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Figure 2.5. Competitive transplantation of Smc3 haploinsufficient bone marrow cells. 
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Figure 2.6. Effect of Dnmt3a haploinsufficiency on competitive disadvantage in Smc3 

haploinsufficient BM cells. 
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Figure 2.7. Splicing analysis of exon 3 to exon 5 in wild-type and Smc3fl/+/Vav1-Cre+/- KL 

cells. 
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Figure 2.8. Representative plot of intracellular flow cytometry data (Figure 2.1.D-E). 
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Figure 2.9. Analysis of homozygous somatic Smc3 deletion. 
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Figure 2.10. Analysis of germline heterozygous Smc3 deletion. 
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Figure 2.11. Immunophenotypic analysis of colonies in serial replating assay ex vivo (Figure 

2.4.C-E). 
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Figure 2.12. Competitive transplantation of ERT2-Cre+/- bone marrow cells. 
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Chapter 3: 

Exome analysis of treatment-related AML after APL suggests secondary evolution 
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Treatment-related acute myeloid leukemia (tAML) and treatment-related myelodysplastic 

syndrome (tMDS) have been associated with many types of chemotherapy and radiation.1 

Treatment-related AML or tMDS have been observed after treatment of acute promyelocytic 

leukemia (APL) with combination all-trans retinoic acid (ATRA)/idarubicin/cytarabine.2, 3, 4, 5, 6 

It is unknown whether tAML will emerge following exposure to all-trans retinoic acid (ATRA) 

and arsenic trioxide (ATO), which should not cause DNA damage or the clonal selection of 

chemotherapy-resistant clones that give rise to tAML.1, 6, 7 We describe a case of an older women 

who presented initially with dysplasia. Shortly thereafter she developed APL and was treated 

with ATRA/ATO. Five years later she developed what clinically appeared to be tAML. Exome 

sequencing revealed a founding clone with a TET2 mutation and shared passenger mutations that 

existed at all three time points. The APL sample shared these mutations, and the subsequent 

“tAML” emerged as a new subclone with an NPM1 mutation, more consistent of secondary 

AML rather than tAML. This case demonstrates that APL may emerge within the context of 

clonal hematopoiesis, and that tAML emerging after ATRA/ATO should be evaluated for 

features consistent with secondary AML. 

An 81 year-old woman presented initially with cytopenias at an outside facility. A bone marrow 

biopsy was performed, revealing trilineage dysplasia, 6% promyelocytes, and a normal 

karyotype, 46 XX[20/20] (Table 3.1). Two months later, the cytopenias persisted and a repeat 

bone marrow aspirate was hypercellular with 50% promyelocytes. Cytogenetics revealed 46 XX, 

t(15;17)[18]/46 XX[2] and 89% of cells were positive for PML-RARA by FISH. She was referred 

to Washington University. The bone marrow biopsy was repeated and banked with appropriate 

consent for genomic analysis. The repeat biopsy was unfortunately hemodilute with 4.5% 

t(15;17) by FISH [9/200], was not evaluated by cytomorphology, and RT-PCR failed (control 
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GAPDH primers did not amplify). She was treated with ATRA/ATO. Bone marrow biopsy 6 

weeks later revealed 1% promyelocytes and normal karyotype by cytogenetics and FISH. Due to 

her age, no further bone marrow biopsies were performed and subsequent peripheral blood RT-

PCR tests were negative. Five years later she became increasingly cytopenic and a bone marrow 

aspirate revealed acute myeloid leukemia with 72% blasts, 20% promyelocytes, and a normal 

karyotype. She was treated with decitabine. She deteriorated during the first cycle and 

transitioned to hospice. 

Exome sequencing was performed on three samples using techniques described elsewhere and 

compared against a skin sample, which was used as a germline control (Figure 3.1).8 Cells 

retained on a coverslip were available from the dysplastic pre-APL sample and this was used for 

genomic analysis. No coverslip or other material was available from the APL sample with 89% 

PML-RARA. Cryopreserved bone marrow aspirate cells were used for APL (4.5% PML-RARA) 

and AML (72% blasts) analysis. The collected APL sample only generated one cryovial, which 

was used for DNA synthesis. Unfortunately, no additional samples are available for RNA-Seq 

analysis or sequencing of subpopulations after flow sorting.  

A shared founding clone existed across all three time points that contained a TET2 mutation and 

15 additional variants (Figure 3.1, black). Three additional clusters were identified: 1) variants 

that were present predominantly in the dysplasia sample (SEMA4A, and ZBTB7A, orange); 2) 

variants that were absent in the AML sample (TET1, SACM1L, OR7D2, SH3TC1, blue); 3) 

variants that increased in the AML sample, but were present at low variant allele frequencies or 

were undetected in prior samples (NPM1 and 13 additional variants, red).  

Treatment-related AML has been associated with APL therapy that includes alkylating agents,2, 3, 

4, 9 but has not been associated with ATRA/ATO, which are non-cytotoxic and do not damage 
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DNA. This unusual case initially appeared consistent with tAML following ATRA/ATO, 

however, following exome analysis, appears to be more consistent with a pre-existing dominant 

clone associated with dysplasia and a TET2 mutation, and an NPM1-associated secondary AML. 

Two models are possible (Figure 3.1F). First, the APL may have emerged as a subclone of the 

TET2 founding clone. Given the high TET2 variant allele frequency (VAF, consistent with 70% 

and 66% tumor burden in the dysplastic and APL samples, respectively) and the high tumor 

burden of PML-RARA in the bone marrow (85%), this model seems likely. Alternatively, 

because the sequenced APL sample is hemodilute, it is possible that the PML-RARA clone is 

independent of the TET2 clone, that the APL clone did not peripheralize, or that geographical 

heterogeneity existed in this older patient. Given the absence of additional samples, it is 

impossible to determine whether the APL emerged as a subclone of the TET2 founding clone 

occurred independent of the TET2 clone.  

In order to determine if these subclonal patterns are observed in other APL patients, we reviewed 

available cytogenetic results from published APL patients. Two cases of disease progression 

from MDS to APL have been described10, and cases of treatment-related APL have been 

described following MDS.11 In the former cases, like this case, the timeline of evolution and 

dysplastic changes in the APL morphology suggests that the APL clone likely was evolutionarily 

related to the MDS clone. In the latter cases, the cytogenetics and timeline suggest the APL clone 

likely emerged independent of the MDS clone. 

Clonal hematopoiesis of indeterminate potential (CHIP) and MDS have been associated with 

deletions involving chromosomes 5 and 712, 13, which occasionally co-occur with t(15;17).14, 15, 16 

Therefore, we examined the subclonal relationship of t(15;17) with possible CHIP-related 

variants among APL patients enrolled at large cancer centers. We identified 44 APL cases with 
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t(15;17) and cytogenetic abnormalities in chromosomes 5 or 7. Five cases involved chromosome 

5, two of which also had abnormalities in chromosome 7. Thirty-three cases involved a 

monoclonal process, suggesting that the variants in chromosomes 5 or 7 co-occurred with 

t(15;17). Of the eleven cases with identified polyclones, the chromosome 5 or 7 variant was in a 

subclone of t(15;17) in ten cases and in only one case was there evidence of del(7) in a clone that 

was independent of the t(15;17) clone (Patient 52009 from APL 2006, 46, XY, t(15,17)(q22, 

q11)[13]/46, XY, del(7)(q35)[5]/46, XY [2]) (Table 3.2). These data suggest that t(15;17) may 

co-occur with additional cytogenetic deletions of chromosomes 5 and 7, but t(15;17) is almost 

invariably the founding event, and it is unusual for a concurrent CHIP or MDS clone to co-exist 

with t(15;17). 

Other investigators have reviewed the outcomes in APL patients with cytogenetic abnormalities 

that occur in addition to t(15;17).16, 17, 18 The most recurrently observed co-occurring cytogenetic 

abnormalities include +8 and +21, both of which frequently can be identified as subclonal 

progression events when analyzing metaphase cytogenetics or FISH, and have been observed as 

progression events in MDS and AML.11 In these studies, additional cytogenetic abnormalities 

have not correlated with initial clinical characteristics, or with outcomes in patients with 

t(15;17).16, 17, 18 

Morphologic disease switching also has been described in NPM1-mutated AML patients who 

subsequently developed MDS or myelofibrosis. In each of these cases, the NPM1-mutation was 

lost, and the MDS or myelofibrosis evolved from an antecedent clone with a mutation in TET2, 

JAK2, ASXL1, IDH2, or a spliceosome trancript, suggesting that the two clonal diseases were 

related through an ancestral clone.19 
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In summary, we present a case of what initially appeared to be tAML following non-cytotoxic 

ATRA/ATO therapy for APL. Exome analysis clearly demonstrated a TET2-associated, 

dominant clonal process that anteceded the APL diagnosis, persisted, and gave rise to AML 

associated with evolutionary expansion of an NPM1-mutated subclone. This progression would 

be more consistent with a secondary AML process, rather than a treatment-related process. 

Additional characterization of this case would be interesting. Unfortunately, samples for such 

analyses are unavailable. Review of additional cytogenetic abnormalities observed in APL 

patients did identify one rare case with del(7) independent of the APL clone, suggesting that 

APL can co-exist with CHIP or MDS clones, although it appears much more common for such 

cytogenetic abnormalities to occur as subclones of the APL clone. Collectively, these results 

suggest that caution must be exercised when interpreting the development of tAML following 

ATRA/ATO therapy, and subclonal expansion of related or well-established clones should be 

considered, especially in older patients. 
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Figure Legends 

 

Figure 3.1. Exome analysis of patient 10DD-1029.  

(A) Summary results of all somatic variants detected at any of the three time points analyzed. (B) 

Cluster of variants with stable VAFs across all three samples. (C) Cluster of variants present in 

the initial dysplastic sample, with reduced VAFs in subsequent samples. (D) Cluster of variants 

with VAFs in the initial two samples, but which were absent in the subsequent AML sample. (E) 

Cluster of variants associated with the AML progression, which were largely absent in the initial 

two samples. (F) Two models for subclonal expansion. 
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Figure 3.1. Exome analysis of patient 10DD-1029.  
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Tables 3.1. Clinical data of the patient. 

 

  

Dysplasia APL APL (banked) post-APL AML 

Day 0 Day 49 Day 51 Day 87 Day 1897 

Sequencing exome ND Exome ND exome 

t(15;17) 0% 89% 4.5% 0% 0% 

BM blasts 0% 1% ND 1% 72% 

BM promyelocytes 6% 50% ND 1% 20% 

BM myelocytes 9% 25% ND 25% 1% 

BM metamyelocytes 2% 3% ND 3% 5% 

BM bands 9% 2% ND 2% 0% 

BM dysplasia trilineage atypia ND none none 

PB WBC NA 0.9 0.9 0.9 2.2 

PB % Lymphs NA 95% 95% 95% 88% 

PB % Blasts NA 0% 0% 0% 6% 

 

AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; BM, bone marrow; NA, not 

available; ND, not done; PB, peripheral blood; WBC, white blood cells. 
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Table 3.2. APL patients with cytogenetic abnormalities in chromosomes 5 or 7 and 

evaluable subclonal architecture. 

 

Source Patient Karyotype 

t(15;17) 

subclone 

Clone 

independent 

of t(15;17) 

APL 2006  52009 

46, XY, t(15,17) (q22, q11) [13] / 46, 

XY, del(7)(q35)[5]/46, XY [2]   del(7) 

MD Anderson NA 

46,XX,add(7)(q32),t(15;17)(q24;q21)[5]

/47,idem,+8[2]/46,XX,del(7)(q22q34),t(

15;17)[7]/ 

46,XX,add(4)(p16),t(15;17)[5]/46, 

XX[1] 

del(7), 

+8, 

add(4)   

APL 2006  78034 t(15 ;17), +8 [ ?], t(15 ;17), -7, -5 [ ?] -7, -5, +8   

APL92 848 
46XY,15q+,17q- [19/20] / 45,XY,-

5,15q+,17q- [1/20] -5   

APL92 108 
46,XX,1p-,7q-,15q+,17q-,19q+ [14/20] / 

46,XX,15q+,17q- [6/20]  

del(1p), 

del(7q), 

add(19q)   

APL92 687 
46,XX,t(15;17)(q22;q11～21) [19/20] / 

46,idem,-7,+mar [1/20] -7   

APL92 742 
46,XX,t(15;17) [16/17] / 

46,idem,add(7)(q?) [1/17] add(7)   

MD Anderson NA 

46,XX,t(15;17)(q24;q21)[15]/ 

46,idem,del(7)(q22q32)[3]; 46,XX[2] del(7)   

MD Anderson NA 

46XX,t(15;17)(q22;q21.1)[16]/46, 

idem,del(7)(q22q34)[1]/ 46XX[3] del(7)   

MD Anderson NA 

46XY,t(15;17)(q22;q21)[16]/46,idem,de

l(7)(q32q36)[1]/46,XY[3];  del(7)   

MD Anderson NA 

46XX, del(7)(q31q36), 

inv(9)(p11;q12),t(15;17)(q22;q21)[2]/47

XX,+8,inv(9), der(15), der(17)[3]/46XX, 

inv(9).  

del(7), 

+8   
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