Brain Blood Flow and Metabolism: Variable Relationships in Altered Metabolic States

Tyler M. Blazey
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Neuroscience and Neurobiology Commons

Recommended Citation
https://openscholarship.wustl.edu/art_sci_etds/1886

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Brain Blood Flow and Metabolism: Variable Relationships in Altered Metabolic States

by

Tyler Matthew Blazey

A dissertation presented to
The Graduate School
of Washington University in
partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

August 2019
St. Louis, Missouri
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
Table of Contents

List of Figures .. iv
List of Tables .. vi
Acknowledgments .. vii
Abstract ... x
Chapter 1: A historical review on regional cerebral blood flow and metabolism 1
1.1 Chapter organization ... 1
1.2 Early studies of brain metabolism ... 2
1.3 Metabolic uncoupling during neural activity .. 6
1.4 Proposed mechanisms underlying uncoupling ... 10
1.5 Non-oxidative glucose consumption at rest .. 19
1.6 Brain metabolism in altered metabolic states and disease .. 22
1.7 Overview of dissertation .. 25
1.8 Figures ... 29
1.9 References .. 32
Chapter 2: A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios
in the resting human brain .. 51
2.1 Abstract ... 51
2.2 Introduction ... 51
2.3 Methods .. 53
2.4 Results .. 57
2.5 Discussion .. 60
2.6 Figures ... 65
2.7 Tables ... 69
2.8 References ... 89
Chapter 3: Quantitative positron emission tomography reveals regional differences in non-
oxidative glucose consumption within the human brain .. 103
3.1 Abstract ... 103
3.2 Introduction ... 103
3.3 Methods .. 104
3.4 Results .. 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Discussion</td>
<td>108</td>
</tr>
<tr>
<td>3.6</td>
<td>Figures</td>
<td>112</td>
</tr>
<tr>
<td>3.7</td>
<td>Tables</td>
<td>116</td>
</tr>
<tr>
<td>3.8</td>
<td>References</td>
<td>118</td>
</tr>
<tr>
<td>4.1</td>
<td>Abstract</td>
<td>122</td>
</tr>
<tr>
<td>4.2</td>
<td>Introduction</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>Methods</td>
<td>125</td>
</tr>
<tr>
<td>4.4</td>
<td>Results</td>
<td>133</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>136</td>
</tr>
<tr>
<td>4.6</td>
<td>Figures</td>
<td>147</td>
</tr>
<tr>
<td>4.7</td>
<td>References</td>
<td>163</td>
</tr>
<tr>
<td>5.1</td>
<td>Abstract</td>
<td>174</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>174</td>
</tr>
<tr>
<td>5.3</td>
<td>Methods</td>
<td>177</td>
</tr>
<tr>
<td>5.4</td>
<td>Results</td>
<td>186</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>189</td>
</tr>
<tr>
<td>5.6</td>
<td>Figures</td>
<td>202</td>
</tr>
<tr>
<td>5.7</td>
<td>Tables</td>
<td>218</td>
</tr>
<tr>
<td>5.8</td>
<td>References</td>
<td>222</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary</td>
<td>230</td>
</tr>
<tr>
<td>6.2</td>
<td>Significance and Future Directions</td>
<td>231</td>
</tr>
<tr>
<td>6.3</td>
<td>References</td>
<td>237</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Major metabolic pathways for cerebral glucose metabolism ... 29
Figure 2.1: Modified PRISMA flow diagram ... 65
Figure 2.2: Forest plot for OGI meta-analysis ... 66
Figure 2.3: Forest plot for OCI meta-analysis ... 67
Figure 2.4: Publican bias and between study heterogeneity ... 68
Figure 3.1: Differences in OGI between resting state networks ... 112
Figure 3.2: Cerebellar gray matter region of interest .. 114
Figure 3.3: Regional topography of OGI .. 115
Figure 4.1: Freesurfer generated regions of interest (ROIs) ... 147
Figure 4.2: Joint parameter distribution .. 148
Figure 4.3: Hypoglycemia induced metabolic changes .. 150
Figure 4.4: Regional CMRglc ... 152
Figure 4.5: Regional glucose influx ... 154
Figure 4.6: Regional glucose concentration ... 155
Figure 4.7: Regional E_{net} .. 156
Figure 4.8: Regional E_{fp} .. 157
Figure 4.9: Regional CBF ... 158
Figure 4.10: Regional normalized CBF ... 159
Figure 4.11: Variable spatial correspondence between maps of baseline metabolism and hypoglycemia induced change .. 160
Figure 4.12: Lack of a strong spatial correspondence between regional CBF and CMRglc changes .. 162
Figure 5.1: Time course of plasma glucose and insulin levels during glucose clamping 202
Figure 5.2: Hyperglycemia induced changes in relative glucose consumption 203
Figure 5.3: Relative cerebral blood flow measured with whole-brain normalized $[^{15}\text{O}]-\text{H}_2\text{O}$ SUVR

Figure 5.4: Relative oxygen consumption measured with whole-brain normalized $[^{15}\text{O}]-\text{O}_2$ SUVR

Figure 5.5: Relative oxygen extraction fraction (rOEF) measured with whole-brain normalized $[^{15}\text{O}]-\text{O}_2$ and $[^{15}\text{O}]-\text{H}_2\text{O}$ SUVR

Figure 5.6: Relative cerebral blood volume measured with whole-brain normalized $[^{15}\text{O}]-\text{CO}$ SUVR

Figure 5.7: Hyperglycemia induced changes in relative oxygen-to-glucose (rOGI)

Figure 5.8: Hyperglycemia changes relative glucose consumption but not blood flow, blood volume, or oxygen metabolism

Figure 5.9: Quantitative glucose consumption and blood flow during hyperglycemia

Figure 5.10: Quantitative increases in CMRglc in regions with low basal metabolic rates

Figure 5.11: No regional changes in CBF during hyperglycemia
List of Tables

Table 2.1: PRISMA checklist .. 69
Table 2.2: Summary characteristics of included studies ... 71
Table 2.3: PubMed search terms .. 79
Table 2.4: Papers excluded after a full-text review ... 81
Table 2.5: Assessment of bias within studies. ... 84
Table 3.1: Means and 95% CIs for selected regions and resting state networks 116
Table 5.1: Breakdown of participants with each imaging data-type .. 219
Table 5.2: Slope estimates from piecewise regression of plasma glucose and insulin time-courses .. 220
Table 5.3: Whole-brain parameter estimates from the irreversible 2-compartment FDG model 221
Acknowledgments

People who know me are well aware that I tend to try to work things out by myself. Over the last few years, however, I often found myself in the same situation: trying to solve a tricky problem by myself but failing to do so and feeling rather stuck. At this point, I would continue to struggle for far too long before eventually giving up and asking for help. Unsurprisingly, the problem quickly became much more manageable once I asked for help. I would therefore like to thank the many people that have helped me complete this dissertation. I know I couldn’t have done it without them. My only regret is that I didn’t reach out for help sooner. It is clear to me now there were always people willing to help me, and that all I had to do was ask.

First, I would like to thank my primary advisors Marc Raichle and Avi Snyder for their endless support of me as I completed this dissertation. More than once while trying to complete this thesis I wondered if I was going to be able to finish it. I don’t doubt that at one point or another, many other advisors would have given up on me. But Marc and Avi always believed that I could finish my work, and I will always be grateful for their belief in me. Marc has been incredibly understanding these last few years, and always supported me when I was struggling inside or outside of lab. Although he is well-known for his many scientific achievements, I think he deserves equal acclaim for the way he treats everyone around him. Avi too has gone well beyond what is required of a mentor. He never hesitated in doing what was needed to help me, whether it was daily meetings to make sure I kept on track or watching an old movie with me so that I had some fun. New students in the lab often find meeting with Avi a cause for anxiety. There is no need. Although he can be a bit abrasive during scientific discussions, he is a uniquely kind and selfless person.
Intellectually, I could not have asked for better mentors. Marc has such a thorough, unique understanding of brain metabolism. He is also easily the most imaginative and thoughtful person I have ever met. Sometimes I, as a rather concrete thinker, found it hard to keep up with the wide-ranging connections that he seemed to make so easily. These discussions always made my work better though and going forward I think I will be fine if I can work with a fraction of his creativity. Avi was an indispensable asset whenever I had trouble with a technical aspect of my work. Despite his intelligence, he shares my preference for simple solutions and helped me come up with solutions without relying too much on complicated or flashy techniques. He has also been exceedingly helpful with my writing. He was the first person to read everything I wrote for my thesis and never failed to increase the clarify of my writing.

Of course, many other people helped me along the way as well. I would be remiss if I did not thank Brian Gordon, who tolerated with good grace the many times I came into his office to talk about science or some other nerdy topic. He also gave me the opportunity to work on several interesting side projects. I learned a great deal about PET analysis from Lars Couture, John Lee, and Yi Su. John, in particular, deserves acknowledgment, as much of the data I used in this thesis would not exist without his diligence. Similarly, I owe a debt to Ana María Arbeláez and her amazing team, who acquired all of the data used in chapters 4 and 5. I was also very fortunate to work with Manu Goyal and Andrei Vlassenko, who were great collaborators.

I would also like to thank Tammie Benzinger, Denise Head, and Russ Hornbeck for hiring me as a research technician before I started graduate school. Despite the fact that I was an employee, they allowed me a great deal of freedom to work on unassigned tasks. During this time, I was able to learn many of technical skills that I relied upon to complete my thesis. I greatly appreciate the chance they took on me.
I also need to acknowledge my other committee members: Amy Bauernfeind, Tammy Hershey, and Shannon Macauley-Rambach. They were all very supportive, provided me with invaluable feedback, and encouraged me to think more broadly about my work. I should also note that they never complained about a rather irregular committee meeting schedule. I would especially like to think Tammy for serving as my committee chair. She was always encouraging, even during periods when I felt my work was not progressing as much as it should. She also has been a great source of practical advice about my thesis and life after graduate school.

Finally, I would like to my father for a lifetime of unconditional support. I would have never made it this far without him. I particularly feel the need to acknowledge how he encouraged me to learn growing up. As a child, the one thing I always knew he would buy for me were books. I like to think that this thesis is proof that he made a good investment.

Tyler Blazey

Washington University in St. Louis

August 2019
ABSTRACT OF THE DISSERTATION

Brain Blood Flow and Metabolism: Variable Relationships in Altered Metabolic States

by

Tyler Matthew Blazey

Doctor of Philosophy in Biology and Biomedical Sciences

Neurosciences

Washington University in St. Louis, 2019

Professor Marcus E. Raichle, Chair

Brain metabolism is usually thought of in terms of energy production. Decades of research has shown that the brain derives the majority of its energy from the oxidative phosphorylation of glucose transported from the blood into the brain. Because of this, cerebral blood flow (CBF), the cerebral metabolic rate of glucose consumption (CMRglc), and the cerebral metabolic rate of oxygen consumption (CMRO₂) generally are tightly coupled. Indeed, the coupling between CBF, CMRglc, and CMRO₂ is robust enough such that many investigators believe them to be equivalent measures of brain activity.

Nevertheless, research over the last few decades has shown that cerebral metabolic coupling is not stoichiometrically exact. Perhaps the best example of metabolic uncoupling occurs during focal increases in brain activity. Sensory stimulation, for instance, increases CBF and CMRglc to a much greater extent than CMRO₂. This response results in: 1) an increase in nonoxidative glucose consumption, and 2) an increase in oxygenated blood in the brain’s vasculature, the phenomenon which underlies blood oxygen dependent (BOLD) functional magnetic resonance imaging (fMRI).
Importantly, metabolic uncoupling is not restricted to periods of increased neural activity. The primary goal of this thesis is to investigate other examples of uncoupling between CBF, CMRglc, and CMRO$_2$. I performed four separate studies that all examine metabolic uncoupling from a different perspective. In the first study, I performed a meta-analysis of published papers to show that at rest, nearly 10% of the brain’s glucose consumption uses nonoxidative pathways that do not end in lactate efflux. If CMRglc and CMRO$_2$ were completely coupled, then one would not expect to find any nonoxidative glucose consumption (NOglc). The second study expands upon the first by showing that there are regional differences in the amount of glucose consumed using nonoxidative pathways. In some brain regions, such as the precuneus and medial prefrontal cortex, NOglc accounts for nearly 20% of resting CMRglc. Conversely, there does not appear to by any NOglc in the cerebellum.

The aim of the remaining two studies was to determine if changes in blood glucose concentration produce similar changes in CBF, CMRglc, and CMRO$_2$. Although multiple studies have reported that hypoglycemia focally increases CBF in humans, it is not clear how it impacts regional CMRglc. Therefore, I examined both regional CBF and regional CMRglc during moderate hypoglycemia. Although hypoglycemia decreased CMRglc in every region of the brain, it only increased CBF significantly in the globus pallidus. This suggests that CBF does not increase during hypoglycemia to prevent a fall in CMRglc. Next, I examined regional changes in brain metabolism during hyperglycemia. Previous studies have established that acute hyperglycemia alters the topography of cerebral glucose metabolism. However, the impact of hyperglycemia on regional CBF and CMRO$_2$ has not yet been determined. Therefore, I examined CBF, CMRglc, and CMRO$_2$ in several brain regions during hyperglycemia. Hyperglycemia did not change CBF or CMRO$_2$ in any brain region. However, hyperglycemia did increase CMRglc
in white matter and in the brain stem by over 30%. CMRglc was not altered by hyperglycemia in any other region. Therefore, hyperglycemia appears to selectively increase NOglc in the brain stem and white matter.

Taken together, the four studies that make up this thesis show that metabolic uncoupling, in particular NOglc, is an important part of brain metabolism. These results also highlight the need for future studies that can elucidate the mechanisms behind uncoupling in both health and disease.
Chapter 1: A historical review on regional cerebral blood flow and metabolism

1.1 Chapter organization

The focus of this thesis is uncoupling between three major aspects of metabolism in the adult human brain: cerebral blood flow (CBF), the cerebral metabolic rate of glucose (CMRglc), and the cerebral metabolic rate of oxygen consumption (CMRO$_2$). The underlying theme of all the original work presented here is that uncoupling between these three measures of metabolism has important physiological consequences that need to be understood. As such, the primary goal of this introductory chapter is to review what is known about uncoupling between CBF, CMRglc, and CMRO$_2$. With this goal in mind, I have divided this introductory chapter into six sections. The first section discusses early studies of brain metabolism, with a particular emphasis on how techniques for measuring regional brain metabolism support the hypothesis that cerebral metabolism is coupled to neural activity. In the following section, I review the fairly large literature which shows that the coupling between cerebral metabolism and neural activity is not quite as tight as early studies suggested. Then, in section three, I explore the various mechanisms that have been proposed to explain metabolic uncoupling during neural responses to imposed tasks. After section three, the remaining text focuses on resting brain metabolism. In section four, I review the evidence that a significant proportion of the brain’s resting CMRglc is not consumed via oxidative pathways. Next, I argue, in section five, that metabolic uncoupling occurs in many different brain diseases and altered physiological states. Finally, I preview chapters 2-5 in section six.
1.2 Early studies of brain metabolism

The idea that brain activity is coupled to cerebral blood flow and metabolism is often attributed to the work of Roy and Sherrington in 1890\(^1\). Since then, establishing how metabolism supports brain activity has been the focus of an extensive body of literature. One of the important early discoveries, made by several investigators in the early 20\(^{th}\) century, was that oxidative consumption of blood-borne glucose is the brain’s primary fuel source under normal conditions. These studies used cerebral arterio-venous differences of CO\(_2\) and O\(_2\) to show that the respiratory quotient (the ratio of CO\(_2\) produced to O\(_2\) consumed) was nearly 1.0, which would only occur if nearly all of cerebral oxygen consumption was used for the oxidation of glucose\(^2\)-\(^4\). The implication of these studies is that brain activity is maintained using ATP generated solely through the oxidative phosphorylation of glucose. Subsequent studies provided support for this hypothesis by showing that reductions in the availability of glucose have profound effects on brain function. Insulin-induced hypoglycemia, for example, decreases cerebral glucose and oxygen consumption and can result in coma\(^5\)-\(^7\). The brain is also extremely sensitive to oxygen availability, with electrical activity in the brain effectively ceasing after several seconds without oxygen\(^8\).

Early evidenced seemed to indicate that brain activity was supported by metabolism. However, if the Roy-Sherrington hypothesis was to be proven correct, a correlation would have to be shown between brain activity, cerebral blood flow, and metabolism. Perhaps the first researcher to address this question was Angelo Masso, who as early as 1879 reported that mental activity increases fluctuations in cerebral blood volume\(^9\),\(^10\). However, the first group to specifically measure blood flow and metabolism in humans during a cognitive task was Louis Sokoloff and colleagues in 1955\(^11\). Using the Kety-Schmidt method\(^12\), an early technique that
used cerebral arteriovenous differences to obtain metabolic rates, Sokoloff et al. measured global CBF and CMRO$_2$ in young men while they performed a mental arithmetic task. While substantial shifts in EEG patterns were reported, a finding consistent with an alteration in neural activity, neither CBF nor CMRO$_2$ increased during the mental arithmetic task. To explain their seemingly contradictory results, Sokoloff et al. proposed that, although global CBF and CMRO$_2$ may not change during periods of task-driven increased brain activity, changes may occur in specific brain regions. However, establishing that regional CBF is elevated by neural activity would require the development of techniques that could quantify brain metabolism at the regional level in healthy individuals.

Fortunately, methods for assessing regional brain metabolism were developed quickly. In 1955, the same year as the Sokoloff et al. report, Seymour Kety and colleagues introduced a method that allowed for the regional quantification of CBF in animal models13. This technique used a relatively simple model of inert gas exchange to relate the cerebral uptake of a radioactive tracer, trifluorolodomethane (CF$_3$I$_{131}$), to local CBF. Louis Sokoloff and others quickly applied this technique to the question of brain activation in the cat14. They found that visual stimulation increased CBF in several brain regions, including the visual cortex, lateral geniculate nucleus, and superior colliculus. Unfortunately, the CF$_3$I$_{131}$ technique could not be applied to living humans, as the quantification of tracer uptake required tissue samples from each brain region. An early attempt at solving this problem was developed by Ingvar and Lassen15. Instead of tissue samples, their technique measured the concentration of $^{[85}\text{Kr}]$ using scintillation detectors placed directly on the scalp. Although this technique was severely limited in spatial resolution, as tracer concentration could only be measured near the detector, it did allow for the measurement of CBF in humans16,17. Using this technique, Ingvar and Risberg found that a backwards digit-span task
increased average gray matter CBF, with a particular focus in brain regions superior to the lateral sulcus18. This finding, along with the animal work discussed above, provided support for the Roy-Sherrington hypothesis that increases in neural activity are accompanied by increases in cerebral blood flow. Other techniques, however, were necessary to determine if cerebral glucose and oxygen consumption were also increased by task engagement.

The $[^{14}\text{C}]-2$-deoxyglucose ($[^{14}\text{C}]-\text{DG}$) tracer method was the first robust strategy for measuring the CMRglc within specific brain regions. Published by Sokoloff et al. in 1977, the technique relied on the fact that like glucose, deoxyglucose is transported into brain cells and phosphorylated by hexokinase19. However, unlike glucose, deoxyglucose is effectively trapped within cells after it is converted to 2-deoxyglucose-6-phosphate by hexokinase. It cannot move further down the glycolytic pathway because the lack of a hydroxyl group on the second carbon atom of deoxyglucose-6-phosphate prevents it from being converted to fructose-6-phosphohosphate by phosphoglucone isomerase20. Furthermore, the relatively low activity of glucose-6-phosphohexose in the brain21 limits the amount of deoxyglucose-6-phosphate being converted back to deoxyglucose. As a result of the trapping of 2-deoxyglucose-6-phosphate within brain cells, the amount of $[^{14}\text{C}]-\text{DG}$ taken up by a tissue is directly proportional to CMRglc. Moreover, no corrections need to be made for loss of tracer due to the efflux of metabolites.

Several studies relating CMRglc to functional activity were quickly published using the $[^{14}\text{C}]-\text{DG}$ tracer. Sharp et al. reported that CMRglc was increased in the olfactory bulb of rats after exposure to amyl acetate22. In a pair of influential studies, Kennedy et al. found that: 1) Electrical stimulation of the sciatic nerve in the rat increased CMRglc in the ipsilateral lateral dorsal horn of the spinal cord, 2) Inducing a seizure in the motor cortex of the monkey with potassium benzyl penicillin increased CMRglc in the motor cortex, putamen, globus pallidus,
caudate, and thalamus, 3) Unilateral visual deprivation in the rat reduces CMRglc in the superior colliculus, lateral geniculate, and visual cortex, and 4) Unilateral visual deprivation in the monkey decreases CMRglc in alternating 0.3 – 0.4 mm stripes in visual cortex, revealing the presence of ocular dominance columns. Finally, the increase in CMRglc within the rat superior cervical ganglion following electrical stimulation of its afferent fibers is proportional to the frequency of stimulation. From these and other reports in the literature (for a review see), it became clear that, at least in animal models, cerebral glucose consumption is coupled to brain activity.

Like the CF$_3$I131 technique for measuring CBF, the original $[^{14}C]$-DG method was unsuited for human studies because tissue samples were required to quantify tracer uptake. However, the development of positron-emission topography (PET) in the 1970s by Michel Ter-Pogossian and colleagues provided a way to track radioisotopes in the brains of within living, healthy humans. PET imaging took advantage of the fact that radioisotopes, such as 15O, 11C, 18F, that emit positrons as they undergo radioactive decay. After traveling a few millimeters, an emitted positron undergoes an annihilation event with an electron, producing two photons. Because the two photons have equal energy (511 keV) and travel in approximately opposite directions, the location in space of the original positron can be determined if the two photons are detected simultaneously by a pair of scintillation counters (i.e., a coincidence event). If one employs a series of scintillation detectors, a 3D image representing the tissue concentration of the radioactive tracer can be reconstructed using mathematical algorithms. For more information on the development of PET, see the review by Raichle and the references therein.

The first study using PET imaging to measure glucose metabolism in the brain was published in 1978 by Raichle et al., who used $[^{11}C]$-glucose to measure CMRglc in rhesus
monkeys. However, the measurement of CMRglc with 11C-glucose can be complex as 11C-glucose is metabolized by cells throughout the body, resulting in radiometabolites that must be accounted for. The following year Reivich et al. used 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) to measure regional CMRglc in humans30. Like 14C-DG, 18F-FDG is also effectively trapped within cells after it is phosphorylated by hexokinase31, greatly simplifying the quantification of CMRglc. Within a few years of the report by Reivich et al., several studies used 18F-FDG to assess the relationship between functional activity and regional CMRglc in humans (for a review of early findings see Phelps et al.32). In 1981, Phelps, Kuhl, and Mazziotta showed that visual simulation increased CMRglc in the primary and associative visual cortex33. The magnitude of the increase in CMRglc was found to be proportional to the complexity of the visual stimulus; stimulation with a constant white light increased CMRglc by approximately 10%, whereas a complex visual scene resulted in increases of 40 to 60%. Unstructured illumination is similarly a weak driver of neural responses in primate visual cortex34.

A little over a month later, Greenberg et al. used 18F-FDG to study the effect of visual, tactile, and auditory stimulation on local CMRglc35. They found that CMRglc was significantly increased from resting controls in the visual cortex during the visual task and in the primary auditory cortex during auditory task. Tactile simulation also increased CMRglc in the postcentral gyrus, although the increase was not statistically significant. Taken together, the results of these early 18F-FDG PET studies made it clear that like CBF, CMRglc increases in specific brain regions during periods of heightened brain activity.

1.3 **Metabolic uncoupling during neural activity**
By the early 1980s, strong evidence had been presented that both CBF and CMRglc increase in specific brain regions as a result of functional activity. The remaining piece of the puzzle was to determine how activity affects the cerebral metabolic rate of oxygen consumption (CMRO$_2$). Early methods for measuring regional CMRO$_2$ in humans were presented as early as 197036. Similar to the [85Kr] technique for quantifying regional CBF, Ter-Pogossian et al. measured regional CMRO$_2$ using five external scintillation detectors following the injection of [15O]-O$_2$. Using this technique, Ter-Pogossian et al. were able to quantify CMRO$_2$ in very large brain regions (i.e., frontal, parietal, and occipital lobe). The resolution was greatly improved, however, with the adaptation of the [15O]-O$_2$ PET imaging by Frackowiak et al. in 198037. A few years later, Fox and Raichle used [15O]-O$_2$ PET to determine if CMRO$_2$ was focally increased by vibratory stimulation of a single hand38. Although they found that vibratory stimuli slightly increased CMRO$_2$ in the sensorimotor cortex (~5%), the increase was not statistically significant. Conversely, they found that CBF, measured with [15O]-H$_2$O PET, increased by 29% percent in the sensorimotor cortex. As a result, the oxygen extraction fraction (OEF), or the fraction of arterial oxygen that is extracted by the brain, actually decreased during the stimulation trials. Although unexpected, these results provided some of the first evidence that cerebral blood flow and metabolism are not entirely coupled to neural activity in the healthy human brain.

Two years later in 1988 Fox and Raichle published a follow-up study that was even more influential than their previous work39. In this study Fox and Raichle showed that although visual stimulation increases CBF and CMRglc by nearly 50%, it only increases CMRO$_2$ by a small nonsignificant amount (~5%). This result has two primary implications. First it shows that metabolic uncoupling between CBF and CMRO$_2$ during task-evoked activity is not limited to the
sensorimotor cortex. Second, and more importantly, because CMRglc increases to a greater extent than CMRO$_2$, it shows that a significant portion of the glucose that is consumed during task performance is metabolized via non-oxidative pathways. In their 1998 paper, Fox and Raichle suggested that the excess CMRglc is converted to lactate via glycolysis39. Since then, many investigators have referred to non-oxidative increases in CMRglc during task performance as an increase in “aerobic glycolysis”. The term was originally used to refer to Otto Warburg’s discovery that cancer cells produce excess lactate via glycolysis despite sufficient oxygen to completely metabolize glucose via oxidative phosphorylation40. It is important to note, however, that in this context, the term aerobic glycolysis does not necessarily mean that the ultimate fate of all of non-oxidative glucose consumption (NOglc) is lactate. There are many metabolic pathways in the brain that do not require complete oxidation of glucose to CO$_2$ and H$_2$O, some of which bypass lactate production entirely (Error! Reference source not found.)

Fox and Raichle’s 1988 paper was immediately controversial41. The prevailing view at the time accepted the Roy-Sherrington hypothesis, which postulated that increases in neural activity necessitated greater energy production than what would be possible if a portion of glucose were to be metabolized anaerobically. This hypothesis was supported by the large body of literature reviewed in the first several paragraphs of this chapter. The work of Fox and Raichle showed that CBF, CMRglc, and CMRO$_2$ were not completely coupled during functional activation and that the increase in energy production during visual stimulation performance was a small fraction of the brain’s resting energy needs. Specifically, they estimated that, due to the high rate of NOglc, the maximum increase in the rate of ATP production during visual stimulation was 8% of baseline39. Raichle and Fox’s work was supported by earlier evidence for uncoupling during neural. In 1975, Cooper and colleagues reported that visual stimulation, motor
activity, and reading produce focal elevations in oxygen concentration42, suggesting that increases in CBF during activation are not matched by increases in CMRO\textsubscript{2}.

Despite the initial skepticism, subsequent research has largely confirmed the findings of Fox and Raichle that task-evoked activity results in greater increases in CBF and CMRglc than CMRO\textsubscript{2}. Both Ginsberg et al. and Kuwabara et al. reported that CBF and CMRglc are generally well-coupled during somatosensory activation43,44. Blomqvist et al. combined [18-F]-FDG PET with [1-11C]-glucose PET to show that NOglc is increased in the motor cortex during voluntary motor activity45. Several studies using magnetic resonance spectroscopy (MRS) reported focal increases in brain lactate concentration in humans during visual46-56, motor57-59, and other cognitive60 tasks. Although some investigators have reported no significant changes in regional CMRO\textsubscript{2} during task performance44,61-63, the majority of studies have found modest (~10-20\%) increases in CMRO\textsubscript{2} during task performance51,64-71. Consistent with moderate task-induced increases in CMRO\textsubscript{2}, Buxton performed a meta-analysis of studies which measured ΔCBF (%) and ΔCMRO\textsubscript{2} (%) during activation, and found that in most studies ΔCBF was 2-4 times greater than ΔCMRO\textsubscript{2}72.

Perhaps the best evidence corroborating the Fox and Raichle result came with the discovery of the bold oxygen level dependent (BOLD) effect and functional magnetic resonance imaging (fMRI)73,74. BOLD contrast relies on the fact that deoxyhemoglobin, which is paramagnetic, attenuates the MRI signal because it creates small local distortions in the main MRI magnetic field75. During periods of increased neural activity, CBF increases more than CMRO\textsubscript{2} causing a relative increase in the concentration of oxyhemoglobin over deoxyhemoglobin and producing a measurable increase in the MRI signal. Therefore, the
Proposed mechanisms underlying uncoupling

Metabolic uncoupling during functional activity, particularly that resulting in an increase in NOglc, is perplexing from an energetic perspective. Complete oxidative phosphorylation of glucose yields approximately 30 molecules of ATP, whereas glycolysis creates only 2. Why would the brain utilize an energetically less efficient pathway during periods of increased activity? First, it is important to recall that only a small increase in oxidative phosphorylation is necessary because the increase in ATP during task performance is a small fraction of the baseline production rate\(^39\). This was confirmed by Lin et al., who used magnetic resonance spectroscopy (MRS) to show that visual stimulation increased ATP production by only about 15\%\(^{51}\) (see Zhu et al. for a higher estimate\(^77\)). Furthermore, Lin et al. found that the moderate increase in ATP production could be accounted for by a modest increase in CMRO\(_2\) from baseline values (~15\%). This is consistent with early animal model studies that reported that task-induced increases in energy production could be almost entirely accounted for by oxidative consumption of glucose\(^78,79\). Similarly, a meta-analysis of human studies estimated that nearly 90\% of the task-induced increase in ATP production is met by oxidative phosphorylation\(^80\). Thus it appears that although it takes up more glucose that is necessary for oxidative phosphorylation, the brain still relies on oxidative phosphorylation to meet its energy needs during periods of increased activity.

Why then does the brain consume an excessive amount of glucose? One explanation, suggested by Raichle and Mintun, is that glycolysis is used to quickly generate the ATP that is not created by oxidative phosphorylation\(^81\). This hypothesis is supported by the fact that
glycolysis can operate at a much faster rate than oxidative phosphorylation, at least in active skeletal muscle82,83. Another hypothesis that predicts that neural activity should increase glycolytic ATP production is the astrocyte-neuron lactate shuttle hypothesis (ANLS)84. Pellerin and Magistretti developed the ANLS to explain their finding that glutamate stimulated glycolysis and subsequently lactate release from cultured astrocytes85. The first step in the ANLS model is the astrocytic uptake of glutamate from the synaptic cleft during neural activity. The uptake of glutamate by astrocytes is facilitated thorough the GLT-1 and GLAST transporters, which couple glutamate influx with the uptake of 3 molecules of Na+86. Therefore, astrocytes must remove both excess intracellular glutamate and Na+ in order to retain the ability to remove glutamate from the synapse. To remove excess glutamate, astrocytes convert it glutamine using glutamine synthetase, a reaction that costs 1 ATP. Glutamine is then transferred back to neurons where it can be synthesized back into glutamate. At the same time, excess Na+ is removed from astrocytes using the Na+/K+ ATPase. The Na+/K+ ATPase requires one molecule of ATP to remove 3 Na+ ions. According to the ANLS, the two molecules of ATP that are needed to remove glutamate and Na+ are met by the two ATP generated by glycolysis. Finally, the lactate that is produced as the end point of glycolysis is shuttled to neurons where it undergoes oxidative phosphorylation.

A large body of experimental evidence supports the ANLS mechanism (for a comprehensive review, see Magistretti and Allaman87). Several studies have shown that the structure and enzymatic organization of astrocytes and neurons is set up to promote a transfer of lactate between the two cell types. The endfeet of astrocytes surround capillaries88 and express glucose transporters89, making them well positioned to take up glucose from the blood. Astrocytes also are in direct contact with synaptic terminals90, which have been shown to be the
site of the majority of glucose uptake during electrical stimulation91,92. Lactate dehydrogenase (LDH), the enzyme that converts lactate to pyruvate, exists in five distinct isozymes93. Astrocytes contain a high concentration of LDH\textsubscript{5}94,95, the form of LDH typically found in glycolytic tissues such as muscle96. Conversely, neurons primarily express LDH\textsubscript{1}94, which is usually found in oxidative tissues such as the heart96. Similarly, neurons, but not astrocytes, contain high quantities of pyruvate dehydrogenase95, the enzyme necessary to convert pyruvate to acetyl-CoA, the first molecule in the TCA cycle. Finally, astrocytes have a significantly higher NAD+/NADH ratio as compared to neurons, which is consistent with greater lactate production in astrocytes97.

There is also a good deal of functional evidence supporting the ANLS. Studies employing whisker stimulation in rodents have shown that increases in barrel cortex CMR\textsubscript{glc}: 1) occur primarily in astrocytes98, and 2) are strongly attenuated in mice with GLT-1 and GLAST knockout mutations99. Studies in culture have also shown that neurons prefer to oxidize external cellular lactate over glucose100,101. Consistent with this fact, elevated blood lactate decreases CMR\textsubscript{glc} in humans102,103. Finally, studies using MRS in rats have reported a nearly 1:1 relationship between cerebral glucose oxidation and glutamate cycling104,105. This is exactly what one would expect if astrocytes use glycolysis to generate 2 ATP to power glutamate turnover and then shuttle lactate over to neurons for complete oxidation80.

Despite this evidence, the ANLS remains controversial, having been criticized on both experimental106,107 and theoretical grounds108 (for an extremely detailed critical discussion see the review by Dienel109). For example, Lundgaard et al. used two-photon microscopy with a fluorescence 2-deoxyglucose analogue to show that glucose consumption is higher in neurons than astrocytes at rest and during neural stimulation106. More generally, one of the most
pervasive critiques of the ANLS is that most of the evidence in its favor comes mostly from in vitro studies; in particular no study has shown that glucose-derived lactate is transported from astrocytes to neurons in vivo. However, recent results have begun to address this criticism. Zimmer et al. reported that simulation of glutamate uptake increases CMRglc in rats110. Furthermore, Mächler et al. showed that in transgenic mice: 1) Astrocytes have higher lactate concentration than neurons at baseline, 2) Intravenous lactate injections increase lactate more in neurons than astrocytes, and 3) Intravenous pyruvate injections result in greater lactate efflux from astrocytes than neurons111. Taken together, these findings suggest that glycolysis in astrocytes creates a lactate gradient between astrocytes and neurons, which supports lactate flow down this gradient. It is likely, though, that the ANLS will remain a source of controversy until shuttling of glucose-derived lactate from astrocytes is observed directly in vivo.

It is important to note, however, that in its original formation the ANLS does not explain the rise in NOglc during increased neural activity. Instead, the ANLS predicts a rise in non-oxidative glucose use in astrocytes, followed by an increase in oxidative phosphorylation in neurons85. In this model, there is in no total increase in non-oxidative glucose use, which contradicts the NOglc reported by Fox and Raichle39. To explain this discrepancy, several alternative explanations have been proposed. Pellerin et al. hypothesized that increased neural activity produces different metabolic alterations at different time scales84. According to their model, immediately following depolarization, neurons undergo oxidative metabolism to provide the Na+/K+ ATPase with the ATP necessary to remove excess Na+. This is consistent with the work of Kasischke et al., who reported that in the first 10 seconds after electrical stimulation, NADH levels are decreased in neurons112. Next the inhibition of neuronal glucose uptake by glutamate release113, causes an increase in lactate consumption in neurons. Experiments in both
rats and humans which show decreased cerebral lactate concentration immediately following activation support this hypothesis. The continued release of glutamate from neurons activates the Na+/K+ in astrocytes, which results in enhanced astrocytic glucose uptake and lactate production as described earlier. The excess lactate is then transported to neurons, where it can be used to oxidatively generate the ATP necessary for continue neural activity. Multiple studies in humans and animals have shown that neural activity stimulates lactate production. Furthermore, Kasischke et al. showed that NADH activity starts to increase in astrocytes approximately 10 seconds after activation.

During periods of sustained activity, however, the model proposed by Pellerin et al. predicts that astrocytes use glycogen to supplement the glucose supplied from the blood. According to this model, it is glycogen replenishment that is responsible for the increase in NOglc during neural activity. A similar hypothesis was also proposed by Shulman and colleagues, who pointed out that glycogen synthesis reduces the ATP generated from glycolysis from 2 ATP per mole of glucose to 1 ATP per mole. Therefore, to generate the same amount of ATP from glycolysis, twice the amount of glucose would need to be consumed, resulting in twice the amount of lactate production. Although shunting glucose down the glycogen pathway is energetically less efficient and results in substantial NOglc, Shulman et al. hypothesize that it is used during neural activity because glycogen can be quickly broken down during periods of greater energy requirements.

Brain tissue contains approximately 5-10 µMol∙g⁻¹ of glycogen, although the exact value is fairly sensitive to measurement technique. At euglycemia, the concentration of glycogen in the brain is considerably higher than that of glucose, which typically exists in concentrations around 1.0 µMol∙g⁻¹. Interestingly, glycogen in the brain is largely confined
to astrocytes. Consistent with the models proposed by Pellerin et al. and Shulman et al., neural activity has been shown to deplete glycogen stores in animal models. Furthermore, prolonged periods of wakefulness have been shown to reduce cerebral glycogen content in rodents (but see), and to increase glycogen turnover in astrocytic processes near synapses, further implicating glycogen use during neural activity. However, glycogen turnover has been shown to be quite slow in the resting brain in both humans and rats. Moreover, a study in humans reported that glycogen concentration in the occipital lobe was not changed by visual stimulation. Although it is has been argued that the experimental methods and kinetic modeling used by this study were not sufficient to detect glycogen breakdown, there are, to our knowledge, no other studies examining glycogen change during task-evoked activity in humans. Studies in rats have also reported that there is little evidence of non-oxidative glucose use 15 minutes after activation, even though glycogen levels are still below baseline.

Therefore, more studies are needed to clarify how much glycogen turnover contributes to non-oxidative glucose metabolism driven by neural activity. In particular, methods are need to properly assess glycogen flux in vivo, as changes in glycogen concentration might not accurately reflect changes in the flux of glucose through the glycogen pool.

An alternative hypothesis is that astrocytes produce more lactate during increased neural activity than can be oxidized by neurons. This would result in a temporary increase in NOglc. Then, after activity has returned to basal levels, the excess lactate could either be removed from the brain or oxidized. Studies employing MRS in humans have reported that lactate levels peak after a few minutes of stimulation and then decline thereafter, either towards a new slightly elevated baseline, or to pre-stimulation levels. Studies in both humans and rats have shown that increased brain activity stimulates lactate efflux from the brain. Other evidence
suggests that lactate oxidation is increased after functional activity. Specifically, PET studies in humans have reported that CMRO$_2$ increases during prolonged stimulation71,139, whereas CMRglc decreases140. Similarly, Madsen et al. reported in rats that as brain lactate concentration returns to baseline following sensory stimulation, the brain uses more oxygen than can be accounted for by glucose consumption118.

Not all the evidence is consistent with the idea that NOglc is elevated during task because of a temporary increase in lactate consumption. Several human MRS studies have reported that lactate concentration remains elevated during prolonged stimulation49,50,53,54,58. Furthermore, additional human studies have shown that NOglc persists well after task-performance116,141. Finally, rodent studies have argued that lactate production has a limited role in explaining NOglc. The same Madsen et al. report mentioned previously estimated that less than 54% of the NOglc that occurred during stimulation could be accounted for by lactate production118. Based on metabolite measurements from extracellular fluid following the infusion of [3,4-14C]-glucose, Ball et al. estimated that lactate oxidation can only account for a very small fraction of activity dependent increases in NOglc138. Therefore, although the existing evidence suggests that excessive lactate production plays a role NOglc during neural activity, it is unlikely to be the only factor.

An alternative, albeit non-exclusive, hypothesis is that NOglc during task-evoked activity is directed towards glutamate synthesis. Specially, Hertz and Fillenz proposed that increased neural activity stimulates the production of glutamate, which is then consumed via oxidative phosphorylation once activity levels have returned to baseline142. In support of this hypothesis, a [6-14C]-glucose labeling studying in rats reported a significant increase in the labeling of glutamate during sensory stimulation120. In addition, most50,53,54,56,58,143,144, but not all48,55, studies
have reported that sensory stimulation increases glutamate concentration in humans by a small amount (typically less than 5% averaged over a large ROI in the appropriate sensory area).

Interestingly, some investigators have also found that brain aspartate concentration decreases as glutamate concentration increases. This suggests that some of the increase in glutamate production may be due to the malate-aspartate shuttle. The malate-aspartate shuttle is a critical metabolic pathway, as it generates NAD+ needed for glycolysis and transfers reducing equivalents, in the form of NADH, from the cytosol to mitochondria, where they are required for oxidative phosphorylation. However, not all studies have reported decreases in aspartate concentration with sensory stimulation. Therefore, more research is needed to determine what role the malate-aspartate shuttle plays in glutamate production during neural activity. More generally, the extent to which glutamate synthesis is responsible for NOglc during task performance remains unclear. Although the evidence discussed above indicates that glutamate concentration is elevated during sensory stimulation, the increases are typically only a small percent of baseline values. Quantitative studies are clearly needed to establish how much NOglc is dedicated to glutamate production during neural activity.

One final hypothesis deserves to be discussed. Multiple authors have proposed that NOglc provides the brain with the biosynthetic precursors needed for neural development and plasticity. Early support for this hypothesis was obtained by Madsen et al. in 1995, who found that the whole-brain average NOglc remained elevated for more than 40 minutes after participants performed the Wisconsin Card Sorting Test. Interestingly, Madsen et al. later reported in rats, that cerebral NOglc was effectively eliminated only minutes after tactile simulation. These discrepant results suggest that increases in NOglc following task performance may be species dependent. More recently, Shannon and colleagues expanded upon
the work of Madsen et al. using PET imaging141. They reported that approximately 2 to 3 hours after performing a motor learning task, NOglc was increased in Brodmann area 44, an area which is active during motor responses149. Taken together, these two studies suggest that NOglc plays a role in learning-induced synaptic plasticity.

Studies employing radiolabeled glucose infusions in rats have also provided evidence that glucose is used for biosynthesis during neural activity. Cruz et al. reported that, after acoustic stimulation, 10-25\% of the recovered radiolabel was found in products of the pentose phosphate shunt121,150, a pathway used for nucleic acid synthesis151. Similarly, Dienel et al. found that tactile stimulation increased the amount of radiolabel recovered in a large number of glucose metabolites, including the amino acids glutamate, GABA, and alanine120. Finally, advocates of the biosynthesis hypothesis often point out that, during human development, a period characterized by brain growth and synaptic development152, approximately 30\% of the brain’s glucose is consumed via non-oxidative pathways153 (but see154). Similarly, developmental studies in primates have shown that glucose consumption peaks at around the same time as rates of myelination and synaptogenesis148.

There is, therefore, credible evidence that part of the brain’s NOglc passes through biosynthetic pathways. However, despite the fact that biosynthesis plays an important role in synaptic plasticity155, there is currently no evidence that glycolytic by-products are directly incorporated into new structural elements (e.g., synapses) during learning. Critics of the biosynthesis hypothesis also argue that use of glucose for biosynthesis would result in uncontrolled brain growth154. Although this criticism ignores turnover of synaptic elements156,157 and proteins158,159, as well as alternative mechanisms for the efflux of glucose metabolites138,160, it does highlight the fact that we do not yet know how carbon consumed via biosynthetic
pathways leaves the brain. Methods that can track the movement of glucose in and out of the brain’s biosynthetic machinery are needed to clarify the relationship between plasticity and NOglc.

Currently, no single hypothesis entirely explains why NOglc is elevated during periods of increased neural activity. It is more likely that a combination of mechanisms, including those discussed in the previous paragraphs, is needed to account for all glucose consumption in excess of oxygen utilization. An accurate model of task-evoked NOglc will likely be complex, as it will need to account for, among other things, multiple metabolic pathways and interactions among cell types. Moreover, the effect of NOglc may not be confined to the area of activation, as glucose metabolites can spread to neighboring tissues via gap junctions in astrocytes121. Finally, a useful working model will need to consider non-oxidative uses of glucose that go beyond merely energy metabolism. Recent work has begun to establish the role of lactate as signaling molecule161, with a critical role in formation of long-term memories87. For example, Suzuki et al. showed that blocking the transfer of lactate from astrocytes to neurons impairs long-term memory formation in rats162. Importantly, it does not appear that blocking lactate transport impairs energy metabolism, as direct injection of glucose does not rescue memory formation. Instead, lactate appears to induce the expression of genes such as Arc162,163 that are related to synaptic plasticity155. These studies suggest that NOglc may promote biosynthesis in more ways than just providing metabolic precursors for biosynthesis. Furthermore, studies linking lactate signaling and learning reinforce the need for a model of metabolism during neural activity that incorporates more than just the energetic perspective.

1.5 Non-oxidative glucose consumption at rest
Since the work of Fox and Raichle in 1988, the majority of research on metabolic uncoupling in the brain has focused on understanding uncoupling during periods of increased neural activity. However, it is important to realize that it was recognized as early as 1942 that during periods of rest the brain consumes more glucose than would be expected given its rate of oxygen consumption\(^4\). Early studies reported that the whole-brain average oxygen-to-glucose index (OGI), which is the molar ratio of oxygen to glucose consumption, was around 5.5 (for review see\(^{164}\)). If glucose is entirely consumed via oxidative pathways, the OGI should be 6, as 6 moles of oxygen are required to oxidize 1 mole of glucose. An OGI of 5.5 indicates that nearly 10% of the brain’s glucose consumption at rest does not undergo oxidative phosphorylation.

Following its discovery, the importance of non-oxidative glucose metabolism was largely underappreciated. Most investigators argued that lactate (or pyruvate) efflux accounted for nearly all of the NOglc in the brain\(^{4,165,166}\). This argument was also presented by Siesjö in his influential textbook *Brain Energy Metabolism*\(^{167}\). According to Siesjö, “… an OGI of less than 100% [6.0] could be explained in terms of production of lactate … there is no need to explain an OGI value of less than 100% [6.0] in terms of synthesis of amino acids or other compounds.” To this day, many investigators still hold to this view. For example, in recent review, Dienel wrote that “Submaximal OGI in resting brain is ascribed mainly to lactate production and efflux from brain…”\(^{109}\).

Despite the widely held view that non-oxidative glucose metabolism at rest merely reflects lactate efflux, and is therefore of little physiological importance, there is evidence suggesting otherwise. Based differential arterio-venous measurements of glucose, lactate, and oxygen in humans, Scheinberg et al. reported in 1965 that cerebral NOglc could not be explained by lactate efflux to venous blood\(^{168}\). They also presciently concluded that “… the portion of
utilized glucose not accounted for by oxidation may be involved in the synthesis of other substances, in particular amino acids of cerebral proteins.” More recently, Vaishnavi et al., using PET measurements of CMRglic and CMRO2, showed that there are regional differences in NOglc147. The lowest rates of NOglc were found in the cerebellum and medial temporal lobe, whereas the highest were found in the prefrontal and parietal cortices. Interestingly, the regions with elevated NOglc overlapped strongly with two resting state networks (RSNs), that is, regions of the brain whose spontaneous activity is highly correlated at rest169. The first RSN was the cognitive control network, a network that encompasses parts of the lateral prefrontal and parietal cortices and is thought to be involved in attention and working memory170. The second RSN was the default mode network (DMN), a collection of regions including the prefrontal cortex, precuneus, and lateral parietal cortex171. The defining feature of the DMN is that, although it is metabolically active at rest, it becomes less so during goal-directed task performance171-173. The DMN has traditionally been associated with self-referential processes such as mind-wandering174,175; however there is evidence that the DMN has more expansive role (for a review see176). The fact that resting NOglc is spatially correlated with regions associated with RSNs suggests that these regions may have unique metabolic needs compared to other brain regions.

More recently, Goyal et al. reported that the expression of genes related to synaptic plasticity and development is enriched in brain regions with high levels of NOglc153 (but see177). This suggests that a portion of the brain’s non-oxidative glucose metabolism in spent on plasticity and other biosynthetic processes (for a similar argument during task-evoked activity see Proposed mechanisms underlying uncoupling above). In support of this idea, Glasser et al. showed that there is a negative spatial correlation between regional NOglc and a putative measure of cortical myelination178. Furthermore, Segarra-Mondejar et al. reported that glucose
consumption, specifically glycolysis, is necessary for neurite growth in vitro and in vivo in mice179. Although intriguing, these and the studies discussed in the preceding two paragraphs do not definitively establish the function of NOglc in the resting brain. As in metabolic uncoupling during task-evoked activity, it is likely that multiple mechanisms are at play. To further establish the role of NOglc at rest, there is a need for techniques that can quantify the flux of glucose into multiple metabolic pathways, including those responsible for biosynthesis. To address these issues, 13C MRS180,181 and hyperpolarized 13C MRI182 in vivo and metabolic flux analysis in vitro183 provide intriguing opportunities.

1.6 Brain metabolism in altered metabolic states and disease

So far, this chapter has focused almost exclusively on brain metabolism in healthy individuals. However, understanding the effect of acute metabolic states and neurological diseases on brain metabolism has been an active area of study since methods for measuring brain metabolism in humans were first developed. The same year that he published his influential article establishing the nitrous oxide technique for measuring CBF in humans12, Kety published five papers studying the relationship between whole-brain CBF and CMRO$_2$ and schizophrenia184, intracranial pressure185, diabetic coma6, hypertension186, and hypercapnia187. One of the interesting findings that emerged from these studies is that CBF and CMRO$_2$ often are uncoupled during metabolic challenges. For example, Kety reported that hypercapnia dramatically increases CBF, without a proportional increase in CMRO$_2$187. Conversely, Kety found that, although patients experiencing diabetic coma had a greatly reduced CMRO$_2$, their CBF values were largely in the normal range6.
Since these initial studies by Kety and colleagues, multiple investigators have reported uncoupling between CBF, CMRO₂, and CMRgln during acute metabolic challenges. Hypoglycemia was intensively studied in the 1940 and 1950s since insulin shock was, at the time, considered a viable treatment for schizophrenia. Consistent with Kety’s study in patients suffering from diabetic coma, profound hypoglycemia decreased whole-brain CMRgln greatly, whereas CBF and CMRO₂ changed modestly. Another notable example is hypoxia. Studies in both humans and rats have shown that hypoxia dramatically increases global CBF without altering CMRO₂. Furthermore, CMRgln increases modestly during hypoxia. The increase in CMRgln without a proportional increase in CMRO₂, results in increased NOgln during hypoxia, which appears to be due to lactate production. This is consistent with the finding that acute hypocapnia results in a temporary increase in NOgln.

The variety of the examples discussed in the previous two paragraphs should make it clear that alterations in systematic metabolism often disrupts metabolic coupling in the brain. In some cases it is fairly simple to come up with a reasonable hypothesis to explain the divergent changes metabolism. During hypoxia, for example, it is possible that CBF and lactate production increase to prevent energy failure. In other cases, coming up with a satisfactory explanation is more difficult. Despite a great deal work, there is still no complete account of what fuel sources the brain uses to maintain CMRO₂ during hypoglycemia (for a review see).

In addition to its role in acute disorders, metabolic uncoupling has also been implicated in chronic neurological disease. For example, temporal lobe epilepsy has been shown to decrease CMRgln in the temporal lobe to a greater extent than it does CBF. Interestingly, metabolic uncoupling also occurs during traumatic brain injury, which increases whole-brain NOgln.
Given these results, one would expect that metabolic uncoupling would be an active area of study for those interested in understanding neurological diseases, but this is not always true. A promising example of where research on metabolic uncoupling could contribute to the study of neurological disease is in Alzheimer’s disease (AD) research. AD research is a field which has grown quickly in the last few decades, due, in part, to the increased economic and social burden that AD is expected to have on aging populations.

Pathologically, AD is defined by the development of amyloid-beta plaques, followed by tangles of hyperphosphorylated tau. However, another hallmark of AD is focal decreases in glucose consumption. AD patients typically show deficits in glucose consumption in the frontal, parietal, and temporal lobes, as well as in the precuneus and posterior cingulate. It is generally accepted in the field that decreased glucose use in AD is a sign of synaptic dysfunction; a conclusion that is based on studies that have shown that most of the glucose consumed during neural activity is taken up by synapses. There is, however, a lack of empirical evidence that decreased glucose consumption in AD patients is entirely due to energy failure at synapses.

Although glucose metabolism measured using FDG PET is one of the most common biomarkers reported in AD studies, cerebral oxygen metabolism is rarely assessed. Early studies showed that in patients with severe dementia, global CMRO\textsubscript{2} declines by about 20\%, with the largest declines occurring in the parietal lobe. However, as these studies did not simultaneous measure glucose consumption, it is not clear if CMRglc declines in proportional to oxygen consumption. Indeed, regional decreases in CMRglc in excess of 30-40\% have been reported in individuals with AD. Therefore, the claim that AD patients have lower cerebral glucose consumption entirely because of synaptic dysfunction relies on the assumption that there is a tight coupling between synaptic activity and glucose consumption in individuals with AD.
However, as we have seen, metabolic coupling becomes much less pronounced in many neurological diseases. Indeed, there is evidence for uncoupling in AD patients (for a review see210). CMR\textsubscript{glc} has been shown to decrease to a greater extent than CMRO\textsubscript{2} in individuals with both early-onset211 and late onset AD212-214. This indicates that NOglc decreases during AD, in addition to the decline of NOglc that has been noted during healthy aging215. Intriguingly, Hoyer et al. also showed that in later stages of AD, CMRO\textsubscript{2} drops sharply, which eliminates much of the difference between changes in CMR\textsubscript{glc} and CMRO\textsubscript{2}212. This suggests that the relationship between AD and brain metabolism may evolve as the disease progresses. Consistent with this hypothesis, it was recently reported that there is a negative correlation between tau deposition and NOglc in cognitively normal individuals216. However, this correlation was only found in individuals that were at risk for developing AD due to high levels of amyloid plaques. It is therefore possible that amyloid plaques mediate the relationship between NOglc and AD. In agreement with this proposal, Vlassenko et al. reported that the regions of the brain with high levels of amyloid plaques in individuals with AD are the same regions that have high levels of NOglc in healthy young adults217. A few years later, Bero et al. replicated this finding by showing a positive regional correlation between lactate production and amyloid plaque loads in a transgenic mouse model of AD123. Together, these results suggest that high rates of NOglc may put a brain region at risk for developing amyloid plaques later in life. Determining if deficits in NOglc lead to the development of AD pathology, or if they are merely an epiphenomenon, will require more direct research.

1.7 Overview of dissertation

The previous sections in this introductory chapter have argued that metabolic uncoupling, in particular that resulting in NOglc, has important consequences that extend beyond energy
metabolism. This is in contrast to the conventional view, which posits that metabolic uncoupling is a minor phenomenon of relatively little physiological importance. Therefore, the goal of the remaining chapters in this thesis is to further explore discrepancies between CBF, CMRglc, and CMRO₂.

In Chapter 2, I will examine whole-brain NOglc at rest in healthy individuals. As previously mentioned, an early review by Kety concluded that the whole-brain OGI was approximately 5.5¹⁶⁴, which shows that around 9% of CMRglc is metabolized without oxygen consumption. Conversely, a recent small meta-analysis (n=8) reported that the whole-brain OGI may be as low as 5.¹²¹⁸. To resolve the quantitative discrepancy, I performed a large meta-analysis of studies reporting whole-brain OGI (n=40). Also because it is widely believed that excess glucose in the brain is accounted for by lactate production¹⁶⁷, we analyzed studies (n=39) that reported the whole-brain oxygen-to-carbohydrate index (OCI), a measure that includes lactate as well as glucose consumption. If the OGI is less than 6.0 due to lactate production, then the average whole-brain OCI from our meta-analysis should not be statistically different from 6.0. Alternatively, an OCI significantly less than 6.0 suggests that some of the brain’s NOglc proceeds down metabolic pathways that do not end in lactate production (e.g., biosynthetic pathways). A slightly modified version of Chapter 2 has been published elsewhere²¹⁹.

The topic of Chapter 3 is regional differences in NOglc in the brain at rest. A previous study from our laboratory reported that the fraction of glucose consumed via non-oxidative pathways varies across the human brain¹⁴⁷. The precuneus, frontal lobe, and parietal lobe have high rates of NOglc, whereas the cerebellum and medial temporal lobe have lower rates. This report was recently challenged by Hyder et al., who argued that these regional differences are methodical artifacts²²⁰. In the original report, Vaishnavi et al. calculated cerebral glucose and
oxygen consumption using local-to-global tracer uptake ratios147, instead of quantifying absolute
CMRglc and CMRO\textsubscript{2} directly in each region. Although the lack of absolute units can result in
misleading inferences221, uptake ratios are a commonly used technique because they remove
global variance and do not require invasive arterial sampling. In their paper, Hyder et al.
attempted to show that there are no regional differences in NOglc if a proper kinetic model is
used to compute absolute CMRglc and CMRO\textsubscript{2}220. However, a careful reading of the Hyder et al.
paper suggested that the authors actually reported regional differences in their data that were
simply masked by a combination of misleading data visualization and improper statistical
techniques. I therefore reanalyzed the Hyder et al. data using simple, direct methods to confirm
this impression. The results of this analysis were also reported in a previous article222.

Although the focus of Chapters 2 and 3 are on brain metabolism in healthy individuals
under normal physiological conditions, the goal of Chapter 4 is to examine regional cerebral
blood flow and glucose metabolism in participants experiencing moderate hypoglycemia. Many
studies have examined how regional CBF changes in response to hypoglycemia (for a review
see223). These studies have found that, in humans, hypoglycemia focally increases CBF in the
thalamus, globus pallidus, and medial prefrontal cortex224-226. In contrast, most of the studies
measuring CMRglc during hypoglycemia have reported only global values. Although global
CMRglc is substantially lower in subjects experiencing profound hypoglycemia184,189, it does not
begin to decline until moderate hypoglycemia (\textasciitilde50 mg/dL) occurs227,228. The sole study
examining regional CMRglc during moderate hypoglycemia humans reported changes in every
region examined229,230. Thus, hypoglycemia seems to affect CBF, which changes focally,
differently than CMRglc, which changes uniformly across the brain. To test this hypothesis, I
used \([^{15}\text{O}]\text{H}_2\text{O}\) and \([^{11}\text{C}]\text{-D-glucose}\) PET to measure regional CBF and CMRglc in 18 patients during stepped hypoglycemia.

Lastly, Chapter 5 will investigate regional changes in blood flow, glucose consumption, and oxygen metabolism in hyperglycemic individuals. It is well-known that during euglycemia, more glucose is present in the blood than is taken up by cells in the brain \(^{231}\). Therefore, one would predict that increases in blood glucose concentration would not change CMRglc. However, there is evidence that this may not be true. Although statistically significant in only one report\(^ {232}\), multiple studies have reported that hyperglycemia increases global CMRglc slightly\(^ {232-235}\). More interestingly, two separate studies have reported that white matter is particularly affected by hyperglycemia, with CMRglc increasing by over 40% in both studies\(^ {232,234}\). Conversely, the same two studies found that the increases in CMRglc within gray matter where either much smaller (~20%)\(^ {232}\), or not significant\(^ {234}\). There currently is no explanation as to why hyperglycemia increases CMRglc specifically in white matter. As metabolic uncoupling occurs in so many neurological conditions (see \textit{Brain metabolism and disease} above), it is possible that hyperglycemia selectively increases NOglc. I used \([^{18}\text{F}]\text{-FDG}\) and \([^{15}\text{O}]\text{-O}_2\) PET imaging to determine if changes in glucose consumption during hyperglycemia are matched by changes in oxygen consumption. Finally, I used \([^{15}\text{O}]\text{-H}_2\text{O}\) PET and arterial spin labeling MRI to test how regional blood flow is affected during hyperglycemia.
1.8 Figures

Major Pathways for Glucose Metabolism

Gray boxes denote each separate pathway that glucose can enter once inside the brain. The majority of glucose enters the glycolytic pathway and then is reduced to CO$_2$ and water in the TCA cycle. However, the TCA cycle also produces many important amino acids such as glutamate. Furthermore, glucose can also be stored as glycogen, be converted into fructose by

Figure 1.1: Major metabolic pathways for cerebral glucose metabolism

Gray boxes denote each separate pathway that glucose can enter once inside the brain. The majority of glucose enters the glycolytic pathway and then is reduced to CO$_2$ and water in the TCA cycle. However, the TCA cycle also produces many important amino acids such as glutamate. Furthermore, glucose can also be stored as glycogen, be converted into fructose by...
the polyol pathway, or used to generate intermediates for nucleic acid biosynthesis via the pentose phosphate shunt. Abbreviations are as follows: 1,3-Bisphosphoglycerate (1,3PG), 2-Phosphoglycerate (2PG), 3-Phosphoglycerate (3PG), Phosphoglycerate kinase (3PGK), 6-Phosphogluconate (6-PGD), 6-Phosphogluconolactone (6-PGDL), Acetylcholine (ACh), Aconitase (ACON), Adenosine diphosphate (ADP), α-Ketoglutarate dehydrogenase (α-KGDH), Alanine (Ala), Aldose reductase (AR), Aspartate (Asp), Adenosine-triphosphate (ATP), Coenzyme A (CoASH), Citrate synthase (CS), Dihydroxyacetone phosphate (DHAP), Erythrose 4-phosphate (Ery4P), Flavin adenine dinucleotide (FAD), Dihydroflavine adenine dinucleotide (FADH₂), Fructose-bisphosphate aldolase (FBA), Fructose 1,6-bisphosphate (Fru-1-6-P₂), Fructose 6-phosphate (Fru-6-P), Glucose-6-phosphate dehydrogenase (G6PD), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), Glyceraldehyde 3-phosphate (GAP), Guanosine diphosphate (GDP), Glucose-1-phosphate (Glc-1-P), Glucose-6-phosphate (Glc-6-P), Glutamine (Gln), Glutamate (Glu), Glycine (Gly), Gluconolactonase (GNL), Glycogen synthase (GS), Guanosine triphosphate (GTP), Hexokinase (HK), Isocitrate dehydrogenase (IDH), Lactate dehydrogenase (LDH), Malate dehydrogenase (MDH), Nicotinamide adenine dinucleotide (NAD⁺, NADH), Nicotinamide adenine dinucleotide phosphate (NADP⁺, NADPH), Nucleoside-diphosphate kinase (NDPK), Pyruvate dehydrogenase (PDH), Phosphoenolpyruvate (PEP), Phosphofructokinase (PFK), Phosphoglucose isomerase (PGI), Phosphoglutomutase (PGM1), Phosphoglycerate mutase (PGM2), Pyruvate kinase (PK), Pyrophosphate (PP), Pyruvate (Pyr), Ribulose-5-phosphate (R5P1), Ribose-5-phosphate (R5P2), Ribulose-5-phosphate 3-Epimerase (RPE), Ribulose-5-phosphate Isomerase (RPI), Sedoheptulose 7-phosphate (S7P), Succinyl coenzyme A synthetase (SCS), Succinate dehydrogenase (SDH), Transaldolase (TAL), Transketolase (TKT), Triose-phosphate isomerase (TPI), Uridine
diphosphate (UDP), UTP-glucose-1-phosphate uridylytransferase (UDPGP), Uridine triphosphate (UTP), Xylulose-5-phosphate (X5P). Adapted from Dienel and Garrett and Grisham.
1.9 References

35

37

76 Rosen BR, Savoy RL. fMRI at 20: has it changed the world? *Neuroimage* 2012; 62: 1316–1324.

Markert CL, Møller F. Multiple Forms of Enzymes: Tissue, Ontogenetic, and Species Specific Patterns. *Proc Natl Acad Sci USA* 1959; **45**: 753–763.

118 Madsen PL, Cruz NF, Sokoloff L, Dienel GA. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose
consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. *J Cereb Blood Flow Metab* 1999; **19**: 393–400.

140 Vlassenko AG, Rundle MM, Mintun MA. Human brain glucose metabolism may evolve during activation: findings from a modified FDG PET paradigm. *Neuroimage* 2006; 33: 1036–1041.

Dienel GA. Fueling and imaging brain activation. ASN Neuro 2012; 4. doi:10.1042/AN20120021.

169 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700–711.

Chapter 2: A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in the resting human brain

2.1 Abstract

Glucose is the predominant fuel supporting brain function. If the brain’s entire glucose supply is consumed by oxidative phosphorylation, the molar ratio of oxygen to glucose consumption (OGI) is equal to 6. An OGI of less than 6 is evidence of non-oxidative glucose metabolism. Several studies have reported that the OGI in the resting human brain is less than 6.0, but the exact value remains uncertain. Additionally, it is not clear if lactate efflux accounts for the difference between OGI and its theoretical value of 6.0. To address these issues, we conducted a meta-analysis of OGI and oxygen-to-carbohydrate (glucose + 0.5*lactate; OCI) ratios in healthy young and middle-aged adults. We identified 47 studies that measured at least one of these ratios using arterio-venous differences of glucose, lactate, and oxygen. Using a Bayesian random effects model, the population median OGI was 5.46 95% credible interval (5.25-5.66), indicating that approximately 9% of the brain’s glucose metabolism is non-oxidative. The population median OCI was 5.60 (5.36-5.84), suggesting that lactate efflux does not account for all non-oxidative glucose consumption (NOglc). Significant heterogeneity across studies was observed, which implies that further work is needed to characterize how demographic and methodological factors influence measured cerebral metabolic ratios.

2.2 Introduction

1 This chapter is slightly modified version of a previously published article: Blazey TM, Snyder AZ, Goyal MS, Vlassenko AG, Raichle ME. A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in the resting human brain. *PLoS ONE* 2018; 13: e0204242.
Glucose and oxygen consumption are tightly coupled in the brain at rest, with the majority of glucose undergoing complete oxidative phosphorylation\(^1\). Furthermore, the ratio of carbon dioxide production to oxygen consumption is very close to one\(^2\), indicating that nearly all of oxygen consumption is used for carbohydrates. The standard measure of coupling between oxygen and glucose utilization is the oxygen-to-glucose index (OGI), which is the molar ratio of oxygen to glucose consumption. An OGI of 6 indicates that all glucose is consumed via oxidative pathways.

The measurement of cerebral arterio-venous differences of oxygen and glucose is regarded as the gold-standard technique for obtaining OGI. With this method, arterial samples are collected from a peripheral artery (e.g. radial or brachial artery) and venous samples from the internal jugular vein at the jugular bulb. The primary assumption of this technique is that the venous blood in the jugular bulb comes solely from the brain. If blood from other sources is present, than the arterio-venous difference is no longer only the result of cerebral metabolism. This bias is likely to be small, however, as it has been estimated that 97.4% of the blood in the jugular bulb comes from cerebral sources\(^3\).

Although the arterio-venous technique has been used to study whole-brain OGI for over sixty years\(^4\), there remains some uncertainty as to the exact value. Individual studies using arterio-venous differences in humans at rest have reported values ranging from 4.6\(^5\) to 7.5\(^6\). In 1957, Kety reviewed sixteen studies of both healthy and diseased populations and reported a mean value of 5.54\(^4\). A more recent meta-analysis of eight studies of metabolism during exercise found a whole-brain OGI of 5.1\(^7\). These two reviews suggest that anywhere from 8 to 15% of the brain’s glucose uptake is consumed via non-oxidative metabolism. Thus, the value of cerebral OGI in resting, healthy humans is known only approximately.
The fate of glucose consumed by non-oxidative pathways is also a matter of some debate. It has been suggested that lactate efflux to venous blood may completely account for non-oxidative glucose metabolism8. Two more recent reviews have reported conflicting results7,9. Both studies performed a meta-analysis of the oxygen-to-carbohydrate index (OCI), also referred to as the cerebral metabolic ratio (CMR). The OCI is computed as the molar ratio of the arterio-venous difference of oxygen to glucose plus $\frac{1}{2}$ lactate. (The factor of $\frac{1}{2}$ arises because each mole of glucose theoretically yields two moles of lactate). If lactate efflux to venous blood completely accounts for an OGI less than 6, then the OCI should equal 6 or greater. Alternatively, an OCI less than 6 indicates that lactate efflux to venous blood does not alone account for all of non-oxidative glucose metabolism. Consistent with the original finding of Siesjö8, Quistroff et al. reported that the population mean OCI from eight studies is approximately 6. However, Rasmussen et al., in a partially overlapping sample of eight studies, reported that the resting OCI was 5.3. Thus, it remains unclear whether lactate fully accounts for non-oxidative glucose metabolism in the resting human brain.

To provide a more accurate estimate of both OGI and OCI in the healthy human brain at rest, we conducted a systematic meta-analysis10 of studies reporting arterio-venous differences for glucose, oxygen, and lactate. We identified 40 studies with OGI data and 37 partially overlapping studies with OCI data. We then performed a random effects Bayesian meta-analysis11 to determine the population average OGI and OCI ratios and their credible intervals (CIs).

\textbf{2.3 Methods}
Study Design

Our meta-analysis was conducted using the Preferred Reports Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Figure 2.1 shows a flow diagram of the study procedures. Table 2.1 contains the PRISMA checklist. We did not complete or register an a priori study protocol.

Eligibility Criteria

We included studies that reported mean OGI and/or OCI along with either SD or standard error of the mean (SE), or the data necessary to estimate the mean and SE. Only studies that used arterio-venous differences to measure whole-brain OGI and/or OCI were included. OGI and OCI data were typically taken from text or tables, but were extracted from figures if necessary. Table 2.2 lists the data source for each study. If a study did not report either ratio but contained the necessary arterio-venous data, we contacted the corresponding author via the listed email address and requested the required data. Although positron emission tomography (PET) can be used to measure whole-brain OGI, we chose to exclude these studies because of uncertainty in the value of the lumped constant for [18F]-FDG. We did not include studies from older adult cohorts or from diseased populations (e.g., cardiac, neurological, or mental disorders).

Study Identification

We searched the PUBMED database with several combinations of the terms “Arterial”, “Arterio”, “Brain”, “Carbohydrate”, “Cerebral”, “Glucose”, “Index”, “OCI”, “OGI”, “Oxygen”, “Ratio”, and “Venous” (Table 2.3). In total, we performed 24 separate search queries. All searches were constrained to articles published between 1900 and August 10th, 2017. To limit the amount of animal model studies returned by our searches, we added the Medical Subject Heading (MeSH) keyword “Human” to every search. In addition, the first author (TB) conducted a search of his personal archives for any papers that included measures of cerebral oxygen,
glucose, and lactate metabolism. The papers in the final dataset that were only found in the first authors archives are listed in Table 2.2.

Statistics

A random effects Bayesian meta-analysis11 was performed to calculate the population average OGI and OCI. A random effects model accounts for differing variance in each study’s estimates of OGI and OCI, while simultaneously allowing for heterogeneity between studies. Separate models were run for OGI and OCI. If a study reported multiple values for OGI or OCI, a fixed effects meta-analysis was performed to calculate an overall estimate for that study15. Our model assumed that each study’s estimate, y_i, is a random sample from a normal distribution:

$$y_i \sim N(\mu + \mu_i, \sigma_i)$$ (2.1)

where μ is the population mean, μ_i is random offset for study i, and σ_i is the study standard deviation. No covariates or other explanatory factors were included in the model. We assume that σ_i is equal to each study’s standard error of the mean. The random offsets for each study were also assumed to follow a normal distribution:

$$\mu_i \sim N(0, \tau)$$ (2.2)

where τ is the random effects standard deviation, which reflects the heterogeneity across studies.

The model parameters, μ, μ_i, and τ were estimated using Hamilton Markov Chain Monte Carlo (MCMC) implemented in Stan16. The population mean, μ, was given a broad normal prior with a mean of 6 and standard deviation of 2. The random effects standard deviation, τ, was given a uniform prior with a lower limit of 0. Eight randomly initialized chains of 20,000 samples were run for each model. The first 10,000 samples of each chain were discarded as
warm-up. Sample autocorrelation was minimized by only considering every 5th sample. As a result, all inferences are based upon 16,000 posterior samples. Convergence was assessed using the Gelman and Rubin potential reduction statistic, $\hat{R}^{17,18}$. \hat{R} is the ratio of within chain variance to the pooled between chain variance. At convergence, \hat{R} should be equal to one. For both models, \hat{R} was with within 10^{-3} of 1 for every parameter. All results are summarized with medians and 95% equal-tailed credible intervals.

The primary parameters of interest where the population means, μ, for OGI and OCI. We also computed the percent of glucose metabolism that is entirely non-oxidative. This was done by assuming a 6:1 stoichiometric ratio: $100 \cdot (1 \frac{1}{6} OGI / 6.0)$. Replacing OGI in this expression with OCI gives the percent of carbohydrate metabolism that is non-oxidative.

Assessment of Bias and Heterogeneity
Risk of bias within studies was assessed by considering four factors: study population, interval between catheterization and measurement, the presence of experimental manipulations, and fasting state. Bias assessment was not a factor in the random effects meta-analysis, and no sub-group analyses are reported. The possibility for bias across studies was assessed using funnel plots. A funnel plot is used to determine if there is any relationship between the reported OGI/OCI value and its standard error. If a meta-analysis is free from publication bias and heterogeneity, the plot should resemble a funnel with the studies with the smallest standard errors clustered around the population average. An asymmetric funnel plot can be an indication of reporting bias or study heterogeneity20. To test for funnel plot asymmetry, we used the method recommended by Egger et al.19,21, which involves a regression model with effect size as the dependent variable and standard error as the independent variable. Our regression model, implemented in the R metafor package15, also estimated a random effect for each study.
The possibility of study heterogeneity was further quantified using posterior predictive intervals22 for a random new study. Posterior predictive intervals, which incorporate the uncertainty in parameter estimates, provide a credible interval in which we would expect a new study to fall. All posterior predictive intervals were computed using 16,000 random samples. Finally, we computed the I^2 statistic23,24:

$$I^2 = 100 \cdot \frac{\hat{t}^2}{\hat{t}^2 + \hat{\sigma}^2}$$ \hspace{1cm} (2.3)$$

where \hat{t}^2 is the estimated between study variance from the random effects model, and $\hat{\sigma}^2$ is the within study variance:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{k} w_i (k-1)}{(\sum_{i=1}^{k} w_i)^2 - \sum_{i=1}^{k} w_i^2}$$ \hspace{1cm} (2.4)$$

where k is the number of studies and w_i is the precision of the mean for study i: $w_i = 1/\sigma_i^2$. We calculated I^2 for each MCMC sample of \hat{t}^2 and then computed the median I^2 along with its 95\% equal-tailed credible intervals. Higher values of I^2 indicated a greater relative proportion of between study variance and thus greater study heterogeneity.

\textbf{2.4 Results}

\textbf{Included Studies}

Our searches of PUBMED (see Methods) and our own archives identified 927 potential records (Figure 2.1). After reviewing the titles, and if necessary, abstracts of all 927 records, 810 were discarded from further consideration. Records were discarded at this step if they were clearly irrelevant for our purposes (e.g. animal studies). The remaining 117 papers were then subjected to a critical full text review. This review resulted in the rejection of 65 papers (Table
The majority of papers were rejected because they did not acquire the data necessary to calculate OGI/OCI (n=38) or because they reported values only in experimental states (n=17). For OGI, we found 52 papers that met our requirements for inclusion, 34 of which reported OGI. In addition, we sent 19 requests for data to authors of studies that had the data necessary to report OGI but did not do so. We received data from 6 of these authors, resulting in a total of 40 studies. For OCI, 43 papers met our inclusion requirements. Of these, 32 papers reported the required data, and data requests were sent for the remaining 11. After receiving data from 5 authors, our final OCI dataset contained 37 studies. A summary of the characteristics for the included studies is in Table 2.2. A total of 30 studies measured both OGI and OCI.

Population Average OGI and OCI

Forest plots for OGI and OCI are shown in Figure 2.2 and Figure 2.3, respectively. Note that the random effects models effectively decrease the weight of studies with high standard errors. The population average OGI was 5.46 with a 95% CI of 5.25 to 5.66. As the CI does not overlap 6.0, we can infer that there is significant NOglc at rest. The population average OCI was 5.60 with a 95% CI of 5.36 to 5.84. The fact that the credible intervals do not contain 6 indicates that a significant portion of the brain’s glucose consumption is non-oxidative and cannot be accounted for by lactate efflux to the blood.

Bias and Heterogeneity

Within-study bias was assessed in four separate categories: study population, waiting period between catheterization and measurement, experimental manipulations, and fasting state (Table 2.5). The most frequent bias in study population was the use of all male subjects. Nineteen studies included only male subjects. No study included only female subjects. The majority of studies consisted of younger subjects (Table 2.5). Across all studies that reported an average age,
the mean age was 27.2 with a standard deviation (SD) of 4.6. Only five studies specifically mentioned including subjects over the age of 4025-29. A few other studies included only hospital patients (e.g. Scheinberg et al., 1949, Takeshita et al., 1972) or competitive athletes (e.g., Voliantis et al., 2008 and Bain et al., 2016). More than half (24/47) of studies included no mention of a waiting period between catheterization and blood sampling. Blood sampling was performed in a variety of positions, the two most common being supine (13) and semi-supine (20). The majority of measurements were performed in the absence of any overt experimental manipulation, however a few studies did include the injection of labeled compounds (e.g., Boyle et al., 1994 and Glenn et al., 2015) or saline (Hasselbalch et al., 1996 and Volianitis et al., 2011). Finally, the requirement for fasting subjects was mixed, with 19 requiring at least some fasting period, 20 including no mention of performing measurements in a fasting state, and the remaining 8 studies assessed subjects in a post-absorptive state.

To assess bias across studies, funnel plots were constructed for both OGI (Figure 2.4A) and OCI (Figure 2.4B). No asymmetry was apparent in either plot. This impression was quantified with a regression test for asymmetry19. No significant evidence for asymmetry was found for either OGI ($p=0.2013$) or OCI ($p=0.1948$). The lack of asymmetry suggests the absence of reporting bias in our sample. There was, however, substantial horizontal scatter around the population averages, indicating heterogeneity across studies. To further assess this heterogeneity, we computed posterior predictive intervals for a new random study for each ratio. Both ratios showed considerable variability, with the 95% posterior predictive interval for OGI spanning 4.35 to 6.60 and from 4.32 to 6.91 for OCI. Furthermore, the I^2 values were consistent with substantial between study heterogeneity. An estimated 85.03% [95 CI 75.88-91.35] of the
total variance in the OGI meta-analysis was due to study heterogeneity. A similar value of 84.96% [95 CI 75.09-91.60] was found in the OCI analysis.

2.5 Discussion

Our meta-analyses of OGI and OCI reveals that both measures are significantly less than 6. The fact that OGI is less than 6 indicates that a proportion of glucose consumption is non-oxidative, while OCI being less than 6 shows that not all of non-oxidative metabolism can be accounted for by lactate efflux to venous blood. Expressed in terms of percentages non-oxidative metabolism accounts for 9.0% 95 CI [5.67-12.5] of glucose consumption and 6.7% 95 CI [2.67-10.67] of carbohydrate metabolism. Our estimates of the population average OGI (5.46 95% CI [5.25-5.66], and OCI (5.60 with a 95% CI [5.36-5.84]) are based on a much larger set of studies than previous reviews, and are therefore more likely to accurately reflect the true population means. It is of some interest to note the close agreement between our population average OGI and the value of 5.54 originally reported by Kety4.

Although we did not find any evidence for publication bias, we did find considerable heterogeneity across studies. We computed I^2 for each ratio, which indicated that ~85% of the total variance is attributable to study heterogeneity. Substantial methodical differences (Table 2.5) may account for the variability in measured OGI and OCI values. Many studies included only males and there is evidence of differences in metabolism between males and females30,31. Thus, it is likely that our population averages are more representative of male metabolic ratios. Similarly, our population averages are weighted towards the predominantly young adult samples included in our meta-analysis. Many studies also did not specify if they included a waiting period between catheterization and measurement. This may have influenced the reported values, as
metabolic ratios have been shown to decrease during arousal32. Finally, not all investigators insured that measurements were performed while subjects were in a basal metabolic state. A few studies infused labeled carbohydrates, and many studies did require that subjects be in a fasting state. Either factor could have affected the published results. For example, OGI is known to increase during hypoglycemia29. More direct studies are clearly needed to quantify the sources of heterogeneity in studies measuring OGI and OCI.

There is no clear consensus concerning the role of non-oxidative glucose metabolism in the brain33. It has been variously proposed that NOglc (i) allows for the rapid creation of ATP for the Na+/K+ ATPase in astrocytes34, (ii) regulates cellular redox potentials35, (iii) is a by-product of glycogen breakdown during increased neuronal activation36, (iv) is necessary for the degradation of glutamate by astrocytes37, (v) reduces oxidative stress, particularly during periods of cellular growth38, or (vi) is used to fuel biosynthetic processes39,40. Part of the difficulty here is the uncertainty regarding the ultimate fate of glucose that enters non-oxidative pathways. It was traditionally thought that lactate production, and subsequent efflux to venous blood, could completely account for any non-oxidative glucose use8. The results of our meta-analysis are not consistent with this idea. The fact that the population average OCI was greater than the average OGI does show that some glucose is converted to lactate and leaves the brain via the venous system. The OCI was less than 6, however, which means this route does not account for all non-oxidative glucose use.

One potential explanation for the OCI being less than 6 is that resting arterio-venous differences simply underestimate the amount of lactate that leaves the brain. Brain lactate concentration has been shown to decrease during sleep41, suggesting that measurements taken during conscious rest do not fully account for all of lactate efflux. Alternatively, lactate may
leave the brain via routes that bypass the sampling sites used for arterio-venous differences. This idea is supported by a study by Ball et al., who found that injection of radiolabeled glucose and lactate into the inferior colliculus labeled the meninges. Subsequent tracer experiments identified a potential perivascular clearance pathway from the inferior colliculus to the cervical lymph nodes. More recently, components of the glymphatic system have been shown in mice to regulate lactate efflux, as well as the concentration of lactate in cervical lymph nodes. Neither of these experiments, however, quantified the proportion of lactate efflux that occurs via these pathways. Furthermore, if perivascular/glymphatic clearance does play a role in lactate removal, it is not clear what impact it would have on arterio-venous difference measurements. In sheep, rats, and rabbits approximately half of CSF is cleared through lymphatic pathways. The other half enters the venous sinuses through the arachnoid villi, and therefore would presumably be accounted for by venous samples taken at the level of the jugular bulb. Although exact proportions are not available, it has been proposed that the arachnoid pathway plays a much a larger role in humans. If true, this would suggest that perivascular/glymphatic clearance cannot fully account for the OCI being less than 6. Direct experimental approaches are clearly needed to address this question.

An alternative possibility is that the carbon from non-oxidative glucose metabolism leaves the brain as metabolites other than CO₂ or lactate. Although pyruvate is well-known to have a net efflux from the brain, it is unlikely to account for much of the unexplained fraction, as net pyruvate efflux is nearly an order of magnitude less than that of lactate. Numerous other carbon-containing compounds, however, have also been shown to leave the brain. For example, there is a small net efflux of glutamine from the brain. In addition, peptides and proteins are known to exit the brain via the CSF. The most well-studied of these are amyloid-beta and
tau50, which are both markers of Alzheimer’s disease51. Other molecules, such as leptin52 and cholesterol53, have also been shown to leave the brain in small amounts. In contrast, Rasmussen et al. reported that using nuclear magnetic resonance spectroscopy, there were no detectable cerebral arterio-venous differences for any carbon sources other than glucose and lactate54. However, it is unclear exactly which carbon-based compounds were examined by Rasmussen et al. Therefore, future experiments with labeled compounds are needed to elucidate how, and in what proportions, glucose derived carbon leaves the brain.

Although we are not aware of any studies directly linking NOglc with the synthesis, and subsequence efflux, of specific glucose metabolites, there is evidence linking non-oxidative metabolism with biosynthesis more generally. Madsen et al., found that OGI was depressed after the performance of the Wisconsin Card Sorting task, while lactate efflux returned to baseline values55. Similarly, our group recently reported that, hours after the performance of a covert motor learning task, non-oxidative glucose use was elevated in Brodmann Area 4456. Moreover, the change in non-oxidative glucose use was positively correlated with performance during the learning task. Both of these studies are consistent with the hypothesis that glucose is used in a non-oxidative manner to support learning-induced synaptic plasticity. Extending these findings to other learning paradigms (e.g. episodic memory) would provide additional evidence along these lines.

A prior meta-analysis from our group found that non-oxidative glucose use is markedly elevated during early childhood40, a period of brain growth57. This finding was recently supported by Segarra-Mondejar et al., who found that glucose consumption is necessary for neurite outgrowth \textit{in vitro} and \textit{in vivo} 58. Interestingly, the findings of Segarra-Mondejar et al. also suggest that at least a part of the glucose necessary for neurite outgrowth is directly
incorporated into newly synthesized lipids58. Finally, regional differences in non-oxidative metabolism39,59 have been shown to correlate positively with expression of genes related to synaptic plasticity and development40. Taken together, these findings strongly suggest that NOglc contributes to biosynthetic processes in the brain. Quantifying the contribution of non-oxidative glucose metabolism to biosynthesis will be an important topic for future studies. Combining a PET marker of protein synthesis60, such as L-[1-13C]-leucine PET61,62 with measures of non-oxidative glucose use during a learning task could provide further evidence that learning is accompanied by increases in biosynthesis and non-oxidative glucose metabolism. 13C magnetic resonance spectroscopy could also be used to measure the movement of glucose and other carbohydrates through different metabolic pathways63,64.

In summary, on the basis of a meta-analysis of 47 studies, we estimated that non-oxidative processes account for 9\% of glucose metabolism in the brain, a significant portion of which cannot be accounted for by lactate efflux to the blood. We also found substantial heterogeneity across studies, likely attributable to differences in methodology. Future studies are needed to determine both the function of non-oxidative metabolism and the ultimate fate of glucose consumed in the brain.
2.6 Figures

Figure 2.1: Modified PRISMA flow diagram

Included studies were selected using the indicated selection criteria.
Figure 2.2: Forest plot for OGI meta-analysis

Blue squares represent the reported mean OGI for each study. Black lines represent 95% confidence intervals. Numeric values for these quantities are also listed. The blue diamond is the population average from the Bayesian random effects meta-analysis. Error bars/values for the population mean are 95% CIs (n=40).
Figure 2.3: Forest plot for OCI meta-analysis

Same convention as in Fig 2 (n=37).
Funnel plots for A) OGI and B) OCI. In each plot, the reported study mean is plotted against its standard error. The population average is the dashed black line, its 95% percent CI is in dark gray, and its 95% prediction interval is in light gray. The lack of any asymmetry is evidence against substantial publication bias. The wide scatter around the population average, however, suggests that there is substantial heterogeneity between studies.

Figure 2.4: Publication bias and between study heterogeneity

Funnel plots for A) OGI and B) OCI. In each plot, the reported study mean is plotted against its standard error. The population average is the dashed black line, its 95% percent CI is in dark gray, and its 95% prediction interval is in light gray. The lack of any asymmetry is evidence against substantial publication bias. The wide scatter around the population average, however, suggests that there is substantial heterogeneity between studies.
2.7 Tables

Table 2.1: PRISMA checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured summary</td>
<td>2</td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.</td>
<td>51</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td>51</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td>51</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td>53</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td>53</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.</td>
<td>53</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td>53, 69</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td>53</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>53</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td>53</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td>53</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td>53</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.</td>
<td>53</td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>15</td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td>53</td>
</tr>
<tr>
<td>Additional analyses</td>
<td>16</td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td>NA</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Study selection</th>
<th>17</th>
<th>Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.</th>
<th>57, 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study characteristics</td>
<td>18</td>
<td>For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.</td>
<td>71</td>
</tr>
<tr>
<td>Risk of bias within studies</td>
<td>19</td>
<td>Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).</td>
<td>57, 84</td>
</tr>
<tr>
<td>Results of individual studies</td>
<td>20</td>
<td>For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.</td>
<td>57, 66, 67</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>21</td>
<td>Present results of each meta-analysis done, including confidence intervals and measures of consistency.</td>
<td>57, 66, 67</td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>22</td>
<td>Present results of any assessment of risk of bias across studies (see Item 15).</td>
<td>57, 68</td>
</tr>
<tr>
<td>Additional analysis</td>
<td>23</td>
<td>Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).</td>
<td>NA</td>
</tr>
</tbody>
</table>

DISCUSSION

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>24</th>
<th>Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations</td>
<td>25</td>
<td>Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).</td>
<td>60</td>
</tr>
<tr>
<td>Conclusions</td>
<td>26</td>
<td>Provide a general interpretation of the results in the context of other evidence, and implications for future research.</td>
<td>60</td>
</tr>
</tbody>
</table>

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | NA |
Table 2.2: Summary characteristics of included studies

Studies that were found only through searching the first authors records are indicated by a *. (NA = Not Applicable).

<table>
<thead>
<tr>
<th>Reference</th>
<th>PMID</th>
<th>Journal</th>
<th>Population</th>
<th>Year</th>
<th>OGI N</th>
<th>OGI Source</th>
<th>OCI N</th>
<th>OCI Source</th>
<th>Age</th>
<th>Age Error</th>
<th>Age Error Type</th>
<th>Sub-Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbs et al., 1942*</td>
<td>NA</td>
<td>Journal of Biological Chemistry</td>
<td>Healthy young men</td>
<td>1942</td>
<td>33</td>
<td>Table</td>
<td>33</td>
<td>Table</td>
<td>22.9</td>
<td>2.36</td>
<td>SD</td>
<td>NA</td>
</tr>
<tr>
<td>Scheinberg et al., 1949*</td>
<td>1669578</td>
<td>The Journal of Clinical Investigation</td>
<td>Normal men (17 medical students, 3 hospital patients without disease)</td>
<td>1949</td>
<td>14</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td>25.1</td>
<td>4.04</td>
<td>SD</td>
<td>Erect</td>
</tr>
<tr>
<td>Scheinberg et al., 1949*</td>
<td>1669578</td>
<td>The Journal of Clinical Investigation</td>
<td>Normal men (17 medical students, 3 hospital patients without disease)</td>
<td>1949</td>
<td>18</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td>25.1</td>
<td>4.04</td>
<td>SD</td>
<td>Supine</td>
</tr>
<tr>
<td>Sokoloff et al., 1957*</td>
<td>1342523</td>
<td>Annals of the New York</td>
<td>Normal patients</td>
<td>1957</td>
<td>8</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td>24.5</td>
<td>9.1</td>
<td>SD</td>
<td>NA</td>
</tr>
<tr>
<td>Study</td>
<td>Journal/Reference</td>
<td>Methodology</td>
<td>Subjects</td>
<td>Year</td>
<td>Table</td>
<td>N</td>
<td>Table</td>
<td>N</td>
<td>SD</td>
<td>SE</td>
<td>SD</td>
<td>Control</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>Eisenberg et al., 1962</td>
<td>Academy of Sciences</td>
<td>Metabolism</td>
<td>Healthy subjects</td>
<td>1962</td>
<td>21</td>
<td>10</td>
<td>Table</td>
<td>10</td>
<td>40.3</td>
<td>6.2</td>
<td>SD</td>
<td>Control</td>
</tr>
<tr>
<td>Dastur et al., 1963</td>
<td>NA</td>
<td>Human Aging: A Biological and Behavioral Study</td>
<td>Normal young subjects</td>
<td>1963</td>
<td>15</td>
<td>NA</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td>20.8</td>
<td>0.4</td>
<td>SE</td>
</tr>
<tr>
<td>Gottstein et al., 1963</td>
<td>1410359 9</td>
<td>Klin Wochenschr</td>
<td>NA</td>
<td>1963</td>
<td>32</td>
<td>18</td>
<td>Table</td>
<td>18</td>
<td>21-69</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Scheinberg et al., 1965</td>
<td>1424738 2</td>
<td>Journal of Neurological Sciences</td>
<td>Normal volunteers and hospitalized patients</td>
<td>1965</td>
<td>21</td>
<td>20</td>
<td>Table</td>
<td>20</td>
<td>32.3</td>
<td>6.9</td>
<td>SD</td>
<td>NA</td>
</tr>
<tr>
<td>Cohen et al., 1967</td>
<td>6031186</td>
<td>The Journal of Applied Physiology</td>
<td>Healthy adult male volunteers</td>
<td>1967</td>
<td>9</td>
<td>NA</td>
<td>Table</td>
<td>NA</td>
<td>21-25</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gottstein et al., 1967</td>
<td>NA</td>
<td>Klinische Wochenschrift</td>
<td>Normal patients</td>
<td>1967</td>
<td>12</td>
<td>12</td>
<td>Table</td>
<td>12</td>
<td>30-60</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Study</td>
<td>Journal</td>
<td>Study Population</td>
<td>Year</td>
<td>Table</td>
<td>Study Population</td>
<td>Year</td>
<td>Table</td>
<td>SE</td>
<td>25</td>
<td>Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raichle et al., 1970<sup>69a</sup></td>
<td>Archives of Neurology</td>
<td>Healthy men</td>
<td>1970</td>
<td>3</td>
<td>Table</td>
<td>1970</td>
<td>3</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeshita, 1972<sup>70a</sup></td>
<td>Anesthesiology</td>
<td>Healthy patients prior to elective surgery (no cardiopulmonary or neurologic disorders)</td>
<td>1972</td>
<td>6</td>
<td>Table</td>
<td>1972</td>
<td>6</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blomqvist et al., 1990<sup>71a</sup></td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>Healthy normal volunteers</td>
<td>1990</td>
<td>7</td>
<td>Table</td>
<td>1990</td>
<td>7</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyle et al., 1994<sup>72a</sup></td>
<td>The Journal of Clinical Investigation</td>
<td>Normal volunteers</td>
<td>1994</td>
<td>12</td>
<td>Table</td>
<td>1994</td>
<td>12</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madsen et al., 1995<sup>55</sup></td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>Healthy, young, non-medicated volunteers</td>
<td>1995</td>
<td>8</td>
<td>Table</td>
<td>1995</td>
<td>8</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madsen et al., 1995<sup>55</sup></td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>Healthy, young, non-medicated volunteers</td>
<td>1995</td>
<td>9</td>
<td>Table</td>
<td>1995</td>
<td>9</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Author</td>
<td>Year</td>
<td>Journal</td>
<td>Study type</td>
<td>Type</td>
<td>Units</td>
<td>Mean</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasselbalch et al., 1996</td>
<td>American Journal of Physiology</td>
<td>1996</td>
<td>Healthy volunteers of normal weight</td>
<td>1996</td>
<td>Table</td>
<td>NA</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ide et al., 1999</td>
<td>Journal of Applied Physiology</td>
<td>1999</td>
<td>Healthy volunteers</td>
<td>1999</td>
<td>Table</td>
<td>NA</td>
<td>12</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ide et al., 2000</td>
<td>The Journal of Physiology</td>
<td>2000</td>
<td>Healthy volunteers</td>
<td>2000</td>
<td>Table</td>
<td>NA</td>
<td>6</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalsgaard et al., 2002</td>
<td>The Journal of Physiology</td>
<td>2002</td>
<td>Healthy volunteers</td>
<td>2002</td>
<td>Table</td>
<td>NA</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalsgaard et al., 2002</td>
<td>The Journal of Physiology</td>
<td>2002</td>
<td>Healthy volunteers</td>
<td>2002</td>
<td>Table</td>
<td>NA</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Møller et al., 2002</td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>2002</td>
<td>Healthy volunteers</td>
<td>2002</td>
<td>Author</td>
<td>NA</td>
<td>8</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalsgaard et al., 2003</td>
<td>Experimenta 1 Physiology</td>
<td>2003</td>
<td>Healthy volunteers</td>
<td>2003</td>
<td>Text</td>
<td>NA</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenn et al., 2003</td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>2003</td>
<td>Normal volunteers</td>
<td>2003</td>
<td>Author</td>
<td>NA</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Denotes statistical significance.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Volume</th>
<th>Journal or Source</th>
<th>Group Description</th>
<th>Year</th>
<th>Type</th>
<th>Page</th>
<th>Table</th>
<th>SD</th>
<th>SE</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nybo et al., 2003</td>
<td>12754171</td>
<td>Journal of Applied Physiology</td>
<td>Healthy endurance-trained men</td>
<td>2003</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Figure 27</td>
<td>2</td>
<td>SE</td>
</tr>
<tr>
<td>Strauss et al., 2003</td>
<td>14625823</td>
<td>Liver Transplantation</td>
<td>Healthy subjects</td>
<td>2003</td>
<td>8</td>
<td>Table</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004a</td>
<td>14608005</td>
<td>The Journal of Physiology</td>
<td>Healthy subjects</td>
<td>2004</td>
<td>9</td>
<td>Text</td>
<td>9</td>
<td>Text 25</td>
<td>1</td>
<td>SE</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004b</td>
<td>15155282</td>
<td>Regulatory, Integrative and Comparative Physiology</td>
<td>Healthy non-athlete males</td>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Text 22</td>
<td>1</td>
<td>SE</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004c</td>
<td>15208287</td>
<td>The Journal of Applied Physiology</td>
<td>Healthy young men</td>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td>Text 22</td>
<td>1</td>
<td>SE</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004c</td>
<td>15208287</td>
<td>The Journal of Applied Physiology</td>
<td>Healthy young men</td>
<td>2004</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Text 26</td>
<td>1</td>
<td>SE</td>
</tr>
<tr>
<td>Ogoh et al., 2005</td>
<td>15498819</td>
<td>Heart and Circulatory Physiology</td>
<td>Healthy adults</td>
<td>2005</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td>Table 23</td>
<td>2</td>
<td>SD</td>
</tr>
<tr>
<td>Rasmussen et al., 2006</td>
<td>16794025</td>
<td>Journal of Applied Physiology</td>
<td>Healthy men</td>
<td>2006</td>
<td>8</td>
<td>Author</td>
<td>8</td>
<td>Author 22-29</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Author et al., 2008</td>
<td>Voliantis et al., 2008</td>
<td>Bailey et al., 2009</td>
<td>Gam et al., 2009</td>
<td>Seifert et al., 2009a</td>
<td>Seifert et al., 2009a</td>
<td>Seifert et al., 2009a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larsen et al., 2008</td>
<td>Voliantis et al., 2008</td>
<td>Bailey et al., 2009</td>
<td>Gam et al., 2009</td>
<td>Seifert et al., 2009a</td>
<td>Seifert et al., 2009a</td>
<td>Seifert et al., 2009a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840342</td>
<td>1793215</td>
<td>1972671</td>
<td>1965960</td>
<td>1960576</td>
<td>1960576</td>
<td>1960576</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Journal of Physiology</td>
<td>The Journal of Physiology</td>
<td>Regulatory, Integrative and Comparative Physiology</td>
<td>Clinical Physiology and Functional Imaging</td>
<td>Regulatory, Integrative and Comparative Physiology</td>
<td>Regulatory, Integrative and Comparative Physiology</td>
<td>Regulatory, Integrative and Comparative Physiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy males</td>
<td>Healthy males</td>
<td>Healthy men</td>
<td>Sedentary trained males</td>
<td>Sedentary healthy males</td>
<td>Sedentary healthy males</td>
<td>Sedentary healthy males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>11</td>
<td>NA</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Table</td>
<td>Author</td>
<td>Text</td>
<td>Figure</td>
<td>Figure</td>
<td>Figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>Table</td>
<td>Author</td>
<td>Text</td>
<td>Figure</td>
<td>Figure</td>
<td>Figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>32</td>
<td>27</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>SE</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>Normoxia</td>
<td>NA</td>
<td>Control After</td>
<td>Training Before</td>
<td>Control Before</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>doi</td>
<td>Journal</td>
<td>Study type</td>
<td>Subjects</td>
<td>Year</td>
<td>Type</td>
<td>Value</td>
<td>Type</td>
<td>Published</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Seifert et al., 2009b⁹¹</td>
<td>19015195</td>
<td>The Journal of Physiology</td>
<td>Healthy subjects</td>
<td>2009</td>
<td></td>
<td>Text</td>
<td>10</td>
<td>Text</td>
<td>24</td>
<td>SD</td>
</tr>
<tr>
<td>Seifert et al., 2009b⁹¹</td>
<td>19015195</td>
<td>The Journal of Physiology</td>
<td>Healthy subjects</td>
<td>2009</td>
<td></td>
<td>Text</td>
<td>8</td>
<td>Text</td>
<td>27</td>
<td>SD</td>
</tr>
<tr>
<td>Rasmussen et al, 2010a⁹²</td>
<td>20403976</td>
<td>The Journal of Physiology</td>
<td>Young adult males</td>
<td>2010</td>
<td></td>
<td>Table</td>
<td>16</td>
<td>Table</td>
<td>20-34</td>
<td>NA</td>
</tr>
<tr>
<td>Rasmussen et al, 2010b⁹³</td>
<td>20522733</td>
<td>Journal of Applied Physiology</td>
<td>Young males</td>
<td>2010</td>
<td></td>
<td>Figure</td>
<td>7</td>
<td>Figure</td>
<td>18-34</td>
<td>NA</td>
</tr>
<tr>
<td>Seifert et al., 2010⁹⁴</td>
<td>20660020</td>
<td>Experimental Physiology</td>
<td>Young healthy males</td>
<td>2010</td>
<td></td>
<td>Table</td>
<td>9</td>
<td>Table</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Volianitis et al., 2011⁹⁵</td>
<td>21098003</td>
<td>The Journal of Physiology</td>
<td>Healthy males</td>
<td>2011</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>Text</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Overgaard et al., 2012⁹⁶</td>
<td>22441982</td>
<td>The FASEB Journal</td>
<td>Healthy individuals</td>
<td>2012</td>
<td></td>
<td>Table</td>
<td>9</td>
<td>Table</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>Fisher et al., 2013⁹⁷</td>
<td>23230234</td>
<td>The Journal of Physiology</td>
<td>Young adults</td>
<td>2013</td>
<td></td>
<td>Figure</td>
<td>11</td>
<td>Figure</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>Ainslie et al., 2014⁹</td>
<td>24117382</td>
<td>Clinical Science</td>
<td>Healthy adults</td>
<td>2014</td>
<td></td>
<td>Table</td>
<td>10</td>
<td>Table</td>
<td>28</td>
<td>4.5</td>
</tr>
<tr>
<td>Author</td>
<td>PMID</td>
<td>Journal</td>
<td>Participants</td>
<td>Year</td>
<td>Table</td>
<td>Page</td>
<td>Publication Type</td>
<td>n</td>
<td>SD</td>
<td>Hyperoxia Type</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------------------</td>
<td>-----</td>
<td>----</td>
<td>----------------</td>
</tr>
<tr>
<td>Ainslie et al., 2014</td>
<td>2411738 2</td>
<td>Clinical Science</td>
<td>Healthy adults</td>
<td>2014</td>
<td>10</td>
<td>Table 10</td>
<td>Hyperoxia trial</td>
<td>28</td>
<td>4.5</td>
<td>NA</td>
</tr>
<tr>
<td>Smith et al., 2014</td>
<td>2536215 0</td>
<td>The Journal of Physiology</td>
<td>Young adult males</td>
<td>2014</td>
<td>8</td>
<td>Table 8</td>
<td>Hyperoxia trial</td>
<td>30</td>
<td>6</td>
<td>NA</td>
</tr>
<tr>
<td>Glenn et al., 2015</td>
<td>2559462 8</td>
<td>Journal of Neurotrauma</td>
<td>Healthy volunteers</td>
<td>2015</td>
<td>6</td>
<td>Author 6</td>
<td>Hyperoxia trial</td>
<td>28.2</td>
<td>8.2</td>
<td>Control</td>
</tr>
<tr>
<td>Trangmar et al., 2015</td>
<td>2637117 0</td>
<td>Heart and Circulatory Physiology</td>
<td>Endurance trained males</td>
<td>2015</td>
<td>10</td>
<td>Text 10</td>
<td>Hyperoxia trial</td>
<td>29</td>
<td>5</td>
<td>NA</td>
</tr>
<tr>
<td>Willie et al., 2015</td>
<td>2569047 4</td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>Healthy-young subjects</td>
<td>2015</td>
<td>9</td>
<td>Table 9</td>
<td>Hyperoxia trial</td>
<td>30.4</td>
<td>7</td>
<td>NA</td>
</tr>
<tr>
<td>Bain et al., 2016</td>
<td>2725652 1</td>
<td>The Journal of Physiology</td>
<td>Breath-hold divers</td>
<td>2016</td>
<td>14</td>
<td>Author 14</td>
<td>Hyperoxia trial</td>
<td>29.5</td>
<td>7.3</td>
<td>NA</td>
</tr>
<tr>
<td>Bain et al., 2017</td>
<td>2807196 4</td>
<td>Journal of Cerebral Blood Flow and Metabolism</td>
<td>Breath-hold divers</td>
<td>2017</td>
<td>11</td>
<td>Author 11</td>
<td>Hyperoxia trial</td>
<td>31</td>
<td>8</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 2.3: PubMed search terms

<table>
<thead>
<tr>
<th>Number</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxygen AND Arterio AND Venous AND Brain</td>
</tr>
<tr>
<td>2</td>
<td>Oxygen AND Arterio AND Venous AND Cerebral</td>
</tr>
<tr>
<td>3</td>
<td>Lactate AND Arterio AND Venous AND Brain</td>
</tr>
<tr>
<td>4</td>
<td>Lactate AND Arterio AND Venous AND Cerebral</td>
</tr>
<tr>
<td>5</td>
<td>Glucose AND Arterio AND Venous AND Brain</td>
</tr>
<tr>
<td>6</td>
<td>Glucose AND Arterio AND Venous AND Cerebral</td>
</tr>
<tr>
<td>7</td>
<td>Oxygen AND Arterial AND Venous AND Brain</td>
</tr>
<tr>
<td>8</td>
<td>Oxygen AND Arterial AND Venous AND Cerebral</td>
</tr>
<tr>
<td>9</td>
<td>Lactate AND Arterial AND Venous AND Brain</td>
</tr>
<tr>
<td>10</td>
<td>Lactate AND Arterial AND Venous AND Cerebral</td>
</tr>
<tr>
<td>11</td>
<td>Glucose AND Arterial AND Venous AND Brain</td>
</tr>
<tr>
<td>12</td>
<td>Glucose AND Arterial AND Venous AND Cerebral</td>
</tr>
<tr>
<td>13</td>
<td>OGI AND Brain</td>
</tr>
<tr>
<td>14</td>
<td>OGI AND Cerebral</td>
</tr>
<tr>
<td>15</td>
<td>OCI AND Brain</td>
</tr>
<tr>
<td>16</td>
<td>OCI AND Cerebral</td>
</tr>
<tr>
<td>17</td>
<td>Oxygen AND Glucose AND Index AND Brain</td>
</tr>
<tr>
<td>18</td>
<td>Oxygen AND Glucose AND Index AND Cerebral</td>
</tr>
<tr>
<td>19</td>
<td>Oxygen AND Carbohydrate AND Index AND Brain</td>
</tr>
<tr>
<td>20</td>
<td>Oxygen AND Carbohydrate AND Index AND Cerebral</td>
</tr>
<tr>
<td>21</td>
<td>Oxygen AND Glucose AND Ratio AND Brain</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22</td>
<td>Oxygen AND Glucose AND Ratio AND Cerebral</td>
</tr>
<tr>
<td>23</td>
<td>Oxygen AND Carbohydrate AND Ratio AND Brain</td>
</tr>
<tr>
<td>24</td>
<td>Oxygen AND Carbohydrate AND Ratio AND Cerebral</td>
</tr>
</tbody>
</table>
Table 2.4: Papers excluded after a full-text review

<table>
<thead>
<tr>
<th>Reference</th>
<th>PMID</th>
<th>Journal</th>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wortis et al. 1940</td>
<td>NA</td>
<td>The American journal of psychiatry</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Gibbs et al. 1945</td>
<td>NA</td>
<td>The American journal of psychiatry</td>
<td>No control data</td>
</tr>
<tr>
<td>Kety et al. 1948a</td>
<td>16695569</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Kety et al. 1948b</td>
<td>16695568</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Kety et al. 1951</td>
<td>14833874</td>
<td>Pharmacological reviews</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Fazekas et al. 1952</td>
<td>14902811</td>
<td>The American journal of the medical sciences</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Novack et al. 1953</td>
<td>13042927</td>
<td>Circulation</td>
<td>No control data</td>
</tr>
<tr>
<td>Scheinberg et al. 1953</td>
<td>13057407</td>
<td>A.M.A. archives of neurology and psychiatry</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Sokoloff et al. 1953</td>
<td>13044828</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Schieve et al. 1953</td>
<td>13065315</td>
<td>The American journal of medicine</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Shenkin et al. 1953</td>
<td>13052708</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Sokoloff et al. 1955</td>
<td>14392225</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Mangold et al. 1955</td>
<td>14392224</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Kety et al. 1956</td>
<td>13306754</td>
<td>Journal of chronic diseases</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Kennedy et al. 1957</td>
<td>13449166</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Rowe et al. 1959</td>
<td>14439685</td>
<td>The Journal of clinical investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Kety et al. 1960</td>
<td>NA</td>
<td>Methods in Medical Research</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Porta et al. 1964</td>
<td>14127087</td>
<td>Metabolism: clinical and experimental</td>
<td>No control data</td>
</tr>
<tr>
<td>Alexander et al. 1968</td>
<td>5635772</td>
<td>Journal of applied physiology</td>
<td>No control data</td>
</tr>
<tr>
<td>Lewis et al. 1974</td>
<td>4154353</td>
<td>Journal of neurochemistry</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Raichle et al. 1975</td>
<td>1155625</td>
<td>The American journal of physiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Gottstein et al. 1976</td>
<td>1271691</td>
<td>Klinische Wochenschrift</td>
<td>No control data</td>
</tr>
<tr>
<td>Van Aken et al. 1976</td>
<td>1015217</td>
<td>Acta anaesthesiologica Belgica</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Journal Title</td>
<td>Details</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Juhlin-Dannfelt et al.</td>
<td>1977</td>
<td>Scandinavian journal of clinical and laboratory investigation</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Hertz et al.</td>
<td>1981</td>
<td>The Journal of clinical investigation</td>
<td>No control data</td>
</tr>
<tr>
<td>Eriksson et al.</td>
<td>1983</td>
<td>Journal of neurochemistry</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Dastur et al.</td>
<td>1985</td>
<td>Journal of cerebral blood flow and metabolism</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Fox et al.</td>
<td>1988</td>
<td>Science</td>
<td>PET study</td>
</tr>
<tr>
<td>Hatazawa et al.</td>
<td>1988</td>
<td>Journal of cerebral blood flow and metabolism</td>
<td>PET study</td>
</tr>
<tr>
<td>Warrell et al.</td>
<td>1988</td>
<td>Lancet</td>
<td>No control data</td>
</tr>
<tr>
<td>Blomqvist et al.</td>
<td>1998</td>
<td>Acta physiologica Scandinavica</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Grill et al.</td>
<td>1990</td>
<td>The American journal of physiology</td>
<td>Error of OGI/OCI not reported</td>
</tr>
<tr>
<td>Leenders et al.</td>
<td>1990</td>
<td>Brain</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Gutniak et al.</td>
<td>1990</td>
<td>The American journal of physiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Burgess et al.</td>
<td>1991</td>
<td>Medicine and science in sports and exercise</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Blomqvist et al.</td>
<td>1991</td>
<td>European journal of nuclear medicine</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Pollard et al.</td>
<td>1997</td>
<td>Critical care medicine</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Mielck et al.</td>
<td>1998</td>
<td>British journal of anaesthesia</td>
<td>OGI/OCI not reported</td>
</tr>
<tr>
<td>Schaffranietz et al.</td>
<td>1998</td>
<td>Neurological research</td>
<td>No control data</td>
</tr>
<tr>
<td>Wahren et al.</td>
<td>1999</td>
<td>Diabetologia</td>
<td>OGI/OCI not reported</td>
</tr>
<tr>
<td>Madsen et al.</td>
<td>1999</td>
<td>Journal of cerebral blood flow and metabolism</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Takahashi et al.</td>
<td>1999</td>
<td>American journal of neuroradiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Moller et al.</td>
<td>2002</td>
<td>Acta anaesthesiologica Scandinavica</td>
<td>Repeated data</td>
</tr>
<tr>
<td>Nybo et al.</td>
<td>2002</td>
<td>Journal of applied physiology</td>
<td>Repeated data</td>
</tr>
<tr>
<td>Lancaster et al.</td>
<td>2004</td>
<td>Cell stress & chaperones</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Dalsgaard et al.</td>
<td>2004</td>
<td>Experimental physiology</td>
<td>Repeated data</td>
</tr>
<tr>
<td>Reference</td>
<td>Identifier</td>
<td>Journal</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Cremer et al. 2004</td>
<td>15114206</td>
<td>Anesthesiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Blomstrand et al. 2005</td>
<td>16218925</td>
<td>Acta physiologica Scandinavica</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Chieregato et al. 2007</td>
<td>17893572</td>
<td>Journal of neurosurgical anesthesia</td>
<td>No control data</td>
</tr>
<tr>
<td>Seifert et al. 2008</td>
<td>19053964</td>
<td>Acta physiologica</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Quistorff et al. 2008</td>
<td>18653766</td>
<td>FASEB journal</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Holbein et al. 2009</td>
<td>19196488</td>
<td>Critical care</td>
<td>No control data</td>
</tr>
<tr>
<td>van Hall et al. 2009</td>
<td>19337275</td>
<td>Journal of cerebral blood flow and metabolism</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Espenell et al. 2010</td>
<td>20661680</td>
<td>Canadian journal of anesthesia</td>
<td>No control data</td>
</tr>
<tr>
<td>Powers et al. 2010</td>
<td>20959851</td>
<td>Journal of cerebral blood flow and metabolism</td>
<td>PET study</td>
</tr>
<tr>
<td>Rasmussen et al. 2010</td>
<td>20102344</td>
<td>Acta physiologica</td>
<td>No control data</td>
</tr>
<tr>
<td>Smith et al. 2012</td>
<td>23019310</td>
<td>Journal of applied physiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Mikkelsen et al. 2014</td>
<td>25415176</td>
<td>The Journal of clinical endocrinology and metabolism</td>
<td>No control data</td>
</tr>
<tr>
<td>Glenn et al. 2015</td>
<td>25279664</td>
<td>Journal of neurotrauma</td>
<td>No control data</td>
</tr>
<tr>
<td>Fabricius-Bjerre et al. 2014</td>
<td>24903076</td>
<td>Clinical physiology and functional imaging</td>
<td>No control data</td>
</tr>
<tr>
<td>Lewis et al. 2014</td>
<td>25217373</td>
<td>The Journal of physiology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Trangmar et al. 2014</td>
<td>24835170</td>
<td>The Journal of physiology</td>
<td>Repeated data</td>
</tr>
<tr>
<td>Tholance et al. 2015</td>
<td>25668478</td>
<td>Neurological research</td>
<td>No control data</td>
</tr>
<tr>
<td>Slusher et al. 2015</td>
<td>25771935</td>
<td>Journal of neuroendocrinology</td>
<td>Data not sufficient</td>
</tr>
<tr>
<td>Grüne et al. 2017</td>
<td>28207907</td>
<td>PloS one</td>
<td>No control data</td>
</tr>
</tbody>
</table>
Table 2.5: Assessment of bias within studies.

Abbreviations: NA = Not Applicable; NS = Not stated

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Population</th>
<th>Waiting Period</th>
<th>Position</th>
<th>Experimental Manipulation(s)</th>
<th>Fasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbs et al., 1942¹</td>
<td>All males.</td>
<td>~30 min.</td>
<td>Supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Scheinberg et al., 1949²</td>
<td>3 illness free hospital patients.</td>
<td>40 to 50 min.</td>
<td>Supine and Erect</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Sokoloff et al., 1957³</td>
<td>1 participant was a patient with an anxiety disorder.</td>
<td>NS</td>
<td>NS</td>
<td>Some participants had been given LSD a week earlier.</td>
<td>NS</td>
</tr>
<tr>
<td>Eisenberg et al., 1962⁴</td>
<td>None</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Dastur et al., 1963⁵</td>
<td>None</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Gottstein et al., 1963⁶</td>
<td>Patients aged up to 61 years</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Scheinberg et al., 1965⁷</td>
<td>Some subjects were hospital patients without disease</td>
<td>20 min.</td>
<td>Supine</td>
<td>None</td>
<td>Yes (12 hours)</td>
</tr>
<tr>
<td>Cohen et al., 1967⁸</td>
<td>All male</td>
<td>NS</td>
<td>Supine</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Study</td>
<td>Patients/Conditions</td>
<td>Time</td>
<td>Position</td>
<td>Supplement</td>
<td>Condition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Gottstein et al., 1967<sup>29</sup></td>
<td>Patients with normal metabolism</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Raichle et al., 1970<sup>29</sup></td>
<td>None</td>
<td>NS</td>
<td>Reclining</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Takeshita, 1972<sup>70</sup></td>
<td>Patients scheduled for elective surgery</td>
<td>NS</td>
<td>NS</td>
<td>Given atropine</td>
<td>NS</td>
</tr>
<tr>
<td>Blomqvist et al., 1990<sup>71</sup></td>
<td>None</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Boyle et al., 1994<sup>72</sup></td>
<td>None</td>
<td>2 hours</td>
<td>NS</td>
<td>Sleep reduction; Subjects were infused with 6,6-D2-glucose;</td>
<td>No</td>
</tr>
<tr>
<td>Madsen et al., 1995<sup>73</sup></td>
<td>None</td>
<td>~1 hour</td>
<td>Supine</td>
<td>None</td>
<td>Yes (14 hours)</td>
</tr>
<tr>
<td>Hasselbalch et al., 1996<sup>73</sup></td>
<td>None</td>
<td>1 hour</td>
<td>Supine</td>
<td>Saline infusion</td>
<td>No</td>
</tr>
<tr>
<td>Ide et al., 1999<sup>74</sup></td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Ide et al., 2000<sup>75</sup></td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Dalsgaard et al., 2002<sup>76</sup></td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Møller et al., 2002<sup>77</sup></td>
<td>None</td>
<td>1 hour</td>
<td>Supine</td>
<td>Subjects were infused with isotonic glucose</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Dalsgaard et al., 2003<sup>78</sup></td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Glenn et al., 2003<sup>79</sup></td>
<td>None</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Nybo et al., 2003<sup>80</sup></td>
<td>All trained males</td>
<td>30 min.</td>
<td>NS</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Study</td>
<td>Gender</td>
<td>Duration</td>
<td>Position</td>
<td>Infusion</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Strauss et al., 2003<sup>81</sup></td>
<td>None</td>
<td>NS</td>
<td>Supine</td>
<td>Subjects were infused with 5% glucose.</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004<sup>a82</sup></td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dalsgaard et al., 2004<sup>b83</sup></td>
<td>All male</td>
<td>1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Dalsgaard et al., 2004<sup>c84</sup></td>
<td>All male</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Ogoh et al., 2005<sup>85</sup></td>
<td>All male</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Rasmussen et al., 2006<sup>44</sup></td>
<td>All male</td>
<td>1.5 hours</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Larsen et al., 2008<sup>46</sup></td>
<td>All male</td>
<td>1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Voliantis et al., 2008<sup>87</sup></td>
<td>All trained male rowers</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (8 hours)</td>
</tr>
<tr>
<td>Bailey et al., 2009<sup>98</sup></td>
<td>All male</td>
<td>30 min.</td>
<td>Supine</td>
<td>Subjects breathed 21% O₂</td>
<td>Yes (12 hours)</td>
</tr>
<tr>
<td>Gam et al., 2009<sup>99</sup></td>
<td>All male</td>
<td>1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Seifert et al., 2009<sup>a90</sup></td>
<td>All overweight males</td>
<td>1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Seifert et al., 2009<sup>b91</sup></td>
<td>None</td>
<td>1 hour</td>
<td>Supine</td>
<td>Some subjects received a saline control infusion</td>
<td>No</td>
</tr>
<tr>
<td>Rasmussen et al., 2010<sup>a92</sup></td>
<td>All male</td>
<td>NS</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Rasmussen et al., 2010<sup>b93</sup></td>
<td>All male</td>
<td>NS</td>
<td>Semi-supine</td>
<td>Saline injected control; Some had received an EPO trial 3 months earlier</td>
<td>NS</td>
</tr>
<tr>
<td>Seifert et al., 2010<sup>94</sup></td>
<td>All male</td>
<td>30 min.</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Study</td>
<td>Subjects:</td>
<td>Duration</td>
<td>Position</td>
<td>Conditions:</td>
<td>Findings:</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Volianitis et al., 2011</td>
<td>All males and competitive rowers</td>
<td>NS</td>
<td>Semi-supine</td>
<td>Saline infusion control; Some subjects performed bicarbonate trial ~1-2 weeks earlier</td>
<td>Yes (Overnight)</td>
</tr>
<tr>
<td>Overgaard et al., 2012</td>
<td>None</td>
<td>2 hours</td>
<td>Supine</td>
<td>Some subjects performed a hypoxia exercise trial at least two weeks prior; Infused with [1-13C] lactate and labeled bicarbonate</td>
<td>No</td>
</tr>
<tr>
<td>Fisher et al., 2013</td>
<td>None</td>
<td>1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>Yes (2h)</td>
</tr>
<tr>
<td>Ainslie et al., 2014</td>
<td>None</td>
<td>30 min.</td>
<td>Supine</td>
<td>Some measurements were performed after hypoxia trials.</td>
<td>Yes (2h)</td>
</tr>
<tr>
<td>Smith et al., 2014</td>
<td>All male</td>
<td>25 min.</td>
<td>Supine</td>
<td>None</td>
<td>Yes (4h)</td>
</tr>
<tr>
<td>Glenn et al., 2015</td>
<td>None</td>
<td>NS</td>
<td>Semi-supine</td>
<td>Infusion of [3-13C] lactate and D2 glucose</td>
<td>NS</td>
</tr>
<tr>
<td>Trangmar et al., 2015</td>
<td>All trained males</td>
<td>~1 hour</td>
<td>Semi-supine</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Willie et al., 2015</td>
<td>All male</td>
<td>~30 min.</td>
<td>NS</td>
<td>Subjects underwent an arterial blood gas clamp</td>
<td>NS</td>
</tr>
<tr>
<td>Bain et al., 2016</td>
<td>All subjects were elite breath hold divers</td>
<td>30 min</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>Bain et al., 2017</td>
<td>All subjects were elite</td>
<td>NS</td>
<td>NS</td>
<td>None</td>
<td>NS</td>
</tr>
<tr>
<td>breath hold divers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.8 References

37 Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? *J Neurochem* 2014; **131**: 399–406.

Rasmussen P, Nyberg N, Jaroszewski JW, Krogh-Madsen R, Secher NH, Quistorff B. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown...

Dalsgaard MK, Ide K, Cai Y, Quistorff B, Secher NH. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol (Lond) 2002; 540: 681–689.

Bain AR, Ainslie PN, Hoiland RL, Barak OF, Cavar M, Drvis I et al. Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia. *J Physiol (Lond)* 2016; **594**: 5317–5328.

142 Madsen PL, Cruz NF, Sokoloff L, Dienel GA. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. *J Cereb Blood Flow Metab* 1999; **19**: 393–400.

Chapter 3: Quantitative positron emission tomography reveals regional differences in non-oxidative glucose consumption within the human brain

3.1 Abstract

Glucose and oxygen metabolism are tightly coupled in the human brain, with the preponderance of the brain’s glucose supply used to generate ATP via oxidative phosphorylation. A fraction of glucose is consumed outside of oxidative phosphorylation despite the presence of sufficient oxygen to do so. We refer to this process as non-oxidative glucose consumption (NOglc). A recent positron emission tomography study reported that NOglc is uniform within gray matter. Here, we analyze the same data and demonstrate robust regional differences in NOglc within gray matter, a finding consistent with previously published data.

3.2 Introduction

The energetic needs of the healthy human brain are almost entirely met by oxidative consumption of blood-borne glucose\(^1,2\). However, a fraction of the brain's glucose uptake does not undergo oxidative phosphorylation. This effect conventionally is quantitated using the oxygen-glucose index (OGI), which is the molar ratio of oxygen to glucose consumption. If no alternative fuels are used and all glucose undergoes complete oxidative phosphorylation, the OGI is exactly 6. However, multiple studies have shown that the OGI of the young adult human brain is less than 6, typically on the order of 5.5\(^3\)-7. Thus, around 10% of the whole brain’s glucose consumption

\(^{1}\) This chapter is slightly modified version of a previously published article: Blazey TM, Snyder AZ, Su Y, Goyal MS, Lee JJ, Vlassenko AG et al. Quantitative positron emission tomography reveals regional differences in aerobic glycolysis within the human brain. *J Cereb Blood Flow Metab* 2018; **144**: 271678X18767005.
consumption is metabolized through non-oxidative pathways. We define non-oxidative glucose consumption (NOglc) as the fraction of glucose metabolized outside of oxidative phosphorylation. NOglc is defined inversely proportional to OGI; thus areas of the brain that have high NOglc have low OGI ratios and vice versa. Note that NOglc is often referred to as aerobic glycolysis, which dates back to Warburg’s discovery that cancer cells have high rates of glycolysis despite sufficient oxygen.

Prior work from our laboratory has shown that, in resting, healthy young adults, NOglc is regionally greater in prefrontal cortex, lateral parietal lobe, and the precuneus/posterior cingulate cortex, relative to the rest of the brain. These regions correspond to the default mode and fronto-parietal control networks, which are areas of the cerebral cortex associated with higher-order cognition. Conversely, NOglc in the cerebellum has been shown by us and others, to be lower than in the rest of the brain. Hyder and colleagues recently published a study disputing the existence of regional variability in NOglc. Using quantitative positron emission tomography (PET) techniques, Hyder et al. measured OGI in 13 normal volunteers and reported that OGI is uniform within gray matter, which implies that NOglc is uniform as well. In the following, we refer to this study as "Hyder et al.". To resolve the discrepancy between Hyder et al. and our previous findings, we reanalyzed the PET data from Hyder et al., which was generously shared with us by the original authors.

3.3 Methods

Dataset

We obtained processed, quantitative PET images of cerebral blood flow (CBF), oxygen utilization (CMRO₂), and glucose consumption (CMRglc) for 13 normal adult males from Hyder et al. CBF and CMRO₂ were measured using [¹⁵O]-H₂O and [¹⁵O]-O₂ respectively. A two-
compartment (tissue and vascular distribution) kinetic model was used for both tracers12,13. No correction for recirculating 15O-H\textsubscript{2}O was performed during 15O-O\textsubscript{2} modeling. CMR\textsubscript{glc} was obtained by fitting an irreversible two-compartment (free 18F-FDG and trapped 18F-FDG-6-phosphate) model to the 18F-FDG data14. No correction for vascular radioactivity was performed, and a lumped constant of 0.8 was used. All PET imaging data were acquired with arterial sampling, allowing for absolute quantitation of all metabolic parameters. For further methodological details please see the original publication7. As stated in the original report by Hyder et al.7, all subjects gave written informed consent in accordance with the Helsinki Protocol and all experimental procedures were approved by the ethical review committees of the Central Denmark Region and the Aarhus University Hospital, Aarhus Denmark.

OGI Regional Computations

To assess regional differences in NO\textsubscript{glc}, we first calculated voxelwise OGI (CMRO\textsubscript{2}/CMR\textsubscript{glc}) in each subject. We then computed regional average OGI values in several regions of interest (ROIs). Prior to computing regional means, we excluded voxels that were outside five median absolute deviations (1.11) from the gray matter median (4.83)15. Excluded voxels were predominantly in areas of vascular artifact or on the edges of the PET images (4.09\% of all voxels were excluded). We also excluded any voxels that were not classified as gray matter in the atlas used by Hyder et al.7

Our primary ROI set comprised seven resting state networks (Figure 3.1A), defined in a previous resting-state functional magnetic resonance imaging study16. Each ROI included only voxels in which the likelihood of network identity exceeded 90\%. Resting state ROIs were transformed, using FSL17,18, into the atlas space used by Hyder et al. without alterations of the metabolic imaging data. We also created an ROI of the cerebellar gray matter within the atlas.
used by Hyder et al. To accommodate incomplete cerebellar coverage of the PET data, the present results are limited to portions of the cerebellum in which the OGI was measured in every subject (Figure 3.2).

Statistical Methods

All statistical analyses were conducted in R. A one-way ANOVA with region as a factor and subject as a repeated measure was used to determine if brain region explained any variance in OGI. Statistical significance was determined using a F-test on the region factor. One sample t-tests were used to determine if regional OGI values were different from 6. An OGI significantly ($p<0.05$, two-tailed) less than 6 means that the probability of finding such, or more extreme, data by chance is below 5%. We took this as indication that a portion of the glucose consumption in a given region undergoes only NOglc. In the same sense, paired t-tests were used to assess differences in OGI between regions. We used a significant difference ($p<0.05$, two-tailed) as indication that NOglc is different between two regions. Correction for the 21 pairwise comparisons between networks was performed using False Discovery Rate (FDR) theory. Reported values are means and 95% confidence intervals unless otherwise stated.

The statistical thresholds that we defined above are dependent on the power of the Hyder et al. dataset. To determine the power of the Hyder et al. data we performed a power analysis using two previously published PET datasets. All power calculations were performed using the R package pwr. Sasaki et al. reported the mean difference between the cortical and cerebellar gray matter OGI to be -1.48 (SD=0.42; $n=7$). The 13 subjects in the Hyder et al. dataset gives us 100% power to detect an effect of this magnitude. The mean OGI difference between the cortical gray matter and the basal ganglia was found by Hatazwa et al. to be 0.38 (SD=0.93; $n=7$). The Hyder et al. dataset would provide only 17.2% power to detect this effect.
together, these analyses reveal that we are more than sufficiently powered to detect large
regional differences, but are unlikely to capture smaller effects.

3.4 Results

Aerobic Glycolysis Varies by Resting State Network
To assess regional differences in NOglc, we computed OGI in seven resting state
networks (Figure 3.1A). The means for other metabolic parameters (e.g., CBF) are reported in
Table 3.1. With the exception of the visual network (VIS), all resting state networks had an OGI
significantly less than 6 (p<0.05), indicating the presence of NOglc. A repeated measures, one-
way ANOVA revealed a highly significant difference in OGI across the brain (F₆,₇₂ = 74.16, p <
0.001). Differences in OGI between specific network pairs are shown in Figure 1B; the RSNs are
ordered by OGI and significant differences (p < 0.05, corrected) are highlighted by color. In
agreement with previous work⁸, the OGI was low in default mode network (DMN) and high in
the visual network (VIS). Unexpectedly, the ventral attention (VAN) network had the lowest
OGI. We note that regional differences were highly consistent across individuals. For example,
OGI in the DMN was less than OGI in the visual network (VIS) in every subject (Figure 3.1C).

Aerobic Glycolysis in the Cerebellum
Previous studies have shown that NOglc in the cerebellum is lower than NOglc in the rest
of the brain⁸,¹¹. In the Hyder et al. data, the OGI in the superior cerebellum (see Methods) was
6.50 (± 0.67), which was not significantly different from 6.0 (t=1.63, p=0.13). The difference
between the cerebellum and the rest of gray matter (5.18 ± 0.51) was significant (t=-8.70,
p<0.001). As the lumped constant in the cerebellum has been reported to be approximately 1.14
times greater than in the whole brain²³, we repeated our analysis after adjusting the cerebellum
OGI for this difference. After the adjustment, the cerebellar OGI was 5.70 (± 0.58), again not
significantly different from 6.0 ($t=-1.12, p=0.28$), but still significantly different from the rest of gray matter ($t=-4.00, p=0.0018$). Thus, the cerebellum is characterized by a distinct lack of NOglc.

Topography of OGI

The present results indicate that regional differences in NOglc exist between resting state networks as well as between the cerebellar and non-cerebellar gray matter. Figure 3.3A shows group averaged OGI (image obtained from the original authors) at a finer spatial scale. This figure is essentially identical to Figure 3A in Hyder et al. (reproduced here as Figure 3.3B) except for choice of color scale. Thus, presenting the identical results using a more physiologically meaningful scale (4-7 in Figure 3.3A as opposed to 1-10 in Figure 3.3B) demonstrates regional differences in OGI on inspection.

3.5 Discussion

Our reexamination of the data from Hyder et al. reveals two primary findings. First, many regions of the brain exhibit NOglc at rest. This result is consistent with both the regional PET literature11,22 as well as with whole-brain measurements of OGI3-6. Second, we observed significant regional differences in NOglc between gray matter regions that were highly preserved across subjects (Figure 3.1C).

These findings are consistent with Vaishnavi et al., 2010, a previous study from our group that employed regional standardized uptake ratios8. The principal result of that study was that NOglc is significantly non-uniform across the brain. In particular, regions constituting the default mode network (DMN) had higher NOglc than other parts of the brain. In contrast, the cerebellum had lower NOglc. These findings are replicated here using the Hyder et al. dataset.
There are, however, a few differences between the two datasets. The fronto-parietal control network (FPC) had higher NOglc in the Vaishnavi et al. study compared to Hyder et al., and the NOglc in the ventral attention network (VAN) was much higher in the Hyder et al. data compared to Vaishnavi et al. (Figure 3.1B and C). It is not clear whether these differences are attributable to analytical approach (relative vs. quantitative PET), study population (the Hyder et al. study contained only male subjects), or other unknown factors. Therefore, although both datasets clearly support regional differences, more work is needed to resolve the discrepancies between the two studies.

On the basis of the same dataset, Hyder et al. argued that no regional differences in NOglc exist, and that findings reported by Vaishnavi et al. are artifacts attributable to the use of relative metabolic measures. The present results, obtained using the quantitative data identical to that from the Hyder et al. study, do not support this perspective. It follows that the discrepant perspectives are attributable to differences in analysis methodology. Specifically, Hyder et al. did not account for subject level variability common to all regions (e.g. use of ANOVA without a repeated measures factor). Figure 3.1C illustrates how OGI measures in two regions would appear to not be significantly different if variability attributable to subject is not taken into account.

Could the observed regional difference arise from non-biological artifacts? PET involves many technical decisions including choosing a kinetic model, accounting for vascular radioactivity, adjusting for recirculating metabolites, and correcting for the delay and dispersion of the arterial input function. Any of these factors could, in theory, produce an artefactual regional difference in NOglc. However, we think this unlikely for several reasons. First, despite the fact that there are regional differences in cerebral blood volume24 and arterial delay25, there is
no direct evidence that any of these technical factors produce a spatial artifact that induces regional differences in OGI. Second, using different procedures to analyze PET data, we and others have found regional differences in OGI similar to the present findings. Finally, additional evidence from different techniques suggests that NOglc varies throughout the brain. Using microdialysis in a transgenic mouse model of Alzheimer’s disease, Bero et al. reported regional differences in lactate levels in interstitial fluid, a result consistent with regional differences in NOglc. Taken together, the available evidence supports the conclusion that regional differences in OGI are of biological origin.

In the Hyder et al. dataset, NOglc accounts for 5.57 \((\pm 2.65) \mu\text{Mol/hg/min, or approximately 19\%}, of the glucose consumption in the default mode network. From an energetic perspective, it may be surprising that NOglc accounts for so much glucose consumption in any part of the brain, as the quantity of ATP generated by NOglc is quite small compared to that generated by oxidative phosphorylation. Therefore, a number of alternative explanations have been proposed, including rapid synthesis of ATP for the Na\(^+/K^+\)-ATPase, generation of biosynthetic intermediates necessary for myelination as well as synaptic and neuritic formation and turnover, alteration of cellular redox potentials, regulation of glycogen levels through a hypothesized glycogen shunt, and the uptake and recycling of glutamate by astrocytes. The exact apportionment of NOglc among these alternatives remains uncertain.

One way to elucidate the role of NOglc in the brain is through spatial topography. Past work in our laboratory has shown that the spatial distribution of NOglc correlates with the expression of genes related to synaptic development and growth. The relationship between NOglc and synaptic plasticity is particularly intriguing given previous findings relating NOglc to task performance. Madsen et al. found that whole brain NOglc was elevated both during and
after performance of the Wisconsin Card Sorting Test33. Our group recently expanded on this finding. We measured relative OGI in subjects before and after the performance of a covert motor learning task34. We found that hours after the performance of the learning task, subjects had elevated NOglc in the left Brodmann area 44, an area recruited by task performance. Furthermore, we observed a correlation between task performance and subsequent increases in NOglc. These results link focal changes in NOglc to learning and suggests that regional differences in NOglc might reflect regional differences in synaptic plasticity.

Other experiments have focused on the role of NOglc in aging and Alzheimer’s disease (AD). For example, it has been shown that higher levels of neural activity lead to increased amyloid-beta production in a mouse model of AD26. Moreover, this effect is associated with increased lactate levels in the interstitial fluid26. Cross-sectional studies in humans have found that brain NOglc decreases in AD35,36 as well as in normal aging 37 (two smaller aging studies have reported non-significant trends38,39). One interpretation of these findings is that the same processes that lead to high NOglc and synaptic plasticity in early life may ultimately lead to disease later in life40,41.

Synaptic plasticity is but one of several, non-exclusive explanations for the brain’s use of NOglc. Much more work is needed before NOglc in the brain is fully understood. Any explanation of NOglc will need to consider regional differences, which have now been reproduced in an independent dataset. It is our hope that this report will serve as an impetus for new research that will further elucidate the role NOglc in the brain.
3.6 Figures

Figure 3.1: Differences in OGI between resting state networks

A) Regions of interest for each of the seven resting state networks projected on the right hemisphere cortical gray matter surface of the Conte 69 atlas42 using Connectome Workbench43. Images show the right lateral and medial surfaces. B) Pairwise differences between each resting state network. Within each cell is the difference in OGI (ΔOGI) between resting state networks along with the 95% CI of the difference. Positive numbers indicate greater OGI (less NOglc) in the network listed on the vertical axis. Only significant differences are shown in color. The numbers along the bottom row are the mean and the 95% CI for each network. Network abbreviations: fronto-parietal control (FPC), default mode (DMN), dorsal attention (DAN), ventral attention (VAN), language (LAN), somatomotor (SMN) and visual (VIS). (C) Within-
subject comparison of OGI evaluated within the default mode network versus visual network. The solid blue lines connect regional measurements within a single participant. Note consistency of regional differences in OGI from subject to subject. The DMN exhibited lower OGI than the visual network (VIS) in every subject.
Region was derived from the atlas used by Hyder et al. Only voxels for which OGI was non-zero in every subject were included. The MNI152 T1 template was resampled to the space of the PET data for anatomical reference.

Figure 3.2: Cerebellar gray matter region of interest
Figure 3.3: Regional topography of OGI

A) A group-averaged OGI map obtained from the authors of the Hyder et al. study. Regional differences are found throughout the brain. B) Replication of Figure 3A from Hyder et al., 2016 which shows little regional variation in OGI. Regional differences are masked by the use of a color scale that lacks a dynamic range which is not matched over the relevant physiologic range of the data.
3.7 Tables

Table 3.1: Means and 95% CIs for selected regions and resting state networks

Whole brain, gray matter, and white matter regions were taken from the atlas used by Hyder et al. ⁷. Resting state regions were from Hacker et al. ¹⁶. The cerebellum was excluded from all regions. Summary statistics were calculated after excluding voxels that exceed five median absolute deviations from the gray matter median¹⁵. The reported means for whole brain, as well as gray and white matter, are largely similar to those reported in the Hyder et al. manuscript⁷.

<table>
<thead>
<tr>
<th>Region</th>
<th>CBF (mL/hg/min)</th>
<th>CMRglc (µMol/hg/min)</th>
<th>CMRO₂ (µMol/hg/min)</th>
<th>OGI (µMol/hg/min)</th>
<th>OEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Brain</td>
<td>36.32 (2.89)</td>
<td>26.34 (1.59)</td>
<td>134.53 (13.76)</td>
<td>5.10 (0.50)</td>
<td>0.42 (0.04)</td>
</tr>
<tr>
<td>Gray Matter</td>
<td>38.31 (3.14)</td>
<td>27.57 (1.74)</td>
<td>142.51 (14.89)</td>
<td>5.18 (0.51)</td>
<td>0.42 (0.04)</td>
</tr>
<tr>
<td>White Matter</td>
<td>28.95 (2.11)</td>
<td>21.74 (1.15)</td>
<td>104.93 (9.79)</td>
<td>4.78 (0.47)</td>
<td>0.41 (0.04)</td>
</tr>
<tr>
<td>Dorsal Attention</td>
<td>37.97 (3.90)</td>
<td>29.00 (1.98)</td>
<td>150.32 (17.26)</td>
<td>5.24 (0.58)</td>
<td>0.44 (0.05)</td>
</tr>
<tr>
<td>Ventral Attention</td>
<td>45.40 (4.02)</td>
<td>32.13 (2.10)</td>
<td>147.13 (16.83)</td>
<td>4.65 (0.54)</td>
<td>0.37 (0.04)</td>
</tr>
<tr>
<td>Somatomotor</td>
<td>39.51 (3.42)</td>
<td>28.99 (1.81)</td>
<td>141.74 (16.59)</td>
<td>4.95 (0.53)</td>
<td>0.41 (0.05)</td>
</tr>
<tr>
<td>Visual</td>
<td>41.06 (3.35)</td>
<td>28.42 (2.21)</td>
<td>173.26 (17.46)</td>
<td>6.02 (0.50)</td>
<td>0.47 (0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Fronto-Parietal</td>
<td>40.63 (3.81)</td>
<td>30.17 (2.08)</td>
<td>152.25 (16.21)</td>
<td>5.10 (0.52)</td>
<td>0.42 (0.05)</td>
</tr>
<tr>
<td>Language</td>
<td>41.58 (3.73)</td>
<td>29.88 (1.81)</td>
<td>152.86 (16.73)</td>
<td>5.20 (0.59)</td>
<td>0.41 (0.05)</td>
</tr>
<tr>
<td>Default Mode</td>
<td>41.03 (3.57)</td>
<td>29.67 (1.81)</td>
<td>144.73 (15.40)</td>
<td>4.94 (0.52)</td>
<td>0.40 (0.04)</td>
</tr>
</tbody>
</table>
3.8 References

30 Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? *J Neurochem* 2014; 131: 399–406.

Chapter 4: Regional changes in cerebral blood flow and glucose metabolism during hypoglycemia

4.1 Abstract

In healthy individuals at rest, the cerebral metabolic rate of glucose consumption (CMRglc) is tightly coupled with cerebral blood flow (CBF). However, early studies showed that global CMRglc decreases more than global CBF in patients experiencing profound hypoglycemia. Whether this relationship holds in all brain regions is unclear, as there are few regional measurements of CMRglc during hypoglycemia in humans. However, several investigators have shown that changes in CBF in humans during hypoglycemia are confined to just a few brain regions. To determine whether regional changes in glucose metabolism match changes in CBF, we used $1^{[11]C}$-D-glucose and $[15O]$-H$_2$O PET to measure regional glucose metabolism and blood flow in healthy young adults undergoing hypoglycemic-hyperinsulinemic glucose clamps. We found that moderate hypoglycemia significantly decreased CMRglc by approximately 20-30% in every brain region examined. Other aspects of glucose metabolism, such as glucose influx and tissue concentration, were also decreased in every region. Changes in CBF (~10%) were generally smaller than changes in CMRglc (~20%) and were only significantly different from euglycemia in a few regions. Our results indicate that hypoglycemia does not alter CBF to the same degree as CMRglc during hypoglycemia. Furthermore, they suggest that the purpose of focal increases in CBF during hypoglycemia is not to maintain CMRglc despite low glucose availability.

4.2 Introduction
Blood-borne glucose is the brain’s primary energy source, with other fuel sources such as glycogen, ketone bodies, or lactate contributing only small amounts under normal conditions. Therefore, the regulation of blood-glucose level is critical for proper brain function. Acute hypoglycemia has several known neurological effects, including confusion, drowsiness, speech difficulties, and lack of coordination. If blood glucose drops too low from its normal value of ~90 mg·dL\(^{-1}\), seizures, coma, and even death, can occur.

Due to the counterregulatory responses of insulin, glucagon, epinephrine, and other hormones, the incidence of hypoglycemia is rare in non-diabetic healthy individuals. Hypoglycemic episodes are relatively common, however, in individuals with type-1 diabetes (T1DM), who experience mild treatment-related hypoglycemia nearly twice a week.

Hypoglycemia can be particularly problematic for the approximately 25% of individuals with T1DM that experience hypoglycemic unawareness, or the failure to develop hypoglycemia-related symptoms. Without the warning provided by symptoms, individuals fail to take action to counter hypoglycemia (e.g., food consumption), which increases the risk of a more serious hypoglycemic episode.

Due to its potentially serious consequences, the impact of hypoglycemia on human brain metabolism is the subject of a large body of literature. The relationship between cerebral blood flow (CBF) and hypoglycemia has been particularly well-studied. Several early studies reported that compared to the cerebral metabolic rate of glucose (CMRGl), global CBF (i.e. whole-brain) is relatively stable during profound hypoglycemia (~30 mg·dL\(^{-1}\)). Studies during mild hypoglycemia have reported mixed results, with some studies reporting no change in global CBF in healthy controls, while others have reported increases or decreases. Studies examining regional changes in CBF have generally been more consistent (for divergent
findings see23,25,27). In both healthy controls26,28 and individuals with T1DM22,29-31, relative increases in CBF have been reported in a common set of brain regions including the thalamus, globus pallidus, and medial prefrontal cortex.

The majority of studies examining CMRglc during hypoglycemia in humans have examined only global effects. These studies have found that CMRglc begins to decrease at blood glucose levels around 50 mg·dL-118-20,32,33, with large decreases seen during profound hypoglycemia16,17,34. The primary method used to measure regional CMRglc in humans is [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Because glucose is not directly used as a tracer, a correction factor, called the lumped constant (LC), must be used to accurately measure CMRglc with FDG35. Unfortunately, the LC changes dramatically during hypoglycemia36, which limits the usefulness of FDG in subjects with low blood glucose concentrations. An alternative technique that avoids this complication is to use radiolabeled glucose. Very few studies, however, have used radiolabeled glucose to examine regional human brain metabolism during hypoglycemia. Perhaps the only exception is the combined work of Gutniak et al. and Blomqvist et al18,37. The original report by Gutniak et al. measured CMRglc in several large regions using [U-11C]-glucose PET and found that CMRglc declined by 30-40\% in every region37. Later Blomqvist et al. performed a voxelwise analysis of the same data to confirm the uniform decline in CMRglc on a much finer spatial scale18.

The uniform decline in CMRglc during hypoglycemia reported by Gutniak et al. and Blomqvist et al. is in contrast to the focal CBF changes that predominate the literature14,15. A uncoupling between CBF and CMRglc changes might be surprising given the tight spatial correlation between the two parameters under normal euglycemic conditions38,39. It would, however, be consistent with the fact that during profound hypoglycemia, changes in global
CMRglc are much more pronounced than changes in either CBF or oxygen consumption16,17,34,40. Moreover, it has been proposed that the purpose of CBF changes during hypoglycemia in not to provide the brain with more glucose. Rather, CBF changes as a part of the brain’s counterregulatory hormonal response to hypoglycemia41,42. To determine whether brain glucose metabolism changes during hypoglycemia are regionally-specific or uniform, we used measured regional glucose metabolism with $1-[^{11}\text{C}]-$D-glucose and regional CBF with $[^{15}\text{O}]-$H\textsubscript{2}O PET during stepped hypoglycemia in healthy participants. As a true glucose tracer, $1-[^{11}\text{C}]-$D-glucose enables quantitative estimates of CMRglc, glucose influx, free glucose concentration, and glucose extraction regardless of blood glucose level.

4.3 Methods

The original source for the data analyzed in this report is a previous study examining the relationship between hypoglycemia, whole-brain glucose metabolism, and counterregulatory hormones33. For further methodical detail, please see the cited reference.

Participants

A total of eighteen participants were included in this study. All participants were healthy young adults without a history of diabetes. Participants were randomly assigned to one of two groups. Subjects in the first group received hyperinsulinemic glucose clamps first at 90 mg·dL-1 and then at 60 mg·dL-1. This group consisted of 10 individuals (6 female, 4 male) with an average age of 28.9 (SD 6.9) years and a BMI of 24.4 (SD 3.6) kg·m2. The second group consisted of 8 subjects (2 female, 6 male) who received glucose clamps at 75 mg·dL-1 and 45 mg·dL-1. The average age was 27.6 (SD 8.2) years and a BMI of 24.0 (SD 2.8) kg·m2. All participants gave written informed consent.
Experimental design

Subjects reported in the morning after fasting overnight for 10 hours. Intravenous catheters were placed into the antecubital veins of both arms. The first catheter was used for the infusion of insulin, glucose, and potassium chloride, and the second for the injection of radioactive tracers. An arterial line was placed into the radial artery of one forearm for the collection of arterial input data. Subjects were then taken to the PET scanner, where the hyperinsulinemic glucose clamps were started after 30 minutes of supine rest. Human insulin was infused at 2.0 mU·kg⁻¹·min⁻¹ and 20% glucose was infused at a rate necessary to achieve the target glucose level. The first glucose clamp (90 or 75 mg·dL⁻¹) was immediately followed by the second clamp (60 or 45 mg·dL⁻¹). Each clamp lasted for 2 hours. During the clamping procedure, symptom scores and the arterial concentrations of epinephrine, norepinephrine, insulin, C-peptide, glucagon, cortisol, fatty acids, B-hydroxybutyrate, and lactate were measured every 30 minutes. All experimental procedures were approved by the Washington University School of Medicine Human Research Protection Office for compliance with the Helsinki Declaration of 1975.

Image acquisition

PET scanning began 20 minutes after blood glucose was maintained at the target level for twenty minutes. First, attenuation was measured with [⁶⁸Ge]-[⁶⁸Ga]-rotating rod sources. Next, subjects inhaled 22 ± 4 mCi of [¹⁵O]-CO for the measurement of cerebral blood volume (CBV)⁴³. A single 5-minute long emission frame was acquired starting 2 minutes after inhalation. Cerebral blood flow (CBF) was then measured with the injection of 19 ± mCi of [¹⁵O]-H₂O⁴⁴. The dynamic acquisition consisted of 60 2-second frames acquired immediately following injection. Finally, cerebral glucose metabolism was measured via the injection of 10 ± 3 mCi of 1-[¹¹C]-D-glucose⁴⁵. The emission data was split into 45 frames spanning 60 minutes (16 x 30 s,
8 x 60 s, 16 x 120 s, 4 x 180s). All PET data was acquired with a ECAT EXACT HR+ PET scanner (Siemens/CTI, Knoxville, TN) in 3D mode with retraction of interslice septa and reconstructed using a filtered back-projection46. During $[^{15}\text{O}]$-CO and $[^{15}\text{O}]$-H\textsubscript{2}O acquisition, arterial input data was automatically sampled from the radial artery at a rate of 5 mL·min-1.

During the 1-[^{11}C]-D-glucose scan, manual arterial samples were acquired every 10-15 seconds during the first 3 minutes and every 10-15 minutes thereafter. The same PET scanning protocol was performed during both glucose clamps. Following the completion of the glucose clamping experiment, a high resolution T1-weighted MPRAGE was acquired using a Siemens 3T Trio (2400 ms TR, 3.16 ms TE, 256 x 256 x 176 FOV, 1 mm3 voxels).

Image analysis

All PET data was smoothed with a 5 mm isotropic Gaussian kernel to create images with an approximate resolution of 8 mm isotropic voxels47. After smoothing, the dynamic 1-[^{11}C]-D-glucose data was motion-corrected using previously described in-house software48,49. A mean image across time was then created for each PET series, resulting in two images for each tracer. Within each tracer, the average images were registered to each other by minimizing the error between the forward (image 1 -> image 2) and backward (image 2 -> to image 1) registrations48. Once aligned, an average within-tracer image was computed and registered to the high-resolution T1-weighted image using a vector gradient algorithm50.

The T1-weighted image was segmented using Freesurfer 5.151 to create 48 non-overlapping cortical and subcortical regions of interest (ROIs; Figure 4.1). The Desikan atlas52 was used to define 34 gyral-based cortical gray matter ROIs. Separate ROIs were created for subcortical gray regions (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens) and white matter (deep, superficial, corpus callosum)53. ROIs were also
created for cerebellar gray and white matter. Finally, the brainstem and ventral dienecephalon were separated into two ROIs. All ROIs were averaged across the cerebral hemispheres. The tissue class (white matter, gray matter, and CSF) of each voxel was determined separately using FSL’s54 FAST55.

A previously published and validated four-compartment model45 was used to describe the 1-[11C]-D-glucose data:

$$C_T(t) = CBV \cdot C_a(t) + \int_0^t C_a(\tau) \cdot r(t - \tau) \, d\tau \quad (4.1)$$

$$r(t) = ae^{-\beta t} + K_1k_3 \left[\frac{e^{-k_4t}}{(\beta-k_4)} + \frac{K_4e^{-k_4t}}{(\beta-k_4)(k_5-k_4)} + \frac{k_4e^{-k_5t}}{(\beta-k_3)(k_3-k_5)} \right] \quad (4.2)$$

where $C_T(t)$ is the average tracer concentration within the ROI at time t, $C_a(t)$ is the arterial tracer concentration, and $r(t)$ is the tissue impulse response function. The α and β terms are products of the model’s five rate constants ($K_1, k_2, k_3, k_4,$ and k_5): $\alpha = K_1 \left[1 - \frac{k_3}{(\beta-k_4)} + \frac{k_3k_4}{(k_4-\beta)(k_5-\beta)} \right]$, $\beta = k_2 + k_3$. To simplify the model fitting, k_5 was assumed to equal CBF/CBV.

The remaining rate constants were estimated for all 48 FreeSurfer ROIs using nonlinear least squares. Following Graham et al., we chose to optimize $\frac{K_1}{(k_2+k_3)}$ instead of $k_2$56. Prior to regional fitting, the delay between the input function, $C_a(t)$, and the PET data was corrected for by fitting equation 4.1 to the average whole-brain tissue activity curve with the addition of a delay term. In accordance with previous procedures, all 1-[11C]-D-glucose modeling was done with whole-blood arterial tracer concentration without correction for radiometabolities33,45,57.

CBF was computed for each ROI using a one-compartment, two parameter model44:
\[C_T(t) = f \int_0^t C_a(\tau) \cdot e^{-\lambda(t-\tau)} d\tau \quad (4.3) \]

where \(f \) is CBF and \(\lambda \) is the blood brain partition coefficient. Before performing a nonlinear least squares fit on equation 4.3, the arterial input function, \(C_a \), was corrected for delay and dispersion. Correction for the dispersion between the automatic blood sampler and the radial artery was performed by assuming that the measured input function, \(C_m \), is the convolution of the actual input function, \(C_a \), with a measured kernel \(h \):\[C_m(t) = \int_0^t C_a(\tau) \cdot h(t-\tau) \, d\tau \quad (4.4) \]

Therefore, the reconstruction of \(C_a \) is a deconvolution problem. This problem was solved by assuming that \(C_a \) follows the form described by Golish et al., and then minimizing the difference between \(C_m \) and the right hand side of equation 4.4 with nonlinear least squares.

Delay between \(C_a \) and the \([^{15}O]-H_2O \) PET data was corrected for using the same procedure as the \([^{11}C]-D-glucose \) data.

CBV (in \(\text{mL} \cdot \text{hg}^{-1} \)) was computed for each voxel using the following equation:\[\text{CBV} = \frac{\int_{t_1}^{t_2} C_T(\tau) \, d\tau \cdot 100}{\int_{t_1}^{t_2} C_a(\tau) \, d\tau \cdot R \cdot d_T \cdot d_B} \quad (4.5) \]

where \(R \) is the ratio of cerebral small to large vessel hematocrit and \(d_T \) and \(d_B \) are the densities of tissue and blood respectively. The values for these constants were set according to Martin et al.: \(R = 0.85, d_T = d_B = 1.05 \frac{g}{mL} \). As CBV was not a parameter of interest and only needed to solve equation 4.1, we utilized a simple strategy to minimize the impact that noise in the CBV quantification had on our results. All voxels with a CBV less than 6 were replaced with the mean CBV value of their respective tissue class (white, gray, or CSF). All voxels with a CBV greater
or equal to 6 were replaced with the mean of all such voxels. The resultant image was then smoothed with a 5 mm isotropic Gaussian kernel prior to computing the mean CBV within each FreeSurfer ROI. Without this correction fitting the C11-glucose model (Eq. 1 and 2) was often unstable, as low values of CBV from noisy voxels produced unrealistically high values of k_5.

All optimization was performed using the *optimize* package in SciPy 60. Uniform weights were used for all nonlinear least square fits.

Metabolic parameters

The rate constants estimated from the regional 1-[¹¹C]-D-glucose data were used to estimate five distinct parameters: 1) cerebral metabolic rate of glucose (CMRglc), 2) glucose influx, 3) free glucose concentration, 4) glucose first-pass extraction (E_{fp}), and 5) net glucose extraction (E_{net}). These quantities were computed as follows45,61:

$$CMRglc = \frac{K_1 k_3}{(k_2 + k_3)} \cdot C_b \quad (4.6)$$

$$Influx = K_1 C_b \quad (4.7)$$

$$Concentration = \frac{K_1}{(k_2 + k_3)} \cdot C_b \quad (4.8)$$

$$E_{fp} = \frac{K_1}{CBF} \quad (4.9)$$

$$E_{net} = \frac{K_1 k_3}{(k_2 + k_3) \cdot CBF} \quad (4.10)$$

C_b, the arterial whole blood glucose concentration, was estimated using C_p, the measured arterial plasma glucose concentration45,62: $C_b = C_p (1 - 0.3 \cdot hematocrit)$. We also computed whole-brain normalized estimates of each parameter by dividing each regional value by the volume-weighted mean across regions.
Statistics

For each region, the relationship between C_p and CMRglc, glucose influx, glucose concentration, CBF, E_{fp}, and E_{net} was assessed using a multivariate linear mixed model\(^6^3\):

\[
Y_{ij} = X_{ij} \beta + b_i + e_{ij} \tag{4.11}
\]

where Y_{ij} is a 6 x 1 vector containing the metabolic parameter estimates for subject i during glucose clamp j. X_{ij} is a 1 x p row vector containing the fixed effect regressors. Here, $p = 3$ as X_{ij} is made up of three regressors: 1) Intercept (β_0), 2) C_p (β_1), and 3) A restricted cubic spline term with boundary knots at the 0.1 and 0.9 quantiles and an interior knot at the 0.5 quantile (β_2)\(^6^4\). The spline regressor was added to allow for a nonlinear relationship between C_p and any of the metabolic parameters. Prior to fitting, the data in Y and X were standardized so that each metabolic parameter and fixed effects regressor had a mean of zero and a SD of 1. The fixed effect regression coefficients are in the p x 6 matrix β. The 1 x 6 row vector b_i contains a subject specific random intercept for each metabolic parameter. Finally e_{ij} is a 1 x 6 row vector of independent and identically distributed errors. The random intercept terms were assumed to come from a multivariate normal distribution: $b_i \sim \text{Normal}(0, D)$, where D is a 6 x 6 unstructured covariance matrix. Note that even though our model assumes the residual errors for each parameter are identical and independent, covariance between the parameters can be accounted for through their random intercepts\(^6^3\).

Equation 4.11 was fit separately to the data from each FreeSurfer ROI using a Bayesian Hamilton Markov chain Monte Carlo (MCMC) with Stan\(^6^5\). The fixed effect coefficients where given a broad normal prior with a mean of 0 and a SD of 5. A half-Cauchy distribution with a
location of 0 and a scale of five was used as the prior for the residual error term. For modeling purposes, the random effects covariance matrix was decomposed into a 6x6 correlation matrix and a vector of SDs. The correlation matrix was given a LKJ Cholesky prior with a shape of 1.0, which implies a uniform prior density for the correlation between the random effect parameters. A half-Cauchy distribution with a location of 0 and a scale of five was used for the standard deviation parameters. Fitting was performed with four independent MCMC chains consisting of 5,000 iterations. The first 2,500 iterations of each chain were removed as warm-up, leaving a total of 10,000 iterations available for inference. The Gelman-Rubin \hat{R} statistic was used to check that all four MCMC chains had converged. \hat{R} is the ratio of within to between chain variance and should equal 1 after convergence. The \hat{R} for all reported parameters was close to 1.0 for every regional fit (range=0.9996 to 1.036).

Regional CBF data was missing for three clamp studies. A univariate mixed model was used to interpolate the missing CBF values for each FreeSurfer region. The model consisted of a single random intercept and the same fixed effect regressors as equation 4.11. All fitting was performed using the R package lme4. The interpolated CBF values were used to optimize equation 4.1 and to compute E_{fp} and E_{net}. They were not used to assess the relationship between CBF and C_p with equation 4.11. Therefore, all inference for changes in CBF was based on 33 data points and not 36 like the other metabolic parameters. To account for the missing CBF data, the Bayesian formulation of equation 4.11 included the missing data points as free parameters.

For each region, the overall association between C_p and each of the six metabolic parameters (CMRglc, glucose influx, glucose concentration, CBF, E_{fp}, and E_{net}) was tested by computing the 95% highest density region of the joint distribution between β_1 and β_2 (Figure...
A significant relationship was reported if the coordinate $\beta_1 = 0.0, \beta_2 = 0.0$ was outside of the 95% region. For example, a significant relationship between C_p and CMRglc would indicate that CMRglc changes as a function of blood glucose level. The R package ks was used to estimate the 95% highest density regions \(^7^3\). If a significant relationship with C_p was found, then the marginal highest density interval (HDI) for the cubic spline term β_2 was computed \(^7^4\). There was significant evidence for a nonlinear relationship with C_p if the 95% HDI of β_2 did not overlap 0.0. A nonlinear relationship with C_p indicates that that change in the metabolic parameter (e.g. CMRglc) cannot be described by a simple linear function. To visualize the effect of hypoglycemia, an image of the difference between euglycemia and hypoglycemia was made by computing the difference between the model prediction at $C_p = 90 \text{ mg·dL}^{-1}$ and at $C_p = 45 \text{ mg·dL}^{-1}$ for each ROI. Spearman rank order correlations were used to assess the spatial correspondence between maps of metabolic change (e.g., CMRglc vs. CBF). Due to the autocorrelation present between brain regions \(^7^5\), as well as differences in ROI sizes, p-values for the correlation coefficients were not computed. Unless otherwise stated, all values are posterior medians and HDIs.

4.4 Results

Regional changes in metabolism

Figure 4.3 shows the individual CMRglc, glucose influx, glucose concentration, CBF, E_{fp}, and E_{net} data in both the precuneus and deep white matter along with the population average fits from the multivariate linear mixed model. We chose the precuneus as an example gray matter region as it has one of the highest CMRglc at euglycemia. CMRglc, influx, and concentration dropped along with C_p in both the precuneus and deep white matter (Figure 4.3A-C).
Conversely, E_{net} increased with decreasing C_p (Figure 4.3F). CBF and E_{fp} showed less pronounced changes during hypoglycemia (Figure 4.3D-E).

To quantify this impression, we tested for the presence of a significant relationship between C_p and each metabolic parameter in 48 separate FreeSurfer ROIs (see Methods). A significant relationship was found between C_p and CMRglc (Figure 4.4B), glucose influx (Figure 4.5B), glucose concentration (Figure 4.6B), and E_{net} (Figure 4.7B) in every region tested. A significant nonlinear relationship between C_p and CMRglc was found for most (35/48), but not all, regions (Figure 4.4C). The regions showing only a linear relationship include both gray (amygdala, entorhinal cortex, and globus pallidus) and white (cerebellar white matter, corpus callosum, and deep white matter) matter. No region showed a nonlinear relationship between C_p and glucose influx (Figure 4.5C) or concentration (Figure 4.6C), and only the globus pallidus had a significant nonlinear association between C_p and E_{net} (Figure 4.7C).

Quantitative changes in E_{fp} and CBF were not nearly so widespread. Significant increases in E_{fp} with decreasing C_p were found in 17 out of 48 regions (Figure 4.8B). Both cortical and cerebellar gray and white matter regions displayed increases in E_{fp}, though the only subcortical gray matter region which increased its first-pass extraction was the caudate. No evidence was found for a nonlinear relationship between C_p and E_{fp} (Figure 4.8C). A significant relationship between CBF and C_p was found in only nine regions (Figure 4.9B). Significant decreases in CBF with hypoglycemia were found in the banks of the superior temporal sulcus, caudal anterior cingulate, interior temporal cortex, posterior cingulate, superior temporal cortex, frontal pole, transverse temporal cortex, and nucleus accumbens. A significant increase was found only in the
globus pallidus, which was also the only region with a significant nonlinear relationship between C_p and CBF (Figure 4.9C).

As many previous studies have reported relative changes in blood flow during hypoglycemia22,26,28, we repeated our previous analysis of CBF changes after first normalizing each CBF image by its global mean. A relative decrease in CBF was observed in the posterior cingulate, while relative increases were found in the thalamus, globus pallidus, brainstem, and ventral diencephalon (Figure 4.10B).

Discrepancies between CMRglc and CBF changes

To further investigate the discrepancy between the widespread changes in CMRglc (Figure 4) and the focal changes of CBF (Figures 7,10), we first correlated euglycemic metabolic values with the difference between euglycemia and hypoglycemia over all ROIs (see Methods). CMRglc, influx, and concentration all showed strong negative correlations. Regions with the greatest baseline values displayed the greatest changes during hypoglycemia (Figure 4.11A-C). Conversely, CBF, E_{fp}, and E_{net}, the parameters which are directly dependent on blood flow, showed only modest correlations (Figure 4.11D-F), with the association between baseline and change in E_{fp} being particularly weak (Figure 4.11E).

Next, we correlated regional changes in CMRglc with regional changes in CBF. Changes in CBF and CMRglc showed only modest regional correlations, both quantitatively (Figure 4.12A), and expressed as percent change (Figure 4.12B). This is in contrast with euglycemia, where regional CBF and CMRglc were tightly correlated ($\rho = 0.86$). Nearly every region exhibited CMRglc decreases in the 20-25\% range, with the exception of deep white matter and the corpus colossum, the two regions with the lowest CMRglc at euglycemia (Figure 4.12B). Consistent with previous relative analysis (Figure 4.10B), CBF in most regions decreased
slightly, with the exception of the thalamus, globus pallidus, brainstem, and ventral diencephalon (Figure 4.12B), where CBF increased.

4.5 Discussion

Overview

A previous analysis of the same data analyzed here found whole-brain decreases in CMRglc, glucose influx, and free glucose concentration, an increase in E_{net}, and no change in CBF during moderate hypoglycemia ($45 \text{ mg}\cdot\text{dL}^{-1}$)33. Importantly, changes in counterregulatory hormones (epinephrine and glucagon) were observed before changes in CMRglc. However, that study did not report any regional changes in metabolism during hypoglycemia. Here we found that hypoglycemia decreases CMRglc, glucose influx, and glucose concentration, and increases E_{net}, in every brain region we examined. Hypoglycemia induced changes in E_{fp}, and especially CBF, were more regionally specific. Decreases in CMRglc, glucose influx, and glucose concentration correlated strongly with baseline values, whereas changes in CBF, E_{fp}, and E_{net} showed only modest correlations. Regional changes in CMRglc did not correlate with regional changes in CBF, suggesting a difference between glucose metabolism and blood flow in the response to hypoglycemia. Finally, we found that glucose concentration in the cerebellum was much greater than any other brain region.

Glucose Metabolism

Our finding that hypoglycemia decreases CMRglc in all brain regions is consistent with two previous paired studies in humans18,37. These studies reported that CMRglc declines by approximately 40% in all regions during an insulin-induced hypoglycemia of $50 \text{ mg}\cdot\text{dL}^{-1}$. Uniform declines in CMRglc are also found during short-term starvation, a condition that results in mild hypoglycemia76,77. Multiple studies in rats have also reported nearly uniform decreases in
CMRglc during hypoglycemia78-80. A few exceptions were observed in each study. Abdul-Rahman and Siesjö reported that CMRglc in the hypothalamus and the cerebellum did not decline even after 30 minutes in an insulin-induced hypoglycemic coma78. Pelligrino et al. also reported that cerebellar CMRglc was maintained during modest hypoglycemia (approximately 40 mg·dL-1)80. Conversely, Bryan et al. reported CMRglc did not decrease in the pyramidal tracts79, even when blood glucose was lowered to nearly 25 mg·dL-1. An outlier to the studies discussed above is the work of Suda et al., who found much more variable changes CMRglc during moderate hypoglycemia (approximately 43 mg·dL-1)81. After Bonferroni correction for multiple comparisons, significant declines in CMRglc were found only in the dentate gyrus of the hippocampus and in several brainstem regions. Absolute CMRglc, however, declined in every region but the superior colliculus and the dentate nucleus of the cerebellum. It is possible that some of the variability in these results is due to differences in the degree of hypoglycemia. Indeed, Bryan et al. found that CMRglc declined only in a few regions when the blood glucose level was at 35 mg·dL-1, whereas all regions exhibited declines with more pronounced hypoglycemia.

Compared to CMRglc, the literature on regional changes in quantitative glucose influx, concentration, or extraction is relatively sparse. Indeed, this report is, to the best of our knowledge, the first to examine this question in humans. There are, however, relevant studies in animal models. In agreement with our results, hypoglycemia has been shown to reduce the free glucose concentration throughout the brain in mice82,83 and rats84,85. Interestingly, Paschen et al. found that the brain stem, hypothalamus, and thalamus still have some free glucose concentration even during deep hypoglycemia. As far as we are aware, this finding has not been replicated. LaManna and Harik found that glucose influx and E\textsubscript{fp} decreased in the frontal and parietal
cortices, cerebellum, and hippocampus. This is only partially consistent with our results, as we did not find a significantly increase in hippocampal E_{fp}. We are not aware of any data on regional changes in E_{net} during hypoglycemia, but our results are agreement with previous studies showing global increases.

We also found that the relationship between plasma glucose and CMRglc was nonlinear in most brain regions, with CMRglc changing little until plasma glucose was lowered to around 45 mg·dL$^{-1}$. This is consistent with the finding that glucose metabolism is largely maintained during modest hypoglycemia in humans and in animal models. A nonlinear relationship between CMRglc and plasma glucose is expected under normal conditions, as cerebral glucose influx far outstrips glucose consumption, and therefore, glucose consumption only declines once CMRglc and influx are nearly equal. Conversely, we found little evidence for nonlinearity in any of the other parameters that we examined. No regions had a significant nonlinear relationship with glucose influx, glucose concentration, or E_{fp}, and only the globus pallidus had a nonlinear relationship with E_{net}.

Our finding of linear changes in glucose influx and concentration generally agrees with the literature. Several studies using a variety of techniques have found that brain glucose concentration is linear with respect to plasma glucose over a wide range. Two studies in rats reported that changes in brain glucose influx are largely linear in the blood glucose range we studied here, before saturating at higher concentrations. Using a similar experimental design to ours, Powers et al. also showed a roughly linear decline in glucose influx in macaques. Our results are somewhat in conflict with previous studies of glucose first-pass extraction in animal models. These studies found a nonlinear relationship between E_{fp} and blood glucose levels, with large increases in E_{fp} during more profound hypoglycemia. Here, although E_{fp} did increase
in many regions, the increase was fairly small and did not deviate significantly from linearity. It is likely that, if we had studied more profound levels of hypoglycemia, larger changes in E\textsubscript{fp} would have been observed.

Cerebral Blood Flow

Unlike glucose metabolism, alterations in CBF were restricted to a select set of regions. Quantitative decreases in CBF were found in a handful of cortical regions, including the caudal anterior cingulate, inferior temporal cortex, and posterior cingulate, as well as in the nucleus accumbens. Nwokolo et al. also reported that hypoglycemia decreases CBF in the temporal lobe97, prefrontal cortex42,97, and globus pallidus42. We also found that relative to the rest of the brain, the CBF response to hypoglycemia was significantly lower in the posterior cingulate and significantly higher in the thalamus, globus pallidus, brainstem, and ventral diencephalon. In both healthy and in individuals with T1DM, hypoglycemia has been shown to increase relative blood flow in the thalamus26,28,31,98-100, medial prefrontal cortex26,28,31,99, globus pallidus26,28,31, and anterior cingulate cortex28,31. Although we did find a relative decrease in the posterior cingulate29, we did not find any relative increases in CBF in the cerebral cortex. One possible explanation is that hypoglycemia was not maintained long enough to alter blood flow in these regions. In support of this hypothesis, two recent studies found that regional increases in CBF become more pronounced the longer hypoglycemia is maintained28,31. However, relative decreases in MPFC CBF have been found using a protocol similar to the one we used here42.

Research in animal models have also found regional variability in the CBF response to hypoglycemia79,88,101. There are, however, a few important discrepancies from the human literature. First, animal model studies have generally found that hypoglycemia increases global CBF79,92,101-104. The human literature is much more mixed15, with a large number of studies
reporting no change in global CBF during mild to moderate hypoglycemia. It is tempting to argue that the reason for this discrepancy is that human studies do not measure CBF at low enough levels of hypoglycemia. Multiple studies in rats have shown that, although CBF increases rapidly once the blood glucose level drops below 40 mg·dL\(^{-1}\), it is relatively stable above this point. A few human studies have found that whole-brain CBF increases once blood glucose is lowered below 40 mg·dL\(^{-1}\). However, other studies have reported small and/or non-significant changes in subjects whose blood glucose is low enough to induce a hypoglycemic coma. Whether increased CBF during hypoglycemia is a species specific phenomenon, or a by-product of different measurement techniques, remains to be determined.

Second, studies in animal models have consistently reported that hypoglycemia increases CBF in nearly every region of the brain. There is, however, regional variability in the magnitude of the increase. For example, particularly large increases in CBF have been found in the cerebellum and the thalamus. This is in contrast with the human literature, which has consistently shown that hypoglycemia selectively increases CBF in a network of regions including the thalamus and medial prefrontal cortex. Part of this difference may be that unlike animal studies, studies in humans have tended to report regional changes relative to the whole-brain. Normalization is unlikely to fully account for the discrepancy, however, as we, in agreement with two other studies, did not observe CBF changes in every region even with quantitative CBF. It is also possible that a species difference may explain the discrepancy between animal and human studies. Metabolic rates are higher in rodents, so it is conceivable that they are more affected by hypoglycemia than humans.

Metabolic coupling during hypoglycemia

Our results show clearly that during hypoglycemia there is an uncoupling between regional changes in glucose metabolism and CBF. Glucose metabolism was altered in every
region we examined, while CBF was changed in smaller set of regions. Furthermore, there was only a modest regional correlation between changes in CMRglc and changes in CBF. This suggests that the purpose of increased CBF during hypoglycemia is not, at least completely, to increase the supply of glucose to the brain. A similar proposal was made by Powers et al., who found that the increase in CBF in the somatosensory cortex during tactile stimulation was the same in euglycemic and mildly hypoglycemic (~60 mg·dL\(^{-1}\)) subjects\(^{107}\). If CBF increased during hypoglycemia in order to prevent a fall in glucose consumption, one would expect CMRglc to be relatively maintained in regions with increased CBF (e.g. the globus pallidus). Instead, we found that declines in CMRglc were largely determined by baseline metabolic rates, and that most regions declined by a little over 20% once the blood glucose level was lowered to 45 mg·dL\(^{-1}\). In contrast, CBF fell in most regions by around 10% and baseline CBF was much less predictive of CBF changes. It is possible that CBF increases in order to supply the brain with alternative fuels such as lactate or ketone bodies. We are not able to rule out this possibility with our present data. However, studies measuring whole-brain changes in metabolism have reported that lactate and \(\beta\)-hydroxybutyrate can account for only a modest proportion of the brain’s metabolic rate during insulin induced hypoglycemia\(^{20,87}\). Furthermore, the plasma concentrations of both lactate and \(\beta\)-hydroxybutyrate were not significantly altered by hypoglycemia in our study\(^{33}\). This makes it unlikely that either substance was being used as an alternative, as the consumption of both lactate\(^{108}\) and \(\beta\)-hydroxybutyrate\(^{3}\) is limited strongly by plasma concentration.

An alternative hypothesis is that focal increases in CBF are part the sympathetic counterregulatory hormonal response to hypoglycemia\(^{109}\). In healthy individuals, hypoglycemia is counteracted by the release of several key hormones, the foremost of which is insulin\(^{8}\).
However, hypoglycemia is also accompanied by the release of glucagon, epinephrine, growth hormone, and cortisol. If the release of these hormones fails to restore the blood glucose to normal levels, then cognitive decline begins to occur110. It has been proposed109 that these counterregulatory responses are regulated by a network of brain regions consisting largely of the thalamus and medial prefrontal cortex. Consistent with this idea, acute hypoglycemia has been show to increase CBF in the thalamus and medial prefrontal cortex22,26,28,30,42,99, and there is a positive correlation between thalamic CBF and autonomic symptom scores during hypoglyemia97. Both the thalamus and medial prefrontal cortex are part of a network of regions that, along with the hypothalamus, regulate the brain’s autonomic response to sensory stimuli111. Furthermore, Arbelaez et al. reported that while recurrent hypoglycemia attenuates hormonal responses in healthy individuals, it actually augments the increase in thalamic CBF that is normally seen during acute hypoglycemia98. Based on this finding, and the assumption that increased CBF is a marker of increased neural activity, Arbelaez et al. proposed that hormonal responses are blunted by repeated hypoglycemia because of increased inhibition of the hypothalamus by the thalamus98. More work is needed to confirm this hypothesis, however, as more recent studies have reported that the increase in thalamic CBF during hypoglycemia is blunted, not increased, in type-1 diabetics with hypoglycemic unawareness22,30.

The fact that hypoglycemia effects oxygen metabolism much less than glucose metabolism is well established16,17,34,40. This disconnect is particularly prevalent during extreme hypoglycemia, where the molar ratio of oxygen-to-glucose metabolism (OGI) rises well above its theoretical value of 6.0102,112,113. In the normal resting brain, OGI is approximately 5.5, which indicates that nearly 10% of the brain’s glucose metabolism is consumed via non-oxidative pathways114. OGI values greater than 6.0 indicate that the brain is oxidizing energy sources other
than glucose. Studies have shown that the rat brain quickly uses its supply of free glucose, glycogen, lactate, and pyruvate during profound acute hypoglycemia. After this point, endogenous amino acids, such as glutamine, and phospholipids are used to maintain ATP concentration until the onset of hypoglycemic coma. Although glucose consumption is reduced more than oxygen consumption even in moderate hypoglycemia, how oxidative metabolism is maintained in this condition is not fully understood. Lubow et al. estimated that lactate uptake could account for up to 25% of the brain’s glucose deficit during moderate hypoglycemia.

Glycogen has also been suggested as a potential fuel source, though it is unclear how long it can be used as a fuel source as glycogen is largely restricted to astrocytes and is present in fairly small amounts. It is likely that oxidative metabolism is maintained by some combination of these and other fuels. Part of the glucose debt that occurs during moderate hypoglycemia could be paid by reducing the approximately 10% of glucose metabolism that is non-oxidative.

Although this idea has not been tested, it would help to support whether non-oxidative glucose consumption is involved in learning, synaptic plasticity, and development (but see).

Cerebellar Metabolism

We did not expect to find such a striking difference in free glucose concentration between the cerebellum and other brain regions (Figure 4.6A, Figure 4.11C). At euglycemia, the average free glucose concentration in the cerebellar cortex was 0.68 μMol·g⁻¹, compared to 0.42 μMol·g⁻¹ for the cerebral cortex. Regional differences in free glucose concentration have not been well-studied in humans. There are, however, some exceptions. Heikkilä et al. found that compared to the cerebral cortex, the ratio of free brain glucose to water was twice as high in the cerebellum. Herzog et al. reported that the concentration of both free glucose and glycogen was higher in the cerebellar cortex. Similar results have been obtained in animal models as well, although it should be noted that the differences are smaller than what has been
ported in humans, and that other studies have failed to find any difference80,85. Higher glucose concentration in the cerebellum is relevant for two reasons. First, the cerebellum seems to respond differently to hypoglycemia than other brain regions. There is evidence that CMR\textsubscript{glc} in the rat cerebellum is maintained during both moderate80 and profound hypoglycemia78. Although we did not replicate this finding in our study, it is possible that our subjects were hypoglycemic too long for the cerebellum’s higher free glucose concentration to serve as an effective buffer. The cerebellum is also more resistant to hypoglycemia induced decreases in ATP84,128 and protein synthesis129. Finally, the cerebellum appears to be more resistant to hypoglycemia-induced cell death than other brain regions. Prolonged severe hypoglycemia causes neuronal death throughout the cortex and subcortex130-132, with neuronal loss in the dentate gyrus being a defining feature. In contrast, cerebellar neurons, particularly Purkinje cells and granule cells, are largely intact even after extended periods of profound hypoglycemia128,131. Given these results, one hypothesis is that higher levels of free glucose provide the cerebellum with some resistance to hypoglycemia. The role of free glucose in preserving energy metabolism is likely minor though, as the cerebellum’s glucose concentration of 0.68 \(\mu \text{Mol} \cdot \text{g}^{-1} \) is small compared to its baseline metabolic rate of 20.5 \(\mu \text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \).

Second, the higher glucose concentration in the cerebellum is relevant to studies using FDG PET to measure brain glucose metabolism. The LC for FDG has traditionally been assumed to be the same for all brain regions35. Multiple studies have shown that the LC decreases as brain free glucose concentration increases133,134. This suggests that the higher free glucose in the cerebellum would result in a lower LC than the rest of the brain, which is exactly what was found by Graham et al56. Our results support the findings of Graham et al. and suggest that studies using FDG to study cerebellar metabolism need to account for regional differences in the
LC. In particular, if the same LC is used to measure CMRglc in all brain regions, then cerebellar CMRglc will be underestimated relative to other regions.

Limitations

A few caveats should be considered when interpreting our results. First, our ability to detect regional effects was limited by our small sample size. This fact, combined with the difficulty in fitting a model with four compartments and four free parameters, limited our examination of regional changes to larger ROIs. Therefore, it is possible that we missed changes in smaller regions that were not uniquely defined in our region set (e.g., hypothalamus). Second, our experimental design was set up so that each subject was studied during only two glucose clamps. As a result, we did not observe in a single subject the transition from euglycemia (90 mg·dL\(^{-1}\)) to moderate hypoglycemia (45 mg·dL\(^{-1}\)). All inferences are therefore based on population level statistics. Third, the first glucose clamp for each subject was always at a higher blood glucose level than the second clamp. This is concerning as order effects have been reported with FDG PET\(^{135,136}\), although the direction is not always consistent. A systematic order effect would result in biased estimates of metabolic change during hypoglycemia. Finally, our study was limited to observing changes in total glucose metabolism during hypoglycemia. We did not collect any data on oxygen metabolism to see if hypoglycemia decreased glycolytic glucose metabolism to a greater extent than oxidative glucose consumption. We also did not acquire any data that would enable us to determine the metabolic fates of glucose during hypoglycemia. Such analyzes would be possible using other techniques, such as labeled \(^{13}\)C-labeled glucose in humans\(^{32}\) or at a much finer resolution using metabolic flux analysis *in vitro*\(^{137,138}\).
Conclusion

We found that moderate hypoglycemia produces uniform declines in brain glucose metabolism while only altering CBF in a select set of regions. Therefore, it appears that maintaining CMRglc is not the primary driving force behind focal increases in CBF during hypoglycemia. Instead, our results are consistent with the hypothesis that focal increases in CBF are part of the sympathetic counterregulatory response to hypoglycemia. Elucidating exactly how CBF modules this counterregulatory response is an important topic for future studies.
4.6 Figures

Figure 4.1: Freesurfer generated regions of interest (ROIs)

The ROI set consisted 48 non-overlapping regions that were averaged across the cerebral hemispheres. The cortical gray matter was parcellated in to 34 regions, the subcortical gray matter into 7 ROIs (thalamus, caudate, putamen, pallidum, hippocampus, pallidum, hippocampus, amygdala, and nucleus accumbens), and the white matter into 3 (deep white matter, cortical white matter, and corpus callosum). The cerebellum was also divided into white and gray ROIs. The remaining two regions were the brain stem and the ventral diencephalon.
Each dot represents a single posterior sample from the Bayesian Markov-chain Monte Carlo (MCMC) used to model the change in brain free glucose concentration during hypoglycemia (see Methods). The x-axis is the coefficient for a linear relationship between plasma glucose (C_p) and glucose concentration in the precuneus, while the y-axis is the coefficient for a nonlinear association (a restricted cubic spline). The color indicates density, with yellow indicating the area of highest density. To assess whether there was any relationship between C_p and glucose concentration, this joint parameter distribution was generated.

Figure 4.2: Joint parameter distribution
concentration, the 95% confidence region (black line) was computed (see Methods). A relationship between C_p and glucose concentration was significant if the point (0.0, 0.0) was outside of the 95% confidence region. In this example, (0.0, 0.0) is well outside the 95% confidence region, so we can infer that the glucose concentration in the precuneus decreases significantly as blood glucose level decreases.
Figure 4.3: Hypoglycemia induced metabolic changes

A) CMRglc, B) glucose influx, C) glucose concentration, D) CBF, E) E_{fp}, and F) E_{net} as a function of hypoglycemia. Dots are individual data points, and light lines connect the data from individual subjects. Solid lines are the population median (see Methods).
Data from the precuneus is shown in blue and deep white matter in red. Hypoglycemia induced pronounced changes in A) CMRglc, B) Influx, C) Concentration, and F) E_{net}. Changes in D) CBF and E) E_{fp} were less marked.
A) Map of regional CMRglc during euglycemia ($C_p = 90$ mg/dL). Values were computed using the linear mixed model described in the Methods section of the text. Regions were averaged across hemispheres so the map is symmetric by definition. B) Estimated difference between Figure 4.4: Regional CMRglc

A) Map of regional CMRglc during euglycemia ($C_p = 90$ mg/dL). Values were computed using the linear mixed model described in the Methods section of the text. Regions were averaged across hemispheres so the map is symmetric by definition. B) Estimated difference between
CMRglc at hypoglycemia ($C_p = 45$ mg/dL) and euglycemia. Only regions where there was a significant association between C_p and plasma glucose are shown. Note that CMRglc fell during hypoglycemia in every single region (48/48). C) Coefficient for the natural cubic spline term of the linear mixed model. Regions were the highest density interval (HDI) for the spline coefficient overlapped zero are not shown (13/48).
Figure 4.5: Regional glucose influx

Figure convention as in Figure 4.4. Similar to CMRglc (Figure 4.4), glucose influx decreased in every brain region with hypoglycemia.
Figure 4.6: Regional glucose concentration

Figure convention as in Figure 4.4. B) Similar to CMRglc (Figure 4.4), glucose concentration decreased in every brain region with hypoglycemia.
Figure 4.7: Regional E_{net}

Figure convention as in Figure 4.4. B) Unlike CMRglc (Figure 4.4), E_{net} increased in every brain region with hypoglycemia.
Figure 4.8: Regional E_{fp}

Figure convention as in Figure 4.4. B) Unlike E_{net} (Figure 4.7), E_{fp} did not significantly increase in all regions during hypoglycemia. Particularly notable absences are subcortical gray matter regions (e.g., thalamus) and the brain stem.
Figure convention as in Figure 4.4. B) Unlike CMRglc (Figure 4.4), changes in CBF during hypoglycemia were confined to only a few regions.
CBF values are normalized relative to the whole-brain mean (see Methods). Figure convention as in Figure 4.4. B) Compared to absolute CBF (Figure 4.9B), normalization revealed additional regions where hypoglycemia increased CBF. Particularly prominent are the brain stem and the thalamus.
Figure 4.11: Variable spatial correspondence between maps of baseline metabolism and hypoglycemia induced change

Spatial correlation between maps of euglycemia (C_p = 90 mg/dL) and change (90 mg/dL – 45 mg/dL) for A) CMRglc, B) glucose influx, C) glucose concentration, D) CBF, E) E_fp, and F) E_net. Each point is the linear mixed model estimate for a single FreeSurfer
region. Blue dots are gray matter, red dots are white matter, and green dots are the brain stem/ventral diencephalon. Light lines are 95% highest density intervals. Strong correlations between baseline and change were found for A) CMRgic, B) influx, and C) concentration but not for D) CBF, E) Efp, or F) Enet.
Each dot represents the linear mixed model estimate for the difference between euglycemia ($C_p = 90$ mg/dL) and hypoglycemia ($C_p = 45$ mg/dL) for a single FreeSurfer region. Blue dots are gray matter, red dots are white matter, and green dots are the brain stem/ventral diencephalon. Light lines are 95% highest density intervals. A) Only a modest correlation was found the between map of CBF change and the map of CMRglc change. B) Expressed as a percent change, the spatial correspondence between the two maps is even weaker. The cluster of four regions on the right of B) are the thalamus, globus pallidus, brainstem, and ventral diencephalon. The two regions at the bottom of B) are the deep white matter and corpus callosum.

Figure 4.12: Lack of a strong spatial correspondence between regional CBF and CMRglc changes
4.7 References

van de Ven KCC, de Galan BE, van der Graaf M, Shestov AA, Henry P-G, Tack CJJ *et al.* Effect of acute hypoglycaemia on human cerebral glucose metabolism measured by 13C magnetic resonance spectroscopy. *Diabetes* 2011; **60**: 1467–1473.

Dillon RS. Importance of the hematocrit in interpretation of blood sugar. *Diabetes* 1965; **14**: 672–674.

Gorell JM, Dolkart PH, Ferrendelli JA. Regional levels of glucose, amino acids, high energy phosphates, and cyclic nucleotides in the central nervous system during hypoglycemic stupor and behavioral recovery. *J Neurochem* 1976; **27**: 1043–1049.

LaManna JC, Harik SI. Regional comparisons of brain glucose influx. *Brain Res* 1985; **326**: 299–305.

Crone C. Facilitated transfer of glucose from blood into brain tissue. *J Physiol (Lond)* 1965; **181**: 103–113.

Chapter 5: Hyperglycemia selectively alters cerebral glucose metabolism in white matter and brain stem

5.1 Abstract

At normal blood glucose levels, glucose influx into the brain greatly exceeds its basal metabolic rate. Despite this fact, hyperglycemia alters cerebral glucose metabolism. To investigate this surprising finding, we performed PET and MRI imaging in participants undergoing euglycemic (90-100 mg·dL\(^{-1}\)) and hyperglycemic (250-300 mg·dL\(^{-1}\)) glucose clamps with basal insulin replacement. Hyperglycemia significantly altered the topography of brain glucose metabolism measured with \(^{18}\)F-FDG PET. Relative to the rest of the brain, glucose consumption increased in white matter and in cerebellar and medial temporal lobe gray matter. Conversely, relative glucose consumption decreased throughout the rest of gray matter. The change in the topography of glucose metabolism was caused by a quantitative increase in the cerebral metabolic rate of glucose (CMRglc) in white matter and the brain stem. Hyperglycemia did not change the topographies of blood flow, blood volume, oxygen consumption, or oxygen extraction measured with PET. Quantitative cerebral blood flow (CBF), measured with pseudo-continuous arterial spin labeling (pCASL) MRI, also was not affected by hyperglycemia. As hyperglycemia did not alter the topography of oxygen consumption, the ratio of relative oxygen-to-glucose consumption decreased in the white matter and brain stem, which suggests that the increase in CMRglc in these regions is due to non-oxidative glucose consumption.

5.2 Introduction
The fact that glucose is the brain’s primary fuel source makes transport of glucose between the blood and brain critically important. Glucose is transported across the blood-brain barrier by facilitated diffusion through the GLUT1 transporter. Therefore, the flux of glucose into the brain is dependent on the concentration of glucose in the blood. Fortunately, at normal blood glucose concentrations, the transport of glucose into the brain far exceeds the brain’s baseline metabolic requirements. As a result, the brain is relatively insensitive to small decreases in plasma glucose concentration, with glucose consumption only dropping after moderate hypoglycemia has occurred.

Given that the brain normally receives more than enough glucose to meet its needs, one would predict that increasing the blood glucose concentration would not have an effect on brain glucose consumption. Several studies, however, suggest that this may not be the case. Mild hyperglycemia has been shown to alter the relative uptake pattern of 18F-FDG, a PET tracer used for the measurement of regional glucose metabolism. Kawasaki et al. found that, relative to the brain as a whole, acute mild hyperglycemia decreases 18F-FDG uptake throughout cortical gray matter. This finding has since been replicated multiple times, both by the same research group, and by independent investigators.

Although intriguing, these studies are limited by the lack of quantitative estimates of the cerebral metabolic rate of glucose (CMRglc). Instead, CMRglc was approximated by computing the ratio of 18F-FDG uptake within a brain region to 18F-FDG uptake within a reference region. With this approach, all metabolic measurements are not absolute, but are relative to the reference region. As a result, it is unclear if glucose consumption is decreasing in cortical gray matter during acute hyperglycemia, or if it is simply changing less than the reference region. The extant literature favors the later possibility. With one possible exception, all the studies
measuring absolute CMRglc during acute hyperglycemia in humans have reported whole-brain increases10,14-16, although only in the report by Blomqvist et al. was the increase significant15. Furthermore, studies in both rats17,18 and humans10,15,16 have failed to report significant regional decreases in CMRglc. In fact, Blomqvist et al. found that CMRglc actually increased in every region examined15. Interestingly, Blomqvist et al. also reported an inverse relationship between baseline CMRglc and the change induced by acute hyperglycemia, with the largest increases in CMRglc occurring in regions with the lowest baseline rates15. For example, CMRglc in white matter increased by approximately 50\%, which is much greater than the whole-brain average increase of around 20\%. A similarly large increase in white matter CMRglc was also reported by Hasselbalch et al., where the centrum semiovale was the only region where CMRglc was significantly altered by acute hyperglycemia16.

Taken together, the results of the studies discussed above suggest that, in humans, acute hyperglycemia modestly increases global cerebral glucose consumption, with larger increases occurring in regions with lower baseline metabolic rates. This conclusion is consistent with a previous analysis of regional CMRglc data in hyperglycemic rats19. It also explains why many studies have found that acute hyperglycemia decreases glucose metabolism in cortical gray matter relative to the rest of the brain. Cortical gray matter regions have high basal CMRglc, and therefore CMRglc changes much less during hyperglycemia than in regions, such as white matter, where basal CMRglc is low. This is essentially what was recently found by Ishibashi et al.10. The authors first reported that there were no significant decreases in CMRglc in several gray matter regions10 during mild hyperglycemia. After normalizing the CMRglc images by the whole-brain mean, however, decreases were found in several regions, including in the precuneus and posterior cingulate10. The most straightforward explanation of these findings is not that...
CMRglc is decreasing in these regions; rather, it is simply increasing less than the rest of the brain.

If hyperglycemia is increasing CMRglc in regions with low basal metabolic rates, it is unclear what effect it is having on other aspects of cerebral metabolism. Although studies in animal models have reported that hyperglycemia decreases cerebral blood flow (CBF) throughout the entire brain20,21, the findings in humans have not been so consistent. Multiple studies have reported that the whole-brain average CBF does not change with hyperglycemia13,14,16,22. Moreover, although significant regional changes in blood flow have been reported8,23, the set of affected brain regions differed between studies. Even less clarity exists on changes in the cerebral rate of oxygen consumption (CMRO\textsubscript{2}). Two initial reports found that global CMRO\textsubscript{2} was unaltered by hyperglycemia13,14, whereas a recent study found that it was significantly decreased22. We know of no data examining regional changes in oxygen consumption during hyperglycemia.

Several studies from our laboratory have highlighted the importance of measuring changes in glucose consumption, blood flow, and oxygen consumption under the same conditions24-26. Although these quantities are normally tightly coupled at rest27, they do not always remain so during brief episodes of increased brain activity24 or during more sustained changes in brain structure and function across the life-span25,26. To explore the possibility that acute hyperglycemia selectively affects key components of brain metabolism, we acquired regional measurements of glucose metabolism, oxygen metabolism, blood flow, and blood volume during euglycemic and hyperglycemic glucose clamps in normal, young-adult humans.

5.3 Methods
Participants
Data from twenty-six participants are included in this report. Participants were healthy young adults with a mean BMI of 25.3 (SD 3.3) and no history of diabetes. The participants (females=15, males=11) had an average age of 35.1 years (SD 10.2). Complete data during both the euglycemic and hyperglycemic clamp conditions were obtained for most, but not all, participants. The total number of subjects for each metabolic parameter of interest is listed in Table 5.1. All participants gave written informed consent. Experimental procedures were approved by the Washington University School of Medicine Human Research Protection Office and were compliant with the Helsinki Declaration of 1975.

Experimental design
The target plasma glucose level was 90-100 mg·dL$^{-1}$ for the euglycemic clamp and 250-300 mg·dL$^{-1}$ for the hyperglycemic clamp. The majority of participants (18/26) were scanned during both clamp conditions. The condition order was counterbalanced across participants. Three participants had data from two separate euglycemic clamp visits. The second euglycemic visit was acquired as part of a separate study exploring the effect of hyperinsulinemia on brain metabolism. Any data points from repeated euglycemic visits were averaged together prior to subsequent analysis. The median time between visits was 34.0 days with a range of 7.0 – 966.0 days.

All participants were admitted to the Washington University in St. Louis Clinical Research Unit after fasting overnight for at least 10 hours. An arterial line was placed into the radial artery to allow for the sampling of arterial tracer concentration. Plasma insulin, c-peptide, β-hydroxybutyrate, lactate, and pyruvate levels were measured via the arterial line every 30 minutes. An intravenous catheter was then placed into each arm. The first catheter was placed in a vein in the dorsal forearm and used for radiotracer injection. The second catheter was
positioned in an forearm vein and was used for infusion of octreotide, insulin, dextrose (20%), glucagon, and potassium. Dextrose was infused at a variable rate determined by the clamp condition and plasma glucose measurements taken every 5 minutes. Octreotide, a somatostatin analogue, was infused at a rate of 30 ng·kg⁻¹·min⁻¹ to suppress endogenous secretion of insulin, glucagon, and growth hormone. Plasma insulin and glucagon were maintained with continuous infusions of 0.1 mU·kg⁻¹·min⁻¹ and 1.0 ng·kg⁻¹·min⁻¹ respectively. Finally, potassium chloride was given at a rate of 5 mmol·h⁻¹ to prevent insulin-induced hypokalemia.

Image Acquisition

PET and MRI data were acquired simultaneously using a Siemens Biograph PET/MRI. PET data acquisition began after the desired plasma glucose level was reached. First, approximately 25 mCi of [¹⁵O]-H₂O was injected for the measurement of blood flow. Cerebral oxygen metabolism and blood volume were assessed with the inhalation of 25 mCi of [¹⁵O]-O₂ or [¹⁵O]-CO respectively. Repeat scans were obtained for all three tracers if possible. All the [¹⁵O] tracers imaging data was acquired using a dynamic acquisition that started prior to tracer administration. [¹⁵O]-H₂O and [¹⁵O]-O₂ scans lasted for five minutes, whereas the [¹⁵O]-CO scan went for seven minutes. Following the [¹⁵O] scans, 5 mCi of [¹⁸F]-FDG was injected, and cerebral glucose metabolism was measured using a 60 minute dynamic PET scan. For attenuation correction, a Siemens Biograph 40 PET/CT was used to acquire a CT image of the head (120 keV, 25 effective mAs, voxel size = 0.59 x 0.59 x 3.0 mm, acquisition matrix = 512 x 512 x 74 mm voxels). From the CT image, µ-maps were created by converting the CT Hounsfield values into attenuation coefficients.***

Concurrent with the [¹⁵O]-H₂O PET scans, quantitative cerebral blood flow (CBF) was measured using pseudo-continuous arterial spin labeling (pCASL). 2D pCASL acquisition
included 80 images, each with 20 slices, voxel size 3.4 x 3.4 x 5.0 mm, and a 64 x 64 mm in plane acquisition matrix. The TR was 4.0 seconds, the TE 12.0 milliseconds, and an acceleration factor of 2.0 was applied. Two separate pCASL runs were acquired during each study visit. A gradient echo field map was also acquired in a subset of subjects (16/24) to allow for the correction for EPI distortions (TR = 646.0 ms. TE 1 = 5.19 ms, TE 2 = 7.65 ms, slices = 45, voxel size = 1.7 x 1.7 x 3.0, acquisition matrix = 212 x 212 mm. A sagittal high resolution T1-weighted MPRAGE was also obtained (TR = 2400 ms, TE = 2.13 ms, FOV = 256 x 256 x 176 mm, voxel size = 1.0 x 1.0 x 1.0 mm).

Image Analysis

Structural MRI

FreeSurfer 5.332 was used to segment the T1-weighted structural image from each subject’s first study visit into 48 non-overlapping and bilaterally symmetric cortical regions (Figure 2.1). Cortical gray matter was parcellated into 34 gray-based regions of interest (ROIs), according to the Desikan atlas33. The remaining gray matter ROIs comprised seven subcortical gray matter regions (amygdala, caudate, hippocampus, nucleus accumbens, pallidum, putamen, and thalamus), and the cerebellum34. White matter was divided into cerebellar white, cortical white matter, the corpus callosum, and deep white matter. The cortical white matter region was created by combining all of the superficial white matter regions that are part of FreeSurfer’s standard output. Finally, separate ROIs were created for the brain stem and ventral diencephalon. Each subject’s T1-weighted image was also non-linearly aligned to MNI152 atlas space using a combination of FLIRT35 and FNIRT in FSL36. To increase SNR, atlas registration was performed using an T1-weighted average image that was created by rigidly aligning images obtained at both study visits.
pCASL MRI

Preprocessing of the pCASL data began with correction for odd-even slice intensity artifacts\(^3\). For each ASL run, non-labeled frames were used to compute separate scaling factors for odd and even slices. These scaling factors were then applied to both the control and labeled frames to remove any systematic odd-even slice intensity artifacts. Images were then motion corrected using FSL’s mclirt tool with the temporal mean image as the target\(^3\). Following the recommendation of Wang et al., motion correction was performed separately for label and control frames\(^3\). After motion correction, FSL’s flirt was used to compute a rigid body transformation between the average label and average control images. A rigid body transformation was then computed between the realigned pCASL timeseries and each’s subject’s average T1-weighted image using FSL’s flirt. For subjects where field maps were acquired, the field map magnitude image was used as an intermediary between the pCASL and T1 images. All transformations were then combined, and the pCASL time series was resampled to MNI152 2mm atlas space in a single step.

Once in atlas space, a high pass (0.08 Hz) temporal filter was applied to the pCASL data. Sinc subtraction was then used to create perfusion weighted images\(^4\). The perfusion weighted images were converted to voxelwise quantitative cerebral blood flow (CBF) using a one compartment model\(^4\):\^1,\^2:

\[
\text{CBF} = \frac{6000 \cdot \lambda \cdot (SI_{control} - SI_{label}) \cdot e^{PLD}}{2 \cdot \alpha \cdot \frac{T_{1,blood}}{T_{1,blood}} \cdot e^{-\frac{T_{1,blood}}{T_{1,blood}}} [\text{mL/hg/min}]} \quad (5.1)
\]

Where \(\alpha\) is the labeling efficiency (0.85), \(\lambda\) is the blood/brain partition coefficient for water (0.9), \(SI_{control}\) and \(SI_{label}\) are the control and label image intensities, \(SI_{PD}\) is the intensity from a
proton-density image, \(PLD \) is the post labeling delay (1.5 sec), \(\tau \) is the labeling duration (1.517 sec), and \(T_{1,\text{blood}} \) is the longitudinal relaxation rate of blood (1.65 sec). The values for \(\alpha \), \(\lambda \), and \(T_{1,\text{blood}} \) were set according to the recommendations of Alsop et al.\(^4\). \(SI_{PD} \) was approximated by taking the average of the control images\(^4\). When computing the mean CBF for a single pCASL run, a weighting scheme was applied to down weight frames where subject motion produced large global shifts in image intensity\(^4\). The mean difference in global noise between control and label images (-43.77 ± 107.80) between hyperglycemic (290.19 ± 88.80) and euglycemic (333.96 ± 80.97) runs was not significantly different from zero \((p = 0.434)\). The median CBF was calculated over the whole-brain as well within each of the 48 FreeSurfer ROIs.

PET Preprocessing

All PET reconstruction was performed using the ordered-subset expectation maximization (OSEM) algorithm\(^4\) implemented in Siemens e7tools. Our PET reconstruction strategy consisted of two stages. In the first stage, the listmode data was scatter corrected and reconstructed without attenuation correction. All of the \([^{15}O]\) PET data was reconstructed into 30 second frames. The \([^{18}F]\)-FDG reconstruction consisted of ten 30 second frames followed by 55 60 second frames. Attenuation correction was not done at this stage because motion between frames precluded the use of a single \(\mu\)-map for all frames.

To correct for between-frame motion, we used a modified version of a previously published strategy\(^4\). Briefly, within each tracer each frame was registered to every other frame. From this set of pairwise registrations, a linear system was created from which it was possible to compute the least squares transformation between any two frames. These transformations were used to align the previously computed \(\mu\)-map with the time-resolved PET sinograms. The aligned \(\mu\)-maps were used in the second stage of reconstruction to create time-sliced PET images.
with attenuation, decay, and scatter correction. The use of motion and attenuated correction in the second stage allowed us to use shorter time bins for PET reconstruction. The final \[^{[15}O\]-H\(_2\)O and \[^{[15}O\]-O\(_2\) images were reconstructed into 40 three second frames followed by 18 ten second frames. The \[^{[15}O\]-CO data was reconstructed into 40 three second frames and then 30 ten second frames. Finally, the \[^{18}F\]-FDG scan was separated into 12 ten second frames, six 30 second frames, and 55 60 second frames.

After reconstruction, the motion corrected time series for each tracer was summed across time to create a single 3D PET image. Within individual participants, the sum images for each tracer were aligned to each other using rigid body registration\(^46\). After alignment, the sum images were averaged to create a mean image for each tracer. The mean \[^{18}F\]-FDG image was then brought into alignment with the T1-weighted image using rigid body registration and a vector gradient algorithm\(^47\). The final linear transformation within computed by minimizing the error between the forward (\[^{18}F\]-FDG \(\rightarrow\) T1) and backward (T1 \(\rightarrow\) \[^{18}F\]-FDG) transformations\(^45\). The same procedure was used to align the \[^{[15}O\] sum images to the \[^{18}F\]-FDG sum image. The computed transformations were combined and used to resample each PET time series into MNI152 2mm atlas space.

Relative PET

Standardized uptake values ratios (SUVRs) were computed for each tracer. SUVR is a semi-quantitative measure where the tracer uptake at each brain region is reported relative to a reference region. SUVR is useful in examining changes in the topography of brain metabolism, but not absolute changes. When computing an SUVR one must select both a reference region and the time window over which to sum the tracer counts. The whole-brain (excluding the lateral ventricles) was used a reference region for all SUVR analyses. Specific time windows were
selected for each tracer. For $^{[18]}$F-FDG, a time window from 40 to 60 minutes post injection was chosen. A sixty second window, starting approximately after the bolus reached the brain, was used for the $^{[15]}$O-H$_2$O and $^{[15]}$O-O$_2$ data. A one minute window starting 180 seconds after the bolus reached the brain was used for the $^{[15]}$O-CO scans. All SUVR images were computed in native space and then resampled to MNI152 2mm space. To minimize the impact of vascular artifact on our SUVR measurements of oxygen metabolism, a voxelwise spatial regression was run using the resampled $^{[15]}$O-O$_2$ SUVR as a dependent variable and $^{[15]}$O-H$_2$O and $^{[15]}$O-CO SUVR as independent variables. The $^{[15]}$O-O$_2$ SUVR was adjusted by subtracting from it the product of the $^{[15]}$O-CO SUVR and its regression coefficient. An SUVR approximation of OEF (rOEF) was calculated by dividing the adjusted $^{[15]}$O-O$_2$ SUVR by the product of the $^{[15]}$O-H$_2$O SUVR and its regression coefficient. Finally, a SUVR estimate of the relative oxygen-to-glucose index (rOGI) was computed by dividing the $^{[15]}$O-O$_2$ SUVR by the $^{[18]}$F-FDG SUVR. Prior to any statistical comparisons, all atlas space SUVR images are were normalized to a whole-brain mean of 1.0 and smoothed with a 5 mm FWHM gaussian kernel.

Quantitative PET

We were able to obtain quantitative estimates of CMRglc in a subset of participants in whom hand drawn arterial samples were acquired during the $^{[18]}$F-FDG scan. Given the greater noise at the voxel level, we chose to limit our quantitative analysis to ROIs. All ROIs were resampled to the space of the $^{[18]}$F-FDG data. A reversible two-compartment model was fit to the dynamic $^{[18]}$F-FDG from each ROI. The first compartment is thought to represent free $^{[18]}$F-FDG in the brain, while the second is $^{[18]}$F-FDG that has been metabolized to $^{[18]}$F-FDG-6-phosphosphate. The model includes four rates constants (K_1, k_2, k_3, and k_4) and an additional term, V_b, that accounts for arterial blood volume. K_1 and k_3 describe influx from the blood and first
compartment, respectively. Loss of tracer from the first compartment is described by k_2, and efflux from the second compartment to the first is designated by k_4. Prior to model fitting, the time delay between the arterial samples and the $[^{18}F]$-FDG data was accounted for by fitting a one-compartment model to the first sixty seconds (post bolus arrival) of the $[^{18}F]$-FDG data. This one-compartment model included a shift term that accounted for the temporal delay. The whole-brain time activity curve was used to determine the shift, which was then applied to all regional fits. Model fitting was performed using non-weighted nonlinear least squares using the limited-memory BFGS algorithm implemented in Numerical Python. Following the recommendation of Wu et al, a lumped constant of 0.81 was used to calculate CMRglc.

Statistics

All statistical analyses were done using the R programming language. A linear mixed model with a fixed effect for clamp condition and a random intercept for subject was used to determine if differences in brain metabolism between conditions were statistically significant. No other covariates were added to the model. The voxelwise mixed models were fit using the nlme package, whereas the ROI models used lme4. For the lme4 models, p-values were calculated using the lmerTest package, which implements Satterthwaite’s method for determining the degrees of freedom in a mixed model. The difference between conditions was considered significant when the p-value was less than 0.05. Multiple comparison across space were accounted for by controlling the False Discovery Rate (FDR) at 0.05. No multiple comparisons adjustment was made for the multiple modalities that were considered.

The lme4 package was used to perform a piecewise linear regression on the plasma glucose and insulin data that was obtained during the glucose clamps. The fixed effects included time, clamp condition, and the interaction between time and condition. There were two
regressors, one for each condition, that allowed for the slope of the regression line to vary after a breakpoint. The breakpoint was fixed at 90 minutes. We also included a random intercept for study visit nested within subject. Slopes that were different from 0.0 at the \(p < 0.05 \) level (no correction for multiple comparisons) were considered significant. Spearman correlation was used to quantify the degree of spatial correspondence between baseline metabolism and the change induced by hyperglycemia. All reported values are means and 95% confidence intervals (CIs) unless otherwise stated.

5.4 Results

Blood glucose and insulin levels

The time-courses for plasma glucose and insulin during the glucose clamps are shown in Figure 5.1. All measurements excluding the initial baseline measurements were taken after the target plasma glucose level had been reached. There was no significant difference found between conditions (euglycemia, hyperglycemia) in baseline plasma glucose (97.7 ± 3.5 mg·dL\(^{-1}\); \(p=0.61 \)) or insulin (42.6 ± 11.0 pmol·L\(^{-1}\); \(p=0.95 \)). The target plasma glucose levels were achieved in both conditions, with the blood glucose level reaching 300 mg·dL\(^{-1}\) in the hyperglycemic clamp and remaining near 100 mg·dL\(^{-1}\) in the euglycemic clamp (Figure 5.1A).

However, in both conditions plasma glucose rose slightly above the target concentration during the beginning of the glucose clamp and then slow decreased throughout the study period (Figure 5.1A). The time-course for plasma insulin during the euglycemic clamp exhibited a similar behavior (Figure 5.1B). To quantify this impression, we performed a piecewise linear regression where the slope of the regression line was allowed to differ after 90 minutes into the glucose clamp (see Methods). Table 5.2 reports the slope for each segment. For the first 90 minutes, plasma glucose and insulin increased significantly with time in both conditions (\(p < \)
However after 90 minutes, plasma glucose decreased with time during both clamps ($p < 0.01$) and plasma insulin decreased in the euglycemic condition ($p < 0.0001$). Plasma insulin continued to increase with time after 90 minutes during the hyperglycemic clamp ($p < 0.0001$). Importantly, insulin levels never approached values typically seen after a carbohydrate meal (Figure 5.1B).

Changes in the topography of brain metabolism

To assess regional changes in brain metabolism, whole brain normalized SUVR images were computed from the $[^{18}F]^{-}-$FDG, $[^{15}O]^{-}-$H$_2$O, $[^{15}O]^{-}$-O$_2$, and $[^{15}O]^{-}$-CO data (see Methods). The group average image of glucose consumption during hyperglycemia (Figure 5.2A) had much less contrast than the average image during euglycemia (Figure 5.2B). After correcting for multiple comparisons (FDR 0.05), significant differences between the two conditions were found throughout the brain (Figure 5.2C). Glucose consumption generally decreased relative to the rest of the brain in gray matter and increased in white matter. There were, however, exceptions. Relative glucose consumption increased in the gray matter of the medial temporal lobe and the cerebellum (Figure 5.2C). Despite the changes in the topography of glucose consumption, hyperglycemia did not alter the topography of blood flow (Figure 5.3), oxygen consumption (Figure 5.4), oxygen extraction (Figure 5.5), or blood volume (Figure 5.6). As the topography of oxygen consumption was unaffected by hyperglycemia (Figure 5.4), changes in the ratio of relative oxygen-to-glucose metabolism (rOGI) were essentially opposite to those found for glucose metabolism (Figure 5.7). rOGI significantly increased in gray matter, with the exception of the cerebellum and medial temporal lobe, and significantly decreased in white matter (Figure 5.7C).
To eliminate the possibility that the limited SNR at the voxelwise level prevented us from detecting changes in the topography of brain metabolism, we performed a ROI analysis on the regional PET data (Figure 5.8). Two ROIs were created. The first ROI contained voxels where relative glucose consumption increased, and the second voxels were the relative glucose consumption decreased (Figure 5.8A). The values within these two ROIs for each metabolic parameter are shown in Figure 5.8B-G. A significant \(p < 0.0001 \) change with hyperglycemia was found in both ROIs for glucose consumption (Figure 5.8B) and rOGI (Figure 5.8G). No significant differences were found in either ROI for blood flow (Figure 5.8C), oxygen consumption (Figure 5.8D), rOEF (Figure 5.8E), or blood volume (Figure 5.8F).

Quantitative changes in brain metabolism

The analyses in Figures 1-7 show that the topographies of glucose consumption and rOGI are altered by hyperglycemia, whereas the topographies of cerebral blood flow, oxygen consumption, oxygen consumption, and blood volume are unchanged. To explore the quantitative basis of these changes, we obtained quantitative estimates of cerebral glucose consumption and blood flow (see Methods). We first examined quantitative changes for the brain as a whole as well as within the same two ROIs as Figure 5.8 (Figure 5.9). Although the whole-brain CMRglc at hyperglycemia \(27.3 \pm 2.0 \, \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \) was slightly higher than at euglycemia \(25.1 \pm 2.1 \, \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \), the difference \(2.18 \pm 2.84 \, \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \) was not significant \(p = 0.151; \) Figure 5.9A). We did, however, find significant decreases in the two forward rate constants \(K_1 \) and \(k_3 \), and a significant increase in the backward rate constant \(k_4 \) \(p < 0.01; \) Table 5.3). CMRglc within the ROI where relative glucose consumption decreased did not change \(p = 0.207; \) Figure 5.9B). However, CMRglc was significantly higher at hyperglycemia \(23.7 \pm 2.3 \, \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \) than at euglycemia \(18.2 \pm 2.5 \, \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1} \) within the ROI where relative glucose consumption increased \(p = 0.006; \) Figure 5.9B). Hyperglycemia did not
significantly ($p > 0.5$) alter CBF in either the whole-brain (Figure 5.9C) or in either ROI (Figure 5.9D).

To examine quantitative metabolic change at a finer spatial scale, we calculated CMRglc and CBF (see Methods) within 48 ROIs defined using FreeSurfer (Figure 2.1). Figure 5.10A shows the estimated change in CMRglc induced by hyperglycemia for each ROI. The only regions that were significant at the FDR 0.05 level were the brain stem, cortical white matter, corpus callosum, and deep white matter. The largest change was found in the deep white matter ($9.65 \pm 2.09 \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1}$; Figure 5.10B), where hyperglycemia increased CMRglc from 15.1 ± 1.7 to $24.8 \pm 1.6 \mu\text{Mol} \cdot \text{hg}^{-1} \cdot \text{min}^{-1}$ ($p < 0.0001$). The large increase in deep white matter was part of the strong negative spatial correlation ($\rho = -0.91$) between baseline CMRglc and change in CMRglc during hyperglycemia (Figure 5.10C). Compared to CMRglc, the regional changes in CBF were smaller and less consistent (Figure 5.11). The difference in CBF between hyperglycemia and euglycemia was not significant for any region (Figure 5.11A). This was true even for regions, like the deep white matter ($\rho = 0.667$; Figure 5.11B), where CMRglc increased. Furthermore, the spatial correlation between baseline CBF and change in CBF ($\rho = -0.53$) was not as robust as that for CMRglc (Figure 5.11C).

5.5 Discussion

Overview

Several previous studies have examined the effect of acute hyperglycemia on regional cerebral glucose metabolism in humans$^{8-11,15,16}$. Our study is the first, however, to examine changes in glucose metabolism along with both regional changes in both blood flow and oxygen metabolism. Measuring all three aspects of metabolism allowed us to obtain several new findings. First, we found that although acute hyperglycemia changes the topography of glucose
metabolism, it does not significantly alter the topography of blood flow or oxygen consumption. Second, because the topography of oxygen consumption was unchanged, the topography of relative oxygen-to-glucose consumption (rOGI) was altered inversely to glucose consumption. rOGI was therefore significantly increased in gray matter and decreased in white matter. Exceptions to this pattern were gray matter in the cerebellum and the medial temporal lobe, where rOGI decreased, although not as robustly as glucose consumption decreased. Third, we were able to show that although quantitative CMRglc was significantly increased in the brain stem, corpus callosum, cortical white matter, and deep white matter, no quantitative changes in CBF were found in these, or any other, regions.

Glucose consumption

As previously mentioned, multiple studies have shown that acute hyperglycemia decreases glucose consumption in most of gray matter relative to the rest of the brain. We have largely replicate these findings, with two exceptions. First, contrary to the original report by Kawasaki et al., glucose metabolism in the gray matter of the cerebellum and medial temporal increased relative to the rest of the brain. Second, we found additional relative increases throughout white matter. Although Kawasaki et al. did report some increases, they were either very focal or found only when gray matter was used as a reference region. Methodological differences are perhaps the most likely reason for the differences between our results and those reported elsewhere in the literature. The original study by Kawasaki et al., as well as its subsequent replications, made subjects mildly hyperglycemic using oral glucose consumption. This paradigm was much different from ours in several ways. First, our participants were much more hyperglycemic (~300 mg·dL⁻¹) than the participants in the Kawasaki et al. study (~135 mg·dL⁻¹). Second, the hyperglycemic clamp technique we used produces a relatively constant hyperglycemia. The glucose load applied by Kawasaki et al. most likely resulted in a decline in
blood glucose level during the experiment. Finally, we prevented a large rise in blood insulin levels during hyperglycemia by suppressing endogenous insulin secretion with octreotide. Insulin was then infused to keep blood concentrations within a normal range. Insulin was not controlled in the Kawasaki et al. study. Although the effect of insulin on cerebral metabolism is still a matter of active research59, it has been reported that hyperinsulinemia can alter the regional pattern of cerebral glucose consumption60.

We were able to use quantitative PET to verify the changes in relative glucose metabolism. Consistent with studies in humans10,14,16 and rats17, we found that hyperglycemia induced a small, but not significant, increase in whole-brain CMRglc. This is also generally in agreement with Blomqvist et al., who reported a significant 20\% increase in global CMRglc during acute hyperglycemia15. In contrast, Rowe et al. found that although whole-brain CMRglc was insignificantly elevated from fasting levels 15 minutes after the consumption of a meal, it actually was significantly less than fasting values 30 minutes later13. Whether postprandial increases in blood glucose cause fluctuations in global CMRglc requirements confirmation. Taken as a whole, however, the literature suggests that global CMRglc increases slightly during hyperglycemia.

Regionally, we found that CMRglc was significantly elevated in the brain stem, corpus callosum, cortical white matter, and the deep white matter. This is consistent with two prior studies that have reported that CMRglc increases by approximately 40-50\% in white matter during acute hyperglycemia15,16. CMRglc did not significantly decrease in any region, even in a large region encompassing all voxels were relative glucose consumption was found to decrease. Finally, we replicated work in humans15 and rats19 showing that the change in CMRglc induced by hyperglycemia is inversely correlated with baseline metabolic rates. Taken together, our
quantitative results suggest that decreases in gray matter FDG uptake (relative to the rest of the brain) during hyperglycemia do not truly reflect a decrease in metabolic rate. Rather, the metabolic rate in these regions simply changes less than other regions, which then could be interpreted as a decrease after whole-brain normalization. This is what was found by Ishibashi et al., who reported significant declines in whole-brain normalized CMRglc during hyperglycemia even though the absolute rate in these regions was increased by a small, nonsignificant amount10. It is possible that the metabolic rate is really declining in gray matter during hyperglycemia, but by such a small amount that we, and others10,16, have failed to detect it. This possibility seem less likely considering another study reported significant increases in CMRglc throughout all of gray matter15.

Blood flow and oxygen consumption

Regional increases in CMRglc during acute hyperglycemia are somewhat surprising. At euglycemia the influx of glucose into the brain exceeds its basal CMRglc3, so one would not necessarily predict that raising the blood glucose concentration would increase glucose consumption. Combining our regional glucose consumption data with our PET measurements blood flow and oxygen consumption is helpful in understanding this surprising finding. In contrast to the changes in the topography of glucose metabolism, no changes were found in the topography of either blood flow or oxygen consumption. To confirm that this was not due to limited SNR at the voxel level, we made ROIs representing the brain regions where relative glucose metabolism was altered. Relative oxygen consumption and blood flow were unchanged within these ROIs as well. Consistent with the lack of changes in oxygen consumption and blood flow, relative blood volume and oxygen extraction were also unaffected by hyperglycemia. Finally, we measured quantitative CBF using pCASL MRI. In agreement with the relative blood
flow data, we found that, despite increases in CMRglc, hyperglycemia did not significantly alter blood flow in any region.

Although we are not aware of any studies measuring regional oxygen consumption during hyperglycemia, multiple studies have investigated regional blood flow. Studies in animal models have consistently found that hyperglycemia decreases CBF throughout the entire brain18,20. Reports in humans, however, are somewhat mixed. Ishibashi et al found that, relative to the rest of the brain, blood flow was reduced by approximately 2% in the frontal cortex, lateral parietal cortex, and precuneus/posterior cingulate8 during mild hyperglycemia. A different set of regions was reported by Page et al., who found that mild hyperglycemia decreases CBF in the anterior cingulate, hypothalamus, insula, striatum, and thalamus23. It is not clear why our results are not in agreement with those of Ishibashi et al. or Page et al. Like Kawasaki et al., both studies used an oral glucose load to induce mild hyperglycemia, so the previously mentioned caveats with this approach apply. Ishibashi et al. also only measured relative blood flow in four small, \textit{a priori} ROIs. It is possible that any changes in blood flow were either too small for our limited SNR voxelwise analysis or too focal for our large ROIs. However, these possibilities are not consistent with the fact that we failed to observe any changes in quantitative CBF using both smaller ROIs and a larger sample size. Finally, although our results are not consistent with those of Page et al. and Ishibashi et al., they are in agreement with studies reporting no global change in CBF during hyperglycemia13,14,16,22.

\textbf{Non-oxidative glucose consumption}

Because the spatial pattern of oxygen consumption was unaltered by hyperglycemia, rOGI changed inversely to glucose consumption. Relative to the whole-brain average, rOGI increased in gray matter and decreased in white matter. Exceptions to this pattern were gray
matter in the medial temporal lobe and cerebellum, where rOGI decreased. Overall the changes in rOGI indicate that hyperglycemia produces relative decreases in non-oxidative glucose consumption (NOglc) in gray matter regions and relative increases in white matter regions. It should also be mentioned that hyperglycemia essentially eliminated the regional difference in rOGI between gray and white matter (Figure 5.7A-B, Figure 5.8G).

As we did not measure quantitative oxygen consumption, we could not verify the changes we observed in rOGI with quantitative data. To the best of our knowledge, there have been no other studies examining regional changes in non-oxidative glucose during acute hyperglycemia. Blomquist et al. argued that the increases in CMRglc during acute hyperglycemia were due to increased oxidative glucose metabolism, although this was not based on measurements of oxygen metabolism\(^{15}\). Instead, it relied on a prior validation study performed in euglycemic participants\(^{61}\). This validation study showed that, compared to arterio-venous measurements, whole-brain CMRglc measured with their \([1^{-11}C]\)-glucose PET method was closer to 1/6th of CMRO\(_2\) than it was to CMRglc\(^{61}\). If true, this would imply their method measures oxidative glucose metabolism, not total glucose consumption. Only a small number of subjects were used in that verification study, however, and no statistical comparison between the two methods were performed. Furthermore, the method used by Blomqvist et al. relied on correction factors obtained at euglycemia\(^{15,61}\). Therefore, there is reason to question whether Blomqvist et al. were able to distinguish between oxidative vs. non-oxidative glucose metabolism during hyperglycemia.

Studies measuring global changes in CMRO\(_2\) during hyperglycemia have reported that it is either unaltered during acute hyperglycemia\(^{13,14}\), or decreased\(^{22}\). If, as we found, there are no regional effects of hyperglycemia on oxygen metabolism, then these studies would suggest that
oxygen consumption is either unaffected or modestly decreased by hyperglycemia in all brain regions. This, in turn, would imply that the increased CMRglc, as well as the decrease in rOGI, within the white matter and brain stem reflect quantitative increases in non-oxidative, not oxidative, glucose consumption. It is less clear how to interpret the increases in rOGI we found within gray matter. It is likely that such increases simply reflect the relative decreases in glucose consumption we found in these same regions. As discussed previously, it is unlikely that CMRglc actually declines in gray matter, and therefore unlikely that NOglc decreases. Consistent with this idea, Gottstein et al. found that the whole-brain NOglc was slightly elevated, albeit not significantly, by acute hyperglycemia14.

If NOglc is increased in white matter and brain stem during hyperglycemia, it is unclear how the additional glucose is being consumed. At normal blood glucose levels, the majority of glucose in white matter is consumed oxidatively to provide energy for non-signaling tasks (e.g., maintaining the resting membrane potential)62. There are, however, non-oxidative pathways for glucose consumption in the brain63,64. Among these pathways are glycogen synthesis, the glycolytic pathway, the pentose phosphate shunt, and the polyol pathway. The TCA cycle also produces intermediates that are used for the synthesis of amino acid and neurotransmitters, including acetylcholine, aspartate, GABA, and glutamate64. Interestingly, alterations in some of these pathways have been linked to hyperglycemia.

Both acute and chronic hyperglycemia have been shown to upregulate pentose phosphate activity in cultured astrocytes65, although to our knowledge this has not been replicated in vivo. A recent study found that acute hyperglycemia increased the production of lactate, an end-point of the glycolytic pathway, in the hippocampus of a mouse model of Alzheimer’s disease66. If lactate production is increased during hyperglycemia, it is unclear how it is removed from the
Two studies in humans reported that lactate efflux from the brain to the blood was not significantly increased by hyperglycemia13,14. The glymphatic system has been proposed as an alternative route for lactate efflux67,68, but there is no evidence suggesting that hyperglycemia increases lactate efflux through the glymphatic system. It is possible that hyperglycemia produces excess lactate which is then subsequently used as a fuel source. Recent work has indicated that lactate can play a prominent role in white matter metabolism69. In developing mice, lactate is taken up by oligodendrocytes and can be used to support myelination when glucose levels are low70. Conversely, in adult mice lactate is exported from oligodendrocytes into axons, where it is presumably used to produce ATP via oxidative phosphorylation71,72. A transfer of excess lactate between cell types does not, however, explain our results, which suggest that hyperglycemia causes an increase in white matter glucose consumption without a detectable increase in oxygen consumption.

Another possible explanation for increased NOglc in white matter and brain stem during hyperglycemia is an increase in the production of sorbitol and fructose through the polyol pathway. Although it plays a very minor role in the brain at normal blood glucose levels73, polyol pathway activity has been shown to increase in animal models during both acute74 and chronic hyperglycemia75. It is also interesting to note that activation of the polyol pathway is a well-known feature of diabetes mellitus76, a disease defined by chronic hyperglycemia. Increased polyol activity in diabetes results in oxidative stress77, and contributes to the development of several complications including cardiovascular disease, retinopathy, neuropathy, and cataracts76,78. There is however, no direct evidence linking hyperglycemia with increased polyol activity in white matter or the brain stem. Perhaps the best evidence is the work of Hwang et al., who used magnetic resonance (MR) spectroscopy to show that acute hyperglycemia increases the
fructose concentration of the human brain by about 0.5 mMol·L⁻¹. However, their measurements, which were performed in a large voxel (30 x 20 x 30 mm³) in the occipital lobe, likely contained a combination of gray matter, white matter, and CSF. Clearly, although the literature suggests several possibilities, there is not yet sufficient evidence to explain how white matter consumes additional glucose during hyperglycemia. To resolve this issue, future studies will have to employ techniques, such as MR spectroscopy, that can track glucose consumption down metabolic pathways within specific brain regions.

Our results have implications for human health and disease. Previous studies from our research group have established that non-oxidative glucose use plays a role in aging and Alzheimer’s disease (AD)⁸⁰. Studies in humans have shown that NOglc varies between gray matter regions⁴⁸,⁸¹, and that the regions that have the most NOglc in youth are the same regions that develop the greatest amyloid plaque loads in AD⁸². Studies in mouse models of AD have also shown that regional lactate production correlates with levels of amyloid plaques⁸³. We also reported recently that non-oxidative glucose use decreases substantially with aging, with the largest decreases occurring in regions which, in young adults, have the most rates of NOglc²⁶. Finally, regional deposition of phosphorylated tau has been shown to be inversely correlated with NOglc in individuals with high levels of amyloid plaques⁸⁴. Considered as a whole, these findings suggest that, although NOglc may play an important role in development, plasticity, and learning²⁵,⁸⁵, over the course of a lifetime high levels of NOglc may increase the risk of neurodegeneration and disease. It is therefore tempting to hypothesize that elevated non-oxidative glucose use in white matter may play a role in the development of the white matter disease that is often found in individuals with Type-2 diabetes mellitus (T2DM)⁸⁶, or even that NOglc is part of the connection between T2DM and AD⁵⁹,⁸⁷. In support of the latter idea, it has
been shown that acute hyperglycemia increases both lactate and amyloid production in a mouse model of AD66. Determining whether NOglc is elevated in the brains of individuals with chronic hyperglycemia is an important question for future studies.

Limitations

A few limitations should be considered when interpreting our results. First, although we did show that CMRglc quantitatively increases in both the brain stem and white matter during hyperglycemia, we did not have any quantitative measurement of oxygen consumption. Quantification of CMRO\textsubscript{2} traditionally requires invasive automatic arterial sampling, which our facility only recently acquired the ability to do in a PET/MR environment. Instead we reported that, relative to the whole-brain average, there were no changes in \[^{15}\text{O} \text{-} \text{O}_2\] SUVR in any brain region. Although SUVRs are not quantitative measurements, they are a commonly used technique because they do not require arterial sampling and because normalization by a reference region is useful in removing global intensity artifacts88. Despite the absence of quantitative CMRO\textsubscript{2} data, we believe that our data is most consist with an increase in NOglc within white matter and brain stem. As discussed previously, the increase in CMRglc, the absence of a relative decrease in oxygen consumption, the decrease in rOGI, and the fact that previous studies have failed to report an increase in global CMRO\textsubscript{2}13,14,22, all point to an increase in non-oxidative glucose use within white matter and brain stem during hyperglycemia. We do acknowledge, however, that relative PET techniques can be misleading89. Indeed, we have argued here that decreases in gray matter \[^{18}\text{F} \text{-} \text{FDG}\] uptake during hyperglycemia7 likely do not reflect decreases in CMRglc. Our laboratory is therefore currently performing experiments necessary to quantify CMRO\textsubscript{2} and NOglc during hyperglycemia.
All of our measurements of CMRglc relied on 18F-FDG, which requires a correction factor to account for the differences in transport and phosphorylation kinetics between FDG and glucose90. We chose to use the same value for this correction factor, referred to as the lumped constant (LC), in both the euglycemic and hyperglycemic conditions. Direct measures of the LC in rats have shown that it decreases very slightly during hyperglycemia91. As lower values for the lumped constant result in larger CMRglc, this would imply that our estimates of CMRglc, and therefore AG, are underestimated during hyperglycemia. To address this possibility, we followed the strategy of van Golen et al., and adjusted the LC using data expressing the LC as a function of blood glucose level in rats92. This amounted to decreasing the LC by approximately 6% in hyperglycemic individuals. Adjusting the LC had essentially no impact on our regional data. We did not identify any new regions with significantly altered CMRglc, and CMRglc remained significant in all the regions where it was so without LC adjustment. The only difference that adjusting the LC introduced in our results was that the increase in global mean CMRglc, which was not significant before the adjustment ($p = 0.151$), became significant afterwards ($p = 0.018$). The difference was quantitatively minor, however, as the increase in whole-brain CMRglc with hyperglycemia changed from to 2.18 ± 2.84 to $3.98 \pm 2.97 \, \mu\text{Mol}\cdot\text{hg}^{-1}\cdot\text{min}^{-1}$. Given the small change in the LC during hyperglycemia, and the minimal impact it had our results, we chose to use a fixed LC for all of our analyses.

Studies in humans have reported that the LC decreases to a greater extent than what we assumed above10,16. As lowering the LC increases the apparent CMRglc, it is possible that, if we had assumed a smaller value for the LC during hyperglycemia, we would have found increased CMRglc in a greater number of regions. In support of this possibility, a study using [1-11C]-glucose PET15, which does not require a LC, reported increased CMRglc in all brain regions.
during hyperglycemia. There is, however, reason to be skeptical of a larger decrease in the LC during hyperglycemia. The two studies reporting changes in the LC in hyperglycemic humans did not measure the LC directly10,16. Measuring the LC typically requires estimates of the metabolic rate of glucose and FDG in the same individuals93,94. Instead these studies used only [18F]-FDG data along with a mathematical model95 that assumes: 1) the ratio of the K\textsubscript{1} for glucose to the K\textsubscript{1} for FDG is known and unchanged by hyperglycemia, 2) the ratio of K\textsubscript{3} between glucose and FDG is similarly known and unaffected by hyperglycemia, and 3) all the glucose-6-phosphate that is created is metabolized. Although the K\textsubscript{1} ratio is unaffected by hyperglycemia96, we are not aware of any study verifying the stability of the k\textsubscript{3} ratio. We are also not aware of any study comparing directly LC values estimated with this model with direct measurements in humans. Hasselbalch et al. did attempt to validate the model based approach93. However, their verification was circular as the measured LC was used to compute the k\textsubscript{3} ratio that was subsequently entered into the model. It should be noted, too, that even the studies that used the model-based method to correct for changes in the LC produced CMRglc results that were in agreement with ours. They found that during acute hyperglycemia: 1) whole-brain CMRglc increased by a non-significant amount10,16, 2) gray matter CMRglc was unchanged in every region examined10,16, and 3) CMRglc within white matter significantly increased by over 40\%16.

Finally, it should be acknowledged that all of our metabolic measurements were made in an experimental setting. Endogenous insulin and glucagon secretion were blocked using infusions of the somatostatin analog octreotide. Although somatostatin has several roles in the CNS97, blood-brain barrier permeability for somatostatin analogs are low98, and we know of no studies reporting changes in CBF, CMRO\textsubscript{2}, or CMRglc after octreotide administration. Infusions
of glucagon and insulin were also used to keep both hormones at normal values. This was done to isolate the effect of hyperglycemia on brain metabolism. However, hyperglycemia typically sharply increases the concentration of insulin in the blood. Although plasma insulin did rise slightly during our hyperglycemic clamp, it always remained lower than what is seen during an oral glucose tolerance test99 or after the consumption of a meal100. As a result, our results do not mirror naturally occurring hyperglycemia. It is therefore encouraging that our results are broadly consistent with studies that do not perform basal insulin replacement7,10,15. Determining what, if any, differences there are in brain metabolism between hyperglycemia with and without elevated insulin will require direct studies.

\textbf{Conclusion}

Our work is a novel addition to studies examining the effect of acute hyperglycemia on the brain. We reported that in humans, acute hyperglycemia increases CMRglc in white matter and brain stem, without altering regional blood flow, blood volume, or oxygen metabolism. This suggests that acute hyperglycemia alters normal brain metabolism by increasing NOglc in white matter and brain stem. Expanding upon this finding is an important topic for future research. Among the most pressing questions are quantifying the increase in NOglc during acute hyperglycemia, identifying the metabolic pathways responsible for elevated non-oxidative glucose use, and determining if NOglc remains high in individuals with chronic hyperglycemia. Addressing these questions will not only further our understanding of brain metabolism during hyperglycemia, but may also clarify the emerging relationship between NOglc, AD, and T2DM59,66,80.
5.6 Figures

Figure 5.1: Time course of plasma glucose and insulin levels during glucose clamping

A) After the hyperglycemic clamp (red) the plasma glucose level was approximately 300 mg·dL⁻¹, whereas it remained near 100 mg·dL⁻¹ during the euglycemic clamp (blue). A piecewise linear regression with a breakpoint at 90 minutes (black dot) was used to compute population estimates (thick lines) and their 95% CIs (gray ribbons). In both groups, blood glucose level increased prior to the breakpoint and then decreased afterwards (see Results). B) Plasma insulin also increased in both groups prior to the breakpoint. However, after the breakpoint insulin decreased during euglycemic clamp and increased in the hyperglycemic clamp. The dashed black line indicates a published value for the peak plasma insulin concentration after a 75 gram oral glucose tolerance test. Note that even though plasma insulin increased throughout the hyperglycemic clamp, it was always below this value. The light lines and dots are data from individual sessions.
A) Group average (n=18) image of $[^{18}\text{F}]$-FDG SUVR during the euglycemic clamp. Values are normalized to the whole-brain mean.

B) Group average (n=15) image of $[^{18}\text{F}]$-FDG SUVR during the hyperglycemic clamp.

C) Group average difference in $[^{18}\text{F}]$FDG SUVR between the hyperglycemic and euglycemic clamp. Only voxels that are significantly different from zero after

Figure 5.2: Hyperglycemia induced changes in relative glucose consumption

A) Group average (n=18) image of $[^{18}\text{F}]$-FDG SUVR during the euglycemic clamp. Values are normalized to the whole-brain mean. B) Group average (n=15) image of $[^{18}\text{F}]$-FDG SUVR during the hyperglycemic clamp. C) Group average difference in $[^{18}\text{F}]$FDG SUVR between the hyperglycemic and euglycemic clamp. Only voxels that are significantly different from zero after
correction for multiple comparisons (FDR 0.05) are shown in color. 18F-FDG uptake in blue voxels decreased relative to the whole brain mean during hyperglycemia, whereas orange/yellow voxels increased.
All conventions as in Figure 5.2. No significant differences ($p > 0.05$) were found between A) euglycemia (n=19) and B) hyperglycemia (n=15) after C) correction or multiple comparisons with FDR.

Figure 5.3: Relative cerebral blood flow measured with whole-brain normalized [15O]-H$_2$O SUVR

SUVR
All conventions as in Figure 5.2. No significant differences \((p > 0.05)\) were found between A) euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons with FDR.

Figure 5.4: Relative oxygen consumption measured with whole-brain normalized \([^{15}\text{O}]-\text{O}_2\) SUVR
Figure 5.5: Relative oxygen extraction fraction (rOEF) measured with whole-brain normalized $[^{15}\text{O}]-\text{O}_2$ and $[^{15}\text{O}]-\text{H}_2\text{O}$ SUVR

All conventions as in Figure 5.2. No significant differences ($p > 0.05$) were found between A) euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons with FDR.
All conventions as in Figure 5.2. No significant differences ($p > 0.05$) were found between A) euglycemia (n=18) and B) hyperglycemia (n=14) after C) correction or multiple comparisons with FDR.

Figure 5.6: Relative cerebral blood volume measured with whole-brain normalized $[^{15}\text{O}]-\text{CO SUVR}$
A) Group average images of rOGI during the euglycemic clamp (n=17) and B) hyperglycemic (n=14) clamp. rOGI was computed by taking the ratio of the $[^{15}\text{O}]-\text{O}_2$ SUVR and $[^{18}\text{F}]-\text{FDG}$ SUVR images and then normalizing the result so that the whole-brain mean was equal to 1. C)

Figure 5.7: Hyperglycemia induced changes in relative oxygen-to-glucose (rOGI)

A) Group average images of rOGI during the euglycemic clamp (n=17) and B) hyperglycemic (n=14) clamp. rOGI was computed by taking the ratio of the $[^{15}\text{O}]-\text{O}_2$ SUVR and $[^{18}\text{F}]-\text{FDG}$ SUVR images and then normalizing the result so that the whole-brain mean was equal to 1. C)
Group average difference in relative rOGI between the hyperglycemic and euglycemic clamp. Only voxels that are significantly different from zero after correction for multiple comparisons (FDR 0.05) are shown in color. rOGI in blue voxels decreased relative to the whole brain mean during hyperglycemia, whereas the rOGI orange/yellow voxels increased.
A) Regions-of-interest (ROIs) extracted from the voxelwise analysis of relative glucose consumption (Figure 5.2). The blue region is composed of voxels where relative $[^{18}\text{F}]$FDG SUVR decreased during hyperglycemia, and the red region is voxels were relative uptake increased. Subsequent figures show values within these ROIS for B) $[^{18}\text{F}]$-FDG SUVR (glucose consumption), C) $[^{15}\text{O}]$-H_2O SUVR (cerebral blood flow), D) $[^{15}\text{O}]$-O_2 SUVR (oxygen consumption), E) rOEF (ratio of $[^{15}\text{O}]$-O_2 and $[^{15}\text{O}]$-H_2O SUVR), F) $[^{15}\text{O}]$-CO SUVR (blood

Figure 5.8: Hyperglycemia changes relative glucose consumption but not blood flow, blood volume, or oxygen metabolism
volume), and G) rOGI (ratio of 15O-O_2 and 18F-FDG SUVR). Relative to the whole-brain, metabolic changes are only observed in glucose consumption and in rOGI. Significant ($p < 0.0001$) No changes were seen in blood flow, oxygen metabolism, or in blood volume.
A) Whole-brain average cerebral metabolic rate of glucose (CMRglc) during the euglycemic (25.1 ± 2.1 μMol·hg⁻¹·min⁻¹; n=9) and hyperglycemic (27.3 ± 2.0 μMol·hg⁻¹·min⁻¹; n=10) clamp conditions. The increase in CMRglc with hyperglycemia (2.18 ± 2.84 μMol·hg⁻¹·min⁻¹) did not reach significance ($p = 0.151$). B) Regional CMRglc in the same regions as Figure 5.8A. A significant increase ($p = 0.006$; see Methods) was found with hyperglycemia in the ROI where relative glucose metabolism increased (red), but not ($p = 0.207$) in the ROI were relative glucose metabolism increased (blue). No significant difference in CBF (measured with ASL) were found.
between euglycemia (n=22) and hyperglycemia (n=19) in either the C) whole-brain or D) the ROIs from Figure 5.8A (p > 0.5).
A) Difference between hyperglycemia and euglycemia within 48 FreeSurfer derived ROIs (Figure 2.1). After correction for multiple comparisons using FDR, significant ($p < 0.05$) increases were found in the brain stem, cortical white matter, corpus callosum, and deep white matter. No significant decreases were found.

B) CMRglc data from the deep white matter ROI, showing a robust increase in glucose consumption with hyperglycemia ($9.65 \pm 2.09 \, \mu\text{Mol}\cdot\text{hg}^{-1}\cdot\text{min}^{-1}; \ p < 0.0001$).

C) Scatterplot of CMRglc during euglycemia vs. the difference between hyperglycemia and euglycemia. Each dot is the group estimate CMRglc within a single FreeSurfer region. Blue dots are gray matter, red dots are white matter, and green dots are the brain stem/ventral diencephalon. Lines are 95% confidence intervals. There is a strong

Figure 5.10: Quantitative increases in CMRglc in regions with low basal metabolic rates
correlation between baseline CMRglc and hyperglycemia induced change, with the regions with the smallest baseline values showing the greatest change.
Figure 5.11: No regional changes in CBF during hyperglycemia

A) Difference in CBF between hyperglycemia and euglycemia within FreeSurfer ROIs. The change in CBF was not significant \((p > 0.05)\) in any ROI after correction for multiple comparisons using FDR. B) Unlike CMRglc (Figure 5.10B), CBF does not increase in the deep white matter during hyperglycemia \((0.32 \pm 1.42 \text{ mL·hg}^{-1}·\text{min}^{-1}; p > 0.05)\). C) Scatterplot of CBF during euglycemia vs. the difference between hyperglycemia and euglycemia. Only a moderate correlation exists between baseline CBF and the change in CBF induced by hyperglycemia. All other conventions as in Figure 5.10.
5.7 Tables

<table>
<thead>
<tr>
<th>ID</th>
<th>[¹⁸F]-FDG SUVR</th>
<th>[¹⁵O]-H₂O SUVR</th>
<th>[¹⁵O]-O₂ SUVR</th>
<th>rOEF SUVR</th>
<th>[¹⁵O]-CO SUVR</th>
<th>rOGI SUVR</th>
<th>Quant. CMRglc</th>
<th>Quant. CBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>22</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>23</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>24</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td>15</td>
<td>18</td>
<td>14</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 5.1: Breakdown of participants with each imaging data-type
Table 5.2: Slope estimates from piecewise regression of plasma glucose and insulin time-courses

Values are means and symmetric 95% confidence intervals. All slopes are significantly different from zero at the 0.05 level without correction for multiple comparisons.

<table>
<thead>
<tr>
<th>Time</th>
<th>Glucose</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg·dL⁻¹·min⁻¹)</td>
<td>(pmol·L⁻¹·min⁻¹)</td>
</tr>
<tr>
<td>Before breakpoint</td>
<td>0.099 ± 0.093</td>
<td>2.7 ± 0.094</td>
</tr>
<tr>
<td>After breakpoint</td>
<td>-0.077 ± 0.046</td>
<td>-0.23 ± 0.041</td>
</tr>
</tbody>
</table>
Table 5.3: Whole-brain parameter estimates from the irreversible 2-compartment FDG model

For each parameter, a linear mixed model was used to estimate the population mean and 95% CI during both the euglycemic (n=9) and hyperglycemic (n=10) clamp. K₁ and k₃ were significantly decreased during hyperglycemia, whereas k₄ was significantly increased.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Eugly.</th>
<th>Hygly.</th>
<th>Hygly. – Eugly.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁ (mL·hg⁻¹·min⁻¹)</td>
<td>11.17 ± 1.45</td>
<td>6.09 ± 1.37</td>
<td>-5.07 ± 1.82</td>
<td>3.0 · 10⁻⁴</td>
</tr>
<tr>
<td>k₂ (min⁻¹)</td>
<td>0.28 ± 0.11</td>
<td>0.24 ± 0.10</td>
<td>-0.041 ± 0.15</td>
<td>5.9 · 10⁻¹</td>
</tr>
<tr>
<td>k₃ (min⁻¹)</td>
<td>0.14 ± 0.034</td>
<td>0.062 ± 0.032</td>
<td>-0.082 ± 0.047</td>
<td>3.3 · 10⁻³</td>
</tr>
<tr>
<td>k₄ (min⁻¹)</td>
<td>0.0098 ± 0.0023</td>
<td>0.016 ± 0.0022</td>
<td>0.0070 ± 0.0031</td>
<td>7.6 · 10⁻³</td>
</tr>
<tr>
<td>V_b (mL·hg⁻¹)</td>
<td>5.83 ± 1.27</td>
<td>5.25 ± 1.22</td>
<td>-0.57 ± 1.39</td>
<td>4.6 · 10⁻¹</td>
</tr>
</tbody>
</table>
5.8 References

Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. *Front Pharmacol* 2012; **3**: 87.

Chapter 6: Summary and Conclusions

6.1 Summary

The goal of this thesis was to explore the relationship between cerebral blood flow (CBF), the cerebral metabolic rate of glucose consumption (CMRglc), and the cerebral metabolic rate of oxygen consumption (CMRO$_2$). In particular, I wanted to investigate the role of non-oxidative glucose consumption (NOglc) in the brain. To explore these issues, I performed the analyses that make up Chapters 2-5. Roughly speaking, these chapters can be divided into two parts. The focus of the first part, which consists of Chapters 2 and 3, is quantifying how much of the brain’s glucose consumption is metabolized via non-oxidative pathways. The aim of the second part of the thesis is to determine if CBF, CMRglc, and CMRO$_2$ all are affected equally by hypoglycemia (Chapter 4) and hyperglycemia (Chapter 5).

There are three primary findings in Chapters 2 and 3. First, when considering the brain as a whole, NOglc accounts for approximately 9% of resting CMRglc. This shows that a substantial portion of the brain's glucose consumption does not undergo complete oxidative phosphorylation. Second, nearly 7% of resting whole-brain CMRglc is consumed via non-oxidative pathways that do not end in lactate transport to the venous blood. It is therefore likely that a portion of the brain’s glucose consumption is directed to other pathways, including the synthesis of nucleic and amino acids. Third, the proportion of NOglc varies throughout the brain. In the precuneus and prefrontal cortex, regions that are part of the default mode network, NOglc accounts for nearly 20% of resting CMRglc. Conversely, there does not appear to be any NOglc in the cerebellum at rest.
In Chapter 4, I found a dissociation between regional changes in CBF and CMRglc during moderate hypoglycemia. Specifically, I found that hypoglycemia increases CBF in the globus pallidus and decreases CBF in the nucleus accumbens and a handful of cortical regions. In the majority of regions, however, CBF was not affected by hypoglycemia. Conversely, I found that hypoglycemia significantly decreases CMRglc in every region of the brain. Moreover, regional changes in CMRglc were highly correlated with baseline CMRglc and not changes in CBF, generally increase during hypoglycemia in order to maintain delivery of glucose. The most likely explanation of increased CBF in the thalamus, globus pallidus, brainstem, and ventral diencephalon is to promote arousal and behavioral food-seeking behaviors.

I reported in Chapter 5 that hyperglycemia produces a shift in the topography of cerebral glucose metabolism. Glucose consumption in regions with high baseline metabolic rates, such as the visual cortex, decreased relative to the rest of the brain, whereas regions with low baseline metabolic rates (e.g., white matter) increased. The major effect of hyperglycemia is a significant quantitative increase in CMRglc in cerebral white matter and brain stem. Interestingly, no changes in quantitative CBF or relative blood flow, blood volume, oxygen metabolism, or oxygen extraction were found in any brain region. Taken together, these findings suggest NOglc is elevated in the white matter and brain stem during hyperglycemia.

6.2 Significance and Future Directions

In Chapter 1, I reviewed the fairly large literature examining the relationship between cerebral metabolism and functional activity, with a particular emphasis on examples of uncoupling between CBF, CMRglc, and CMRO₂. This literature has conclusively shown that, although focal elevations in neural activity substantially increase CBF and CMRglc, CMRO₂
changes only modestly. As a result, enhanced neural activity results in a temporary increase in NOglc. The uncoupling between CBF, CMRglc, and CMRO₂ in responses to task paradigms is responsible for the blood oxygen dependent (BOLD) signals underlying fMRI.

Although metabolic uncoupling now is well established, there are still several outstanding questions surrounding it. The rest of this chapter will focus on three of the more prominent areas of research.

Non-oxidative glucose consumption during neural activity

One of the most important remaining questions is why task-evoked activity focally increases NOglc. In Chapter 1, I discussed several possibilities including a modified astrocyte-neuron lactate shuttle, glycogen or glutamate synthesis, lactate production, or biosynthesis of amino acids and proteins. None of the analyses included in this thesis favor any of these possibilities, as all of the data were collected in resting conditions. As I argued in Chapter 1, a complete account of NOglc during responses to task paradigms likely will need to examine several different mechanisms that operate in both neurons and glia. Furthermore, recent studies implicating the role of lactate as a signaling molecule¹,², suggest that the role of NOglc extends beyond energy metabolism. Therefore, to further our understanding of task-related changes in NOglc, we need quantitative studies that track the creation and movement of glucose intermediates between cell types *in vivo*. Without direct evidence indicating which non-oxidative pathways are active, the reason why task performance elevates NOglc will remain unclear.

Non-oxidative glucose consumption at rest

The role of NOglc at rest has been examined to a far lesser extent than it has been during periods of increased neural activity. In Chapter 2, I reported that NOglc accounts for nearly 10%
of the brain’s resting glucose consumption, replicating previous findings. Although most investigators acknowledge that NOglc accounts for a portion of resting CMRglc, it is sometimes asserted that this a fairly small amount that can be safely ignored as it is due entirely to excess lactate production. Much less common are reports that actively consider the possibility that NOglc plays a role in resting brain metabolism and function. The results presented in this thesis favor the possibility that NOglc plays an important role in the brain at rest. I found that a substantial portion of the brain’s resting NOglc cannot be accounted for by lactate efflux to the venous blood. Therefore, other mechanisms must be invoked to explain why the brain is consuming glucose without complete oxidative phosphorylation.

One way to assess what role NOglc has in the resting brain is to correlate the spatial topography of NOglc with the topographies of other biological markers. A previous study from our group found a positive correlation between regional NOglc and the expression of genes related to synaptic plasticity and development. This finding suggests that NOglc could be used to generate the biosynthetic intermediates necessary for synaptic plasticity. Consistent with this idea, other work from both our group and others has shown that NOglc is elevated hours after the performance of a learning task.

In Chapter 3, I directly quantified NOglc in several regions of the brain at rest. In regions such as the precuneus, lateral parietal cortex, and medial prefrontal cortex, NOglc accounts for as much as 20% of resting CMRglc. Conversely, there does not appear to be any NOglc in the cerebellar gray matter. Therefore, if NOglc plays a role in synaptic plasticity, its importance may vary by region. The cerebellum is of particular interest in this regard, as it has little to no NOglc despite being a classical example of plasticity in certain types of motor learning.
Given the limitations of human studies, none of the work I have presented here directly tests which cellular mechanisms underlie resting NOglc. It is likely, however, that the same mechanisms that are behind NOglc in responses to task paradigms also operate in the resting brain. Although the use of task paradigms in functional neuroimaging studies has encouraged the belief that task and rest are fundamentally different states, this is an oversimplification. Indeed, the brain is highly active even when it is not performing any overt task, and only a small fraction of the brain’s energy is devoted to responding to external stimuli. Therefore, it is parsimonious to hypothesize that the same mechanisms that are responsible for NOglc during task responses also operate at rest.

Metabolic uncoupling and altered states

As was discussed in Chapter 1, metabolic derangements often result in uncoupling between CBF, CMRglc, and CMRO$_2$. A classic example is profound hypoglycemia, which decreases global CMRglc to a much greater extent than CBF or CMRO$_2$. In Chapter 4, I expanded upon this literature by examining regional CBF and CMRglc during moderate hypoglycemia. I found that, although hypoglycemia decreased CMRglc in every brain region, it decreased CBF in only a handful of regions. Interestingly, the only region where hyperglycemia increased CBF was the globus pallidus. This is in contrast to the animal literature, which has consistently reported that hypoglycemia increases global and regional CBF. An increase in CBF during hypoglycemia would suggest that blood flow is upregulated during hypoglycemia to increase the amount of glucose that is delivered to the brain. However, the data presented in Chapter 3 would suggest that this is not the case in humans, at least during moderate hypoglycemia.
An alternative possibility is that CBF changes during hypoglycemia are part of the brain’s counterregulatory response to changes in blood glucose concentration. The release of insulin during hypoglycemia is typically followed by the release of several counterregulatory hormones, including of glucagon, epinephrine, growth hormone, and cortisol16. Studies examining changes in blood flow in humans have typically reported focal increases in the globus pallidus, thalamus, and medial prefrontal cortex17-19. Interestingly, although the hormonal response to hypoglycemia is diminished after multiple hypoglycemic episodes, the increase in CBF in the thalamus is amplified20. These findings have led to the hypothesis that focally increased thalamic CBF during hypoglycemia is a marker of hypothalamic inhibition20,21. With repeated episodes of hypoglycemia, the amount of inhibition is increased, resulting in a diminished sympathetic response20.

However, the results shown in Chapter 4 are not entirely consistent with this hypothesis. Although hypoglycemia did increase CBF in the thalamus, the increase was not statistically significant, possibly owing to the global noise inherent in absolute quantification of CBF. CBF in the thalamus was significantly elevated from euglycemia when expressed relative to whole-brain CBF. In any case, more work is needed to establish why CBF changes during hypoglycemia. It would also be particularly interesting to measure regional oxygen consumption during hypoglycemia. As mentioned earlier, profound hypoglycemia produces little change in global CMRO\textsubscript{2}13. If this is true during moderate hypoglycemia, it would suggest than most of the decrease in CMRglc I reported in Chapter 4 was due to a decrease in NOglc. This could have important implications especially if, as mentioned above, NOglc is involved in plasticity and learning.
In Chapter 5, I found that metabolic uncoupling is increased during acute hyperglycemia, as in hypoglycemia. Specifically, hyperglycemia altered the topography of cerebral glucose consumption, whereas the topographies of blood flow and oxygen consumption were unchanged. The change in the regional distribution of glucose consumption was due to a selective quantitative increase in CMRglc within the white matter and brainstem. Taken together, these findings suggest that, during hyperglycemia, NOglc is selectively increased in the white matter and brainstem. It is worthwhile noting that Type-2 diabetes mellitus (T2DM), which leads to chronic hyperglycemia, is associated with white matter disease. Speculatively, it is possible that chronically elevated NOglc in white matter is a risk factor for the development of white matter disease in individuals with T2DM. In support of this possibility, increased concentration of sorbitol, a sugar alcohol produced from glucose via non-oxidative pathways, has been implicated in the development of diabetic retinotopy and neuropathy. Therefore, determining whether individuals with T2DM have increased NOglc in white matter would be an important next step.

Finally, it is interesting to consider that both NOglc and diabetes have been suggested to play a role in the development of dementia. Individuals with diabetes are more likely to develop dementia and chronic hyperglycemia, even in the absence of diabetes, is a risk factor for Alzheimer’s disease (AD). Although alterations in NOglc have not yet been shown to be a risk factor for dementia, there is evidence that NOglc is involved in the development of amyloid plaques, one of the pathological hallmarks of AD. A previous study from our laboratory found that regions that have high levels of NOglc in healthy young adults go on to develop amyloid plaques in individuals with AD. Consistent with this finding, Bero et al. reported a positive correlation between amyloid plaque loads and lactate production in a mouse model of AD. In
the same model, Shannon et al. also found that hyperglycemia increases both amyloid production and lactate release in the hippocampus\(^{30}\). Other studies have reported that global NOglc is lower in both early\(^{31}\) and late\(^{32}\) onset AD, although both these studies involved small sample sizes (20 patients or less). A recent report from our group also found that aging decreases NOglc, particularly in regions with high rates of NOglc in young individuals\(^{33}\). Given these connections, it is tempting to argue that individuals with diabetes have an increased risk for the development of dementia, in part, because of the effect of hyperglycemia on NOglc. Detailed mechanistic studies will be required to verify whether this hypothesis has merit. A longitudinal study establishing that individuals with abnormal NOglc do go on to develop AD at higher rates would also be of great interest.

6.3 References

Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study. *Diabetes Care* 2018; **41**: 2535–2543.

