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ABSTRACT OF THE DISSERTATION

Topics in Complex and Large-scale Data Analysis

by

Hao, Guanshengrui

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2019.

Professor Nan Lin, Chair

Past few decades have witnessed skyrocketed development of modern technologies. As a

result, data collected from modern technologies are evolving towards a direction with more

complicated structure and larger scale, driving the traditional data analysis methods to develop

and adapt. In this dissertation, we study three statistical issues rising in data with complicated

structure and/or in large scale. In Chapter 2, we propose a Bayesian framework via exponential

random graph models (ERGM) to estimate the model parameters and network structures for

networks with measurement errors; In Chapter 3, we design a novel network sampling algo-

rithm for large-scale networks with community structure; In Chapter 4, we introduce a proper

framework to conduct discrete large-scale hypothesis testing procedure based on local false

discovery rate (FDR). The performances of our procedures are evaluated through various sim-

ulations and real applications, while necessary theoretical properties are carefully studied as

well.
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1. Introduction

In this chapter, we introduce the background of three statistical issues rising in data with

complicated structure and/or in large scale. Challenges brought by the issues are described,

which serve as motivation of this disseration.

1.1 Network with measurement errors

During past few decades, network data have emerged explosively in many scientific fields

such as biology, computer science, physics, sociology, economics, etc [1, 2, 3, 4, 5]. In such

settings, the network structural relationships among the data instances are either themselves

important or must be accounted for in an integrated analysis.

Many networks contain erroneous links due to measurement error. For instance, a gene

regulatory network constructed from testing certain associations based on expression levels

will include erroneous links due to type-I and type-II errors of the tests [6]. Such impacts have

been explored in many theoretical studies [7, 8] as well as by simulation [9, 10].

While the impact of measurement errors is widely recognized [7, 8, 9, 10], accommodat-

ing it in real-data analysis is still challenging, partly due to the fact that relatively few formal

probabilistic analyses exist for characterizing the propagation of errors [11]. [8] suggests to

develop robust data analytic techniques to minimize the effects of measurement errors in social

networks. A few works address the problem from different aspects. [12] focuses on stochas-

tic networks that are evolving over time and propose a model-based approach to infer latent
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time-specific topologies of evolving networks from observations. [13] proposes a probabilistic

framework to recover the latent social network structure based on observational conversational

data. [14] targets on the quantity/quality trade-off for the inference on erroneously observed

graphs. Recently, [7] proposes a general nonparametric denoising approach using spectral de-

composition to correct the impact caused by measurement errors to the summary statistics.

[11] further shows that under certain assumptions, the distribution of discrepancy in summary

statistics for networks with and without measurement errors can be approximated by a Skellam

distribution.

Unlike previous nonparametric approaches, we consider a parametric setup and aim for net-

work inference, with details discussed in Chapter 2. We model the network by the exponential

random graph model (ERGM), which has been widely used in recent years and shown to be a

good choice for network description and statistical inference [15, 16, 17, 18, 19]. A Gibbs sam-

pler is constructed, which allows us to draw samples of “true” networks and model parameters,

thus obtain the estimates of both summary statistics and model parameters. Simulation results

show that through our approach, we can not only correct the impact caused by the measurement

error effectively, but also obtain a good estimate of the model parameters.

1.2 Sampling large-scale networks with community structure

Sampling, as a fundamental statistical technique, aims at extracting a representative subset

of the entire population, so that the characteristics of interest can be accurately estimated using

the subset. It is applied when the cost of analyzing entire population is high and the accessibility

is limited. As a result, when it comes to analyze large-scale networks, e.g., Facebook, Twitter,

etc., where billions of users are actively interacted but only limited access can be granted due to
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all kinds of policies and restrictions, sampling is inevitable. By the nature of network sampling

procedures, in which nodes of networks are visited one-by-one via links in between, network

samplers are often called crawlers.

Roughly, crawling techniques can be divided into two categories, (i) graph traversal tech-

niques and (ii) random walks (RWs) [20]. Graph traversal techniques, including Breath-First

Search (BFS), Depth-First Search (DFS), Forest Fire (FF), etc., visit each node only once, and

they differ with each other only by the order they visit the nodes. Though extensively used

[21, 22, 23], it has been shown that samples crawled from graph traversal techniques in general

are biased and therefore cannot represent the entire network [24]. On the other hand, RWs

allow node re-visiting. [25] provides a thorough survey. In particular, the probability for a

node to be visited by a RW crawler is proportional to its degree. It means that the RWs are still

biased, but the bias is statistically tractable. To extract bias-free samples so that each node is

sampled with equal probability, [20] proposes to modify the RW crawler by a Metropolis filter

to create a Metropolis-Hastings random walk (MHRW) crawler.

This dissertation particularly focuses on networks with community structure. Community

structure is ubiquitous among networks [26], and one fundamental but important signature of

community structure is that nodes within each community is more densely connected than

those between different communities. The communities could be some virtual groups, like

Linkedin Groups, LEGO IDEAS, etc., or a groups of nodes sharing the same nodal attribute

which implicitly fosters them to connect densely together, or even groups detected by certain

clustering algorithms. In this dissertation, we focus on the community structures in which

communities are mutually exclusive with each other.
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To analyze large-scale networks with community structure, sampling techniques are in-

evitable, as the large sizes and access limitations make it difficult or even impossible to load

the whole networks and analyze them [27]. And for many scenarios, bias-free samples are

desired, meaning that nodes from each community should be sampled with equal probability.

Directly applying the RW crawler will result in sampling bias towards communities with large

volumes (total number of links with at least one end belonging to the community). The MHRW

crawler could provide bias-free-sampled nodes, but when it comes to communities, the proba-

bility for each community to be sampled will be proportional to its size (total number of nodes

within a community). Since communities may vary a lot in scale [26], samples obtained from

the MHRW crawler are still biased.

As we can see, the RW crawler and its remedy, the MHRW crawler, cannot provide bias-

free samples of communities. In Chapter 3, we design a community-volume-adjusted random

walk (CRW) crawler that can fulfill the task under the condition that the volume of each com-

munity is known. In real applications where such condition does not hold, an adaptive version

of the CRW crawler is introduced so that when crawled long enough, it will converge to its

un-adaptive counterpart. We theoretically prove that for certain types of networks and commu-

nity structures, the CRW crawler can traverse across different communities faster than the RW

crawler. Simulation studies are conducted to compare the performances of the CRW crawler

and the RW crawler on synthetic networks.

1.3 Discrete large-scale hypothesis testing based on local FDR

Driven by the rapid development of high-throughput technologies, large-scale hypothesis

testing, where thousands or even millions of tests are conducted simultaneously, has become
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one of common statistical practice [28, 29]. First introduced in [30] and later formally con-

ceptualized in [31] and [32], the false discovery rate (FDR) is shown to be less conservative

when compared to the traditional family-wise error rate (FWER), and is thus widely used in

large-scale hypothesis testing problems.

In particular, there are two types of FDR, tail area-based FDR (Fdr) and local fdr (fdr).

A simple but general Bayesian model [32] would help us clarify the difference. Suppose we

conduct m hypotheses H1, . . . ,Hm simultaneously, with their corresponding test statistics being

Z1, . . . ,Zm. Assume that the m hypotheses are divided into two classes, null or non-null, with

prior probabilities π0 and π1 = 1− π0, respectively. The density and cdf of a test statistic

depend on its class, with density being f0 and cdf F0 if null, while density being f1 and cdf F1

if non-null. Without loss of generality, suppose small values of test statistics provide evidence

against the null. Under the above setup, Fdr is given by

Fdr(z) = Pr(null|Z ≤ z) = F+
0 (z)/F(z), (1.1)

where F(z) = π0F0(z) + π1F1(z) and F+
0 (z) = π0F0(z). Both the Benjamini-Hochberg FDR

procedures [31, 33, 34, 35] and the Storey’s q-value methods [36, 37] handle large-scale hy-

pothesis testing problems based on Fdr. On the other hand, fdr, proposed by [32] is defined

as

f dr(z) = Pr(null|Z = z) = f+0 (z)/ f (z), (1.2)

where f (z) = π0 f0(z)+π1 f1(z) and f+0 (z) = π0 f0(z). The density f (z) is called the mixture

density, while f+0 (z) is called the null sub-density. Efron’s method [32, 38, 39, 40] estimates

f dr(z) by estimating f+0 (z) and f (z), i.e.

ˆf dr(z) = ˆf+0 (z)/ f̂ (z), (1.3)
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and make rejections based on the estimated local FDRs ˆf dr(z). The Fdr and fdr are analytically

related by

Fdr(z) =
∫ z
−∞

f dr(Z) f (Z)dZ∫ z
−∞

f (Z)dZ
= E f { f dr(Z)|Z ≤ z}. (1.4)

Most early Fdr and fdr estimation or control procedures implicitly assume that the test statis-

tics of the large-scale hypothesis testing problem are continuous [31, 32, 36]. The continuity

assumption is natural and suitable for data obtained from high-throughput technologies like

gene expression microarrays. However, recent skyrocketed development of next-generation se-

quencing (NGS) technology has revolutionized the genomic research. Presented in the form of

discrete read counts at different levels of coverages, NGS data differ from previous data type.

Tests needed for such data such as Fisher’s exact test (FET) and the Binomial test [41, 42]

will produce discrete test statistics and p-values, which violate the continuity assumption. It

has been shown that FDR control or estimation procedures without properly addressing the

discreteness issue would lead to over-conservative performance [43, 44]. As a result, discrete

large-scale hypothesis testing problem is invoked.

Quite a few recent studies [43, 45, 46, 47, 48, 49, 50] have been conducted to adjust the

tail area-based FDR control procedures for the discrete large-scale hypothesis testing problems.

[51] provides a thorough review and comparison. However, few studies have been done for the

local FDR procedures.

Unlike Efron’s method, [52] revisits the definition of local fdr in (1.2)

f dr(z) =
π0 f0(z)

π0 f0(z)+π1 f1(z)
=

1

1+ π1
π0

f1(z)
f0(z)

(1.5)
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and proposes the LR method. The LR method first obtains a “rough” local FDR ˜f dr(zi) for

each test Hi,

˜f dr(zi) =
1

1+ π̂1
π̂0

f̂i1
fi0
(zi)

, (1.6)

where f̂i1
fi0
(zi) estimates fi1(zi)

fi0(zi)
by

f̂i1

fi0
(zi) =

L̂(zi|Hi is non-null)
L̂(zi|Hi is null)

. (1.7)

It then regresses the “rough” local FDRs { ˜f dr(zi)}m
i=1 on the {zi}m

i=1 by the least trimmed-

squares regression [53] to obtain smoothed estimates of local FDRs { ˆf dr(zi)}m
i=1. The LR

method can proceed no matter the test statistics zi’s are continuous or discrete. However, it

requires a separate step to estimate the null proportion π0, as that in (1.5), both π1
π0

and f1(z)
f0(z)

need

to be estimated. Moreover, the smoothing procedure using least trimmed-squares regression

without any theoretical guidance seems somewhat ad-hoc, and the results in [52] show that

when the null proportion π0 is close to 1, the false discovery rate is not controlled.

[54] proposes a randomized p-value method to convert the discrete p-values to continuous

p-values using auxiliary random variables. Such a conversion bridges the discrete and contin-

uous paradigms, so that methods used within the continuous paradigm can be applied to the

discrete paradigm under proper adjustment. However, directly applying Fdr and fdr estima-

tion or control procedures to the randomized p-values, like those done in [54] and [55], are

incomplete and unstable [46, 48]. Based on the randomized p-value method, [50] has properly

adjusted the tail-based FDR control method to discrete large-scale hypothesis testing problems.

We will on the other hand provide a formal local FDR estimation procedure in Chapter 4. Sec-

tion 4.1 and Section 4.2 briefly review Efron’s method to estimate local FDR and Habiger’s

randomized p-value method, respectively. We introduce our method in Section 4.3 to properly

7



perform discrete large-scale hypothesis testing procedure based on local FDR. Simulation stud-

ies are conducted in Section 4.4 to evaluate the performance of our method, compare and make

suggestion between Efron’s method using the empirical null and the theoretical null.
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2. Network with Measurement Errors

2.1 Setup

A network consists of a set of nodes and a set of edges representing the relationship be-

tween the nodes. For example, in a scientific co-authorship network, the set of nodes represents

the scientists, and two scientists are connected by an edge if they have coauthored a paper [5].

Here we only consider networks that are undirected, unweighted and have no self loops, i.e. an

edge connected at both ends to the same node.

We denote a network with n nodes by an n×n adjacency matrix W , where the (i, j)-th entry

Wi j = 1 if the dyad (i, j) is connected by an edge, and Wi j = 0 otherwise. Since no self loop is

allowed, Wii = 0 for all i = 1, . . . ,n. Let W be the space of all possible networks on n nodes. It

is easy to see that the size of W is |W |= 2(
n
2).

When measurement errors are considered, we follow the assumption in [7] that

W obs =W true +W noise, (2.1)

where W obs denotes the network which is contaminated by measurement errors, W true denotes

the “true” realization of some random graph W , and W noise denotes the noise matrix. We

assume that W true is from an ERGM with likelihood, for given parameters θ = {θ1, · · · ,θK}>,

P(W true|θ) =
exp
[
θ>s(W true)

]
z(θ)

, (2.2)

9



where s are summary statistics describing certain network characteristics, e.g. number of edges,

number of triangles, graph diameter, etc., and z(θ) is a constant which only depends on θ, i.e.

z(θ) = ∑
W∈W

exp
[
θ>s(W )

]
. (2.3)

For the noise matrix Wnoise, we assume

−W noise
i j ∼ Bernoulli(p), if W true = 1, (2.4)

W noise
i j ∼ Bernoulli(q), if W true = 0, (2.5)

W noise
i j ⊥W noise

kl if (i, j) 6= (k, l) or (l,k), (2.6)

where p and q are some constants in (0,1). For example, if the network is constructed from

hypothesis testing on each dyad (i, j) and the probability to form an edge is assumed to be

a constant, p is then the probability of Type-II error (false negative) and q the probability of

Type-I error (false positive). In this paper, we assume that p and q are known constants, but in

reality, it is possible that they may not be known or not even constants.

To get a glance of the impact of measurement errors under such setups, we consider net-

works with 100 nodes and choose the summary statistics incorporated in ERGM to be the num-

ber of edges, the number of nodes with degree no less than 5 and the geometrically weighted

degree (GWD) [56], i.e.

s1(W ) =
1
2

n−1

∑
i=1

Di(W ), (2.7)

s2(W ) =
n−1

∑
i=5

Di(W ). (2.8)

s3(W ) = eθs
n−1

∑
i=1

{
1− (1− e−θs)i

}
Di(W ) (2.9)

where Di(W ) denotes the number of nodes in W that have exactly i edges linked to them and

θs denotes the decay parameter for GWD. [13] suggests to incorporate GWD into the model to
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avoid model degeneracy problem. Setting p = 0.01, q = 0.005 and θs = (−3,0.75,−1)>, we

can draw multiple networks from (2.2), add noise to each network we drew, and compare the

summary statistics before / after adding noise, i.e. s(W true) and s(W obs). Figure 2.1 shows a

big difference in the summary statistics between two groups of networks.

100

150

200

250

300

Wtrue Wobs

(a) Number of edges: s1(W )

20

40

60

Wtrue Wobs

(b) Number of nodes with degree

no less than 5: s2(W )

150

200

Wtrue Wobs

(c) Value of GWD: s3(W )

Figure 2.1.: Boxplots for the summary statistics before / after adding noise.

2.2 Bayesian inference

This section contains the details for the implementation of our Gibbs sampler. Assume a

proper prior distribution π(θ) on θ, the posterior distribution f (θ|W obs) is then

f (θ|W obs) ∝ f (W obs|θ)π(θ) = π(θ)
∫

f (W obs|W true,θ)P(W true|θ)dW true. (2.10)

Solving the integration in (2.10) involves enumerating all possible 2(
n
2) configurations of W true ∈

W , and becomes intractable even for a moderate value of n.

Instead, the augmented posterior distribution f (θ,W true|W obs) allows derivation of a Gibbs

sampler, which samples iteratively from the full conditional distributions, f (W true|W obs,θ) and

f (θ|W obs,W true). Throughout this paper, we use s1(W ) to denote the number of edges in W ,

11



which is commonly used as a summary statistic in ERGMs, and θ1 the corresponding coeffi-

cient. Theorem 2.2.1 gives the form of the first full condition distribution f (W true|W obs,θ).

Theorem 2.2.1 Let p and q be the noise constants introduced in (2.4) and (2.5). Denote

s−1(W true) and θ−1 as the summary statistics for W true and corresponding coefficients ex-

cluding s1(W true) and θ1, respectively. The full condition distribution f (W true|W obs,θ) has the

following form

f (W true|W obs,θ) ∝ exp

(θ1 + log
1− p

q

)
∑

W obs
i j =1

W true
i j

+

(
θ1 + log

p
1−q

)
∑

W obs
i j =0

W true
i j

exp
[
θ>−1s−1(W true)

]
. (2.11)

Proof Recall in Section 2.1, we assume that

P(W obs
i j = 0|W true

i j = 1) = p (2.12)

P(W obs
i j = 1|W true

i j = 0) = q (2.13)

Therefore, the conditional distribution f (W obs|W true) can be expressed as

f (W obs|W true) = qN+
(1−q)M0−N+

pN−(1− p)M1−N−

= exp
[
N+ logq+(M0−N+) log(1−q)

+N− log p+(M1−N−) log(1− p)
]

(2.14)

where M0 and M1 denote the number of non-edges and edges in W true respectively, and N+ and

N− denote the number of +1 and −1’s in W noise =W obs−W true, respectively. In other words,

W noise
i j = +1 means the dyad (i, j) is non-edge in W true but edge in W obs, while W noise

i j = −1

means it is edge in W true but non-edge in W obs. Meanwhile, we can interpret M0−N+ as the

12



number of dyads which are non-edges in both W true and W obs, while on the other hand M1−N−

as the number of dyads which are edges in both. In this way, we can reformulate (2.14) as

f (W obs|W true) = exp

 ∑
W obs

i j =0

W true
i j log p+ ∑

W obs
i j =0

(
1−W true

i j
)

log(1−q)


exp

 ∑
W obs

i j =1

(
1−W true

i j
)

logq+ ∑
W obs

i j =1

W true
i j log(1− p)


= exp

 ∑
W obs

i j =0

(
W true

i j log
p

1−q
+ log(1−q)

)
exp

 ∑
W obs

i j =1

(
W true

i j log
1− p

q
+ logq

) (2.15)

For simplicity, assume the ERGM only contains one summary statistic, the number of edges

s(W ) = ∑
i< j

Wi j. Then the likelihood function f (W true|θ) can be written as

f (W true|θ) ∝ exp

(
θ ∑

i< j
W true

i j

)
(2.16)

The dyad set can be divided into two subsets based on W obs: Eobs =
{
(i, j) : W obs

i j = 1
}

and

Ec
obs =

{
(i, j) : W obs

i j = 0
}

, and (2.16) can be rewritten based on this division

f (W true|θ) ∝ exp

θ ∑
W obs

i j =0

W true
i j +θ ∑

W obs
i j =1

W true
i j

 . (2.17)
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Utilizing the Bayes formula, together with (2.15) and (2.17), we have the full conditional dis-

tribution f (W true|W obs,θ) expressed by

f (W true|W obs,θ) ∝ f (W obs|W true,θ) f (W true|θ)

= f (W obs|W true) f (W true|θ) (2.18)

∝ exp

 ∑
W obs

i j =0

(
W true

i j log
p

1−q
+ log(1−q)

)
exp

 ∑
W obs

i j =1

(
W true

i j log
1− p

q
+ logq

)
exp

θ ∑
W obs

i j =0

W true
i j +θ ∑

W obs
i j =1

W true
i j

 (2.19)

∝ exp

(θ + log
p

1−q

)
∑

W obs
i j =0

W true
i j

+

(
θ + log

1− p
q

)
∑

W obs
i j =0

W true
i j

 (2.20)

which is just (2.11) when s(W ) is the number of edges. For models with other summary statis-

tics, we can see through the derivation above, other summary statistics will not be affected.

Therefore, we obtain (2.11).

If the number of edges is not considered as a summary statistic in the ERGM, we can set

θ1 = 0 as a constant and still represent f (W true|W obs,θ) by (2.11). Notice that (2.11) is in

the form of an ERGM, so we can sample from (2.11) using the existing sampling methods for

ERGMs, e.g. the TNT (tie / no tie) sampler introduced in [57].
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The other full conditional distribution f (θ|W obs,W true) can be simplified as f (θ|W true),

because the model parameter θ is independent of W obs given W true. With the prior distribution

π(θ), we have

f (θ|W true) ∝ P(W true|θ)π(θ). (2.21)

To sample θ from f (θ|W obs,W true) is then equivalent to fitting W true into the ERGM in a

Bayesian framework [58].

Our Gibbs sampler contains the following steps.

Algorithm I

1. Initialize W true,0 and θ0;

2. For t = 1,2, . . . , in the t-th step,

a. Draw W true,t+1 from f (·|W obs,θt),

b. Draw θt+1 from f (·|W true,t+1);

3. Stop when the chain converges.

We next discuss two issues: (1) sampling a network from distribution (2.11) in Step 2a of

Algorithm I, and (2) sampling model parameters θ in an ERGM in Step 2b of Algorithm I.

2.2.1 Updating W true

To draw W true,t+1 from the full conditional distribution f (·|W obs,θ), we use the TNT

sampler suggested by [57]. Our algorithm works through the following steps, as in Algorithm

I-1.
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Algorithm I-1

1. Start with W 0 =W t , where W t is the network in the t-th iteration in step 2 Algorithm I;

2. Iteratively, in the k-th step with the network W k,

a. With an equal probability, do one of the two followings,

i. Randomly pick a dyad (ik, jk) ∈ Ec
k , where Ec

k is the set of non-edges for W k,

ii. Randomly pick a dyad (ik, jk) ∈ Ek, where Ek is the set of edges for W k.

b. Propose a new network W ∗ constructed by

W ∗i j =


1−W k

i j, if (i, j) = (ik, jk) or ( jk, ik),

W k
i j, otherwise.

c. Calculate the acceptance ratio

r(W k,W ∗) =
f (W ∗|W obs,θ)q(W k|W ∗)
f (W k|W obs,θ)q(W ∗|W k)

,

where q(W ∗|W k) is the probability to draw W ∗ based on W k and q(W k|W ∗) is the

probability to draw W k based on W ∗,

d. Accept the proposed move to W ∗ with probability

a(W k,W ∗) = min
(

1,r(W k,W ∗)
)

;

3. Stop when the chain converges.
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2.2.2 Updating θ

The procedure to draw the model parameters θt+1 from the full conditional distribution

f (·|W true,t+1) is equivalent to fitting W true,t+1 into the ERGM in a Bayesian framework [58,

59]. It utilizes the exchange algorithm [60], which samples from the augmented distribution

P(θ∗,W ∗,θt |W true,t+1) ∝ P(W true,t+1|θt)π(θt)P(W ∗|θ∗)q(θ∗|θt), (2.22)

where W true,t+1 and θt are from the t-th iteration in step 2 of Algorithm I, P(W ∗|θ∗) follows

the same distribution as P(W true,t+1|θt), π(θt) is the prior distribution for parameter θt and

q(θ∗|θt) is the proposal distribution. Appropriately choosing the proposal distribution, e.g.

a random walk centered at θt , to draw θ∗ based on θt , the algorithm can be written in the

following steps.

Algorithm I-2

1. Draw θ∗ from q(·|θk);

2. Draw W ∗ from P(·|θ∗);

3. Accept the proposed move from θt to θ∗ with probability

a(θt ,θ∗) = min
(

1,
P(W ∗|θk)π(θ∗)q(θk|θ∗)P(W true,t+1|θ∗)
P(W true,t+1|θk)π(θk)q(θ∗|θk)P(W ∗|θ∗)

)
. (2.23)

Notice that in (2.23), two normalizing constants z(θ∗) and z(θt) are involved in both the nu-

merator and denominator, hence cancel out. Through Algorithm I-2, we can draw samples

from the augmented distribution P(θ∗,W ∗,θt |W true,t+1), thus obtain the marginalized estimate

of parameters θ. In order to improve mixing, [58] also proposes to use a parallel adaptive di-

rection sampler (ADS) [61, 62], which consists of a collection of chains interacting with one

another. The algorithm is implemented in an R package called Bergm [63], which contains

more details for the implementation of the exchange algorithm and parallel ADS.
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2.3 Numerical results

2.3.1 Simulation

In this section, we apply our Gibbs sampler to simulated networks and show that it can

correct the impact caused by the measurement errors. In our simulation, we set the number

of nodes in the network n = 100, and choose the summary statistics in the ERGM to be the

number of edges, the number of nodes with degree no less than 5 and the GWD, which have

been defined in (2.7), (2.8) and (2.9), respectively. The ERGM in (2.2) is thus

P(W |θ) ∝ exp

(
θ1

1
2

n−1

∑
i=1

Di(W )+θ2

n−1

∑
i=5

Di(W )+θ3eθs
n−1

∑
1

{
1− (1− e−θs)i

}
Di(W )

)
.

(2.24)

Set the model parameters as θ0 = (θ 0
1 ,θ

0
2 ,θ

0
3 )
>= (−3,0.75,−1)>, the decay parameter θs as 1

fixed, and the noise constants p and q as p = 0.01 and q = 0.005. We draw 100 networks from

(2.24) with (θ1,θ2,θ3) = (θ 0
1 ,θ

0
2 ,θ

0
3 )
> and treat them as W true’s. We then obtain a network

by adding noise onto each W true and treat it as the network contaminated with measurement

errors W obs. We apply our Gibbs sampler to each W obs and run 100 parallel simulations. To

implement the Gibbs sampler in Algorithm I, we place a vague multivariate normal prior to the

model parameters θ = (θ1,θ2,θ3)
>,

π(θ)∼N (0,152I3), (2.25)
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where I3 is the identity matrix with dimension 3. Some pilot explorations suggest us to use

three independent random walks for θ k
1 , θ k

2 and θ k
3 separately in step 1 of Algorithm I-2, i.e.

q(·|θ k
1 ) ∼ N (θ k

1 ,σ
2
1 ), (2.26)

q(·|θ k
2 ) ∼ N (θ k

2 ,σ
2
2 ), (2.27)

q(·|θ k
3 ) ∼ N (θ k

3 ,σ
2
3 ), (2.28)

with σ1, σ2 and σ3 all equal to 0.25, which can improve the mixing of the algorithm. We choose

the number of iterations to draw W true,t+1 in Step 2a of Algorithm I to be 10, which gives an

adequate acceptance rate and avoids bringing in more computation burden.

We run 25,000 MCMC iterations in each simulation, burn in the first 5,000 and obtain the

posterior means for the model parameters θ̂ = (θ̂1, θ̂2, θ̂3)
> and the summary statistics ŝ =

(ŝ1, ŝ2, ŝ3)
> using the remaining 20,000. Meanwhile, we also estimate the model parameters

and calculate the summary statistics directly based on W obs, denoted by θ̂obs =(θ̂ obs
1 , θ̂ obs

2 , θ̂ obs
3 )>

and sobs = (sobs
1 ,sobs

2 ,sobs
3 )>, respectively. We obtain the bias of the model parameters ∆θ̂ =

θ̂− θ0 and ∆θ̂obs = θ̂obs− θ0 and obtain the bias of the summary statistics ∆ŝ = ŝ− s0 and

∆sobs = sobs− s0, where s0 is the summary statistics calculated based on W true’s. We com-

pare the difference between ∆θ̂ and ∆θ̂obs , ∆ŝ and ∆sobs . Figure 2.2 shows that the biases of

the posterior means through our Gibbs sampler are all centered around 0, which implies that

our Gibbs sample has the ability to correct the impact caused by the measurement errors. Two

sample t-tests on two groups of model parameters and summary statistics are also in favor of

that the two groups are significantly different. The results are summarized in Table 2.1.

Out of 100 simulations, we randomly pick one and analyze the performance of our Gibbs

sampler. The summary statistics s1, s2, s3 for W true and W obs are summarized in Table 2.2.
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Figure 2.2.: Boxplots for the bias of the model parameters and the summary statistics.

Model parameters p-value Summary statistics p-value

θ1 9.34e-05 s1 1.07e-84

θ2 1.10e-07 s2 4.23e-31

θ3 5.68e-01 s3 4.96e-60

Table 2.1: P-values of two sample t-tests for comparing the model parameters and summary

statistics.

The traceplots of the bias of the model parameters ∆θt = θt−θ0 are shown in Figure 2.3. And

Tables 2.3 and 2.4 give the posterior summary for the model parameters and network summary

statistics. We also compare three estimates of θ, the estimates based on W true, the estimates

based on W obs and the estimates through our Gibbs sampler. The comparison is summarized in
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Table 2.5. The estimates based on W true and W obs are obtained using the method in [58]. Tables

2.3, 2.4 and 2.5 show that the impact of the measurement errors have been well corrected by

our Gibbs sampler.

Summary statistics W true W obs

s1 176 198

s2 35 40

s3 184.91 198.48

Table 2.2: Summary statistics of W true and W obs.
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Figure 2.3.: Traceplots for the bias of the model parameters.
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Parameters Mean SD Naive SE Time-series SE

θ1 -2.94 0.20 1.42e-03 2.84e-02

θ2 0.57 0.38 2.70e-03 5.85e-02

θ3 -1.01 0.16 1.14e-03 2.37e-02

Table 2.3: Summary for the posterior samples of the model parameters.

Summary statistics Mean SD Naive SE Time-series SE W true W obs

s1 177.63 5.13 3.62e-02 0.85 176 198

s2 35.79 2.75 1.95e-02 0.42 35 40

s3 186.94 3.37 2.38e-02 0.49 184.91 198.48

Table 2.4: Summary for the posterior samples of the summary statistics, compared with those

calculated based on W true and W obs.

Parameters W true W obs Posterior Mean

θ1 -2.83 -2.71 -2.94

θ2 0.50 0.17 0.57

θ3 -1.12 -1.09 -1.01

Table 2.5: Comparison of the posterior mean and model parameters estimated based on W true

and W obs.
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2.3.2 Comparison with nonparametric network denoising

Our Bayesian method can also be used for denoising the summary statistics. And we

compare with the nonparametric method proposed by [7] through spectral decomposition. First,

they construct a näive unbiased estimator of W true,

W̃obs =
W obs−qWKn

1− (p+q)
, (2.29)

where WKn is a matrix of ones with zero diagonals. And the nonparametric denoising estimator

is then

Ŵ r =
r

∑
i=1

〈
φi,W̃ obs

φi

〉
φiφ
>, (2.30)

where 〈·, ·〉 is the inner product operator, {µi}n
i=1 are the eigenvalues of W̃ obs and {φi}n

i=1 are the

corresponding eigenvectors. {φi,µi}n
i=1 are ordered decreasingly according to the magnitude

of squared eigenvalues {µ2
i }n

i=1. They proved that as the number of nodes n→ ∞, the optimal

choice for r is r = 1.

While nonparametric method requires asymptotic conditions, Bayesian method can do ex-

act inference for finite-sample cases. Therefore, it is worth comparing the performance of the

nonparametric estimator with our Bayesian approach for networks with a moderate number of

nodes. Notice that through nonparametric denoising, the estimator Ŵ r is no longer 0/1 valued.

As a result, we need to extend the definition of the summary statistics we use for Ŵ r. According

to an alternative definition of s1

s1(W ) = ∑
i< j

Wi j,

we can analogously define

s1(Ŵ r) = ∑
i< j

Ŵ r
i j, . (2.31)
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for Ŵ r, where Ŵ r
i j represents the (i, j)-th entry of Ŵ r. For s2, we can extend it for Ŵ r based on

its graphical meaning that it represents the number of nodes with degree no less than 5, i.e.

s2(Ŵ r) =
n

∑
i=1

I(di(Ŵ r)≥ 5), (2.32)

where di(Ŵ r) represents the degree of the i-th node of Ŵ r and I(·) is the indicator function. But

since the entries of Ŵ r are not 0/1 valued, extending s2 for Ŵ r in the fashion of (2.32) would

tend to underestimate the quantity. Instead, we define

s2(Ŵ r) = (
n

∑
i=1

I(di(Ŵ r)≥ 5)+
n

∑
i=1

I(di(Ŵ r)> 4))/2, (2.33)

which can be treated as a balance between underestimation and overestimation. We will omit

the comparison for s3, since the definition of s3 in (2.9) requires the degree of the nodes to be

integers. That cannot be satisfied for Ŵ r in general when its entries are not 0/1 valued.

Now consider the 100 simulations we did in Section 2.3.1 again. Within each simulation,

we construct the nonparametric estimators of W true by (2.30) with r = 1,10,25,50,75,100,

and then estimate the two summary statistics using the extended definition (2.31) and (2.33).

Denote the nonparametric estimates of the summary statistics by s̃r = (s̃r
1, s̃

r
2)
>. Similarly, we

obtain the bias of the summary statistics ∆s̃r = s̃r− s0 for each simulation, where s0 is the

summary statistics calculated based on W true. In Figure 2.4, we compare ∆s̃r with ∆ŝ obtained

through the Bayesian approach in Section 2.3.1. We also perform two sample t-tests between

∆ŝ and ∆s̃r , which is summarized in Table 2.6.

The figures and table show that the asymptotic optimal choice r = 1 performs inadequately

in the simulation when the number of nodes in the network is only 100. The nonparametric

approach achieves comparable results to the Bayesian approach for s1 only when r ≥ 75, but

always underestimate s2 even when we take the treatment in (2.33). In real situations when the
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number of nodes is not large enough as the asymptotic optimal choice requires, and the truth

for the summary statistics are not known, it is not easy to find a proper r. Another restriction

for the nonparametric approach, as stated in [7], is that it only works for Lipschitz continuous

summary statistics, i.e.

|s(W1)−s(W2)| ≤C‖W1−W2‖1.

Even for some summary statistics that are indeed Lipschitz continuous, e.g., s2 in our case,

the nonparametric approach may not perform very well. That is mainly caused by the issue

that the entries of nonparametric estimator Ŵr are no longer 0 or 1, which makes it difficult to

extend the definition of those summary statistics to Ŵ r. As a contrast, our Bayesian approach

is applicable for any summary statistics.
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Figure 2.4.: Boxplots for the bias of the summary statistics.
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Summary statistics r = 1 r = 10 r = 25 r = 50 r = 75 r = 100

s1 6.93e-53 3.71e-38 8.05e-14 0.33 0.41 0.73

s2 8.45e-40 2.68e-22 8.62e-06 8.03e-03 4.25e-05 4.25e-05

Table 2.6: P-values of two sample t-tests for comparing summary statistics estimates.

2.3.3 Sensitivity analysis

In this section we analyze the sensitivity of our Bayesian method to the noise constant

p, the probability to erroneously remove an edge from W true. The motivation to perform this

analysis is from two aspects. In reality, most networks tend to be sparse, i.e. the number of

edges m scales slower than quadratic in the number of nodes n [11]. Formally, [11] assumes

that sparse networks follow

m = O(n logn). (2.34)

When W true is sparse, and the noise constants p and q are comparable in magnitude, the noise

introduced by p, the probability to randomly remove an edge from W true, is more likely to

be negligible. On the other hand, real world networks are often constructed from hypothesis

testing on each dyad with certain significance level. In such cases, q can be evaluated based

on the given significance level, while p is the probability of Type-II error which is often not

known. If our Bayesian method is insensitive to the value of p, it will be easier to apply onto

the real world sparse networks where p is not known.

To analyze the sensitivity of our Bayesian method in p based on simulation, we consider

the same setups as in Section 2.3.1. Figure 2.1 shows that when the true model parameter

θ0 = (−3,0.75,−1)>, the number of edges for the networks drawn from the corresponding
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ERGM (2.24) will mostly lie below 300, which satisfies the sparsity assumption (2.34). There-

fore, we still draw 100 networks from (2.24) with θ0 = (−3,0.75,−1)>, treat them as the true

underlying networks W true, then add noise onto each of them with same p = 0.01, q = 0.005 to

obtain the observed network with measurement errors W obs. To mimic that we do not know the

value of p, we plug 1×10−8 instead of the true value 0.01 for p into Algorithm I. All the other

setups remain the same as in Section 2.3.1. We burn in the first 5,000 iterations and use the re-

maining 20,000 to obtain the posterior mean of model parameters θ̂igp = (θ̂ igp
1 , θ̂ igp

2 , θ̂ igp
3 ) and

summary statistics ŝigp = (ŝigp
1 , ŝigp

2 , ŝigp
3 ). Similar as in Section 2.3.1, we compare the bias of

the model parameters ∆θ̂igp = θ̂igp−θ0 and the bias of the summary statistics ∆ŝigp = ŝigp−s0

with ∆θ̂obs = θ̂obs−θ0 and ∆sobs = sobs−s0 respectively, where s0 are the summary statistics

of the true underlying network W true, which are shown in Figure 2.5. Compare with Figure 2.3,

we can see the performance when treating p close to 0 is comparable to the performance with

exact value of p, which means our method is not sensitive to the value of p under such setups.

2.3.4 Empirical results

In this section, we apply our Bayesian method to a real world network with reported

measurement error. Consider the regulator-regulator interaction network in [64], which has

been fitted into ERGM by [16]. The network consists of 106 nodes and 108 directed links, with

each node representing a transcriptional regulator and each directed link representing that the

expression of the transcriptional regulator it starts from regulates the expression of the one it

points to. Similar to the treatment in [16], we convert the original network into an undirected

one by eliminating the direction of the links and removing the self loops . For those pairs
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Figure 2.5.: Boxplots for the bias of the model parameters and the summary statistics.

of nodes with links pointing to each other, we eliminate the direction of both links and treat

it as only one edge. After the conversion, there are 96 undirected edges left. The converted

undirected network is shown in Figure 2.6.

Figure 2.6.: The undirected regulator-regulator interation network.
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The false positive rate to form a link reported in [64] is 0.001, which corresponds to the

value of q in our context. The value of p is not reported, but based on the discussion in Section

2.3.3, we can just set p = 1×10−8 and our framework will still apply.

For the summary statistics, [16] suggests to include the GWD and number of edges or the

number of 2-stars in the ERGM. Therefore, we can still use the ERGM model in 2.24. To avoid

the estimation of decay parameter θs in the GWD, we perform a pilot search and find it lying

around 0.5. Therefore, we set θs = 0.5 fixed. Based on the same implementation setups of

the Gibbs sampler in Section 2.3.1, we run 25,000 iterations in total, burning in first 5,000 and

using the remaining to make inference. Figure 2.7 shows the traceplots of the model parameters.

The estimation of the model parameters and the summary statistics are summarized in Tables

2.7 and 2.8, respectively. The results show that the estimated summary statistics are smaller

than those from W obs, which indicates effectiveness of our Bayesian treatment. Figure 2.8

compares the heatmaps of adjacency matrix for W obs and Ŵ , the average of posterior samples

of W true,t for t = 5001,5002, . . . ,25000, i.e.

Ŵ =
1

20000

25000

∑
t=5001

W true,t .

Parameters Mean SD Naive SE Time-series SE

θ1 -2.72 0.18 1.26e-03 1.52e-02

θ2 0.11 0.26 1.82e-03 1.97e-02

θ3 -2.09 0.21 1.47e-03 1.81e-02

Table 2.7: Summary for the posterior samples of the model parameters.
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Figure 2.7.: Traceplots for the model parameters.
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Figure 2.8.: Heatmaps of adjacency matrix for W obs and Ŵ .

Summary statistics Mean SD Naive SE Time-series SE W obs

s1 89.28 2.37 1.68e-02 0.22 96

s2 11.54 0.64 4.53e-03 5.48e-02 12

s3 86.22 3.36 2.37e-02 0.31 94.78

Table 2.8: Summary for the posterior samples of the summary statistics, compared with those

calculated based on W obs.
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3. Sampling Large-scale Networks with Community Structure

In this chapter, we propose a novel network crawler for large-scale networks with community

structure. We theoretically prove that our crawler can avoid sampling bias for communities so

that uniform samples of communities are generated. We also show that under mild assump-

tions, our crawler can traverse through different communities faster than benchmark random

walk crawler. For the purpose of simplicity, the networks we consider in this chapter are all

undirected and connected networks.

3.1 Setup

Let W denote a network, with V being the set of all nodes of W and E the set of all edges

of W . Denote N as the total number of nodes and E the total number of edges in W . For each

node u ∈ V , define the set of all its neighbors by

N (u) = {v : (u,v) ∈ E }. (3.1)

Let the number of neighbors

du = |N (u)| (3.2)

be the degree of the node u. Suppose there are K mutually exclusive communities on the

network W , and each node belongs to one and only on community. Let g(·) be the function that
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collects the community index a node belongs to. Define the size of the k-th community as the

total number of nodes within the community, i.e.,

Nk = |{u : g(u) = k}|, (3.3)

and define the volume of the k-th community as the number of links with at least one end

belonging to the community, which, equivalently, equals to the summation of degrees of the

nodes within the community, i.e.

Vk = ∑
g(u)=k

du (3.4)

3.2 Random walk crawlers and sampling bias

Random walk crawler (RW) is one of the most widely used large-scale network sampling

techniques [65, 66, 67, 68, 69] that preserves good statistical properties. From a start node, for

each step, the random walk crawler explores all its neighbors and randomly moves to one of

its neighbors with equal probability. Formally, an RW crawler can be described in Algorithm

RW.
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Algorithm RW

Start from a randomly selected node u1. Suppose the crawler reaches node ut at the tth

step,

a. Find the set of neighbors N (ut) for ut ;

b. With equal probability, randomly select one node v ∈N (ut), and let

ut+1 = v.

Random walks crawlers are closely related to Markov chains. [25] points out that random walks

on connected undirected networks are equivalent to time-reversible Markov chains, and proves

that the distribution

qrw
u =

du

2E
(3.5)

is stationary and unique. Here the distribution qu for a crawler is stationary is defined as that

for each crawling step, the marginal sampling probability for each node u is qu [25].

Though widely used in practice, one major drawback of the RW crawler is that it is biased

towards sampling nodes with large degrees. That is caused by the fact that as the sampling step

goes large enough, the probability for each node u to be sampled is proportional to its degree

du, as the sampling distribution converges to the stationary distribution qrw
u .

One method to correct the sampling bias is to construct a Metropolis-Hastings random

walk (MHRW) crawler by applying a Metropolis filter. The crawler is described in Algorithm

MHRW.
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Algorithm MHRW

Start from a randomly selected node u1. Suppose the crawler reaches node ut at the tth

step,

a. Find the set of neighbors N (ut) for ut ;

b. With equal probability, randomly select one node v ∈N (ut);

c. Move the crawler to

ut+1 =


v, with probability min

(
dut

dv
,1
)
,

ut , with probability 1−min
(

dut

dv
,1
)
.

(3.6)

It follows directly from [70, 71] that the stationary distribution is uniform, i.e.

qmhrw
u =

1
N
, (3.7)

so that each node has equal probability to be sampled.

Suppose we use the RW crawler to sample a network with K mutually exclusive com-

munities. Then, marginally, the probability for the t-th sampled node ut to be from the k-th

community is

P(g(ut) = k) = ∑
u: g(u)=k

qrw
u =

∑u: g(u)=k du

2E
=

Vk

2E
, (3.8)

which is proportional to the volume of the k-th community. Similarly, if we use MHRW crawler,

then marginally, the probability for the t-th sampled node ut to be from the k-th community is

P(g(ut) = k) = ∑
u: g(u)=k

qmhrw
u =

∑u: g(u)=k 1
N

=
Nk

N
, (3.9)

which is proportional to the size of the k-th community. Neither the RW nor the MHRW crawler

provides an equal probability for each community to be sampled.
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3.3 Cummunity-volume-adjusted random walk crawler

3.3.1 Algorithm

Inspired by the MHRW crawler, where transition probability is adjusted based on the nodal

degrees, we can similarly adjust the transition probability based on the volume of communities,

so that each community has an equal probability to be sampled. Suppose that we know the

volume of each community on the network in advance, then the community-volume-adjusted

random walk (CRW) crawler can be described in Algorithm CRW.

Algorithm CRW

1. Start from a randomly selected node u1. Suppose the crawler reaches node ut at the tth

step,

a. Find the set of neighbors N (ut) for ut ;

b. With equal probability, randomly select one node v ∈N (ut);

c. Move the crawler to

ut+1 =


v, with probability min

(
Vg(ut)

Vg(v)
,1

)
,

ut , with probability 1−min

(
Vg(ut)

Vg(v)
,1

)
.

(3.10)

For the CRW crawler, we have the following theorem.

Theorem 3.3.1 Given the description of Algorithm CRW, the transition probability to move

from a node u to one of its neighbors v is

P(ut+1 = v|ut = u)
de f
= puv =

1
du

min

(
Vg(u)

Vg(v)
,1

)
, (3.11)
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and the stationary distribution for node u is

qu =
1
K

du

Vg(u)
(3.12)

Proof The transition probability

puv = P(choose v from N (u))P(move to v)

=
1
du

min

(
Vg(u)

Vg(v)
,1

)
.

Let pu =
1
K

du

Vg(u)
, and let pv =

1
K

dv

Vg(v)
, we have

pu puv =
1
K

du

Vg(u)
× 1

du
min(

Vg(u)

Vg(v)
,1) =

1
K

min(
1

Vg(v)
,

1
Vg(u)

),

pv pvu =
1
K

dv

Vg(v)
× 1

dv
min(

Vg(v)

Vg(u)
,1) =

1
K

min(
1

Vg(u)
,

1
Vg(v)

).

Since pu puv = pv pvu, so the stationary distribution of u is qu = pu =
1
K

du

Vg(u)
.

An instant result follows Theorem 3.3.1 is that the sampling probability for the k-th community

is

qk = ∑
g(u)=k

qu = ∑
g(u)=k

1
K

du

Vg(u)
=

1
K
, (3.13)

which indicates that the CRW crawler samples each community with equal probability.

3.3.2 Comparison with the RW crawler

In general, it is hard to compare the performances between two different crawlers, as each

crawler may suit some types of networks better under certain scenario. We can prove that for

certain types of networks, under mild conditions, the CRW crawler performs better than the RW

crawler, in the way that on average the CRW crawler traverses through different communities

faster than the RW crawler. It can be formulated as a theorem as follows.
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Theorem 3.3.2 Suppose that the large-scale network with exclusive community structure sat-

isfies the following condition,

∑
u

∑
v∈N (u)

g(u)6=g(v)

1
V/K

< ∑
u

∑
v∈N (u)

g(u)6=g(v)

min(
1

Vg(v)
,

1
Vg(u)

). (3.14)

Then, we claim that on average, for a fixed number of crawling steps, the number of communi-

ties visited by the CRW crawler is larger than that of the RW crawler.

Proof It is equivalent to prove that for each crawling step, the probability to move to a different

community for the CRW crawler is higher than the RW crawler.

On one hand, for a RW crawler, the probability to move from one community “this” to

another community “other” in a single crawling step is

P(other|this,RW ) = ∑
u

∑
v∈N (u),g(u)6=g(v)

prw
uv qrw

u

= ∑
u

∑
v∈N (u),g(u)6=g(v)

1
du

du

V

= ∑
u

∑
v∈N (u),g(u)6=g(v)

1
K

1
V/K

On the other hand, for a CRW crawler, the probability to move from one community “this” to

another community “other” in a single crawling step is

P(other|this,CRW ) = ∑
u

∑
v∈N (u),g(u)6=g(v)

pcrw
uv qcrw

u

= ∑
u

∑
v∈N (u),g(u)6=g(v)

1
K

min(
1

Vg(v)
,

1
Vg(u)

)

Therefore,

P(other|this,RW )< P(other|this,CRW )

is equivalent to

∑
u

∑
v∈N (u)

g(u)6=g(v)

1
V/K

< ∑
u

∑
v∈N (u)

g(u)6=g(v)

min(
1

Vg(v)
,

1
Vg(u)

).
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The intuition behind this theorem is straightforward. Given that nodes are much more

densely connected within communities than across communities, when proposed to traverse to a

node belonging to a larger community, where it is easier to get trapped inside, the CRW crawler

has the ability to reject the proposal, while the RW crawler can do nothing but move forward.

As for the cases when proposed to traverse to a node belonging to a smaller community or one

at the same scale, the CRW crawler performs similarly as the RW crawler.

3.3.3 Comparison on synthetic networks

To show that the CRW crawler indeed performs better than the RW crawler as shown

in Theorem 3.3.2, we will generate synthetic networks, apply the two crawlers on them and

compare their performance. The synthetic networks are generated as follows.
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Algorithm Synthetic Network Generator

1. Set the number of distinct communities as K = 25;

2. Simulate the size of each community by the power law

P(Nk) ∝ N−γ

k , k = 1, . . . ,K, (3.15)

with the minimum and maximum possible sizes set as 50 and 5000, respectively.

3. Simulate links between each pair of nodes (u,v) under the following rule.

- If g(u) 6= g(v), then generate a link between (u,v) with probability 2
N , where N is the

total number of nodes in the network;

- Otherwise, generate a link between (u,v) with probability

pk ∝
1

N1/2
k

(3.16)

4. Check for isolated nodes. If there is any node with no neighbor, randomly choose one

node from the same community of the isolated node and form a link between them.

We consider the power law distribution in (3.15) because many real-world large-scale networks

with community structure have community size distributions following power laws with dif-

ferent values of γ [26]. The intuition behind Step 3 is bi-fold. On one hand, for each node

u, the expected number of across-community neighbors is 2, while that of within-community

neighbors is N1/2
g(u). For a community with minimum community size 50, the ratio between

across-community neighbors and within-community neighbors is roughly 2/7. The ratio is

much smaller for larger communities. This result aligns with the nature of community that

nodes within are more densely connected than across. On the other hand, although the ex-

pected number of neighbors grows when the community becomes large, the rate to form links
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Figure 3.1.: Power law distributions of nodal degrees in generated synthetic networks. Values

of γ in the legends are estimated using the poweRlaw package in R.

decreases. It reflects the phenomenon that in the real-world where a node often represents a

person or an agent, cognitive constraints and time costs limit the total number of links one node

can maintain [72, 73].

In our simulation, we choose two values of γ in (3.15), γ = 1.5 and γ = 2, and simulate

two synthetic networks. Figure 3.1 shows that the nodal degree distributions of the simulated

synthetic networks follow the desired power law as (3.15) properly.

With synthetic networks generated, we repeatedly crawl them using both the RW crawler

and the CRW crawler 100 times. Each repetition, the two crawlers start from the same randomly
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selected node and crawl for 2500 steps. To avoid the dependence between the performances and

the starting node, across different repetitions the starting nodes are randomly selected instead

of fixed. Every 50 steps, the number of visited communities for each crawler is calculated.

Figure 3.2 plots the average number of communities visited imposed with the 95% confidence

interval for each crawler over 100 repetitions.

We can see from the plots that after a small number of steps, the CRW crawler tends to visit

more communities than the RW crawler, which empirically aligns with the claim of Theorem

3.3.2.

3.4 Practical concern and the adaptive version

Although the CRW crawler enjoys good theoretical property and performs well on the

synthetic networks, in practice, when the volume of each community is unknown, the CRW

crawler cannot be applied directly. However, we can make certain adjustment to adapt to the

real scenarios.

41



Figure 3.2.: Comparison between the RW crawler and the RW crawler. The plot on the left

corresponds to the synthetic network generated with γ = 1.5, while the plot on the right

corresponds to the synthetic network generated with γ = 2.
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3.4.1 Algorithm

For each crawling step in a CRW crawler, when a new node that has never been visited is

proposed, before deciding to move or stay, the crawler can update the volume of the community

that the proposed node belongs to. If a node from a new community that has never been

visited is proposed, initiate the volume of that community by the degree of the proposed node

and move the crawler to the proposed node with probability 1. If a node which has been

visited or proposed before is proposed again, then leave the volume of the community that the

proposed node belongs to unchanged. In such a way, the crawler can estimate the volume of

each community based on both visited nodes and proposed but not visited nodes, while avoid

over-estimating the volume of each community from the re-visited or re-proposed nodes. The

adaptive community-volume-adjusted random walk (ACRW) crawler works in the following

way as described in Algorithm ACRW.
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Algorithm ACRW

1. Start from a randomly selected node u1. Suppose the crawler reaches node ut at the t-th

step;

2. Check the community g(ut) that node ut belongs to.

- If g(ut) = k for some community k that has been previously visited,

* If ut has never been visited or proposed, update the volume of community k by

Vk =Vk +dut ;

* Otherwise, do not update the volume of community k.

- Otherwise, add a new community index k∗ with its initial community volume as

Vk∗ = dut ;

3. Perform a CRW crawler step, which

a. finds the set of neighbors N (ut) for ut ;

b. with equal probability, randomly selects one node v ∈N (ut);

c. checks the community g(v) that node v belongs to.

- If g(v) = k′ for some community k′ that has been previously visited,

* If v has never been visited or proposed, update the volume of community k′

by

Vk′ =Vk′+dv;

move the crawler to

ut+1 =


v, with probability min

(
Vg(ut)

Vg(v)
,1

)
,

ut , with probability 1−min

(
Vg(ut)

Vg(v)
,1

)
.

- Otherwise, move the crawler to v.
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3.4.2 Comparison on synthetic networks

To compare the performances of the ACRW crawler, the CRW crawler and the RW crawler,

we similarly generate synthetic networks following the Algorithm Synthetic Network Genera-

tor and apply the three crawlers on them. Still choosing the value of γ in (3.15) to be γ = 1.5

and γ = 2, we generate two synthetic networks just like what we did in Section 3.3.3.

Similarly, we repeatedly crawl on the two synthetic networks using all three crawlers 100

times. Each repetition, the three crawlers start from the same randomly selected node and crawl

for 2500 steps. To avoid the dependence between the performances and the starting node, across

different repetitions the starting nodes are randomly selected instead of fixed. Every 50 steps,

the number of visited communities for each crawler is calculated. Figure 3.3 plots the average

number of communities visited imposed with the 95% confidence interval for each crawler over

100 repetitions.

We can see from Figure 3.3 that at the beginning, the ACRW crawler and the RW crawler

perform quite similarly. This is because that when only a small group of nodes have been vis-

ited, most of the proposed moves will be accepted to foster exploration. Therefore, the ACRW

crawler essentially works just like a RW crawler, which always accepts the proposed moves.

After a sufficient number of nodes have been visited and the volumes of visited communities

are also well estimated, the proposed moves will be decided by the estimated volumes of the

communities. Reflected on Figure 3.3, it corresponds to the phenomenon that gradually the

average number of communities visited by the ACRW crawler coincides with that of the CRW

crawler.
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Figure 3.3.: Comparison among the RW crawler, the CRW crawler and the ACRW crawler.

The plot on the left corresponds to the synthetic network generated with γ = 1.5, while the

plot on the right corresponds to the synthetic network generated with γ = 2.
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4. Discrete Large-scale Hypothesis Testing based on Local FDR

In this Chapter, we propose a formal procedure to conduct discrete large-scale hypothesis

testing based on local FDR. We first introduce Efron’s method in Section 4.1, which is used to

conduct large-scale hypothesis testing based on local FDR when each test is continuous. We

then introduce Habiger’s randomized p-value method in Section 4.2, which provides a way to

convert discrete p-values continuous. The formal procedure we propose is described in Sec-

tion 4.3, together with a power diagnostic statistic used to assess statistical power. Simulation

studies are conducted in Section 4.4 to compare the theoretical null and the empirical null in

Efron’s method, and also evaluate the performance of the power diagnostic statistic.

4.1 Efron’s method

Following the same setup as in Section 1.3, Efron’s method estimates f dr(zi) (1.2) for each

test i by estimating the mixture density f and the null sub-density f+0 separately. The estimation

procedures are introduced in detail in [29] and made available through R package locfdr [74].

We will go through the estimation procedures briefly in this section.

4.1.1 Estimating the mixture density f

The mixture density f is estimated through a standard Poisson generalized linear regres-

sion (GLM) procedure. Suppose that the m z-values z1, . . .zm are binned into K bins with bin
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counts y1, . . . ,yK summing to m and equal bin width δ . Efron’s method assumes that the yk’s

are independent Poisson counts,

yk
ind∼ Pois(νk), k = 1,2, . . . ,K, (4.1)

with νk proportional to the mixture density f evaluated at the midpoint of the kth bin zmid
k , i.e.,

approximately,

νk = mδ f (zmid
k ). (4.2)

By modeling log(νk) as a Dth degree polynomial function of zmid
k , (4.1) and (4.2) lead to a

Poisson generalized linear model.

4.1.2 Estimating the null sub-density f+0

Two situations are considered to estimate

f+0 = π0 f0 (4.3)

in Efron’s method. The theoretical null f0 ∼ N(0,1), which would be used for each individual

hypothesis testing problem, may or may not be satisfactory for testing m hypotheses simultane-

ously. In practice, many factors, e.g., failed distributional assumptions on the data, unobserved

covariates, correlation across different tests, correlation between samples, etc., could render

the theoretical null to fail [38, 39]. When the theoretical fails, Efron’s method would fit an

empirical null instead [38, 39].

Assume the empirical null is still normal but not necessarily mean 0 and variance 1, say,

f0 ∼ N(µ0,σ
2
0 ). (4.4)
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One method that [39] provides to estimate µ0, σ0 as well as π0 so as to fit the empirical null is

called “central matching”. Plugging into log( f+0 (z)) with (4.3) and (4.4) gives

log( f+0 (z)) = logπ0−
1
2

{
µ2

0

σ2
0
+ log(2πσ

2
0 )

}
+

µ0

σ2
0

z− 1
2σ2

0
z2, (4.5)

where π0 is the null proportion and π is the mathematical constant. “Central matching” method

uses log( ˆf+0 (z)) to quadratically approximate log( ˆf (z)) near z = 0, so the estimated values

π̂0, µ̂0, σ̂0 are obtained from

β̂0 = logπ0−
1
2

{
µ2

0

σ2
0
+ log(2πσ

2
0 )

}
(4.6)

β̂1 =
µ0

σ2
0

(4.7)

β̂2 =
1

2σ2
0

(4.8)

where β̂0, β̂1, β̂2 are the estimated coefficients of the constant term, first order term and second

order term from the Poisson generalized linear model for log( f̂ (z)) in Section 4.1.1, respec-

tively. The rationale of this method is the “zero assumption” [39], that the z-values close to

zero are all realized from null cases.

The “central matching” method to estimate the empirical null, together with the option of

using the theoretical null, are available in the R package locfdr. In practice, estimating the

empirical null instead of directly using the theoretical null is recommended.

4.1.3 Efron’s method fails for discrete large-scale hypothesis testing

As we can see from Section 4.1.2, Efron’s method assumes normality and hence continuity

for the null density f0(z), no matter it uses the theoretical null or the empirical null. Such

continuity assumption is violated when each test is discrete, which causes Efron’s method to

fail when directly applied to discrete large-scale hypothesis testing problems.
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Figure 4.1 shows the performance of Efron’s method directly applied to a simulated discrete

large-scale hypothesis testing problem. The simulated problem contains m = 10,000 hypothe-

ses, each of which is a FET to discern if the success probabilities between two groups are the

same. Each FET is built on a 2× 2 contingency table, shown in Table 4.1. Detail of the sim-

ulation procedure is described in Scenario A in Section 4.4.2. The histogram of raw z-values

in Figure 4.1 shows a huge peak centered at z = 0, and it drops significantly to both side of

the huge peak. The green solid curve and the blue dashed curve in Figure 4.1 represent fitted

mixture density f and null sub-density f+0 , respectively [74]. We can see that Efron’s method

fails to capture the discretely supported z-values.

4.2 The randomized p-value method

The randomized p-value method [54] introduces an independent uniformly distributed

random variable to convert the discretely supported p-values continuous and hence achieves

exact control of type I error rate.. Consider a single test H0 : θ = θ0 versus H1 : θ 6= θ0 based

on the realization x of a random X , whose distribution G is assumed to belong to a known class

of distribution G = {G(·,θ) : θ ∈ Θ}. Let T (X) be a one-dimensional discretely distributed

test statistic, and Q be the cdf of T (X)|X ∼ G(·;θ0) = G0. Define

q(t) = ∆Q(t) = Q(t)−Q(t−) (4.9)

and the quantile function

Q−1(u) = inf{t : Q(t)≥ u}. (4.10)

50



Figure 4.1.: Performance of Efron’s method for discrete large-scale hypothesis testing. Plots

obtained by directly applying Efron’s method to a discrete large-scale hypothesis testing

problem using the R package locfdr.
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Without loss of generality, suppose the test rejects H0 for small values of T (X), the p-value is

then

P(X) = Q(T (X)),

which is also discretely supported on [0,1]. [54] introduces an independent random variable U

which is uniformly distributed on [0,1], and defined the induced randomized p-value as

P∆−(X ,U) = Q(T (X)−)+U ·q(T (X)). (4.11)

The induced randomized p-value P∆−(X ,U) is then continuously supported on [0,1]. Further-

more, [54] proves that P∆−(X ,U) is G0-uniform, i.e.

PG0{P∆−(X ,U)≤ p}= p for all p in [0,1].

From a Bayesian point of view, we can treat this randomized p-value method as a data

augmentation procedure. Although the random variable X itself is discrete in nature, we can

manually augment it by another independent random variable U , leading the p-value for the

augmented data (X ,U) continuous and G0-uniform on [0,1].

4.3 Methods

4.3.1 Local FDR estimation procedure

As discussed in Section 4.1.2, the estimation of the null sub-density in Efron’s method as-

sumes normality of the null z-values, which implicitly assumes continuity. When the continuity

assumption is violated, Efron’s method will fail to give reasonable local FDR estimates. The

randomized p-value method proposed by [54] as discussed in Section 4.2 provides a bridge to

apply Efron’s method for discrete large-scale hypothesis testing problems.
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Under the same setup as in Section 1.3, for each hypothesis Hi, i = 1, . . . ,m, following the

randomized p-value method, we can introduce an independent random variable Ui and form an

induced randomized p-value as in (4.11),

P∆−(Xi,Ui) = Qi(T (Xi)−)+Ui ·qi(T (Xi)), (4.12)

where Xi is a random observable data for the ith test, Qi and qi are defined likewise as in (4.9)

and (4.10). Now as the induced randomized p-values P∆−(Xi,Ui) are continuously distributed

on [0,1], we can compute the induced Z-values, which is also continuously distributed, via

Z(Xi,Ui) = Φ
−1(P∆−(Xi,Ui)), (4.13)

where Φ−1(·) is the quantile function of the standard normal distribution. Based on the realized

induced z-values for the ith test

z(xi,ui) = Z(Xi = xi,Ui = ui), (4.14)

Efron’s method can therefore be applied to estimate the local FDR,

f dr(z(xi,ui)) = P(Hi0 is true|Z(Xi,Ui) = z(xi,ui)), (4.15)

which can be equivalently denoted as

f dr(xi,ui) = P(Hi0 is true|Xi = xi,Ui = ui)). (4.16)

However, just obtaining the estimation of f dr(xi,ui), as done in the application section of

[54], is incomplete. Our target is not to test based on the joint data {(Xi,Ui)}m
i=1, but the original

data {Xi}m
i=1. In other words, the target is to estimate the local FDR

f dr(xi) = P(Hi0 is true|Xi = xi), (4.17)
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instead of f dr(xi,ui) as in (4.16). To achieve this target, we can simply marginalize out Ui from

f dr(xi,Ui), i.e.

f dr(xi) =
∫

f dr(xi,Ui)dUi. (4.18)

And an empirical way to do so is to simulate u1
i , . . .u

J
i ∼Ui, estimate f dr(xi,u

j
i ) using Efron’s

method by ˆf dr(xi,u
j
i ) and estimate f dr(Xi) by

ˆf dr(Xi) =
1
J

J

∑
j=1

ˆf dr(Xi,u
j
i ). (4.19)

4.3.2 Discrete large-scale hypothesis testing procedure

With the local FDR for each discrete test estimated properly, a discrete large-scale hypoth-

esis testing procedure could be conducted following Algorithm 1.
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Algorithm 1

1. For j = 1, . . . ,J,

1.Draw u j
i ∼ unif(0,1) for each i = 1, . . . ,m;

2.Calculate the induced randomized p-values P∆−(xi,u
j
i ) for each i = 1, . . . ,m, as in

(4.27);

3.Transform the induced randomized p-values into induced z-values z(xi,u
j
i ) for each

i = 1, . . . ,m, as in (4.28);

4.Obtain the estimate of the local FDR value ˆf dr(Xi,u
j
i ) for each i = 1, . . . ,m, using

Efron’s method;

2. For each i = 1, . . . ,m, obtain the estimate of the local FDR value ˆf dr(Xi) as in (4.19);

3. Reject the ith test if ˆf dr(X j)< η .

The cutoff value η to determine rejection is suggested to take 0.2 [39]. As for Efron’s method

in our algorithm, we directly use the R package locfdr. Furthermore, we suggest to estimate

the empirical null instead of directly using the theoretical null for Efron’s method, as discussed

in Section 4.1.2. We will use a simulation study similar to the example used in [38] to show

that the theoretical null fails in certain scenario while the empirical null remains reasonably

good performance.
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4.3.3 Power diagnostic

[39] provides a power diagnostic statistic to help assess power, the probability of rejecting

genuinely non-null cases. The diagnostic statistic is an estimator of the expected non-null false

discovery rate, i.e.

Efdr = EF1 f dr(z) =
∫

f dr(z) f1(z)dz, (4.20)

where f1 is the non-null density aligned with what we defined in Section 1.3. As we discussed

in Section 4.1, Efron’s method bins the z-values and provides an estimated mixture density

f̂ (zmid
k ) and an estimated local FDR ˆf dr(zmid

k ) at each bin center zmid
k . For simplicity, denote

f̂ (zmid
k ) by f̂k and ˆf dr(zmid

k ) by ˆf drk. Based on the following equation

f1(z) = (1− f dr(z)) f (z)/
∫
(1− f dr(z′)) f (z′)dz′, (4.21)

Efron’s method estimates the non-null density f1 at each bin center by

f̂1k = f̂1(zmid
k ) = (1− ˆf drk) f̂k/

K

∑
k=1

(1− ˆf drk) f̂k. (4.22)

With the estimated local FDR and non-null density, an estimator of Efdr is given by

Êfdr =
K

∑
k=1

ˆf drk f̂1k =
∑

K
k=1

ˆf drk(1− ˆf drk) f̂k

∑
K
k=1(1− ˆf drk) f̂k

. (4.23)

A small value of Efdr would suggest good power.

We can similarly bring the power diagnostic statistic into our framework. For each iteration

j in Step 1 of Algorithm 1, we introduce m independent variables u j
1, . . . ,u

j
m to convert discrete

p-values continuous, the power diagnostic statistic for the jth step Êfdr j is actually

Êfdr j = Êfdr(u j
1, . . . ,u

j
m). (4.24)
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C N−C Total

Binomial(n1i,q1i) c1i n1i− c1i n1i

Binomial(n2i,q2i) c2i n2i− c2i n2i

Table 4.1: Contingency table for a FET

Therefore, we can simply marginalize out the independent variables and give the power diag-

nostic statistic by

Ê f dr =
1
J

J

∑
j=1

Ê f dr j. (4.25)

4.4 Simulation Study

In this section, we evaluate the performance of our method through simulation studies.

Consider testing m = 10,000 hypotheses between the two groups, and let j = 1,2 denote the

two groups under comparison. Set the null proportion π0 = 0.9. Each hypothesis i is to discern

if the success probabilities q ji between two groups are the same. We conduct a FET for each

test i. The FET is built on a 2× 2 contingency table, which consists of the counts (C,N−C)

from two independent Binomial distributions, Binomial(n1i,q1i) and Binomial(n2i,q2i). Table

4.1 shows the contingency table.

4.4.1 Evaluate the performance

One principle for hypothesis testing problem is the conservativeness. For a single hypoth-

esis testing problem, conservativeness is reflected as that the false positive rate (type I error)
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should be no higher than a given nominal significance level; For a large-scale hypothesis test-

ing problem relying on tail area-based FDR, conservativeness is that the tail area-based FDR

should not exceed a given nominal level [75]; As for a large-scale hypothesis testing problem

relying on local FDR, conservativeness is that the estimated local FDR should not be smaller

than the actual local FDR. The rationale behind the last case, which is what this dissertation

concerns, is that: If the estimated local FDR turns to be smaller than the actual local FDR, then

more tests are likely to be rejected than it is supposed to, which is anti-conservative.

To evaluate the performance and check conservativeness of our algorithm for the simulation

study, we could compare the estimations with the actual local FDR values. Like Efron’s method

discussed in Section 4.1.1, we can bin the raw z-values

z(xi) = Φ
−1(P(xi)),where P(Xi) is the raw p-value of the ith test, (4.26)

into L bins with equal width ε . So the actual local FDR value in the lth bin is

f dr(zl) =
∑

m
i=11(Hi0 is true)1(zl− ε/2 < z(xi)< zl + ε/2)
max{∑m

i=11(zl− ε/2 < z(xi)< zl + ε/2),1}
, (4.27)

and the mean estimated local FDR is

¯f dr(zl) =
∑

m
i=1

ˆf dr(xi)1(zl− ε/2 < z(xi)< zl + ε/2)
max{∑m

i=11(zl− ε/2 < z(xi)< zl + ε/2),1}
, (4.28)

where zl is the center of the lth bin. On one hand, considering that in (4.2), Efron’s method

bins the z-values into intervals with equal bin width and sets the default bin width as 0.1, the

bin width ε for performance evaluation procedure should be no less than 0.1. On the other

hand, in the performance evaluation, if there is no raw p-values in a certain bin, then (4.27) and

(4.28) for this bin will both be zero. To avoid such empty bin, we choose the bin width ε for

performance evaluation as 0.4.
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4.4.2 Comparison between using the theoretical null and the empirical null

Two scenarios are considered to reflect that the theoretical null may fail in practice. Data

are generated differently corresponding to each scenario.

A the theoretical null is satisfactory:

(a) Randomly choose π0 ·m tests as true nulls. For each test i from this set, generate

the common success probability q1i = q2i from unif(0,1);

(b) For each test i from the other (1− π0) ·m tests, generate q1i ∼ unif(0,1), and let

q2i = q1i−di · sign(q1i−0.5), where di ∼ unif(r,0.5), r is the minimum effect size.

Here set r = 0.2;

(c) Randomly sample m indices from a WGBS data. We use the total count of the ith

brain sample as the number of trials ni0 for the control group, and the total count of

the ith es sample as ni1 for the treatment group;

(d) Draw the count c ji = Binomial(n ji,q ji);

B the theoretical null fails:

(a) Randomly choose π0 ·m tests as true nulls. For each test i from this set, generate

qi ∼ unif(0,1), and let q1i = qi− γi while q2i = qi + γi, where γi ∼ unif(−b,b) and

b = min{0.1,1−qi,qi};

(b) For each test i from the other (1− π0) ·m tests, generate q1i ∼ unif(0,1), and let

q2i = q1i−di · sign(q1i−0.5), where di ∼ unif(r,0.5), r is the minimum effect size.

Here set r = 0.2;
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(c) Randomly sample m indices from a WGBS data. We use the total count of the ith

brain sample as the number of trials ni0 for the control group, and the total count of

the ith es sample as ni1 for the treatment group;

(d) Draw the count c ji = Binomial(n ji,q ji);

Four possible factors causing the theoretical null to fail are listed by [38, 39], as mentioned in

Section 4.1.2. The data generation procedure for Scenario B is analogous to the example [38]

provides, where the existence of unobservable covariates, γi’s, renders failure of the theoretical

null: γi’s introduce extra variation among the z-values of null cases, which results in a heavier-

tail density compared to the theoretical null; However, γi’s are unobservable with mean 0,

leaving each test genuine null.

4.4.3 Performance of the power diagnostic statistic

To illustrate that the power diagnostic statistic Ê f dr we proposed in Section 4.3.3 is a

good indicator of statistical power, we consider a sequence of simulation studies with different

minimum effect size r. Follow the same setup in Scenario A in Section 4.4.2, except that in (b),

set the minimum effect size r to be 0.2, 0.3 and 0.4. We generate data and follow Algorithm 1

to conduct discrete large-scale hypothesis testing respectively for each value of r. The power

diagnostic statistic Ê f dr is calculated for each testing procedure, together with the realized

power defined as

realized power =
number of true non-null hypotheses rejected

total number of true non-null hypotheses
(4.29)

and the realized tail area-based FDR defined as

realized tail area-based FDR =
number of true null hypotheses rejected

total number of rejections
. (4.30)
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Intuitively, larger minimum effect size will deliver bigger differences in success probabil-

ities for the non-null cases between the control group and treatment group, which makes the

non-null cases easier to be detected by the testing procedure. As a result, it is expected to see

higher realized power for simulation study with larger minimum effect size, given the realized

tail area-based FDR controlled under the same level. If the power diagnostic statistic Ê f dr

is indeed a good indicator of statistical power, it should decrease along the way the minimum

effect size increases.

4.4.4 Simulation results

For each scenario in Section 4.4.2, Efron’s method in Algorithm 1 using both the the-

oretical null and the empirical null are conducted and compared. Figure 4.2 and Table 4.2

summarize the results for Scenario A, while Figure 4.3 and Table 4.2 summarize for Scenario

B. We can see that in the two scenarios, the results obtained through empirical null always yield

conservativeness. To compare with, although the result obtained through theoretical null yields

closer estimated local FDR values to the actual local FDR and higher realized power for Sce-

nario A, it turns anti-conservative for Scenario B. Such anti-conservativeness, or equivalently,

over-optimistic result, will result in un-controlled number of false positive findings in real ap-

plications. Therefore, we suggest using empirical null in real applications instead of theoretical

null.

Algorithm 1 is conducted with Efron’s method using the empirical null for each simulation

study in Section 4.4.3. Table 4.4 summarizes the power diagnostic statistics Ê f dr, realized

powers, and realized tail area-based FDRs across different minimum effect sizes r. We can

see that as the minimum effect size r increases from 0.2 to 0.4, it is as expected as mentioned
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Figure 4.2.: The estimated local FDR versus the actual local FDR for Scenario A, where the

theoretical null is satisfactory. The estimated local FDR in the plot to the left is obtained using

theoretical null, while the one in the plot to the right is obtained using empirical null.

in Section 4.4.3 that the realized power increases and the power diagnostic statistic Ê f dr de-

creases, while the realized tail area-based FDRs are controlled under the same level. Such

result shows that Ê f dr is indeed a good statistic to assess power.
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Figure 4.3.: The estimated local FDR versus the actual local FDR for Scenario B, where the

theoretical null fails. The estimated local FDR in the plot to the left is obtained using

theoretical null, while the one in the plot to the right is obtained using empirical null.

Table 4.2: Summary statistics for testing result of Scenario A

Ê f dr Realized power Realized tail area-based FDR

Theoretical null 0.303 0.456 0.032

Empirical null 0.296 0.397 0.017
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Table 4.3: Summary statistics for testing result of Scenario B

Ê f dr Realized power Realized tail area-based FDR

Theoretical null 0.341 0.504 0.180

Empirical null 0.341 0.269 0.023

Minimum effect size r = 0.2 r = 0.3 r = 0.4

Ê f dr 0.296 0.238 0.175

Realized power 0.397 0.529 0.728

Realized tail area-based FDR 0.017 0.033 0.038

Table 4.4: Summary statistics for testing results across different minimum effect size r.
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5. Conclusion and Future Work

In this dissertation, we addressed three statistical issues that rise in data with complicated

structure and/or in large scale.

Firstly, we proposed a novel Bayesian approach for inferences of the summary statistics

and model parameters in ERGMs under measurement errors. We provided a Gibbs sampler

to iteratively draw “true” networks and the model parameters. Simulation results show that

our Bayesian treatment effectively correct the impact of measurement errors. Comparison with

previous nonparametric approaches shows that our method is more adequate for the inference

of networks with moderate number of nodes. We also show that our method is insensitive to

the noise constant p when W true is sparse and p, q are comparable in magnitude, and apply our

method to perform inference for real world networks if only the value of q can be obtained.

Secondly, we introducd the CRW crawler and the ACRW crawler for sampling large-scale

networks with exclusive communities. We proved that the probability for each community

to be sampled using the CRW crawler is uniform, and that under certain condition the CRW

crawler traverses across different communities faster than the widely used RW crawler. The

ACRW crawler is proposed to handle the situation that in real applications where communities

volumes are not known.

Lastly, we brought a solution for discrete large-scale hypothesis testing problems using

local FDR. We handled the discreteness by applying Habiger’s randomized p-value method to

convert the discrete p-values continuous, so that Efron’s method can be applied to estimate the
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local FDR for the augmented test data. Proper treatments are conducted to marginalize out the

auxiliary variable so as to deliver estimated local FDR for the original tests. We also provided

power diagnostic statistics to assess the statistical power of the testing procedure. Simulation

studies show the adequacy of using the empirical null in Efron’s method, as well as using the

power diagnostic statistics we proposed to assess the power.

Some directions of future work should be considered:

1. In Chapter 2, the parameters p and q describing the measurement errors are assumed to

be known, independent and additive. In practice, the values of p and q may be unknown.

Moreover, p and q on different dyads may be random and could possibly be correlated.

We acknowledge the limitation that we have to assume additive error terms so that to

apply ERGM models. And we understand that if the error terms are assumed additive

but unknown random variables, it is possible to bring them into the Bayesian inference

framework as well. However, as the computational cost for the current framework is

already very high, adding more steps into the framework will make the cost even higher.

2. In Chapter 3, we proposed two crawlers for sampling large-scale networks with exclusive

community structures. They both start from one randomly selected node. It is worth

considering parallelizing the crawlers so that they can start from multiple different nodes

in order to make the sampling procedure faster. Meanwhile, we only considered exclusive

community structures in this dissertation. However, there are many real-world network

structures that are not mutually exclusive, meaning that one node can simultaneously

belong to multiple communities. One potential work in the future is how to properly

sample large-scale networks with overlapping community structures.
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3. In Chapter 4, how to conduct discrete large-scale hypothesis testing using local FDR is

answered as a seemingly separate topic. Yet, large-scale hypothesis testing problem is

closely related to networks. For many real-world networks, especially those emerging

from genomics like gene regulatory networks, links or edges are not directly observed.

Whether or not there exists a link is answered through hypothesis testing. When the

number of nodes is large and consequently the number of dyads is even larger, it becomes

a large-scale hypothesis testing problem. One potential work in the future is to construct

a framework to bridge those two topics.
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[49] Sebastian Döhler, Guillermo Durand, and Etienne Roquain. New FDR bounds for discrete

and heterogeneous tests. Electronic Journal of Statistics, 12(1):1867–1900, 2018.

[50] Xiaoyu Dai, Nan Lin, Daofeng Li, and Ting Wang. A non-randomized procedure for

large-scale heterogeneous multiple discrete testing based on randomized tests. Biometrics,

2018.

[51] Guanshengrui Hao and Nan Lin. Discrete multiple testing in detecting differential methy-

lation using sequencing data. In Springer Book on Biostatistics and Bioinformatics. 2019.

[52] Isaac Dialsingh. False discovery rates when the statistics are discrete. PhD Thesis, The

Pennsylvania State University, 2011.

[53] Peter J Rousseeuw. Least median of squares regression. Journal of the American Statis-

tical Association, 79(388):871–880, 1984.

[54] Joshua D Habiger and Edsel A Pena. Randomised P-values and nonparametric procedures

in multiple testing. Journal of Nonparametric Statistics, 23(3):583–604, 2011.

[55] Joshua D Habiger. Multiple test functions and adjusted p-values for test statistics with

discrete distributions. Journal of Statistical Planning and Inference, 167:1–13, 2015.

[56] David R Hunter. Curved exponential family models for social networks. Social Networks,

29(2):216–230, 2007.



75

[57] Martina Morris, Mark S Handcock, and David R Hunter. Specification of exponential-

family random graph models: terms and computational aspects. Journal of Statistical

Software, 24(4):1548, 2008.

[58] Alberto Caimo and Nial Friel. Bayesian inference for exponential random graph models.

Social Networks, 33(1):41–55, 2011.

[59] Alberto Caimo and Antonietta Mira. Efficient computational strategies for doubly in-

tractable problems with applications to Bayesian social networks. Statistics and Comput-

ing, 25(1):113–125, 2015.

[60] Iain Murray, Zoubin Ghahramani, and David MacKay. MCMC for doubly-intractable

distributions. arXiv:1206.6848, 2012.

[61] Walter R Gilks, Gareth O Roberts, and Edward I George. Adaptive direction sampling.

The Statistician, pages 179–189, 1994.

[62] Gareth O Roberts and Walter R Gilks. Convergence of adaptive direction sampling. Jour-

nal of Multivariate Analysis, 49(2):287–298, 1994.

[63] Alberto Caimo and Nial Friel. Bergm: Bayesian exponential random graphs in R. Journal

of Statistical Software, 61(2):1–25, 2014.

[64] Tong Ihn Lee, Nicola J Rinaldi, François Robert, Duncan T Odom, Ziv Bar-Joseph,

Georg K Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, and

Itamar Simon. Transcriptional regulatory networks in Saccharomyces Cerevisiae. Sci-

ence, 298(5594):799–804, 2002.



76

[65] Monika R Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. On near-

uniform URL sampling. Computer Networks, 33(1-6):295–308, 2000.

[66] Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter Willinger. On

unbiased sampling for unstructured peer-to-peer networks. IEEE/ACM Transactions on

Networking (TON), 17(2):377–390, 2009.

[67] Amir Hassan Rasti, Mojtaba Torkjazi, Reza Rejaie, Nick Duffield, Walter Willinger, and

Daniel Stutzbach. Respondent-driven sampling for characterizing unstructured overlays.

In IEEE INFOCOM 2009, pages 2701–2705, 2009.

[68] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to-peer

networks. In IEEE INFOCOM 2004, volume 1, 2004.

[69] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In KDD, pages 631–

636, 2006.

[70] W Keith Hastings. Monte Carlo sampling methods using markov chains and their appli-

cations. Biometrika, 57:97–109, 1970.

[71] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,

and Edward Teller. Equation of state calculations by fast computing machines. The

Journal of Chemical Physics, 21(6):1087–1092, 1953.

[72] Robin IM Dunbar. Do online social media cut through the constraints that limit the size

of offline social networks? Royal Society Open Science, 3(1):150292, 2016.

[73] Emilio Ferrara. A large-scale community structure analysis in Facebook. EPJ Data

Science, 1(1):9, 2012.



[74] Bradley Efron, Brit Turnbull, and Balasubramanian Narasimhan. locfdr: Computes local

false discovery rates. R package version, 1:1–7, 2011.

[75] LJ Wei. Asymptotic conservativeness and efficiency of kruskal-wallis test for k dependent

samples. Journal of the American Statistical Association, 76(376):1006–1009, 1981.

77


	Topics in Complex and Large-scale Data Analysis
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	ABSTRACT OF THE DISSERTATION
	Introduction
	Network with measurement errors
	Sampling large-scale networks with community structure
	Discrete large-scale hypothesis testing based on local FDR

	Network with Measurement Errors
	Setup
	Bayesian inference
	Updating Wtrue
	Updating 

	Numerical results
	Simulation
	Comparison with nonparametric network denoising
	Sensitivity analysis
	Empirical results


	Sampling Large-scale Networks with Community Structure
	Setup
	Random walk crawlers and sampling bias
	Cummunity-volume-adjusted random walk crawler
	Algorithm
	Comparison with the RW crawler
	Comparison on synthetic networks

	Practical concern and the adaptive version
	Algorithm
	Comparison on synthetic networks


	Discrete Large-scale Hypothesis Testing based on Local FDR
	Efron's method
	Estimating the mixture density f
	Estimating the null sub-density f0+
	Efron's method fails for discrete large-scale hypothesis testing

	The randomized p-value method
	Methods
	Local FDR estimation procedure
	Discrete large-scale hypothesis testing procedure
	Power diagnostic

	Simulation Study
	Evaluate the performance
	Comparison between using the theoretical null and the empirical null
	Performance of the power diagnostic statistic
	Simulation results


	Conclusion and Future Work
	References

