inverse word frequency, left FuG/PHG [-28, -34, -18] remained linked to 

semantic distinctiveness although the peak of the cluster moved anteriorly, so that the major 

portion of the cluster is no longer within the recognition strength boundaries. Also, the left IFG 

response previously linked to semantic distinctiveness was no longer observed.  

On the other hand, inverse word frequency itself produced significant activations in 

several areas (e.g., IFG, SMA, and widespread regions in ventro-temporal/occipital area). The 

ventro-temporal/occipital activation is of particular interest because it replicates the previous 

psycholinguistics findings demonstrating that the putative VWFA is not limited to sublexical 

processing of “word form” but is involved with more lexical properties of words (Schuster et al., 
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2016; Yarkoni, Speer, et al., 2008) or more abstract processing not restricted to words 

(Kronbichler et al., 2004; Price & Devlin, 2003; Vogel, Miezin, Petersen, & Schlaggar, 2012; 

Vogel et al., 2014) However, despite the region’s theoretical importance and its overlap with 

recognition strength map, it is difficult to conclude that the activation contributes to recognition 

performance given the failure of inverse word frequency in predicting  recognition strength at the 

behavioral level (however, see Hemmer & Criss, 2013 for potential non-linear relationship 

between word frequency and recognition memory). 

Taken together, the findings suggest semantic distinctiveness produces left ventral MTL 

(aFuG/pPHG) activation that is reliable even after controlling for the influence of inverse word 

frequency despite the high correlation between the two variables. In addition, the fact that the 

semantic distinctiveness activation moved slightly forward (anteriorly) in the presence of inverse 

word frequency suggests that the posterior part of the aFuG/pPHG activation shown before 

might have been conflated with potential influence of word frequency. Similar “adjustment” is 

observed when the three significant behavioral predictors of recognition strength (viz., IMG, 

PhonoDist, SemanticDist) provide joint prediction (as opposed to unique contribution examined 

in the previous section 3.2.4. (1)) within an LME modeling framework, which will be introduced 

in the next section. 
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Figure 3.5. Unique parametric modulation of semantic distinctiveness and inverse word frequency 
controlling for each other.  
 
 

3.2.4 Isolating components of encoding activation using an LME model 

The above analysis demonstrates that imageability, semantic distinctiveness and (inverse) 

phonological distinctiveness each make unique contributions to activations during encoding. 

This is important, because each variable was shown to reliably predict participants’ recognition 

strength reports, but presumably cannot be represented in a common manner. For example, the 

representational structure that makes semantics distinctive should be separable from the structure 

that makes phonological features distinctive, at least in early processing stream. However, Figure 

3.4 demonstrates that semantic distinctiveness and imageability activate proximal regions of left 
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ventral MTL (aFuG/pPHG). Based on models assuming parahippocampal regions as potential 

convergence zone for information travelling to the hippocampal formation (Aggleton & Brown, 

1999), I next turned to modeling the joint (as opposed to unique) contribution of the identified 

normative item characteristics to subsequent recognition strength. To do this, I used the LME 

model fit to the behavioral strength reports of the subjects.  

As noted in section 3.1.2, this model contained three reliable fixed effects of the 

normative characteristics discussed above, and a random intercept of items, reflecting word-level 

effects not covered by these three characteristics. In total, the model in Equation 3.1 provides 

three separate components that can be used to predict encoding activation at the level of each 

trial. 

 

Equation 3.1 

Recognition Strength ~ IMG + Semantic Dist + Phono Dist + (1 | Subject) + (1 | Item) 

 

The first three fixed effect terms represent the normative characteristics shown to 

influence recognition strengths in behavior, which also provided unique activations when used as 

parametric regressors during encoding (Figure 3.4). I refer to the model-determined weighted 

sum of these three variables as ‘item distinctiveness’ based on the hypothesis that highly 

imageable and semantically distinctive items will yield durable memory representations. As to 

phonological distinctiveness, it is difficult to make a simple hypothesis because the direction of 

its relationship to recognition strength is opposite to the other two variables (note that 

phonological distinctiveness consistently demonstrated negative relationships to recognition 

performance measures in trial-level LME models as well as in item-level simple correlations). A 
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simple explanation of this pattern is that, items with lower phonological distinctiveness may be 

easier to read, which may facilitate subsequent processing of the items (e.g., at the semantic 

level). However, its positive correlation to orthographic distinctiveness which, unlike 

phonological distinctiveness, demonstrated a positive correlation to recognition (non-significant 

in the current study but significant in Cortese et al. (2015)), suggests that the relationship 

between phonological and orthographic distinctiveness and their influence on episodic memory 

might be more complex than what a simple linear association can tell us. For example, 

distinctive mapping between orthography and phonology or having fewer phonological-to-

orthographical neighbors (Cortese, Watson, Wang, & Fugett, 2004; Hirshman & Jackson, 1997) 

has been demonstrated to produce better episodic memory. This pattern of mapping or 

consistency between orthography and phonology cannot be captured by the simple correlation 

between the two distinctiveness measures.  

The next term of the equation, random intercept of subjects captures mean differences 

across subjects in the rated strength of the items, capturing for example, individual differences in 

scale use or differences in the tendency towards caution. The final random effect term, ‘(1 | 

Item)’ captures the tendency (collapsed across subjects) of each word towards a particular mean 

strength report level, and hence captures item effects not specifically modelled by the three 

normative item characteristics in the equation or subject differences in mean strength rating. 

Conceptually, this term reflects unknown but systematic influences on the mean rated strength 

across the items presumably representing normative characteristics of which I am currently 

unaware. 

In total, this fitted model captures all currently known item effects in the recognition data 

and it is sufficiently powered because each subject received exactly the same set of encoding 
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items. Once fit, the model components were then used, via the ‘predict.merMod()’ function of 

the lme4 package, to produce adjusted covariates linking behavioral item effects to fMRI 

activation at the trial-level for specific components of the model. 

 

(1) Fixed effect prediction from three normative variables - Item Distinctiveness 

Component 

First, I consider the joint influence of the three normative variables theorized to reflect 

item distinctiveness. As Figure 3.6 shows, item distinctiveness activates largely three sets of 

regions; first, ventral MTL regions including bilateral aFuG/pPHG [-30, -36, -18; 30, -32, -20] 

(BA 36/37) and some portion of left hippocampus [-34, -26, -18] (BA 54), second, bilateral 

inferior frontal gyrus (IFG) including aIns/pOrG [28, 30, -10; -28, 32, -10] (BA 47) and finally, 

left posterior cingulate/ventral precuneus [-4, -54, 16] (BA 23). As will be shown in the 

following section, the latter two are largely overlapping with regions activating for random 

intercept prediction. The ventral MTL activations which are unique to the item distinctiveness 

terms are also anterior to the initial subsequent recognition strength map boundaries. Critically, 

these regions were only discovered because item distinctiveness effects were specifically 

modelled. As noted in section 3.1.4 of the behavioral analysis, item-level effects account for a 

small, but reliable portion of each subject’s memory responding. Hence failure to model them 

specifically will likely cause them to be missed because they will be swamped by the portion of 

strength ratings not governed by item-driven effects; which in this case is the majority. Hence the 

LME model provides the ability to target specific influences not easily gleaned from the overall 

basic subsequent recognition analysis. 
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Aside from the location of the bilateral ventral MTL responses, and the nature of the 

normative characteristics driving this response, are there other reasons to conclude that the 

distinctiveness interpretation is correct? I further explore this by noting that a distinctiveness 

interpretation can also be tested using the consensual false alarm rates from Cortese et al. (2015). 

In Cortese et al., not only was each item normed for the tendency of subjects to correctly 

recognize it but was also normed for the tendency of subjects to false alarm to it during 

recognition. If the combination of the three normative variables truly reflects item 

distinctiveness, it should negatively correlate with these false alarm tendencies obtained from 

that independent data set. A reliable negative correlation between the item distinctiveness 

estimates and Cortese FAs across the items (r = -.26, p < .001) supported this hypothesis. This 

“mirror effect” of item distinctiveness term supports the idea that the relatively distinctive 

features not only serve as a basis for durable encoding, but that the absence of memorial 

information given these features is used as a basis for rejecting them as studied (Brown, Lewis, 

& Monk, 1977). 
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Figure 3.6. Parametric modulation of the LME model prediction based on “joint” contribution of the three 
fixed effect item variables (item distinctiveness component of encoding activation). 
 

 

(2) Random intercepts of items – general item memorability component 

As noted above, the ‘(1 | Item)’ term in Equation 3.1 captures item effects not explicitly 

picked up by the three normative variables constituting item distinctiveness. I refer to this model 

component as ‘mean item memorability’. When this portion of the model is used to generate an 

fMRI covariate, left dorsomedial prefrontal cortex (DMPFC) [-6, 46, 24] (BA 9/10)  (which is 

inferior to the DMPFC activation within the recognition strength map) were identified, along 

with left posterior cingulate/precuneus [-8, -52, 22] (BA 23) and bilateral IFG also including 

aIns/pOrG [30, 30, -8; -34, 32, -8] (BA 45/47) which extends to frontal operculum on the left 

side [-32, 30, 6] (Figure 3.7).  

The bilateral IFG responses appears to overlap with those arising from item 

distinctiveness terms (although here the regions are more extended) consistent with the 
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possibility that this region signals general item salience or attentional capture; a possibility 

considered in the discussion. The posterior cingulate/precuneus responses also seem to be largely 

overlapping with the item distinctiveness component although they might be slightly superior to 

those shown in distinctiveness component. Overall, the overlapping regions generally showed 

more robust/extended responses to the random item intercept (item memorability) than to the 

fixed effect (item distinctiveness) prediction.  

Finally, unlike other regions that are shared with fixed effect predictions, the left DMPFC 

responses were unique to item intercept prediction. Interpreting the role of this DMPFC regions 

is, however, much trickier since it is unclear whether this cluster is part of the salience network 

along with the IFG activations or whether it is part of the default network (Buckner, Andrews-

Hanna, & Schacter, 2008; Raichle et al., 2001) together with posterior cingulate (Power et al., 

2011; Yeo et al., 2011) without further analyses necessary for demarcation (e.g., functional 

connectivity analysis with better spatial resolution). The potential role of these regions will be 

suggested in discussion but given the exploratory nature of the current dissertation, strong claims 

regarding the functional roles of each cluster would not be suitable for the current data.      
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Figure 3.7. Parametric modulation of LME model prediction based on random intercept of item (mean 
item memorability component of encoding activation). 
 

What does the random intercept of items capture? 

As demonstrated in the behavioral analyses in section 3.1.3, the consensual item 

memorability estimates calculated for the current sample were modestly correlated with the 

estimates of Cortese et al. (2015) across the 400 encoded items (r = .38, p < .0001). As noted 

above, the prediction from the term ‘(1 | Item)’ of the LME model in Equation 3.1 should also 

reflect item memorability (but not measured as the consensual hit rate, but as predicted 

recognition strengths), albeit memorability controlling for variation due to item distinctiveness 

and subject differences in their mean strength ratings. Given this, the model-based mean item 

memorability estimates should correlate with the consensual memorability estimates in the 

current sample. It does, yielding a reliable correlation (r = .90, p < .001) across the 400 items. 

Moreover, the model-based mean item memorability term modestly correlates (r = .34, p < .001) 

with the consensual memorability estimates from Cortese et al. (2015), replicating the modest 

correlation seen between the memorability scores of the two studies. Practically, this 
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demonstrates that one can recover item-driven effects without LME modeling simply by entering 

the consensual hit rate for each item. However, it should be noted that this approach does not 

allow one to recover the item distinctiveness effect, nor does it remove subject variation in mean 

strength (or decision biases) from the estimates. 

 In terms of encoding-related activations, Figure 3.8 shows that the item intercept term 

and the leave-one-out memorability track activation in essentially the same regions and thus the 

behavioral and fMRI data demonstrate the two measures are essentially proxies for one another.  

 

 

Figure 3.8. Parametric modulation of different item memorability measures. 
 

(3) Residuals of the item effects LME model – recognition strength unexplained by items 

As noted above, the LME in Equation 3.1 is the complete model of item effects in our 

current data encompassing the effects attributable to three known normative item characteristics 
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as well as the effects from general memorability differences across items for unknown reasons. 

Consequently, the residuals of this model reflect variance in recognition strength reports that 

cannot be explained via item effects. I refer to any effects linked to these residual values as 

‘subject-driven’ SMEs because they are not explainable as a function of item-related terms.  

Using the residuals to interrogate encoding activation yields the map in Figure 3.9.  Critically, 

the model residual map not only recovered most of the original recognition strength map (which 

used raw strength scores as the covariate), but also demonstrated some expansion of the regions 

(specifically, additional 1,112 voxels were discovered outside of the recognition strength mask). 

Given that the residual of the model is the recognition strengths unaccounted for by item-driven 

effects (either mean item memorability or item distinctiveness), the expanded map can be 

considered the SME map after correctly controlling for potential item effects. The fact that it is 

more robust than the original recognition strength map (white outlines), revealing more 

suprathreshold regions adjacent to boundaries of the original strength map, potentially reflects 

the increased power gained from statistically controlling the item effects. Moreover, the fact that 

the residuals mostly recovered the original recognition strength map demonstrates that the effects 

within the original map are predominantly subject-driven; reflecting processes that are common 

across participants (hence, detectable via the second-level random effect (RFX) analysis in 

SPM), yet unpredictable by knowing the identity of the specific item the subject is processing at 

each trial. I discuss the psychological importance of distinguishing subject- versus item-driven 

encoding phenomena further in the discussion section.   
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Figure 3.9. Parametric modulation of LME model residual unaccounted for by item effects (subject-
driven component of encoding activation). 
 

3.2.5 Three distinguishable components of encoding activation 

Figure 3.10 illustrates all three distinctive components of SME documented above, when 

included in the same parametric modulation regression framework (thus, the unique contribution 

of each, controlling for the other two terms). When comparing to the subsequent recognition 

strength boundary (white outline), it is clear that the two item-driven components (red and green) 

implicate new regions that were not shown in the original recognition strength map. In effect, 

these systematic, subsequent memory phenomena were overpowered by the subject-driven 

component and their absence in the original subsequent recognition map reflects a potential type 

II error that occurs when item effects are not explicitly modelled in the design.  
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Figure 3.10. Unique contribution of each term in the LME model representing each of the three distinctive 
components of encoding activation. 
 

Figure 3.11 demonstrates that several of these regions are also not present in the meta-

analysis of subsequent memory for verbal items by Kim (2011). More specifically, neither the 

regions marked in red (left DMPFC and bilateral IFG) nor the regions marked in green (bilateral 

ventral MTL) are present in the meta-analysis map. Interestingly, some portion of the ventral 

MTL activations were implicated when the meta-analysis included subsequent memory for 

pictorial materials as well as associative retrieval designs (not shown). In the current study, this 

response was tied to item distinctiveness, suggesting that encoding of pictorial materials and 

associative memory might heavily depend upon item distinctiveness. 
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Figure 3.11. Item-driven components of encoding activation either overlapping with (blue) or independent 
from the meta-analysis SME map of verbal item recognition (red and green). 
 

 

Table 3.8 shows the examples of the items that were predicted to be the most and the 

least memorable by the full LME model (again, the model is about “item” contribution to the 

recognition strength rating, when both “item distinctiveness” and “item memorability” 

components along with subject variation are jointly considered) and the items predicted by each 

item component separately. Note that the residual of the model is unique to each participant 

(because it is the difference between the model prediction and the participant’s own recognition 

strength rating at each trial), so the residual term is unable to produce the rank ordering of items 

shared across participants. 

 

Table. 3.8. Top 10 most and least memorable items predicted by the full “item effect” LME model and 
the two item components of the model. 

Most Memorable Least Memorable 

The full model 
prediction 

Item 
distinctiveness 

Item 
memorability 

The full model 
prediction 

Item 
distinctiveness 

Item 
memorability 
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condom 
llama 

mommy 
doughnut 

bowel 
baboon 
tumor 
cola 

organ 
cancer 

cola 
cider 
locker 
goalie 
marble 
lotion 
pillow 
receipt 
jelly 

honey 

context 
aura 
ether 

enzyme 
maxim 
money 
bistro 

success 
cancer 

prestige 

demise 
leeway 

skirmish 
notion 
effort 

anguish 
extent 

guidance 
outrage 
barrage 

 

story 
concept 
context 
effort 
extent 
series 
logic 

insight 
revenge 
success 

 

demise 
skirmish 
album 

primate 
locker 
notion 
viper 

leeway 
address 
anguish 

 

 

 

3.2.6 Linking item-related neural responses to individual differences in verbal IQ 

Behaviorally, I examined the moderating effect of verbal IQ on the relationship between 

the normative item characteristics and recognition strength responses (section 3.1.5), here I apply 

a similar approach addressing the question of whether the relationship between the SME 

activation and normative items characteristics is also moderated by verbal IQ scores. To do so, it 

is necessary to obtain an estimate of encoding activation on each trial for each participant within 

the recognition strength map. This was done using a modified beta-series analysis which fits a 

the effect of each trial into a separate model (Rissman, Gazzaley, & D’Esposito, 2004; Turner, 

Mumford, Poldrack, & Ashby, 2012). Thus, for each participant, a beta value in each trial, 

summarizing the activation within the entire strength map were extracted. Then, the correlation 

between each of the three item variables (IMG, Phono Dist and Semantic Dist) and the trial-wise 

betas was calculated yielding three correlations coefficients for each participant. As with the 

behavioral data, I then tested whether these correlations were moderated by the verbal IQ scores 

of the participants.  

As in the behavioral analysis in Section 3.1.5, the Shipley vocabulary score reliably 

moderated the relationship between Semantic Distinctiveness and brain activation within the 
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strength map across subjects (although it was unreliable when the verbal IQ outlier was 

excluded). In contrast, Shipley scores did not moderate the relations between activation and 

Imageability or Phonological Distinctiveness across the subjects, with or without the verbal IQ 

outlier. (Table 3.9).  

 

Table 3.9. Correlation between individual’s Shipley score and variable-to-brain correlation 
Influence on 

activation  
from 

With Verbal IQ outlier Without Verbal IQ outlier 

Pearson r p-value Pearson r p-value 

IMG -.09 .70 -.05 .84 

Phono Dist -.15 .62 -.13 .57 

Semantic Dist .44 .04 .30 .18 

 

 

The same steps were repeated for NAART35 scores. Again, the relationship between 

semantic distinctiveness and the brain activation was reliably moderated (but not without the 

outlier) by NAART35, but it was not the case for the other two item characteristics.  

 

Table 3.10. Correlation between individual’s NAART35 score and variable-to-brain correlation 

Item effect 
variable 

With Verbal IQ outlier Without Verbal IQ outlier 

Pearson r p-value Pearson r p-value 

IMG .21 .33 .28 .23 

Phono Dist -.10 .66 -.07 .75 

Semantic Dist .44 .04 .35 .12 

 

Overall, the trial-wise activations in recognition strength regions did not have significant 

zero order correlations with any of three normative predictors of recognition strength (not 
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shown). However, across participants, the strength of these relationships itself was suggested to 

be moderated by verbal IQ scores, selectively for semantic distinctiveness. That is, subjects with 

higher verbal IQs showed a greater positive relationship between the trial-wise activation in the 

recognition strength map and semantic distinctiveness of items. Overall, these findings suggest 

that the degree to which semantically distinctive words produce greater activation in the SME 

regions (regions linked to better encoding) depends on the individual’s semantic knowledge. 

However, this “trend” was not reliable when the Verbal IQ outlier data were excluded from the 

analysis, potentially due to small sample size (and lack of variability) for an individual difference 

analysis. 
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Chapter 4. Discussion 
 

The current study aimed to isolate item-driven versus subject-driven contributions to the 

subsequent memory effect in functional brain imaging data. By providing a fixed set of encoding 

items to the participants, explicit examination of item contributions was made possible using the 

linear mixed effect (LME) modeling framework. In behavior, I first demonstrated that 

imageability, semantic and (inverse) phonological distinctiveness exerted reliable influences on 

each participant’s recognition strength ratings at the trial-level as well as on item memorability 

scores at the item-level (normative item characteristics approach). These variables remained 

unique predictors of recognition strength when combined into a single multi-predictor LME 

model (phonological distinctiveness approached significance) which motivated their combined 

use in the later analyses of brain activation during encoding. In the LME model, the random 

intercept of item played an important role in capturing variability not accounted for by the 

normative item characteristic(s) considered. While demonstrating that item effects are reliable, 

the above analyses did not establish whether they were large or small in absolute magnitude. To 

address this, I explored whether consensual memorability itself can be used as a predictor for 

subsequent recognition performance within each individual. The leave-one-out procedure 

confirmed that there were reliable item memorability effects within the sample, but importantly, 

also demonstrated that the item effect was not the major contributor in explaining the variance 

within the trial-wise recognition outcomes (item memorability approach).  

These findings validated the use of the LME model containing two item-related 

contributors (normative characteristics and item memorability) whose prediction for subsequent 
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recognition strength could be used to interrogate brain activation during encoding, with the aim 

of separating item-driven from subject-driven (viz., subject-by-item) activations.  

As will be discussed in further detail below, I suggest the first item component of the 

LME (the linear combination of three fixed-effect variables) isolates regions sensitive to net 

distinctiveness of the items and the second item component (random intercept) is linked to 

general item memorability. In addition to these two item components, the residual of the LME 

model itself was used as another predictor capturing regions sensitive to subsequent recognition 

strength that are unrelated to systematic item influences. As a result, the LME modeling 

approach produced three separable components in the SME; two of which are linked to items 

(hence the item-driven SMEs) and one unique to each subject (hence the subject-driven SME).  

 

4.1 Item Distinctiveness Component  
Among the seven normative item characteristics initially considered, imageability, 

semantic distinctiveness and (inverse) phonological distinctiveness were found to be the reliable 

behavioral predictors of subsequent recognition at the level of item/trials, and they remained 

reliable when jointly used to predict recognition strength ratings.  

During fMRI, when the model prediction based on the linear combination of the three 

normative item characteristics was entered as a parametric regressor, it implicated regions in 

ventral MTL (bilateral aFuG/pPHG and left hippocampus), bilateral IFG, and bilateral posterior 

cingulate/precuneus. Of these, the ventral MTL region remained reliable even when other model 

components were also considered (Figure 3.10) Thus, in this section, I will focus my discussion 

on the role of ventral MTL and how it relates to the construct of item distinctiveness during 

encoding. 
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The ventral MTL, especially PHG is known to be involved in a variety of cognitive 

processes while being implicated during both memory tasks and non-memory tasks. In memory 

tasks, although the region is associated with successful encoding in general, it shows greater 

activation for encoding of pictorial items than verbal items (Kim, 2011) and for relational 

memory (e.g., associative recognition or source recollection) than item memory (e.g., item 

recognition or familiarity given Remember/Know judgment) (Davachi, 2006; Davachi et al., 

2003; Diana, Yonelinas, & Ranganath, 2007, 2013; Eichenbaum et al., 2007; Kim, 2011). In 

terms of memory retrieval, the region is often associated with autobiographical memory retrieval 

(Addis, Moscovitch, Crawley, & McAndrews, 2004; Maguire, 2001; Svoboda, McKinnon, & 

Levine, 2006), which is generally assumed to be contextually rich, reflecting fairly unique 

experiences. 

In non-memory tasks, while PHG is associated with processing of spatial information 

such as scene construction (Hassabis, Kumaran, & Maguire, 2007), spatial navigation (Epstein, 

2008), and discrimination between the environments (Hassabis et al., 2009), it is also clearly 

involved in processing of non-spatial, semantic relationships that are potentially visual in nature. 

For example, it has been shown to be selectively sensitive for images from specific visual 

(semantic) categories (scenes and non-spatial objects such as faces and toys) (Diana, Yonelinas, 

& Ranganath, 2008) and produces greater activation during semantic tasks than non-semantic 

tasks specifically for words having strong visual associations (Bonner, Price, Peelle, & 

Grossman, 2016).  

When putting the memory and non-memory findings together, it can be inferred that PHG 

is critical for processing relational information that is primarily but not exclusively visual, 

mediating both spatial and non-spatial contextual associations (Aminoff, Kveraga, & Bar, 2013; 
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Bar, Aminoff, & Schacter, 2008). This is consistent to the fact that two major normative 

predictors used to identify the region were imageability (ratings for visual imagery) and the 

semantic distinctiveness that was defined by relative distance between an item and the other 

remaining items within the vector space. This finding that items that are easily imageable and 

dissimilar relative to others leading to better subsequent memory also stands together with earlier 

behavioral findings that the combination of item-specific and relational processing leads to 

superior encoding (Einstein & Hunt, 1980; Hunt & Einstein, 1981). Although the current study 

never employed an explicit instruction to promote “relational processing” or provided any 

“context” for item encoding, the pleasantness judgment task during encoding might have 

provided an overall relational structure upon which the participants had to engage in distinctive 

processing for each item. Moreover, the semantic distinctiveness variable itself is inherently a 

variable depicting the strength of relationship among the items. The baseline relatedness among 

the items could have worked as an intrinsic context where certain items could be farther, thus 

more distinctive than others. 

Overall then, the literature is consistent with the idea that this region of MTL tracks the 

degree to which verbal materials elicit distinctive imagery and semantic associations, which 

would then lead to facilitated encoding; an interpretation that fits with the co-recruitment of 

precuneus/posterior cingulate which is a region frequently linked to mental imagery (Fletcher et 

al., 1995; Ganis et al., 2004). Moreover, as I detail next, recent behavioral research converges on 

the hypothesis that items vary in distinctiveness conceptualized in this manner.  

More specifically, a recent study by Cox and colleagues (Cox, Hemmer, Aue, & Criss, 

2018) reported a similar behavioral finding. Similar to the current study, the main purpose of this 

large-scale exploratory study was to examine how performance on different memory tasks is 
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correlated with respect to the processes engaged by participants and the information conveyed by 

the items. The inter-task correlational structure among the five different tasks (four episodic 

memory tasks and one lexical-decision task) was assumed to help disentangle the role played by 

the information and the processes acting on that information in human memory. Specifically, the 

inter-task correlation between two tasks across participants (collapsing across items) would 

indicate the “processes” the tasks share with each other, whereas the inter-task correlation across 

items (collapsing across participants) would indicate the “information” that supports the 

performance on both tasks. Based on a reliable correlation among episodic memory tasks (single 

item recognition, associative recognition, cued recall and free recall), they argued that the 

different memory tasks involve similar memory structure (process and information) that is 

simply accessed in different ways, which, however, is distinct from lexical decision.  

Critically, the results from their principal components analysis (PCA) were particularly 

relevant to the current study. The PCA revealed latent dimensions reflecting how item 

information contributed to performance. These item-related dimensions showed reliable 

correlations with two normative word characteristics for episodic memory for words; 

concreteness rating norms (Brysbaert, Warriner, & Kuperman, 2013) and semantic specificity, 

which they defined as the average dissimilarity between the documents in which a word appears. 

In discussion, they argued that the two factors are related to “distinctive semantic features” 

elaborating as below. 

Here, “distinctive” semantic features means that a word refers to a specific concrete 
entity, and is thereby associated with perceptual features of that entity (Paivio, 1969), 
and/or it is used only in specific discourse contexts (low semantic diversity) and is 
therefore associated with a narrow set of patterns of use (Adelman et al., 2006).  

(p. 567). 
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Although “concreteness” is not equivalent to “imageability”, the two variables are often 

used interchangeably (Binder, Westbury, McKiernan, Possing, & Medler, 2005; Sabsevitz, 

Medler, Seidenberg, & Binder, 2005) and they were found to be highly correlated for nouns 

(Paivio, Yuille, & Madigan, 1968). In fact, the imageability norms and the concreteness ratings 

taken from Brysbaert, Warriner and Kuperman (2013) demonstrated a robust positive correlation 

(r = .78, p < .0001) for the current encoding material. This suggests that in the current study, it 

may have been easier to form a distinctive mental image for the concrete nouns than abstract 

nouns. This in turn would also explain the precuneus activation given the well-replicated link 

between precuneus activation and mental imagery or concreteness in the imaging literature 

(Cavanna & Trimble, 2006; Fletcher et al., 1995; Fliessbach, Weis, Klaver, Elger, & Weber, 

2006; Ganis et al., 2004).  

Taken together, it can be concluded that the combination between concreteness/ 

imageability and semantic distinctiveness (along with low phonological distinctiveness reflecting 

easier/more common pronunciation for fluent processing) is a good recipe for distinctive 

processing of words which in turn leads to durable encoding. Moreover, highly imageable and 

semantically distinctive items may have benefited from dual-coding (Paivio, 1971; 1986) where 

the vividness of perceptual representation and distinctiveness of verbal representation, in this 

case, would jointly benefit encoding. This also provides a potential explanation for the similarity 

between the current SME map and the meta-analysis SME map for pictorial material (Kim, 

2011), both of which demonstrated extensive occipito-temporal activations. 

In the current study, I have interpreted the joint prediction from the three normative item 

characteristics as capturing item distinctiveness. This formulation of distinctiveness is more 

abstract than possible by focusing solely on any single item attribute. Under this formulation for 
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example, an item might end up with a moderately high net distinctiveness value because it is 

highly imageable, but only modestly semantically distinctive. However, another item might have 

this same level of item distinctiveness because it is highly semantically distinctive, yet only 

modestly imageable. Of course, an item high in both attributes would have even higher net 

distinctiveness. Thus, the item distinctiveness construct I applied to the three-variable term is 

abstract in the sense that it reflects the net distinctiveness of a set of functionally independent 

attributes. This is broadly consistent with the notion of distinctiveness in episodic memory since 

the distinctiveness of an experience is unlikely to reflect merely the uniqueness of any single 

attribute. Instead, distinctive experiences typically reflect a unique collection of event attributes 

relative to one’s other experiences. 

   To sum up, the weighted combination of three item characteristics from the fixed effect 

portion of the LME model tracking recognition strength behavior, also uniquely predicted 

encoding activations in bilateral ventral MTL that were not part of original recognition strength 

map. The ventral MTL activations were anterior to those identified in the original strength map 

and I have interpreted the response as reflecting the net distinctiveness of the verbal items. 

Consistent with this idea, PHG is known to process co-occurring multisensory inputs 

(Diaconescu, Alain, & McIntosh, 2011) as well as co-occurring items converging within a 

context (Aminoff et al., 2013). This raises the possibility that as one moves more anteriorly along 

the ventral MTL surface, activations will track the multidimensional distinctiveness of encoding 

experiences in increasingly abstract ways.  
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4.2 Item Memorability Component. 
The second item-driven component was linked to the average of the recognition strength 

ratings that each item produced across the participants. This effect was estimated by the random 

item intercept term of the LME model capturing the tendency of each item to elicit a particular 

level of strength rating controlled for inter-subject differences in the rating and the item 

distinctiveness effect discussed above. The random item intercept component closely tracks 

simple item memorability estimates calculated from the sample (i.e., correlation with the average 

strength rating of each item across the subjects, r = .95; correlation with consensual hit rates 

from the sample, r = .90), and conceptually both reflect item effects, over and above the 

normative characteristics specifically considered in the current report.  

Importantly, when item memorability was used to predict the trial-wise outcomes in each 

subject’s behavior, the majority of participants showed a small but reliable relationship between 

item memorability and their recognition decisions (section 3.1.4). This demonstrates that 

although general item effects are present in behavior, the vast majority of each subject’s 

recognition behavior is not predictable on the basis of how others respond to those same items. 

In addition, there was only a modest correlation between the item memorability estimates in the 

current study and those measured in Cortese et al. (2015), suggesting that the effect of verbal 

item memorability may not generalize beyond the context/research design within which it was 

measured.  

In brain imaging based on the LME model predictions, the random item intercept term 

implicated a set of regions that partially overlapped with the item distinctiveness component 

discussed above. While bilateral IFG and left posterior cingulate/precuneus activations were 

shared between the two item components, a robust left DMPFC activation was unique to the item 
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intercept component. The left DMPFC activation is also well outside the boundary of original 

recognition strength map (Figure 3.10, area in red) resulting in the isolation of a second item-

driven SME largely focused within the PFC (in addition to the bilateral ventral MTL, the item 

distinctiveness effects discussed in the previous section). 

The functional contribution of this region to item memorability effects is difficult to 

ascertain because of its proximity to anterior cingulate cortex (ACC), which is implicated in 

many cognitive tasks thought to require conflict monitoring (Botvinick, Cohen, & Carter, 2004; 

Kerns et al., 2004). As an exploratory test of the “conflict monitoring” hypothesis, I calculated 

the degree of consensus of pleasantness ratings to each item under the assumption that low 

consensus items would be associated with high decision conflict. However, the consensus values 

were unrelated to the item intercept estimates (r = .06, p = .25).  

A second possibility is that this activation is linked to the so called “core network” which 

is active during tasks involving self-referential thinking, theory of mind, self-projection, and 

autobiographical memory retrieval (Buckner & Carroll, 2007; Gusnard, Akbudak, Shulman, & 

Raichle, 2002; Isoda & Noritake, 2013). This network of “me-ness” is known to be closely 

overlapping with (or equivalent to) the default network (Buckner et al., 2008; Raichle et al., 

2001). Under this interpretation, the DMPFC activation might reflect the subjects’ tendencies to 

use autobiographical episodes or self-relevant semantic knowledge when rendering pleasantness 

judgments. However, it must be kept in mind that the item intercept estimates, by construction, is 

an item-based value that spans subjects. This interpretation would require stable differences 

across the items in the degree to which they elicit retrieval of self-relevant autobiographical or 

semantic information during evaluation. As an initial test of the face validity of this idea, one can 

consider Table 3.8 which lists the 10 most and least memorable items under the different LME 
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model component scores. The most memorable items under the item intercept component do not 

appear particularly self-referential providing little support for this interpretation. Thus, while the 

DMPFC activation is clearly outside the basic SME map, and hence was only identified by 

specifically modeling item influences, its functional role is unclear. 

  

4.3 LME Model Residual: Subject-driven SMEs 
A major implication of the current dissertation is that the subsequent memory effect 

reported in the literature is not attributable to item effects. After controlling for possible item-

related effects that were measurable within the current study, the non-item-related residuals of 

the LME model recovered the original recognition strength activations. This specifically 

indicates that the original SME strength map (Figure 3.1) is not a function of item effects that 

span participants. Moreover, the parametric analysis using the LME residuals not only recovered 

the original SME map, it slightly expanded its borders.  

Along with the fact the item components, defined by the model, were clearly outside the 

original map (i.e., bilateral ventral MTL and left DMPFC in particular), the expansion of the 

LME residuals map compared to original indicates that the LME modeling approach was a more 

powerful way to identify subsequent memory effects in general. To see why, it is necessary to 

assume there may be two types of SME effects in general. First, there are presumably responses 

to items that are subject-specific. For example, when presented with the word ‘puppy’, it is likely 

the case that a subject who just adopted a puppy would find the encoding experience particularly 

memorable given the extra-list associations the probe evoked. Such a subject-specific processes 

cannot be modelled simply by knowing the particular items a subject is viewing and they 

constitute what is formally known as subject-by-item interactions. In contrast, if there are items 
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that tend to drive similar processes across participants, this can be only demonstrated by 

modeling/estimating an item effect that spans participants. In the case of ‘puppy’, subject-driven 

effects aside, this word might be moderately memorable on average in the population. However, 

when using only the raw behavioral responses of the participants, these two types of effects are 

conflated within a single response to each item. This necessarily reduces the efficiency to detect 

either effect. The relative cost of this conflation depends upon the strength of the two effects, and 

since the item-driven effects were small (though reliable), they were the ones not detected when 

using the raw responses as fMRI covariates. Since the LME modeling approach removes 

(estimated) item components from the subject’s responses, it improves the ability of what is left 

of those responses (the residuals of the item LME model) to detect subject-driven phenomena 

and enables the detection of item-driven phenomena. That is, it increases power. 

 

4.4 Design Differences and Reliability of Consensus as a 

function of Sample Size 
As noted previously, the Cortese study (2015) and the current study conducted on a 

subset of the same verbal materials demonstrated two potential discrepancies. First, the studies 

differed in which normative word characteristics explained the item memorability measures and 

the total amount of variation in these measures accounted for. Second, the item memorability 

scores themselves were only modestly correlated across the two studies (r = .38).  

One possibility is that both discrepancies are the result of measurement reliability issues. 

In particular, the current item memorability estimates are based on a smaller sample (N = 22) 

than those of Cortese et al. (N = 60) and this may limit the degree to which we should expect 

close correspondence. However, there are several arguments against this interpretation. First as 
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shown in section 3.1.4, the item memorability scores in the two studies were similarly useful in 

predicting the individual responding of subjects (mean r = .11 versus mean r = .16). Second, the 

item components derived from the LME in the current study were sufficiently reliable to yield 

reliable brain activations in regions not detected by the original SME model (Figure 3.10). Since 

brain activations themselves are noisy phenomena, this would be unlikely if the estimates were 

also noisy. Finally, when directly compared as imaging covariates during encoding, the sample 

item memorability scores and those of Cortese et al. yielded similar activation maps (not shown). 

Had the Cortese et al. estimates been more reliable indicators of a common effect present in both 

studies, they would have yielded a more robust activation map. These outcomes suggest that the 

difference in the item memorability-based outcomes may not be primarily due to estimate 

reliability but may instead reflect the fact that verbal item memorability is sensitive to study 

design.  

In current dissertation, with the aim of explicitly examining the item effects within the 

subsequent memory paradigm, several choices were made to maximize potential item effects in a 

way that would produce a greater commonality across participants. For example, whereas the 

Cortese et al. (2015) study did not adopt any orienting task during encoding, the current study 

used pleasantness judgments for words combined with lexical decisions by mixing the words 

with nonwords trials. The unstructured, intentional encoding of the former may emphasize the 

role of item-driven phenomena if subjects vary considerably in their approach and attentional 

engagement with the task, whereas providing an orienting task may enforce more common 

processing demands that lessen the role of item-driven phenomena.  

Since the current study was also interested in semantic distinctiveness as a contributor to 

encoding, and semantic processing is a dominant contributor to episodic memory, I adopted the 
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pleasantness rating task for orienting. This task is also preferred for large item pools (with a 

single encoding-test cycle for 400 items), since it will yield good subsequent recognition 

performance even in the face of considerable proactive interference during testing. Regardless, as 

mentioned above, when using the leave-one-out procedure, section 3.1.4 demonstrated that item 

memorability estimates accounted for a similar proportion of trial-wise behavior in the current 

data and the Cortese et al. Thus, the use of the pleasantness orienting task did not appear to 

eliminate item effects per se.  

Although only two studies are considered, this raises a general possibility that the nature 

of encoding doesn’t eliminate item effects per se, but instead changes the features that dominate 

item effects. For example, deep-encoding tasks may attenuate the effect of non-semantic 

variables (e.g., word frequency), leaving the contribution of more semantic variables relatively 

intact. If this hypothesis is correct, the manipulation known to produce better encoding 

(potentially by encouraging deeper processing) such as survival processing or animacy judgment 

(Nairne, Thompson, & Pandeirada, 2007; Nairne, VanArsdall, & Cogdill, 2017; Nairne, 

VanArsdall, Pandeirada, Cogdill, & LeBreton, 2013) may further reduce the item characteristics 

contribution of lexical variables. Also, the nature of encoding (and retrieval) may reliably alter 

the rank ordering of items in terms of aggregate item memorability, which would be quite 

compatible with seminal demonstrations of encoding specificity (Thomson & Tulving, 1970; 

Tulving & Thomson, 1973) and transfer appropriate processing (Kolers & Roediger, 1984; 

Morris et al., 1977) in the literature. Interestingly, despite the simplicity of this question, this 

dissertation appears to be the first study to actually compare item memorability estimates, for 

matched items, across different research designs.   
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One final design choice in the current study that may have weakened the item 

memorability relationships across the current design and that of Cortese et al. (2015) was the 

intermixing of the lexical decision task and the semantic decision judgments here. As noted in 

section 2.2.2, this was done to provide a non-semantic stimulus class that might help the 

interpretation of SMEs later discovered. However, it also means that to some extent, explicit 

lexical decision-making might have rendered certain item characteristics more salient or potent 

during encoding compared to the Cortese et al. procedures. For example, orthographic 

distinctiveness was not predictive of item memorability in the current study whereas it was 

highly reliable in Cortese et al. (2015). If so, however, this would emphasize the broader point 

that item memorability is not a fundamental attribute of items but instead the result of how items 

may interact with encoding goals and processes.  

 

4.5 Is Memorability an Intrinsic Normative Property of 

Items? 
As noted above, the comparison of item memorability estimates across the current study 

and that of Cortese et al. (2015) suggests that item memorability is malleable and depends upon 

encoding procedures (and presumably their interaction with retrieval procedures). However, in a 

number of studies investigating memory for several categories of visual stimuli (e.g., faces, 

scenes, etc.), Bainbridge and colleagues argued that memorability is an intrinsic property of 

items that serves as a bridge between perception and memory (Bainbridge, 2016; Bainbridge et 

al., 2017; Bainbridge, Isola, & Oliva, 2013; Bainbridge & Rissman, 2018; Bylinskii, Isola, 

Bainbridge, Torralba, & Oliva, 2015).  
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Similar to the current study, a major goal of Bainbridge and colleagues (Bainbridge et al., 

2017) was to isolate the neural signature of item memorability that may have been confounded 

with SMEs estimated in prior studies. In their approach, item memorability was estimated from a 

large-scale online recognition memory study with each item score reflecting the proportion of 

online sample participants garnering hits to each item. They then compared the univariate 

memorability contrast comparing high versus low memorability items during encoding, versus 

the traditional SME contrast comparing subsequent hits versus misses to those same items in the 

study. Critically, they identified areas within the ventral visual stream and MTL as specific to the 

memorability contrast, concluding that the MTL signals a high-level perceptual property of 

stimuli linked to their canonical memorability. Since the majority of these regions did not show 

reliable subsequent memory effects (greater activation for subsequent hits versus misses), the 

authors argue that the regions do not regulate the encoding of the item into memory per se, which 

was instead held to critically depend upon left lateral PFC; a region demonstrating reliable 

subsequent memory contrast effects. The fact that memorability and subsequent memory 

demonstrated separable neural correlates led the researchers to conclude that the two memory-

related constructs were dissociable from each other. The researchers argued that subsequent 

memory effect that had been often found in both the MTL and PFC may be made up of two 

separable components, memorability in the MTL and individual subsequent memory in PFC.  

The stimuli used in Bainbridge et al. (2017) and the current study fundamentally differ 

(words versus face and scene images) and so it is perhaps not surprising that the studies reach 

different conclusions. However, the divergence in the findings and conclusions is noteworthy. 

For example, the current study identified both item-driven and conventional subsequent memory 

effects in PFC, but in different areas. As Figure 3.10 shows, there is a robust left ventrolateral 
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PFC response for subsequent memory even when controlling for potential item-driven effects 

(LME residuals covariate). In contrast, Figure 3.7 demonstrates there are several other regions 

(e.g., DMPFC) of PFC sensitive to the item intercept term in the model, which is essentially a 

proxy for item memorability estimated within the sample. Thus, the current data do not point to a 

sole role for PFC in either subject- or item-driven subsequent memory phenomena. 

Turning to areas of the ventral visual stream and MTL, the data demonstrate the 

analogous finding that the region supports both item- and subject-driven subsequent memory 

phenomena. Whereas the LME residuals component isolates subject-driven SMEs to bilateral 

fusiform extending forward into PHG, the item distinctiveness component of the model 

identified bilateral MTL responses anterior to this (areas in yellow versus green in Figure 3.10). 

Since the latter was coded as a fixed item effect, whereas the former was coded as the portion of 

recognition strength responses that cannot be explained via item effects in general, the data 

demonstrate functionally different responses.    

As noted above, one key difference across these studies is the use of words versus 

pictures. With respect to the words, it seems highly unlikely that strictly perceptual phenomena 

are the dominant contributor to recognition encoding even though prior work demonstrates that 

orthographic distinctiveness can play a role (Cortese et al., 2015; Glanc & Greene, 2007; 

Kirchhoff, Schapiro, & Buckner, 2005). Nonetheless, relative to images of faces and scenes, it is 

clear that words are perceptually impoverished. Given this and the use of a deep processing task 

in the current study, much of the information driving recognition outcomes is likely semantic in 

nature, having little to no link to the features of the materials below the lexical level. Indeed, the 

dominant normative characteristics for predicting item memorability in the current study were 

non-perceptual in the sense that they are not a function of the sub-lexical features of the stimulus. 
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From this perspective, one can expect that the neural correlates of memorability should be 

differentially defined per each stimulus type.  

Despite the differences in the two studies, they converge in that Bainbridge and 

colleagues also suggested that MTL regions were critical in coding for ‘multidimensional 

distinctiveness’. However, in that report the memorability is hypothesized to be “a high-level 

perceptual property reflecting the statistical distinctiveness of a stimulus along a 

multidimensional set of axes, beyond a simple single measure like physical distinctiveness of 

points in a face (p. 149)”. In this conceptualization, memorability, the probability that others will 

recognize the item in a large-scale normative study is considered a proxy for the statistical 

distinctiveness. In contrast, item distinctiveness in the current study was based on stimulus 

properties that are independently estimable outside of memory findings. For example, the 

semantic distinctiveness scores of the items do not depend on normative studies of recognition.  

Instead, they are defined by the distribution of the words across a large corpus of texts (see 

Appendix I). Conceptually, items are held to be semantically distinctive to the degree they tend 

to have a unique distribution across these texts and hence are unlikely to share a meaning with 

the other items. This is important, because the manner of definition does not guarantee that the 

scores will in fact systematically predict recognition memory outcomes. Analogously, the 

imageability scores are derived in a fashion that is independent of recognition memory testing, 

and so these too could fail to predict outcomes. Finally, as with the semantic distinctiveness, 

there is a psychological reason as to why one might anticipate that imageable items form more 

distinctive encoding experiences. In contrast, when ‘distinctiveness’ is operationalized as the 

probability that individuals will recognize an item when studied, circularity becomes a concern. 
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4.6 Item Effects are Small during Verbal Recognition 
Despite the fact that even small item-driven effects can be theoretically important, it is 

important not to overstate their contribution to recognition behavior. As noted in section 3.1.4, 

the efficacy of the consensus of others in predicting an individual’s responses during recognition 

was quite limited, accounting for approximately 1% to 2% of performance. Nonetheless, the 

effects are quite statistically reliable because the same small contribution is present in most 

observers. While memory researchers might find this small contribution of item effects 

surprising, this may reflect the various ways the term ‘item effect’ is used or conceptualized.  

Again, as I noted in section 3.1.4, in its simplest form, an item effect reflects the ability to 

predict subjects’ recognition responding by knowing the items he or she is being tested on. To 

say an item effect is large in this sense, is to claim much of the subjects’ behavior can be 

predicted given knowledge of the items. However, as noted above, from this perspective, the vast 

majority of the subjects’ behavior cannot be explained by knowing the items he or she is being 

tested on when using consensus to operationalize memorability. Although consensus measures 

may seem a common sense approach, they can only work when item-linked representations and 

experiences are highly shared across individuals. In the current study, the preliminary finding 

that verbal IQ may moderate the link between the ability of semantic distinctiveness to facilitate 

encoding (section 3.1.5) begins to suggest there are boundary conditions to the utility of 

consensus measures. Put simply, individuals with increasingly less semantic knowledge would 

be expected to show increasingly fewer mnemonic benefits from semantically distinct materials.  

Analogously, while words linked to expertise in particular domains might be semantically 

distinctive to those experts (e.g., chemists, statisticians, etc.), they would be less so for novices 

(Long & Prat, 2002). Critically, this does not mean that the mechanisms or processes underlying 



 

 

85 

distinctive encoding are absent for novices, or individuals with low semantic knowledge, but that 

the scores reflecting the degree of distinctiveness of each item are less calibrated to the structure 

of these individuals’ semantic knowledge.  

Aside from boundary conditions linked to individual differences, the low predictive 

power of item memorability should not be confused with questions of reliability or the degree to 

which one can explain variation in item memory scores. For example, in the case of 

memorability for images in Bainbridge et al. (2017), the internal consistency of the memorability 

scores can be quite high reaching a mean of ρ = .69 for faces and ρ = .75 for scenes across 

random split halves for a sample of 800 participants. In other words, when one divides the 

sample into two groups and calculates the proportion of subjects that successfully recognized 

each item, the scores of the two sub-samples are highly correlated. However, this does not mean 

that these scores will necessarily predict the trial-wise behavior of individuals well, even if they 

are used in testing designs that resemble the manner in which the scores were derived. To see 

why, consider item memorability scores in the range of .6 to .4. While these scores may have 

high split-half reliability in a large sample, the absolute values of the scores indicates that there is 

considerable uncertainty around whether the items are likely to be recognized or forgotten for 

any given individual (roughly, given each item, a half of the observers would say ‘old’ and the 

other half would say ‘new’). Nonetheless, because there are numerical differences in 

memorability across items within this small range, the rank order across the items can be still 

formed and this order can be quite consistent across the split-haves if the sub-samples are large 

enough to reliably resemble the original. Thus, with a large sample size that can yield reliable 

memorability estimates, the split-half correlation will be always quite high, because the measure 
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indicates the strength of the association between the ranks of memorability scores, regardless of 

the variability within the scores.  

Thus, a high split-half reliability does not assure that the items convey information (viz., 

variability) relevant for predicting behavior. Rather, it is a statement that the particular 

measurement has enough observation to demonstrate a reliable rank order across items. On the 

contrary, the consensus prediction adopted in the current study can be more relevant construct 

for explaining behavior rather than representing the measurement property.  

 

4.7 Limitations and Future Directions 
The current data suggest that much of the activation typically ascribed to subsequent 

memory effects is subject-driven. That is, it is not predicted by knowing the items the subject is 

considering, at least as captured by the LME modeling framework that I used. However, this 

conclusion does not mean that there might not be better ways of isolating item effects. The fact 

that the item components of the LME model implicated additional areas outside of the original 

SME map demonstrates these item components are useful and sufficiently reliable to detection 

encoding activations (which are quite noisy themselves), however, the findings may be fairly 

dependent upon the design, which in this case used deep processing with a brief retention 

interval. This raises questions with respect to whether item-driven contributions should decline 

or increase, and likewise whether subject-driven contributions should decline or increase with 

other manipulations.  

In the case of the current design, only one of the original variables considered by Cortese 

et al. (2015), imageability, was predictive of consensual item memorability scores. Additionally, 
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semantic distinctiveness scores which I derived specifically for this study, were also predictive of 

item memorability scores in the two data sets but those two were the only overlapping variables 

reliable in both studies. Moreover, the item memorability scores from the two data sets were only 

modestly correlated. While I have interpreted this modest correspondence across the data sets as 

reflecting differences in the designs, primarily linked to encoding differences, this hypothesis 

remains to be directly tested. 

In terms of the variables chosen, even though this dissertation examined a comprehensive 

set of lexical and semantic variables introduced by recent mega-study (Cortese et al., 2015), 

there are several other variables that were not examined but are potentially important. For 

example, semantic distinctiveness as defined in the current study was based on a simple type of 

vector semantics computation conducted on a specific corpus. With recent advancements in 

natural language processing and multivariate analysis techniques in psycholinguistics, various 

ways to quantify semantic distinctiveness have been introduced and critically, each approach is 

based on its own unique operational definition of what the “distinctiveness” of a word is. For 

example, contextual diversity (Adelman, Brown, & Quesada, 2006) is based on number of 

contexts (passages or documents which a word appears) calculated from a corpus whereas 

semantic diversity (Johns, Sheppard, Jones, & Taler, 2016; Jones, Johns, & Recchia, 2012) takes 

the information redundancy of the contexts into consideration and uses document similarity as a 

modulating factor for number of contexts count. Whether semantic distinctiveness quantified by 

a different approach would provide similar activation patterns as the current variable is another 

interesting research question.  

Moreover, there are other, basic semantic variables that might contribute to subsequent 

memory. Instead of “distinctiveness” which represents the distance within a context between the 
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words, we can also quantify semantic aspects of the words based on how people approach the 

words given a task. These task-based indices can be normed from a variety of semantic tasks 

such as semantic association generation task or feature-listing task. For example, Pexman and 

colleagues (Pexman, Hargreaves, Edwards, Henry, & Goodyear, 2007) defined the semantic 

richness of words using the number of associates people generate to a word. When asked to 

report the first word comes to mind given a cue word, a group of people can provide a common 

answer (low number of associates; low semantic richness) or each person can provide an unique 

answer so that many different answers could be generated from a group (high number of 

associate; high semantic richness). Using this measurement, Pexman and colleagues found that 

semantically richer words were judged faster in behavioral tasks such as word naming and 

semantic categorization. During functional imaging, semantically richer words produced lower 

activation than words with lower number of associates in regions such as cuneus, left IFG and 

left ITG. They concluded that faster semantic settling for words with rich semantic 

representation lead to lower activation in these regions. An important future question would be to 

see whether the semantic richness score measured in this way correlates with semantic 

distinctiveness measure and to consider relative contribution of the two to subsequent 

recognition strength. Because the semantic distinctiveness scores emphasize uniqueness, but the 

semantic richness scores emphasize diversity of associative features, they may not implicate 

similar regions.  

Another fruitful direction might be extending the fMRI analyses to multivariate 

approaches. The current proposal used strictly univariate analyses, which is appropriate given 

that the SME effects in the extant literature are a univariate phenomenon. However, the method I 

used to quantify semantic distinctiveness of words bears a clear similarity to representational 
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similarity analysis (RSA) in functional imaging. In the case of semantic distinctiveness, the 

pairwise dissimilarity of occurrences across a corpus of texts defines the distinctiveness of the 

words. Analogously, one can examine the pairwise similarity/dissimilarity in the pattern of 

activations across voxels within a selected region to see if it adds additional predictive value in 

terms of subsequent memory outcomes. For example, such a pattern analysis performed on the 

regions in the bilateral MTL demonstrating the current item distinctiveness component could be 

tested for incremental validity (but see LaRocque et al. (2013) for potential discrepancy in 

patterns across sub-regions within the MTL).  

Finally, for the linguistic variables considered, only linear/monotonic effects of the 

variables were examined in the current study. Researches have shown a quadratic effect of length 

(Yarkoni et al., 2008; Schuster et al., 2016) and word frequency (Hemmer & Criss, 2013) on 

recognition memory. Thus, there might be a more effective way of modeling these item variables 

in predicting recognition strength as well as in targeting regions sensitive to these variables 

during functional imaging.  

 

4.8 Conclusions and Implications 
Overall, this dissertation demonstrated that there are reliable but small (in absolute terms) 

item effects present in recognition strength data. These effects, in part, were linked to three 

normative variables that are consistent with the working hypothesis that net item distinctiveness 

facilitates recognition. When modeled via LME regression with an item random intercept term, 

the model-based estimates distinguished item-driven from subject-driven SMEs introducing a 

methodological framework that may be useful for isolating brain activation linked to different 

construct in other domains. Critically, the item-based components detected new regions not 
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discovered by the conventional approach, and in particular, bilateral ventral MTL that may 

indicate the facilitated encoding of materials that are distinctive in a multi-attribute fashion. 

Moreover, the modeling of these item-driven phenomena enabled the use of the model residuals, 

which reflect subject strength ratings that are not explained by item effects. These residuals 

yielded a more robust SME map than the standard approach, presumably because they did not 

conflate subject- and item-driven mechanisms.  
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Appendices 
Appendix I. Vector semantics approach to calculate semantic distinctiveness 

To develop a quantitative measure of semantic distinctiveness as an item characteristic, I 

turned the tools of vector semantics that is similar to Latent Semantic Analysis (Landauer & 

Dumais, 1997). Based on the distributional semantics framework (for a review of different 

models of distributional semantics, see Mandera Pawełand Keuleers & Brysbaert, 2017; Rohde, 

Gonnerman, & Plaut, 2006; Turney & Pantel, 2010), I assume the semantic similarity of words is 

reflected in co-occurrence patterns discernable in large samples of natural language data. More 

specifically, words distributed similarly across a collection of language samples are assumed to 

convey similar meanings.  

I used a large database of informal movie reviews culled from the Internet Movie Database 

(IMDb) gathered by Maas et al., 2011. This data set contains 100,000 user submitted reviews, 

half of which were labeled as positive or negative. The original purpose of the data set was 

sentiment analysis, but here I use it as a large corpus for calculating word similarity scores. An 

example of one of the reviews is below: 

 
Blistering black comedy co-written by Jill Sprecher (who also directed) and Karen Sprecher, 

"Clockwatchers" gives us a suffocating office setting so vivid and real I half-expected my own co-

workers to show up in it. Toni Collette plays the new temporary in a nondescript building wherein 

office-incidentals are slowly disappearing from the supply cabinet. The ensemble acting is 

delightfully accurate, and the strife which ensues in this scenario is comically overwrought and 

horrifying. Sprecher's direction is focused and brave (no overtures to broadly comical sensibilities), 

and she nimbly stretches the film's satirical edge quite far without faltering. The movie is a genuine 

American original, and by the final third I couldn't wait to see it again from the start. ***1/2 from 

**** 

 

The text2vec analysis package (Selivanov, 2016) and quanteda (Benoit et al., 2018) in R 

were used for the analysis. The reviews were first transformed into a term-document matrix 

(tdm) in which each row constituted a unique word within the collection and each column a 

movie review. During construction of the tdm, each review was stripped of whitespace, 
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punctuation, numbers, and all words were converted to lower case. Additionally, common 

English stop words such as conjunctions, articles and prepositions were also removed. Each cell 

in the matrix indicates the frequency of each word’s occurrence within each document (i.e., 

movie review). I then reduced the size of the tdm by removing all words that were not present in 

the 3,000 word set of Cortese et al. (2015) yielding a tdm consisting of 2,954 words (rows) and 

100,000 columns.  

Also, the word ‘movie’ was removed from the analysis even though it was in the Cortese 

set because it was over-represented in the database given the corpus consisted of movie reviews. 

In order to calculate a word’s semantic similarity, I relied on the cosine similarity metric. After 

transposing the tdm to a document-term matrix (dtm), each column represented a target word, 

and the cells below each word reflected the word’s distribution across the 100,000 documents in 

units of frequency. These vectors were then normalized using the l2 norm which transforms the 

vectors’ cell frequencies by dividing each by the square root of the sum of the squared 

frequencies of all the cells in that vector (a Euclidean magnitude). Similar outcomes were 

obtained with non-normed raw frequencies. Thus, each vector represents the position of a word 

in a normalized N-dimensional space of documents, and the cosine similarity metric for any pair 

of vectors is their dot product divided by the cross product of their lengths. 

 
Thus, the semantic similarity of any pair of words is captured by the angle between their 

vector representations in the space. A perfectly similar pair of words would be distributed 

identically across the documents and have a cosine similarity of 1. A perfectly dissimilar pair of 

words would share no co-occurrence frequencies across the documents and have a cosine 

similarity of 0. Since there are no negative values possible in frequency data, the cosine 

similarity measures are restricted between 0 and 1. To facilitate interpretation given our interest 

in semantic distinctiveness, I transformed the cosine similarity into a dissimilarity score by 

subtracting it from 1.  

Within this vector space representation, a distinctive word is one that is highly dissimilar 

to all the remaining words (i.e., has uniformly low cosine similarity values when compared to all 

other words). To estimate a word’s semantic distinctiveness, I then calculated the mean of its 
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pairwise dissimilarity values with all the remaining words in the recognition test set. Thus, words 

with high scores are more semantically distinctive with respect to the remaining memoranda than 

words with lower scores.  
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Appendix II. SPM result tables for suprathreshold activation maps  

(uncorrected p < .001, 5 voxels, coordinates in MNI space) 

Appendix II.1. Regions showing significant parametric modulation of Recognition Memory 
Strength in Figure 3.1. 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak 
equiv Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Supp_Motor_Area 8 1142 8.93 5.68 -6 20 46 
L Supp_Motor_Area 6  6.14 4.59 -4 16 60 
L Supp_Motor_Area 6  5.39 4.22 -2 8 56 
L Frontal_Inf_Tri 45 3252 8.12 5.41 -46 30 10 
L Frontal_Inf_Orb 47  7.89 5.32 -36 34 -14 
L Frontal_Inf_Oper 44  7.29 5.09 -50 12 10 
L Occipital_Mid VisualAssoc (18) 5991 7.67 5.24 -20 -98 -2 
R Fusiform Fusiform (37)  7.37 5.12 36 -44 -20 
R Calcarine VisualAssoc (18)  7.16 5.04 22 -96 -2 
R Insula 45 392 7.39 5.13 36 28 0 
R Frontal_Inf_Orb 47  6.6 4.8 36 36 -8 
R Frontal_Inf_Tri 46  3.99 3.4 40 34 6 
R Cingulum_Mid 8 56 6.1 4.58 16 12 38 
L Occipital_Mid 39 524 5.69 4.38 -26 -64 40 
L Parietal_Sup 7  5.38 4.22 -20 -60 50 
L Parietal_Sup 7  4.82 3.91 -24 -50 44 
R Cingulum_Mid 24 43 5.45 4.26 10 4 30 
L Cerebelum_4_5 Thalamus (50) 535 5.43 4.24 -4 -22 -12 
L Hippocampus Putamen (49)  5.11 4.07 -28 -24 -2 
L Thalamus Thalamus (50)  4.95 3.98 -14 -20 2 
R Thalamus Thalamus (50) 258 5.37 4.21 22 -12 2 
R Thalamus Thalamus (50)  5.02 4.03 18 -18 14 
R Thalamus Thalamus (50)  4.76 3.88 8 -14 -8 
L Cingulum_Ant 24 54 5.29 4.17 -4 2 28 
L Fusiform Parahip (36) 111 5.25 4.15 -38 -12 -26 
L Amygdala Amygdala (53)  5.05 4.04 -34 0 -22 
L Frontal_Sup 8 44 5.24 4.14 -16 34 48 
R Angular 7 355 5.17 4.1 24 -46 42 
R Parietal_Inf 7  4.31 3.6 26 -50 50 
R Angular 39  4.2 3.54 30 -62 46 
R Pallidum GlobPal (51) 49 4.91 3.97 14 4 0 
R Insula 44 96 4.89 3.95 48 6 4 
R Insula Insula (13)  4.29 3.59 40 14 -2 
R Frontal_Inf_Oper 44  3.95 3.38 50 14 -2 
L Lingual VisualAssoc (18) 39 4.75 3.87 -18 -44 -2 
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L Cerebelum_3 Fusiform (37) 11 4.54 3.75 -6 -34 -24 
L Precentral PrimMotor (4) 106 4.49 3.72 -36 -16 50 
L Postcentral PrimSensory (1)  3.98 3.4 -38 -24 42 
L Parietal_Inf 40  3.7 3.21 -48 -28 48 
L Insula Insula (13) 19 4.43 3.68 -34 8 0 
L Cerebelum_Crus1 Fusiform (37) 12 4.4 3.66 -44 -54 -30 
R Precentral 6 12 4.34 3.63 58 -2 42 
L Parietal_Sup 7 7 4.32 3.61 -16 -44 74 
L Parietal_Inf PrimSensory (1) 42 4.27 3.58 -40 -36 42 
L Rectus 11 24 4.26 3.57 -4 40 -16 
L Lingual VisualAssoc (18) 26 4.21 3.54 -2 -66 6 
R Frontal_Inf_Tri 45 12 4.12 3.49 40 24 14 
R Frontal_Inf_Tri 46 10 4.11 3.48 52 36 14 
R Hippocampus Parahip (36) 5 3.97 3.39 22 -20 -14 
R Occipital_Mid 19 18 3.96 3.38 28 -68 24 
L Rolandic_Oper PrimMotor (4) 13 3.93 3.36 -38 -6 16 
R Fusiform Parahip (36) 13 3.91 3.35 36 -6 -28 
R Frontal_Inf_Oper 44 24 3.79 3.27 40 8 30 
L Precentral 6 7 3.73 3.23 -28 -10 60 
R Hippocampus Hippocampus (54) 6 3.71 3.22 32 -8 -16 
R Cingulum_Ant 32 6 3.69 3.2 14 20 28 
R Putamen Putamen (49) 10 3.69 3.2 26 4 0 
L Calcarine PrimVisual (17) 9 3.64 3.17 -14 -80 6 
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Appendix II.2. Regions showing greater activation for subsequently recognized words than 
subsequently forgotten words in Figure 3.1 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak equiv 
Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Supp_Motor_Area 6 1346 8.92 5.68 -4 12 50 
L Frontal_Sup_Medial 8  8.46 5.53 -6 24 42 
R Cingulum_Mid 8  6.26 4.65 16 12 38 
L Insula Insula (13) 3210 8.28 5.46 -32 20 -2 
L Frontal_Inf_Tri 46  7.37 5.13 -44 30 12 
L Frontal_Inf_Orb 47  7.17 5.04 -42 18 -8 
L Fusiform Fusiform (37) 1231 7.91 5.33 -40 -60 -12 
L Occipital_Inf 19  5.92 4.49 -30 -80 -10 
L Calcarine VisualAssoc (18)  5.9 4.48 -18 -98 -2 
R Thalamus Thalamus (50) 546 6.64 4.82 8 -14 -8 
R Pallidum GlobPal (51)  5.9 4.48 14 2 2 
R Thalamus Thalamus (50)  5.37 4.21 20 -10 2 
R Insula Insula (13) 532 6.35 4.69 32 24 0 
R Frontal_Inf_Orb 47  6.18 4.62 30 32 -10 
R Insula Insula (13)  5.15 4.09 40 14 -2 
R Fusiform Fusiform (37) 1301 6.32 4.68 36 -46 -18 
R Fusiform Fusiform (37)  5.85 4.46 34 -38 -24 
R Fusiform VisualAssoc (18)  5.35 4.2 28 -82 -6 
R Cingulum_Mid 24 114 6.04 4.55 8 4 30 
L Cingulum_Ant 24  5.93 4.49 -4 2 28 
L Fusiform Hippocampus (54) 115 5.98 4.52 -36 -10 -22 
L Hippocampus 38  4.81 3.9 -36 0 -26 
L Amygdala 34  4 3.41 -32 -2 -14 
L Cerebelum_3 Parahip (36) 19 5.91 4.48 -6 -32 -22 
L Cerebelum_3 Thalamus (50) 620 5.38 4.22 -4 -24 -14 
L Thalamus Thalamus (50)  5.17 4.11 -16 -6 12 
L Pallidum GlobPal (51)  4.97 4 -16 4 2 
R Angular 7 153 5.23 4.14 26 -46 42 
R Postcentral PrimSensory (1)  3.79 3.27 24 -38 42 
L Parietal_Sup 7 467 5.21 4.13 -22 -62 48 
L Parietal_Sup 7  5.1 4.07 -26 -54 48 
L Occipital_Mid 39  4.81 3.91 -26 -66 34 
R Vermis_4_5 19 72 4.99 4.01 6 -60 -14 
L Cerebelum_6 19  4.16 3.52 -10 -60 -14 
L Vermis_9 Fusiform (37) 211 4.97 4 -2 -52 -34 
L Vermis_7 VisualAssoc (18)  4.57 3.77 -4 -70 -28 
R Cerebelum_9 Fusiform (37)  4.37 3.65 10 -50 -34 
L Parietal_Sup 7 13 4.91 3.96 -16 -44 74 
R Cerebelum_6 VisualAssoc (18) 74 4.88 3.95 10 -72 -22 
L Cerebelum_10 Parahip (36) 82 4.79 3.9 -12 -34 -42 
L Vermis_10 Parahip (36)  4.74 3.86 -2 -32 -46 
R Cerebelum_10 Fusiform (37)  3.8 3.27 14 -34 -40 
R Fusiform 20 25 4.77 3.89 40 -10 -26 
R Occipital_Mid VisualAssoc (18) 88 4.67 3.83 30 -90 18 
R Occipital_Mid 19  4.45 3.69 36 -82 16 
L Thalamus Insula (13) 44 4.6 3.78 -28 -24 2 
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L Pallidum Putamen (49)  4.28 3.59 -26 -14 0 
L Parietal_Inf 40 41 4.46 3.7 -42 -38 42 
L Occipital_Mid 19 23 4.42 3.67 -30 -90 16 
L Lingual 30 44 4.4 3.66 -18 -44 0 
L Supp_Motor_Area 6 7 4.38 3.65 -10 -10 74 
R Occipital_Sup 39 67 4.34 3.62 28 -66 44 
R Frontal_Inf_Oper 44 56 4.27 3.58 44 10 30 
R Frontal_Inf_Oper 44  4.21 3.54 56 12 30 
R Occipital_Mid 19 45 4.22 3.55 28 -68 24 
R Frontal_Inf_Tri 46 19 4.2 3.54 50 34 14 
L Putamen Putamen (49) 7 4.19 3.53 -34 -2 0 
R Frontal_Inf_Tri 45 6 4.12 3.49 42 26 14 
L Vermis_4_5 VisualAssoc (18) 26 4.09 3.47 -2 -60 2 
L Lingual VisualAssoc (18)  3.77 3.26 -2 -70 6 
L Precentral PrimMotor (4) 27 4.07 3.46 -34 -18 50 
L Postcentral PrimMotor (4)  3.9 3.34 -42 -16 50 
L Temporal_Mid 21 13 4.06 3.45 -60 -34 4 
L Cerebelum_Crus1 Fusiform (37) 5 4.06 3.45 -44 -54 -30 
L Frontal_Sup 8 8 3.98 3.4 -16 34 48 
R Precentral 6 18 3.83 3.3 52 6 40 
R Calcarine PrimVisual (17) 24 3.77 3.26 4 -80 4 
L Lingual VisualAssoc (18)  3.62 3.15 -2 -76 0 
R Cingulum_Ant 32 8 3.77 3.26 12 20 26 
R Cerebelum_Crus2 VisualAssoc (18) 5 3.73 3.23 8 -76 -38 
L Calcarine PrimVisual (17) 20 3.68 3.19 -10 -74 8 
L Calcarine PrimVisual (17)  3.65 3.18 -12 -84 6 
R Calcarine PrimVisual (17) 5 3.66 3.18 2 -90 10 
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Appendix II.3. Regions showing significant parametric modulation of imageability in Figure 3.3 
Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak 
equiv Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

R Angular 39 306 7.98 5.35 50 -64 36 
R Angular 39  5.42 4.24 44 -58 26 
L Precuneus 23 1175 7.24 5.07 -6 -54 18 
R Precuneus 23  5.4 4.23 10 -52 14 
R Precuneus 23  4.54 3.75 6 -54 28 
L Fusiform Fusiform (37) 433 6.79 4.89 -30 -36 -16 
L ParaHippocampal Parahip (36)  6.66 4.83 -28 -38 -8 
L Fusiform Parahip (36)  5.56 4.31 -32 -28 -18 
L Cingulum_Ant 24 69 5.87 4.46 -4 26 10 
L Cingulum_Ant 24  3.6 3.14 -2 30 20 
R Fusiform Fusiform (37) 107 5.85 4.46 30 -30 -20 
R ParaHippocampal Hippocampus (54)  4.58 3.77 30 -36 -8 
L Cingulum_Ant 32 355 5.78 4.42 -12 36 -6 
L Olfactory 32  5.69 4.38 -8 26 -10 
R Cingulum_Ant 24  4.66 3.82 4 36 -2 
L Temporal_Mid 21 77 5.47 4.27 -60 -10 -18 
L Temporal_Mid 21  5.09 4.07 -62 -18 -16 
L Occipital_Mid 39 745 5.46 4.26 -40 -76 32 
L Occipital_Mid 39  5.16 4.1 -30 -78 36 
L Angular 39  5.01 4.02 -46 -70 34 
R Rectus 11 51 5.14 4.09 4 36 -16 
L Frontal_Sup 8 319 5.1 4.07 -20 20 42 
L Frontal_Mid 8  5.1 4.07 -22 26 48 
L Frontal_Sup 8  4.3 3.6 -18 32 36 
L Cingulum_Ant 32 221 4.94 3.98 -2 48 6 
R Cingulum_Ant 10  4.92 3.97 6 46 12 
L Frontal_Sup_Medial 9  4.1 3.47 -8 44 20 
R Temporal_Mid 21 20 4.78 3.89 60 -6 -24 
R Frontal_Mid 8 42 4.6 3.78 24 28 42 
R Frontal_Sup 8  4.22 3.55 18 36 46 
L Frontal_Inf_Orb 47 29 4.27 3.58 -26 34 -10 
L Amygdala Amygdala (53) 9 4.23 3.56 -26 -2 -18 
R Frontal_Sup 8 6 4.22 3.55 24 24 60 
R Temporal_Mid 21 5 4.19 3.53 60 -14 -16 
R SupraMarginal 40 22 4.17 3.52 54 -46 36 
L Cingulum_Ant 24 17 4.04 3.43 -4 20 22 
R Frontal_Sup_Medial 10 6 3.89 3.34 4 60 16 
R Temporal_Pole_Mid 38 5 3.8 3.27 56 10 -28 
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Appendix II.4. Regions showing significant parametric modulation of phonological 
distinctiveness in Figure 3.3 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak 
equiv Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Fusiform 19 2660 7.71 5.26 -28 -74 -8 
L Cerebelum_6 VisualAssoc (18)  7.41 5.14 -10 -82 -14 
R Occipital_Sup VisualAssoc (18)  7.3 5.1 22 -94 14 
R Occipital_Inf 19 228 5.5 4.28 32 -70 -6 
R Occipital_Inf VisualAssoc (18)  5.07 4.05 32 -80 -4 
R Angular 39 58 5.06 4.05 36 -54 20 
R Calcarine 23  4.18 3.53 28 -56 16 
L Fusiform 19 8 4.15 3.51 -36 -50 -2 
R Cerebelum_Crus1 Fusiform (37) 10 4.14 3.5 40 -76 -20 
L Fusiform Fusiform (37) 9 4.08 3.46 -32 -62 -14 
L Occipital_Sup 7 20 3.87 3.32 -26 -68 24 
R Hippocampus Hippocampus (54) 6 3.85 3.31 36 -12 -16 
R Calcarine PrimVisual (17) 8 3.73 3.23 6 -72 18 
L Calcarine PrimVisual (17) 5 3.67 3.19 -8 -68 14 
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Appendix II.5. Regions showing significant parametric modulation of semantic distinctiveness in 
Figure 3.3 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak equiv 
Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Frontal_Inf_Tri 45 156 5.94 4.5 -44 28 10 
L Fusiform Fusiform (37) 227 5.71 4.39 -32 -44 -18 
L Fusiform Fusiform (37)  5.43 4.24 -28 -36 -20 
L Fusiform Fusiform (37)  5.13 4.08 -40 -50 -16 
L Occipital_Inf 19 80 5.27 4.16 -42 -68 -6 
L Insula PrimMotor (4) 60 5.24 4.14 -36 -6 18 
L Insula Insula (13)  4.73 3.86 -36 -6 6 
L Precentral 6 88 5.15 4.1 -44 2 30 
R Vermis_3 Parahip (36) 28 4.75 3.87 0 -32 -6 
L Occipital_Mid 7 49 4.6 3.78 -26 -74 32 
R Fusiform Fusiform (37) 7 4.09 3.47 32 -30 -22 
R Frontal_Inf_Orb 47 12 3.95 3.38 32 34 -10 
R Frontal_Inf_Tri 46 18 3.95 3.38 46 32 12 
R Precentral 6 13 3.85 3.31 48 8 32 
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Appendix II.6. Regions showing significant parametric modulation of judgment reaction time in 
Figure 3.3 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak equiv 
Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Supp_Motor_Area 8 7765 9.52 5.86 -4 18 48 
L Insula Insula (13)  8.33 5.48 -32 22 0 
L Frontal_Inf_Oper 44  7.59 5.21 -42 12 24 
R Frontal_Inf_Oper 44 1378 7.24 5.07 58 20 20 
R Insula Insula (13)  6.9 4.93 34 24 2 
R Frontal_Inf_Tri 9  6.51 4.76 48 26 22 
R Thalamus Thalamus (50) 532 6.6 4.8 10 -14 -8 
R Thalamus Thalamus (50)  6.43 4.73 4 -16 -2 
L Thalamus Thalamus (50)  6.4 4.72 -4 -20 -8 
L Caudate Caudate (48) 22 5.25 4.15 -4 4 8 
L Parietal_Inf 40 538 4.99 4.01 -34 -42 40 
L Parietal_Sup 7  4.47 3.71 -20 -62 48 
L Parietal_Inf 39  4.46 3.7 -28 -52 42 
R Pallidum GlobPal (51) 26 4.72 3.85 16 0 0 
R Vermis_1_2 Parahip (36) 18 4.43 3.68 2 -32 -18 
L Pallidum GlobPal (51) 46 4.39 3.66 -16 -2 0 
R Cerebelum_Crus1 VisualAssoc (18) 25 4.39 3.66 10 -74 -28 
R Frontal_Inf_Orb 47 60 4.29 3.59 46 38 -14 
L Postcentral PrimSensory (1) 17 4.23 3.56 -48 -32 52 
R Cerebelum_6 Fusiform (37) 18 4.12 3.49 24 -58 -28 
R Frontal_Mid 6 15 3.77 3.26 34 2 56 
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Appendix II.7. Regions showing significant parametric modulation of fixed effect prediction of 
LME (item distinctiveness component) in Figure 3.6 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak 
equiv Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Fusiform Fusiform (37) 417 8.17 5.42 -30 -36 -18 
L Fusiform Hippocampus (54)  7.25 5.08 -34 -26 -18 
L ParaHippocampal Parahip (36)  3.8 3.27 -20 -32 -12 
R Fusiform Fusiform (37) 142 8.07 5.39 30 -32 -20 
R Frontal_Inf_Orb 47 68 5.61 4.34 28 30 -10 
L Frontal_Inf_Orb 47 51 4.85 3.93 -28 32 -10 
L Temporal_Mid 21 14 4.71 3.85 -62 -10 -18 
L Cingulum_Ant 32 15 4.32 3.61 -12 36 -6 
L Precuneus 23 57 4.17 3.52 -4 -54 16 
L Calcarine 23  3.79 3.27 -10 -52 8 
L Rectus 11 7 4.16 3.52 -10 26 -10 
L Insula Insula (13) 6 4.07 3.46 -36 0 -8 
L Frontal_Inf_Tri 46 32 4.05 3.44 -40 28 12 
R Precuneus 23 6 3.91 3.35 14 -50 14 
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Appendix II.8. Regions showing significant parametric modulation of random item intercept of 
LME (mean item memorability component) in Figure 3.7 and Figure 3.8 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak 
equiv Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

R Frontal_Inf_Orb 47 649 8.97 5.69 30 30 -8 
R Frontal_Inf_Tri 45  6.1 4.57 46 32 6 
R Frontal_Inf_Orb 45  5.88 4.47 38 30 0 
L Frontal_Inf_Orb 47 432 7.66 5.23 -34 32 -8 
L Insula 47  6.04 4.55 -30 20 -12 
L Insula Insula (13)  4.72 3.85 -44 8 -6 
L ParaHippocampal Parahip (36) 255 6.72 4.86 -10 -24 -12 
R Lingual Parahip (36)  5.07 4.05 12 -30 -10 
L Vermis_3 Parahip (36)  4.93 3.97 -4 -30 -14 
L Precuneus 23 108 6.43 4.73 -8 -52 22 
L Frontal_Sup_Medial 9 336 6.26 4.65 -6 46 24 
L Frontal_Sup_Medial 9  5.42 4.24 -6 42 38 
L Frontal_Sup_Medial 10  4.03 3.43 -8 54 18 
L Insula 45 40 5.47 4.26 -32 30 6 
L Rectus 11 27 4.79 3.9 -6 48 -14 
L Cingulum_Ant 32  4.36 3.64 -6 50 -2 
R Frontal_Inf_Oper 44 61 4.63 3.8 44 8 28 
R Frontal_Inf_Oper 44  3.96 3.39 40 4 22 
L Rolandic_Oper PrimMotor (4) 31 4.52 3.74 -38 -6 18 
L Insula Insula (13)  3.84 3.31 -40 -8 6 
L Frontal_Inf_Tri 46 66 4.49 3.72 -44 30 16 
R Cerebelum_6 Fusiform (37) 23 4.34 3.62 24 -56 -24 
R Temporal_Pole_Sup 38 5 4.32 3.61 40 20 -26 
L Amygdala Amygdala (53) 19 4.24 3.56 -24 -2 -16 
L Vermis_9 Fusiform (37) 25 4.22 3.55 0 -54 -32 
R Temporal_Sup Insula (13) 15 4.21 3.54 40 -4 -14 
L Temporal_Mid 21 25 4.18 3.53 -58 -10 -16 
R Vermis_6 VisualAssoc (18) 40 4.16 3.51 6 -66 -22 
L Vermis_6 VisualAssoc (18)  3.72 3.22 -4 -68 -22 
R Frontal_Inf_Tri 9 25 4.01 3.42 52 28 18 
L Fusiform Fusiform (37) 16 3.96 3.38 -38 -54 -10 
L Cingulum_Ant 24 34 3.96 3.38 -4 6 28 
L Cingulum_Ant 24  3.77 3.26 -2 14 26 
R Thalamus Caudate (48) 5 3.95 3.38 16 -22 20 
R Cerebelum_4_5 Fusiform (37) 8 3.89 3.34 16 -40 -18 
L Cerebelum_4_5 Fusiform (37) 6 3.87 3.33 -30 -34 -26 
L Frontal_Sup 8 9 3.87 3.32 -14 30 46 
L Cerebelum_6 19 16 3.75 3.25 -28 -62 -26 
R Hippocampus Hippocampus (54) 7 3.67 3.19 26 -38 4 
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Appendix II.9. Regions showing significant parametric modulation of leave-one-out 
memorability score in Figure 3.8 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak equiv  
Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

R Frontal_Inf_Orb 47 570 9.89 5.97 30 30 -8 
R Insula Insula (13)  5.38 4.22 32 20 -14 
R Frontal_Inf_Tri 45  5.14 4.09 36 30 4 
L Frontal_Inf_Orb 47 493 6.59 4.8 -32 30 -8 
L Insula Insula (13)  6.51 4.77 -30 18 -12 
L Insula Insula (13)  5.35 4.2 -40 4 -10 
L ParaHippocampal Parahip (36) 169 6.55 4.78 -10 -26 -12 
R Lingual Parahip (36)  4.76 3.88 14 -28 -10 
R Lingual Thalamus (50)  4.04 3.44 8 -30 -4 
L Frontal_Sup_Medial 9 175 5.71 4.39 -8 44 22 
R Cingulum_Ant 10  4.06 3.45 4 52 20 
R Frontal_Sup_Medial 9 82 5.33 4.19 0 44 40 
L Frontal_Sup_Medial 8  4.68 3.83 -8 40 36 
R Temporal_Pole_Mid 38 8 5.18 4.11 44 18 -32 
L Precuneus 23 42 5.17 4.11 -8 -52 22 
L Rectus 11 10 4.92 3.97 -6 48 -14 
R Temporal_Mid 38 20 4.82 3.91 48 2 -30 
R Temporal_Inf 38  3.85 3.31 50 10 -34 
L Insula Insula (13) 35 4.41 3.67 -40 -6 4 
L Rolandic_Oper PrimMotor (4)  3.93 3.36 -38 -6 18 
R Insula Insula (13) 22 4.41 3.67 38 -4 -12 
L Cingulum_Ant 32 7 4.18 3.52 -6 50 0 
L Thalamus Thalamus (50) 22 4.16 3.52 -6 -6 2 
L Cingulum_Ant 24 6 3.96 3.38 -4 26 16 
R Temporal_Mid 21 6 3.96 3.38 56 -18 -12 
R Frontal_Inf_Oper 44 6 3.94 3.37 44 10 30 
R Insula Insula (13) 7 3.83 3.3 46 4 -4 
L Temporal_Mid 21 8 3.73 3.23 -54 -28 -8 
L Hippocampus Insula (13) 5 3.67 3.19 -38 -22 -6 
R Cingulum_Mid 24 5 3.66 3.18 2 -6 36 
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Appendix II.10. Regions showing significant parametric modulation of LME model residual 
(subject-driven component) in Figure 3.9. 

Approx.  
AAL 

Approx.  
BA 

Voxels 
(kE) 

peak  
T 

peak equiv  
Z 

x  
(mm) 

y 
(mm) 

z 
(mm) 

L Supp_Motor_Area 8 1318 9 5.7 -4 20 46 
L Supp_Motor_Area 6  8.65 5.59 -2 12 50 
L Supp_Motor_Area 6  6.66 4.83 -2 14 60 
L Occipital_Mid VisualAssoc (18) 5890 7.94 5.34 -20 -98 -2 
R Calcarine VisualAssoc (18)  7.55 5.19 22 -96 -2 
R Fusiform Fusiform (37)  7.52 5.18 36 -46 -20 
L Frontal_Inf_Tri 45 3283 7.84 5.3 -48 30 6 
L Frontal_Inf_Orb 47  7.16 5.04 -32 34 -14 
L Insula 47  6.95 4.95 -44 16 -4 
R Insula 45 313 7.21 5.06 36 28 0 
R Frontal_Inf_Orb 47  5.64 4.35 34 30 -8 
R Frontal_Mid_Orb 47  4.48 3.71 36 38 -14 
L Parietal_Inf 39 602 6.31 4.67 -26 -66 42 
L Parietal_Sup 7  5.46 4.26 -22 -60 50 
L Parietal_Sup 7  4.85 3.93 -24 -50 44 
R Thalamus Thalamus (50) 232 5.98 4.52 22 -12 2 
R Thalamus Thalamus (50)  4.97 3.99 18 -18 14 
R Thalamus Thalamus (50)  4.15 3.51 8 -14 -8 
L Thalamus Thalamus (50) 254 5.56 4.31 -14 -20 2 
L Thalamus Thalamus (50)  4.42 3.67 -18 -20 14 
L Thalamus Thalamus (50)  4.04 3.44 -14 -8 12 
L Amygdala Amygdala (53) 116 5.5 4.28 -34 0 -22 
L Fusiform Parahip (36)  5.25 4.15 -38 -12 -26 
L Temporal_Mid 38  4.21 3.55 -40 0 -28 
R Cingulum_Mid 24 32 5.38 4.22 10 4 30 
L Cerebelum_4_5 Thalamus (50) 47 5.35 4.2 -4 -22 -12 
R Angular 7 415 5.13 4.08 24 -46 42 
R Parietal_Inf 7  4.5 3.72 24 -50 52 
R Parietal_Sup 7  4.49 3.72 24 -62 50 
L Cingulum_Ant 24 36 4.97 4 -4 2 28 
L Precentral PrimMotor (4) 121 4.96 3.99 -38 -16 50 
L Postcentral PrimSensory (1)  4.2 3.54 -38 -24 42 
L Parietal_Inf 40  3.57 3.12 -44 -28 46 
R Cerebelum_9 Fusiform (37) 91 4.87 3.94 12 -42 -32 
R Cerebelum_9 Fusiform (37)  4.79 3.9 12 -50 -34 
L Lingual VisualAssoc (18) 40 4.85 3.93 -18 -44 -2 
L Hippocampus Putamen (49) 114 4.85 3.93 -28 -24 -2 
L Putamen Putamen (49)  4.53 3.74 -28 -14 -2 
L Putamen Putamen (49)  4.14 3.5 -34 -4 0 
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R Insula 44 83 4.78 3.89 48 8 4 
R Insula 44  4.37 3.64 42 14 2 
R Insula Insula (13)  3.8 3.28 34 8 4 
R Vermis_10 Parahip (36) 50 4.67 3.83 4 -32 -40 
L Vermis_10 Parahip (36)  3.95 3.38 -2 -32 -46 
R Cerebelum_10 Fusiform (37)  3.92 3.36 12 -34 -40 
L Lingual VisualAssoc (18) 27 4.36 3.64 -2 -66 6 
L Insula PrimSensory (1) 11 4.33 3.62 -38 -22 28 
L Parietal_Inf PrimSensory (1) 35 4.24 3.57 -40 -36 42 
R Frontal_Sup 6 7 4.24 3.56 14 -12 74 
R Frontal_Inf_Tri 45 8 4.24 3.56 40 24 14 
L Parietal_Sup 7 9 4.21 3.54 -16 -44 74 
L Frontal_Sup 8 10 4.17 3.52 -16 34 48 
L Cerebelum_10 Parahip (36) 14 4.16 3.52 -12 -34 -42 
R Pallidum GlobPal (51) 22 4.15 3.51 14 4 2 
L Temporal_Mid 21 12 4.05 3.44 -58 -36 6 
L Insula Insula (13) 7 4 3.41 -34 8 0 
L Cerebelum_10 Parahip (36) 5 4 3.41 -12 -28 -34 
R Heschl PrimAuditory (41) 8 3.99 3.4 30 -34 16 
R Precentral PrimMotor (4) 6 3.97 3.39 34 -14 32 
R Precentral 6 8 3.95 3.38 58 -2 42 
L Calcarine PrimVisual (17) 29 3.94 3.37 -16 -80 10 
L Lingual PrimVisual (17)  3.59 3.13 -10 -74 4 
L Hippocampus Putamen (49) 7 3.94 3.37 -22 -16 -6 
R Cingulum_Mid 8 12 3.93 3.36 14 24 30 
R Calcarine PrimVisual (17) 14 3.83 3.3 8 -84 6 
L Rectus 11 5 3.82 3.29 -4 40 -16 
R Supp_Motor_Area 6 5 3.79 3.27 8 0 72 
L Supp_Motor_Area 6 5 3.78 3.26 -10 -10 74 
R Calcarine PrimVisual (17) 5 3.71 3.22 0 -74 14 
L Postcentral PrimSensory (1) 7 3.67 3.19 -42 -32 54 
L Temporal_Mid 21 6 3.62 3.15 -52 -46 2 
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Appendix III. NAART and NAART 35 sample scoring sheet  

Only the items in bold (NAART 35) were adopted for this study.  
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