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ABSTRACT OF THE DISSERTATION 

The Role of IFRD1 in the Recruitment and Function of Reserve Stem Cells in Regeneration and 

Cancer  

by 

Mark Lewis 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular and Cellular Biology 

Washington University in St. Louis, 2019 

Professor Jason C. Mills, Chair 

Mature cells can reprogram into a proliferative, progenitor-like state to repair tissue following 

injury and inflammation. Differentiated cells in diverse tissues can become proliferative via a 

dedicated, evolutionarily conserved program we termed paligenosis. We detailed how 

paligenosis occurs, in both gastric chief and pancreatic acinar cells, in a step-wise manner that 

involves: 1) autodegradation of mature cell components; 2) re-expression of progenitor genes; 3) 

re-entry into the cell cycle. This process is governed by mTORC1, a fundamental cellular energy 

sensor and regulator of protein translation. Blocking mTORC1 permitted autophagy and 

metaplastic gene induction but blocked cell cycle re-entry at S-phase. Because paligenosis is a 

shared, conserved process, we reasoned that genes likely evolved specifically to regulate it. We 

characterized IFRD1 as a gene that is conserved throughout eukaryotes, upregulated by 

paligenosis-inducing injury, and largely dispensable for homeostatic regulation of proliferation 

and differentiation. IFRD1 is critical for the injury-induced recruitment of cells into the cell 

cycle in Drosophila intestine and multiple mouse tissues. Ifrd1−/− mice showed decreased 

mTORC1-mediated proliferation and increased apoptosis in gastric and pancreatic paligenotic 
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cells. mTORC1 inhibition and Ifrd1−/−;Trp53−/− experiments revealed that IFRD1 works largely 

by preventing p53 from repressing the reactivation of mTORC1 during stage 3 of paligenosis. 

IFRD1 is the first gene shown to regulate the conserved cellular program that recruits mature 

cells for regeneration. Recruiting mature cells to proliferate following injury can reveal harbored 

mutations that increase the risk for preneoplastic lesions. Thus, we analyzed the expression of 

IFRD1 in colon cancer tumors and found it to be significantly associated with decreased 5-year 

patient survival. Pro-paligenotic genes like IFRD1 might be harnessed to increase cellular 

reprogramming to promote regeneration; alternatively, because recruiting old cells with potential 

stores of somatic mutations increases risk for cancer, blocking paligenosis might prevent or treat 

cancer. 
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Chapter 1: Introduction 

Chapter 1.1 The Emergence of Paligenosis 

Cellular plasticity in response to injury has become critical to understanding the role of 

mature, differentiated cells in human disease. Numerous species and nearly all tissues 

demonstrate instances of cellular plasticity. There have been relatively few Investigations of the 

specific cellular and molecular mechanisms involved in this process. Limited research in this 

area is due to: 1) terminology, in that there has not been an accepted, singular term used to 

describe the process by which terminally differentiated cells revert their cellular state to repair 

injury; and 2) a general focus of investigators on the outcomes of dedifferentiation (vs. the 

process). This cellular “reprogramming” to a proliferative, regenerative state can occur in 

various contexts, such as when tissue undergoes metaplasia following injury. Metaplasia is 

described as a temporary change in differentiation state in a cell. Acutely, injury-induced 

metaplasia enables rapid tissue repair, with full restoration of normal tissue architecture. We 

primarily investigate the cellular processes involved in metaplasia in the stomach, where it is 

described as SPEM (Spasmolytic Peptide Expressing Metaplasia) (Figure 1A). High doses of 

tamoxifen causes SPEM and it is characterized by the loss of some differentiation markers and 

the emergence of cells that express both terminal differentiation markers such as Gastric Intrinsic 

Factor (GIF) or Pepsinogen-II (PGII) and a progenitor marker like Tre-foil factor 2 (TFF2)1.  

Building upon the work of former Mills lab members (Greg Sibbel, Ramon Jin, and Won 

Jae Huh), we understood that the first detectable morphological change in gastric chief cells is an 

induction of lysosomal and autophagic machinery. We proposed that pancreatic acinar cells, 

which share morphological and physiological function with gastric chief cells, would be an 
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important tissue to investigate and compare the acute injury response. Metaplasia in the pancreas 

is termed ADM (Acinar-to-Ductal Metaplasia) (Figure 1B). Repeated doses of cerulein causes 

ADM in pancreatic acinar cells, which is also characterized by the dedifferentiation of acinar 

cells to an embryonic progenitor phenotype that expresses ductal markers. Pancreatic acinar cells 

lose morphological features of a differentiated cell and express the combination of acinar-

specific markers like Amylase or Carboxy-peptidase 1 (CPA1) and duct markers like cytokeratin 

19 (CK19), Sry-related high-mobility group box 9 (SOX9) or mucin 1 (Muc1)2.  

In addition to an upregulation of autophagic machinery, we observed that exocrine 

secretory cells in both the stomach and pancreas exhibited a specific and discrete set of events 

(Figure 2). The idea of a shared, conserved process of dedifferentiation was first proposed in the 

work of Dr. Jason Mills and Dr. Owen Sansom3. They described, based on preliminary 

observations in the lab and in the literature, that the stomach, pancreas and small intestine 

activate a similar program in response to injury and inflammation. They described how secretory 

cells in these tissues induced lysosomes to degrade mature cell components prior to the 

expression of progenitor markers (metaplastic gene expression). The last step is that these 

metaplastic cells will re-enter the cell cycle, in order to begin to repair and regenerate the 

damaged tissues. The sequential nature of this process was hypothesized to have specifically 

evolved to equip otherwise terminally differentiated cells with the capacity to revert to an 

embryonic state, and become mitotic again. Metaplasias in the stomach and pancreas are 

designed to be temporary cellular states that enable a cell to withstand certain injuries.  

We proposed “paligenosis” as a dedicated term for this specific cellular process re-

acquiring regenerative capacity. The term paligenosis encompasses the many terms that describe 

a “reprogramming” event in mature cells. Paligenosis represents a decision at the cellular level to 
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dedifferentiate and proliferate instead of being routed to programmed cell death. We predict that 

failure at any stage of paligenosis would result in cellular dysfunction or apoptosis. Here, we 

proposed paligenosis to define the process and demonstrate that it is a conserved program with 

shared molecular and cellular regulation similar to other basic cellular processes like mitosis or 

apoptosis.  

Chapter 1.2 Parallels between paligenosis and apoptosis 

We proposed that paligenosis is a fundamental biological process, like mitosis or 

apoptosis. We believe that paligenosis is activated following injury and inflammation to enable a 

decision at the cellular level to either become proliferative or activate programmed cellular 

death. Apoptosis, like paligenosis, was named to describe a distinct program of cellular changes. 

The term apoptosis was first used in a hallmark paper by Kerr, Wyllie, and Currie in 1972 to 

describe a morphologically distinct form of cell death. While apoptosis as a termed had only 

been described in 1972, components of the apoptosis concept had been explicitly described many 

years previously4-6. The cellular events involved in apoptosis include blebbing, cell shrinkage, 

nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation and global 

mRNA decay en route to death7. The understanding of the mechanisms involved in the process 

of apoptosis in mammalian cells emerged from the investigation of programmed cell death 

during the development of the nematode Caenorhabditis elegans8. 

Kerr and colleagues described a mechanism by which the balance between cell division 

and cell loss can be managed in a newly named process termed apoptosis4. Like paligenosis, 

apoptosis was described to play a basic role in tissue homeostasis with wide-ranging biological 

implications4. After the initial characterization of apoptosis, little was known about the factors 
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that initiate apoptosis or of the nature of the proteins involved. At this time, apoptosis was 

described as a basic cellular process that was highly conserved and involved specific cellular 

mechanisms that were activated prior to the appearance of the characteristic morphological 

changes. The key events in the evolution of apoptosis, include: its naming, the identification of 

genes that are required for its execution and the description of subtypes that occur in a 

specialized manner. In the 1980’s, the genetics of programmed cell death began to come into 

view. Initially, three genes- ces-1, ces-2, and egl-1- were identified in C. elegans that, when 

mutated reversed the life vs. death decision in a subset of cells9-11. Then, it was found that three 

different genes- ced-3, ced-4 and ced-9- can mutate to cause the survival of all cells that 

otherwise would undergo apoptosis10,12. These three genes defined the killing or execution step 

of apoptosis. This time in apoptosis research represents the watershed moment when 

investigators began to elucidate not only the family of genes that are important for apoptosis (ced 

genes), but also the interplay between these genes and the genetics of apoptosis induction and 

function13-19. Another key moment was the cloning of the ced-9 gene which revealed that the 

amino acid sequence of ced-9 is similar to the protein product of the mammalian proto-oncogene 

bcl-213. They found that, like ced-9, Bcl-2 is sufficient to protect worm cells from apoptosis. This 

conservation of protein sequence and function was important in showing how basic cellular 

processes can be evolutionarily conserved and the ability to translate findings from simple to 

complex species.   

Our hope is that paligenosis follows a similar trajectory. At this point, the set of cellular 

processes have been named. Like ced genes, we believe that there is a set of genes that have 

evolved specifically to regulate the paligenosis process. The most fundamental characteristic of a 

paligenosis gene would be for it to be highly conserved. We would also hypothesize that this 
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gene, whose primary role is to regulate reserve stem cell function, would be dispensable for 

normal cellular activity. We would also anticipate this gene to be called into action during the 

acute injury response in numerous tissues. Within this thesis, I will describe how we have 

identified the first gene specifically required for paligenosis. 

Chapter 1.3 IFRD1 review 

We described paligenosis as a shared and conserved process activated in response to 

injury. Therefore, we initiated a bioinformatic screen to identify genes that are upregulated in the 

acute injury phase. Our initial criteria for a paligenosis gene was one that may be expressed at 

low or no levels normally, but then increase in response to stress. In addition, stresses that induce 

conserved mechanisms like fos/jun/AP1 would also likely signal through a protein that is 

important for a conserved process like paligenosis. We would, thus, expect this protein to only 

affect a certain kind of stress response, but not normal development or proliferation. Our initial 

screen included tissues that demonstrate metaplasia and dynamic mTORC1 activity following 

injury (Stomach, Pancreas, Kidney and Liver) (Figure 3). The screen led to the identification of 8 

genes that we then analyzed further to include more diverse tissues that also demonstrate the 

ability to dedifferentiate in response to injury (lung and glia) (Figure 4). Atf3 and Ifrd1 were the 

only two genes to be significantly upregulated in diverse tissues during the acute injury response. 

My decision to pursue IFRD1 was influenced by the fact that our colleague, Dr. Deborah Rubin, 

is an expert on this protein and that would enable us to quickly leverage that expertise to 

investigate IFRD1 in paligenosis. ATF3 is also under active investigation in the lab.  

IFRD1 (interferon related developmental regulator 1) was originally characterized as an 

immediate early gene that was found to respond to mitogens such as TPA, EGF, c-Jun and FGF. 
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IFRD1 associates with the Sin3 complex and was reported to play a role as a transcriptional co-

regulator. Dr. Rubin described the role of IFRD1 in regulating intestinal lipid metabolism and 

epithelial cell proliferation20,21. To this point, there have no reports of homeostatic pathology in 

mice lacking IFRD1, other than a neurodegenerative disorder known as Spinocerebellar ataxia 

(SCA)22. Neurodegenerative disorders like SCA are generally progressive diseases associated 

with damage to neurons. Cells of the peripheral nervous system have an intrinsic ability to repair 

or regenerate22. For example, when an axon is damaged, the distal segment activates a repair 

process that begins with Wallerian degeneration. The proximal segment of the axon either 

undergoes apoptosis or chromatolysis in an attempt to repair the axon. Chromatolysis results in 

nuclear and nucleolar changes that enables a neuron to regenerate following injury22. This 

neuronal injury response mirrors the degradation, gene expression changes and regenerative 

capacity we describe in paligenosis. We hypothesize that the emergence of a defect related to 

IFRD1 in neuroregeneration would be due to the fact these long-lived cells may rely on a process 

like paligenosis to repair injury.  

We began to generate specific criteria for a paligenosis gene and Ifrd1 became a lead 

candidate for investigation. As a transcriptional co-regulator, IFRD1 could potentially regulate 

large sets of genes (like a specific genetic program) via chromatin modification, compared to a 

typical transcription factor which generally have more limited capacity to regulate genes. 

Preliminary experiments with GFP-tagged IFRD1 in Caco-2 cells revealed that this protein can 

be localized in various cell compartments (cytoplasm, nucleus and nucleolar). This suggested 

that IFRD1 may then function in different parts of the cell, potentially to interpret cellular stimuli 

in the cytoplasm or modify transcription in the nucleus or nucleolus. Since IFRD1 is activated 

rapidly in response to injury, it may function by associating with a complex that is already 
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present in all cells that rely on paligenosis to proliferate or regenerate. Alternatively, this protein 

may act as a scaffold, to bring together already present components needed for cell cycle re-entry 

after injury.  

We would anticipate that IFRD1 function would impact human disease, as well. A recent 

paper has shown that mutations in IFRD1 are associated with gastric cancer23. Given the role of 

IFRD1 in driving the stress-induced proliferative response, we would also predict that IFRD1 

expression in adult cancers could also be associated with increased tumorigenesis. Functionally, 

we might expect aberrant IFRD1 function to allow tumor cells to quickly switch from a  

quiescent to proliferative state. Further, IFRD1 has been shown to alter lipid metabolism in 

enterocytes and could, thus, regulate the metabolic status of cancer cells21,24. This metabolic 

flexibility could then influence the way that cancer cells adapt to the tumor microenvironment or 

it may modify sensitivity to adjuvant chemotherapy25. 

Lastly, because paligenosis is shared and conserved process, we would also expect a 

protein evolved to regulate it to also be conserved. We found that the major domains of IFRD1 

are conserved to Schizosacchromyces Pombe. Publicly available datasets show that IFRD1 

orthologs are upregulated in response to stress in both S. pombe and D. melanogaster. Thus, 

Ifrd1 expression levels positively correlate with the processes of cell and tissue injury response 

and regeneration in humans, mice and in lower species. For these reasons, IFRD1 became a lead 

candidate as a critical regulator of paligenosis.  

IFRD1 conservation and the Sin3A HDAC complex 

IFRD1 has been reported to interact with the SIN3 histone deacetylase (HDAC) 

complex26.  SIN3 was initially identified via genetic screen by two groups in 1987-the MRC 
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Laboratory of Molecular Biology (Cambridge, England) and the University of California, San 

Francisco (San Francisco, CA)-that were independently investigating the phenomena of mating 

type switching in budding yeast27. SIN3 has not been shown to have intrinsic DNA-binding 

abilities, but instead is thought to act as a master scaffold, providing a platform for the assembly 

of numerous transcription factors and cofactors. More than two decades of research has 

implicated Sin3 in numerous biological functions including: scaffolding of core histone 

deacetylase (HDAC) complexes, regulation of DNA and histone methylation, nucleosome 

remodeling, and N-acetylglucosamine transferase activity. SIN3 has also been found to play a 

key role in the reprogramming of somatic cells by maintaining embryonic stem cell pluripotency 

and promotes the generation of induced pluripotent stem cells28. In Drosophila, Rpd3 is the 

ortholog for both HDAC1 and HDAC2. Inactivation of Rpd3 leads to apoptosis due to increased 

JNK activity and decreased Hippo signaling. Sin3A is a key component of the Rpd3-containing 

Sin3 complex and inhibition of either Rpd3 or Sin3a leads to apoptosis in Drosophila epithelial 

cells29. In mammals, the SIN3-HDAC complex represses CDKN1A which enables cell cycle 

progression. Loss of Sin3a in embryonic lung epithelial progenitor cells leads to upregulation of 

CDKN1A and permanent cell cycle arrest in G130. In sum, loss of IFRD1 and SIN3A complex 

may lead to increased CDKN1A and cell cycle arrest.  

Sin3 was originally isolated as a negative regulator of transcription in budding yeast 

(Saccharomyces cerevisiae). There is, however, no ortholog of IFRD1 in S. cerevisiae, but 

IFRD1 does emerge in Saccharomyces pombe. Both S. pombe and S. cerevisiae share genes with 

higher eukaryotes that they do not share with each other. For example, S. pombe has RNAi 

machinery genes like those in vertebrates, while this is missing from S. cerevisiae31. S. 

cerevisiae also has greatly simplified heterochromatin compared to S. pombe. Conversely, S. 
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cerevisiae has well-developed peroxisomes, while S. pombe does not. S. cerevisiae is in the G1 

phase of the cell cycle for an extended period (as a consequence, G1-S transition is tightly 

controlled), while S. pombe remains in the G2 phase of the cell cycle for an extended period (as a 

consequence, G2-M transition is under tight control)32. Therefore, we would predict that IFRD1 

has emerged as a chromatin modifier that interacts with SIN3 to regulate transcription programs 

required for G2-M transition higher eukaryotes.  

IFRD1 is implicated in numerous cellular signaling pathways  

IFRD1 has been implicated in large number of cellular signaling pathways. The function 

of Sin3a in the cell cycle is a result of its regulation of its regulation STAT transcription 

activity33. IFRD1 has also been linked to fatty acid synthesis. Long chain acyl‐CoA synthetases 

(ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs34. Inactivation of ACSL1 

in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, 

glucose oxidation, and mTOR activation. The heightened cellular stress observed in Acsl1H−/− 

mice resulted in increased Atf3 and Ifrd1 expression34. In keratinocytes treated with human 

papillomavirus, Ifrd1 expression is significantly downregulated following inhibition of mTOR 

(rapamycin) or MAPK (MEK1- PD98059 and RAF- GW5074) pathways35. Ifrd1 deficiency led 

to increased acetylation of p65 at residues K122 and K123, repressing NF-κB transcriptional 

activity36. PGC-1a which is an important cellular metabolic regulator is controlled by IFRD1 in 

adipocytes37. In osteoblasts, IFRD1 negatively regulates BMP-2, which is part of the TGF-

B/SMAD and hedgehog pathways in development38. Lastly, IFRD1 has been predicted to 

downregulate B-catenin/Tcf4 transcriptional activity via its histone deacetylase activity39. All of 

these pathways play a role in injury response, progenitor activity or cell cycle re-entry following 

injury in our tissue models. The implication of IFRD1 in various cellular signaling pathways 
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increases its capacity to integrate the stress response in diverse cellular types and in different 

contexts.   

IFRD1, ribosomes and nucleolar stress 

During the first stage of paligenosis, autodegradative machinery is upregulated in order to 

degrade mature zymogenic cell features such as secretory granules and rough ER. This 

degradation results in the release of free ribosomes. As the injury begins to resolve and 

metaplastic cells prepare to enter the cell cycle, ribosomal function needs to be restored and new 

ribosomes need to be generated. Ribosomes are composed of ribosomal proteins and ribosomal 

RNAs, which are synthesized in the nucleolus. Ribosomal RNA synthesis is regulated RAPTOR, 

an adaptor protein required for mTORC1 function40. The nucleolus is the largest structure within 

the nucleus and its primary function is to assemble ribosomes. CORD, a tool to identify 

coordinately expressed genes, reveals that Ddx21 is one of the highest co-regulated genes that is 

co-regulated with Ifrd1. DDX21 is a key mediator of nucleolar ribosome biogenesis41. DDX21 

associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA. DDX21 

occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes 

rRNA transcription, processing and modification41. In the nucleoplasm, DDX21 binds 7SK RNA 

and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited 

to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs41. 

 

Plasma cells are lymphocytes that secrete large amounts of Immunoglobulins. To achieve 

this, plasma cells expand their ER via continuous ER stress and activation of the Unfolded 

Protein Response (UPR). This ER stress must be delicately managed in order to not induce 
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apoptosis. Activating transcription factor 4 (ATF4), a predicted upstream regulator of IFRD1, is 

induced following LPS-induced ER stress in plasma cells. High levels of apoptosis was observed 

in cells that were engineered with overactive mTOR in the presence of ER stress42. This 

suggests, that protein synthesis in plasma cells is controlled by an ER stress-mediated mTOR 

regulation, which is needed for optimal cell viability42.  

Tunicamycin is a drug used to experimentally induce the UPR, following treatment with 

Tunicamycin in erythroid progenitors, increased ribosome density is observed on Ifrd1 

transcripts43. Plasma cells are also the source of multiple myelomas and inactivation of histone 

methyltransferases in multiple myelomas increases Ifrd1 (GEO dataset: GSE57863). During 

myogenesis, IFRD1 has been implicated in the induction histone-modifying enzymes44. 

Together, these data suggest that, in cells with high secretory activity (and ribosomes), like 

plasma cells, IFRD1 may help manage survival in stress conditions and function in global gene 

expression patterns via chromatin modification.  

The regulation of translation factor eIF2 is also important in metaplasia-inducing stress. 

Phosphorylation of alpha unit of eIF2 results in the loss of its availability, but an increase in the 

translation of specific transcripts like Atf3/4 and Ifrd142. Several different serine kinases target 

eIF2- in the presence of stresses like amino acid starvation (GCN2), the presence of dsRNA 

(PKR) or ER stress (PERK)45. The manner in which ribosomes, ER stress and the UPR influence 

human diseases hinges on TP53 (p53). The literature shows that ribosomes and nucleolar activity 

are key for the stabilization of p5346. There is also a close interconnection between ribosome 

biogenesis and cell proliferation. Further, we know that factors that stimulate cell proliferation 

also stimulate ribosome production while the ribosome biogenesis rate control cell cycle 
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progression46. p53 protein plays an important balancing role between ribosome biogenesis rate 

and progression through the cell cycle phases. The perturbation of ribosome biogenesis stabilizes 

and activates p53, resulting in cell cycle arrest and/or the transcription of pro-apoptotic genes46. 

The destabilization of ribosome biogenesis, or, potentially, through the mismatch of ribosomal 

proteins and ribosomal RNAs would result in the stabilization of p53 (Figure 5). As cells proceed 

through the paligenosis program, p53 could interfere, driving the cells toward quiescence or 

apoptosis. 

IFRD1 and p53 

p53 is considered a master guardian of the genome and, like IFRD1, regulates diverse 

cellular pathways. The canonical function of p53 as a tumor suppressor is to mediate cell cycle 

arrest, apoptosis and the activation of DNA damage repair. p53 is known to repress target genes 

via multiple mechanisms, including by recruiting the Sin3/HDAC1/2 chromatin remodeling 

complex. SIN3 proteins (SIN3A and SIN3B) regulate gene expression at the chromatin level by 

serving as an anchor onto which the core Sin3/HDAC complex is assembled. There is a direct 

protein-protein interaction between the SIN3 complex and p5347. This suggests that IFRD1 and 

P53 may interact with each other and that IFRD1 may directly or indirectly regulate the cell 

cycle or apoptosis function of p53. Preliminary co-immunoprecipitation data from our lab also 

suggests that there is a physical interaction between IFRD1 and p53.  

The role of p53, when activated upon DNA damage sensing is to prevent progress 

through cell cycle checkpoints and potentially activate apoptosis. We also know that p53 is 

mutated in countless adult tumors. Given the potential relationship between IFRD1 and p53, we 

would theorize that during paligenosis IFRD1 which would prevent p53 from acting prematurely 

(i.e. giving a cell the “all clear” signal to progress through the cell cycle following acute, but 
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manageable injury). However, a defect in IFRD1 function may instead result in reduced 

proliferation (and tumorigenesis in cancers) if associated with normal p53 or a much more 

devastating result in the presence of mutated P53.  

 

Chapter 1.4 Paligenosis and GI Disease 

The process of undergoing paligenosis on its own could pose a pathological risk. The 

genetic changes that we observe during paligenosis (chromatin remodeling to re-express 

progenitor and proliferation associated genes) may expose differentiated cells to increased risk 

for mutation. A single mutation in a constitutively active stem cell is generally not thought to be 

harmful because that allele would be lost through differentiation to a daughter cell or through 

genetic drift. Long-lived differentiated cells, on the other hand, can harbor old mutations which 

can be revealed through activation of the paligenosis program in response to injury. 

Differentiated cells can acquire mutations in tumor suppressors or activating mutations, like 

dominant-negative G12D KRAS, which are generally harmless, unless the cells undergo 

paligenosis. Thus, differentiated cells have become good candidates for cells of origin for 

cancers and, in particular, GI adenocarcinomas48. Pancreatic and gastric adenocarcinomas are 

often composed of cells which share morphology with differentiated, secretory cells of each 

organ. In the following sections, I will describe the potential impact of paligenosis on pancreatic 

and gastric cancer research.  

Modeling Paligenosis in the pancreas 

Injury or inflammation can cause pancreatic acinar cells to reverse their post-mitotic, 

differentiated cell state. Acinar cells acquire morphological and molecular characteristics that are 

a hybrid between mature acinar cells and duct epithelial cells, which are the cells that link the 
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pancreatic ducts and facilitate the transport of secreted digestive enzymes to the duodenum. 

Historically, pathological analysis of ADM suggested that injury-induced duct complexes arose 

from the proliferation of ducts themselves, due to the organization of the ducts into tubules. 

Following the emergence of genetic lineage-tracing, it has become clear that proliferative, 

tubular, duct-like cells primarily arise from mature acinar cells, which account for more than 

90% of the adult pancreas49-53. Thus, these lesions have been termed Acinar-to-Ductal 

Metaplasia (ADM). ADM is not the complete conversion of acinar cells to duct cells because 

these metaplastic cells maintain characteristics of mature acinar cells (digestive enzymes like 

amylase or carboxypeptidase 1) and those of mature duct cells (cytokeratin 19, Carbonic 

Anhydrase II, and Mucins 1 and 6)49. In mice, pancreatitis and ADM can be induced via drug 

administration or surgical resection54. 

Prior to my joining the Mills lab, the primary focus was on the metaplastic changes in the 

gastric epithelium. However, as described above Mills and Samson 2015, there was a belief that 

pancreas and stomach may share a common program to dedifferentiate and repair injury. A 

review of the literature led to the utilization of cerulein which is the most commonly used 

method to induce ADM experimentally. Cerulein is a cholecystokinin (CCK) analog that induces 

hypersecretion of acinar secretory granules. High doses of intraperitoneally injected cerulein 

initially results in pancreatitis due to the damage associated with the inappropriate exocytosis of 

digestive enzymes and the direct induction of pro-inflammatory cytokines55. Another 

experimental model of ADM is through direct tissue injury by pancreatic duct ligation (PDL). 

This method involves the suturing of a pancreatic lobe, resulting in a blockade of digestive 

enzyme flow into the intestine and significant tissue injury and inflammation in the surgically 

affected lobe56. In each experimental model of ADM, it is known that inflammatory cells, are 
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critical for the progression to metaplasia56,57. However, the manner in which cells sense damage 

and which upstream signals induce acinar cells to dedifferentiate have not been elucidated. 

Pathological studies of the pancreas show that ADM is a precursor to pre-cancerous 

lesions like pancreatic intraepithelial neoplasia (PanIN)58. Lineage tracing shows that mutations 

in key regulatory genes can result in PanIN lesions progressing to pancreatic ductal 

adenocarcinoma (PDAC)59,60. In contrast to gastric adenocarcinoma, models of pancreatic cancer 

in mice show that pancreatic acinar cells progress from pancreatitis to metastasis in a similar way 

to how it occurs in humans.  

Paligenosis from ADM to Pancreatic Ductal Adenocarcinoma (PDAC) 

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death in the 

United States and is projected to be the second by 202061. The overall 5-year survival of PDAC 

is 7%61. The extremely poor prognosis of PDAC highlights the urgent need to understand and 

target the molecular aberrations that drive this disease. Pancreatic intraepithelial neoplasias 

(PanINs) are the most critical type of PDAC precursors. Tumorigenesis has been described as a 

stepwise progression from low-grade PanINs to high-grade PanINs and then to invasive 

adenocarcinoma62. Chronic pancreatitis is a significant risk factor for developing PDAC59,63,64.  

The genetic events that drive pancreatic intraepithelial neoplasia (PanIN) formation and 

progression to PDAC are well known and have been validated in multiple mouse models. These 

involve mutations in tumor suppressor genes like CDKN2A, TP53 and SMAD4, as well as 

activation of the KRAS oncogene65-67. To progress from ADM to PanIN and pancreatic cancer, 

the activities of endogenous and mutant alleles of KRAS are increased58,68. During the process of 

cancer initiation, crosstalk between acinar cells with KRAS mutations and inflammatory 
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macrophages contributes to ADM and formation of early lesions69. However, during progression 

to PDAC, the tumor microenvironment becomes immunosuppressive with a predominance of 

myeloid-derived suppressor cells and regulatory T cells70. Several studies have shown that 

inducing expression of constitutively active KRASG12D induces dedifferentiation and turning it 

off results in redifferentiation back the acinar state71. It should be noted that active KRAS is not 

sufficient to induce dedifferentiation, as injury or inflammation must also occur59,72. After 

dedifferentiation, KRAS, as well as multiple steps in the canonical Ras pathway, have been 

shown to be necessary and sufficient to promote and maintain the ADM state58,73,74. Upstream of 

KRAS, EGF or TGFa signaling and the key downstream mediator of the KRAS signal is 

Mitogen activated protein kinase 1 and 2 (MAPK1 and MAPK2; aka MEK1/2) upstream of 

extracellular signal-regulated kinase 1 and 2 (ERK1/1)53,58,75. Inhibitors at each stage can block 

or reverse ADM: Erlotinib and Cetuximab block EGFR interaction with its ligands, PD153035 

blocks signaling from the EGFR, and the MEK inhibitors BAY 86–9766, PD325901, and 

U012653,76-78. 

Other important signaling pathways have been implicated in dedifferentiation and 

progression to PDAC including Hedgehog, Wnt, Akt-PTEM, Notch and TGF-B. A more recently 

described, non-KRAS pathway sufficient to induce ADM is the Hippo pathway. Induction of 

nuclear YAP1 activity (decreased signaling through the Hippo pathway) in adult mice is 

sufficient to cause ADM without affecting KRAS79. Together, these studies highlight the vast 

number signaling pathways involved in pancreatic cancer development and their impact on the 

initiation, maintenance and progression of oncogenic activity in pancreatic acinar cells.  
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Modeling Paligenosis in the Stomach 

An aspect of chief cell metaplasia that is arguably clearer than ADM is the cellular 

trigger that induces reprogramming. In the stomach, death of another key functional secretory 

cell, the acid-secreting parietal cell, causes loss of normal chief cell differentiation80-82. Loss or 

injury of parietal cells causes chief cells to downscale their large secretory granules containing 

digestive enzymes like Pepsinogen C and Carboxypeptidase B and re-express markers of mucous 

neck cells (which are the precursors of chief cells in adult stomachs), like TFF2 (Spasmolytic 

polypeptide), MUC6, the epitope for the lectin GS-II, and, in mice, Gastrokine 380,82-88. The 

number of tools used to study the underlying mechanisms of SPEM in mice have increased over 

the last decade. The administration of chemicals like Tamoxifen or DMP-777 or treatment with 

the infectious bacterium Helicobacter pylori have recently been utilized to rapidly induce SPEM 

in animal models of gastric dysplasia89-91. The Mills lab originally contributed to this work by  

identifying that treatment with high doses of Tamoxifen can induce SPEM89. In humans, chief 

cells reprogram most frequently in the setting of infection by the bacterium H. pylori, especially 

in certain populations (e.g., in East Asians and in regions of Central and South Americans). In 

those populations, in particular, bacteria cause widespread parietal atrophy and chief cell 

metaplasia. More recently, the lab has generated a tool to directly target and kill Parietal Cells to 

test the sufficiency of parietal cell loss for SPEM initiation92. Work by our lab and others has 

clearly shown that chief cells reprogram to SPEM cells, however, there are no animal models of 

gastric cancer that resemble human adenocarcinoma in terms of morphology, invasion and 

metastasis. 

 

 



18 

 

Paligenosis from SPEM to Gastric Cancer 

The molecular mechanisms underlying how chief cells become metaplastic are just now 

starting to be elucidated1,80,83,93. The healthy stomach is subjected to daily chemical and 

microbial injuries, but manages to maintain epithelial integrity94. Studies have highlighted the 

epithelial plasticity of the gastric corpus, in particular, the ability of postmitotic zymogenic chief 

cells to re-enter the cell cycle and fuel the repair of injured epithelium. Plasticity of the gastric 

epithelium enables the stomach to withstand significant injury but could also increase the risk for 

developing gastric cancer.  The glandular injury response is represented by the dedifferentiation 

of zymogenic cells when acid production is compromised or lost (oxyntic atrophy). This pattern 

of injury response has been termed SPEM and it is defined by the existence of cells deep in the 

gastric gland that co-express proteins such as chief cell progenitor marker TFF2 (spasmolytic 

peptide) and mature chief cell markers like pepsinogen (digestive enzyme). The lab of Dr. Jim 

Goldenring has identified many genes whose expression is increased specifically in SPEM: 

Mal2, Wfdc2 (He4), Tacc3, Mcm395,96. Most gastric cell and developmental biology research is 

done under the assumption that the loss of parietal cells and mature chief cells in the corpus is 

required for the development of gastric adenocarcinoma97.  

Gastric Cancer, which consists predominantly of adenocarcinomas, is the fifth most 

common cancer globally, and third leading cause of cancer deaths in 201298. As described earlier 

in section 1.4.1 studies in pancreatic models of tumorigenesis indicate that certain oncogenic 

mutations, such as constitutively active KRAS, do not have an effect in differentiated cells but 

can be unmasked when they are expressed in proliferating (metaplastic) cells. In the stomach, if 

mutations do not block re-differentiation as the gland recovers from injury, these mutations can 

be harbored in quiescent, seemingly normal differentiated chief cells. As in pancreatic ADM, the 
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initiation of SPEM (and/or parietal cell loss) is influenced by major signaling events including 

Notch, sonic hedgehog, gastrin, in the epithelium, as well as, immune factors like IFN, IL-1B, 

and IL-3382,99-102. Global deletion of Amphiregulin, a gene encoding an EGFR ligand, causes 

spontaneous reprogramming and metaplasia of chief cells as they age 103. A 

pERK→CD44→pSTAT3 signaling pathway was identified as being key to parietal cell-damage-

induced proliferation during metaplasia, suggesting pERK signaling in stomach may parallel the 

pancreas104.  

There is a strong epidemiological link between chronic inflammation (pan-gastritis) and 

metaplasia in the gastric corpus, which has increased the clinical relevance of SPEM in relation 

to gastric cancer development105. There is, however, a disconnect between the location of 

glandular injury and the anatomical location of gastric tumors. The majority of human gastric 

adenocarcinomas seem to arise within the antrum or at the corpus–antrum transition, suggesting 

that parietal or chief cell loss and metaplasia are simply surrogate markers for the overall state of 

chronic inflammation in the stomach106-108. Inflammation is key to the reprogramming of gastric 

chief cells, but it is still unknown whether metaplastic cells are the origin of gastric cancer109. 

Most of the pathology literature related to gastric cancer focuses on gastric intestinal metaplasia 

(IM), a precursor lesion to gastric adenocarcinoma. Like SPEM, gastric IM emerges after the 

development of oxyntic atrophy97. Compared with SPEM, however, the cellular origin of 

intestinal metaplasia is less understood, largely due to a lack of adequate animal models. It 

remains to be seen whether SPEM gives rise to intestinal metaplasia or whether the two 

precursor lesions can independently give rise to gastric adenocarcinoma. It has, however, 

become more evident that the zymogenic chief cell plays a crucial role in the initiation of SPEM 

and in repairing glandular injury110.  
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In a clear parallel to ADM in the pancreas, MIST1 is also one of the first genes decreased 

during reprogramming of chief cells111,112. Mist1 (bhlha15) is a basic helix-loop-helix 

transcription factor that is required for the establishment and maintenance of mature secretory 

cells in the stomach and pancreas. Interestingly, the upregulation of Ifrd1 that is observed 

following cerulein treatment in the pancreas is blocked in cells lacking MIST1 (GEO Dataset: 

GSE3644). This suggests that there may be a dependence of IFRD1 function on proper 

differentiation in the mature secretory cells that undergo paligenosis. 

Chapter 1.5 Summary 

In summary, we describe a process by which terminally differentiated cells change their cellular 

state in order to repair injury. We generated the term paligenosis to describe this process as a 

shared and conserved basic cellular program and its role in the development of human diseases 

in the pancreas and stomach. Since paligenosis is a shared and conserved program, we 

hypothesized that there would be genes that specifically evolved to regulate this process. 

Through an in silico screen of genes that were upregulated during the acute injury phase in 

numerous diverse tissues, we identified Ifrd1 as such a gene. IFRD1 is highly conserved, 

responsive to diverse cellular stimuli and has already been shown to be required for induced 

proliferation of intestinal cells after resection. We found IFRD1 to be associated with 

foundational cellular biology proteins like SIN3, p53 and mTOR and we also show that it is 

associated with cellular processes like ER stress and ribosome biogenesis. Together, our 

investigations show that IFRD1 may play an important role in differentiated cells that is required 

to evoke a change in cellular state to respond to injury.  
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Chapter 1.6 FIGURES 

Figure 1.1 

A 

                             

 

 

Figure 1.1A. Schematic representation of the cellular changes that occur during SPEM. 

Zymogenic chief cells (RED) arise from mucous neck cells (GREEN). Following metaplasia 

inducing injuries like high doses of tamoxifen (HDTAM), DMP-777, or Helicobacter pylori 

infection leads to the cellular changes associated with SPEM. The SPEM cell (YELLOW) is a 

hybrid cellular state between the mucous neck cell and the terminally differentiated zymogenic 

chief cell.  
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Figure 1.1 

B 

           

 

Figure 1B. Schematic representation of the cellular changes that occur during ADM. Pancreatic 

acinar cells (RED) arise from pancreatic duct cells (GREEN). Following metaplasia inducing 

injuries like pancreatic duct ligation or repeated doses of CCK-analog leads to the cellular 

changes associated with ADM. The ADM cell (YELLOW) is a hybrid cellular state between the 

pancreatic duct cell and the terminally differentiated pancreatic acinar cell.  
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Figure 1.2 

 

 

 

Figure 1.2. Schematic representation of the cellular and molecular changes that occur during 

Paligenosis. Paligenosis describes the process by which terminally differentiated cells can alter 

their cellular state to repair injury. We originally detail this process in the stomach in pancreas to 

include 3 steps: 1) upregulation of autophagic machinery, 2) expression of a metaplastic gene 

program and 3) re-entry into the cell cycle. This process is governed by mTORC1 which is a 

fundamental cellular energy sensor that controls translation.  
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Figure 1.3 

 

 

 

 

 

 

 

 

Figure 1.3. Schematic representation of the in silico screen used to identify IFRD1 as a gene that 

is important in the paligenosis process. I compared RNA expression in gene lists from gastric 

chief and pancreatic acinar cells at homeostasis to SPEM and ADM cells, respectively. Ifrd1 was 

one of the few genes upregulated in both the pancreas and stomach during the acute injury 

response en route to metaplasia.  
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Figure 1.4 

 

 

 

Figure 4. Representation of the in silico screen to identify genes that are important for 

paligenosis in multiple organs. a: Eight genes are upregulated in the pancreas, stomach, liver and 

kidney during the acute injury phase. These 4 tissues represent those that we have evidence for a 

paligenotic injury response. b: Expanded list of tissues that we hypothesize would also employ 

paligenosis to repair injury, due to the characteristics of dedifferentiation in both lung and glial 

cells. Atf3 and Ifrd1 are the only two genes to exhibit consistent upregulation during the acute 

injury phase in all 6 injury models.  
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Figure 1.5 

 

Figure 5. Schematic representation of the relationship between ribosomal/nucleolar stress and 

P53 expression and stabilization. Left: At homeostasis, p53 is bound by MDM2 and targeted for 

degradation through ubiquitination. Normal ribosomogenesis occurs. Right: During stress, there 

can be an imbalance between ribosomal RNAs and ribosomal proteins which can lead to an 

interaction between ribosomal proteins and MDM2. This results in the stabilization of p53 and 

transcription of p53 genes associated with cell cycle arrest and apoptosis.  

 

 

  



27 

 

Chapter 1.7 REFERENCES 

1 Nozaki, K. et al. A molecular signature of gastric metaplasia arising in response to acute 

parietal cell loss. Gastroenterology 134, 511-522, doi:10.1053/j.gastro.2007.11.058 

(2008). 

2 Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. 

Nature reviews. Gastroenterology & hepatology 14, 296-304, 

doi:10.1038/nrgastro.2017.12 (2017). 

3 Mills, J. C. & Sansom, O. J. Reserve stem cells: Differentiated cells reprogram to fuel 

repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Science signaling 8, 

re8-re8, doi:10.1126/scisignal.aaa7540 (2015). 

4 Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with 

wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257 

(1972). 

5 Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. 

Toxicology 181-182, 471-474, doi:https://doi.org/10.1016/S0300-483X(02)00457-2 

(2002). 

6 Paweletz, N. Walther Flemming: pioneer of mitosis research. Nature Reviews Molecular 

Cell Biology 2, 72, doi:10.1038/35048077 (2001). 

7 Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic pathology 35, 

495-516, doi:10.1080/01926230701320337 (2007). 

8 Shaham, S., Reddien, P. W., Davies, B. & Horvitz, H. R. Mutational analysis of the 

Caenorhabditis elegans cell-death gene ced-3. Genetics 153, 1655-1671 (1999). 

9 Trent, C., Tsuing, N. & Horvitz, H. R. Egg-laying defective mutants of the nematode 

Caenorhabditis elegans. Genetics 104, 619-647 (1983). 

10 Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode 

C. elegans. Cell 44, 817-829, doi:https://doi.org/10.1016/0092-8674(86)90004-8 (1986). 

11 Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell 

corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94 

(1991). 

12 Hengartner, M. O., Ellis, R. & Horvitz, R. Caenorhabditis elegans gene ced-9 protects 

cells from programmed cell death. Nature 356, 494, doi:10.1038/356494a0 (1992). 

13 Hengartner, M. O. & Horvitz, H. R. Activation of C. elegans cell death protein CED-9 by 

an ammo-acid substitution in a domain conserved in Bcl-2. Nature 369, 318, 

doi:10.1038/369318a0 (1994). 

https://doi.org/10.1016/S0300-483X(02)00457-2
https://doi.org/10.1016/0092-8674(86)90004-8


28 

 

14 Xue, D., Shaham, S. & Horvitz, H. R. The Caenorhabditis elegans cell-death protein 

CED-3 is a cysteine protease with substrate specificities similar to those of the human 

CPP32 protease. Genes & Development 10, 1073-1083 (1996). 

15 Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death 

gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. 

Cell 75, 641-652, doi:https://doi.org/10.1016/0092-8674(93)90485-9 (1993). 

16 Spector, M. S., Desnoyers, S., Hoeppner, D. J. & Hengartner, M. O. Interaction between 

the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653, 

doi:10.1038/385653a0 (1997). 

17 Conradt, B. & Horvitz, H. R. The C. elegans Protein EGL-1 Is Required for Programmed 

Cell Death and Interacts with the Bcl-2–like Protein CED-9. Cell 93, 519-529, 

doi:https://doi.org/10.1016/S0092-8674(00)81182-4 (1998). 

18 del Peso, L., González, V. c. M. & Núñez, G. Caenorhabditis elegans EGL-1 Disrupts the 

Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological 

Chemistry 273, 33495-33500 (1998). 

19 del Peso, L., Gonzalez, V. M., Inohara, N., Ellis, R. E. & Nunez, G. Disruption of the 

CED-9/CED-4 Complex by EGL-1 is a Critical Step for Programmed Cell Death in C. 

elegans. Journal of Biological Chemistry (2000). 

20 Garcia, A. M. et al. Tis7 deletion reduces survival and induces intestinal anastomotic 

inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome. 

American journal of physiology. Gastrointestinal and liver physiology 307, G642-G654, 

doi:10.1152/ajpgi.00374.2013 (2014). 

21 Yu, C. et al. Deletion of Tis7 protects mice from high-fat diet-induced weight gain and 

blunts the intestinal adaptive response postresection. The Journal of nutrition 140, 1907-

1914, doi:10.3945/jn.110.127084 (2010). 

22 Lin, M. T. et al. Bidirectional Connections between Depression and Ataxia Severity in 

Spinocerebellar Ataxia Type 3 Patients. European Neurology 79, 266-271, 

doi:10.1159/000489398 (2018). 

23 Xu, R., Peng, C., Xiao, S. & Zhuang, W. IFRD1 polymorphisms and gastric cancer risk 

in a Chinese population. Medical Oncology 31, 135, doi:10.1007/s12032-014-0135-0 

(2014). 

24 Wang, Y. et al. Targeted Intestinal Overexpression of the Immediate Early Gene tis7 in 

Transgenic Mice Increases Triglyceride Absorption and Adiposity. Journal of Biological 

Chemistry 280, 34764-34775 (2005). 

25 Bhattacharya, B., Mohd Omar, M. F. & Soong, R. The Warburg effect and drug 

resistance. British journal of pharmacology 173, 970-979, doi:10.1111/bph.13422 (2016). 

https://doi.org/10.1016/0092-8674(93)90485-9
https://doi.org/10.1016/S0092-8674(00)81182-4


29 

 

26 Vietor, I. et al. TIS7 interacts with the mammalian SIN3 histone deacetylase complex in 

epithelial cells. The EMBO Journal 21, 4621, doi:10.1093/emboj/cdf461 (2002). 

27 Silverstein, R. A. & Ekwall, K. Sin3: a flexible regulator of global gene expression and 

genome stability. Current Genetics 47, 1-17, doi:10.1007/s00294-004-0541-5 (2005). 

28 Saunders, A. et al. The SIN3A/HDAC Corepressor Complex Functionally Cooperates 

with NANOG to Promote Pluripotency. Cell reports 18, 1713-1726, 

doi:10.1016/j.celrep.2017.01.055 (2017). 

29 Zhang, T., Sheng, Z. & Du, W. Loss of histone deacetylase HDAC1 induces cell death in 

Drosophila epithelial cells through JNK and Hippo signaling. Mechanisms of 

development 141, 4-13, doi:10.1016/j.mod.2016.07.001 (2016). 

30 Yao, C. et al. Sin3a regulates epithelial progenitor cell fate during lung development. 

Development (Cambridge, England) 144, 2618-2628, doi:10.1242/dev.149708 (2017). 

31 Kehayova, P. D. & Liu, D. R. In Vivo Evolution of an RNA-Based Transcriptional 

Silencing Domain in S. cerevisiae. Chemistry & Biology 14, 65-74, 

doi:https://doi.org/10.1016/j.chembiol.2006.11.008 (2007). 

32 Price, C. M. et al. Evolution of CST function in telomere maintenance. Cell cycle 

(Georgetown, Tex.) 9, 3157-3165, doi:10.4161/cc.9.16.12547 (2010). 

33 Icardi, L. et al. The Sin3a repressor complex is a master regulator of STAT 

transcriptional activity. Proceedings of the National Academy of Sciences of the United 

States of America 109, 12058-12063, doi:10.1073/pnas.1206458109 (2012). 

34 Schisler, J. C. et al. Cardiac energy dependence on glucose increases metabolites related 

to glutathione and activates metabolic genes controlled by mechanistic target of 

rapamycin. Journal of the American Heart Association 4, e001136, 

doi:10.1161/JAHA.114.001136 (2015). 

35 Tummers, B. et al. The interferon-related developmental regulator 1 is used by human 

papillomavirus to suppress NFκB activation. Nature communications 6, 6537-6537, 

doi:10.1038/ncomms7537 (2015). 

36 Iezaki, T. et al. Transcriptional Modulator Ifrd1 Regulates Osteoclast Differentiation 

through Enhancing the NF-κB/NFATc1 Pathway. Molecular and cellular biology 36, 

2451-2463, doi:10.1128/MCB.01075-15 (2016). 

37 Park, G. et al. The transcriptional modulator Ifrd1 controls PGC-1α expression under 

short-term adrenergic stimulation in brown adipocytes. The FEBS Journal 284, 784-795, 

doi:10.1111/febs.14019 (2017). 

38 Onishi, Y. et al. The transcriptional modulator Ifrd1 is a negative regulator of BMP-2-

dependent osteoblastogenesis. Biochemical and Biophysical Research Communications 

482, 329-334, doi:https://doi.org/10.1016/j.bbrc.2016.11.063 (2017). 

https://doi.org/10.1016/j.chembiol.2006.11.008
https://doi.org/10.1016/j.bbrc.2016.11.063


30 

 

39 Vietor, I., Kurzbauer, R., Brosch, G. & Huber, L. A. TIS7 regulation of the beta-

catenin/Tcf-4 target gene osteopontin (OPN) is histone deacetylase-dependent. J Biol 

Chem 280, 39795-39801, doi:10.1074/jbc.M509836200 (2005). 

40 You, J.-S. et al. The role of raptor in the mechanical load-induced regulation of mTOR 

signaling, protein synthesis, and skeletal muscle hypertrophy. The FASEB Journal, 

fj.201801653RR, doi:10.1096/fj.201801653RR (2018). 

41 Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA 

processing. Nature 518, 249-253, doi:10.1038/nature13923 (2015). 

42 Goldfinger, M., Shmuel, M., Benhamron, S. & Tirosh, B. Protein synthesis in plasma 

cells is regulated by crosstalk between endoplasmic reticulum stress and mTOR 

signaling. European Journal of Immunology 41, 491-502, doi:10.1002/eji.201040677 

(2011). 

43 Paolini, N. A. et al. Ribosome profiling uncovers selective mRNA translation associated 

with eIF2 phosphorylation in erythroid progenitors. PloS one 13, e0193790-e0193790, 

doi:10.1371/journal.pone.0193790 (2018). 

44 Lammirato, A. et al. TIS7 induces transcriptional cascade of methylosome components 

required for muscle differentiation. BMC biology 14, 95-95, doi:10.1186/s12915-016-

0318-6 (2016). 

45 Kimball, S. R. Eukaryotic initiation factor eIF2. The International Journal of 

Biochemistry & Cell Biology 31, 25-29, doi:https://doi.org/10.1016/S1357-

2725(98)00128-9 (1999). 

46 Derenzini, M., Montanaro, L. & Trerè, D. Ribosome biogenesis and cancer. Acta 

Histochemica 119, 190-197, doi:https://doi.org/10.1016/j.acthis.2017.01.009 (2017). 

47 Bansal, N. et al. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex 

for down-regulation of its target promoters in response to genotoxic stress. PloS one 6, 

e26156-e26156, doi:10.1371/journal.pone.0026156 (2011). 

48 Chaffer, C. L. & Weinberg, R. A. How does multistep tumorigenesis really proceed? 

Cancer discovery 5, 22-24, doi:10.1158/2159-8290.CD-14-0788 (2015). 

49 Jensen, J. N. et al. Recapitulation of elements of embryonic development in adult mouse 

pancreatic regeneration. Gastroenterology 128, 728-741, 

doi:https://doi.org/10.1053/j.gastro.2004.12.008 (2005). 

50 Zhu, L., Shi, G., Schmidt, C. M., Hruban, R. H. & Konieczny, S. F. Acinar cells 

contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. The 

American journal of pathology 171, 263-273, doi:10.2353/ajpath.2007.061176 (2007). 

51 De La O, J.-P. et al. Notch and Kras reprogram pancreatic acinar cells to ductal 

intraepithelial neoplasia. Proceedings of the National Academy of Sciences of the United 

States of America 105, 18907-18912, doi:10.1073/pnas.0810111105 (2008). 

https://doi.org/10.1016/S1357-2725(98)00128-9
https://doi.org/10.1016/S1357-2725(98)00128-9
https://doi.org/10.1016/j.acthis.2017.01.009
https://doi.org/10.1053/j.gastro.2004.12.008


31 

 

52 Habbe, N. et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia 

(mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proceedings of the 

National Academy of Sciences of the United States of America 105, 18913-18918, 

doi:10.1073/pnas.0810097105 (2008). 

53 Shi, G. et al. Maintenance of acinar cell organization is critical to preventing Kras-

induced acinar-ductal metaplasia. Oncogene 32, 1950-1958, doi:10.1038/onc.2012.210 

(2013). 

54 Hyun, J. J. & Lee, H. S. Experimental models of pancreatitis. Clinical endoscopy 47, 

212-216, doi:10.5946/ce.2014.47.3.212 (2014). 

55 Zaninovic, V., Gukovskaya, A. S., Gukovsky, I., Mouria, M. & Pandol, S. J. Cerulein 

upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to 

these cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 279, 

G666-G676, doi:10.1152/ajpgi.2000.279.4.G666 (2000). 

56 Watanabe, S., Abe, K., Anbo, Y. & Katoh, H. Changes in the Mouse Exocrine Pancreas 

after Pancreatic Duct Ligation: A Qualitative and Quantitative Histological Study. Vol. 

58 (1995). 

57 Liou, G.-Y. et al. Macrophage-secreted cytokines drive pancreatic acinar-to-ductal 

metaplasia through NF-κB and MMPs. The Journal of cell biology 202, 563-577, 

doi:10.1083/jcb.201301001 (2013). 

58 Shi, G. et al. Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-

induced pancreatic intraepithelial neoplasia. Gastroenterology 136, 1368-1378, 

doi:10.1053/j.gastro.2008.12.066 (2009). 

59 Guerra, C. et al. Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal 

Adenocarcinoma by K-Ras Oncogenes in Adult Mice. Cancer Cell 11, 291-302, 

doi:https://doi.org/10.1016/j.ccr.2007.01.012 (2007). 

60 Hruban, R. H. et al. Pathology of Genetically Engineered Mouse Models of Pancreatic 

Exocrine Cancer: Consensus Report and Recommendations. Cancer Research 66, 95, 

doi:10.1158/0008-5472.CAN-05-2168 (2006). 

61 Rahib, L. et al. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden 

of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research 74, 2913, 

doi:10.1158/0008-5472.CAN-14-0155 (2014). 

62 Distler, M., Aust, D., Weitz, J., Pilarsky, C. & Grützmann, R. Precursor lesions for 

sporadic pancreatic cancer: PanIN, IPMN, and MCN. BioMed research international 

2014, 474905-474905, doi:10.1155/2014/474905 (2014). 

63 Raimondi, S., Lowenfels, A. B., Morselli-Labate, A. M., Maisonneuve, P. & Pezzilli, R. 

Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best 

Practice & Research Clinical Gastroenterology 24, 349-358, 

doi:https://doi.org/10.1016/j.bpg.2010.02.007 (2010). 

https://doi.org/10.1016/j.ccr.2007.01.012
https://doi.org/10.1016/j.bpg.2010.02.007


32 

 

64 Morris, J. P. I. V., Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. β-catenin blocks 

Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. 

The Journal of Clinical Investigation 120, 508-520, doi:10.1172/JCI40045 (2010). 

65 Hidalgo, M. Pancreatic Cancer. New England Journal of Medicine 362, 1605-1617, 

doi:10.1056/NEJMra0901557 (2010). 

66 Ying, H. et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & 

Development 30, 355-385 (2016). 

67 Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic Adenocarcinoma. New England 

Journal of Medicine 371, 1039-1049, doi:10.1056/NEJMra1404198 (2014). 

68 Ji, B. et al. Ras Activity Levels Control the Development of Pancreatic Diseases. 

Gastroenterology 137, 1072-1082.e1076, 

doi:https://doi.org/10.1053/j.gastro.2009.05.052 (2009). 

69 Liou, G.-Y. et al. Mutant KRAS–Induced Expression of ICAM-1 in Pancreatic Acinar 

Cells Causes Attraction of Macrophages to Expedite the Formation of Precancerous 

Lesions. Cancer Discovery 5, 52, doi:10.1158/2159-8290.CD-14-0474 (2015). 

70 Clark, C. E., Beatty, G. L. & Vonderheide, R. H. Immunosurveillance of pancreatic 

adenocarcinoma: Insights from genetically engineered mouse models of cancer. Cancer 

Letters 279, 1-7, doi:https://doi.org/10.1016/j.canlet.2008.09.037 (2009). 

71 Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance 

of pancreatic cancer in mice. The Journal of Clinical Investigation 122, 639-653, 

doi:10.1172/JCI59227 (2012). 

72 Huang, H. et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene 

33, 532-535, doi:10.1038/onc.2012.619 (2014). 

73 Jhappan, C. et al. TGFα overexpression in transgenic mice induces liver neoplasia and 

abnormal development of the mammary gland and pancreas. Cell 61, 1137-1146, 

doi:https://doi.org/10.1016/0092-8674(90)90076-Q (1990). 

74 Sandgren, E. P., Quaife, C. J., Paulovich, A. G., Palmiter, R. D. & Brinster, R. L. 

Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proceedings of the 

National Academy of Sciences of the United States of America 88, 93-97 (1991). 

75 Wu, C.-Y. C. et al. PI3K regulation of RAC1 is required for KRAS-induced pancreatic 

tumorigenesis in mice. Gastroenterology 147, 1405-1416.e1407, 

doi:10.1053/j.gastro.2014.08.032 (2014). 

76 Ardito, C. M. et al. EGF receptor is required for KRAS-induced pancreatic 

tumorigenesis. Cancer cell 22, 304-317, doi:10.1016/j.ccr.2012.07.024 (2012). 

77 Houbracken, I. et al. Lineage Tracing Evidence for Transdifferentiation of Acinar to Duct 

Cells and Plasticity of Human Pancreas. Gastroenterology 141, 731-741.e734, 

doi:https://doi.org/10.1053/j.gastro.2011.04.050 (2011). 

https://doi.org/10.1053/j.gastro.2009.05.052
https://doi.org/10.1016/j.canlet.2008.09.037
https://doi.org/10.1016/0092-8674(90)90076-Q
https://doi.org/10.1053/j.gastro.2011.04.050


33 

 

78 Collins, M. A., Yan, W., Sebolt-Leopold, J. S. & Pasca di Magliano, M. MAPK signaling 

is required for dedifferentiation of acinar cells and development of pancreatic 

intraepithelial neoplasia in mice. Gastroenterology 146, 822-834.e827, 

doi:10.1053/j.gastro.2013.11.052 (2014). 

79 Gao, T. et al. Hippo Signaling Regulates Differentiation and Maintenance in the Exocrine 

Pancreas. Gastroenterology 144, 1543-1553.e1541, doi:10.1053/j.gastro.2013.02.037 

(2013). 

80 Bredemeyer, A. J. et al. The gastric epithelial progenitor cell niche and differentiation of 

the zymogenic (chief) cell lineage. Developmental biology 325, 211-224, 

doi:10.1016/j.ydbio.2008.10.025 (2009). 

81 Li, Q., Karam, S. M. & Gordon, J. I. Diphtheria Toxin-mediated Ablation of Parietal 

Cells in the Stomach of Transgenic Mice. Journal of Biological Chemistry 271, 3671-

3676 (1996). 

82 Nomura, S. et al. Alterations in gastric mucosal lineages induced by acute oxyntic 

atrophy in wild-type and gastrin-deficient mice. American Journal of Physiology-

Gastrointestinal and Liver Physiology 288, G362-G375, doi:10.1152/ajpgi.00160.2004 

(2005). 

83 Lennerz, J. K. M. et al. The transcription factor MIST1 is a novel human gastric chief 

cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. The 

American journal of pathology 177, 1514-1533, doi:10.2353/ajpath.2010.100328 (2010). 

84 Ramsey, V. G. et al. The maturation of mucus-secreting gastric epithelial progenitors into 

digestive-enzyme secreting zymogenic cells requires &lt;em&gt;Mist1&lt;/em&gt. 

Development 134, 211, doi:10.1242/dev.02700 (2007). 

85 Karam, S. M. & Leblond, C. P. Dynamics of epithelial cells in the corpus of the mouse 

stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. The 

Anatomical Record 236, 259-279, doi:10.1002/ar.1092360202 (1993). 

86 Hanby, A. M., Poulsom, R., Playford, R. J. & Wright, N. A. The mucous neck cell in the 

human gastric corpus: a distinctive, functional cell lineage. The Journal of Pathology 

187, 331-337, doi:10.1002/(SICI)1096-9896(199902)187:3<331::AID-

PATH241>3.0.CO;2-S (1999). 

87 Menheniott, T. R. et al. A Novel Gastrokine, Gkn3, Marks Gastric Atrophy and Shows 

Evidence of Adaptive Gene Loss in Humans. Gastroenterology 138, 1823-1835, 

doi:https://doi.org/10.1053/j.gastro.2010.01.050 (2010). 

88 Nomura, S. et al. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. 

felis-infected mice. Gastroenterology 127, 582-594, 

doi:https://doi.org/10.1053/j.gastro.2004.05.029 (2004). 

89 Huh, W. J. et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse 

stomach. Gastroenterology 142, 21-24.e27, doi:10.1053/j.gastro.2011.09.050 (2012). 

https://doi.org/10.1053/j.gastro.2010.01.050
https://doi.org/10.1053/j.gastro.2004.05.029


34 

 

90 Goldenring, J. R. et al. Reversible drug&#x2013;induced oxyntic atrophy in rats. 

Gastroenterology 118, 1080-1093, doi:10.1016/S0016-5085(00)70361-1 (2000). 

91 Yoshizawa, N. et al. Emergence of spasmolytic polypeptide-expressing metaplasia in 

Mongolian gerbils infected with Helicobacter pylori. Laboratory Investigation 87, 1265, 

doi:10.1038/labinvest.3700682 (2007). 

92 Burclaff, J., Osaki, L. H., Liu, D., Goldenring, J. R. & Mills, J. C. Targeted Apoptosis of 

Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology 152, 

762-766.e767, doi:10.1053/j.gastro.2016.12.001 (2017). 

93 Goldenring, J. R., Nam, K. T. & Mills, J. C. The origin of pre-neoplastic metaplasia in 

the stomach: chief cells emerge from the Mist. Experimental cell research 317, 2759-

2764, doi:10.1016/j.yexcr.2011.08.017 (2011). 

94 Giannella, R. A., Broitman, S. A. & Zamcheck, N. Gastric acid barrier to ingested 

microorganisms in man: studies in vivo and in vitro. Gut 13, 251-256 (1972). 

95 Nozaki, K., Weis, V., Wang, T. C., Falus, A. & Goldenring, J. R. Altered gastric chief 

cell lineage differentiation in histamine-deficient mice. American journal of physiology. 

Gastrointestinal and liver physiology 296, G1211-G1220, doi:10.1152/ajpgi.90643.2008 

(2009). 

96 Weis, V. G. et al. Establishment of novel in vitro mouse chief cell and SPEM cultures 

identifies MAL2 as a marker of metaplasia in the stomach. American journal of 

physiology. Gastrointestinal and liver physiology 307, G777-G792, 

doi:10.1152/ajpgi.00169.2014 (2014). 

97 Correa, P. & Piazuelo, M. B. The gastric precancerous cascade. Journal of digestive 

diseases 13, 2-9, doi:10.1111/j.1751-2980.2011.00550.x (2012). 

98 Ferlay, J. et al. Cancer incidence and mortality worldwide: Sources, methods and major 

patterns in GLOBOCAN 2012. International Journal of Cancer 136, E359-E386, 

doi:10.1002/ijc.29210 (2015). 

99 Demitrack, E. S. et al. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in 

mouse and human gastric corpus. American journal of physiology. Gastrointestinal and 

liver physiology 312, G133-G144, doi:10.1152/ajpgi.00325.2016 (2017). 

100 Syu, L.-J. et al. Transgenic expression of interferon-γ in mouse stomach leads to 

inflammation, metaplasia, and dysplasia. The American journal of pathology 181, 2114-

2125, doi:10.1016/j.ajpath.2012.08.017 (2012). 

101 Serizawa, T. et al. Gastric Metaplasia Induced by &lt;span class=&quot;named-content 

genus-species&quot; id=&quot;named-content-1&quot;&gt;Helicobacter 

pylori&lt;/span&gt; Is Associated with Enhanced SOX9 Expression via Interleukin-1 

Signaling. Infection and Immunity 84, 562, doi:10.1128/IAI.01437-15 (2016). 



35 

 

102 Buzzelli, J. N. et al. IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to 

Injury and Infection. Cellular and Molecular Gastroenterology and Hepatology 1, 203-

221.e203, doi:https://doi.org/10.1016/j.jcmgh.2014.12.003 (2015). 

103 Nam, K. T. et al. Amphiregulin-deficient mice develop spasmolytic polypeptide 

expressing metaplasia and intestinal metaplasia. Gastroenterology 136, 1288-1296, 

doi:10.1053/j.gastro.2008.12.037 (2009). 

104 Khurana, S. S. et al. The hyaluronic acid receptor CD44 coordinates normal and 

metaplastic gastric epithelial progenitor cell proliferation. The Journal of biological 

chemistry 288, 16085-16097, doi:10.1074/jbc.M112.445551 (2013). 

105 Sáenz, J. B. & Mills, J. C. Acid and the basis for cellular plasticity and reprogramming in 

gastric repair and cancer. Nature Reviews Gastroenterology &Amp; Hepatology 15, 257, 

doi:10.1038/nrgastro.2018.5 (2018). 

106 Camargo, M. C. et al. Divergent trends for gastric cancer incidence by anatomical subsite 

in US adults. Gut 60, 1644-1649, doi:10.1136/gut.2010.236737 (2011). 

107 You, W. C. et al. Comparison of the anatomic distribution of stomach cancer and 

precancerous gastric lesions. Japanese journal of cancer research : Gann 83, 1150-1153, 

doi:10.1111/j.1349-7006.1992.tb02738.x (1992). 

108 Wanebo, H. J. et al. Cancer of the stomach. A patient care study by the American College 

of Surgeons. Annals of surgery 218, 583-592 (1993). 

109 El-Zaatari, M. et al. Gli1 Deletion Prevents Helicobacter-Induced Gastric Metaplasia and 

Expansion of Myeloid Cell Subsets. PLOS ONE 8, e58935, 

doi:10.1371/journal.pone.0058935 (2013). 

110 Leushacke, M. et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer 

in the oxyntic stomach. Nature Cell Biology 19, 774, doi:10.1038/ncb3541 

https://www.nature.com/articles/ncb3541#supplementary-information (2017). 

111 Nam, K. T. et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. 

Gastroenterology 139, 2028-2037.e2029, doi:10.1053/j.gastro.2010.09.005 (2010). 

112 Capoccia, B. J. et al. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal 

secretory cell maturation. The Journal of clinical investigation 123, 1475-1491, 

doi:10.1172/JCI65703 (2013). 

  

https://doi.org/10.1016/j.jcmgh.2014.12.003
https://www.nature.com/articles/ncb3541#supplementary-information


36 

 

Chapter 2: Regenerative proliferation of 

differentiated cells by mTORC1-dependent 

paligenosis. 

Willet SG*, Lewis MA*, Miao ZF*, Liu D, Radyk MD, Cunningham RL, Burclaff J, Sibbel G, 

Lo HG, Blanc V, Davidson NO, Wang ZN, Mills JC 

*Co-first author 

 

Chapter 2.1 INTRODUCTION 

In 1900, George Adami wrote about the relationship between mitotic and differentiated 

cells, stating that he expected mitotic cells would generally devote energy toward replication and 

differentiated cells toward performing physiological functions (Adami, 1900). He also observed 

that upon injury, differentiated cells had the capacity to revert to a more primitive state, 

becoming mitotic again to promote tissue repair. Adami's observations on such cellular plasticity 

have largely been forgotten, as the focus in the 20th century was nearly exclusively on the 

unidirectional differentiation of stem cells into functional, “post‐mitotic” cells. 

However, over the past decade or two, numerous examples have emerged to support 

plasticity in differentiated cells. First, it became clear that normal, somatic cells could be 

reprogrammed to pluripotency (Takahashi & Yamanaka, 2006). Furthermore, in tissues, injury 

can induce a repair process that recruits largely post‐mitotic, differentiated cells back into the 

cell cycle in most, if not all, organs and species, for example, glia (Boerboom et al, 2017; 

Mindos et al, 2017); lung (Logan & Desai, 2015); heart in mammals (Wang et al, 2017) and fish 

(Karra et al, 2015); in multiple gastrointestinal tract organs (Mills & Sansom, 2015). Each such 
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example to date has been studied essentially in isolation within the context of a particular type of 

injury and a single organ; however, because the process is so widespread, we have postulated 

that it may be governed by a shared, evolutionarily conserved molecular and cellular program 

that is independent of tissue and species (Mills & Sansom, 2015). 

It has long been known that the response of both the corpus of the stomach and the 

digestive‐enzyme‐secreting (exocrine) pancreas to certain types of injury involves phenotypical 

changes in cell differentiation and tissue architecture, known as metaplasia. In the acute setting, 

the metaplastic response appears to be a tissue repair mechanism and can be temporary, with full 

restoration of normal tissue architecture (Nomura et al, 2005; Huh et al, 2012). Chronically, 

however, ongoing damage and long‐term metaplasia are associated with and may fuel the 

majority of gastric and pancreatic adenocarcinomas (Mills & Sansom, 2015; Giroux & Rustgi, 

2017; Storz, 2017). In both organs, the cells of origin for the metaplastic, proliferating epithelial 

cells are thought to be differentiated secretory cells (zymogenic chief cells in the stomach and 

acinar cells in the pancreas) that reprogram to re‐enter the cell cycle (Mills & Sansom, 2015; 

Murtaugh & Keefe, 2015; Mills & Goldenring, 2017; Radyk & Mills, 2017). 

Here, we report that differentiated cells in both pancreas and stomach exhibit high levels 

of mTORC1 activity during homeostasis. Proliferation‐inducing injury caused rapid mTORC1 

loss and a dramatic induction of autodegradative machinery (lysosomes and autophagy). As the 

functional and structural components were recycled, cells changed gene expression patterns (e.g., 

inducing the metaplastic marker Sox9); thereafter, they reactivated mTORC1 and re‐entered the 

cell cycle. Such changes in mTORC1 activity were corroborated in tissues from human patients. 

Also, established models of injury to differentiated cells in mouse liver (Espeillac et al, 2011) 
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and kidney (Chang‐Panesso & Humphreys, 2017) correlate mTORC1 activity with the recruited 

proliferating cells. Blocking mTORC1 with rapamycin in murine pancreas and stomach impaired 

only cell cycle re‐entry but not earlier cellular changes. Differentiated cells in autophagy‐

defective Gnptab−/− mice were blocked from both SOX9 expression and cell cycle re‐entry 

phases, consistent with the upstream autodegradative phase being necessary for downstream 

mTORC1‐mediated S‐phase entry. 

Our results in the context of numerous previous reports on cellular reprogramming lead 

us now to propose that recruiting differentiated cells into a regenerative phenotype occurs via 

stepwise metabolic and molecular phases that constitute a conserved, fundamental, cellular 

program, akin to mitosis or apoptosis. This cellular program occurs during cell fate changes of 

various types (e.g., reversion, dedifferentiation, transdifferentiation, reprogramming). The lack of 

a standard term for the actual cellular process itself impedes finding shared features that 

transcend cell types, tissues, and model systems. We propose a new, unifying term: “paligenosis” 

from the Greek: pali/n/m(meaning backward or recurrence) + genea (born of, producing) + osis 

(an action or process). 

Chapter 2.2 RESULTS 

Diverse organs show similar changes in metabolic activity during acute injury 

To induce injury in the stomach, we employed a high‐dose tamoxifen (“HD‐Tam”) injury 

model that has been used by us and others (Huh et al, 2012; Burkitt et al, 2017; Lee et al, 2017; 

Leushacke et al, 2017). HD‐Tam causes loss of nearly all acid‐secreting parietal cells in the body 

of the stomach (Figs EV1 and EV3) and induces mature, differentiated digestive‐enzyme‐
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secreting chief cells at the base of the unit to give rise to a proliferating cell population (Radyk et 

al, 2018). These former chief cells maintain low‐level expression of some mature chief cell 

markers and induce expression of wound repair‐associated genes like mucins and TFF2 (aka 

spasmolytic polypeptide). The pattern of parietal cell loss and abundant, proliferative cells co‐

expressing TFF2 and chief cell markers has been called spasmolytic polypeptide‐expressing 

metaplasia (SPEM) or pseudopyloric metaplasia (Schmidt et al, 1999). Maximal parietal cell loss 

and proliferation stemming from chief cells occurs at 3 days after the first dose of tamoxifen 

(Schematized in Fig 1A). By 7 days, parietal cells have returned, and the entire stomach 

regenerates to pre‐treatment cell censuses within 14–21 days (Huh et al, 2012). HD‐Tam is a 

rapid, synchronous method to model, in a manner that lends itself to molecular analyses, the 

mechanisms of stomach repair that also occurs in human stomachs infected with the bacterium 

Helicobacter pylori. 

To induce injury in pancreas, we used a well‐described rapid method involving daily 

injection of the secretagogue cerulein. Cerulein injections cause large‐scale damage to the 

digestive‐enzyme‐secreting acinar cells of the exocrine pancreas (Adler et al, 1985; Niederau et 

al, 1985; Saluja et al, 1985). To repair the damage, acinar cells re‐enter the cell cycle, forming 

duct‐like structures called ADM (acinar‐to‐ductal metaplasia; schematic in Fig 1A). In our 

protocol, ADM peaks 5 days after commencement of cerulein. Thereafter, there is continued 

damage if cerulein administration is maintained, but the pancreas gradually adapts to the injury 

over 2 weeks. Similar to HD‐Tam injury in the stomach, cerulein injury models a metaplastic 

process that can also be a precursor for pancreatic ductal adenocarcinoma. 
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To determine whether the reversion from the differentiated to the replicative state 

involves conserved shifts in cellular energy use, we examined metabolic activity in both tissues 

using phosphorylated ribosomal S6 protein (pS6). The principal mediator of S6 phosphorylation 

is the S6 kinase enzyme via the cellular metabolism hub mTOR complex 1 (mTORC1). To 

confirm that S6 phosphorylation depends on mTORC1 activity, we treated mice with rapamycin, 

a specific inhibitor of the mTORC1‐mediated S6 kinase activity. We used an antibody against 

residues 240/244 of S6, because those sites are phosphorylated principally by pS6 kinase 1, 

whereas the 235/236 phosphorylation sites can have input from other signaling pathways. For 

example, 235/236 can be phosphorylated by p90 ribosomal S6 kinases that can be activated via 

ERK signaling (Roux et al, 2007). Figure EV1shows that rapamycin, which is a specific inhibitor 

of mTORC1‐mediated S6 Kinase activity, abolished pS6 240/44 staining, which was normally 

abundant in gastric pit cells nearer the stomach lumen and in gastric chief cells. Rapamycin also 

blocked S6 phosphorylation efficiently during the HD‐Tam protocol (Fig EV1). Antibodies 

against 235/236 also showed strong phosphorylation at peak metaplasia as well as a similar 

abrogation of staining in the presence of rapamycin (Fig EV1). As anti‐240/244 antibodies have 

stronger signal in our experiments and are more specific for mTORC1‐mediated 

phosphorylation, we will use anti‐240/244 pS6 as a surrogate for mTORC1 activity for the 

remainder of the manuscript unless otherwise mentioned. 

HD‐Tam or cerulein caused dramatic changes in pS6 expression. In stomach, pS6 was 

largely lost by 12 h. By 3 days, when SPEM is maximal in this system, the entire gastric unit 

expressed abundant pS6 (Fig 1B). Molecular and cellular changes in the stomach following HD‐

Tam are sufficiently synchronous across the whole stomach that quantitative, molecular 

approaches can be used (Huh et al, 2012). Quantitatively, phosphorylation status of both pS6 
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240/244 and 235/236 in the corpus of the stomach was decreased by nearly half within the first 4 

h and returned to at or above baseline by 48 h (Fig 1C). In pancreas, despite a slower and less 

synchronous time course, the same pattern of mTORC1 activity could be observed by 

immunofluorescence. pS6 was abundant in acinar cells at baseline, was nearly undetectable by 

24 h, and recovered in many cells by day 5, when ADM is maximal (Fig 1D). 

Thus, both tissues, when recruiting proliferative cells for repair, undergo a well‐defined 

pattern of changes in mTORC1 activity. During homeostasis, the organs are replete with 

differentiated secretory cells that are not dividing but are energetically active in synthesizing 

protein using their elaborate secretory apparatus (Mills & Taghert, 2012; Lo et al, 2017). When 

replicating cells must be recruited from those differentiated cells, the cells shut off mTORC1 

temporarily, then re‐induce it at the time of maximal regenerative proliferation. 

To further assess whether the upregulation of pS6 is a common feature during the 

recruitment of differentiated cells to regenerate damaged tissue, we examined liver (two‐thirds 

partial hepatectomy) and kidney (tunicamycin‐induced acute injury) for changes in S6 

phosphorylation. Both injury models have previously been shown to involve recruitment of 

differentiated cells back into the cell cycle (Newberry et al, 2008). In kidney, as expected, 

tubules in the cortex and outer medulla are damaged as evinced by vacuolation (Fig EV2). Non‐

damaged tubules show increased BrdU as cells re‐enter the cell cycle (Fig EV2). The 

proliferative tubules show marked increase in pS6. Similarly, the well‐known recruitment of 

hepatocytes into the cell cycle 48 h following partial hepatectomy is also accompanied by 

increased S6 phosphorylation (Fig EV2). 
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Rapamycin had equivalent effects on the pancreas. Metaplastic induction of SOX9 was 

not affected (Fig EV4); however, cell proliferation was even more substantially blocked than in 

the stomach (Fig 2D and E). This may be because the pancreas is entirely dependent on 

reprogramming acinar cells as a source for proliferation, whereas the stomach also has a 

constitutive stem cell that continues to proliferate even in the presence of rapamycin (Fig 1A). 

Continued HD‐Tam injections kill mice, so we cannot study adaptation of stomachs; however, 

we have maintained cerulein injections for up to 2 weeks by which point wild‐type pancreas 

usually adapts to the injury. Thus, we used the pancreas to determine whether mTORC1‐

dependent proliferation was required for pancreatic repair. Figure EV3 shows that 2‐week 

cerulein with mTORC1 blocked led to tissue loss relative to cerulein treatment alone. 

Changes in mTORC1 also characterize human metaplasia 

To determine whether mTORC1 activity is modulated in human disease states, we first 

examined a database of stomach tissues from human patients exhibiting metaplastic response to 

H. pylori infection, previously compiled at Washington University (Lennerz et al, 2010; Radyk 

et al, 2018). A representative region from this dataset is shown in Fig 3A. As in mice, 

morphologically normal chief cells showed high pS6. In regions of SPEM, pS6 abundance 

varied. In lesions that had histological features of cells undergoing acute conversion to SPEM 

(what we have previously termed “hybrid SPEM” (Lennerz et al, 2010; Radyk et al, 2018) based 

on examination of a large dataset of SPEM lesions), pS6 levels were high (Fig 3A). In regions 

where basal cells showed more uniform metaplasia (“established SPEM”), pS6 levels were 

lower. In humans, SPEM is thought to be either transient and rapidly resolve (as in the mouse 

HD‐Tam model) or chronic and persist for decades, involving large patches of the stomach 
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(Peterson, 2002). In the chronic case, SPEM is equivalent to the lesion pathologists call chronic 

atrophic gastritis (Rugge et al, 2008). In addition, SPEM is thought to progress to (or predate) 

another, proliferative, pre‐cancerous lesion, intestinal metaplasia (Yoshizawa et al, 2007; Correa 

& Piazuelo, 2012; Spechler et al, 2017) and to increase risk for progression to a cytologically 

atypical lesion, dysplasia, as well as to cancer itself. 

To further clarify the link between mTORC1 activity and metaplastic changes in humans, 

we analyzed pS6 levels in gastric tissue microarrays (Appendix Table S1) comprising tissue 

cores representing the following histological phenotypes: normal mucosa, SPEM, IM, dysplasia, 

and gastric adenocarcinoma. pS6 showed consistent, mid‐level expression in nearly all normal 

mucosal samples, in agreement with our smaller sample showing expression of pS6 in normal 

chief cells and with our mouse data (Fig 3B). Both cancer and dysplastic lesions showed higher 

average pS6 expression, though there was also more variability in that over a third of such 

lesions showed much stronger expression than normal tissue, while about a third showed lower 

expression (Fig 3B). On average, intestinal metaplasia pS6 levels were close to those of normal 

mucosa (Figs 3B and EV5). SPEM lesions showed a clear biphasic pattern with the majority like 

the “established SPEM” with low‐to‐no detectable pS6 (cf. Figs 3A and EV5) but with some 

SPEM lesions having much stronger pS6 (Figs 3 and EV5). 

SPEM lesions with lower pS6 activity tended to express abundant mucin as well as 

epitope for the SPEM‐identifying lectin GSII (Fig 3A); nuclei tended to be flat and eccentric (Fig 

EV5). pS6‐expressing SPEM cells were more cuboidal columnar, resembling the SPEM cells in 

the acute, proliferative mouse SPEM that resolves in a few days after HD‐Tam. We hypothesized 

that SPEM with increased pS6 represented metaplastic cells that are actively proliferating (like 
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D3 HD‐Tam in mice) to repair an injury, whereas the decreased pS6 lesions of established SPEM 

may be mitotically quiescent. Hence, we divided the SPEM lesions into mitotically active 

(“proliferative SPEM”) and inactive (“quiescent SPEM”) based on Ki‐67 staining of the same 

tissue core on another microtome section (Fig EV5) and then correlated those phenotypes to the 

previously scored pS6 expression for that lesion. Proliferative SPEM was far more likely to be 

associated with pS6 expression, whereas quiescent SPEM was largely negative for pS6 (Fig 3C, 

P < 0.001 by χ2). Thus, pS6 is low‐moderate in normal, physiologically active mucosa and high 

in most lesions that have increased proliferation (proliferative SPEM, IM, dysplasia, cancer). We 

conclude that metabolic activity correlates with differentiation state and recruitment into the cell 

cycle in humans as well as mice. 

Loss of mTORC1 inhibits cell cycle progression at S‐phase 

Because gastric chief cells respond to injury more synchronously than pancreatic acinar 

cells, we are able to perform molecular analyses based on changes of gene expression. We used 

this approach to determine specifically where the block in cell cycle re‐entry occurs when 

mTORC1 activity is inhibited. We analyzed Affymetrix GeneChips of whole gastric corpora 

±HD‐Tam (3D) ±rapamycin by Gene Set Enrichment Analysis (GSEA) with a combination of 

both a publicly available and custom gene sets. In a control experiment to validate our approach, 

we dissociated gastric epithelial cells from Atp4b‐Cre; ROSA26mTmGmouse stomachs and used 

flow cytometry to isolate parietal cells (GFP+) from other epithelial cells (Tomato+). Expression 

of isolated, amplified RNA applied to GeneChips was analyzed by Partek Genomics Suite, and 

the 94 genes whose expression was enriched ≥ eightfold in parietal cells vs. other epithelial cells 

was computed. As expected, GSEA showed that these PC‐enriched genes were highly 
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preferentially expressed in control stomachs vs. HD‐Tam stomachs; the addition of rapamycin 

did not affect this pattern (Appendix Fig S1). Thus, global gene expression profiling with GSEA 

can detect the loss of parietal cells that epitomizes HD‐Tam‐induced metaplasia and also shows 

that parietal cell loss is independent of mTORC1, consistent with the histological data. In another 

control experiment, we performed GSEA of a published gene set of mature chief cell enriched 

genes (Capoccia et al, 2013) and contrasted HD‐Tam vs. HD‐Tam + rapamycin. There was no 

substantial effect of rapamycin, suggesting that the change in chief cell gene expression induced 

by injury is also not substantially affected by loss of mTORC1 (Appendix Fig S1). 

On the other hand, although many transcripts from a previously published gene set of 

SPEM‐associated genes (Nozaki et al, 2008) did not show particular changes when rapamycin 

was administered in HD‐Tam, there was a cluster of genes enriched only when mTORC1 levels 

were normal (Appendix Fig S1). Injury that causes metaplasia induces both wound‐healing‐

associated genes (e.g., Clu, Sox9, CD44v) and proliferation‐associated genes. Given that 

rapamycin blocks proliferation specifically in our histological analysis, we next examined the 

effects of rapamycin on the cell cycle using GSEA. Figure 4A shows that, indeed, rapamycin 

induces a marked de‐enrichment of cell cycle gene expression in HD‐Tam. The block appears 

specifically at the S‐phase and beyond, as gene sets for G1‐S, S, G2, and G2‐M showed that G1‐

S genes were relatively similarly distributed regardless of mTORC1 activity, whereas genes 

expressed during the later stages in the cell cycle were skewed toward the HD‐Tam alone 

condition (Fig 4B–E). We used a slightly different approach to further investigate the interaction 

of mTORC1 with cell cycle stage by first determining the top 20 genes skewed most toward the 

HD‐Tam (vs. vehicle‐treated controls) in each cell cycle stage gene set. We then determined the 

average increased expression of those genes in both HD‐Tam and HD‐Tam + rapamycin vs. 
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vehicle controls. Figure 4F shows that rapamycin decreased expression of the 20 top G1/S‐phase 

HD‐Tam‐enriched genes by only 16 ± 3%, whereas gene expression at other cell cycle stages 

was inhibited substantially more. Expression of G2/M‐phase genes was decreased by 49 ± 3% 

with rapamycin treatment (P < 0.001, HD‐Tam vs. HD‐Tam + rapamycin in G2‐M genes; P < 

0.05 for G2‐M vs. G1‐S). 

To independently validate the GeneChip findings, we performed qRT–PCR that showed 

that the expected decreases in a parietal cell (Atp4b) transcript and increase in a non‐cell‐cycle 

SPEM transcript (Clu) were not affected by rapamycin (Fig 4G). Also matching the GeneChip 

results, the G1 transcript, Ccnd1, was increased similarly regardless of mTORC1 status. As 

expected, a G2/M‐phase transcript cohort was uniformly increased in HD‐Tam but not in HD‐

Tam + rapamycin (Fig 4H). Thus, molecular analysis indicates that inhibition of mTORC1 

activity does not substantially affect chief cell G1‐phase entry from the quiescent, G0 state but 

slows S, G2, and M‐phase progression. BrdU uptake and incorporation into DNA occurs during 

S‐phase; thus, the block in BrdU seen histologically corroborates the molecular data suggesting 

that mTORC1 is required for G1 to S transition. 

Autodegradative machinery is massively upregulated early following injury 

We so far have observed that mTORC1 activity is rapidly extinguished within hours of 

inducing injury. Later, as cells re‐enter the cell cycle, mTORC1 is rekindled. Blocking re‐

emergence of mTORC1 activity inhibits induced proliferation in both stomach and pancreas. In 

pancreas, where repair is entirely dependent on reprogramming, loss of mTORC1 activity blocks 

tissue regeneration. We hypothesized that the scaling down of mature cell architecture to “retool” 

a cell for more efficient proliferation would likely involve activation of lysosomes and 
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autophagic machinery. The autodegradation of cellular structure could then liberate key 

macromolecules (nucleotides, amino acids, lipids) that would both stimulate mTORC1 

reactivation and provide building blocks for replication. Figure 5 shows that there is a massive 

increase of lysosomes (by luminal marker Cathepsin D, Fig 5A) and autophagosomal puncta (by 

LC3‐GFP, Fig 5C) early following injury in gastric chief cells. Figure 5B quantifies a large spike 

in lysosomes, as a percentage of their PGC+ (pepsinogen C; chief cell marker) cell area, by 12–

24 h of HD‐Tam that begins to resolve by later stages, when many cells have re‐entered the cell 

cycle. Increased lysosomes, autophagosomes, and autolysosomes can also be seen at the 

ultrastructure level (Fig 5D and E) on transmission electron microscopy (tEM). tEM analysis 

shows that rER, mitochondria, and secretory granules are all targeted for recycling during these 

early stages. The pancreas also shows an equivalent time course of changes in autodegradative 

machinery, with a spike in lysosome and autophagic puncta 8–24 h following cerulein, followed 

by decreasing, but still elevated levels, at D3 and near baseline levels at the time of maximal 

proliferation and pS6 activity (D5: Fig 5F, Appendix Fig S2). 

Autodegradative machinery is required for normal progression to later stages 

We next sought to address whether autodegradative machinery activation is both 

upstream of and required for metaplasia formation and proliferation. To do this, we used mice 

defective in lysosomal hydrolase trafficking that have been shown previously to have defects in 

autodegradative function specifically in exocrine secretory cells like chief and acinar cells 

(Boonen et al, 2011). Gnptab−/− mice are deficient in an enzyme required for the addition of 

mannose‐6‐phosphate to lysosomal enzymes to ensure their proper trafficking. We treated 

Gnptab−/− and littermate controls (Gnptab−/+ and Gnptab+/+) with HD‐Tam or cerulein. HD‐Tam 
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treatment in Gnptab−/− mice caused the expected loss of parietal cells; however, chief cell 

reprogramming was dramatically compromised (Fig EV6). Most units did not show loss of large 

chief cells with eccentric nuclei at all (red arrowhead, Fig EV6), suggesting reprogramming did 

not occur, whereas some gastric units showed complete loss of the base zone where chief cells 

normally reside (green arrowhead, Fig EV6), indicating chief cells were aberrantly lost instead of 

reprogrammed. Rarer gastric units seemed to complete the reprogramming (yellow arrowhead, 

Fig EV6). In pancreas, we detected almost no ADM in Gnptab−/− mice (Fig EV6) by D5. Rather, 

cells remained in an aberrant acinar morphology with considerable loss of eosinophilic 

cytoplasm but no decrease in size. By 2 weeks, whereas wild‐type controls had largely adapted 

to the cerulein injury, in Gnptab−/− mice, the exocrine pancreas comprised only scattered ducts 

and SOX9− acinar cells, still organized in typical lobules. Cytologically, these remnant cells 

were characterized by generous pale cytoplasms ranging from foamy to hyaline and lacking 

nearly all distinguishing features. 

We next examined the molecular phenotype of the block in Gnptab−/− mice. In control 

stomachs in response to injury, reprogramming cells in the base showed the expected abundant 

increase in metaplastic genes like Sox9 (Fig 6A) and the epitope for GSII (Fig 6C). Proliferation 

in the base of the unit, where chief cells were reprogramming, was nearly equivalent to the rate 

of proliferation in the normal stem cell zone in the neck (Fig 6B and D). The bases of gastric 

units in Gnptab−/− mice were markedly compromised in both metaplastic changes and 

proliferation (Fig 6A–D). In Gnptab−/− mice, chief cells in the base remained both BrdU‐ and 

SOX9‐negative (Fig 6E and F). They also failed to reactivate mTORC1, as pS6 in these mice 

was largely not detectable in the base (Fig EV7). 
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In the pancreas, there was a similar defect in both BrdU (Fig 6G and I) and Sox9 (Fig 

6H). The remnant acinar cells that remained in Gnptab−/− mice following 2 weeks of cerulein 

treatment expressed E‐cadherin and low levels of amylase but were not positive for other mature 

acinar nuclear markers like GATA4 or metaplasia markers like CK8/18 (Appendix Fig S3). 

Finally, to determine whether the dropout of gastric bases was due to increased cell death 

in the absence of lysosomal hydrolase activity, we examined tissue for cleaved caspase 3. In 

wild‐type mice (either with or without rapamycin), we did not detect substantial apoptotic death 

of the chief cells, consistent with our previous observations that death in HD‐Tam is essentially 

confined to parietal cells (Huh et al, 2012; Radyk et al, 2018; Fig EV1). In Gnptab−/− mice, 

however, we frequently observed multiple cells in some bases of gastric units that were 

undergoing apoptosis (Appendix Fig S4). Thus, in stomach, aberrant autodegradative function 

leads either to stalling of the chief cell reprogramming process or cell death. In pancreas, we 

observed a pattern of scattered apoptosis of acinar cells in wild‐type mice ±rapamycin following 

cerulein treatment. Loss of GNPTAB did not seem to affect this basal rate of death, which is 

consistent with the survival of many acinar cell remnants out to 2 weeks, as discussed above. 

Chapter 2.3 DISCUSSION 

There has been a recent burgeoning of examples of cellular plasticity in tissue in response 

to injury, not to mention a growing, already large literature on in vitro systems for 

reprogramming cells back to progenitors. The instances of such plasticity span numerous species 

and nearly all tissues. Despite the breadth of examples of cellular reprogramming, studies 

focusing on the specific molecular mechanisms responsible for the process are still relatively 

scant. This is particularly true in studies of cells in tissue, likely because investigators have 
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focused more on the outcome of cellular reprogramming—regeneration or tumorigenesis—than 

on the stepwise mechanisms differentiated cells use to contribute to those outcomes. Here, we 

have speculated that there could be a shared cellular program that governs the many diverse 

examples of differentiated cells changing their fate to facilitate repair. There have been many 

terms that either focus on the outcome of the program or are overly broad: “dedifferentiation”, 

“transdifferentiation”, “reversion”, “reprogramming”. We now propose “paligenosis” as a 

specific term describing the cellular process differentiated cells use to re‐acquire regenerative 

capacity. We highlight that paligenosis may be a conserved cellular process with shared 

molecular and cellular regulation akin to other basic cellular processes like mitosis and 

apoptosis. 

To support our assertion that there may be a shared program for recruiting differentiated 

cells, we have analyzed the cellular and molecular changes that occur during injury‐induced 

reprogramming in two distinct organs. Upon injury, both the stomach and pancreas have the 

capacity to repair tissue damage through the recruitment of fully differentiated cells into a less 

differentiated, proliferative state to replenish cell numbers. This pattern of change in cell 

phenotype is known to pathologists as metaplasia. We find that the cellular and molecular 

changes that characterize cells undergoing such metaplastic injury response in either stomach or 

pancreas are remarkably similar. Specifically, we found that acutely following injury, 

autodegradative pathways increase alongside a decrease in mTORC1 activity (Fig 7). As the 

injury progresses, we observed the induction of genes that are known to occur during metaplasia 

followed by the rise of mTORC1 activity and increased proliferation (Fig 7). A similar pattern of 

changes in mTORC1 activity relative to metaplasia and the differentiated vs. proliferative 

phenotype was observed in human patients. We found that mTORC1 activity was specifically 
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required for progression through S‐phase. Previous literature has also shown that mTORC1 

activity is critical for S‐phase progression of cancer cells following DNA damage, as mTORC1 

is needed to generate pyrimidines in a nutrient‐poor environment (Robitaille et al, 2013; Silvera 

et al, 2017; Zhou et al, 2017). mTORC1 activation is also needed for yeast to pass through G1 

into S‐phase as they emerge from quiescence (Dhawan & Laxman, 2015; Moreno‐Torres et al, 

2015). Using an animal model of lysosomal dysfunction, we uncovered that normal lysosomal 

function after injury is required for cell phenotype and gene expression changes associated with 

metaplasia. In pancreas, where constitutive stem cells are not available for regeneration, loss of 

either autodegradative function or mTORC1 activity compromised eventual organ repair. 

Recent advances in the understanding of how mTORC1 is controlled have described a 

role for the lysosome as an activator of the pathway through the release of nutrients like key 

amino acids (Zoncu et al, 2011). Thus, our current working model is that due to injury‐induced 

stress, autodegradative pathways are upregulated, and flux increases. The activation of 

autodegradative pathways appears to act in parallel with loss of the mature gene regulatory 

network, as forcing expression of key mature‐cell‐promoting transcription factors like MIST1 

(BHLHA15) impairs the injury/repair process (Direnzo et al, 2012; Lo et al, 2017). MIST1 

controls a cassette of genes that help direct a cell's energy toward secretion and away from 

lysosomal activation and autophagy (Mills & Taghert, 2012). We reason, as did Adami over a 

century ago, that to convert from the differentiated state (structurally complex, energetically 

active) to the replicative state (structurally simple, energetically active), cellular energy use must 

be repurposed as an autodegradative program is activated to convert differentiated cell structure 

into building blocks for replication. The release of nutrients through the lysosome is sensed in 

cells during the autodegradative phase, resulting in reactivation of mTORC1, which, once the 
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cell has reached sufficient energy levels, subsequently facilitates cell cycle progression and 

growth to replace cells lost during the injury. 

Pancreatic adenocarcinoma and—to a lesser extent—gastric adenocarcinoma are 

commonly driven by oncogenic mutations in Kras. In mouse models in both the pancreas 

(Hingorani et al, 2005) and stomach (Choi et al, 2016), KrasG12D mutations, in concert with 

tissue inflammation, promote changes in gene expression and cell phenotypes resembling injury‐

induced metaplasia. In the pancreas, genetically disabling autophagy in the context of K‐Ras 

mutations prevents K‐Ras from driving high‐grade lesions (Rosenfeldt et al, 2013). Furthermore, 

cells unable to phosphorylate S6 in the context of activating K‐Ras mutations also exhibit less 

pancreatic cancer progression (Khalaileh et al, 2013). A similar critical role for mTORC1 

downstream of another key driver oncogene pathway, Wnt activation mediated by APC 

mutation, has been described in intestinal carcinogenesis (Morran et al, 2014). Thus, 

tumorigenesis in diverse tissues may also involve modulating lysosomal activity and mTORC1, 

similar to what we observe in our injury models here. Other pathways downstream of K‐Ras, 

such as PI3K/Rac1 signaling (Heid et al, 2011; Wu et al, 2014), also play similar roles in injury‐

induced metaplasia. 

If there truly is a shared cellular program, paligenosis, underlying the process of 

recruiting mature cells to become regenerative cells, we would expect the general features we 

have described here in stomach and pancreas to be recapitulated in many other tissues and 

species. Obviously, it will be important to conduct new studies in other systems to begin to 

support that assertion; however, we can at this point re‐examine the extant literature to determine 

whether roles for lysosomes/autophagy and/or mTORC1 in the process of cellular 
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reprogramming to a regenerative state have previously been described. One such previous study, 

using a different injury protocol, with the endpoint to determine the role of mTORC1 and 

autophagy in severity of pancreatitis, similarly showed a pattern of early autodegradation 

followed by mTORC1 activation (Hu et al, 2015). The authors also found that rapamycin 

worsened severity of pancreatitis. In liver, it has long been known that the earliest phase of 

hepatocyte response to partial hepatectomy is massive activation of autophagy/lysosomes 

(Becker & Lane, 1965). mTORC1 is required for the later stages of the process, when 

proliferation is maximal, consistent with observations we make in the current manuscript (Jiang 

et al, 2001; Nelsen et al, 2003; Buitrago‐Molina et al, 2009; Espeillac et al, 2011). In kidney, the 

reprogramming process involves mTORC1 (Kato et al, 2012), and we show here that mTORC1 

activity is increased specifically in the tubular cells, which are the cell population called back 

into the cell cycle to regenerate damaged tissue. To our knowledge, lysosomes/autophagy has not 

been examined in regenerating kidney. In mature glial cells that dedifferentiate following axonal 

injury, activation of autophagy/lysosomes is a well‐established early event (Jessen & Mirsky, 

2016). To our knowledge, mTORC1 activity has not been examined in the process. Furthermore, 

in tissue culture cellular reprogramming models to generate induced pluripotent stem cells, there 

is an emerging literature that an early autophagy phase is followed eventually by mTORC1 

activation. Inhibition of either autophagy or prolonged inhibition of mTORC1 reduces 

reprogramming efficiency (He et al, 2012; Wang et al, 2013; Wu et al, 2015). Hence, the stages 

and checkpoints appear to be the same as the ones we examine in the current manuscript. 

Thus, there are numerous reports indicating that the pattern we show here systematically 

of autodegradation first, then mTORC1 activation may be universal. Moreover, teleologically, it 

makes sense that a mature cell would first recycle cellular components required for physiological 
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function to use them as substrates for subsequent synthesis of components needed for 

proliferation. In organs like the vertebrate pancreas or liver, where there are no constitutively 

active stem cells, repair would likely depend in large part on paligenosis. In tissues with 

constitutive stem cells, like stomach and intestines, the tissues would have the choice of 

regenerating with either constitutive stem cells or paligenotic cells, depending potentially on 

type, extent, and location of injury. 

Not all differentiated cells are likely to be able to undergo paligenosis. In the stomach, for 

example, we have never observed this phenomenon in mature parietal cells (Huh et al, 2012; 

Mills & Sansom, 2015). Cells that are constitutively undifferentiated and replicative like those of 

the isthmus of the stomach or LGR5+ crypt‐base columnar cells should not need any stage of 

paligenosis (Fig 7). They may acquire the building block nucleotides and amino acids from the 

blood and/or extracellular environment, given that, by definition, their lack of differentiation 

means they contain limited non‐nuclear components to recycle. Other cells, such as mucous neck 

cells in the stomach or +4 cells in the intestine (van Es et al, 2012; Roth et al, 2012; Buczacki et 

al, 2013), may be able to respond to injury but are less well differentiated and thus may be able 

to skip the autodegradative phase and go directly to the activating mTORC1 and cell division 

phase of paligenosis. 

Paligenosis may be beneficial for its potential to provide lifelong tissue repair in adult 

organs, but this capacity also seems inherently tied to increased risk for tumorigenesis. Chronic 

injury of the type that repetitively induces paligenotic/metaplastic events has long been known to 

increase risk for acquisition of mutations and progression to neoplasm. We have proposed that 

the reason that risk increases with age is that cycles of paligenosis and subsequent 
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redifferentiation allow accumulation of mutations that may be stored in long‐lived, differentiated 

cells. Eventually, a critical mutation may be unmasked during paligenosis, and a clone of cells 

that is unable to redifferentiate arises. We have termed this the “cyclical hit” model of 

tumorigenesis (Mills & Sansom, 2015; Saenz & Mills, 2018). 

There are numerous questions that our current study prompts. What molecular events 

underlie the competence to pass through each stage of paligenosis? What is the relationship 

between paligenosis and chronic injury, and what causes the increased risk for cancer? Why are 

some cells able to undergo paligenosis, whereas others are not? We expect that the framework of 

sequential phases of paligenosis that we introduce here, along with the potential checkpoints that 

serve as molecular barriers between each stage of the process, can serve as a starting point for 

future questions. 

Chapter 2.4 MATERIALS AND METHODS 

Animal studies and reagents 

All experiments using animals followed protocols were approved by the Washington 

University School of Medicine Animal Studies Committee. WT C57BL/6 mice were purchased 

from Jackson Laboratories (Bar Harbor, ME). Tg(Atp4b‐cre)1Jig/JcmiJ (Atp4b‐Cre) (Syder et al, 

2004), Gt(ROSA)26Sortm4(ACTB‐tdTomato,‐EGFP)Luo/J (ROSA26mtmg) (Muzumdar et al, 

2007), Gnptab (Gelfman et al, 2007),and LC3‐GFP (Mizushima et al, 2004) mice were 

previously described. Gnptab mice were a kind gift from Dr. Stuart Kornfeld of Washington 

University. Tamoxifen (5 mg/20 g body weight; Toronto Research Chemicals) was injected 

intraperitoneally (IP) daily for 2–3 days to induce maximal gastric injury (Huh et al, 2012; Saenz 
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et al, 2016). Tamoxifen was prepared by first dispersing in 100% ethanol by sonication and then 

emulsifying in sunflower oil (Sigma‐Aldrich) 9:1 (oil:ethanol). Pancreatitis was induced by 6 

hourly IP injections of 50 μg/kg (in 0.9% saline) cerulein (Sigma‐Aldrich) given every other day 

for up to 2 weeks. Mice were sacrificed 24 h after the final cerulein injection. Rapamycin (60 

μg/20 g body weight; LC Laboratories) was injected IP in 0.25% Tween‐20, 0.25% polyethylene 

glycol in PBS for 3–7 days prior to starting and throughout injury time course. Tunicamycin 

(Carlisle et al, 2014) and two‐thirds partial hepatectomy (Blanc et al, 2010) injuries were 

performed as previously described. Mice were given an IP injection containing 5‐bromo‐2′‐

deoxyuridine (BrdU; 120 mg/kg) and 5‐fluoro‐2′‐deoxyuridine (12 mg/kg) in sterile water 90 

min before sacrifice for all BrdU labeling experiments. 

For parietal cell isolation, stomachs were harvested and washed several times with PBS. 

The forestomach and antrum were carefully removed and the remaining corpus minced with a 

razor blade. The tissue was mechanically dissociated using a 50 μm Medicon (Beckman) for two 

30‐s pulses. Chunks of tissue were further dissociated by incubating in 10 ml HBSS with 5 mM 

EDTA and 1 mM DTT with vigorous shaking for 1 h at 37°C, and then, the solution was run 

through a 100‐μm filter. Single cells were allowed to rest at 37°C, while filtered chunks were 

incubated in 10 ml RPMI 1640 with 5% BSA (Sigma) and 1.5 mg/ml Dispase II (Stem Cell 

Technologies) with vigorous shaking for 1.5 h at 37°C and then filtered again. Dissociated cells 

were pelleted and washed with cold HBSS three times and then resuspended in PBS with 1% 

BSA and 5 mM EDTA. Cells were sorted into a parietal cell population (GFP) and all remaining 

cells (tdTomato) using a MoFlo FACS machine (Dako/Cytomation). 
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Imaging and tissue analysis 

Mouse tissues were immediately excised and flushed with phosphate‐buffered saline and 

fixed overnight in 4% paraformaldehyde in PBS. Tissues were washed, embedded in 3% agar, 

and then underwent routine paraffin processing. Sections prepared for immunofluorescence or 

immunohistochemistry underwent standard deparaffinization and rehydration protocols, were 

blocked in 5% normal serum, and left overnight with primary antibodies. Sections were washed 

in phosphate‐buffered saline and incubated for 1 h with secondary antibodies and then washed 

prior to mounting. For antibodies used in this study, see Appendix Table S2. 

Immunofluorescence images were taken on a Zeiss Apotome or LSM710 confocal (Zeiss). 

Bright field images were taken on a Nanozoomer (Hamamatsu) whole slide scanner or DP70 

microscope (Olympus). Counting of stomach cell populations and proliferation was done as 

previously described (Burclaff et al, 2017), except for analysis of Gnptab−/− mice. To account for 

frequent gland loss in the base of these mice, a different approach was taken. For chief cell 

quantification (SOX9+ and BrdU+), 10 random, 20× fields were chosen in three Gnptab−/− and 

three control animals, and chief cells scored in slides from SOX9 or BrdU immunostained 

sections. For BrdU, distribution, the 10 fields were further subdivided into two rectangular 

regions: a basal one 100 μm perpendicular and 450 μm parallel to the muscularis mucosa and a 

region of the same size immediately adjacent and encompassing the neck of the gastric unit. All 

BrdU+ cells were scored and the proportion in each zone calculated. Quantification of 

proliferation in the pancreas was done by counting 10 randomly sampled whole 20× fields per 

condition. Cathepsin D+ area was calculated by generating a region of interest around PGC+ 

zymogenic cell cytoplasms and using particle counting analysis in ImageJ (NIH) to calculate 
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Cathepsin D+ area relative to total cytoplasmic area. Tissue preparation and imaging for electron 

microscopy was done as previously described (Ramsey et al, 2007). 

Human tissue studies 

Human gastric pathological tissue specimens were obtained with approval by the 

Institutional Review Board of Washington University School of Medicine. Figure 3A is a 

representative image from a qualitative analysis of 44 separate curated gastric clinical samples 

that have been previously described (Lennerz et al, 2010; Radyk et al, 2018). The study of tissue 

microarray cases included in this paper was also approved by the China Medical University First 

Hospital Institutional Review Board and Ethics Committee. This patient cohort was initially 

treated at the China First Medical University, and routine standard of care specimens was 

obtained from patients treated between 2005 and 2009. Tumor, metaplastic, and uninvolved 

normal tissue from each patient was formalin‐fixed and paraffin‐embedded. Staining was scored 

on the following scale: 0, no staining; 1, minimal staining; 2, moderate to strong staining in at 

least 20% of cells; 3, strong staining in at least 50% of cells. The scoring system was designed, 

and independently verified, by a human pathologist. 

Bioinformatics, microarray, qRT–PCR, and statistical analyses 

For qRT–PCR and microarray analyses of mouse stomach ±rapamycin, two independent 

experiments were run and a total of two to three separate mice and corresponding microarrays 

were generated for each condition. All mice were harvested 3 days after first injection and 

treated as per protocol in (Fig EV1). Conditions were Veh‐Veh (rapamycin vehicle regimen + 3 

days of tamoxifen vehicle), Veh‐Tam (3 days of rapamycin vehicle regimen + 3 days of HD‐
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Tam), Rap‐Veh (rapamycin regimen, 3 days of tamoxifen vehicle); Rap‐Tam (rapamycin 

regimen + 3 days of HD‐Tam). RNA for microarray and qRT–PCR analysis was isolated as 

previously described (Lo et al, 2017). For microarray, samples were processed and hybridized to 

Affymetrix Mouse Gene 2.0 ST per the manufacturer's instructions by the Washington 

University Genome Technology Access Core (GTAC). GeneChips were analyzed with Partek 

Genomic Suite 6.6 (Partek, Inc.) analysis software using default settings (Lo et al, 2017). 

Mapping to Gene Symbols was done either via GSEA (Subramanian et al, 2005) or GenePattern 

software (Reich et al, 2006). GSEA was done using default 3.0 settings. GMX files were made 

using previously published microarray data in the case of laser‐capture micro‐dissected chief 

cells (Capoccia et al, 2013), generated de novo or acquired from GSEA molecular signatures 

database. For the list of parietal cell‐specific genes generated de novo for the current manuscript, 

flow cytometry was used to sort parietal cells and control cells into 500 μl RNA protect reagent 

(Qiagen). RNA was isolated using the RNeasy Micro Kit (Qiagen) following the manufacturer's 

instructions. Mouse Gene 2.0 ST Array (Affymetrix) was used to analyze gene expression, and 

the gene set whose expression was enhanced at least eightfold (96 separate genes) in parietal 

cells vs. control was determined by Partek. For primers used in qRT–PCR, see Appendix Table 

S3. Statistics for cell counts and qRT–PCR were done by Student's t‐test (in the case of pair‐wise 

analysis of significance) or ANOVA (if multiple conditions were compared). For determining 

statistically significant differences among various conditions in ANOVA, the post hoc tests were 

either Tukey's (for multiple crosswise comparisons of means) or Dunnett's (for comparisons of 

multiple experimental samples to a single control). For the tissue microarray, a χ2 analysis was 

performed. 
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Western blot 

Approximately 100 mg mouse corpus stomach tissue was lysed in urea buffer (8 M urea, 

1% SDS, 150 mM Tris–HCl, pH = 7.0) with 1× protease/phosphatase inhibitor cocktail 

(Thermo). Protein concentration was determined using the DC protein assay (Bio‐Rad). Protein 

(30 μg) was separated using a 10% SDS–PAGE gel and transferred to PVDF membranes 

(Millipore). Membranes were incubated overnight at 4°C with Rabbit polyclonal pS6 240/244 or 

235/236 (1:1,000 diluted, CST) and Rabbit polyclonal beta‐tubulin antibody (1:1,000 diluted, 

CST) and then incubated with infrared fluorescent dye‐conjugated secondary antibodies (LI‐

COR Biosciences). Protein signal intensities were normalized against a tubulin loading control 

for each sample. Fluorescent intensity values were determined and quantified on Western blots at 

non‐saturating exposures using the ImageJ software. Statistical analysis with both antibodies was 

done using ANOVA with a post hoc Dunnett's test. 
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Chapter 2.5 FIGURES 

Figure 2.1 
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Figure 2.2 
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Figure 2.3
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7 
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Appendix Figure S2.1 

 

Appendix Figure S1 - GSEA of microarray data shows that Rapamycin does not affect 

injury induced changes in parietal and chief cell gene expression but causes aberrant 

expression of a cohort of genes typically induced in SPEM. 

A, B GSEA and Genechip analyses were performed as for Fig.4, except panels A and B depict 

comparisons of a parietal cell specific gene set performed by flow cytometric purification of 

parietal cells (see Methods) with panel A showing how parietal cell gene expression is greatly 

enriched in vehicle control vs. HD-Tam and panel B showing that adding rapamycin with or 

without HD-Tam does not affect this pattern. 

C Direct comparison of rapamycin+HD-Tam vs. HD-Tam shows that loss of parietal cell gene 
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expression after HD-Tam treatment is not affected by rapamycin; if anything, rapamycin causes 

even more parietal cell injury as there is some enrichment of parietal cell gene expression in HD-

Tam alone. 

D Previously published chief cell-specific gene set also shows no relative enrichment in HD-

Tam vs. HD-Tam+rapamycin, indicating chief cell paligenosis is not affected by rapamycin. 

E On the other hand, a previously published SPEM gene set shows enrichment in a specific 

subcluster of genes in HD-Tam vs. HD-Tam+rapamycin, indicating rapamycin blocks induction 

of a certain subset of SPEM genes.IM, intestinal metaplasia; pSPEM, proliferative SPEM; 

qSPEM, quiescent SPEM. 
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Appendix Figure S2.2 

 

Appendix Figure S2 - LAMP1 time course during cerulein injury shows a pattern of 

increased then decreased activation similar to that of stomach. 

Upon injury LAMP1 vesicles are induced in acinar cells starting around 8 hours and peak around 

24 hours. By 3 to 5 days, the vesicles in exocrine cells begin to decrease back towards levels 

seen at homeostasis. Boxes in top panels are magnified to highlight acinar cells in bottom panels. 

Scale bars:20 μm  
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Appendix Figure S2.3 
 

 

Appendix Figure S3 - Gnptab−/− acinar cells after 2 week cerulein treatment remain 

cryptically acinar. 

A Comparison of amylase staining between Gnptab−/− and Gnptab−/+ following 2 weeks of 

cerulein treatment. In Gnptab−/− tissue, only scattered acinar cells remain highly positive for 

amylase (red arrowhead), with the vast majority only retaining weak positivity (yellow 

arrowheads). Scale bar: IF, 20 μm; IHC, 50 μm. 

B Survey of metaplasia (CK8/18), mature acinar (GATA4), and epithelial markers (E-cadherin) 

on Gnptab−/− tissue. Gnptab−/− acinar tissue does not stain for the metaplasia marker CK8/18 or 

the mature acinar nuclear marker Gata4. The poorly differentiated acinar cells are positive for E-

cadherin. Scale bar: IF, 20 μm; IHC, 50 μm. 
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Appendix Figure S2.4 

 

 

Appendix Figure S4 - Apoptotic cells death during HD tamoxifen or cerulein-induced 

injury. 

A At HD tamoxifen day 3 with or with rapamycin treatment, the stomach epithelium lacks 

apoptotic cells, indicating the main atrophy stage – in which parietal cells, but not chief cells, die 

by apoptosis –occurred earlier. In Gnptab−/− tissue, apoptotic cells can be found located at the 

base of some units consistent with the increased dropout of basal cells described in the results. 

Scale bar, 100 μm. 
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B During Cerulein at day 5, scattered apoptotic cells are seen in all experimental conditions, 

indicating the atrophy in this more asynchronous injury model is still occurring during this time 

window. No qualitative increase in cleave caspase positive cells were seen in rapamycin or 

Gnptab−/− tissue. Scale bar, 100 μm. 
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Appendix Table S2.1 
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Appendix Table S2.2 
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Appendix Table S2.3 
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EXPANDED VIEW FIGURE 2.1 
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Figure EV1. pS6 is an accurate proxy for rapamycin-sensitive mTORC1 activity and shows that 

loss of mTORC1 does not affect parietal cell death or induction of metaplastic gene expression 

in reprogramming chief cells. A Injection schemes for injury experiments with rapamycin in 

stomach (left) and pancreas (right). B Representative epifluorescence images of the distribution 

of pS6 in the normal and injured stomach rapamycin treatment. pS6 is restricted to the chief cell 

zone (base) and pit zone of the normal corpus unit. At peak (HD-Tam day 3) SPEM stages, it is 

located at high level throughout the unit. Upon rapamycin treatment, all pS6 staining is lost 

throughout the normal and injured corpus unit. The characteristic induction of GSII staining in 

reprogramming chief cells at the base of gastric units (indicating SPEM) occurs at least as 

markedly in the presence of rapamycin, indicating mTORC1 is not required for metaplastic gene 

induction. Green, pS6; white, GSII; blue, DAPI. Scale bars: 50 m. C At peak metaplasia stages, 

pS6 235/6 is upregulated in the stomach epithelium and rapamycin treatment at this stage 

abolishes all staining. Scale bars: 50 m. D Representative epifluorescence images of the loss 

parietal cells (marked by ezrin) upon injury and rapamycin treatment. Treatment with HD-Tam 

caused the loss of the vast majority of parietal cells throughout the corpus. Rapamycin does not 

rescue that injury. Green, GSII; white, ezrin; blue, DAPI. Scale bars: 50 um. 
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EXPANDED VIEW FIGURE 2.2 
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Figure EV2. Acute kidney injury and partial hepatectomy both cause upregulation of mTORC1 

activity during proliferative phases. 

A Upon injury with tunicamycin, tubule cells in the kidney are damaged (white arrowhead) and 

surviving tubule cells (yellow arrowhead) upregulate pS6. Scale bars: 100 m. 

B Upregulation of the pS6 is associated with increased proliferation in this injury model as seen 

by BrdU+ nuclei. Scale bars: 100 m. 

C Two-thirds partial hepatectomy causes a pronounced upregulation of pS6 in the remaining 

hepatocyte mass. Scale bars: 20 m. 

D The pS6+ hepatocytes are highly proliferative at this stage. Scale bars: 20 m. 
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EXPANDED VIEW FIGURE 2.3 
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Figure EV3. Histological changes in the injured stomach and pancreas with and with rapamycin 

treatment. 

A Representative hematoxylin and eosin counterstained images of HD-TAM stomach tissue 

rapamycin. Treatment with tamoxifen causes acute loss of parietal cells (large eosinophilic cells) 

by 12–24 h post-injury. By 3 days, chief cells have reprogrammed into SPEM cells. The general 

pattern of loss of parietal cells and conversion of chief cells to metaplastic cells is not affected by 

rapamycin (right panels). Scale bars, 50 m. 

B Representative hematoxylin and eosin counterstained images of pancreas tissue injured with 

cerulein at various stages rapamycin. Cerulein injury causes mosaic, asynchronous conversion of 

acinar cells into proliferative, acinar-ductal metaplastic cells with maximal features of the 

process at day 5 in our protocol. By 2 weeks, the pancreas has compensated for the continuous 

injury and recovers a relatively normal morphology. Dual treatment with rapamycin and cerulein 

does not rescue the metaplastic response by day 5 and impedes normal tissue compensation by 2 

weeks injury, with most of the tissue continuing to show abundant metaplastic forms. Scale bars, 

50 m. 
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EXPANDED VIEW FIGURE 2.4 
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Figure EV4. mTORC1 is not required for increased SOX9 during metaplasia. 

A Representative eosin counterstained IHC images of normal or metaplastic gastric tissue stained 

for SOX9. SOX9, in control tissue, stains the isthmal and mucous neck cells, which are 

proliferative progenitors (yellow arrowheads), of the corpus units and is generally excluded from 

the base of units. Upon injury with HD-TAM, SOX9 expression is induced in the base of units 

(yellow arrowheads). Treatment with rapamycin does not alter either the normal or metaplasia 

distribution of SOX9 (yellow arrowheads). Scale bars, 50 m. 

B Representative hematoxylin counterstained IHC images of normal or metaplastic pancreatic 

tissue stained for SOX9. SOX9 expression in normal pancreatic tissue is restricted to the duct 

(see inset in top left panel which is a high magnification view of the boxed area). At peak 

metaplasia stages, SOX9 becomes expressed in dedifferentiating acinar cells (see bottom left 

inset). Treatment with rapamycin in normal (see top right inset) or injured (see bottom right 

inset) does not alter SOX9 expression. Scale bars 50 m; inset 25 m. 
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EXPANDED VIEW FIGURE 2.5 

 

 

Figure EV5. Representative IHC images from human tissue microarray. 

A Intestinal metaplasia (“IM” indicating the glands to upper left of red dashed line) is generally 

proliferative as evinced by frequent Ki-67+ cells (left) and is strongly pS6 positive. Most SPEM 
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has a quiescent phenotype (glands labeled on “qSPEM” side of panels) characterized by cells 

with abundant mucus, flattened basal nuclei, and a lack of both Ki-67 and pS6 staining Scale bar, 

200 m. 

B Rare SPEM lesions show cells with cuboidal columnar morphology. These lesions show Ki-67 

positivity usually associated with pS6 positivity. Boxed regions are shown at higher 

magnification below. Scale bar, 200 m; pullout, 50 m. 
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EXPANDED VIEW FIGURE 2.6 
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Figure EV6. Histological appearance of Gnptab-/- stomach and pancreas tissue at injury time 

points. 

A Representative hematoxylin and eosin counterstained images of Gnptab+/- and Gnptab-/- 

stomach tissue. Gnptab-/- chief cell cytoplasms have a hypertrophic, frothy appearance compared 

to control zymogenic cells. Loss of parietal cells (fried-egg appearing eosinophilic cells) 

following HD-Tam is not affected by loss of GNPTAB; however, the base zones in  Gnptab-/- 

mice at day 3 HD-Tam are usually resistant to dedifferentiation (red arrowheads) with large, 

frothy chief cells remaining largely non-reprogrammed. Another, less common phenotype is that 

all chief cells are lost such that most of the base of the unit disappears (green arrowheads). Rare 

units partially undergo morphological metaplastic changes, though usually those are also 

associated with loss of basal cells (yellow arrowheads). Higher magnification 
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views are to right of each panel, with white bracket delineating particular region of interest in 

Gnptab-/- stomach Scale bar 50 m; pullout, 25 m. 

B Representative hematoxylin and eosin counterstained images of Gnptab-/+ and Gnptab-/- 

pancreas. Similar to the stomach zymogenic cells, pancreatic acinar cells also have a 

hypertrophic, frothy appearance. Whereas control samples treated with cerulein show diffuse, 

asynchronous acinar-to-ductal metaplasia, Gnptab-/- mice have acinar cells that simply become 

less eosinophilic and foamy over time without undergoing ADM. By 2 weeks, wild-type 

pancreas has largely adapted to cerulein, whereas Gnptab-/- pancreas parenchyma comprises only 

lobules of excessively pale (hyaline), frothy acinar cells and scattered reactive ducts. Scale bar 

50 m; pullout, 25 m. 
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EXPANDED VIEW FIGURE 2.7 

 

Figure EV7. Lysosomal activity is required to reactivate mTORC1 following HD tamoxifen 

injury. 

A At peak metaplasia stages in Gnptab-/+ tissue, pS6 is re-expressed throughout the stomach 

epithelium, including intense staining within the pit and metaplastic base. Scale bars: 50 m; 

pullout, 25 m. 
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B In Gnptab-/- issue, pS6 is not reactivated in the base, indicating lysosomal activity is required 

for mTORC1 re-activation at later stages following injury. Boxed regions are shown at higher 

magnification at right with a representative base (in which pS6 remains inactive without 

lysosomal activity) outlined by dotted line. Lysosomal activity appears dispensable for pit cells 

(at top of gastric unit) mTORC1 activity. Scale bars: 50 m; pullout, 25 m. 
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*Co-first Author 

Chapter 3.1 INTRODUCTION 

Colorectal cancer (CRC) is the third most common cancer in the world, and the global 

burden is expected to increase due to the growth and aging of the population. Despite advances 

in diagnosis and therapy, CRC remains the third most common cancer related cause of death in 

the United States among men and women, and the overall 5-year survival rate  is 65%  [1], and 

[1].  Colon cancer is a biologically heterogeneous disease that develops via distinct pathways 

involving combinations of genetic and epigenetic changes. Defining tumor subtypes based upon 

pathway-driven alterations has the potential to improve prognostication and guide targeted 

therapy [2]. However, it has become increasingly clear that there is marked heterogeneity in the 

“driver gene” mutational profiles within and among colon cancers. Some of these mutations are 

also found in non-tumor tissue [3], and are not sufficient to explain differences in colon cancer 

behavior and tumor response among patients [4].  Changes in the tumor landscape which may 

involve global modulation of gene expression have been suggested to play a role in these 

processes [4].   

Interferon-related development regulator 1 (IFRD1, aka mouse Tis7, PC4) is a 

transcriptional co-regulator with a putative role in regulating intestinal lipid metabolism and 
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epithelial cell proliferation [5]. Expression of IFRD1 is increased in injury states in multiple 

organ systems, such as after massive intestinal resection [6], nerve [7] and muscle [8, 9] injury.  

Analysis of the intracellular localization of IFRD1 in cultured cells demonstrates cytoplasm or 

nuclear localization depending on the cellular differentiation state [10]. This suggests that the 

immediate early gene IFRD1 may function in the cytoplasm as a sensor of cellular stimuli, and in 

the nucleus as a transcriptional modifier. In the nucleus IFRD1 has been shown to interact with 

the SIN3 protein complex, scaffold histone deacetylases [11], and regulates the expression of 

large gene cassettes in epithelial cells, myoblasts, hematopoietic cells, and neurons [12].  Review 

of the expression patterns of IFRD1 in 79 human tissues revealed that it is ubiquitous but 

particularly abundant in colorectal adenocarcinoma as well as in whole blood, testis, olfactory 

bulb, pancreas and other highly secretory tissues [13]. IRFD1 expression is increased in multiple 

cancers, as shown in large scale genomic/proteomic colon cancer analyses (including 

TCGA/Protein Atlas) [14, 15].  We have shown that IFRD1 expression is increased up to 

eightfold in the repairing small intestine following gut resection, and it is associated with a 

marked increase in gut epithelial cell proliferation [16].  Conversely, loss of IFRD1 inhibited the 

crypt cell proliferative adaptive response after massive intestinal resection [6].  

Herein we aimed to explore the role of IFRD1 in human colon cancer pathogenesis.  

Specifically, we address the hypothesis that, given IFRD1’s role in driving stress-induced 

proliferative response, increased IFRD1 expression in colon cancers would be associated with 

reduced survival.  IFRD1 expression patterns of 378 human colon cancers and normal adjacent 

colon epithelium were analyzed by immunohistochemical analysis.  We used a large, 

international multicenter, ethnically and racially diverse patient cohort to investigate how IFRD1 

expression correlates with tumor severity, patient clinical demographics and overall survival. 



106 

 

Chapter 3.2 METHODS 

Subjects 

Formalin-fixed paraffin-embedded tissue (FFPE) from colon cancer (or colorectal 

carcinomas) and normal colonic mucosa from patients of three institutions from the United 

States, Spain and China were used for this analysis. The American cohort of colon cancer 

patients (n=72) were randomly selected from a subset of the Oncology Data Service cancer 

registry treated between 01/01/1999 and 06/30/2003 at the Barnes-Jewish Hospital in St. Louis, 

Missouri, a tertiary care institution affiliated with the Washington University School of Medicine 

Siteman Cancer Center.  Data in the cancer registry includes demographic, clinical, and survival 

data in accordance with the American College of Surgeons Commission on Cancer guidelines. 

Pathological and surgical data was extracted from the medical chart. The Spanish cohort 

consisted of 227 consecutive stage II-III colon carcinoma patients obtained from Hospital Clinic, 

University of Barcelona, Barcelona, Spain, treated between 1993 and 2006 and, subjected to 

curative-intent surgical resection from 1998 to 2005.  All cases were anonymized and the study 

was approved by the Hospital’s Institutional Review Board and Ethics Committee. Patients were.  

The Chinese cohort of colon cancer patients (n=??), treated at the China Medical University 

between 2005 and 2009, were also anonymized and the study was approved by the China 

Medical University First Hospital Institutional Review Board and Ethics Committee. TNM stage 

was determined for all patients.  

Immunohistochemistry 

Tissue microarray (TMA) sections containing representative cores from FFPE tissue from 

tumor and normal mucosa of all patients were used for immunohistochemistry (IHC) staining. 
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Two tumor sections from each patient were selected based on tissue quality and were used to 

score tumor staining. Monoclonal antibody anti-Tis7/IFRD1 (Sigma-Aldrich, St. Louis, MO; 

1:500) was incubated overnight on deparaffinized 2-4 µm thick TMA sections after decloaking 

with Diva antigen retrieval buffer (Biocare, Concord, CA).  Antigen-antibody complexes were 

detected using biotinylated secondary antibody and streptavidin-horse radish peroxidase.  

We used the H-score for IHC staining analysis. Three trained independent observers and 

a pathologist (JCM) graded the intensity of immunostaining of the tumors and normal mucosa on 

a 4-category scale of 0-3.  The histological scoring system and individual specimen scoring were 

supervised by a pathologist (JCM). A score of 0 was assigned for no anti-Tis7/IFRD1 staining, a 

score of 1+ for traces or scattered staining in otherwise negative tumors, a score of 2+ for 

uniform staining of the entire tumor with light brown intensity, and a score of 3+ for uniform 

staining of the entire tumor with intense brown staining. The final score was the mean of the 

scores from the individual observers. 

Statistical Analysis 

The association between IFRD1 expression with other demographic/clinical characteristics 

was assessed using Chi-square Nonparametric test.  The primary clinical outcome was overall 

survival (OS) which was defined as the time from diagnosis to death due to cancer, and survivors 

were censored at the date of last contact. Kaplan-Meier method and Log-rank analysis were used 

to assess the association between IFRD1 expression and OS, while adjusting potential confounding 

effects of other demographic/clinical characteristics. Cox regression analysis was used to 

determine the independent effect of each variable on patient survival.  All analyses were two-sided 

and significance was set at a p-value of 0.05. Statistical analyses were performed using SPSS 19.0.   
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Chapter 3.3 RESULTS 

Patient Characteristics 

Colon cancer specimens from 378 patients from the United States (n=72), Spain (n=105) 

and China (n=201) were analyzed by IHC staining for IFRD1 expression.  The average age for 

the entire patient cohort was 66 years (Supplemental Table 1).  There were 194 males and 184 

females.  Of 378 colon cancers, 6% were TNM stage I, 45% TNM stage II, 45% TNM stage III 

and 4% TNM stage IV.   

The final IFRD1 staining score was the mean of the staining intensity scores of three 

independent observers as defined in the Methods.  IFRD1 immunoreactivity scores were based 

on the intensity of stain (Figure 1A-1D). Overall, 36.2% of the tumors had a score of 0-1 (low) 

and 63.7% had a score of 2-3 (high) (Table 1).  

IFRD1 expression is increased in colon adenocarcinomas compared to normal colon 

epithelium. 

Normal colonic mucosa demonstrated no or minimal IFRD1 immunoreactivity (Figure 

1E). When present in normal mucosa, staining was low in intensity, scattered and localized in the 

nuclei of crypt enterocytes with minimal cytoplasmic immunoreactivity (Figure 1E inset).   In 

contrast, almost all (373/378, 98.7%) of the colorectal cancers showed evidence of readily 

detectable IFRD1 expression (Figure 1B-D). Immunoreactivity was localized predominantly in 

the tumor cytoplasm (Figure 1B, C), with nuclear staining detectable in tumors with high-

intensity, 3-score (Figure 1D).  Tumor groups at the infiltrating border tended to exhibit more 

intense immunoreactivity (Figure 1F).  
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Most patients were 60 years or older at the time of diagnosis (69.8%, 264/378, Table 1).  

There was a significant association between age and IFRD1 immunostaining intensity, 

comparing patients < 60 or ≥ 60 and tumors with low vs. high expression (p = 0.013).  There was 

no significant association with gender.  

We also found a significant relationship between tumor location, i.e.: right vs. left colon, 

and levels of IFRD1 expression (Table 2, p=0.036).  Seventy percent of right sided tumors had 

high IFRD1 expression compared to 59% of left sided tumors.  TNM stage and IFRD1 

expression showed no association (Table 2).  

Increased IFRD1 expression in colon cancers is associated with reduced five-year patient 

survival. 

High IFRD1 colon cancer expression (score 2-3) correlated with decreased 5-year overall 

survival (Figure 2, p=0.025). Subgroup analysis showed that patients in the American cohort 

with high IFRD1 colon cancer expression had a poorer prognosis and reduced 5-year survival 

compared to patients in the Chinese or Spanish cohorts (p<0.001; Fig. 3).  There was a 

significant relationship among the three cohorts with high IFRD1 expressing tumors for age 

(p=0.011, Table 3) gender (p=0.007; Table 3) and tumor location, but not TNM stage (Table 4).   

There were more right-sided tumors in the Chinese cohort, more left-sided tumors in the Spanish 

cohort and a relatively equal distribution of right and left sided tumors in the American cohort 

(p=0.001; Table 4). 

On the multiple regression analysis, the levels of IFRD1 expression were not related to 

survival (Table 5). As expected, TNM stage (p<0.001; Table 5) independently predicted patient 
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survival. In addition, country of origin (p<0.001; Table 5) independently predicted patient 

survival.  

Chapter 3.4 DISCUSSION 

In the present study, we show that expression of the transcriptional co-regulator IFRD1 is 

increased in colon carcinomas compared to normal colon mucosa, and on the univariate analysis 

patients with high IFRD1-expression colon cancers have a reduced 5-year survival compared to 

patients with low IFRD1-expression.  IFRD1 expression also correlated significantly with tumor 

location, being higher in right-sided carcinomas. The prognosis of right sided colon cancer is 

significantly worse than those in the left [17], thus, reduced survival associated with high IRFD1 

expression and the higher percentage of right compared to left colon tumors with high IFRD1 

expression suggest a role for  IFRD1 as a modulator of increased tumorigenicity.  

IFRD1 is a transcriptional co-regulator that interacts with the SIN3-histone deacetylase 

(HDAC) complex which then binds to DNA promoter sites and regulates global gene 

transcription [11] [12]. Depending on the cell type and context, IFRD1 may act as a 

transcriptional co-repressor or co-activator [12] to regulate a variety of cellular processes include 

cell proliferation and differentiation [8].  IFRD1 exhibits a low basal level of expression in 

multiple organs and cell types in normal homeostasis; in contrast, its expression is highly 

regulated in a wide variety of tissue injury models, suggesting a conserved role for IFRD1 in the 

cellular response to injury and stress [6, 9, 18]. For example, in the intestine, we have shown that 

IFRD1 plays a role in in regulating the adaptive increase in gut epithelial cell proliferation that 

occurs in response to resection-induced injury [6].  Ifrd1-/- mice show a blunted response to 

bowel resection with decreased crypt cell proliferation early after resection.    
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 IFRD1 expression is regulated by growth factors including NGF, FGF and EGF [16] and 

glucagon-like peptide 2 [16]. IFRD1 also has effects on immune cell function and on tumor 

immune surveillance and plays a complex role in NF-kB signaling [19]. IFRD1 has been shown 

to regulate viral immune evasion mechanisms in human papilloma virus-induced keratinocytes 

with similar effects in cervical cancer cell lines, via suppression of immune driven RelA-

associated NF-kB cytokine expression mediated by the EGFR [20]; in this model, IFRD1 acts 

downstream of the EGFR to deacetylate NFkB/RelA.  In patients with cystic fibrosis who are 

homozygous for the F4508 deletion mutation, IFRD1 was identified as a modifier of lung disease 

via effects on neutrophil effector function [21]; in this study, IFRD1 deficiency was associated 

with decreased NF-ĸB p65 transactivation, mediated by effects on NF-kB induced transcription 

via HDAC.  In contrast, IFRD1 is a repressor of NF-kB transcriptional activity in myoblasts via 

recruitment of HDAC3 in a murine model of muscle regeneration following injury [19].  Finally, 

IFRD1 deficiency increased p65 acetylation via inhibition of histone deacetylase-dependent 

deacetylation in bone marrow macrophages, repressing NF-kB dependent transcription of 

NFATc1 [22].  Thus depending on the cellular context and lineage, IFRD1 may increase or 

decrease NF-kB dependent transcriptional activity [22]. In sum, the observed worse prognosis 

for patients with high IFRD1 expressing colon cancers may result from alterations in multiple 

pathways, including direct effects on tumor cell proliferation [16], facilitating tumor immune 

surveillance evasion [20] or by changes in immune cell function [21]. 

We observed a worse prognosis for American patients with high IFRD1 expression 

compared to Spanish or Chinese cohorts.  Although we were unable to identify a specific causal 

factor, our cohort has a high percentage of African Americans (55%) who exhibit a marked 

disparity in outcomes in colon cancer [23, 24].  Black vs. white disparities in mortality are 
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increased in each stage of disease but appear driven in large part by differences in late stage 

disease [25].  Due to the limited number of African American patients in our entire study cohort, 

we cannot determine whether increased IFRD1 expression in colon cancers is also significantly 

associated with African American populations; this will be the subject of future investigation in a 

larger cohort of American patients.    

In summary, we have identified novel IFRD1 gene expression patterns in colon cancer 

which suggest a role for IFRD1 in increasing tumorigenicity and contributing to a worse 

prognosis.  The precise mechanisms by which IFRD1 exerts its effects are unknown; the adverse 

effect on survival associated with high IFRD1 expression suggests that understanding these 

mechanisms may provide novel targets for colon cancer therapy. 
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Chapter 3.5 FIGURES 

FIGURE 3.1 

 

Figure 1 IFRD1 immunohistochemical staining in colon carcinomas. 

Tumors were analyzed for IFRD1 expression using an anti-IFRD1 monoclonal antibody. IFRD1 

immunostaining intensity was quantified by scoring on a scale of 0–3. a Tumors with a score of 0 

had no to minimal IFRD1 immunoreactivity. Scattered light staining can be observed in the 

nuclei of well-differentiated tumors. b Immunohistochemical score of 1 showed light staining 
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throughout the tumor or more intense, but scattered staining. c Uniform staining of the entire 

tumor with medium intensity (score 2). d Uniform staining of the entire tumor with intense 

brown staining, often associated with increased nuclear staining (score 3). e Comparison of 

tumor and normal mucosal staining demonstrates that IFRD1 staining is readily detectable in 

colon cancer, but adjacent, uninvolved mucosa shows no or minimal IFRD1 immunoreactivity. 

When IFRD1 staining was detected in the uninvolved mucosa, it was low in intensity and 

localized in the nuclei of crypt cells with minimal cytoplasmic immunoreactivity (Fig. 1e inset). f 

Tumor clusters at the invasive margin show more intense staining. 
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FIGURE 3.2 

 

Figure 2 Reduced 5-year survival in patients with high IFRD1-expression colon cancers. 

Censored patients with high IFRD1 expression in tumors significantly poorer survival at 5 years 

post diagnosis compared to patients with tumors with low IFRD1 expression (* p = 0.025). 
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FIGURE 3.3 

 

Figure 3 American patients with high IFRD1-expressing tumors have reduced 5-year 

survival compared to Chinese and Spanish patients. Five-year survival analysis was 

performed for all patients with high IFRD1-expressing tumors from American, Chinese, 

and Spanish cohorts. American patients with high IFRD1-expressing tumors had reduced 

5-year survival compared to Chinese and Spanish patients with high IFRD1-expressing 

tumors *** p\0.001). 
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122 

 

Chapter 3.6 REFERENCES  

1. Siegel RL, Miller KD, Jemal A: Cancer Statistics, 2017. CA Cancer J Clin 2017, 

67(1):7-30. 

2. Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J, Bot BM, 

Tejpar S, Delorenzi M, Goldberg RM et al: Molecular markers identify subtypes of stage III 

colon cancer associated with patient outcomes. Gastroenterology 2015, 148(1):88-99. 

3. Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, Murtaza M, 

Ong CA, Lao-Sirieix P, Dunning MJ et al: Ordering of mutations in preinvasive disease 

stages of esophageal carcinogenesis. Nat Genet 2014, 46(8):837-843. 

4. Punt CJ, Koopman M, Vermeulen L: From tumour heterogeneity to advances in 

precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017, 14(4):235-246. 

5. Garcia aM, Wakeman D, Lu J, Rowley C, Geisman T, Butler C, Bala S, Swietlicki Ea, 

Warner BW, Levin MS et al: Tis7 deletion reduces survival and induces intestinal 

anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel 

syndrome. AJP: Gastrointestinal and Liver Physiology 2014, 307:G642-G654. 

6. Yu C, Jiang S, Lu J, Coughlin CC, Wang Y, Swietlicki EA, Wang L, Vietor I, Huber LA, 

Cikes D et al: Deletion of Tis7 protects mice from high-fat diet-induced weight gain and blunts 

the intestinal adaptive response postresection. J Nutr 2010, 140(11):1907-1914. 

7. Dieplinger B, Schiefermeier N, Juchum-Pasquazzo M, Gstir R, Huber LA, 

Klimaschewski L, Vietor I: The transcriptional corepressor TPA-inducible sequence 7 

regulates adult axon growth through cellular retinoic acid binding protein II expression. 

Eur J Neurosci 2007, 26(12):3358-3367. 

8. Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira Sa, Farioli-

Vecchioli S, Caruso M, Tirone F: PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration 

and is involved in myoblast differentiation as a regulator of MyoD and NF-??B. Journal of 

Biological Chemistry 2011, 286:5691-5707. 

9. Vadivelu SK, Kurzbauer R, Dieplinger B, Zweyer M, Schafer R, Wernig A, Vietor I, 

Huber LA: Muscle Regeneration and Myogenic Differentiation Defects in Mice Lacking 

TIS7. Molecular and Cellular Biology 2004, 24(8):3514-3525. 

10. Guardavaccaro D, Montagnoli A, Ciotti MT, Gatti A, Lotti L, Lazzaro CD, Torrisi MR, 

Tirone F: Nerve Growth Factor Regulates the Subcellular Localization of the Nerve Growth 

Factor-Inducible  Protein PC4 in PC12 Cells. Journal of Neuroscience Research 1994, 

37:660-674. 



123 

 

11. Vietor I, Vadivelu SK, Wick N, Hoffman R, Cotten M, Seiser C, Fialka I, Wunderlich W, 

Haase A, Korinkova G et al: TIS7 interacts with the mammalian SIN3 histone deacetylase 

complex in epithelial cells. EMBO Journal 2002, 21(17):4621-4631. 

12. Vietor I, Huber LA: Role of TIS7 family of transcriptional regulators in 

differentiation and regeneration. Differentiation 2007, 75(9):891-897. 

13. Uhlén M, Björling E, Agaton C, Szigyarto CA-K, Amini B, Andersen E, Andersson A-C, 

Angelidou P, Asplund A, Asplund C et al: A Human Protein Atlas for Normal and Cancer 

Tissues Based on Antibody Proteomics. Molecular & Cellular Proteomics 2005, 4:1920-1932. 

14. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, 

Laczko E, Kurowski MA, Bujnicki JM, Menigatti M et al: Transcriptome profile of human 

colorectal adenomas. Mol Cancer Res 2007, 5(12):1263-1275. 

15. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, 

Shaddox KF, Kim S et al: Proteogenomic characterization of human colon and rectal 

cancer. Nature 2014, 513(7518):382-387. 

16. Swietlicki E, Fritsch; HIC, Yi; L, Levin MS, Rubin aDC: Growth Factor Regulation of 

PC4/TIS7, An Immediate Early Gene Expressed During Gut Adaptation After Resection. 

JOURNAL OF PARENTERAL AND ENTERAL NUTRITION 2003, 27(2):123-131. 

17. Petrelli F, Tomasello G, Borgonovo K, Ghidini M, Turati L, Dallera P, Passalacqua R, 

Sgroi G, Barni S: Prognostic Survival Associated With Left-Sided vs Right-Sided Colon 

Cancer: A Systematic Review and Meta-analysis. JAMA Oncol 2016. 

18. Benjamin Dieplinger, *,  Natalia Schiefermeier,1,  Michaela Juchum-Pasquazzo,1 

Ronald Gstir,1 Lukas A. Huber,1, Vietor1 LKaI: The transcriptional corepressor TPA-

inducible sequence 7 regulates adult axon growth through cellular retinoic acid binding 

protein II expression. 2007. 

19. Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira SA, Farioli-

Vecchioli S, Caruso M, Tirone F: PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration 

and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol 

Chem 2011, 286(7):5691-5707. 

20. Tummers B, Goedemans R, Pelascini LP, Jordanova ES, van Esch EM, Meyers C, Melief 

CJ, Boer JM, van der Burg SH: The interferon-related developmental regulator 1 is used by 

human papillomavirus to suppress NFkappaB activation. Nat Commun 2015, 6:6537. 

21. Gu Y, Harley IT, Henderson LB, Aronow BJ, Vietor I, Huber LA, Harley JB, Kilpatrick 

JR, Langefeld CD, Williams AH et al: Identification of IFRD1 as a modifier gene for cystic 

fibrosis lung disease. Nature 2009, 458(7241):1039-1042. 



124 

 

22. Iezaki T, Fukasawa K, Park G, Horie T, Kanayama T, Ozaki K, Onishi Y, Takahata Y, 

Nakamura Y, Takarada T et al: Transcriptional Modulator Ifrd1 Regulates Osteoclast 

Differentiation through Enhancing the NF-kappaB/NFATc1 Pathway. Mol Cell Biol 2016, 

36(19):2451-2463. 

23. Robbins AS, Siegel RL, Jemal A: Racial disparities in stage-specific colorectal cancer 

mortality rates from 1985 to 2008. J Clin Oncol 2012, 30(4):401-405. 

24. Simpson DR, Martinez ME, Gupta S, Hattangadi-Gluth J, Mell LK, Heestand G, Fanta P, 

Ramamoorthy S, Le QT, Murphy JD: Racial disparity in consultation, treatment, and the 

impact on survival in metastatic colorectal cancer. J Natl Cancer Inst 2013, 105(23):1814-

1820. 

25.  Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu 

M, Ruhl J, Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER 

Cancer Statistics Review, 1975-2012, National Cancer Institute. Bethesda, 

MD, http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, 

posted to the SEER web site, April 2015. 

 

 

 

 

 

 

 

  



125 

 

Chapter 4: IFRD1 promotes survival and 

proliferation in the conserved cellular 

regeneration program (paligenosis) by 

suppressing p53 
 

Mark A. Lewis, Zhi-Feng Miao, Dongkook Park, Jeffrey W. Brown, Charles Cho, Susan 

Kennedy, Jianyan Lu, Marcus Mahar, Ilja Vietor, Lukas A. Huber, Nicholas O. Davidson, 

Valeria Cavalli, Deborah C. Rubin, Jason C. Mills 

 

Chapter 4.1 SUMMARY 

The capacity for mature cells to reprogram into a proliferative, regenerative state is a 

general feature of multicellular organisms and appears to proceed by a dedicated, evolutionarily 

conserved program (paligenosis). The fundamental cellular energy sensor and regulator of 

protein translation, mTORC1, is the central regulator of paligenosis. Here, we reasoned that, akin 

to apoptosis and other cellular programs, genes likely evolved to regulate paligenosis. We 

identified IFRD1 as a gene conserved throughout eukaryotes, upregulated by paligenosis-

inducing injury, but not required for homeostatic regulation of proliferation and differentiation. 

IFRD1 was critical for the injury-induced recruitment of cells into the cell cycle in Drosophila 

intestine and multiple mouse tissues. Ifrd1−/− mice showed decreased mTORC1-mediated 

proliferation and increased apoptosis in gastric and pancreatic paligenotic cells. mTORC1 

inhibition and Ifrd1−/−;Trp53−/− experiments showed that IFRD1 works largely by alleviating 

p53 repression of mTORC1 reactivation during stage 3 of paligenosis. Our results identify the 

first gene regulating the conserved cellular program that recruits mature cells for regeneration. A 

p53-mTORC1 balance dictates whether paligenosis is successful, and mature cells reenter 
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mitosis or whether it fails and cells die. Pro-paligenotic genes like IFRD1 might be harnessed to 

increase cellular reprogramming to promote regeneration; alternatively, because recruiting old 

cells with potential stores of somatic mutations increases risk for cancer, blocking paligenosis 

might prevent or treat cancer. 

Chapter 4.2 INTRODUCTION 

Following large-scale injury, mature cells in pancreas and stomach use a common 

program (termed paligenosis) to reenter the cell cycle and fuel tissue regeneration1. Here, we 

hypothesize that paligenosis, akin to other cellular programs like apoptosis, will be governed by 

a conserved set of genes. We expect such genes to be: a) ubiquitously induced upon paligenosis-

causing injury, b) conserved across species, and c) dispensable for normal development or stem 

cell homeostasis. Nearly all tissues, across numerous species, demonstrate examples of 

cellular plasticity in response to injury. We recently proposed a shared cellular program by 

which differentiated cells can change their fate to facilitate injury repair1. In our investigation of 

gastrointestinal organs (stomach, pancreas, liver, and intestine), we believe that each has the 

capacity to repair tissue damage through the recruitment of fully differentiated cells into a less 

differentiated, proliferative state to replenish lost or damaged cells. We also proposed that this 

process could be expanded to include other cells (kidney, neurons, etc.) because of the dynamic 

mTORC1 activity and proliferative or regenerative capacity that these tissues exhibit following 

injury. This cellular “reprogramming” to a proliferative, regenerative state can occur in 

various contexts, such as when tissue undergoes metaplasia following injury. In the acute setting, 

the metaplastic response appears to be a tissue repair mechanism and can be temporary, with full 

restoration of normal tissue architecture. Accordingly, we have shown that differentiated cells in 

the stomach and pancreas have the capacity to revert to the embryonic state, becoming mitotic 
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again to aid in tissue repair. In tissues with constitutively active stem cells, like stomach and 

intestines, the tissues would have the option of regenerating with either constitutive stem cells or 

recruited stem cells, depending potentially on type, extent, and location of injury.  

Identification of genes that regulate this repair is crucial to understanding human 

diseases that are dependent on this process and has the potential to lead to breakthroughs in 

personalized medical treatment. We would hypothesize that a gene whose primary function is to 

regulate reserve stem cell function would be dispensable for normal cellular activity, but be 

called to action during an acute injury response. 

Through an in silico screen, we have identified IFRD1 as such a gene. It is an immediate 

early gene that was originally found to respond to mitogens such as TPA, EGF, c-Jun and FGF. 

IFRD1 associates with the Sin3 complex and is, thus, reported to play a role as a transcriptional 

co-regulator with a putative function in regulating intestinal lipid metabolism and epithelial cell 

proliferation 2,3. We and others have shown IFRD1 is a highly conserved, transcriptional co-

regulator that: responds transiently and rapidly to cellular stimuli; is critical for induction of 

proliferation in intestinal repair but is dispensable for normal stem cell activity; has 

polymorphisms associated with gastric cancer; and elevated expression is associated with poorer 

survival in colon cancer patients 3-6. IFRD1 levels positively correlate with the processes of cell 

and tissue injury response and regeneration in humans, mice and in lower species, such as, S. 

pombe and D. melanogaster. The activity of energy sensing protein mTORC1 governs 

paligenosis in the stomach and pancreas. Analysis of tissues that depend on mTORC1 activity 

following injury revealed that there are 8 genes that are acutely upregulated following injury. 

Expanding the screen to lung and glial tissues reveals that Ifrd1 and Atf3 are two genes that may 

be critical for this injury response across multiple tissues. We are currently investigating the role 



128 

 

of Atf3 in our models of paligenosis and, herein, we will describe the requirement of IFRD1 for 

the proliferative response of reserve stem cells across multiple tissues and species.  

Following large-scale injury, mature cells in pancreas and stomach use a common 

program (termed paligenosis) to reenter the cell cycle and fuel tissue regeneration1. Here, we 

hypothesize that paligenosis, akin to other cellular programs like apoptosis, will be governed by 

a conserved set of genes. We expect such genes to be: a) ubiquitously induced upon paligenosis-

causing injury, b) conserved across species, and c) dispensable for normal development or stem 

cell homeostasis.  

Chapter 4.3 RESULTS AND DISCUSSION 

IFRD1 is highly conserved and is upregulated following regeneration-inducing injury in 

multiple tissues and species 

To identify tissue-independent paligenosis-regulating genes, we screened for mRNAs 

whose expression was induced following injury in all 4 organs we previously used to delineate 

the core paligenotic cellular response (stomach, pancreas, liver, kidney)1. We identified 8 genes 

and determined if they were also increased in two additional injury-induced gene expression 

profiles from tissues: lung and neural glia 7 8 that also are known to undergo dramatic, injury-

induced reprogramming (Fig. 1 a, b). Only two genes were upregulated in all 6 tissues: Ifrd1 and 

the transcription factor Atf3 (Fig. 1b). Atf3 is the subject of ongoing work in our group; we focus 

here on IFRD1.  

We next tested if IFRD1 structure and function exhibited broad evolutionary 

conservation. Our multisequence alignment of IFRD1 orthologs demonstrated conservation of 
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nearly the entire protein from humans to the fission yeast Schizosacchromyces pombe (Fig. 1c 

and Supplementary Fig. 1a). Our secondary structure prediction suggested extensive alpha-

helical character with the mature protein likely obtaining an armadillo (or alpha-solenoid) fold, a 

structural motif used by other important scaffolding/signaling proteins like -catenin (CTNNB1) 

and Adenomatous Polyposis Coli (APC). (Fig. 1c and Supplementary Fig. 1a). Further, a 

cryoEM structure of IFRD2 bound to the ribosome demonstrates that the homolog assumes an 

armadillo fold and secondary structure consistent with our unbiasedly prediction from the IFRD1 

sequence (Supplemental Figure 1b). The yeast ortholog of IFRD1 (SPBC20F10.03) has not been 

specifically characterized, but mRNA and protein screens detailed at PomBase 9 showed that its 

expression increases following multiple stresses including H2O2 and heat but does not change 

during normal cell cycle progression. Further, yeast null for the gene encoding IFRD1 do not 

seem to have a vegetative/cell cycle defect, suggesting that the protein is specific to stress 

response.  

As in yeast, the Drosophila melanogaster ortholog of IFRD1, CG31694, has not been 

specifically characterized; however, again, examination of various published screens showed that 

difrd1 is upregulated during stem-cell-recruiting injury in the gut in response to 

entomopathogenic Pseudomonas bacteria and implicated in the stem-cell recruiting Unpaired 

(orthologous to IL-6) pathway 10. We confirmed that difrd1 increased following intestinal stem-

cell-recruiting stress using a strain expressing GFP under the difrd1 promoter (Fig. 1d). 

Furthermore, whereas stem-cell-recruiting stress caused wildtype fly intestines to markedly 

increase proliferation as expected, two strains hypomorphic for difrd1 failed to respond (Fig. 1e). 

As the hypomorphic strains showed no defects in normal development or stem cell homeostasis, 
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the regulation of proliferation by IFRD1 in Drosophila appears specific to situations where stem 

cells are recruited after stress.  

Previous studies by us and others have shown that in the absence of IFRD1, mice, like 

yeast and flies, do not have substantial defects in development or adult organ stem cell 

homeostasis (3 11, unpublished observations, Supplementary Fig. 3 b-e). We investigated a cell-

autonomous role for IFRD1 in two tissue types not represented in our initial screen. We 

generated organoids from the small intestine. The efficiency of organoid establishment is a 

function of how many stem cells can be recruited to grow in the ex vivo environment 12 13 14. 

Enteroid forming efficiency and growth 7 days after passage were both significantly reduced in 

the absence of IFRD1 (Supplementary Fig. 2 a-d). In parallel, we used a well-characterized 

system that induces nuclear reprogramming of neurons along with expression of IFRD1: 

axotomy of ex vivo grown dorsal root ganglion neurons 15,16. When IFRD1 was knocked down, 

the reprogramming-dependent regeneration of axons was significantly compromised 

(Supplementary Fig. 2c). 

Therefore, IFRD1 is required for paligenosis and is: a) expressed in ubiquitous cell types 

undergoing paligenosis; b) broadly conserved across eukaryotes; and c) dispensable for normal 

homeostatic growth or development. 

IFRD1 is required for stage 3 of paligenosis 

We next wanted to explore where IFRD1 acted during paligenosis. We turned to the 

injury models that we and others have shown induce canonical, three-stage paligenosis: high-

dose tamoxifen (HD-TAM) for the stomach and injection of the cholecystokinin analog cerulein 

for the pancreas (1 Figure 1 A, B). We analyzed effects of loss of IFRD1 during the sequential 
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stages of paligenosis: 1) autodegradation (when lysosomes and autolysosomes recycle existing 

cell architecture); 2) induction of embryonic/progenitor gene expression; and 3) cell cycle re-

entry (Supplementary Figure 3a; 1).  

Injury to both organs caused the expected metaplastic responses in wildtype control mice. 

Gastric chief cells in the stomach became cuboidal-columnar cells characteristic of the 

differentiation pattern known as Spasmolytic Polypeptide Expressing Metaplasia (SPEM; Fig.  2 

a, b; Supplementary Fig. 3 b, c), and pancreatic acinar cells also showed the decreased cell 

volume with increased lumens in the pattern known as Acinar to Ductal Metaplasia (ADM; Fig. 

2 e, f; Supplementary Fig. 3 d, e). Previously shown that IFRD1 is also induced precancerous 

and cancerous epithelial lesions in the human luminal gastrointestinal tract 6; we show here that 

it also is strongly expressed in regions of acinar-ductal metaplasia in a patient with pancreatic 

ductal adenocarcinoma (Fig. 2g). 

Mice lacking IFRD1 had aberrant paligenosis. In stomach, the base of the gastric unit, 

where paligenosis occurs, showed marked cell loss (Fig. 2 a, b), and pancreas also showed 

regions of epithelial loss with increased stroma and tissue edema (Fig. 2e). Proliferation was 

significantly decreased in paligenotic Ifrd1−/− cells (Fig. 2). In stomach, decreased proliferation 

was confined to the base where paligenosis occurs, whereas cells higher in the gastric unit in the 

constitutively proliferative stem cell zone (the isthmus) were largely unaffected either before or 

after HD-TAM (Fig. 2 c, d). In pancreas, proliferating paligenotic acinar cells were greatly 

reduced, while proliferating cells in the stroma were largely unaffected (Fig. 2 h, i). To further 

test the role of IFRD1 in paligenotic proliferation, we performed partial hepatectomies, which we 

and others have shown involve paligenotic recruitment of hepatocytes back to a proliferative 
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state 1. Mitotic activity in Ifrd1−/− livers following partial hepatectomy was also compromised 

(Supplementary Fig. 2 g, h) 

Re-entry into the cell cycle is the third stage of paligenosis, so the decreased proliferation 

in the absence of IFRD1 could be due to upstream failure of cells to progress through stages 1 or 

2. In both the pancreas and stomach, the massive upregulation of LAMP1+ vesicles 

characteristic of the autodegradation phase occurred in Ifrd1−/− mice (Supplementary Fig. 3 b, d), 

so there was no obvious defect in the autodegradative stage 1. Likewise, the characteristic re-

expression of the mucous neck cell pattern in paligenotic chief cells of the stomach 

(Supplementary Fig. 3c) and paligenotic expression of nuclear YAP1 (Supplementary Fig. 3e) 

and SOX9 (unpublished observations) in paligenotic acinar cells were observed as expected in 

Ifrd1−/− mice. Thus, paligenosis stage 2 was not markedly affected by loss of IFRD1. 

Loss of IFRD1 causes increased activation of p53 and decreased expression of mTORC1-

associated and cell-cycle-related transcripts 

We next explored the mechanism IFRD1 uses to regulate paligenosis. Our analysis of 

IFRD1 structure revealed a protein without catalytic domains that is remarkably conserved in 

both the recurring α-helices in armadillo folds with scant variation in overall length across all 

eukaryotes. Overall, the structure and conservation suggest it acts as a scaffold that interacts with 

multiple other proteins throughout its entire length. Accordingly, previous reports have arrived at 

neither consistent function nor even cellular localization of IFRD1 with some studies showing 

interactions with nuclear histone deacetylases to govern chromatin modification 17-19, others 

suggesting that it likely is cytosolic and interacts with ribosomes 20, and still others indicating 
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interaction with multiple signaling pathways including IL6/JAK/STAT/NF-κB, MAP Kinases, 

Hippo, Wnt, and mTOR  2 21 22 23 24. 

 Thus, IFRD1 is likely to function as a central hub with numerous potential binding 

partners in cytosol and nucleus. To begin to identify the most salient mechanisms, we performed 

global gene expression profiling of whole pancreas of Ifrd1−/− and control mice ± cerulein at the 

time point when the greatest number of cells are in stage 3 of paligenosis, when the IFRD1 

phenotype manifests. Gene Set Enrichment Analysis (GSEA) using publicly available cell cycle 

data sets (Molecular Signatures Database, Broad Institute25 ) confirmed dramatic, statistically 

significant de-enrichment for cell cycle transcripts in Ifrd1−/− mice (Fig. 3a), consistent with the 

histological data. Furthermore, when we analyzed the Broad Institute Hallmark collection of 

GSEA datasets (a compendium of gene sets designed for unbiased screens) for any gene sets that 

significantly distinguished cerulein-injured Ifrd1−/− pancreases from control, we noted marked 

de-enrichment again of additional cell cycle-related gene sets (G2M Checkpoint, Mitotic 

Spindle, myc Targets). In addition, in the absence of IFRD1, there was also de-enrichment for 

gene sets associated with p53, DNA repair, and mTORC1 (Fig. 3b).  

 The Hallmark p53 gene set comprises p53- upregulated and downregulated genes, as well 

as genes associated with or modifying p53. To determine which genes were principally 

responsible for the differential p53 gene expression between Ifrd1−/− mice and controls, we 

examined the most increased genes in wildtype (i.e. the ones primarily responsible for p53-

associated gene enrichment in wildtype mice). The top 10 most-enriched transcripts in control 

vs. Ifrd1−/− mice were all either promoters of cell cycle progression (CCND1, CCND2, CCNG1, 

GTSE1, CDK1), anti-apoptotic (SESN2, SESN3, MDM2) or miscellaneous (SERPINB5, 

THBS1). Furthermore, Western blots for p53 in untreated and paligenotic stomachs and 
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pancreases showed that p53 expression was dramatically increased in Ifrd1−/− mice (Fig. 3c). 

The p53 activation in Ifrd1−/− mice likely explains why cell-cycle and anti-apoptotic genes – 

whose expression is inhibited by p53 – were upregulated in control mice vs. Ifrd1−/− mice, 

accounting for both the GSEA pattern and suggesting a p53-dependent mechanism to reduce 

proliferation in the absence of IFRD1. 

 Decreased mTORC1-associated transcripts in Ifrd1−/− pancreas during paligenosis 

suggested an additional possible mechanism for cell cycle blockade. Our previous studies 

demonstrated that mature acinar and chief cells maintain high levels of digestive enzyme 

translation and secretion via activated mTORC1 at homeostasis. However, mTORC1 is 

quenched during stages 1 and 2 of paligenosis then reactivated in stage 3 where it is required to 

drive cells from G1 to S-phase of the cell cycle 1. Hence, given the defective proliferation in 

Ifrd1−/− mice, we would expect that the re-induction of mTORC1 function might be 

compromised. 

IFRD1 is required for normal mTORC1 reactivation and cell survival in stage 3 of 

paligenosis 

To assay mTORC1 activity in individual paligenotic cells we used phosphorylated S6 

(PS6) ribosomal protein, whose kinase is a target of mTORC1. We previously showed by 

multiple methods that pS6 is a faithful proxy for mTORC1 activity in individual cells 1. At 

homeostasis, in mature chief and acinar cells, pS6 was not affected by loss of IFRD1 (Fig. 4 a, 

d). However, at the time points when control mice show maximal census of stage 3 paligenotic 

cells, pS6 expression was markedly aberrant. In stomach, all control paligenotic cells expressed 

abundant pS6 as expected, but in Ifrd1−/− mice, even in regions where the paligenotic portions of 
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glands had not been lost, pS6+ cells were both rarer and often showed less intense expression 

(Fig. 4a). In pancreas, scattered cells showed high pS6 expression (Figure 4d), but many others 

showed low to undetectable expression. To confirm aberrant mTORC1 activity following loss of 

IFRD1, we used HALO Image Analysis Software to quantify pS6 distribution. In control mice 

only 10% of acinar cells were negative for pS6, while nearly half of Ifrd1−/− acinar cells were 

negative at d5 of cerulein. (Fig. 4e and Supplementary Fig. 4). 

 Thus, the loss of proliferation in stage 3 of Ifrd1−/− mice correlated with decreased 

reactivation of mTORC1 and increased p53 activation. As mTORC1 and p53 are both associated 

with cell survival as well as proliferation, we next investigated the effects of loss of IFRD1 on 

cell death. Previously, we have shown that there is minimal apoptosis in paligenosis induced by 

HD-TAM or cerulein, as measured either by loss of tissue in regions of paligenosis or activation 

of cleaved caspase 3 1. We also showed that aberrant paligenosis (e.g. by inhibiting stage 1 

progression) can lead to increased apoptosis following injury. We confirmed low-level cleaved 

caspase 3 in control paligenotic stomach and pancreas; in contrast, Ifrd1−/− mice showed marked, 

significantly increased apoptosis (Fig. 4 b, c, f, g). Note that by d3 after HD-TAM, many of the 

paligenotic gland bases in stomach had entirely atrophied in Ifrd1−/− mice as described above, so 

the increased cleaved caspase 3 positive cells are in regions that have not yet been lost as 

depicted in Fig. 4b. 

Ifrd1−/− cells fail to re-enter the cell cycle due to inappropriate activation of p53  

Failure of Ifrd1−/− cells to reactivate mTORC1 could be responsible for the block in 

proliferation. However, our previous work did not indicate that loss of mTORC1 caused marked 

increase in cell death, so the fact that loss of IFRD1 caused increased death as well as decreased 
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proliferation would not necessarily be explained by simple failure to reactivate mTORC1. 

Furthermore, even without IFRD1, there was a substantial fraction of strongly pS6+ cells, 

especially in pancreas, indicating that some paligenotic cells could activate pS6 as robustly as 

wildtype cells. Another possibility is that the overall decreased fraction of pS6+ cells was 

because mTORC1 activation in the absence of IFRD1 leads to apoptosis rather than mitosis, thus 

removing many pS6+ cells from the tissue. 

 Aberrant p53 activation can lead to cell cycle arrest or delay both by blocking mTORC1 

activation and by blocking ribosome biogenesis using transcriptional and translational 

mechanisms 26 27 28.Thus loss of IFRD1 could activate p53 to block mTORC1 and therefore entry 

into S-phase. We generated Ifrd1−/−;Trp53−/− mice and tested effects on paligenosis in stomach 

and in pancreas. In both stomach and pancreas, loss of p53 substantially and significantly 

rescued the proliferation block in Ifrd1−/− mice (Fig. 5 a - d, f - h). Thus, in the absence of p53, 

IFRD1 no longer was required for cells to progress through the cell cycle. As mTORC1 is 

required for S-phase, the results indicated that IFRD1 was not required for mTORC1 activation, 

and, accordingly, Supplementary Fig. 5 shows that S6 activation was similar to wildtype when 

both p53 and IFRD1 were deleted. In stomach, loss of both p53 and IFRD1 also significantly 

decreased the number of dying cells seen in paligenosis when only Ifrd1 was deleted (Fig. 5e). 

However, in pancreas, loss of p53 did not change the Ifrd1−/− cell death phenotype, indicating 

p53 is required for Ifrd1−/− gastric paligenotic death but the pancreas may have additional, p53-

independent factors that can still cause apoptosis (Fig. 5i).  
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mTORC1 suppresses p53 and is required for cell cycle entry and for cell death in the 

absence of IFRD1 

Overall, the results indicate that IFRD1 suppresses p53 in Stage 3 of paligenosis such that 

loss of IFRD1 activates p53 to block the cell cycle and, in the stomach, to cause death. IFRD1 

appears to interact with mTORC1 only via p53, as pS6 was delayed but not blocked in Ifrd1−/− 

mice and, once p53 was also deleted (i.e. in Ifrd1−/−;Trp53−/− mice), mTORC1 activation and 

proliferation were similar to wildtype (Supplementary Fig. 5). We next sought to further 

determine the relationship of mTORC1 to p53 and IFRD1. We treated control and Ifrd1−/− mice 

with the mTORC1 inhibitor rapamycin during paligenotic injury, using the protocol previously 

detailed 1. mTORC1 blockade did not rescue the proliferation block in stomachs of Ifrd1−/− mice, 

which was expected because entry into S-phase requires mTORC1 (Fig. 6 b, c). However, 

rapamycin did inhibit cell death, which was quantified in the stomach at maximal paligenosis 

(Fig. 6 a, b, d). mTORC1 suppresses p53 activation, and western blot showed that p53 was 

activated in the absence of mTORC1 (Supplementary Fig. 6). Thus, p53 activation alone does 

not cause death; death also requires mTORC1 activation. 

In the pancreas, we can do more chronic injury to determine how loss of IFRD1 

±mTORC1 affects overall tissue regeneration, whereas HD-TAM causes mouse death if it is not 

discontinued after maximal paligenosis. Two-week cerulein in Ifrd1−/− mice caused near total 

destruction of acinar cells; thus, IFRD1 regulation of paligenosis is absolutely required for tissue 

repair/survival in this organ (Figure 6E). Rapamycin largely rescued the Ifrd1−/− cell death, 

though paligenotic proliferation was still impaired relative to wildtype (Figure 6F). 
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Chapter 4.4 CONCLUSIONS 

Here, we identify IFRD1 as the first evolutionarily conserved gene whose principal 

function seems to be to govern paligenosis. IFRD1 is remarkably conserved in structure and 

length from yeast to humans. Its expression is critical for injury response but mostly dispensable 

for homeostasis. It is critical for cell cycle re-entry and survival in stage 3 of paligenosis. 

Epistasis experiments indicate it principally works to suppress the p53-mediated suppression of 

mTORC1 (Fig. 7). The suppression of p53 is critical specifically in an injury-induced, mTORC1-

dependent cell cycle re-entry context because a) Ifrd1−/− mice have constitutive p53 activation 

but have no proliferative or developmental phenotype in pancreas or stomach or liver in the 

absence of injury and b) when mTORC1 is inactive Ifrd1−/− mice and wildtype mice show 

similar phenotypes.  

To our knowledge, this is the first report to show IFRD1-mediated repression of p53. The 

central location of IFRD1 as a regulator of p53 in the specific paligenotic context of increased 

mTORC1 during cell cycle reentry of mature cells makes teleological sense. Multicellular 

organisms have the advantage of being able to dedicate the vast majority of cells to specific 

functions; however, paligenosis also allows those cells to act as a large reservoir of potential 

stem cells to repair damage of organs throughout life. In the pancreas, as shown here, the 

inability to undergo paligenosis, in the absence of tissue stem cells, can be catastrophic (Fig. 6e). 

There are risks, however, in allowing long-lived cells to cycle between replicative and 

differentiated states, because mutations could potentially accumulate over time increasing cancer 

risk with each paligenotic event 29,30. A robust licensing mechanism that is dedicated to 

regulating paligenotic cell cycle entry – and would not affect constitutive cycling of homeostatic 

tissue stem cells -- would make sense. That is, in fact, why it has been speculated p53 evolved in 
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multicellular organisms and not yeast 31: Multicellular organisms can afford to waste cells via 

apoptosis to avoid cancer risk. Our previous results showing increased IFRD1 predicts poor 

outcome in colon cancer is consistent with the potential for tumor cells to exploit IFRD1 

suppression of p53 to subvert cell cycle delay and apoptosis 6. 

Here, we outline a central hub that performs the key, conserved licensing steps allowing 

mature cells to re-enter the cell cycle, describing critical roles for mTORC1, p53, and a gene 

whose function seems to have evolved largely to dictate paligenosis. There is likely a dedicated 

cohort of other genes that govern this cellular program that acts on injured mature cells that reach 

the decision crux between apoptosis and mitosis. Because paligenosis is at the heart of both 

regeneration and tumorigenesis, delineating the underlying genes can lead to better 

understanding that might spur new therapeutic approaches. 
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Chapter 4.5 FIGURES 

FIGURE 4.1 

 



141 

 

Fig. 1 IFRD1 is highly conserved and is upregulated following regeneration-inducing 

injury in multiple tissues and species 

a. Venn diagram depicting coinciding genes up-regulated in each model. Green = high-dose 

tamoxifen-induced gastric metaplasia (Spasmolytic Polypeptide Expressing Metaplasia), 

blue = cerulein injury-induced pancreatic metaplasia (Acinar-Ductal Metaplasia), red = 

partial liver resection, yellow = glycerol-induced acute kidney injury.  

b. Analysis showing the relative gene expression of coinciding genes in injury models. 

c. Multiple sequence alignment of Ifrd1 across evolutionary spectrum. Secondary structural 

prediction from H. sapiens sequence. 

d. Image of the localization of GFP driven by Ifrd1 promoter in Drosophila melanogaster 

intestine at baseline and under H2O2 stress. Scale bar, 100µM 

e. Quantitative analysis of pHH3+ cells in Drosophila intestine sections. ΔdIFRD1 #1 and 

#2 are hypomorphic for difrd1.Statistical information: N.S. = not statistically significant, 

**P < 0.01; ***P < 0.001 by t-test with unequal variance; data represented as mean ± SD 

from at least 3 independent experiments.  
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FIGURE 4.2 
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Fig. 2 IFRD1 is required for stage 3 of paligenosis 

a. Histological analysis of wildtype and Ifrd1−/− mice after day 3 high-dose tamoxifen 

(hdtam d3) treatment. Scale bar, 50µM. 

b. High magnification histological analysis of zymogenic chief cells from Ifrd1−/−   vehicle, 

wildtype hdtam d3 and Ifrd1−/− hdtam d3. Black outline = normal chief cell histology, 

yellow outline = normal histological metaplasia (SPEM), yellow arrows = representative 

metaplastic changes in chief cells, red outline = area of zymogenic chief cell dropout.   

c. Immunohistological analysis of BrdU staining in gastric units from mice vehicle and 

hdtam d3 treated wildtype and Ifrd1−/− mice. Dotted line = representative chief cell zone 

(100µM perpendicular to muscularis mucosa). Scale bar, 50µM. 

d. Quantitative analysis of BrdU+ cells the chief cell zone of vehicle and hdtam d3 treated 

wildtype and Ifrd1−/− mice.  Statistical information: N.S. = not statistically significant, 

**P < 0.01; ***P < 0.001 by t-test with unequal variance; data represented as mean ± SD 

from at least 3 independent experiments.  

e. Histological analysis of wildtype and Ifrd1−/− mice 5 days post cerulein treatment. Scale 

bar, 50µM. 

f. High magnification histological analysis pancreatic acinar cells of vehicle treated Ifrd1−/− 

mice, cerulein treated wildtype mice and cerulein treated Ifrd1−/− mice. 

g. Immunohistological staining of IFRD1 human pancreas tissue. Scale bar, 50µM. 

h. Immunoflourescent imaging of BrdU incorporation 5 days post-cerulein treatment in 

wildtype and Ifrd1−/− mice. Yellow arrow = AMYLASE/BRDU co-positive cells. Scale 

bar, 50µM. 
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i. Quantification of BrdU+ 
cell number per 20X field at 5 days post cerulein. Statistical 

information: N.S. = not statistically significant, **P < 0.01; ***P < 0.001 by t-test with 

unequal variance; data represented as mean ± SD from at least 3 independent 

experiments.  
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FIGURE 4.3 
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Fig. 3 Loss of IFRD1 causes increased activation of p53 and decreased expression of 

mTORC1-associated and cell-cycle-related transcripts 

a. Global gene expression profiling of pancreas tissue Ifrd1−/− and control mice ±cerulein at 

5 days post-cerulein using Gene Set Enrichment Analysis (GSEA) utilizing publicly 

available cell cycle data sets.  

b. Unbiased screen of Broad Institute Hallmark data sets using GSEA to uncover gene sets 

that significantly distinguish cerulein-injured Ifrd1−/− pancreases from control.  

c. Western blot for p53 untreated and paligenotic stomachs and pancreases. 
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FIGURE 4.4 
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Fig. 4 IFRD1 is required for normal mTORC1 reactivation and cell survival in stage 3 of 

paligenosis 

a. Immunoflourescent analysis of phosphorylated-S6 (pS6) staining in wildtype and Ifrd1−/− 

mice following vehicle or hdtam d3 treatment. Scale bar, 20µM.   

b. Immunohistological analysis of Cleaved-Caspase 3 (CC3) staining in wildtype and 

Ifrd1−/− mice following hdtam d3 treatment. Scale bar, 50µM. 

c. Quantification of CC3+ 
cells per 20X field in wildtype and Ifrd1−/− mice following vehicle 

or hdtam d3 treatment. Statistical information: N.S. = not statistically significant, **P < 

0.01; ***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from 

at least 3 independent experiments. 

d. Immunoflourescent analysis of pS6 staining in wildtype and Ifrd1−/− mice 5 days 

following vehicle or cerulein treatment. Scale bar, 50µM.   

e. Quantitative analysis using the HALO imaging software of areas of the pancreas 

demonstrating ADM that are lacking pS6 expression per 20X field. N.S. = not 

statistically significant, **P < 0.01; ***P < 0.001 by t-test with unequal variance; data 

represented as mean ± SD from 5 images from 4 independent experiments. 

f. Immunohistological analysis of CC3 staining in wildtype and Ifrd1−/− mice 5 days 

following cerulein treatment. Scale bar, 50µM. 

g. Quantification of CC3+ 
cells per 20X field in wildtype and Ifrd1−/− mice 5 days following 

cerulein treatment. Statistical information: N.S. = not statistically significant, **P < 0.01; 

***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from at 

least 3 independent experiments. 
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FIGURE 4.5 
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Fig. 5 Ifrd1–/– cells fail to re-enter the cell cycle due to inappropriate activation of p53 

a. Histological analysis of wildtype mice treated with hdtam d3. Smaller panels show 

representative and high magnification immunohistological imaging of pHH3 and CC3 

staining. Histology scale bar, 50µM. Immunohistological scale bar, 20µM.  

b. Histological analysis of Ifrd1–/– mice treated with hdtam d3. Smaller panels show 

representative and high magnification immunohistological imaging of pHH3 and CC3 

staining. Histology scale bar, 50µM. Immunohistological scale bar, 20µM. 

c. Histological analysis of Ifrd1–/–;p53–/– mice treated with hdtam d3. Smaller panels show 

representative and high magnification immunohistological imaging of pHH3 and CC3 

staining. Histology scale bar, 50µM. Immunohistological scale bar, 20µM. 

d. Quantitative analysis of pHH3+ cells in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– mice treated 

with hdtam d3. Statistical information: N.S. = not statistically significant, **P < 0.01; 

***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from at 

least 3 independent experiments. 

e. Quantitative analysis of CC3+ cells in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– mice treated 

with hdtam d3. Statistical information: N.S. = not statistically significant, **P < 0.01; 

***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from at 

least 3 independent experiments. 

f. Histological analysis of wildtype, Ifrd1–/–and Ifrd1–/–;p53–/– mice 5 days following 

treatment with cerulein. Scale bar, 50µM. 

g. Immunohistological analysis of pHH3+ and CC3+ wildtype, Ifrd1–/–and Ifrd1–/–;p53–/– 

mice 5 days following treatment with cerulein. Scale bar, 20µM. 
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h. Quantitative analysis of pHH3+ cells in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– mice 5 days 

following treatment with cerulein. Statistical information: N.S. = not statistically 

significant, **P < 0.01; ***P < 0.001 by t-test with unequal variance; data represented as 

mean ± SD from at least 3 independent experiments. 

i. Quantitative analysis of CC3+ cells in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– mice 5 days 

following treatment with cerulein. Statistical information: N.S. = not statistically 

significant, **P < 0.01; ***P < 0.001 by t-test with unequal variance; data represented as 

mean ± SD from at least 3 independent experiments. 
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FIGURE 4.6 
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Fig. 6 mTORC1 suppresses p53 and is required for cell cycle entry and for cell death in the 

absence of IFRD1 

a. Histological analysis of hdtam d3 treated wildtype, Ifrd1–/– and Ifrd1–/– + rapamycin mice. 

Scale bar, 50µM. 

b. Immunohistological analysis pHH3+ and CC3+ cells of hdtam d3 treated wildtype, Ifrd1–/– 

and Ifrd1–/– + rapamycin mice. Scale bar, 20µM. 

c. Quantitative analysis of pHH3+ cells in wild type, Ifrd1–/– and Ifrd1–/– + rapamycin mice 

treated with hdtam d3. Statistical information: N.S. = not statistically significant, **P < 

0.01; ***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from 

at least 3 independent experiments. 

d. Quantitative analysis of CC3+ cells in wild type, Ifrd1–/– and Ifrd1–/– + rapamycin mice 

treated with hdtam d3. Statistical information: N.S. = not statistically significant, **P < 

0.01; ***P < 0.001 by t-test with unequal variance; data represented as mean ± SD from 

at least 3 independent experiments. 

e. Histological analysis of 2 weeks cerulein treated wildtype, Ifrd1–/– and Ifrd1–/– + 

rapamycin mice. Scale bars, 200µM (top), 50µM (bottom). 

f. Immunohistological analysis pHH3+ cells of 2 weeks cerulein treated wildtype, Ifrd1–/– 

and Ifrd1–/– + rapamycin mice. Scale bar, 20µM. 
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FIGURE 4.7 
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SUPPLEMENTARY FIGURE S4.1 
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Supplementary Fig. 1 IFRD1 structure exhibits broad evolutionary conservation 

a. Phylogenetic tree generated from multisequence analysis of IFRD1 orthologs across 

numerous classes from three phyla using Clustal Omega webserver.  

b. Multisequence alignment of IFRD1 (H. sapiens) to IFRD2 (O. cuniculus). Secondary 

structure for IFRD1 was computed using JPred4 webserver and secondary structure for 

IFRD2 was computed from the atomic coordinates of the recently reported cryoEM 

structure of IFRD2 bound to the ribosome (PDB 6MTC). 
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SUPPLEMENTARY FIGURE S4.2 
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Supplementary Fig. 2 IFRD1 function is cell-autonomous and is required 

proliferation/regeneration in multiple systems 

a. Low (4X) magnification images of organoids derived from wild type and Ifrd1–/– mice. 

b. Quantification of enteroid initiation efficiency of wild type and Ifrd1–/– mice. Statistical 

information: N.S. = not statistically significant, **P < 0.01; ***P < 0.001 by t-test with 

unequal variance; data represented as mean ± SD from at least 3 independent 

experiments. 

c. High power image of a single representative organoid from wild type and Ifrd1–/– mice. 

Scale bar, 300µM.  

d. Quantification of enteroid size on day 6 of wild type and Ifrd1–/– mice. Statistical 

information: N.S. = not statistically significant, **P < 0.01; ***P < 0.001 by t-test with 

unequal variance; data represented as mean ± SD from at least 3 independent 

experiments. 

e. Representative images of axon regeneration following axotomy ex vivo of control and 

shRNA knockdown of Ifrd1 (shIfrd1). Scale bar, 500µM. 

f. Quantification of axon regeneration following axotomy. Statistical information: N.S. = 

not statistically significant, **P < 0.01; ***P < 0.001 by t-test with unequal variance; 

data represented as mean ± SD from 5 independent experiments.  

g. Histological analysis partially resected livers from wild type and Ifrd1–/– mice.   Scale bar, 

50µM.    

h. Quantification of pHH3+ cells per 20X field following partial hepatectomy in wild type 

and Ifrd1–/– mice. 
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SUPPLEMENTARY FIGURE S4.3 
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Supplementary Fig. 3 In the absence of IFRD1, mice do not have substantial defects in 

development, homeostasis or early stages of paligenosis 

a. Schematic image of the 3 stages of paligenosis. 

b. Immunoflourescent analysis of activation of lysosomal machinery (paligenosis Stage 1) 

in chief cells of wild type and Ifrd1–/– mice treated with d1 hdtam. DAPI: 4′,6-diamidino-

2-phenylindole (nucleus). LAMP1: lysosomal associated membrane protein (lysosomes). 

PGC: Pepsinogen C (protease secreted by gastric chief cell). Scale bar, 20µM.  

c. Immunoflourescent analysis of the metaplastic gene expression (paligenosis Stage 2) in 

chief cells of wild type and Ifrd1–/– mice treated with d3 hdtam. GSII: N-

acetylglucosamine-binding lectins (neck cell). PGC: Pepsinogen C (protease secreted by 

gastric chief cell) Scale bar, 50µM.  

d. Immunoflourescent analysis of activation of lysosomal machinery (paligenosis Stage 1) 

in acinar cells of wild type and Ifrd1–/– mice 1 day following treatment with cerulein. 

DAPI: nucleus. LAMP1: lysosomes. CPA1: Carboxypeptidase A1 (digestive enzyme 

secreted by pancreatic acinar cells). Scale bar, 50µM.  

e. Immunoflourescent analysis of the metaplastic gene expression (paligenosis Stage 2) in 

acinar cells of wild type and Ifrd1–/– mice 5 days following treatment with cerulein. 

YAP1: Yes-associated protein 1 (baseline- duct cell; cerulein- acinar and duct cells). 

Scale bar, 50µM. 
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SUPPLEMENTARY FIGURE S4.4 

 

Supplementary Fig. 4 Representative image of HALO imaging software 

a. Representative image of the identification of positive (yellow, orange, and red) and 

negative (no color) cells using the HALO imaging software in wild type and Ifrd1–/– mice 

5 days following treatment with cerulein. 
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SUPPLEMENTARY FIGURE S4.5 
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Supplementary Fig. 5 Loss of p53 rescues the mTORC1 defect in Ifrd1−/− mice 

a. Immunoflourescent analysis of PS6 staining in in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– 

mice treated with hdtam d3. Scale bar, 50µM. 

b. Immunoflourescent analysis of PS6 staining in in wild type, Ifrd1–/– and Ifrd1–/–;p53–/– 

mice 5 days following treatment with cerulein. Scale bar, 50µM. 
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SUPPLEMENTARY FIGURE S4.6 

                  

Supplementary Fig. 6 mTORC1 inhibition causes the stabilization of p53 

a. Western blot for p53 and Ps6 in untreated and rapamycin treated stomachs. 
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Chapter 4.6 METHODS 

Bioinformatics, microarray and in silico screening 

GeneChips were analyzed with Partek Genomic Suite 6.6 (Partek, Inc.) analysis software 

using default settings (Lo et al. 2017). Gene sets include Tamoxifen (12 hour; generated by Jason 

Mills lab), Pancreas (6 hour; GDS1731), Partial Hepatectomy (2 hour, GDS2577), Acute Kidney 

Injury (24h, GDS4864), Ventilator-Induced Lung Injury (6 hour, GDS81240), and Candoxin 

Glia Injury (24 hour, GDS1414). Thresholds were set at 1.5-fold gene enrichment for all gene 

sets.  

GSEA (Subramanian et al., 2005), was done using default 3.0 settings. GMX files were 

made using microarray data generated de novo from WT and Ifrd1−/− pancreas tissue treated with 

cerulein (GSE121925, available May 1, 2019). RNA was isolated using the RNEasy Micro Kit 

(Qiagen) following the manufacturers’ instructions. Mouse Gene 2.0 ST Array (Affymetrix) was 

used to the analyze gene expression. Multisequence alignments and phylogenetic analysis are 

presented as uncurated results from Clustal Omega Webserver (Sievers Mol System Biol, 

http://msb.embopress.org/content/7/1/539). Secondary structure prediction was computed with 

the JPred4 webserver (Drozdetskiy NAR, 2015) using the sequence of human IFRD1. 

Animal studies and reagents 

All experiments using animals followed protocols were approved by the Washington 

University School of Medicine Animal Studies Committee. WT C57BL/6 mice were purchased 

from Jackson Laboratories (Bar Harbor, ME). Ifrd1−/− mice, previously described (Vadivelu et 

al. 2004), were a kind gift from Dr. Lukas Huber and Dr. Deborah Rubin. Tamoxifen (5 mg/20 g 

body weight; Toronto Research Chemicals) was injected intraperitoneally (IP) daily for 2–3 days 
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to induce maximal gastric injury (Huh et al, 2012; Saenz et al, 2016). Tamoxifen was prepared 

by first dispersing in 100% ethanol by sonication and then emulsifying in sunflower oil (Sigma‐

Aldrich) 9:1 (oil:ethanol). Pancreatitis was induced by 6 hourly IP injections of 50 µg/kg (in 

0.9% saline) cerulein (Sigma‐Aldrich) given every other day for up to 2 weeks. Mice were 

sacrificed 24h after the final cerulein injection. Rapamycin (60 µg/20 g body weight; LC 

Laboratories) was injected IP in 0.25% Tween‐20, 0.25% polyethylene glycol in PBS for 3–

7 days prior to starting and throughout injury time course. Mice were given an IP injection 

containing 5‐bromo‐2′‐deoxyuridine (BrdU; 120 mg/kg) and 5‐fluoro‐2′‐deoxyuridine 

(12 mg/kg) in sterile water 90 min before sacrifice for all BrdU labeling experiments. 

Drosophila studies 

Mammalian ifrd1 homolog is CG31694 (difrd1 here). Fly stocks were obtained from the 

Bloomington Drosophila stock center. yw; P(EPgy2)EY11632 (BL#20811; designated as difrd1 

#1), yw; P(PTT-GA)CA07748 (BL#52520; designated as difrd1 #2 or ifrd1-GFP). w1118 or 

Canton-S are used as wild types. All flies were cultured on yeast-molasses based on food at the 

room temperature. 

Flies were anesthetized by CO2 gas and were stored on ice until dissection.  Midguts were 

dissected in fly saline (182mM KCl, 46mM NaCl, 10mM Tris Base, 3mM CaCl2, pH adjusted to 

7.2 with 1N HCl) and transferred to fixation solution (4% formaldehyde, 7% picric acid in 1X 

PBS) for 1h at room temperature while shaking. All samples were washed by Washing buffer 

(1X PBT: 1x PBS and 0.3% Triton X-100) several times for 1h and blocked in the pre-incubation 

buffer (1X PBT containing 1% BSA and 1% normal goat serum, 0.01% Sodium Azide). Primary 

antibodies were diluted in the same buffer.  Midguts were incubated in antisera overnight at 4°C 
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with shaking. After intensive washing, midguts were incubated with secondary antibodies 

(Alexa-488/ -594/ -647 conjugated IgG antibodies, 1:1000) for 1h at room temperature. After 

washing twice for 15 minutes, midguts were stained with 1 μg/mL DAPI in 1x PBT for 15min, 

followed twice more washing and mounted in Vectashield medium (Vector Laboratories). 

For heat shock stress, female flies were incubated at 37oC for 90 minutes and recovered 

for more than 2 days at room temperature. For oxidative stress, female flies were raised in vials 

containing 1 mL of 2% sucrose solution with or without 3% hydrogen peroxide for overnight.  

Fly guts were dissected in saline and fixed (7% picric acid/4% paraformaldehyde, 1X PBS) for 

60 min. The immunostaining was performed as previously described (Park et al., 2008). Primary 

antibodies used for immunocytochemistry included rabbit anti-PH3 (Cell Signaling, 1:1000) and 

mouse anti-GFP (DHSB, 1:200). Conjugated secondary antibodies were Alexa488 or Alexa594 

(Molecular Probes).  

Organoid culture 

Enteroid cultures were established from crypts isolated from WT or Ifrd1−/− proximal 

jejunum. Crypts were plated in Matrigel and grown into enteroids in media containing EGF, R-

spondin, Wnt3a, noggin and Y27632 (Sata et al. 2009, Fuller et al. 2012). Enteroids were then 

re-passaged twice at 7 day intervals to measure replating efficiency, and harvested for RNA on 

day 21. Enteroid numbers and area were quantified from images of each well obtained on days 6, 

13 and 20 using Cytation 3 Cell Imaging. The efficiency of enteroid establishment from crypts 

was calculated as the number of enteroids on day 6 normalized to the number of crypts plated. 

Enteroid area was measured at each time point using NIH ImageJ.  
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Axon Regeneration 

Embryonic DRG neurons were cultured as previously described (Cho and Cavalli, 2012). 

Briefly, e13.5 DRG neurons were dissected from CD-1 mice, trypsinized (.05%) for 25 minutes, 

and triturated 60x to dissociate the cells. Neurons were resuspended in neuronal media consisting 

of Neurobasal, 1x B27, 1x Glutamax, FDU, and pen/strep, and were plated in spots of 10,000 

neurons on plates coated with poly-d-lysine and laminin. Lentivirus containing FCIV-Bclxl was 

added at DIV 2 and shIFRD1 at DIV4. At DIV 9, spots were axotomized with an 8mm long 

microtome blade and fixed 48 hours after injury. Spots were immunostained for SCG10 and 

regenerative growth was measured from the blade mark to the axon tips. The experiments were 

completed in technical triplicate with 8 biological replicates. 

Imaging and tissue analysis 

Mouse tissues were immediately excised and flushed with phosphate‐buffered saline and 

fixed overnight in 4% paraformaldehyde in PBS. Tissues were washed, embedded in 3% agar, 

and then underwent routine paraffin processing. Sections prepared for immunofluorescence or 

immunohistochemistry underwent standard deparaffinization and rehydration protocols, were 

blocked in 5% normal serum, and left overnight with primary antibodies. Sections were washed 

in phosphate‐buffered saline and incubated for 1 h with secondary antibodies and then washed 

prior to mounting. For antibodies used in this study, see (Supplementary Table _). 

Immunofluorescence images were taken on a Zeiss Apotome or LSM710 confocal (Zeiss). 

Bright field images were taken on a Nanozoomer (Hamamatsu) whole slide scanner or DP70 

microscope (Olympus). To account for frequent gland loss in the base of Ifrd1−/− mice, 10 

random, 20X fields were chosen in three Ifrd1−/− and three control animals. The 10 fields were 
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further subdivided into two rectangular regions: a basal one 100 μm perpendicular and 450 μm 

parallel to the muscularis mucosa and a region of the same size immediately adjacent and 

encompassing the neck of the gastric unit. All BrdU+ or pHH3 cells were scored and the 

proportion in each zone calculated. Quantification of proliferation in the pancreas was done by 

counting 10 randomly sampled whole 20X fields per condition. HALO image analysis platform 

(Indica Labs) to quantify intensity of fluorescent staining. We selected 5 pancreas images per 

four Ifrd1−/− and four control animals that exhibited pathological ADM. Exposure times were 

kept constant across all samples and images were analyzed based on the intensity of fluorescence 

per cell. The staining threshold was set based on control tissue for positive staining. Statistical 

analysis with both antibodies was done using ANOVA with a post hoc Dunnett's test.  
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Chapter 5: Conclusions and Future 

Directions 

 

Chapter 5.1: Summary 

In summary, the work described in this dissertation details significant advancements in 

the molecular basis of disease and injury in gastrointestinal tissues. We have described the 

process, paligenosis, by which mature cells can alter their differentiation state and become 

proliferative, in response to injury. We detailed the specific steps that occur during this process, 

and we have begun to highlight some of the major pathways involved. We began by 

investigating cellular dynamics that play an important role in whole tissue function in gastric 

chief cells and pancreatic acinar cells. We uncover the importance of mTORC1 as a central 

regulator of this process in both the stomach and pancreas. We investigated this process in 

numerous tissues and proposed that paligenosis is a conserved a shared mechanism. My work in 

the Mills lab has also specifically helped build upon the idea of paligenosis in two important 

ways: 1) establishment of the cerulein-based pancreatitis model that has enabled us to thoroughly 

characterize paligenosis as a shared process and 2) the identification of Ifrd1 as a gene that is 

commonly upregulated in cells that undergo paligenosis. We characterized IFRD1 in numerous 

tissues, across several species and we now know that it is critical for the proliferation of cells 

undergoing paligenosis in diverse contexts. We discovered that IFRD! is highly evolutionarily 

conserved, and this work has led to a burgeoning project in the lab focusing on paligenosis in 

Drosophila. My initial bioinformatic screen helped support projects in the lab characterizing 

paligenosis genes like Ddit4 and Atf3. My work on paligenosis and Ifrd1 uncovered new and 
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intersected with known hubs of cellular biology that are conserved to yeast including mTOR, 

P53, nucleolar stress and MAPK signaling1-4. Ultimately, our research aims to influence the 

understanding of human disease and paligenosis sheds light on the way that secretory cells can 

fuel GI adenocarcinomas. To that end, we analyzed IFRD1 in human colorectal cancers and 

observe a significant correlation between IFRD1 expression and patient survival.  

Chapter 5.2: Future Directions  

Crafting a dissertation project around IFRD1 has been a mixed blessing. The scant 

literature on IFRD1 in relation to our model systems has made it so that we, along with Dr. 

Deborah Rubin, have been able to help set a foundational understanding of this gene. However, 

my dissertation research concludes with many unanswered questions that I will describe 

throughout the rest of this chapter. 

IFRD1 in ex vivo culture 

We have previously experienced mixed results when attempting to generate gastroids 

from Ifrd1–/– mice. The most interesting result was achieved several times, whereby gastroids 

failed to form from mice that lacked Ifrd1 (Figure 5.1). While this was a promising result, it was 

also surprising given our presumption that IFRD1 appears to function primarily on mature cells 

undergoing paligenosis; thus, we would not expect the constitutively active stem cell to be 

affected by Ifrd1 mutation.   

Further work is needed to answer several question about IFRD1 and the formation of 

organoids from gastric cells. The first experiment would be to find a consensus result from the 

generation of gastric organoids from gastric units isolated from Ifrd1 null mice. Building on that 
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study would be to isolate chief cells from gastric units of mice with and without Ifrd1 and 

determine the efficiency of organoid generation in that context.  

Gastroids provide a cell autonomous system in which to test molecular mechanisms of 

paligenosis. Another system, for which I generated preliminary data, is the isolation and culture 

of pancreatic acinar cell ex vivo. This system has the advantage of requiring only crude isolation 

in order to enrich the cell population of interest (acinar cells), but a major disadvantage is that it 

is difficult to propagate these cells for more than a few days. Isolated acinar cells will naturally 

dedifferentiate and become more duct like in vitro (modeling acinar-ductal metaplasia in vivo), 

but many cells die due to the abundance of digestive enzymes that are released during isolation5.   

Developing this protocol further will enable large scale testing of paligenosis in a relatively 

homogenous cell population, which is important for understanding the molecular changes that 

occur during paligenosis.  

There are numerous studies of interest in both gastric organoid and ex vivo acinar cell 

culture models. Since rapamycin has such a strong effect in vivo, it would be important to test 

the effects of rapamycin treatment on gastroid formation and dedifferentiation of isolated 

pancreatic acinar cells. Along the same lines, both of these systems enable the investigation of 

lysosome and autophagy dynamics. In relation to IFRD1, in vitro systems enable further analysis 

of the interaction between IFRD1 and P53. Co-immunoprecipitation could be done robustly in 

the cells of interest, as opposed to the mixed cell types in an in vivo tissue. Further, an epistatic 

relationship could be determined through the administration of Nutlin-3, which is an MDM2 

antagonist (resulting in the stabilization of P53). Lastly, in vitro assays would enable the direct 

modulation of other major signaling pathways like JNK, HIPPO, MAPK and ribosomal stress 
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(e.g. treat with the transcriptional inhibitor actinomycin D), all of which would increase 

mechanistic evidence relating to IFRD1.  

 

Single cell RNAseq in secretory cells undergoing paligenosis in the absence of Ifrd1 

Rapid progress in the development of next-generation sequencing technologies in recent 

years has provided insights into biological systems. Sequencing based technologies for 

genomics, transcriptomics and epigenomics are now being focused on characterizing individual 

cells. Traditional expression profiling that assesses bulk populations can create noise when 

analyzing a process like paligenosis. Single cell RNAseq would be particularly useful in the 

pancreas, a tissue which is primarily composed of acinar cells, but those cells are not 

synchronized throughout injury. Characterizing the expression of pancreatic acinar cells (and 

gastric chief cells) undergoing paligenosis at various timepoints would help dissect specific 

expression profiles during the progression of paligenosis and potentially reveal regulatory 

relationships between genes. This technology has routinely been used in mouse and human 

pancreas, but not in the context of injury en route to metaplasia6-8. 

IFRD1 Yeast 2 Hybrid 

In November of 2017, we performed a Yeast 2 Hybrid screen to uncover which proteins 

IFRD1 can interact with in vivo. This screen is a complementation assay that involves splitting a 

transcription factor into two fragments (bound to two proteins of interest) and observing the 

activation of a downstream reporter gene that is only transcribed when the two domains of the 

transcription factor interact. Initial review of the data produced a few interactions of note, 
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including: RPL19, RPL3, SMC6, ZNF574 and a screen of a short, but high identify match to 

LAMTOR4 (Figure 5.2). Ribosomal proteins RPL19 and RPL3 are highly conserved and 

involved in proliferation, ribosomogenesis, translation efficiency and management of nucleolar 

stress in relation to p539-11. SMC6 is also highly conserved and manages DNA repair and 

replication stress12. In yeast, in addition to DNA repair and homologous recombination, SMC6 is 

essential for proliferation13. ZNF574 is one of seven genes that demonstrates highly differential 

expression in early onset colorectal cancer compared to late onset colorectal cancer14. ZNF574 is 

associated, like IFRD1, with the SIN3 complex, which, as described in Chapter 1, plays a role in 

scaffolding histone deacetylases, histone and DNA methylation and the regulation of P53. 

ZNF574 also interacts with NAT10, a nucleolar acetyltransferase that responds to stress by 

promoting a transition from rRNA synthesis to autophagy. Lastly, LAMTOR4 (late 

endosomal/lysosomal adapter and mitogen activated protein kinase and mechanistic target of 

rapamycin activator 4) is one of five proteins that make up the Ragulator complex. This complex 

is also conserved to yeast and its function it to anchor mTORC1 to the lysosomal membrane15. In 

the absence of the Ragulator complex mTORC1 becomes constitutively inactivated in the 

cytoplasm16.  

None of the above described interactions can independently explain IFRD1 function, but 

together they provide insight into how IFRD1 may function in the injury response and they are 

each worthy of further exploration.          

IFRD1 and Nucleolar Stress 

I performed an analysis of cerulein treated Ifrd1 null vs WT mice in Partek that revealed 

that several DEAD-box helicases were down-regulated in mice lacking Ifrd1 following 5 days of 
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cerulein treatment. This analysis led us to begin investigating ways to interpret and analyze the 

nucleolus in cells undergoing paligenosis. Immunoflourescent analysis of DDX21 revealed much 

less expression in Ifrd1–/– mice treated with cerulein compared to wild type mice treated with 

cerulein (Figure 5.3). Further, a relationship between IFRD1 and DDX21 was revealed through 

Cord analysis which displays genes that have been shown to be co-regulated in experimental 

contexts. I could not find a similar phenotype in the stomach so I have not continued to pursue 

DDX21, but the nucleolus has remained an area of active investigation in the lab. 

Nucleolar/ribosomal stress is one of the few pathways that we know are shared among cells 

undergoing paligenosis and is conserved all the way to yeast. In the fly interactome (Drosophila 

Interactions Database), we see that the Drosophila version of Ifrd1 interactions with 

Nucleostemin 1 and 2.  Nucleostemin is required for DDX21 localizing to the nucleolus and is 

required for proliferating cells to pass through G1-phase17. A scenario where Ifrd1 is required to 

scaffold Nucleostemin-DDX21 during stress, in order to maintain the suppression of p53 and 

enable cell cycle progression, is worth investigation.  

The nucleolus is also important because it functions to maintain a balance between 

ribosomal RNAs (which are transcribed in the nucleolus) and ribosomal proteins is required to 

prevent p53 stability and progress through the cell cycle18; Figure 1.5). We believe that the 

apoptosis that we observe in stage 3 paligenotic cells of Ifrd1–/– mice is due to this stabilization 

of p53. The nucleolus integrates a ton of information because it requires: transcription (Pol-I, 

Pol-II and Pol-III), translation (of mTOR-dependent ribosomal proteins), nuclear import of 

ribosomal proteins and assembly of the entire ribosome complex. Any imbalance leading to the 

accumulation of ribosomal proteins that aren’t attached to ribosomal RNAs leads to MDM2 

binding. The binding of MDM2 by ribosomal proteins liberates and, therefore, stabilizes p5319. 
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Studies are underway in the lab to investigate morphological differences in the nucleoli 

of wild type and Ifrd1–/– gastric and pancreatic cells undergoing paligenosis. Early indications 

are that there is a difference in the number and size of nucleoli, however, more work is required 

to identify specific nucleolar markers that can be analyzed in each context and link those 

nucleolar markers to paligenosis-specific phenotypes.  

IFRD1 and P53 transcription  

We analyzed gene sets from microarrays performed following 5 days of cerulein 

treatment in wild type and Ifrd1–/– mice. Given the stabilization of p53, we were interested in 

identifying a molecular expression signature that would differentiate Ifrd1–/– from wild type mice 

at the proliferation stage. Although we would expect all p53 target genes to be upregulated in 

Ifrd1–/– mice (due to the stabilization of p53 protein), instead we observed that a subset of p53 

target genes were actually downregulated in Ifrd1–/– mice at this time point. In Knights et al., 

they describe how p53 is regulated by stress-induced posttranslational modifications20. Specific 

acetylated and phosphorylated residues of p53 influence gene expression patterns and, 

ultimately, cell fate. They describe that there is a cassette of p53 genes that are related to growth-

arrest and another set which causes apoptosis. These gene sets can be delineated by their 

expression in relation to p53 acetylation status. P300 acetylates lysines 370, 372, 373 and 382 in 

the C-terminal portion of p5321. PCAF (p300-associated factor) has been linked to acetylation of 

lysine 320, which is located within a flexible linker domain which also contains a nuclear 

localization signal22,23. IFRD1 has been reported to form a complex with histone deacetylases, 

thus, we would propose that IFRD1 could plug into the Sin3 complex to influence p53 

acetylation status24. In the Genechip data, we observe a decrease in growth-arrest p53 targets, 

like cdkn1 and sen2. This suggests that there is a relative loss of K320 P53 in the absence of 
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IFRD1. If the loss of IFRD1 shifts the acetylation status of P53 from K320 to the K373 cassette, 

it may explain why there is more apoptosis following injury. Further investigation would include 

analyzing the difference between P53 gene cassettes and their relation to IFRD1. This would 

help uncover the functional relationship between IFRD1 and P53 and the consequences on 

paligenosis.   

IFRD1 and Type I Interferons 

A new angle on paligenosis is emerging in the lab, in relation to the role of Type I 

Interferons and their effect on the injury observed in pancreas and stomach en route to 

metaplasia. IFRD1 is highly conserved, and we speculated that it evolved as a way for cells to 

differentiate between self and invading species that may try to take over host-protein translation 

mechanisms. IFRD1 has been shown to be upregulated in human tissue following H. pylori 

infection and Drosophila tissue following Pseudomonas infection. The literature has also shown 

that IFRD1 can regulate viral immune evasion mechanisms in human papilloma virus-induced 

keratinocytes25. Type I Interferon (type 1 IFN) genes are cytokines that play a role in the 

induction of anti-viral gene program that is important for host defense against viruses. The type 1 

interferon response, specifically genes associated with IFN-α and IFN-β, are upregulated in 

Ifrd1–/– vs WT mice treated with cerulein. Further, IFN-α and IFN-β responsive genes are 

upregulated in cerulein treated Ifrd1–/– vs. Rapamycin + Cerulein treated mice (Figure 5.4). This 

Type I IFN response may account for the increased death that we observe in Ifrd1–/– mice treated 

with long term cerulein compared to wild type mice.  
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IFRD1 and Oxidative Phosphorylation 

Metabolic reprogramming is a hallmark of tumor cell survival, proliferation and 

resistance to therapy. Cancer cells exhibit a wide range of metabolic profiles but tend to favor 

glycolysis over oxidative phosphorylation, even though glycolysis is much less efficient26. The 

Warburg effect describes this preference and one of the reasons that it glycolysis may be 

preferred in cancer cells is due impaired mitochondria, which function in apoptosis27. 

Mitochondrial function is generally intact in most cancers, but in some cases mitochondrial 

deficiencies can arise due to damage from the low-oxygen tumor environment or suppression by 

cancer genes27. In tumors, p53 is often inactivated or deleted, yet paradoxically recent studies 

have shown that activation of p53 impacts glucose metabolism and prevents more aggressive 

cancer phenotypes28. P53 has been shown to revert the Warburg effect and negatively influence 

the oncogenic metabolic adaptation of cancer cells29. A consistent molecular signature from the 

analysis of cerulein gene chips from Ifrd1–/– vs. wild type mice reveals that genes associated with 

the oxidative phosphorylation pathway are differentially expressed in Ifrd1–/– mice. As described 

earlier, p53 is stabilized in Ifrd1–/– mice, and aberrant p53, even in non-tumor cells, may result in 

a shift away from activation of genes associated with oxidative phosphorylation.  

Previous work by the lab of Dr. Deborah Rubin has shown that overexpression of Ifrd1 

causes metabolic changed in enterocytes30. They observed an increase in fatty acid absorption 

and a decrease in the uptake of select amino acids in transgenic mice. Mice lacking Ifrd1 also 

demonstrate metabolic deficiencies. For example, mice do not gain weight when chronically fed 

a high-fat diet and tis7 deletion results in delayed lipid absorption and altered intestinal and 

hepatic lipid trafficking31. This investigation establishes a link between IFRD1-induced lipid 

metabolism, the inflammatory response to a high-fat diet, and survival after surgical resection32.  
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IFRD1 and human cancer screening 

As described earlier in Chapter 2, we find high IFRD1 expression is associated with 

poorer patient survival in colorectal cancer. We proposed that IFRD1 regulates metabolic 

processes in cancer cells, which may influence sensitivity to adjuvant chemotherapy. The precise 

mechanism by which IFRD1 may work is unknown, but the IFRD1 exhibits promise in cancer 

therapeutics as an indicator of high metabolic activity. We have shown, at the cellular level, that 

IFRD1 marks cells that have recently sensed injury. In the absence of IFRD1, these cells still 

sense damage, but they demonstrate a defect in the ability to resolve that injury. Our data show 

that IFRD1 may function as a signal to the cell that entry into the cell cycle is safe. Aberrant or 

hyperactivity of IFRD1 in tumors may suggest that these cells have the capacity to proliferate 

while ignoring normal cellular checkpoints. I view the impact of IFRD1 in future therapies as 

two-fold: 1) IFRD1 could serve as a marker on a genetic panel or screen that would highlight 

tumors with high metabolic plasticity and 2) as a drug target, inhibiting IFRD1 function, 

following the synchronization of tumor cells using chemotherapy. Since, IFRD1 seems 

dispensable for normal homeostatic activity, its inhibition would specifically drive tumor cells 

toward apoptosis.   

Chapter 5.3 Conclusion 

 Paligenosis establishes a new field that begins to explain a phenomenon observed during 

the injury response in numerous species and tissues. The characterization of IFRD1 in the 

context of paligenosis will influence the investigation of numerous tissues and disease research.  

The work described in this thesis details the launch of a new field of study and the first described 

regulator of it.  
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Chapter 5.4 FIGURES 

Figure 5.1

 

Figure 5.1 Preliminary gastric organoid data generated from wild type and Ifrd1 null mice. 

Initial results showed increased death and poor organoid establishment in null mice, but further 

experiments showed inconsistent results.  
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Figure 5.2  

 

 

Figure 5.2 Results from Yeast 2 Hybrid assay listing the potential proteins that can interact in 

vitro.  
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Figure 5.3 

 

     

 

Figure 5.3 Preliminary results showing decreased DDX21 expression in Ifrd1 null mice treated 

with cerulein compared to wild type mice.  

 

 

 

 

 



187 

 

Figure 5.4 

 

 

Figure 5.4 Comparison of interferon related gene expression after cerulein treatment in wt, Ifrd1 

null and wt mice + rapamycin. The results show that all of the Interferon type 1-related genes are 

upregulated in Ifrd1 nulls compared to wild type or rapamycin treated mice, which might 

account for the increases apoptosis in Ifrd1 null mice treated with cerulein.  

 

 

 

 

 

 



188 

 

Chapter 5.5 REFERENCES 

1 González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. 

The EMBO journal 36, 397-408, doi:10.15252/embj.201696010 (2017). 

2 Casso, D., Beach, D., Casso, D. & Beach, D. A mutation in a thioredoxin reductase 

homolog suppresses p53-induced growth inhibition in the fission 

yeastSchizosaccharomyces pombe. Molecular and General Genetics MGG 252, 518-529, 

doi:10.1007/BF02172398 (1996). 

3 Yu, Z.-Y. et al. Fission yeast nucleolar protein Dnt1 regulates G2/M transition and 

cytokinesis by downregulating Wee1 kinase. Journal of cell science 126, 4995-5004, 

doi:10.1242/jcs.132845 (2013). 

4 Toone, W. M. & Jones, N. Stress-activated signalling pathways in yeast. Genes to Cells 

3, 485-498, doi:10.1046/j.1365-2443.1998.00211.x (1998). 

5 Gout, J. et al. Isolation and culture of mouse primary pancreatic acinar cells. Journal of 

visualized experiments : JoVE, 50514, doi:10.3791/50514 (2013). 

6 Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and 

bioinformatics pipelines. Experimental & molecular medicine 50, 96-96, 

doi:10.1038/s12276-018-0071-8 (2018). 

7 Enge, M. et al. Single-Cell Analysis of Human Pancreas Reveals Transcriptional 

Signatures of Aging and Somatic Mutation Patterns. Cell 171, 321-330.e314, 

doi:10.1016/j.cell.2017.09.004 (2017). 

8 Stanescu, D. E., Yu, R., Won, K.-J. & Stoffers, D. A. Single cell transcriptomic profiling 

of mouse pancreatic progenitors. Physiological genomics 49, 105-114, 

doi:10.1152/physiolgenomics.00114.2016 (2017). 

9 Tsubota, S. I. & Phillips, A. C. Drosophila Enhancer of Rudimentary Homolog, ERH, Is 

a Binding Partner of RPS3, RPL19, and DDIT4, Suggesting a Mechanism for the Nuclear 

Localization of ERH. Molecular biology international 2016, 8371819-8371819, 

doi:10.1155/2016/8371819 (2016). 

10 Russo, A. et al. Human rpL3 induces G₁/S arrest or apoptosis by modulating p21 

(waf1/cip1) levels in a p53-independent manner. Cell cycle (Georgetown, Tex.) 12, 76-

87, doi:10.4161/cc.22963 (2013). 

11 Russo, A. et al. rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-

regulating CBS and NFκB upon 5-FU treatment. Scientific Reports 6, 38369, 

doi:10.1038/srep38369 https://www.nature.com/articles/srep38369#supplementary-

information (2016). 

            



189 

 

12 Roy, M.-A. & D’Amours, D. DNA-binding properties of Smc6, a core component of the 

Smc5–6 DNA repair complex. Biochemical and Biophysical Research Communications 

416, 80-85, doi:https://doi.org/10.1016/j.bbrc.2011.10.149 (2011). 

13 Ju, L. et al. SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase 

domain has a mild phenotype with a range of subtle abnormalities. DNA Repair 12, 356-

366, doi:https://doi.org/10.1016/j.dnarep.2013.02.006 (2013). 

14 Berg, M. et al. Distinct high resolution genome profiles of early onset and late onset 

colorectal cancer integrated with gene expression data identify candidate susceptibility 

loci. Molecular cancer 9, 100-100, doi:10.1186/1476-4598-9-100 (2010). 

15 Mu, Z., Wang, L., Deng, W., Wang, J. & Wu, G. Structural insight into the Ragulator 

complex which anchors mTORC1 to the lysosomal membrane. Cell discovery 3, 17049-

17049, doi:10.1038/celldisc.2017.49 (2017). 

16 Su, M.-Y. et al. Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation 

Complex. Molecular cell 68, 835-846.e833, doi:10.1016/j.molcel.2017.10.016 (2017). 

17 Romanova, L. et al. Critical role of nucleostemin in pre-rRNA processing. The Journal of 

biological chemistry 284, 4968-4977, doi:10.1074/jbc.M804594200 (2009). 

18 Nicolas, E. et al. Involvement of human ribosomal proteins in nucleolar structure and 

p53-dependent nucleolar stress. Nature communications 7, 11390-11390, 

doi:10.1038/ncomms11390 (2016). 

19 Volarević, S. et al. Proliferation, But Not Growth, Blocked by Conditional Deletion of 

40&lt;em&gt;S&lt;/em&gt; Ribosomal Protein S6. Science 288, 2045, 

doi:10.1126/science.288.5473.2045 (2000). 

20 Knights, C. D. et al. Distinct p53 acetylation cassettes differentially influence gene-

expression patterns and cell fate. The Journal of cell biology 173, 533-544, 

doi:10.1083/jcb.200512059 (2006). 

21 Gu, W. & Roeder, R. G. Activation of p53 Sequence-Specific DNA Binding by 

Acetylation of the p53 C-Terminal Domain. Cell 90, 595-606, 

doi:https://doi.org/10.1016/S0092-8674(00)80521-8 (1997). 

22 Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation 

cascade. Genes & development 12, 2831-2841 (1998). 

23 Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in 

response to DNA damage. Molecular and cellular biology 19, 1202-1209 (1999). 

24 Vietor, I. et al. TIS7 interacts with the mammalian SIN3 histone deacetylase complex in 

epithelial cells. The EMBO Journal 21, 4621, doi:10.1093/emboj/cdf461 (2002). 

25 Tummers, B. et al. The interferon-related developmental regulator 1 is used by human 

papillomavirus to suppress NFκB activation. Nature communications 6, 6537-6537, 

doi:10.1038/ncomms7537 (2015). 

https://doi.org/10.1016/j.bbrc.2011.10.149
https://doi.org/10.1016/j.dnarep.2013.02.006
https://doi.org/10.1016/S0092-8674(00)80521-8


190 

 

26 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The Biology of 

Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metabolism 

7, 11-20, doi:https://doi.org/10.1016/j.cmet.2007.10.002 (2008). 

27 Hsu, P. P. & Sabatini, D. M. Cancer Cell Metabolism: Warburg and Beyond. Cell 134, 

703-707, doi:https://doi.org/10.1016/j.cell.2008.08.021 (2008). 

28 Phan, L. M., Yeung, S.-C. J. & Lee, M.-H. Cancer metabolic reprogramming: 

importance, main features, and potentials for precise targeted anti-cancer therapies. 

Cancer biology & medicine 11, 1-19, doi:10.7497/j.issn.2095-3941.2014.01.001 (2014). 

29 Gomes, A. S., Ramos, H., Soares, J. & Saraiva, L. p53 and glucose metabolism: an 

orchestra to be directed in cancer therapy. Pharmacological Research 131, 75-86, 

doi:https://doi.org/10.1016/j.phrs.2018.03.015 (2018). 

30 Lu, J. et al. Proline Absorption and SGK1 Expression are Inhibited in Intestinal 

<b><i>Tis7</i></b> Transgenic Mice. Cellular Physiology and Biochemistry 38, 1532-

1543, doi:10.1159/000443094 (2016). 

31 Yu, C. et al. Deletion of Tis7 protects mice from high-fat diet-induced weight gain and 

blunts the intestinal adaptive response postresection. The Journal of nutrition 140, 1907-

1914, doi:10.3945/jn.110.127084 (2010). 

32 Garcia, A. M. et al. Tis7 deletion reduces survival and induces intestinal anastomotic 

inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome. 

American journal of physiology. Gastrointestinal and liver physiology 307, G642-G654, 

doi:10.1152/ajpgi.00374.2013 (2014). 

 

 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1016/j.cmet.2007.10.002
https://doi.org/10.1016/j.cell.2008.08.021
https://doi.org/10.1016/j.phrs.2018.03.015


191 

 

Mark Anthony Lewis 
860-655-6993(cell)  -  mark.a.lewis07@gmail.com  -  St. Louis, Missouri 

 

SUMMARY 

 Academic training on the molecular mechanisms of reserve stem cell recruitment and 

development of pre-cancerous lesions in the gastrointestinal tract 

 Excellent communication and presentation skills 

 Demonstrated excellence in research project management and development 

 Accomplished graduate level research scientist 

 Intrinsically motivated and consistently looking for opportunities to develop personally 

and professionally 

 

EDUCATION 

Ph.D. (expected January 2019), Molecular Cell Biology, Washington University 

M.A., Biology, Washington University, May 2012 

B.S., Biochemistry, Eastern Connecticut State University, May 2008 

PUBLICATIONS  

1. Lewis, M.A., Sharabash, N., Miao, ZF. et al. Increased IFRD1 Expression in Human 

Colon Cancers Predicts Reduced Patient Survival. Dig Dis Sci (2017) 62: 3460. 

https://doi.org/10.1007/s10620-017-4819-0 

2. Willet, S.G, Lewis, M.A.*, Miao, ZF. et al. Regenerative proliferation of differentiated 

cells by mTORC1-dependent Paligenosis. The EMBO J (2018) 37:4 DOI: 

10.15252/embj.201798311 

*Co-first author 

3. Lewis, M.A. et al. IFRD1 promotes survival and proliferation in the conserved cellular 

regeneration program (paligenosis) by suppressing p53 Manuscript in submission 

 

SELECTED ACADEMIC RESEARCH EXPERIENCE 

 Graduate Research Associate, September 2013-present, Mentor: Dr. Jason Mills, 

Gastroenterology Washington University School of Medicine 

 Bioinformatic screen of pancreas, stomach, liver and kidney injury models to identify 

genes involved in the acute injury response. 

 Development of a pancreas injury model that has allowed the lab to increase the scope 

and generalizability of our molecular basis of gastrointestinal disease in manuscripts and 

grants.  

 Facilitated a collaboration between research and clinical leaders in pancreatic disease via 

the identification of macrophage type (resident or bone-marrow derive) and their function 

in pancreatic cancer progression.  

 Dissertation research will culminate in the identification of a gene that is extremely well-

conserved, dispensable for normal growth and development, but essential for the 

recruitment of reserve stem cells following injury in multiple organs. 

 

SELECTED AWARDS & RECOGNITION (last 5 years): 

2017 – Oral Presenter, FASEB Gastrointestinal Tract XVII, Steamboat Springs, Colorado 

 (1 of 4 invited graduate trainee speakers)  



192 

 

2016 - Oral Presenter, Keystone Symposia on Cell Biology, Keystone, Colorado 

 (Global Cell Biology Conference with more than 500 attendees) 

(1 of 2 invited graduate trainee speakers) 

2016 - Young Investigator Travel Award, Keystone Symposia on Cell Biology, Keystone,     

Colorado (1 of 8 travel award recipients) 

 

INDUSTRY EXPERIENCE 

Research Associate, June 2007- September 2013 

Monsanto Company, St. Louis Missouri- Monsanto (acquired by Bayer Corp.) was a global 

agriculture company specializing in products and tools that help farmers grow crops, while using 

energy, water and land in a more efficient manner.   

• Optimization of high throughput, next generation sequencing machinery, bioinformatic 

sequence analysis and molecular quality control 

• Project management and the development of a Laboratory Information Management 

System (LIMS) to centralize sample and project information in a high throughput 

environment 

• Developed several programs written in PERL to analyze, align, and assemble plant and 

bacterial genome sequences in support of the Monsanto pipeline.  

• Nucleic acid extractions and molecular analysis utilizing Taqman real-time, end point and 

inverse PCR methods.  
 

PROFESSIONAL DEVELOPMENT 

2018 – Trained Consultant, The Biotechnology and Life Sciences Advising (BALSA) 

2018 – Market Research Consultant, Canopy Biosciences 

2015 – Mentor, AMGEN scholar program, Washington University 

2014-2016 – Executive Board Member, Connections (student-led initiative to increase bias 

literacy) 

2013-2015 – Mentor, Young Scientist Program, Washington University  

2013 – Six Sigma Green Belt in Process Optimization, Monsanto Company 

 

RESEARCH SUPPORT 

Predoctoral Pediatric Digestive Disease Research T32-DK077653               

03/01/2018-02/28/2019 

The criteria for appointment are likelihood of advancing to a career in biomedical research as 

assessed by classwork and research successes prior to and in the first 2 years of the graduate 

program, and interest in an area of inquiry relevant to juvenile diseases. T32 support offers 

membership in a community of scholars one training level senior to the predoctoral candidate.  

Diversity supplement to Mills-R01-DK-094989-03 Mills (PI)                     

01/01/2015-03/31/17 

This application proposes several experiments to learn how stem cells in the body (corpus) of the 

lining of the stomach respond to loss of acid-secreting parietal cells.  

 


	The Role of IFRD1 in the Recruitment and Function of Reserve Stem Cells in Regeneration and Cancer
	Recommended Citation

	tmp.1561062244.pdf.zNEPF

