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by 
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Washington University in St. Louis, 2019 

Professor Bradley Schlaggar, Chairperson 

 

The human brain is a complex organ that gives rise to many behaviors. Specialized neural 

regions cooperate as functional networks that form an intricate functional architecture. 

Development provides a unique window into how brain functioning and human thinking 

are affected if the necessary neural features and connections are not fully formed. 

Similarly, developmental disorders can shed light on atypical trajectories of neural 

systems that may lead to or be a consequence of symptomatic behavior. A description of 

the typical and atypical development of functional networks is essential to identify the 

features of brain organization critical for mature human thinking and to provide better 

diagnosis, treatment, and prognosis in neurodevelopmental disorders. Recently, resting-

state functional MRI has been found to illuminate functionally related regions, giving 

access to functional networks and the organization of brain’s functional architecture. This 

thesis aims to harness resting-state functional connectivity to explore how functional 

networks coordinate over the course of development. First, I present our work 

investigating the organizing principles of typical developmental patterns in functional 
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networks (Chapter 2). Then, I apply these approaches to the atypical development of 

functional networks in Tourette syndrome (TS), a developmental disorder characterized 

by motor and vocal tics. In this work, we tested whether the patterns in functional networks 

that distinguish individuals with TS from controls differ between children and adults and 

alter the typical developmental pattern of functional networks (Chapter 3). Lastly, I present 

our work to identify and describe the coordination of specific functional networks that 

develop atypically in TS (Chapter 4). 



1 
 

Chapter 1: Introduction 

1.1 Why study development?  

Humans have incredible potential. Individuals can design breathtaking skyscrapers, 

predict the future to minimize financial risk, observe and comprehend the movement of 

the tiniest of particles, or perform incredible physical feats (e.g., run a marathon). What 

gives individuals these incredible abilities? All humans begin life without these abilities as 

seemingly helpless and naive. Over a prolonged developmental course, human infants 

grow and hone many sets of abilities to perform specialized functions. Studying 

development and, specifically, developmental cognitive neuroscience is valuable for (1) 

answering basic science questions about human capabilities (How does a functioning 

human come to be? What are the necessary parts? How are those parts put together?) 

and (2) addressing clinical questions surrounding the diagnosis and treatment of 

developmental disorders (How can developmental processes go awry? How can the 

necessary parts be put back together?). 

1.1.1 Brain development and the emergence of behavioral abilities 

From a neuroscience perspective, complex human thinking is supported by the properties 

and organization of the nervous system. The brain can be investigated at many different 

levels of complexity: molecules, synapses, cells, circuits, areas, and systems (Churchland 

and Sejnowski, 1988). Each of these components exhibit distinct specialized properties 

that contribute to complex human thinking. Many of the neural precursors for the mature 

brain are established at birth, but change to varying extents across development. 
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 While the birth and migration of most all the neurons present in the mature brain 

occurs prenatally (Spreen et al., 1995; Eriksson et al., 1998), the functional and 

morphological properties of these cells change over the course of development. 

Myelination of the axons of both projection and local circuit neurons continues into 

adolescence (Giedd et al., 1999) potentially enabling more efficient communication. At 

birth, there is a rapid burst of synapse formation across cortex that lead to a density of 

synapses that surpasses the mature brain (Rakic et al., 1986; Huttenlocher, 1990; 

Webster et al., 2011). Synapses are then carefully pruned from birth to age 3-4 

(Huttenlocher, 1990; Paolicelli et al., 2011). The rate of synapse production and 

subsequent pruning varies by brain region (Gogtay et al., 2004). Spontaneous and 

evoked activity are important for selecting the synaptic connections that persist to form 

specialized circuits and functional areas (Katz and Shatz, 1996; Bé and Markram, 2006). 

The strength of these synapses (mediated by vesicles, receptors, resting-potential, etc.) 

continues to turnover over the course of development (Puro et al., 1977; Ruffolo et al., 

1978). For many functional areas, responses during behavioral tasks differ between 

childhood and adulthood (Johnson, 2011). However, how the functional systems of the 

brain change over the course of development remains poorly understood.  

From a psychological perspective, complex human behavior is supported by many 

different cognitive processes including memory, attention, perception, action, language, 

executive function, and decision-making. These cognitive entities each contribute to 

mature human thinking but do not necessarily map directly onto brain systems and are 

rarely enlisted alone. Behaviors that are precursors of adult-like behavioral abilities can 

be observed shortly after birth. Extensive work in the field of developmental psychology 
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has been devoted to tracking the emergence and specialization of behavioral abilities 

from infancy to childhood.  

 Cleverly designed experiments in infants and toddlers have provided evidence that 

humans are endowed with a set of core capacities in many functional domains. Infants 

demonstrate the specialized abilities to distinguish different phonemes (Werker and 

Lalonde, 1988), discriminate faces (Pascalis et al., 2002), and understand numerical 

magnitude (Xu and Spelke, 2000) before extensive experience with these stimuli. 

However, these abilities become more specialized over the course of development. At 6 

months phoneme discrimination is best tuned to the infant’s own language (Kuhl et al., 

1992), at 9 months face recognition is better for faces that are racially similar to the infant’s 

caregivers’ faces (Kelly et al., 2007), and at 10 months infants can more precisely 

discriminate magnitude (1:2 at 6 months, 2:3 at 10 months, 7:8 in adulthood) (Feigenson 

et al., 2004). Flexible skills and knowledge systems build upon these core foundations 

over the course of development. As an example, reading requires the coordination of 

several core capabilities such as attention, visual discrimination, and language skills and 

their refinement and specialization over the course of development (Schlaggar and 

McCandliss, 2007).  

1.1.2 Theories of developmental cognitive neuroscience 

The question of how such specialized neural circuitry and psychological functions arise 

is debated by both neuroscientists and psychologists. There are several hypotheses 

about how developmental differences in the brain might be related to developmental 

differences in the performance of different behaviors (for further detail see Johnson et al. 
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2001). These theories also have important implications for the etiology of aberrant 

behavioral abilities in developmental disorders. 

Maturation. Some argue that the emergence of a behavioral ability can be attributed to 

the maturation of a new brain region (e.g., endogenous control of eye movements 

requires maturation of frontal areas (Johnson et al., 1998), successful retrieval of a hidden 

object requires maturation of frontal lobes (Diamond and Goldman-Rakic, 1989)). Before 

this region matures, behavioral performance is poor and comparable to adults who 

acquire lesions to this region. According to this perspective, purely internal mechanisms 

of developmental change (e.g., genetics, spontaneous activity) drive the emergence of 

behavior.  

Functional Specialization. Others argue that developmental differences in the brain 

involve a process of organizing the interactions among specialized regions through 

experience (e.g., face processing in the fusiform face area (Arcaro et al., 2017), inhibitory 

control in the prefrontal cortex (Casey et al., 1997)). Initially, the functional role of different 

regions is poorly defined, and regions are partially and inefficiently activated under many 

behavioral contexts. The onset of new behavioral competencies during development is 

thought to be associated with changes across several regions. In contrast to the 

maturational perspective, this viewpoint suggests that during development, the neural 

architecture underlying a behavioral task might differ or be more extensive than that 

observed in adulthood. According to this perspective, both intrinsic and experience-

dependent mechanisms of developmental change drive the emergence of mature 

thinking.  
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Skill acquisition. Neuroimaging evidence from adults suggests that changes in the 

neural underpinnings of a behavior can result as a consequence of practice and acquiring 

expertise (e.g., “greeble” processing in the fusiform face area (Gauthier et al., 1999; 

Gauthier and Nelson, 2001)). One hypothesis is that this type of skill acquisition occurs 

in development as well. In contrast to the functional specialization hypothesis, this 

perspective suggests that developmental differences in the brain are experience-

dependent rather than experience-expectant. If true, developmental differences in the 

brain are not special and will mimic differences observed during skill learning in adults.  

 Each of these hypotheses have important implications for the study of atypical 

development. According to the maturational perspective, if a developmental disorder is 

associated with the disrupted maturation of a brain region, this atypicality leads to 

symptomatic behavior. Atypical functional specialization might arise from intrinsic and/or 

experience-dependent mechanisms and suggest that the neural underpinnings of an 

atypical behavior may differ from healthy controls even if performance is equivalent in a 

developmental disorder. Finally, atypical developmental differences in the brain might be 

a consequence of absent or augmented skill acquisition; experience with symptoms of 

the developmental disorder might produce compensatory or maladaptive changes to the 

functional architecture of the brain.  

1.1.3 Motivation for this thesis work 

A main objective of this thesis is to study the development of the functional systems of 

the brain. Currently, very little is known about brain development at the level and 

complexity of functional systems. As suggested above, the emergence of different 
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functions might rely upon interactions among specialized areas. Thus, understanding the 

development of functional systems might be the closest link to the development of 

complex behaviors (Johnson, 2001). In this thesis I aim to describe principles of the 

development of functional systems and to contextualize these developmental differences 

with 1) the brain development that occurs at other levels of complexity, 2) the ways in 

which behavioral abilities build upon each other, and 3) the theories of how these 

developmental differences might arise in the brain.   

A second arm of this thesis applies our understanding of the typical development 

of functional systems to questions surrounding developmental disorders. Do 

developmental disorders disrupt typical developmental processes? To what extent? Can 

developmental status of the brain be useful for diagnosis or prognosis? While studies of 

typical development in isolation can detail how the developing brain contributes to mature 

thinking, studies of atypical development are also important and can illuminate the 

developmental changes necessary for the development of certain behaviors. Here, I 

investigate the development of functional systems in Tourette syndrome, a pediatric onset 

movement disorder characterized by motor and vocal tics, in order to understand the 

neural architecture supporting motor function and inhibitory control.  

1.2 Using resting-state fMRI to study development of functional 
systems 

1.2.1 Resting-state functional connectivity reflects the underlying functional 
architecture of the brain.  

Neuroscientists have been mapping the functional systems of the human brain since the 

advent of neuroimaging. Areas that support similar functions (i.e., a functional system) 

can be identified by carefully designing tasks for participants to perform in a PET or MRI 
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scanner (e.g., Petersen et al., 1988). In the seminal study by Biswal et al. (1995), 

participants performed finger tapping in the scanner and the regions associated with 

these movements (M1, S1, pre-motor cortex) could be identified by related fluctuations in 

the blood-oxygen level dependent (BOLD) signal during epochs of finger tapping. 

Interestingly, Biswal et al. observed that these same regions and other regions associated 

with the motor system (e.g., putamen, cerebellum) shared related fluctuations at rest, 

when participants were not moving. This correlated intrinsic activity, dubbed functional 

connectivity, is thought to illuminate functionally related regions in a task-free, “resting-

state” (Biswal et al., 1995).  

By expanding this correlational approach to the whole brain, resting-state 

functional connectivity has been used to illuminate different features of the functional 

network architecture in the human brain. Functional areas, regions of the brain defined 

by similar functional, architectonic, connectivity, and topographic properties, can be 

localized by identifying pieces of cortex with relatively uniform functional connectivity that 

is distinct from adjacent pieces of cortex (Cohen et al., 2008; Gordon et al., 2016). 

Functional systems can be located using functional connectivity and graph theory, a 

branch of mathematics devoted to the study of complex networks. In graph theory, 

networks are typically represented as a set of well-defined nodes (here, functional areas) 

that are connected by edges (here, functional connections) that form densely 

interconnected communities (here, functional systems) (Petersen and Sporns, 2015). 

Community detection algorithms have been used to identify functional networks in resting-

state functional connectivity data that resemble previously identified functional systems 

(e.g. visual, default mode) (Power et al., 2011; Yeo et al., 2011).  Functional networks 
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identified with functional connectivity include “processing” networks that interface with the 

external world (somatomotor, auditory, visual), “control” networks that direct attention and 

perform different executive functions (fronto-parietal, cingulo-opercular, dorsal attention, 

ventral attention, salience), and “other” cortical association networks (default mode, 

parietal memory, context memory, reward). The basal ganglia, thalamus, and cerebellum 

also have non-uniform connections with different functional networks in cortex (Barnes et 

al., 2010; Choi et al., 2012; Greene et al., 2014) and work is ongoing to parcellate and 

delineate the role of different subcortical structures in functional network organization. 

Beyond parcellating the brain into areas and dividing the brain into functional 

networks, resting-state functional connectivity has revealed several additional properties 

of the organization of neural systems in the human brain. A region’s functional 

connectivity to the rest of the brain at rest can be predictive of how it will respond under 

different conditions (Gratton et al., 2017). When sufficient quality data are collected, 

functional connectivity is stationary at rest (Laumann et al., 2017) and is largely stable 

within an individual under various tasks and across sessions (Gratton et al., 2018). 

Functional networks are organized such that certain regions (largely within control 

systems) act as between-network hubs (Power et al., 2013). Hubs are commonly 

activated during tasks (Gratton et al., 2016) and produce disastrous effects on cognitive 

functioning if lesioned (Warren et al., 2014). As a whole, resting-state functional 

connectivity is a powerful tool to study brain organization at the level of functional 

systems. Whether and to what extent functional connectivity changes over the course of 

development remains to be established. 
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1.2.2 Development of functional networks before and after Power et al. 2012.  

Early investigation of the development of functional systems in the human brain relied 

solely on task fMRI (e.g., word processing Schlaggar et al., 2002). Carefully designed 

experiments were required to not only isolate cognitive processes but also equivalently 

engage children and adults (Church et al., 2010). With the introduction of resting-state 

functional connectivity, it became apparent that there were many advantages of studying 

the development of neural systems with this complementary approach. First, as in adults, 

this technique theoretically enables the rapid and relatively easy assessment of many 

different functional systems from a single, simple scan. Second, the issues associated 

with probing developmental differences in the functional architecture of the brain with 

tasks such as performance burden and the imbalanced comparison “Task B” problem 

(Church et al., 2010), are presumably avoided in a task-free design. Finally, the measured 

strength of functional connectivity is thought to reflect a history of co-activation across the 

lifespan (Lewis et al., 2009) thus tracking the coordination of different functional systems 

across development. 

Because of these advantages, many have studied the differences in functional 

architecture between school-age children and adults with resting-state functional 

connectivity. The studies prior to the identification of sub-millimeter motion-related 

artifacts revealed intriguing properties of the development of functional systems. 

Functional connections appeared to develop in distance-dependent manner: children had 

stronger local connections and adults had stronger connections distributed across cortex 

(Fair et al., 2009). Functional connectivity within the default mode network appeared less 

integrated in children such that the homotopic connections were weaker, and the anterior 
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and posterior pieces were disconnected (Fair et al., 2008). Patterns of developmental 

differences in functional connectivity were able to predict the maturity of single individuals 

(Dosenbach et al., 2010). Studies of atypical development (in Tourette syndrome) with 

functional connectivity suggested that control systems important for inhibitory control 

were immature in patients when compared to controls (Church et al., 2009). 

Unfortunately, these studies, while using the “industry standard” for data quality 

control at the time, were conducted before the identification of sub-millimeter motion-

related artifact in resting-state functional connectivity (Power et al., 2012; Satterthwaite 

et al., 2012; Van Dijk et al., 2012). Head movement in the scanner produces spurious, 

but systematic effects on functional connectivity.  Among other more global effects, head 

motion artificially alters functional connectivity in a distance-dependent manner: short-

range connections are enhanced and long-range connections are weakened in high-

motion subjects (Power et al., 2012). As children, older adults, and patients tend to move 

more in the scanner than healthy, young adults, the observed “local-to-distributed” 

developmental differences in functional connectivity (Fair et al., 2009), immaturity in 

Tourette syndrome (Church et al., 2009) and other disorders, degradation of network 

architecture in aging (Andrews-Hanna et al., 2007), and other results are likely 

confounded by movement-related differences. Fortunately, multiple groups, have 

developed approaches to reduce motion-related artifact (Macey et al., 2004; Jo et al., 

2013; Yan et al., 2013; Muschelli et al., 2014; Power et al., 2014) that have been 

externally benchmarked and validated (Ciric et al., 2017).  

After the discovery of motion-related effects on functional connectivity, it was 

necessary to determine the existence and/or extent of developmental changes in 
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functional networks that could be observed with functional connectivity after motion de-

noising. Preliminary investigation of parietal cortex suggests that the parcellation of 

functional areas using functional connectivity does not differ between children and adults 

(Barnes et al., 2012). Further, the previously observed developmental differences in the 

functional network definition are mitigated after adequately addressing motion-related 

artifacts (Power et al., 2012). Additionally, the role of regions in overall network 

organization (e.g., hubs) appears similar in children and adults (Hwang et al., 2013). 

However, there are subtle, yet reliable developmental differences in functional 

connectivity that remain after reducing motion-related artifact (Satterthwaite et al., 2013; 

Marek et al., 2015).  

Measurable developmental differences in functional connectivity that do not 

correspond to changes in overall functional network organization may still reflect the 

refinement and heightening of cognitive abilities from school-age to adulthood. A more 

pessimistic view point is that these differences reflect residual developmental differences 

in motion artifact. In Chapter 2, I present our efforts to assess the existence of residual 

motion-related artifact in developmental data in addition to our efforts to determine 

organizing principles by which functional networks change over the course of 

development. If independent of head motion, identifying principles that characterize 

developmental differences in functional connectivity might shed light on the mechanisms 

underlying the development of functional systems.  

 

 



12 
 

1.2.3 Multivariate machine learning methods can detect complex developmental 
patterns.  

The brain is enormously complex. It stands to reason that characterizing its development 

poses an extraordinarily complex problem. Behaviorally, many functional processes are 

inter-dependently modified and honed and, neurobiologically, components at many levels 

of organization are associated with these changes. Theoretically, even a small 

perturbation associated with a developmental disorder might produce complex effects on 

brain function and behavior. Univariate statistical approaches have been standardly used 

to study the development of functional networks in health and disease (see above). While 

these approaches are useful and informative, by nature, univariate statistical approaches 

are not sufficient to fully encompass the complex changes across the whole brain 

(Lessov-Schlaggar et al., 2016). Multivariate pattern analysis can be better suited to 

address the complex problems in brain development as these approaches identify 

patterns of developmental changes.  

Multivariate approaches applied to the development of functional connectivity 

combine developmental information across many functional connections. Univariately, a 

single functional connection may weakly differ between children and adults, but, when 

combined with a second functional connection, the pattern of variance across the two 

connections may strongly distinguish children and adults. Support vector machine 

learning, a type of multivariate pattern analysis, can be used to weight specific patterns 

of functional connections that best separate a group of children and adults. This approach 

can be extended to continuous developmental data to identify patterns in functional 

networks that vary according to age. This model can then be cross-validated and used 

for age prediction. 
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Multivariate machine learning approaches promise the ability to predict maturity in 

single subjects and to interrogate the features informing age prediction. Being able to 

detect whether the brain of a single individual appears developmentally delayed with 

respect to healthy controls would be extremely valuable to clinicians, particularly if these 

single-subject predictions of maturity were also informative of future prognosis. Another 

advantage of multivariate machine learning approaches is the ability to interrogate which 

features (here, functional connections) most inform the prediction of maturity in an attempt 

to better understand the underlying neurobiology. We, and others, have applied 

multivariate machine learning to the study of the development of functional networks 

(Dosenbach et al., 2010; Fair et al., 2013; Satterthwaite et al., 2013) as well as the atypical 

functional networks in psychiatric disorders like ADHD (Fair et al., 2013), autism (Uddin 

et al., 2013; Emerson et al., 2017), and Tourette syndrome (Greene et al., 2016). 

In Chapters 2 and 3, I present our work using multivariate machine learning 

approaches to study the typical and atypical development of functional networks. In 

Chapter 2, we evaluate the sets of functional connections that are most useful for age 

prediction and test whether these multivariate techniques are susceptible to residual 

individual differences in head motion. Chapter 3 applies these multivariate machine 

learning approaches to Tourette syndrome in order to determine whether and to what 

extent developmental patterns are disrupted in developmental disorders. Chapter 4 

complements these approaches by applying univariate statistics to the study of the 

development of functional networks in Tourette syndrome and in healthy controls. 
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1.3 A study in atypical development: Tourette syndrome 

While studies of typical development in isolation can detail how functional networks and 

their coordination contribute to the development of mature thinking, studies of atypical 

development are also important and can illuminate the developmental changes necessary 

for certain behaviors. Tourette syndrome, a neurodevelopmental movement disorder, is 

aptly suited for the study of the typical and atypical development of functional networks 

responsible for motor function and inhibitory control. As detailed below, understanding, 

diagnosing, and treating the neurobiology underlying TS will likely be benefited by 

investigation of the functional networks contributing to TS in addition to attention to the 

developmental changes to these abnormalities. 

1.3.1 Characteristics of Tourette syndrome: a neurodevelopmental disorder  

Tourette syndrome (TS) is a developmental neuropsychiatric disorder that affects 1-3% 

of children (Khalifa and Knorring, n.d.; Scahill et al., 2009; Cubo et al., 2011) and is 

characterized by motor and vocal tics (Leckman et al., 2014). Tics are brief, unwanted, 

repetitive movements or noises that can be intrusive in daily life. Common tics include 

eye blinking, eye brow raising, nose twitching, sniffing, and throat clearing. More complex 

tics have also been observed (e.g., echopraxia, tapping, gestures, echolalia, utterance of 

words, coprolalia). Though often described as involuntary, tics have a semi-voluntary 

quality, as individuals with TS can often suppress their tics; yet this suppression is time-

limited. Preceding tics, many individuals with TS experience a premonitory urge, which is 

a perceived sensation of discomfort that is relieved by the tic (Leckman et al., 1993).  
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While tics are the characteristic symptom of the disorder, TS can often be 

accompanied by a myriad of other symptoms and consequences. Many children with TS 

also have comorbid diagnoses of other neurodevelopmental disorders including ADHD 

(60%) or OCD (30%) (Freeman et al., 2000). In fact, only about 10% of the TS population 

only has tic symptoms (Freeman et al., 2000), suggesting that issues with executive 

function and attention, even outside of the motor context might be a central symptom of 

TS. Other psychiatric disorders including depression, anxiety, and sleep disorders often 

also accompany TS (Conelea et al., 2013). Further, TS is associated with impaired quality 

of life assessments (Cavanna et al., 2008), increased family stress (Stewart et al., 2015), 

and lasting psychosocial effects (Conelea et al., 2013).  

1.3.2 Atypical brain structure and function in Tourette syndrome  

Many cortical and subcortical functional systems likely support the initiation, production, 

and suppression of tics and the other symptoms associated with TS.  

The most prominent theory in TS is that disruption of cortico-striato-thalamo-

cortical loops leads to the production of tics, as other movement disorders like Parkinson’s 

or Huntington’s disease involve aberrant activity in the subcortex (DeLong, 1990). Loops 

between different pieces of the cortex and the subcortex appear devoted to different 

functions (e.g., motor, control) (Haber, 2003) and these associations can be observed 

using resting-state functional connectivity (Choi et al., 2012; Greene et al., 2014). Mink et 

al. (2001) proposed that in TS, activity in the striatum propagates through these loops 

and leads to the disinhibition of unwanted motor plans and the production of tics. Several 

results support this hypothesis. First, microstimulation and biculine injections into the 
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basal ganglia yield tic-like movements in non-human primates (Alexander and DeLong, 

1985; McCairn et al., 2009). Second, regions in the basal ganglia, thalamus, sensorimotor 

cortex and cerebellum are consistently activated at the time of tic action in patients with 

TS (Bohlhalter et al., 2006; Wang et al., 2011; Neuner et al., 2014). Further, reduced 

caudate volume has been consistently observed in children and adults with TS (Peterson 

et al., 1993; but see Greene et al., 2017), and smaller caudate and putamen volumes 

have been linked to more severe tics (Bloch et al., 2005).   

Cortical and subcortical regions involved in inhibitory motor control have also been 

shown to exhibit altered structure and function in TS. For example, thinning of areas within 

frontal and prefrontal cortex has been observed in adults with TS (Sowell et al., 2008).  

Preceding tics, a period likely related to premonitory urges (and potentially tic 

suppression), regions including the anterior cingulate, insula, parietal operculum, and 

supplementary motor area are activated in TS (Bohlhalter et al., 2006; Wang et al., 2011; 

Neuner et al., 2014). When directly instructed to suppress eye blinks, children and adults 

with TS activate the middle frontal gyrus, dorsal anterior cingulate cortex, middle temporal 

gyrus and superior temporal gyrus and deactivate the superior frontal gyrus more strongly 

than healthy controls (Mazzone et al., 2010). Further evidence for the involvement of 

inhibitory control systems in TS beyond activity related to tic suppression include the high 

co-morbidity of TS with other disorders of inhibitory control like ADHD and OCD (Freeman 

et al., 2000) and atypical control signals in frontal and other associated regions during the 

performance of a semantic judgment task in adolescents with TS (Church et al., 2009).   

Less is known about the neurobiology supporting the initiation of tics. In TS, tics 

can often be associated with environmental triggers (e.g., school vs. home setting). 
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Further, tic frequency can increase under stress, different emotion contexts, or different 

social situations and decrease when attention is allocated elsewhere (for review see 

Conelea and Woods, 2008). Therefore, the functional systems responsible for processing 

and orienting to these external triggers and their interactions with cortico-striatal-thalamo-

cortical circuitry might play an important role in the initiation of tics. 

While previous neuroimaging work has provided a valuable description of the 

neural abnormalities in TS at the level of brain regions, studying the network organization 

of the brain in TS may yield a more complete understanding of tics and the other 

symptoms in TS. Many of the advantages of using resting-state functional connectivity to 

study the development of functional systems apply to the study of TS including the rapid 

assessment of many different functional systems implicated in the initiation, production, 

and suppression of tics and avoidance of confounding task-related problems such as the 

performance confound and the “Task B” problem (Church et al., 2010). Additionally, the 

measured strength of functional connectivity is thought to reflect a history of co-activation 

across the lifespan (Lewis et al., 2009) thus tracking the atypical coordination (or lack of 

coordination) of different functional systems in TS.  

Further, placing the observed neural differences in TS in a context of functional 

networks facilitates more specific and more powerful interpretations of these 

abnormalities. For example, differences observed in frontal cortex can be difficult to 

interpret as many functional systems reside in frontal cortex (e.g. fronto-parietal, cingulo-

opercular, default mode, ventral attention, salience). Delineating the specific functional 

systems that are affected in TS would facilitate interpretations that leverage the extensive 

work elucidating the functional properties of functional systems in healthy controls. For 
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example, if differences observed in frontal cortex in TS are associated with the regions 

belonging to the cingulo-opercular system, then these differences might suggest atypical 

executive control signals related to task-set maintenance or the detection of errors 

(Dosenbach et al., 2007; Neta et al., 2014) in TS. Whereas if differences in frontal cortex 

in TS are associated with the neighboring ventral attention system, then these differences 

might suggest atypical stimulus-oriented attention (Corbetta and Shulman, 2002). 

Previously, we demonstrated that patterns of resting-state functional connectivity 

across the whole brain contain information that can distinguish individuals with TS from 

controls (Greene et al., 2016). However, the specific functional networks and connections 

that are altered in TS remains unknown. Uncovering how specific functional networks are 

altered may yield a more complete understanding of tics and the other symptoms in TS. 

In Chapter 3 and 4, we use resting-state functional connectivity to identify a history of 

atypical coordination of functional systems in children and adults with TS. Chapter 4 

attempts to identify the specific functional networks and connections that are altered in 

TS and are involved in the initiation, production, and suppression of tics and other 

symptoms. In this chapter, we also aim to bridge previous studies of atypical brain function 

in TS with existing knowledge of the role of different functional networks in behavior and 

cognition.  

1.3.3 Development and Tourette syndrome  

TS is considered a neurodevelopmental disorder not only because tics emerge in 

childhood, but also because symptoms change through adolescence and early adulthood. 

Tic onset typically occurs at age 5-7 years, with tic severity peaking during late 
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childhood/early adolescence (10-12 years). The specific mode of tics often changes over 

the course of development (e.g., eye blink to eyebrow raising) (Leckman et al., 1989) and 

reports of experiencing a premonitory urge, the sensation preceding tics, increase in 

adulthood TS (Leckman et al., 1993). Tics usually continue into adulthood, but with 

marked improvement or even remission after adolescence (Erenberg et al., 1987; 

Leckman et al., 1998; Peterson et al., 2001a; Bloch et al., 2006; Hassan and Cavanna, 

2012). However, this symptom progression varies substantially across individuals, with a 

sizeable subgroup of patients (~60%) experiencing moderate to severe tics that persist 

into adulthood (Leckman et al., 1998; Pappert et al., 2003). 

Most neuroimaging studies of TS treat it as a singular disorder, unchanging across 

development, by grouping together a wide range of patients or focusing on a single age 

cohort. However, as symptoms vary by age, there is evidence that differences in brain 

structure and function in TS also vary by age. Some cortical regions (dorsal prefrontal, 

orbitofrontal, parieto-occipital cortex) exhibit distinct, even sometimes opposing, 

volumetric differences in children and adults with TS (Peterson et al., 2001b). Previous 

research has also shown that motor excitability is selectively altered in children with TS 

(Pépés et al., 2016) and atypical development of fronto-striatal self-regulatory signals only 

emerges in adulthood TS (Raz et al., 2009). Comparing the brain differences observed in 

children and adults with TS is necessary to reveal effects that are present in both age 

groups (i.e., “age-invariant” TS effects) as well as effects that differ between age groups 

(i.e., “age-specific” TS effects).  

Critically, a more complete understanding of the differences observed in children 

or adults with TS also requires taking into account typical maturational changes in the 
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brain. Given a context of typical development, one can determine whether brain 

differences reflect atypically shifted development (e.g., accelerated or delayed 

maturation) or an anomalous difference not observed in typical development, potentially 

providing clues into etiology. While several TS neuroimaging studies have interpreted 

their findings in the context of brain maturity (Muellner et al., n.d.; Peterson et al., 2001c; 

Raz et al., 2009; Worbe et al., 2012; Pépés et al., 2016), few have included typical 

developmental comparisons to contextualize the differences observed in TS (Marsh et 

al., 2007; Church et al., 2009b; Debes et al., 2015).  

In this thesis I apply a developmental perspective (and lessons learned from the 

study of typical development in Chapter 2) to the study of the neurobiology underlying TS. 

Chapters 3 and 4 describe our investigation of the atypical development of functional 

networks in TS. In Chapter 3, we test whether the atypical functional connectivity in TS 

differs between children and adults and place these atypicalities in a developmental 

context. In Chapter 4, we focus on the developmental trajectories of specific functional 

systems that are atypical in TS. By combining a developmental and network-level 

approach, we aim to better understand the neurobiology underlying TS and utilize this 

knowledge to better diagnose and treat the disorder. 
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Chapter 2: Evaluating the prediction of brain maturity from 

functional connectivity after motion artifact de-noising 

 
This chapter has been published as a journal article. The citation is: 

 

Nielsen, Ashley N., Deanna J. Greene, Caterina Gratton, Nico UF Dosenbach, Steven E. 

Petersen, and Bradley L. Schlaggar. "Evaluating the Prediction of Brain Maturity From 

Functional Connectivity After Motion Artifact Denoising." Cerebral Cortex (2018). 

 

2.1 Abstract  

The ability to make individual-level predictions from neuroanatomy has the potential to be 

particularly useful in child development. Previously, resting-state functional connectivity 

(RSFC) MRI has been used to successfully predict maturity and diagnosis of typically and 

atypically developing individuals. Unfortunately, submillimeter head motion in the scanner 

produces systematic, distance-dependent differences in RSFC and may contaminate, 

and potentially facilitate, these predictions. Here, we evaluated individual age prediction 

with RSFC after stringent motion de-noising. Using multivariate machine learning, we 

found that 57% of the variance in individual RSFC after motion artifact de-noising was 

explained by age, while 4% was explained by residual effects of head motion. When 

RSFC data were not adequately de-noised, 50% of the variance was explained by motion. 

Reducing motion-related artifact also revealed that prediction did not depend upon 

characteristics of functional connections previously hypothesized to mediate 

development (e.g., connection distance). Instead, successful age prediction relied upon 

sampling functional connections across multiple functional systems with strong, reliable 

RSFC within an individual. Our results demonstrate that RSFC across the brain is 

sufficiently robust to make individual-level predictions of maturity in typical development, 
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and hence, may have clinical utility for the diagnosis and prognosis of individuals with 

atypical developmental trajectories. 

2.2 Introduction  

Individual-level prediction about brain maturity has the potential to be useful for the 

assessment of developmental progress. The ability to identify an individual with an 

atypical developmental trajectory might facilitate more accurate diagnoses and 

prognoses of developmental disorders and lead to earlier and individualized treatment 

(Emerson et al., 2017; Hazlett et al., 2017). Clinically useful neurobiological 

measurements should be sufficiently robust to make an accurate prediction of the maturity 

of typically developing individuals and be closely related to the dysfunction in 

developmental disorders. Multivariate descriptions of these measurements, based on 

patterns of information, may be best equipped to make such robust and accurate 

predictions about an individual child (Bray et al., 2009; Jimura and Poldrack, 2012; 

Sundermann et al., 2014). Measurements of functional connectivity may be more closely 

linked to behavior/cognition and more likely disrupted in developmental disorders. 

Resting-state functional connectivity (RSFC) MRI, the temporal correlation between 

spontaneous fluctuations in blood oxygen level-dependent signals across the brain 

(Biswal et al., 1995), has been proposed to reflect the statistical history of co-activation 

across an individual’s lifespan (Fox and Raichle, 2007; Dosenbach et al., 2008). In 

addition, RSFC is thought to be disrupted in individuals with an atypical developmental 

trajectory (Fox and Greicius, 2010). Whether or not differences in functionally relevant 

neurobiology measured with RSFC carry multivariate information germane to make 

predictions about the health and maturity of an individual child is an important question.  
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Previously, Dosenbach and colleagues (2010) demonstrated successful prediction 

of the maturity of individuals based on RSFC using multivariate machine learning 

(Dosenbach et al., 2010). Using a set of features (i.e. functional connections), they 

created a multivariate model relating age and RSFC in a training dataset and used this 

model to successfully predict the age of test individuals. Since then, others have also 

used machine learning to show that RSFC can make predictions about age (Supekar et 

al., 2009; Meier et al., 2012; Vergun et al., 2013) as well as various other qualities of 

individuals, including sex (Casanova et al., 2012) and IQ (Santarnecchi et al., 2014). 

Additionally, multivariate machine learning approaches have shown that there is 

information in RSFC to classify healthy individuals from clinical populations including 

ADHD (Liang et al., 2012), schizophrenia (Fan et al., 2011; Bassett et al., 2012; Du et al., 

2012), mild cognitive impairment/Alzheimer’s Disease (Koch et al., 2012; Wee et al., 

2012), major depressive disorder (Craddock et al., 2009), and autism (Nielsen et al., 

2013; Chen et al., 2016). Taken together, these results suggest that differences in RSFC 

carry information important to representing and making predictions about the individual. 

Unfortunately, the success of many previous RSFC studies using machine learning 

to make predictions about individuals may be contaminated by (even submillimeter level) 

subject head motion in the scanner. Small amplitude movements in the scanner have 

been shown to have systematic effects on observed resting-state correlations; this 

motion-related artifact is distance-dependent, such that correlations are increased for 

short-range connections and decreased for long-range connections, with specific sets of 

functional connections being more affected than others (Power et al., 2012, 2014; Van 

Dijk et al., 2012; Satterthwaite et al., 2013a; Ciric et al., 2017). Motion-related artifact is 
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problematic for machine learning approaches because head motion is often correlated to 

the characteristics being predicted (e.g., age, disease status, IQ) (Siegel et al., 2016). 

Fortunately, we and others have developed methods to reduce the adverse effects of 

motion-related artifact and other sources of physiological noise on functional MRI data 

(Power et al., 2014; Ciric et al., 2017). With these de-noising approaches as well as 

approaches that preemptively reduce head movements (Dosenbach et al., 2017; Greene 

et al., 2018), many have worked to validate previous machine learning results using 

RSFC after attempting to correct for individual differences in head motion (Fair et al., 

2013; Greene et al., 2014, 2016b; Pruett et al., 2015; Emerson et al., 2017). Specifically, 

there is growing evidence that after reducing artifactual differences in RSFC related to 

movement, including signal processing and strict subject matching/selection (Fair et al., 

2013; Satterthwaite et al., 2013b; Greene et al., 2016a), RSFC can still be used to 

successfully predict an individual’s age. 

The present work has two major aims related to evaluating the prediction of age 

from RSFC after motion de-noising. First, we aimed to evaluate whether or not there are 

lingering multivariate effects of head motion on resting-state correlations that contribute 

to age prediction. We tested whether patterns of RSFC can be used to predict an 

individual’s age and an individual’s in-scanner head movement using machine learning 

before and after reducing motion-related artifact. Ensuring that head motion cannot be 

predicted from RSFC after motion de-noising using machine learning is important for 

assessing the viability of RSFC as an indicator of developmental progress rather than 

confounding transient characteristics of individuals. Second, we were interested in 

evaluating the specific functional connections that facilitate age prediction after reducing 
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motion-related artifact. Previously, Dosenbach et al. identified a set of functional 

connections thought to best predict age using a fairly straightforward data-driven, feature 

selection scheme (i.e. ranking the functional connections most correlated with age) 

(Dosenbach et al., 2010). Of these top ranked functional connections, many were short-

range and long-range connections, in accordance with the “local-to-distributed” theory of 

RSFC development (short-range became weaker and long-range became stronger with 

maturity) (Fair et al., 2009; Supekar et al., 2009). However, developmental differences in 

head motion produce differences in RSFC that reproduce this pattern (i.e., with less 

subject head motion, short-range functional connections become weaker while long-

range functional connections become stronger). Thus, we aimed to identify the functional 

connections that best predict age and test the “local-to-distributed” hypothesis of RSFC 

development after reducing motion-related artifact. More recently, investigators have 

used feature selection to experimentally manipulate the information available for 

prediction and compare the resulting predictive performance. Whether prediction with 

RSFC depends upon a hypothesized, organizing principle (e.g.,  functional systems (Du 

et al., 2012; Koch et al., 2012; Uddin et al., 2013; Greene et al., 2016b), RSFC strength 

(Bassett et al., 2012; Santarnecchi et al., 2014)), can be assessed by selecting and testing 

a set of features with specific properties. Therefore, we also sought to determine whether 

other organizing principles (e.g. functional systems, RSFC strength) facilitate age 

prediction with hypothesis-driven feature selection. 

2.3 Materials and Methods 

2.3.1 Participants 



35 
 

A group of 122 healthy children and adults (ages 7-31 years old, 66 males) were selected 

from an extant database of participants (n = 487, ages 6-35 years old, 206 males) on the 

basis of having at least 120 data frames (~5 min) of usable resting-state fMRI data (as 

defined below). Participants were recruited from the Washington University campus and 

the surrounding community. All participants were native English speakers, right-handed, 

and reported no history of neurological or psychiatric disease or a current prescription of 

psychotropic medications (parental report for child participants). All adult participants, and 

a parent or guardian for each child participant, gave informed consent, and all children 

assented to data collection. All participants were compensated for their participation. The 

Washington University Human Research Protection Office approved all studies. 

2.3.2 Image Processing 

Image Acquisition 

Data were collected on a Siemens 3T MAGNETOM Trio scanner with a Siemens 12-

channel Head Matrix Coil. To help stabilize head position, each subject was fitted with a 

thermoplastic mask fastened to holders on the head coil. A T1-weighted sagittal MP-

RAGE structural image (slice time echo, 3.06 ms; TR 2.4 s; inversion time, 1 s; flip angle, 

8º; 127 slices; 1 x 1 x 1 mm voxels) in the same anatomical plane as the BOLD images 

were obtained to improve alignment to an atlas. Functional images were acquired using 

a BOLD contrast-sensitive echo planar sequence (TE, 27 ms; flip angle, 90º, in-plane 

resolution, 4 x 4 mm; volume TR 2.5 s). Whole-brain coverage was obtained with 32 

contiguous interleaved 4 mm axial slices. Steady-state magnetization was assumed after 

four volumes. The total number of resting-state functional volumes acquired ranged from 

184-780. The length of each resting-state run ranged from 5-30 minutes. 
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During the resting-state scans, participants viewed a centrally presented white 

crosshair (subtending <1º visual angle) on a black background. Participants were 

instructed to relax, “keep an eye on the plus sign”, and hold as still as possible. 

Image Analysis 

Functional images from each participant were preprocessed to reduce artifacts (Shulman 

et al., 2010). These steps included: (i) temporal sinc interpolation of all slices to the 

temporal midpoint of the first slice, accounting for differences in the acquisition time of 

each individual slice, (ii) correction for head movement within and across runs, and (iii) 

intensity normalization of the functional data was computed for each individual via the 

MP-RAGE T1-weighted scans. Each run was then resampled in atlas space on an 

isotropic 3 mm grid combining movement correction and atlas transformation in a single 

interpolation. The target atlas was created from thirteen 7-9 year old children and twelve 

21-30 year old adults using validated methods (Black et al., 2004). The atlas was 

constructed to conform to the Talairach atlas space.  

Several additional pre-processing steps were applied to reduce spurious variance 

unlikely to reflect neuronal activity (Fox et al., 2009). These RSFC pre-processing steps 

included: (i) demeaning and detrending each run, (ii) multiple regression of nuisance 

variables, (iii) frame censoring (discussed below) and interpolation of data within each 

run, (iv) temporal band-pass filtering (0.009 Hz < f < 0.08 Hz), and (v) spatial smoothing 

(6 mm full width at half maximum). Nuisance variables included motion regressors (e.g. 

original motion estimates, motion derivatives, and Volterra expansion of motion 

estimates), an average of the signal across the whole brain (global signal), individualized 

ventricular and white matter signals, and the derivatives of these signals. 



37 
 

Reducing head motion-related artifact 

We applied a procedure determined and validated to best reduce artifacts related to head 

motion (Power et al., 2014; Ciric et al., 2017). With this approach to reducing motion-

related artifact, we can reevaluate whether patterns of RSFC can predict an individual’s 

age, but not age-related head movement. 

Specifically, frame-by-frame head displacement (FD) was calculated from 

preprocessing realignment estimates, and frames with FD > 0.2 mm were removed. An 

FD threshold of 0.2 mm was chosen because it best reduced the distance-dependence 

related to individual differences in head motion (estimated with mean FD and six motion 

parameters) in this developmental dataset, as assessed using procedures from Power et 

al. (2012) and Ciric et al. (2017) (see Supplemental Material A). Data were considered 

usable only in contiguous sets of at least 3 frames with FD < 0.2 and a minimum of 50 

frames within a functional run. ‘Bad’ frames were censored from the continuous, 

processed resting-state time series before computing resting-state correlations. Notably, 

the global signal was included as a nuisance regressor (mentioned above) in order to 

further reduce global, motion-related spikes in BOLD data (Power et al., 2014; Ciric et al., 

2017). To avoid motion-related differences in the amount of data used to calculate resting-

state correlations across participants, 120 randomly selected ‘good’ frames of usable data 

(i.e., frames surviving motion censoring) from each participant were included in further 

analysis.  

To quantify how motion censoring and global signal regression affect multivariate 

prediction with RSFC, we performed additional analyses with (1) no motion de-noising 

(no global signal regression + no frame censoring) and (2) partial motion de-noising 



38 
 

(global signal regression + no frame censoring and no global signal regression + frame 

censoring).  

Resting-state functional connectivity network construction 

For each participant, resting-state time courses were extracted from a set of 264 

previously defined regions of interest (ROIs) covering much of the brain shown in Figure 

2-1 A (Power et al., 2011). A weighted correlation matrix representing an individual’s 

RSFC was constructed by calculating the correlation between time-courses from each 

Figure 2-1. Overview of support vector machine learning with RSFC. (A) Regions of 
interest (n = 264), defined in Power et al. 2011, used to create RSFC correlation matrices. 
Resting-state time courses were extracted from each of these regions. (B) Average resting-
state functional connectivity across all participants. Correlations between the resting-state time 
courses of all pairs of regions from (A) were sorted according to functional system and average 
across all subjects included in this analysis. (C) Support vector regression was used to 
determine a multivariate model for prediction in a training set and this predictive model was 
evaluated by comparing the predicted labels and actual labels of individuals in a separate 
testing set. Different training labels (e.g., age, mean FD) were used to create multivariate 
models to predict different characteristics of individuals using RSFC. In some cases, feature 
selection was applied before training and testing (for specifics, see Fig. 2-S2). 
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pair of ROIs and normalizing these values with a Fisher transform. The group average 

correlation matrix for this developmental dataset is shown in Figure 2-1 B. The RSFC 

between these 264 ROIs reveals the organization of separable functional systems (e.g. 

default-mode, fronto-parietal, visual, etc.) in both children and adults (Power et al., 2011; 

Yeo et al., 2011).  

2.3.3 Support Vector Regression 

Support vector machine (SVM) learning was used to determine how well an individual’s 

chronological age can be predicted from that individual’s pattern of RSFC. We used the 

Spider Machine Learning Toolbox implemented in Matlab for SVM training and testing. 

Commonly, SVM is used to test whether patterns of RSFC can classify an individual as a 

part of a group, a binary label. This approach can be extended to the prediction of 

continuous labels (e.g., chronological age) using support vector machine regression 

(SVR). Briefly, SVR extracts the multivariate relationship between features (here, 

functional connections) and labels (here, age) from a training set of individuals with known 

labels. Further description of the parameters employed from multivariate machine 

learning is provided in Supplemental Material B. 

 We used a ten-fold cross-validation (ten-fold CV) procedure in which 10% of the 

participants were removed from the training set, a multivariate model was generated from 

the remaining participants (90% of the participants), and the left out participants were 

tested on the SVR-derived model. For each fold of CV, a different set of 10% of 

participants were removed from the training set and tested on the SVR-derived model. 

We tested the robustness of the SVR-derived models with three iterations of ten-fold CV 

(two iterations are shown in Supplemental Material E, Figure 2-S3). We also used a leave-
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one-out cross-validation (LOOCV) procedure for consistency with Dosenbach et al. 2010 

and to test the robustness of the results across cross-validation techniques. We found 

minimal differences between ten-fold CV and LOOCV (LOOCV results are provided in 

Supplemental Material F, Figure 2-S4).  

The extent to which this derived model explains the label-related variance can be 

determined by applying the SVR-derived model to the features from a test individual 

outside of the training set and comparing the test individual’s SVR predicted label and 

actual label. Previously, Dosenbach et al. 2010 compared several models in order to best 

fit the relationship between the predicted ages and actual ages of individuals. Here, we 

chose to use a simple, linear model in order to compare predictive performance across a 

variety of SVR-models built to predict different labels and built from different sets of 

features. A schematic of the training and testing in SVR is shown in Figure 2-1 C.  

Predicting an individual’s age 

We used SVR to predict the age of each participant and determine whether there are 

age-related differences in individual patterns of RSFC. Using ten-fold CV, participants 

were removed from the training set and a multivariate model describing the relationship 

between RSFC and age was generated in the remaining participants. The left-out 

participants were then tested on this SVR-derived model yielding a SVR-predicted age 

for each participant. This process was repeated, resulting in a predicted age for every 

subject. Predicted ages were then compared to the true ages for each participant. 

In order to identify the noise floor for prediction, we permuted the age labels of each 

participant in the training set. We used the same machine learning approach to assess 

how well SVR can use patterns of RSFC with fabricated relationships with age. We used 
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the same ten-fold CV procedure as described above, but trained on the permuted age 

labels rather than the actual ages.  

Predicting an individual’s head motion 

Because of the issue of subject motion contaminating developmental neuroimaging data 

(Power et al., 2012; Satterthwaite et al., 2013a), we took a conservative approach to 

identifying potentially lurking, motion-related differences in RSFC that might spuriously 

enhance our ability to predict age. We used the same machine learning approach to 

determine whether patterns of RSFC could predict measurements of an individual 

participant’s head movement. Using ten-fold CV, a multivariate model describing the 

relationship between RSFC and head motion – measured as mean FD – was generated 

and the left out participants were then tested on this SVR-derived model. Specifically, 

mean FD was calculated on the pre-frame censored data, thus quantifying the amount of 

movement during the entirety of the runs included for each participant. This process was 

repeated to predict each individual’s mean FD. The predicted mean FD was then 

compared to the true mean FD for that participant. Similar analyses were also conducted 

using mean FD calculated on the post-frame censored data, which measures the residual 

head motion after de-noising (Supplemental Material C). To assess the impact of motion 

de-noising on RSFC, multivariate models describing the relationship between mean FD 

and RSFC that did not undergo motion de-noising (GSR + frame censoring) were also 

generated and tested.  

Prediction across Feature Numbers 

We aimed to explore how the number of features used to create the multivariate model 

affects the ability to predict age and head motion. We randomly selected functional 
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connections from the entire correlation matrix, sampling between 100 and 19,000 features 

(out of the possible 34,716) in logarithmic increments. Twenty-five random feature sets 

were generated for each of the forty-five feature numbers sampled. With these feature 

sets, we tested how well SVR can identify patterns of RSFC related to age, head motion, 

and permuted age labels in order to make predictions about individuals. Using ten-fold 

CV, a multivariate model describing the relationship between these labels and RSFC in 

randomly selected functional connections was generated and the left out participants 

were then tested on this SVR-derived model. 

2.3.4 Feature Selection 

Feature selection is a standard approach in the field of machine learning whose objective 

is to remove irrelevant features to reduce computational burden, avoid overfitting, and 

potentially improve predictive performance (Guyon and Elisseeff, 2003). Many 

investigators have interrogated the features derived from feature selection – in the case 

of RSFC, functional connections – facilitating prediction. The identified, reduced set of 

functional connections has often been interpreted as meaningful to the mechanism 

underlying the predicted characteristic (e.g., maturation, disease). We used feature 

selection to investigate which functional connections carry information useful for age 

prediction using both data-driven (features defined in a training set) and hypothesis-driven 

(features defined a priori) approaches. Before interpreting these identified features as 

meaningful to the mechanism(s) underlying typical development, we compared the 

performance of selected features to a null model built from a matched set of randomly 

selected features. Supplemental Material Figure 2-S2 summarizes the types of feature 

selection used for age prediction. 
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Data-driven Feature Selection 

Univariate Feature Ranking & Selection in a Training Set 

As a simple approach to identify the best features to predict an individual’s age, we ranked 

and selected features according to the univariate correlation between each functional 

connection and age across subjects, as in Dosenbach et al. (2010). For each fold of CV, 

features were ranked according to the strength of the correlation between RSFC and age 

in the remaining subjects in the training set  (note: this approach is different than features 

ranked according to the RSFC strength within an individual; see RSFC Strength, below). 

We sampled between 100 and 19,000 top ranked features in logarithmic increments, 

generated a multivariate model describing the relationship between age and RSFC in 

these features, and tested the left out participants on the SVR-derived models. 

Matched Feature Set & Null Model Comparison:  We evaluated whether these functional 

connections with strong age relationships were the most useful for multivariate age 

prediction by contrasting them with a matched set of randomly selected features (see 

Prediction across Feature Numbers). We generated a multivariate model describing the 

relationship between age and RSFC in these randomly selected features, tested the left 

out participants on the SVR-derived models, and compared the performance of top 

ranked features with randomly selected features.  

Hypothesis-driven Feature Selection 

Beyond identifying a set of features most related to age as described above, we were 

also interested in experimentally manipulating the information available for age prediction. 

We aimed to test whether development relies upon organizing principles of RSFC such 
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as connection distance, the definition of functional systems, or the strength of 

correlations. 

Connection Distance 

Previously, Dosenbach et al. (2010) described evidence that connection distance might 

underlie the usefulness of functional connections for age prediction. To compare how 

functional connections of different connection distance contribute to age prediction, we 

divided the resting-state correlations into ten separate windows (3471 functional 

connections per window) based on the distance of the connections in template Talairach 

space (computed via Euclidean volumetric distance among group ROIs). Using ten-fold 

CV, a multivariate model describing the relationship between age and the RSFC in these 

functional connections of a particular length (e.g., short-range, long-range) was 

determined and the left out participants were then tested on this SVR-derived model. 

Matched Feature Set & Null Model Comparison: We compared the SVR performance 

derived from features of a particular connection length with the SVR performance derived 

from randomly selected features to determine whether connection distance underlies age 

prediction with RSFC. Randomly selected feature sets were specifically matched to have 

the same number of features as the ten separate distance windows (3471 functional 

connections). Twenty-five randomly selected feature sets were generated. Using ten-fold 

CV, a multivariate model describing the relationship between age and the RSFC in these 

randomly selected connections was determined and the left out participants were then 

tested on this SVR-derived model.  

Functional Systems 
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The brain is organized into functional systems (e.g., visual, default-mode, dorsal attention, 

fronto-parietal, etc.) that can be revealed with RSFC at the group (Power et al., 2011; Yeo 

et al., 2011) and individual (Laumann et al., 2015; Gordon et al., 2017b) levels. Previously, 

we and others have shown that SVM classification accuracy for distinguishing children 

with developmental disorders (e.g Tourette syndrome (Greene et al., 2016b), Autism 

Spectrum Disorder (Uddin et al., 2013)) from healthy controls varied by the functional 

system(s) used for SVM training. To compare how functional connections from different 

functional systems contribute to age prediction, we divided the resting-state correlations 

according to the thirteen functional systems defined in Power et al. 2011, including control 

systems (fronto-parietal, cingulo-opercular, salience, ventral attention, dorsal attention), 

processing systems (somatomotor-body, somatomotor-mouth, visual, auditory, memory), 

the default-mode system, a subcortical system, and a cerebellar system depicted in 

Figure 2-1 A (Power et al., 2011). For each system-level comparison, functional 

connections within the system and functional connections between that system and the 

other systems were included. Using ten-fold CV, a multivariate model describing the 

relationship between age and the RSFC in connections associated with a particular 

functional system was determined and the left out participants were then tested on this 

SVR-derived model.  

Matched Feature Set & Null Model Comparison: Performance with each system-selective 

model was then compared with SVR performance derived from randomly selected 

features matched to have the same number of features as each functional system (see 

Prediction across Feature Numbers). Using ten-fold CV, a multivariate model describing 
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the relationship between age and the RSFC in these randomly selected connections was 

determined and the left out participants were then tested on this SVR-derived model.  

RSFC Strength  

While strong positive resting-state correlations have dominated most RSFC studies, 

strong negative functional connections, as well as weakly positive or negative functional 

connections, might also change in development and be useful for age prediction. 

Previously, Bassett et al. (2012) observed that SVM classification accuracy for 

distinguishing patients with schizophrenia from healthy controls differed when separately 

including features with strong positive and weakly positive RSFC; weakly positive 

functional connections were more predictive than strongly positive or moderately positive 

functional connections. To separately consider how functional connections of different 

RSFC strength contribute to age prediction, we divided resting-state correlations within 

each individual into ten separate windows based on the strength of each connection 

(3471 functional connections per window). Specifically, features were sorted by RSFC 

strength within each individual and a window of 10% of these functional connections were 

selected (note: this is distinct from features ranked according strength of correlation 

between RSFC and age; see Univariate Feature Ranking & Selection in Training Set, 

above). For example, connections with the strongest positive RSFC per individual, 

regardless of the actual correlation value, were included in the top 10% strong positive 

window (i.e., 1 if present or 0 if not present). Importantly, the actual functional connections 

selected for each window depended upon each individual’s correlation matrix and varied 

across individuals. The lack of correspondence in the location of these functional 

connections across individuals is the information used for age prediction. For example, a 
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functional connection that is in the top 10% strong positive window for one subject but not 

another would provide useful information for age prediction, while a functional connection 

that is in the top 10% strong positive window across all participants would not. Using ten-

fold CV, a multivariate model describing the relationship between age and the functional 

connections of a particular correlation RSFC strength (e.g., strong positive, weak, strong 

negative) was determined and the left out participants were then tested on this SVR-

derived model. 

Matched Feature Set & Null Model Comparison: The performance of these correlation-

magnitude models was compared to a null model of features matched in number but 

randomly sampled from the distribution of resting-state correlations. Specifically, features 

were ranked by correlation magnitude within each individual, as before, but a random set 

of 10% of these ranks were selected. Importantly, this random set of ranks was consistent 

across subjects. Twenty-five randomly selected feature sets were generated. Using ten-

fold CV, a multivariate model describing the relationship between age and the location of 

these randomly selected connections of was determined and the left out participants were 

then tested on this SVR-derived model.  

Inter-correlation among features in feature sets 

The usefulness of a feature set can be reduced if there is a large amount of inter-

correlation among features (Guyon and Elisseeff, 2003). Correlated features are likely to 

provide redundant information for multivariate machine learning, increasing the likelihood 

of suboptimal predictive performance. Thus, we tested whether the feature sets described 

above (i.e., data-driven and hypothesis-driven feature selection) were more inter-

correlated than feature sets with randomly selected features. For each feature set, we 
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calculated the correlation between the RSFC values in each pair of functional connections 

across all individuals. Using a matched number of randomly selected functional 

connections, we calculated the inter-correlation in those feature sets as well. Because 

differences in both the mean (Figure 2-S6 B) and shape (Figure 2-S6 D) of this inter-

correlation distribution indicate an increased number of inter-correlated features (see 

Supplemental Material H), we computed the proportion of feature pairs with an inter-

correlation greater than r = 0.2 (2 standard deviations greater the mean of in the inter-

correlation of features in the full correlation matrix) in order to quantify the amount of 

redundancy in each feature set. To further explore the impact of redundancy among 

functional connections on age prediction, we employed the Fast Correlation-Based Filter 

(Yu and Liu, 2004) that aims to reduce the number of collinear features. With this 

approach, features are iteratively removed from a feature set if correlated with other, 

stronger (more correlated with age) features above a pre-determined threshold. More 

details are provided in Supplemental Material H.   

2.4 Results 

2.4.1 After motion de-noising, individual head motion cannot be predicted from 
RSFC, while age can.  

First, we aimed to determine whether there was information available to predict 

measurement of head movement (mean FD) in RSFC before and after motion de-noising. 

Motion-related artifact was minimized with GSR and conservative frame censoring 

(Power et al., 2014; Ciric et al., 2017). SVR using a ten-fold CV procedure was used to 

test the multivariate relationship between RSFC and head motion as well as the 

multivariate relationship between RSFC and age. As is shown in Figure 2-2 A and Figure 
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2-2 B, age was successfully and robustly predicted at the individual level in data with and 

without motion de-noising. In contrast, individual measurements of head motion could not 

be successfully predicted after reducing motion-related artifact. The amount of variance 

in RSFC explained by age or head motion can be quantified by comparing the true labels 

and SVR-predicted labels for each participant. Using the resting-state correlations 

between the full set of 264 ROIs, 57% of the variance in individual RSFC was explained 

by age with motion de-noising (r = 0.75, p < 0.001, R2 = 0.57), while only 44% was 

explained by age without motion de-noising (r = 0.66, p < 0.001, R2 = 0.44). Alternatively, 

50% of the variance in RSFC was explained by individual head movement before 

reducing motion-related artifact (r = 0.71, p < 0.001, R2 = 0.50), while only 4% was 

Figure 2-2. Motion de-noising affects whether RSFC predicts head motion, but not age. 
(A) Predicted age (top) and predicted mean FD (bottom) of individuals in the testing set 
compared to the true chronological age and true mean FD of each individual. Predictions were 
generated from RSFC before motion de-noising. (B) Predicted age (top) and predicted mean 
FD (bottom) of individuals in the testing set compared to the true chronological age and true 
mean FD of each individual. Predictions were generated from RSFC after motion de-noising. 
(C) Age prediction and mean FD prediction with RSFC that has undergone no motion de-
noising, partial motion de-noising, and full motion de-noising. (D) Performance of SVR-derived 
models across feature sets with different number of features. Twenty-five feature sets were 
created by randomly selecting functional connections in forty-five logarithmic increments. 
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explained by head motion after GSR and conservative frame censoring (r = 0.2, p = 0.03, 

R2 = 0.04).  

Additionally, after sufficient motion de-noising, SVR-predicted ages were less 

correlated with an individual’s head movement. If individual head motion and age cannot 

be disentangled, predicted ages may still be confounded by motion-related variance in 

RSFC. Before motion de-noising, the ages predicted from the multivariate patterns in 

RSFC were negatively correlated with mean FD (r = -0.44, p < 0.001, R2 = 0.20). After 

reducing motion-related artifact, the relationship between RSFC-predicted ages and 

individual mean FD was markedly reduced (r = -0.32, p < 0.001, R2 = 0.10).  

To determine the impact of different components of motion de-noising on the 

multivariate effects of head motion on RSFC, we tested how well patterns of partially de-

noised RSFC (GSR alone, frame censoring alone) could be used to predict 

measurements of individual head movement. Of the steps that best remove systematic 

differences in RSFC, GSR alone eliminated most multivariate information related to an 

individual’s head movement (R2 = 0.04). Frame censoring alone also reduced multivariate 

effects of head motion as measured by mean FD across all data (pre-frame censoring 

mean FD, R2 = 0.10). However, frame censoring alone was not sufficient to reduce the 

multivariate effects of residual head motion after frame censoring (post-frame censoring 

mean FD, R2 = 0.20, Supplemental Material C). Figure 2-2 C shows that, while age 

information is preserved, information about individual-level head movement is drastically 

reduced after GSR or after frame censoring.  

In order to further interrogate the robustness of multivariate information related to 

age and head motion in RSFC, we tested the multivariate prediction of age and mean FD 
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across many different feature sets. SVR performance for predicting age increased with 

the number of features (i.e. functional connections) included in training and testing as 

shown in Figure 2-2 D. As an experimental control, the multivariate relationship between 

RSFC and permuted age labels was derived with SVR in a training set and used to predict 

the age of test individuals. As expected, performance of this experimental control model 

was poor (r = 0.08, p = 0.183, R2 = 0.006). While SVR performance for predicting age far 

surpassed this experimental control, the performance predicting mean FD with 

adequately de-noised RSFC did not outperform the experimental control. 

2.4.2 Top ranked functional connections predict an individual’s age, but not better 
than random functional connections. 

Using data-driven feature selection, we aimed to determine a set of features that optimally 

predict age with SVR. Multivariate models were built with the functional connections with 

Figure 2-3. RSFC with strong, univariate age relationships predict age no better than 
randomly selected RSFC with multivariate SVR. (A) An example of the top ranked features 
(Consensus Features from 10%, 3471 features) across training sets. The correlation between 
RSFC and age was generated for these features and sorted according to functional systems. 
(B) Performance of SVR-derived models built with top ranked features and randomly selected 
features using different numbers of features. Feature sets were selected in logarithmic 
increments. 
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the strongest correlation with age within each training set (e.g., Figure 2-3 A: Consensus 

Features in Top Ranked 10%). Features with strong age relationships in the training set 

were able to predict the age of test individuals reasonably well, peaking at 57% of the 

variance explained. Figure 2-3 B shows how the amount of developmental variance 

explained in the testing set depends upon the number of features included in the model. 

Models built from a limited set of top ranked features matched, but never predicted age 

better than, the model build from the full correlation matrix (i.e., 57% variance explained) 

even though features weakly related to age were removed.  Furthermore, the SVR 

performance of top ranked features was not significantly better than the performance of 

models built from randomly selected features of the same number, as shown in Figure 2-

3 B. Some feature sets of intermediate number appear to produce marginally better age 

prediction than randomly selected features, suggesting that there might be a specific 

range of features which facilitate age prediction. However, further investigation of top 

ranked features with a different cross validation protocol (training set of 90 and testing set 

of 32, instead of ten-fold CV) indicates the performance of top ranked features does not 

differ from randomly selected features across feature numbers (see Supplemental 

Material G). Taken together, these different validation approaches indicate that the 

functional connections that are most correlated with age do not uniquely or especially 

facilitate age prediction. 

2.4.3 After motion correction, connection length does not contribute to improved 
age prediction.  

Given previous suggestions of a local-to-distributed development of brain networks (Fair 

et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010), we next aimed to compare 

how functional connections of different length (e.g., short-range, long-range) contribute 
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to age prediction. Multivariate models were built with features defined by connection 

distance. These models were able to predict the age of a left out individual well (R2 = 0.49 

± 0.04; Figure 2-4). However, SVR performance of features selected by connection length 

was not better than the performance of models built from a matched set of randomly 

selected features. Additionally, prediction was uniform across different connection 

distances, with neither short- nor long-range connections facilitating age prediction in 

comparison to mid-range connections. Age prediction in these feature sets, while 

comparable to age prediction in randomly selected feature sets, did not depend on the 

length of the functional connections used to comprise the SVR-derived model. 

2.4.4 Different functional systems can predict age, but poorer than distributed 
features. 

Figure 2-4. After motion correction, connection length does not contribute to age 
prediction. Performance of SVR-derived models built with features selected by connection 
length and features selected randomly (10%, 3471 features).  
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We next aimed to compare how connections from different functional systems contribute 

to age prediction, given evidence that brain systems may develop at different rates 

(Gogtay et al., 2004). Multivariate models were built by selecting features from each 

functional system individually. These models were able to predict age to some extent 

(Figure 2-5). However, prediction performance varied largely as a function of the number 

of features within each system. Notably, the SVR performance of features selected from 

each functional system was worse than the performance of models built from randomly 

selected features that were distributed across multiple functional systems. Thus, 

functional connections from individual functional systems carry less information to predict 

age than functional connections randomly distributed across the brain and the differences  

Figure 2-5. No single functional system predicts age better than randomly selected 
functional connections. Performance of SVR-derived models built with features selected 
from single functional systems and features selected randomly (matched by size).  
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Figure 2-6. RSFC strength contributes to age prediction. (A) The distribution of strong 
negative resting-state correlations across all individuals in the developmental dataset. (B) The 
distribution of strong positive resting-state correlations across all individuals in the 
developmental dataset. (C) The distribution of weak zero resting-state correlations across all 
individuals in the developmental dataset. (D) Performance of SVR-derived models built with 
features selected by correlation strength and features selected randomly from the correlation 
distribution (10%, 3471 features).  
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in age prediction performance between different functional systems vary largely based on 

system size rather than system identity.  

2.4.5 Strong positive and strong negative connections predicts age better than 
weak connections 

Finally, we compared how connections from different parts of an individual’s correlation 

distribution (i.e., strong positive, weak, strong negative) contribute to age prediction, given 

suggestions that even weak magnitude RSFC can improve prediction in disease states 

(Bassett et al., 2012). The observed location of strongly-positive, weak, and strongly-

negative RSFC across all individuals in the developmental dataset is shown in Figure 2-

6 A-C. Strong negative RSFC was most frequently found between the DMN and other 

systems, and the strong positive RSFC was most frequently found within systems along 

the diagonal across all individuals. Weak RSFC was present in more variable locations 

across individuals. Multivariate models based on the location of strong positive and strong 

negative RSFC within an individual were able to predict age well (strong positive R2 = 

0.54; strong negative R2 = 0.47). In contrast, multivariate models built from sets of 

features with weak functional connections were not able to predict age well as depicted 

in Figure 2-6 D. The SVR performance of features with strong positive and strong negative 

RSFC was better than the performance of models built from a matched set of randomly 

selected functional connections. 

2.4.6 Some feature sets contain more redundant features than randomly-derived 
feature sets 

Inter-correlated features may hinder multivariate age prediction because they may 

provide redundant information. Figure 2-7 compares the amount of inter-correlation 

among different feature sets and demonstrates that age-correlated functional connections 
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are consistently more inter-correlated across subjects than groups of randomly selected 

features. Additionally, functional systems, defined in part by the consistent RSFC 

relationships across individuals, contain features that are more inter-correlated than 

matched sets of randomly selected features, as might be expected. Thus, it is possible 

that inter-correlations among feature sets may reduce the power of age-correlated and 

functional system feature sets to predict age. For further characterization of the inter-

correlation in these feature sets, see Supplemental Material H. 

Figure 2-7. Proportion of inter-correlated features in the tested feature sets. Proportion 
of feature pairs in the tested feature set with inter-correlation greater than in the full correlation 
matrix (2 standard deviations greater than the mean; r > 0.2). The mean and 95% confidence 
interval of this measure of inter-correlation was generated for the top ranked features defined 
in each fold of ten-fold CV and for the randomly selected features across feature numbers. 
The inter-correlation was also generated for feature sets with functional connections from 
single functional systems.    
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2.5 Discussion  

2.5.1 Motion de-noising eliminates the multivariate effects of head motion on RSFC, 
while preserving age information. 

In this work, we have shown that de-noising methods to minimize motion artifact (Ciric et 

al., 2017) – including both global signal regression (GSR) and frame censoring - is 

necessary to remove multivariate effects of head motion on RSFC. Without motion de-

noising, patterns of RSFC could be used to successfully predict measurements of head 

movement (Figure 2-2 A). After motion de-noising, we were unable predict individual 

variability in head movement with RSFC, while still successfully predicting age (Figure 2-

2 B). Thus, even after reducing motion-related information, RSFC carries information 

relevant to typical development, validating previous claims (Dosenbach et al., 2010) and 

supporting more recent follow-ups (Fair et al., 2013; Satterthwaite et al., 2013b). While 

these previous studies have shown that age can still be predicted from RSFC after 

reducing motion-related artifact, our results extend such findings in a critical way by 

showing that there is limited lingering information about head movement as estimated 

with mean FD in RSFC after motion de-noising.   

2.5.2 RSFC can predict an individual’s age and may be a useful indicator of 
developmental progress. 

In this work, we were able to well predict an individual’s age from RSFC, explaining 57% 

of the developmental variance across participants. Our results are comparable to 

previous findings of age prediction with multivariate machine learning using other 

measurements of the developing brain such as voxel based morphometry of T1-weighted 

scans ((Franke et al., 2012), R = 0.93, R2 = 86%), volume of grey matter, white matter, 

and lateral ventricles ((Erus et al., 2015), R = 0.89, R2 = 79%), and regional cortical 
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thickness ((Khundrakpam et al., 2015), R = 0.84, R2 = 71%). Additionally, measurements 

of structural connectivity, such as fractional anisotropy and diffusivity obtained with 

diffusion tensor imaging ((Erus et al., 2015), R = 0.89, R2 = 79%), have also been used 

to successfully predict an individual’s age with multivariate machine learning. Recently, 

task-related FC, a measurement of the transient changes in regional coherence during 

task performance, has been used to predict age with moderate accuracy, explaining 42% 

of variance related to age in a validation set (Rudolph et al., 2017). Approaches that 

combine information from multiple imaging modalities (T1, T2, and diffusion weighted 

imaging, (Brown et al., 2012), R = 0.96, R2 = 92%) have been shown to achieve the 

highest prediction performance. However, there is increasing evidence that head motion 

in the scanner systematically affects measurements of cortical thickness, grey matter 

volume (Reuter et al., 2015), and fractional anisotropy (Ling et al., 2012; Yendiki et al., 

2014) as well as RSFC. Thus, the reported performance of multivariate age prediction 

with structural measurements may also be contaminated by head motion, and require 

additional validation.  

While we (and others (Fair et al., 2013; Satterthwaite et al., 2013b)) have shown 

that RSFC carries substantial information about the development of an individual (R = 

0.75; R2 = 0.57), not all characteristics of individual brain maturity are likely, nor 

anticipated, to be captured in resting-state correlations. For example, we know that brain 

size changes systematically with age (Giedd and Rapoport, 2010). The distinctive utility 

of RSFC may lie in identifying the functional underpinnings of atypically developing 

individuals. RSFC, a measurement of the statistical history of co-activation across an 

individual’s lifespan (Fox and Raichle, 2007; Dosenbach et al., 2008), may be disrupted 
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in an abnormal developmental trajectory. Because RSFC is more closely related to 

function than measures of brain structure, differences in RSFC might be a particularly 

useful indicator of dysfunction in child brain development.   

2.5.3 After reducing motion-related artifact, age prediction with RSFC does not 
support the local-to-distributed hypothesis of the development of RSFC. 

Earlier studies of the development of RSFC organization suggested that as an individual 

matures, resting-state correlations shift from local, short-range connections to distributed, 

long-range connections. This evidence was appealing because it agreed with 

neurobiological evidence of the continued myelination of long-range pathways into 

adolescence and adulthood (Barnea-Goraly et al., 2005). However, motion artifacts also 

amplify short-range RSFC and reduce long-range RSFC. While earlier attempts at age 

prediction with RSFC supported the local-to-distributed developmental hypothesis (Fair 

et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010), we did not find evidence for 

distance-dependence in predicting age after reducing motion-related artifact. Short-range 

and long-range connections predicted age similarly to mid-range connections and 

randomly selected functional connections (Figure 2-4). Other evidence based on network 

organization of RSFC also contradicts the local-to-distributed development of RSFC after 

correcting for individual head motion (Fair et al., 2013; Marek et al., 2015).  

2.5.4 Age is best predicted by strong positive and strong negative RSFC within an 
individual.  

Because the location of strong positive and strong negative RSFC is conserved across 

development (Figure 2-6 A, 2-6 B), these resting-state correlations likely represent 

important information about brain functioning in individuals. In most individuals in our 

sample, strong positive RSFC was between ROIs within functional systems and strong 
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negative RSFC was between functional systems involved in the 

engagement/disengagement from tasks (ex: DMN, FP, CO) (Fox et al., 2005). 

Importantly, despite the fact that these connections appear highly conserved across 

individuals, individual differences in the location of strong RSFC predict age well (R2 = 

0.54 and 0.47) and better than weak/moderate RSFC or randomly selected connections. 

While the location of weak and moderate RSFC varies more across individuals than 

strong RSFC, inter-subject variance appears to show a negligible relationship with age 

(average R2 = 0.043), and may reflect the noisy nature of these functional connections.  

The utility of strong-positive and strong-negative functional connections for age prediction 

might support previous contentions of network segregation in development (Fair et al., 

2007; Satterthwaite et al., 2013b). Strong within-network and between-network 

connections may be modified over the course of development in order to refine functional 

network organization, yet further research is necessary to directly test such claims. 

Using similar approaches, others have argued that the weak resting-state 

correlations contain information relevant for prediction of other characteristics of an 

individual, such as I.Q. and psychiatric diagnosis (Bassett et al., 2012; Santarnecchi et 

al., 2014). We contend that the disparity in these results is related to effectively 

addressing motion-related artifact using volume censoring and GSR. While GSR removes 

the great majority of the differences in RSFC related to head motion (Power et al., 2014; 

Ciric et al., 2017), this procedure also shifts an individual’s resting-state correlation 

distribution so that it becomes zero-centered and necessarily increases the number of 

negatively correlated functional connections (Saad et al., 2012; Power et al., 2014). Thus, 

previously described weak (positive or negative) connections without GSR may be 
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equivalent to the strong negative resting-state correlations after GSR described here. In 

order to assess the importance of these connections in predicting an individual’s age (or 

any characteristic), it is necessary to address motion-related artifact and to then 

demonstrate that the cleaned data are unable to predict that individual’s head movement. 

As GSR eliminated most of the multivariate effects of head motion on RSFC, it is possible 

that weak connections without GSR could also predict measurements of head movement.  

2.5.5 Broad sampling of functional connections yields better age prediction than 
directed sampling due to (1) the distributed nature of information and (2) the 
redundancy of relevant features. 

Because RSFC was able to predict an individual’s age with SVR after reducing motion-

related artifact, we aimed to interrogate the specific functional connections facilitating age 

prediction to better understand the mechanisms underlying the development of RSFC. 

We attempted to interrogate the features relevant to age prediction with directed, data-

driven (i.e., top ranked relationships with age) and hypothesis-driven (i.e., functional 

systems) feature selection schemes. Unexpectedly, we found that directed sampling of 

functional connections yielded age prediction that was no better or, in the case of 

functional systems, worse than that obtained with a broad sampling of functional 

connections (i.e., random feature selection) (see Figure 2-3 B and 2-5). We have found 

two related properties of this developmental dataset that may contribute to the poorer 

performance of directed sampling, addressed below. 

Developmental differences in RSFC are distributed across many functional 
systems. 

We found that information in RSFC related to age appears to be unevenly distributed in 

a structured way across functional systems (enriched in some blocks: e.g., many 

functional connections within somatomotor-visual have a strong positive correlation with 
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age), but resides in all functional systems. Because of the distributed nature of age-

related RSFC, there may be many sets of features that are able to predict age well, even 

when randomly selected. Multivariate approaches are particularly well-suited to use 

patterns of features with variable age relationships to predict age (Jimura and Poldrack, 

2012). Thus, in random feature selection, by chance, relevant features across multiple 

functional systems are often captured, which enables robust age prediction.  

Adding to the evidence that developmental differences in RSFC are distributed 

across many functional systems, we found that each functional system predicted age 

worse than randomly selected features distributed across functional systems (Figure 2-

5). Poorer performance of features associated with a single functional system suggests 

that information from multiple functional systems is necessary to achieve optimal age 

prediction. We did find that age prediction differed between functional systems; however, 

whether these differences are related to the usefulness of information from a given 

functional system or the number of features associated with that system remains unclear. 

If the mechanism by which RSFC develops is not system-dependent, then larger 

functional systems may be more likely to capture relevant information for age prediction 

by chance. Explanation-driven approaches beyond those employed in the present study 

may be better able to identify the specific brain systems or pieces of specific systems that 

change over the course of development.  

While a significant portion of the extant developmental cognitive neuroscience 

literature has focused on the maturation of specific brain regions (e.g., the prefrontal 

cortex (Casey et al., 2005)) or specific functional networks (e.g., the default mode 

(Supekar et al., 2010)), the present results suggest that investigations of the maturation 
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of functional neuroanatomy might be more usefully addressed by a whole-brain or large-

scale network approach. From a complex network perspective, the observation that 

developmental changes in functional connections are distributed across multiple systems 

may not be surprising. In the evolution of many complex networks, connections are 

modified across functional modules such that global communication is optimized and 

integrative hubs are created (Solé et al., 2002). It is possible that the distributed nature of 

developmental differences in RSFC reflects a growth mechanism that optimizes global 

communication rather than enhancing a single functional system. The genetics literature 

offers an interesting analogy with the recently proposed “omnigenic” model for the 

inheritance of complex traits. In this model, signal associated with complex traits is spread 

out across the genome (Boyle et al., 2017).   Thus, one might predict that a complex 

characteristic of an individual, like maturity, could be supported by distributed changes in 

network functioning. An interesting future direction may be to determine whether more 

complex measures of network organization carry information useful for individual-level 

age prediction.  

Many functional connections that are relevant to development provide redundant 
information for age prediction. 

Although distributed across many functional systems, top ranked features (i.e., functional 

connections that are most strongly correlated with age) did not predict age better than 

randomly selected features with multivariate machine learning, as we had expected 

(Figure 2-3B). By definition, these functional connections have, on average, stronger 

relationships with age than randomly selected functional connections, but were no more 

useful for age prediction. We believe that the usefulness of top ranked features was 

limited by the inter-correlated information carried by these features. Even if two features 
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can each predict age well individually, there is little additional information contributed to 

facilitate age prediction if the pair of features are highly correlated, as they may use the 

same underlying information for age prediction (Guyon and Elisseeff, 2003). Given that 

the top ranked features were much more highly inter-correlated across participants than 

randomly selected features (Figure 2-7), this redundancy may explain why these features 

predicted age no better than randomly selected features. We tested this hypothesis by 

removing redundant features using a Fast Correlation-Based Filter (Yu and Liu, 2004) 

and found that age prediction performance decreased more slowly when removing 

redundant features than when randomly removing features (Figure 2-S7).   

One likely source of redundancy is the network organization of RSFC. By 

definition, functional systems identified with RSFC are composed of regions with similar 

patterns of connectivity. The patterns of connectivity that define functional systems are 

largely conserved across individuals (Power et al., 2011; Mueller et al., 2013; Wang et 

al., 2015; Gordon et al., 2017a). The redundancy within systems may also explain why 

functional connections from a single system cannot predict age as well as randomly 

selected functional connections that sample multiple systems (Figure 2-5). The 

redundancy of features selected from functional systems is likely not unique to age 

prediction and might affect prediction of other characteristics of individuals with RSFC 

using multivariate machine learning.  

While redundancy reduces the usefulness of a feature set for age prediction, it 

does not reduce the relevance of these features to the development of RSFC. Feature 

selection methods which identify orthogonal features (e.g., Partial Least Squares 

Regression, Principal Component Regression) might be able to produce a set of features 
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that is more useful for age prediction than randomly selected features, though it may be 

difficult to interpret the neurobiological principles underlying the importance of these 

features in a straightforward manner. We found that feature selection aimed at reducing 

collinearity (Fast Correlation-Based Filter) did not yield age prediction that was better than 

the full set of features (Figure 2-S7) indicating that removing redundant information does 

not improve performance. Furthermore, because of the redundancy present in this 

developmental dataset, there are likely many interchangeably and equally useful sets of 

features. While multivariate machine learning may not be the best approach for 

determining a single set of functional connections underlying the typical development of 

RSFC, we have shown that it is quite robust and powerful, predicting an individual’s age 

well from many different sub-sets of functional connections.  

2.5.6 Evaluating the utility of multivariate prediction with resting-state functional 
connectivity 

Many researchers use multivariate machine learning in RSFC with the intent to make 

accurate predictions about individuals and to interrogate the neurobiological 

mechanism(s) underlying a predicted characteristic. We have shown that RSFC provides 

a robust neurobiological measurement of an individual, sufficient to make predictions 

about that individual’s chronological age with relatively high accuracy even, notably, after 

correcting for systematic differences in RSFC related to subject head motion. This 

observation suggests that individual age prediction with RSFC could provide useful 

diagnostic information about the brain maturity of individuals with developmental delay or 

other developmental disorders—a feat that many group-level descriptions of brain 

development may not be able to provide. More generally, this observation demonstrates 

the capacity to make predictions about an individual based on patterns of RSFC. 
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However, we have also shown that our ability to interrogate the specific features 

facilitating prediction in the hopes of understanding the neural mechanisms underlying 

brain development is somewhat limited. Identifying a unique set of functional connections 

that carry information useful for age prediction with RSFC is difficult due to the inter-

correlated nature of RSFC and the distributed nature of developmental differences in 

RSFC, as discussed above. Thus, both data-driven and hypothesis-driven feature 

selection were unable to reveal functional connections that predict age better than the full 

set of features; removing potentially irrelevant features did not boost predictive 

performance. Importantly, relative to other investigations, we evaluated the performance 

of selected features to a null model built from a matched set of randomly selected before 

interpreting features as meaningful to the mechanism underlying typical development. 

Here, most sets of selected features (excluding strong positive and strong negative 

RSFC; see Figure 2-6D) did not predict age better than the randomly selected null, 

indicating that these functional connections, while useful for prediction, are not exclusively 

meaningful nor indicative of a unique solution to age-prediction from RSFC. Our inability 

to identify specific features that predict age does not mean that machine learning 

approaches cannot be used to identify specific features that contribute to other group 

differences (e.g. disease status). However, the identified features should be tested 

against an appropriate null model before making claims about the unique utility of a set 

of features for prediction and inter-correlations among features should be carefully 

evaluated during interpretation.   

Multivariate machine learning models are built to make predictions, and can only 

test hypotheses about neurobiological mechanisms indirectly. Both approaches that 
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make individual-level predictions and those that test group-level differences are important 

to our understanding of typical and atypical development. Multivariate prediction 

complemented by alternative approaches directed at more mechanistic questions (e.g., 

group-level studies, highly-sampled individuals, within-subject longitudinal studies) will 

likely yield the best mechanistic understanding of typically and atypically developing 

individuals. Here, we demonstrate that measurements of functional neuroanatomy with 

RSFC are sufficiently robust to make individual-level predictions of maturity in typical 

development and anticipate that these characterizations may have future clinical utility in 

making individual-level predictions about atypical development.  
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2.7 Supplemental Material 

A. Selecting an FD threshold to reduce distance-dependent motion-related artifacts 

in RSFC 

Frames linked with head motion in the scanner produce distance-dependent artifacts in 

RSFC (Power et al., 2012; Van Dijk et al., 2012; Ciric et al., 2017). Using the approach 

initially defined in (Power et al., 2012; Ciric et al., 2017), we aimed to identify a threshold 

of frame-wise displacement (FD) that, when applied, best reduces these distance- 
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Figure 2-S1. Checking for distance-dependence in the relationship between RSFC and 

head motion. (A) For each functional connection, the correlation between the RSFC and 

mean FD across individuals is shown. These relationships did not strongly depend on 

connection distance. (B) For each functional connection, the correlation between the RSFC 

and the mean frame-wise change in six motion parameters is shown. These relationships did 

not strongly depend on connection distance.  

AFTER                

MOTION DE-NOISING 

R = -0.12 

A 
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dependent effects. For each subject, we created a set of resting-state time-series from all 

264 ROIs with high-motion frames removed (here, high-motion frames were defined as 

having FD > 0.2 mm). Each individual resting-state time-series was trimmed to have to 

have 120 low-motion frames. RSFC correlation matrices (as discussed in Materials and 

Methods, resting-state functional connectivity network construction) were generated for 

each individual for each FD threshold. For each subject, we also calculated the mean FD 

before removing high-motion frames. Next, we calculated the correlation between RSFC 

and mean FD across all subjects. To assess whether the motion-related differences in 

RSFC are distant dependent, we plotted these correlations according to the Euclidean 

distance between the two ROIs involved in each functional connection. Distance-

dependent motion-related artifact in RSFC presents as positive correlation with mean FD 

in short-range connections and a negative correlation with mean FD in long-range 

connections (Ciric et al., 2017). An FD threshold which excluded frames with motion 

greater than 0.2 mm best reduced distance-dependent differences in RSFC related to 

head motion. Figure 2-S1 shows that the relationship between resting-state correlations 

and motion according to connection after frame censoring.  

B. Support Vector Machine algorithm parameters 

The parameters used for support vector regression (SVR) training were the same as 

those used in Dosenbach et al. 2010. SVR retains some of the main features of binary 

SVM classification. In SVM classification training, a penalty is incurred for misclassified 

data (points on the wrong side of the multivariate decision boundary).  In SVR, a penalty 

is incurred for data that lie too far from the regression line in multivariate space. Epsilon-

insensitive SVR defines a tube of width epsilon around the regression line in multivariate 
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space. Any data points (i.e., subjects) within this tube carry a loss of zero, meaning there 

is no penalty. In SVR, the C parameter controls the trade-off between how strongly 

subjects beyond the epsilon-insensitive tube are penalized and the flatness of the 

regression line (larger C allows the regression line to be less flat). All SVR predictions 

described in this article used epsilon-insensitive SVRs with the Spider Machine Learning 

Toolbox default setting of C = Infinity and epsilon = 0.00001. 

C. Comparison of multivariate effects of head motion captured by pre- and post-
frame censoring mean FD 

In Figure 2-2, we used the average of the displacement of all collected frames across 

included runs to describe an individual’s head movement. We found that after global 

signal regression and after frame censoring, patterns of RSFC could not be used to 

predict pre-scrubbing mean FD. We wanted to determine whether there were multivariate 

effects related to residual head motion in our RSFC data. Thus, with ten-fold cross-

validation, we used SVR to build a multivariate model describing the relationship between 

RSFC and post-frame censoring mean FD and tested the left out participants on the 

resulting model. We found that predicted post-frame censoring mean FD was not related 

to participants’ actual post-frame censoring mean FD (R = 0.2, R2 = 0.04). Prediction of 

residual head motion was comparable to the prediction of total head motion with RSFC 

after motion de-noising.  

To further assess the impact of frame censoring and global signal regression on the 

reduction of multivariate effects of head motion, we wanted to determine whether partially 

de-noised RSFC could be used predict residual head motion quantified by post-frame 

censoring FD. With ten-fold cross-validation, we used SVR to build a multivariate model 
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describing the relationship between partially de-noised RSFC data (frame censoring, but 

no global signal regression) and post-frame censoring mean FD and tested the left out 

participants on the resulting model. We found that patterns of partially de-noised RSFC 

data were able to predict residual head motion (R = 0.44, R2 = 0.20). This suggests that 

frame censoring does play a role in removing multivariate effects of head motion on 

RSFC. However, global signal regression also eliminates motion-related effects in frames 

with very small amounts of motion (FD < 0.2 mm).  
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D. Illustration of Feature Selection  

 

Figure 2-S2. Depiction of hypothesis-driven feature selection and the matched sets of 

randomly selected features. Top:  Example sets of features selected by connection 

distance (left) and features selected randomly and matched by feature number (right). 

Middle: Example sets of features selected by functional system (left) and features selected 

randomly and matched by feature number (left). Bottom: Example sets of features selected 

by RSFC strength within the individual in two subjects (left) and features selected randomly 

by RSFC strength and matched by feature number (right). 
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E. Additional Iterations of Ten-Fold Cross-Validation 

 

Figure 2-S3. Reported results across three different iterations of ten-fold cross-

validation. Row 1: Prediction of age and the prediction of mean FD across many features 

sets. Row 2: Comparison of top ranked features and randomly selected features. Row 3: 

Comparison of long-range and short-range connections. Row 4: Comparison of features 

from functional systems and random features. Row 5: Comparison of strong RSFC features 

and weak RSFC features.    
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We conducted three iterations of ten-fold cross-validation to ensure that predictive 

performance did not depend on the specific grouping of individuals in the training and 

testing sets of each fold. Figure 2-S3 shows the results depicted in Figures 2-6 for all 

three iterations. All three iterations appear comparable. 

F. Evaluation with Leave-One-Out Cross-Validation as in Dosenbach et al. 2010 

In Dosenbach et al. 2010, leave-one-out cross-validation was used to evaluate the 

predictive model derived with SVR. Here we used both leave-one-out cross-validation 

and ten-fold cross-validation and found similar results. Figure 2-S4 compares the 

prediction of age and head motion before and after motion de-noising with ten-fold cross-

validation and leave-one-out cross-validation.  

 

 

Figure 2-S4. Comparison of ten-fold cross-validation and leave-one-out cross-

validation. Left: Evaluation of age prediction and mean FD prediction before and after 

motion de-noising with ten-fold cross-validation. Right: Evaluation of age prediction and 

mean FD prediction before and after motion de-noising with leave-one-out cross-validation. 
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G. Alternative Cross Validation approaches to evaluate Top Ranked Features 

In evaluating whether top ranked features -- i.e., functional connections with strong, 

univariate relationships with age -- facilitate age prediction, we found through visual 

inspection of the relationship between variance explained and feature number (Figure 2-

3) that an intermediate number of these features (~1000 features) might outperform 

randomly selected features. Using ten-fold cross-validation (ten-fold CV), top ranked 

features were identified in each fold of cross validation for each training set. While this 

cross validation approach maximizes the amount of samples for training with SVR, it also 

separately selects top ranked features for each training set; different sets of features are 

used to make predictions for each of the left out individuals. While there was a 

considerable amount of consistency across top ranked feature sets from different training 

sets, we tested whether these differences in feature sets might contribute to the apparent 

benefit of top ranked features of intermediate feature number.  

We identified top ranked features in a training set of 90 randomly selected subjects from 

the total set of 122 (32 subjects left out for testing). We ranked and selected features 

according to the univariate correlation between the RSFC of each function connection 

and age. Top ranked feature sets were generated in fifty separate training sets of 90 

randomly sampled subjects.  We sampled between 300 and 1000 top ranked features in 

logarithmic increments, generated a multivariate model describing the relationship 

between age and RSFC in these features in the training set, and tested the remaining 32 

participants on this SVR-derived model. This cross validation approach ensures that the 

same features are used to make predictions for the 32 left out individuals.  
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Matched Feature Set & Null Model Comparison: We evaluated whether these functional 

connections with strong age relationships were the most useful for multivariate age 

prediction by contrasting them with a matched set of randomly selected features. We 

randomly selected feature sets matched to have the same number of features as the top 

ranked features (300-1000). Twenty-five randomly selected features were generated for 

each of the fifty training sets and each of the ten feature numbers sampled. We generated 

a multivariate model describing the relationship between age and RSFC in these 

randomly selected features in the training set and tested the remaining 32 participants on 

this SVR-derived model.  

We found that most feature sets containing top ranked features identified in the 

training set well predicted the age of the left out 32 individuals, with the variance explained 

in the test set averaging at about 48% of the variance. However, these features did not 

outperform the matched sets of randomly selected features as shown in Figure 2-S3. To 

compare the performance of top ranked features to the randomly selected features in 

each partition of the training set, we normalized the performance of the top ranked 

features to the mean and standard deviation of the performance of matched randomly 

selected features with the same training/testing set. This result, in combination with the 

performance of the top ranked features identified using ten-fold CV (reported in Figure 2-

3), suggests that top ranked features identified by strong, univariate age relationships are 

no more useful than randomly selected features for multivariate age prediction.  
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H. Inter-correlation of Feature Sets 

The usefulness of a feature set can be reduced if there is a large amount of inter-

correlation among features (Guyon and Elisseeff, 2003). Correlated features are likely to 

provide redundant information for multivariate machine learning, increasing the likelihood 

of suboptimal predictive performance. Thus, we tested whether the feature sets used for 

age prediction were more inter-correlated than feature sets with randomly selected 

features. For each feature set, we calculated the correlation between the RSFC values 

(i.e., Fisher Z transformed r values) in each pair of functional connections across all 

individuals. We normalized the inter-correlation distribution by the total number of feature 

pairs to indicate the proportion of inter-correlated feature pairs in each feature set. The 

proportion of inter-correlated features are depicted for randomly selected feature sets, top 

Figure 2-S5. RSFC with strong, univariate age relationships does 

not yield optimal age prediction with different cross validation 

approach. Age prediction in a testing set (N=32) of SVR-derived models 

built with top ranked features in a training set (N=90) and randomly 

selected features using different numbers of features. Performance is 

normalized to the performance of randomly selected features in the same 

training/testing sets. 
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ranked feature sets, connection distance feature sets, and functional systems feature sets 

in Figure 2-S4. Because differences in both the mean (as in the Top Ranked Feature Sets 

in Figure 2-S6 B) and shape (as in the Function System Feature Sets in Figure 2-S6 D) 

Figure 2-S6. Inter-correlation of tested feature sets. The proportion of inter-correlated 

feature pairs across individuals was generated for each set of features. (A) Inter-correlation 

of randomly selected feature sets of different feature number. (B) Inter-correlation of top 

ranked feature sets of difference feature number. (C) Inter-correlation of feature sets selected 

by connection distance. (D) Inter-correlation of feature sets selected by functional systems.  
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of this inter-correlation distribution might yield an increased number of inter-correlated 

features, we computed the proportion of feature pairs with an inter-correlation greater 

than r = 0.2 (2 standard deviations greater the mean of in the inter-correlation of features 

in the full correlation matrix) in order to quantify the amount of redundancy in each feature 

set. We found that top ranked features and features from functional systems were more 

inter-correlated than randomly selected feature sets (Figure 2-S6 A). Features selected 

by connection distance were slightly more inter-correlated than randomly selected 

features (broader distribution than randomly selected feature sets), but did not vary by 

connection distance. 

After describing the inter-correlation among feature sets, we wanted to assess the 

impact of redundancy on age prediction with SVR. To remove redundant features from a 

feature set, we used the Fast Correlation-Based Filter (Yu and Liu, 2004). With this 

approach, a set of features are initially selected that have a strong, univariate relationship 

with the predicted label (here, age).  These features are sorted by the strength of this 

relationship. The inter-correlation between pairs of features are calculated for all feature 
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Fast Correlation-Based Filter: 

Random Feature Elimination: 

Figure 2-S7. Age prediction when removing redundant and random features. The 

variance explained when using different feature sets to predict an individual’s age.  
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pairs. First, features are eliminated if they are strongly correlated (i.e. redundant) with the 

top ranked feature above a given threshold, δ. Features are iteratively eliminated if they 

are strongly correlated with the next top ranked feature. We started with a set of 3000 top 

ranked features and applied the Fast Correlation-Based filter at a range of threshold from 

r = 0.6 to r = 0.2. For comparison, we also randomly eliminated features to have the same 

number as those feature sets produced by the Fast Correlation-Based filter. The resulting 

feature sets were used to create a model describing the multivariate relationship between 

age and RSFC and tested with ten-fold CV. Figure 2-S7 shows that age prediction drops 

off more slowly when removing redundant features than when removing random features.  
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Chapter 3: Atypical functional connectivity in Tourette 

syndrome differs between children and adults 

This chapter has been reviewed as a journal article and revisions have been 

requested. The citation is: 

 

Nielsen, Ashley N., Caterina Gratton, Jessica A. Church, Nico UF Dosenbach, Kevin J. 

Black, Steven E. Petersen, Bradley L. Schlaggar, and Deanna J. Greene. "Atypical 

Functional Connectivity in Tourette Syndrome Differs Between Children and Adults." 

 

3.1 Abstract 

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal 

tics that typically change over development. Whether and how brain function in TS also 

differs across development has been largely understudied. Here, we used functional 

connectivity MRI to examine whole brain functional networks in children and adults with 

TS. Multivariate classification methods were used to find patterns among functional 

connections that distinguish TS from controls separately for children and adults (total N = 

202). We tested whether the patterns of connections that classify diagnosis in one age 

group (e.g., children) could classify diagnosis in another age group (e.g., adults). We also 

tested whether the developmental trajectory of these connections were altered in TS. 

Patterns of functional connections that distinguished TS from controls were generalizable 

to an age-matched independent test set, but not to other age groups. While diagnostic 

classification was successful in children and adults separately, the connections that best 

distinguished TS from controls were age-specific. When contextualized with typical 

development, some functional connections exhibited accelerated maturation in childhood 

TS, while others exhibited delayed maturation in adulthood TS. Our results demonstrate 

that brain networks are differentially altered in children and adults with TS, and that the 



90 
 

developmental trajectory of affected connections is disrupted. These findings further our 

understanding of neurodevelopmental trajectories in TS and carry implications for future 

applications aimed at predicting the clinical course of TS in individuals over development.   

3.2 Introduction  

Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by 

motor and vocal tics (Leckman et al., 2014) that affects 1-3% of children (Khalifa and 

Knorring, n.d.; Scahill et al., 2009; Cubo et al., 2011). Tics are brief, unwanted, repetitive 

movements or noises that can be intrusive in daily life. On average, tic onset occurs at 

age 5-7 years, with tic severity peaking during late childhood/early adolescence (10-12 

years). Tics usually continue into adulthood (Goetz et al., 1992; Pappert et al., 2003a), 

but with marked improvement or even remission after adolescence (Erenberg et al., 1987; 

Leckman et al., 1998; Peterson et al., 2001a; Bloch et al., 2006; Hassan and Cavanna, 

2012). However, symptom progression varies substantially across individuals, with a 

sizeable subgroup of patients (~60%) experiencing moderate to severe tics that persist 

into adulthood (Leckman et al., 1998; Pappert et al., 2003b). Understanding how the brain 

changes over the course of development in TS may provide insight into its clinical 

manifestation across development and aid prediction of the disorder’s trajectory in 

individuals.  

Most neuroimaging studies of TS treat it as a singular disorder, unchanging across 

development, by grouping together patients from a wide age range (Tobe et al., n.d.; Amat 

et al., 2006; Sowell et al., 2008; Fahim et al., 2010; Miller et al., 2010) or focusing on a 

single age cohort (Roessner et al., n.d.; Bloch et al., 2005; Baym et al., 2008; Mazzone 
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et al., 2010; Debes et al., 2011), often by necessity. However, there is evidence that 

differences in brain structure and function in TS vary by age (Peterson et al., 2001b; Raz 

et al., 2009; Pépés et al., 2016). Comparing the brain differences observed in children 

and adults with TS is necessary to reveal effects that are present in both age groups (i.e., 

“age-invariant” TS effects) as well as effects that differ between age groups (i.e., “age-

specific” TS effects). Critically, a more complete understanding of the differences 

observed in children or adults with TS also requires taking into account typical 

maturational changes in the brain. Given a context of typical development, one can 

determine whether brain differences reflect atypically shifted development (e.g., 

accelerated or delayed maturation) or an anomalous difference not observed in typical 

development, potentially providing clues into etiology.  While several TS neuroimaging 

studies have interpreted their findings in the context of brain maturity (Muellner et al., n.d.; 

Peterson et al., 2001c; Raz et al., 2009; Worbe et al., 2012; Pépés et al., 2016), few have 

included typical developmental comparisons to contextualize the differences observed in 

TS (Marsh et al., 2007; Church et al., 2009b; Debes et al., 2015).  

The potential presence of both maturity- and disorder-related differences in the 

brain in TS is made more complex by considering where these differences are localized. 

While many studies of TS have primarily identified differences within a select few brain 

regions or networks, the findings together suggest that TS involves many cortical and 

subcortical brain regions (for reviews, see (Greene et al., 2013, 2015)). Thus, capturing 

the developmental trajectory of brain function in TS might be facilitated by a multivariate 

approach that combines information from many brain regions and identifies complex 

patterns in the data that distinguish individuals by diagnosis and/or age. Multivariate 
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machine learning techniques have been applied to neuroimaging data in an attempt to 

identify patterns of diagnosis-related differences in neuropsychiatric disorders 

(Arbabshirani et al., 2017) and age-related differences in typical development (Brown et 

al., 2012; Franke et al., 2012; Erus et al., 2015; Khundrakpam et al., 2015). Notably, these 

methods require validation in an independent group of subjects to ensure that the 

identified differences do not represent idiosyncratic or spurious group differences 

(Varoquaux et al., 2017), which is often not possible in small sample studies.  

Here, we used a whole-brain, multivariate approach to investigate if and how brain 

networks in TS differ from controls in children and adults. Functional connectivity MRI, 

which measures the temporal correlations between spontaneous fluctuations in the blood 

oxygen level-dependent signals across the brain (Biswal et al., 1995), was used to 

examine functional brain networks in separate cohorts of children and adults with TS. We 

previously demonstrated that multivariate approaches applied to functional connectivity 

can distinguish children with TS from controls (Greene et al., 2016b) and typically 

developing children from adults (Nielsen et al., n.d.; Dosenbach et al., 2010). In the 

present work, we use a similar approach, first validating that multivariate patterns of 

functional connections that distinguish TS and controls can generalize to an independent 

sample. Then, we test whether the patterns of functional connections that differ in TS in 

one age group (e.g., children) can also distinguish individuals with TS in the other age 

group (e.g., adults). Finally, we test whether the functional connections that differ in TS 

(in either children or adults) exhibit altered developmental trajectories by placing these 

differences in the context of typical development.  
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3.3 Material and Methods  

3.3.1 Participants 

A total of 172 individuals with TS, ages 7.3-35.0 years, were recruited from the 

Washington University School of Medicine Movement Disorders Center and the Tourette 

Association of America Missouri chapter. After quality control assessments of the 

neuroimaging data (see below), 101 children, adolescents, and adults with TS were 

included (Table 3-1). A group of 101 control participants was selected from an extant 

database (n=487, ages 6.0–35.0 years, 206 males; recruited from the Washington 

University campus and surrounding community) and matched to the TS group on age, 

sex, IQ, handedness, and in-scanner movement (Table 3-1). Conditions commonly 

comorbid with TS (e.g., ADHD, OCD, anxiety) and medication use were not considered 

exclusionary for the TS group (Greene et al., 2016a) (Table 3-S1) but were for the control 

group. All participants completed assessments of IQ, and TS participants completed 

additional assessments of symptom severity for TS, ADHD, and OCD (Supplement 1.1). 

Adult participants and a parent or guardian for all child participants gave informed consent 

and all children assented to participation.  
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Table 3-1. Participant characteristics. 

 TS group Control group 

N 101 101 

Male/Female 62/39 61/40 

Age (Years) 17.5 (7.6); 7.6-35.0 17.5 (7.5); 7.4-34.2 

Handedness (R/L) 95/6 95/6 

IQ 113 (13.3); 83-139 115 (13.8); 83-145 

Residual in-scanner 
movement (mean FD) 

0.11 (0.015); 0.063-0.14 0.11 (0.013); 0.067-0.13 

Amount of data 
(“good” frames) 

287.5 (100.8); 121-573 262.8 (102.1); 122-668 

YGTSS Total Tic 
Score 

17.4 (8.2); 0-37 N/A 

ADHD Rating Scale 11.2 (10.2); 0-44 N/A 

CY-BOCS Score 5.5 (6.2); 0-24 N/A 

Number on 
medications 

52 0 

Number with 
comorbidities 

67 0 

 

Where applicable values are displayed as Average (Standard Deviation); Range 

FD = Frame-wise Displacement (in millimeters) (Power et al., 2012a) 
YGTSS = Yale Global Tic Severity Score (Total Tic Score) (Leckman et al., 1989)  
CY-BOCS Score = Children’s Yale-Brown Obsessive-Compulsive Scale (Scahill et al., 1997)  
 

3.3.2 Functional Connectivity Network Construction 

Resting-state fMRI data were collected as participants viewed a centrally presented white 

crosshair on a black background. Participants were instructed to relax, look at the plus 

sign, and hold as still as possible. The duration and number of resting-state scans varied 

across participants (Supplement 1.2). Imaging data were collected using a 3T Siemens 

Trio Scanner with a 12-channel Head Matrix Coil. Images were pre-processed to reduce 

artifacts (Shulman et al., 2010). Additional pre-processing steps were applied to the 

resting-state data to reduce spurious correlated variance unlikely related to neuronal 
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activity. Stringent frame censoring (frame-wise displacement>0.2 mm) and nuisance 

regression (motion estimates, global signal, and individual ventricular and white matter 

signals) were used to reduce spurious individual or group differences in functional 

connectivity related to head movement in the scanner (Power et al., 2012b, 2014; Ciric et 

al., 2017). Participants with at least 5 minutes of low-motion data were included. See 

Supplement 1.2-1.4 for details. 

 For each participant, resting-state time-courses were extracted from a set of 300 

regions of interest (ROIs) (Figure 3-1) covering much of the cortex (Power et al., 2011), 

subcortex, and cerebellum (available at https://greenelab.wustl.edu/data_software). 

Functional connectivity was measured as the correlation (Fisher z-transformed) between 

the resting-state time-courses for each pair of ROIs.  

Figure 3-1. Regions of interest. Cortical regions were previously defined from a combination 

of task fMRI activation and resting-state fMRI studies (Power et al. 2011). Subcortical and 

cerebellar regions were defined from a combination of resting-state functional connectivity and 

review of the anatomical literature (Greene et al., 2014; Seitzman et al. (under review)). 

Cortical regions have been previously characterized as organizing into distinct functional 

networks (denoted by color).  

https://greenelab.wustl.edu/data_software
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3.3.3 Support Vector Machine Learning  

Support vector machine (SVM) learning was implemented (Nielsen et al., n.d.; 

Dosenbach et al., 2010; Greene et al., 2016b) to distinguish individuals with TS from 

controls based on patterns of functional connections (Supplement 1.5). SVM classification 

is a powerful tool for finding differences across many features in a multivariate dataset 

(here, functional connections) that, in aggregate, best discriminate groups (here, TS vs. 

controls). Patterns of features that best distinguish individuals by group in a training set 

are weighted in the resulting classifier and can be subsequently applied to classify new 

test individuals. All 44,850 functional connections among the 300 ROIs were included as 

features.  

Using SVM, three separate diagnostic classifiers were built to distinguish 

individuals with TS from controls using functional connectivity from three different training 

sets (Table 3-2). Leave-one-out cross validation (LOOCV) was used to assess 

classification accuracy within the training sets. The classifiers were then tested using 

independent test samples to answer several questions. A “YOUTH” diagnostic classifier 

was used to validate that patterns of functional connectivity that classify TS diagnosis are 

generalizable to an age-matched independent test set (see below). “CHILD” and “ADULT” 

diagnostic classifiers were used to test whether patterns of functional connectivity that 

classify TS diagnosis are age-specific or age-invariant (see below).  

SVM classification can also be extended to find patterns among features that 

predict a continuous variable (here, age) with support vector regression (SVR). Using 

SVR, developmental models were built to predict age using functional connectivity from 
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the controls (Table 3-2), and assessed with LOOCV, to generate a context of typical 

development. 

Table 3-2. Overview of participants included in the training and testing sets for each 
diagnostic classifier and developmental model. 

 

3.3.4 Validating diagnostic classification in an age-matched independent test set 

We previously demonstrated that SVM can be used to classify children and adolescents 

with TS vs. controls based on patterns of functional connectivity (Greene et al., 2016b). 

Here, we first wanted to ensure that the identified differences in functional connectivity 

SVM 
Diagnostic Classifier N Ages 

YOUTH Train Youth sample 39 TS / 39 Controls 8.0 – 16.6 years 

 Test 
Independent 

 youth sample 
23 TS / 23 Controls 7.4 – 16.5 years 

CHILD Train Children 39 TS / 39 Controls 7.4 – 13.1 years 

 Test Adolescents 23 TS / 23 Controls 13.1 – 16.6 years 

  Adults 39 TS / 39 Controls 18.1 – 35 years 

ADULT Train Adults 39 TS / 39 Controls 18.1 – 35 years 

 Test Children 39 TS / 39 Controls 7.4 – 13.1 years 

  Adolescents 23 TS / 23 Controls 13.1 – 16.6 years 

SVR 
Developmental Model N Ages 

Typical 
Development 

Train Control sample 101 7.4 – 34.2 years 

 Test TS sample 101 7.6 – 35 years 

48 out of 78 children in the YOUTH training set were used in the CHILD training set 
84 out of 124 children and adolescents (TS and controls) were used in Greene et al. 2016 



98 
 

characterize the disorder rather than idiosyncratic or spurious group differences within a 

specific sample. Because the TS sample contained many young individuals within an age 

range similar to that in Greene et al. 2016, we built a “YOUTH” diagnostic classifier trained 

to discriminate 39 children and adolescents with TS from 39 matched controls (8.0-16.6 

years; Table 3-2) using SVM. The remaining 46 individuals were kept separate as an age-

matched, independent youth sample (7.4-16.5 years; Table 3-2). We tested whether the 

YOUTH diagnostic classifier could accurately classify TS and controls in the independent 

youth sample. 

3.3.5 Testing for age-invariant or age-specific differences in functional connectivity 
in TS 

We tested whether the patterns of functional connections that distinguished TS and 

controls were common or distinct between children and adults. Separate SVMs were used 

to build a CHILD diagnostic classifier trained to separate 39 children with TS from 39 

matched controls (7.0-12.9 years; Table 3-2) and an ADULT diagnostic classifier trained 

to separate 39 adults with TS from 39 matched controls (18.0-35.0 years; Table 3-2). The 

remaining 23 adolescents with TS and 23 matched controls were kept as a separate 

adolescent test set (13.1-16.6 years; Table 3-2) to test whether the patterns of functional 

connections that classify diagnosis in children or adults can also classify diagnosis in 

adolescents.  

We tested if the patterns of functional connections that distinguish TS from controls 

in one age group (child or adult) could generalize to accurately classify individuals in 

another age group. We evaluated whether the performance of a diagnostic classifier 

significantly differed across age groups using a binomial significance test (Supplement 
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1.6). As sex, comorbidities, and current medications were not matched across age groups 

(Table 3-S2), we also tested if the generalizability of the CHILD or ADULT diagnostic 

classifiers (or lack thereof) was driven by these characteristics (Supplement 2.1).  

If the patterns of functional connections used to distinguish individuals with TS from 

controls in one age group are “age-specific,” the classifier should not generalize well to 

the other age group (i.e., the CHILD diagnostic classifier will not accurately distinguish 

adults with TS from adult controls, and vice versa). If these patterns are “age-invariant,” 

the classifier should generalize well to the other age group. We also directly tested for 

age-invariant differences using an ALL-AGES diagnostic classifier (Supplement 2.2).   

We extracted the top 1000 (out of 44,850) most strongly weighted functional 

connections in each of the CHILD and ADULT diagnostic classifiers and examined the 

percentage overlap of those functional connections. Few overlapping connections would 

suggest age-specific differences between TS and controls, while many overlapping 

connections would suggest age-invariant differences (Supplement 2.3).  

3.3.6 Testing for anomalous or atypically shifted development of functional 
connectivity in TS  

As previously reported, many functional connections vary systematically according to age 

in typical development (Nielsen et al., n.d.). The functional connections that differ by 

diagnosis (TS vs. controls) may also vary according to age in typical development. To 

test this, we used SVR to build a developmental model using the top 1000 most strongly 

weighted functional connections from either the CHILD or ADULT diagnostic classifier, 

and tested if those features could also distinguish individuals by age in the control sample 

(7.4-34.2 years; Table 3-2). The developmental models built using the CHILD TS or 
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ADULT TS features were also compared with developmental models built using randomly 

selected sets of functional connections to evaluate the utility of these specific features 

against a null model (Supplement 2.4). 

We tested whether the developmental models built to predict age in the controls 

could also accurately predict age in the TS sample (7.6-35.0 years; Table 3-2). To 

benchmark the generalizability of age prediction to the TS sample, we also tested whether 

additional developmental models built to predict age in controls could accurately predict 

age in TS using 1) all 44,850 functional connections or 2) the top 1000 connections that 

differed most between control children and control adults (Supplement 2.5). 

Determining if the most strongly weighted functional connections used for 

diagnostic classification can also predict age places the TS vs. control differences in the 

context of typical development, allowing interpretations pertaining to brain maturity. If the 

patterns of functional connections that distinguish TS from controls reflect an anomalous 

divergence unrelated to development, 1) the CHILD TS or ADULT TS features will not 

successfully predict age in controls or 2) those functional connections will predict age 

equivalently in both the control and TS samples. By contrast, if the patterns of functional 

connectivity that distinguish TS from controls reflect an atypically shifted developmental 

trajectory, the CHILD TS or ADULT TS features will predict age well in controls but 

inaccurately in TS. Predicted ages in TS that are older than in age-matched controls 

would indicate accelerated maturation of brain networks, while predicted ages in TS that 

are younger than in age-matched controls would indicate delayed/incomplete maturation 

of brain networks. Alternatively, if predicted ages in TS fluctuate near the mean age, the 

maturational changes present in typical development may be absent in TS. 
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3.4 Results  

3.4.1 Classification of TS vs. controls based on functional connectivity generalizes 
to an age-matched independent test set. 

Using SVM, we successfully classified individuals as TS or controls based on patterns of 

functional connectivity. The YOUTH diagnostic classifier, which included children and 

adolescents (8.0-16.6 years; Table 3-2), was 64% accurate when estimated with LOOCV, 

significantly above chance (p=0.01). Importantly, this diagnostic classifier successfully 

generalized to an independent youth sample of age-matched children and adolescents 

with 67% accuracy (Figure 3-2A). By demonstrating generalizability in an age-matched 

independent test set, we can better interpret the generalizability of the CHILD and ADULT 

diagnostic classifiers to different age groups; poor generalizability can likely be attributed 

to age-related differences in how brain networks are altered in TS rather than idiosyncratic 

group differences related to data quality or overfitting. 

3.4.2 Patterns of functional connections can classify TS diagnosis in children and 
in adults, but do not generalize across age groups. 

The CHILD diagnostic classifier (7.4-13.1 years; Table 3-2) was 71% accurate (LOOCV, 

p<0.001). The ADULT diagnostic classifier (18.1-35.0 years; Table 3-2) was 72% 

accurate (LOOCV, p<0.001). However, neither classifier accurately classified TS 

diagnosis in the other age groups (Figure 3-2 B-C). Specifically, the CHILD diagnostic 

classifier did not distinguish TS from controls in adolescents (accuracy: 48%, p=0.48) or 

adults (accuracy: 49%, p=0.43). Similarly, the ADULT diagnostic classifier did not 

distinguish TS from controls in adolescents (accuracy: 48%, p=0.49), though it was 

slightly better in children (accuracy: 57%, p=0.11). Classification of the other age groups 

was significantly less accurate than classification in the training sample (see Figure 3-2). 
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Given the successful generalizability of the YOUTH diagnostic classifier (described 

above), poor generalizability is likely not solely related to data quality or overfitting. 

Moreover, poor generalizability was not driven by sex, comorbid disorders, or medication 

status (Supplement 2.1, Table 3-S3). These results suggest that the CHILD and ADULT 

diagnostic classifiers relied on age-specific differences in functional connectivity to best 

discriminate TS from controls. We also found evidence for age-invariant differences in 

functional connectivity in TS (Supplement 2.2). However, those age-invariant patterns 

were not the primary features used to distinguish TS and controls when considering 

children and adults separately.  

3.4.3 Top functional connections that distinguish TS and controls were distinct in 
children and adults.  

Figure 3-2. Functional connections that best distinguished TS from controls were age-specific. 
a.) Performance of the YOUTH diagnostic classifier was significantly better than chance in the 
independent sample (p = 0.01).  b.) Performance of the CHILD diagnostic classifier was not 
significantly better than chance in adolescents (accuracy: 48%, sensitivity: 91%, specificity: 
4%, p = 0.48) or adults (accuracy: 49%, sensitivity: 97%, specificity: 0%, p = 0.43) and was 
significantly less accurate in classifying adolescents and adults than children (adolescents: p 
< 0.001; adults: p < 0.001). c.) Performance of the ADULT diagnostic classifier was not 
significantly better than chance in adolescents (accuracy: 48%, sensitivity: 17%, specificity: 
78%, p = 0.49) or children (accuracy: 57%, sensitivity: 31%, specificity: 85%, p = 0.11) and 
was significantly less accurate in classifying children and adolescents than adults 
(adolescents: p < 0.001; children: p = 0.012). 
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Regions associated with the top weighted functional connections from the CHILD and 

ADULT diagnostic classifiers are displayed in Figure 3-3, and show that these functional 

connections were within and between many different functional networks (Supplement 

2.3, Figure 3-S3). Only 33 (3%) of the top 1000 functional connections overlapped 

between the CHILD and ADULT diagnostic classifiers (Figure 3-3C), indicating different 

patterns of region involvement (Figure 3-3 A-B) and providing further evidence that the 

functional connections involved in TS differ in children and adults.  

3.4.4 Functional connections that differ in TS reflect atypically shifted 
development. 

Using SVR, the top weighted functional connections from the CHILD diagnostic classifier 

and the ADULT diagnostic classifier were each able to predict age well in the controls 

(CHILD: r=0.62, R2=0.39, p<0.001; ADULT: r=0.74, R2=0.55, p<0.001; Figure 3-4, red) 

when evaluated against a null model (Supplement 2.4, Figure 3-S4). By contrast, these 

developmental models did not predict age well in TS. Specifically, the developmental 

model built to predict age in controls using the CHILD TS features did not significantly 

predict age in TS, r=0.11, R2=0.012, p=0.27 (Figure 3-4A, blue) such that the children 

with TS were inaccurately predicted as older than age-matched controls. Note that these 

predicted ages were shifted above the age expected if predicted spuriously (Supplement 

2.6, Figure 3-S5), suggesting accelerated maturation of these functional connections in 

childhood TS. The developmental model built to predict age in controls using the ADULT 

TS features also did not significantly predict age in TS, r=0.11, R2=0.013, p=0.27 (Figure 

3-4B, blue) such that the adults with TS were inaccurately predicted as younger than age- 

matched controls. These predicted ages were shifted below the mean age (Supplement 
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Figure 3-3. Functional connections that best distinguished TS from controls differed between 
children and adults. a.) Regions are shown from the top weighted 1000 functional connections 
used to distinguish TS from controls in the CHILD diagnostic classifier. The size of each 
sphere represents region involvement (i.e., number of functional connections in the feature 
set involving a region). Region colors indicate the network to which that region belongs, 
labeled in Figure 3-1. b.)  Regions are shown from the top weighted 1000 functional 
connections used to distinguish TS from controls in the ADULT diagnostic classifier. The size 
of each sphere represents region involvement and the color represents network affiliation. c.) 
The overlap of the top weighted functional connections from the CHILD and ADULT diagnostic 
classifiers was only 33 out of 1000. 
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2.6, Figure 3-S5), suggesting delayed maturation of these functional connections in 

adulthood TS.  

Not all development of functional connectivity was disrupted in TS. We found that 

additional developmental models could accurately predict age in the TS sample using 1) 

whole-brain functional connectivity (r=0.71, R2=0.50, p<0.001) and 2) the functional 

connections that differ most between control children and adults (r=0.62, R2=0.38, 

p<0.001; Supplement 2.5). Thus, only the top functional connections used to distinguish 

TS from controls in each age group demonstrated altered developmental trajectories in 

TS.  

Figure 3-4. Functional connections that best distinguished TS from controls reflect atypically 
shifted development. a.) The developmental model built using CHILD TS features was able to 
predict age well in the control sample (red) but not in the TS sample (blue). Predicted ages of 
children with TS were older than the predicted ages of age-matched controls indicating 
accelerated maturation of the CHILD TS features. b.) The developmental model built using 
ADULT TS features was able to predict age well in the control sample (red) but not in the TS 
sample (blue). Predicted ages of adults with TS were younger than the predicted ages of age-
matched controls indicating delayed or incomplete maturation of the ADULT TS features. 
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3.5 Discussion 

In the present work, we applied multivariate machine learning methods to resting-state 

functional connectivity MRI data to understand how functional brain organization is altered 

in TS over development. We found that the patterns of functional connections that best 

distinguished TS from controls were generalizable to an age-matched independent 

sample, but not to other age groups. Rather, the functional connections involved in TS 

differed between children and adults, suggesting they are age-specific. In addition, we 

found that these functional connections reflected atypical development in TS. Specifically, 

those functional connections that differed the most in childhood TS exhibited accelerated 

maturation (i.e., resembled brain networks of older subjects), while those that differed the 

most in adulthood TS exhibited delayed maturation (i.e., resembled brain networks of 

younger subjects). By directly examining TS across a wide age range (7-35 years), 

comparing children to adults, and contextualizing these results with typical development, 

our findings provide evidence that the neural underpinnings of TS differ in childhood and 

adulthood, and involve changes to the typical brain maturation timeline.  

It has been argued that childhood and adulthood TS are fundamentally different, 

given the common clinical trajectory in which many patients experience significant 

improvement or remission in adulthood (Eichele and Plessen, 2013). Our results extend 

this argument to the brain’s functional connections. Past studies have also identified age-

specific effects in TS, yet primarily within single brain regions. For example, some cortical 

regions (dorsal prefrontal, orbitofrontal, parieto-occipital cortex) exhibit distinct, even 

sometimes opposing, volumetric differences in children and adults with TS (Peterson et 

al., 2001c). Previous research has also shown that motor excitability is selectively altered 
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in children with TS (Pépés et al., 2016) and atypical development of fronto-striatal self-

regulatory signals only emerges in adulthood TS (Raz et al., 2009). These findings in 

combination with ours suggest that treatments may need to be tailored differently for 

children and adults with TS.  

We also characterized functional connectivity in TS in the context of typical 

development. In childhood TS, we found differences indicative of accelerated 

development. It has been proposed that living with chronic tics accelerates the maturation 

of control systems in children with TS as a result of the need to regularly suppress tics 

(Plessen et al., 2009; Eichele and Plessen, 2013). In line with this idea, previous studies 

have reported enhanced cognitive control as well as putatively adaptive changes in brain 

function and structure in children with TS (Jackson et al., 2011, 2015; Jung et al., 2013). 

In heathy children, cognitive training yields modifications of the intrinsic connectivity 

among brain networks (Astle et al., 2015). Thus, it is possible that the development of 

compensatory tic-suppression mechanisms is reflected in the patterns of functional 

connectivity that best distinguish children with and without TS. It is possible that these 

alterations support the improvement of tic symptoms during adolescence and early 

adulthood experienced by many patients (Spessot et al., 2004).  

In adulthood TS, we found differences in functional connectivity indicative of 

delayed maturation. Thus, adults that experience persistent tics may have maladaptive 

brain function that either developed with prolonged symptoms or led to the prolonged 

symptoms. As mentioned above, some argue that childhood TS and adulthood TS are 

fundamentally different, given the commonly held belief that most patients with TS 

experience substantial symptom improvement or remission into adulthood (Leckman et 
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al., 1998). Therefore, by studying a sample of adults with current tics, we may have 

captured the subsample who do not experience remission. By contrast, any sample of 

children with TS will include a mixture of individuals whose tic symptoms will go on to 

improve and those whose tics will persist. However, there is evidence that remission is 

likely much rarer than previously estimated (10%, rather than 40%; (Pappert et al., 

2003b)), and in our sample, many of the adults with TS reported improvement from 

childhood even if they did not report remission. Longitudinal data and studies of adults 

with remitted tics are necessary to determine whether immature brain function in 

adulthood TS is a cause or consequence of prolonged symptom burden. There have been 

previous reports of immature brain structure and function in TS (Church et al., 2009b, a; 

Worbe et al., 2012, 2015). However, methodological concerns related to head motion 

artifact in MRI data have called some of these conclusions into question (Power et al., 

2012b; Van Dijk et al., 2012; Satterthwaite et al., 2013; Reuter et al., 2015; Alexander‐

Bloch et al., 2016). In the present study, we implemented strict processing methods that 

have been shown to best mitigate the artifactual effects of motion (Power et al., 2012b; 

Ciric et al., 2017). Evidence for altered maturation of functional connectivity in TS remains 

even when potential artifactual confounds have been addressed.    

Notably, not all maturation of functional connectivity was altered. When the 

complete set of functional connections across the brain were included in the 

developmental model, age was predicted well in both TS and controls. Further, those 

functional connections that varied with age the most in controls could also predict age 

well in TS. Thus, only specific patterns of functional connections – those that best 

discriminated TS and controls within each age group – exhibited shifted developmental 
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trajectories in TS, while much of the typical maturation of functional connectivity was 

preserved. This finding may correspond to the clinical observation that although TS can 

involve diminished academic achievement and quality of life, most individuals with TS 

lead relatively normal lives (Evans et al., 2016; Pérez-Vigil et al., 2018).  

It is important to note that our TS sample was heterogeneous with respect to 

comorbid neuropsychiatric disorders and medication status, representative of the TS 

population (Freeman et al., 2000; Greene et al., 2016a). As brain network function can 

be affected by medications (Mueller et al., n.d.) and other neuropsychiatric conditions 

(Fair et al., 2013), the diagnostic classifiers here might have included medication-induced 

or comorbidity-related differences in brain function between the TS and control groups. 

Additionally, our child and adult samples differed with respect to sex; the children included 

more boys than girls, while the adults were more balanced. This difference reflects 

epidemiological data, as the sex imbalance (4:1 male:female) reported in childhood TS is 

attenuated in adulthood TS (Lichter and Finnegan, 2015). Nevertheless, examination of 

the misclassified individuals demonstrated that poor generalizability across age groups 

was not driven by these factors. Future studies with larger samples will be useful for 

parsing the influence of medications, comorbidities, and sex on brain function in TS.   

The success of multivariate machine learning classification applied to functional 

brain networks holds promise for clinical application of these methods. Given the 

heterogeneity in the developmental course of TS symptoms, there is a great need to 

predict future clinical outcome for individuals. Being able to predict whether a given child 

with tics will go on to improve or not would have high clinical utility, providing important 

information to families, guiding treatment plans, and affording the opportunity for early 
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intervention. Our findings suggest that functional connectivity contains signals that can 

be used for these types of predictions, and that the best predictions will likely rely upon 

modeling these effects in a rich typical developmental context.  
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3.7  Supplemental Material 

1. Supplemental Methods 

1.1 Participants 

A total of 101 children and adults with Tourette syndrome (TS) and 101 healthy control 

children and adults were included in the present study. All participants were native English 

speakers. All participants underwent a 2-scale brief assessment of IQ (WASI). For TS 

participants, the experimenter completed the following measures of “past week” symptom 

severity: Yale Global Tic Severity Score (Total Tic Score) (Leckman et al., 1989), 

Children’s Yale-Brown Obsessive Compulsive Scale (Scahill et al., 1997), and ADHD 

Rating Scale (Conners et al., 1998). All participants self- or parent-reported any history 

of neuropsychiatric diagnoses and current medications (Table 3-S1). For the control 

participants, any history of neuropsychiatric or neurological diagnoses prohibited 

participation in the study.  

Table 3-S1. Comorbid diagnoses and current medications in participants with TS.  

 

Children with TS 
N = 39 

(7.4 – 13.1 years) 

Adolescents with TS 
N = 23 

(13.1-16.6 years) 

Adults with TS 
N = 39  

(18.0-35 years) 

Comorbid 
Diagnosis 

   

ADHD/ADD 18 11 11 

OCD 9 8 13 

Anxiety Disorders 5 4 9 

Depression 1 2 9 

ODD 0 2 0 

Migraines 1 0 6 
    

Medications    
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Centrally acting 
adrenergic agents 

13 9 3 

Stimulants 10 3 7 

Anti-depressants 2 5 6 

Anti-anxiety 1 0 2 

Antipsychotics 0 1 1 

 

1.2 Imaging Acquisition  

Data were acquired on a Siemens 3T Trio scanner (Erlanger, Germany) with a Siemens 

12-channel Head Matrix Coil. Each child was fitted with a thermoplastic mask fastened to 

the head coil to help stabilize head position. T1-weighted sagittal MP-RAGE structural 

images in the same anatomical plane as the BOLD images were obtained to improve 

alignment to an atlas (1 sequence acquisition for each of the 101 control participants 

(child, adolescent, and adult) and for 88 of the  TS participants (child, adolescent, adult): 

slice time echo = 3.06 ms, TR = 2.4 s, inversion time = 1 s, flip angle = 8°, 176 slices, 1 

× 1 × 1 mm voxels; 2 sequence acquisitions for each of the 13 remaining child and 

adolescent TS participants: slice time echo = 2.34 ms, TR = 2.2 s, inversion time = 1 s, 

flip angle = 7°, 160 slices, 1 × 1 × 1 mm voxels). Functional images were acquired using 

a BOLD contrast-sensitive echo-planar sequence (TE = 27 ms, flip angle = 90°, in-plane 

resolution 4x4 mm; volume TR = 2.5 s). Whole-brain coverage was obtained with 32 

contiguous interleaved 4 mm axial slices. Steady-state magnetization was assumed after 

4 volumes. For most participants, 2-4 resting state scans lasting 5-5.5 min each were 

acquired, but the duration of each scan ranged from 3.2 minutes to 30 minutes. In the TS 

group, 388 ± 61.5 (range 264-528) total functional volumes were acquired, and in the 

control group, 372 ± 130 (range 260-724) total functional volumes were acquired. 
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1.3 Imaging preprocessing 

Functional images from each participant were preprocessed to reduce artifacts (Shulman 

et al. 2010). These steps included: (i) temporal sinc interpolation of all slices to the 

temporal midpoint of the first slice, accounting for differences in the acquisition time of 

each individual slice, (ii) correction for head movement within and across runs, and (iii) 

intensity normalization of the functional data was computed for each individual via the 

MP-RAGE T1-weighted scans. Each run was then resampled in atlas space on an 

isotropic 3 mm grid combining movement correction and atlas transformation in a single 

interpolation. The target atlas was created from thirteen 7-9 year old children and twelve 

21-30 year old adults using validated methods (Black et al. 2004). The atlas was 

constructed to conform to the Talairach atlas space.  

1.4 Functional Connectivity Preprocessing 

Several additional pre-processing steps were applied to reduce spurious variance unlikely 

to reflect neuronal activity (Fox et al. 2009). These functional connectivity pre-processing 

steps included: (i) demeaning and detrending each run, (ii) multiple regression of 

nuisance variables, (iii) frame censoring (discussed below) and interpolation of data within 

each run, (iv) temporal band-pass filtering (0.009 Hz < f < 0.08 Hz), and (v) spatial 

smoothing (6 mm full width at half maximum). Nuisance variables included motion 

regressors (e.g. original motion estimates, motion derivatives, and Volterra expansion of 

motion estimates), an average of the signal across the whole brain (global signal), 

individualized ventricular and white matter signals, and the derivatives of these signals. 

We applied a procedure determined and validated to best reduce artifacts related 

to head motion (Power et al. 2014; Ciric et al. 2017). Specifically, frame-by-frame head 
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displacement (FD) was calculated from preprocessing realignment estimates, and frames 

with FD > 0.2 mm were removed. An FD threshold of 0.2 mm was chosen because it best 

reduced the distance-dependence related to individual differences in head motion (mean 

FD) in this developmental dataset, as assessed using procedures from Power et al. 

(2012) and Ciric et al. (2017). Data were considered usable only in contiguous sets of at 

least 3 frames with FD < 0.2 and a minimum of 30 frames within a functional run. Motion-

contaminated frames were censored from the continuous, processed resting-state time 

series before computing resting-state correlations. Notably, the global signal was included 

as a nuisance regressor (mentioned above) in order to further reduce global, motion-

related spikes in BOLD data (Power et al. 2014; Ciric et al. 2017) and reduce patterns of 

spurious functional connectivity that might be utilized for prediction with machine learning 

(Nielsen et al. 2018).  

 

 

1.5 Parameters for Support Vector Machine Learning 

The parameters used for support vector machine (SVM) learning were the same as those 

used in Dosenbach et al. 2010 and Greene et al., 2016. We used the Spider Machine 

Learning Toolbox implemented in Matlab for SVM training and testing. In SVMs, each of 

the samples (here, participants) is treated as a point in multidimensional space defined 

by as many dimensions as features (here, 44,850 functional connections). In training an 

SVM classifier, a penalty is incurred for misclassified data in the training set (points on 

the wrong side of the multivariate decision boundary). The parameter C describes the 

margin used in training. For a larger C, a larger penalty is assigned to misclassification 
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errors. All SVM classifications described in this work used soft-margin SVMs with the 

default setting of C = 1. Leave-one-out cross validation (LOOCV) was used to assess 

how well a classifier can distinguish individuals from different groups. In turn, each 

individual was removed from the training set, a diagnostic classifier was built to distinguish 

TS from controls in the remaining participants, and the left out subject was classified with 

the resulting diagnostic classifier.  

We empirically tested whether a diagnostic classifier performed significantly above 

chance. We randomly sorted individuals with and without TS into two classes and trained 

a classifier distinguish the two arbitrary classes. LOOCV was used to determine the 

diagnostic classification accuracy of each classifier (expected accuracy is near 50%). We 

repeated this randomization process 100 times. By comparing the observed classification 

accuracy in the CHILD or ADULT diagnostic classifiers to the classification accuracy of 

the diagnostic classifiers trained with arbitrary classes, we can determine whether the 

CHILD or ADULT diagnostic classifier can discriminate TS from controls above chance. 

The parameters used for support vector regression (SVR) were the same as those 

used in Dosenbach et al. 2010 and Nielsen et al. 2018. SVR retains some of the main 

features of binary SVM classification. In SVR, a penalty is incurred for data that is too far 

from the regression line in multivariate space. Epsilon-insensitive SVR defines a tube of 

width epsilon around the regression line in multivariate space. Any data points (i.e., 

subjects) within this tube carry a loss of zeros, meaning there is no penalty. In SVR, the 

C parameter controls the trade-off between how strongly subjects beyond the epsilon 

insensitive tube are penalized and the flatness of the regression line (larger C allows the 

regression line to be less flat). All SVR predictions described here used epsilon-
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insensitive SVRs with the Spider Machine Learning Toolbox default setting of C = Infinity 

and epsilon = 0.00001.  

1.6 Binomial Significance Test 

To determine whether the performance of a diagnostic classifier significantly differed from 

an expected performance, we used a binomial significance test. We determined the 

probability density function for an observed classification accuracy x, given n independent 

test subjects and p, the expected accuracy of a diagnostic classifier, as follows. 

𝑦 = 𝑓(𝑥|𝑛, 𝑝) = (
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)(𝑛−𝑥)𝐼(0,1,…,𝑛)(𝑥) 

The result, y, is the probability of observing x in n independent trials, where the probability 

of correctly classifying TS in any given subject is p.  

This approach was used to assess whether: 

A. CHILD diagnostic classifier performed significantly differently in adolescents and 

adults than in children 

B. ADULT diagnostic classifier performed significantly differently in children and 

adolescents than in adults 

C. CHILD and ADULT diagnostic classifiers performed significantly differently than the 

ALL-AGES diagnostic classifier (see Supplement 2.2 ALL-AGES Diagnostic 

Classifier) 

D. Misclassification of individuals according to sex, comorbid disorders, or current 

medications was significantly different than expected given the composition of the test 

set (see Supplement 2.1 Misclassification of potentially confounding characteristics). 

2. Supplemental Analyses 
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2.1 Misclassification of potentially confounding characteristics 

As shown in Figure 3-2, the CHILD and ADULT diagnostic classifiers did not generalize 

well to other age groups. Notably, these classifiers systematically misclassified individuals 

from other age groups, as evidenced by the imbalanced sensitivity and specificity. The 

CHILD diagnostic classifier misclassified control adolescents and adults as TS, while the 

ADULT diagnostic classifier misclassified children and adolescents with TS as controls. 

The CHILD diagnostic classifier misclassified 24 out of 46 adolescents (2 TS / 22 control) 

and 40 out of 78 adults (1 TS / 39 control). The ADULT diagnostic classifier misclassified 

24 out of 46 adolescents (19 TS / 5 control) and 33 out of 78 adults (27 TS / 6 control).  

While the total TS and control samples were matched on age, sex, IQ, handedness, and 

in-scanner movement, not all of these characteristics were matched across age groups 

(Table 3-S2). Sex ratio, frequency of comorbid disorders, and the number of individuals 

currently taking medications varied across the groups of children, adolescents, and 

adults.  

Table 3-S2. TS participant characteristics per age group.  

 

To test whether these characteristics affected classification, we first used a 

binomial significance test to determine if the composition of misclassified individuals from 

the CHILD or ADULT diagnostic classifiers significantly differed from the overall 

 Age range Sex Ratio Comorbidities Medications YGTSS 

Children 
7.4 – 13.1 

years 
61 M: 17 F 23 19 

17.5 
(8.1) 

Adolescents 
13.1 – 16.6 

years 
30 M: 16 F 16 14 

18.2 
(8.2) 

Adults 
18.1 – 35 

years 
32 M: 46 F 28 18 

16.8 
(8.4) 
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composition of the test set. A summary of these results is shown in Table 3-S3. Overall, 

misclassified individuals were representative of the test set containing largely the same 

sex ratio and percentage of individuals with comorbidities or current medications. 

Table 3-S3. Comparing the composition of misclassified individuals from the 
CHILD and ADULT Diagnostic Classifiers to that of the original test set. 

 

As the sex ratio of the misclassified children using the ADULT diagnostic classifier 

differed from the sex ratio of the entire set of children (p = 0.021, uncorrected), we wanted 

to ensure that poor generalizability was not due to sex differences between age groups. 

Thus, we built sex-matched CHILD and ADULT diagnostic classifiers and tested how well 

these diagnostic classifiers generalized to other age groups. The sex-matched training 

CHILD 
Diagnostic 
Classifier 

Test Set 
Number 

misclassified 

Composition 
of Test Set 

Composition of 
Misclassifications 

Difference 
uncorrected 

p-value 

Sex 
% males 

Adolescents 24 65% 63% 0.16 

Adults 40 41% 40% 0.13 

Comorbidities 
% with 

comorbidities 

TS 
Adolescents 

2 70% 50% 0.42 

TS Adults 1 72% 100% 0.72 

Medications 
% on 

medications 

TS 
Adolescents 

2 61% 50% 0.48 

TS Adults 1 46% 0% 0.54 

ADULT 
Diagnostic 
Classifier 

Test Set 
Number 

misclassified 
Composition 
of Test Set 

Composition of 
Misclassifications 

Difference 
uncorrected 

p-value 

Sex 
% males 

Children 33 78% 64% 0.021* 

Adolescents 24 65% 63% 0.16 

Comorbidities 
% with 

comorbidities 

TS Children 27 59% 59% 0.15 

TS 
Adolescents 

19 70% 63% 0.16 

Medications 
% on 

medications 

TS Children 27 49% 41% 0.15 

TS 
Adolescents 

19 61% 53% 0.14 



119 
 

sets were smaller (n=66 rather than n=78) and sampled from a broader age range (Table 

3-S4) than the training sets used in the main text. 

Table 3-S4. Training sets for sex-matched CHILD and ADULT diagnostic classifiers 

 

The sex-matched CHILD diagnostic classifier (7.4-16.6 years; Table 3-S5) was 

64% accurate with LOOCV, akin to the YOUTH diagnostic classifier (also 64%). The sex-

matched ADULT diagnostic classifier (18-31 years; Table 3-S5) was 88% accurate with 

LOOCV. All diagnostic classifiers were accurate significantly above chance, which is 50% 

(sex-matched CHILD: p = 0.01; sex-matched ADULT: p < 0.001). However, these sex-

matched classifiers still did could not accurately distinguish TS from controls as well in 

the other age group. Specifically, the sex-matched CHILD diagnostic classifier was 56% 

accurate for classifying diagnosis in the sex-matched adults, and the sex-matched 

ADULT diagnostic classifier was 59% accurate for classifying diagnosis in the sex-

matched children. These classifiers performed significantly worse in the other age groups 

(see Figure 3-S1). Thus, the poor generalizability observed in Figure 3-2 is likely due to 

age-related differences rather than sex differences.  

 N Ages Sex 

Sex-matched 
CHILD 

Diagnostic Classifier 

33 TS / 33 
Controls 

7.4 – 16.6 years 
TS: 11.2 (2.6) 7.6 – 16.6 
Controls: 11.7 (2.4) 7.4 – 

16.3 

33 males 

33 females 

Sex-matched 
ADULT 

Diagnostic Classifier 

33 TS / 33 
Controls 

18.1 – 34.1 years 
TS: 23.4 (4.3) 18.4 – 34.1 
Controls: 23.8 (3.4) 18.1 – 

30.8 

33 males 

33 females 
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2.2 ALL-AGES Diagnostic Classifier 

To specifically target age-invariant differences in functional connectivity, we used SVM to 

build an ALL-AGES diagnostic classifier trained to distinguish TS from controls across the 

age range of our subjects (ages 7.4-34.2 years; Table 3-S5). If some of these age-

invariant differences are utilized by the CHILD or ADULT diagnostic classifiers, the CHILD 

and ADULT classifiers will generalize across age groups at least as well as the ALL-

AGES diagnostic classifier. We used a binomial significance test to determine whether 

the performance of the CHILD or ADULT diagnostic classifiers significantly differed from 

the ALL-AGES diagnostic classifier (Supplemental Methods, Binomial Significance Test). 

 

Figure 3-S1. Functional connections that best distinguish TS from controls were age-specific, even 

when age groups were matched on sex a.) Performance of the sex-matched CHILD diagnostic classifier 

to classify adults was significantly less accurate than performance in children (p = 0.01). b.) 

Performance of the sex-matched ADULT diagnostic classifier to classify children was significantly less 

accurate than performance in adults (p < 0.001). 
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Table 3-S5. Training and testing sets used for the ALL-AGES diagnostic classifier 

 

The ALL-AGES diagnostic classifier, which included children, adolescents, and 

adults (7-31 years; Table 3-S5) was 60% accurate, marginally significant (p = 0.05). As 

the CHILD and ADULT diagnostic classifiers significantly outperformed the ALL-AGES 

diagnostic classifier (p = 0.015), the patterns of functional connections that best 

distinguished TS from controls in children and adults separately included age-specific 

differences.  

We extracted the top 1000 (out of 44,850) functional connections most strongly 

weighted in the ALL-AGES diagnostic classifier. Regions involved in these functional 

connections were distributed among many processing, control, and default mode 

networks (Figure 3-S2).  

SVM 
Diagnostic Classifier 

 
N Ages 

ALL-AGES Train All age sample 39 TS / 39 Controls 7.4 – 34.2 years 

 Test Children 24 TS / 24 Controls 8.0 – 13.1 years 

  Adolescents 12 TS / 12 Controls 13.5 – 16.6 years 

  Adults 26 TS / 26 Controls 18.1 – 35 years 
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2.3 CHILD TS and ADULT TS Features 

The top 1000 (out of 44,850) functional connections most strongly weighted in the CHILD 

or ADULT diagnostic classifiers were extracted. The top weighted functional connections 

are displayed in Figure 3-S3 and show that these functional connections were within and 

between many different functional networks. Only 33 (3%) of the top 1000 functional 

connections overlapped between the CHILD and ADULT diagnostic classifiers. Top 

functional connections appear to be organized loosely by “blocks” of functional 

connections, either within a single network or between a pair of networks. Some blocks 

appear more heavily weighted in the ADULT diagnostic classifier (e.g., THAL-VIS or 

SMbody-VIS) and other blocks appear to have different portions more heavily weighted by 

the CHILD and ADULT diagnostic classifiers (e.g., DMN). The different patterns of 

Figure 3-S2. Functional connections that best distinguished TS from controls across children, 

adolescents, and adults. Regions are shown from the top 1000 weighted functional connections used to 

distinguish TS from controls in the ALL-AGES diagnostic classifier. The size of each sphere represents 

region involvement (i.e., number of functional connections from the feature set involving a particular 

region). Region colors indicate the network to which that region belongs. 
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functional connections involved in the CHILD and ADULT diagnostic classifiers provide 

further evidence that TS differs between children and adults.  

2.4 Age Prediction with Random Features 

In Nielsen et al. 2018, we found that many sets of functional connections, even randomly 

selected, can be used to predict the age of typically developing individuals, using SVR. 

In fact, in some cases, randomly selected features outperformed features selected based 

on a priori hypotheses. To evaluate whether the CHILD TS and ADULT TS features (i.e., 

those features most heavily weighted in each of these diagnostic classifiers) carry 

sufficient information related to age, we wanted to ensure that a matched number of 

Figure 3-S3. Functional connections selected as CHILD TS and ADULT TS features. Functional 

connections are shown from the top 1000 weighted functional connections used to distinguish TS from 

controls in the CHILD diagnostic classifier (left) and in the ADULT diagnostic classifier (right). Functional 

connections are shown between regions that are sorted by functional network and then from left to right. 

The average difference between TS and controls is depicted for each connection in both children (left) 

and adults (right). 
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randomly selected features did not outperform the disorder-related features. One hundred 

sets of 1000 randomly selected functional connections were used to build developmental 

models to predict age in the controls using SVR. Leave-one-out cross-validation was used 

to assess performance of each developmental model. Figure 3-S4 shows the amount of 

age-related variance explained by the predicted ages in controls from each set of 

randomly selected features, and how this compares to the CHILD TS and ADULT TS 

features. Randomly selected features did not outperform the CHILD TS and ADULT TS 

features and, thus, these disorder-related features carry sufficient information related to 

age.  

2.5 Intact Development in TS  

Figure 3-S4. CHILD TS and ADULT TS features have sufficient information to predict age in controls. 

Variance explained by age in 100 developmental models built from 1000 randomly selected functional 

connections using SVR is displayed. The performance of the developmental models built from the 

CHILD TS and ADULT TS features is on par with those built from randomly selection connections.    
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To further explore typical development of functional connectivity in TS, we used SVR 

trained on other feature sets in the controls to predict age in the TS participants. First, we 

included all possible features (all functional connections among the 300 regions across 

the whole brain), and as in Nielsen et al. 2018, we found that whole-brain functional 

connectivity contained age-related patterns that could be used to predict age well in 

controls (r = 0.73, R2 = 0.54, p < 0.001). These age-related patterns were maintained in 

TS, as the model also predicted age well in the TS group (r = 0.71, R2 = 0.50, p < 0.001). 

Second, we included the features that change the most in typical development by 

selecting the top 1000 features from a developmental classifier trained on 39 control 

children and 39 control adults (Table 3-2, controls used to train the CHILD and ADULT 

diagnostic classifiers) using SVM. These functional connections predicted age well in 

controls (r = 0.74, R2 = 0.56, p < 0.001) and in TS (r = 0.62, R2 = 0.38, p < 0.001), 

indicating that the age-related patterns in these developmentally relevant functional 

connections appear to be largely intact in TS.  

Finally, we used SVR to predict age from the functional connections that differ most in the 

ALL-AGES diagnostic classifier, i.e., the top-weighted 1000 functional connections from 

the ALL-AGES diagnostic classifier. We found that these functional connections predicted 

age well in controls (r = 0.57, R2 = 0.32, p < 0.001) and in TS (r = 0.57, R2 = 0.32, p < 

0.001), indicating that the developmental differences in the connections exhibiting age-

invariant TS effects were largely intact in TS.  
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2.6 False Age Prediction 

Figure 3-4 in the main text of Chapter 3 indicates that the predicted ages of TS individuals 

differ from the predicted ages of controls. This offset between the actual age and 

predicted age of TS individuals might arise if (1) TS individuals lack the age-related 

patterns of functional connectivity differences identified by the developmental model or 

(2) TS individuals have functional connectivity that exhibits accelerated or delayed 

maturation. To sort out these possibilities, we used SVR trained on the CHILD TS or 

ADULT TS features to build developmental models (n=100) to predict age in the controls 

using false, permuted age labels. Then, we tested how these false developmental models 

predicted age in the TS participants. As expected, false developmental models did not 

predict the age of TS individuals well (CHILD TS: average R2 = 0.021; ADULT TS: 

average R2 = 0.044). Rather, the predicted ages fell near the mean age of the training 

set, indicating a failure of the model (Figure 3-S5, grey). Further, these predicted ages 

differed from the predicted ages of TS individuals when the real (not false) ages of the 

controls were used to the build the model (see main text), indicating that the functional 

connections that differ in TS reflect shifted development.  
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Figure 3-S5. Predicted ages with CHILD TS and ADULT TS features reflect shifted rather than absent 

development. a.) The developmental model built using the CHILD TS features was able to predict age 

well in the control sample (red) but not in the TS sample (blue). The false developmental models using 

CHILD TS features did not predict age well in the TS sample (grey). Predicted ages of children with 

TS were older than the predicted ages of age-matched controls and older than their predicted ages 

form the false developmental models, indicating acceleration maturation in the CHILD TS features. b.) 

The developmental model built using the ADULT TS features was able to predict age well in the control 

sample (red) but not in the TS sample (blue). The false developmental models using the ADULT TS 

features did not predict age well in the TS sample (grey). Predicted ages of adults with TS were younger 

than the predicted ages of age-matched controls and younger than their predicted ages from the false 

developmental models, indicating delayed or incomplete maturation in the ADULT TS features. 
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Chapter 4: Evidence for divergent and attenuated 

development of functional networks in              

Tourette syndrome 

 

4.1 Abstract  

 

Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and 

vocal tics. TS is complex, with symptoms that involve sensory, motor, and top-down 

control processes and that fluctuate over the course of development. While multiple 

investigators have studied atypical brain structure and function associated with TS, the 

neural substrates supporting the complex range and timecourse of symptoms is largely 

understudied. Here, we used functional connectivity MRI to examine functional networks 

across the whole-brain in children and adults with TS. To determine whether the influence 

of age and TS on functional networks is network-dependent, we separately considered 

the sets of connections within each functional network and those between each pair of 

functional networks. We tested whether age, TS, or an interaction between these factors 

was present among these connections. We found that the development of most functional 

networks was intact in TS (i.e., developmental differences in TS were similar to those in 

typically developing children and adults). While there was some suggestive evidence for 

consistent functional network differences in childhood and adulthood TS, most functional 

networks that were significantly affected by TS differed between children and adults. 

Several within-network and cross-network connections exhibited either divergent or 

attenuated development in TS. Connections involving the somatomotor, cingulo-

opercular, auditory, dorsal attention, and default mode networks diverged from typical 

development in TS, demonstrating enhanced functional connectivity in adulthood TS. In 



135 
 

contrast, development of connections involving the basal ganglia, thalamus, cerebellum, 

auditory, visual, reward, and ventral attention networks was attenuated in TS. By placing 

these findings in a context of previous evidence, we developed a novel model of the 

development of atypical brain function, connections, and cognitive processes associated 

with TS. We contend that adulthood TS may be characterized by divergent development 

of systems implicated in suppressing, producing, and attending to tics; connectivity was 

greater than what is observed in typically developing individuals. In contrast, systems 

implicated in the initiation and production of tics demonstrated attenuated development 

in TS, predominantly exhibiting immaturity in adulthood TS. Jointly, our results inform a 

model of how several cortical and subcortical functional networks involved in the initiation, 

production, and/or suppression of tics interact and differ across development in TS. 

3.2 Introduction 

Tourette syndrome (TS) is a developmental neuropsychiatric disorder that affects 1-3% 

of children (Khalifa and Knorring, n.d.; Scahill et al., 2009; Cubo et al., 2011) and is 

characterized by motor and vocal tics (Leckman et al., 2014). Tics are brief, unwanted, 

repetitive movements or noises. Tics are often accompanied by a preceding perceived 

sensation of discomfort called a premonitory urge (Leckman et al., 1993); urges to tic can 

be suppressed, but only temporarily (Himle et al., 2007). Thus, TS is a complex disorder 

which affects multiple sensory, motor, and top-down control processes (Mink, 2001). 

Additionally, tic symptoms are not static and often fluctuate over the course of 

development. Tic onset typically occurs at age 5-7 years, with tic severity peaking during 

late childhood/early adolescence (10-12 years), and with marked improvement or even 

remission after adolescence and into adulthood (Erenberg et al., 1987; Leckman et al., 
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1998; Peterson et al., 2001a; Bloch et al., 2006; Hassan and Cavanna, 2012); However, 

symptom progression varies substantially across individuals, with a sizeable subgroup of 

patients (~60%) experiencing moderate to severe tics that persist into adulthood 

(Leckman et al., 1998; Pappert et al., 2003b). Taking into account the complexity of the 

nature and course of symptoms when studying the neural abnormalities in TS may 

provide better targets for diagnosis, treatments, and prognosis. 

 Many cortical and subcortical systems likely support the initiation, production, and 

suppression of tics and other symptoms associated with TS. The most prominent theory 

in TS is that disruption of cortico-striato-thalamo-cortical loops leads to the production of 

tics; activity in the striatum propagates through these loops and leads to the disinhibition 

of unwanted motor plans and the production of tics (Mink, 2001). Several lines of research 

support this hypothesis as 1) disrupting activity in the basal ganglia produces tic-like 

movements (Alexander and DeLong, 1985; McCairn et al., 2009), 2) the basal ganglia, 

thalamus, motor cortex, and cerebellum are co-activated at the time of tic action in 

patients with TS (Bohlhalter et al., 2006; Wang et al., 2011; Neuner et al., 2014), and 3) 

reduced caudate volume and thinning of sensorimotor cortex have been reported in 

children and adults with TS (Peterson et al., 1993; Bloch et al., 2005, but see Greene et 

al., 2017). Concurrently, motor control and the suppression of unwanted movements are 

also atypical in TS and thought to be supported by a group of regions including frontal 

cortex. Regions in frontal cortex (and others) are active during the time preceding tics 

(premonitory urge) (Bohlhalter et al., 2006; Wang et al., 2011; Neuner et al., 2014) and 

during instructed eye blink suppression (Mazzone et al., 2010) in patients with TS. Control 

signals in frontal and other associated regions during non-motor tasks are also atypical 
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in TS (Church et al., 2009) and thinning of frontal cortex has been observed in children 

with TS (Sowell et al., 2008). Less is known about the neurobiology supporting the 

initiation of tics; the frequency of tics can be modulated by many environmental factors 

(e.g., stress, fatigue, diverted attention; for review see Conelea and Woods, 2008) which 

might suggest that the attention and sensory systems responsible for processing and 

orienting to external triggers might play an important role in the initiation of tics.  

Most neuroimaging studies of TS treat it as a singular disorder, unchanging across 

development, by grouping together a wide range of patients or focusing on a single age 

cohort. However, as symptoms vary by age, there is evidence that differences in brain 

structure and function in TS also vary by age (Peterson et al., 2001b; Raz et al., 2009; 

Pépés et al., 2016). Considering whether brain differences in TS differ between childhood 

and adulthood enables one to determine whether an observed difference is necessary for 

the manifestation of tics over age. Further, given a context of typical development, one 

can determine whether brain differences observed in those with TS reflect atypically 

shifted development (e.g., accelerated or delayed maturation), potentially providing clues 

into etiology. Comparing the neural substrates supporting the initiation, production, and 

suppression of tics and other symptoms between children and adults with TS may reveal 

how maturation and/or experience with tics affect symptom course.  

In combination, prior work suggests that many regions across the cortex and 

subcortex contribute to the manifestation of TS symptoms and any of these abnormalities 

may change over the course of development. Thus, studying the development of the 

network organization of the whole brain in TS is critical for a more complete understanding 

of neurobiology of tics and the broader symptoms of TS. Functional brain networks can 
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be examined using resting-state functional connectivity MRI: as fMRI signals from a pair 

of functionally related regions are often highly correlated even at rest (Biswal et al., 1995), 

measurements of “functional connectivity” have been used to identify collections of 

functionally related regions, or functional networks (Power et al., 2011; Yeo et al., 2011). 

The measured strength of functional connectivity is thought to reflect a history of co-

activation across the lifespan (Lewis et al., 2009) thus tracking the atypical coordination 

(or lack of coordination) of different functional networks in TS.  Thus, functional networks 

implicated in the initiation (e.g., sensory and attention), production (e.g., subcortical and 

somatomotor), and suppression (e.g., control and default-mode) of tics can be rapidly and 

simultaneously assessed using resting-state functional connectivity.  

Placing any differences in TS within a context of functional networks also facilitates 

more specific and powerful interpretations of the cognitive manifestations observed in 

individuals with TS. For example, functional or structural differences observed in frontal 

cortex can be difficult to interpret as multiple functional networks reside in frontal cortex 

(e.g. fronto-parietal, cingulo-opercular, default mode, ventral attention, salience). 

Delineating the specific functional networks that are affected in TS would facilitate 

interpretations that leverage the extensive work elucidating the functional properties of 

these networks in healthy controls. For example, if differences observed in frontal cortex 

in TS are associated with the regions belonging to the cingulo-opercular network, then 

these differences might suggest atypical executive control signals related to task-set 

maintenance or the detection of errors (Neta et al., 2014) in TS. Whereas if differences in 

frontal cortex in TS are associated with the neighboring ventral attention network, then 

these differences might suggest atypical stimulus-oriented attention (Corbetta and 
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Shulman, 2002). It is important to be cautious when making these interpretations though, 

as many functions are carried out by these networks (Poldrack, 2006).  

Previously, we demonstrated that patterns of resting-state functional connectivity 

across the whole brain contain information that can distinguish individuals with TS from 

controls (Greene et al., 2016; Chapter 3) and predict an individual’s maturity (Dosenbach 

et al., 2010; Chapter 2; Chapter 3). However, the specific functional networks that are 

altered in TS and how these connections are influenced by age and diagnosis in TS 

remains unknown. Here, we used a whole-brain network-level approach to investigate the 

development of functional networks in TS in relation to the typical developmental pattern 

observed in healthy controls. To determine whether the influence of age and/or TS on 

functional networks is network-dependent, we separately considered sets of functional 

connections within each network and those between each pair of networks across the 

brain. We first examined functional connectivity differences due to age, TS, and their 

interaction in children and adults with and without TS. We identified within-network and 

cross-network functional connections that differed between children and adults separately 

in TS and controls and then compared these differences in order to describe the intact, 

attenuated, and divergent development of functional networks in TS.  

4.3 Materials and Methods 

4.3.1 Participants 

Individuals with TS (n=172, ages 7.3-35.0 years) were recruited from the Washington 

University School of Medicine Movement Disorders Center and the Tourette Association 

of America Missouri chapter. After quality control assessments of the neuroimaging data 
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(see below) and to provide consistency with Chapter 3, 78 individuals, comprising 39 

children (ages 7.6-13.1 years) and 39 adults (ages 18.4-35.0 years), with TS were 

included (Table 4-1). A group of 39 child and 39 adult control participants was selected 

from an extant database (n=487, ages 6.0–35.0 years, 206 males; recruited from the 

Washington University campus and surrounding community) and matched to the TS 

group on age, sex, IQ, handedness, and in-scanner movement (Table 4-1). Conditions 

commonly comorbid with TS (e.g., ADHD, OCD, anxiety) and medication use were not 

considered exclusionary for the TS participants (Greene et al., 2016a) (Table 4-S1) but 

were for the control participants.  

All participants completed assessments of IQ, and TS participants completed 

additional assessments of symptom severity for TS, ADHD, and OCD (Supplement A). 

All aspects of the study were completed with approval from the Washington University 

School of Medicine Institutional Review Board. Adult participants gave informed consent. 

For children, a parent or guardian gave informed consent and all children gave verbal 

assent.  

Table 4-1. Participant Characteristics 

Children TS group Control group 

N 39 39 

Male/Female 31/8 30/9 

Age (Years) 10.9 (1.6); 7.6-13.1 10.7 (1.5); 7.4-12.9 

Handedness (R/L) 36/3 37/2 

IQ 110 (12.3); 87-135 115 (12.1); 90-139 

Residual in-scanner 
movement (mean FD) 

0.11 (0.011); 0.092-0.14 0.11 (0.013); 0.067-0.13 

Amount of data 
(“good” frames) 

241.2 (69.4); 121-363 242.6 (88.2); 139-555 
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YGTSS Total Tic Score 17.5 (5.5); 0-37 N/A 

ADHD Rating Scale 11.0 (8.2); 0-34 N/A 

CY-BOCS Score 4.8 (5.5); 0-19 N/A 

Number on medications 19 0 

Number with 
comorbidities 

23 0 

Adults TS group Control group 

N 39 39 

Male/Female 16/23 16/23 

Age (Years) 25.9 (5.3); 18.4-35.0 25.9 (4.6); 18.1-34.2 

Handedness (R/L) 36/3 36/3 

IQ 119 (12.7); 83-139 119 (14.8); 83-145 

Residual in-scanner 
movement (mean FD) 

0.11 (0.017); 0.063-0.13 0.10 (0.012); 0.077-0.13 

Amount of data 
(“good” frames) 

349.7 (103.9); 153-573 311.3 (115.9); 170-668 

YGTSS Total Tic Score 16.7 (8.3); 0-32 N/A 

ADHD Rating Scale 11.9 (12.3); 0-44 N/A 

CY-BOCS Score 6.8 (6.6); 0-24 N/A 

Number on medications 18 0 

Number with 
comorbidities 

28 0 

 
Where applicable values are displayed as Average (Standard Deviation); Range 
FD = Frame-wise Displacement (in millimeters) (Power et al., 2012a) 
YGTSS = Yale Global Tic Severity Score (Total Tic Score) (Leckman et al., 1989)  
CY-BOCS Score = Children’s Yale-Brown Obsessive-Compulsive Scale (Scahill et al., 1997)  

 

4.3.2 Image Acquisition and Processing 

Resting-state fMRI data were collected as participants viewed a centrally presented white 

crosshair on a black background. Participants were instructed to relax, look at the plus 

sign, and hold as still as possible. The duration and number of resting-state scans varied 

across participants (Supplement B). Imaging data were collected using a 3T Siemens Trio 
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Scanner with a 12-channel Head Matrix Coil. Images were pre-processed to reduce 

artifacts (Shulman et al., 2010). Additional pre-processing steps were applied to the 

resting-state data to reduce spurious correlated variance unlikely related to neuronal 

activity. Stringent frame censoring (frame-wise displacement>0.2 mm) and nuisance 

regression (motion estimates, global signal, and individual ventricular and white matter 

signals) were used to reduce spurious individual or group differences in functional 

connectivity related to head movement in the scanner (Power et al., 2012b, 2014; Ciric et 

al., 2017). Participants with at least 5 minutes of low-motion data were included.  

4.3.3 Regions, Networks, and Blocks 

For each participant, resting-state time-courses were extracted from a set of 300 regions 

of interest (ROIs) covering much of the cortex (Power et al., 2011), subcortex, and 

cerebellum (Figure 4-1; available at https://greenelab.wustl.edu/data_software). 

Functional connectivity was measured as the correlation (Fisher z-transformed) between 

the resting-state time-courses for each pair of ROIs. Whole-brain functional connectivity 

among all 300 ROIs was determined for each of the four groups (control children, control 

adults, TS children, TS adults). 

Whole-brain functional connectivity has been shown to have modular organization 

such that different collections of ROIs assemble into separate functional networks thought 

to support different types of functions. These include processing networks (i.e., visual 

(VIS), auditory (AUD), and somatomotor (SMbody, SMface) that interface with external 

world, control networks (i.e., fronto-parietal (FP), cingulo-opercular (CO, salience (SAL), 

dorsal attention (DAN), and ventral attention (VAN)) that direct cognitive resources, and 
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other association networks (i.e., default mode (DMN), parietal memory (PM), middle 

temporal lobe (MTL), and reward (RW)) that support internal associations. ROIs were 

also present within the basal ganglia (BG), thalamus (THAL), and cerebellum (CBL), 

which often link with multiple cortical networks (Choi et al., 2012; Greene et al., 2014; 

Marek et al., 2018). Due to non-uniform associations with cortex, as a first step, we treated 

these ROIs as three separate sets of ROIS, distinct from cortex.  

To precisely describe developmental differences in functional networks across the 

brain, we separately considered “blocks” of connections within each functional network 

and those between pairs of functional networks. Within-network blocks represent the set 

of connections among a group of ROIs belonging to a single functional network (e.g., 

among DMN regions). Cross-network blocks represent connections between two groups 

of ROIs from separate functional networks (e.g. between DMN regions and VIS regions). 

Figure 4-1 provides an overview of our investigation of the influence of age and diagnosis 

on functional networks.    

We used two approaches to reduce the dimensionality of each block for statistical 

group comparisons. First, we averaged the strength of functional connectivity from an 

entire block. While this dimensionality reduction approach is straightforward, averaging 

across the connections in a block can obfuscate true effects of age, TS, or the interaction. 

Averaging inherently assumes that (1) the strength and sign of the connections in a block 

are uniform and that (2) the developmental or diagnostic differences present between 

groups are uniform and in the same direction. Differences in functional connectivity that 

are non-uniform (e.g., half connections increase and half connections decrease) are not 



144 
 

 

Figure 4-1. Overview of approaches to investigate the development of functional networks in 

Tourette syndrome. 
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easily detected by differences in average connectivity. Thus, to complement this 

approach we used a second distance-based approach that computes the difference 

between groups separately for each connection in a block before being combined 

(Supplement E). Distance-based approaches are sensitive to non-uniform differences in 

functional connectivity across a block. However, distance-based approaches alone 

cannot distinguish (1) the direction of group differences (e.g., children > adults or children 

< adults) or (2) the relative position of group differences (e.g, overall delay in TS). A 

combination of distance- and average-based approaches helps well detect and describe 

atypical development in TS.  

4.3.4 Average-based analysis of functional connectivity across blocks 

Two-way ANOVA of average functional connectivity across blocks  

As a first step towards describing the atypical development of functional networks in TS, 

we performed a balanced two-way ANOVA to determine the effect of age, TS diagnosis, 

and the interaction between these factors on the average functional connectivity of each 

block from children and adults with and without TS. P-values were corrected for multiple 

comparisons across the total number of blocks tested (n = 136) using the FDR approach 

(requiring that P(FDR) < 0.05). 

4.3.5 Distance-based analysis of functional connectivity across blocks 

Distance-based identification of developmental differences in TS and controls 

Next, the difference in functional connectivity between children and adults was 

determined for each block using Euclidean distance (see Formula S1), which maintains 
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the relationship of specific region pairs and allows detection of complex developmental 

differences that might be non-uniform. We calculated developmental differences across 

all blocks in both the control and TS groups. 

Permutation testing was used to determine whether the magnitude of the 

developmental differences in the control group or the TS group are greater than expected 

by chance. Children and adults in the control group and TS group were separately 

permuted (N = 1000 times) and randomly assigned into a “child” or “adult” group. 

Developmental differences were then calculated as described above. For each block, the 

true developmental difference in the control group or the TS group was contrasted with 

the distribution of permuted “developmental differences” to generate a P-statistic. P-

values were corrected for multiple comparisons across the total number of tested blocks 

(n = 136) using the FDR approach (requiring that P(FDR) < 0.05). 

Distance-based comparison of developmental differences in TS and controls  

Next, we compared the magnitude of developmental differences in TS to the 

developmental differences identified in controls. Comparisons were limited to the blocks 

with significant developmental differences in either TS or controls. For these blocks, we 

calculated the difference between the magnitude (as defined by Euclidean distance) of 

developmental differences in TS and the that of the developmental differences in controls.  

Permutation testing was used to determine whether the difference in magnitude of 

developmental differences in the control and TS group are greater than expected by 

chance. Individuals in the control group and TS group were simultaneously, randomly 

permuted across age and diagnosis (N = 1000 times) and assigned into the “control child”, 
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“control adult”, “TS child”, or “TS adult” group. Developmental differences were then 

calculated and compared as described above. For each tested block, the true difference 

in the magnitude of developmental differences in TS and controls was contrasted with the 

distribution of permuted differences to generate a P-statistic. P-values were corrected for 

multiple comparisons across the total number of tested blocks, using the FDR approach 

(requiring that P(FDR) < 0.05).  

We also conducted further analyses to test whether the observed effects on 

development in TS could be attributed to confounded characteristics of individuals with 

TS (e.g., co-morbid ADHD, tic severity, medications) (Supplement F). 

4.3.6 Grouping Significantly Altered Development in TS 

To aid visualization and interpretation, we grouped blocks with similarly altered 

developmental differences in TS using average functional connectivity. For example, 

suppose two tested blocks exhibited an attenuated magnitude of developmental 

differences in TS. Distance-based approaches alone cannot distinguish (1) the direction 

of the typical developmental differences (e.g., children > adults or children < adults) or (2) 

the direction of the atypical developmental differences in TS (e.g, accelerated in childhood 

TS, immature in adulthood TS, etc.). Using a data-driven modularity-based approach, we 

grouped blocks with similarly altered functional connectivity. For each tested block with 

significantly altered development in TS, we calculated the average functional connectivity 

across these connections for each subject. Then, we identified paired blocks in which the 

variability in average functional connectivity across individuals was similar (i.e., 

correlation between blocks > 0.3). Optimized modularity was then used to group linked 
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sets of similarly altered blocks (Supplement G). Further, post-hoc t-tests were used to 

determine whether the atypical development observed across blocks stems from TS-

related differences in the children and/or the adults with TS.  

4.4 Results 

We found that many within-network and cross-network blocks were impacted by age and 

TS diagnosis to different extents (Figure 4-2; two-way ANOVA). Numerous within-network 

(on-diagonal in Figure 4-2) and cross-network (off-diagonal in Figure 4-2) blocks exhibited 

a main effect of age in both TS and controls (Figure 4-2A & D). Interestingly, select blocks, 

largely between control networks and the somatomotor networks, exhibited a main effect 

of TS in both children and adults (Figure 4-2B); however, these effects did not survive the 

correction for multiple comparisons (Figure 4-2E). Further, an interaction between age 

and diagnosis (Figure 4-2C) was seen in several blocks including within the default-mode 

network, between the dorsal attention and somatomotor networks, and between the basal 

ganglia and the visual network; some of these effects were significant after multiple 

comparisons correction (Figure 4-2F).  

When we compared the functional connectivity among 300 regions spanning the 

whole brain between children and adults (i.e., developmental differences) with a distance-

based approach, we also found many significant within-network and cross-network 

developmental differences in both the control group (Figure 4-3A) and the TS group 

(Figure 4-3B). Several within-network blocks (on-diagonal in Figure 4-3) differed between 

children and adults in only the control group (e.g. basal ganglia), only the TS group (e.g., 

cingulo-opercular), or in both (e.g., somatomotor (body)). In addition, numerous cross-
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network blocks (off-diagonal in Figure 4-3) exhibited significant developmental 

differences in the control group (e.g. THAL-VIS), TS group (e.g., CO-DAN), or both (e.g., 

BG-SMbody). Critically, many of the developmental differences were observed in both 

groups; specifically, 4/10 within network blocks and 38/69 cross-network blocks shared 

significant developmental differences in TS and controls.  

Figure 4-2. ANOVA of the average functional connectivity from each block. Within-

network and cross-network blocks in which the average functional connectivity exhibits a 

main effect of age (A), diagnosis of TS (B), or an interaction between the two factors (C) 

before correcting for multiple comparisons. D-F depict the blocks with effects that survive 

after multiple comparisons correction. 
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We next compared the development of functional networks in the TS and control 

groups and found that the magnitude of developmental differences within specific blocks 

was altered in TS (Figure 4-S1). For several blocks (Figure 4-4A) and the block of 

connections within the cingulo-opercular network, the developmental differences 

observed in TS were greater than those observed in controls. Many (7/9) of these blocks 

with “divergent” development in TS did not exhibit significant developmental differences 

in the control group. In other cross-network blocks (Figure 4-4B) and the blocks of 

connections within the ventral attention network, basal ganglia, and 

amygdala/hippocampus, the developmental differences observed in TS were smaller 

compared to those observed in controls. Many (15/17) of these blocks with “attenuated” 

Figure 4-3. Developmental differences for each block in TS and controls. Within-network 

and cross-network blocks with significant developmental differences in the control group (A) 

and the TS group (B). The (*) indicates a developmental difference in both the control and 

TS groups. 
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Figure 4-4. Functional network interactions exhibiting altered developmental differences 

in TS. Cross-network blocks with developmental differences that are (A) significantly 

greater in TS than in controls or (B) significantly greater in controls than in TS. 
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development in TS actually did not exhibit significant developmental differences in the TS 

group. 

Next, we grouped blocks with average functional connectivity that was similarly 

altered across development in TS. Four types of similarly atypical development were 

identified (modularity of this grouping = 0.59) that were organized largely by type of 

alteration in TS (divergent vs. attenuated development) and by the direction of the 

developmental differences (children>adults or adults>children). The remaining blocks 

with idiosyncratically altered development \ are described separately (Supplement H).  

One group involved connections among the cinguloopercular, dorsal attention, 

somatomotor (body), somatomotor (face), and auditory networks (Figure 4-5A). These 

blocks exhibited divergent increases in functional connectivity across development in TS. 

Many of these blocks did not exhibit significant developmental differences in the controls 

(except CO-SMbody). The connections among these control (cingulo-opercular and dorsal 

attention) and processing systems were stronger in TS adults than in TS children (Figure 

4-5B-C) and the average strength of many of these blocks was significantly greater in TS 

adults than in control adults (Table 4-2). 

A second group involved connections between the default mode network and the 

dorsal attention and auditory networks (Figure 4-5D). These blocks exhibited divergent 

decreases in functional connectivity across development in TS. These blocks did not 

exhibit significant developmental differences in the controls, but were more strongly 

negative in the TS adults compared to the TS children (Figure 4-5E). These connections 

were significantly more negative in adulthood TS than in controls (Table 4-2). 
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Figure 4-5. Functional network interactions exhibiting divergent developmental differences in 

TS. (A) Cluster of network interactions with similarly altered development in TS. Average 

functional connectivity of these cross-network (B) and within-network (C) blocks from (A) in the 

control children, control adults, TS children, and TS adults. (D) Cluster of network interactions 

with similarly altered development in TS. Average functional connectivity of these cross-network 

blocks (E) from (D) in the control children, control adults, TS children, and TS adults. Error bars 

are the stand error of the mean. 
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Table 4-2. Comparison of TS vs. controls in children and adults 

 Child TS vs. Controls 
FDR corrected p-values 

Adult TS vs. Controls 
FDR corrected p-values 

Cluster #1   

CO – CO 0.4256 0.0571 

CO - DAN 0.7371 0.0034* 

CO - SMbody 0.3342 0.0161* 

DAN – SMface 0.4002 0.0166* 

CO – AUD 0.9232 0.0273* 

DAN – AUD 0.1137 0.0006* 

Cluster #2   

DMN – DAN 0.2196 0.0007* 

DMN – AUD 0.5840 0.0053* 

Cluster #3   

VAN – VIS 0.2273 0.0043* 

AUD – VIS 0.7994 0.0083* 

Cluster #4   

BG – AUD  0.9138 0.0319* 

BG – VIS  0.1323 0.0597 

THAL – AUD  0.8639 0.2421 

THAL – VIS 0.8471 0.0005* 

THAL – RW 0.3963 0.9021 

VIS – CBL 0.8324 0.1451 

VAN – BG  0.1287 0.2565 

VAN – THAL 0.1250 0.4687 

Remaining   

THAL – CBL 0.7607 0.1133 

THAL – AM/HIP 0.9007 0.5477 

AM/HIP-AM/HIP 0.7190 0.0628* 

SMface – MEM 0.9708 0.0041* 

VAN – VAN 0.2035 0.3706 

SAL – DMN 0.4746 0.0396* 

BG – BG 0.6652 0.0872 

FP – THAL 0.2244 0.0680 

The third group involved connections between the visual network, the ventral 

attention, and the auditory network (Figure 4-6A). These blocks exhibited attenuated 

increases in functional connectivity across development in TS. All of these blocks 

exhibited significant developmental differences in controls, but not in TS. Both blocks 
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were more strongly positive in adults compared to children in typical development, but not 

in TS (Figure 4-6B). The strength of connections between the visual network and the 

ventral attention and auditory networks was significantly weaker in the TS adults than in 

the control adults (Table 4-2).  

The fourth group involved connections between regions of the basal ganglia, 

thalamus, and cerebellum and several processing (auditory, visual), control (ventral 

attention), and other association (reward) networks (Figure 4-6C). These blocks exhibited 

attenuated decreases in functional connectivity across development in TS. Specifically, 

there were significant developmental differences in the controls, with stronger functional 

connectivity in the control children than in the control adults, yet the magnitude of these 

developmental differences was attenuated in TS. For the connections between the 

subcortical and processing functional networks (Figure 4-6D), the attenuation was driven 

by adulthood TS. The strength of the connections in these blocks was significantly less 

negative in TS adults than in control adults (Table 4-2). For the connections between the 

subcortical and ventral attention network (Figure 4-6E), the attenuation was driven by 

initial negative connectivity in childhood TS. While not significant (Table 4-2, VAN-BG: p 

= 0.13, VAN-THAL: p = 0.12), the average strength of the connections in these blocks 

was more negative in TS children than in the control children.  

Lastly, post-hoc analyses suggested that neither comorbid ADHD, tic severity, or 

the use of medications contributed to the observed altered development in TS 

(Supplemental Table 4-S2). Most differences between individuals with TS and controls 

were present even when individuals with ADHD, high tic severity, and current medications 

were removed.   
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Figure 4-6. Functional network interactions exhibiting attenuated developmental differences 

in TS. (A) Cluster of network interactions with similarly altered development in TS. Average 

functional connectivity of these cross-network (B) blocks from (A) in the control children, 

control adults, TS children, and TS adults. (C) Cluster of network interactions with similarly 

altered development in TS. Average functional connectivity of these cross-network blocks (D 

& E) from (C) in the control children, control adults, TS children, and TS adults. Error bars are 

the stand error of the mean. 
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4.5 Discussion 

In the present work, we applied a whole-brain network-level approach to functional 

connectivity MRI data in order to interrogate differences in functional brain organization 

in TS in two age groups: late childhood and early adulthood. We found that the 

organization of most functional networks in the TS groups was similar to that seen in 

typical development. While there was some suggestive evidence for consistent functional 

network differences across both age groups in TS, most functional networks that were 

significantly affected in TS differed between children and adults. Several within-network 

and cross-network blocks exhibited either divergent or attenuated development in TS. 

Development of connections involving the somatomotor, cingulo-opercular, auditory, 

dorsal attention, and default mode networks diverged from typical development, with 

stronger functional connectivity in adulthood TS than in typically developing individuals 

and children with TS. Alternatively, typical developmental differences observed in 

connections involving the basal ganglia, thalamus, cerebellum, auditory, visual, reward, 

and ventral attention networks were all reduced in TS. By combining the present 

investigation of functional relationships across the brain in TS with prior studies of brain 

function in TS and extant knowledge about the role of different functional systems in 

healthy controls we propose a novel model of the development of atypical brain function, 

connectivity, and concomitant cognitive resources associated with TS.   

A whole-brain approach that places atypical brain function in TS in a context of 

functional networks can provide a novel and more comprehensive understanding of the 

neurobiology underlying TS. Figure 4-7 depicts regions that have been previously found 

to be activated in patients with TS during the period preceding tics (premonitory urge), 
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during tic action, and during instructed eye-blink suppression (Bohlhalter et al., 2006; 

Mazzone et al., 2010) and their overlap with functional networks defined in healthy control 

adults (Power et al., 2011). In the discussion below, we outline how the functional 

networks that exhibit atypical development in TS might be associated with the complexity 

and course of tic symptoms. 

In alignment with prominent theories of the production of tics, we found that the 

development of connections involving somatomotor networks and the basal ganglia and 

thalamus was altered in TS. Mink (2001) proposed that there is aberrant activity in cortico-

striato-thalamo-cortical loops that leads to the disinhibition of unwanted motor plans and 

the production of tics. Consistent with this model, microstimulation and bicuculline 

injections of the basal ganglia, specifically the putamen, in rhesus monkeys yields tic-like 

movements movements (Alexander and DeLong, 1985; McCairn et al., 2009). Regions in 

sensorimotor cortex, the basal ganglia, thalamus, and cerebellum are consistently 

activated at the time of tic action (Bohlhalter et al., 2006; Wang et al., 2011; Neuner et 

al., 2014, Figure 4-7B) and transcranial magnetic stimulation in humans reveals 

hyperexcitability in motor cortex in TS (Ziemann et al., 1997). Additionally, smaller 

caudate and putamen volumes, as well as thinning in sensorimotor cortex, have been 

linked to more severe tics (Peterson et al., 1993; Bloch et al., 2005). Interestingly, our 
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results suggest that these cortical and subcortical regions shown to be involved in the 

production of tics are altered in different ways across development in TS. Development 

of select blocks of connections involving the somatomotor networks diverged from typical 

development producing stronger associations with cortical control networks in adulthood 

Figure 4-7. Overlap of atypical brain function in TS and the functional network organization of 

the brain. The functional networks depicted were defined in a set of 120 healthy control adults 

(Power et al. 2011). Spheres represent the peak activity related to the premonitory urge (A) 

and tic action (B) in adults with TS from Bohlhalter et al. 2006 and TS-specific activity during 

eye blink suppression (C) in children and adults with TS from Mazzone et al. 2010. 
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TS. In contrast, development of connections with the basal ganglia, thalamus, and 

cerebellum was attenuated in comparison to the development in healthy controls 

producing immature associations in adulthood TS. This distinction suggests that the 

development trajectories of the cortical and subcortical components of cortico-striato-

thalamo-cortical circuitry differ and that the developmental course of tic symptoms is 

supported by a combination of developmental mechanisms. 

We also found that the development of connections involving the cingulo-opercular 

network diverged such that these connections were stronger in adulthood TS which 

suggests that the neural substrates implicated in motor control and tic suppression differ 

in childhood and adulthood TS. In healthy controls, the cingulo-opercular network has 

been shown to be important for executive control, producing sustained signals that 

maintain goal-directed behaviors, detecting errors, conflict, and ambiguity (Dosenbach et 

al., 2007; Neta et al., 2014). In TS, regions in the cinguloopercular network are 

consistently activated during the time preceding a tic (Bohlhalter et al., 2006, Figure 4-7). 

This time window is thought to reflect the premonitory urge, in which individuals with TS 

often describe a sensation of discomfort that can be relieved by performance of the tic. 

Activation of the cingulo-opercular network during the premonitory urge might reflect a 

time-limited attempt to suppress the urge to tic or the detection of an errant motor plan. 

Specifically, we found stronger functional connectivity between the cingulo-opercular 

network and somatomotor network in adulthood TS, which may indicate more common 

co-activation of these functional networks. Premonitory urges are more commonly 

reported in adulthood TS than in childhood TS (Leckman et al., 1993) which may account 

for this developmental difference. Alternatively, the stronger link between the cingulo-
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opercular network and sensorimotor network may be indicative of extended experience 

perceiving and suppressing the premonitory urges associated with tics. This enhanced 

functional connectivity that is present in adulthood, but not childhood, TS might be a 

maladaptive, neutral, or compensatory consequence of living with tics. 

As the development of connections involving the dorsal attention network also 

diverged in TS, the developmental course of tic symptoms in TS might involve changes 

to directed attention. The dorsal attention network is important for directing attentional 

resources (Corbetta and Shulman, 2002). Individuals with parietal lesions in the dorsal 

attention network have difficulties attending to external (Heilman and Valenstein, 1979) 

and internal (Bisiach and Luzzatti, 1978) stimuli in specific spatial locations. Interestingly, 

regions within the dorsal attention appear to be activated at the time of tic action 

(Bohlhalter et al. 2006, Figure 4-7). Activation of the dorsal attention network during tics 

might suggest that the production of tics engages attentional resources. In line with this 

explanation, engaging attention elsewhere often reduces the production of tics (O’Connor 

et al., 2003; Eapen et al., 2004; Conelea and Woods, 2008b). Stronger correlations 

between the dorsal attention network and the somatomotor and cingulo-opercular 

networks indicate that tics and premonitory urges may more strongly engage attention in 

adulthood TS.  

Further, connections between the dorsal attention and default mode network were 

also altered in adulthood TS, indicating that coordination of networks associated with 

directed attention and internal processing differs between childhood and adulthood TS. 

Regions in the default mode are atypically activated in both children and adults with TS 

when instructed to suppress eye blinks (Mazzone et al. 2010, Figure 4-7). As the default 
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mode network appears important for internal processing (e.g., thinking about oneself 

(Kelley et al., 2002), retrieving autobiographical memories (Kim et al., 2010), monitoring 

social aspects of self (Schilbach et al., 2008)), a more negative relationship with the dorsal 

attention network might suggest that how attentional resources are directed towards 

internal stimuli differs over the course of development in TS.  

In contrast to the functional networks linked to tic suppression and directed 

attention, the development of connections involving the visual, auditory, and ventral 

attention networks was attenuated in TS in comparison to development in healthy 

controls. Typically, visual and auditory networks process sensory inputs while the ventral 

attention network is involved with reorienting attention in response to external stimuli 

(Corbetta and Shulman, 2002; Fox et al., 2006). In TS, tics can often be associated with 

environmental triggers (e.g., school vs. home setting). Further, tic frequency can increase 

under stress, different emotional contexts, or different social situations and decrease 

when attention is allocated elsewhere (Conelea and Woods, 2008a). Therefore, the 

functional networks responsible for processing and orienting to these external triggers 

might play an important role in the initiation of tics. We found that, typically, the 

connections among the visual, auditory, and ventral attention networks become stronger 

across development, but, in TS, this development is attenuated. Weaker relationships 

between these functional networks in adulthood TS might be an indicator of immature 

and imbalanced sensory processing and externally driven attention that facilitates the 

initiation of tics. In contrast, connections between the visual, auditory, and ventral 

attention networks and the basal ganglia, thalamus, and cerebellum typically decrease 

over the course of development, but this development was attenuated in TS. Connections 
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between the sensory networks and the subcortex and cerebellum remained atypically 

stronger in adulthood TS, perhaps indicating immature segregation of these inputs to 

cortico-striatal-thalamo-cortical loops.  

Considered together, our results inform a model of how several cortical and 

subcortical functional networks involved in the initiation, production, and/or suppression 

of tics interact and differ across development in TS (Figure 4-8). We found that functional 

networks related to the premonitory urge (CO), directing attentional resources (DAN), 

internal processing (DMN), and the production of tics (SM) exhibited divergent 

development in adulthood TS. Adulthood TS can be characterized by strongly linked 

systems responsible for suppressing, producing, and attending to tics beyond what is 

observed in typical development. In contrast, the development of functional networks 

related to processing environmental triggers (AUD/VIS), orienting to external stimuli 

(VAN), and the production of tics (BG/THAL) was attenuated. Typical development of the 

systems facilitating the initiation and production of tics is disrupted in TS.   

A likely important, but missing, component in this model is the differences in 

functional networks that are consistent across childhood and adulthood TS. In our 

sample, we were unable to identify significant TS-related differences in functional 

connectivity present in both children and adults with either an average- or distance-based 

approach. While not significant after correcting for multiple comparisons, intriguingly, 

connections involving the somatomotor network were most consistently affected in 

children and adults with TS (Figure 4-2B). Since TS-related differences were smaller in 

childhood TS, it is possible that our sample of children with TS is heterogeneous 
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preventing the identification of consistent TS-related differences in functional networks. 

Alternatively, TS-related differences in functional networks may not be represented at the 

network-level and may require patterns across many functional networks.  

In addition, the present investigation and the proposed model may oversimplify the 

functional organization of the basal ganglia, thalamus, and cerebellum. Cortico-striato-

thalamo-cortical loops between different pieces of cortex and subcortex appear devoted 

Figure 4-8. A developmental model of functional networks associated with TS.  
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to different functions (e.g, motor, control) (Haber, 2003). These associations can be 

illuminated with resting-state functional connectivity such that different pieces of the 

subcortex and the cerebellum exhibit stronger functional connectivity with specific 

functional networks (Choi et al., 2012; Greene et al., 2014; Marek et al., 2018). While this 

work identified connections between the subcortex and specific cortical functional 

networks (e.g., visual, auditory, ventral attention) with atypical development in TS, it is 

possible that connections between specific pieces of the subcortex and cortical functional 

networks develop differently in TS. Investigation of the functional organization of the basal 

ganglia, thalamus, and cerebellum at a finer scale may provide a more complete model 

of the neural substrates underlying the developmental course of TS. 

While the present work has illuminated specific blocks of functional networks 

affected in TS and how these networks differ between children and adults, the source of 

these developmental differences is still undetermined. Some argue that childhood TS and 

adulthood TS are fundamentally different, given the commonly held belief that most 

patients with TS experience substantial symptom improvement or remission into 

adulthood (Eichele and Plessen, 2013). Therefore, by studying a sample of adults with 

current tics, we may have captured the subsample who do not experience remission. By 

contrast, any sample of children with TS will include a mixture of individuals whose tic 

symptoms will go on to improve and those whose tics will persist. However, there is 

evidence that remission is likely much rarer than previously estimated (10%, rather than 

40%; %; Pappert et al., 2003b), and in our sample, many of the adults with TS reported 

improvement from childhood even if they did not report remission. Longitudinal data and 
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studies of adults with remitted tics are necessary to determine to what extent the altered 

brain function in adulthood TS is a cause or consequence of prolonged symptom burden. 

Further, while this work identified specific blocks that were altered in TS, the source 

of these disorder-related differences remains difficult to disentangle. As an example, we 

identified atypically stronger functional connectivity between the cingulo-opercular 

network and the somatomotor network. These strengthened connections might be a 

change in the brain that facilitates tics (e.g., atypically coordinated inhibitory control of 

motor function). Alternatively, the strengthened connections between the cingulo-

opercular and motor networks might be a consequence of having tics; experience with 

tics might produce maladaptive, neutral, or compensatory changes in the brain. Finally, 

the enhanced connections between the cingulo-opercular and somatomotor networks 

might reflect state differences between groups; if the TS group was unconsciously 

suppressing tics while in the scanner, these amplified connections might be attributable 

to this behavior rather than the underlying neurophysiology in TS. Further investigation of 

the networks in TS with longitudinal developmental designs, links to experience with tics, 

and comparisons to studies of tic suppression is needed to shed light on the potential 

contribution of these various sources of disorder-related differences in functional 

connectivity.  

It is important to note that our TS sample was highly representative of the TS 

population in that it was heterogeneous with respect to comorbid neuropsychiatric 

disorders, tic severity, and medication status (Freeman et al., 2000; Greene et al., 2016a). 

As brain network function can be affected by medications (69) and other neuropsychiatric 

conditions (Mueller et al., n.d.), differences in functional connectivity observed in 
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childhood and/or adulthood TS might have included medication-induced or comorbidity-

related differences in brain function. Additionally, our child and adult samples differed with 

respect to sex; the children included more boys than girls, while the adults were more 

balanced. This difference reflects epidemiological data, as the sex imbalance (4:1 

male:female) reported in childhood TS is attenuated in adulthood TS (Lichter and 

Finnegan, 2015). Nevertheless, the developmental differences in functional connectivity 

observed in the TS and control groups might have included sex-related differences in 

brain function. Future studies with larger samples will be useful for directly parsing the 

influence of medications, comorbidities, and sex on brain function in TS.   
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4.7 Supplemental Material 

A. Participants 

A total of 78 children and adults with Tourette syndrome (TS) and 78 healthy control 

children and adults were included in the present study. All participants were native English 

speakers. All participants underwent a 2-scale brief assessment of IQ (WASI). For TS 

participants, the experimenter completed the following measures of “past week” symptom 

severity: Yale Global Tic Severity Score (Total Tic Score) (Leckman et al., 1989), 

Children’s Yale-Brown Obsessive Compulsive Scale (Scahill et al., 1997), and ADHD 

Rating Scale (Conners et al., 1998). All participants self- or parent-reported any history 

of neuropsychiatric diagnoses and current medications (Table 4-S1). For the control 

participants, any history of neuropsychiatric or neurological diagnoses prohibited 

participation in the study.  

Table 4-S1. Comorbid diagnoses and current medications in participants with TS.  

 
Children with TS 

N = 39; (7.4 – 13.1 years) 
Adults with TS 

N = 39; (18.0-35 years) 

Comorbid Diagnosis   

ADHD/ADD 18 11 
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OCD 9 13 

Anxiety Disorders 5 9 

Depression 1 9 

ODD 0 0 

Migraines 1 6 

   

Medications   

Centrally acting 
adrenergic agents 

13 3 

Stimulants 10 7 

Anti-depressants 2 6 

Anti-anxiety 1 2 

Antipsychotics 0 1 

 

B. Imaging Acquisition  

Data were acquired on a Siemens 3T Trio scanner (Erlanger, Germany) with a Siemens 

12-channel Head Matrix Coil. Each child was fitted with a thermoplastic mask fastened to 

the head coil to help stabilize head position. T1-weighted sagittal MP-RAGE structural 

images in the same anatomical plane as the BOLD images were obtained to improve 

alignment to an atlas (1 sequence acquisition for each of the 101 control participants 

(child, adolescent, and adult) and for 88 of the  TS participants (child, adolescent, adult): 

slice time echo = 3.06 ms, TR = 2.4 s, inversion time = 1 s, flip angle = 8°, 176 slices, 1 

× 1 × 1 mm voxels; 2 sequence acquisitions for each of the 13 remaining child and 

adolescent TS participants: slice time echo = 2.34 ms, TR = 2.2 s, inversion time = 1 s, 

flip angle = 7°, 160 slices, 1 × 1 × 1 mm voxels). Functional images were acquired using 

a BOLD contrast-sensitive echo-planar sequence (TE = 27 ms, flip angle = 90°, in-plane 

resolution 4x4 mm; volume TR = 2.5 s). Whole-brain coverage was obtained with 32 
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contiguous interleaved 4 mm axial slices. Steady-state magnetization was assumed after 

4 volumes. For most participants, 2-4 resting state scans lasting 5-5.5 min each were 

acquired, but the duration of each scan ranged from 3.2 minutes to 30 minutes. In the TS 

group, 388 ± 61.5 (range 264-528) total functional volumes were acquired, and in the 

control group, 372 ± 130 (range 260-724) total functional volumes were acquired. 

C. Imaging preprocessing 

Functional images from each participant were preprocessed to reduce artifacts (Shulman 

et al. 2010). These steps included: (i) temporal sinc interpolation of all slices to the 

temporal midpoint of the first slice, accounting for differences in the acquisition time of 

each individual slice, (ii) correction for head movement within and across runs, and (iii) 

intensity normalization of the functional data was computed for each individual via the 

MP-RAGE T1-weighted scans. Each run was then resampled in atlas space on an 

isotropic 3 mm grid combining movement correction and atlas transformation in a single 

interpolation. The target atlas was created from thirteen 7-9 year old children and twelve 

21-30 year old adults using validated methods (Black et al. 2004). The atlas was 

constructed to conform to the Talairach atlas space.  

D. Functional Connectivity Preprocessing 

Several additional pre-processing steps were applied to reduce spurious variance unlikely 

to reflect neuronal activity (Fox et al. 2009). These functional connectivity pre-processing 

steps included: (i) demeaning and detrending each run, (ii) multiple regression of 

nuisance variables, (iii) frame censoring (discussed below) and interpolation of data within 

each run, (iv) temporal band-pass filtering (0.009 Hz < f < 0.08 Hz), and (v) spatial 
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smoothing (6 mm full width at half maximum). Nuisance variables included motion 

regressors (e.g. original motion estimates, motion derivatives, and Volterra expansion of 

motion estimates), an average of the signal across the whole brain (global signal), 

individualized ventricular and white matter signals, and the derivatives of these signals. 

We applied a procedure determined and validated to best reduce artifacts related 

to head motion (Power et al. 2014; Ciric et al. 2017). Specifically, frame-by-frame head 

displacement (FD) was calculated from preprocessing realignment estimates, and frames 

with FD > 0.2 mm were removed. An FD threshold of 0.2 mm was chosen because it best 

reduced the distance-dependence related to individual differences in head motion (mean 

FD) in this developmental dataset, as assessed using procedures from Power et al. 

(2012) and Ciric et al. (2017). Data were considered usable only in contiguous sets of at 

least 3 frames with FD < 0.2 and a minimum of 30 frames within a functional run. Motion-

contaminated frames were censored from the continuous, processed resting-state time 

series before computing resting-state correlations. Notably, the global signal was included 

as a nuisance regressor (mentioned above) in order to further reduce global, motion-

related spikes in BOLD data (Power et al. 2014; Ciric et al. 2017) and reduce patterns of 

spurious functional connectivity that might be utilized for prediction with machine learning 

(Nielsen et al. 2018).  

E. Euclidean Distance Formula 

Euclidean distance was used measure the difference in functional connectivity between 

children and adults and between TS and controls. This measure reduces the 

dimensionality of a set of connections in order to determine whether function connectivity 
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differed between groups. For a set of functional connections the difference between two 

groups, children and adults, was calculated using Formula S1. 

Formula S1. Euclidean Distance Formula 

 ∆𝐹𝐶 =  √(𝐹𝐶𝑐ℎ𝑖𝑙𝑑,1 − 𝐹𝐶𝑎𝑑𝑢𝑙𝑡,1)2 + (𝐹𝐶𝑐ℎ𝑖𝑙𝑑,2 − 𝐹𝐶𝑎𝑑𝑢𝑙𝑡,2)2 … + (𝐹𝐶𝑐ℎ𝑖𝑙𝑑,𝑛 − 𝐹𝐶𝑎𝑑𝑢𝑙𝑡,𝑛)2  

FC: functional connection 
N: number of connections 
Child: average functional connectivity across child group 
Adult: average functional connectivity across adult group 

F. Effects of co-morbid ADHD, tic severity, medications on functional connectivity 
in TS  

TS is a complex condition. Many of the patients with TS had comorbid diagnoses of the 

other neuropsychiatric disorders and/or were taking medications (see Table 4-S1). In 

addition, tic severity varied within the children and adults with TS. It is possible that the 

differences in functional connectivity observed in TS are indicative of these factors. We 

investigated whether these factors contributed to the results observed in the main text. 

Patients with TS in our sample were most commonly also diagnosed with ADHD. 

We examined whether TS-related differences in functional connectivity were present in 

individuals with and without an additional diagnosis of ADHD in children and adults 

separately. Next, we split our TS sample into two groups with low tic severity and high tic 

severity according to YGTSS. We then examined whether TS-related differences in 

functional connectivity were present in individuals with less severe and more severe tic 

symptoms in children and adults separately. Finally, we examined whether TS-related 

differences in functional connectivity were present in individuals that were and were not 

using medications. Comparisons were limited to blocks with significantly altered 

development in TS and are reported in Table 4-S2. 
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Table 4-S2. TS-related differences in functional connectivity before and after 
removing individuals with ADHD, high tic severity, and current medications. 

Children with 
TS vs. Controls 

Total 
sample 

w/ 
ADHD 

w/o 
ADHD 

High tic 
severity 

Low tic 
severity 

w/ current 
medications 

w/o current 
medications 

CO-CO 0.426 0.455 0.549 0.845 0.274 0.707 0.308 

CO-DAN 0.737 0.385 0.991 0.431 0.879 0.434 0.820 

CO-SMbody 0.334 0.335 0.315 0.410 0.253 0.068 0.915 

DAN-SMface 0.400 0.054 0.169 0.131 0.075 0.016 0.309 

CO-AUD 0.923 0.958 0.485 0.838 0.597 0.569 0.873 

DAN-AUD 0.114 0.820 0.487 0.765 0.338 0.786 0.776 

SMface-PM 0.971 0.970 0.981 0.553 0.511 0.734 0.781 

DAN-DMN 0.220 0.132 0.149 0.314 0.047* 0.177 0.109 

AUD-DMN 0.584 0.847 0.850 0.854 0.539 0.593 0.862 

VAN-VAN 0.204 0.594 0.130 0.564 0.109 0.265 0.346 

VAN-VIS 0.227 0.474 0.293 0.319 0.443 0.649 0.188 

AUD-VIS 0.799 0.629 0.462 0.858 0.605 0.993 0.807 

SAL-DMN 0.475 0.278 0.439 0.448 0.251 0.247 0.492 

VAN-BG 0.129 0.283 0.085 0.045 0.489 0.065 0.342 

AUD-BG 0.914 0.059 0.647 0.112 0.563 0.102 0.616 

VIS-BG 0.132 0.297 0.438 0.735 0.176 0.996 0.106 

BG-BG 0.665 0.450 0.217 0.906 0.469 0.499 0.240 

FP-THAL 0.224 0.207 0.032* 0.220 0.026* 0.039 0.176 

VAN-THAL 0.125 0.027* 0.445 0.034* 0.381 0.152 0.108 

AUD-THAL 0.864 0.001* 0.821 0.032* 0.592 0.099 0.273 

VIS-THAL 0.847 0.736 0.304 0.812 0.231 0.832 0.077 

RW-THAL 0.396 0.923 0.383 0.248 0.931 0.748 0.193 

VIS-CBL 0.832 0.357 0.277 0.122 0.727 0.141 0.559 

THAL-CBL 0.761 0.656 0.778 0.666 0.765 0.895 0.567 

THAL-AMY-HIP 0.901 0.001* 0.147 0.008* 0.060 0.039* 0.013* 

AMY/HIP-AMY/HIP 0.719 0.488 0.206 0.902 0.611 0.644 0.315 

Adults with TS 
vs. Controls 

Total 
sample 

w/ 
ADHD 

w/o 
ADHD 

High tic 
severity 

Low tic 
severity 

w/ current 
medications 

w/o current 
medications 

CO-CO 0.057 0.276 0.063 0.068 0.208 0.020* 0.466 

CO-DAN 0.003* 0.021* 0.001* 0.000* 0.026* 0.002* 0.005* 

CO-SMbody 0.016* 0.044* 0.015* 0.008* 0.070 0.007* 0.081 

DAN-SMface 0.017* 0.050 0.009* 0.006* 0.057 0.026* 0.015* 

CO-AUD 0.027* 0.083 0.027* 0.189 0.005* 0.051 0.038* 

DAN-AUD 0.001* 0.067 0.000* 0.002* 0.002* 0.001* 0.006* 

SMface-PM 0.004* 0.017* 0.058 0.157 0.007* 0.031* 0.077 

DAN-DMN 0.001* 0.023* 0.004* 0.000* 0.097 0.000* 0.083 

AUD-DMN 0.005* 0.018* 0.006* 0.023* 0.003* 0.014* 0.007* 

VAN-VAN 0.371 0.023* 0.786 0.563 0.380 0.493 0.439 

VAN-VIS 0.004* 0.045* 0.024* 0.003* 0.139 0.008* 0.067 

AUD-VIS 0.008* 0.170 0.040* 0.001* 0.523 0.030* 0.154 

SAL-DMN 0.040* 0.728 0.047* 0.419 0.095 0.062 0.481 

VAN-BG 0.257 0.079 0.878 0.370 0.537 0.072 0.997 

AUD-BG 0.032* 0.009* 0.620 0.078 0.431 0.019* 0.569 

VIS-BG 0.060 0.375 0.000* 0.003* 0.028* 0.033* 0.002* 

BG-BG 0.087 0.151 0.167 0.027* 0.423 0.003* 0.918 

FP-THAL 0.068 0.042* 0.044* 0.009* 0.153 0.214 0.009* 
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VAN-THAL 0.469 0.069 0.714 0.394 0.744 0.382 0.926 

AUD-THAL 0.242 0.028* 0.510 0.361 0.523 0.179 0.449 

VIS-THAL 0.001* 0.033* 0.000* 0.000* 0.001* 0.010* 0.000* 

RW-THAL 0.902 0.748 0.848 0.770 0.782 0.355 0.345 

VIS-CBL 0.145 0.303 0.170 0.031* 0.759 0.068 0.459 

THAL-CBL 0.113 0.146 0.274 0.187 0.369 0.012* 0.973 

THAL-AMY-HIP 0.548 0.244 0.036* 0.190 0.023* 0.132 0.060 

AMY/HIP-AMY/HIP 0.063 0.032* 0.180 0.176 0.080 0.004* 0.647 

G. Optimized Modularity to group blocks with similarly altered development in TS 

Modularity optimization was used to group blocks with similarly altered development of 

functional connectivity in TS. First, we averaged the functional connectivity across each 

set of functional connections for each individual. Then we calculated how correlated this 

individual variability in average functional connectivity was between pairs of different 

blocks. We tested several thresholds (r = 0.1 – 0.5, increments of 0.05) to define “similarly 

altered” pairs of blocks. We calculated the modularity, a graph theoretical measure, of 

each network of similarly altered connections (Newman, 2006).  Figure 4-S1 depicts the 

modularity across these thresholds. We chose r = 0.3 in order to maximize modularity 

and retain more blocks.  

 

Figure 4-S1. Modularity of the similarity between blocks across all individuals at different 

thresholds. 
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H. Divergent and attenuated developmental differences in TS 

In the main text, we found that within-network and cross-network blocks with divergent 

and attenuated developmental differences in TS. Figure 4-S2 depicts the FDR adjusted 

p-values that describe these effects.  

 

 

 

 

Figure 4-S2. Blocks of within-network and cross-network functional connections in which the 

magnitude of developmental differences significantly differs in the control and TS groups. 

The left panel depicts blocks with divergent developmental differences that are greater in TS 

than in controls. The right panel depicts blocks attenuated developmental differences that 

are smaller in TS than in controls. The (*) indicates a significant developmental difference in 

both the control and TS groups. P-values are FDR adjusted. 
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I. Remaining blocks with altered development in TS 

Some blocks with significantly altered development in TS could not be grouped with other 

blocks. The average functional connectivity of these blocks across the children and adults 

with and without TS are shown in Figure 4-S3. 

 

 

 

 

Figure 4-S3. Blocks with altered developmental differences in TS that were not similar to 

other atypical development in TS. 
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Chapter 5: Discussion 

5.1 Summary of Results  

In this thesis, resting-state functional connectivity was used to study the development of 

neural systems in typically developing individuals and in individuals diagnosed with 

Tourette syndrome. 

In Chapter 2, I presented our work using multivariate machine learning to identify 

developmental patterns in functional networks across the brain in healthy controls. After 

motion de-noising, these developmental patterns were found to be independent of 

patterns related to head motion. Reducing motion-related artifact also revealed that age 

prediction did not rely upon characteristics of functional connections previously 

hypothesized to mediate development (e.g., connection distance). Instead, successful 

age prediction relied upon sampling functional connections across multiple neural 

systems with strong, reliable functional connectivity within an individual.  

Chapter 3 applied the approaches presented in Chapter 2 to the study of atypical 

development in TS. This work tested whether the patterns of functional connections 

across the whole brain that classify diagnosis in one age group (e.g., children) could 

classify diagnosis in another age group (e.g., adults). We also tested whether the typical 

developmental trajectory of these connections was altered in TS. While diagnostic 

classification was successful in children and adults separately, the connections that best 

distinguished TS from controls were age-specific. When contextualized with typical 
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development, some functional connections exhibited accelerated maturation in childhood 

TS, while others exhibited delayed maturation in adulthood TS.  

In Chapter 4, I focused on identifying the specific functional networks and 

connections with atypical developmental trajectories in TS. We found that, as in Chapter 

3, the development of most functional networks was intact in TS (i.e., similar to the 

developmental differences in typically developing children and adults). While there was 

some suggestive evidence for consistent functional network differences in childhood and 

adulthood TS (“age-invariant” effects), most functional networks that were significantly 

affected in TS differed between children and adults. Several within-network and cross-

network functional connections exhibited either divergent or attenuated development in 

TS. We found that the divergent development observed in adulthood TS could be 

characterized by strongly linked neural systems that might be responsible for 

suppressing, producing, and attending to tics beyond what is observed in typical 

development. In contrast, the typical development of the systems potentially facilitating 

the initiation and production of tics was attenuated in TS. Considered together, our results 

inform a model of how several cortical and subcortical functional networks likely involved 

in the initiation, production, and/or suppression of tics interact and differ across 

development in TS. 

In the following section, I will elaborate on some of the themes of this work with a 

focus on potential future directions. 
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5.2 Comments on using resting-state functional connectivity to study 
the development of functional systems. 

Our results suggest that resting-state fMRI can be used to study the development of the 

system-level organization of the brain in school-age children and adults at both the group- 

and individual-level. After adequately correcting for submillimeter subject-motion, 

patterns of functional connectivity no longer carry information that can be used to predict 

individual differences in motion—even with “data greedy” machine learning algorithms. 

Remaining developmental differences in functional connectivity can be identified using 

both machine learning and group-level studies. Removing artifactual differences in 

functional connectivity illuminated some of the principles that do (and do not) organize 

the development of functionals systems. While the “local-to-distributed” hypothesis (i.e., 

short-range connections are weakened, and long-range connections are strengthen over 

development) for the development of functional networks (Fair et al., 2009) was not 

supported by this thesis, we found that functional connections with strong positive or 

strong negative resting-state correlations, not weak correlations, carry developmental 

information about individuals. These results are promising as they suggest that there are 

developmental differences in neural systems measured with functional connectivity which 

might be associated with the ongoing changes in cognitive and behavioral capabilities 

occurring through adolescence and into adulthood.  

The extent of developmental modifications to whole-brain functional connectivity 

was relatively small (i.e., correlation differences < 0.2) and fairly wide-spread, affecting 

many functional systems. We found that while the functional connections associated with 

each system were useful for age prediction, no single system could predict age as well 

as when connections were selected from many systems. As each functional system 
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contained information useful for age prediction, it appears that no functional system, 

including systems thought to mature early in development (Gogtay et al., 2004), is entirely 

adult-like in children. The continuing development of most functional systems and their 

functional connections makes linking specific changes in functional systems to the 

emergence and improvement of different behaviors in this age range (e.g., reading, 

inhibitory control, decision-making) more difficult. There are several approaches 

(described below) which might facilitate a better understanding of the development of 

neural systems and their relation to developmental changes in behavior. 

First, more sophisticated modeling of the developmental trajectories of functional 

systems might be crucial to teasing apart different developmental mechanisms that 

accompany developmental changes in behavior. In this thesis, I applied multivariate 

approaches in order to capture the complex, inter-dependence of developmental changes 

across functional connections. However, these approaches assume that these 

developmental differences are linear and may not capture more complex developmental 

trajectories (e.g., parabolic, growth curve). By more finely ascertaining the timing of 

developmental differences in functional connectivity, one may be able to better link the 

developmental trajectory of a particular system (or set of systems) to the emergence or 

maturation of a particular ability or behavior.  

Second, attempts to describe the development of neural systems would be 

improved by more precise developmental data. The functional organization of the brain 

as measured with resting-state functional connectivity can differ between individuals 

(Gordon et al., 2017). It is possible that the regions that describe a functional system 

across a group (e.g., Power et al., 2011) do not accurately describe that functional system 
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within each individual. In an extreme hypothetical case, if the “ground truth” were that only 

a single functional system develops from childhood to adulthood, but the location of that 

functional system varies widely across individuals, it might be expected that randomly 

selected functional connections will predict age better than the group-level description of 

that functional system. This scenario is fairly unlikely, as the functional organization of the 

brain appears highly conserved across healthy control adults when highly sampled 

(Gordon et al., 2017; Gratton et al., 2018), but systematic individual differences may 

contribute to the muddiness of developmental differences in functional connectivity. 

Similarly, as these data were cross-sectional and chronological age was used as a proxy 

for maturity, individual differences in developmental trajectories might have weakened the 

observed developmental differences. A better description of the development of systems 

will likely require highly-sampled individuals to well-describe the functional organization 

of the brain and longitudinal study designs to capture true developmental trajectories.   

Finally, since the differences in neural systems measured with functional 

connectivity between school-age children and adults were subtle, larger developmental 

differences in functional systems might be observed earlier on in development. Several 

have used fMRI to measure functional connectivity in sleeping infants and toddlers 

(Fransson et al., 2011; Smyser et al., 2011). As in school-age children, there is some 

debate as to whether and to what extent the functional networks observed in infancy differ 

from those observed in adulthood (Cusack et al., 2018). Infant and toddler imaging data 

also contain head motion-related artifact (Cusack et al., 2017) which might produce 

motion-contaminated developmental differences. But even properly de-noised functional 

connectivity may include additional differences related to the state of being asleep or 
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awake (Larson-Prior et al., 2009; Tagliazucchi and Laufs, 2014). Aside from these 

methodological issues, imaging the infant brain may be easier to link to behavior as 

changes in behavior are more striking (e.g., crawling to walking) and have been well 

characterized by developmental psychologists (e.g., language acquisition (Kuhl, 2004), 

perceptual development (Slater and Kirby, 1998)) .  

5.3 Comments on using multivariate machine learning to study 
developmental patterns in functional connectivity. 

Many researchers apply multivariate machine learning to resting-state functional 

connectivity with the intent to make accurate predictions about individuals and to 

interrogate the neurobiological mechanisms underlying a predicted characteristic. This 

thesis has shown that resting-state functional connectivity provides a robust 

neurobiological measurement of an individual, sufficient to make predictions about that 

individual’s chronological age and diagnostic status with relatively high accuracy even, 

notably, after correcting for systematic differences in functional connectivity related to 

subject head motion. The success of multivariate machine learning classification applied 

to functional brain networks in TS holds promise for clinical application of these methods. 

Given the heterogeneity in the developmental course of TS symptoms, there is a great 

need to predict future clinical outcome for individuals. Being able to predict whether a 

given child with tics will go on to improve or not would have high clinical utility, providing 

important information to families, guiding treatment plans, and affording the opportunity 

for early intervention. These findings suggest that functional connectivity contains signals 

that can be used for these types of predictions, and that the best predictions will likely rely 

upon modeling these effects in a rich typical developmental context.  



189 
 

However, this thesis has also shown that the potential of using machine learning 

to interrogate the specific features facilitating prediction in the hopes of understanding the 

neural mechanisms underlying typical or atypical brain development is somewhat limited. 

For example, identifying a unique set of functional connections that carry information 

useful for age prediction with functional connectivity is difficult due to the intercorrelated 

and distributed nature of developmental differences in resting-state functional 

connectivity. When evaluated against an appropriate null model, we found that most sets 

of selected features, while useful for prediction, were not exclusively meaningful nor 

indicative of a unique solution to age prediction from functional connectivity. In TS, we did 

find that only a select set of functional connections exhibited atypical developmental 

trajectories. However, those identified connections in Chapter 3 were not particularly 

useful for illuminating the etiology of TS, especially in comparison to the results from the 

group-level studies presented in Chapter 4. Machine learning identified seemingly 

random functional connections within and between many functional systems whereas 

group-level studies identified sets of connections with similarly altered functional 

connectivity from a limited number of functional systems. Machine learning algorithms are 

built to optimize the utility rather than the relevance of features for prediction (Guyon and 

Elisseeff, 2003) and may not be appropriate for hypothesis testing in all situations.  

However, the field of machine learning is growing rapidly and more sophisticated 

algorithms are being developed. The support vector machine learning algorithm used in 

this thesis were fairly simple; this algorithm was chosen to improve our chances of being 

able to interpret the features used for prediction. Other newer algorithms such as deep 

learning, decision trees, and multilayer perceptrons might be able to improve overall 
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prediction accuracy with functional connectivity. Nonetheless, it is important to make sure 

each algorithm is applied to appropriate questions, internally validated, and then 

externally validated in order to ensure generalizability and avoid overfitting. Further, any 

identified features should be compared against an appropriate null model before 

interpreting the significance of a set of features. 

In this thesis, it became apparent that multivariate machine learning models are 

built to make predictions, and can only test hypotheses about neurobiological 

mechanisms indirectly. Both approaches that make individual-level predictions and those 

that test group-level differences are important to our understanding of typical and atypical 

development. Multivariate prediction complemented by alternative approaches directed 

at more mechanistic questions (e.g., group-level studies, highly sampled individuals, 

within-subject longitudinal studies) will likely yield the best mechanistic understanding of 

typically and atypically developing individuals. 

5.4 Comments on the atypical development of functional networks in 
Tourette syndrome 

 Our results suggest that studying the development of the neurobiology underlying TS 

can shed light on important features of the disorder and provide important context for 

illuminating the magnitude, extent, and nature of the abnormalities observed in TS. We 

found that the functional connectivity that best characterized TS differed between children 

and adults. Regardless of the reason for this difference (see below), these results suggest 

that diagnosis and treatment of TS may need to be tailored differently for children and 

adults. Further, studying the disorder-related differences in functional systems in the 

context of typical development is crucial for understanding the disorder’s overall impact 
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on functional brain organization. In comparison to developmental differences in functional 

connectivity, disorder related differences were also small (correlation differences < 0.2) 

but not as widespread. Only patterns among select functional connections exhibited 

atypical development in TS, while most sets of connections could be used to predict age 

well in TS and controls. Our results suggest that the main effect of TS is smaller in 

comparison to the main effect of chronological age on the brain and that TS-related 

differences in the brain are best revealed by examining the statistical interaction of age 

and diagnosis. Further, by considering the typical development of the connections with 

atypical functional connectivity in TS, we were able to better understand the nature of 

these differences. As an example, we found that connections between the cingulo-

opercular system and the somatomotor system were stronger in adulthood TS than in 

controls; this enhanced connectivity was only observed in adulthood TS and represents 

a divergent developmental difference in TS. In contrast, the connections between the 

basal ganglia and visual system were less negative in adulthood TS than in control adults; 

however, these connections typically become more negative from childhood to adulthood 

and thus, appear immature in adulthood TS. Using this approach, the work in this thesis 

was able to demonstrate that the developmental trajectories of different functional 

systems were altered in distinct ways.  

Further, this thesis demonstrated that using a whole-brain approach and placing 

atypical brain function in TS in a context of functional networks provides a novel and more 

comprehensive understanding of the neurobiology underlying TS. By examining both 

cortical and subcortical functional connectivity, we identified regions affected in TS 

beyond the previously reported basal ganglia and frontal cortex. Examining how the 
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statistical functional relationships between the basal ganglia/frontal cortex and the rest of 

the brain differ in TS provides a more comprehensive picture of the circuitry that is 

disrupted (e.g., basal ganglia to visual system). We were also able to more precisely 

describe the functional systems affected in the frontal cortex (e.g., cingulo-opercular and 

ventral attention) and elsewhere. Additionally, by leveraging the extant research 

illuminating the properties of different functional systems in healthy controls, we were able 

to bridge neuroimaging research in TS with theories of the functional network organization 

of the brain. We showed that regions activated in the time preceding tics associated with 

a premonitory urge (Leckman et al., 1993) largely include the cingulo-opercular network. 

Additionally, we found that regions activated at the time of tic action (Bohlhalter et al., 

2006) include the dorsal attention network, a functional system important for the direction 

of attentional resources (Corbetta and Shulman, 2002). Regions activated by children and 

adults with TS when instructed to suppress eye blinks include the default-mode network 

(Mazzone et al., 2010). By combining our study of the functional relationships between 

regions with previous studies of brain function in TS and the extant knowledge about the 

role of functional systems in healthy controls, this thesis provides a novel model of the 

atypical brain function, connections, cognitive processes associated with TS.  

Studying the functional organization of the brain in TS with functional connectivity 

faces many of the same issues discussed above in studying typical development. As in 

typical development, more precise data from individuals and longitudinal data would 

greatly benefit the study of the atypical development of functional systems. In TS, there 

are also additional benefits to these approaches. Symptoms in TS are highly 

heterogenous; TS is commonly associated with other comorbid diagnoses such as ADHD 
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and OCD (Freeman et al., 2000). Even tics, the characteristic symptom of the disorder, 

manifest differently in different individuals (Leckman et al., 1989). Understanding the 

neurobiology in TS might require an individualized approach to localize regions 

associated with an individual’s specific symptoms (tics or otherwise) and determine how 

these correspond to that individual’s functional brain organization. Similarly, the 

developmental course of symptoms varies widely in TS (Leckman et al., 1998; Pappert 

et al., 2003); it is possible that the patients with TS reported in this thesis were imaged at 

different points in the course of their symptoms (e.g., rise, peak, remission) even if 

measures of tic severity were similar. Longitudinal assessment of the functional networks 

underlying TS would facilitate a better understanding of how typical developmental 

processes and the developmental course of symptoms interact.  

In addition, the present investigation and model proposed to describe atypical 

development in TS may oversimplify the functional organization of the basal ganglia, 

thalamus, and cerebellum. Cortico-striato-thalamo-cortical loops between different pieces 

of cortex and subcortex appear devoted to different functions (e.g, motor, control) (Haber, 

2003). These associations can be illuminated with resting-state functional connectivity 

such that different pieces of the subcortex and the cerebellum exhibit stronger functional 

connectivity with specific functional networks (Choi et al., 2012; Greene et al., 2014; 

Marek et al., 2018). While this thesis identified connections between the subcortex and 

specific cortical functional networks (e.g., visual, auditory, ventral attention) with atypical 

development in TS, it is possible that connections between specific pieces of the 

subcortex and cortical functional networks develop differently in TS. Investigation of the 

functional organization of the basal ganglia, thalamus, and cerebellum at a finer scale 
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may provide a more complete model of the neural substrates underlying the 

developmental course of TS. 

While this thesis identified patterns of functional connectivity and specific sets of 

functional connections that were altered in TS, the source of these disorder-related 

differences remains difficult to disentangle. As an example, we identified atypically 

stronger functional connectivity in the set of connections between the cingulo-opercular 

system and the somatomotor system. (1) These strengthened connections might be a 

change in the brain that facilitates tics (e.g., atypically coordinated inhibitory control of 

motor function). (2) Alternatively, the strengthened connections between the cingulo-

opercular and motor systems might be a consequence of having tics; experience with tics 

might produce maladaptive, neutral, or compensatory changes in the brain. (3) Finally, 

the enhanced connections between the cingulo-opercular and somatomotor systems 

might reflect state differences between groups; if the TS group was suppressing tics while 

in the scanner, these amplified connections might be attributable to this behavior rather 

than the underlying neurophysiology in TS.  

Additional experiments and approaches could shed light on the potential 

contribution of these various sources of disorder-related differences in functional 

networks in TS. First, as mentioned above, studying the differences in TS over the course 

of development can prove useful; not everyone with tics (e.g., children with TS) have 

enhanced connectivity between the cingulo-opercular and motor systems so these 

connections must not be necessary for the production of tics. Second, linking functional 

connectivity to measurements of experience with tics such as tic severity, time since tic 

onset, or ability to suppress tics might determine whether the observed enhanced 
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connectivity is a consequence of maladaptive, neutral, or compensatory experience with 

tics, respectively. Finally, if differences in functional connectivity in TS are confounded by 

state-related differences between the TS and control group, controlling what participants 

are doing in the scanner by instructing both the TS and control groups to suppress eye 

blinks (as in Mazzone et al., 2010) should mitigate these differences. 

Interpreting the atypical developmental differences in TS reported in this thesis is 

also difficult due to the limitations of the study design. As mentioned above, we found that 

the functional connectivity that characterizes TS differs between children and adults. It is 

unclear whether this difference is a result of developmental change or cohort effects. 

Some argue that childhood TS and adulthood TS are fundamentally different, given the 

commonly held belief that most patients with TS experience substantial symptom 

improvement or remission into adulthood (Leckman et al., 1998). Therefore, by studying 

a sample of adults with current tics, we have likely captured the subsample who do not 

experience significant remission. By contrast, any sample of children with TS will include 

a mixture of individuals whose tic symptoms will go on to improve and those whose tics 

will persist. Thus, it would seem that the observed developmental differences in atypical 

functional connectivity may in actuality be cohort effects describing the differences 

between persistent TS in adults and a mix of persistent and transient TS in children. 

However, there is evidence that complete remission is likely much rarer than previously 

estimated (10%, rather than 40%; (Pappert et al., 2003)), and in our sample, many of the 

adults with TS reported improvement from childhood even if they did not report remission. 

Longitudinal studies and studies of individuals with remitted tics will be crucial to 

determine the origin of age-specific, atypical functional connectivity in TS.  
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5.5 Closing Comments 

When I arrived at WashU, I wanted to study functional networks and how their 

organization contribute to complex, human behavior—I wasn’t particularly interested in 

development. But shortly after my rotation in the lab, I became hooked. Development 

provides, like lesions, a unique window into how brain functioning and human thinking are 

affected if all of the necessary circuits are not properly in place. In my thesis work, I 

wanted to understand the mechanisms by which these functional networks change and 

coordinate over the course of development to support cognition. Even though my results 

were not as simple and satisfying as I had hoped, I learned a lot in my first project studying 

typical development—the power and limitations of machine learning, the widespread 

nature of developmental differences in functional networks, and the importance of 

reigning in open-ended questions. Subsequently through a series of tangential delays 

and detours, I serendipitously stumbled into studying development in Tourette syndrome 

(TS). Initially, I was solely interested in applying and assessing the diagnostic capability 

of the machine learning approaches I had previously developed. However, as these 

projects evolved, more and more interesting developmental questions emerged: Why do 

the functional networks that distinguish TS from controls differ between children and 

adults? How does development differ in TS? Which functional networks? What can this 

tell us about the nature and course of tics and other symptoms in TS? By broadening my 

thesis to include the atypical development in TS, I succeeded in examining the ways in 

which functional networks change and coordinate over the course of development to 

support cognition; I was able to dissect developmental trajectories of different functional 

networks that might support different aspects of tics and other symptoms in TS.  Overall, 



197 
 

I am proud of what of this thesis has accomplished. While not necessarily ground-

breaking for the neuroscience field as a whole, this series of projects taught me a lot about 

the scientific process and renewed my conviction that I want to continue in academia. The 

lessons that I have learned from studying the typical and atypical development of the 

brain’s functional network architecture will surely aide me as I transition into a post-doc 

position at Northwestern University in the adjacent field of infant neuroimaging. 
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