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Abstract of the Dissertation 
 

Mitochondria exist in a highly dynamic network in many cell types, and mutations in 

mitochondrial transmembrane GTPase mitofusin2 (MFN2), a key factor that mediates 

mitochondrial tethering, cause defects in the nervous system.  Intriguingly, the skeleton has been 

overlooked in patients with such mutations.  Because expression of MFN2 and its homolog, 

mitofusin1 (MFN1) increase with maturation of osteoclasts (OCs), which are rich in 

mitochondria, we sought to determine the role of mitofusins in the OC lineage.  Double knockout 

of Mfn1 and Mfn2 in OC precursors by Lysozyme-M cre reveals that mitofusin activity is 

required for OC function and maintenance of bone mass in female mice in vivo. In vitro, double 

knockout bone marrow macrophages are unable to differentiate into mature OCs.  Here, OC 

formation in dcKO BMMs is restored when Mfn2 but not Mfn1 is retrovirally overexpressed.  To 

further explore the role of MFN2 in the OC lineage, we conditionally deleted Mfn2 with LysM-

cre and find bone mass is increased in aged female Mfn2 cKOs compared to cre-only littermates.  

Challenging these single MFN2 knock out animals with acute RANKL injection indicates that 

Mfn2 is important in female, but not male, OCs, because female Mfn2 cKOs are protected from 

bone loss with this osteolytic stimuli.  Specific MFN2 functions were further assessed in culture. 

While a MFN2 mutant defective in mitophagy is able to promote osteoclastogenesis, another 

unable to tether mitochondria is not.  This suggests that tethering of mitochondria to eachother 

and/or the ER by MFN2 is required for osteoclast differentiation, at least in culture.  Taken 

together, our results reveal a sexually divergent role of MFN2-mediated control of mitochondrial 

dynamics in OC biology.  Given the differences in female mice, there may be therapeutic 

potential to target MFN2 activity for treatment of postmenopausal osteoporosis.   
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Part 1 – Osteoclasts 
 
Skeletal homeostasis 
 

The skeleton is an organ constantly remodeling and responding to interactions with other 

bodily systems and external factors.  Bone homeostasis relies on the coupled activity of 

osteoblast (OB) and osteoclast (OC) cells that build and resorb the bone matrix, respectively.  

During development, organic matrix is deposited and subsequently mineralized by OBs to form 

hydroxyapatite from calcium and phosphate.  The OC destroys both the organic and inorganic 

components of the bone matrix through release of acids and proteases at sites of bone 

remodeling.  When skeletal integrity is properly maintained, these two cell types constantly 

remodel bone at a rate of complete bone turnover every 10 years (reviewed in (Novack, 2011).  

 The bone environment includes chondrocytes that reside on joint surfaces and maintain 

articular cartilage.  Osteocytes are imbedded in the bone matrix and are OB-derived, functioning 

to relay signals from mechanical stimuli.  In response to mechanical demands and fracture 

healing, bone formation is favored.  Without these stimuli, bone mass decreases in conditions of 

unloading.  OC formation and function are regulated by a number of factors in the body, and 

hormonal or inflammatory stimulation of OC activity that is not matched by OBs can lead to 

pathogenic decreases in bone mass (reviewed in (Novack, 2011; Ono, 2018)).  Under 

homeostatic conditions, bone remodeling is coupled, whereby products released by OC-mediated 

matrix degradation recruit OBs, and OBs in turn secrete factors that induce OC differentiation 

(Henriksen et al., 2013; Martin and Sims, 2005; Novack and Teitelbaum, 2008). 
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Cellular morphology/components 
 
 The unique morphology of the mature OC allows it to efficiently resorb the bone.  These 

multinuclear cells become polarized when in contact with the bone surface creating an area, 

termed the resorption lacuna, where the section of bone to be excavated is isolated.  At this 

junction, called the ruffled border, numerous expansions of the membrane allow large surface 

areas for transport of cargo into the lacuna by trafficking down microtubules and microfilaments, 

which is controlled by small GTPases (reviewed in (Cappariello et al., 2014; Novack and Faccio, 

2011)). 

 Inorganic and organic components make up the bone matrix.  Inorganic crystalline 

hydroxyapatite mineral, [(Ca3(PO4)2]3Ca(OH)2, must be dissolved acidically.  This is achieved 

by the transport of protons to the resorption lacuna by the vacuolar H+-ATPase on the ruffled 

border that creates a pH of ~4.5 and liberates calcium from hydroxyapatite (Gay and Mueller, 

1974; Silver et al., 1988).  Because H2CO2 is utilized as a proton source, it dissociates into H+ 

which is pumped into the lacuna, and the remaining bicarbonate is removed from the OC 

cytoplasm via a chloride-bicarbonate exchanger on the basolateral membrane.  This also brings 

Cl- into the cell which is also delivered to the resorption lacuna by Cl- channels charge coupled 

to the H+-ATPase (Blair et al., 1991).  Proteolytic enzymes, primarily cathepsin K (CatK), are 

active at low pH and degrade type I collagen and other organic components of the bone matrix 

(Bossard et al., 1996; Drake et al., 1996).   

 The membrane at the sealing zone is anchored to the bone surface via integrin-mediated 

adhesion, primarily by integrin αvβ3.  In close proximity to integrin αvβ3 is a belt of podosomes 

that form a ring around the periphery of the resorption lacuna (Destaing et al., 2003).  Comprised 

of F-actin and microtubules, these structures are highly dynamic and isolate only areas being 
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actively resorbed (SALTEL et al., 2008).  Here, when OCs migrate, cytoskeletal remodeling 

includes disassembly of sealing zones and lamellipodial movement, then subsequent attachment 

to a new location with integrin αvβ3 adherence and nascent podosome formation (reviewed in 

(Novack and Faccio, 2011; Teitelbaum, 2011)) (Fig. 1.1). 

 

 
 
Figure 1.1:  Bone remodeling 

 
A).  Under homeostatic conditions OB build the bone resorbed by OCs at an equal rate to 
maintain bone mass.  B).  Cellular components that allow for proper acidification of the 
resorption lacuna, adapted from (Novack and Teitelbaum, 2008). 
 
 
Differentiation/activation signaling 
 
 OCs are derived from hematopoietic stem cells in the bone marrow by way of c-

Kit+CD11bloc-Fms+ common myeloid progenitors (Arai et al., 1999).  Cells from this 

macrophage/monocyte lineage become committed to an OC fate when exposed to two cytokines, 

macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand 

(RANKL).  Both factors are required for OC formation, and are sufficient to form OCs from 

bone marrow macrophage precursors in vitro (Quinn et al., 1998).  While M-CSF works through 

tyrosine kinase receptor c-Fms to promote survival and proliferation of OC lineage cells, 
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RANKL interacts with the RANK receptor to initiate differentiation through alternative NF-κB 

signaling (Novack and Teitelbaum, 2008).  RANKL (encoded by Tnfsf11), a transmembrane 

protein member of the TNFR superfamily that harbors several TRAF-binding domains, is 

produced most highly by osteoblasts and osteocytes (Nakashima et al., 2011; Nelson et al., 

2012).  Although osteoclastogenesis is aided by co-stimulatory action of ITAM signaling that 

with RANKL modulates calcineurin, MAPK, PI3K and Src signaling, NF-κB remains 

indispensable for OC formation (Novack, 2011).  When NF-κB is activated by membrane-bound 

or soluble RANKL interacting with the RANK receptor on OC precursors, RANK binds TNF 

receptor-associated factor 3 (TRAF3), which stabilizes NF-κB inducing kinase (NIK).  Because 

NIK is ubiquitinated and degraded in the absence of RANKL activation, its stabilization allows 

NIK to phosphorylate and activate IκB kinase alpha (IKKα).  Consequently, IKKα activation 

leads to p100 and RelB processing in the proteasome so that p52 (resulting from partial 

degradation of p100) and RelB can translocate to the nucleus.  Of most importance, this results in 

the activation of two transcription factors required for osteoclastogenesis, c-Fos, and NFATc1 

(reviewed in (Novack, 2011; Ono, 2018)). 

 NFATc1 is a master regulator of osteoclastogenesis, and with its induction and auto-

amplification, transcription of multiple osteoclast-specific genes are induced (Ishida et al., 2002; 

Takayanagi et al., 2002).  To name a few, cathepsin K is important for bone resorption as 

described above, tartrate resistant acid phosphatase (TRAP) is a potent OC marker, and DC-

STAMP mediates OC fusion (BURSTONE, 1959; Yagi et al., 2005).  Interestingly, NFATc1 is 

highly susceptible to Ca2+ fluxes and requires dephosphorylation by calcineurin for translocation 

to the nucleus (Hogan et al., 2003).  Here, many groups have demonstrated that heightened Ca2+ 
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oscillations in the cytoplasm following RANKL stimulation are associated with increased 

osteoclastogenesis (Kim et al., 2013; Takayanagi et al., 2002; Yang et al., 2009). 

 
Bioenergetics in the OC 
 
 Compared to other cells, OCs have the ability to function in low oxygen conditions 

between 1.5-6.3% pO2 (atmospheric O2 = 21% and majority of tissues operate between 5-12%) 

(Spencer et al., 2014).  Hypoxia actually increases osteoclastogenesis in vitro (Arnett et al., 

2003).  With their ability to function in a variety of cellular conditions, OCs may use fatty acids 

and glucose to support both aerobic and anaerobic respiration during osteoclastogenesis 

(reviewed in (Arnett and Orriss, 2018)).  Further, metabolic byproducts of H+ ions and reactive 

oxygen species have beneficial effects on OCs by stimulating OC activity and aiding 

acidification of the resorption lacuna (Arnett and Dempster, 1986; Callaway and Jiang, 2015). 

OCs are rich in mitochondria and differentiation from bone marrow macrophage 

precursors to OCs is associated with significant increase in mitochondria copy number, oxidative 

phosphorylation (OxPhos) subunits, and oxygen consumption (Zeng et al., 2015).  Alternative 

NF-κB signaling that is crucial for osteoclastogenesis also regulates mitochondrial biogenesis 

and function in skeletal muscle, and modulates the expression of mitochondrial biogenesis factor, 

PPARγ cofactor 1β (PGC-1β), in the OC (Bakkar et al., 2012; Zeng et al., 2015).  Loss of PCG-

1β in the OC results in impaired cytoskeletal organization and bone resorption in addition to 

decreased mitochondrial biogenesis (Zhang et al., 2018). 

 OCs require vast amounts of energy to resorb bone, and these cells utilize glucose and 

glutamine as primary sources for respiration (Indo et al., 2013).  As OCs operate in the hypoxic 

environment of the bone, resorption becomes an energy-intensive operation.  Upon 

differentiation from bone marrow macrophage precursors, pre-OCs exposed to RANKL undergo 
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a metabolic shift toward accelerated glycolytic and oxidative metabolism, ultimately leading to 

increased ATP production and electron transport chain activity (Kim et al., 2007; Morten et al., 

2013).  Accordingly, metabolic enzymes are upregulated during osteoclastogenesis and oxygen 

consumption rates increase compared to macrophages in mouse-derived cells (Czupalla et al., 

2005; Zeng et al., 2015). 

 
 
Additional functions of the OC 
 
 In addition to bone resorption, studies have also shown OCs to have roles in regulating 

hematopoiesis, bone formation, intraosseous angiogenesis, and osteocalcin hormonal functions.  

Cathepsin K and matrix metalloproteinase MMP9 produced by the OCs mobilize CXCL12 and 

c-Kit that regulate hematopoietic stem cells (HSCs), and treatments targeting the OCs such as 

strontium, prostaglandin, and bisphosphonates, have additional effects on HSCs (Frisch et al., 

2009; Lymperi et al., 2011; 2008).  During resorption OCs release products from the bone matrix 

that induce bone formation.  These are termed “clastokines” and are anabolic agents that recruit 

OB precursors to the bone matrix such as TGFβ, bone morphogenetic proteins, fibroblast growth 

factors, and insulin-like growth factor (reviewed in (Cappariello et al., 2014; Teti, 2013).  Other 

factors such as VEGF-A and HIF1α induce angiogenesis (Chim et al., 2013; Trebec-Reynolds et 

al., 2010).   

 
 
Mouse models and cres 
 
 Cre-Lox technology allows researchers to selectively delete genes of interest in specific 

tissues through mating genetically engineered animals harboring a floxed gene and cre 

recombinase expressed by tissue-specific transcription factors (Yarmolinsky and Hoess, 2015).  
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The study of factors important in OC formation and function has been aided by the development 

of multiple cre drivers in the OC lineage.  Early deletion of floxed alleles can be achieved with 

use of Lysozyme M-cre, CD11b-cre, and RANK-cre, while genes may be conditionally deleted 

in mature OCs via Cathepsin K-cre (reviewed in (Elefteriou and Yang, 2011)). 

 While mice display highest levels of bone mass at 4 months of age, OCs generally have 

greatest activity at 2 months, as evidenced by serum CTX, a marker for bone resorption, reaching 

peak elevation in B6 mice (Amend et al., 2015).  Common experimental techniques to induce 

OC differentiation and activity include exposing mice to RANKL injected subcutaneously or 

intraperitoneally (Shashkova et al., 2016).  Induction of inflammatory arthritis has also been 

shown to induce OC activity (Decker et al., 2015; Seeling et al., 2013).  Such induction of 

pathological bone loss can produce robust OC phenotypes, and uncover phenotypes not apparent 

under basal physiological conditions (Novack et al., 2003; Vaira et al., 2008).  This is also seen 

in models of ovariectomy (OVX), a model of postmenopausal osteoporosis that induces OC 

activity through estrogen deficiency (Anginot et al., 2007; Wu et al., 2007).  

 Mouse models have been immensely useful in elucidating the impact of signaling 

components of the osteoclast and overall bone health.  For example, ablation of NF-κB 

components, RANK, RANKL, Cathepsin K, αvβ3 integrin, NFATc1, in murine models all lead 

to high bone mass osteopetrotic phenotypes (reviewed in (Novack and Teitelbaum, 2008; Xu and 

Teitelbaum, 2013)).   

In contrast to osteoporosis, osteopetrosis is a genetic condition in which bone mass and 

density are increased because of a failure of bone resorption by OCs.  Most often, humans 

present with forms of either OC-poor or OC-rich osteopetrosis whereby the disease manifests 

due to a failure of OCs to differentiate or function, respectively.  Either form of the disease is 
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often accompanied by hematological impairment and decreased life expectancy (reviewed in 

(Sobacchi et al., 2013)).  As mouse models closely phenocopy human ailments, it is critical that 

mouse models of OC dysfunction be studied closely.   
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Part 2 – Mitochondrial dynamics 
 
Mitochondrial networks 

 
Mitochondria exist within a dynamic network in most cell types and are highly regulated.  

Here, termed mitochondrial dynamics, the processes of tethering/fusion, fission, and mitophagy 

play an important role in mitochondrial homeostasis.  Changes in mitochondrial networks are 

frequent, and this architecture is varied depending on the developmental or metabolic needs of a 

cell (reviewed in (Dorn et al., 2015; Schrepfer and Scorrano, 2016; Ventura-Clapier et al., 

2008)).   

As the organelles become more connected with increased fusion, ATP production 

increases because networks allow exchange of mtDNA and metabolites between once-separated 

mitochondria.  In particular, fusion of mitochondria under stressful conditions prevents 

autophagy and allows ATP production to be optimized due to increased cristae density favoring 

ATPase oligomerization (Gomes et al., 2011; Rambold et al., 2011).  Fusion is accomplished 

through coordinated rearrangement of both the outer and inner mitochondrial membranes (OMM 

and IMM, respectively), which are mediated by MFN1/MFN2, and OPA1, respectively.  

Mammalian mitofusins MFN1 and MFN2 are ~80% homologous, each consisting of an N-

terminal cytosolic GTPase domain, a coiled coil heptad-repeat (HR1) domain, two 

transmembrane domains, and heptad-repeat domain (HR2) at the C-terminus (reviewed in (Filadi 

et al., 2018b)).  

Accumulation of mitofusins in regions of contact in neighboring mitochondria precedes 

fusion events (Mozdy and Shaw, 2003).  It is generally accepted that fusion is achieved first 

through antiparallel binding of the carboxy-terminal α-helical HR domains of MFN1 and/or 

MFN2.  This brings GTPase heads together for subsequent GTP hydrolysis and dimerization 
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(reviewed in (Dorn, 2019; Koshiba et al., 2004).  Intriguingly, MFN2 exhibits two alternative 

conformations that make its state tethering-permissive or tethering-non-permissive.  Only 

tethering-permissive intramolecular interactions of MFN2 allow the HR2 domain exposure into 

the cytosol to tether with the HR2 of an adjacent mitofusin protein (Franco et al., 2016).  When 

tethering is successful, GTP hydrolysis then induces OMM fusion of the two mitochondria 

(Koshiba et al., 2004; Lee and Yoon, 2016).  Following OMM fusion, OPA1 anchored on one 

IMM binds to cardiolipin on another IMM, whereby subsequent tethering and GTP hydrolysis by 

OPA1 fuses the two membranes (Ban et al., 2017; Lee and Yoon, 2018).  

Conversely, networks become fragmented to prevent nutrient overload.  In this state, 

oxidative stress and mitochondrial depolarization increase, and ATP production is blunted with 

an increase in mitochondrial uncoupling and nutrient storage (Jheng et al., 2012; Molina et al., 

2009).  Mitochondrial fission requires recruitment and post-translational modifications of DRP1, 

a cytosolic GTPase dynamin 1-like protein, to the OMM, where it promotes fission with 

interaction of fission proteins, MFF, MID51, MID49, and FIS1 (reviewed in (Hu et al., 2017)). 

Additionally, mitochondrial dynamics allow for strict quality control of organelles, as 

damaged mitochondria can be sequestered from the network and degraded via a specialized form 

of autophagy referred to as mitophagy (reviewed in (Ashrafi and Schwarz, 2013; Shirihai et al., 

2015).  Here, it is generally accepted that PINK1 kinase responds to mitochondrial 

depolarization, ROS production, and protein misfolding to induce mitophagy ((Jin and Youle, 

2013; Matsuda et al., 2010; Narendra et al., 2010)).  PINK1 phosphorylates MFN2 on three 

residues to promote removal of damaged mitochondria.  Ser378 phosphorylation induces the 

tethering-non-permissive state, prohibiting mitochondrial fusion (Rocha et al., 2018).  

Phsosphorylation on Thr111 and Ser442 recruits E3 ubiquitin ligase PARKIN to bind MFN2 
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(Chen and Dorn, 2013).  With mutation of these threonine and serine residues to glutamic acid or 

alanine, mitophagy signaling is either constitutively activated or repressed, respectively (Gong et 

al., 2015).  When recruited by MFN2, PARKIN subsequently mediates mitochondrial targeting 

to the autophagosome (reviewed in (Dorn et al., 2015; Gustafsson and Dorn, 2019)).  

Independent of PINK1/PARKIN signaling, mitochondria can also be cleared by direct 

engulfment into the lysosome or through clearance by the endosomal sorting complexes required 

for transport (ESCRT) machinery that ultimately delivers mitochondria to the lysosome 

(reviewed in (Moyzis and Gustafsson, 2019).  

 
Figure 1.2: Depiction of mitochondrial dynamics and key players   

Mitochondrial dynamics includes the fission, fusion, and mitophagy of mitochondria.  Of note, 
MFN1 and MFN2 participate in the tethering/fusion of one mitochondria to another, and 
tethering of mitochondria to the ER by MFN2 impacts Ca2+ signaling. Adapted from (Gao et al., 
2014). 
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Mitofusins 
 
As introduced above, transmembrane GTPases MFN1 and MFN2 are key players in 

mitochondrial dynamics.  Both are necessary for survival, as deletion of either mitofusin is 

embryonic lethal, at mid-gestation in murine models.  The majority of Mfn1 or Mfn2 knock out 

(KO) embryos are resorbed prior to E12.5, and in the case of Mfn2 KO, placenta formation is 

impaired.  Double deletion of Mfn1 and Mfn2 leads to even earlier mortality (Chen et al., 2003).  

Morphologically in MEFs, knockout of Mfn1 or Mfn2 leads to severely fragmented 

mitochondrial networks (Chen et al., 2003).  Decreased oxygen consumption is also a feature of 

cells lacking Mfn1 and Mfn2 in murine cell cultures (Chen et al., 2005; Song et al., 2015). 

To combat the lethality associated with global mitofusin knockout, floxed alleles have 

been generated to study Mfn1 and/or Mfn2 loss conditionally.  Similarly to whole body single 

and double KO of Mfn1 and/or Mfn2, systems such as cardiac muscle display more robust 

defects in morphology and function when both Mfn1 and Mfn2 are deleted compared to deletion 

of either homolog alone (Chen et al., 2010; Papanicolaou et al., 2012a; Song et al., 2015).  

Changes in mitofusin expression can be observed as the connectivity of mitochondria 

decreases.  This generates mitochondrial aspect ratios that can be compared, as higher ratios 

indicate a greater degree of fused/networked organelles (Gong et al., 2015). While MFN1 solely 

participates in mitochondrial tethering/fusion, MFN2 mediates mitophagy as well as assists in 

mitochondrial transport and serves as a mitochondrial tether to the ER (Figure 1.2).  Transport of 

mitochondria down axons also requires functional MFN2 whereby MFN2 interacts with MIRO 

and MILTON motor proteins that allow mitochondrial attachment to microtubules (Misko et al., 

2010).  Branching and enervation of nerve fibers to dopamine neurons is also compromised in 

dopamine neuron specific Mfn2 cKO (Lee et al., 2012). 
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The connection between mitochondria and the ER is important for regulation of many 

cellular functions including Ca2+ signaling, lipid biosynthesis, apoptosis, and the ER stress 

response (reviewed in (Filadi et al., 2018a; van Vliet and Agostinis, 2018)).  Studies using Mfn2 

knockdown cells have revealed that ablation of Mfn2 increases mitochondria distance to the ER, 

and loss of the protein leads to impaired Ca2+ calcium uptake in the mitochondria (de Brito and 

Scorrano, 2008; Filadi et al., 2016; Naon et al., 2016).  Buffering of Ca2+ by the mitochondria 

functions to maintain cellular functions including metabolism and survival, further implicating 

the importance of Mfn2.  Accordingly, mouse heart and hematopoietic stem cell models lacking 

Mfn2 sustain defects in calcineurin signaling including aberrant induction of downstream 

transcription factors NOTCH1 and NFAT, respectively (Kasahara et al., 2013; Luchsinger et al., 

2016).  Recently, structural insights into MFN2 GTPase and HR domains have allowed groups to 

probe the specific function of particular residues in vitro.  For example, MFN2 K416R mutation 

disallows ubiquitination by Parkin that required for the physical interaction between 

mitochondria and ER, as K414R increases distance between organelles and reduces 

mitochondrial Ca2+ uptake in MEFs (Basso et al., 2018).  Another mutant, MFN2 F223L, 

represses mitochondrial fusion, but does not alter mitochondrial proximity to one another by 

tethering assay.  Tethering to the ER was not assessed in this model (Engelhart and Hoppins, 

2019). 

 
 

Mfn2 disease importance 
 
The nervous system is highly impacted by Mfn2 defects, and Mfn2 mutations are linked 

to disorders of the central and peripheral nervous system that lead to neuropathies and sensory 

loss (reviewed in (Celsi et al., 2009; Filadi et al., 2018b)).  One of the leading neuropathies 
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associated with mutations in Mfn2 is Charcot-Marie-Tooth type 2A syndrome (CMT2A), a 

neurodegenerative disease in which motor and sensory defects develop within the first two 

decades of life.  Over 100 dominant Mfn2 mutations are linked to CMT2A, and are responsible 

for nearly 100% of cases.  In the clinic, these patients generally present with sensory loss in the 

feet, lack of tendon reflexes, and postural tremors (Adam et al., 1993; Züchner et al., 2004).  On 

a molecular level, axonal degeneration is observed and mitochondrial transport along 

microtubules is impaired with CMT2A, and often, mitochondria are reported accumulating 

abnormally in distal sites of axons, making the longest axons most severely affected (Cartoni et 

al., 2010; Funalot et al., 2009; Misko et al., 2010).  

Mitochondrial fusion defects are observed in CMT2A as well (Funalot et al., 2009; Sole 

et al., 2009), with the majority of Mfn2 missense mutations arising near or within the coiled-coil 

and GTPase regions of the protein important for initial tethering between mitochondria and 

completion of fusion, respectively.  These defects have been modeled in zebrafish and 

drosophila, as well as mice (Sandoval et al., 2014; Vettori et al., 2011).  Mouse models 

corroborate the phenotypes seen in humans as mice perform poorly in open field tests (Strickland 

et al., 2014), and cultured human cells from CMT2A patients have decreased electrical properties 

and reduced mitochondrial membrane potential (Loiseau et al., 2007; Saporta et al., 2015).  

Apart from the nervous system, decreased mitofusin expression is associated with 

Alzheimer’s Disease, poor prognosis in breast cancer, and insulin resistance in diabetes (Bach et 

al., 2003; Manczak et al., 2011; Wang et al., 2009; Xu et al., 2017).  Parkinson’s Disease has 

also been linked to PINK1/PARKIN mutations (Lee et al., 2012).  Intriguingly, two families with 

Charcot-Marie-Tooth Syndrome have been reported to also suffer from dilated cardiomyopathy 

(Sevillano Fernández et al., 1994; Yoshida et al., 1991).  Apart from these cases, defects in 
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mitochondrial dynamics have not been specifically linked to irregularities in human hearts 

(Dorn, 2016).  However, model organism and human cell culture models lacking mitofusins 

yield conditions of myocardial hypertrophy, heart tube contractile dysfunction, and vascular 

smooth muscle cell proliferation, to name a few (Dorn, 2016; Eschenbacher et al., 2012; Guo et 

al., 2007).  

Studies in cardiomyocytes have revealed an important role for MFN2 function during 

development whereby mitophagy is a requisite for metabolic reprogramming of mammalian 

hearts as glycolytic mitochondria are replaced with ones optimized for fatty acid metabolism 

(Gong et al., 2015).  Here, post-natal conditional knock out of Mfn2 in cardiomyocytes begets 

cardiomyopathy with accumulated dysfunctional mitochondria, and in adults, Mfn2 cKO in 

cardiomyocytes manifests with enlarged hearts and dilated cardiomyopathy (Papanicolaou et al., 

2011; 2012a).  Furthermore, defects in MFN2 or PINK1/PARKIN machinery can lead to 

myocardial injury and cardiomyopathy (Billia et al., 2011; Kubli et al., 2013).  Accordingly, 

selective loss of MFN2 mitophagy function in mice leads to cardiomyopathy and lethality by 8 

weeks of age, but pups with fusion-deficient MFN2 are indistinguishable from wild type 

littermates (Gong et al., 2015).  Of note, human Mfn2 mutations identified through sequencing 

databases produce phenotypes such as mitochondrial fragmentation in MEFs and dilation of the 

heart tube in Drosophila (Eschenbacher et al., 2012). 
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Part 3 – Study Goals 
	
Rationale for study of mitofusins in the OC 
 
 OCs are an incredibly dynamic cell type and during osteoclastogenesis, BMMs go 

through many conformational changes including fusion to become mature multinucleated OCs.  

Here, we anticipate that mitochondrial networks will be remodeled and ultimately increased 

tethering/fusion may be required for completion of this differentiation process.  Preliminary 

studies in our laboratory using MitoTracker Green FM staining have demonstrated that control 

pre-OCs derived from Mfn2+/+; LysMc/c mice have highly networked mitochondria, confirming 

what others have has been shown with elongated mitochondria in human OCs by TEM and anti-

mitochondria antibodies (Lemma et al., 2016).  In contrast, we find that pre-OCs of Mfn2fl/fl; 

LysMc/c mice where Mfn2 is conditionally deleted in the OC lineage lose this degree of 

connectivity in mitochondrial networks, suggesting the absence of Mfn2 compromises the ability 

of mitochondria in the OC to fuse with one another.   

To our knowledge, the consequence of this observation has never been investigated.  

Further, bone phenotypes have never been evaluated in humans with Mfn2 mutations such as in 

CMT2A, likely because when faced with neurodegenerative ailments, skeletal effects are 

presumed to be secondary to the immobility and/or neurological changes patients experience.  In 

other cell types, the effect of Mfn1 vs. Mfn2 knockout are not always identical, and in particular, 

double knock out of Mfn1 and Mfn2 produce more severe phenotypes than single knockout of 

either mitofusin alone.  We anticipate this could be the case in the OC lineage as well.  

Therefore, we have generated mouse models in which Mfn1 and Mfn2 are conditionally deleted 

in the OC lineage separately and in combination.  In Aims I and II of our study, we explore how 

bone mass is affected in these three murine models and expect this will inform how the mitofusin 
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proteins support osteoclast formation and/or function.  It is possible that the efficiency of OCs to 

resorb bone is heightened with highly networked mitochondrial architecture, therefore requiring 

mitochondria-to-mitochondria tethering and fusion.  Alternatively, Mfn1 and/or Mfn2 could be 

necessary for OCs to form, possibly due to altered Ca2+ signaling when tethering of mitochondria 

to the ER is altered.  We hypothesize that mitochondrial tethering might accompany OC cell 

fusion during osteoclastogenesis, and that tethering of mitochondria to each other or the ER is 

important for OC formation and/or function. 

In addition, considering that in other cell types one function of MFN2 is seemingly 

predominant over the other, we hypothesize that tethering/fusion is more important than 

mitophagy for OC function.  Though autophagy proteins are essential for generating the ruffled 

boarder and for bone resorption in OCs (DeSelm et al., 2011), we suspect fusion events for OCs 

to become large multinucleated will also require tethering and fusion of mitochondrial networks.  

Therefore, in Aim III, we investigate which function is dominant in the OC lineage through 

utilizing different Mfn2 mutants that selectively disable tethering or mitophagy.  Since MFN2 

residues T111 and S442 are phosphorylated in order for mitophagy signaling to proceed, 

mutagenesis of both to alanine (designated as Mfn2-AA) ablates PARKIN recruitment to the 

mitochondria and prevents mitophagy from occurring.  Alternatively, T111E and S442E 

mutations (designated Mfn2-EE) promotes spontaneous mitophagy and with the absence of a 

fusion signal, mitochondrial networks become fragmented (Gong et al., 2015).  

Uncoupling the function of tethering/fusion and mitophagy in the OC lineage will 

elucidate the mechanism through which MFN2 modulates OC formation and/or function.  Such 

knowledge regarding MFN2 action in the OC lineage will inform the novel relationship between 

this mitochondrial GTPase and skeletal integrity, a connection that may have the potential to be 
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exploited therapeutically for patients suffering from diseases of bone remodeling like 

osteoporosis and osteopetrosis. 

 
 
Specific Aims: 
 
Aim 1 – How is bone mass affected when Mfn2 is deleted from the OC lineage? 

 
Aim 2 – Is there redundancy between MFN1 and MFN2 in the OC lineage? 
 
Aim 3 – Are tethering/fusion and mitophagy functions of MFN2 important in the OC 
lineage? 
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Chapter 2 –  
Loss of mitofusins in the OC lineage inhibits OC formation  

and function in murine models and cell culture systems 
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Introduction 
 
 To investigate the role of mitofusins in the OC, we explore the how loss of Mfn1 and 

Mfn2 alone and in combination affect the ability of OCs to form and function in vivo and in 

vitro.  Specifically, we test whether the activities of MFN1 and MFN2 are redundant and address 

which homolog has a greater impact on bone mass and osteoclastogenesis.  To our knowledge, 

this is the first investigation of these genes in the osteoclast lineage.  We use three conditional 

mouse models in which Mfn1, Mfn2, or both mitofusins are deleted in the lineage by 

LysozymeM-cre.  µCT analysis of murine femurs is used as our primary readout of changes in 

bone mass in these models.  Cell culture experiments are also undertaken to differentiate BMMs 

from these mice to OCs in vitro.  We find that while deletion of Mfn1 and Mfn2 singularly does 

not affect bone mass in young animals, double knockout increases bone mass in female but not 

male mice.  This corresponds with an inability of OCs to form in culture.  Further, as rescue of 

osteoclastogenesis occurs with the overexpression of MFN2 but not MFN1 in these double 

knockout BMMs, we report that in the OC lineage, Mfn2 plays a dominant role.  Accordingly, 

stressing Mfn2 cKO mice with age and induced osteolysis reveals MFN2 presence supports OC 

activity.       
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Materials and methods 
 
Reagents and mice 

Double floxed Mfn1fl/fl; Mfn2fl/fl animals were mated to C57Bl/6 mice harboring the 

LysM-cre allele, and all mice used for study had two copies of LysM-cre (Chen et al., 2007; 

Clausen et al., 1999).  To generate dcKOs, double heterozygous (Mfn1fl/+; Mfn2fl/+;LysMc/c) mice 

were first bred together and dcKO (Mfn1fl/fl; Mfn2fl/fl; LysMc/c) female progeny mated to double 

heterozygous males to generate the cohort of double heterozygous controls and dcKOs.  In 

parallel, cre-only (Mfn1+/+; Mfn2+/+; LysMc/c) females from the original double heterozygous 

mating were bred to double heterozygous males to generate the cohort of cre-only and control 

animals.  The single Mfn2 cohort was generated using heterozygous breeding pairs so that 

progeny genotypes included cre-only (Mfn2+/+; LysMc/c) and cKOs (Mfn2fl/fl; LysMc/c).  The same 

strategy was employed to generate Mfn1 cre-only and cKO littermates (Mfn1+/+; LysMc/c and 

Mfn1fl/fl; LysMc/c, respectively) 

Mice were housed communally with ad libitum access to fresh chow and water in a 

pathogen-free temperature controlled barrier facility.  Daily observation and weekly cage change 

was provided by staff of the Division of Comparative Medicine (DCM).  Lab members 

coordinated animal husbandry and breeding, and the DCM veterinarian assessed all health 

concerns.  All protocols were approved by Washington University School of Medicine’s Animal 

Studies Committee (ASC protocol #20170025). 

 
 
Micro-computed tomography 
 
Following dissection of right femurs from 2, 4, and 12-month old animals, bones were fixed in 

10% neutral buffered formalin (Di Ruscio & Associates, Inc., Fenton, MO) for 24 hours, and 
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then stored in 70% ethanol.  Ex vivo trabecular and cortical scans were acquired proximal to the 

growth plate and at the mid-shaft of the femur, respectively (µCT40, Scanco, Brüttisellen, 

Switzerland) (10 µm resolution, 55kVp, 145 µA, 300 seconds integration time).  In vivo scanning 

of tibias was performed at 21.5 µM resolution (70 kVp, 114 µA, 8W, 100ms integration time) on 

VivaCT 40 (Scanco, Brüttisellen, Switzerland).  Trabecular bone compartment was analyzed 

distal to the end of the tibial growth plate. Thresholds for VivaCT and µCT were determined in a 

blinded manner and analyzed with reference to accepted guidelines (Bouxsein et al., 2010; 

Nazarian et al., 2008). 

 
 
CTX1 and P1NP 
 

Serum was collected from animals fasted overnight via mandibular bleed (BD 

Microtainer), and stored at -80˚C.  RatLaps CTX-1 and P1NP EIA assays was conducted 

according to manufacturer’s instructions (Immunodiagnostic Systems, Gaithersburg, MD, USA; 

AC-06F1 and AC-33F1, respectively). 

 
Histomorphometry 
 

2 month-old mice were injected intraperitoneally (IP) with 10mg/kg calcein (C0875; 

Sigma, USA) and 30 mg/kg alizarin red (A3882; Sigma, USA) seven and two days prior to 

sacrifice.  Intact femur/tibias were fixed in 10% neutral buffered formalin for 24 hrs prior to 

storage in 70% ethanol.  Tissues were embedded in methymethacrylate and sectioned sagittally 

by the Washington University Musculoskeletal Histology and Morphometry Core.  20X high-

resolution slide images were acquired using a NanoZoomer 2.0 with brightfield and 

FITC/TRITC (Hamamatsu Photonics, Japan).  Images were then analyzed via Bioquant Osteo 
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software according to manufacture’s instructions and published standards (v18.2.6; Bioquant 

Image Analysis Corp., Nashville, TN, USA)(Dempster et al., 2012). 

 
 
Bone marrow macrophage isolation and osteoclast differentiation 
 

BMMs were harvested by collecting bone marrow from dissected long bones via 

centrifugation at 10,000 rpm, passed through a 40µm filter and cultured with α-MEM (Sigma 

M0894, St. Louis, MO, USA) containing 10% FBS (Gibco, Grand island, NY, USA), 100 IU/ml 

penicillin/streptomycin, and 1:10 dilution of CMG 14-12 cell supernatant (containing equivalent 

of 100ng/ml M-CSF) (Novack et al., 2003; Takeshita et al., 2000).   

Expanded BMMs were plated at a density of 9,000 and 300,000 cells per well for 96 and 

6 well plates, respectively.  Purified GST-RANKL at 30ng/ml was added to α-MEM containing 

10% FBS, 100 IU/ml penicillin/streptomycin, and 1:50 dilution of CMG 14-12 cell supernatant.  

Media was changed every alternate day until wells were filled with multinucleated OCs.  TRAP 

stains were employed following 10 minute fixation with 4% paraformaldehyde (Polysciences, 

Warrington, PA, USA) and 0.1% Triton X-100 in PBS according to manufacturer’s instructions 

(Sigma 387A, St. Louis, MO, USA). 

 
Actin Rings 
 
Expanded BMMS were seeded on bovine bone slices and differentiated to OCs with purified 

GST-RANKL as above.  At maturity, bone slices were fixed for 10 min with 4% 

paraformaldehyde and 0.1% Triton X-100 in PBS, washed 3x in PBS and stained with Alexa 

fluor 488 Phalloidin (Thermo Fisher Scientific A12370, Waltham, MA, UWA) for 30 min.  

Slices were imaged for FITC at 20X on an Olympus BX41 fluorescent microscope. 
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Resorption assay 
 
Expanded BMMS were seeded on bovine bone slices and differentiated to OCs with purified 

GST-RANKL as above.  At maturity, bone slices were fixed for 10 min with 4% 

paraformaldehyde and 0.1% Triton X-100 in PBS.  Bone slices were incubated in 0.5 NaOH for 

30 seconds and kept hydrated in PBS.  Cells were scraped off bone slices with a cotton swab, and 

incubated with 20µg/ml peroxidase conjugated wheat germ agglutinin in PBS (Sigma-Aldrich 

61767, St. Louis, MO, USA) for 30 min.  Subsequently, slices were washed 3x in PBS and 

incubated with DAB chromogen kit (Biocare Medical BDB2004H, Pacheco, CA, USA) at 37˚C 

for 30 min.  Slices were left to dry and imaged under brightfield at 20X on an Olympus BX41 

fluorescent microscope. 

 
Quantitative real-time PCR 
 
Following collection of cells with TRIzol (Life Technologies), solutions were centrifuged at 

12,000xg and aqueous layer extracted with phenol:chloroform.  An equal volume of 70% ethanol 

was added, and remaining RNA isolation done via NucleoSpin RNA II kit (Clontech 

Laboratories, Palo Alto, CA, USA, 740955.50).  1µg of RNA was input into cDNA Ecodry 

premix kit prior to qPCR program run on ABI QuantStudio 3 with iTaq Universal SYBR Green 

Supermix (Bio-Rad Laboratories 1725121, Hercules, CA, USA).  Each reaction proceeded at 50˚ 

for 2 min, 95˚ for 10 min, then 40 cycles of 95˚ for 15 sec and 60˚ for 1 min.  Relative expression 

was calculated as 100*2-(target CT-B2M CT) for mouse and 100*2-(target CT-HBMS CT) for human.  Primer 

sequences (murine unless otherwise specified) - 

Mfn1: F – TTGGCAGGACAAGTAGTGGC, R – AGCAGTTGGTTGTGTGACCA 

Mfn2: F – AAGCACTTTGTCACTGCCAAG, R – TTGTCCCAGAGCATGGCATTG 
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Human Mfn2 F – CGCGCTTATCCACTTCCCTC, R – CCAGTCCTGACTTCACCTTCC 

Nfatc1: F – GGTAACTCTGTCTTTCTAACCTTAAGCTC, R – 

GTGATGACCCCAGCATGCACCAGTCACA  

DC-Stamp: F – ACAAACAGTTCCAAAGCTTGC, R – TCCTTGGGTTCCTTGCTTC 

CatK: F –AGGCAGCTAAATGCAGAGGGTACA, R – 

AGCTTGCATCGATGGACACAGAGA 

B2m: F – CTGCTACGTAACACAGTTCCACCC, R – CATGATGCTTGATCACATGTCTCG 

Human Hbms: F – CACCCACACACAGCCTACTT, R – CCCACGCGAATCACTCTCAT 

 
 
Western blot 
 
RIPA buffer (20mM Tris, pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 

2.5 mM sodium pyrophosphate, 1mM β-glycerophosphate, 1mM Na3VO4, 1mM NaF) with 1:50 

HALT protease and phosphatase inhibitor (Thermo Fisher Scientific 1861280, Waltham, MA, 

USA) was used to lyse BMM and OC cells following 2x washes in PBS.  Lysates were vortexed, 

centrifuged at 700xg and supernatant quantified with BCA assay (Bio-Rad Laboratories, 

Hercules, CA, USA), and 20 µg loaded to 10% SDS PAGE gel.  Gels were run at 80 V for 2 hrs, 

and transferred to nitrocellulose by wet transfer at 100V for 90 minutes.  Blocking was done in 

TBS+0.1% Tween 20 with 5% milk.  Membranes were probed with 1˚ antibodies overnight at 

4˚C (1:500 Mfn1 - Santa Cruz Biotechnology sc-50330, Dallas, TX, USA; 1:1,000 Mfn2 - 

Abcam ab56889, Cambridge, UK).  Actin was used as a loading control at 1:10,000 (Sigma-

Aldrich A228, St. Louis, MO, USA).  Imaging was done using SuperSignal West Femto 

substrate (Thermo Fisher Scientific 34095, Waltham, MA, USA) and a chemiluminescence 

imager (Syngene, Cambridge, UK). 
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Retroviral overexpression 
 
Mfn1-Myc and Mfn2-Myc were obtained from Addgene (plasmids #23212 and #23213, 

respectively, Watertown, MA, USA)(Chen et al., 2003).  Each gene was cloned into the pMX 

retroviral vector and transfected into Platinum-E (platE) cells by calcium phosphate precipitation 

(Morita et al., 2000; Zou et al., 2012).  PlatE supernatant was harvested 48 and 72 hrs post-

transfection, filtered through 0.45µm and added to BMMs with α-MEM, 10% FBS, and 100 

IU/ml Penicillin/Streptomycin, 1:10 CMG, and 8µg/ml polybrene (Sigma H9268, St. Louis, MO, 

USA) on 2 consecutive days.  24 hrs following the final viral addition, 1µg/ml blasticidin (Sigma 

203350, St. Louis, MO, USA) was added to select for infected BMMs.   

 
Seahorse 
 
BMMs were seeded on Seahorse XF96 Cell Culture Microplates at a density of 8,000 cells/well 

(cre-only and Mfn2 cKO) or 4,000 cells/well (ctrl and dcKO) in α-MEM, 10% FBS, and 100 

IU/ml Penicillin/Streptomycin, 1:10 CMG.  Pre-osteoclasts were treated with 30ng/ml RANKL 

for 3 days. Seahorse XF Cell Mito Stress Test Kit was used according to manufacturer’s 

instructions using 1µM of oligomycin, FCCP, and rotenone/antimycinA (Agilent Technologies 

103015-100, Santa Clara, CA).  Seahorse assay was run on Seahorse Biosciences XF96 Flux 

Analyzer in the Washington University Tissue Culture Support Center.  

 
Mitotracker 
 
For live cell imaging BMMs were seeded onto Lab TeK II 8-well Chambered Coverglass dishes 

at 40,000 cells/chamber (Thermo Fisher 155409, Waltham, MA).  Following differentiation to 

pre-OCs with 30ng/ml RANKL for 3 days, cells were stained with 100nM MitoTracker Green 
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FM per product instructions (Molecular Probes M5714, Eugene, OR).  For fixed imaging, 

BMMs were seeded at 100,000 cells/well in 24-well plates containing circular coverglass 

(FisherScientific 12-545-81, Hampton, NH), and differentiated with 30ng/ml RANKL.  Live 

mitotracker stained cells were imaged using a Nikon Spinning Disk Confocal and Nikon 

Elements software at the Washington University Center for Cellular Imaging (WUCCI).  

WUCCI imaging was supported by the Washington University School of Medicine, The 

Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital 

(CDI-CORE-2015-505) and the Foundation for Barnes-Jewish Hospital (3770). 

 
CD14+ cell isolation 
 
Human peripheral blood collected in sodium heparinized vacutainers was transferred to 

histopaque (Ficoll Histopaque, Sigma # 10771) and centrifuged at 2,200xg for 15 min.  Buffy 

coat was then collected and washed twice with PBS.  Per every 107 cells, cells were resuspended 

in 20µl CD14 MicroBeads and 80µl MACS buffer (PBS pH7.2, 0.5% BSA, 2mM EDTA) 

(Miltenyi Biotec 130-050-201, Bergisch Galdbach, Germany).  Following 15 min incubation at 

4˚, cells were washed and isolated via positive selection columns per manufacturer’s instructions 

(LS columns: #130-042-401, MiniMACS separator kit: #130-090-312, Miltenyi Biotec, Bergisch 

Galdbach, Germany).  Collected CD14+ cells were plated in α-MEM (Sigma M0894, St. Louis, 

MO, USA) containing 10% FBS (Gibco, Grand Island, NY, USA), 100 IU/ml 

penicillin/streptomycin, 40 ng/ml hMCSF (BioLegend 574806, San Diego, CA) and 100ng/ml 

RANKL for osteoclastogenesis. 
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Induced osteolysis 
 
2 month old ctrl and Mfn2 cKO animals were injected intraparitoneally (IP) with 1mg/kg body 

weight GST-RANKL twice, 24 hrs apart, as previously published (Shashkova et al., 2016).  50 

hrs after the first injection, animals were sacrificed. 

 
Statistics 
 
Two-way ANOVA with Tukey’s multiple comparisons and student’s unpaired t-tests with 

Welch’s correction were performed with GraphPad Prism built-in statistical analysis (GraphPad 

Software, Inc., La Jolla, CA, USA).  All data are represented as mean ± standard deviation with 

3+ biological replicates.  P values are designated at *p<0.05, **p<0.01, ***p<0.001. 
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Results 
 
Bone mass is increased in female mice lacking Mfn1 and Mfn2 in the OC lineage  
 

Because OCs are rich in mitochondria, we expected that disrupting mitochondrial 

dynamics in these cells would manifest in global changes in bone mass.  We used LysM-cre to 

target OC precursors to delete Mfn1 and Mfn2.  Double heterozygous (LysMc/c; (Mfn1/2)fl/+ = 

ctrl) and double knockout (LysMc/c; (Mfn1/2)fl/fl = dcKO) pups were born at normal Mendelian 

ratios.  In parallel, double heterozygous ctrl mice were bred to cre-only (LysMc/c;(Mfn1/2)+/+) 

mice to generate a cohort of ctrl and cre-only littermates.   

Male and female animals were sacrificed at 2 months of age, a time of high OC activity.  

Basal bone morphology was assessed by µCT of dissected femurs.  We find a strong phenotype 

in female animals at this age, with all trabecular and cortical parameters consistent with a high 

bone mass (significantly increased BV/TV, BMD, Tb. Th., Tb. N., Cort. Th., TMD, and 

decreased Tb. Sp.) (Fig. 2.1 A-B, Fig. 2.2 A-D).  Interestingly, males show no significant 

differences between ctrl and dcKO groups (Fig 2.1 C-D)(Fig. 2.3 A-D).  Ctrl and dcKO mice 

were undistinguishable by eye, and weights between groups were identical (Fig 2.2 E, Fig 2.3 E).  

These data suggest that in females, mitochondrial dynamics mediated by MFN1 and MFN2 

activity contribute to OC formation and/or activity.  Further, bone parameters were not 

significantly different between cre-only and ctrl double heterozygous mice at the same age, 

indicating that loss of one allele of each mitofusin does not negatively affect the OC of either sex 

in vivo (Fig. 2.2 F-L, Fig 2.3 F-L).  

Serum CTX-1 levels were decreased in female dcKOs compared to ctrls, indicating an 

impairment of OC activity (Fig. 2.4 A).  Histomorphometry was undertaken for these same 

animals to determine whether OC abundance was altered by the double knockout of Mfn1 and 
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Mfn2 by LysM-cre.  Although not statistically significant, the dcKO OC surface and OC number 

per bone surface trend lower than ctrls (Fig 2.4 B-C).  Bone accrual in this cohort was assessed 

first by serum P1NP.  These levels remained unchanged, suggesting a decrease in bone 

catabolism alongside no change in bone anabolism for the dcKOs (Fig 2.4 D).  Consistently, OB 

activity is unchanged between ctrl and dcKO samples, as measured by dynamic 

histomorphometry for MS/BS, MAR, and BFR/BS (Fig. 2.4 E-G). Taken together, these data 

suggest that in female mice, blunted OC activity in the dcKOs is partly explained by decreases in 

OC presence.  However, OB-OC coupling is not affected because P1NP, MS/BS, MAR, and 

BFR/BS are unchanged between groups. 

Taken together, these data suggest that in female mice, loss of mitofusin activity in the 

OC lineage disrupts the ability of OCs to form, and as a consequence, resorption is depressed 

without affecting OB-OC coupling.  

 
Ostoclastogenesis is inhibited in Mfn1/2 –deficient BMMs 
 

To more closely characterize the impact of mitofusin loss in the OC lineage, BMMs were 

expanded from the bone marrow of ctrl and dcKO 2 month old female mice, in which mitofusin 

protein and RNA expression is decreased (Fig. 2.5).  Treating BMMs with RANKL for up to 5 

days to differentiate cells to OCs revealed osteoclastogenesis is defective in dcKO cultures 

compared to ctrls, leading to an inability of these cells to resorb bone (Fig 2.6 A-B).  

Consistently, qPCR expression of Nfatc1, DC-Stamp, and CatK are repressed in dcKOs 

throughout 5 days of differentiation (Fig 2.6 C-E).  We posit that this defect in 

osteoclastogenesis is the primary mechanism for increased bone mass observed in dcKO female 

animals.  
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As in other cell types loss of mitofusin activity is associated with decreased oxygen 

consumption, we analyzed female BMM and pre-OCs via Seahorse analysis.  Contrary to our 

expectations, no clear trends in oxygen consumption rate were discerned between genotypes in 

BMM or OC samples (Fig. 2.7).  However, high variability among replicates in this preliminary 

assay does not allow us to make a definitive conclusion, and additional samples will be evaluated 

in the future.  

We sought to determine whether MFN1 or MFN2 was dominant in contributing to the 

dcKO phenotype.  Expression of both homologs by protein and gene expression increases as 

osteoclastogenesis progresses in culture, though MFN2 to a slightly higher degree (Fig. 2.8 A-

B).   Next we attempted to rescue the dcKO osteoclastogenesis phenotype by retrovirally 

expressing either Mfn1 or Mfn2 in BMMs.  We found that addition of Mfn2 to the dcKO cells 

rescues osteoclastogenesis while Mfn1 does not, suggesting that MFN2 is the dominant mitofusin 

homolog responsible for OC differentiation (Fig 2.2 C-E).   

To further assess the difference between loss of Mfn1 or Mfn2 alone, we generated single 

knockout colonies.  We generated a Mfn1 cohort to assess bone parameters in cre-only and Mfn1 

cKO littermates (LysMc/c; Mfn1+/+ and LysMc/c; Mfn1fl/fl, respectively).  Pups were aged to 2 

months and femurs collected for µCT analysis.  We find no differences in trabecular or cortical 

parameters in males or females at this age (Fig. 2.9).  Paired with the inability of Mfn1 to rescue 

dcKO osteoclastogenesis, lack of a phenotype in this cohort prompted us to discontinue further 

study of the single Mfn1 cKOs.  

 
Stress by aging and stimulated osteolysis reveals a Mfn2 cKO phenotype in vivo 
 

To investigate whether loss of Mfn2 alone would have an effect on the OC lineage in 

vivo, we generated cohorts of Cre-only and Mfn2 cKO littermates (LysMc/c; Mfn2+/+ and LysMc/c; 
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Mfn2fl/fl, respectively).  At 2 months of age, no differences were observed in femurs of female or 

male cre-only compared to Mfn2 cKOs by mCT (Fig. 2.10 A-B).  Female bones were analyzed 

by historphometry and while no difference was observed between BV/TV, Oc.S/BS and 

OcN./BS both trend downward in Mfn2 cKO compared to cre-only bones (Fig. 2.11).   

Our group has previously observed that challenging animals with pathological bone loss 

can produce robust OC phenotype even when basal changes are not present (Anginot et al., 2007; 

Novack et al., 2003; Vaira et al., 2008; Wu et al., 2007).  Therefore, we hypothesized this may be 

the case for Mfn2 cKO animals, and explored the consequences of two models of physiological 

stress in our cohort.  First, we aged male and female Mfn2 cre-only and cKO mice to 4 and 12 

months of age, and assessed femoral trabecular and cortical bone parameters by µCT after 

sacrifice.  While we observed no differences in bone parameters in either sex at 4 months when 

mice exhibit peak bone mass, female Mfn2 cKOs have significantly increased trabecular bone 

mass compared to cre-only animals at 12 months of age (n=9-17/group).  Hence, in females, loss 

of MFN2 alone in the OC lineage impacts bone resorption with aging, as the percent trabecular 

bone retained from 4 months at 12 months is for 24% for ctrls and 46% for cKOs (64% and 63% 

in males, respectively) (Fig. 2.10 C-F).  Holistically, in females, most trabecular and cortical 

parameters trend upwards in the Mfn2 cKOs, even at 2 months of age.  Because no such trends 

are apparent in males, we suggest that our phenotype is sex-specific (Fig. 2.12). 

Next, we induced osteolysis to evaluate how OCs lacking MFN2 function when 

stimulated.  2-month-old male and female control and cKO mice were challenged with 

intraperitoneal RANKL injection, a model that stimulates OC activity and induces between 30-

50% loss in trabecular bone mass in 2 days (Fig. 2.13).  Male controls, male cKOs, and female 

controls lost significant amounts of bone, 30-45%, following RANKL injection.  Female cKOs 
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were protected from induced osteolysis, as they only appear to lose a small, but statistically 

insignificant, amount of bone following treatment (Fig. 2.14-2.15).  Thus, MFN2 is required for 

the response of female, but not male, OCs to an acute osteolytic stimulus.  The same result is 

seen for stress by aging, suggesting the presence of MFN2 promotes the ability of female OCs to 

resorb bone.  

 
 

Loss of Mfn2 alone in the OC lineage does not reproducibly affect OC formation or function in 
vitro 
 

To probe whether loss of MFN2 impacts osteoclastogenesis in vitro, nearly 30 pairs of 

cre-only and Mfn2 cKO BMMs were treated with RANKL.  We find that a defect in 

differentiation occurs frequently in cells harvested from 12 month old animals but less so in 

those from 2 month old mice (Fig. 2.16, 2.17 A-B).  Although TRAP expression levels by RNA 

are not different between cre-only and Mfn2 cKO differentiating OCs from 2 month old animals, 

day 4 OCs from female cKOs have significantly lower Nfatc1 expression than cre-only OCs 

(Fig. 2.17 C-F).  However, when these cells are grown on bone slices, no differences are seen 

between bone resorption at normoxia or low oxygen conditions (Fig. 2.18 A-B).  Oxygen 

consumption rates are also identical between BMMs and OCs of either group (Fig. 2.18 C-F). 

Despite an inconsistent defect in osteoclastogenesis between cre-only and Mfn2 cKO 

cells, Mfn2 cKO pre-OCs exhibit altered mitochondria network morphology compared to cre-

only pre-OCs by MitoTracker green staining.  The appearance of more punctate mitochondria 

suggests the distance between organelles may be increased when Mfn2 is deleted from the OC 

lineage (Fig. 2.19). 

 
Mfn2 gene expression rises during osteoclastogenesis in humans 
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As all of our studies thus far have been in murine cells, we isolated CD14+ monocytes 

from the peripheral blood of healthy donors and exposed cells to RANKL in vitro.  In assaying 

Mfn2 expression in differentiated OCs we find modest increases from M-CSF-treated monocytes 

to RANKL-treated OCs (Fig. 2.20).  Additional samples will be required to verify whether the 

increase in Mfn2 expression following OC differentiation is reproducible. 
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Discussion 
 

OCs are an incredibly dynamic cell type and during osteoclastogenesis, BMMs go 

through many conformational changes including fusion of pre-OC cells to become mature 

multinucleated OCs.  We theorized that mitochondrial networks in differentiating OCs are 

remodeled and that increased mitochondrial tethering/fusion is required for completion of this 

process.  To test this, we dually knocked out Mfn1 and Mfn2 in the OC lineage by Lysozyme-M 

cre, finding that deletion of both homologs manifests in increased bone mass in 2 month old 

female mice in vivo, which is accompanied by modest decreases in OC numbers and serum 

CTX-1 levels.  Further, BMMs harvested from these animals do not differentiate to OCs in vitro.  

In humans, mutations in Mfn2 are most commonly associated with CMT2A.  With the 

severity of these neurodegenerative phenotypes, it is not surprising that the skeleton has yet to be 

evaluated.  While reduced mobility in these patients likely has adverse effects on the skeleton, 

bone mass has not been evaluated to determine whether any changes that occur or are related to 

lack of weight-bearing activity or altered MFN2 function.  In other cell types, the effect of Mfn1 

vs. Mfn2 knock out are not always identical, but in particular, double knock out of Mfn1 and 

Mfn2 produce more severe phenotypes than single knockout of either mitofusin alone.  Of note, 

while cardiac specific conditional knockout of Mfn1 or Mfn2 alone display minor functional 

deterioration of the heart, double deletion of Mfn1 and Mfn2 by the same cre-driver provokes 

lethal cardiomyopathy (Chen et al., 2011; Papanicolaou et al., 2011; 2012a; 2012b).  As a similar 

situation is observed in skeletal muscle with a higher degree of muscle atrophy with double 

compared to single mitofusin knockouts, we expected to observe a similar trend in the bone 

(Chen et al., 2010).  Like the heart and skeletal muscle, OCs are rich in mitochondria, and in 

female animals, we make a comparable observation that double knockout of Mfn1 and Mfn2 in 
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OC precursors halts osteoclastogenesis and ultimately begets increases in bone mass.  Although 

deletion of Mfn2 alone had no effect on young cohorts basally, the loss of Mfn2 in the female OC 

lineage becomes protective against trabecular bone loss with age and induced osteolysis in vivo.  

This is not uncommon in OC biology, as our group and others have demonstrated that despite 

certain models having undetectable changes in OC activity under basal conditions, challenge by 

stress and pathological bone loss produces robust OC phenotypes (Anginot et al., 2007; Novack 

et al., 2003; Vaira et al., 2008; Wu et al., 2007). 

To our knowledge, this is the first evaluation of mitofusin function in the OC lineage, and 

expands our understanding of how these genes contribute to the formation of this specialized cell 

type.  Our data highlights the fact that we can no longer discount the importance of the elongated 

organelles observed in human OCs by TEM and anti-mitochondria antibodies (Lemma et al., 

2016).  This functional necessity of mitochondrial fusion is likely beneficial for proper OC 

function as fused mitochondria in other models have been shown to prevent autophagy and allow 

ATP production to be optimized due to increased cristae density favoring ATPase 

oligomerization (Gomes et al., 2011; Rambold et al., 2011).  While we did not observe 

differences between oxygen consumption in ctrl compared to dcKO cells, we confirm that OCs 

have higher oxygen consumption rates compared to BMMs, as we and others have previously 

documented (Czupalla et al., 2005; Kim et al., 2007; Zeng et al., 2015).   

Although we find that MFN2 alone is able to rescue the osteoclastogenesis phenotype in 

dcKO cells, an OC differentiation defect is not consistently affected with loss of MFN2 alone in 

the OC lineage.  With functional MFN1 in the system in vitro cells derived from bone marrow of 

2 month old animals maintain the ability to resorb bone and respire, indicating a compensation 

effect by MFN2.  The mitochondria in these cells, however, take on a striking network 
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appearance in which mitotracker signal is highly aggregated.  This could indicate that 

mitochondrial architecture is impacted but not to a level that produces a functional response. 
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Figures and tables 
 
 

 

Figure 2.1:  Trabecular and cortical bone is increased in 2 month old female mice lacking 
Mfn1 and Mfn2 in the OC lineage 

Female BV/TV (A) and Cort. Th. (B) is significantly elevated in dcKOs compared to ctrls by 
µCT of femurs.  Representative reconstructions of analyzed regions below the growth plate and 
mid-shaft are shown, scale=200µm.  C-D).  males as in A-B.  **p<0.01, unpaired t-test with 
Welch’s correction. 
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Figure 2.2: µCT analysis of ctrl, dcKO, and cre-only female cohorts 

Additional analyses between ctrl and dcKO females at 2 months for BMD (A), Tb.N. (B), Tb.Th. 
(C), Tb.Sp. (D) and weight (E).  Identical analyses were undertaken for cre-only and ctrl 
littermates with weight (F), BV/TV (G), BMD (H), Cort.Th. (I), Tb.N. (J), Tb.Th. (K), and 
Tb.Sp. (L). **p<0.01, ***p<0.001, unpaired t-test with Welch’s correction. 
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Figure 2.3: µCT analysis of ctrl, dcKO, and cre-only male cohorts 

Additional analyses between ctrl and dcKO males at 2 months for BMD (A), Tb.N. (B), Tb.Th. 
(C), Tb.Sp. (D) and weight (E).  Identical analyses were undertaken for cre-only and ctrl 
littermates with weight (F), BV/TV (G), BMD (H), Cort.Th. (I), Tb.N. (J), Tb.Th. (K), and 
Tb.Sp. (L). *p<0.05, unpaired t-test with Welch’s correction. 
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Figure 2.4: Female Mfn1/2 dcKOs have decreased OC numbers and activity, but no change 
in bone formation  

Bone turnover in 2 month old females was assessed with serum CTX-1 (A), and 
histomorphometry of TRAP-stained tibiae for OC.S/BS (B) and OC.N/BS (C).  Bone accrual 
was assessed with serum P1NP (D), and dynamic histomorphometric analysis of unstained tibiae 
for MS/BS (E), MAR (F), and BFR/BS (G). *p<0.05, one-tailed unpaired t-test with Welch’s 
correction. 
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Figure 2.5: Confirmation of Mfn1 and Mfn2 knockdown by western blot and qPCR 

A). Protein harvested from OCs derived harvested from ctrl and cKO animals are blotted against 
Mfn1 and Mfn2, and expression by qPCR is shown in (B-C). Loading controls = actin (A), B2M 
(B-C), *p<0.05, unpaired t-test with Welch’s correction.   
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Figure 2.6: Osteoclastogenesis is defective in BMMs derived from dcKO bone marrow. 

 
BMMs cultured with RANKL for 5 days allow OC formation in ctrls but not in dcKOs (A), and 
bone resorption is congruently inhibited in dcKOs (B).  Representative images are displayed 
(scale = 400µm in A, 200µm in B).  OC markers NFATc1 (C), DC-Stamp (D), and CatK (E) are 
blunted in dcKOs throughout 5 days of osteoclastogenesis.  *p<0.05, ***p,0.001, ****p<0.0001, 
unpaired t-test with Welch’s correction. 
 
  



	 45	

 

 
Figure 2.7: Oxygen consumption rates in BMMs and OCs are not disrupted by loss of 
Mfn1 and Mfn2  

Oxygen consumption rates of ctrl and dcKO were assessed in BMM (A) and OC (B) cultures by 
Seahorse analysis, n=3 biological replicates/group. 
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Figure 2.8: Though both homologs increase during OC formation, addition of Mfn2 alone 
drives osteoclastogenesis in vitro 

A). Timecourse though 6 days of osteoclastogenesis in wild type BMMs shows increases of 
Mfn1 and Mfn2 expression by protein (A) and RNA (B).  C.)  pMX-Vector, V, pMX-Mfn1, 
Mfn1, and pMX-Mfn2, Mfn2, were retrovirally transduced into dcKO BMMs.  D). Enumeration 
of TRAP+ OCs staining following RANKL treatment of dcKO BMMs transduced with V, Mfn1, 
or Mfn2, indicates Mfn2 but not Mfn1 alone enables OC formation, scale=400µm.  
Representative TRAP-staining images are shown in (E).  *p<0.05, **p<0.01, ****p<0.0001, 
Two-way and one-way ANOVA with multiple comparisons in A and C, respectively.  
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Figure 2.9: Bone mass of 2 month old mice is not altered when Mfn1 is lost in the OC 
lineage 

Femoral µCT analysis of 2 month old female mice reveals no difference between cre-only and 
Mfn1 cKOs for BV/TV (A) BMD (B), Cort. Th. (C), Tb.N. (D), Tb.Th. (E), and Tb.Sp. (F). 
Further, no differences in males are seen by BV/TV (G) BMD (H), Cort. Th. (I), Tb.N. (J), 
Tb.Th. (K), and Tb.Sp. (L). ns=no significance, unpaired t-test with Welch’s correction. 
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Figure 2.10: Female mice lacking Mfn2 alone in the OC lineage are protected from bone 
loss with age  

Femurs from male and female cre-only and Mfn2 cKO mice were analyzed by µCT at 2 months 
(A-B), 4 months (C-D), and 12 months (E-F).  *p<0.05, **p<0.01, unpaired t-test with Welch’s 
correction.  
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Figure 2.11: Osteoclast presence trends downward in 2 month old females lacking Mfn2 in 
the OC lineage  

TRAP stained sagittal tibial sections from 2 month old female mice were analyzed via 
histomorphometry for BV/TV (A), Oc.S/BS (B), and Oc.N./BS (C).p-values are indicated, one-
tailed t-test with Welch’s correction. 
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Figure 2.12: µCT analysis of cre-only and Mfn2 cKO female and male cohorts 

Additional analyses between cre-only and Mfn2 cKO females at 2 months for BMD (A), Tb.N. 
(B), Tb.Th. (C), Tb.Sp. (D) and Cort.Th. (E).  Identical analyses were undertaken for females at 
4 months (F-J), females at 12 months (K-O), males at 2 months (P-T), males at 4 months (U-Y), 
and males at 12 months (Z-DD). *p<0.05, unpaired t-test with Welch’s correction. 
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Figure 2.13: acute osteolysis model 

A). Schematic of protocol with VivaCT scan one day prior to first RANKL injection.  A second 
RANKL injection is administered 24 hrs after the first, and mice are sacrificed 50 hours after the 
first injection.  B).  Pilot B6 animals were scanned pre- and post-treatment, and lose trabecular 
bone volume. *p>0.05, unpaired t-test with Welch’s correction. 
  



	 52	

 

 

Figure 2.14: Female mice lacking Mfn2 in the OC lineage are protected from acute 
osteolysis 

A model of acute bone loss by RANKL injection performed on 2 month old cre-only and Mfn2 
cKO mice induces significant bone loss in all males, cre-only females, but not Mfn2 cKO 
females (A-B).  C). Representative post-RANKL µCT reconstructions from A-B, scale=200µm.  
*p<0.05, **p<0.01, ordinary two-way ANOVA with multiple comparisons. 
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Figure 2.15: µCT analysis of induced osteolysis in female and male cohorts 

Additional analyses between cre-only and Mfn2 cKO females with no treatment or acute 
RANKL challenge for BMD (A), Cort.Th. (B), Trab.N. (C), Trab.Th. (D), and Trab.Sp. (E).  
Identical analyses for males are shown in F-J.  *p<0.05, **p<0.01, ordinary two-way ANOVA 
with multiple comparisons. 
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Figure 2.16: Confirmation of Mfn2 knockdown by western blot and qPCR 

A). Protein harvested from OCs derived from cre-only and Mfn2 cKO animals are blotted 
against Mfn2, and expression by qPCR is shown in (B). *p<0.05, unpaired t-test with Welch’s 
correction.   
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Figure 2.17: Loss of Mfn2 in the OC lineage does not consistently impede osteoclastogenesis 
by TRAP and gene expression   

A).  Representation of experiment yielding defect in OC formation when Mfn2 is deleted in the 
OC lineage and percentage of this phenotype occurring in samples derived from bone marrow of 
2 and 12 month old animals.  B).  Representation of experiment yielding no defect in OC 
formation when Mfn2 is deleted in the OC lineage and percentage of this phenotype occurring in 
samples derived from bone marrow of 2 and 12 month old animals.  In differentiating OCs from 
2 month old bone marrow Nfatc1 (C-D) and TRAP (E-F) expression are assessed by qPCR (n=4 
biological replicates per group), *p<0.05, two-way ANOVA.  
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Figure 2.18: Lack of Mfn2 in the OC lineage does not affect bone resorption or oxygen 
consumption. 

Pit staining after cre-only and Mfn2 cKO BMMs were differentiated on bovine bone slices in 
20% O2 (A) or 5% O2 (B).  Female BMMs (C) and OCs (D) were analyzed by Seahorse analysis.  
Males in E-F. 
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Figure 2.19: Pre-OCs lacking Mfn2 display altered mitochondrial networks compared to 
cre-only pre-OCs 

BMMs from cre-only and Mfn2 cKO mice were differentiated with RANKL and stained with 
Mitotracker Green to illuminate mitochondria.  Image are 100X. 
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Figure 2.20: Mfn2 expression increases from human monocytes to OCs in vitro. 

A).  CD14+ cells isolated from human peripheral blood differentiated to mature OCs are shown 
via brightfield microscopy at 4X  B). Mfn2 expression was assayed by qPCR in two patient 
samples and is increased in RANKL-treated OCs compared to CD14+ precursors. 
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Chapter 3 –  
Tethering function of Mfn2 is required for osteoclastogenesis in vitro 
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Introduction 
 

In this chapter, we aimed to determine which function of MFN2 is responsible for 

promoting osteoclastogenesis.  One function of MFN2 is to promote tethering of mitochondria to 

mitochondria and mitochondria to the ER, leading to mitochondrial fusion and altered signaling 

such as Ca2+, respectively.  The other function of the protein is to stimulate PINK1/PARKIN 

signaling to remove defective organelles via mitophagy.  In non-OC-forming Mfn1/2 dcKO 

BMMs, we overexpress mutants that selectively disable tethering (Mfn2-EE) or mitophagy 

(Mfn2-AA).  We show that in this cell lineage, tethering/fusion by MFN2 is required for OC 

differentiation.  Because Ca2+-dependent Nfatc1 levels are decreased in our Mfn2 cKO cells, 

further experiments are undertaken to begin probing whether MFN2-mitochondria tethering and 

subsequent Ca2+ signaling plays a role in our system.  While work in this area is still ongoing, we 

are confident that the specific role of MFN2 is crucial and possibly unique in the OC compared 

to other cell types.  We are determined to elucidate this mechanism in future studies beyond the 

scope of this dissertation.    
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Materials and methods 
 
Retroviral overexpression 
 
Mfn2-WT, Mfn2-EE, and Mfn2-AA were gifts from Gerald Dorn II, M.D. (Washington 

University in St. Louis).  Each gene was cloned into the pMX retroviral vector and transfected 

into Platinum-E (platE) cells by calcium phosphate precipitation (Morita et al., 2000; Zou et al., 

2012).  PlatE supernatant was harvested 48 and 72 hrs post-transfection, filtered through 0.45µm 

and added to BMMs with α-MEM, 10% FBS, and 100 IU/ml Penicillin/Streptomycin, 1:10 

CMG, and 8µg/ml polybrene (Sigma H9268, St. Louis, MO, USA) on 2 consecutive days.  24 

hrs following the final viral addition, 1µg/ml blasticidin (Sigma 203350, St. Louis, MO, USA) 

was added to select for infected BMMs.  Retroviral NFATc1-WT and NFATc1-CA were 

acquired from Addgene (plasmid #11101 and #11102, respectively, Watertown, MA, 

USA)(Monticelli and Rao, 2002). 

 
Mitotracker staining 
 
BMMs were seeded at 100,000 cells/well in 24-well plates containing circular coverglass 

(FisherScientific 12-545-81, Hampton, NH), and differentiated with 30ng/ml RANKL.  Prior to 

fixation, cells were washed once with PBS and stained with 100nM Mitotracker Deep Red FM 

per product instructions (Molecular Probes M22426, Eugene, OR).  Wells were then fixed with 

4% paraformaydehyde for 10 min, and coverglass adhered to slides with ProLong Diamond 

Antifade Mountant with DAPI P36962 (Invitrogen, Carlsbad, CA).  Slides were imaged using a 

Zeiss LSM 880 Confocal with Airyscan with 63x magnification and optical zoom of 1.8 at the 

Washington University Center for Cellular Imaging (WUCCI).  WUCCI imaging was supported 

by the Washington University School of Medicine, The Children’s Discovery Institute of 
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Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505) and the 

Foundation for Barnes-Jewish Hospital (3770). 

 

Ca2+ Oscillations 

BMMs seeded on 29 mm glass bottom dish at a density of 300,000 cells/dish, and exposed to 

30ng/ml RANKL for 2 days.  Dishes were washed in 1X HBSS containing 1 mM Mg2+ and 2 

mM Ca2+, then stained with the same buffer and 2µM Fura-2 AM and 10 ng/ml hMCSF for 30 

min at 37˚C (Life Technologies F-1221, Carlsbad, CA, USA; BioLegend 574806, San Diego, 

CA, USA).  Following three washes with 1X HBSS containing 1 mM Mg2+, cells were kept in 

this buffer with additional 10ng/ml hMCSF.  Ratiometric Ca2+ was performed with a Till 

Photonics digital microscope at the Center for Investigation of Membrane Excitability Diseases 

(CIMED) Live Cell Imaging Core (Washington University in St. Louis).  100uM and 2 mM 

CaCl2 were added following baseline collection to induce increases in cytosolic Ca2+ when data 

is presented as 240/380 ratios. 
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Results 
 

 
Mitochondrial tethering is the dominant Mfn2 mechanism contributing to osteoclastogenesis in 
vitro 
 

MFN2 has two main molecular functions – tethering and mitophagy – that can be 

selectively disabled via mutation to examine the ability of either to impact OCs.  As we 

consistently observe a decrease in osteoclastogenesis in cells derived from female dcKO bone 

marrow, we infected these BMMs with each of the following retroviral constructs:  Vector, 

Mfn2-WT, Mfn2-EE (T11E-S442E; defective tethering due to spontaneous mitophagy without a 

fusion signal), and Mfn2-AA (T111A-S442A; defective mitophagy without impacting 

fusion)(Gong et al., 2015).  Cultures were stained for TRAP as OC differentiation progressed.  

We find that transduction of dcKO BMMs with Mfn2-AA restores osteoclastogenesis to a 

comparable level as Mfn2-WT, indicating that the mitophagy function of MFN2 is dispensable 

for osteoclastogenesis.  In contrast, transduction with Mfn2-EE has only a modest effect on 

osteoclastogenesis, suggesting that tethering is necessary for osteoclastogenesis to occur (Fig. 

3.1).  When assessing mitochondrial networks by Mitotracker Red staining, however, gross 

differences between staining in Mfn2-EE and Mfn2-AA are not observed.  Here, mitochondria 

display a rather intermediate phenotype between densely aggregated mitochondria in Vector 

cells and uniformly organized organelles in Mfn2-WT cells (Fig. 3.2).  This implies fusion of 

mitochondria partially accounts for MFN2 support of osteoclastogenesis, and that tethering may 

play a greater role.   
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Tethering defect does not impact Nfatc1 through a mitochondrial calcium buffering mechanism 
 

Because tethering of MFN2 promotes mitochondria-mitochondria interactions as well as 

mitochondria-ER interactions, we hypothesized that ER-mitochondria proximity is important for 

OC formation, as this is an exclusive function of MFN2 that MFN1 does not share.  This appears 

plausible because oscillation in cytosolic Ca2+ is known to regulate Nfatc1 induction, and we 

detect significantly decreased Nfatc1 levels in OCs from Mfn2 cKO and Mfn1/2 dcKO compared 

to cre-only and ctrls, respectively (Fig. 2.6 and Fig. 2.17) (Hogan et al., 2003; Kim et al., 2013).  

Previously, we tried to rescue the osteoclastogenesis defect seen in Mfn2 cKO BMMs derived 

from 12 month old animals by overexpressing Nfatc1.  Irrespective of RANKL dose used, TRAP 

staining of Mfn2 cKO cells treated with Nfatc1 was identical to those infected with the vector 

control (Fig. 3.3).  This result, however, did not exclude the possibility that NFATc1 localization 

the nucleus was impaired. 

To assess whether Ca2+-dependent regulation of NFATc1 targeting to the nucleus was 

impacted by Mfn2 loss in BMMs, dcKO BMMs were infected with wild type (WT) or 

constitutively active (CA) forms of Nfatc1 and treated with RANKL.  In two independent 

experiments pilot experiments, while no striking differences between WT and CA are seen, we 

cannot discount the observation that CA OCs counts per well are elevated compared to WT (Fig. 

3.4).  Lack of effect could be attributed to the fact that lack of a mammalian selection gene in 

these vectors did not allow elimination of uninfected BMMs prior to addition of RANKL.  We 

are currently working to clone these genes into a selectable vector as well as collect protein for 

NFATc1 western blot to definitively conclude the effect of WT vs. CA Nfatc1 in our in vitro 

system.  
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To further explore Ca2+ signaling in the model, cytosolic Ca2+ was measured via 

ratiometric imaging in one pilot experiment.  Here, although ctrl pre-OCs may appear to have 

higher amplitude in oscillations, we cannot claim any definitive differences are consistent seen 

between groups (Fig. 3.5).  We note that this is one trial, and due to difficulty placing ATP and 

Ca2+ stimuli directly in the line of the camera, another trial of this experiment is needed before 

ruling out the possibility of differing Ca2+ handling when mitofusins are deleted in the OC 

lineage. 

In another effort to examine wither Mfn2-directed mitochondrial tethering to the ER is 

responsible for decreased osteoclastogenesis in our dcKO cells, two additional retroviral Mfn2 

mutants were constructed.  First, an Italian group recently identified a substitution mutation in 

MFN2, K416R, that disrupts the mitochondria-ER distance and mitochondrial Ca2+ uptake 

(Basso et al., 2018).  However, this study does not explicitly assess whether mitochondrial fusion 

is disrupted with MFN2 K416R mutation, though we infer from seemingly networked images 

that mitochondria-mitochondria tethering and subsequent fusion is not affected in this model.  

Nevertheless, lack of such specific information means our osteoclastogenesis results to be 

interpreted with caution.  We cloned this mutant and overexpressed it in dcKO BMMs via 

retroviral infection.  No differences in OC formation are seen between cells with overexpressed 

Mfn2-WT and Mfn2-K416R in our standard OC formation assay (Fig. 3.6).  Here, these results 

suggest that impaired ER-mitochondria tethering by MFN2 in the OC may not be the mechanism 

sole mechanism that drives OC formation.  

Second, in vitro assays using Mfn2-F223L mutation in MEFs revealed that this mutant 

has normal ability of mitochondria to tether into dimers, but have impaired homotypic fusion of 

Mfn2-F223L to Mfn2-F223L mitochondria, even when Mfn1-WT is present in the system, due 
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to a potential defect in GTP hydrolysis disallowing nucleotide-dependent self-assembly of the 

MFN2 molecules (Daumke and Roux, 2017; Engelhart and Hoppins, 2019).  Though it is not 

clear whether this applies to MFN2 on the ER membrane, the data suggest that association of 

Mfn2-F223L proteins is not affected.  Retroviral overexpression of Mfn2-F223L in dcKO 

BMMs does not promote osteoclastogenesis, indicating that solely tethering but not fusion of 

MFN2 may be dispensable in the OC lineage (Fig. 3.7). 
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Discussion 
 

We sought to determine the mechanism through which mitofusin activity contributes to 

OC formation.  Because we see that high bone mass phenotypes in knockouts compared to 

littermate controls in our animal models are more pronounced in Mfn1/2 dcKOs than Mfn1 or 

Mfn2 cKOs, this could suggest that the effect on the OC lineage is solely an effect of mitofusin 

dose.  Here, loss of one homolog could be compensated for by the presence of the other in single 

Mfn1 and Mfn2 cKO animals.  This does not, however, explain why overexpression of Mfn2 but 

not Mfn1 rescues osteoclast formation in vitro.  We therefore postulated that MFN2 contributes 

in a way that MFN1 cannot. MFN2-specific functions include initiation of mitophagy, following 

phosphorylation of MFN2 by PINK, and regulation of mitochondrial-ER interactions, a 

consequence of tethering. Our demonstration that overexpressing Mfn2-AA (defective 

mitophagy) but not Mfn2-EE (defective fusion) rescues osteoclastogenesis pointed us toward 

mitochondria-ER interactions as a possible mechanism. 

MFN2 is present not only on the outer mitochondrial membrane, but on the ER 

membrane, facing the cytoplasm.  Interactions between ER-located MFN2 with mitofusins on 

mitochondria control the proximity of these two organelles (Filadi et al., 2018b).  Mitochondrial 

tethering to the ER by MFN2 is known to specifically regulate cellular functions such as Ca2+ 

signaling and the ER stress response (reviewed in (Filadi et al., 2018a; van Vliet and Agostinis, 

2018).  Studies using Mfn2 knockdown cells have revealed that loss of Mfn2 is associated with 

increased distance between the mitochondria and ER as well as impaired mitochondrial Ca2+ 

uptake, which hinders calcineurin and apoptosis pathways (de Brito and Scorrano, 2008; 

Karbowski et al., 2006; Kasahara et al., 2013; Naon et al., 2016).  Here, because the decreased 

Nfatc1 levels we observe in Mfn1/2 dcKO and Mfn2 cKO OCs in vitro directly implicate Ca2+ 
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signaling in our cultures, we postulate that changes in Ca2+ may be the link to decreased OC 

formation in our model.  Although Ca2+ oscillations in ctrl and dcKO cells were not grossly 

different in a pilot experiment of n=1/group and overexpression of Nfatc1-CA did not wholly 

imprive osteoclastogenesis over Nfatc1-WT in mitofusin-deficient dcKO BMMs, future studies 

in the laboratory will probe these with additional rigor.  This will include measuring changes in 

mitochondrial Ca2+ in addition to cytosolic Ca2+ when Mfn2 presence is altered, and repeating 

rescue experiments using selectable Nfatc1-WT and Nfatc1-CA vectors.  

Our in vitro investigation of MFN2 mutations K416R and F223L could naively imply 

that tethering of adjacent MFN2 molecules either between neighboring mitochondria or 

mitochondria and the ER is not necessary for OC differentiation.  Here, disabling ER-

mitochondria tethering with K416R did not inhibit osteoclast formation, and disabling fusion 

while leaving tethering intact with F223L produced no OCs.  Accepting these data would prompt 

us to conclude that fusion between mitochondria is the primary mechanism through which 

mitofusins support osteoclastogenesis, at least in culture.  This simplistic interpretation however 

does not consider the fact that both of these mutants were primarily evaluated by others solely in 

MEF cells and in purified mitochondrial fractions lacking a native cell environment.  Mutants 

could plausibly behave differently in the context of a differentiating OC and more work is 

needed to further probe the effect of these substitution mutations.   
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Figures and tables 
 

 
Figure 3.1: Restoration of Mfn2 tethering function restores osteoclastogenesis in dcKO 
BMMs 

A).  dcKO BMMs were transduced with retroviral pMX-Vector, V, tethering-defective mutant 
pMX-Mfn2-EE, EE, and mitophagy defective pMX-Mfn2-AA, and Mfn2 protein detected via 
western blot.  B). While Mfn2-EE allows mitophagy, Mfn2-AA allows tethering/fusion.  C). 
Cultures were TRAP-stained following 6 days of RANKL exposure.  OC numbers are quantified 
in D.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ordinary one-way ANOVA.    
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Figure 3.2: Mitochondrial fusion is modestly altered with overexpression of Mfn2 mutants 
in vitro  

Following transduction pMX-Vector, V, pMX-Mfn2-WT, WT, pMX-Mfn2-T111EE-S442E, EE, 
and pMX-Mfn2- T111A-S442A, AA, into dcKO BMMs and treated with RANKL, pre-OCs 
were stained with Dapi and Mitotracker Red.  Mitochondrial networks are illuminated, scale = 
7µm. 
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Figure 3.3: Nfatc1 overexpression does not rescue osteoclastogenesis defect in BMMs 
derived from 12 month old Mfn2 cKO mice 

Cre-only and Mfn2 cKO BMMs harvested from 12 month old animals were infected with empty 
vector or Nfatc1 and cultured with RANKL.  Representative TRAP images are shown over a 
number of days and RANKL doses at 2X. 
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Figure 3.4: Wild type and constitutively active Nfatc1 induce osteoclastogenesis to the same 
degree in dcKO BMMs. 

A).  dcKO BMMs were infected with a retroviral vector, Nfatc1-WT, or Nfatc1-CA, and stained 
for TRAP.  Osteoclast numbers are shown in (B).  Representative images from both trials are 
shown at 2X. 
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Figure 3.5: No differences are seen in basal Ca2+ oscillations between ctrl and dcKO cells 

Female ctrl and dcKO BMMs and OCs were loaded with Fura-2 dye and cytosolic calcium 
measured over time.  Basal represents oscillations prior to ATP or CA2+ stimuli. 
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Figure 3.6: Disabling Mfn2 tethering to the ER does not impact osteoclastogenesis. 

A).  Female dcKO BMMs were retrovirally infected with the overexpression of vector, Mfn2-
WT, or Mfn2-K416R, treated with RANKL, and TRAP stained.  Number of OCs per well are 
plotted in (B).   
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Figure 3.7:  Restoring tethering but not fusion functions of Mfn2 does not support 
osteoclastogenesis. 

A).  Female dcKO BMMs were retrovirally infected with the overexpression of vector, Mfn2-
WT, or Mfn2-F223L, treated with RANKL, and TRAP stained.  Number of OCs per well are 
plotted in (B).   
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Chapter 4 –  
Discussion and future directions 
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Part 1 – Role of mitofusins in the OC lineage 
 

Our data reveals that mitofusin activity is an important component of OC formation in 

vivo and in vitro.  In murine models, dual loss of Mfn1 and Mfn2 causes a high bone mass 

phenotype in female animals, and single loss of Mfn2 offers protection from bone loss with age 

and induced osteolysis in females.  In culture, expression of Mfn2 on a double Mfn1/Mfn2 

knockout background induces osteoclastogenesis to a greater degree than Mfn1.  Further, 

selectively disabling the mitophagy function of MFN2 has no effect on OC formation, but 

osteoclastogenesis is impaired when the tethering ability of MFN2 is ablated.  Therefore, 

because OC differentiation ensues when solely MFN2, but not MFN1, is present, we hypothesize 

MFN2 must have a non-redundant function from MFN1 that allows this to occur.  This could be 

the unique ability of MFN2 to tether mitochondria to the ER, because changes in ER-MFN2 

juxtaposition are known to modulate cytosolic Ca2+ levels (Naon et al., 2016).  In turn, Ca2+ 

modulates translocation of NFATc1 to the nucleus, and our dcKO and Mfn2 cKO have 

decreased Nfatc1 expression (Hogan et al., 2003).  However, our mechanistic studies thus far 

have not been able to confirm or refute the hypothesis that abnormal ER-MFN2 juxtaposition in 

our knockouts alters Ca2+ handling and therefore reduces NFATc1-driven OC differentiation.  

In assessing the effect of Mfn2-K416R and Mfn2-F223L mutations in vitro, preliminary 

experiments suggest that Mfn2 association with the ER does not have an effect on 

osteoclastogenesis, because dcKO cells overexpressing Mfn2-K416R (mutant that disables 

mitochondria-ER tethering) generate mature OCs.  Conversely, and when Mfn2-F223L (mutant 

that allows tethering but inhibits fusion) is added, the ability of BMMs to differentiate to OCs is 

abolished.  It remains unclear, however, in the original studies of these mutants whether Mfn2-

K416R permits mitochondrial fusion or whether the tethering ability of Mfn2-F223L relates to 
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ER-mitochondria relationship in addition to mitochondria-mitochondria interactions.  Answering 

these questions is imperative to fully assess and interpret the effect of these mutants in our 

system.  To begin additional characterization of these mutations, retroviral rescue experiments 

will be repeated in a single Mfn2 cKO background to evaluate whether K416R and F223L 

mutations have different effects when interactions with endogenous MFN1 are allowed.  Future 

exploration will also include study of [Ca2+] in the cytoplasm and mitochondria of pre-OCs with 

varying MFN2 mutations to determine whether changes in mitochondrial juxtaposition to the ER 

with K416R mutation culminates in biologically meaningful changes in signaling on the Ca2+ 

/NFATc1 axis. It could also be the case that decreases in dcKO and Mfn2 cKO Nfatc1 

expression is due to Ca2+-independent mechanisms.  Because changes in Ca2+ oscillations that 

affect NFATc1 might be difficult to detect, EM microscopy can be simultaneously employed to 

precisely measure ER to mitochondria distances in our cells and understand how tethering 

changes by Mfn2 may impact osteoclastogenesis.    

We cannot rule out that Mfn2 activity in vitro may not be indicative of how the protein 

operates in vivo, and that tethering/fusion of MFN2 could alter OC function in addition to or 

instead of OC differentiation when in a biological setting.  In particular, in vitro 

osteoclastogenesis phenotypes are inconsistent between BMMs derived from cre-only and Mfn2 

cKO animals.  We have assessed whether in vivo and in vitro phenotypes are correlated, but 

BMMs derived from high bone mass animals are not consistently defective in OC formation (R. 

Zeng, unpublished observation).  

Critical interpretation could be attained through generating knock-in mice harboring the 

Mfn2-K416R or Mfn2-F223L mutations.  Knock-in of mutations to the Rosa26 locus would 

allow cre-driven induction and overexpression of Mfn2 mutants in OC lineage cells at birth, or 
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genes could be activated or deleted at different stages with incorporation of rtTA or diphtheria 

toxin transgenes, respectively (Belteki et al., 2005; Ivanova et al., 2005).  This would allow 

tighter control of expression during murine development or experimental timelines.  

Alternatively, allowing Mfn2 mutations to be expressed and regulated at physiological levels 

through global CRISPR-mediated point mutations could offer relevant and powerful study of 

disabled ER juxtaposition and tethering by MFN2.  Combining such knock-ins of K416R and 

F223L on a background in which Mfn1 is deleted in the OC lineage might have further potential 

to dissect this specific role of Mfn2 tethering on bone mass.   

Additional options could include crossing cKO or Mfn2 mutation-containing animals 

with those harboring fluorescent mitochondria to further assess changes in mitochondrial 

architecture during osteoclast formation (Pham et al., 2012; Sun et al., 2015).  In particular, 

mitochondrial fusion maybe evaluated in vivo using PhAMexcised animals in which mitochondria 

constitutively express GFP unless exposed to 405 nm laser light where they express RFP.  By 

exposing sub-populations of mitochondria to light, fusion events of green and red organelles may 

be characterized by yellow fluorescence (Pham et al., 2012).  Differentiating BMMs from these 

animals would allow quantification and comparison of fusion events when different Mfn2 

mutants are introduced in vitro. 

An unexplored area in this thesis is additional signaling pathways in which MFN2 is 

involved.  For example, mTOR is reported to be enriched in the mitochondria-associated ER 

membranes (MAM), and its activity is suppressed when bound by the HR1 domain of MFN2 

(Betz et al., 2013; Xu et al., 2017).  This in turn inhibits mTORC2 signaling through PI3K and 

Akt (Xue et al., 2018).  Intriguingly other groups have demonstrated that inhibition of mTOR 

and downstream Akt signaling supports OC formation and survival in animal and cell culture 
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models (Dai et al., 2017; Glantschnig et al., 2003; Sugatani and Hruska, 2005; Tiedemann et al., 

2017).  It is tempting to speculate that without the tethering function of MFN2 linking 

mitochondria to the ER in the OC, the MAM is disrupted and therefore hinder OC differentiation 

via lack of MTORC2 activity. 

Wnt signaling might also have implications in MFN2 activity as our laboratory finds 

increased β-catenin protein levels in OBs with conditional deletion of Mfn2 compared to controls 

(A. Zarei, unpublished observation).  This correlates with increased osteogenesis we see in vitro 

from bone marrow stromal cells lacking Mfn2 and increased mitochondrial activity that others 

have documented (An et al., 2010; Shares et al., 2018).  If β-catenin levels are altered in our OC 

model as well, disruption of β-catenin protein regulation by MFN2 could be detrimental to OC 

formation.  β-catenin decreases OC through direct inhibition of RANKL-induced NF-κB signals 

and Nfatc1 induction in the OC (Kobayashi et al., 2016; Lerner and Ohlsson, 2015; Movérare-

Skrtic et al., 2014; Shares et al., 2018).  Moreover, glycolytic enzyme pyruvate kinase (PKM2) 

was recently shown to interact with MFN2 downstream of mTOR to not only promote 

mitochondrial fusion, but also attenuate glycolysis while stimulating OxPhos (Li et al., 2019).  

We cannot rule out the possibility that inability of MFN2 to associate with PKM2 in the OC 

could singularly disrupt mitochondrial fusion and normal metabolic properties of this cell type.  

Future studies will probe the relationship between MFN2 and MTORc2, β-catenin, and 

PK2M in the OC lineage.  We will start by conducting in vitro timecourse experiments to 

determine how RNA and protein expression of these factors change during osteoclastogenesis in 

BMMs derived from ctrl and dcKO bone marrow.  Anticipating MTORC2, β-catenin, and/or 

PK2M expression will change with MFN2 levels during osteoclastogenesis, we can move 

forward in activating or disabling these components in the presence or absence of Mfn2.  
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Because knockdown of PK2M increases mitochondrial fragmentation, we could also try rescuing 

mitofusin deficiencies with PKM2 overexpression in vitro (Li et al., 2019).  Such experiments 

have the potential to pinpoint how MFN2 converges with other signaling pathways to support 

OC formation in our model.   

We are intrigued by the striking sexual differences in our model, and to our knowledge 

this is the second report of differences in male vs. female response to mitofusin loss.  Conditional 

ablation of Mfn2 in brown adipose tissue (BAT) leads to dysfunction of the tissue and protection 

from insulin resistance and obesity by high-fat diet.  Here, a sex-specific remodeling of BAT 

mitochondrial function was reported after Mfn2 deletion as females displayed increased ATP-

synthesizing fat oxidation while males experienced increased glycolytic capacity (Boutant et al., 

2017; Mahdaviani et al., 2017).  This suggests that female mitochondria may have an inherent 

bias toward oxidative phosphorylation over glycolysis in the bone, and with the induction of 

stress, tethering-compromised mitochondria may be unable to respond and accommodate to 

stress by maximizing ATP output through efficiently fusing OMM and IMM.  As mitochondrial 

differences in male and female mammals have been documented in other organs, is it 

unsurprising that this also manifests in the OC lineage.  For example, female murine 

cardiomyocyte mitochondria are more efficient than male cells despite having lower 

mitochondrial content (reviewed in (Ventura-Clapier et al., 2017)).  Sex differences in 

mitochondria can plausibly be due to the fact that mitochondrial DNA is only under selection in 

females, therefore allowing hormones like estrogens to have a protective effect on female 

mitochondria.   

Intriguingly, a major regulator of the OC is estrogen.  In menopause, estrogen production 

by the ovaries falls and leads to increased bone resorption by the OC.  Estrogen deficiency 
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reverses the pro-apoptotic effect of the molecule on the OC and enables upregulation of TNFα 

and IL-1β cytokines as well as RANKL that promote OC differentiation.  Estrogen deficiency 

also disfavors the commitment of mesenchymal progenitors to the OB lineage and fails to block 

OB apoptosis, further leading to the overabundance of OC activity and bone resorption in post-

menopausal women (reviewed in (Khosla et al., 2011; Novack, 2010).  Congruently, we theorize 

that sex differences in our model may be inherent to OC biology.  We have previously observed 

that compared to males, female mice have more numerous OCs in the trabecular compartment 

compared to males (Zarei et al., 2018).  We anticipate that a higher abundance of OCs might 

make females more susceptible to the impact of mitochondrial defects in the cell lineage.  It 

would be interesting to further investigate the role of estrogen in mitochondrial dynamics.  

Depletion of estrogen with ovariectomy (OVX) surgeries could determine if estrogen is 

responsible for female phenotypes.  If so, we would expect Mfn2 cKO females post-OVX to 

have identical bone mass to ctrls post-OVX, similar to how males respond to loss of bone mass 

with RANKL-injection.  We could consider approaching the interplay of estrogen and MFN2 in 

culture by supplementing culture media with or without estrogen, and undertaking transcriptional 

profiling of cellular populations.  In vivo, laser capture microdissection of frozen skeletal tissues 

would allow isolation of male or female OCs and confirmation of differences observed in vitro.  

 

 

Part 2 – Final comments 
 

In sum, our studies highlight the importance of mitochondrial tethering/fusion in OC 

lineage cells and bring the skeleton into light for the field of mitochondrial dynamics.  With 

continued investigation, our work opens the possibility that regulation of mitochondrial 

dynamics in the osteoclast could modulate bone mass in humans.  Especially as women are more 



	 83	

prone to osteoporosis then men, altering mitofusin activity has the potential to be exploited for 

preservation of bone mass in this post-menopausal population.   
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Appendix A –  
Transcription Factor EB 
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Abstract 
 

In 2011, a 3-year old boy born to consanguineous parents presented to physicians at 

Shriners Hospitals for Children in St. Louis with clinical signs of osteopetrosis (OPT).  His 

bones were abnormally dense, as reflected by a lumbar spine z-score of +13.4.  A bone core 

biopsy of the dsistal metaphasys of the tibia revealed the abundance of OBs and a complete 

absence of OCs.  Active bone formation by tetracycline labeling along with a disorganized 

trabecular compartment suggested the patient presented with OC-poor OPT (Fig. A.1).  Further, 

RANKL-stimulated peripheral blood monocytes formed few mature TRAP+ multinucleated OCs 

that lacked actin rings in vitro (Fig. A.2).  Failure of OC differentiation in this assay revealed that 

the defect was inherent to cells of hematopoietic origin because the addition of recombinant 

RANKL did not drive OC formation.  The patient-derived cells produced full-length RANK 

protein, and sequencing revealed the genes that encode RANK and RANKL to be wild type.  

Interestingly, all other OPT-associated genes were sequenced, and no abnormalities were found.   

 Whole exome sequencing of this OC-poor OPT patient and his parents revealed a 

homozygous missense mutation in Transcription Factor EB, Tfeb, S401N, a transcription factor 

previously implicated in modulating OC bone resorption through disruption of lysosomal 

biogenesis.  The goal of this study was to enhance our understanding of how Tfeb relates to OC 

formation as well as function, and investigate the link between this transcription factor and 

osteopetrotic phenotypes humans.   
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Introduction 
 
Osteopetrosis (OPT): 

 Alteration of OC differentiation or function that is not matched by OB activity leads to a 

shift in bone composition toward low bone mass osteoporosis or high bone mass osteopetrosis 

(OPT), both of which have detrimental effects on skeletal health and quality of life for patients.  

Historically, OPT is attributed to mutations in a limited set of genes involved either in OC 

formation or function that contribute to OC-poor or OC-rich forms of the disease, respectively.  

Whether due to the absence of OCs or the presence of dysfunctional OCs, the ultimate 

phenotypic result is a failure of bone resorption that is associated with a set of clinical 

observations, including altered bone modeling, brittle bones prone to fracture, and anemia and 

bone marrow failure.  Severe forms of OPT present in early childhood and are often fatal in early 

years as the bone marrow cavity is overcome by excess bone formation.  In cases when the OPT-

causing defect is intrinsic to the OC, bone marrow transplant can be an effective treatment to 

replace these cells of hematopoietic origin (reviewed in (Sobacchi et al., 2013)).   

Whole exome sequencing (WES) was undertaken in our family from Shriners Hospitals 

for Children in St. Louis, and a small pool of candidate genes segregated with the homozygous 

inheritance pattern in the affected child and his parents.  Two of the genes, Rab6c (a member of 

the Ras oncogene family) and Ubr5 (an E3 ubiquitin ligase), are not associated with bone 

biology in the literature.  A third, however, was a missense mutation in Transcription Factor EB 

(Tfeb), a gene previously implicated in OC biology.  While homozygous in the patient, the 

mutated Tfeb allele was heterozygous in both parents and absent in his unaffected sister.  The 

particular mutation, S401N, falls within a relatively uncharacterized domain of the transcription 

factor (Fig. A.3).  This serine residue is well conserved in mammals, birds, and reptiles, but not 
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fishes and amphibians.  Evidence by mass spectrometry suggests that this serine residue is not 

phosphorylated (correspondence with Marco Sardiello, Ph.D.).    

 

Transcription Factor EB (Tfeb): 

 Transcription Factor EB (Tfeb) is a highly conserved master regulator of lysosomal 

biogenesis and autophagy.  In response to environmental cues, Tfeb is regulated post-

translationally via sequestration in the cytoplasm or release into the nucleus.  Here, under basal 

conditions it is localized to lysosomal surfaces by interaction with the lysosome nutrient sensing 

(LYNUS) machinery and phosphorylated by mammalian target of rapamycin complex 1 

(mTORC1) on N-terminal residues S142 and S211 (Settembre et al., 2012).  Upon mTORC1 

inactivation due to cellular stress, starvation, or lysosomal inhibition, Tfeb becomes 

dephosphorylated and translocates to the nucleus to activate coordinated lysosomal expression 

and regulation (CLEAR)-network genes involved in lysosomal biogenesis and autophagy as well 

as amplify its own signal (reviewed in (Settembre et al., 2013)).  

 Another recently identified mechanism of post-translational Tfeb regulation in murine 

models relies on phosphorylation of several residues on the C-terminal end of the protein.  

Downstream of RANK signaling, these modifications by PKCβ are believed to stabilize Tfeb 

and facilitate nuclear translocation and therefore upregulation of lysosomal biogenesis factors.  

In the same murine model system, conditional deletion of Tfeb late in the OC lineage by 

cathepsin K-cre was associated with increased bone mass but unaltered OC number.  Here, lack 

of Tfeb in OCs contributes to a high bone mass phenotype in mice through insufficient 

acidification of the OC resorption lacuna through decreased transcription of Tfeb target genes 
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required for lysosome formation, including H+ ATPase and chloride channel subunits (Ferron et 

al., 2013). 

 Tfeb belongs to the Mitf family of four basic helix-loop-helix-leucine zipper (bHLH-Zip) 

transcription factors that regulate gene expression by binding to E-box regions as hetero- or 

homo-dimers.  One family member, Mitf, is thought to modulate NFATc1 activity to promote 

osteoclast function downstream of RANK signaling (Lu et al., 2014).  In vivo, dominant negative 

mutations in Mitf are associated with osteopetrotic phenotypes.  These mutations disrupt residues 

that fall within the basic and helix-loop-helix domains of Mitf important for DNA binding, and 

murine femurs display excessive endochondral bone and lack a bone marrow cavity.  These same 

mutations also hinder heterodimerization of Mitf with Tfe3 to eliminate Tfe3-DNA interactions 

in vitro, and OCs from these mice are small and stain weakly for TRAP compared to controls by 

histology.  Interestingly, such phenotypes are not observed with Mitf of Tfe3 null mutations, but 

only in combined Mitf/Tfe3-null animals, or those harboring a dominant negative allele 

(Hemesath et al., 1994; Steingrimsson et al., 2003; 2002).  It seems likely that a similar situation 

might occur with Tfeb.  Complete disruption of Tfeb results in embryonic lethality in mice 

between E9.5-E10.5 due to defects in placental vascularization (Steingrímsson et al., 1998).  

Phenotypes are not observed in animals heterozygous for Tfeb loss in combination with Tfe3, 

Tfeb, or Mitf mutations.  However, this does not discount the possibility that effects could arise 

when wild type Tfeb alleles are absent (Steingrimsson et al., 2002).  As of yet, no such 

investigation has been documented.   
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Results 
 

Tfeb was cloned into the pMX retroviral vector and site directed mutagenesis employed 

to create the S401N point mutation.  Each vector was overexpressed in 293T cells and 

subsequent western blot analysis confirmed that Tfeb-S401N protein was stable and identical 

sizes between wild type and mutant suggests that phosphorylation forms between the two 

proteins are consistent (Fig A.4).  Next, both pMX-Tfeb-WT and pMX-Tfeb-S401N TFEB were 

overexpressed in expanded wild type BMMs.  Despite varying densities of seeded BMMs, 

exposure to RANKL enabled osteoclastogenesis in every condition, and no differences were seen 

in OC formation between vector controls and either version of Tfeb by TRAP staining (Fig A.5).   

 Due to the presence of endogenous Tfeb in the BMMs potentially obscuring our results, 

we obtained floxed Tfeb mice from the laboratory of Babak Razani, Ph.D., at Washington 

University in St. Louis.  We were provided bone marrow from floxed controls and animals 

bearing the floxed plus LysM-cre alleles, Tfebfl/fl and Tfebfl/fl;LysMcre, respectively.  Using 

BMMs harvested from these animals, we repeated the infection protocol of pMX-Tfeb-WT and 

pMX-Tfeb-S401N and found no effect of the mutation on OC formation or function as assayed 

by TRAP stain, actin rings, and bone resorption pit assay (Fig A.6).  Unexpectedly, 

overexpression of both wild type and S401N Tfeb in BMMs resulted in decreased 

osteoclastogenesis compared to empty vector controls. Furthermore, OC formation and function 

by actin ring and resorption pit staining were comparable between WT and S401N-infected cells 

on both wild type and Tfebfl/fl;LysMcre BMM backgrounds (Fig. A.6).  However, qPCR of these 

BMMs revealed a residual 10% of Tfeb expression.  Knockdown to 0.5% was achieved by 

adding additional cre to Tfebfl/fl;LysMcre BMMs in vitro.  Here, resorption was slightly altered 
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but osteoclastogenesis left intact, phenocopying to a small degree the changes observed when 

Karsenty’s group used Cathepsin K-cre (Fig. A.6). (Destaing et al., 2003)   

 To further probe the effect of mutant Tfeb on the OC, we assayed the expression of 

common Tfeb targets by quantitative real time PCR: p62 and ATP6v1h.  No change in p62 or 

ATP6v1h expression was seen at basal levels in Tfebfl/fl or Tfebfl/fl;LysMcre BMMs or OCs, or 

when levels were induced following cell starvation of 3 hrs with lowered percent FBS (2% 

compared to normal 10% in media) (Fig A.7).  Here, as p62 and ATP6v1h levels rose in both 

cell types to a similar extent we wondered whether the residual 10% of Tfeb expression in the 

Tfebfl/fl;LysMcre samples was sufficient to create an effect.  Further study was planned to 

generate animals harboring two LysM-cre alleles, to mitigate this possibility and further 

elucidate the contribution of Tfeb-S401N in the OC lineage when it is the only form of Tfeb 

present in a mouse or cultured cell. A knock-in mouse model was also considered. 

 Concurrent with our laboratory studies, the mother of the deceased OC-poor OPT patient 

gave birth to another son that was also affected with this condition, presenting with widened 

metaphyses and epiphyseal plates, as well as hypocalcemia and seizures at two weeks of age.  

His blood was sequenced for Tfeb, and it was found that he carried two wild type copies of the 

gene, thus, eliminating Tfeb as a disease-causing candidate.  Tfeb studies in the laboratory were 

discontinued.   
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Discussion 
 

The genetic etiology of this particular case of OC-poor osteopetrosis remains unclear, and 

further whole genome sequencing of the newborn affected child, parents, and unaffected sister 

will be highly informative.  Here, we expect to uncover additional candidate genes that 

contribute to OC formation and thus, increase our general understanding of the differentiation of 

this important cell type.  Until this becomes an option, however, we have comfort in knowing 

that the second affected child received a bone marrow transplant to allow OCs to form and 

function in this individual.  
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Figures and tables 
 

 
 
 
Figure A.1: Patient of consanguineous parents exhibits clinical signs of OPT 

Family pedigree in which the four pregnancies from first cousins resulted in two hydatidiform 
molar (HM) pregnancies, a healthy girl, and boy with OC-poor OPT.  B.  Tibial bone core biopsy 
reveals disorganized trabeculae with minimal bone matrix (grey).  Cartilage stains purple and 
cortex is thin (*).  C.  Radiographic imagine of patient’s spine, upper and lower extremities, 
hand, and skull in which abnormally modeled metaphyses, as well as wide dense ribs, phalanges, 
and skill base.  Figures modified from Gary Gottesman, M.D. 
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Figure A.2: CD14+ cells from patient carrying homozygous S400N Tfeb mutation do not 
differentiate into mature OCs with actin rings compared to healthy family members and 
unrelated controls 

A-B). In vitro differentiation of CD14+ peripheral blood monocytes revealed patient has 
diminished TRAP+ OC numbers compared to unaffected family members and unrelated controls 
(quantified in B), with key to the bottom right, mean ± SD is representative of two experiments, 
**p<0.01, ***p<0.001, scale bars = 1 mm.  C) When grown on bone, the patient’s cells fail to 
form actin rings, as shown by FITC-phalloidin.  D). Patient cells express RANK, as determined 
with primary OC cell lysates immunoblotted for RANK, and quantified by normalization to 
father in red. Figures modified from Gary Gottesman, M.D. 
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A              B 

  
 

Figure A.3: Schematic representation of Tfeb 

A.  Amino acids lengths are shown and OC-poor OPT patient mutation location is identified.  B. 
Depiction of Tfeb’s role in autophagy, lysosome biogenesis, and exocytosis from (Settembre et 
al., 2013)  
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Figure A.4: Overexpression of S400N in 292T cells does not affect protein stability or 
nuclear localization 

A).  Western blots against Tfeb in whole cell lysates (A), or nuclear and cytoplasmic extracts 
(B), show no differences between WT and mutant forms of the protein.  
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Figure A.5: In vitro addition of cre impacts bone resorption to a small degree while not 
altering osteoclastogenesis 

Cre was added retrovirally in culture.  TRAP at 2X, resorption pits at 20X.   
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Figure A.6: Overexpression of Tfeb S400N does not alter osteoclastogenesis on WT or cKO 
backgrounds 

Tfebfl/fl and Tfebfl/fl;LysMcre BMMs were retrovirally infected with constructs and treated with 
15 ng/ml RANKL for 5 days.  TRAP stained wells are shown at 2X, actin rings and resorption 
pits at 20X.   
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A     B    

 
 
Figure A.7: Tfeb targets are altered with gene knockdown and induction with starvation 

A). Tfeb expression is knocked down in cKO BMMs and OCs.  B). p62 and ATP6v1h levels are 
induced when cells are starved in 2% serum, however no differences are seen between controls 
and cKO cells.   
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Abstract 
	

Osteomyelitis (OM) is a severe bacterial infection of the bone associated with an 

inflammatory reaction and disruption of skeletal integrity in which Staphylococcus aureus (S. 

aureus) is the primary causative agent. Although S. aureus is considered to be an extracellular 

pathogen, recent evidence indicates it can persist intracellularly in many cell types, including 

osteoblasts (OB). Infected OBs produce RANKL and recruit osteoclasts (OCs) to the site of bone 

infection, but the role of OCs in OM, and in particular their ability to become infected, is not 

well understood. We hypothesized that S. aureus could infect OCs to contribute to OM 

pathogenesis.  While previous work in the laboratory utilized in vitro assay of S. aureus infection 

of OCs, confirmation of the accuracy of this model between different bacterial and murine cells 

was lacking.  Work was done to confirm previous findings and take steps toward developing an 

in vivo model of osteomyelitis. 
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Introduction 
 
 Bacterial osteomyelitis is associated with inflammation and pain, and leads to bone loss 

with increased susceptibility to atraumatic fractures. S. aureus is involved in over 60% of OM 

cases, and treatment generally involves surgical debridement and intravenous antibiotics  

(Calhoun et al., 2009; Lew and Waldvogel, 2004).  Even so, recurrence is common, suggesting 

that the bacteria may evade antibiotic treatment or capture by the immune system, thereby 

allowing reactivation of disease at a later date.  Surprisingly, little is known about mechanisms of 

OM etiopathology.   

Much of the work in OM pathogenicity has made progress in elucidating bacterial 

survival strategies.  For example, characterization of the Sae bacterial locus in S. aureus revealed 

that alpha-type phenol-soluble modulin toxins act osteolytically to promote infection of the bone, 

and epithelial cell infection studies showed that S. aureus organization into small colony variants 

increases intracellular survival. (Cassat et al., 2013; Tuchscherr et al., 2010).  Interestingly, 

cultured OBs are susceptible to S. aureus infection, whereby the bacteria can alter these 

mammalian cells to promote bone resorption in two ways: triggering OB death, and inducing 

osteoclastogenesis (Alexander et al., 2003; Ellington, 1999; Hudson et al., 1995).  In the latter, S. 

aureus-infected OBs increase expression of proinflammatory cytokines that activate RANKL to 

promote OC formation (Claro et al., 2013; Marriott et al., 2010; Somayaji et al., 2008).  While 

the recruitment and activation of OCs clearly contributes the osteolytic lesions found in OM, we 

theorized there might be additional interactions between bacteria and the OC that hadn’t yet been 

probed.   

Previous work in our laboratory has used confocal imaging of decalcified calvaria 

sections from TRAP-Td-Tomato reporter mice injected with GFP-labeled S. aureus over the 
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periosteum to show that S. aureus is present within OCs following infection, in vivo.  We have 

performed an in vitro infection protocol to assay the ability of S. aureus to reside in 

differentiating OCs. Primary expanded bone marrow macrophages (BMMs), cultured +/- 

RANKL, are infected with S. aureus for 30 min, extracellular bacteria killed with 1 hr 

gentamicin treatment, and cells cultured 16.5 hrs more prior to lysis; intracellular S. aureus 

growth is assessed by colony forming assay, comparing numbers immediately following 

gentamicin treatment with endpoint. We found that while BMMs cultured in M-CSF alone 

reduce S. aureus, the same cells stimulated with M-CSF + RANKL experience increases of ~50-

fold (2 d RANKL) to ~500-fold (3 d RANKL) in intracellular bacteria. Further supporting the 

requirement for OC lineage differentiation, intracellular S. aureus levels are diminished to BMM 

levels in RANKL-treated cells lacking NFATc1 or NIK, which fail to form OC. To determine 

whether increased bacterial recovery in mature OCs represents intracellular S. aureus 

proliferation, we used a microscopy approach and observe replicating bacteria in infected OCs in 

vitro by transmission EM (Krauss & Roper, et al., manuscript in preparation).  
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Results 

 To probe the effect of S. aureus infection on the OC in vitro, our laboratory employs a 

proliferation assay in which bacteria are incubated with BMM, pre-OC, or OC cells for 30 min at 

a multiplicity of infection (MOI) of 1 or 10.  Subsequently, gentamicin is added for 1 hour to kill 

extracellular bacteria, and cells are lysed.  Bacteria residing in the mammalian cells are 

enumerated by plating on agar and growing colonies overnight.  Wells not lysed are allowed to 

grow for another 16.5 hrs prior to lysis and colony enumeration (18 hrs post-infection) (Fig. B.1 

A).  Here, in comparing the bacterial burden between 1.5 and 18 hr timepoints we find that while 

BMMs are effective in killing bacteria, S. aureus replicates in day 2 pre-OCs and to an even 

greater extent in day 3 mature OCs (Fig B.1 B).  This same trend is seen regardless of murine 

strain of BMMs or genetic modification of USA300 MRSA used in the laboratory (Fig B.2). 

 Because other groups using a similar gentamicin protection assay maintain the drug in the 

cell culture media throughout the duration of the experiment to prevent escape of internalized 

bacteria, we sought to attempt this alteration of the protocol (Elsinghorst, 1994).  We repeated 

the assay with two conditions: pulse treatment of gentamicin at 300µg/ml for 1 hour, or 

continuous gentamicin at 30µg/ml for the duration of the assay.  We find that continuous 

presence of gentamicin abolishes our phenotype of S. aureus growth from 1.5 to 18 hrs (Fig B.3).  

Importantly, cell culture media plated in each condition yielded no bacterial colonies, indicating 

that with or without gentamicin presence in the media, no extracellular S. aureus replication is 

occurring.  As probed media only tested for free-floating S. aureus, this brought up the question 

of whether once-internalized bacteria are replicating on the surface of the OC cells, and 

prompted us to test whether additional washes of the culture wells would change our results.  No 

differences were detected between bacterial yields at 18 hrs with or without washing, suggesting 
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all bacteria are truly internalized (Fig B.4).  We conclude that the differences seen between pulse 

vs. continual gentamicin treatment is due to the drug also being internalized by mammalian cells, 

as has been reported by other groups (Kim et al., 2019).  Here, our one-hour pulse gentamicin 

treatment is sufficient to eliminate extracellular bacteria, and removing it from the media is 

necessary to avoid its dual killing of intracellular bacteria.   

 To further support our theory that the OC provides a niche for S. aureus to persist and 

replicate, we turned to confocal microscopy to demonstrate S. aureus internalization.  To do this 

we infected TRAP-TdTomato pre-OCs with a GFP-labeled USA300 MRSA strain, fixed cultures 

in 4% paraformaldehyde, and mounted coverslips with a Dapi nuclear stain.  Z-stack images 

taken on Leica TCS SPE confocal system, and z-plane images confirm that green bacteria are 

within the same plane as red OCs (Fig B.5), supporting internalization of S. aureus.  Seeking 

another method to further demonstrate the intracellularity of S. aureus, we fixed cultures of pre-

OCs infected with GFP-USA300 with 70% ethanol, and performed flow cytometry.  Gating 

specimens by size and Hoechst staining revealed almost 25% of the population was 

multinucleated (Fig B.6 A).  Further, we detect a higher proportion of GFP-positive bacteria-

containing cells in infected samples, confirming for the first time by cytometry that S. aureus 

resides directly within pre-OCs in vitro (Fig B.6 B).    

 As a goal of our laboratory is to develop an in vivo model of OM, we began developing 

an infection model of the calvaria, a procedure previously done in our laboratory for imaging of 

infected OCs in vivo.  We anticipated that by inducing osteoclastogenesis at the calvaria with 

RANKL injection we would create more opportunities for S. aureus to preferentially invade OCs 

and replicate.  We injected mice over the calvaria for 4 consecutive days prior to injecting 

1.0x107 S. aureus cells at the same site.  Calvaria were harvested 48 hrs later and crushed via 
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bullet blending.  Minced contents were plated on agar and colonies observed the next day.  We 

find that the RANKL-treated calvaria yield more bacterial colonies that PBS-treated calvaria, 

suggesting the more abundant the OCs, the more likely S. aureus is to seed and replicate at that 

site (Fig B.7 A-B).  To further probe whether the presence of OC at the calvaria alters infection 

by S. aureus, we repeated this model on animals lacking Nfatc1, the master transcriptional 

regulator of OCs.  Surprisingly, no differences were observed in bacterial burden between 

control and Nfatc1 knockout calvariae (Fig. B.8).  This may be due to a preference for bacteria to 

form an abscess on the skin at the infection site rather than infiltration into the calvaria itself.  

Many, but not all, animals had identifiable bacteria in the skin over the periosteum, likely 

masking any trends that would have been seen in the bone had bacteria colonized there instead.  
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Discussion 

 As our laboratory seeks to understand the etiopathology of OM in the OC, our primary 

objective was to establish a solid in vitro model.  Here, work done to verify that multiple strains 

of S. aureus replicate in pre-OCs of different animal backgrounds brings confidence to the 

precision of our assay.  Furthermore, confirmation that bacteria are truly residing intracellularly 

in our assay as well as demonstration of co-localization of S. aureus in OC cells by confocal 

microscopy and flow cytometry supports our hypothesis that the OC serves as a replicative niche 

for S. aureus during OM.  Steps were also taken to begin developing an in vivo model of OM at 

the calvaria.  While data are unreliable due to high variability in the amount of bacteria that 

seeded to the calvaria, the groundwork has been set for this work to continue.  Currently, our 

laboratory is building on these in vitro and in vivo results to better demonstrate S. aureus 

intracellularity by microscopy and flow cytometry, as well as develop mouse models through 

depositing bacteria directly into the tibia as well as tail vein.   
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Figures and tables 

 

A 

 
B 

 
 
 

Figure B.1:  In vitro infection protocol consistently captures S. aureus proliferation in 
maturing OCs 

A). Bone marrow macrophages and differentiating OCs are infected with S. aureus for 30 min 
and extracellular bacteria killed by 1 h gentamicin treatment.  Cells are lysed at 1.5 and 18 hrs 
post-infection, and colony formation enumerated to quantify S. aureus growth or killing in this 
16.5 hr period.  B).  S. aureus growth within 16.5 hrs is observed in cells treated with at 2-3 days 
of RANKL exposure, while S. aureus is killed in BMMs cultures.  Figure modified from work of 
Emily Goering and Jennifer Krauss. 
 

D0 D2 D3
0

2

4

6

8

10

Lo
g 

(C
FU

)

1.5 hr
18 hr ****

****
****

RANKL:



	 108	

 

Figure B.2: Different strains of S. aureus are capable of growth in OCs derived from mice 
of different backgrounds 

D3 OCs were generated from B6 and Trap-TdTomato mice and infected with USA300 or 
USA300-GFP S. aureus.  Growth is seen in each condition. 
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A 

 
B 

 
 
 
Figure B.3: S. aureus growth is lost when antibiotic is kept in culture media throughout 
infection timecourse 

A). 1.5 and 18 hr agar plates display extensive growth in 1 hr 300 µg/ml pulse gentamicin 
treatment compared to little change when 30 µg/ml gentamicin is continuously in media 
following infection.  B). CFU counts from D2 and D3 plates with different treatments are 
enumerated.  
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Figure B.4: Washing OCs at 18 hrs has no effect on recovered S. aureus by CFU assay 

D3 OCs were infected with S. aureus and prior to OC lysis at 18 hrs, cells were or were not 
washed with PBS to eliminate non-intra-cellular bacteria.  Identical growth is observed in each 
condition. 
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Figure B.5: GFP-labeled St. aureus found within OCs 18-hrs post infection 

Z-stack confocal imaging was used to visualize D3 TRAP-TdTomato OCs infected with GFP-
labeled S. aureus.  Green bacteria lie within the same plane of red OCs and dapi-stained nuclei, 
suggesting bacteria are persisting within mammalian cells. 
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Figure B.6: S. aureus is detected by flow cytometry of D2 OCs 

A). D2 OCs infected with GFP-labeled S. aureus were fixed with 70% ethanol and stained with 
Hoescht.  Live cells were selected and Hoescht was used to gate on multinucleated cells.  B). 
FITC green signal is detected to a greater extend in GFPstaph-infected OCs (blue) compared to 
uninfected OC cells (red) in total, multinucleated, and mononucleated cell populations. 
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Figure B.7: RANKL-treated calvaria yield more S. aureus than PBS-treated calvaria 

A). Schematic of experiment whereby 2 mk/kg RANKL or PBS was injected subcutaneously 
over the perisosteum of the calvaria prior to S. aureus.  Bacteria were enumerated by CFU assay 
48 hrs post infection.  B).  More S. aureus colonies are recovered from RANKL-treated calvaria 
(bottom) compared to PBS controls (top). 
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Figure B.8: Loss of Nfatc1 does not affect S. aureus infection of the calvaria 

Nfatc1fl/fl (ctrl) and Nfatc1fl/fl; cre (KO) mice were treated with RANKL over the calvaria for 4 
days prior to inoculation with S. aureus in the same location.  Enumeration of bacterial residence 
48 hrs post-infection reveals no difference between groups of animals. 
 
 
 
 
  

ctr
l

KO
-100000

0

100000

200000

300000

Nfat fl/fl males and females
C

FU
/c

al
va

ria
 w

ei
gh

t



	 115	

References 
 
 
Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Stephens, K., Amemiya, 
A., and Züchner, S. (1993). Charcot-Marie-Tooth Neuropathy Type 2A. 

Alexander, E.H., Rivera, F.A., Marriott, I., Anguita, J., Bost, K.L., and Hudson, M.C. (2003). 
Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand 
expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol. 
3, 5. 

Amend, S.R., Uluckan, O., Hurchla, M., Leib, D., Novack, D.V., Silva, M., Frazier, W., and 
Weilbaecher, K.N. (2015). Thrombospondin-1 regulates bone homeostasis through effects on 
bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res 30, 106–115. 

An, J.H., Yang, J.-Y., Ahn, B.Y., Cho, S.W., Jung, J.Y., Cho, H.Y., Cho, Y.M., Kim, S.W., Park, 
K.S., Kim, S.Y., et al. (2010). Enhanced mitochondrial biogenesis contributes to Wnt induced 
osteoblastic differentiation of C3H10T1/2 cells. Bone 47, 140–150. 

Anginot, A., Dacquin, R., Mazzorana, M., and Jurdic, P. (2007). Lymphocytes and the Dap12 
adaptor are key regulators of osteoclast activation associated with gonadal failure. PLoS ONE 2, 
e585. 

Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D.M., 
and Suda, T. (1999). Commitment and Differentiation of Osteoclast Precursor Cells by the 
Sequential Expression of C-Fms and Receptor Activator of Nuclear Factor κb (Rank) Receptors. 
Journal of Experimental Medicine 190, 1741–1754. 

Arnett, T.R., and Dempster, D.W. (1986). Effect of pH on bone resorption by rat osteoclasts in 
vitro. Endocrinology 119, 119–124. 

Arnett, T.R., and Orriss, I.R. (2018). Metabolic properties of the osteoclast. Bone 115, 25–30. 

Arnett, T.R., Gibbons, D.C., Utting, J.C., Orriss, I.R., Hoebertz, A., Rosendaal, M., and Meghji, 
S. (2003). Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell. 
Physiol. 196, 2–8. 

Ashrafi, G., and Schwarz, T.L. (2013). The pathways of mitophagy for quality control and 
clearance of mitochondria. Cell Death Differ. 20, 31–42. 

Bach, D., Pich, S., Soriano, F.X., Vega, N., Baumgartner, B., Oriola, J., Daugaard, J.R., 
Lloberas, J., Camps, M., Zierath, J.R., et al. (2003). Mitofusin-2 Determines Mitochondrial 
Network Architecture and Mitochondrial Metabolism. J. Biol. Chem. 278, 17190–17197. 

Bakkar, N., Ladner, K., Canan, B.D., Liyanarachchi, S., Bal, N.C., Pant, M., Periasamy, M., Li, 
Q., Janssen, P.M.L., and Guttridge, D.C. (2012). IKKα and alternative NF-κB regulate PGC-1β 
to promote oxidative muscle metabolism. The Journal of Cell Biology 196, 497–511. 



	 116	

Ban, T., Ishihara, T., Kohno, H., Saita, S., Ichimura, A., Maenaka, K., Oka, T., Mihara, K., and 
Ishihara, N. (2017). Molecular basis of selective mitochondrial fusion by heterotypic action 
between OPA1 and cardiolipin. Nat Cell Biol 19, 856–863. 

Basso, V., Marchesan, E., Peggion, C., Chakraborty, J., Stockum, von, S., Giacomello, M., 
Ottolini, D., Debattisti, V., Caicci, F., Tasca, E., et al. (2018). Regulation of ER-mitochondria 
contacts by Parkin via Mfn2. Pharmacological Research 138, 43–56. 

Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, 
S.E., and Nagy, A. (2005). Conditional and inducible transgene expression in mice through the 
combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 
33, e51–e51. 

Betz, C., Stracka, D., Prescianotto-Baschong, C., Frieden, M., Demaurex, N., and Hall, M.N. 
(2013). Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic 
reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. U.S.a. 
110, 12526–12534. 

Billia, F., Hauck, L., Konecny, F., Rao, V., Shen, J., and Mak, T.W. (2011). PTEN-inducible 
kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc. Natl. Acad. Sci. U.S.a. 
108, 9572–9577. 

Blair, H.C., Teitelbaum, S.L., Tan, H.L., Koziol, C.M., and Schlesinger, P.H. (1991). Passive 
chloride permeability charge coupled to H(+)-ATPase of avian osteoclast ruffled membrane. 
Am. J. Physiol. 260, C1315–C1324. 

Bossard, M.J., Tomaszek, T.A., Thompson, S.K., Amegadzie, B.Y., Hanning, C.R., Jones, C., 
Kurdyla, J.T., McNulty, D.E., Drake, F.H., Gowen, M., et al. (1996). Proteolytic activity of 
human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J. 
Biol. Chem. 271, 12517–12524. 

Boutant, M., Kulkarni, S.S., Joffraud, M., Ratajczak, J., Valera Alberni, M., Combe, R., 
Zorzano, A., and Cantó, C. (2017). Mfn2 is critical for brown adipose tissue thermogenic 
function. Embo J. 36, 1543–1558. 

Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J., and Müller, R. 
(2010). Guidelines for assessment of bone microstructure in rodents using micro-computed 
tomography. J Bone Miner Res 25, 1468–1486. 

BURSTONE, M.S. (1959). Histochemical demonstration of acid phosphatase activity in 
osteoclasts. J. Histochem. Cytochem. 7, 39–41. 

Calhoun, J.H., Manring, M.M., and Shirtliff, M. (2009). Osteomyelitis of the long bones. Semin 
Plast Surg 23, 59–72. 

Callaway, D.A., and Jiang, J.X. (2015). Reactive oxygen species and oxidative stress in 
osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33, 359–370. 



	 117	

Cappariello, A., Maurizi, A., Veeriah, V., and Teti, A. (2014). Archives of Biochemistry and 
Biophysics. Archives of Biochemistry and Biophysics 558, 70–78. 

Cartoni, R., Arnaud, E., Médard, J.-J., Poirot, O., Courvoisier, D.S., Chrast, R., and Martinou, J.-
C. (2010). Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth 
neuropathy type 2A. Brain 133, 1460–1469. 

Cassat, J.E., Hammer, N.D., Campbell, J.P., Benson, M.A., Perrien, D.S., Mrak, L.N., Smeltzer, 
M.S., Torres, V.J., and Skaar, E.P. (2013). A secreted bacterial protease tailors the 
Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. 
Cell Host Microbe 13, 759–772. 

Celsi, F., Pizzo, P., Brini, M., Leo, S., Fotino, C., Pinton, P., and Rizzuto, R. (2009). 
Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. BBA - Bioenergetics 
1787, 335–344. 

Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial 
heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192. 

Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). 
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for 
embryonic development. The Journal of Cell Biology 160, 189–200. 

Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial Fusion Protects against 
Neurodegeneration in the Cerebellum. Cell 130, 548–562. 

Chen, H., Vermulst, M., Wang, Y.E., Chomyn, A., Prolla, T.A., McCaffery, J.M., and Chan, 
D.C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and 
tolerance of mtDNA mutations. Cell 141, 280–289. 

Chen, Y., and Dorn, G.W. (2013). PINK1-phosphorylated mitofusin 2 is a Parkin receptor for 
culling damaged mitochondria. Science 340, 471–475. 

Chen, Y., Liu, Y., and Dorn, G.W., II (2011). Mitochondrial Fusion is Essential for Organelle 
Function and Cardiac Homeostasis. Circ. Res. 109, 1327–1331. 

Chim, S.M., Tickner, J., Chow, S.T., Kuek, V., Guo, B., Zhang, G., Rosen, V., Erber, W., and 
Xu, J. (2013). Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 24, 
297–310. 

Claro, T., Widaa, A., McDonnell, C., Foster, T.J., O'Brien, F.J., and Kerrigan, S.W. (2013). 
Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results 
in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. 
Microbiology (Reading, Engl.) 159, 147–154. 

Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Förster, I. (1999). Conditional gene 
targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277. 



	 118	

Czupalla, C., Mansukoski, H., Pursche, T., Krause, E., and Hoflack, B. (2005). Comparative 
study of protein and mRNA expression during osteoclastogenesis. Proteomics 5, 3868–3875. 

Dai, Q., Xie, F., Han, Y., Ma, X., Zhou, S., Jiang, L., Zou, W., and Wang, J. (2017). Inactivation 
of Regulatory-associated Protein of mTOR (Raptor)/Mammalian Target of Rapamycin Complex 
1 (mTORC1) Signaling in Osteoclasts Increases Bone Mass by Inhibiting Osteoclast 
Differentiation in Mice. J. Biol. Chem. 292, 196–204. 

Daumke, O., and Roux, A. (2017). Mitochondrial Homeostasis: How Do Dimers of Mitofusins 
Mediate Mitochondrial Fusion? Current Biology 27, R353–R356. 

de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to 
mitochondria. Nature 456, 605–610. 

Decker, C.E., Yang, Z., Rimer, R., Park-Min, K.-H., Macaubas, C., Mellins, E.D., Novack, D.V., 
and Faccio, R. (2015). Tmem178 acts in a novel negative feedback loop targeting NFATc1 to 
regulate bone mass. Proceedings of the National Academy of Sciences 201511285–201511286. 

Dempster, D.W., Compston, J.E., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., 
Meunier, P.J., Ott, S.M., Recker, R.R., and Parfitt, A.M. (2012). Standardized nomenclature, 
symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR 
Histomorphometry Nomenclature Committee. J Bone Miner Res 28, 2–17. 

DeSelm, C.J., Miller, B.C., Zou, W., Beatty, W.L., van Meel, E., Takahata, Y., Klumperman, J., 
Tooze, S.A., Teitelbaum, S.L., and Virgin, H.W. (2011). Autophagy proteins regulate the 
secretory component of osteoclastic bone resorption. Dev. Cell 21, 966–974. 

Destaing, O., Saltel, F., Géminard, J.-C., Jurdic, P., and Bard, F. (2003). Podosomes display actin 
turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. 
Mol. Biol. Cell 14, 407–416. 

Dorn, G.W., II (2016). ScienceDirect Mitochondrial fission/fusion and cardiomyopathy. Current 
Opinion in Genetics & Development 38, 38–44. 

Dorn, G.W., II (2019). Evolving Concepts of Mitochondrial Dynamics. Annu. Rev. Physiol. 81, 
1–17. 

Dorn, G.W., Vega, R.B., and Kelly, D.P. (2015). Mitochondrial biogenesis and dynamics in the 
developing and diseased heart. Genes & Development 29, 1981–1991. 

Drake, F.H., Dodds, R.A., James, I.E., Connor, J.R., Debouck, C., Richardson, S., Lee-
Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., et al. (1996). Cathepsin K, but not 
cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271, 12511–
12516. 

Elefteriou, F., and Yang, X. (2011). Genetic mouse models for bone studies—Strengths and 
limitations. Bone 49, 1242–1254. 



	 119	

Ellington, J.K.E.A. (1999). Mechanisms of Staphylococcus aureus invasion of cultured 
osteoblasts. 1–7. 

Elsinghorst, E.A. (1994). Measurement of invasion by gentamicin resistance. Meth. Enzymol. 
236, 405–420. 

Engelhart, E.A., and Hoppins, S. (2019). A catalytic domain variant of Mitofusin requiring a 
wildtype paralog for function uncouples mitochondrial outer-membrane tethering and fusion. J. 
Biol. Chem. jbc.RA118.006347–25. 

Eschenbacher, W.H., Song, M., Chen, Y., Bhandari, P., Zhao, P., Jowdy, C.C., Engelhard, J.T., 
and Dorn, G.W. (2012). Two rare human mitofusin 2 mutations alter mitochondrial dynamics 
and induce retinal and cardiac pathology in Drosophila. PLoS ONE 7, e44296. 

Ferron, M., Settembre, C., Shimazu, J., Lacombe, J., Kato, S., Rawlings, D.J., Ballabio, A., and 
Karsenty, G. (2013). A RANKL-PKC -TFEB signaling cascade is necessary for lysosomal 
biogenesis in osteoclasts. Genes & Development 27, 955–969. 

Filadi, R., Greotti, E., and Pizzo, P. (2018a). Highlighting the endoplasmic reticulum-
mitochondria connection: Focus on Mitofusin 2. Pharmacological Research 128, 42–51. 

Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2016). Presenilin 2 
Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of 
Mitofusin 2. Cell Rep 15, 2226–2238. 

Filadi, R., Pendin, D., and Pizzo, P. (2018b). Mitofusin 2: from functions to disease. 1–13. 

Franco, A., Kitsis, R.N., Fleischer, J.A., Gavathiotis, E., Kornfeld, O.S., Gong, G., Biris, N., 
Benz, A., Qvit, N., Donnelly, S.K., et al. (2016). Correcting mitochondrial fusion by 
manipulating mitofusin conformations. Nature 540, 74–79. 

Frisch, B.J., Porter, R.L., Gigliotti, B.J., Olm-Shipman, A.J., Weber, J.M., O'Keefe, R.J., Jordan, 
C.T., and Calvi, L.M. (2009). In vivo prostaglandin E2 treatment alters the bone marrow 
microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 114, 
4054–4063. 

Funalot, B., Magdelaine, C., Sturtz, F., Ouvrier, R., and Vallat, J.-M. (2009). [Ultrastructural 
lesions of axonal mitochondria in patients with childhood-onset Charcot-Marie-Tooth disease 
due to MFN2 mutations]. Bull. Acad. Natl. Med. 193, 151–60–discussion160–1. 

Gao, A.W., Canto, C., and Houtkooper, R.H. (2014). Mitochondrial response to nutrient 
availability and its role in metabolic disease. EMBO Molecular Medicine 1–10. 

Gay, C.V., and Mueller, W.J. (1974). Carbonic anhydrase and osteoclasts: localization by labeled 
inhibitor autoradiography. Science 183, 432–434. 

Glantschnig, H., Fisher, J.E., Wesolowski, G., Rodan, G.A., and Reszka, A.A. (2003). M-CSF, 
TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. 



	 120	

Cell Death Differ. 10, 1165–1177. 

Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria 
elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13, 589–598. 

Gong, G., Song, M., Csordas, G., Kelly, D.P., Matkovich, S.J., and Dorn, G.W. (2015). Parkin-
mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, 
aad2459–aad2459. 

Guo, X., Chen, K.-H., Guo, Y., Liao, H., Tang, J., and Xiao, R.-P. (2007). Mitofusin 2 Triggers 
Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway. Circ. Res. 101, 
1113–1122. 

Gustafsson, Å.B., and Dorn, G.W., II (2019). Evolving and Expanding the Roles of Mitophagy 
as a Homeostatic and Pathogenic Process. Physiological Reviews 99, 853–892. 

Hemesath, T.J., Steingrímsson, E., McGill, G., Hansen, M.J., Vaught, J., Hodgkinson, C.A., 
Arnheiter, H., Copeland, N.G., Jenkins, N.A., and Fisher, D.E. (1994). microphthalmia, a critical 
factor in melanocyte development, defines a discrete transcription factor family. Genes & 
Development 8, 2770–2780. 

Henriksen, K., Karsdal, M.A., and John Martin, T. (2013). Osteoclast-Derived Coupling Factors 
in Bone Remodeling. Calcif Tissue Int 94, 88–97. 

Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, 
calcineurin, and NFAT. Genes & Development 17, 2205–2232. 

Hu, C., Huang, Y., and Li, L. (2017). Drp1-Dependent Mitochondrial Fission Plays Critical 
Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci 18, 144. 

Hudson, M.C., Ramp, W.K., Nicholson, N.C., Williams, A.S., and Nousiainen, M.T. (1995). 
Internalization of Staphylococcus aureus by cultured osteoblasts. Microb. Pathog. 19, 409–419. 

Indo, Y., Takeshita, S., Ishii, K.-A., Hoshii, T., Aburatani, H., Hirao, A., and Ikeda, K. (2013). 
Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28, 2392–
2399. 

Ishida, N., Hayashi, K., Hoshijima, M., Ogawa, T., Koga, S., Miyatake, Y., Kumegawa, M., 
Kimura, T., and Takeya, T. (2002). Large scale gene expression analysis of osteoclastogenesis in 
vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277, 41147–41156. 

Ivanova, A., Signore, M., Caro, N., Greene, N.D.E., Copp, A.J., and Martinez-Barbera, J.P. 
(2005). In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. 
Genesis 43, 129–135. 

Jheng, H.-F., Tsai, P.-J., Guo, S.-M., Kuo, L.-H., Chang, C.-S., Su, I.-J., Chang, C.-R., and Tsai, 
Y.-S. (2012). Mitochondrial fission contributes to mitochondrial dysfunction and insulin 
resistance in skeletal muscle. Mol. Cell. Biol. 32, 309–319. 



	 121	

Jin, S.M., and Youle, R.J. (2013). The accumulation of misfolded proteins in the mitochondrial 
matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized 
mitochondria. Autophagy 9, 1750–1757. 

Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.-Y., and Youle, R.J. (2006). Role of Bax 
and Bak in mitochondrial morphogenesis. Nature 443, 658–662. 

Kasahara, A., Cipolat, S., Chen, Y., Dorn, G.W., and Scorrano, L. (2013). Mitochondrial fusion 
directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342, 734–737. 

Khosla, S., Melton, L.J., III, and Riggs, B.L. (2011). The unitary model for estrogen deficiency 
and the pathogenesis of osteoporosis: Is a revision needed? J Bone Miner Res 26, 441–451. 

Kim, H., Kim, T., Jeong, B.-C., Cho, I.-T., Han, D., Takegahara, N., Negishi-Koga, T., 
Takayanagi, H., Lee, J.H., Sul, J.-Y., et al. (2013). Tmem64 Modulates Calcium Signaling 
during RANKL-Mediated Osteoclast Differentiation. Cell Metab. 17, 249–260. 

Kim, J.-H., Chaurasia, A.K., Batool, N., Ko, K.S., and Kim, K.K. (2019). Alternative Enzyme 
Protection Assay To Overcome the Drawbacks of the Gentamicin Protection Assay for 
Measuring Entry and Intracellular Survival of Staphylococci. Infection and Immunity 87, 173. 

Kim, J.-M., Jeong, D., Kang, H.K., Jung, S.Y., Kang, S.S., and Min, B.-M. (2007). Osteoclast 
precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early 
stage of RANKL-stimulated osteoclast differentiation. Cell. Physiol. Biochem. 20, 935–946. 

Kobayashi, Y., Uehara, S., Udagawa, N., and Takahashi, N. (2016). Regulation of bone 
metabolism by Wnt signals. J Biochem 159, 387–392. 

Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M., and Chan, D.C. (2004). 
Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862. 

Kubli, D.A., Zhang, X., Lee, Y., Hanna, R.A., Quinsay, M.N., Nguyen, C.K., Jimenez, R., 
Petrosyan, S., Murphy, A.N., and Gustafsson, Å.B. (2013). Parkin protein deficiency exacerbates 
cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 288, 915–
926. 

Lee, H., and Yoon, Y. (2016). Mitochondrial fission and fusion. Biochemical Society 
Transactions 44, 1725–1735. 

Lee, H., and Yoon, Y. (2018). Mitochondrial Membrane Dynamics—Functional Positioning of 
OPA1. Antioxidants (Basel) 7, 186–21. 

Lee, S., Sterky, F.H., Mourier, A., Terzioglu, M., Cullheim, S., Olson, L., and Larsson, N.-G. 
(2012). Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. 
Human Molecular Genetics 21, 4827–4835. 

Lemma, S., Sboarina, M., Porporato, P.E., Zini, N., Sonveaux, P., Di Pompo, G., Baldini, N., and 
PhD, S.A. (2016). The International Journal of Biochemistry & Cell Biology. International 



	 122	

Journal of Biochemistry and Cell Biology 79, 168–180. 

Lerner, U.H., and Ohlsson, C. (2015). The WNT system: background and its role in bone. J 
Intern Med 277, 630–649. 

Lew, D.P., and Waldvogel, F.A. (2004). Osteomyelitis. Lancet 364, 369–379. 

Li, T., Han, J., Jia, L., Hu, X., Chen, L., and Wang, Y. (2019). PKM2 coordinates glycolysis 
with mitochondrial fusion and oxidative phosphorylation. Protein & Cell 1–12. 

Loiseau, D., Chevrollier, A., Verny, C., Guillet, V., Gueguen, N., Pou de Crescenzo, M.-A., 
Ferré, M., Malinge, M.-C., Guichet, A., Nicolas, G., et al. (2007). Mitochondrial coupling defect 
in Charcot-Marie-Tooth type 2A disease. Ann. Neurol. 61, 315–323. 

Lu, S.-Y., Li, M., and Lin, Y.-L. (2014). Mitf regulates osteoclastogenesis by modulating 
NFATc1 activity. Experimental Cell Research 328, 32–43. 

Luchsinger, L.L., de Almeida, M.J., Corrigan, D.J., Mumau, M., and Snoeck, H.-W. (2016). 
Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 
528–531. 

Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F., and Horwood, N.J. (2011). Inhibition of osteoclast 
function reduces hematopoietic stem cell numbers in vivo. Blood 117, 1540–1549. 

Lymperi, S., Horwood, N., Marley, S., Gordon, M.Y., Cope, A.P., and Dazzi, F. (2008). 
Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111, 
1173–1181. 

Mahdaviani, K., Benador, I.Y., Su, S., Gharakhanian, R.A., Stiles, L., Trudeau, K.M., 
Cardamone, M., Enríquez Zarralanga, V., Ritou, E., Aprahamian, T., et al. (2017). Mfn2 deletion 
in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Rep. 
18, 1123–1138. 

Manczak, M., Calkins, M.J., and Reddy, P.H. (2011). Impaired mitochondrial dynamics and 
abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients 
with Alzheimer's disease: implications for neuronal damage. Human Molecular Genetics 20, 
2495–2509. 

Marriott, I., Gray, D.L., Tranguch, S.L., Fowler, V.G., Jr, Stryjewski, M., Levin, L.S., Hudson, 
M.C., and Bost, K.L. (2010). Osteoblasts Express the Inflammatory Cytokine Interleukin-6 in a 
Murine Model of Staphylococcus aureus Osteomyelitis and Infected Human Bone Tissue. The 
American Journal of Pathology 164, 1399–1406. 

Martin, T.J., and Sims, N.A. (2005). Osteoclast-derived activity in the coupling of bone 
formation to resorption. Trends Mol Med 11, 76–81. 

Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.-S., Saiki, S., 
Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits 



	 123	

Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell 
Biology 189, 211–221. 

Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J., and Baloh, R.H. (2010). Mitofusin 2 is 
necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. 
Neurosci. 30, 4232–4240. 

Molina, A.J.A., Wikstrom, J.D., Stiles, L., Las, G., Mohamed, H., Elorza, A., Walzer, G., Twig, 
G., Katz, S., Corkey, B.E., et al. (2009). Mitochondrial networking protects beta-cells from 
nutrient-induced apoptosis. Diabetes 58, 2303–2315. 

Monticelli, S., and Rao, A. (2002). NFAT1 and NFAT2 are positive regulators of IL-4 gene 
transcription. Eur. J. Immunol. 32, 2971–2978. 

Morita, S., Kojima, T., and Kitamura, T. (2000). Plat-E: an efficient and stable system for 
transient packaging of retroviruses. Gene Ther. 7, 1063–1066. 

Morten, K.J., Badder, L., and Knowles, H.J. (2013). Differential regulation of HIF-mediated 
pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J. 
Pathol. 229, 755–764. 

Movérare-Skrtic, S., Henning, P., Liu, X., Nagano, K., Saito, H., Börjesson, A.E., Sjögren, K., 
Windahl, S.H., Farman, H., Kindlund, B., et al. (2014). Osteoblast-derived WNT16 represses 
osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20, 1279–1288. 

Moyzis, A., and Gustafsson, Å.B. (2019). Multiple recycling routes: Canonical vs. non-canonical 
mitophagy in the heart. Biochim Biophys Acta Mol Basis Dis 1865, 797–809. 

Mozdy, A.D., and Shaw, J.M. (2003). A fuzzy mitochondrial fusion apparatus comes into focus. 
Nat. Rev. Mol. Cell Biol. 4, 468–478. 

Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-hora, M., Feng, J.Q., Bonewald, L.F., 
Kodama, T., Wutz, A., Wagner, E.F., et al. (2011). Evidence for osteocyte regulation of bone 
homeostasis through RANKL expression. Nat Med 17, 1231–1234. 

Naon, D., Zaninello, M., Giacomello, M., Varanita, T., Grespi, F., Lakshminaranayan, S., 
Serafini, A., Semenzato, M., Herkenne, S., Hernández-Alvarez, M.I., et al. (2016). Critical 
reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. 
Natl. Acad. Sci. U.S.a. 113, 11249–11254. 

Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.-F., Gautier, C.A., Shen, J., Cookson, M.R., and 
Youle, R.J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. 
PLoS Biol. 8, e1000298. 

Nazarian, A., Snyder, B.D., Zurakowski, D., and Müller, R. (2008). Quantitative micro-
computed tomography: A non-invasive method to assess equivalent bone mineral density. Bone 
43, 302–311. 



	 124	

Nelson, C.A., Warren, J.T., Wang, M.W.H., Teitelbaum, S.L., and Fremont, D.H. (2012). 
RANKL Employs Distinct Binding Modes to Engage RANK and the Osteoprotegerin Decoy 
Receptor. Structure/Folding and Design 20, 1971–1982. 

Novack, D.V., and Faccio, R. (2011). Osteoclast motility: Putting the brakes on bone resorption. 
Ageing Research Reviews 10, 54–61. 

Novack, D.V., and Teitelbaum, S.L. (2008). The osteoclast: friend or foe? Annu. Rev. Pathol. 
Mech. Dis. 3, 457–484. 

Novack, D.V. (2010). Role of NF-κB in the skeleton. Nature Publishing Group 21, 169–182. 

Novack, D.V. (2011). Role of NF-κB in the skeleton. Cell Res. 21, 169–182. 

Novack, D.V., Yin, L., Hagen-Stapleton, A., Schreiber, R.D., Goeddel, D.V., Ross, F.P., and 
Teitelbaum, S.L. (2003). The IkappaB function of NF-kappaB2 p100 controls stimulated 
osteoclastogenesis. Journal of Experimental Medicine 198, 771–781. 

Ono, T. (2018). Recent advances in osteoclast biology. Histochemistry and Cell Biology 149, 
325–341. 

Papanicolaou, K.N., Khairallah, R.J., Ngoh, G.A., Chikando, A., Luptak, I., O'Shea, K.M., Riley, 
D.D., Lugus, J.J., Colucci, W.S., Lederer, W.J., et al. (2011). Mitofusin-2 Maintains 
Mitochondrial Structure and Contributes to Stress-Induced Permeability Transition in Cardiac 
Myocytes. Mol. Cell. Biol. 31, 1309–1328. 

Papanicolaou, K.N., Kikuchi, R., Ngoh, G.A., Coughlan, K.A., Dominguez, I., Stanley, W.C., 
and Walsh, K. (2012a). Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in 
heart. Circ. Res. 111, 1012–1026. 

Papanicolaou, K.N., Ngoh, G.A., Dabkowski, E.R., O'Connell, K.A., Ribeiro, R.F., Jr., Stanley, 
W.C., and Walsh, K. (2012b). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial 
fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. 
American Journal of Physiology-Heart and Circulatory Physiology 302, H167–H179. 

Pham, A.H., McCaffery, J.M., and Chan, D.C. (2012). Mouse lines with photo-activatable 
mitochondria to study mitochondrial dynamics. Genesis 50, 833–843. 

Quinn, J.M., Elliott, J., Gillespie, M.T., and Martin, T.J. (1998). A combination of osteoclast 
differentiation factor and macrophage-colony stimulating factor is sufficient for both human and 
mouse osteoclast formation in vitro. Endocrinology 139, 4424–4427. 

Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network 
formation protects mitochondria from autophagosomal degradation during nutrient starvation. 
Proc. Natl. Acad. Sci. U.S.a. 108, 10190–10195. 

Rocha, A.G., Franco, A., Krezel, A.M., Rumsey, J.M., Alberti, J.M., Knight, W.C., Biris, N., 
Zacharioudakis, E., Janetka, J.W., Baloh, R.H., et al. (2018). MFN2 agonists reverse 



	 125	

mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 
360, 336–341. 

SALTEL, F., CHABADEL, A., BONNELYE, E., and JURDIC, P. (2008). Actin cytoskeletal 
organisation in osteoclasts: A model to decipher transmigration and matrix degradation. 
European Journal of Cell Biology 87, 459–468. 

Sandoval, H., Yao, C.-K., Chen, K., Jaiswal, M., Donti, T., Lin, Y.Q., Bayat, V., Xiong, B., 
Zhang, K., David, G., et al. (2014). Mitochondrial fusion but not fission regulates larval growth 
and synaptic development through steroid hormone production. eLife 3, 211–223. 

Saporta, M.A., Dang, V., Volfson, D., Zou, B., Xie, X.S., Adebola, A., Liem, R.K., Shy, M., and 
Dimos, J.T. (2015). Axonal Charcot-Marie-Tooth disease patient-derived motor neurons 
demonstrate disease-specific phenotypes including abnormal electrophysiological properties. 
Exp. Neurol. 263, 190–199. 

Schrepfer, E., and Scorrano, L. (2016). Mitofusins, from Mitochondria to Metabolism. Mol. Cell 
61, 683–694. 

Seeling, M., Hillenhoff, U., David, J.P., Schett, G., Tuckermann, J., Lux, A., and Nimmerjahn, F. 
(2013). Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone 
destruction during inflammatory arthritis in mice. Proc. Natl. Acad. Sci. U.S.a. 110, 10729–
10734. 

Settembre, C., Fraldi, A., Medina, D.L., and Ballabio, A. (2013). Signals from the lysosome: a 
control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–
296. 

Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., 
Karsenty, G., Vellard, M.C., et al. (2012). A lysosome-to-nucleus signalling mechanism senses 
and regulates the lysosome via mTOR and TFEB. Embo J. 31, 1095–1108. 

Sevillano Fernández, J.A., Paz Fraile, A., Cano Ballesteros, J.C., Villalba García, M.V., Otero 
Pérez, R., and Gilsanz Fernández, C. (1994). [Charcot-Marie-Tooth disease, dilated 
myocardiopathy and cardiac conduction disorders]. An Med Interna 11, 455–456. 

Shares, B.H., Busch, M., White, N., Shum, L., and Eliseev, R.A. (2018). Active mitochondria 
support osteogenic differentiation by stimulating β-catenin acetylation. J. Biol. Chem. 293, 
16019–16027. 

Shashkova, E.V., Trivedi, J., Cline-Smith, A.B., Ferris, C., Buchwald, Z.S., Gibbs, J., Novack, 
D., and Aurora, R. (2016). Osteoclast-Primed Foxp3+ CD8 T Cells Induce T-bet, 
Eomesodermin, and IFN-γ To Regulate Bone Resorption. J. Immunol. 197, 726–735. 

Shirihai, O.S., Song, M., and Dorn, G.W. (2015). How mitochondrial dynamism orchestrates 
mitophagy. Circ. Res. 116, 1835–1849. 

Silver, I.A., Murrills, R.J., and Etherington, D.J. (1988). Microelectrode studies on the acid 



	 126	

microenvironment beneath adherent macrophages and osteoclasts. Experimental Cell Research 
175, 266–276. 

Sobacchi, C., Schulz, A., Coxon, F.P., Villa, A., and Helfrich, M.H. (2013). Osteopetrosis: 
genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9, 522–536. 

Sole, G., Ferrer, X., Vital, C., Martin-Negrier, M.-L., Vital, A., and Latour, P. (2009). 
Ultrastructural mitochondrial modifications characteristic of mitofusin 2 mutations (CMT2A). J. 
Peripher. Nerv. Syst. 14, 206–207. 

Somayaji, S.N., Ritchie, S., Sahraei, M., Marriott, I., and Hudson, M.C. (2008). Staphylococcus 
aureus Induces Expression of Receptor Activator of NF- B Ligand and Prostaglandin E2 in 
Infected Murine Osteoblasts. Infection and Immunity 76, 5120–5126. 

Song, M., Mihara, K., Chen, Y., Scorrano, L., and Dorn, G.W. (2015). Mitochondrial fission and 
fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured 
fibroblasts. Cell Metab. 21, 273–285. 

Spencer, J.A., Ferraro, F., Roussakis, E., Klein, A., Wu, J., Runnels, J.M., Zaher, W., Mortensen, 
L.J., Alt, C., Turcotte, R., et al. (2014). Direct measurement of local oxygen concentration in the 
bone marrow of live animals. Nature 508, 269–273. 

Steingrimsson, E., Arnheiter, H., Hallsson, J.H., Lamoreux, M.L., Copeland, N.G., and Jenkins, 
N.A. (2003). Interallelic complementation at the mouse Mitf locus. Genetics 163, 267–276. 

Steingrimsson, E., Tessarollo, L., Pathak, B., Hou, L., Arnheiter, H., Copeland, N.G., and 
Jenkins, N.A. (2002). Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip 
transcription factors, have important but functionally redundant roles in osteoclast development. 
Proceedings of the National Academy of Sciences 99, 4477–4482. 

Steingrímsson, E., Tessarollo, L., Reid, S.W., Jenkins, N.A., and Copeland, N.G. (1998). The 
bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125, 
4607–4616. 

Strickland, A.V., Rebelo, A.P., Zhang, F., Price, J., Bolon, B., Silva, J.P., Wen, R., and Züchner, 
S. (2014). Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J. 
Peripher. Nerv. Syst. 19, 152–164. 

Sugatani, T., and Hruska, K.A. (2005). Akt1/Akt2 and Mammalian Target of Rapamycin/Bim 
Play Critical Roles in Osteoclast Differentiation and Survival, Respectively, Whereas Akt Is 
Dispensable for Cell Survival in Isolated Osteoclast Precursors. J. Biol. Chem. 280, 3583–3589. 

Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmström, K.M., Fergusson, M.M., 
Yoo, Y.H., Combs, C.A., et al. (2015). Measuring In Vivo Mitophagy. Mol. Cell 60, 685–696. 

Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., 
Yokochi, T., Inoue, J.-I., et al. (2002). Induction and activation of the transcription factor 
NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Devcel 



	 127	

3, 889–901. 

Takeshita, S., Kaji, K., and Kudo, A. (2000). Identification and characterization of the new 
osteoclast progenitor with macrophage phenotypes being able to differentiate into mature 
osteoclasts. J Bone Miner Res 15, 1477–1488. 

Teitelbaum, S.L. (2011). The osteoclast and its unique cytoskeleton. Annals of the New York 
Academy of Sciences 1240, 14–17. 

Teti, A. (2013). Mechanisms of osteoclast-dependent bone formation. Bonekey Rep 2, 449. 

Tiedemann, K., Le Nihouannen, D., Fong, J.E., Hussein, O., Barralet, J.E., and Komarova, S.V. 
(2017). Regulation of Osteoclast Growth and Fusion by mTOR/raptor and mTOR/rictor/Akt. 
Front. Cell Dev. Biol. 5, 227–10. 

Trebec-Reynolds, D.P., Voronov, I., Heersche, J.N.M., and Manolson, M.F. (2010). VEGF-A 
expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J. Cell. Biochem. 
110, 343–351. 

Tuchscherr, L., Heitmann, V., Hussain, M., Viemann, D., Roth, J., Eiff, von, C., Peters, G., 
Becker, K., and Löffler, B. (2010). Staphylococcus aureusSmall‐Colony Variants Are Adapted 
Phenotypes for Intracellular Persistence. J Infect Dis 202, 1031–1040. 

Vaira, S., Johnson, T., Hirbe, A.C., Alhawagri, M., Anwisye, I., Sammut, B., O'Neal, J., Zou, 
W., Weilbaecher, K.N., Faccio, R., et al. (2008). RelB is the NF-kappaB subunit downstream of 
NIK responsible for osteoclast differentiation. Proc. Natl. Acad. Sci. U.S.a. 105, 3897–3902. 

van Vliet, A.R., and Agostinis, P. (2018). Mitochondria-Associated Membranes and ER Stress. 
Curr. Top. Microbiol. Immunol. 414, 73–102. 

Ventura-Clapier, R., Garnier, A., and Veksler, V. (2008). Transcriptional control of 
mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc. Res. 79, 208–217. 

Ventura-Clapier, R., Moulin, M., Piquereau, J., Lemaire, C., Mericskay, M., Veksler, V., and 
Garnier, A. (2017). Mitochondria: a central target for sex differences in pathologies. Clin. Sci. 
131, 803–822. 

Vettori, A., Bergamin, G., Moro, E., Vazza, G., Polo, G., Tiso, N., Argenton, F., and 
Mostacciuolo, M.L. (2011). Developmental defects and neuromuscular alterations due to 
mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A 
neuropathy. Neuromuscular Disorders 21, 58–67. 

Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired 
Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience 
29, 9090–9103. 

Wu, Y., Torchia, J., Yao, W., Lane, N.E., Lanier, L.L., Nakamura, M.C., and Humphrey, M.B. 
(2007). Bone microenvironment specific roles of ITAM adapter signaling during bone 



	 128	

remodeling induced by acute estrogen-deficiency. PLoS ONE 2, e586. 

Xu, F., and Teitelbaum, S.L. (2013). Osteoclasts: New Insights. Nature Publishing Group 1, 11–
26. 

Xu, K., Chen, G., Li, X., Wu, X., Chang, Z., Xu, J., Zhu, Y., Yin, P., Liang, X., and Dong, L. 
(2017). MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. 
Nature Publishing Group 1–13. 

Xue, R., Meng, Q., Lu, D., Liu, X., Wang, Y., and Hao, J. (2018). Mitofusin2 Induces Cell 
Autophagy of Pancreatic Cancer through Inhibiting the PI3K/Akt/mTOR Signaling Pathway. 
Oxidative Medicine and Cellular Longevity 2018, 1–8. 

Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., 
Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell–cell 
fusion in osteoclasts and foreign body giant cells. Journal of Experimental Medicine 202, 345–
351. 

Yang, Y.-M., Kim, M.S., Son, A., Hong, J.H., Kim, K.-H., Seo, J.T., Lee, S.-I., and Shin, D.M. 
(2009). Alteration of RANKL-Induced Osteoclastogenesis in Primary Cultured Osteoclasts From 
SERCA2 +/−Mice. J Bone Miner Res 24, 1763–1769. 

Yarmolinsky, M., and Hoess, R. (2015). The Legacy of Nat Sternberg: The Genesis of Cre-lox 
Technology. 

Yoshida, H., Inagaki, M., Shukuya, M., Ono, S., Doba, N., Shimizu, N., Sugano, I., and Nagao, 
K. (1991). [Charcot-Marie-Tooth disease associated with dilated cardiomyopathy: an autopsy 
case report]. Kokyu to Junkan 39, 295–298. 

Zarei, A., Yang, C., Gibbs, J., Davis, J.L., Ballard, A., Zeng, R., Cox, L., and Veis, D.J. (2018). 
Manipulation of the Alternative NF-κB Pathway in Mice Has Sexually Dimorphic Effects on 
Bone. JBMR Plus 21, 169–169. 

Zeng, R., Faccio, R., and Novack, D.V. (2015). Alternative NF-κB Regulates RANKL-Induced 
Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms. J Bone 
Miner Res 30, 2287–2299. 

Zhang, Y., Rohatgi, N., Veis, D.J., Schilling, J., Teitelbaum, S.L., and Zou, W. (2018). PGC1β 
Organizes the Osteoclast Cytoskeleton by Mitochondrial Biogenesis and Activation. J Bone 
Miner Res 33, 1114–1125. 

Zou, W., DeSelm, C.J., Broekelmann, T.J., Mecham, R.P., Vande Pol, S., Choi, K., and 
Teitelbaum, S.L. (2012). Paxillin contracts the osteoclast cytoskeleton. J Bone Miner Res 27, 
2490–2500. 

Züchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., 
Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial 
GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36, 449–451. 


	The Role of Mitofusins in the Osteoclast Lineage
	Recommended Citation

	Ballard_2019Dissertation_FINAL_3

