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ABSTRACT OF THE DISSERTATION 

Understanding the Transcriptional Mechanisms Underlying Dendritic Cell Development 
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Professor Kenneth M. Murphy, Thesis Advisor 

 

Dendritic cells (DCs) comprise an important immune lineage that plays a critical role in 

initiating and sustaining the proper immune response. They can be divided into two distinct 

branches, classical/conventional DCs (cDCs) or plasmacytoid DCs (pDCs). cDCs can further be 

classified as cDC1 or cDC2. Each DC subset exerts unique functions in vivo and are necessary 

for a complete immune response. 

The precise transcriptional programs underlying DC specification and commitment 

remain unclear. cDC1, cDC2, and pDC all arise from the common DC progenitor (CDP) in the 

bone marrow. How the CDP gives rise to all three DC subsets in an important outstanding 

question in the field. Several transcription factors have been shown to be important for the 

development of certain subsets. The transcription factors Irf8, Batf3, Id2, Nfil3, and Bcl6 are 

required for the cDC1 lineage, while the transcription factors Klf4 and Notch2 are necessary for 

specific cDC2 subsets. pDCs rely on the transcription factors Tcf4 and Zeb2 for their 

development. Despite knowing that these factors influence DC development, the interactions 

between these factors and their timing of action are unclear.   
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Recently, understanding of how the CDP specifies benefited from identifying cDC 

progenitors (pre-cDCs) that were found to include clonogenic populations separately committed 

to cDC1 or cDC2 lineages. Two Irf8 enhancers were found to affect cDC1 development in 

different stages: an E-protein dependent enhancer located 41 kilobases downstream of the 

transcription start site of IRF8 (+41 kb Irf8 enhancer) is required for the specification of the pre-

cDC1, and a BATF-dependent +32 kb Irf8 enhancer required for the maturation to the cDC1.  

To understand the switch in Irf8 enhancer usage during cDC1 specification, we used single-cell 

RNA-sequencing of the CDP and identified a cluster of cells that expressed transcription factors 

that influence cDC1 development, such as Nfil3, Id2, and Zeb2. We then performed genetic 

epistasis to determine the functional hierarchy of transcription factors involved in cDC1 

specification. We organized a transcriptional circuit that explains the switch in Irf8 expression 

from being Batf3-independent to being Batf3-dependent.  The CDP originates in a Zeb2hi and 

Id2lo state in which Irf8 expression is maintained by the +41 kb Irf8 enhancer. Single-cell RNA-

sequencing identified a fraction of the CDP that exclusively possesses cDC1 fate potential. This 

fraction’s development arises when Nfil3 induces a transition into a Zeb2lo and Id2hi state.  A 

circuit of mutual Zeb2-Id2 repression serves to stabilize states before and after this transition. Id2 

expression in the specified pre-cDC1 inhibits E proteins, blocking activity of the +41 kb Irf8 

enhancer, and thereby imposing a new requirement for Batf3 for maintaining Irf8 expression via 

the +32 kb Irf8 enhancer.
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 2 

1.1 Abstract 

Dendritic cells (DCs) are cells of the innate immune system that are required for the 

potent immune response. The development of this cell lineage is not fully understood, as it 

contains three distinct cell types that all exert unique functions in vivo. Recent developments in 

identifying clonogenic progenitors to specific DC subsets has helped to delineate the stages of 

specification, commitment, and maturation, but the precise transcriptional mechanisms that 

govern these processes is not well known. In this dissertation, we will first identify the 

similarities between ILCs and DCs, two innate immune cell lineages that help to promote a 

specialized immune response. Both cell lineages rely on similar transcription factors and 

transcription factor families for their developments. We attempt to recognize their shared 

transcriptional requirements. cDC1 specification relies on a switch in Irf8 enhancer usage. To 

understand this switch, we used single-cell RNA-sequencing of the CDP and identified a cluster 

of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2, 

and Zeb2. We performed genetic epistasis to determine the functional hierarchy of transcription 

factors involved in cDC1 specification and organized a transcriptional circuit that explains the 

switch in Irf8 expression. The CDP originates in a Zeb2hi and Id2lo state in which Irf8 expression 

is maintained by the +41 kb Irf8 enhancer. Single-cell RNA-sequencing identified a fraction of 

the CDP that exclusively possesses cDC1 fate potential. This fraction’s development arises when 

Nfil3 induces a transition into a Zeb2lo and Id2hi state.  A circuit of mutual Zeb2-Id2 repression 

serves to stabilize states before and after this transition. Id2 expression in the specified pre-cDC1 

inhibits E proteins, blocking activity of the +41 kb Irf8 enhancer, and thereby imposing a new 

requirement for Batf3 for maintaining Irf8 expression via the +32 kb Irf8 enhancer. This new 
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understanding of cDC1 specification could be applied to cDC2 and pDC specification, as well as 

innate immune cell specification, lineages that rely on similar transcription factors. 

1.2 Innate cell lineage function in an immune response 

 

A potent immune response requires crosstalk and collaboration between the innate and 

adaptive immune systems, both of which contain highly specialized immune lineages. Innate 

immune responses involve many different types of innate cells, such as neutrophils, monocytes, 

and specifically discussed in this review, innate lymphoid cells (ILCs) and dendritic cells (DCs). 

Innate cells recognize pathogens through their germline-encoded receptors and first initiate a 

proinflammatory response that aims to contain and rapidly clear the infection. Importantly, the 

innate cells direct the specific type of adaptive immune response that is most effective at clearing 

the particular type of infection by secreting cytokines and chemokines to alert the adaptive 

immune response. The adaptive immune response can be divided into three types of immunity, 

specific to the type of pathogen that evokes the response. Type I immunity is in response to 

intracellular microbes, such as bacteria and viruses, while type II immunity protects against 

helminthes and environmental substances. Type III immunity is involved in protection against 

extracellular bacteria and fungi. Each of these immune responses corresponds to a specific type 

of T cell, cells which express antigen-specific receptors, and to specific innate cells, ILCs and 

DCs, that together effectively responds to a pathogen.  

ILCs are often considered innate T cells, as both cell types share functional and 

developmental similarities. Like T cells, ILCs can be divided into several distinct subsets that 

correspond to the three types of immunity the cells elicit. However, unlike T cells which have 

antigen-specific receptors, undergo clonal selection, and expand when stimulated, ILCs do not 
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have antigen-specific receptors or the ability to undergo clonal selection. They instead rapidly 

respond to the pathogen and secrete cytokines to control the infection. Their developmental 

similarities have been discussed in detail in other reviews, and will be discussed only briefly in 

this review1,2. 

 DCs are characterized as professional antigen presenting cells and are responsible for 

priming T cells for potent T cell activation. DCs encode a number of receptors that allow for 

antigen uptake, antigen processing, and antigen presentation to MHC molecules on T cells. 

Initially thought of as one family, DCs are now recognized for their heterogeneity in both 

location and function, with distinct subsets specialized for specific response. Two sets of 

classical/conventional DCs (cDCs), cDC1 and cDC2, as well as plasmacytoid DCs (pDCs) and 

epidermal Langerhans cells (LCs) have been identified3-6.  

There are similarities between T cells and their innate counterparts, ILCs and DCs, in 

promoting a specialized immune response. We present a model in which these three immune cell 

types are distinguished by the major immune effector module they promote and then discuss 

recent progress in understanding the development of ILC and DC subsets. Both cell lineages 

share unrecognized transcriptional network similarity that deepens our understanding of innate 

cell lineage communication with adaptive immunity. 

1.3 Common effector modules between T cells, ILCs, and DCs 

 As discussed earlier, there are three broad types of immune responses, types I, II and III, 

where each type of immunity corresponds to specific ILC and DC subsets to elicit innate 

immunity, which in turn leads to a coordinated effort to prime a T-cell subset for the proper 

adaptive immune response. Type I immunity protects against intracellular pathogens, and can be 
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divided into two types of responses: a cytotoxic response led by NK cells, pDCs, and CD8+ T 

cells, and an intracellular defense module held by ILC1s, cDC1s, and TH1 cells. Type II 

immunity protects against helminths and environmental substances and is elicited by ILC2, a 

subset of cDC2, and TH2 cells. Finally, Type III immunity is involved in protection against 

extracellular bacteria and fungi and involves ILC3s, a subset of cDC2, and TH17 cells. A 

schematic of the types of immunity of each immune module, and the cell types involved, is 

presented in Figure 1.1. 

Type I immunity involves cytotoxic and intracellular defense modules 

NK cells, pDCs and CD8+ T cells comprise the cytotoxic module to protect against viruses 

NK cells and pDCs are among the first cells to initiate and mount a response to viral 

infection. NK cells express activating or inhibitory receptors that can recognize ligands on 

infected cells and can directly lyse the infected cells through granules containing pore-forming 

enzymes called perforin or serine proteases called granzymes. NK cells also express receptors for 

the pro-inflammatory cytokines IL-12, IL-15, IL-18, and type I interferons (IFNs), all of which 

are produced by other lineages during viral infection and are important for NK cell activation. 

Importantly, NK cells produce large amounts of interferon-gamma (IFN-γ), which activates 

macrophages for phagocytosis, and prevents viral spread.  

pDCs sense viruses through surface receptors such as toll-like receptors 7 and 9 (TLRs 7 

and 9) and cytosolic sensors such as RIG-I and MDA5. Their main effector function is to secrete 

large amounts of type I interferon to rapidly clear infected cells. Several studies have selectively 

ablated pDCs in vivo to demonstrate their function in regulating the antiviral immune response. 

Conditionally deleting the transcription factor Tcf4 (E2-2) using an Itgax-cre that allows for 
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deletion in CD11c+ immune cells results in an impaired innate response to mouse hepatitis virus 

(MHV) and an impaired adaptive response to lymphocytic choriomeningitis virus (LCMV)7. 

Specifically, pDCs are vital in sustaining a cytotoxic T lymphocyte (CTL) response against 

chronic viral infection7. Another study in which pDC-specific expression of diphtheria toxin 

receptor (DTR) was achieved using a human BDCA2 promoter indicated that lacking pDCs at 

the early stage of response against murine cytomegalovirus (MCMV) infection leads to lowered 

type I IFN production and attenuated NK cell activation8. pDCs may recruit and activate NK 

cells through their cytokine production9. 

 CD8+ T cells are essential for antiviral immunity, as they can both directly lyse cells 

through perforin and granzyme and provide memory to the immune system for protection against 

re-infection. In corroboration with earlier studies, Brewitz and Kastenmuller showed that pDCs 

promote CD8+ T cell help in response to viral infection, and moreover that pDCs are recruited to 

CD8+ T cell priming sites through the chemokines CCL3 and CCL410. Type I IFN produced by 

pDCs bolstered cDC1 maturation and cross-presentation efficacy10.  

 Development of both NK cells and CD8+ T cells depends on the transcription factors T-

bet (encoded by Tbx21) and Eomesodermin (Eomes, encoded by Eomes)11,12. Both transcription 

factors belong to the T-box transcription factor family13. Like other members in the family, these 

transcription factors share a highly similar T-box domain, suggesting that they bind to the same 

DNA motifs14. However, they possess divergent amino- and carboxy-termini, suggesting that 

they interact with distinct partners for activity15. In NK and CD8+ T cells function, they play 

different roles, but can only partially compensate for each other 15,16. In T cell development, T-

bet appears to act before Eomes17. While T-bet modulates the expression of IFN-γ and IL-12Rβ2, 

Eomes non-redundantly drives perforin and granzyme B production15,18. Additionally, studies 
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have suggested that T-bet and Eomes mutually regulate each other to maintain a balance between 

NK cells and ILC1 populations19,20. The regulation of both transcription factors remains largely 

unclear and studies have indicated that exogenous factors, such as TGF-β, might modulate 

Eomes and T-bet expression21.  

ILC1s, cDC1s and TH1 cells belong to the intracellular defense module 

ILC1s and cDC1s provide inflammatory signals to activate TH1 cells and promote an 

immune response against intracellular pathogens, such as Toxoplasma gondii (T. gondii). ILC1s 

are found in nearly all tissues and secrete large amounts of IFN-γ22. While both NK cells and 

ILC1s produce IFN-γ, ILC1s produce IFN-γ more quickly compared to NK cells in response to 

several viruses, such as MCMV, SeV and PR8 influenza virus, in part due to the crosstalk with 

cDC123-25. cDC1s are the main and non-redundant producers of IL-12, a cytokine responsible for 

activating ILC1s, driving IFN-γ production, and instigating a TH1 response26-33.  

cDC1s are required for protection against intracellular pathogens and for rejection of 

tumors. Studies demonstrating the importance of this cDC subset have been done with Batf3-/- 

mice, which specifically lack cDC134. Infection of these mice with T. gondii showed that cDC1 

produce IL-12, and furthermore that IL-12 can restore cDC1 in infected Batf3-/- mice26,35. Mice 

lacking all Batf family members (Batf−/−Batf2−/− Batf3−/− ) could not restore the cDC1 population 

after administration of IL-12, suggesting that Batf family members may be able to compensate 

for the lack of Batf3 in cases of infection26,35. cDC1s also promote production of IFN-γ by 

activating invariant NK T cells (iNKT), as iNKT cells can produce IFN-γ after interacting with 

cDC1 pulsed with α -galactosylceramide (α-GalCer), a glycolipid antigen presented on CD1d 

molecules which are highly expressed on activated cDC1s36-39. cDC1s are also uniquely capable 



 8 

of cross-presentation, which is crucial for anti-tumor immunity34,40,41. Recent work has indicated 

a necessary role for the protein Wdfy4 in cross-presentation, but the precise mechanism by 

which this protein, or other proteins play in the antigen-presentation process, remains unclear42. 

T-bet is also important for the development of ILC1 and TH1 cells19,43. These cells are 

characterized by their shared function in producing IFN-γ and TNF-α and their reliance on IL-12, 

IL-15 and IL-18 for activation. IL-12 signaling through STAT4 activation results in TH1 

differentiation in vivo but is dispensable for ILC1 polarization44,45. In T cell development, T-bet 

directly represses TH2 specification, but it is unclear whether an analogy can be drawn in the ILC 

population where T-bet represses ILC2 polarization46,47. TH1s and ILC1s primarily participate in 

immune response against viral infection and intracellular pathogens but are also associated with 

certain inflammatory bowel diseases and Type I diabetes2. T-bet drives IFN-γ production by 

directly binding to the regulatory elements of IFNG gene and inducing the expression of Runx3, 

another transcription factor that drives IFN-γ production. Recent studies have indicated that 

Eomes is induced upon TH1cell activation and that it is expressed at steady state in certain ILC1 

subsets48-50. These data suggest that Eomes might play a role in intracellular defense module 

under certain circumstances, such as infection. 

Type II immunity protects against helminthes and environmental substances 

ILC2s, Klf4-dependent cDC2 and TH2 cells contribute to maintain barrier immunity 

The third immune module is characterized by immunity to helminthes infection and maintenance 

of barrier function. ILC2s and Klf4-dependent cDC2 are important innate cells for this type of 

immunity and TH2 cells provide the adaptive help. This type of immunity is modulated by the 

cytokines IL-5, IL-9 and IL-13. ILC2s are the major innate sources of IL-5 and IL-1351. These 
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cytokines bolster the production of IL-4, which is required for TH2 differentiation. This group of 

cells is further characterized by their expression of the transcription factor GATA3. GATA3 is 

essential for the development for both lineages and drives the production of IL-5 and IL-13 by 

binding directly to the promoter region of these genes, and conditional deletion of GATA3 

results in the reduction of IL-5 and IL-13 production52-58. Upon induction, GATA3 needs to 

overcome a repressive threshold maintained by FOG-1 expression to stabilize the polarization of 

both lineages via autoactivation59,60. Such polarization can also be achieved via cytokine 

production. In particular, ILC2s in mouse small intestine produce IL-13 to actively drive 

differentiation of and IL-25 production by Tuft cells. IL-25 in turn further drives IL-13 

production by ILC2s and maintains lineage stability61. 

While the cDC1 population appears to be homogeneous, the cDC2 population seems to 

be heterogeneous. Conditional deletion of Kruppel-like factor 4 (Klf4) results in the loss of 

CD24+ CD172+ cDC2s in the lung and lymph node, as well as a decrease in a progenitor 

population in the bone marrow62. Moreover, Klf4-deficient mice showed impaired protection 

against Schistosoma mansoni infection but not herpes simplex virus, T. gondii, or Citrobacter 

rodentium (C. rodentium) infections, indicating a specific defect in Type II but not CTL, Type I, 

or Type III responses62. Klf4 has been shown to be transcriptional activator or repressor and 

modulates the development of multiple lineages in epithelial tissues such as skin, lung and 

intestine63-73. However, the specific function and target of KLF4 in cDC2 remains unclear. 

Several studies argue that cDC2s might modulate Th2 responses to house dust mite (HDM) 

antigen74,75. Upon HDM challenge, cDC2s are rapidly recruited to lung airways and will migrate 

to the lymph node to induce Type II immunity76. Also,  IL-13 produced by ILC-2s induce 
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CCL17 production by lung and dermal cDC2s to attract memory TH2 cells in response to 

allergen77. 

Type III immunity protects against extracellular bacteria and fungi 

ILC3, Notch2-dependent cDC2, and TH17 cells protect against extracellular pathogens and fungi 

ILC3s and Notch2-dependent cDC2 comprise the innate lineages for the fourth immune 

module. These cells are associated with defense against extracellular pathogens and fungi and 

can also contribute to tissue homeostasis. Deregulation of these cells often results in autoimmune 

diseases such as multiple sclerosis, psoriasis and Crohn's disease. STAT3 is required for proper 

response to IL-23 in ILC3s78,79, whereas it is wholly required for IL-23 signaling and subsequent 

in vivo TH17 polarization.  

Conditional deletion of Notch2 in CD11c+ cells revealed that cDC2 non-redundantly 

produce IL-23 in response to the extracellular bacteria C. rodentium, a mouse model for 

enteropathogenic Escherichia coli80. Notch 2 is a member of Notch family transcription factors 

that has 4 members in mammals, Notch 1-4. This family of transcription factors all function 

through ligand mediate activation. Upon binding of ligand such as Delta-like family proteins, 

sequential proteolytic cleavages release the Notch intracellular domain (NICD). NICD then 

enters the nucleus and drives the expression of target genes in cooperation with several co-

factors, including RBPJ and Mam. CX3Cr1 and ESAM expression can distinguish two subsets 

within the cDC2 population, and Notch2 deficiency result in the specific loss of the CX3CR1lo 

ESAMhi subset in the spleen76,81. Mice with conditional deletion of Notch2 in cDCs using Itgax-

cre have shown a decrease in TH17 numbers in the MLN81, and loss of Irf4 results in impaired 

TH17 differentiation induced by small intestine CD103+CD11b+ cDC2s82,83. The same 
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phenomenon occurs with the specific deletion of small intestine lamina propria 

CD103+CD11b+ cDC2s using a human Langerin-DTA transgenic mouse model which also leads 

to a decrease in TH17 cell numbers84. Although ESAMhi cDC2s are required for resistance to C. 

rodentium, mice lacking expression of Irf4 or CCR7and thereby having DCs with impaired 

migration capacity, do not exhibit significant susceptibility to C. rodentium, suggesting IL-23 

production by lamina propria resident cDC2s is sufficient for the effective control of this 

pathogen80,85. As mentioned above, IL-23 is required for ILC3 secretion of IL-22 and therefore, 

cDC2s modulate intestine Type III immunity by targeting both TH17 and ILC3s.  

The master regulator for this module is transcription factor RORγt and a defect in this 

factor results in the complete absence of both lineages in vivo86,87. They also share a reliance on 

the transcription factor AHR, a receptor that binds various ligand with high risk of exposure in 

daily life including dietary metabolites and pollutants88. AHR is also essential for IL-22 

production by this module89-91. 

1.4 ILC, DC, and T cell plasticity between immune models 

Although all three cell types reviewed here can be divided into subsets each contributing 

to a specific type of immunity, recent work has shown that considerable plasticity can exist 

between the subsets. This imparts an important role for the local microenvironment in shaping an 

immune response. Plasticity has also been observed in both mouse and human. 

The ability for some T cell subsets to convert to other subsets has been extensively 

studied92,93. IL-2 and IL-4, the instructive signals for TH1 and TH2 polarization respectively, 

drive lineage conversion. Recently polarized TH1 cells can start to produce IL-4, cease IFN-γ 

production and convert to TH2-like cells upon IL-4 treatment in vitro or helminth infection in 
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vivo94,95. TH2 cells are relatively more stable than TH1s, partially because of GATA3 auto-

activation and the mutual exclusion between GATA3 and T-bet60. However, under circumstances 

where IL-12Rβ expression is restored in TH2 polarized cells by Type I IFNs, IL-12 treatment can 

result in conversion to TH1 phenotype96. Plasticity has also been demonstrated in TH17 lineage, 

which may be the most plastic member of the T helper family97. Another study demonstrated that 

IL-12 treatment induces Th17 to downregulate RoRγt and IL-17 expression and start to express 

T-bet and IFN-γ and retains a Th1 like gene expression profile98,99. In humans,  a population of 

cells expressing both RoRγt and T-bet that could produce both Type I and Type III cytokines 

was identified in patients with Crohn disease100.. 

ILC plasticity largely mirrors T cell plasticity, with most ILC plasticity in ILC3s92,101. In 

vitro treatment of ILC3 with IL-2 or IL-5 can transform ILC3s into IFN-γ producing ILC1-like 

cells50,102. In mice, increase of T-bet expression and Notch signaling together with a decrease in 

RoRγt expression converts CCR6- NKp46+ ILC3s into NK1.1+ ILC1s that can produce IFN-γ103. 

This conversion was later shown to be T-bet dependent104,105. ILC2s also show some degree of 

plasticity. ILC2s can produce IL-17 and be converted into ILC3s by injection of IL-25 or 

exposure to Notch ligand106,107. These converted ILC2s also induce RORγt expression107. 

Multiple groups have also shown that ILC2 secrete IFN-γ in response to IL-12 and IL-1B and 

convert to ILC1s108-110.  

Many of the studies of DC plasticity have focused on functional plasticity without 

investigating changes in transcriptional profile111. In this sense, plasticity refers to altered ability 

to stimulate T cell response. For example, DCs cultured with IFN-γ can induce TH1 responses112, 

while thymic stromal lymphopoieitin (TSLP), can strongly activate and modulate DCs to 

stimulate TH2 responses in an OX40-L dependent manner113. However, these studies failed to 
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determine whether the differential ability to induce T cell response is simply because the same 

subset of DCs is responding to different extracellular signaling, or if there is actually subset 

conversion driven by differential expression of lineage defining transcription factors such as Irf8, 

Batf3, and Klf4 induced by environmental cues. 

1.5 Transcriptional basis of early ILC and DC development 

 We will now focus on the transcriptional networks governing ILC and DC development. 

Models of ILC and DC development can be divided into three distinct stages, as discussed for 

ILCs in a recent review by Serafini and colleagues24. Briefly, stage 1 is the specification of 

common precursors from a multipotent progenitor that has not excluded other cell fates. Stage 2 

is the commitment of the precursors to their mature counterparts. Both stage 1 and 2 normally 

occur in the bone marrow. Stage 3 is the maintenance and regulation of the mature cell subsets in 

tissues. Both ILC and DC development are shown in Figure 1.2.  

ILC development 

All subsets of ILCs are found in nearly all organs and tissues in the body, but ILC 

progenitors develop in the fetal liver and bone marrow. In the fetal liver, ILC progenitors that are 

phenotypically similar to LTis arrive on day E 12.5-13.5 and subsequently express lymphotoxins 

to support lymphoid structure development.  ILC progenitors in the bone marrow arise from the 

all lymphoid progenitor, or ALP, which are defined as Ly6D- common lymphoid progenitor 

(CLP), and the IL-7Ra+ lymphoid-primed multipotent progenitor (LMPP)114-121.  Another faction 

of the CLP, designated by positive expression of the integrin α4β7 is thought to include the first 

uncommitted ILC progenitor, but further studies are needed to identify this progenitor122. Briefly, 

stage 1 is the specification of common ILC precursors from the CLP, which include the αLP, 
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CHILP, and the ILCP. These progenitors have largely excluded B and T cell potentials, marking 

them distinct from the CLP, but may not represent fully committed ILC precursors. Within the 

αLP progenitor, only the CXCR6+ subset excludes T cell potential, but does give rise to 

conventional NK (cNK), non-NK ILC1, ILC2, and ILC3 cell types. However, the CXCR6- 

subset can develop into T cells as well123.  This αLP might be the most uncommitted ILC 

progenitor found thus far, but further studies are required to dissect this population. The next 

progenitor, the CHILP or a common progenitor to the “helper-like” ILC lineages was discovered 

in 2014. The ChILP only gives rise to ILC2, ILC3, and to non-NK cells ILC1119. The last 

progenitor, the common precursor to ILCs, or ILCP, was also discovered in 2014 and expresses 

high levels of the transcription factor PLZF124. This progenitor is committed to all three ILC 

lineages, but excludes LTi and NK cell potentials124. Early innate lymphoid progenitors, or 

EILPs, were identified in 2015 using a reporter mouse specific for the transcription factor TCF-1, 

which is expressed by all ILC progenitors125. Recently, they were established as intermediate 

progenitors between ALPs and ILCPs because certain transcription factors, such as PLZF and 

GATA-3, were expressed at intermediate levels between ALPs and ILCPs126. Importantly, EILPs 

are a functionally distinct cell type from ALPs and ILCPs because they are specified, but not 

committed to the ILC lineage126. Progenitors identified in stage 1 represent specified cells to the 

ILC lineage, but because they can give rise to other cell lineages under in vivo or in vitro 

conditions, do not represent committed progenitors. 

Commitment to specific ILC subsets occurs in stage 2 of ILC development. In this stage, 

identification of progenitors specific to NK cells, non-NK ILC1, ILC2, and ILC3 are aided by 

knowledge of T helper subsets, as ILCs and T helper cells are similar in both development and 

function. Recent studies have attempted to find a committed progenitor to the ILC1 lineage that 
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is distinct from a proposed progenitor to cNK cells. Both lineages express T-bet and Eomes.T-

bet is important for the development of ILC1 and cNK cells, as T-bet-/- do not have liver or 

intestinal ILC112,18,19,119. ILCs express T-bet, but only conventional NK cells express Eomes20.  

Additionally, while a committed progenitor for the non-NK cell ILC1 is yet to be defined, fate 

mapping studies of the transcription factor PLZF suggest that PLZF governs the divergence 

between ILC1 and NK cells127.   

A precursor committed to the ILC2 lineage, termed ILC2p, has been identified by high 

expression of the transcription factor GATA353. While GATA3 is also expressed in the CHILP, 

continuous expression of GATA3 is required for ILC2 maturation and function, as described 

with GATA3 reporter mice53. GATA3-/- mice lack ILC1, ILC2, and a subset of ILC3, so while 

GATA3 might not be a commitment factor for ILC2, it is critical for the maintenance of this ILC 

subset58. Other transcription factors necessary for ILC2 development are TCF-1 (encoded by 

Tcf7) and RORα. Tcf7-/- mice lack ILC2 in the lung and lack immature ILC2 in the bone 

marrow128,129. These mice also have reduced numbers of RORγt+ ILCs, suggesting that TCF-1 is 

required for the full development of more than one ILC subset. However, TCF-1 is absolutely 

required for ILC2 development in a cell intrinsic manner128,129. Likewise, RORα is a 

transcription factor required for ILC2 development in a cell intrinsic manner130,131. The latter two 

transcription factors may depend on Notch signaling, similar to their dependence in the T cell 

lineage, but that has not been explored completely.  

ILC3 development depends on the transcription factor RORγt, which is analogous to the 

requirement of this transcription factor inTH17 development. RORγt is necessary for LTi cells 

and for NKp46+ ILC3s103,118,132. The transcription factor TOX is also necessary for full 
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development of LTi cells and for complete differentiation into NK cells133. AHR deficiency also 

affects the same populations as RORγt and TOX deficiency89,90,131,134,135. 

Stage 3 of ILC development is about ILC maintenance and regulation in peripheral 

tissues. We will not go into much detail in this review, but studies have suggested that cytokines 

and some transcription factors are required for control of ILC populations and can contribute to 

ILC plasticity as described earlier in this review. 

DC development 

In this review, we draw a comparison between ILC and DC development and believe that 

like ILC development, DC development can also be divided into three distinct stages. 

Furthermore, both ILC and DC development rely on some of the same transcription factors and 

we explore where those similarities occur and what role the transcription factor plays in either 

lineage. 

Stage 1 begins with the specification of dendritic cell precursors from progenitor cells 

that are multipotent for myeloid potential called the common myeloid progenitor (CMP), to cells 

that are multipotent for macrophage and dendritic cell potentials, termed the MDP, to progenitors 

that retain only dendritic cell potential, or the CDP. DCs comprise three subsets – pDCs, cDC1, 

and cDC2 – and the CDP gives rise to all three subsets. Stage 2 is defined by the commitment of 

the specified progenitor to specific DC subsets. Recent work has defined progenitors that are 

committed to either cDC1 or cDC2 fate, and newer work has aimed to elucidate a progenitor that 

is committed to pDC fate. Stage 3 is the maintenance of DCs in peripheral tissues. Stage 1 is the 

specification of multipotent progenitors that have lymphoid, granulocyte and myeloid potentials 

to progenitors that retain only dendritic cell potential. Early progenitors that can give rise to DCs 
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in vivo are the CMP and the LMPP136-139. The next progenitor thought to arise from the CMP and 

still retain dendritic cell potential is the granulocyte/macrophage progenitor (GMP), but recent 

studies have shown that the GMP cannot develop into dendritic cells140. The 

macrophage/dendritic cell progenitor (MDP) arises from the CMP and only produces 

macrophages and dendritic cells both in vitro and in vivo140-143. The exact transcriptional 

mechanisms that cause the divergence and the exclusion from neutrophil fate between these 

progenitors are not known. However, the transcription factors PU.1, IRF8, and members of the 

CEBP family are thought to influence the development of these cell lineages. The MDP is 

thought to give rise to the CDP, but how the MDP gives rise to the CDP and how macrophage 

potential is lost are unanswered questions. The LMPP can give rise to other lymphoid 

progenitors, such as the CLP, which has the potential to give rise to pDCs144-146. pDCs have been 

thought to arise from lymphoid cells, as they can be traced with IL7R and recent work has shown 

that the majority of pDCs come from the CLP rather than the CDP146. 

Stage 2 of DC development is the commitment of the CDP to clonogenic progenitors that 

give rise to cDC1s, cDC2, or pDCs. Clonogenic progenitors for cDC1s and cDC2, namely pre-

cDC1s and pre-cDC2s, were identified in 2015147,148, and a progenitor for pDCs was elucidated 

in 2018146. Many transcription factors have been identified as important factors for cDC1, cDC2, 

and pDC development, and recent work has identified how transcription factors interact in the 

cDC1 lineage. 

cDC1 development depends on expression of the transcription factors IRF8, Batf3, Nfil3, 

and Id2 and suppression of the transcription factor Zeb234,147,149-153. IRF8 is a lineage-defining 

factor for cDC1 and Irf8-/- lack CDPs, pre-cDC1, and cDC1. Progenitors deficient in IRF8 

diverted toward the granulocyte lineage and produced more neutrophils, indicating a role for 
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IRF8 in regulating myeloid/granulocyte potential154. Batf3, a transcription factor belonging to the 

Batf family, has a leucine zipper domain that heterodimerizes with JUN and IRF factors155. 

Studies aiming to understand the relationship between IRF8 and Batf3 began in 2015 when the 

pre-cDC1 was identified as a Lineage-CD117intCD135+MHC-IIlow-intCD11c+SiglecH- cell that 

was either CD24+ or Zbtb46gfp+147. Zbtb46 is a transcription factor belonging to the Broad 

Complex, Tramtrack, Bric-a-Brac, and Zinc Finger family, that is selectively expressed in cDCs  

and their progenitors, but is not required for the development of them156,157. The pre-cDC1 is 

present in Batf3-/- mice, but not Irf8-/- mice, indicating that specification of the pre-cDC1 could 

occur in the absence of Batf3. Batf3-/- pre-cDC1 fail to maintain IRF8 expression, causing it to 

divert into the cDC2 lineage147. High expression of IRF8 is necessary for the cDC1 lineage, and 

it was discovered that Batf3 is required to maintain IRF8 autoactivation following specification 

to cDC1 fate147. ChIP-seq analysis identified a +32 kb Irf8 enhancer containing several AP1-IRF 

composite elements (AICEs) that binds IRF8 and BATF3 in cDC1s in vivo. Recently, CRISPR-

mediated deletion of the +32 kb Irf8 enhancer in mice (Irf8 +32–/–) suggests that Batf3 supports 

IRF8 autoactivation using this enhancer (Durai et al, accepted). Like Batf3–/– mice, Irf8 +32–/– 

mice lack mature cDC1 but maintain pre-cDC1 development in vivo. Development of this 

progenitor instead depends upon a +41 kb Irf8 enhancer, which binds E proteins and is active in 

mature pDCs and cDC1 progenitors, but not mature cDC1s. Deletion of this enhancer eliminated 

IRF8 expression in pDCs and also completely eliminated development of the specified pre-

cDC1. This enhancer activity requires E proteins to induce sufficient levels of IRF8 during 

specification of the pre-cDC1, but it is still unclear why mature cDC1s require BATF3 and the 

+32 kb Irf8 enhancer to maintain IRF8 expression. 
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Recent work from our lab has organized the transcription factors Nfil3, Id2, and Zeb2 

into a transcriptional network that promotes cDC1 fate (Bagadia et al, submitted). Nfil3, a basic 

leucine zipper (bZIP) transcriptional repressor158,159, is expressed in, and required for cDC1, but 

not cDC2 or pDC, development160,161. Id2 is a known inhibitor of E proteins and is expressed in 

cDC1 and cDC2, but not in pDCs, and is required only for cDC1 development162,163.  Current 

models propose that Id2 excludes the pDC fate in DC progenitors by blocking activity of E 

proteins, particularly E2-2 (Tcf4), required for pDCs164-166. The transcriptional repressor Zeb2 is 

expressed in pDCs and cDC2s, but not cDC1s. It acts to suppress cDC1 development and is 

required for pDC development, perhaps through inhibition of Id2 transcription152,153.  

We found that the CDP originates in a Zeb2hi and Id2lo state in which IRF8 expression is 

maintained by the +41 kb Irf8 enhancer. Single-cell RNA-sequencing of the CDP identified a 

fraction of the CDP that is already specified to cDC1 fate, in a stage earlier than the pre-cDC1. 

This fraction already expressed Id2, Batf3, and Zbtb46, and excluded Zeb2. This fraction’s 

development arises when Nfil3 induces a transition into a Zeb2lo and Id2hi state.  A circuit of 

mutual Zeb2-Id2 repression serves to stabilize states before and after this transition. Id2 

expression in the specified pre-cDC1 inhibits E proteins, blocking activity of the +41 kb Irf8 

enhancer, and thereby imposing a new requirement for Batf3 for maintaining IRF8 expression 

via the +32 kb Irf8 enhancer (Bagadia et al, submitted).  

Transcriptional mechanisms governing cDC2 and pDC development are less known, but 

progenitors for each lineage have been identified. The pre-cDC2 was identified in 2015 as a 

Lineage-CD117lowCD135+CD115+MHC-II-CD11c+Zbtb46gfp+ cell in the BM147. Although the 

pre-cDC2 expresses IRF8, mature cDC2 only express IRF4.However, Irf4-/- mice do not lack 

cDC2, although the cDC2 that develop exhibit defective migration85. As discussed earlier in the 
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review, two transcription factors, Klf4 and Notch2, have selectively ablated specific cDC2 

populations, but how heterogeneity in the cDC2 lineage occurs, and how the pre-cDC2 specifies 

to each cDC2 population remains unclear. Additionally, how the pre-cDC2 loses IRF8 to become 

IRF4-dependent is unknown.  

pDC development depends on the transcription factors Tcf4, Zeb2, and 

Bcl11a153,164,167,168. pDCs also express high levels of IRF8, but are present in Irf8-/- mice with 

altered phenotype and functionality151. The basis for lineage divergence between pDCs and cDCs 

from the CDP is not known, but analysis of the +41 kb Irf8 enhancer might suggest that a shared 

progenitor between pDCs and cDC1s exist. Alternatively, a pDCs might arise completely 

separately from the CLP, as has been suggested in a recent work that identified a pre-pDC146. 

This study characterized a pre-pDC as a 

Lin−CD16/32−B220−Ly6C−CD117int/loCD135+CD115−CD127+SiglecH+Ly6D+ cell146. Pre-

pDCs express high levels of IRF8 and once matured, express Tcf4. 

 Stage 3 of DC development concerns maintenance and regulation in peripheral tissues. 

Studies have suggested that cytokines and some transcription factors are required for control of 

DC populations and may regulate DC plasticity in tissues as discussed earlier in the review. 

1.6 Analogies between ILC and DC development 

ILC and DC development depends on some of the same transcription factor families, and 

often, the same transcription factors. Here, we will discuss the similarities between the 

development of these lineages by studying E proteins/Id proteins, Nfil3, and Zeb2. 

 E proteins and Id protein family member interactions are often portrayed as 

“transcriptional switches” in the development or function of specific immune subsets. Both types 
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of proteins belong to the basic-helix-loop-helix (bHLH) family of transcription factors and exert 

both transcriptional activation and transcriptional repressive roles in the immune system. bHLH 

family members contain two protein domains that are highly conserved but functionally 

different. The amino-terminal of the proteins contains the basic region, which allows binding to 

DNA at a specific sequence, known as an E box. The carboxy-terminal of the proteins contains 

the HLH domain which allows hetero- or homo-dimeric binding to other protein subunits. bHLH 

proteins also contain two activation domains, ADI and ADII, which map to regions that are 

distinct from the zipper169. These activation domains were identified in the N-terminal half of 

E2A and are conserved in the E protein sub-family. These activation domains can function 

independently of bHLH and employ different roles. ADI is active in many cells types169 and can 

recruit the SAGA chromatin-remodeling complex170. ADII is thought to direct transcriptional 

activation, as site-directed mutagenesis at this region decreased trans-activation potential169. 

E proteins are a member of the class I bHLH family and canonically bind to the DNA 

sequence CAnnTG. There are three known E proteins in mouse: E2A, HEB, and E2-2. The E2a 

gene encodes for two proteins by alternative splicing, E12 and E47. E47 can homodimerize, 

while E12 can bind to other members of the bHLH family. HEB can also be alternatively spliced 

to produce HEBAlt and HEBCan. 

Inhibitor of differentiation (Id) proteins are a member of the class V bHLH family and 

lack the basic DNA binding domain present in other bHLH family members. There are four 

known Id proteins in mouse: Id1, Id2, Id3, and Id4. Their primary function is to inhibit the 

activity of E proteins by sequestering E proteins and acting as dominant-negative inhibitors of E 

protein function. The HLH domain of Id proteins can heterodimerize with the bHLH domain of 

E proteins, thus causing nonfunctional heterodimers.  
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Id and E proteins are required in the initial stages of ILC development. Id2 is required in 

the ILC lineage to extinguish T cell potential and is required for all ILC subsets. The discovery 

of the ChILP as a lineage-IL-7R+CD135-α4β7+CD25-Id2high progenitor cell elucidated the fate-

determining role of Id and E proteins in ILC/T cell lineage split. Id2 is required for total ILC 

development171172, but Id2 is only necessary for proper CD4/CD8 T cell development. Id2 is also 

required specifically for the differentiation of ILC22s and type 2 ILCs and for the induction of 

α4β7173. Overexpression of Id2, on the other hand, prevents the development of T and B cells, as 

well as pDCS, and promotes NK and ILC cell differentiation174. Sequestration of E47, a protein 

subunit of E2a, by Id2 promotes mature NK and LTi cell development174 but loss of both E2a 

and Id2 in doubly-deficient mice can restore mature NK cells in the bone marrow and LTi 

development175. These particular results suggested that Id2 does have a function in mature NK 

cell development, but additionally has other requirements in the bone marrow and thymus. 

In DCs, Id2 is absolutely required for cDC1 development, and as discussed earlier, 

required for early cDC1 specification. Work done in our lab has elucidated a newfound role for E 

proteins in the cDC1 lineage. E proteins are required for the activity of the +41 kb Irf8 enhancer, 

but Id2 expression in the cDC1-specified fraction of the CDP blocks activity at this enhancer and 

allows for cDC1 fate through the activation of the +32 kb Irf8 enhancer. In summary, for both 

ILC and DC lineages, E proteins and Id proteins act as switches to specify one subtype over the 

other. 

 Nfil3 (Nuclear factor Interleukin 3 regulated, also known as E4bp4) is a bZIP 

transcriptional regulator and regulates many diverse biological processes176.  
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The N-terminal portion of its bZIP domain contains a basic motif, which directly binds to DNA. 

The C-terminal portion of the bZIP domain contains the leucine zipper region, which is 

responsible for its homo-dimerization. The Nfil3 protein also contains a unique transcriptional 

repression domain which is transferable, since its fusion with the GAL4 DNA binding domain 

leads to transcriptional repression in reporter assays. 

In the hematopoietic system, Nfil3 is essential for NK cell development. Nfil3 was the 

first transcription factor shown to be selectively and critically required for NK cell development, 

as Nfil3-/- mice lack those populations but not B cells, T cells or NKT cells177,178. The defect in 

NK cells is intrinsic in nature, which leads to a failure to eliminate major histocompatibility 

complex class I-deficient target cells and produce IFN- γ. However, further studies suggest that 

the NK cell population is far more complex and may have several different origins. Firth et al. 

have shown that the MCMV/recombinant virus express the viral m157 glycoprotein could induce 

a Ly49H+ NK cell population in the Nfil3-/- mice179. The viral induced Ly49H+ NK cells are fully 

functional with respect to IFN- γ production and cytotoxicity, and could comparably produce 

long-lived memory NK cells. Even at steady state, the development of several tissue resident NK 

cells, particularly in mucosal sites turns out to be Nfil3-independent, like the salivary gland NK 

cells180,181, the kidney tissue resident NK cells182 and the uterine NK cells183. Nfil3 is required for 

the formation of Eomes-expressing NK cells, whereas Eomes− NK cells develop independently 

of Nfil3184,185. 

Nfil3 acts early in NK cell specification, as ablation of Nfil3 in the immature NK cells in 

bone marrow, or mature peripheral NK cells, through the use of Ub- or Nkp46-cre lines in 

combination with Nfil3 floxed mice, does not influence NK lineage maintenance or 

homeostasis179. A later study examined the different stages of NK cell progenitors in Nfil3-/- 
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mice, and shows that Nfil3 is required at the NK lineage commitment point when NK 

progenitors develop from common lymphoid progenitors (CLPs)186. Both studies conclude that 

Nfil3 acts early in NK cell specification. 

How Nfil3 regulates NK cell development is an open question. Male et al. have shown 

that Eomes, T-bet and Id2 can rescue NK production from Nfil3-/- progenitors because Nfil3 

binds directly to the regulatory regions of both Eomes and Id2, promoting their transcription186. 

Nandakumar et al. further demonstrate that the histone H2A deubiquitinase MYSM1 interacts 

with Nfil3 and recruits Nfil3 to the Id2 locus. They observed that MYSM1 is involved in 

maintaining an active chromatin at the Id2 locus to promote NK cell development187. In addition, 

Brady and colleagues have shown that Notch1 is another novel Nfil3 target gene. While 

abrogation of Notch signaling impedes NK cell production, Notch peptide ligands could rescue 

NK cell development from Nfil3-/- progenitors188. 

Besides NK cells, Nfil3 later has been shown to be essential for the development of 

nearly all innate lymphoid cell subtypes. All ILC subsets exhibit high Nfil3 expression and thus, 

Nfil3 deficiency leads to a compromised development of all ILC subsets in a cell-intrinsic 

manner184,189,190. The only known ILC subtype that does not require Nfil3 for its development is 

the uterine ILC3 which participate in maintaining tissue homeostasis and barrier immunity 

during pregnancy191. 

Nfil3 directs the differentiation of a committed ILC progenitor, and acts transiently to 

enforce ILC lineage commitment Yu et al. showed that Nfil3 is required for the development of 

the earliest ILC lineage progenitors, Id2+ CHILP and α4β7hiPLZF+ ILC progenitor123,192. In the 

meantime, Geiger et al. generated the  Nfil3fl/fl X Nkp46iCre mice and showed that they have 
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normal numbers of ILC3, which indicate that Nfil3 is not required for the lineage 

maintenance190. Id2 has been reported to be a target of Nfil3 for NK cell development. Indeed, 

Nfil3 also directly binds to Id2 locus, promotes Id2 expression in the CHILP, and orchestrates 

their emergence from CLPs. Ectopic Id2 expression in Nfil3-/- progenitors also rescues all ILC 

lineage development. Recently, Belz and colleagues generated the Nfil3fl/flId2-CreERT2+/T mice 

to spatiotemporally delete Nfil3 in Id2-expressing cells. Their results show that all ILC lineages 

develop normally from those mice122. Thus, Nfil3 is a key factor for ILC lineage commitment, 

but its expression is only transiently required before Id2 expression. 

For DC lineages, Nfil3 has been shown to be specifically required for cDC1 development 

at steady state. And Nfil3-/- mice display impaired cross presentation to CD8+ T cells against cell-

associated antigens160. However, a later study suggests that cDC1 can be induced in an Nfil3-

independent manner in short-term bone marrow reconstitution161. Mechanically, Nfil3-/- mice 

have been shown to have normal numbers of pre-cDC progenitors, which had significantly 

reduced Batf3 level160. Our recent work with Nfil3 in cDC1 commitment shows that Nfil3 is 

required for early specification, perhaps initiation, of the cDC1 lineage (Bagadia et al, 

submitted). As such, its role in both ILC and DC lineages suggests that Nfil3 acts early for and in 

lineage specification.  

Zeb2 is a  zinc-finger transcriptional repressor that was first shown to be a regulator of 

epithelial-mesenchymal transition (EMT) via interaction with Smad family proteins193-196. Zeb2 

has two clusters of zinc fingers for DNA binding, one at each terminus. Both clusters binds to 

CACCT sequence and are necessary for repression194,195. Zeb2 can exert its repressive function 

by directly interacting with C-terminal binding proteins (CtBP), a known co-repressor family, via 

its CtBP interaction domain (CID). Most notably, Zeb2 is a known partner of Smad family 
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proteins and can bind with Smads 1, 2, 3, 5, and 8, known as R-smads196. Germline deletion of 

Zeb2 leads to embryonic lethality in mice197,198. Zeb2 performs a wide range of functions in 

multiple systems, ranging from dysregulation in several cancers199 to modulating myelination of 

oligodendrocytes200. In 2011, the role of Zeb2 in the hematopoietic system was first 

demonstrated, as Zeb2 deletion using Tie-2 cre or Vav-cre results in defect in HSC 

differentiation and homing to bone marrow201.  

Zeb2 is required for NK cell terminal maturation, as shown with a NK cell-specific 

deletion of Zeb2 (Ncr1icre)202. NK cell-specific Zeb2 deletion results in reduced survival for 

mature NK cells, defect in their exit from BM, and increased susceptibility to B16F10 

melanomas202. T-bet was shown to be necessary and sufficient to induce Zeb2 expression in NK 

cells, and Zeb2-deficient mature NK cells phenocopies their T-bet deficient counterparts. 

Several studies had associated Zeb2 with T cell terminal differentiation and memory 

formation. In response to LCMV infection, Zeb2 is upregulated by KLRG1hi effector CD8+ T 

cells, loss of Zeb2 expression in these cells results in the loss of antigen-specific CD8+ effector 

cells and the impairment of generation of effector memory cells, while the formation of central 

memory T cells was accelerated203204. Later studies further demonstrate that coordinated 

expression of Zeb2 and its family member, Zeb1, is critical for CD8+ T cell fate decision. Zeb2 

promoted terminal T cell differentiation, whereas ZEB1 was critical for memory T cell survival 

and function, with the TGF-b signaling selectively induce Zeb1 and repress Zeb2205.  

Within the DC compartment, Zeb2 was shown to be required for pDC development152,153. 

One study argues that Zeb2 is also required for cDC2 development152, while another indicated 

that Zeb2 is dispensable for cDC2 development and is instead required to actively repress 
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generation of cDC1 progenitors153. Our recent work shows that Zeb2 forms a mutually repressive 

loop with Id2, and is repressed by Nfil3 in the CDP to allow overall expression of Id2 for cDC1 

specification (Bagadia et al, submitted). The mechanisms by which Zeb2 influences ILC and DC 

lineage fates are less clear than the mechanisms by which Id2 and Nfil3 might influence fate, but 

work is currently being done in both fields to understand where and when Zeb2 acts. 

1.7 Conclusions 

Major questions remain regarding how ILC and DC subsets exert distinct effector 

functions and how transcription factors necessary for the development of each subset function at 

molecular and genetic levels. It is clear that ILC and DC subsets share transcription factors and it 

is possible that ILC specification and DC specification are similar. This could be applied to many 

cell lineages, as most understanding of cell specification and development are incomplete. 

In this dissertation, we attempt to understand the transcriptional mechanisms governing 

cDC1 development from the CDP. We found that cDC1 specification relies on two different Irf8 

enhancers: +41 kb Irf8 enhancer is required for the transition between the CDP and the pre-

cDC1, while the +32 kb Irf8 enhancer is required for subsequent maturation to the cDC1. Both 

enhancers are dependent on different transcription factor families for their activity, and it was 

unclear why the +41 kb enhancer relies on E proteins, while the +32 kb enhancer relies on 

BATFs. To understand the switch in Irf8 enhancer usage during cDC1 specification, we used 

single-cell RNA-sequencing of the CDP and identified a cluster of cells that expressed 

transcription factors that influence cDC1 development, such as Nfil3, Id2, and Zeb2. We then 

performed genetic epistasis to determine the functional hierarchy of transcription factors 

involved in cDC1 specification. We found that the CDP originates in a Zeb2hi and Id2lo state in 

which Irf8 expression is maintained by the +41 kb Irf8 enhancer. Single-cell RNA-sequencing 
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identified a fraction of the CDP that exclusively possesses cDC1 fate potential. This fraction’s 

development arises when Nfil3 induces a transition into a Zeb2lo and Id2hi state.  A circuit of 

mutual Zeb2-Id2 repression serves to stabilize states before and after this transition. Id2 

expression in the specified pre-cDC1 inhibits E proteins, blocking activity of the +41 kb Irf8 

enhancer, and thereby imposing a new requirement for Batf3 for maintaining Irf8 expression via 

the +32 kb Irf8 enhancer. 
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Figure 1.1 Four core immune modules shared between innate lymphoid cells (ILCs), 
dendritic cells (DCs) and T cells. Four core immune modules shared between ILCs, 
DCs, and T cells. An immune response specific to a particular pathogen involves 
cross talk and collaboration between two innate cell lineages, ILCs and DCs, and an 
adaptive cell lineage, T cells, by secretion of cytokines and chemokines. Each cell 
type in this module is governed by specific transcription factors that influence the 
effector functions. Abbreviations: cDC, classical/conventional dendritic cell; CTL, 
cytotoxic T lymphocyte; DC, dendritic cell; IFN, interferon; ILC, innate lymphoid 
cell; pDC, plasmacytoid dendritic cell. 
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Figure 1.2 ILC and DC development can be divided into three stages. Stage 1 refers to 
specification of common precursors from multipotent progenitors that have not yet 
excluded other cell lineage fates. Stage 2 is the commitment of those common 
precursors to the mature cell. Stage 3 is the maintenance of those cells in tissues. 
Many transcription factors influence either specification or commitment, and the 
precise roles for those factors are still unknown. Abbreviations: ALP, all-lymphoid 
progenitor; cDC, classical/conventional dendritic cell; CDP, common dendritic 
progenitor; CHILP, common helper-like ILC progenitor; CLP, common lymphoid 
progenitor; CMP, common myeloid progenitor; EILP, early innate lymphoid 
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progenitor; HSC, hematopoietic stem cell; ILC, innate lymphoid cell; ILCP, ILC 
progenitor; MDP, macrophage/DC progenitor; NKP, NK progenitor; pDC, 
plasmacytoid dendritic cell. 
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An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development 
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2.1 Abstract 

Classical type 1 dendritic cells (cDC1s) are required for anti-viral and anti-tumor immunity, 

which necessitates an understanding of their development. Development of the cDC1 progenitor 

requires an E protein–dependent enhancer located 41 kilobases downstream of the transcription 

start site of the transcription factor IRF8 (+41 kb Irf8 enhancer) but its maturation instead 

requires the BATF3-dependent +32 kb Irf8 enhancer. To understand this switch, we performed 

single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a 

cluster of cells that expressed transcription factors that influence cDC1 development, such as 

Nfil3, Id2, and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is 

required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent 

the earliest committed cDC1 progenitors. This genetic circuit blocks E protein activity to exclude 

plasmacytoid DC potential and explains the switch in Irf8 enhancer usage during cDC1 

development. 

 

2.2 Introduction 

Development of classical type 1 dendritic cells (cDC1s) has become a topic of interest 

because of the critical role this lineage plays in anti-tumor immunity and checkpoint blockade 

therapy1.  DCs are an immune lineage encompassing classical DCs (cDCs) and plasmacytoid 

DCs (pDCs)2,3.  cDCs comprise two branches, cDC1 and cDC2, that exert distinct functions in 

vivo and rely on different transcriptional programs4.  pDCs and cDCs can both arise from the 

common DC progenitor (CDP)5-7.  cDC progenitors (pre-cDCs) include clonogenic populations 

separately committed to cDC1 or cDC2 lineages8,9.  Similar progenitors have been confirmed in 
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human DC development10-12. However, the precise transcriptional programs underlying DC 

specification and commitment remain unclear.  

The transcription factors Irf8 and Batf3 are required for cDC1 development9,13,14, but 

cDC1 develop from CDP progenitors that express Irf8 independently of Batf3, yet later become 

dependent on Batf3 to maintain Irf8 expression.  The basis for this switch from Batf3-

independent to Batf3-dependent Irf8 expression is unclear.  A clonogenic cDC1 progenitor, the 

pre-cDC1, develops normally in Batf3–/– bone marrow (BM) but fails to maintain Irf8 

expression9, causing it to divert into cells that are transcriptionally similar to cDC2 (Durai, V., 

accepted). An enhancer located at +32 kb of the IRF8 transcription start site contained several 

AP1-IRF composite elements (AICEs) that bind IRF8 and BATF3 in cDC1s in vivo9. CRISPR-

mediated deletion of the +32 kb Irf8 enhancer in mice (Irf8 +32–/–) suggests that Batf3 supports 

Irf8 autoactivation using this enhancer (Durai, V., accepted). Like Batf3–/– mice, Irf8 +32–/– mice 

lack mature cDC1 but maintain pre-cDC1 development in vivo. Development of this progenitor 

instead depends upon a +41 kb Irf8 enhancer, which binds E proteins and is active in mature 

pDCs and cDC1 progenitors, but not mature cDC1s. In vivo deletion of this enhancer eliminated 

Irf8 expression in pDCs and also completely eliminated development of the specified pre-cDC1. 

This enhancer activity requires E proteins to induce sufficient levels of IRF8 during specification 

of the pre-cDC1, but it is still unclear why mature cDC1s require BATF3 and the +32 kb Irf8 

enhancer to maintain Irf8 expression. 

Other transcription factors are known to influence cDC1 development, such as Nfil3, Id2, 

and Zeb215-19.  Nfil3, a basic leucine zipper (bZIP) transcriptional repressor20, is expressed in 

cDC1s and is required for cDC1 development15,21, but how it functions is unknown4,15.  Id2 is a 

known inhibitor of E proteins, is expressed in both cDC1 and cDC2, and is required only for 
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cDC1 development16,17.  Id2 may exclude pDC fate by blocking activity of E proteins, 

particularly E2-2 (Tcf4), required for pDCs22-24. However, this model predicts that Id2–/– mice 

should lack both cDC1 and cDC2 lineages, since both lineages must exclude pDC fate.  Finally, 

the transcriptional repressor Zeb2 is required for pDC development and suppresses cDC1 

development, perhaps through inhibition of Id2 transcription18,19. How these factors precisely 

interact and at what stage they influence cDC1 specification is unknown. 

Here, we used single-cell RNA-sequencing and genetic epistasis to determine the 

functional hierarchy of transcription factors involved in cDC1 specification. We organized a 

transcriptional circuit that explains the switch in Irf8 expression from being Batf3-independent to 

being Batf3-dependent.  The CDP originates in a Zeb2hi and Id2lo state in which Irf8 expression 

is maintained by the +41 kb Irf8 enhancer. Single-cell RNA-sequencing identified a fraction of 

the CDP that exclusively possesses cDC1 fate potential. This fraction’s development arises when 

Nfil3 induces a transition into a Zeb2lo and Id2hi state.  A circuit of mutual Zeb2-Id2 repression 

serves to stabilize states before and after this transition. Id2 expression in the specified pre-cDC1 

inhibits E proteins, blocking activity of the +41 kb Irf8 enhancer, and thereby imposing a new 

requirement for Batf3 for maintaining Irf8 expression via the +32 kb Irf8 enhancer.  

 

2.3 Results 

The earliest committed cDC1 progenitor arises within the CDP  

The CDP was originally defined as a Lin–CD117intCD135+CD115+ BM population and 

was observed to be, although not defined as, largely negative for MHC-II and CD11c 

expression6. Subsequently, pre-cDC1 and pre-cDC2 progenitors were identified to arise from the 

CDP but were not contained within the CDP8,9.  Pre-cDC1s were defined as Lin–
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CD117intCD135+CD11c+MHC-IIlo-int and were largely CD115–. They can be defined using two 

methods, relying either on Zbtb46-GFP expression in Zbtb46gfp/+ reporter mice, or on 

conventional surface markers (Figure 2.1a)9,25. In each case, we noticed that approximately 10% 

of pre-cDC1s expressed CD115. The expression of CD115 in the pre-cDC1 suggested that cDC1 

specification could occur at an earlier developmental stage in the CDP.  In agreement, 5-10% of 

CDPs, defined on the strict exclusion of CD11c- and MHC-II- expressing cells, are Zbtb46-

GFPpos (Figure 2.1b). These Zbtb46-GFPpos CDPs had nearly exclusive cDC1 potential in vitro, 

comparable to pre-cDC1, and completely lacked pDC and cDC2 potential. This was in contrast 

to the Zbtb46-GFPneg CDPs, which produced cells from all three DC lineages (Figure 2.1c, 

Figure 2.3a).   

The transcriptional profile of these Zbtb46-GFPpos CDPs suggests they represent an 

intermediate population between a non-specified CDP, the Zbtb46-GFPneg CDP, and the pre-

cDC1 (Figure 2.1d,e).  For example, we considered genes whose expression changed more than 

8-fold between the Zbtb46-GFPneg CDP and the pre-cDC1.  For such genes, their expression in 

Zbtb46-GFPpos CDPs was consistently intermediate between their expression in Zbtb46-GFPneg 

CDPs and pre-cDC1s (Figure 2.1d,e).  Id2 expression in Zbtb46-GFPneg CDPs was increased by 

34-fold in pre-cDC1s, but only by 15-fold in Zbtb46-GFPpos CDPs.  Likewise, Zeb2 expression 

in Zbtb46-GFPneg CDPs was reduced by 9-fold in pre-cDC1s, but only by 3.6-fold in Zbtb46-

GFPpos CDPs.  As expected, the Zbtb46-GFPpos CDPs were segregated away from the pre-cDC2 

(Figure 2.1e). Thus, these results indicate that Zbtb46-GFPpos CDPs are an earlier and distinct 

stage of cDC1 specification compared with the more abundant pre-cDC1 described previously.  
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Single-cell RNA-sequencing of the CDP identifies factors associated with cDC1 

specification  

The identification of Zbtb46-GFP expressing cells in the CDP that had nearly exclusive 

cDC1 potential suggested that the CDP might contain cells that have already specified to cDC1 

fate. Single-cell RNA-sequencing (scRNA-seq) was performed on 9,554 CDPs defined as Lin–

CD127–CD117intCD115+CD135+MHC-II–CD11c– (Figure 2.2a) on the 10X Genomics platform 

to assay for unrecognized heterogeneity within this population. Uniform Manifold 

Approximation and Projection (UMAP) analysis26-28 identified 8 closely connected clusters 

(Figure 2.2b,c).  Although we were able to identify genes that were specifically enriched in 

certain clusters, others such as Klf4 and Ly6d were not specifically enriched in one cluster 

(Supplementary Figure 2.3b). However, scRNA-seq was able to identify a cluster that was 

enriched in Zbtb46 expression, corroborating our data above with the Zbtb46-GFP reporter mice. 

Zbtb46 was expressed in cluster 3, which also showed restricted expression of Id2 and Batf3, but 

excluded expression of Tcf4 (E2-2) and Zeb2 (Figure 2.2d,e).  Cluster 3 also showed reduced 

Csf1r expression (Figure 2.2d), consistent with lower CD115 expression in pre-cDC1 and 

incongruent with the higher CD115 expression in the bulk CDP (Figure 2.1a).  As expected, Flt3 

and Irf8 were uniformly and highly expressed (Figure 2.2d, e). Cluster 7, the only other Tcf4 

negative cluster, likely contained macrophage or neutrophil contamination as this cluster 

expressed Ccl6 and did not contain many cells (Figure 2.2c,d).  Other factors impacting DC 

development such as Bcl11a, Spi1, Klf4, and Notch229,30,31,32 were not differentially expressed 

across the CDP, perhaps suggesting that specification of cDC2s and pDCs occurs after the CDP 

(Figure 2.2d, Figure 2.3b). In addition, the CDP appeared homogenous with respect to markers 

of proliferation (Figure 2.2f). Thus, scRNA-seq identifies a cluster of cells within the CDP that 



 56 

coordinately induces Nfil3, Id2, Batf3 and Zbtb46, and reduces Tcf4 and Zeb2, suggesting these 

genes may regulate cDC1 specification at an earlier stage than previously recognized.   

  

cDC1 specification is functionally characterized by low Zeb2 and high Id2 expression  

To test the functional importance of these genes for cDC1 specification, we first analyzed 

two reporter mouse lines expressing a ZEB2-EGFP fusion protein (Zeb2egfp)33 or an Id2-IRES-

GFP cassette (Id2gfp)34.  Both reporters exhibit a GFP expression pattern consistent with the level 

of Zeb2 and Id2 gene expression across many immune lineages (Figure 2.5a,b).  In Zeb2egfp mice, 

90% of CDPs expressed high levels of ZEB2-EGFP, but 10% expressed low levels of ZEB2-

EGFP, similar to low levels of ZEB2-EGFP expressed by pre-cDC1s (Figure 2.4a).  In Id2gfp 

mice, 94% of CDPs expressed low Id2-GFP, but 6% expressed high levels of Id2-GFP similar to 

the high levels of Id2-GFP expressed by pre-cDC1s (Figure 2.4b).  Thus, both Zeb2egfp and Id2gfp 

reporter lines confirm the existence of ZEB2-EGFPlo and Id2-GFPhi cells within the CDP as 

predicted by scRNA-seq.  

 We next analyzed the developmental potential of CDPs expressing high or low levels of 

ZEB2-EGFP, Id2-GFP, and Zbtb46-GFP in an in vitro Flt3L culture system.  CDPs expressing 

low levels of ZEB2-EGFP showed significantly increased cDC1 potential (66%) compared with 

CDPs expressing high levels of ZEB2-EGFP (26%) (Figure 2.4c,e).  Likewise, CDPs expressing 

high levels of Id2-GFP showed significantly increased cDC1 potential (77%) compared with 

CDPs expressing low levels of Id2-GFP (30%) at both days 5 and 7 of in vitro Flt3L culture 

(Figure 2.4d,e, Figure 2.5c,d). Finally, CDPs expressing Zbtb46-GFP developed nearly 

exclusively into cDC1 (96%), while CDPs lacking Zbtb46-GFP developed into both cDC1 (30%) 

and cDC2 (70%) (Figure 2.1c, 2.4e).  In all three cases, pDCs developed exclusively from CDPs 
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that were either Zbtb46-GFPneg, ZEB2-EGFPhi, or Id2-GFPlo (Figure 2.5e-j). These results 

suggest that CDPs expressing low levels of Zeb2-EGFP or high levels of Id2-GFP are biased 

toward cDC1 development, but not as completely as CDPs expressing Zbtb46-GFP. 

The transcriptional profile of CDPs expressing low levels of ZEB2-EGFP or high levels 

of Id2-GFP suggests that these cells are an intermediate population between non-specified CDPs 

and the pre-cDC1 (Figure 2.4f-i).  We considered genes whose expression differed more than 5-

fold between the pre-cDC1 and either ZEB2-EGFPhi CDPs (Figure 3f,g) or Id2-GFPlo CDPs 

(Figure 2.4h,i). The expression of such genes in ZEB2-EGFPlo CDPs was consistently 

intermediate between the expression in ZEB2-EGFPhi CDPs and pre-cDC1s (Figure 2.4f,g).  

Likewise, the expression of such genes in Id2-GFPhi CDPs was consistently intermediate 

between the expression in Id2-GFPlo CDPs and pre-cDC1s (Figure 2.4h,i).  Additionally, the 

cells that are ZEB2-EGFPlo within the CDP have induced Id2, and cells that are Id2-GFPhi within 

the CDP have downregulated Zeb2 (Figure 2.4f-i). Both of these populations also show 

increasing Zbtb46 expression compared to the non-specified CDPs. Although these three cDC1-

specificed CDP populations differ in cDC1 potential, their transcriptional profiles suggest that 

they are highly overlapping. In summary, CDPs that express low ZEB2-EGFP or high Id2-GFP 

represent an earlier stage of cDC1 specification compared to the previously identified pre-cDC1.  

 

Nfil3 is required for cDC1 specification within the CDP   

Nfil3 is required for cDC1 development15, but its mechanism and timing of action remain 

obscure.  To determine the stage where Nfil3 acts in cDC1 development, we crossed Nfil3–/– mice 

with ZEB2-EGFP, Id2-GFP and Zbtb46-GFP reporter mice, and assayed whether cDC1-

specified progenitors developed in BM.  In Nfil3+/+Zbtb46gfp/+ reporter mice, cDC1-specified 
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cells can be identified as CD117intZbtb46-GFPpos cells that include pre-cDC1s and Zbtb46-

GFPpos CDPs and comprise approximately 5% of Lin–CD135+ BM (Figure 2.6a,b).  However, 

these cells are absent in Nfil3–/–Zbtb46gfp/+ mice, but do develop normally in Batf3–/–Zbtb46gfp/+ 

mice as previously described (Figure 2.7a)9.  Within the CDP, cDC1-specified cells can be 

identified as Zbtb46-GFPpos cells that comprise 5% of the CDP (Figure 2.6a,b).  However, these 

cells are also absent in Nfil3–/–Zbtb46gfp/+ mice.  

 In Nfil3+/+Zeb2egfp reporter mice, cDC1-specified cells are identified as CD117int ZEB2-

EGFP lo cells that includes pre-cDC1s and ZEB2-EGFPlo CDPs and comprise approximately 6% 

of Lin–CD135+ BM (Figure 2.6c,d).  However, these cells are absent in Nfil3–/–Zeb2egfp/+ mice.  

In Nfil3+/+Zeb2egfp reporter mice, cDC1-specified CDPs can be identified as ZEB2-EGFPlo cells 

that comprise 7% of CDPs (Figure 2.6c,d), which again are absent in Nfil3–/–Zeb2egfp/+ mice.  

Finally, in Nfil3+/+Id2gfp reporter mice, cDC1-specified cells can be identified as CD117int Id2-

GFPhi cells that include pre-cDC1s and Id2-GFPhi CDPs and comprises approximately 2% of 

Lin–CD135+ BM (Figure 2.6e,f).  However, these cells are absent in Nfil3–/–Id2gfp mice.  Further, 

cDC1-specified CDPs can be identified as Id2-GFPhi cells that comprise 7% of the CDP (Figure 

2.6e,f), but which are absent in Nfil3–/–Id2gfp mice.  In summary, Nfil3 is required for the 

appearance of all cDC1-specified progenitors identified by Zbtb46-GFP, ZEB2-EGFP, or Id2-

GFP. 

  

Zeb2 functions downstream of Nfil3 in cDC1 specification 

We next evaluated the interactions between Nfil3 and other factors using genetic mutants 

rather than GFP reporters.  We first examined interactions between Nfil3 and Zeb2. We crossed 

Nfil3–/– mice to Zeb2f/fMx1-Cre mice in which ZEB2 can be inactivated by poly(I:C) treatment 
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(Zeb2–/–).  We compared cDC1 development and the presence of cDC1-specified progenitors in 

Nfil3+/+Zeb2f/fMx1-cre- (wildtype), Nfil3–/–, Zeb2–/–, mice as well as Nfil3–/–Zeb2–/– mice (Figure 

2.8).  First, Zeb2–/– mice have more than a 2-fold increase in splenic cDC1s compared with 

wildtype mice (Figure 2.8a,b), consistent with our previous study19.  Further, Nfil3–/– mice lacked 

cDC1s in spleen, as previously reported15. However, Nfil3 –/– Zeb2–/– DKO mice had a splenic 

cDC1 population that, like Zeb2–/– mice, is about 2-fold greater than WT mice.  Similarly, in 

vitro cDC1 development was increased in Zeb2–/– BM and reduced in Nfil3–/– BM (Figure 

2.8c,d). However, in vitro cDC1 development from Nfil3 –/– Zeb2–/– DKO BM was increased 

compared to Nfil3–/– BM.  Finally, we directly examined pre-cDC1 development in these mice.  

Zeb2–/– mice have increased numbers of pre-cDC1 compared to wildtype mice, while Nfil3–/– 

mice have greatly reduced numbers of pre-cDC1 (Figure 2.8e,f).  However, Nfil3–/–Zeb2–/– DKO 

mice have markedly restored pre-cDC1 development compared to Nfil3–/– mice. In summary, for 

both in vivo and in vitro cDC1 development and for in vivo cDC1 specification, the phenotype of 

Zeb2 deficiency dominates over that of Nfil3 deficiency, suggesting that Zeb2 genetically 

functions downstream of Nfil3. The repression of Zeb2 by Nfil3 is required in the early stages of 

cDC1 specification. 

  

Zeb2 functions downstream of Id2 with respect to cDC1 specification 

 Some evidence suggests that Zeb2 may function genetically upstream of Id2 in cDC1 

development18,19, but no mechanism has been established.  To evaluate the genetic interaction 

between Zeb2 and Id2, we crossed the Rosa26Cre-ERT2 strain with Zeb2f/f, Id2f/f, and Zeb2f/f Id2f/f 

mice to produce mice in which tamoxifen administration can conditionally inactivate ZEB2 

(Zeb2–/–), ID2 (Id2–/–), or both (Zeb2–/–Id2–/–) , respectively.  We first evaluated pre-cDC1 
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specification and cDC1 development in these mice (Figure 2.9a-d).  Zeb2–/– mice show a 2-fold 

increase in cDC1 and pre-cDC1 compared with wildtype mice, similar to mice with ZEB2 

deficiency generated using poly(I:C) and Mx1-Cre (Figure 2.8).  Id2–/– mice lack splenic cDC1, 

as expected17, and also lack pre-cDC1 in BM.  However, Zeb2–/–Id2–/– mice showed a restored 

development of splenic cDC1 and BM pre-cDC1 (Figure 2.9a-d).  Moreover, similar results were 

obtained from in vitro Flt3L cultures of BM cells from these mice (2.10a,b). In summary, for 

cDC1 development, Zeb2 deficiency dominates over Id2 deficiency in Zeb2–/–Id2–/– DKO mice, 

suggesting that with respect to cDC1 specification, Zeb2 genetically functions downstream of 

Id2.  

 

Zeb2 functions upstream of Id2 with respect to Id2 expression  

We next compared the transcriptional profiles of splenic cDC1 in wildtype Zeb2–/–, Zeb2–

/– Id2–/–, and Nfil3 –/–Zeb2–/– mice using gene expression microarrays (Figure 2.9e, Supplementary 

Figure 2.10c).  cDC1 from all genotypes expressed high Irf8 and Batf3, and low Irf4 and Tcf4, 

levels, as expected.  Nfil3 was highly expressed in cDC1 isolated from wildtype, Zeb2–/–, and 

Zeb2–/–Id2–/– mice and was absent in cDC1 isolated from Nfil3 –/– Zeb2–/– mice, consistent with 

Nfil3 genetically functioning upstream of both Zeb2 and Id2.  Further, Id2 was expressed at the 

expected high levels in cDC1 from wildtype and Zeb2–/– mice, and absent in cDC1 from Zeb2–/–

Id2–/–mice, in agreement with Id2 genetically functioning upstream of Zeb2.  Unexpectedly, Id2 

gene expression remained high in cDC1 from Nfil3 –/–Zeb2–/– mice, despite the absence of Nfil3 

normally required for cDC1 specification.  These results indicate that, in the absence of Nfil3, 

loss of Zeb2 is sufficient for Id2 induction, suggesting Zeb2 acts upstream of Id2 with respect to 

Id2 expression.  
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Id2 and Zeb2 expression are mutually repressive 

The above results indicate that Zeb2 functions downstream of Id2 with respect to cDC1 

specification, as ZEB2 deficiency can restore cDC1 in Id2–/– mice, but acts upstream of Id2 with 

respect to Id2 gene expression. Thus, Id2 appears to repress Zeb2 expression, and Zeb2 appears 

to repress Id2 expression, to create a circuit of mutual repression in which Nfil3 seems to initiate 

cDC1 specification by repressing Zeb2.  

This model predicts that cDC1 specification in the CDP could occur in the absence of 

Id2, and that Id2–/– pre-cDC1 would maintain Zeb2 expression, unlike Id2+/+ pre-cDC1.  To test 

this, we used chimeric mice reconstituted with Id2–/–Zbtb46gfp/gfp BM (Id2–/–Zbtb46gfp/gfp).  We 

first confirmed that splenic pDCs and cDC2s develop normally in Id2–/–Zbtb46gfp/gfp chimeras 

(Figure 2.11a).  We also showed that Id2–/–Zbtb46gfp/gfp cDC2s are transcriptionally essentially 

identical to Id2+/+Zbtb46gfp/+cDC2s (Figure 2.11b).  Further, unspecified CDPs, defined as Lin–

CD117intZbtb46-GFP– CDPs, in Id2–/– mice are similar to Id2+/+and Batf3–/– CDPs, both in 

frequency, expression of CD115 and CD135 (Figure 2.9f), and transcriptional profile (Figure 

2.9g, Figure 2.11c).  However, in Id2–/–Zbtb46gfp/gfp chimeras, cDC1-specified cells (Lin–

CD117intZbtb46-GFPpos) were present but were reduced in frequency by 3-fold. The cDC1-

specified cells in Id2–/–Zbtb46gfp/gfp chimeras maintained CD135 expression but had higher 

expression of CD115 compared to Id2+/+Zbtb46gfp/+, implying a partial block in development of 

specified cDC1s. In addition, these cells failed to induce Batf3 but maintained expression of 

Zeb2 compared to Id2+/+ Zbtb46-GFPpos cells (Figure 2.9g and Figure 2.11c). These results 

confirm a role for Id2 in inducing Batf3 and repressing Zeb2 expression during cDC1 

specification. Since Id2 inhibits E protein transcription factors, Id2 might indirectly repress Zeb2 
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if E proteins supported Zeb2 expression.  In agreement, E2A is expressed in CDPs and binds to 

E-box motifs in the Zeb2 locus based on ChIP-seq analysis (Figure 2.11d,e,f)35.  

  

Id2 induction imposes a switch in Irf8 enhancer usage during cDC1 development  

Data has revealed that E proteins may be necessary for the sufficient induction of Irf8 in 

the CDP by activating the +41 kb Irf8 enhancer (Durai, V., accepted). This enhancer is 

transiently active during cDC1 progenitor development, but is required for the development of 

both pre-cDC1 and cDC1 in vivo9,36(Durai, V., accepted). This 454 bp region contains six E-box 

motifs that are conserved between human and murine Irf8 loci (Figure 2.12a) and is known to 

bind E2-2 in human pDCs (Figure 2.13)37.  Using the 454 bp region in a retroviral reporter 

system9, we found robust activity that was specific for pDCs, but not cDC1s or cDC2 (Figure 

2.12b,c).  We also examined the activity of three individual enhancer segments each containing 2 

E-box motifs. Segments A and C showed reduced overall activity compared with the 454 bp 

enhancer, but retained pDC specificity, while the middle segment B retained overall activity, but 

reduced pDC specificity (Figure 2.12b,c). Mutation of both E-boxes 1 and 2 in the 454 bp 

enhancer significantly reduced enhancer activity in pDCs (Figure 2.14a,b).  Within segment A, 

mutation of either E-box alone reduced overall activity, while mutation of both E-boxes together 

completely extinguished activity (Figure 2.12d, Figure 2.14c).  The most active segment B was 

also E-box dependent, showing reduced overall activity upon mutation of E-boxes 3 and 4 

(Figure 2.13e, Figure 2.14d).  These results indicate that the +41 kb Irf8 enhancer activity relies 

on the redundant activity of the six E-box motifs contained within this 454 bp region. In 

agreement with the role of Id2 in repressing E-box motifs, overexpression of retroviral ID2 

diminished +41 kb Irf8 enhancer activity (Figure 2.12f). 



 63 

This suggests that Id2 induction in the CDP can extinguish E protein activity at the +41 

kb Irf8 enhancer, thereby imposing a requirement for a new enhancer in the pre-cDC1 to 

maintain Irf8 expression necessary for cDC1 development. To identify a potential enhancer, we 

performed ATAC-seq on MDP, CDP, and pre-cDC1 progenitors and found a peak that indicated 

accessibility within the Irf8 region only in the pre-cDC1 and in mature cDC1, but not in the 

earlier MDP or CDP or mature cDC2 (Figure 2.12g, red dashed line). This peak was located at 

+32 kb of the Irf8 TSS and was shown to be BATF3-dependent9 (Durai, V., accepted). The 

induction of Id2, and the subsequent repression of Zeb2, thus forces a new requirement for Batf3 

in maintaining Irf8 expression during cDC1 development.  

 

2.4 Discussion 

This study resolves several long-standing puzzles regarding cDC1 development.  First, 

Id2 was proposed to be required for cDC development by excluding pDC fate potential22,23, but 

Id2–/– mice lacked only cDC1, and did not show the expected loss of all cDCs16.  Second, cDC1 

develop from CDP progenitors that express Irf8 independently of Batf3, yet later become 

dependent on Batf3 to maintain Irf8 expression.  The basis for this switch from Batf3-

independent to Batf3-dependent Irf8 expression was unclear.  Third, mature cDC1 do not express 

E proteins or show +41 kb Irf8 enhancer activity, yet their development requires both.  These 

apparent inconsistencies all result from a cryptic stage in cDC1 development in which Irf8 

expression relies on the E protein-dependent +41 kb Irf8 enhancer. In this study, we examined 

this cryptic stage of development to reveal the hierarchy of transcription factors governing cDC1 

specification.    
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Our results define a genetic hierarchy that unifies the actions of the known transcription 

factors required for cDC1 development. cDC1s were known to require Irf8, Batf3, Id2, and Nfil3, 

but how these factors interacted was unknown. We used Zbtb46-GFP to identify an earlier stage 

of cDC1 specification than previously described that occurs within the CDP itself9.  Single-cell 

RNA-sequencing of the CDP identified a cluster of cells defined by the expression pattern of 

Nfil3, Id2, and Zeb2. Epistatic analysis revealed a genetic hierarchy in which Nfil3 induces a 

transition from CDPs that express high levels of Zeb2 and low levels of Id2, to CDPs that 

express high levels of Id2 and low levels of Zeb2. A circuit of mutual repression between Zeb2 

and Id2 stabilizes these distinct states, such that repression of Zeb2 by Nfil3 is required to induce 

this transition.  In Zeb2hi and Id2lo CDPs, Irf8 expression is maintained by the +41 kb Irf8 

enhancer, which is dependent on E proteins for activity. Upon Id2 induction, E protein activity is 

lost and Irf8 expression becomes dependent on Batf3 acting at the +32 kb Irf8 enhancer. It is 

currently unclear whether Nfil3 directly represses Zeb2 and whether Zeb2 directly represses Id2, 

as there may be other factors in this proposed genetic circuit.  Nfil3 acts largely as a repressor 

20,38,but may activate transcription in contexts39.  Likewise, Zeb2 has been suggested to directly 

repress Id2 expression18,19, although this has not been rigorously tested.  Nfil3, Zeb2, and Id2 

have also been shown to regulate ILC development40, but the mechanisms by which these 

transcription factors act in these cells has not been studied. It is possible that similar networks 

like this exist in ILC development, but that will require further study. 

 

2.5 Materials and Methods 

Mice 
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WT C57BL6/J mice were obtained from The Jackson laboratory. Zbtb46gfp/+ mice were 

described25.  Nfil3−/− mice were from A. Look and Tak Mak46.  Mx1-Cre [B6.Cg-Tg(Mx1-

cre)1Cgn/J] mice (stock no. 003556), and Rosa26Cre/Cre [B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J] 

mice (stock no. 008463) were obtained from The Jackson Laboratory.  B6.SJL (B6.SJL-Ptprca 

Pepcb /BoyJ) mice (strain code 564), were obtained from Charles River.  ZEB2-EGFP fusion 

protein reporter (STOCK Zfhxlbtm2.1Yhi) mice33 were derived from biological material provided by 

the RIKEN BioResource Center through the National BioResource Project of the Ministry of 

Education, Culture, Sports, Science and Technology, Japan.  SIP1flox(ex7) (Zeb2f/f) were from Y. 

Higashi47. For experiments shown in Figure 2.9f,g, Id2-CreERT2 mice (JAX stock #016222)48 

were bred to Zbtb46gfp mice to generate Id2creERT2/+Zbtb46gfp/+ mice.  These mice were crossed to 

generate Id2creERT2/creERT2 Zbtb46gfp/+ or gfp/gfp mice.  Livers from day 1 old Id2creERT2/creERT2 pups 

were dispersed and cells injected into 4-6 week old lethally irradiated SJL WT mice (Charles 

Rivers) and chimeras used eight weeks after reconstitution.  Id2-flox and Id2-IRES-GFP mice34 

were generously donated by G. Belz.  Tcf3GFP/+ were generated by crossing the Tcfe2afl allele 

(B6.129-Tcf3tm1Mbu/J JAX stock #028184) with Vav-iCre mice (JAX stock #008610).    

All mice were generated, bred, and maintained on the C57BL/6 background in the Washington 

University in St. Louis School of Medicine specific pathogen-free animal facility. Animals were 

housed in individually ventilated cages covered with autoclaved bedding and provided with 

nesting material for environmental enrichment. Up to five mice were housed per cage. Cages 

were changed once a week, and irradiated food and water in autoclaved bottles were provided ad 

libitum. Animal manipulation was performed using standard protective procedures, including 

filtered air exchange systems, chlorine-based disinfection, and personnel protective equipment 

including gloves, gowns, shoe covers, face masks, and head caps. All animal studies followed 
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institutional guidelines with protocols approved by the Animal Studies Committee at 

Washington University in St. Louis. 

Unless otherwise specified, experiments were performed with mice between 6 and 10 weeks of 

age. No differences were observed between male and female mice in any assays performed and 

so mice of both genders were used interchangeably throughout this study. Within individual 

experiments, mice used were age- and sex-matched littermates whenever possible.  

 

Antibodies and flow cytometry. 

Cells were kept at 4ºC while being stained in PBS supplemented with 0.5% BSA and 2mM 

EDTA in the presence of antibody blocking CD16/32 (clone 2.4G2; BD 553142). All antibodies 

were used at a 1:200 dilution vol/vol (v/v), unless otherwise indicated.  

The following antibodies were from BD: Brilliant Ultraviolet 395–anti-CD117 (clone 2B8, 

catalog number 564011, 1:100 v/v), PE-CF594–anti-CD135 (clone A2F10.1, catalog number 

562537, 1:100 v/v), V500–anti-MHC-II (clone M5/114.15.2, catalog number 742893), Brilliant 

Violet 421–anti-CCR9 (clone CW-1.2, catalog number 565412, 1:100 v/v), Alexa Fluor 700–

anti-Ly6C (clone AL-21, catalog number 561237), Brilliant Violet 421–anti-CD127 (clone 

SB/199, catalog number 562959, 1:100 v/v), biotin–anti-CD19 (clone 1D3, catalog number 

553784), BV510–anti-CD45R (clone RA3-6B2, catalog number 563103), PE-anti-CD90.1 (clone 

OX-7, catalog number 554898). The following antibodies were from eBioscience: 

allophycocyanin–anti-CD317 (clone eBio927, catalog number 17-3172-82, 1:100 v/v), PE-Cy7–

anti-CD24 (clone M1/69, catalog number 25-0242-82), peridinin chlorophyll protein (PerCP)–

eFluor 710–anti-CD172a (clone P84, catalog number 46-1721-82), PerCP-Cy5.5–anti-SiglecH 
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(clone eBio-440c, catalog number 46-0333-82), PE–anti-CD11c (clone N418, catalog number 

12-0114-82). 

The following antibodies were from BioLegend: Brilliant Violet 711–anti-CD115 (clone AFS98, 

catalog number 135515, 1:100 v/v), PE or Brilliant Violet 421–anti-XCR1 (clone ZET, catalog 

number 148204 or 148216), Alexa Flour 700 or APC/Cy7-–anti-F4/80 (clone BM8, catalog 

number 123130 or 123118, 1:100 v/v), PE–anti-CD45.2 (clone 104, catalog number 109808), 

biotin or PE/Dazzle 594–anti-CD45R (clone RA3-6B2, catalog number 103203 or 103258), 

biotin–anti-Ly6G (clone 1A8, catalog number 127603), biotin–anti-Ter119 (clone TER-119, 

catalog number 116204), biotin–anti-CD105 (clone MJ/718, catalog number 120404), biotin–

anti-NK1.1 (clone PK136, catalog number 108704), biotin–anti-CD127 (clone A7R34, catalog 

number 135006, 1:100 v/v), biotin–anti-Ly-6A/E (clone D7, catalog number 108104), PE-anti-

human-CD4 (clone RPA-T4, catalog number 300550, 1:50 v/v). The following antibodies were 

from Tonbo Bioscience: FITC–anti-CD45.1 (clone A20, catalog number 35-0453-U500), biotin 

or APC–anti-CD3e (clone 145-2c11, catalog number 30-0031-U500 or 20-0032-U100), 

violetFluor 450–anti-MHC Class II (I-A/I-E) (clone M5/114.15.2, catalog number 75-5321-

U100). The following antibodies were from Invitrogen: allophycocyanin–eFluor 780–anti-

CD11c (clone N418, catalog number 47-0114-82). Cells were analyzed on a FACSCanto II or 

FACSAria Fusion flow cytometer (BD), and data were analyzed with FlowJo v10 software 

(TreeStar). 

 

Induced Gene Deletion. 

Conditional gene deletion in Nfil3–/–Zeb2f/fMx1-cre (Nfil3–/– Zeb2–/–), Zeb2f/f Mx1-cre- Nfil3+/+ 

(WT), Zeb2f/f Mx1-cre- Nfil3–/– (Nfil3–/–) and Zeb2f/f Mx1-cre+ Nfil3+/+ (Zeb2–/–) mice was 
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induced by i.p. injection of 150 μg poly(I:C) (SigmaAldrich; 1.0 mg/mL stock solution dissolved 

in saline) twice within 36–72 h. Gene deletion in WT, Zeb2f/f Rosa26Cre-ERT2 (Zeb2–/–), Id2f/f 

Rosa26Cre-ERT2 (Id2–/–) and Zeb2f/f Id2f/f Rosa26Cre-ERT2 (Zeb2–/– Id2–/–) mice was induced by 

administration of tamoxifen citrate chow (Envigo) for 4–5 weeks.  Mice were given up to 2 d of 

regular chow per week if significant weight loss was observed.  After treatment, mice were 

rested on regular chow for one week before analysis. 

 

Isolation and culture of BM progenitor cells and splenic DCs. 

Bone marrow progenitors and DCs were isolated as described9.  For BM sorting experiments, 

BM was isolated and depleted of CD3-, CD19-, CD105-, Ter119-, and in some instances Ly6G- 

and CD45R-expressing cells by staining with the corresponding biotinylated antibodies followed 

by depletion with MagniSort Streptavidin Negative Selection Beads (Thermo Fisher). All 

remaining BM cells were then stained with fluorescent antibodies prior to sorting. MDPs were 

identified as Lin–CD117hiCD135+CD115+ BM cells; CDPs were Lin–

CD117intCD135+CD115+MHC-II–CD11c+; pre-cDC1s are Lin–CD117intCD135+CD115–MHC-

IIlo-intCD11c+CD24+Siglec-H– or as Lin–CD117intCD135+MHC-IIlo-intCD11c+Siglec-H–Zbtb46-

GFP+, and pre-cDC2s as Lin–CD117loCD135+CD115+MHC-II–CD11c+. For splenic sorting 

experiments, spleen was isolated and depleted of Ly6G-, B220-, and CD3-expressing cells. 

cDC2 were identified as Lin–CD45R–CD317–MHC-II+CD11c+CD172a+ cells. Cells were 

purified on a FACSAria Fusion into IMDM plus 10% FBS with 5% Flt3L conditioned media.  

Sort purity of >95% was confirmed by post-sort analysis before cells were used for further 

experiments. For experiments that included Flt3L cultures, sorted cells (1×103 to 10×103 cells 
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per 200 µl complete IMDM) were cultured for 5 or 7 d at 37 °C with 5% Flt3L conditioned 

media. 

 

Expression microarray analysis. 

RNA was extracted with a RNAqueous-Micro Kit (Ambion) or a NucleoSpin RNA XS Kit 

(Machery-Nagel), then was amplified with Ovation Pico WTA System (NuGEN) or WT Pico 

System (Affymetrix) and hybridized to GeneChip Mouse Gene 1.0 ST microarrays (Affymetrix) 

for 18 h at 45 °C in a GeneChip Hybridization Oven 640. The data was analyzed with the 

Affymetrix GeneChip Command Console. Microarray expression data was processed using 

Command Console (Affymetrix, Inc) and the raw (.CEL) files generated were analyzed using 

Expression Console software with Affymetrix default RMA Gene analysis settings (Affymetrix, 

Inc).  Probe summarization (Robust Multichip Analysis, RMA), quality control analysis, and 

probe annotation were performed according to recommended guidelines (Expression Console 

Software, Affymetrix, Inc.). Data were normalized by robust multiarray average summarization 

and underwent quartile normalization with ArrayStar software (DNASTAR). Unsupervised 

hierarchical clustering of differentially expressed genes was computed with ArrayStar 

(DNASTAR) with the Euclidean distance metric and centroid linkage method.  

 

Single-cell RNA-sequencing.  

100,000 CDPs were sort purified as Live,[CD105, CD3, CD19, Ly6G, Ter119]–CD127–

CD117intCD115+CD135+MHC-II–CD11c– cells and single-cell gene measured with the 

Chromium system using Chromium Single Cell 3’ Library and Gel Bead Kit v2 (10X 

Genomics). Cell density and viability of sorted cells were determined by Vi-CELL XR cell 



 70 

counter (Beckman Coulter), and all processed samples had cell viability at >90%. The cell 

density was used to impute volume of single cell suspension needed in the reverse transcription 

(RT) master mix, to achieve ~6,000 cells per sample.  After Gel Bead-in-Emulsion reverse 

transcription (GEM-RT) reaction and clean-up, a total of 12 cycles of PCR amplification was 

performed to obtain cDNAs.  Libraries for RNA-seq were prepared following the manufacturer’s 

user guide (10x Genomics), profiled using Bioanalyzer High Sensitivity DNA kit (Agilent 

Technologies) and quantified with Kapa Library Quantification Kit (Kapa Biosystems).  Each 

single-cell RNA-seq library was sequenced in one lane of HiSeq4000 (Illumina).  

Sequencing data were pooled from two runs of 4,796 and 4,758 individual cells.  Run 1 had 

2,354 median genes and 85,247 means reads per cell. Run 2 had 2,247 median genes and 85,265 

mean reads per cell. Sequencing was filtered and processed using the Seurat R toolkit49.  

 

ATAC-Seq. 

ATAC-Seq of DC progenitors was performed using the Omni-ATAC protocol as previously 

described with minor modifications36. 10,000 MDPs, CDPs, and pre-cDC1s were sorted from 

bone marrow as described above and lysed in ice-cold ATAC-RSB buffer containing 0.1% 

NP40, 0.1% Tween-20, and 0.01% digitonin. Cells were incubated at 4° C for 3 min, then 

washed with ATAC-RSB buffer containing only 0.1% Tween-20. Nuclei were spun down by 

centrifugation and then incubated in 50 µL of transposition buffer (25 µL 2X TD buffer, 22.5 µL 

dH2O, 2.5 µL Tn5 transposase (Nextera DNA Library Prep Kit, Illumina)) and incubated at 37° 

C for 30 min. If 10,000 cells could not be obtained for a certain population then the quantity of 

Tn5 transposase was titrated down proportionately to the number of cells obtained but cells were 

still incubated in 50 µL total. Transposed DNA was purified with a DNA Clean & Concentrator 
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kit (Zymo Research), eluted in 21 µL of elution buffer, and stored at -20° C until amplification. 

Three biological replicates for each cell population were obtained and sequenced. ATAC-Seq 

libraries were prepared as previously described, barcoded and sequenced on an Illumina Nextseq. 

 

Retroviral analysis of murine +41 kb Irf8 enhancer. 

The 454 bp region of the +41 kb Irf8 enhancer was cloned into hCD4 pA GFP-RV9.  Each E-box 

motif (CANNTG) in the enhancer was mutated to a binding site-free DNA sequence (AACTAC) 

determined by SiteOut50. 

The primer sequences for the entire enhancer and the associated mutations are as follows: 

for +41 kb Irf8 enhancer: aaaagatctGATCTGGGGTATGTGGGAAC 

 and GAAAGAAGATCTGGGGTATGT; for segment A: 

aaaagatctGATCTGGGGTATGTGGGAAC and 

aaaaaagcttTGTGCTAATTAAAGCCAAGAGG; for segment B: 

aaaaggatccCTGTACCCCAGATCCCATC and aaaaaagcttGAGGAACCACCACTCAAGG; for 

segment C: aaaaggatccTCAGGTTTGGGGAAGAAG and 

aatcttttattttatcgatagcaagCTTGACACTCTGGGAATAG; for segment A+B: 

GCGACGGTCGCGCGAGCtagaaaagatctGATCTGGGGTATGTGGG and 

aatcttttattttatcgataaaaaaagcttGAGGAACCACCACT; for segment B+C: 

aaaaggatccCTGTACCCCAGATCCCATC and 

aatcttttattttatcgatagcaagCTTGACACTCTGGGAATAG; for mE1: 

GTGTCTCTCACaactacGGATCCCATATAAGGTTTATTTTTAC 

 and CCTTATATGGGATCCgtagttGTGAGAGACACAAAGGGTTC; for mE2: 

GCCCAGGCCCaactacTTCCCCCCTGTACCCCAG and 
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GTACAGGGGGGAAgtagttGGGCCTGGGCGATGTTCTG; for mE3: 

TCCTCCTCTGGTAGAGAAGAAGCTGCGGGCTGGGaactacCCGCACCCTCCCC 

and GGGGAGGGTGCGGgtagttCCCAGCCCGCAGCTTCTTCTCTACCAGAGGAGG; for 

mE4: GCACCCTCCCCGGaactacTCTTCACCGTGCGGTCAGG 

and CGCACGGTGAAGAgtagttCCGGGGAGGGTGCGGg; for mE5: 

GGCTGGAAGCCTTGAGTGGTGGTTCCTCaactacTCTTTGGGCACCTG 

and CAGGTGCCCAAAGAgtagttGAGGAACCACCACTCAAGGCTTCCAGCC; for mE6: 

ctacTCTTTGGGaactacGGATGCGTCCTGTTAGGACC and 

CCTAACAGGACGCATCCgtagttCCCAAAGAgtagttGAGG; and for mE3/4: 

AGCTGCGGGCTGGGaactacCCGCACCCTCCCCGGaactacTCTTCACCGT 

and ACGGTGAAGAgtagttCCGGGGAGGGTGCGGgtagttCCCAGCCCGCAGCT. 

Retroviral vectors were transfected into Plat-E cells with TransIT-LTI (Mirus Bio) and viral 

supernatants were collected two days later.  For retroviral analysis in Flt3L cultures, Lin–

CD117high BM cells were infected on day 1 after plating with the supernatants of transfected 

packaging cells and concentrated by centrifugation with 2 ug/ml polybrene by ‘spin infection’ at 

2,250 r.p.m. for 60 min.  Viral supernatant was replaced by complete IMDM + 5% Flt3L one day 

after transduction and the culture was read out on day 8. For analysis, the enhancer activity was 

quantitated using integrated MFI51,52.  

For retroviral analysis in WEHI-231 cultures, WEHI-231 cells were infected on day 1 after 

plating with supernatants of transfected packaging cells with the reporter constructs and either 

empty or ID2 retrovirus and concentrated by centrifugation with 2 ug/ml polybrene by ‘spin 

infection’ at 2,250 r.p.m. for 60 min. Viral supernatant was replaced by complete IMDM one day 
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after transduction and the culture was read out on day 3.For analysis, the enhancer activity was 

quantitated using integrated MFI in cells that were co-infected with either empty or ID2 

retrovirus51,52.  

 

Analysis of E-box motifs in human +58 kb IRF8 enhancer. 

The occurrence of E-box motifs in the element +41 kb relative to the Irf8 TSS was found with 

FIMO53 motif-identification program at a P-value threshold of 1 × 10−3 with the E-box 

position weight matrix obtained for the E2-2 peaks of human pDCs37. 

Human	and	mouse	elements	were	aligned	via	Clustal	Omega	W.		

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analysis for single cell RNA-sequencing data is described above. Horizontal lines in  

figures indicate the mean. Results from independent experiments were pooled as indicated in 

figure legends. Data were analyzed using Prism (GraphPad), using unpaired two-tailed Student's 

t tests when comparing two groups or ordinary one-way or two-way 
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Figure 2.1 Zbtb46-GFP Expression in CDPs Identifies the Earliest Committed cDC1 
Progenitor.  
a, BM from Zbtb46gfp/+ mice was analyzed by flow cytometry to identify pre-cDC1 as defined by 
Zbtb46-GFP or by CD24 expression.  Lineage (Lin) included CD3, CD19, NK1.1, Ly-6G, TER-
119, CD105, CD127 and Siglec-H. Numbers are the percent of cells in the indicated gates 
(representative of three independent experiments, n = 3 mice).  b, BM from Zbtb46gfp/+ mice was 
analyzed by flow cytometry to identify the percentage of Zbtb46-GFP expression within the 
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CDP. Lineage was defined as in (a) (representative of three independent experiments, n = 3 
mice).  c, Zbtb46-GFPpos CDPs,  Zbtb46-GFPneg CDPs, pre-cDC1 and pre-cDC2 were sort 
purified from Zbtb46gfp/+ mice, cultured for 5 d in Flt3L, and analyzed by flow cytometry for 
development of pDCs and cDC1 (representative of three independent experiments, n = 4 for 
Zbtb46-GFPpos, Zbtb46-GFPneg CDPs, pre-cDC1 and n = 3 for pre-cDC2) d-e, Zbtb46-GFPpos 
CDPs, Zbtb46-GFPneg CDPs, pre-cDC1 and pre-cDC2 were purified as in (c) and analyzed using 
gene expression microarrays. Shown is expression of transcription factors with at least 4-fold 
differences between Zbtb46-GFPneg CDP and pre-cDC1s (d) or hierarchical clustering for genes 
with a least 8-fold differences between Zbtb46-GFPneg CDP and pre- cDC1s (e) (results averaged 
from biological triplicates for Zbtb46-GFPpos CDPs, Zbtb46-GFPneg CDPs, and pre-cDC1 or 
biological replicate for pre-cDC2). 
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Figure 2.2 Single-cell RNA Transcriptome Analysis of CDPs. 
a, CDPs gated as Live,[CD105, CD3, CD19, Ly6G, Ter119]–CD127–

CD117intCD115+CD135+MHC-II–CD11c– cells  were purified by sorting from C57BL/6J mice. 
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Shown are pre-sort (top) and post-sort (bottom) for cells collected for single-cell RNA-
sequencing.  b, UMAP clustering of CDPs from Seurat analysis (data represents combined 
analysis of two independent sequencing runs)  c, Heatmap of 9,954 cells for the top ten genes of 
each cluster from Seurat analysis.  Shown are names of representative genes within each cluster.  
d,  Violin plots depicting cluster identity and expression level for the indicated genes expressed 
in each cluster as described in (b).  e, UMAP plots for the indicated genes as described in (b).  f, 
Joy plots depicting expression level and cell cycle stage for genes involved in the cell cycle. 
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Figure 2.3 cDC1 specification occurs in the CDP 
a, Zbtb46-GFPpos CDPs,  Zbtb46-GFPneg CDPs, pre-cDC1 and pre-cDC2 were sort purified from 
Zbtb46gfp/+ mice, cultured for 5 d in Flt3L, and analyzed by flow cytometry for development of 
pDCs and cDC1 (data presented for three independent experiments, n = 4 for Zbtb46-GFPpos, 
Zbtb46-GFPneg CDPs, pre-cDC1 and n = 3 for pre-cDC2). Small horizontal lines indicate the 
mean. b, Violin plots depicting cluster identity and expression level for the indicated genes. 
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Figure 2.4 Zeb2 and Id2 Heterogeneity Identifies cDC1 Specification in CDPs. 
BM from Zeb2egfp/egfp (a) and Id2gfp (b) mice were analyzed by flow cytometry to identify GFP 
expression in CDPs and pre-cDC1s.  WT mice (Zeb2+/+ and Id2+/+) are shown as gray 
histograms.  Numbers indicate the percentage of cells in the indicated gates. (representative of 
three independent experiments, n = 3 mice). c-d, ZEB2-EGFPlo and ZEB2-EGFPhi CDPs (c), and 
Id2-GFPhi and Id2-GFPlo CDPs (d) were purified by sorting, cultured for 5 d in Flt3L, and 
analyzed by flow cytometry for development of cDC1 (red) and cDC2 (blue) (representative of 
three independent experiments, n = 5 for ZEB2-EGFPlo and ZEB2-EGFPhi CDPs  and n = 4 for 
Id2-GFPhi and Id2-GFPlo CDPs).  e,  The indicated cells purified as described in (c) and (d) or in 
Figure 1c were cultured as in (c) and analyzed by flow cytometry for cDC1 development shown 
as a percentage of total cDCs (CD45R–CD317–MHC-II+CD11c+) (pooled from three independent 
experiments, n = 5 for ZEB2-EGFPlo and ZEB2-EGFPhi CDPs, n = 4 for Id2-GFPhi or Id2-GFPlo 
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CDPs  and Zbtb46-GFPpos or Zbtb46-GFPneg CDPs). Small horizontal lines indicate the mean. f, 
Hierarchical clustering of genes expressed at least 5-fold differently between pre-cDC1 and 
ZEB2-EGFPhi CDPs (results averaged from three independent experiments). g, Expression of the 
indicated genes described in (f). h, Hierarchical clustering of genes expressed at least 5-fold 
differently between pre-cDC1 and Id2-GFPlo CDPs (results averaged from two independent 
experiments). i, Expression of the indicated genes described in (h).  Data are presented as mean 
and two-tailed unpaired Student’s t test was used to compare groups. *p < 0.05, **p < 0.01, 
****p < 0.0001. 
  



 86 

 
 



 87 

Figure 2.5 ZEB2-EGFP and Id2-GFP Expression in BM and Spleen 
a, BM from Zeb2egfp/egfp (left) and Id2gfp/+ (right) mice were analyzed by FACS to identify GFP 
expression in the indicated progenitors. Numbers are the MFI (data representative of three 
independent experiments, n = 3 mice).   b, Spleen from Zeb2gfp/gfp (left) and Id2gfp/+ (right) mice 
was analyzed by FACS for GFP expression in T cells (CD3+CD45R–), B cells (CD45R+CD3–), 
NK cells (NK1.1+CD3–), monocytes (Ly6C+CD115+), and DCs as gated in the Methods. Numbers 
are the MFI (data representative of three independent experiments, n =3 mice). c, Id2-GFPlo or 
Id2-GFPhi CDPs were sort purified from Id2gfp/+ mice, cultured for 5 or 7 d in Flt3L, and analyzed 
by FACS for development of cDC1 (red) or cDC2 (blue). Number indicates percentage of cells 
in the gate (data representative of two independent experiments, n = 2 mice). d, Percentages of 
cDC1s from in vitro cultures as described in (c). Small horizontal lines indicate the mean. e, 
Zbtb46-GFPpos or Zbtb46-GFPneg CDPs were sort purified from Zbtb46gfp/+ mice, cultured for 5 or 7 
d in Flt3L, and analyzed by FACS for development of pDCs (brown). Number indicate 
percentage of cells in the gate (data representative of two independent experiments, n = 2 mice). 
f, Percentages of pDCs from in vitro cultures as described in (e). Small horizontal lines indicate 
the mean. g, ZEB2-EGFPlo or ZEB2-EGFPhi CDPs were sort purified from Zeb2egfp/egfp mice, 
cultured for 5 or 7 d in Flt3L, and analyzed by FACS for development of pDCs (brown). 
Number indicates percentage of cells in gate (data representative of two independent 
experiments, n = 2 mice). h, Percentages of pDCs from in vitro cultures as described in (g). 
Small horizontal lines indicate the mean. i, Id2-GFPlo or Id2-GFPhi CDPs were sort purified from 
Id2gfp/+ mice, cultured for 5 or 7 d in Flt3L, and analyzed by FACS for development of pDCs 
(brown). Number indicates percentage of cells in the gate (data representative of two 
independent experiments, n = 2 mice). j, Percentages of pDCs from in vitro cultures as described 
in (i). Small horizontal lines indicate the mean. 
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Figure 2.6 Nfil3 is Required for cDC1 Specification. 
a, BM from Nfil3+/+Zbtb46gfp/+ and Nfil3–/–Zbtb46gfp/+ mice was analyzed by flow cytometry for 
Lin–CD135+CD117int Zbtb46-GFPpos cells (left) or Zbtb46-GFPpos CDPs (right). Numbers 
indicate the percent of cells in the indicated gates (representative of five independent 
experiments, n = 5 mice).  b, Cells from (a) are shown as a percentage of Lin–CD135+ (left) or 
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CDPs (right). Small horizontal lines indicate the mean. c,  BM from Nfil3+/+Zeb2egfp/+ and Nfil3–

/–Zeb2egfp/+ mice was analyzed for Lin–CD135+CD117int ZEB2-EGFPlo cells (left) or ZEB2-
EGFPlo CDPs (right) (representative of three independent experiments, n = 6 mice).  d, Cells 
from (c) are shown as a percentage of Lin– CD135+ (left) or CDPs (right). Small horizontal lines 
indicate the mean. e, BM from Nfil3+/+Id2gfp/+ and Nfil3–/–Id2gfp/+ mice was analyzed for Lin–

CD135+CD117intId2-GFPhi cells (left) or Id2-GFPhi CDPs (right) (representative of three 
independent experiments, n = 3 for Nfil3+/+Id2gfp/+ mice and n = 4 for Nfil3–/–Id2gfp/+ mice).  f, 
Cells from (e) are shown as a percentage of Lin– CD135+ (left) or CDPs (right). Small horizontal 
lines indicate the mean .Data in b, d, and f are presented as mean and two-tailed unpaired 
Student’s t test was used to compare groups. ***p < 0.001; ****p < 0.0001. 



 90 

 
Figure 2.7 Nfil3 is Required for cDC1 Specification 
a, BM from Zbtb46gfp/+ (WT), Nfil3–/–Zbtb46gfp/+ and Batf3–/–Zbtb46gfp/+ mice was analyzed by FACS 
for development of pre-cDC1 (left), Lin–CD135+CD117intZbtb46-GFPpos (middle) and Zbtb46-
GFPpos CDPs (right) (data representative of three independent experiments, n = 3 mice). 
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Figure 2.8 Zeb2 is Downstream of Nfil3 in cDC1 Development. 
a, Splenic cDCs from Nfil3+/+Zeb2f/f Mx1-cre– (WT), Zeb2f/f Mx1-cre+ (Zeb2–/–), Nfil3–/– (Nfil3–/–

), and Nfil3–/– Zeb2f/f Mx1-cre+ (Nfil3–/– Zeb2–/–) mice were analyzed for cDC1 (red) and cDC2 
(blue) frequency.  Numbers are the percent of cells in the indicated gates (data representative of 
three independent experiments, n = 7 for WT and Zeb2–/– mice, n = 8 for Nfil3–/– mice and n = 9 
for Nfil3–/– Zeb2–/– mice). b, Analysis from (a) are presented as individual mice. Small horizontal 
lines indicate the mean. c, cDCs derived in vitro from Flt3L-treated BM cultures from mice in 
(a) were analyzed for cDC1 (red) and cDC2 (blue) frequency as in (a)  (data representative of 
three independent experiments, n = 7 for WT and Zeb2–/–  mice, n = 8 for Nfil3–/– mice, and n = 9 
for Nfil3–/– Zeb2–/– mice).  d, Analysis from (c) are presented for individual mice. Small 
horizontal lines indicate the mean. e, BM from mice in (a) was analyzed for the frequency of 
pre-cDC1 (red). BM cells are pre-gated as Lin– SiglecH–CD135+ (data representative of three 
independent experiments, n = 7 for WT and Zeb2–/– mice, n = 8 for Nfil3–/–mice, and n = 9 for 
Nfil3–/– Zeb2–/– mice). f, Analysis from (e) are presented for individual mice. Small horizontal 
lines indicate the mean. Mean and two-tailed unpaired Student’s t test was used to compare 
groups. *p < 0.05; ****p < 0.0001; ns, not significant. 
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Figure 2.9 Expression of Id2 and Zeb2 is Mutually Repressive in the CDP. 
a, Splenic cDCs harvested from WT, Zeb2f/f Rosa26 (cre-ERT2/+) (Zeb2–/–), Id2f/f Rosa26 (cre-ERT2/+) 
(Id2–/–), and Id2f/f Zeb2f/f Rosa26 (cre-ERT2/cre-ERT2) (Zeb2–/– Id2–/– ) were analyzed for cDC1 (red) 
and cDC2 (blue) frequency. Numbers are the percent of cells in the indicated gates (data 
representative of two independent experiments, n = 2 for Id2–/– mice, n = 3 for Zeb2–/– Id2–/– 
mice, n = 4 for Zeb2–/– mice, and n = 5 for WT mice).  b,  Data from (a) are presented for 
individual mice. Small horizontal lines indicate the mean. c, BM from mice in (a) was analyzed 
for the frequency of pre-cDC1 (red). BM cells are pre-gated as Lin– SiglecH–CD135+ (data 
representative of two independent experiments, n = 2 for Id2–/– mice, n = 3 for Zeb2–/– Id2–/– 
mice, n = 4 for Zeb2–/– mice, and n = 5 for WT mice). d, Data from (c) are presented for 
individual mice. Small horizontal lines indicate the mean. e, Shown is the expression of Irf8, 
Nfil3, and Id2 in splenic cDC1 sorted from WT, Zeb2–/–, Zeb2–/– Id2–/– , and Zeb2–/– Nfil3–/– mice 
(n = 3 for WT and Zeb2–/– mice, n = 2 for Zeb2–/– Id2–/– and Zeb2–/– Nfil3–/– mice). Small 
horizontal lines indicate the mean. f, BM from Zbtb46gfp/+(WT), Id2–/–Zbtb46gfp/gfp (Id2–/–), and 
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Batf3–/–Zbtb46gfp/gfp (Batf3–/–) mice was gated as Lin– cells, and the CD117intZbtb46-GFP–- (red) 
or CD117intZbtb46-GFP+ (blue) cells were separately analyzed for CD115 and CD135 
expression (data representative of five independent experiments, n = 5 mice)  g, CDPs and 
Zbtb46-GFPpos cells in (f) were sort purified and analyzed by gene expression microarray.  
Shown are gene expression levels for Zeb2, Nfil3, and Batf3 (data representative of three 
independent experiments, n = 2 for CDPs and n = 3 for Zbtb46-GFPpos cells). Small horizontal 
lines indicate the mean. Data are shown as mean and two-tailed unpaired Student’s t test was 
used to compare groups. *p < 0.05, ***p < 0.001, ns, not significant.   
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Figure 2.10 Id2-Zeb2 Loop Regulates cDC1 Fate 
a, cDCs derived in vitro from Flt3L-treated BM cultures from WT, Zeb2–/–, Id2–/– , and Zeb2–/– Id2–

/– mice were analyzed for cDC1 (red) and cDC2 (blue) frequency.  Numbers are the percent of 
cells in the indicated gates (data representative of two independent experiments, n = 2 for Id2–/– 

mice, n = 3 for Zeb2–/– Id2–/– mice, n = 4 for Zeb2–/– mice, and n = 5 for WT mice). b, cDC1 
frequency is shown for individual mice in (a) as a percentage of total cDCs. Small horizontal 
lines indicate the mean.  c,  Splenic cDC1 from WT, Zeb2–/–, Id2–/–, and Zeb2–/– Id2–/– mice were 
purified by sorting and analyzed by gene expression microarrays.  Shown are expression for the 
indicated genes for each genotype.  Numbers are the average gene expression of three biological 
replicates. 
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Figure 2.11 Id2 Does Not Regulate cDC2 Development or Transcriptome, But May 
Indirectly Repress Zeb2 through E proteins  
a, Spleens from radiation chimeras receiving either Zbtb46gfp+ (WT) or Id2–/–Zbtb46gfp/gfp (Id2–/–) BM 
were analyzed by FACS for the frequency of pDC (left), and cDC1 and cDC2 (middle) 
populations, and for Zbtb46-GFP expression on cells gated on cDC2 populations (right) (data 
representative of three independent experiments, n = 3 mice) b, Microarray analysis of Id2+/+  and 
Id2–/– cDC2.  Gene expression comparing Id2+/+ cDC2 to Id2–/–cDC2 described in (a) are shown 
(left), or WT cDC2 compared to WT cDC1 (right) (data pooled from two independent 
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experiments, n = 2 mice).  255 genes were at least 2-fold differentially expressed between Id2+/+ 
and Id2–/– cDC2. Green lines indicate two-fold change threshold c, Gene expression microarray 
was performed on two CDP populations, sort purified separately as either Lin- CD117intZbtb46-
GFPneg (GFP-), or Lin- CD117intZbtb46-GFPpos (GFP+) cells, from each of three genotypes, 
Zbtb46gfp/+ (WT), Id2-/-Zbtb46gfp/gfp (Id2–/–), and Batf3-/-Zbtb46gfp/gfp (Batf3–/–) mice.  Shown are averages 
of duplicate or triplicate gene expression values of the indicated genes in the indicated 
populations. d, BM from E2A-GFP reporter mice (Tcf3gfp/+) or WT (gray histograms) were 
analyzed for GFP expression in CDPs (left), or as an overlay (right) for pre-cDC1 (red) and 
CDP (blue) (data representative of four independent experiments, n = 5 mice). e,  Shown are E2-
A and CTCF peaks identified by ChIP-seq in HPC-7 cells at the Zeb2 locus (mm9)35.  Squares 
represent E-box motifs (CANNTG) within the indicated enhancer regions. f, Proposed epistatic 
model for Nfil3, Id2, Zeb2, E protein, and cDC1 fate.   
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Figure 2.12 Id2 imposes a switch from the +41 kb Irf8 enhancer to the +32 kb Irf8 enhancer 
by Reducing E protein activity,   
a, Conservation of E-box motifs between human (red) and mouse (blue) loci within the +41 kb 
Irf8 enhancer. b, GFP expression from RV reporters with (IRF8 +41) or without (empty) the 454 
bp +41 kb enhancer, or with intact segment A (A), intact segment B (B), intact segment C (C), or 
intact segments A and B (A+B), or intact segments B and C (B+C), in pDCs, cDC1s, and cDC2s, 
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shown as histograms (data pooled from  >5 independent experiments, n > 5). c, Data shown in 
(b) shown as integrated MFI (data pooled from  >5 independent experiments, n > 5). Small 
horizontal lines indicate the mean. d, GFP expression in pDCs of RV reporters without (empty) 
or with the 454 bp +41 kb enhancer (IRF8 +41), or with intact segment A (A), or with mutations 
in E-box 1 (A-m1), E-box 2 (A-m2) or both (A-m1/m2), shown as integrated MFI (data pooled 
from >5 independent experiments, n > 5). Small horizontal lines indicate the mean. e,  GFP 
expression in pDCs of RV reporters without (empty) or with the 454 bp +41 kb enhancer (IRF8 
+41), or with intact segment B (B), or with mutations in E-box 3 (B-m3), E-box 4 (B-m4) or 
both (B-m3/m4), shown as integrated MFI (data pooled from >5 independent experiments , n > 
5). Small horizontal lines indicate the mean. f, GFP expression in WEHI-231 cells of RV 
reporters with (IRF8 +41) or without (empty) the 454 bp +41 kb enhancer, or with intact segment 
A (A), intact segment B (B), intact segment C (C) and co-transduced with either empty RV 
(gray) or ID2 RV (purple), shown as integrated MFI (data pooled from three independent 
experiments, n = 3). Small horizontal lines indicate the mean. g, ATAC-Seq was performed on 
the indicated progenitor or DC populations.  Shown is the Irf8 locus, with the Irf8 +41 kb 
enhancer region (black box) and the +32 kb enhancer region (dotted box). (representative of 
three independent experiments and the Immunological Genome Project Open Chromatin 
Regions, n= 1 biological replicate per population). Data are presented as mean and one-way or 
two-way ANOVA was used to compare groups. *p < 0.05, **p < 0.01, ****p < 0.0001. 
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Figure 2.13 Conservation of +41 kb Enhancer Between Human and Mice 
a, ChIP-seq peaks for E2-2 (E2-2) or control (input) for human IRF8 locus37.  Numbers are 
chromosomal coordinates, human chromosome 16, draft genome hg19.  Box indicates E2-2 



 100 

binding peak corresponding to mouse +41 kb Irf8 enhancer.  b, Consensus human E-box motif 
from E2-2 track.  c, FIMO analysis depicting p-values of predicted E-boxes in human IRF8 
chr16:85991064-85991633 (+58 kb from IRF8 TSS)   d, Alignment of human, genome draft 
hg19, and mouse, genome draft mm10, for the +41 kb IRF8 enhancer regions.  Conserved human 
(red box) and mouse (blue underlined) E-box motifs are indicated. 
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Figure 2.14 Activity of +41 kb Irf8 Enhancer is E-box Dependent  
a,  GFP expression in pDCs, from RV reporters without (empty) or with the entire 454 bp +41 kb 
enhancer region (IRF8 +41), or with single or double mutations of the indicated E-boxes (left) 
(data representative of at least three independent experiments, n > 3). b, Data shown in (a) 
shown as integrated MFI (data pooled from  at least three independent experiments, n > 3). Small 
horizontal lines indicate the mean. c, GFP expression in pDCs of RV reporters without (empty) 
or with the 454 bp +41 kb enhancer (IRF8 +41), or with intact segment A (A), or with mutations 
in E-box 1 (A-m1), E-box 2 (A-m2) or both (A-m1/m1), shown as histograms (data 
representative of at least three independent experiments, n > 3). d, GFP expression in pDCs of 
RV reporters without (empty) or with the 454 bp +41 kb enhancer (IRF8 +41), or with intact 
segment B (B), or with mutations in E-box 3 (B-m3), E-box 4 (B-m4) or both (B-m3/m4), shown 
as histograms (data representative of at least three independent experiments, n > 3). Data are 



 102 

presented as mean and one-way ANOVA was used to compare groups. *p < 0.05, **p < 0.01, 
****p < 0.0001. 
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3.1 Abstract 

 
 In this dissertation, we identified the similarities between ILCs and DCs, two 

innate immune cell lineages that help promote a specialized immune response. Both cell lineages 

rely on similar transcription factors and transcription factor families for their developments. 

However, an incomplete understanding of their shared transcriptional requirements remained, 

and we attempted to resolve for cDC1 specification. We found that cDC1 specification relies on 

a switch in Irf8 enhancer usage and that the switch occurs because of a complex mechanism 

relying on transcriptional repressors. We used single-cell RNA-sequencing of the CDP, the 

multipotent DC progenitor, and identified a cluster of cells that expressed transcription factors 

that influence cDC1 development, such as Nfil3, Id2, and Zeb2. We performed genetic epistasis 

to determine the functional hierarchy of transcription factors involved in cDC1 specification and 

organized a transcriptional circuit that explains the switch in Irf8 expression. The CDP originates 

in a Zeb2hi and Id2lo state in which Irf8 expression is maintained by the +41 kb Irf8 enhancer. 

Single-cell RNA-sequencing identified a fraction of the CDP that exclusively possesses cDC1 

fate potential. This fraction’s development arises when Nfil3 induces a transition into a Zeb2lo 

and Id2hi state.  A circuit of mutual Zeb2-Id2 repression serves to stabilize states before and after 

this transition. Id2 expression in the specified pre-cDC1 inhibits E proteins, blocking activity of 

the +41 kb Irf8 enhancer, and thereby imposing a new requirement for Batf3 for maintaining Irf8 

expression via the +32 kb Irf8 enhancer. This new understanding of cDC1 specification could be 

applied to cDC2 and pDC specification, as well as innate immune cell specification, lineages that 

rely on similar transcription factors. 

3.2 Transcriptional networks in cDC1 development 
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This study resolves several long-standing puzzles regarding cDC1 development.  First, 

Id2 was proposed to be required for cDC development by excluding pDC fate potential1,2, but 

Id2–/– mice lacked only cDC1, and did not show the expected loss of all cDCs3.  Second, cDC1 

develop from CDP progenitors that express Irf8 independently of Batf3, yet later become 

dependent on Batf3 to maintain Irf8 expression.  The basis for this switch from Batf3-

independent to Batf3-dependent Irf8 expression was unclear.  Third, mature cDC1 do not express 

E proteins or show +41 kb Irf8 enhancer activity, yet their development requires both.  These 

apparent inconsistencies all result from a cryptic stage in cDC1 development in which Irf8 

expression relies on the E protein-dependent +41 kb Irf8 enhancer. In this study, we examined 

this cryptic stage of development to reveal the hierarchy of transcription factors governing cDC1 

specification.    

Our results define a genetic hierarchy that unifies the actions of the known transcription 

factors required for cDC1 development. cDC1s were known to require Irf8, Batf3, Id2, and Nfil3, 

but how these factors interacted was unknown. We used Zbtb46-GFP to identify an earlier stage 

of cDC1 specification than previously described that occurs within the CDP itself4.  Single-cell 

RNA-sequencing of the CDP identified a cluster of cells defined by the expression pattern of 

Nfil3, Id2, and Zeb2. Epistatic analysis revealed a genetic hierarchy in which Nfil3 induces a 

transition from CDPs that express high levels of Zeb2 and low levels of Id2, to CDPs that 

express high levels of Id2 and low levels of Zeb2. A circuit of mutual repression between Zeb2 

and Id2 stabilizes these distinct states, such that repression of Zeb2 by Nfil3 is required to induce 

this transition.  In Zeb2hi and Id2lo CDPs, Irf8 expression is maintained by the +41 kb Irf8 

enhancer, which is dependent on E proteins for activity. Upon Id2 induction, E protein activity is 

lost and Irf8 expression becomes dependent on Batf3 acting at the +32 kb Irf8 enhancer. It is 
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currently unclear whether Nfil3 directly represses Zeb2 and whether Zeb2 directly represses Id2, 

as there may be other factors in this proposed genetic circuit.  Nfil3 acts largely as a repressor 

5,6,but may activate transcription in contexts7.  Likewise, Zeb2 has been suggested to directly 

repress Id2 expression8,9, although this has not been rigorously tested.  Nfil3, Zeb2, and Id2 have 

also been shown to regulate ILC development10, but the mechanisms by which these 

transcription factors act in these cells has not been studied.  

3.3 Future Directions 

DC specification and commitment are complicated processes that we have attempted to 

clarify in this dissertation. However, we have possibly uncovered a need to revise the DC 

developmental scheme. We identified a cDC1-specified stage that occurs before the development 

of the pre-cDC1. The cells in this stage express a high level of Irf8, consistent with the high level 

of Irf8 in the CDP. Early expression of Irf8 seems to correlate with commitment to the cDC1 

lineage, as shown recently in a report in which IRF8 expression in human hematopoietic stem 

cells specifies to the DC1 lineage11. cDC1 specification may occur even earlier than this 

dissertation suggests, but may rely on a minimum threshold of Irf8 expression, and not simply 

early expression in the BM. The requirement of the +41 kb Irf8 enhancer during the transition 

from the MDP to the CDP for subsequent cDC1 specification is consistent with this idea of a 

minimum threshold for Irf8 expression. A revised DC development model may require a deeper 

understanding of the relationship between IRF8 expression level and activity. This study could 

extend to other transcription factors, because we do not yet understand how expression levels of 

transcription factors relate to transcription factor activity in all contexts. This is particularly 

important in the case of transcriptional repressors, such as the ones studied in this dissertation. 
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Our results also suggest that cDC1 development may be more closely related to pDC 

development than previously appreciated. The actions of the proposed genetic circuit on the +41 

kb Irf8 enhancer suggest that Id2 extinguishes E protein activity at the +41 kb Irf8 enhancer and 

imposes a requirement for Batf3 at the +32 kb Irf8 enhancer. It is possible that pDCs and cDC1s 

share a common progenitor. The emergence of pDCs from myeloid or lymphoid BM progenitors 

is debated, as early studies suggested that pDCs can arise from both lymphoid and myeloid BM 

progenitors12. However, two recent studies indicated that late pDC progenitors emerge from the 

common lymphoid progenitor and a “pre-pDC” was described13,14.  Since these studies did not 

perform lineage tracing for prior expression of myeloid markers, such as CD115-Cre, pDCs 

progenitors conceivably could emerge in a series of stages that include both myeloid and 

lymphoid features, as recently suggested15. Resolving whether pDC and cDC1 share a common 

progenitor that has segregated from the cDC2 lineage, or simply share molecular transcriptional 

requirements will require additional studies. Understanding the precise relationships between 

different progenitor populations will clarify the transcriptional mechanisms required for certain 

cell subsets to develop, but more genetic tools and lineage models will be required. 
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