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Abstract of the Dissertation 

The Ontogeny of Complex Tool Use among  

Chimpanzees of the Goualougo Triangle, Republic of Congo  

by 

Stephanie L. Musgrave 

Doctor of Philosophy in Anthropology 

Washington University in St. Louis, 2019 

Professor Crickette Sanz, Chair 

Various factors are hypothesized to have contributed to the flourishing of technology during 

human evolution, including high-fidelity social learning, a propensity for prosocial helping, and 

sex differences in foraging tool use. In this research, we examined the role of these factors on the 

development of complex tool-using skills among wild chimpanzees (Pan troglodytes 

troglodytes) in the Goualougo Triangle, Republic of Congo. These apes exhibit among the most 

complex tool behaviors of any nonhuman animal, including the flexible use of multiple tool 

types and the manufacture of tools from specific raw materials, according to a particular design. 

Specifically, we drew upon a 15-year, longitudinal dataset to assess the acquisition of termite-

gathering skills among 25 immature chimpanzees and compare these results to those for 

chimpanzees (Pan t. schweinfurthii) at Gombe, Tanzania; test whether tool transfers from 

competent to less skilled conspecifics comprise a form of teaching; and compare tool transfer 

behavior among chimpanzees at Goualougo to those at Gombe. Results indicate that individuals 

learn single before multiple tool use, and in contrast to Gombe, tool use is learned before tool 

manufacture. We did not detect significant sex differences in skill acquisition, but females 

acquired most termite-gathering skills slightly before males do, and males on average 

manufactured tools slightly earlier than females. At Goualougo, skilled chimpanzees, typically 
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mothers, sometimes transfer termite-gathering tools to their offspring, and these transfers 

comprise a functional form of teaching. The rate of tool transfers as well as the probability of 

tool transfer after request are higher at Goualougo, and transfer types are more prosocial. These 

findings suggest that the complexity of termite-gathering among chimpanzees in the Congo 

Basin may influence the sequence of skill acquisition and be associated with an enhanced role 

for social learning. Further research is necessary to determine what drives the manifestation of 

sex differences in skill acquisition, and how this relates to adult sex differences in tool use. 

Based on these findings, I conclude that high-fidelity social learning and prosocial helping 

intersect to promote the transmission of complex skills between individuals, supporting the 

hypothesis that these factors contributed to the emergence of cumulative cultural behavior in 

human evolution.
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Chapter 1: Introduction  
 Investigating what led to the flourishing of technology during human evolution is an 

enduring and interdisciplinary effort. Technology in humans is a form of cumulative cultural 

behavior, whereby innovations build upon each other through the complementary forces of 

creativity and social transmission (Fuentes, 2017). Over time, the diversity, complexity and 

efficiency of cultural traits can “ratchet up” (Tomasello, 1999). There is evidence that 

cumulative cultural change may have characterized even early Oldowan technology (Stout, 

2011), though rates of change accelerated by the Middle and Later Stone Ages (Ambrose, 2001; 

Powell, Shennan, & Thomas, 2009). While cumulative culture is widely agreed to be a 

transformative force in human evolution, the factors leading to its emergence, particularly the 

role of different social learning mechanisms, are debated (Boesch & Tomasello, 1998; Kempe, 

Lycett, & Mesoudi, 2014; Pradhan, Tennie, & van Schaik, 2012). Identifying what contributes to 

variation in the expression of tool behavior in extant taxa can help illuminate the adaptive basis 

of tool behaviors and assist in modeling the evolution of technology in the hominin lineage. 

 In this dissertation, I investigate the acquisition of complex tool skills in Central 

chimpanzees (Pan troglodytes troglodytes) of the Goualougo Triangle, Republic of Congo. 

These apes reside in an intact forest landscape (Morgan, Sanz, Onononga, & Strindberg, 2006), 

and relative to other study sites, the Goualougo Triangle has the lowest level of human 

disturbance (Wilson et al., 2014). This has important implications for the endurance of ape 

cultures, as disturbance can interrupt the social transmission and maintenance of behaviors 

across the landscape (Kühl et al., 2019; van Schaik, 2002). This population has one of the most 

complex tool repertoires among nonhumans, comprising some of the best evidence for 

cumulative technology in the animal kingdom (Sanz & Morgan, 2007, 2010). Studying these 
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apes thus provides a unique opportunity to examine what factors, including social learning, may 

facilitate cumulative cultural behavior. Together with my coauthors, I investigate how immature 

chimpanzees acquire tool skills, assess the role of teaching in skill transmission, and conduct a 

systematic comparison of the rate, probability and types of prosocial tool transfer between 

chimpanzees in the Goualougo Triangle and in Gombe, Tanzania. 

 This dissertation makes several novel contributions. First, many studies testing for social 

learning mechanisms are implemented in captive or provisioned settings, in order to control the 

levels of relevant variables (e.g., Reader & Biro, 2010; Vale, Davis, Lambeth, Schapiro, & 

Whiten, 2017). My research directly examines high-fidelity social learning in wild apes using 

novel, observational research methods, allowing insights into the role of these mechanisms in 

natural ecological contexts. I also investigate, for the first time, the acquisition of tool skills by 

known-age immature chimpanzees of the Central subspecies, which is understudied relative to 

chimpanzees in East and West Africa (Morgan & Sanz, 2003). In addition, my findings broaden 

our knowledge of sex differences in chimpanzee tool use (Goodall, 1968; McGrew, 1979; 

Pandolfi, van Schaik, & Pusey, 2003; Lonsdorf, 2005; Boesch & Boesch, 1984b, Pruetz & 

Bertolani, 2007) by examining this phenomenon for the first time from a longitudinal perspective 

in the context of a complex, sequential tool task. By systematically comparing tool transfers 

between two wild chimpanzee populations, we gain novel insights into the proximal factors 

supporting prosocial object transfer in apes, which to date has been principally examined in 

captivity (reviewed in Cronin, 2012; Marshall-Pescini et al., 2016) or using differing methods in 

the wild (reviewed in Pruetz & Lindshield, 2012). More broadly, a key contribution of the 

present work is the application of standardized methods to directly compare chimpanzee tool 

behavior at Goualougo to that at Gombe, the longest-running field study of wild chimpanzees. 
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Finally, we used camera traps to conduct longitudinal research on the development of tool skills 

in wild apes. This represents an important methodological advance in our ability to gather 

detailed behavioral data with minimal impact on wild primate communities. In addition, use of 

camera traps can advance a range of research and conservation aims by documenting key life 

history milestones and helping to monitor population demography (Galvis, Link, & Di Fiore, 

2014).  

 This introduction chapter presents background information on topics that contextualize 

the subsequent chapters. First, I provide a brief summary of evidence for the evolution of 

complex tool use in the hominoid clade and discuss why high-fidelity social learning is 

implicated in the expansion of technology. I present an overview of animal tool behavior and 

describe key aspects of complexity, to establish important points of comparison between the tool 

behavior of early hominins and that of extant animal models. The subsequent sections review 

cognitive underpinnings of tool behavior and ecological hypotheses related to the evolution of 

tool use. Next I discuss the role of social learning and prosocial helping on tool behavior, before 

describing how an ontogenetic approach can provide unique insights into the role of social 

factors and sex differences on the development of tool use. I conclude by outlining my research 

methods and the structure of the subsequent chapters. Throughout, I discuss a range of variables 

relevant to tool use and include findings for other primate and non-primate taxa, in order to 

situate my research within a broader discussion of the ultimate and proximate influences on the 

evolution of tool behavior. 

1.1 The Evolution of Complex Tool use in Hominoids 

 Tool use is defined here as the manipulation of an object, not part of the actor’s 

anatomical equipment and not attached to a substrate, to change the position, action, or condition 
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of another object, either directly through the action of the tool on the object or of the object on 

the tool, or through action at a distance as in aimed throwing (Parker & Gibson, 1977). This 

definition has been selected over others (e.g., Shumaker, Walkup, & Beck, 2011; St Amant & 

Horton, 2008), because it permits broad comparison across taxa while also specifying that tools 

must be unattached objects. This is an important aspect of the definition for enabling 

comparisons with complex, human tool use, because unattached compared to attached objects 

can be more flexibly incorporated into complex sequences (Meulman, Sanz, Visalberghi, & van 

Schaik, 2012). 

Tool behavior is relatively rare, documented in less than 1% of all animal genera, but it is 

taxonomically widespread (Biro, Haslam, & Rutz, 2013). It has evolved multiple times, as 

evidenced by its appearance across distantly related animal lineages. A variety of factors can 

influence whether tool behaviors evolve, such as the motivation and anatomical ability to 

dexterously manipulate objects; the cognitive abilities that enable the invention, learning, and 

implementation of tool skills; ecological and environmental factors that might necessitate dietary 

expansion and make foraging tool behaviors energetically profitable; and social variables that 

could support the acquisition and transmission of innovations, including the life history and 

demographic parameters that influence how behaviors persist over generations and across the 

landscape (Fig. 1.1).  
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FIGURE 1.1. Factors influencing the evolution of tool use. Multiple factors influence the 

evolution of tool behavior, and these factors also interact with each other. In addition, tool users 

can affect their own environment, generating feedback loops whereby they construct their own 

niches.  

 

 The first possible direct evidence for stone tool use in the archaeological record dates to 

3.3 Mya, at a site called Lomekwi 3 in Kenya (Harmand et al., 2015). Indirect evidence dating to 

3.4 Mya has also been discovered at Dikika, Ethiopia, comprising cut marks on fossil mammal 

bones that are attributed to stone tool use (McPherron et al., 2010). Oldowan archaeological sites 

date back to at least 2.6-2.5 Mya (Semaw et al., 1997, 2003). These sites preserve several tool 

types associated with percussive technology, including cores, hammers, and flakes, and 

sometimes they also preserve faunal remains (Toth & Schick, 2018). Beginning as early as 1.76 

Mya, Acheulean tools begin to appear alongside Oldowan artefacts, characterized by more 

diverse and sophisticated tool forms including hand-axes (Lepre et al., 2011). 
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 While tool use was once considered the defining feature for the genus Homo (Oakley, 

1949; Leakey et al., 1964) numerous other hominins including Australopithecus and 

Paranthropus were contemporaneous with and could potentially have used early stone tools at 

different localities across the African continent (Fig. 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.2. Distribution of localities with evidence for early stone tool use. 1. Ain Boucherit, 

Ain Hanech and El- Kherba, Algeria. 2. Gona and Hadar, Ethiopia; 3. Melka Kunturé, Ethiopia; 

4. Dikika, Ethiopia; 5. Gadeb, Ethiopia; 6. Omo, Ethiopia; 7. West Turkana, Kenya; 8. Fejej, 

Ethiopia; 9. East Turkana (Koobi Fora), Kenya; 10. Lomekwi, Kenya; 11. Nyabusosi, Uganda; 

12. Chesowanja, Kenya; 13. Kanjera, Kenya; 14. Peninj, Tanzania; 15. Olduvai Gorge, Tanzania; 

16. Sterkfontein, Swartkrans and Kromdraai, South Africa. Hominin species that potentially 

overlap temporally with archaeological sites are listed, according to site(s) (e.g., 2 corresponds to 

Gona and Hadar). Approximate ages (Mya) are in parentheses; an asterisk indicates taxa where 

tools have been found in association or in nearby sediments of the same age (adapted from 

information in Toth & Schick, 2018, Tables 1 and 2 and Figure 1; McPherron et al., 2010; 

Harmand et al., 2015). 

 

1 

7 

2 
3 4 

5 
6 8 

9 
10 

12 
13 

14 
15 

16 

Lomekwi 3 

Oldowan sites 

Dikika 

2: 
 Australopithecus garhi (2.5) 
Paranthropus aethiopicus (2.7-2.5) 
*Homo sp. (2.1-1.0) 

10: 
Australopithecus afarensis (3.9 -2.9) 
Kenyanthropus platyops (3.5-3.2) 

7, 9, 15 : 
*Paranthropus boisei (2.4-1.4)  
*Homo rudolfensis (2.4-1.9)  
*Homo habilis (2.1-1.5) 
*Homo erectus/ergaster (1.9-<1.0) 

16: 
Australopithecus africanus (3.3-2.1)  
Australopithecus sediba (1.98) 
*Paranthropus robustus (2.0-1.2) 
*Homo habilis (2.1-1.5) 
*Homo erectus (1.9-<1.0) 

11 
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 In addition, the tool-using behavior of extant apes suggests that the capacity for complex 

tool use did not arise de novo in the human lineage, and likely emerged earlier, in the common 

ancestor of humans and the other great apes (Panger, Brooks, Richmond, & Wood, 2002). At 

least one form of tool behavior occurs in all wild chimpanzee populations studied to date (Fowler 

& Sommer, 2007; McGrew, 1992; Sanz & Morgan, 2007). Some populations of wild orangutans 

also use a range of tool types (Meulman & van Schaik, 2013). In captivity, tool use is observed 

in all great ape species, even bonobos (Boose, White, & Meinelt, 2013; Gruber, Clay, & 

Zuberbühler, 2010) and gorillas (Lonsdorf, Ross, Linick, Milstein, & Melber, 2009), both of 

which do not routinely use tools in the wild.  

 Rather than comprising the first tools used by early hominins, stone tools were likely part 

of a tool repertoire that included perishable tools, evidence for which has not preserved in the 

archaeological record (Panger et al., 2002; Schick & Toth, 2000). The tool repertoire of Central 

chimpanzees includes the use of perishable tool sets to gather invertebrate resources (Bermejo & 

Illera, 1999; Boesch, Head, & Robbins, 2009; Estienne, Stephens, & Boesch, 2017; Fay & 

Carroll, 1994; Sanz & Morgan, 2007, 2009, 2010; Sanz, Morgan, & Gulick, 2004). A tool set is 

defined as the sequential use of two or more different tools (Brewer & McGrew, 1990). This 

rich, perishable tool repertoire may thus be of particular importance for reconstructing the skills 

of our last common ancestor with other apes, especially given that demographic declines are 

hypothesized to have led to tool trait loss in the other chimpanzee subspecies and in bonobos 

(Haslam, 2014).   

 The emergence of complex tool skills and associated, enhanced cognitive abilities in the 

hominoid clade are hypothesized to be the result of variability selection. According to the “fruit 

habitat hypothesis” (Potts, 2004), fluctuating climates and changing habitats selected for 
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adaptability to environmental change, underpinned by flexible cognitive skills that enabled apes 

to find and specialize on ripe fruits despite spatial and temporal variability in the abundance of 

these resources. These cognitive skills may also have supported the ability to innovate means 

(i.e., tool use) of accessing fallback foods (Potts, 2004). The “Technical Intelligence” Hypothesis 

(Byrne, 1997) similarly highlights the cognitive skills of great apes, but with particular reference 

to their exceptional aptitude for skilled actions in foraging contexts. These include tool use as 

well as other behaviors, such as the sequential processing techniques gorillas use to process 

physically defended foods (Byrne & Byrne, 1993).  

 Specific social learning mechanisms are posited to have supported the elaboration of 

increasingly complex tool behaviors over time. In particular, high-fidelity social learning 

mechanisms, namely teaching and imitation, are hypothesized to have generated cumulative 

cultural capacities in the human lineage (Fogarty, Strimling, & Laland, 2011; Galef, 1992; 

Tennie, Call, & Tomasello, 2009). “High-fidelity” refers to the fact that these mechanisms 

support close behavioral matching between a model (e.g., a teacher) and a learner. This is 

important for ensuring faithful reproduction of the steps involved in complex tasks when the 

relationship between each step is opaque to a novice (Laland, 2004). High-fidelity social learning 

is expected to support the persistent transmission of behaviors over time as well as the 

progressive addition of new innovations, leading to the generation and inheritance of tools and 

behaviors more complex than any one individual could invent in a lifetime (Tomasello, 1999). In 

the human lineage, selection for social learning abilities in the context of an increasingly rich 

cultural matrix of learned behaviors likely contributed to the acceleration of selective pressure 

for these learning abilities. In turn, this could have augmented associated capacities to innovate 

new behaviors, further increasing the selective pressure for the ability to acquire this increasingly 
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diverse portfolio of cultural skills – resulting in a remarkably enhanced capacity for, and reliance 

on culture (Boyd & Richerson, 1985; Fuentes, 2017; Herrmann, Call, Hernandez-Lloreda, Hare, 

& Tomasello, 2007; Laland, 2018; Richerson, Boyd, & Henrich, 2010).  

 It has been further suggested that the origins of complex tool behavior in hominoids 

could be related to sex differences in foraging strategies. While there is immense variation with 

respect to division of labor in modern humans, among foraging societies (defined as those with 

less than 10% dependence on animal husbandry or agriculture and engaging in minimal trade) 

men tend to more often target resources that are energy dense and riskier to acquire (e.g., large 

fauna), while women more often focus on gathering reliable items such as vegetal foods, insects, 

and small fauna (Marlowe, 2007). It has been suggested that sex differences related to complex 

food processing and tool use were present in the common ancestor of humans and chimpanzees 

(Hunt, 2006; McGrew, 1979). Dietary quality is known to limit reproductive success in female 

apes (Thompson & Wrangham, 2008). Female compared to male chimpanzees use tools more 

frequently to acquire termites (Goodall, 1968; McGrew, 1979; Pandolfi et al., 2003), crack nuts 

(Boesch & Boesch, 1984b) and disable vertebrate prey cached in tree holes (Pruetz & Bertolani, 

2007). A female bias for tool use has also been documented for captive bonobos (Boose et al., 

2013; Gruber et al., 2010; but see Herrmann, Hare, Call, & Tomasello, 2010). One possibility is 

that tool-assisted foraging offers safer, more consistent access to high-quality resources that 

males without dependent offspring might choose to access by hunting mobile vertebrate prey 

such as monkeys (McGrew, 1979). For example, depending on availability of other resources, 

gathering termites may be a reliable and profitable foraging strategy particularly for females 

because of termites’ nutritional value and high collective biomass (Deblauwe & Janssens, 2008).   
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1.2  Complex Tool Behavior in Animals 

 When taking a comparative approach to understanding the evolution of technology in 

hominins, complex tool behaviors are of greatest interest. A range of methods have been used by 

researchers to assess and compare the complexity of tool behaviors (e.g., Boesch & Boesch, 

1990; Hunt, Corballis, & Gray, 2006; Matsuzawa, 1996). Two essential criteria are flexibility 

and accumulation (Meulman et al., 2012). In addition, aspects of tool manufacture, including 

sophistication of tool design and raw material selectivity, also increase task complexity. 

Flexibility and Accumulation 

 Flexibility involves the ability to deploy tools across multiple domains (e.g., foraging, 

social interactions, self-care), to attribute multiple functions to one tool, and to combine tools 

with each other to achieve goals (Call, 2013). This ability to apply knowledge from one setting to 

a different, analogous setting has been suggested to be an indicator of causal reasoning ability 

(Boesch, 2013; Tomasello & Call, 1997). Flexible tool users can also assess their progress and 

make adjustments during the tool-using sequence by adding, repeating, or omitting actions 

(Byrne, Sanz, & Morgan, 2013). Accumulation refers to the addition of an action to an existing 

one to create a new combination or sequence. Paradigmatic examples include the concurrent or 

sequential use of multiple different tools; the use of one tool to make another; and the addition of 

a step to an existing manufacture process, producing a more complex or efficient tool (Pradhan et 

al., 2012). Oldowan assemblages exhibit both flexibility and accumulation, as the hominins 

responsible produced multiple tool types and combined tools, including using one tool to make 

another (Schick & Toth, 2006; Toth & Schick, 2018). 

 In some taxa, tool behaviors are best understood as relatively inflexible behavioral 

specializations. For example, among invertebrates, tool use has been documented in ants, wasps, 

spiders, sea urchins, snails, crustaceans, and octopi (Shumaker et al., 2011). These tool behaviors 
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typically involve a single type of action, and may have evolved from behavioral patterns already 

in the species’ repertoires. Archerfish (Toxotes), for example, shoot streams of water from their 

mouths in order to knock insects down from branches hanging over the water’s surface. One 

hypothesis is that this evolved from the tendency of this fish to leap out of the water, which has 

the side effect of throwing water onto an insect and knocking it down to the water (Hunt, Gray, 

& Taylor, 2013).  

 More flexible tool behaviors are observed among some species of birds and mammals, 

namely the Passeriformes and Primate orders (Smith & Bentley-Condit, 2010). New Caledonian 

crows (Corvus moneduloides), which range on the island of New Caledonia in the South Pacific, 

have the most impressive tool repertoire among wild birds, and populations throughout their 

range use stick and leaf tools to extract invertebrates such as wood-boring grubs (Hunt & Gray, 

2002; Rutz & St. Clair, 2012). In addition, there is variation between populations in the tool 

variants that are included in their toolkits ( Hunt & Gray, 2003; Hunt, 1996; Hunt & Gray, 2002). 

Woodpecker finches (Camarhynchus pallidus) living on the Galápagos Islands are also habitual 

tool users; they use various materials such as cactus spines, twigs, and leaf petioles to extract 

arthropods from tree holes (Tebbich, Taborsky, Fessl, & Dvorak, 2002). 

Complex Tool Use in Primates 

 Habitual, flexible tool skills likely evolved at least three times in primates, in the lineages 

of capuchins, macaques, and great apes. While tool use is rare among platyrrhines generally, a 

few populations of bearded (Sapajus libidinosus) and yellow-breasted (S. xanthosternos) 

capuchins are exceptions. These monkeys, which inhabit seasonal caatinga and cerrado habitats 

in northeastern Brazil, use tools principally for foraging but also for social and investigative 

functions. Foraging tool behaviors typically involve using stone hammers and anvils to crack 
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encased foods, primarily nuts as well as seeds and hard-shelled fruits (Ottoni & Izar, 2008; 

Visalberghi & Fragaszy, 2013). At Serra de Capivara, capuchins also use tools to dig for 

underground foods (Mannu & Ottoni, 2009; Moura & Lee, 2004), extract honey, and flush 

vertebrate prey (Falótico & Ottoni, 2014). In this population they have further been observed 

using one tool for two different functions and occasionally using two different types of tools in 

sequence (Falótico & Ottoni, 2014).  

 Among old world monkeys, there have been a few observations of tool use in baboons 

(Papio) as well as among Barbary macaques (Macaca sylvanus) and lion-tailed macaques (M. 

silenus) (Shumaker et al., 2011). The only habitual tool-using catarrhine monkeys are Burmese 

long-tailed macaques (M. fascicularis aurea) inhabiting coastal regions of Thailand 

(Malaivijitnond et al., 2007). They use stone hammers to access 47 different species of marine 

prey. Their tool actions cluster into three groups: “axe hammering” to break open oysters that are 

attached to rocks; “pound hammering” to open unattached prey such as crustaceans, sea 

almonds, and mollusks; and “edge hammering,” in which the tool user uses the narrow edge of a 

stone tool to break open either an attached or an unattached resource (Tan, Tan, Vyas, 

Malaivijitnond, & Gumert, 2015). 

 Among the great apes, gorillas use tools the least; they have been observed using tools in 

the wild only a few times. For example, a female western lowland gorilla (Gorilla gorilla) used a 

stick to probe the depth of a waterway before she crossed it (Breuer, Ndoundou-Hockemba, & 

Fishlock, 2005), and a juvenile female mountain gorilla (G. beringei beringei) used a piece of 

wood to dip for ants (Kinani & Zimmerman, 2015). Thirteen types of tool use have been 

observed among bonobos, but it is not routine and does not occur in a foraging context. Instead, 

when bonobos do use tools, it is for social and self-care purposes, such as displaying, removing 
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debris from teeth, or swatting away insects (Hohmann & Fruth, 2003). Despite the rarity of their 

tool use in the wild, both gorillas and bonobos are capable tool users in captivity. This 

phenomenon has been deemed the “captivity bias”; it refers to the fact that many more animal 

species use tools in captive compared to wild settings. Haslam (2013) posits that this could be 

related to having more freedom to discover tool behaviors, greater influence from humans, 

increased terrestriality, and increased opportunity to learn from conspecifics. 

 Orangutans living on the islands of Sumatra and Borneo use a variety of tools. Almost 

half of the 38 different tool variants documented for orangutans are directed toward physical 

comfort, for example to wipe fluids from the body (Meulman & van Schaik, 2013). Orangutans 

in all populations, including Bornean orangutans (Pongo pygmaeus), use branches or leaves to 

shield themselves from strong sun or rain. Only Sumatran orangutans (P. abelii) engage in 

regular foraging tool use, which could be related to increased reliance of extractive foraging, 

particularly for insects, in this subspecies (Meulman & van Schaik, 2013). At Suaq Balimbing, 

Sumatra, orangutans use sticks to remove seeds from Neesia fruits and also to extract insects and 

insect products from tree holes (Fox, Sitompul, & van Schaik, 1999; van Schaik, Fox, & 

Sitompul, 1996).  

 Chimpanzees exhibit the most diverse tool repertoire outside of humans, including a 

minimum of 43 different tool variants (Sanz & Morgan, 2007; Whiten et al., 2001). They use 22 

different “modes” of tool use, such as hitting, probing, and absorbing, spanning a variety of 

foraging, self-care, and social contexts (Shumaker et al., 2011). In contrast to orangutans, 

chimpanzees focus much of their technological skill on foraging. Using leaves to soak up water 

is a universal chimpanzee behavior, and many populations also use probing technology to gather 

invertebrate resources such as ants, termites, and honey (McGrew, 1992; Sanz & Morgan, 2007). 
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The regional foraging traditions documented among chimpanzees include some of the most 

complex among nonhumans. In Taï Forest, Côte d'Ivoire, and in other areas of West Africa, 

chimpanzees (P. t. verus) use a hammer and anvil concurrently to crack nuts (Boesch, Marchesi, 

Marchesi, Fruth, & Joulian, 1994). At Bossou, Guinea, researchers have even observed metatool 

use, in which one tool is used on another; chimpanzees were observed to place a small stone as a 

wedge under an anvil in order to keep the anvil flat and stable during nut cracking (Matsuzawa, 

1994). Researchers continue to discover new tool variants as they document the behavior of 

previously unstudied chimpanzee populations (e.g., Boesch et al., 2017). 

 These comparisons reveal a spectrum of complex tool use across birds and primates. The 

tool use of birds is principally focused on extractive foraging, while primates are distinguished 

by the diversity of contexts across which they use tools. In addition, some primate populations 

routinely use multiple tool types in a single task. Captive studies have confirmed that all great 

apes are capable tool users. Wild chimpanzees are exceptional in the number and complexity of 

tool variants they exhibit and are also unique in that every studied population both manufactures 

and uses tools in natural settings.  

Complex Tool Manufacture  

 Tool manufacture may require additional skills beyond those needed for tool use, and the 

complexity of tool manufacture varies considerably across species and populations. Two 

important aspects of complexity with respect to tool manufacture are tool design sophistication 

and selectivity for raw materials. Tool manufacture is defined as actively modifying an object so 

that it serves, or serves more effectively, as a tool (Shumaker et al., 2011). For invertebrates, tool 

manufacture typically only involves detachment, such as crabs detaching anemones or sponges 

to protect their claws while foraging, or when ants detach a soil particle to drop onto a bee 
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(Shumaker et al., 2011). As with tool use, tool manufacture is more flexible and diverse in birds 

and primates. New Caledonian crows, in addition to detaching tools, sometimes modify these 

tools to make them more suitable for use. These crows manufacture two principal forms of 

foraging tools, stick tools and pandanus leaf tools, and both types can vary in terms of the steps 

involved in manufacture. Crows sometimes shape twig tools into hooks, and they are the only 

species besides humans that intentionally manufactures hook tools (Hunt, 1996; Hunt & Gray, 

2004). Pandanus leaf tools take one of three forms: straight and narrow, straight and wide, or 

stepped. Stepped tools are manufactured when the bird makes a series of rips such that the tool 

becomes tapered down one side (Hunt, 2014; Hunt & Gray, 2003; Hunt, 1996). These three 

forms are not forced by the properties of these tools, suggesting that the crows could be 

following a mental template when manufacturing them (Hunt, 2000).  

 Chimpanzees have an exceptional propensity for manufacturing a diverse array of tool 

types, and they exhibit many different modes of tool manufacture, such as removal, addition, and 

reshaping (Shumaker et al., 2011). The ability to materially transform raw material is a strong 

indicator of flexibility. It enables tool users to tailor their actions to the demands of particular 

tasks and may promote more efficient tool use.  In Fongoli, Senegal, chimpanzees spear 

bushbabies with tools that they produce by detaching branches, removing smaller side branches, 

stripping bark, and then using their teeth to sharpen the tip of the tool (Pruetz & Bertolani, 2007). 

In the Goualougo Triangle, chimpanzees manufacture brush-tips onto the ends of termite-fishing 

probes, an intentional modification that improves the efficiency of these tools at gathering insects 

(Sanz, Call, & Morgan, 2009). In addition, these chimpanzees are selective for the particular 

plant materials they use to manufacture tools (Sanz & Morgan, 2007). Both capuchins and 

chimpanzees show sensitivity to tool properties when selecting tools for nut-cracking. At 
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Fazenda Boa Vista, Brazil, capuchins select optimal anvil pits for placing nuts, and they select 

hammers on the basis of stone hardness and mass, the distance between the hammer and the nut-

cracking locality, and nut resistance (Visalberghi, Sirianni, Fragaszy, & Boesch, 2015). 

Chimpanzees also select hammers of optimal size and weight (Carvalho, Cunha, Sousa, & 

Matsuzawa, 2008) and show conditional assessment of such variables when selecting nut-

cracking hammers (Sirianni, Mundry, & Boesch, 2015). Compared to capuchins, chimpanzees 

also transport their tools over longer distances, and they occasionally intentionally modify 

wooden hammers. These interspecific differences could reflect a combination of factors such as 

body size relative to tool size, as well as cognitive differences (Visalberghi et al., 2015). 

 There is immense variation over time and between localities in complexity of hominin 

tool manufacture, and as both dating and analysis techniques have evolved, different 

categorization approaches have been proposed (de la Torre & Mora, 2005; Isaac, 1976; Leakey, 

1971, 1975). While in general there is agreement that the complexity and pace of technological 

change increase over time, deciphering the contributions of particular variables to geographic 

and temporal variation among assemblages is challenging. For example, variation in the 

environment (e.g., availability of particular materials), the tool makers themselves (e.g., 

biomechanical constraints, cognitive ability, and cultural norms), as well as taphonomic 

processes can all contribute to the immense variation documented (Toth & Schick, 2018). Debate 

also persists about whether, and at what time, the complexity of tool manufacture by hominin 

tool makers required abilities and means of cultural transmission that go beyond those of extant 

apes (Davidson, 2016; Tennie, Braun, Premo, & McPherron, 2016; Wynn, Hernandez-Aguilar, 

Marchant, & Mcgrew, 2011; Wynn & McGrew, 1989).  

 To date, there is no evidence for material selectivity by Lomekwian tool makers at 3.3 
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Mya (Harmand et al., 2015). In contrast, at least some of the some of the earliest Oldowan tool-

makers were likely selective for raw lithic materials, as their prevalence in archaeological 

assemblages exceeds their abundance on the landscape relative to other possible materials 

(Harmand, 2009; Stout, Quade, Semaw, Rogers, & Levin, 2005). There are also technique 

differences between Lomekwian and Oldowan tools. Lomekwian artefact features suggest that 

flakes were produced using passive hammer and bipolar techniques, in contrast to the direct 

freehand percussion of later, Oldowan assemblages; these simpler techniques require less control 

and understanding of fracture mechanics (Harmand et al., 2015). Within the Oldowan tradition, 

there is also evidence of temporal change with respect to complexity of manufacture techniques 

and final tool forms. For example, in Oldowan assemblages at Peninj, Tanzania, there is an 

increasing proportion over time of heavily flaked, bifacial, discoidal cores, which provide 

evidence that cores were carefully prepared to enable efficient removal of numerous, large, sharp 

flakes (de la Torre & Mora, 2005; de la Torre, Mora, Domínguez-Rodrigo, de Luque, & Alcalá, 

2003). These bifacial discoids are likely precursors to later, large bifacial Acheulean tools (Toth 

& Schick, 2018). Another important marker of manufacture complexity is the presence of 

retouched flakes, which are flakes that have been secondarily modified after being detached. 

While there is some evidence for retouch at the earliest sites (i.e., Gona, Semaw et al., 2003), 

unambiguous cases of retouching are more easily identified in the Acheulean (summarized in 

Zaidner, 2013). The large cutting tools of the Acheulean, typically referred to as hand-axes, 

knives, and cleavers, show a number of other characteristics that differ markedly from earlier 

technologies, the most salient of which is shaping. While debates persist about the form of these 

tools (e.g., whether they were intentionally crafted to be symmetrical), they provide strong 

evidence that these tool makers possessed a mental template of tool form (McPherron, 2013).  
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1.3  Cognitive Underpinnings of Tool Use 

 Assessing the cognitive correlates of tool behaviors in living animals can provide insights 

for cognitive archaeologists and others seeking to better reconstruct the problem-solving abilities 

of past hominin tool makers (Toth & Schick, 2018). A key component of much of this research 

involves assessing the extent to which tool behaviors are based on the assimilation of 

sensorimotor, perceptual knowledge or result from the development of specific cognitive 

abilities. While not mutually exclusive, these perspectives highlight differing aspects of how the 

brain and the nervous system are involved in carrying out skilled tool actions. The perception-

action model (Lockman, 2000), or manipulation-based approach, posits that tool use is based in 

exploratory motor behaviors exhibited in early life, through which sensorimotor skills become 

refined over time. Supporting evidence for this approach has been documented for both humans 

and nonhuman species (Fragaszy & Mangalam, 2018; see Chapter 2). Another perspective 

focuses more on the role of particular aspects of physical cognition (Call, 2013; Seed & Byrne, 

2010; Visalberghi, Sabbatini, Taylor, & Hunt, 2017). This includes a range of abilities, two of 

the most important of which are causal reasoning and planning.  

Causal Reasoning 

 Causal reasoning refers to the ability to understand the dynamic relationship between 

objects (Tomasello & Call, 1997). Here, causal reasoning is discussed as it applies to mechanical 

knowledge, an understanding of the physical processes by which a tool effects its outcome (Seed 

& Byrne, 2010:1034). This involves understanding the potential of tool properties to create 

effects, and how to create tools and apply forces with those tools to achieve the intended effects 

(Boesch & Boesch-Achermann, 2000). The manufacture sequences involved in hominin tool 

production suggest that flaking even relatively simple stone tools requires a flexible grasp of 

object properties and of the dynamic relationship between percussor and core tools. Tool makers 
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must understand how particular materials will fracture and be able to perceive how individual 

flake removals will affect the overall shape of the core and the ability to remove subsequent 

flakes (Lewis & Harmand, 2016). 

 Studies of modern humans experiencing brain impairments highlight the role of 

mechanical knowledge in carrying out tool use. For example, ideational apraxia is a type of 

impairment in which individuals have difficulty conceptualizing and planning sequences of 

actions involving objects. These individuals can engage in a motor action (e.g., using a pencil to 

write), but they might select the wrong tool (e.g., a pair of scissors) if asked to initiate this task. 

This finding supports the interpretation that sensorimotor competence is necessary but not 

sufficient to complete tool tasks, and indicates a role for causal reasoning in skillful tool 

selection and tool use (Osiurak & Badets, 2016). Neuroimaging studies also support this view. In 

one experiment, macaques were trained to grip an object with pliers, which activated particular 

neurons in the ventral premotor cortex. The macaques were then trained to use “reverse pliers,” 

in which opening the hand, rather than closing it, caused the pliers to grip the object. The same 

neurons fired in this version of the task, indicating that neurologically, the macaques encoded the 

end goal (grip the object) of the tool task rather than any specific motor action (i.e., close versus 

open the hand) (Umilta et al., 2008).  

 A principal approach for investigating causal reasoning in captive settings has been the 

“trap-tube” paradigm, which requires animals to use a tool to extract a reward from an apparatus 

while avoiding an obstacle, the trap (Visalberghi & Limongelli, 1994). In one phase of the 

experiment, animals are trained to operate the apparatus, and in the test phase, aspects of the 

apparatus are changed to see whether subjects can transfer knowledge to the new version of the 

task. For example, researchers alter arbitrary features like color, while the underlying causal 
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connections among component parts are maintained, to see if the animals are relying on simpler 

associative cues or using causal reasoning to problem solve. New Caledonian crows show mixed 

performance on these tests. In some cases, they can transfer knowledge from one version of the 

task to another, while in others, they do not, suggesting that there may be limitations to the extent 

to which they can apply abstract, causal principles (Taylor, Hunt, Medina, & Gray, 2009). 

Among tool-using primates, great apes generally show the most robust performance on trap 

tasks, though not all individuals show a consistent ability to solve them (Girndt, Meier, & Call, 

2008; Martin-Ordas, Jaek, & Call, 2012). Some capuchins can also solve these tasks (e.g., Fujita 

et al., 2003). The inconsistent performance of both great apes and monkeys indicates that 

mechanical reasoning alone is not sufficient and suggests that compared to humans, other 

primates experience more difficulty managing multiple, dynamic spatial relations among objects 

(Fragaszy & Mangalam, 2018). 

 Studies of tool manufacture also provide insights into the cognitive underpinnings of tool 

behavior by revealing the extent to which animals are sensitive to how tools cause effects upon 

objects or substrates. All great ape species can successfully and spontaneously differentiate 

between nonfunctional and functional tools in captive experiments (Herrmann, Wobber, & Call, 

2008). New Caledonian crows attend to the functionality of hook tools (St. Clair & Rutz, 2013), 

but are just as likely, when using pandanus leaf tools, to select tools with barbs facing 

downwards (nonfunctional) as upwards (functional) (Holzhaider, Hunt, Campbell, & Gray, 

2008). Thus, even within species, there may be variation between tasks with respect to whether 

individuals are aware of or sensitive to the functional aspects of tools.  

Planning  

 Planning is an important aspect of tool use because it can serve as an energy-saving 



21 

 

strategy. It can enable more efficient procurement of raw materials, and maximize how raw 

materials are used, for example how many flakes can be removed from a stone cobble (Delagnes 

& Roche, 2005). The ability to plan tool behaviors has been inferred on the basis of 

manufacturing a tool in advance and transporting it to a tool site, for both wild chimpanzees 

(Boesch & Boesch, 1984a; Goodall, 1964; Sanz, Morgan, & Gulick, 2004) and capuchins 

(Visalberghi et al., 2015). These behaviors suggest that the tool users are able to conceive of a 

task and mentally represent the appropriate tool form when that task is not immediately in front 

of them. Analysis of the sequential structure of tool-using behaviors is also a fruitful approach 

for examining planning. In the Goualougo Triangle, chimpanzees repeat steps as necessary and 

omit unnecessary steps when using tools to gather subterranean termites, which is a strong 

indicator of hierarchical, goal-directed behavior (Byrne et al., 2013).  

 There is also compelling evidence for convergent evolution of planning abilities in 

corvids. Ravens (Corvus corvax), for example, can select and save a tool that they can use in the 

future to access a baited apparatus (Kabadayi & Osvath, 2017). New Caledonian crows can 

complete behavioral sequences to access a tool for a task that is out of view, while ignoring 

distractor items, suggesting that they can rely on mental representations of tool behaviors 

(Gruber et al., 2019).  

 Evidence for raw material sourcing and tool transport are of particular interest for 

examining whether hominin tool users could plan ahead. On some occasions, Oldowan tool 

makers may have transported stone from considerable distances. At Kanjera South, Kenya, tools 

were transported (either in successive bouts, or all at once) over 10 km (Braun et al., 2008). 

Application of chaîne opératoire techniques involving refitting of stone artefacts has also 

revealed missing pieces in core reduction sequences, which suggests that cores were tested at the 
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site of acquisition before their planned transport to another location (Delagnes & Roche, 2005). 

The evidence for planning among Acheulean tool makers is even more pronounced. For 

example, raw materials were routinely transported longer distances (de la Torre & Mora, 2005). 

In addition, the consistent imposition of the hand-axe shape requires numerous sequential phases 

of manufacture, and management of multiple geometric and material variables (Gowlett, 2006). 

These tool forms thus suggest hierarchically planned sequences of significant time depth (de la 

Torre, 2016). 

1.4 Ecological Influences on Tool Use 

 Several ecologically-based hypotheses have been proposed to help explain the evolution 

of tool behavior in particular taxa and to account for patterns of inter-and intraspecific variation, 

focusing on the likely origins of tool behaviors as they relate to foraging. Fox et al. (1999) 

proposed three, non-mutually exclusive hypotheses, the first of which is the “Necessity 

Hypothesis.” This hypothesis posits that species or populations occupying more resource-scare 

environments will be more likely to innovate tool behaviors, and also that tool users will increase 

reliance on tool-assisted foraging when preferred resources are less available. On Santa Cruz 

Island of the Galápagos Archipelago, woodpecker finches living in a more arid, highly seasonal 

region used tools more than did finches living in zones where food was more abundant and 

accessible without tools (Tebbich et al., 2002). Tool use has also been proposed to be a principal 

strategy for accessing fallback foods (namely oil palm) for chimpanzees in Bossou, Guinea, 

during times of fruit scarcity (Yamakoshi, 1998). In contrast, among orangutans, ripe fruit 

availability does not correlate with use of tools to extract resources from tree holes (Koops, 

Visalberghi, & van Schaik, 2014), and in the Goualougo Triangle, termite gathering is not related 

to abundance of preferred resources (Sanz & Morgan, 2013a). Thus, scarcity in itself may not be 
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sufficient to favor innovation and retention of tool traditions or to prompt increased rates of tool 

use in tool-using populations. 

 According to the “Opportunity Hypothesis,” abundance of target resources and tool raw 

materials prompts tool use by increasing rates of encounters with these items and thus the 

likelihood of tool use. For example, at Seringbara, Guinea, chimpanzees routinely use tools to 

gather army ants, which are abundant in their range, but rarely use tools to gather termites or 

nuts, which are less abundant (Koops, McGrew, & Matsuzawa, 2013). It also appears that for 

capuchins at Fazenda Boa Vista, monthly rates of nut cracking are correlated with availability of 

the nut species most often exploited (Spagnoletti, Visalberghi, Ottoni, Izar, & Fragaszy, 2011). 

 The “Relative Profitability” Hypothesis considers necessity and opportunity in tandem, 

and suggests that tool behaviors are a form of optimal foraging, emerging when they are more 

energetically profitable relative to other, non-tool assisted foraging methods (Rutz & St. Clair, 

2012). For New Caledonian crows, just a few of the beetle larvae they routinely acquire with 

tools can nearly fulfill the daily energy needs for an adult crow. In addition, there is no direct 

competition for these embedded resources, and the crows face low predation risk; thus, tool use 

is likely a safe and profitable foraging method relative to alternative strategies (Rutz & St. Clair, 

2012). The same is likely true for the subset of the dolphin population (Tursiops sp.) in Shark 

Bay, Australia, that carries marine sponges over their rostrum when foraging. This behavior 

improves the dolphins’ ability to detect or disturb fish burrowed in deep-water channels. As 

these fish are inaccessible without this tactic, spongers face no competition from non-spongers 

(Patterson & Mann, 2011). In the Goualougo Triangle, chimpanzees use tool sets that enable 

year-round access to termites, suggesting that this may be a profitable foraging strategy for 

maintaining access to a high-quality diet (Sanz & Morgan, 2013a). However, the Relative 
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Profitability Hypothesis has not yet been directly tested in primates.  

 Ecological constraints can also influence specific tool techniques used. In chimpanzees, 

for example, feeding techniques and tool dimensions when preying on insects in part reflect 

insect behavior and nest structure (Sanz, Deblauwe, Tagg, & Morgan, 2014; Schöning, Humle, 

Möbius, & McGrew, 2008). There are other cases where the forms of the tool behavior are not 

forced by detectable ecological features. There is a long history of examining the intraspecific 

variation of tool behavior in primates, particularly chimpanzees, via this “method of exclusion.” 

This involves inferring that behaviors are culturally learned if ecological and genetic 

explanations for the variation can be excluded (e.g., Boesch et al., 1994; Goodall, 1973; 

McGrew, Tutin, & Baldwin, 1979; Whiten et al., 2001; Whiten et al., 1999). This method has 

also been applied to cetaceans (Rendell & Whitehead, 2001), capuchins (Perry et al., 2003) 

orangutans (van Schaik, 2003), and bonobos (Hohmann & Fruth, 2003). For example, 

neighboring communities of Western chimpanzees in the Taï Forest select different types of 

hammers for nut cracking, and these do not track ecological explanations such as abundance of 

different materials (Luncz, Mundry, & Boesch, 2012). As chimpanzee females immigrate to new 

groups at adolescence, the maintenance of between-group variation suggests that these females 

may be conforming to the techniques of the groups they enter. Alternately, female immigration 

between communities could be a pathway for the cultural diffusion of behavioral variants across 

broader regional scales over time (Lycett, Collard, & McGrew, 2010; Whiten, Schick, & Toth, 

2009). For example, a female immigrant to the Kasekela community from the Mitumba 

community of Gombe chimpanzees was observed to be proficient at using tools to fish for 

Camponotus ants. In the years following her arrival, this behavior spread, and it is now common 

among Kasekela chimpanzees, suggesting this immigrant female introduced the behavior 
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(O’Malley, Wallauer, Murray, & Goodall, 2012). 

 The method of exclusion does not identify the actual mechanisms of social transmission. 

Further, if foraging tool behaviors are adaptive, it is expected that to some degree they will 

reflect local ecological conditions (Byrne, 2007). Thus, a role for ecological and environmental 

factors is not mutually exclusive with, and does not mitigate the potential importance of social 

learning in generating intraspecific variation in behavior (Koops et al., 2014). 

1.5 Social Learning of Tool Use 

 Broadly defined, social learning is when the behavior of an observer, or learner, is 

influenced by observation of or interaction with a skilled individual or the results of an 

individual’s behavior (Galef, 1988; Heyes, 1994). An opportunity for social learning can occur 

when the behavior of two or more individuals is coordinated in space or in both space and time 

(Coussi-Korbel & Fragaszy, 1995). One approach for quantifying social learning opportunity has 

been to examine whether there is a relationship between gregariousness and diversity of 

behavioral repertoire. Recent studies suggest, however, that a larger average party size does not, 

in itself, predict the size of a population’s tool repeortire (Meulman & van Schaik, 2013).  In the 

Goualougo Triangle, chimpanzees have a relatively large tool repertoire, but the average party 

size during tool use is relatively small (Sanz & Morgan, 2013b). This highlights the necessity of 

directly quantifying the types of social learning that occur and specific ways in which social 

interactions provide opportunity for learning. 

 Learning mechanisms are sometimes categorized as either “low-fidelity” or “high-

fidelity.” Examples of low-fidelity mechanisms include stimulus or local enhancement, whereby 

a learner acquires information independently after being drawn to the object (stimulus) or 

locality of a model’s behavior (Thorpe, 1956). As described in Section 1.1, high-fidelity 
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mechanisms including imitation or teaching are expected to ensure that a learner’s behavior 

closely reproduces that of a model (Laland, 2004; Whiten & Ham, 1992). Emulation is 

considered somewhat intermediate, as it involves attending to the end goal of a behavior without 

precisely copying the actions to achieve it (Wood, 1989). 

 One leading hypothesis is that high-fidelity mechanisms underpin the transmission of 

cultural behaviors in humans, whereas low-fidelity mechanisms in concert with individual trial 

and error suffice to generate behavioral traditions in nonhumans (Tennie et al., 2009). 

Alternately, the deployment of particular learning mechanisms may depend on contextual 

factors. For example, social identification with a model may determine whether both humans and 

other apes show imitation and conformity (Whiten, Horner, & de Waal, 2005). In addition, task 

complexity can influence copying fidelity for apes and humans (Acerbi, Tennie, & Nunn, 2011; 

Chappell, Cutting, Apperly, & Beck, 2013; Hopper, Flynn, Wood, & Whiten, 2010). Tennie et 

al. (2016) suggest that Oldowan tool behaviors are not sufficiently complex to require high-

fidelity learning such as imitation, and that, in contrast, these behaviors are well within the realm 

of what individuals could invent on their own. However, stone tool raw material procurement, 

manufacture and use involve multiple phases, and the sequence of even simple flake production 

itself is multi-step and removed from the eventual goal of using a flake to butcher meat. Thus, 

others have argued it is sufficiently “opaque” to have necessitated imitative learning (Caruana, 

D’Errico, & Backwell, 2013).  

 Low-fidelity social learning mechanisms also play an important role in the acquisition of 

tool skills for a wide range of species, including humans. Tool sites and artefacts comprise a 

constructed niche that is rich with information that may persist for weeks, months or longer 

(Fragaszy et al., 2013). Cross culturally, human children routinely interact with the tools made 
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by older individuals (Lew-Levy, Reckin, Lavi, Cristóbal-Azkarate, & Ellis-Davies, 2017). From 

an evolutionary perspective, increasing terrestriality during the Pliocene (Foley & Gamble, 2009) 

is hypothesized to have increased technological complexity among hominins, one reason for 

which would have been the enhanced opportunity to encounter others’ discarded tools (Meulman 

et al., 2012). In support of this hypothesis, tool use in monkeys occurs mostly in populations that 

are notably terrestrial; chimpanzees have more complex tool variants than the more arboreal 

orangutans; and chimpanzee tool variants are typically more complex in terrestrial versus 

arboreal settings (Meulman et al., 2012; Meulman & van Schaik, 2013). 

 Teaching occurs when a model actively facilitates another’s learning. Teaching is 

considered foundational to human culture (Boyd & Richerson, 1985; Fogarty et al., 2011) but the 

role of teaching in the transfer of tool skills is debated (Garfield, Garfield, & Hewlett, 2016; 

Kline, 2015). Experimental approaches suggest that teaching is advantageous for information 

transfer, especially when accompanied by language (Morgan et al., 2015). Some perspectives 

emphasize aspects of teaching that are hypothesized to be unique to the human lineage, such as a 

teacher’s use of ostensive cues to mark the onset of teaching behaviors, and adaptations in the 

learners to be sensitive to these cues (Csibra & Gergely, 2006). According to Caro and Hauser 

(1992), teaching can be identified according to several specific criteria: a teacher modifies its 

behavior in the presence of a naïve learner, and incurs a cost, or at least no benefit for doing so; 

and the learner acquires information or experience that otherwise would not have been available. 

This functional approach is compatible with complementary studies into the motivations or 

cognitive adaptations underlying teaching behavior, while having the benefit of identifying 

convergent forms of costly facilitation of skills across taxa.  
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1.6 Prosocial Helping during Tool Use 

 Prosocial motivation has also been recognized for its potential role in the evolution of 

cumulative culture. By sharing attention, intention, and motivation, individuals can more 

effectively cooperate to achieve goals, pooling their knowledge to discover more efficient 

solutions (Tomasello, 1999). Prosocial behavior has been shown to assist children in 

experimental, cumulative problem-solving tasks (Dean, Kendal, Schapiro, Thierry, & Laland, 

2012). Often, studies of prosociality favor examining interactions between unrelated individuals, 

to examine how helpful behaviors might evolve in the absence of kin selection (Axelrod & 

Hamilton, 1981). However, a principal relationship in which information transmission occurs for 

primates, and many other animals, is between mothers and infants; this relationship is 

particularly critical for taxa such as great apes, which are characterized by extended periods of 

development and years of reliance on mothers for information (Lonsdorf, 2013). Prosocial 

helping in this context could confer fitness benefits, by more effectively advancing knowledge 

acquisition and foraging competence of dependent offspring than would occur simply by 

tolerance alone. Humans use a range of strategies to scaffold technological competence in 

children and adolescents, including routinely providing tools to novices who cannot yet 

manufacture these items on their own (Lew-Levy et al., 2017). However, the prevalence of this 

type of prosocial helping during tool use, and the contexts in which it occurs between and within 

species, have not been fully explored. 

 To date, prosociality has often been considered a derived characteristic in the human 

lineage. Narrowly defined, it is attributed only when intent to help another can be inferred 

(Jensen, 2016). Broader definitions focus on whether the behavior is a voluntary action that 

serves to help another individual (Warneken & Tomasello, 2009). Current debates reflect 

disagreement about to what extent nonhuman animals intentionally act to help other individuals 
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(see Chapter 4). In addition to reflecting genuine species differences, variation in prosocial 

behavior can also result from differing experimental designs (Cronin, 2012; Marshall-Pescini, 

Dale, Quervel-Chaumette, & Range, 2016; Silk & House, 2011; Tennie, Jensen, & Call, 2016). 

 A principal area of debate has centered around the role of requesting behavior in eliciting 

prosocial actions. For chimpanzees, requests have been shown to both increase (e.g., Yamamoto, 

Humle, & Tanaka, 2009, 2012) or have no effect (e.g., Horner, Carter, Suchak, & de Waal, 2011; 

Vonk et al., 2008) on the likelihood that an actor behaves prosocially, whereas in tamarins, 

requests reduced prosocial responses (Cronin, Schroeder, Rothwell, Silk, & Snowdon, 2009). It 

remains unclear, however, how differences in experimental setup (e.g., the communicative 

options available to participants) interact with the actor's understanding of or willingness to help 

their partner and thus drive variation in prosocial response. For example, one possibility is that 

reaching actions are interpreted as an attempt to steal the reward from the possessor (summarized 

in Cronin, 2012). There is also debate about whether actor’s responses to requests are motivated 

by a desire not to help but to reduce costly harassment (Gilby, 2006). Thus, examining request 

behavior is helpful for understanding what might underlie an actor’s response. 

1.7 Ontogenetic Approaches: Social Influences and Sex Differences in 

Learning 

 We adopt an ontogenetic approach to examining the complex tool behavior of wild 

chimpanzees, as this is a powerful method for illuminating the role of social factors on the 

maintenance of tool skills over generations. Ontogenetic studies on tool use have been conducted 

in several bird and primate taxa, and one of the key insights of these studies concerns the role of 

genetic influences versus the role of learning. Both woodpecker finches and New Caledonian 

crows acquire basic tool skills regardless of whether they have been exposed to a tool-using 

model, which suggests that there is a genetic component to their tool use (Hunt, Gray, & 
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Lambert, 2007; Kenward, Weir, Rutz, & Kacelnik, 2005; Tebbich et al., 2002). This does not, 

however, imply a complete absence of individual or social learning. For example, the presence of 

a human demonstrator can accelerate the tool use development of juvenile New Caledonian 

crows (Kenward, Rutz, Weir, & Kacelnik, 2006). In woodpecker finches, wild-caught birds 

tested in captivity show differing abilities to learn tool use depending on the ecological zone 

from which they were caught, suggesting that these skills do not emerge uniformly (Tebbich & 

Teschke, 2013). Access to the pandanus tools of parent birds is likely important for New 

Caledonian crows, as immature crows routinely interact with these during their first year of life 

(Tebbich & Teschke, 2013). 

 In primates, the flexible use of tools across different contexts suggests an evolved general 

capacity for skilled use of objects as tools, and there may also be a phylogenetic basis for the 

propensity of different species to engage in particular tools actions, such as percussing in 

capuchins, and probing in chimpanzees (discussed in Chapter 2). In addition, some inter-

individual variation in tool skill and handedness are heritable in chimpanzees (Hopkins, Reamer, 

Mareno, & Schapiro, 2014). The extent of intraspecific and inter-individual variation in tool 

behaviors also indicates a significant role for social learning in the acquisition of these skills 

(Hunt et al., 2013). Chimpanzees, macaques, and capuchins all show intense interest in others' 

tools and tool sites (Fragaszy et al., 2013), and when young orangutans use tools, it is often those 

that have been left behind by their mothers in tree holes (van Noordwijk & van Schaik, 2005). 

This pattern suggests that artefacts are a consistent feature of the learning process. Another way 

in which skilled conspecifics can affect acquisition of tool skills by youngsters is through the 

amount of time invested in the activity. At Gombe and Bossou, the ages at which immature 

chimpanzees acquire tool skills for gathering termites and ants, respectively, is correlated with 
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the amount of time mothers spend using tools (Humle, Snowdon, & Matsuzawa, 2009; Lonsdorf, 

2006). In capuchins, nut cracking by conspecifics not only provides the materials for exploration 

by immature individuals but also stimulates higher rates of activities related to nut cracking. For 

example, immature capuchins are four times more likely to manipulate nuts when conspecifics 

are nut cracking compared to when they are engaging in other activities (Eshchar, Izar, 

Visalberghi, Resende, & Fragaszy, 2016). Further, capuchin infants selectively observe the most 

skilled nut crackers, which maximizes opportunities for both scavenging and learning (Ottoni, 

Resende, & Izar, 2005). 

 Traditionally, the social dynamic between chimpanzee mothers and offspring is defined 

as one of “master-apprenticeship” (Matsuzawa et al., 2001): chimpanzee mothers are very 

tolerant of the close proximity of their infants, who are highly motivated to observe their 

mothers; through this combination of their own initiative and their mothers’ tolerance, immatures 

gain the necessary information to acquire complex skills. There is some evidence, however, that 

skilled models may play an even more active role through teaching in the context of difficult 

tasks. For example, at Taï Forest, on two occasions mothers were observed intervening when 

offspring were experiencing difficulty nut cracking, once to demonstrate the correct nut position 

and once to indicate the correct hand grip (Boesch, 1991). Given the critical role attributed to 

teaching in the evolution of human cultural capacities, however, the relative rarity of teaching in 

primates, particularly great apes, has been notable.  

 In addition to varying relative to task difficulty, social learning may also be moderated by 

the sex of the learner. At Taï, chimpanzee mothers volunteered more nuts and tools to sons than 

to daughters (Boesch & Boesch-Achermann, 2000). However, it does not appear that this leads 

to improved skill acquisition by males, as adult females show greater proficiency in nut cracking 
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(Boesch & Boesch, 1984b). One possible explanation for this is that females had to practice 

more as a result of reduced assistance during the learning process. Alternately, the sex difference 

in adults may result from the fact that at Taï, nut cracking is a somewhat solitary activity, such 

that males may prefer other activities that involve participation in larger social groups (Boesch & 

Boesch, 1984b). In contrast to Taï, differential treatment by mothers has not been detected 

during termite fishing at Gombe (Lonsdorf, 2005) or ant dipping at Bossou (Humle et al., 2009). 

 Another possibility is that male and female infants adopt differing social learning 

strategies. At Gombe, females observe mothers more than do males, and learn to termite fish 

earlier, suggesting they that rely more on imitation (Lonsdorf, 2005; see Chapter 2). At Bossou, 

no sex differences have been detected in observation and acquisition of ant dipping. One 

hypothesis proposed for these results is that the challenge of avoiding army ant bites generates 

relatively more interest for young males than does termite fishing, leading to similar levels of 

observation by both sexes during ant dipping (Humle et al., 2009). Another, non-mutually 

exclusive possibility is differences in motivation or skill for object manipulation. At Kalinzu, 

Uganda, immature male chimpanzees exhibit greater rates of object manipulation, but these 

actions are play-dominated; females exhibit a greater diversity of object manipulation types 

(Koops, Furuichi, Hashimoto, & van Schaik, 2015). At Gombe, there are infant sex differences 

in play, motor behavior and spatial proximity to conspecifics, with males showing greater 

independence before females (Lonsdorf et al., 2014). A variety of factors may thus influence 

whether there are sex differences in tool skill acquisition, and sex differences may vary across 

tasks.   
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1.8 Dissertation Methods 

Study site  

 The Goualougo Triangle study site is located in the northern Republic of Congo, in the 

southern sector of the Nouabalé-Ndoki National Park (E 16°51′−16°56′; N 2°05′−3°03′). Created 

in 1993, the park protects 4000 km2 of lowland rainforest and various populations of large 

mammals such as elephants (Loxodonta cyclotis), western lowland gorillas (Gorilla gorilla 

gorilla), leopards (Panthera pardus) and chimpanzees (Pan troglodytes troglodytes), as well as 

an array of other taxa. Both gorillas and chimpanzees occur at high densities in the northern 

Republic of Congo. Of the apes located within Western Equatorial Africa, 60% percent of the 

gorillas, and 43% of the chimpanzees are located within Republic of Congo (Strindberg et al., 

2018). The Goualougo Triangle Ape Project (GTAP) was initiated by Dr. David Morgan in 

1999. The study site is in a remote location, bordered from the west and the east by the Ndoki 

and Goualougo Rivers. Initial encounters with chimpanzees in this region between 1999-2001 

involved a high proportion (69%) of naïve responses marked by curiosity on the part of the 

chimpanzees, indicating that these apes lacked previous experience with humans (Morgan & 

Sanz, 2003). As the first population habituated to human observation in the Congo Basin, the 

Goualougo Triangle chimpanzees offer singular insights into the behavior, ecology, and culture 

of apes in this region.  

Remote Video Monitoring 

 The data for this dissertation research represent observational records of chimpanzees in 

the Goualougo Triangle spanning from 1999-2018. I undertook four field seasons between 2014-

2018 focused on intensifying camera trapping of focal chimpanzees. This involved expanding an 

array of camera traps installed at termite nests in the chimpanzees’ home ranges. The use of 

camera networks was implemented by GTAP in 2003 (Sanz et al., 2004) and complements direct 
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observations of chimpanzees. Camera traps are now being used widely as a cost-effective tool by 

researchers in a number of different settings, for gathering a range of data types, and for doing so 

while minimizing impact on the forest and the animals being studied (Burton et al., 2015; 

Caravaggi et al., 2017; McCarthy et al., 2018; Waldon, Miller, & Miller, 2011). 

 Over the course of the dissertation research, between 30 and 40 remote cameras were 

typically in operation, and observations were carried out at over 55 specific termite nest 

localities. Data were collected via monthly camera trap circuits in the Goualougo Triangle and 

were periodically transported data to Washington University in Saint Louis for archiving and 

screening. Between April 2014 and July 2018, remote cameras recorded approximately 96,000 

clips, which we sorted according to broad species groups. Chimpanzee clips comprised 

approximately 22% of all camera triggers, totaling over 22,000 clips (approximately 367 hours 

of footage). We next linked videos to INTERACT video coding software (Mangold, 2015), 

identified focal chimpanzees from this footage, and coded it for relevant behaviors. In addition, 

we screened archived video footage for focal chimpanzees born beginning in 1999, such that 

data collection spans a nearly twenty-year period. Tool transfer data for use in Chapters 3 and 4 

were also extracted from this archival footage.  

Comparative Data Collection between the Goualougo Triangle and Gombe, Tanzania 

 A critical component of this dissertation involved comparing the behavior of Central 

chimpanzees at Goualougo to that of Eastern chimpanzees (Pan t. schweinfurthii) at Gombe, 

Tanzania. Chimpanzees at both Goualougo and Gombe gather Macrotermes, a genus of fungus-

growing termites that are widely distributed throughout Africa and Asia (Eggleton, 2000). At 

Gombe, chimpanzee fish for Macrotermes subhyalinus (Collins & McGrew, 1987; Goodall, 

1968; O’Malley & Power, 2012) and at Goualougo, for M. lilljeborgi, M. muelleri, and M. 
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nobilis (Sanz et al., 2014). Termite species in this genus build complex nest structures that 

encompass a network of below-ground chambers and in some species a towering, free standing 

mound reaching several meters high (Noirot & Darlington, 2000). 

 Tool manufacture and use are more complex at Goualougo compared to Gombe, and 

these population differences reflect broader regional patterns in tool techniques and 

characteristics for chimpanzee termite gathering. Populations across the chimpanzee range have 

been documented using tools to gather termites (Bogart & Pruetz, 2008; Goodall, 1986; McGrew 

& Collins, 1985; McGrew, Tutin, & Baldwin, 1979; Nishida & Uehara, 1980; Sanz, Morgan, & 

Gulick, 2004), but tool techniques and tool characteristics vary regionally (Sanz et al., 2014). In 

East and West Africa, termite gathering involves the use of a single tool type, a fishing probe, 

manufactured from a range of raw materials such as grass or bark (Goodall, 1968; McGrew et 

al., 1979). These behaviors contrast with the use of tool sets (Bermejo & Illera, 1999; Deblauwe, 

Guislain, Dupain, & Van Elsacker, 2006; Fay & Carroll, 1994; Muroyama, 1991; Sabater Pí, 

1974; Sanz et al., 2004; Sugiyama, 1985; Suzuki, Kuroda, & Nishihara, 1995), and the 

manufacture of tools from specific raw materials (Sanz & Morgan, 2007) among chimpanzees in 

Central Africa. These differences allowed us to examine from a comparative perspective how 

complexity is linked to tool skill acquisition and relates to both high-fidelity social learning and 

prosocial helping. 

 The Gombe data assessed in the present study are based on the research conducted by Dr. 

Elizabeth Lonsdorf between 1999-2003 on the acquisition of termite-fishing skills by Gombe 

chimpanzees. Focal individuals for this research were immature individuals of the Kasekela 

community, which has been studied since the early 1960s (Goodall, 1968, 1986). The data 

collected by Dr. Lonsdorf comprise handheld video focal observations on five mothers and 14 
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offspring (8 males, 6 females) up to the age of 11 years old. Video focals were 15 minutes in 

length and total over 67 hours of video footage of termite-fishing sessions (Lonsdorf, 2005). 

Further details on the comparative aspects of this research are provided in Chapters 2 and 4.  

1.9 Dissertation Structure 

 In order to better model the developmental and social processes underlying the 

intergenerational transmission of technology during human evolution, this dissertation examined 

the acquisition of complex tool skills in wild chimpanzees of the Goualougo Triangle, Republic 

of Congo. In Chapter 2, my co-authors and I examine the developmental trajectory of termite 

gathering and compare it to that for Gombe chimpanzees. We document the ages at which 

chimpanzees acquire termite-gathering critical elements and the sequence of skill acquisition. 

We establish that chimpanzees become proficient with single tools before multiple tools, and that 

in contrast to Gombe, chimpanzees learn to use tools before they learn to make them. We further 

document wide variation in the age range at which individuals begin to use perforating tool sets, 

and find that only subadults and adults can capably puncture subterranean nests. We did not 

detect significant sex differences in the sample of chimpanzees we studied, but we observed that 

females acquire most skills slightly before males do, while males manufacture tools slightly 

earlier than females do. 

 In Chapter 3, we examine the role of high-fidelity social learning on the acquisition of 

termite-gathering skills. We find that transfers of tools from skilled to less competent 

conspecifics in this context comprise a functional form of teaching. These transfers increase 

learning opportunity and provide knowledge to less competent tool users, while exacting a cost 

on the termite gathering of skilled tool users. We also describe potential strategies by which 

skilled tool users may buffer themselves from experiencing these costs (Musgrave, Morgan, 
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Lonsdorf, Mundry, & Sanz, 2016).  

 In Chapter 4, we compare tool transfers in the Goualougo Triangle to those that occur at 

Gombe, Tanzania, from the perspective of prosociality. We examine how tool transfers fall along 

a continuum of prosocial response, what prompts prosocial tool transfer, and how these 

behaviors differ between these two populations. We find significant population differences in 

several indicators of prosociality. The rate of tool transfer is higher at Goualougo, and there is a 

significant interaction between population and request status, such that there is a higher 

probability of transfer upon request at Goualougo. Further, transfer types are more prosocial at 

Goualougo compared to Gombe. Finally, in Chapter 5, I summarize the results of this research 

and discusses the broader implications of these findings.  
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Chapter 2: The Ontogeny of Termite Gathering among 

Chimpanzees in the Goualougo Triangle, Republic of Congo 

Stephanie Musgrave, Elizabeth Lonsdorf, 

David Morgan, and Crickette Sanz  
 

2.1 Abstract  

Much of the diverse, flexible tool repertoire of wild chimpanzees is directed toward gathering 

otherwise inaccessible food resources. Acquiring these tool skills can potentially improve dietary 

quality and increase fitness. In contrast to the use of a single tool type by chimpanzee 

populations in East and West Africa, chimpanzees in the Congo Basin use tool sets comprising 

multiple tool types to gather termites from above-ground and subterranean nests. They also 

modify herb stems to produce brush-tipped fishing probes. We investigated the acquisition of 

these termite-gathering skills by chimpanzees of the Goualougo Triangle, Republic of Congo, 

and compared it to the development of termite fishing for chimpanzees at Gombe, Tanzania. We 

predicted that chimpanzees would acquire simple tool behaviors and single tool use before more 

complex actions and sequential use of multiple tool types. Using a longitudinal approach, we 

documented the acquisition of termite-gathering critical elements for 25 immature chimpanzees 

at Goualougo. At Gombe, chimpanzees make fishing probes between ages 1.5-3.5, before or 

during the time they begin termite fishing. At Goualougo, all chimpanzees termite fished by 2.9 

years but did not manufacture brush-tipped fishing probes until an average of 4.3 years. In 

contrast to Gombe, where all individuals acquire the termite-gathering task by age 5.5, at 

Goualougo the acquisition of tool sets extends further into juvenility and subadulthood. While 

we did not detect significant sex differences, most critical elements except tool manufacture were 

acquired slightly earlier by females. Differences between sites could reflect tool material 

selectivity and design complexity, the challenge of sequential tool behaviors, and strength 
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requirements of puncturing subterranean termite nests at Goualougo. These results expand our 

understanding of how task complexity influences the timing and sequence of skill acquisition, 

improving models of the ontogeny of tool behavior among early hominins who likely used 

complex, perishable technologies.  

2.2 Introduction  

Tool use has been documented in a range of animal species, but it is relatively rare. The 

habitual and flexible use of tools is most prevalent within the Primate and Passeriformes orders; 

among nonhuman primates, it occurs in all wild chimpanzee populations, and some populations 

of orangutans, macaques, and capuchins (Smith & Bentley-Condit, 2010; Shumaker, Walkup, & 

Beck, 2011). Multiple factors such as the assimilation of sensorimotor knowledge, the 

development of mechanical reasoning ability, and social and ecological influences intersect to 

support the emergence of tool skills. Studies into the ontogeny of tool behavior can help 

illuminate potential reasons for differences in tool behavior between and within taxa and add to 

our understanding of the adaptive basis for tool skills (Meulman, Seed, & Mann, 2013).  

Perception-action theory (Lockman, 2000) posits that early exploratory actions with 

objects scaffold the maturation of tool behaviors. This theory predicts that over the course of 

development, simple actions involving single objects will precede combinatory actions involving 

multiple objects, or an object and a surface, and that an individual’s manipulative actions will 

become increasingly effective over time as individuals acquire experience with object properties. 

The specific tool behaviors that emerge across species may in part reflect phylogenetic biases for 

particular types of object manipulation. For example, from an early age, human and capuchin 

infants bang objects against substrates (Fragaszy & Adams-Curtis, 1991; Kahrs & Lockman, 

2014), and these behaviors are later refined into percussive tool use for humans and some 
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populations of capuchins (Resende, Ottoni, & Fragaszy, 2008). Stone handling emerges during 

infancy in several populations of macaques, which may scaffold the development of stone tool 

use under certain conditions (Tan, 2017). Chimpanzees are highly motivated to insert objects 

into holes or hollows (Hayashi & Matsuzawa, 2003), and stick tool use is prevalent across many 

wild chimpanzee populations (McGrew, 1992; Sanz & Morgan, 2007). 

 The development of mechanical reasoning skills may also be necessary for the 

acquisition of tool skills, particularly for complex tool tasks involving the flexible use of tools. 

Flexible tool use is characterized by the ability to use tools across contexts, to attribute multiple 

functions to a single tool, and to combine tools creatively (Call, 2013). Flexible tool users can 

adjust their behavior as needed during a tool-using sequence by including, repeating, or 

excluding actions in order to achieve a goal (Byrne, Sanz, & Morgan, 2013). Complex tool 

behaviors are also defined by the presence of cumulative elements, such as the use of multiple 

different objects concurrently or in sequence (Pradhan, Tennie, & van Schaik, 2012). Using two 

tools concurrently requires managing multiple, dynamic relations among objects (Visalberghi & 

Fragaszy, 2006). In addition, task components must be integrated into the correct order. Young 

capuchins and chimpanzees may be capable of picking up a nut, placing a nut on the anvil, 

holding the hammer stone, hitting a nut, picking up a kernel, and consuming it, but combining 

these actions to successfully crack nuts does not occur until after individual elements are 

mastered. This mastery occurs after age two for capuchins (Resende, Ottoni, & Fragaszy, 2008), 

and between ages three and four for chimpanzees at Bossou, Guinea, (Matsuzawa, 1994) and Taï 

Forest, Côte d’Ivoire (Boesch & Boesch-Achermann, 2000). In Loango, Gabon, chimpanzees use 

highly flexible action sequences to extract honey from underground nests (Estienne, Stephens, & 

Boesch, 2017), and immatures do not exhibit the complete, adult behavioral repertoire until age 
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six or older (Estienne, Robira, Mundry, Deschner, & Boesch, 2019) (Table 2.1). The use of 

multiple tool types in sequence poses additional demands in that it requires a tool user to manage 

different causal relationships among objects in a specific order, often with a time delay between 

identifying a goal and achieving success (Boesch, 2013). In captive experiments with 

chimpanzees, sequential tasks are typically acquired after age three; at this age, chimpanzees 

may become more capable of socially learning sequential behaviors (Marshall-Pescini & Whiten, 

2008). 

TABLE 2.1 Developmental studies of different tool tasks observed in wild nonhuman primates  

Taxon Study Site Task 
Acquisition 

Agea (yrs.) 

Sample Size 

Male:Female 

Chimpanzees Bossou, Guinea 

Bossou, Guinea 

Bossou, Guinea 

Taï, Ivory Coast 

Loango, Gabon 

Gombe, Tanzania 

Goualougo, Rep. Congo 

Goualougo, Rep. Congo 

Leaf to drink water1 > 1.5 5:3 

 Ant dip2 2-3 6:7 b 

 Nut crack1,3 > 3.5 1:2 

 Nut crack4 5-6 23:30b 

 Honey extract5 ≥6 10:6 

 Termite fish6 5.5 5:3b 

 Termite fish7 2.9 10:15b 

 Perforate + Fish7 10.5 4:3 

Orangutans Suaq Balimbing, Sumatra Tree hole probe8 5                             1:0 

 Suaq Balimbing, Sumatra Neesia seed extract8 9 2:3 

Macaques Koram Island, Thailand Shellfish crack9 2.5-3.5 37:32 b 

Capuchins Fazenda Boa Vista, Brazil  Nut crack10 < 5 7:9b 

 Tietê Ecological Park, Brazil Nut crack11 > 2 2:0 
1Biro, Sousa, & Matsuzawa, 2006; 2Humle, Snowdon, & Matsuzawa, 2009; 3Inoue-Nakamura & Matsuzawa, 1997;   
4Boesch & Boesch-Achermann, 2000; 5Estienne et al., 2019; 6Lonsdorf, 2006; 7This study; 8Meulman, 2014; 9Tan, 

2017; 10Eshchar, Izar, Visalberghi, Resende, & Fragaszy, 2016;11Resende et al., 2008. 

 a. Values are the age or age range by which most individuals acquire basic competency. b. Sample sizes reflect the 

entire data set; ages of acquisition are derived from a subset of these individuals for whom acquisition was 

documented. 

  

 Chimpanzees exhibit substantial intraspecific diversity in tool-assisted foraging 

behaviors, including the resources gathered and techniques used (McGrew, 1992; Sanz & 

Morgan, 2007; Whiten et al., 2001). Across their geographic range, chimpanzees use a variety of 

tool types to gather insects and insect products (McGrew, 2014). Termites and other social 

insects offer particular nutritional payoff because of their high collective biomass (Deblauwe & 
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Janssens, 2008), and termite fishing has been documented in multiple populations (Bogart & 

Pruetz, 2008; Goodall, 1986; McGrew & Collins, 1985; McGrew, Tutin, & Baldwin, 1979; 

Nishida & Uehara, 1980; Sanz, Morgan, & Gulick, 2004). In East and West Africa, chimpanzees 

use a single tool type, a fishing probe, to gather termites. These tools are manufactured from a 

range of materials such as grass, twigs, vines, bark, or palm fronds (Goodall, 1968; McGrew et 

al., 1979).  

  In Central Africa, in contrast, chimpanzees gather invertebrate resources with the use of 

tool sets (Bermejo & Illera, 1999; Boesch, Head, & Robbins, 2009; Deblauwe, Guislain, Dupain, 

& Van Elsacker, 2006; Fay & Carroll, 1994; Muroyama, 1991; Sabater Pí, 1974; Sanz, 

Schöning, & Morgan, 2010; Sanz et al., 2004; Sugiyama, 1985; Suzuki, Kuroda, & Nishihara, 

1995). A tool set is defined as the use of two or more types of tools sequentially to achieve a goal 

(Brewer & McGrew, 1990). In the termite-gathering context, chimpanzees in this region use two 

tool sets to gather termites of the genus Macrotermes from epigeal (above-ground) and 

subterranean nests. The use and manufacture of these different tool types has been observed 

across different chimpanzee communities living in the Goualougo Triangle, Republic of Congo 

(Sanz & Morgan, 2007; Sanz et al., 2004). At epigeal nests, chimpanzees first use their fingers or 

a perforating twig to open sealed termite exit holes on the nest surface before using an 

herbaceous probe, the end of which chimpanzees have modified to a brush tip, to termite fish. In 

the subterranean nest setting, termites reside in underground chambers at an average depth of 

50.6 cm from the nest surface (Sanz, Deblauwe, Tagg, & Morgan, 2014), and chimpanzees use a 

durable, woody puncturing stick to tunnel into these chambers before using a fishing probe to 

extract termites (Sanz et al., 2004). These chimpanzees are highly selective in plant species 

chosen to manufacture both puncturing sticks and fishing probes, and this is not an artifact of 
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plant species abundance. Ninety-eight percent of puncturing sticks are manufactured from 

Thomandersia hensii, which has straight, rigid, and durable branches. Ninety-six percent of 

fishing probes are manufactured from Sarcophyrnium spp., which is smooth, pliable, and of ideal 

length and diameter for use as a probe; in addition, its fibers can be effectively frayed to a brush 

tip (Sanz & Morgan, 2007). The production of brush tips onto the herb stems is an intentional 

modification that improves the efficiency of the tool at gathering insects (Sanz, Call, & Morgan, 

2009). The complex tool behaviors of chimpanzees in this region comprise some of the clearest 

evidence for cumulative technology in animals (Sanz et al., 2009), so examining how they are 

acquired offers unique comparative insights for understanding the emergence of cumulative 

culture during human evolution.  

 To master the termite-gathering task, young chimpanzees must acquire each of the 

components of tool manufacture and tool use and integrate them into the correct sequence. 

“Critical elements” are the individual, component steps that are necessary to extract termites and 

that characterize the adult form of this behavior (Lonsdorf, 2005). These steps differ between 

populations and between tasks depending on whether termite gathering involves fishing for 

termites with a single tool type versus using a perforating or a puncturing tool set (Fig. 2.1). For 

infants, manipulation of tools is another important critical element of tool skill acquisition. 

Developmentally, critical elements are acquired in the following order for all Gombe 

chimpanzees: identify a hole; manipulate tool; make a tool; insert a tool into the hole; and 

successfully extract termites. All individuals make tools in the same year, or in the year prior to 

when they first insert tools (Lonsdorf, 2005). 
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FIGURE 2.1 Termite-gathering critical elements. Elements are listed from top to bottom 

according to the typical sequence of tool manufacture and tool use. At both sites, identifying 

termite exit holes sometimes precedes tool manufacture, though at Goualougo chimpanzees often 

gather tools in advance of arriving at termite nests. Termite fishing occurs at both Goualougo and 

Gombe, while perforating and puncturing occur only at Goualougo. 

 

 Females at Gombe learned to termite fish at a mean age of 31±4 months, an average of 27 

months earlier than males, who learned at a mean age of 58±6 months (Lonsdorf, Eberly, & 

Pusey, 2004). Females spent more time watching their mothers termite fish and were more likely 

to insert tools to similar depths as their mothers, suggesting that they relied more on imitative 

learning than did males (Lonsdorf, 2005). The socio-ecological model predicts that females will 

engage in behavior that maximizes food intake, and several studies have shown that among 

chimpanzees, adult females compared to adult males use tools more often to acquire termites 

(Goodall, 1986; McGrew, 1979), nuts (Boesch & Boesch, 1984) and vertebrates (Pruetz & 
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Bertolani, 2007). Tool use among captive bonobos is also female-biased (Boose, White, & 

Meinelt, 2013; Gruber, Clay, & Zuberbühler, 2010; but see Herrmann, Hare, Call, & Tomasello, 

2010). No sex differences were detected for ant dipping at Bossou, however, for immatures or 

adults (Humle et al., 2009). Among macaques and capuchins, no sex differences have been 

reported in the acquisition of tool skills, but there are sex differences in adult tool use (Gumert, 

Hoong, & Malaivijitnond, 2011; Moura & Lee, 2010; Spagnoletti, Visalberghi, Ottoni, Izar, & 

Fragaszy, 2011). Long-tail macaque females use stone tools more often than males, and 

specialize slightly more on attached oysters, which could reflect female preference for a lower-

risk foraging strategy. Males use larger tools than females, however, and are more successful 

than females at opening unattached shelled items such as snails or crabs (Gumert et al., 2011). In 

capuchins, where both sexes use hammers of comparable sizes, males compared to females use 

tools more often, and males more frequently use tools to crack high resistance nuts (Moura & 

Lee, 2010; Spagnoletti et al., 2011). For both macaques and capuchins, some of these observed 

sex differences are attributable to body size dimorphism, as percussive tool use is likely more 

energetically demanding for smaller-bodied females (Gumert et al., 2011; Spagnoletti et al., 

2011; Visalberghi & Fragaszy, 2013). Outside of primates, sex differences have been reported 

for the practice of sponging for fish among dolphins. This behavior is strongly female-biased, 

and even though male offspring are equally exposed to the behavior, females adopt it 

preferentially. This could be because spongers tend to adopt more restricted ranges, and males 

prefer to range more broadly post weaning (Mann et al., 2008). By documenting when and how 

sex differences emerge, developmental studies of skill acquisition can help identify the 

contribution of ecological, morphological, and social factors that may contribute to the variable 

pattern of sex differences observed across tool-using taxa.  
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 In the present study, we investigated how wild chimpanzees acquire a complex tool task 

involving the sequential use of different tool types, selectivity for raw materials, and tool design 

modifications. Using a longitudinal approach, we examined the age and sequence in which 

chimpanzees at Goualougo acquired critical elements of termite gathering. We predicted that 

chimpanzees would first perform simple manipulations of tools before manipulating tools in 

combination with the termite mound. We also predicted that chimpanzees would learn tool use 

before brush-tipped probe manufacture, due to the raw material selectivity and design 

complexity involved in probe manufacture. We further predicted that use of single tools would 

precede use of tool sets, and that puncturing tool use would be acquired last due to the physical 

difficulty of puncturing subterranean termite nests. We also examined whether there were sex 

differences in the acquisition of termite fishing. Finally, we compared the development of 

termite gathering among chimpanzees at Goualougo to those at Gombe.    

2.3 Methods 

2.3.1 Study Site and Subjects 

Observations of chimpanzee were carried out in the Goualougo Triangle, which is located 

along the southern boundary of the Nouabalé-Ndoki National Park (N 2°05− 3°03; E 

16°51−16°56) in the Republic of Congo. The study region encompasses 380 km2 of evergreen 

and semi-deciduous lowland forest, with altitudes ranging between 330 and 600 meters. There is 

a primary rainy season from August to November and a short rainy season in May. Subjects 

included 25 immature chimpanzees of known birthdate (15 females, 10 males). 

2.3.2 Data Collection 

 We placed remote video cameras with passive infrared sensors at termite nests to record 

chimpanzee visitation and tool-using behaviors (Sanz et al., 2004). All video footage was 
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archived on hard drives and scored using INTERACT (Mangold, 2015). Approximately 662 

hours of footage of chimpanzee visitation to termite nests collected between 2003-2018 were 

screened for the presence of focal chimpanzees. All footage of focal individuals was then 

screened and coded for the first observed occurrences of critical elements of termite gathering 

(Table 2.2) adapted for this study from Lonsdorf (2005) and Sanz & Morgan (2011). In addition 

to coding for the critical elements characterizing the adult form of these tasks, we also screened 

for first occurrences of “Manipulate fishing probe” and “Mound plus tool”, which aid in 

indexing the acquisition of tool competence. Remote cameras record the dates of observation, 

enabling calculation of the ages at which behaviors were first observed. 

  In order for an observation to be included in the data set, the focal individual must have 

been observed visiting a termite nest and have had the opportunity to engage in tool use at least 

once in the nine-month period prior to the visit in which they were first observed engaging in the 

behavior of interest. This ensured that individuals’ behaviors were detected with comparable 

precision to Gombe, where data were collected over four years during three-month termite-

fishing seasons and individuals could have acquired skills in the nine-month period between field 

seasons. Differing sample sizes between elements reflect these selection criteria. Within-subjects 

analyses comparing acquisition of multiple elements included the subset of subjects for whom 

both of the relevant critical elements were observed in accordance with these criteria. For 

example, 12/25 subjects could be included for the within-subjects comparison of acquisition ages 

for manipulation of a fishing probe versus use of a fishing probe in combination with a termite 

mound. 
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TABLE 2.2 Critical elements of termite gathering  
Critical Element  Definition 

Identify hole* Probes with finger, mops, sniffs, or looks into termite exit hole on nest. 

Manually open termite exit hole* Attempts to open termite exit hole by picking at soil with fingers. 

Manipulate fishing probe* Possesses tool with any body part and may hold, carry, or play with tool.  

Mound plus tool* Actively contacts termite nest with probe but does not insert tool. 

Insert fishing probe* Inserts probe into hole on surface of the termite nest. 

Straighten brush fibers Pulls tool through mouth, hands or fingers to straighten brush fibers. 

Extract termites* Acquires termites as a result of inserting fishing probe a minimum of three 

times during the same visit to a nest.  

Fray end of tool to brush Uses teeth or hand to fray the end of tool into a brush.  

Manufacture brush-tipped fishing probe Detaches raw material; uses teeth or hands to fray the end of the tool; and 

inserts or attempts to insert tool into termite nest. 

Perforate epigeal nest Presses the tip of a woody twig tool into the sealed tunnels of a termite 

nest, often rotating wrist to drill the tip into the nest.  

Tool set: perforate + fish Perforates termite nest, then inserts and extracts fishing probe. 

Puncture subterranean nest Pushes woody puncturing stick through the ground into a subterranean 

termite nest and successfully creates a new fishing tunnel.  

Tool set: puncture + fish Punctures subterranean termite nest, then inserts and extracts fishing probe. 

* indicates that elements are also observed at Gombe 

2.3.3 Analysis 

 We first examined whether the ages at which individuals first learned to insert probes and 

to extract termites were comparable between epigeal and subterranean nest types. We assessed a 

subset of individuals observed between both epigeal and subterranean settings during early 

infancy, using paired t-tests to compare their ages of acquisition of the critical elements “Insert 

fishing probe” and “Extract termites” in the epigeal versus subterranean settings. These two 

elements in particular were assessed because structural differences between nest types could 

place difference technical demands on the tool user.  

 To test our prediction that simple actions would precede combinatory manipulations, we 

compared ages at which chimpanzees exhibited the critical elements “Manipulate fishing probe” 

and “Mound plus tool”. To assess whether tool use would precede the manufacture of brush-

tipped probes, we compared the ages of acquisition of “Extract termites” and “Manufacture 

brush-tipped fishing probe”. These tests were within-subjects and so we conducted paired T-tests 

or a Wilcoxon signed-rank test if the data were not normally distributed. We report descriptive 

statistics comparing the ages of acquisition of “Extract termites” to “Tool set: perforate + fish” to 
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evaluate whether use of single tools would precede use of multiple tools.  

To test for sex differences in the acquisition of termite fishing skills, we compared 

females and males with respect to ages of acquisition of “Extract termites” and “Manufacture 

brush-tipped fishing probe” using independent-samples t-tests.  

Prior to conducting analyses, we visually inspected raw data and used Shapiro-Wilk tests 

to determine whether data were normally distributed. All tests were two-tailed and the 

significance threshold was set at .05. Analyses were conducted in R (version 3.4.4) (R Core 

Team, 2018). 

2.4 Results  

2.4.1 Comparison of Epigeal and Subterranean Nest Settings 

 We did not detect significant differences in the age at which chimpanzees learned to 

insert fishing probes in epigeal (M=2.2±0.7 years) versus subterranean (M=1.9±0.4 years) nest 

contexts (paired t-test, t(6)=1.05, N=7, P=0.33, 95% CI [-0.3, 0.7]. We also did not detect 

significant differences in the ages at which immature chimpanzees were successful extracting 

termites in epigeal (M=2.6±0.7 years) versus subterranean (M=2.3±0.7 years) nest contexts 

(paired t-test, t(4)=0.66, N=5, P=0.55, 95% CI [-0.9, 1.5]). However, for both elements, ages of 

acquisition were slightly earlier in the subterranean setting. We present subsequent results from 

both epigeal and subterranean contexts together but discuss the implications of this variation in 

the Discussion. 

2.4.2 Simple versus Combinatory Actions 

 The majority of individuals (9/12) were observed manipulating tools at earlier visits than 

they were observed using a tool in combination with the mound, while three individuals were 

first observed manipulating a tool and using it in conjunction with the mound during the same 
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visit. There was a significant difference in the age at which chimpanzees first began 

manipulating fishing probes (M=1.2±0.5 years) and the age at which they first used a fishing 

probe in combination with a termite mound (M=1.6±0.4 years) (paired t-test: t(11)=-4.01, N=12, 

P=0.002, 95% CI [-0.6, -0.2]).   

2.4.3 Tool Use versus Tool Manufacture 

 All infants successfully fished for termites by age 2.9 (Table 2.3). At this age, infants 

typically used discarded tools, or they received tools from conspecifics. Most chimpanzees 

(10/12 infants) inserted fishing probes and also succeeded at acquiring termites (9/12 infants) 

before they detached any type of raw material themselves and attempted to use those materials as 

a tool. Three individuals were observed detaching leafy or twiggy material near the nest to fish, 

but they were not successful with these tools. 

All individuals were observed successfully fishing for termites before they were observed 

independently gathering the specific herbaceous raw material adults typically select for this task 

and manufacturing brush-tipped fishing probes. Manufacture of brush-tipped fishing probes was 

first observed in chimpanzees of an average age of 4.3±1.1 years (N=10). There was a significant 

difference in the age of first successfully extracting termites (M=2.3±0.5 years) and brush-tipped 

probe manufacture (M=4±1 year) (Wilcoxon signed-rank test: V=36, N=8, P=0.008; 95% CI 

[1.1, 2.6]).  

2.4.4 Use of Single versus Multiple tools 

 Eight individuals were observed using perforating tools at epigeal nests. The youngest 

individual was a female at 3.9 years old, while other chimpanzees were observed using 

perforating tools for the first time between ages four and 11. All individuals began using fishing 

probes and were successful extracting termites before first using a perforating tool set (the 
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perforating twig plus the fishing probe in sequence). Relative to the similarity in ages at which 

fishing probe insertion and extraction of termites were first observed, the age at which 

individuals were first observed perforating was more variable between individuals (Fig. 2.2). 

One individual was also observed using his probe not only to fish but also to perforate. This 

involved reversing his fishing probe and using the unmodified end to clear a fishing tunnel, a 

behavior which has been observed among multiple individuals in this population (Sanz & 

Morgan, 2011). This was observed during the same visit where he was first observed using a 

perforating tool set, at age 10.5 years.   

 In the subterranean termite nest setting, infant and juvenile chimpanzees frequently 

manipulated puncturing sticks, inserted these tools into existing or partially cleared tunnels 

created by older conspecifics, and attempted to puncture new holes into subterranean nests. We 

observed five individuals (four females, one male) exhibit the sequence of puncturing tool set 

use (M=3.7±1.6 years). This involved inserting a puncturing tool into an existing hole and then 

fishing or attempting to fish from the tunnel with a fishing probe. All of these individuals were 

observed inserting fishing probes at earlier visits than they were observed engaging in the 

sequence of puncturing tool set use. Only two subadult individuals (one male, 11.7 years, and 

one female, 11 years) were observed successfully puncturing a new hole into a subterranean 

termite nest.   
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FIGURE 2.2. Variation in age of exhibiting perforating tool use. Dots represent individuals. 

Dotted lines connect observations for immature chimpanzees observed for both “Insert probe” 

and “Extract termites”; solid lines connect observations for three individuals for whom we could 

document ages for these elements as well as for the age at which they first exhibited perforating 

tool use. While all three of these individuals could extract termites by age 2.4, the ages at which 

they were first observed perforating (4.3, 8.4, and 10.5 years) varied widely. At left, a juvenile 

male inserts a fishing probe (a) and feeds on termites he has swept from the fishing probe after a 

successful extraction (b). At right (c), he uses a twig to perforate an epigeal nest, while holding a 

fishing probe in his mouth.  

 

2.4.5 Sex Differences in Termite Gathering 

 The developmental trajectories of termite gathering were similar for female and male 

chimpanzees at Goualougo (Table 2.3; Fig. 2.3). We did not detect a significant difference in the 

age at which females (M=2.1±0.7 years, N=4) versus males (M=2.4±0.3 years, N=7) learned to 

extract termites (independent samples t-test: t(9)=-1.01, P=0.34; 95 % CI [-1.0, 0.4]). We also 

did not detect a significant difference between the ages at which females (M=4.6±1.5 years, N=4) 
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versus males (M=4.1±0.8, N=6) first manufactured a brush-tipped probe (independent samples t-

test: t(8)=0.67, P=0.52; 95% CI [-1.2, 2.2]).  Females did acquire most critical elements, 

including the ability to fish, slightly before males on average (≈3.6 months earlier); the exception 

was tool manufacture, which males showed ≈6 months earlier (Fig. 2.4). The ages at which 

females and males first used tool sets were comparable and showed similar ranges (Table 2.3). 

TABLE 2.3 Mean age of acquisition of critical elements for males and females at Goualougo 

Critical Element Female Male 

Termite Fishing 

Identify hole  0.8 (0.4 - 1.3), n=7 1.0 (0.6 - 1.7), n=5 

Manipulate fishing probe 1.2 (0.3 - 1.7), n=7 1.2 (0.5 - 2.1), n=5 

Manually open termite exit hole 1.3 (0.6 - 2.1), n=7 1.8 (0.8 - 2.5), n=8 

Mound plus tool 1.6 (1.0 - 2.3), n=8 1.8 (1.0 - 2.7), n=8 

Insert fishing probe 1.8 (1.2 - 2.5), n=5 1.9 (1.5 - 2.7), n=8 

Straighten brush fibers 1.9 (1.2 - 2.3), n=5 2.1 (1.7 - 3.0), n=7 

Extract termites 2.1 (1.3 - 2.9), n=4 2.4 (2.0 - 2.8), n=7 

Fray end of tool to brush 3.4 (1.4 - 4.8), n=8 3.7 (2.4 - 4.7), n=7 

Manufacture a brush-tipped fishing probe 4.6 (2.5 - 5.8), n=4 4.1 (3.3 - 5.5), n=6 

Perforating at Epigeal Termite Nests 

Perforate  7.0 (3.9 - 9.7), n=4 7.5 (4.3 - 10.5), n=4 

Tool set: perforate + fish 7.1 (3.9 - 9.8), n=4 9.0 (7.6 - 10.5), n=3 

Puncturing at Subterranean Termite Nests 

Puncture  11.0, n=1 11.7, n=1 

Tool set: puncture and fish 11.0, n=1 11.7, n=1 

Values are the mean age of acquisition for the critical element. Age ranges of the earliest and latest  

appearances of the behaviors are listed in parentheses, followed by sample size of individuals (n).  
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FIGURE 2.3. Ages of acquisition of critical elements for chimpanzees at Goualougo. Values are 

means and error bars represent standard deviation. Sample sizes are given for each sex in 

parentheses (female, male). Females and males acquired critical elements at comparable ages, 

though females acquired all critical elements except “Make brush-tipped fishing probe” before 

males. Compared to acquisition ages for single tool use, ages at which the use of tool sets were 

first observed were more variable.  
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FIGURE 2.4. Ages of successful termite extraction versus tool manufacture for females and 

males. Dots represent individuals. The ages ranges for acquisition of both elements overlapped 

for males and females, though for both elements, the youngest observation was for a female. We 

observed that on average, females were observed successfully extracting termites at slightly 

younger ages than males, while males were observed making tools at younger ages than were 

females. 

 

2.4.6 Development of Termite Gathering at Goualougo Compared to Gombe 

 Most infant chimpanzees at both Goualougo and Gombe begin interacting with tools and 

termite mounds within the first one to two years of life. There are differences, however, with 

respect to the timeframe in which infants first insert fishing probes, become capable of termite 

fishing, and independently manufacture tools (Table 2.4). In addition, the developmental period 

over which skills are acquired is longer at Goualougo. At Gombe, all individuals mastered the 

critical elements necessary for termite fishing by age 5.5. At Goualougo, individuals learned to 

termite fish during infancy, but several individuals were not observed perforating until they were 

juveniles or subadults. Only subadults were observed independently puncturing new tunnels into 
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subterranean nests. 

Table 2.4 Maximum ages of acquisition of termite-gathering critical elements in the Goualougo 

Triangle and at Gombe, Tanzania.  

Critical Element Goualougo Gombe 

Termite Fishing 

Identify hole  1.7 (0.4 - 1.7), n=12 1.5 (0.5 - 1.5), n=8 

Manipulate fishing probe 2.1 (0.3 - 2.1), n=12 1.5; n=8 

Insert fishing probe 2.7 (1.2 - 2.7), n=13 4.5 (2.5 - 4.5), n=8 

Extract termites 2.9 (1.3 - 2.9), n=11 5.5 (2.5 - 5.5), n=6 

Manufacture fishing probe without brush tip   3.0 (1.2 - 3.0), n=6 3.5 (1.5 - 3.5), n=6 

Manufacture brush-tipped fishing probe 5.8 (2.5 - 5.8), n=10 - 

Perforating at Epigeal Termite Nests 

Perforate  10.5 (3.9 - 10.5), n=8 - 

Tool set: perforate + fish 10.5 (3.9 - 10.5), n=7 - 

Puncturing at Subterranean Termite Nests 

Puncture  11.7 (11 - 11.7), n=2 - 

Tool set: puncture and fish 11.7 (11 - 11.7), n=2 - 

Values are the age in years by which all individuals in the sample acquired the critical element.  

Age ranges of the earliest and latest appearances of the behaviors are listed in parentheses,  

followed by sample size of individuals (n). “-” indicates that the behavior does not occur at Gombe. 

 

2.5 Discussion 

 Tool-assisted foraging traditions may emerge when they are profitable relative to other 

feeding strategies (Rutz & St. Clair, 2012; Sanz & Morgan, 2013a), so learning these behaviors 

could have important adaptive benefits. Examining how novices acquire tool skills can provide 

insight into the perceptuo-motor and cognitive requisites of these skills as well the way 

ecological factors, social input, and task characteristics affect acquisition. In this study, we took a 

longitudinal approach to investigate the acquisition of termite-gathering critical elements among 

Goualougo Triangle chimpanzees. We found that these chimpanzees learn to termite fish before 

they manufacture brush-tipped probes and that they become competent with single tools before 

they use multiple tool types sequentially. We also documented differences in the developmental 

trajectory of termite gathering at Goualougo compared to Gombe. The sequence of skill 

acquisition, as well as the ages at which particular elements were acquired, differed between 
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populations. In addition, in contrast to Gombe, we did not detect sex differences of a large 

magnitude in the ages at which chimpanzees at Goualougo learned to termite fish. 

 The onset of manipulative behaviors and tool use among chimpanzees at Goualougo is 

consistent with predictions of perception-action theory (Lockman, 2000), which anticipates that 

simpler behaviors and single tool use will be acquired before more complex sequences. Within 

the first year of life, most chimpanzees manipulated objects and investigated termite mounds. 

Between ages one and three, they progressed to goal-directed efforts to fish for termites, which 

involved locating a tool, manually opening a termite exit hole or using an exit hole opened by 

another chimpanzee, inserting a fishing probe, and successfully extracting termites. We did 

observe that probe insertion and fishing occurred at slightly earlier ages on average in the 

subterranean setting, and in future research we will examine whether there are differences in the 

specific skilled motor actions associated with the two nest types. For example, there could be 

subtle differences in the difficult of aligning a probe to a fishing tunnel in the epigeal versus 

subterranean setting. Nonetheless, once chimpanzees learned to use fishing probes in either the 

epigeal or subterranean context, they transferred their skills to the other setting. This ability to 

generalize skills from one context to another is a hallmark of flexible tool behavior. After 

becoming competent with single tools and learning to termite fish, chimpanzees then began 

manufacturing their own tools. Some individuals also began engaging in sequential tool use, 

involving a perforating twig plus a fishing probe in the epigeal context, and a puncturing stick 

plus a fishing probe in the subterranean context.  

  Our findings were also generally consistent with prior research from wild and captive 

settings that chimpanzees typically learn sequential behaviors after three years of age (Marshall-

Pescini & Whiten, 2008). As with use of tool sets, the behavioral sequence associated with 
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manufacture and use of brush-tipped fishing probes occurred on average after three years of age, 

and the component actions were acquired before they were combined into the correct order. 

Integration of actions into the correct sequence is hypothesized to be linked to the capacity for 

program-level imitation (Hayashi & Inoue-Nakamura, 2011; Marshall-Pescini & Whiten, 2008). 

This process involves an individual perceiving the hierarchical organization of a task that 

emerges from statistical regularities in a model’s behavior and parsing that behavior into 

meaningful units, enabling reproduction of the structure of the behavior (Byrne, 1994; Byrne & 

Russon, 1998). It has also been hypothesized that there is a critical period during development 

for acquiring hierarchically structured, sequential behaviors, after which such acquisition cannot 

occur (Biro et al., 2003). While we documented general patterns in the acquisition of sequential 

behaviors after age three, there were two infants who exhibited the use of a puncturing stick and 

a fishing probe in sequence before age three. Additionally, only some individuals used 

perforating tool sets. Increased opportunity to practice tool-using skills and increased observation 

of conspecifics is associated with accelerated skill acquisition of termite fishing (Lonsdorf, 2006) 

and ant-dipping (Humle et al., 2009). Further research is required to identify how differing 

opportunity for social learning may contribute to inter-individual variation in the acquisition of 

complex, sequential skills at Goualougo. 

 As we predicted, puncturing subterranean nests was observed latest in development, 

though we did observe several infants and juveniles carry out the sequence of puncturing and 

fishing tool use. In addition to cognitive factors, physical strength and body size are important 

constraints on the use of puncturing tool sets. Subadult and adult chimpanzees often grip 

puncturing sticks with their hands and a foot, using the weight of their bodies to forcefully push 

puncturing sticks down through the ground. Despite repeated attempts, infants and juveniles 
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were unable to create new fishing tunnels, as they could not push the puncturing stick through 

the soil. Nonetheless, young chimpanzees do attempt to puncture throughout the infant and 

juvenile period, sometimes focusing their efforts on existing or partially cleared tunnels that have 

been created by other chimpanzees. We are presently examining what contributes to the 

persistent efforts of young chimpanzees in this context. 

 We observed that both the timing and sequence of termite-gathering skill acquisition 

differed between Goualougo and Gombe chimpanzees. At Goualougo, infants inserted fishing 

probes and learned to extract termites at younger ages than at Gombe, particularly when 

compared to male infants at Gombe. One possibility for these differences is that year-round 

termite gathering at Goualougo (Sanz & Morgan, 2013a) provides greater opportunity for 

immature chimpanzees to develop skills relative to Gombe where termite-gathering efforts are 

concentrated during the rainy reason from October to December (Goodall, 1986; McGrew et al., 

1979). The ages at which Goualougo chimpanzees began showing combinatory behaviors 

(“Mound plus tool” and “Insert fishing probe”) and learned to successfully extract termites 

appear more comparable to patterns of acquisition documented in some captive experiments, 

where combinatory manipulation was observed frequently by 21 months of age (Takeshita et al., 

2005), and infants could successfully “fish” for honey at just under two years of age (Hirata & 

Celli, 2003). At Goualougo, several infants learned to successfully extract termites before or 

around two years of age. In the captive study of honey fishing, infants had monthly opportunities 

to develop these skills (Hirata & Celli, 2003). Thus, the opportunity to practice skills year round 

may result in faster acquisition than a shorter period of concentrated practice (Lonsdorf, 2006). 

An additional possibility is that opportunities for social learning differ between sites. At Gombe, 

the presence of multiple models does not accelerate offspring acquisition of skill (Lonsdorf, 
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2006), and at Goualougo, average party size at termite nests is relatively small, 2.23±1.57 

individuals (Sanz & Morgan, 2013b). Thus, other aspects of social learning opportunity, such as 

tool sharing (Musgrave, Morgan, Lonsdorf, Mundry, & Sanz, 2016) may be more influential.  

 We also documented that there are differences between populations with respect to the 

sequence in which skills of tool use versus tool manufacture are acquired. At Gombe, infants 

learn to make tools at the same time or before they learn to use them (Lonsdorf, 2005). Similarly, 

at Bossou, chimpanzees manufacture tools before they gain the motor skill of tool use (Humle, 

2006). At Goualougo, infants rarely attempted to manufacture their own tools before they were 

capable of fishing; instead, they appear to rely on discarded herb tools or tools that conspecifics, 

typically their mother, transfer to them. They learned to work effectively with these tools and to 

maintain the brush tip before moving on to gather herb stems independently and manufacture 

brush-tipped probes. Thus the manufacture of adult-like tools in this population always occurred 

after learning to termite fish. In other populations and species where tool characteristics and raw 

material impact tool performance, youngsters also tend to first rely on others’ tools rather than 

manufacturing their own (e.g., leaf-folding to gather water in chimpanzees, Sousa, Biro, & 

Matsuzawa, 2009; Tonooka, 2001; or probing for insects by New Caledonian crows, Holzhaider 

et al., 2010) 

 These population differences could be related to cognitive challenges associated with 

identifying and locating suitable raw material in the environment, linking behaviors in the 

appropriate sequence, and producing a tool of suitable dimensions and with a functional brush tip 

at Goualougo. At Gombe, chimpanzees manufacture tools from varied materials rather than 

seeking out particular species, and they do not engage in the brush-tip modification, so tool 

manufacture is a simpler undertaking. The later age at which tool manufacture is acquired at 
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Goualougo may also be associated with the fact that mature chimpanzees often gather raw 

material in advance of arriving at a termite nest (Byrne et al., 2013; Sanz et al., 2004); if infants 

are traveling on their mother’s body, they may not dismount to independently acquire tool 

material on the way to the nest. Young chimpanzees continue to dorsally ride on their mothers 

through age 4-5 and remain in constant association through age 8-10 (Boesch & Boesch-

Achermann, 2000; Goodall, 1968; Lonsdorf et al., 2014). After arrival at a nest, infants may be 

hesitant to depart the immediate vicinity of the nest to acquire raw material, as this could 

necessitate becoming separated from their mothers in order to travel to where suitable herb 

materials are located. Similar constraints as apply to fishing probes may help explain why we did 

not observe infants or juveniles manufacture puncturing sticks. In addition, these durable tools 

are conserved at subterranean termite nests over weeks or months, mitigating the need to 

manufacture a new tool. Given the inability of young individuals to puncture, there may also be 

little incentive to manufacture a new puncturing stick. We did observe youngsters manufacture 

perforating tools; unlike fishing probes and puncturing sticks, these tools were procured by 

detaching a twig in the immediate vicinity of the nest. Perforating twigs were also gathered from 

detached materials lying near the nest. The development of tool use and manufacture by 

immature chimpanzees in this population thus reflects the raw material demands and design 

features of the different tool types, and highlights the importance of access to others’ tools in 

enabling the opportunity to practice tool skills, particularly for fishing and puncturing. 

 With respect to sex differences, the youngest individual we observed exhibiting most 

critical elements was female, and on average, females acquired most critical elements of termite 

fishing slightly before males did. The exception to this was tool manufacture, which was 

observed on average 6 months earlier in males. We did not detect differences of a large 
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magnitude such as have been documented for termite fishing at Gombe (Lonsdorf, 2005). The 

differences we observed could nonetheless reflect subtler variation between the sexes with 

respect to propensity for object manipulation (Koops, Furuichi, Hashimoto, & van Schaik, 2015), 

motor development (Lonsdorf et al., 2014), or social learning strategies (Lonsdorf, 2005). At 

Kalinzu, Uganda, immature male chimpanzees engage in higher rates of object manipulation 

than do female chimpanzees. However, their object manipulation is more play-dominated, 

suggesting that these behaviors provide preparation for gross motor behaviors (e.g., social 

displays, predator mobbing) in adulthood, rather than for tool use specifically. Females, in 

contrast, show more diverse types of object manipulation, potentially in preparation for adult tool 

use (Koops et al., 2015). At Gombe, male compared to female infant chimpanzees begin 

traveling independently at earlier ages than do females and show increased distance from their 

mothers by age three, indexing earlier gross motor development in males (Lonsdorf et al., 2014). 

The slightly younger ages of manufacture we observed in males could reflect earlier ages of 

spatial independence from mothers, which is necessary for raw material procurement. Relatively 

little is known about manual, fine motor control in great apes (Bardo, Cornette, Borel, & 

Pouydebat, 2017), though there is some evidence for superior performance by human female 

infants in fine motor tasks (e.g., Kokštejn, Musálek, & Tufano, 2017). 

 Despite these differences, it is still not immediately clear how sex differences in infancy 

relate to adult sex differences in tool use skill or frequency. At Gombe, the sex difference in how 

much time females versus males spent termite fishing when they were present at the mound 

disappeared after age 5.5, once all male infants had acquired the skill. Data for adult tool use are 

not yet available at Kalinzu. At Goualougo, adult females visit tool-using localities more 

frequently on average, though the average time spent using tools per day is similar between adult 
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females and males (Ellison, Musgrave, Morgan, & Sanz, 2016). Females and males also do not 

differ in their mean dipping latencies, a measure of performance, when termite fishing (Sanz, 

Morgan, & Hopkins, 2016). Further research will help to discern whether immature males and 

females at Goualougo exhibit differing activity patterns or deploy different learning strategies 

(e.g., Lonsdorf, 2005); whether there are differences in how mothers treat female and male 

offspring (e.g., Boesch & Boesch-Achermann, 2000); and whether or how these factors 

foreshadow adult behavior. This will add to our understanding of how the ontogeny of tool skills 

is related to adult patterns of sexually differentiated foraging in this population and for 

chimpanzees more broadly. 

 Comparative investigations of the ontogeny of tool behavior across tool-using taxa, and 

within species between tasks, provide unique insights into the adaptive basis of tool skills and the 

factors supporting the maintenance of tool traditions over time. The present study offers the first 

assessment of the acquisition of termite gathering among chimpanzees in Central Africa. While 

the earliest stone tools date to 3.3 Mya (Harmand et al., 2015), indirect evidence suggests that the 

capacity for complex, flexible tool use likely evolved earlier, in the common ancestor of humans 

and the other great apes (Panger, Brooks, Richmond, & Wood, 2002). The rich, perishable tool 

repertoire of Central chimpanzees could provide clues to the tool skills of this common ancestor, 

evidence for which may not have been preserved in the archaeological record (Haslam, 2014). 

We suggest that in addition to influencing the timing and sequence of skill acquisition, the 

complexity of the termite-gathering task in this population is likely associated with an important 

role for social input in the acquisition of tool skills. Continued research on the ontogeny of 

complex elements in this context will further illuminate how the technology of chimpanzees in 

this region persists over generations.  
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Chapter 3: Tool Transfers are a Form of Teaching       

among Chimpanzees1  

Stephanie Musgrave, David Morgan, Elizabeth Lonsdorf,  

Roger Mundry, and Crickette Sanz  

 

3.1 Abstract 

Teaching is a form of high-fidelity social learning that promotes human cumulative culture. 

Although recently documented in several nonhuman animals, teaching is rare among primates. In 

this study, we show that wild chimpanzees (Pan troglodytes troglodytes) in the Goualougo 

Triangle teach tool skills by providing learners with termite fishing probes. Tool donors 

experienced significant reductions in tool use and feeding, while tool recipients significantly 

increased their tool use and feeding after tool transfers. These transfers meet functional criteria 

for teaching: they occur in a learner's presence, are costly to the teacher, and improve the 

learner's performance. Donors also showed sophisticated cognitive strategies that effectively 

buffered them against potential costs. Teaching is predicted when less costly learning 

mechanisms are insufficient. Given that these chimpanzees manufacture sophisticated, brush-

tipped fishing probes from specific raw materials, teaching in this population may relate to the 

complexity of these termite-gathering tasks. 

3.2 Introduction 

 Social learning facilitates the transfer of adaptive information within groups for a wide 

range of animal taxa and can generate group-specific behavior patterns (Fragaszy & Perry, 2003; 

Heyes & Galef, 1996; Thornton & Clutton-Brock, 2011). When these behaviors persist over 

generations and are transmitted through social learning, they are deemed cultural (Whiten, 2005). 

                                                 
1 Chapter 3 (Musgrave et al., 2016) was published under a Creative Commons Attribution 4.0 International License: 

https://creativecommons.org/licenses/by/4.0/ 
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High-fidelity social learning is hypothesized to distinguish human from animal cultures by 

promoting cumulative culture (Boyd & Richerson, 1985; Dean, Kendal, Schapiro, Thierry, & 

Laland, 2012; Tennie, Call, & Tomasello, 2009); identifying what mechanisms underpin the 

social transmission of complex behaviors among animals is thus essential for comparative 

studies.  

 Of foremost interest is teaching. A functionalist approach identifies teaching when certain 

criteria are fulfilled (Caro & Hauser, 1992; Hoppitt et al., 2008; Thornton & Raihani, 2008) 

regardless of whether there is evidence of intent to facilitate another's learning (Fogarty, 

Strimling, & Laland, 2011; Kruger & Tomasello, 1998; Pearson, 1989; Premack & Premack, 

1996). The most broadly applied criteria are that the behavior 1) occurs in the presence of a naïve 

learner, 2) at some cost or at least no benefit to the teacher, and 3) that it facilitates learning in 

another individual (Caro & Hauser, 1992). Using these criteria, strong experimental evidence for 

teaching has been found for meerkats (Thornton & McAuliffe, 2006), ants (Franks & 

Richardson, 2006), and pied babblers (Raihani & Ridley, 2008). Sensitivity to learner 

competence (Thornton & McAuliffe, 2006), or evaluation (Franks & Richardson, 2006), and 

ostensive cueing (Csibra & Gergely, 2009) have been suggested as further criteria. Linking 

functional criteria to cognitive correlates of candidate teaching behaviors can improve inferences 

about the evolutionary origins of teaching (Byrne & Rapaport, 2011; Kline, 2015) (see Table 

3.1). 

 One such candidate behavior is the transfer of tools between individuals, which has been 

observed among wild chimpanzees in several tool-using contexts (Boesch & Boesch-

Achermann, 2000; Fragaszy et al., 2013; Lonsdorf, 2006; Nishida & Hiraiwa, 1982; Pruetz & 

Lindshield, 2012). Chimpanzee tool repertoires vary between populations, and this can be 
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attributed in part to social learning (Koops, Schöning, Isaji, & Hashimoto, 2015; Luncz & 

Boesch, 2015; Whiten et al., 2001). This variation could also be associated with differences in 

the types of social facilitation necessary to maintain behaviors that range in complexity from 

simple tasks, involving only a single tool and target, to more complex tasks involving the use of 

tool sets (Sanz & Morgan, 2010; Sanz, Morgan, & Gulick, 2004). For example, tool transfers 

have been documented during termite gathering among chimpanzees in the Goualougo Triangle, 

Republic of Congo (Sanz & Morgan, 2013b). There, chimpanzees are highly selective for plant 

species used to manufacture tools (Sanz & Morgan, 2007) and intentionally modify herb stems to 

fashion brush-tipped fishing probes (Sanz, Call, & Morgan, 2009). In addition, chimpanzees use 

two tool sets to gather termites from epigeal (above-ground) and subterranean nests. At epigeal 

nests, chimpanzees may use a perforating twig to open sealed termite exit holes on the nest 

surface before using an herbaceous probe to fish for termites. At subterranean nests, 

chimpanzees must breach underground nest chambers with a durable, woody puncturing stick 

before fishing (Sanz et al., 2004). Teaching is predicted to evolve when it is required to facilitate 

learning and when the fitness benefits accrued from a pupil's competence outweigh the costs of 

teaching (Thornton & Raihani, 2008). Given the complexity of these tool tasks, we hypothesized 

that tool transfers from skilled chimpanzees to less competent conspecifics constitute a form of 

teaching.   

 Using remote video footage of termite gathering, we scored behavior immediately before 

and after fishing probe transfers to test whether transfers impose costs on donors and confer 

benefits to recipients. We predicted that donors would spend proportionately less time termite 

gathering and exhibit reduced tool use and feeding after compared to before transfers, while 

recipients would spend more time using tools and exhibit increased tool use and feeding after 



92 

 

 compared to before transfers. 
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TABLE 3.1 Evidence for animal teaching  

Defining Criteria Meerkats2 Ants3 
Pied 

Babblers6 
Macaques7,8 Callitrichids10,11 Felids1 Chimpanzees12,13 

Functional 

Occurs in the presence 

of a naïve learner
1
 

E E E E N, E N N 

At some cost or at 

least no benefit to 

teacher
1
 

E E E E ? N N 

Facilitates learning in 

another individual
1
 

E E E ? ? E N 

Sensitivity to learner 

competence
2
, 

evaluation
3
 

E E ? ? N, E ? N 

Ostensive cueing
4 - - - - - - ? 

Cognitive 

Ability to attribute 

knowledge to others
5
 

- - - ?
9
 - - N, E

14
 

Deliberate intention to 

facilitate learning
11 

- - - - - - N, E
15,16 

Included are cases where evidence for satisfaction of teaching criteria is strong in either a captive or an experimental (E) or a natural 

(N) setting, or present but inconclusive (?); - indicates that there is presently no evidence for a criterion. The context of teaching 

behavior is indicated by; bold = foraging; italics = communication, and underlined = locomotion. Plain text indicates evidence derived 

from studies that did not specifically assess teaching criteria. More exhaustive coverage of evidence for possible cases of animal 

teaching is reviewed elsewhere (Caro & Hauser, 1992; Hoppitt et al., 2008; Thornton & Raihani, 2008; Kline, 2015). Chimpanzee 

data come from this study and the others referenced. 

1. Caro & Hauser, 1992. 2. Thornton & McAuliffe, 2006 3. Franks & Richardson, 2006 4. Csibra & Gergely (2009). 5. Kruger & 

Tomasello, 1996 6. Raihani & Ridley, 2008 7. Maestripieri, 1995b. 8. Maestripieri, 1995a 9. Drayton & Santos (2014) 10. Rapaport & 

Brown (2008). 11. Humle & Snowdon (2008). 12 Boesch & Boesch-Achermann (2000). 13 Boesch (1991) 14. Call & Tomasello 

(2008). 15. Horner, Carter, Suchak & de Waal (2011). 16. Yamamoto, Humle, & Tanaka (2012).
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3.3 Methods 

3.3.1 Subjects 

 Chimpanzee observations were conducted in the Goualougo Triangle, located in the 

southern section of the Nouabalé-Ndoki National Park (E 16°51′−16°56′; N 2°05′−3°03′), 

Republic of Congo. The study area encompasses 380 km2 of evergreen and semi-deciduous 

lowland forest, with altitudes ranging between 330 and 600 meter. Rainfall is bimodal, with a 

primary rainy season from August to November and a short rainy season in May.   

3.3.2 Data Collection 

 We placed remote video-recording devices with passive infrared sensors at termite nests 

to record chimpanzee visitation and tool-using behaviors (Sanz et al., 2004). Video footage was 

archived on hard drives and converted to MPEG for review after which we coded videos using 

INTERACT Version 14 (Mangold, 2015). We screened 224 hours of footage and identified 96 

fishing probe transfers, defined as the change of possession of a fishing probe from one 

individual to another. A subset of these transfers met criteria for inclusion in the present study. If 

multiple transfers occurred between the same individuals during the same visit to a termite nest, 

only the first transfer was included because subsequent transfers were considered 

nonindependent. On 4 separate visits, 2 transfers were coded in each and were included, because 

the transfers were separated by a minimum of approximately 10 minutes and by other 

intervening behaviors. Thus, we deemed each transfer event to be independent. Transfers were 

coded for age/sex class of donor and recipient. The resulting data set included 57 transfers of 

fishing probes from an older, more competent individual to an immature individual. There were 

two occasions in which there was a change of possession of a fishing probe between adults, four 

transfers from a subadult or older juvenile to an adult female, and two transfers between 
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youngsters. These were not included in analyses due to their relative rarity. 

 Next we screened transfers for those in which the donor or recipient chimpanzee, or both, 

were continuously visible during the 30 seconds immediately before and after the transfer. We 

considered this time frame adequate for capturing representative behavior before and after 

transfers given the relatively short average duration (2.55 minutes) of termite nest visits by 

chimpanzees in this population (Sanz & Morgan, 2013a). In addition, because chimpanzees may 

go in and out of the camera field of view, coding clips continuously for the entire duration of 

chimpanzee presence at termite nests was not always feasible. For donors and recipients, 

respectively, 26 and 24 transfers allowed for determination of the proportion of time spent in 

active tool use. We coded behaviors including termite-gathering tool use (e.g., active insertion of 

fishing probes); and other behaviors such as play, inactivity, and locomotion. For a further subset 

of these clips, continuous visibility at a high degree of resolution for 30 seconds before and after 

the clips allowed for the coding of specific tool use and feeding behaviors. We further required 

that the donor must have initiated tool use by 30 seconds before the transfer. This was necessary 

in order to ensure that comparison of behavior before and after a transfer event was not 

systematically biased by a donor's latency to begin termite gathering upon arrival at a termite 

nest. This criterion was not applied to recipients, given that immature chimpanzees often engage 

in a range of behaviors other than termite gathering while present at termite nests and the 

purpose was to discern how their behavior changed, regardless of the behavior immediately 

preceding the transfer.  For donors, we coded fishing probe insertions and feeding events for 17 

and 15 transfers, respectively; and for recipients, we coded fishing probe insertions and feeding 

events for 15 and 14 transfers, respectively. Fishing probe insertions involved the insertion and 

extraction of an herbaceous probe into an exit hole on a termite mound. Feeding elements 
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included sweeping termites from tools, eating termites directly from the tool, or gathering 

termites by hand, wrist or lips from the termite nest surface.   

3.3.3 Analysis 

 In order to test whether the duration of tool use differed before and after the tool transfer 

we used exact (Mundry & Fischer, 1998; Siegel & Castellan Jr., 1988) Wilcoxon tests, applied 

separately for donors and recipients. In case individuals acted repeatedly as donor or recipient, 

respectively, we used the average duration per individual and time period (before or after, 

respectively). We did not use mixed models (see below) for the duration since it showed bottom 

and ceiling effects, making it impossible to find an appropriate error distribution. 

For testing whether the number of feeding events and fishing probe insertions differed 

between before and after the tool transfer, we used Generalized Linear Mixed Models (GLMM) 

(Baayen, 2008), fitted separately for donors and recipients (see Appendix A, Tables A.1 and 

A.2). These included one fixed effect denoting whether the observation was made before or after 

the tool transfer ("time period"). As random intercepts we included the identity of the 

chimpanzee and also the particular transfer event. To keep Type I error rate at the nominal level 

of 0.05, we included the random slope of time period within chimpanzee identity whenever we 

had at least two tool transfer events for at least half of the individuals (Barr, Levy, Scheepers, & 

Tily, 2013; Schielzeth & Forstmeier, 2009); this random slope was included into the models for 

the number of fishing probe insertions of donors and the number of feeding events of donors. We 

did not include the correlation between the random intercept and slope to avoid overly complex 

models given the small sample sizes. We used either a Poisson error structure or, in case this 

revealed an overdispersed response, a negative binomial error structure. Specifically, we used a 

Poisson model for the number of fishing probe insertions for the donor (dispersion 
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parameter=1.17) and negative binomial models for the other three (dispersion parameters, 

number fishing probe insertions, recipient: 1.48; number feeding events, donor: 1.10; number 

feeding events, recipient: 1.33). We tested the significance of time period using a likelihood ratio 

test comparing the full model with a respective null model lacking the effect (Barr et al., 2013; 

Dobson, 2002). 

The models were fitted in R (R Core Team, 2016) using the functions glmer or glmer.nb 

of the package lme4 (Bates, Mächler, Bolker, & Walker, 2015) (version 1.1-10); and Wilcoxon 

tests were calculated using the function wilcox.exact of the package exactRankTests (Hothorn & 

Hornik, 2015).  

3.4 Results 

3.4.1 Transfers of Fishing Probes 

We identified 96 transfers of fishing probes, all of which were initiated by the recipient. 

A subset of transfers met the criteria for analysis (see Methods). All transfers analyzed occurred 

between an adult female and her offspring; the one exception occurred between a sub-adult 

female and her infant sister. The results represent 13 unique donors and 13 unique recipients. 

Recipients were immature chimpanzees, including 5 females, 4 males, and 4 youngsters of 

unknown sex.  

3.4.2 Time Spent using Tools to Gather Termites 

 As shown in Fig. 3.1a, donors' average time spent using tools to gather termites decreased 

substantially (an average of 10.6 seconds) during the 30 second interval after compared to before 

transfers in which donors relinquished their fishing probe to another individual (Wilcoxon 

signed-ranks test: T+=45.00, N=13 donors, P=0.08). Conversely, tool recipients spent on average 

15 seconds more using tools to gather termites after transfer events in which they received a 
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fishing probe (T+=85.5, N=13 recipients, P=0.003, Fig. 3.1b).  

3.4.3 Fishing Probe Insertions 

 To test whether fishing probe insertions and feeding events differed between before and 

after the tool transfer, we used Generalized Linear Mixed Models (GLMM) (Baayen, 2008), 

fitted separately for donors and recipients (see Appendix A, Tables A.1 and A.2). As shown in 

Fig. 3.1c, donors (N=9) performed significantly fewer fishing probe insertions (an average of 1.8 

fewer) per 30 seconds after the transfer of a fishing probe versus prior to the transfer (GLMM: 

estimate±SE=-0.49±0.18, 2=6.98, df=1, P=0.008). Of 9 donors, 5 showed an average decrease, 

2 remained constant, and 2 showed increases. Those chimpanzees (N=11) who received a tool 

showed a significant increase (an average of 2.8 more) in the number of probe insertions after 

transfers compared to their performance before (1.24±0.35, 2=10.44, df=1, P=0.001, Fig. 3.1d).  

3.4.4 Feeding Events 

 Donors (N=9) showed a reduction in the number of feeding events (on average 2.7 fewer) 

after the transfer of a fishing probe versus prior to the transfer (-0.69±0.24, 2=9.25, df=1, 

P=0.002; Fig. 3.1e). For recipients (N=10), there was a significant increase in the average 

number of feeding events (an average of 2.8 more) after transfers compared to before (1.46±0.43, 

2=8.38, df=1, P=0.004; Fig. 3.1f). 
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FIGURE 3.1 Changes in termite gathering from before to after tool transfer. The number of 

seconds spent using tools to gather termites decreased for the donor (n=26, Fig. 3.1a) after 

relinquishing a probe to another chimpanzee (recipient, n=24), whose time spent termite fishing 

increased (Fig. 3.1b). The number of fishing probe insertions also decreased for the donor 

(n=17, Fig. 3.1c) and increased for the recipient (n=15, Fig. 3.1d). Finally, the number of feeding 

events decreased for the donor (n=15, Fig. 3.1e) and increased for the recipient (n=14, Fig. 3.1f) 

after the transfers. Observations of the same individual or event, respectively, are denoted by a 

pair of points connected by a dashed line. Averages are shown for individuals with multiple 

observations. Tied observations (at least two individuals with the exact same value of the 

response) are denoted by larger points (whereby the area of the points codes the number of 

individuals; thicker lines have the corresponding meaning for the connections). n=number of 

transfers.   
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3.4.5 Donor Strategies Buffering Costs of Tool Transfers 

 Adult females occasionally transported multiple fishing probes to the termite nest in 

advance (n=4 occurrences) and used one of these additional probes after a transfer. In addition, 

adult females deployed a second strategy (see Supplementary Video 1) in which they divided 

their fishing probe lengthwise and then transferred half of their tool to their offspring while 

retaining the other half for their own use (n=11 occurrences). These strategies were observed in 3 

and at least 6 different females, respectively. Use of a second tool or splitting of a tool 

lengthwise were deployed in 3 of the 6 occasions where donors' rate of tool use or feeding 

increased or showed no change following a transfer. These behaviors were thus effective in 

buffering against the costs of tool sharing, as they enabled individuals who transferred a tool to 

maintain or even show an increased rate of tool use in the post-transfer period. 

3.5 Discussion 

 Of the functional criteria proposed to identify teaching (Caro & Hauser, 1992), the first is 

that the behavior occurs in the presence of a learner. Transfers are most common between adults 

and infants, principally mothers and offspring. In chimpanzees, mothers are the primary models 

for offspring (Lonsdorf, 2006; Matsuzawa, 2011) and are most likely to benefit from offspring 

acquisition of tool skills. Second, teaching behaviors are predicted to be costly to the teacher. In 

the present study, donors incurred costs in the form of reduced time spent termite gathering, 

fewer fishing probe insertions, and reduced termite consumption. Third, teaching should provide 

the learner with increased knowledge or opportunity to acquire a skill. Tool recipients increased 

their time spent termite gathering, and showed higher rates of fishing probe insertions and 

feeding events following transfers. 

 Changes of tool possession from older, more competent individuals to younger, less 

competent individuals are distinctive in several ways from tool transfers in the opposite direction 
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or between peers (Pruetz & Lindshield, 2012), which were observed relatively rarely within this 

population. Active transfers in which adults move to facilitate a transfer in response to begging 

(Pruetz & Lindshield, 2012) (see Supplementary Video 2) have only been documented when a 

tool changed possession from a more to a less competent individual. Further, mothers showed 

evidence for anticipating transfers and devising strategies that buffer associated costs, while 

accommodating both their offspring's and their own need for a functional probe. Splitting a tool 

lengthwise is likely to be more effective for producing two viable tools than breaking the tool in 

half, which could result in loss of the brush tip or the tool being too short to insert to the 

appropriate depth. In addition, splitting a tool lengthwise or bringing a second tool in advance 

are both advantageous because they buffer the donor or recipient from having to locate tool 

material and manufacture a second tool after arrival. Tool manufacture requires identifying 

suitable raw material, and potentially departing from the vicinity of the nest and other 

conspecifics in order to do so, which increases vulnerability to predation. 

 An alternative interpretation of transfers, instead of teaching, is that adults relinquish 

tools to mitigate harassment (Boesch & Boesch, 1989), i.e., "sharing under pressure” (Gilby, 

2006). However, costs to donors increased rather than decreased following tool transfers, which 

is the opposite effect than would be predicted by the sharing under pressure hypothesis. It is the 

relinquishing of a tool, rather than the proximity or harassment of offspring, that is costly.  

 With respect to the third functional criterion, tool recipients experienced an immediate 

benefit through the opportunity to manipulate and use appropriate tool materials, which resulted 

in their increased tool use and termite consumption. Consistent with past findings that mothers 

did not differentially facilitate termite fishing by male and female offspring at Gombe (Lonsdorf, 

2006), transfers occurred to offspring of both sexes, and tool-using activity increased after 
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transfers for 9 of the 10 recipients. Tool transfers included components both of transfer of 

declarative knowledge (Thornton & Raihani, 2008), i.e., what raw material is appropriate, as 

well as opportunity provisioning (Caro & Hauser, 1992) or providing (Hoppitt et al., 2008) to 

practice termite-gathering behaviors with a suitable tool. These tools were usually transferred 

with the modified brush tip facing the termite nest, further scaffolding appropriate tool use. At 

Tai, age and skill-related shifts have been documented in mother chimpanzees' facilitation of nut-

cracking (Boesch & Boesch-Achermann, 2000). Given that the acquisition of some components 

of termite gathering may extend into juvenility and sub-adulthood in the Goualougo Triangle 

(Musgrave, Bell, Morgan, Lonsdorf, & Sanz, 2015), longitudinal studies will further illustrate 

how tool transfers impact skill acquisition as well as the extent to which tool donors are sensitive 

to learner competence (Franks & Richardson, 2006; Thornton & McAuliffe, 2006). 

 Teaching is hypothesized to evolve when it is optimal for transferring information that is  

otherwise too difficult or costly to acquire, and the limited evidence for nonhuman primate 

teaching comes from contexts which may fit this criterion (Boesch, 1991; Fouts & Fouts, 1989; 

Humle & Snowdon, 2008; Maestripieri, 1995b, 1995a; Rapaport & Brown, 2008). Teaching by 

active facilitation of complex behaviors could be beneficial, even if the overall rate of these 

behaviors is low. Given that teaching may appear absent in non-experimental settings because it 

is difficult to measure (Lonsdorf & Bonnie, 2010), developing rigorous methods for evaluating 

social learning mechanisms is necessary for comparative studies. In addition, captive research 

can help inform interpretation of possible cognitive correlates of teaching behaviors documented 

in natural settings. For example, the flexible use of coping strategies observed in this chimpanzee 

population indicates that donors are sensitive to and anticipate recipients' need for a functional 

tool; captive experiments demonstrated that chimpanzees can attribute knowledge to others (Call 
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& Tomasello, 2008) and can engage in prosocial helping under certain conditions (Horner, 

Carter, Suchak, & de Waal, 2011; Yamamoto, Humle, & Tanaka, 2012). Analyzing functional 

criteria alongside the potential cognitive underpinnings of social facilitation in the context of 

complex, learned tasks can advance our understanding of the evolution of teaching behavior 

across taxa and in our own lineage.  
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4.1 Abstract 

Prosociality is hypothesized to have contributed to the evolution of cumulative culture, including 

technology. The transfer of tools is common in humans and is a type of prosocial helping 

through which skilled practitioners facilitate skill development in less competent tool users. The 

occurrence of object transfer is variable in other taxa, both between and within species and 

across natural and captive settings. Applying a standardized method, we compared the tool 

transfer behavior of chimpanzees in the Goualougo Triangle, Republic of Congo, and in Gombe, 

Tanzania. Multiple measures indicated population differences in prosociality. The rate of tool 

transfers as well as the probability of tool transfer upon request were significantly higher at 

Goualougo, while resistance to tool transfers was significantly higher at Gombe. Active transfers 

of tools in which possessors moved to facilitate possession change were the most common 

transfer type at Goualougo, but were not observed at Gombe. In contrast, requests for tools were 

typically refused in the Gombe population. These differences in the rate, probability, and types 

of tool transfer may relate to task complexity and tool characteristics. At Goualougo, chimpanzee 

tools show several aspects of design complexity including manufacture from specific raw 

materials and modifications that improve tool efficiency, which could make it challenging for 

novices to independently manufacture suitable tools. We suggest that wild chimpanzees have a 

flexible capacity for prosocial helping and that prosociality may promote the social transmission 

of complex technological skills. 
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4.2 Introduction 

 The emergence of cumulative technology is a defining aspect of human evolution. 

Identifying the social factors that facilitate the transfer of complex skills in humans and other 

animals is essential for modeling the pedagogical settings that may have accompanied the 

inception of hominin tool technologies (Boyd & Richerson, 1985; Dean, Kendal, Schapiro, 

Thierry, & Laland, 2012; Tennie, Call, & Tomasello, 2009). Among modern humans, competent 

tool users scaffold the development of technological skills in novices with a range of strategies, 

one of which is the provisioning of tools (Lew-Levy, Reckin, Lavi, Cristóbal-Azkarate, & Ellis-

Davies, 2017). For example, Aka mothers in the Congo Basin provide children with artefacts 

such as axes, digging sticks, or baskets, sometimes even producing child-sized versions (Hewlett, 

Fouts, Boyette, & Hewlett, 2011). In West Papua New Guinea, young boys are gifted bows and 

arrows long before they can themselves manufacture these tools (Nishiaki, 2013). Konso women 

living in southern Ethiopia pass lithic expertise to daughters and granddaughters, whose early 

apprenticeship involves using tools produced by experienced practitioners (Arthur, 2010). 

Novices typically spend many years learning to manipulate specific raw materials and honing the 

skills to craft high-quality tools (Lew-Levy et al., 2017). Access to skilled individuals’ tools 

provides novices with information and experience they cannot yet acquire on their own. 

 Access to experts’ tools can also aid in skill development in other taxa, particularly when 

choosing or manufacturing tools involves selectivity for raw material or design complexity 

(Meulman, Seed, & Mann, 2013). For example, both capuchins (Spagnoletti, Visalberghi, Ottoni, 

Izar, & Fragaszy, 2011) and chimpanzees (Boesch & Boesch-Achermann, 2000; Luncz, Mundry, 

& Boesch, 2012; Matsuzawa, 1994) consider nut resistance when selecting percussive tools for 

nut-cracking. Tool reuse is one way in which novices can acquire an expert’s tool. This involves 

an individual recovering another’s discarded tool, regardless of whether the original possessor is 
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still in proximity to the tool or has abandoned it (Izar et al., 2013). Tool reuse has been 

documented in chimpanzees, macaques, capuchins, and New Caledonian crows (Biro et al., 

2003; Boesch & Boesch-Achermann, 2000; Fragaszy et al., 2013; Hirata & Celli, 2003; 

Holzhaider, Gray, & Hunt, 2010; Holzhaider, Hunt, & Gray, 2010; Meulman et al., 2013; Tan, 

2016). Novices can also acquire experts’ tools via tool transfer: a transfer occurs when an 

individual takes possession or is given a tool by the original owner, when the original owner still 

has the tool in their possession or vicinity immediately before the change of possession. Tool 

transfers can be associated with multiple costs to the original possessor (Musgrave, Morgan, 

Lonsdorf, Mundry, & Sanz, 2016), and there are potential differences between tool reuse and 

tool transfer from the perspective of investment. 

  There is substantial variation across species in the prevalence of object transfer. 

Chimpanzees and capuchins actively transfer objects in captive settings (e.g., Barnes, Hill, 

Langer, Martinez, & Santos, 2008; Drayton & Santos, 2014; Melis & Tomasello, 2013; Rosati, 

DiNicola, & Buckholtz, 2018; Warneken & Tomasello, 2006; Yamamoto, Humle, & Tanaka, 

2009, 2012), while this is rare or undocumented in other tool-using taxa and in captive bonobos. 

In addition, wild chimpanzees routinely transfer tools in different tool contexts (Boesch, 1991; 

Inoue-Nakamura & Matsuzawa, 1997; Lonsdorf, 2006; Matsuzawa et al., 2001; Musgrave et al., 

2016; Nishida & Hiraiwa, 1982; Pruetz & Lindshield, 2012; Sanz & Morgan, 2013b). These 

findings suggest that the capacity for tool transfer may also be flexible within particular species, 

according to context.   

 Broadly, prosocial behaviors are a form of cooperative behavior in which an individual 

performs an action that benefits another. Humans show proactive prosocial behavior across 

multiple contexts, and these behaviors are prevalent across societies (Fehr & Fischbacher, 2003; 
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Henrich et al., 2001). Prosocial behavior does vary, however, between and within cultures 

(Gurven & Winking, 2008; Gurven, Zanolini, & Schniter, 2008; House et al., 2013; Richerson et 

al., 2016; Schäfer, Haun, & Tomasello, 2015). In addition, while children help flexibly and 

spontaneously from a young age on (Melis & Warneken, 2016), the emergence of prosocial 

behaviors over development is sensitive to variation in socialization practices (Callaghan & 

Corbit, 2018). Complex interactions of biological, social, and cultural factors thus shape the 

expression of human prosocial behavior across contexts and over the lifetime (Hepach & 

Warneken, 2018). 

 Prosocial acts are also widespread in other animals (Bartal, Decety, & Mason, 2011; 

Clutton-Brock, 2002; Dugatkin, 1997; Nakahara et al., 2017; Schwab, Swoboda, Kotrschal, & 

Bugnyar, 2012) including nonhuman primates (Cronin, 2012; de Waal & Suchak, 2010; Jaeggi, 

Burkart, et al., 2010; Marshall-Pescini, Dale, Quervel-Chaumette, & Range, 2016; Yamamoto & 

Takimoto, 2012). Evidence of prosociality in wild chimpanzees includes social grooming, 

assisting each other in conflicts, jointly patrolling territory borders, and adopting orphaned 

infants (Boesch & Boesch-Achermann, 2000; Boesch, Bolé, Eckhardt, & Boesch, 2010; Goodall, 

1986; Mitani, Merriwether, & Zhang, 2000; Watts, 2002), and in certain circumstances, food 

sharing (de Waal, 1989; Gilby, 2006; Samuni, Preis, et al., 2018; Silk, Brosnan, Henrich, 

Lambeth, & Shapiro, 2013). Transferring a tool is a type of helping behavior that may involve 

varying degrees of prosociality (Jaeggi, Burkart, & van Schaik, 2010) ranging from proactive to 

reactive to passive (Fig. 1).  

 From one perspective, prosocial actions in humans can be considered qualitatively 

different than those shown by other animals. Proactive prosociality in particular is hypothesized 

to be a derived and uniquely human trait (Jensen, 2016; Silk et al., 2005). The evolutionary 



113 

 

origins of human prosociality have been linked to the adoption of cooperative breeding practices 

(Burkart et al., 2014; Burkart, Fehr, Efferson, & van Schaik, 2007; Burkart, Hrdy, & van Schaik, 

2009; Burkart & van Schaik, 2016; Hrdy, 2009); elaborated theory of mind skills (Silk et al., 

2005); increased sensitivity to an audience, internalized as a “conscience” (Jaeggi, Burkart, et al., 

2010); and costly signaling, whereby males in particular advertise their value as a future mate or 

cooperative partner (Hockings et al., 2007; Jaeggi, Burkart, et al., 2010). 

 From another perspective, prosocial behavior in humans builds on a common foundation 

of skills and motivations that are shared with other taxa and it is the scope and flexibility of 

prosocial behaviors that differ (Melis, 2018; Melis & Warneken, 2016; Tan & Hare, 2013; 

Warneken & Tomasello, 2009). The “versatile prosociality hypothesis” suggests that nonhuman 

great apes as well as humans are capable of direct transfers, defined as handing over items in 

one’s possession, but that the contexts that elicit these transfers differ among species. Examining 

prosocial actions in the context of direct transfers is ideal for facilitating comparisons of 

prosocial responses between humans and other taxa, as this is what characterizes much of 

humans’ sharing of food and non-food items (Krupenye, Tan, & Hare, 2018). 

 In line with the “versatile prosociality hypothesis”, bonobos and chimpanzees exhibit 

differing prosociality profiles. Bonobos willingly share food, even with strangers, but rarely toys 

or tools (Hare & Kwetuenda, 2010; Hare, Melis, Woods, Hastings, & Wrangham, 2007; 

Krupenye et al., 2018; Tan & Hare, 2013; Yamamoto, 2015; but see Cronin, De Groot, & 

Stevens, 2015; Jaeggi, Stevens, & van Schaik, 2010). The high prosocial tendencies of bonobos 

in feeding contexts are attributed to selection for tolerance and against aggression in this species 

(Hare, 2017; Hare, Wobber, & Wrangham, 2012; Wrangham & Pilbeam, 2002). Particularly in 

captive settings, chimpanzees, compared to bonobos, show more limited evidence for prosocial 
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food sharing (Amici, Visalberghi, & Call, 2014; Jensen, Hare, Call, & Tomasello, 2006; Silk et 

al., 2005; Vonk et al., 2008; but see Horner, Carter, Suchak, & de Waal, 2011; Melis et al., 

2011), which could be due to a more competitive preoccupation with food (Boysen & Berntson, 

1995; Cronin, 2012; Hirata, 2007). However, hunting and resource sharing do have a cooperative 

basis in some wild chimpanzee populations (Boesch, 1994; Samuni, Deschner, Crockford, 

Wittig, & Preis, 2018; Samuni, Preis, et al., 2018), suggesting that the occurrence of these 

behaviors are sensitive to contextual, ecological, and social factors (Boesch, 1994; Gilby, Eberly, 

Pintea, & Pusey, 2006; Jaeggi & van Schaik, 2011; Samuni, Preis, et al., 2018; Watts & Mitani, 

2002). In contrast to bonobos, chimpanzees routinely share objects and show prosocial helping in 

captive experiments (Warneken & Tomasello, 2006; Warneken et al., 2007; Hare et al., 2007; 

Yamamoto et al., 2009). Chimpanzees will even transfer the specific tool a conspecific requires, 

indicating that they are capable of understanding others’ goals (Yamamoto et al., 2012). The 

reasons for these species differences in prosocial object transfer are not immediately apparent, 

but could be related to differing intrinsic propensities toward object manipulation (Koops, 

Furuichi, & Hashimoto, 2015).   

 Species differences in the presence and strength of prosocial helping could thus result 

from differences both in intrinsic motivations and in sensitivity to extrinsic factors (Jaeggi, 

Burkart, et al., 2010). In addition, ecological settings or task features, including task complexity, 

could be associated with inter- and intraspecific variation in prosocial helping. In humans, 

success at solving tasks of increasing difficulty levels varies with the number of prosocial acts 

received, indicating that prosocial helping facilitates the social transmission of complex tasks 

(Dean et al., 2012). Investigating tool transfer behaviors across tool tasks of differing complexity 

in wild chimpanzee populations can help us identify which factors prompt these behaviors and 
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understand the evolutionary contexts that favor prosocial helping. 

 Using a standardized method, we compared tool transfers in the context of termite 

gathering by chimpanzees in the Goualougo Triangle, Republic of Congo, with those in Gombe, 

Tanzania. Both of these chimpanzee populations exhibit a minimum of 22 different types of tool 

use, comprising some of the largest tool repertoires of any nonhuman tool-user (Sanz & Morgan, 

2007). There are differences in termite-gathering behavior between Goualougo and Gombe 

populations that reflect broader regional patterns for chimpanzees in Central and East Africa, 

respectively. In Central Africa, chimpanzees gather invertebrate resources with the aid of tool 

sets, which involve the sequential use of two or more different tools (Brewer & McGrew, 1990). 

These behaviors differ from the use of single tools by chimpanzee populations in East and West 

Africa (Sanz, Morgan, & Gulick, 2004). There are also regional differences in tool selection and 

manufacture. In the Goualougo Triangle, chimpanzees manufacture fishing probes and 

puncturing sticks from selected raw plant materials (Sanz & Morgan, 2007). They also 

intentionally modify herb probes to fashion brush tips, a design feature which has been shown to 

be more efficient than an unmodified probe for gathering insects (Sanz, Call, & Morgan, 2009). 

At Gombe, individuals use one tool type, fishing probes, to acquire termites, and probes can be 

manufactured from various materials such as grass, twigs, or bark (Goodall, 1968; McGrew, 

Tutin, & Baldwin, 1979). 

 Given the specific requirements of tool manufacture at Goualougo, we hypothesized that 

there would be greater need and benefit associated with transferring tools to youngsters during 

termite gathering in this population relative to termite fishing at Gombe. Indeed, immature 

chimpanzees at Goualougo obtain significant increases in tool use and feeding after being 

transferred a fishing probe (Musgrave et al., 2016). We thus predicted that there would be a 
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higher overall rate of tool transfer at Goualougo compared to Gombe, that requests or attempts to 

take tools would more often result in a change of possession at Goualougo compared to Gombe, 

and that rates of resistance by tool possessors would be lower at Goualougo compared to Gombe. 

We predicted that population differences would be strongest for reactive transfers, as response to 

request is considered a more precise index of prosocial motivation relative to a possessor simply 

tolerating another’s action (Cronin, 2012; Jaeggi, Burkart, et al., 2010). We also predicted that at 

Goualougo there would be a shorter latency between requesting behavior and transfers, as shorter 

latencies correspond to more prosocial responses (Rosati et al., 2018).  

  

FIGURE 4.1. Categorization of transfer types according to the level of prosociality. Transfer 

types are arranged vertically from most (top) to least (bottom) prosocial. Transfers are grouped 

into two categories: reactive (blue) in which the potential recipient first requests the tool by 

whimpering and/or reaching toward the tool, or (rarely, at Gombe only) by making hand-to-

mouth gestures; and non-reactive (yellow) in which the recipient receives, takes or attempts to 

take the tool without first requesting it. While reactive and non-reactive transfer types are 

presented together, note that Reactive Active, Reactive Passive and Reactive Hesitant transfers 

may more clearly index prosocial behavior, as they inherently involve a possessor physically 

relinquishing a tool, while non-reactive transfers are more ambiguous (Jaeggi, Burkart, et al., 

2010). Reactive Refusal transfers, and Steal / Failed Steal transfers, are ranked comparably 

because for each of these, the possessor does not, or does not willingly, relinquish a tool; thus 

these are not considered prosocial. Italics indicate that no possession change occurs. 
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4.3 Methods 

4.3.1 Study Sites  

 Goualougo Triangle, Republic of Congo: The Goualougo Triangle is located in the 

southern section of the Nouabalé-Ndoki National Park (E 16°51′−16°56′; N 2°05′−3°03′). The 

study area includes 380 km2 of evergreen and semi-deciduous lowland forest, and altitudes range 

between 330 and 600 meters. There is a primary rainy season from August to November and a 

short rainy season in May. Termite gathering occurs year-round and is not related to seasonally 

varying resource abundance (Sanz & Morgan, 2013a). 

 Gombe, Tanzania: Gombe National Park is located on the shore of Lake Tanganyika, at 

the western border of Tanzania. The park comprises 35 km2 of woodland, grassland, and riverine 

forest (Clutton-Brock & Gillet, 1979). Chimpanzees termite fish year round, but particularly 

during the rainy season from October to December (Goodall, 1986; McGrew et al., 1979). 

4.3.2 Data Collection  

 Data collection was undertaken in the Goualougo Triangle using remote cameras with 

passive infrared sensors to record chimpanzee tool behavior at termite nests. These data were 

archived on hard drives and converted to MPEG for review. We screened 224 hours of video 

footage recorded between 2003 and 2011 and analyzed video footage using INTERACT 15 

(Mangold, 2015).  

 At Gombe, all day focal follows (Altmann, 1974) on mothers with immature (under age 

11) offspring were performed over the course of four termite-fishing seasons between 1998 and 

2001. Once termite fishing commenced, 15-minute, video-taped follows were conducted, during 

which the observer narrated information on tool use, apparent success, and social interactions at 

the mound (Lonsdorf, 2005).  
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 Using a standardized protocol applied to videos from Goualougo and Gombe, we coded 

footage for all instances of immature chimpanzees requesting or attempting to take tools, type of 

tool transfer event, requesting behavior, and any instance of resistance by tool possessors. We 

included age, sex, and identity of individuals involved in transfers in our analyses, given the 

potential influence of these variables in the context of tool skill acquisition among young 

chimpanzees (Boesch & Boesch-Achermann, 2000; Inoue-Nakamura & Matsuzawa, 1997; 

Lonsdorf, 2005).  

 Transfer rate: We coded the duration of time individuals were present at a termite nest 

during which there was an opportunity for a tool transfer. This was defined as another individual 

being present and in possession of a termite-gathering tool. We calculated the rate of tool transfer 

for each individual by dividing the number of transfer events observed by the total duration of 

transfer opportunity scored in minutes. 

 Fishing Probe Transfer Type: We classified all fishing probe tool transfer events 

according to transfer event type. Transfer event types were defined on the basis of several 

criteria: whether or not they were preceded by a request (reactive versus non-reactive, 

respectively); whether or not the tool changed possession from one individual to another; and 

whether at the time preceding the transfer event the possessor was in physical possession (tool 

held in mouth, hand or foot) or spatial possession (tool must be either within one meter of 

possessor or in passive contact with possessor's body, and tool can be readily identified as a 

previous tool of the individual). Transfer event types were further differentiated according to 

whether the tool possessor protested against the transfer (Table 1).   

 Requests: We coded all request behavior after first scoring video clips for whether or not 

audio was sufficient to detect vocalizations and whether visibility of the individuals involved in 
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the transfer was sufficient to allow for coding of manual gestures. In contrast to Gilby’s (2006) 

definition with respect to begging for meat, merely sitting and staring within three meters of a 

tool possessor was not sufficient to be considered begging in this study. This approach is 

justified given the well-known practice of young chimpanzees to observe tool use at close 

proximity (Lonsdorf, 2006). As such, to be classified as begging, both close proximity (within 

three meters) and orientation to a tool possessor had to be present and accompanied by either a 

whimper vocalization (Goodall, 1989; Nishida, Kano, Goodall, McGrew, & Nakamura, 1999; 

Plooij, 1984), a whimper face (Parr, Waller, Vick, & Bard, 2007), or a manual gesture. For 

example, if a whimper vocalization was detected, it was not scored as begging unless the 

individual was also in the possessor's proximity and oriented towards the possessor. Whimpering 

often occurred as an ongoing sequence and so was scored once per transfer event, while all 

manual gestures were coded and categorized as follows: manual gestures included reaches 

towards the fishing probe, where the individual extends a hand towards, or touches (but does not 

grasp), the tool in a slow manner indicative of a request, as well as hand-to-mouth begging 

gestures (Goodall, 1989; Plooij, 1984). If an individual first grasped a probe without a preceding 

request, this was considered an attempt to take, rather than to request the tool, and the 

classification of the transfer automatically diverted to the non-reactive transfer types.  

 Request Latency: We determined the amount of time in seconds that elapsed between the 

first request for a fishing probe and a change of possession. In the case of manual gestures, the 

time of the request was coded at the initiation of movement.   

 Resistance: We identified all occurrences of a possessor exhibiting a negative reaction in 

response to requests or attempts to take tools. This could include instrumental actions to prevent 

an individual from reaching for or getting a tool, for example extending a hand or foot to hold an 
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individual off or push an individual’s hand away. Resistance also included actions such as 

threatening the individual who requests or attempts to take a tool by baring teeth, lunging, or 

barking.  

4.3.3 Analyses  

 We first compared the rate of transfers of termite-gathering tools between sites for 14 

individuals at Goualougo and 9 at Gombe with a Wilcoxon-Mann-Whitney U-test (Siegel & 

Castellan, 1988), using the wmwTest function in the asht R package (Fay & Malinovsky, 2018; 

R Core Team, 2018). Alpha level was set at 0.05 for all analyses. Next we compared transfers of 

fishing probes to immature individuals between populations as well as resistance to transfers by 

tool possessors. We observed 112 fishing probe tool transfer events at Goualougo and 106 at 

Gombe. When analyzing tool transfers, we excluded Steals (n=8 at both sites), as the negative 

reaction from the possessor precludes them from being prosocial. We then excluded any 

remaining transfers for which individual identity or sex could not be assigned (n=13 transfers at 

Goualougo) or when it was not clear whether there was a request (n=2 at Goualougo). Steals 

were retained for analyses of resistance.  

 While it would be ideal to use precise ages to compare populations, these were not 

available for all individuals in the Goualougo Triangle study (initiated in 1999, compared to 

research at Gombe, which was initiated in 1960) and dramatically reduced our sample size. 

Therefore, we adopted Estienne, Robira, Mundry, Deschner, & Boesch's (2019) approach of 

classifying chimpanzee ages from camera trap footage into three age class bins (0-5 years, 5-10 

years, and 10-15 years).  

 We used Generalized Linear Mixed Models (GLMMs) (Baayen, 2008) with binomial 

error structure and logit link function (McCullagh & Nelder, 1989) to test our first prediction that 
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at Goualougo, compared to Gombe, chimpanzees would be more successful gaining possession 

of another’s tool. The key terms with fixed effects in this model were population and its 

interaction with request status (i.e., whether the potential recipient requested a tool transfer). We 

further included fixed effects for the main effect of request status, recipient age, and recipient 

sex. The identity of the possessor, the recipient, and the dyad (unique possessor-recipient 

combination) were included as random effects. We also examined the probability of tool transfer 

for the reactive transfers only, since these are considered a stronger indicator of prosocial 

motivation (Cronin, 2012; Jaeggi, Burkart, et al., 2010). As this model included only the subset 

of transfers that involved a request, it lacked the effects request status and the interaction of 

population and request status. Finally, we tested whether the tool possessor showed signs of 

resisting tool transfers. This model was identical to the tool transfer model. Sample sizes for 

these models were 187 observations (89 transfers) of 29 possessors and 28 recipients forming 42 

dyads (tool transfer model); 101 observations (49 transfers) of 22 possessors and 23 recipients, 

forming 31 dyads (reactive tool transfer model); and 201 observations (with 43 cases of 

resistance) of 31 possessors and 30 recipients forming 44 dyads (resistance model). 

Of the reactive transfers at Goualougo with known outcome, a subset of 38 both met the 

criteria for measuring latency and involved a change of tool possession; of the reactive transfer 

events at Gombe, a subset of 7 met criteria for measuring latency and involved a change of tool 

possession. However, we were unable to fit a model for assessing latency to transfer tools, 

largely because of the small number of data available for Gombe.  

In order to avoid cryptic multiple testing, we first compared each full model with a 

respective null model lacking population and the interactions it was involved in (if there was one 

in the respective full model) but was otherwise identical to the full model (Forstmeier & 
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Schielzeth, 2011). This comparison was based on a likelihood ratio test (Dobson 2002). 

 All analyses were conducted in R (version 3.4.4) (R Core Team, 2018). We fitted all 

GLMMs using the function glmer of the lme4 package (version 1.1-17; Bates, Mächler, Bolker, 

& Walker, 2015). We checked for absence of collinearity (Field, 2005) among predictor 

variables using the function vif of the package car (Fox & Weisberg, 2011) applied to a standard 

linear model lacking the random effects. Collinearity was not an issue in any of the models 

(Maximum Generalized VIF (squares of the nth root of GVIF, with n being twice the degrees of 

freedom of the respective predictor): tool transfer model: 1.249; reactive tool transfer model: 

1.26; resistance model: 1.228; Fox & Monette, 1992).   

 We assessed model stability by excluding levels of the random effects one at a time, 

fitting the respective full model to the subsets, and comparing the estimates derived with those 

obtained from the model for the whole data set. We tested the significance of the individual 

predictors using likelihood ratio tests comparing the full models with respective reduced models 

lacking the effect in question (Barr, Levy, Scheepers, & Tily, 2013; Dobson, 2002). To obtain 

confidence intervals of model coefficients we used a parametric bootstrap using the function 

bootMer of the package lme4 (Bates et al., 2015).  

4.4 Results 

4.4.1 Tool Transfers 

Transfer Rate 

 We detected a significant difference between populations in the rate of tool transfer 

behavior (Mann-Whitney estimate=0.21, 95% CI=0.04-0.46, P=0.026). Transfer rate for 

immature chimpanzees was an average of 0.06 transfers/minute at Goualougo (14 individuals, 

n=45 transfers) and 0.02 transfers/minute at Gombe (9 individuals, n=33 transfers). Transfer rate 
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at Goualougo ranged from 0–0.12/minute, and at Gombe from 0–0.09/minute. At both sites, 

there were several immatures who experienced multiple transfers on the same day (Goualougo, 

6/14 individuals; Gombe, 3/9 individuals).  

Possession Change of Fishing Probes 

 Tool transfer probability clearly differed between the two populations (full null model 

comparison: 2=16.195, df=2, P<0.001), whereby we found a significant interaction between 

population and request status (2=9.687, df=1, P=0.002). In fact, while the probability of a 

transfer was similar in Gombe and Goualougo when the tool was not requested, the probability 

of a transfer after a request was considerably higher in Goualougo as compared to Gombe (Fig. 

4.2; Appendix C, Table C.1). We also detected significant effects of the two control predictors 

recipient age (1.915±1.144, 2=7.260, df=2, P=0.027) and sex (-1.489±0.746, 2=4.064, df=1, 

P=0.044) whereby the probability of a transfer was higher in the 5-10 year age class relative to 

the 0-5 year age class, and was higher for females. 

 The reactive tool transfer model, including only the subset of transfer events preceded by 

request, also revealed a clear difference between populations, with a higher probability of 

transfer following a request at Goualougo compared to Gombe (full null model comparison: 

2=7.400, df=1, P=0.007; Fig. 4.3; Appendix C, Table C.2).  

Fishing Probe Transfer Event Types 

 With respect to types of tool transfer events, 63/110 (57.3%) at Goualougo and 47/106 

(44.3%) at Gombe were reactive (preceded by a request). At Goualougo, 48/63 of these requests 

(76.2%) resulted in a change of tool possession, compared to 7/47 requests (14.9%) at Gombe. 

The most common type of reactive transfer at Goualougo was Reactive Active (n=22, 19.6%), 

and this was also the most frequently observed transfer type at Goualougo overall (Table 4.1). 
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No Reactive Active transfer events occurred at Gombe. In contrast, the most numerous transfer 

event type was Reactive Refusal (n=40, 85%), consisting of a request followed by the 

possessor’s refusal to transfer the tool. 

 In both populations, immature chimpanzees also attempted to take tools without first 

requesting them. At Goualougo, novices were sometimes permitted to take tools without a 

reaction (Tolerated Take, n=15); novices also stole (Steal, n=8) or attempted to steal (Failed 

Steal, n=16) tools. At Gombe, chimpanzees were also permitted to take tools without a reaction  

(Tolerated Take, n=26), and, as at Goualougo, novices occasionally also stole (Steal, n=8) or 

attempted to steal (Failed Steal, n=15) tools.  

 

FIGURE 4.2. Tool transfer probability and how it depended on tool request status and 

population. Indicated are the fitted model and its confidence limits (horizontal lines with error 

bars), and the observed transfer probabilities per possessor. The area of the symbols depicts the 

number of possessors per population and request status with the same transfer probability, such 

that larger symbols correspond to a greater number of possessors at that value (range: 1 to 8).   
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FIGURE 4.3. Probability of reactive tool transfer and how it differed between populations. 

Indicated are the fitted model and its confidence limits (horizontal lines with error bars), and the 

observed transfer probabilities per possessor. The area of the symbols depicts the number of 

possessors per population with the same transfer probability, such that larger symbols correspond 

to a greater number of possessors at that value (range: 1 to 8). 
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TABLE 4.1 Definition of transfer types as well as counts and percentages of fishing probe 

transfer types for each population. n= number of transfers. 

a. Transfer types were categorized according to whether or not they were preceded by a request, whether a 

possession change occurred, whether the tool possessor protested the transfer, and whether at the time of transfer the 

tool was in use (U), Physical Possession (P) or Spatial Possession (S). The table excludes the 2 transfers for which it 

could not be discerned whether or not there was a request. b. Sensu Pruetz & Lindshield (2012), “active-passive” 

and “active” transfer.  c. Sensu Pruetz & Lindshield (2012), “passive”.  d. Transfers could be classified as a Reactive 

Hesitant transfer if a tool was in the possessor’s spatial possession at the time of possession change only if the tool 

was initially in use or physical possession. For example, a Reactive Hesitant was coded if there was a request after 

which the possessor dropped the tool on the ground, and the recipient took possession. e. If tool was in use or in 

physical possession, this is equivalent to "passive" if there is no begging; if tool was in spatial possession, this is 

equivalent to "recovery" (Pruetz & Lindshield, 2012).  f. Adapted from Gilby (2006). g. For similar approaches see 

Gilby (2006); Boesch & Boesch (1989); de Waal (1989, 1997b, 1997a); Stevens & Gilby (2004); and Pruetz & 

Lindshield (2012), “theft”. h. Includes one transfer that occurred in a play context. 

 

Transfer Typea Definition 

Goualougo  

(n=110) 

Gombe  

(n=106) 

n % n % 

Preceded by request      

Reactive Active 
Possessor moves to facilitate the transfer or divides 

the tool so that the recipient can take a portionb (U, 

P). 

22 20% 0 0% 

Reactive Passive 
Possessor allows the recipient to take tool. Possessor 

shows neither facilitation nor hesitationc (U, P). 
10 9.1% 2 1.9% 

Reactive Hesitant 

The recipient begs, then grasps the tool; the 

possessor transfers the tool only after delaying or 

resisting the transfer (U, P, Sd).  

12 10.9% 5 4.6% 

Reactive Refusal 

Possessor does not transfer tool despite begging; 

refusal can involve actively resisting transfer such as 

pulling away (U, P). 

14 12.7% 40 37.0% 

Reactive, Possession 

change 

Tool changes possession after a beg but the 

possessor's reaction is not visible, preventing further 

categorization  (U, P). 

4 3.6% 0 0% 

Reactive, unknown 

possession change 

It cannot be discerned whether tool changes 

possession after a beg, and the possessor's reaction is 

not visible, preventing further categorization (U, P). 

1 0.9% 0     0%  

Total number of requests 63 57.3% 47 44.3% 

Not preceded by request     

Proactive  
Possessor initiates transfer and tool changes 

possession (U, P). 
0 0 0 0% 

Tolerated Take 
Possessor allows recipient to take tool. Possessor 

shows neither facilitation nor hesitatione  (U, P, S). 
15 13.6% 26 24.5% 

Steal 

Recipient takes tool from possessor, who reacts 

negatively (e.g., attempts to keep tool or threatens 

the stealerf,g) (U, P, S). 

8 7.1% 8 7.4% 

Failed Steal 

Recipient tries unsuccessfully to take the possessor's 

tool. The possessor exhibits a negative reaction, as in 

"Steal" (U, P, S). 

16h 14.3% 15 13.9% 

Failed Attempt 
Recipient tries unsuccessfully to take the possessor's 

tool. The possessor does not react (U, P, S). 
8 7.1% 10 9.3% 

Total number of take attempts 47 42% 59 54.6% 
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4.4.2 Resistance  

The probability of resistance differed between populations (full null model comparison: 

2=7.211, df=2, P=0.027), and we again found a significant interaction between population and 

request status (2=4.688, df=1, P=0.030; Appendix C, Table C.3). In fact, while resistance 

probability was generally low in Goualougo and also in Gombe when there was no request, this 

probability more than doubled in Gombe following a request (Fig. 4.4). 

 

FIGURE 4.4. Resistance probability and how it depended on tool request status and population. 

Indicated are the fitted model and its confidence limits (horizontal lines with error bars), and the 

observed transfer probabilities per possessor. The area of the symbols depicts the number of 

possessors per population and request status with the same transfer probability, such that larger 

symbols correspond to a greater number of possessors at that value (range: 1 to 11). 

 

4.4.3 Request Behavior and Latency to Transfer  

Request behavior could be assessed for 31 transfers at Goualougo and 42 at Gombe. At 

Goualougo, requesting behavior most often involved a combination of reaching and whimpering 
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together (n=17 transfers), followed by just reaching (n=10 transfers), or occasionally just 

whimpering (n=5 transfers). At Gombe, reaching (n=22 transfers) and reaching and whimpering 

(n=17) were observed, while only whimpering was not. At Gombe but not Goualougo, hand-to-

mouth gestures were observed (n=3 transfers), twice along with reaches toward the tool and once 

in conjunction with whimpering.  

At Goualougo, the mean latency in seconds between an immature chimpanzee begging 

for a tool and a possessor relinquishing it was 11 seconds (SD=7, n=38 transfers). At Gombe, the 

mean latency to tool transfer was 15.8 seconds (SD=18.3, n=7 transfers). 

4.5 Discussion 

 Tool transfers are a common way in which humans scaffold the acquisition of skilled, 

tool-assisted foraging in novices, and these transfers exemplify the human propensity for 

prosocial helping. In this study, we systematically compared tool transfer behavior between two 

chimpanzee populations that use tools to gather termites. We found significant population 

differences in several indicators of prosociality, showing that prosocial helping was greater at 

Goualougo than at Gombe. First, we found that tool transfers occurred approximately three times 

as often at Goualougo as at Gombe. Second, we found that there was there was a higher 

probability of tool transfer following request at Goualougo. Request behavior makes an 

individual’s goals highly salient and so the possessor’s response to a request is a strong index of 

prosocial motivation (Cronin, 2012). Third, we found that requests were more likely to be met 

with resistance at Gombe than at Goualougo. Resistance behaviors provide a clear indicator that 

an individual is attempting to prevent tool transfer and are consistent with the differences found 

in prosocial response between Goualougo and Gombe. We further found population differences 

with respect to transfer types. We observed Reactive Active transfers only at Goualougo, and this 
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active donation was the most common response by tool possessors at Goualougo. In contrast, at 

Gombe, we did not observe any Reactive Active transfers.  

 Active transfers are common in humans but had not previously been quantified in other 

animal tool users in natural settings. In captivity, chimpanzees help flexibly according to a 

recipient’s needs (Yamamoto et al., 2012), and this behavior does not appear to be motivated by 

rewards (Warneken & Tomasello, 2008); nor does a desire to reduce harassment explain helping 

in captivity (e.g., Melis & Tomasello, 2013; Yamamoto, Humle, & Tanaka, 2009; Yamamoto et 

al., 2012) or among Goualougo chimpanzees (Musgrave et al., 2016). Thus, the voluntary, active 

transfers in this context provide a compelling indicator of prosociality (Jaeggi, Burkart, et al., 

2010).  

 Chimpanzees in captive settings have further been observed to proactively transfer 

objects, without a preceding request, and we have also documented this at Goualougo. For 

example, we observed a tool transfer in which a juvenile male approached his mother while self-

scratching but without gesturing or vocalizing, at which point his mother divided her fishing 

probe and provided him with one of the resulting tools (Supplementary Video). On another 

occasion, the same juvenile experienced difficulty inserting his fishing probe, at which point his 

mother handed her tool to him. While not included in the present analyses because they fell 

outside of the sample of video footage systematically screened for transfers, these interactions 

indicate that under certain circumstances chimpanzees can be sensitive not only to overt signals, 

but also to subtler signs of need (Jaeggi, Burkart, et al., 2010). 

 We detected significant population differences in fishing probe transfers between 

Goualougo and Gombe despite comparability of factors that are proposed to be important 

proximate regulators of prosocial response (Cronin, 2012; Jaeggi, Burkart, et al., 2010). These 
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include intrinsic motivation and physical capabilities (same species), social distance between 

individuals (at both sites, transfers occurred principally between mothers and infants), proximity 

to food (the tool task involves extraction of embedded Macrotermes termites), and opportunity 

for a potential recipient to signal their need by making a direct request (both tasks occur in 

terrestrial contexts where chimpanzees can approach and make gestural and vocal requests in 

close proximity). Indeed, in both populations we observed requests for tools in the form of 

manual gestures and/or vocalizations, after which the requestor was sometimes either given 

(Goualougo) or was allowed to take (Goualougo and Gombe) a fishing probe. Requests for tools 

have previously been documented for chimpanzees and in a few cases for orangutans, but not for 

other primate species (Cronin, 2012). Our findings further underscore this potential difference 

between species in how signals of need prompt prosocial helping (Table 4.2). Further, the 

similarity of requests at Goualougo and Gombe indicates that population differences did not 

result from differences in the requestor’s initiative, but from differences in the response of the 

tool possessors.  

 We suggest that these population differences in prosociality during tool use could reflect 

the differing complexity of the tool tasks between populations, particularly the material and 

design demands associated with production of tool sets at Goualougo. Transfers of fishing probes 

as well as other tool types in this context provides information about tool material and design and 

also provides an opportunity to practice with an appropriate tool. This may be particularly 

critical in cases where raw material and form influence tool effectiveness (e.g., Sousa, 2011; 

Sousa, Biro, & Matsuzawa, 2009; Tonooka, Tomonaga, & Matsuzawa, 1997), as is the case for 

brush-tipped fishing probes (Sanz et al., 2009) and likely also puncturing sticks. We have 

previously documented that tool transfers at Goualougo function as a form of teaching 
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(Musgrave et al., 2016). The present results thus highlight the intersection of high-fidelity social 

learning and prosocial helping in the context of this complex task, where it could be challenging 

for novices to acquire tools, and thus to develop tool skills, without assistance. 

TABLE 4.2. The proximate regulation of instrumental helping in the best-studied primate 

species. Table is adapted from (Jaeggi, Burkart, et al., 2010, Table 2). ++ = observed in 

experimental and natural contexts; + = observed in at least 1 context; - = absent in both contexts; 

(-) possibly absent or not yet documented. 

a. Does helping vary according to recipient need? 

b. Signals of need comprise direct requests such as whimpering or gesturing toward a desired object, while signs of 

need are not directed toward the actor, but indicate that the recipient needs assistance (e.g., struggling with a task).  

c. Do aspects of social relationship, such as kinship or dominance relationship influence helping?  

d. Does the possibility of being rewarded increase the probability of prosocial helping? 

e. Is prosocial helping adjusted to the perceived presence or size of an audience? 

f. Do actors help in the absence of any soliciting stimuli? 

 

 The demands of tool manufacture at Goualougo may also help to explain the significance 

of age as a predictor of tool transfer. Tool transfer probability was higher for individuals between 

the ages of 5-10 relative to those aged 0-5. At Goualougo, chimpanzees do not manufacture 

brush-tipped probes until, on average, after 4 years of age, with some individuals not observed 

independently making a tool until after age 5 (Chapter 2). They may continue to refine tool 

manufacture skills during the juvenile period and to use tools manufactured by skilled 

conspecifics even after they have begun manufacturing tools independently. Mothers appear to 

remain willing to transfer tools even to adolescent offspring, as we observed that 94% of transfer 

attempts involving recipients that were 10-15 years old (n=16, with 14 of these including a 

 
 

Humans Chimpanzees Bonobos Capuchins 

Needa ++  
(signals and signs) b 

++  
(signals and signs) 

- 
+  

(signals) 

Social distancec ++ + (-) (-) 

Rewardd - - (-) + 

 
Audiencee ++ (-) (-) (-) 

 
Proactivef ++ ++ - - 
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request) resulted in a change of possession. The age effect is principally the result of differences 

within the Goualougo data set, as individuals at Gombe rarely attempt to take or request tools 

after age 5. At Gombe, infants begin making fishing probes between the ages of 1.5-3.5 

(Lonsdorf, 2005). During the juvenile period, there may be less incentive to take or request 

conspecifics’ tools because of the comparative ease of tool manufacture.  

 The results regarding age are similar to patterns among chimpanzees in Taï Forest, Côte 

d'Ivoire; at both sites, social facilitation shows flexibility across development. Peak ages of 

facilitation during nut-cracking at Taï occur during late infancy and juvenility. Mothers and 

infants sometimes share a hammer between them, and mothers allow offspring to use their high-

quality hammers while settling for poorer quality hammers themselves (Boesch & Boesch-

Achermann, 2000; Boesch, Bombjaková, Meier, & Mundry, 2019). Identifying whether these 

interactions involve request and active movement on the part of tool possessors could clarify 

whether active transfers also occur in this tool task.  

 We also detected potential subtle variation in maternal responses to female versus male 

offspring’s attempts to take tools. In contrast to Taï, where male offspring receive more nuts and 

tools from mothers (Boesch & Boesch-Achermann, 2000), we observed that females in both 

populations were more successful at acquiring tools, and there was a significant effect of sex on 

likelihood of tool transfer, including both reactive and nonreactive transfers. At Gombe, female 

infants spent more time watching their mothers (Lonsdorf, 2005), so the observed difference 

could also be associated with females’ increased interest in or identification of opportunities to 

retrieve discarded tools. At Goualougo, further research will be required to help identify whether, 

like at Gombe, there are sex differences in activity patterns or social learning strategies that may 

help to account for this difference.  
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 Continued data collection will also help to illuminate how age and sex influence success 

upon request at Goualougo. Although we did not detect significant effects of age or sex in the 

model containing only reactive transfers, success upon request was 93% for females (26/28 

requests) and 62% for males (16/26 requests). In addition, the requests of older individuals were 

rarely refused. Stealing or attempting to steal tools was more characteristic of young infants, and 

individuals may increasingly adopt this more successful request strategy as they get older. At 

Gombe, transfers in response to requests are rare and typically unsuccessful regardless of 

requestor characteristics. 

 Despite the differences we observed between populations, our findings contribute to an 

increasing body of evidence that chimpanzees possess a robust and varied capacity for prosocial 

helping. In this context, we observed that chimpanzees at both Goualougo and Gombe were 

permitted to take possession of others’ tools, and at Goualougo, skilled individuals actively 

handed tools to others. While such active transfers do not appear to be prevalent among other 

species, tolerated taking may occur in macaques (Tan, 2016), capuchins (Eshchar, 2015; 

Eshchar, Izar, Visalberghi, Resende, & Fragaszy, 2016), New Caledonian crows (Holzhaider, 

Gray, et al., 2010) and possibly sea otters (Sandegren, Chu, & Vandevere, 1973). The lack of 

tool transfers in orangutans (Meulman, 2014) may be related to their arboreality, as terrestrial 

settings could increase opportunity for observation and retrieval of discarded tools (Meulman, 

Sanz, Visalberghi, & van Schaik, 2012). In future studies, documenting whether skilled tool 

users are still in proximity to tools they have set down and their reactions at the time these tools 

are procured by novices, could help to clarify the scope of tool transfer behavior across different 

species. 
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4.6 Conclusion 

  In the present study we employed standardized methods to compare prosociality in the 

tool-using context between two populations of wild chimpanzees. We found several indications 

of differences in prosocial helping between chimpanzees at Goualougo and Gombe during 

termite gathering, which could be related to the complexity of tool tasks between sites. Future 

study of other species, additional tool tasks, and on specific prosocial actions during tool use will 

add to our understanding of the types of social facilitation that promote the spread of technology, 

the extent to which such facilitation is flexible within species, and the potential relationship 

between task complexity and prosocial helping. The roles of prosociality and of particular social 

learning mechanisms such as teaching in the accumulation of technological complexity in 

humans are debated (Ambrose, 2001; Dean et al., 2012; Morgan et al., 2015; Tennie et al., 2009; 

Wynn, Hernandez-Aguilar, Marchant, & Mcgrew, 2011). We suggest that a propensity for 

prosocial helping may be shared between humans and chimpanzees and that prosociality may be 

an essential prerequisite of the cultural transmission of complex skills.  
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Chapter 5: Conclusion  
 The flourishing of technology is a hallmark of human evolution. High-fidelity social 

learning mechanisms, such as teaching and imitation (Fogarty, Strimling, & Laland, 2011; Galef, 

1992; Tennie, Call, & Tomasello, 2009), as well as prosocial helping (Dean, Kendal, Schapiro, 

Thierry, & Laland, 2012), are hypothesized to have been important for this process. In addition, 

sex differences in foraging tool use have been linked to the emergence of complex tool use in 

hominoids (Hunt, 2006; McGrew, 1979; Zihlman, 2012). In this research, our goal was to 

examine the influence of these factors on the acquisition of tool skills in chimpanzees of the 

Goualougo Triangle, Republic of Congo, and to compare the developmental trajectory of termite 

gathering to that for chimpanzees at Gombe, Tanzania. We employed ontogenetic methods 

because how young primates learn tool skills is key to understanding how behavioral traditions 

persist over time and across the landscape. In addition, comparing two populations enabled us to 

generate novel insights into how social facilitation may relate to task complexity.  

 Prior to this research, the acquisition of tool sets by wild chimpanzees had not been 

documented, and it was unknown how individuals of the Central subspecies learned to use tools 

to gather invertebrates. In addition, it has been widely held that the social transmission of tool 

skills among wild chimpanzees occurs largely through low-fidelity mechanisms and that 

teaching, in particular, is rare or absent in chimpanzees (Dean et al., 2012; Fogarty et al., 2011; 

Tennie et al., 2009). There has also been extensive debate regarding the degree to which 

chimpanzees are capable of or motivated to provide prosocial assistance, both in tool-using and 

other contexts (e.g., Horner, Carter, Suchak, & de Waal, 2011; Melis et al., 2011; Silk, Brosnan, 

Henrich, Lambeth, & Shapiro, 2013; Silk et al., 2005; Tennie, Jensen, & Call, 2016; Yamamoto, 

Humle, & Tanaka, 2012; Yamamoto, Humle, & Tanaka, 2009). Finally, to date there have been 

varying results with respect to the detection of sex differences in object manipulation and tool 
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use among immature chimpanzees (e.g., Boesch & Boesch-Achermann, 2000; Humle, Snowdon, 

& Matsuzawa, 2009; Koops, Furuichi, Hashimoto, & van Schaik, 2015; Lonsdorf, 2005). In this 

chapter, I summarize our main results, and I discuss plans for future research that could build 

upon particular findings. I then consider the broader implications of this research for modeling 

the pedagogical settings accompanying the tool behavior of early hominins.  

5.1 The Acquisition of Tool Sets 

 In Chapter 2, my co-authors and I examined the acquisition of termite-gathering critical 

elements. The use of a longitudinal dataset proved critical. As predicted based on pilot data 

(Musgrave, Bell, Morgan, Lonsdorf, & Sanz, 2015), we found that the process of gaining 

technical competence extends into subadulthood. Chimpanzees performed simple manipulations 

before using tools in combination with the termite mound and became proficient at using single 

tools (fishing probes) before using perforating and puncturing tool sets. The ages at which 

individuals were first detected using perforating tool sets varied widely relative to the ages at 

which they were first documented successfully extracting termites. Puncturing competency was 

acquired last. These findings aligned with predictions of the Perception-Action model (Lockman, 

2000) and with results for other species that the development of flexible tool skills reflects 

maturation of particular sensorimotor skills. In addition, the later development, on average, of 

sequential behaviors – both in terms of the correct integration of ordered steps for termite 

fishing, and in the deployment of multiple tools in sequence – suggests that managing different, 

causal relationships in serial order draws upon cognitive skills including causal reasoning and 

planning. We will expand upon the present work by examining the ages at which individuals 

acquire adult-like efficiency, as well as the types of errors made by infant and juvenile 

chimpanzees, to further clarify how sensorimotor and cognitive demands constrain tool actions at 
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different ages. This would also help us to better understand the differing challenges of concurrent 

versus sequential tool use for primates (Fragaszy & Mangalam, 2018).  

Perforating at Epigeal Nests 

 The variation in ages at which individuals were first observed using perforating tool sets 

in the epigeal nest setting was striking. One contributing factor is likely that termite exit holes 

are routinely opened manually, rather than with a tool. Perforating activity may also relate to 

season. Termites maintain the nest surface to maintain precise climatic conditions within the 

mound, and this could vary seasonally, affecting the relative difficulty chimpanzees encounter 

piercing the external crust. However, it is not clear why there are differences in whether and 

when young tool users begin perforating. Adults in this population show variation in their tool 

repertoires, including their use of perforating tools (Sanz & Morgan, 2011), so future work will 

examine whether young chimpanzees’ use of perforating tools is correlated with perforating tool 

use by mothers or other social associates. Another possibility is that individual mothers vary in 

their willingness to share tool sites. A greater willingness by mothers to provide access to opened 

exit holes could reduce the likelihood that an infant initiates perforating tool use. One possibility 

for future research would be to score all transfers of tool sites to examine whether there is 

variation in this behavior by skilled associates.  

Puncturing at Subterranean Nests 

  In the subterranean nest context, we routinely observed young chimpanzees attempting, 

unsuccessfully, to create new fishing tunnels; inserting puncturing tools into tunnels just created 

by older specifics; or, particularly as they began to increase in body mass during later juvenility, 

using puncturing tools to clear tunnels partially created by older conspecifics. Young 

chimpanzees’ efforts to create new tunnels with puncturing tools do not result in access to 
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subterranean nest chambers, and even efforts in partially cleared tunnels are often unsuccessful. 

This raises questions of what stimulates or reinforces their efforts in this context, and whether 

successful puncturing of a new tunnel is principally a function of body mass or also varies 

depending on practice and knowledge of where and to what depth to puncture. The practice of 

conspecifics is known to stimulate nut-cracking activity in novice capuchins (Eshchar, Izar, 

Elisabetta, Resende, & Fragaszy, 2016), but it is not yet clear to what extent nonhuman primates 

are sensitive to variable effort and success in models. Human infants are more persistent in 

experimental tasks when adult models show more persistent efforts to achieve goals versus when 

models succeed easily (Leonard, Lee, & Schulz, 2017). In addition, persistence is a critical 

predictor of a variety of life outcome measures, such as academic performance, in humans 

(Martin, Ryan, & Brooks-Gunn, 2013). To examine persistence in chimpanzees, we have 

undertaken a longitudinal study of puncturing during termite gathering at subterranean nests. We 

are investigating whether chimpanzee infants differ in the time and effort they use attempting to 

puncture termite nests, how this varies with age and between the sexes, and whether proximity to 

persistent models – those who exhibit greater puncturing effort – impacts the persistence of 

novice tool users.  

5.2 Sex Differences in Tool Skill Acquisition 

 The overall trajectory of skill acquisition for termite gathering was similar for males and 

females at Goualougo. This contrasts with Gombe, where males learned to termite fish over two 

years later than did females. We did find that females at Goualougo acquired most critical 

elements before males did and learned to fish several months earlier. Males, in contrast, were 

observed making tools on average 6 months earlier than females. These results nonetheless 

highlight the possibility that sex differences of large magnitude, such as those at Gombe 
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(Lonsdorf, 2005; Lonsdorf, Eberly, & Pusey, 2004), may not be a ubiquitous feature of tool skill 

acquisition in chimpanzees. Whether or not sex differences are detected, for tool use or other 

behaviors, likely reflects dynamic interactions among many factors (Lonsdorf, 2017; Meredith, 

2015). For tool use, this may include social learning strategies (Lonsdorf, 2005); nature of the 

task, such as level of risk (Humle et al., 2009); the precise sensorimotor demands (Fragaszy & 

Mangalam, 2018); treatment by mothers (Boesch & Boesch-Achermann, 2000); as well as 

potential biological differences in disposition towards or skill in object manipulation (Koops et 

al., 2015).  

 It is also essential to consider that the relatively small sample sizes that often characterize 

developmental studies (Chapter 2, Table 2.1) affect the ability to detect sex differences. 

Differences that are not statistically significant may represent meaningful variation in biology 

and behavior that merits further study. A synthetic understanding of sex differences in 

chimpanzee tool use will require additional studies to elucidate the various potentially relevant 

factors and how they interact in different ecological and social settings. A next step in this 

research will be to examine whether females and males at Goualougo show comparable activity 

patterns (e.g., time spent in goal-directed termite-gathering activity versus playing) and 

comparable observation of conspecifics, or whether, like at Gombe, there are sex differences in 

these behaviors that can help to explain the differing ages at which males and females learn to 

termite fish (Lonsdorf, 2005).  

 At Gombe, male and female chimpanzees spent similar amounts of time termite fishing 

once they reached juvenility – i.e., once all males had acquired the task by age 5.5, the 

differences in time spent fishing that were evident in infancy, disappeared (Lonsdorf, 2005). 

Thus, it is not immediately clear whether or how sex differences in infancy foreshadow adult sex 
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differences in foraging strategies, including termite fishing (Goodall, 1968; McGrew, 1979). 

Continued research is necessary to clarify what the potential links are between sex differences in 

infant tool use and adult tool use. This will require attention to the nature of any observed 

differences (e.g., proficiency, frequency of visits, duration of visits, diversity of tool repertoire), 

as this has implications for understanding the possible adaptive basis. It would also be instructive 

to examine this in the broader context of variation in dietary strategies between the sexes and 

according to female reproductive status. 

5.3 The Role of Artefacts and Tool Transfers 

 One of the most notable differences we discovered between Goualougo and Gombe 

relates to the pattern of acquiring tool use versus tool manufacture. At Gombe, chimpanzees 

learned to make tools at or before the time they learned to fish, while at Goualougo, chimpanzees 

learned to fish before they learned to make tools. We suggest that the opposite pattern observed 

could be related to the differing requirements associated with tool manufacture. We further 

observed that it was rare for infants at Goualougo to detach raw material (such as a leaf) and to 

attempt, unsuccessfully, to use this as a tool. Instead, infants learning to fish typically used 

discarded tools, or they received tools from more skilled conspecifics. These findings accord 

with the increasing appreciation for the critical role artefacts play in scaffolding technical 

competence across taxa (Fragaszy et al., 2013). Tool sites, including the tools and debitage of 

past tool users, are constructed niches that can influence learning and scaffold the tool-using 

behavior of the individuals who visit. At the same time, our observations of direct tool transfers 

in this setting represent a notable departure from what has been documented in most other 

species. This indicates that there may be species differences with respect to awareness of or 

willingness to act in response to a novice’s need for a tool.  
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Tool Transfers as Teaching  

 Given the potential pedagogical benefits of tool transfers, in Chapter 3 we investigated 

whether tool transfers in the termite-gathering context at Goualougo comprised a functional form 

of teaching. We adopted the teaching criteria proposed by Caro and Hauser (1992), and using 

three different measures (time spent termite gathering, fishing rate, and feeding rate), we found 

that transfers satisfy functional criteria for teaching: transfers occur principally between mothers 

and infants, are costly to tool donors, and provide knowledge and learning opportunity for tool 

recipients. We further documented “buffering strategies”, whereby tool donors reduced the cost 

of tool transfers by bringing multiple tools in advance or splitting their tools lengthwise and 

relinquishing half to the recipient (Musgrave et al., 2016). A natural follow-up study to increase 

our understanding of planning in this context will be to examine whether there are differences 

among individuals – for example, females with and without offspring – in transport of multiple 

tools. Multiple tool transport would have obvious potential advantages for any individual, but 

particularly for those with infant or juvenile offspring who do not yet manufacture their own 

tools.  

   Costly facilitation such as tool transfers is predicted when it would be difficult for the 

receiver of the help or information to acquire it another way. Further, it is expected to be 

ubiquitous if it is necessary (Thornton & Raihani, 2008). We documented tool transfers across 13 

different donors, principally mothers, over a multi-year period, and we continue to observe these 

behaviors. Thus, tool transfer appears to be a widespread behavior. Given the differences in 

when young chimpanzees manufacture versus use tools in this population, the provisioning of 

tools in this context could be related to the challenges tool manufacture poses to young 

chimpanzees.  
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 A recent comparison of the acquisition of Panda nut cracking between Mbendjele 

foragers from the Republic of Congo and the Taï chimpanzees from Côte d’Ivoire found 

evidence for teaching by both species in this context. There was a greater diversity of teaching 

intervention types, as well as more intensive interventions, by humans (Boesch, Bombjaková, 

Meier, & Mundry, 2019). The authors defined teaching broadly to encompass behaviors such as 

leaving collected nuts on an anvil for novices to crack, and relinquishing hammers to novices 

(Boesch, 1991; Boesch & Boesch-Achermann, 2000). The Technical Intelligence Hypothesis 

(Byrne, 1997) would predict that among the great apes, humans will be quickest to acquire 

technical skills due to having the most sophisticated skills of physical cognition. However, 

according to the same efficiency measures, chimpanzees learned to crack the hard-shelled Panda 

nuts more quickly than did humans (Boesch et al., 2019). The Life History Hypothesis (Kaplan, 

Hill, Lancaster, & Hurtado, 2000; Kaplan & Robson, 2002) would predict humans to acquire 

nut-cracking skills more slowly, but to be more skilled once they did. However, adult 

efficiencies were comparable between species. These counterintuitive findings could be related 

to the fact that in humans, nut-cracking sometimes involves use of the sharp edge of a blade as 

an anvil, which may be more difficult to learn. In addition, humans typically acquire a much 

broader array of technical behaviors between ages 2 and 7, whereas chimpanzee can concentrate 

the development of technical skills on a smaller number of tasks (Boesch et al., 2019). This 

highlights the importance of considering the acquisition of a skill not in isolation, but relative to 

the broader ecological and social context, including the other skills an individual must acquire.  

 We plan to expand upon the present research on the development of tool-using skills in 

the termite-gathering context in several ways in order to help achieve this. We are presently 

working with collaborators to assess skilled actions in the termite-gathering context (Ortiz et al., 
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2018). By assessing proficiency measures ontogenetically in infants and juveniles, we could 

provide results for comparison to the nut-cracking context, as well as to tool use in other species. 

In addition, we have plans to examine when chimpanzees in this population develop competence 

at other technical skills, such as leaf sponging and honey gathering in the arboreal context. This 

will provide an even more complete picture of how sensorimotor skill, technical intelligence, and 

life history variables influence the “learning curves” (Boesch et al., 2019) of different tasks 

within and between species. Examining arboreal tool behaviors will also enable us to assess how 

arboreal versus terrestrial setting might affect learning opportunity (Meulman, Sanz, Visalberghi, 

& van Schaik, 2012; Meulman & van Schaik, 2013). Leaf sponging is relatively simple 

compared to honey gathering, which involves the flexible use of multiple tool types in sequence. 

Investigating the acquisition of these behaviors could thus provide further insight into whether 

and how learning mechanisms vary between tasks of differing complexity. 

5.4 Insights from a Functional Approach to Teaching 

 As discussed in Chapters 1 and 3, high-fidelity social learning can facilitate the 

transmission of skills or information too “opaque” to be transferred by lower-fidelity 

mechanisms. The capacity for and reliance on these mechanisms are hypothesized to have 

conferred evolutionary advantages by enabling the flourishing of cumulative culture (Boyd & 

Richerson, 1996; Kempe, Lycett, & Mesoudi, 2014; Tennie et al., 2009). Some researchers have 

suggested that only humans truly show teaching because only humans possess adequate faculties 

for joint attention and theory of mind (Kruger & Tomasello, 1998; Tomasello, Kruger, & Ratner, 

1993). This cognitive or “mentalistic” perspective (Kline, 2015) emphasizes the ubiquity of 

intentional teaching in humans, and some have proposed that humans have evolved particular 

psychological adaptations for teaching (Csibra & Gergely, 2009). 
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 However, there is no consensus on the prevalence of intentional teaching cross-culturally 

despite a long history of anthropological inquiry into this question (e.g., Mead, 1970). From one 

perspective, intentional teaching of children is considered principally a characteristic of 

“WEIRD” - Western, Educated, Industrialized, Rich, Democratic (Henrich, Heine, & 

Norenzayan, 2010) societies (Lancy & Grove, 2010). When intentional teaching is reported 

outside of WEIRD societies, such as among Fijians on the Yasawa Islands (Kline, Boyd, & 

Henrich, 2013), it has been criticized on the basis of response bias from the interview setting. For 

example, Little and Lancy (2016) suggest that as a result of exposure to missionary influence and 

Western schooling, respondents were inclined to report didactic pedagogical techniques when in 

fact such practices did not occur. Others have argued that reports of the absence of teaching 

outside of WEIRD societies may be exaggerated, particularly when more informal methods are 

considered. For example, among Aka and Bofi hunter-gatherers, mothers have been observed 

demonstrating use of tools (Hewlett, Fouts, Boyette, & Hewlett, 2011). On the basis of a review 

of 982 ethnographic texts from the Human Relations Area Files, teaching was found to be the 

most common social learning method among hunter-gatherers (Garfield, Garfield, & Hewlett, 

2016). However, the authors note that extensive focus on teaching by researchers may have 

biased how frequently this is reported.  

 A range of theoretical-definitional issues as well as methodological variation may thus 

lead researchers to come to differing conclusions about the extent to which humans across 

societies rely on teaching to transmit skills to novices. Further, the diversity of results may 

reflect the reality that the occurrence of teaching - including teaching through more informal, 

less didactic interactions – likely varies considerably cross-culturally, historically, 

ontogenetically, as well as according to task difficulty (Kline, 2015, and peer commentaries). For 
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humans, as well as for other taxa, there is still much to investigate and understand about this 

topic, including the best way(s) to operationally define teaching (Eshchar & Fragaszy, 2015), the 

relationship between causal opacity and teaching (Hernik & Gergely, 2015; Moore & Tennie, 

2015) and the importance of teaching relative to other social learning mechanisms (Garfield et 

al., 2016). A functional approach has the advantage of being fully compatible with 

complementary inquiry into what biological, cultural, or cognitive factors support teaching 

behaviors. In adopting a functional approach to assess teaching in Chapter 3, we identified a 

context in which skilled chimpanzees, at a cost to themselves, provided less skilled tool users 

with information and an opportunity to practice their skills. This laid a foundation for examining 

tool transfers in Chapter 4 in broader perspective. 

5.5 Population Differences in Prosociality 

 In Chapter 4, we examined tool transfers from the theoretical framework of prosociality. 

This helped to link our functional results for teaching to discussions about what abilities or 

propensities might support this form of high-fidelity social learning among Goualougo Triangle 

chimpanzees. More broadly, this approach allowed us to gain insights about inter and 

intraspecific variation in prosocial helping during tool use. Like teaching, prosociality has been 

proposed to be an important factor enabling cumulative culture (Dean et al., 2012; Tomasello, 

1999). We undertook a direct comparison of tool transfer between Goualougo and Gombe, in 

order to see whether the rate and spectrum of prosocial helping varied between two settings 

where task complexity differed.  

 Broadly, the willingness of chimpanzees at both Goualougo and Gombe to allow 

chimpanzees to take tools suggests that the transfer of tools is an important way in which experts 

scaffold skill development in chimpanzees and in humans. This was notable with respect to the 
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relative lack of transfers reported for other taxa. However, more explicit investigation of the 

prevalence of “tolerated taking” transfers in other taxa will be fruitful. Specifically, further 

clarification is needed regarding whether some instances of youngsters retrieving discarded tools 

(e.g., New Caledonian crows picking up tools that had previously been used by parent birds) 

would comprise transfers according to our definition.  

 Despite the comparable occurrence of tolerated-taking transfers between chimpanzee 

populations, we found significant population differences in the rate, probability, and types of tool 

transfer that occurred at Goualougo versus Gombe. We suggest that these multiple indicators 

comprise robust evidence for population differences in prosociality in the tool-using context. 

Chimpanzees at Goualougo transferred tools at three times a higher rate than did chimpanzees at 

Gombe. The average rate (0.06 transfers/minute) of tool transfer for individuals that we 

documented at Goualougo was similar to that (0.05 times/minute) reported by Boesch et al. 

(2019) for humans in the nut-cracking context. We further found that there were population 

differences in the probability of tool transfer upon request, which is a more precise indicator of 

prosocial motivation than passive tolerance of a transfer that occurs without a preceding request. 

Further, the frequency of active tool transfers upon request, and the complete absence of active 

transfers at Gombe, was emblematic of the striking population differences. This is the first study 

to employ identical methods to compare and document differences in prosociality during tool use 

among wild chimpanzees.  

The Role of Request in Tool Transfer 

 We scored requests for tools in order to better understand what prompted tool transfers 

and whether or how this differed between populations. Captive studies have reported varying 

results regarding the impact of request on likelihood of tool transfer (summarized in Cronin, 



158 

 

2012; Marshall-Pescini, Dale, Quervel-Chaumette, & Range, 2016). In Chapter 3, we noted that 

the “sharing under pressure” or harassment-reduction model does not appear to explain tool 

transfers among Goualougo chimpanzees, as costs to tool donors went up rather than down after 

relinquishing tools (Musgrave et al., 2016). Captive chimpanzees will transfer specific items a 

conspecific requires even when they are physically separated from the other individual (e.g., 

Yamamoto et al., 2012), which also suggests that motivation to ward off harassment is not what 

leads to sharing. We found that begging durations at Goualougo were relatively short and were 

shorter on average than begging durations at Gombe. This faster response time is consistent with 

the interpretation that tool transfer is not only more common but has a more prosocial basis at 

Goualougo than at Gombe (Rosati, DiNicola, & Buckholtz, 2018).  

 There may be a similar population difference between Gombe and Taï with respect to the 

basis for food sharing, including meat sharing after hunting. At Gombe, chimpanzees’ requests 

for meat comprise a form of costly harassment such that meat possessors are motivated to share 

by a desire to reduce the energy costs associated with defending food from beggars (Gilby, 

2006). Among Taï chimpanzees, however, sharing of food including meat is most strongly 

predicted by enduring social bonds, not harassment. Begging durations were shorter between 

more closely bonded individuals, and retaliation in response to begging was rare (Samuni et al., 

2018). In addition, increased oxytocinergic activity while engaging in hunting behavior supports 

a cooperative interpretation of group hunting activities (Samuni, Deschner, Crockford, Wittig, & 

Preis, 2018). Together with our results, these findings provide complementary evidence that 

helping and sharing, and the proximate motivators of these behaviors, can differ substantially 

between populations. 

 Another possible interpretation of our results for active sharing is that past instances of 
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harassment have stimulated increasingly active tool transfer behavior among Goualougo 

chimpanzees, i.e., that individuals have learned that relinquishing a tool, though costly, is less 

costly than refusing a request or withstanding prolonged begging. It is not clear why, however, if 

reducing harassment is the primary motivator, this would apply to mothers at Goualougo but not 

at Gombe. Infants in both populations make requests, and at Gombe, these begging bouts 

sometimes involved persistent gesturing and whimpering. There was no indication that begging 

was more disruptive at Goualougo than at Gombe. Given that mothers at Gombe could more 

easily manufacture a suitable replacement, it is particularly striking that they would be less 

willing to relinquish their tools. Thus, even if harassment reduction plays some role in either or 

both populations, it does not fully account for the transfer of tools or for population differences. 

Tolerance versus Prosociality 

 We also examined rates of resistance in order to further contextualize any observed 

population differences in prosociality. In both populations, mothers were extremely tolerant and 

severe reactions were extremely rare. Infants routinely peered in close proximity, climbed on 

their mothers’ bodies, and were permitted to touch her arms and hands during tool use. However, 

despite being generally tolerant, mothers at Gombe were twice as likely to show resistance 

specifically after request for a tool - further highlighting that prosociality is not simply a 

byproduct of tolerance. Related to this, we do not have evidence at present that there is an 

ecological basis for mothers at Gombe to be more likely than those at Goualougo to perceive 

infant tool use as a form of competition – i.e., we have no evidence that there is a greater 

perceived scarcity of locations to use tools that might be mitigating willingness to transfer tools. 

However, in future research we could attempt to quantify the density of available potential tool-

using localities relative to the number of individuals typically present.  
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 Given that chimpanzees in both populations make requests, the differential responses by 

mothers indicate flexibility within species regarding sensitivity to requests. It is unknown to what 

extent mothers’ differential willingness to transfer tools reflects understanding of the relative 

challenges of the manufacture process in each population. In further research, we could follow 

up on whether there are subtle differences in request that cue increased or decreased sharing. For 

example, in meerkats, changes in pups’ begging calls cue changes in how mothers and helpers 

facilitate foraging competence (Thornton & McAuliffe, 2006).  

Linking High-Fidelity Social Learning and Prosociality 

 While there has been some discussion of the relevance of prosociality for understanding 

the evolution of cumulative culture (e.g., Dean et al., 2012) research endeavors focused on 

teaching and high-fidelity social learning are often undertaken separately from those examining 

the evolution of prosociality, the latter focusing more on the implications of prosociality for 

fairness, altruism and cooperation among unrelated individuals (e.g., Horner et al., 2011; Jaeggi, 

Burkart, & Van Schaik, 2010; Silk et al., 2005) than for information transfer specifically. As 

mentioned in Chapter 1, however, many aspects of mother-infant interactions are highly 

cooperative. Regardless of whether foraging or technical skill acquisition were primary selective 

contexts for the skills and motivations underlying prosocial helping, prosociality provides an 

effective framework for examining the spectrum of helping behaviors between skilled 

individuals and novices during tool use. Taking this approach allowed us to examine tool transfer 

more synthetically – both from the functional perspective of how it serves as teaching in the 

Goualougo Triangle, and to better understand whether and how helping behavior varies between 

tasks of differing complexity. Examining tool transfers from the perspective of prosociality also 

provided insights that might not have been as evident if we worked exclusively from existing 
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theoretical schemas. For example, while both active transfers and tolerated-taking transfers could 

be defined as “opportunity provisioning” (Hoppitt et al., 2008; Kline, 2015), examining the 

varying prosocial basis of transfers allowed further, standardized investigation of how 

opportunity provisioning was accomplished in each population.  

 A next step in this research will be to relate milestones of skill acquisition documented in 

Chapter 2 to measures of social learning, including teaching, enhancement and observational 

learning, to examine to what extent social facilitation is related to skill over a longer time period. 

It is also of interest to assess whether these differences persist into adulthood, in order to further 

examine potential fitness implications of social facilitation. An additional intriguing possibility 

would be to examine whether variation in tool transfer behavior across mothers predicts variation 

in this behavior among offspring as they mature, in order to gain insights into the ontogenetic 

origins of prosocial behavior in wild chimpanzees. 

5.6 Broader Implications for the Study of Human Evolution 

 The “Island Test” (Tennie, Braun, Premo, & McPherron, 2016; Tomasello, 1999) is a 

thought experiment for considering the role and importance of social learning in the transmission 

and maintenance of a behavior. It asks whether an individual alone on an island, with the 

appropriate materials and target resources, could invent the behavior in question, or whether 

social learning, particularly high-fidelity mechanisms including teaching and imitation, would be 

necessary for the behavior to persist in a population. Tennie et al. (2016) posit that the 

archaeological record for Oldowan and potentially even Acheulean tool behavior does not 

exhibit compelling evidence of tool use of sufficient complexity, or of geographic or temporal 

variation at high enough levels, to indicate high-fidelity social learning and cumulative culture.   

 One of the principal arguments made in support of this position is that early hominin tool 
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behavior is comparable to that of great apes, for which there is posited to be a lack of evidence 

for teaching or imitation (Tennie et al., 2009). Others have also made the argument that the 

technical capacity of Oldowan hominins was no greater (was within the “adaptive grade”) than 

that of extant apes – but have focused on the shared presence, not absence, of diverse, variable, 

complex tool behaviors in both groups (e.g., Wynn & McGrew, 1989; Wynn, Hernandez-

Aguilar, Marchant, & Mcgrew, 2011). These debates highlight that along with the archaeological 

record itself, experimental archaeology, and brain imaging studies, the complex tool behaviors of 

living apes are key to how we think about and attempt to reconstruct the evolution of hominin 

culture and cognition (Toth & Schick, 2018).   

 We established that high-fidelity social learning occurs in the context of termite gathering 

among chimpanzees, and that these interactions are supported by a flexible propensity for 

prosocial helping. We examined just one type of social learning and one type of interaction. In 

future research, we will further explore what strategies govern chimpanzees’ use of different 

social learning strategies, and whether there is evidence for imitation in these tool-using 

contexts. Many researchers would argue that there is, in fact, already compelling evidence for 

ape imitative capacity (e.g., Horner & Whiten, 2005; Lonsdorf, 2005). At this time, it is not 

possible to differentiate with certainty which if any of the skills involved in the termite-gathering 

tasks examined here could be invented independently, or with the support of only low-fidelity 

social learning. However, considering the example of termite gathering in the subterranean 

context is instructive. For a naïve individual, engaging in this behavior would require first 

finding an underground nest; these can often be cryptic, as termites can exit the nest to forage via 

tunnels that extend far from the nest chambers themselves. Suitable raw materials for both the 

puncturing and the fishing tasks must be chosen and located from among the myriad plant 
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species present. Rather than simply use detached herb materials to fish, individuals manufacture 

brush tips onto the ends of tools. Fishing for termites at subterranean mounds also requires that a 

tunnel first be punctured through the ground. It is difficult to imagine that individuals would 

independently and consistently converge not only upon the practice of termite gathering, but 

upon sequential use of these two tools, identical raw material choices, and brush-tipped probe 

manufacture.  

 It is also not clear whether on the basis of low-fidelity social learning alone individuals 

could acquire this knowledge and learn to integrate these different actions into the same 

sequences so as to maintain these behaviors at the population level. Undoubtedly, stimulus and 

local enhancement play a critical role in skill acquisition, and the importance of these 

mechanisms for many taxa has likely been underemphasized until recently (e.g., Fragaszy et al., 

2013). In fact, there is no evidence that cumulative culture cannot develop via these mechanisms 

alone, though high-fidelity mechanisms can provide very significant benefits (Morgan, 2017). 

Despite the likely importance of low-fidelity mechanisms, however, the occurrence of teaching 

among Goualougo Triangle chimpanzees indicates that at least in some contexts, high-fidelity 

social learning occurs: it comprises part of the repertoire of mechanisms by which behaviors are 

passed on between individuals.  

 Oldowan tool use appears at least as complex as what is observed in extant apes. For 

example, unlike extant apes, with the exception of apes in captivity who learned to do so (Schick 

et al., 1999; Toth & Schick, 2009; Toth, Schick, Savage-Rumbaugh, Sevcik, & Rumbaugh, 

1993) the hominins who produced Oldowan tools routinely used one tool to make another, 

suggesting comparable abilities of causal reasoning and planning, as well as sensorimotor skill 

(Toth & Schick, 2018; Wynn et al., 2011). It is also important to remember that while hominin 
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tool skills are manifest in the archaeological record principally through stone tools, these were 

likely but a fraction of the broader tool kits (Toth & Schick, 2009) and total technological 

systems (de la Torre, 2017) that characterized hominin lifeways. It thus seems parsimonious that 

these hominins would have had social learning capacities comparable to or greater than those of 

extant apes. Given evidence for both teaching and imitation in chimpanzees, it also seems likely 

that the capacity for high-fidelity social learning would have been part of the suite of factors –

e.g., postural/locomotor, cognitive, social, dietary, morphological, neurological – that 

accompanied the flourishing of technical skills and practices in human evolution. Further, rather 

than think of high-fidelity social learning as emerging only once, it is also possible that it 

emerged multiple times, being variably lost and retained across different populations of hominins 

(Luncz & Haslam, 2017).   

 Our results also lend support to the perspective that the ability and propensity for 

prosocial helping may be shared among humans, bonobos, and chimpanzees (Krupenye, Tan, & 

Hare, 2018; Melis, 2018; Melis & Warneken, 2016; Tan & Hare, 2013; Warneken & Tomasello, 

2009), rather than represent strictly a derived capacity that emerged with the adoption of 

cooperative breeding (Burkart, Hrdy, & van Schaik, 2009; Hrdy, 2009). The flexible, targeted 

helping chimpanzees offer in captive settings (Yamamoto et al., 2012) and our observations that 

at least sometimes, help is offered in the absence of a direct request (Chapter 4), indicate that 

nonhuman apes do, if rarely, even offer help proactively. Our results nonetheless align with prior 

findings suggesting the general importance of request in eliciting prosocial helping in 

chimpanzees. Among apes, humans appear distinctive in the flexibility and scope with which 

they offer assistance to related and unrelated individuals both with and without request (Jaeggi et 

al., 2010). It is plausible that selection to enhance intrinsic sensitivity not only to signals of need 
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(e.g., a novice making a begging gesture), but to subtler signs of need (e.g., a novice lacking a 

needed tool) (Jaeggi et al., 2010) could have accelerated learning in tool contexts during hominin 

evolution. The striking differences in prosociality we observed between Goualougo and Gombe 

in the termite-gathering context suggest an enhanced role for prosocial helping during difficult 

tasks. This is one context among many others – e.g., care of offspring, food sharing, territory or 

resource defense – in which enhanced initiative for cooperative acts could have conferred fitness 

benefits. 

 It is unequivocal that humans possess distinctly rich technologies that are unparalleled in 

complexity and that highly specific cultural practices govern the learning of technical skills. As 

discussed by Ingold (1997) and highlighted by Stout (2002:694), “Technology itself is an 

inherently social phenomenon”. To some extent, this statement is also helpful when considering 

the “Island Test” for the tool behaviors of our closest living relatives in evolutionary perspective. 

Under normal circumstances, infant chimpanzees are rarely if ever alone; they experiment in 

tool-using environments that are structured by the past actions of other tool users; they often use 

tools that were previously selected and modified by others, including tools that have been 

actively provided to them; and they routinely observe others’ tool use. Further, the group into 

which young chimpanzees are born exerts a substantial effect on the behaviors they will come to 

learn – both with respect to tool use as well as other domains such as courtship and 

communication (Boesch, 2012; McGrew, 1992; Whiten et al., 2001). It seems increasingly clear 

that social factors thus contribute to the canalizing of behavior within groups, even as broader-

scale regional patterns may emerge due to overlapping ranges or immigration of individuals 

between groups confronting similar ecological challenges. This is compatible with the 

interpretation that tool repertoire diversity in the Oldowan is related at least in part to social 
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factors (Stout, Semaw, Rogers, & Cauche, 2010).  

 Over time, and in association with many other changes to our bodies, brains, and 

behavior, technology has come to pervade human lifeways. Our ability to transform our 

environment shapes our own lives and also exerts profound influence on the health, behavior and 

evolution of the other animals with whom we share the planet. Like many other long-lived, 

slowly reproducing animals, all of the world’s apes are threatened with extinction. Apes and 

other large-bodied animals play critical roles in ecosystems, for example as seed dispersers 

(Abernethy, Coad, Taylor, Lee, & Maisels, 2013). Thus, their decline has far-reaching 

implications not only for their own survival but for that of other plant and animal species. Even if 

populations are able to persist amidst the range of threats they face, human disturbance can erode 

primate cultures (Gumert, Hamada, & Malaivijitnond, 2013; van Schaik, 2002). Human impact 

is already implicated in substantial losses of chimpanzee behavioral diversity (Kühl et al., 2019). 

In Central Africa, large areas of viable great ape habitat remain (Strindberg et al., 2018). This 

provides hope that conservation efforts drawing upon understanding of great ape behavior and 

ecology (Morgan et al., 2018, 2013; Morgan & Sanz, 2010) can help to safeguard these ape 

populations for generations to come. Studying the technical behaviors of our closest living 

relatives is one of the most important tools we have for reconstructing human evolutionary 

processes. This privilege depends on conserving great apes and their vulnerable homes. 
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Appendix A: Chapter 3 Results of GLMMs  
 

TABLE A.1 Fixed Effects 

Indicated are the estimated coefficients for the fixed effects together with their standard errors 

(SE) confidence intervals (lower CL, upper CL) and estimations of model stability (columns 

headed min and max, which indicate the range of estimates derived from excluding levels of the 

random effects one at a time). 

 

 

TABLE A.2 Random Effects 

Fishing probe insertion, donor:              grp     Term vcov sdcor min max 

Transfer     event ID 0.000 0.000 0.000 0.004 

(chimpanzee)      Time period 0.000 0.000 0.000 0.003 

Chimpanzee     donor ID 0.000 0.000 0.000 0.234 

Fishing probe insertion, recipient:       grp     var1 vcov sdcor min max 

Transfer     event ID 0.000 0.000 0.000 0.004 

Chimpanzee     recipient ID 0.000 0.000 0.000 0.003 

Feeding events, donor:                           grp     Term vcov sdcor min max 

Transfer     event ID 0.000 0.000 0.000 0.001 

(chimpanzee)     Time period 0.000 0.000 0.000 0.353 

Chimpanzee     donor ID 0.000 0.000 0.000 0.002 

Feeding events, recipient:                      grp     Term vcov sdcor min max 

Transfer     event ID 0.111 0.333 0.002 0.688 

Chimpanzee     recipient ID 0.000 0.000 0.000 0.636 

Indicated are the estimated variance (vcov) and corresponding standard deviation (sdcor) for the 

random intercept of donor or recipient identity and the random slope of time period within donor 

or recipient, respectively, together with estimations of model stability (columns headed min and 

max, which indicate the range of standard deviations derived from excluding levels of the 

random effects one at a time).  

 

 Estimate SE Lower CL Upper CL Min Max 

Fishing probe insertion, donor:                                                               

Intercept 1.059 0.143 0.722 1.309 0.000 1.099 

Time period 0.490 0.181 0.128 0.887 0.000 0.680 

Fishing probe insertion, recipient:              

Intercept 1.369 0.197 0.890 1.699 0.000 1.421 

                                Time period -1.244 0.346 -2.032 -0.582 -1.609 0.001 

Feeding events, donor:                           

Intercept 0.981 0.190 0.627 1.260 0.802 1.308 

                                   Time Period 0.693 0.244 0.328 1.087 0.275 0.950 

Feeding events, recipient:                        

Intercept 1.273 0.262 0.571 1.712 1.146 1.350 

Time period -1.464 0.433 -2.519 -0.620 -1.988 -1.227 
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Appendix B: Chapter 3 Supplementary                            

Video Clip Descriptions 
 

Supplementary Video Clip 1 

Title: Adult female chimpanzee divides a fishing probe lengthwise 

Description: An adult female chimpanzee at an above-ground termite nest divides her fishing 

probe lengthwise. She provides one half of her tool to her offspring, who uses it to successfully 

fish for termites, and retains the other half for her own use. This strategy produces two viable 

tools, which helps to buffer tool donors against the cost of transferring a tool. 

 

Supplementary Video Clip 2 

Title: Adult female chimpanzee actively transfers a fishing probe 

Description: An adult female chimpanzee at an above-ground termite nest performs an active 

transfer of a fishing probe to her offspring, who uses it to successfully fish for termites. Active 

transfers involve moving to facilitate a transfer in response to begging.  
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Appendix C: Chapter 4 Results of GLMMs  
 

TABLE C.1 Results of the model of tool transfer probability (estimates, together with standard 

errors, confidence limits, results of tests, as well as minimum and maximum of estimates derived 

when excluding levels of random effects one at a time) 

Term Estimate SE lower Cl upper Cl 2 df P min max 

Intercept 0.026 0.643 -1.265 1.536   (1) -0.415 0.676 

Population(2) 0.811 0.944 -0.862 2.629   (1) 0.058 1.346 

Request(3) -2.055 0.585 -4.443 -0.888   (1) -2.561 -0.871 

Recipient sex(4) -1.489 0.746 -3.629 -0.110 4.064 1 0.044 -2.057 -1.069 

Recipient age, 5-10(5) 1.915 1.144 0.067 4.841 7.260 2 0.027 1.459 2.909 

Recipient age, 10-15(5) 2.833 1.446 0.798 16.046    2.288 18.177 

Population:Request 2.773 0.868 1.074 6.005 9.687 1 0.002 1.623 3.616 
(1) not shown because of having a very limited interpretation 
(2) dummy coded with Gombe being the reference level 
(3) dummy coded with no request being the reference level 
(4) dummy coded with female being the reference level 
(5) dummy coded with age 0 to 5 being the reference level; the indicated test refers to the overall 

effect of age 

 

 

 

TABLE C.2 Results of the model of reactive tool transfer probability (estimates, together with 

standard errors, confidence limits, results of tests, as well as minimum and maximum of 

estimates derived when excluding levels of random effects one at a time) 

Term Estimate SE lower Cl upper Cl 2 df P min max 

Intercept -1.954 1.500 -12.747 1.231   (1) -6.432 -1.163 

Population(2) 4.579 2.248 1.522 28.332 7.400 1 0.007 3.505 14.742 

Recipient sex(3) -0.982 1.503 -17.704 2.151 0.381 1 0.537 -2.263 0.369 

Recipient age, 5-10(4) 0.365 1.506 -3.160 11.231 0.984 2 0.611 -0.964 1.830 

Recipient age, 10-15(4) 2.113 2.014 -1.815 18.355    0.605 18.144 
(1) not shown because of having a very limited interpretation 
(2) dummy coded with Gombe being the reference level 
(3) dummy coded with female being the reference level 
(4) dummy coded with age 0 to 5 being the reference level; the indicated test refers to the overall 

effect of age 
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TABLE C.3 Results of the model of resistance probability (estimates, together with standard 

errors, confidence limits, results of tests, as well as minimum and maximum of estimates derived 

when excluding levels of random effects one at a time) 

Term Estimate SE 

lower 

Cl upper Cl 2 df P min max 

Intercept -1.782 0.435 -2.973 -1.007   (1) -2.262 -1.286 

Population(2) 0.354 0.642 -1.186 1.786   (1) -0.211 0.786 

Request(3) 1.743 0.582 0.777 3.076   (1) 0.943 2.606 

Recipient sex(4) -0.218 0.478 -1.153 0.715 0.221 1 0.639 -0.426 -0.043 

Recipient age, 5-10(5) -0.606 0.768 -13.069 0.739 1.889 2 0.389 -1.557 -0.335 

Recipient age, 10-15(5) -1.228 1.129 -13.664 0.616    -17.860 -0.884 

Population:Request -1.847 0.892 -3.834 -0.199 4.688 1 0.030 -2.698 -1.057 
(1) not shown because of having a very limited interpretation 
(2) dummy coded with Gombe being the reference level 
(3) dummy coded with no request being the reference level 
(4) dummy coded with female being the reference level 
(5) dummy coded with age 0 to 5 being the reference level; the indicated test refers to the overall 

effect of age 
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