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Most amino acids are encoded by multiple synonymous codons. Although alternative usage of 

synonymous codons does not affect the amino acid sequences of proteins, researchers have been 

reporting evidence for functional synonymous codon usage at the species- and gene-specific 

levels for over four decades. It has been shown that variations in synonymous codon usage can 

affect phenotypes through diverse mechanisms such as shaping translation efficiency and mRNA 

stability. On the other hand, the common view that cellular and organismal phenotypes are 

primarily determined by proteins whose functions are primarily determined by amino acid 

sequences, often drives the assumption that synonymous mutations are evolutionarily neutral. 

Consequently, this assumption has been used extensively in evolutionary biology, population 

genetics, and structural biology. One explanation of the apparent contradiction between the 

empirical findings, which indicate that synonymous mutations can affect related phenotypes, and 

the theoretical models, which stipulate that synonymous mutations are neutral, is that neutral 

synonymous mutations represent the general rule while non-neutral synonymous mutations 

represent the rare exceptions. In my thesis, I examined this explanation by applying 
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computational and experimental approaches, which indicated that: 1) Non-neutral synonymous 

mutations significantly affect a considerable proportion of protein-coding genes; 2) Gene-

specific codon usage patterns, such as the preference for a specific combination of rare codons, 

are possibly associated with specific gene functions, such as enhancing tissue-specific gene 

expression; 3) Some protein-coding genes include codon clusters whose codon usage patterns 

cannot be explained by selection-independent processes, and thus such codon clusters seem to 

serve as domains affecting protein functions. Together, these data suggest that synonymous 

mutations should not be a priori considered neutral. Furthermore, my studies suggest that the 

biochemical functions of at least some proteins are not only shaped by the constituent amino acid 

residues but also by codon usage biases at the gene-specific and sub-genic levels. In conclusion, 

my thesis work suggests that many of the commonly used approaches for analyzing the selection 

on protein-coding DNA sequences, which rely on the assumption that synonymous mutations are 

generally neutral, may generate biased results. Furthermore, my studies indicate that selection on 

gene-specific codon usage bias has evolved to serve diverse biological functions, which are still 

mostly uncharacterized. 
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Chapter 1: Introduction 

1.1 Evidence for Functional Synonymous Codon Usage 
A single amino acid can be encoded by different synonymous codons. Although mutations that 

cause the switch between synonymous codons, namely synonymous mutations, do not affect 

protein sequences, species- and/or gene-specific codon usage patterns often exhibit non-random 

biases [1–4]. Such biased patterns of synonymous codon usage, or codon usage biases, suggest 

that although different synonymous codons encode the same amino acid, they could potentially 

have different biological functions [1,5,6]. In fact, researchers have been reporting evidence for 

functional synonymous codon usage for more than four decades [7,8,1,9,3,4,10–12,2,13–31,6,32–

37].  

A prominent theory explaining the mechanism by which synonymous codon usage can affect 

protein functions is the translational selection theory [1–3,6,12,31,38]. Empirical studies done in 

prokaryotes have shown that the codons preferred by highly expressed genes are usually 

associated with abundant tRNAs, and mRNAs with enriched codons of such a type are indeed 

translated faster on average [1,2,38]. Thus, the frequently used synonymous codons are termed 

“optimal codons”, while the rarely used codons are termed “suboptimal codons” or “non-optimal 

codons” [1,3,16,30,38,39]. Consequently, it has been hypothesized that natural selection on 

synonymous mutations may result in adaptive synonymous codon usage that optimizes 

translation efficiency, which is referred to as the “translational selection theory” [1]. Empirical 

and theoretical data suggest that translational selection is especially strong for highly expressed 

housekeeping genes such as actins and tubulins [1,31]. In addition, the concept of adaptive 

synonymous codon usage also led to the proposal of codon adaptation index (CAI) [3], which 
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measures how well the codon usage bias of a given protein-coding sequence is adapted to the 

putatively most optimal synonymous codon usage that is usually inferred from the codon usage 

of a set of highly-expressed housekeeping genes or the whole genome. CAI has been widely used 

in directing codon optimization, in which the codon usage of transgenes is designed to be 

adapted to the codon usage biases of host organisms [16,40,41].   

Biased synonymous codon usage has also been shown to play functional roles through other 

mechanisms. First, mRNA splicing is regulated by the specific nucleotide sequences at the 

intron-exon boundaries [42–44], and therefore, synonymous mutations in these regions could 

dramatically affect splicing, which can lead to frame shifts and aberrant protein products 

[20,22,23]. Second, the accessibility of miRNAs to mRNAs is affected by synonymous codon 

usage [27]. Third, synonymous changes at the DNA level could affect epigenetic regulation of 

gene action [45,46]. Fourth, “suboptimal” codons could have important biological consequences 

via their direct impact on the deceleration of translation rates, which subsequently could impact 

co-translational processes such as protein folding, post-translational modifications (e.g., 

phosphorylation), and subcellular localization [5,24,30,47,48]. 

1.2 The Neutrality of Synonymous Mutations Is Important 

for Evolutionary Biology, Population Genetics, and 

Structural Biology 
Even though numerous studies have suggested that synonymous mutations could affect protein 

functions and associated phenotypes, the assumption that synonymous mutations are mostly 

neutral is still frequently used in evolutionary biology and population genetics [49–146], which 

presents an apparent conundrum.  
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One possible explanation for this conundrum is that neutral synonymous mutations represent the 

general rule while non-neutral synonymous mutations are the rare exceptions [147]. The logic 

underlying this explanation is “amino-acid determinism”, which stipulates that the phenotypes 

are primarily determined by protein functions, and the properties of proteins are primarily 

determined by the amino acid sequences. Therefore, because synonymous mutations do not 

change the amino acid sequences of a protein, they should have minimal impacts on the 

biochemical functions of the protein and its associated phenotypes [88,147–149]. 

In evolutionary biology, the assumption that synonymous mutations are generally neutral has 

been the foundation of multiple commonly used methods to detect signatures of natural selection, 

to estimate the rate of evolution, and to classify the types of natural selection 

[70,88,101,103,107,137]. One example is the dN/dS method [103]. This method is used to analyze 

the influence of natural selection on the evolution of the aligned protein-coding homologs during 

a certain period of time [70,103]. dN denotes the number of nonsynonymous mutations per 

nonsynonymous site and dS denotes the number of synonymous mutations per synonymous site. 

Thus, dS serves as the estimate of the influence of neutral evolution while dN serves as the 

estimate of the combined effect of neutral evolution and natural selection on the protein-coding 

genes. If dN/dS is near 1, natural selection on the protein-coding genes is absent or very weak. If 

dN/dS is dramatically higher than 1, amino acid substitutions are generally beneficial and thus 

are favored by natural selection; such a case is usually regarded as an example of positive 

selection. If dN/dS is dramatically lower than 1, amino acid substitutions are generally 

deleterious and thus natural selection keeps the conserveness of amino acid sequences; such a 

case is usually regarded as an example of negative selection or purifying selection [70]. 

Consequently, the validity of the dN/dS method relies on whether dS truly represents the 
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influence of neutral evolution. Similarly, the McDonald-Kreitman test (MK test) and the 

derivatives of the dN/dS method and MK test also depend on the assumption that synonymous 

mutations are generally neutral. These methods are still frequently applied in evolutionary 

biology studies [49–69,71–87,89–100,102,104–106,108–136,138–145].  

In population genetics, synonymous single-nucleotide polymorphisms (SNPs) are usually treated 

as functionally neutral genetic variants, while nonsynonymous SNPs are usually treated as the 

candidate functional variants [150,151]. Consequently, in many genome-wide association studies 

(GWAS) aimed at detecting genetic variants underlying specific traits ranging from the mass of 

seeds to the susceptibility to a specific disease, nonsynonymous SNPs are usually primarily or 

exclusively focused on [152–157]. Thus, whether synonymous SNPs are truly functionally neutral 

determines the validity of excluding synonymous SNPs from the analyses.  

Besides, structural biology studies that are aimed at determining the three-dimension structures 

of proteins are also affected by the assumed neutrality of synonymous mutations. In practice, 

structural biologists mostly focus on analyzing amino-acid-level information by techniques such 

as X-ray crystallography and cryogenic electron microscopy, in order to determine the structures 

of proteins [158,159]. Such practice relies on two assumptions: first, the native structures of 

proteins are at most slightly affected by sample preparation; second, nucleic-acid-level 

information, as long as it does not affect amino acid sequences, has minimal impacts on protein 

structures. Thus, the validity of the second assumption essentially depends on the neutrality of 

synonymous mutations.  
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1.3 The Possible Impacts of Prevalent Non-neutral 

Synonymous Mutations on the Relevant Research 
The explanation that neutral synonymous mutations represent a general rule while non-neutral 

synonymous mutations are rare exceptions seems able to reconcile the contradiction between the 

empirical evidence for functional synonymous codon usage and the frequent usage of 

synonymous mutations as proxies for neutral mutations. Nevertheless, this explanation has not 

been rigorously tested, possibly for two major reasons. First, although multiple empirical studies 

have reported evidence for non-neutral synonymous mutations, they are still quantitatively 

anecdotal compared to the entire set of known genes and species. Therefore, they are not enough 

to disprove or verify the generality of neutral synonymous mutations. Second, although multiple 

computational studies tried to assess the prevalence of non-neutral synonymous mutations [7,10–

13,29,36], their methods had at least one of the two key weaknesses that hindered the 

generalization of their results. One weakness was that some methods were only applicable to few 

species with high-quality genetic variation data at the level of population or phylogeny. The 

other weakness was that some methods had limited statistical power because they either focused 

exclusively on the four-fold degenerate codons or treated codons with different degrees of 

degeneracy separately. Thus, the lack of definitive tests to confirm the generality of neutral 

synonymous mutations has left a critical gap in the relevant research.  

If the prevalence of neutral synonymous mutations is actually not order(s) of magnitude larger 

than that of non-neutral synonymous mutations, it is likely that the frequently adopted 

assumption that synonymous mutations are neutral has been introducing systematic biases into 

relevant studies. First, prevalent non-neutral synonymous mutations mean that the rate of 

synonymous substitutions may not be a good proxy for the rate of neutral evolution. For 
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example, the dS parameter in the dN/dS-type methods likely misestimates the impact of neutral 

evolution. If synonymous mutations are generally under purifying selection, dS will 

underestimate the rate of neutral evolution, which will result in overestimated impact of positive 

selection on the amino acid sequences. Actually, it has been shown that even weak selection on 

synonymous codon usage can strongly bias the results of the methods that are based on the 

neutrality of synonymous mutations [37]. Second, prevalent non-neutral synonymous mutations 

indicate that excluding synonymous SNPs from GWAS may not be appropriate practice. If a trait 

is actually only associated with synonymous SNPs, such practice will generate false-negative 

results. If a trait is indeed associated with both synonymous and nonsynonymous SNPs, such 

practice will misestimate the significance and effect sizes of the detected functional 

nonsynonymous SNPs. Third, prevalent non-neutral synonymous mutations suggest that there 

must be important mechanisms, other than the amino acid sequences, that regulate the functions 

of proteins and relevant phenotypes. This will undermine the generality and applicability of the 

research paradigms that rely on amino-acid determinism, which indicates that researchers should 

not simply infer the structures and functions of proteins or sub-protein segments only from 

amino-acid-level information. For example, the native structure of a protein or a sub-protein 

segment may be highly dynamic such that the structure had better be described as a spectrum 

rather than a single representative three-dimension model [160,161]. If such a dynamic feature is 

associated with specific synonymous codon usage patterns, ignoring nucleic-acid-level 

information would prevent structural biologists from depicting the spectrum of protein structures.  

Consequently, it is necessary and timely to assess to what extent synonymous mutations are 

neutral. If synonymous mutations are indeed generally neutral, methods based on the general 

neutrality of synonymous mutations can be legitimately used as the default with little, if any, 
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risks of generating biased results. However, if the neutrality of synonymous mutations is not as 

general as previously assumed [88,147–149], researchers may need to seriously consider updating 

their paradigms by incorporating non-neutral synonymous mutations as a regular source of 

functional genetic variants, and further investigation should be done to reveal the exact roles 

played by synonymous codon usage under specific biological contexts. 

1.4 Disproving the Generality of Neutral Synonymous 

Mutations and Amino-acid Determinism 
In my thesis, I used gene-specific and sub-genic codon usage biases to investigate the impacts of 

non-neutral synonymous mutations on molecular evolutionary biology in general and on some 

specific biological functions of synonymous codon usage in particular. With publicly available 

databases of protein-coding sequences in diverse species and annotations of gene functions in 

frequently used model organisms [162–166], and with convenient genetic manipulation of fruit 

flies [167,168], gene-specific codon usage biases can serve as ideal materials that balance the 

breadth and depth of computational and experimental analyses on the evolutionary and 

functional roles of synonymous mutations. On the other hand, sub-genic codon usage biases 

provide the opportunity to conduct higher-resolution analyses on the relationship between codon 

usage biases and structural units of proteins [169], which supplements the analyses on gene-

specific synonymous codon usage.  

In Chapter 2, by developing a widely applicable statistical method to detect signatures of natural 

selection on gene-specific codon usage biases and applying it to diverse eukaryotic species, I 

found that non-neutral synonymous mutations significantly affect a considerable proportion of 

protein-coding genes. Thus, this result refutes the claim that non-neutral synonymous mutations 

are rare exceptions to the putatively general rule that synonymous mutations are neutral. 
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Furthermore, I showed that gene-specific codon usage patterns are associated with specific gene 

functions. I experimentally showed that a combination of rare codons for specific amino acids is 

involved in regulating tissue-specific gene expression in Drosophila melanogaster. Thus, these 

results suggest that the relationship between codon usage patterns and gene functions in 

multicellular eukaryotes is more complex and context-dependent than currently assumed.  

In Chapter 3, by developing a statistical method to detect sub-genic regions with characteristic 

codon usage patterns that cannot be explained by selection-independent processes and applying it 

to the D. melanogaster genome, I identified multiple putatively functional codon clusters 

(PFCCs). I found that although some of these PFCCs are associated with protein domains, which 

are predicted from their amino acid sequences, the majority of the PFCCs are not associated with 

any known protein domains. Thus, it is highly likely that some functional units of proteins are 

encoded by codon usage patterns instead of amino acid sequences. In this regard, amino-acid 

determinism is at least partially flawed.  

Together, my results suggest that synonymous mutations are not generally neutral, and that the 

properties of proteins are not exclusively determined by the constituent amino acid residues. 
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Chapter 2: Natural Selection on Eukaryotic 

Gene-Specific Codon Usage Bias Has Broad 

Evolutionary and Functional Implications for 

the Regulation of Gene Action 

2.1 Abstract 
Because they do not affect protein sequences, synonymous mutations are often used as proxies 

for neutral mutations in tests for signatures of natural selection on protein-coding DNA 

sequences. Yet, numerous studies have also indicated that synonymous mutations can have 

dramatic effects on phenotypes. One hypothesis that might explain these seemingly contradictory 

interpretations of the biological significance of synonymous mutations is that the majority of 

synonymous mutations are indeed neutral, while non-neutral synonymous mutations are the rare 

exceptions. However, due to the lack of broadly applicable approaches for estimating the 

prevalence of non-neutral synonymous mutations across sequenced genomes, and for predicting 

specific biological functions of gene-specific codon usage biases, this important hypothesis has 

not been rigorously tested. Here we used computational and empirical approaches to demonstrate 

that signatures of natural selection on gene-specific codon usage bias are common in eukaryotic 

genomes, which necessitates reconsidering the frequently adopted assumption that synonymous 

mutations are generally neutral. As a proof of principle, we show that in Drosophila 

melanogaster, selection on the increased usage of a specific combination of rare codons plays an 

important role in enhancing translation specifically in the male reproductive system. Together, 

these data indicate that synonymous mutations should not be a priori assumed to be neutral, and 
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that the relationship between codon usage patterns and gene functions in multicellular eukaryotes 

is more complex and context-dependent than currently assumed. 

2.2 Introduction 
Ever since the “neutral theory of molecular evolution” was proposed [149], synonymous 

mutations in protein-coding DNA sequences have been generally considered evolutionarily 

neutral because they do not affect amino acid sequences, and therefore, should have a minimal 

impact on protein functions and associated phenotypes [88,147–149]. Consequently, some 

quantitative and statistical approaches such as the dN/dS method, the McDonald-Kreitman test, 

and their derivatives, which are commonly used in molecular evolutionary research for detecting 

signatures of natural selection, identifying types of natural selection, and estimating rates of the 

molecular evolution of protein-coding genes, often use synonymous mutations as proxies for 

neutral mutations [49–146,170]. Yet, numerous studies have also shown that, in contrast to the 

assumption of neutrality, some synonymous mutations could also affect phenotypic outcomes, 

possibly via impacting mRNA secondary structures and stability, splicing, miRNA binding, 

epigenetic modifications, and translation efficiency [7,8,1,9,3,4,10–12,2,13–31,6,32–37].  

The contradictory interpretations of the biological significance of synonymous mutations could 

be explained by two hypotheses. The first hypothesis is that natural selection on synonymous 

mutations is likely generally weak, so that the impact of non-neutral synonymous mutations on 

the results generated by the neutral-synonymous-mutation-based computational methods should 

also be weak [147]. However, it has been recently shown mathematically that weak selection on 

synonymous mutations can strongly bias the results generated by the neutral-synonymous-

mutation-based methods [37]. Therefore, this first hypothesis does not hold. The second 

hypothesis is that most synonymous mutations are indeed neutral, while non-neutral synonymous 
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mutations are the rare exceptions [147]. However, empirical and theoretical studies that directly 

estimate the actual prevalence of non-neutral synonymous mutations in eukaryotic genomes are 

rare, possibly for two major reasons. First, although multiple empirical studies have investigated 

the impact of specific synonymous mutations on the associated functions and phenotypes, they 

represent a very small fraction of the overall number of known protein-coding genes, and 

therefore, are not enough for quantitatively estimating the prevalence of non-neutral synonymous 

mutations. Second, previous studies that used theoretical and computational approaches for 

testing whether synonymous mutations are generally neutral have had limited power because 

they either focused solely on four-fold degenerate codons, or had treated codons with different 

degrees of degeneracy independently [7,10,12,29,36]. In addition, the applicability of some of 

the computational approaches for identifying signatures of selection on synonymous mutations 

has been restricted to the few species with high-quality genetic variation data at the levels of 

populations and/or phylogeny [11,13,29,36]. Therefore, it is timely and important to develop 

new powerful and broadly applicable quantitative approaches for detecting signatures of natural 

selection on synonymous mutations from currently available genomic data.  

Here we developed a statistical approach for detecting gene-specific signatures of natural 

selection on synonymous mutations, which integrates information from all degenerate codons in 

any native protein-coding sequence that uses the standard genetic code. Using this approach, we 

screened the sequenced genomes of 40 species from diverse eukaryotic clades, and found that the 

majority of them have numerous protein-coding genes that carry statistically significant 

signatures of natural selection on synonymous mutations. Although the observed level of impact 

of selection on gene-specific codon usage bias varies dramatically across species, these 

conservative estimates inevitably disprove the assumption that synonymous mutations are 
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generally neutral. Furthermore, by exploiting the fruit fly Drosophila melanogaster as a model, 

we demonstrate that different groups of protein-coding genes have likely been selected for the 

increased usage of different combinations of specific codons, and that preference for specific 

codon combinations might be associated with specific categories of gene functions. Particularly, 

we show that a specific combination of rare codons, which are often referred to as “suboptimal 

codons” because they are preferentially recognized by tRNAs with small gene copy numbers 

[171–173], play an important role in enhancing protein expression specifically in the male 

reproductive system. Together, these findings suggest that both neutral and non-neutral 

synonymous mutations are prevalent in eukaryotic genomes, and that the functional roles of 

gene-specific synonymous codon usage are diverse and cannot be simply predicted from whole-

genome codon usage frequencies or tRNA gene copy numbers. Thus, it is highly likely that 

methods based on the assumed neutrality of synonymous mutations have already generated 

systematic biases in genetics and evolutionary biology. Also, the view that the optimality of a 

codon is intrinsically associated with its whole-genome usage frequency or the copy number of 

its cognate tRNA genes, may overlook diverse regulatory roles played by synonymous codon 

usage. 

2.3  Results 

2.3.1  Gene-specific Signatures of Natural Selection on Synonymous 

Mutations Are Common Across Eukaryotes 
Testing the hypothesis that non-neutral synonymous mutations are rare exceptions requires a 

broadly applicable method for statistically identifying signatures of natural selection on 

synonymous mutations across protein-coding genes throughout genomes. Mathematically, the 

previously published “selection-mutation-drift model”, which stipulates that observed codon 
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usage patterns are the result of an interplay between natural selection, mutational bias, and 

genetic drift, could be used for identifying such signatures [174]. However, applying this specific 

model to many genes across diverse species requires prior empirical information about 

population-level genetic variations, temporal and spatial gene expression patterns, and related 

estimates of fitness [175–180]. Since such data are not available for most species, we developed 

an alternative statistical approach that is solely based on the analyses of DNA sequences of 

protein-coding genes from publicly available reference genomic data. In contrast to the 

previously published “selection-mutation-drift model”, which evaluates the relative contribution 

of natural selection to the observed codon usage bias by estimating the selection coefficient for 

each possible nucleotide substitution, our approach is based on the statistical rejection of the null 

hypothesis that “synonymous mutations are neutral”. Although this approach does not provide 

specific quantitative estimates for the level of selection on each individual gene, it serves as an 

effective method for identifying specific genes whose biased codon usage patterns have been 

impacted by natural selection. 

Our statistical model is based on several key assumptions: 1) Reference genomic data represent a 

“wild type” genome. 2) Observed gene-specific codon usage patterns are at equilibrium. 3) For 

each codon, no more than one nucleotide substitution per generation is possible. 4) 

Nonsynonymous mutations are more likely to be deleterious than synonymous mutations, and 

therefore, the probabilities of observed nonsynonymous substitutions are negligible relative to 

those of synonymous ones. 5) The contributions of individual alleles of a single gene to fitness 

are additive. 6) Gene-specific mutational bias, which is assumed to be shaped by both genome-

scale mutational bias and local forces such as gene conversions [181], is independent of that of 

any other gene. Thus, this assumption simplifies the estimation of the mutational bias of each 
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focal gene by using its specific codon counts. 7) For each individual open reading frame, the 

mutation rate for each of the 12 possible nucleotide substitutions (A-to-T, T-to-A, etc.) is 

constant [182], and therefore, the possible effects of adjacent nucleotides on mutation rates of 

each focal nucleotide [183] are not considered. It should be noted that in our model, “mutation 

rates” refer to the rates of de novo mutations rather than site-specific or position-specific 

substitution rates. 8) The ratio of the lowest to highest mutation rates for all possible nucleotide 

substitutions above is at least 1/100, which represents a relatively relaxed constraint on gene-

specific mutational bias [184,185]. 

Next, we used the previously published “selection-mutation-drift model” [174,175] to describe 

the relationships between the various evolutionary molecular processes that may have shaped 

observed gene-specific codon usage biases (Equation (2.1)).  

∑
2𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

1−𝑒
−2𝑁𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

× 𝑥𝑝𝑞𝑖 × 𝜇𝑖→𝑟𝑖 + ∑
2𝑠𝑗𝑞𝑟→𝑝𝑞𝑟

1−𝑒
−2𝑁𝑠𝑗𝑞𝑟→𝑝𝑞𝑟

× 𝑥𝑗𝑞𝑟 × 𝜇𝑗→𝑝𝑗

= ∑
2𝑠𝑝𝑞𝑟→𝑝𝑞𝑖

1−𝑒
−2𝑁𝑠𝑝𝑞𝑟→𝑝𝑞𝑖

× 𝑥𝑝𝑞𝑟 × 𝜇𝑟→𝑖𝑖 + ∑
2𝑠𝑝𝑞𝑟→𝑗𝑞𝑟

1−𝑒
−2𝑁𝑠𝑝𝑞𝑟→𝑗𝑞𝑟

× 𝑥𝑝𝑞𝑟 × 𝜇𝑝→𝑗𝑗

  (2.1)  

Variables p, q, and r denote the specific nucleotide identities (A, C, G, or T) of the first, second, 

and third positions respectively in each codon. Codons synonymous to codon pqr that vary at 

either the first or third position are denoted by codons jqr or pqi respectively. Therefore, spqi→pqr, 

for example, denotes the selection coefficient of the pqi-to-pqr mutation. N denotes effective 

chromosomal population size [175]. xpqr denotes the count of codon pqr in a focal gene, and μi→r 

denotes an estimate for the i-to-r mutation rate. Consequently, the probability that an i-to-r 

mutation in the focal gene is fixed is 
2𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

1−𝑒
−2𝑁𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

 [175]. The amino acid serine represents a 

unique case because it is encoded by six synonymous codons that belong to two independent 

codon groups, which are not interchangeable via single synonymous substitutions. Therefore, in 
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our model, we treat the Ser codon groups AGC, AGT and TCA, TCC, TCG, TCT as if they were 

encoding two independent amino acids [178]. 

Since the null hypothesis of our model specifies that all synonymous mutations are neutral, the 

selection coefficient of each synonymous mutation should have a zero value, which simplifies 

Equation (2.1) as follows: 

∑ lim
𝑠𝑝𝑞𝑖→𝑝𝑞𝑟→0

2𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

1−𝑒
−2𝑁𝑠𝑝𝑞𝑖→𝑝𝑞𝑟

× 𝑥𝑝𝑞𝑖 × 𝜇𝑖→𝑟𝑖 + ∑ lim
𝑠𝑗𝑞𝑟→𝑝𝑞𝑟→0

2𝑠𝑗𝑞𝑟→𝑝𝑞𝑟

1−𝑒
−2𝑁𝑠𝑗𝑞𝑟→𝑝𝑞𝑟

× 𝑥𝑗𝑞𝑟 × 𝜇𝑗→𝑝𝑗

= ∑ lim
𝑠𝑝𝑞𝑟→𝑝𝑞𝑖→0

2𝑠𝑝𝑞𝑟→𝑝𝑞𝑖

1−𝑒
−2𝑁𝑠𝑝𝑞𝑟→𝑝𝑞𝑖

× 𝑥𝑝𝑞𝑟 × 𝜇𝑟→𝑖𝑖 + ∑ lim
𝑠𝑝𝑞𝑟→𝑗𝑞𝑟→0

2𝑠𝑝𝑞𝑟→𝑗𝑞𝑟

1−𝑒
−2𝑁𝑠𝑝𝑞𝑟→𝑗𝑞𝑟

× 𝑥𝑝𝑞𝑟 × 𝜇𝑝→𝑗𝑗

  

⇒ 

∑
1

𝑁
× 𝑥𝑝𝑞𝑖 × 𝜇𝑖→𝑟𝑖 + ∑

1

𝑁
× 𝑥𝑗𝑞𝑟 × 𝜇𝑗→𝑝𝑗 = ∑

1

𝑁
× 𝑥𝑝𝑞𝑟 × 𝜇𝑟→𝑖𝑖 + ∑

1

𝑁
× 𝑥𝑝𝑞𝑟 × 𝜇𝑝→𝑗𝑗  (2.2) 

Furthermore, since each term in Equation (2.2) includes the factor 
1

𝑁
, Equation (2.2) could be 

further simplified as: 

∑ 𝑥𝑝𝑞𝑖 × 𝜇𝑖→𝑟𝑖 + ∑ 𝑥𝑗𝑞𝑟 × 𝜇𝑗→𝑝𝑗 = ∑ 𝑥𝑝𝑞𝑟 × 𝜇𝑟→𝑖𝑖 + ∑ 𝑥𝑝𝑞𝑟 × 𝜇𝑝→𝑗𝑗  (2.3) 

Subsequently, if the null hypothesis that all synonymous mutations are neutral is true then the 

impacts of natural selection, represented by selection coefficient s, and genetic drift, represented 

by the effective chromosomal population size N, are canceled as shown above, and therefore, the 

observed codon usage pattern could be explained solely by local mutational bias. Canceling the 

effect of genetic drift also allows us to apply our model to single focal genes, as has been 

previously suggested [7,10,12]. In contrast, if the null hypothesis is rejected then we must accept 

the alternative hypothesis, which indicates that natural selection has had a significant impact on 

the observed gene-specific codon usage bias.  
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To apply our derived statistical model to actual genomic data, we initially generated a dataset of 

expected codon counts for gene-specific codon usage pattern of a focal reference gene, assuming 

that it is determined solely by gene-specific mutational bias. By applying Equation (2.3) to the 

open reading frame of a focal gene, gene-specific μ values were estimated such that the χ2 

statistic calculated from the expected and observed codon counts for the focal gene was 

minimized. We then tested whether the model-generated (expected) and the actual (observed) 

gene-specific codon usage patterns are similar by using a χ2 test (df = 40) [186–188]. 

Subsequently, all genes with observed codon usage patterns that were significantly different 

from the expected patterns generated by the model were classified as genes that carry signatures 

of natural selection on synonymous mutations. Because detection of selection signatures by our 

approach is strongly associated with differential usage of nonsynonymous codons that end with 

the same nucleotide, our approach effectively filters out the interference from local gene 

conversions since gene conversions make the usage of codons ending with the same nucleotide 

change in a similar way during evolution. Besides, as this approach only requires genetic code 

and the nucleotide sequences of open reading frames as input, in principle, it can be applied to 

any native protein-coding genes in any species whose genetic code is known. The major cost of 

the broad applicability of our method is the ability to quantitatively estimate the strength of 

selection on synonymous mutations. Nevertheless, we think that the cost is affordable because it 

has been theoretically shown that even weak selection on synonymous mutations can strongly 

bias the results of the methods based on the general neutrality of synonymous mutations [37]. 

Therefore, if the selection on synonymous mutations is strong enough to allow the statistical 

detection of selection signatures by our method, such signatures should indicate that it is 

inappropriate to use synonymous mutations as proxies for neutral mutations.  
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Next, we used our approach to analyze codon usage bias patterns in diverse eukaryotic species. 

We found that after correcting for false discovery rate (FDR = 0.05) [189], in 35 out of 40 

eukaryotic genomes analyzed, at least 10% of the protein-coding genes carried significant 

signatures of natural selection on synonymous mutations, independent of whether they are 

unicellular or multicellular (Figure 2.1). In 9 species, including Homo sapiens and frequently 

used model organisms Dictyostelium discoideum, Chlamydomonas reinhardtii, Mus musculus, 

Danio rerio, and Drosophila melanogaster, the percentages of protein-coding genes carrying 

selection signatures were even over 50%. Although these estimates might be affected, at least in 

part, by the current variable states of sequence annotation qualities across the different publicly 

available genomes, a closer look at the very-well annotated genomes of Drosophila 

melanogaster, Arabidopsis thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans, and 

Homo sapiens [190] revealed that the percentages of protein-coding genes carrying selection 

signatures in these species still varied between 14% and 64% (Figure 2.1). These results indicate 

that the overall impact of natural selection on eukaryotic gene-specific codon usage bias is 

significantly broader than would be expected if synonymous mutations were mostly neutral. Our 

results also suggest that the relative impact of selection on gene-specific codon usage bias is not 

constant across the eukaryotic phylogeny, and therefore, might be the result of diverse, clade-

specific selective forces.  
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Figure 2.1: Signatures of natural selection on gene-specific codon usage bias in eukaryotes. 

For shown species, all annotated protein-coding genes that passed data pre-processing filters 

were included. Total numbers of protein-coding genes analyzed for these species are shown in 

the parentheses. Percentages of genes carrying signatures of selection on codon usage bias are 

corrected by false discovery rate (FDR=0.05). Species are stacked by phylum and kingdom. 

Blue, unicellular species; black, multicellular species; red, both unicellular and multicellular 

forms exist. 
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2.3.2  The Heterogeneous Impact of Natural Selection on Gene-specific Codon 

Usage Bias Is Likely Driven by Diverse Biological Functions 
Although our statistical approach is able to provide quantitative estimates for the proportion of 

protein-coding genes whose codon usage patterns have been biased by natural selection in a 

particular genome (Figure 2.1), it does not provide qualitative information in terms of which 

specific codons may have contributed more to the overall observed signature in each focal gene, 

nor what might be the biological functions of specific biased codon usage patterns. 

Consequently, we next used a clustering approach to determine whether the genes we have 

identified in our initial screen share similar codon usage patterns, or alternatively, represent a 

heterogeneous population comprised of multiple gene clusters, each defined by a unique pattern 

of biased codon usage that may support specific biological functions.  

Due to its well-annotated genome, wealth of available genetic and phenotypic data, and the high 

prevalence of gene-specific signatures of natural selection on synonymous codon usage, we 

chose to use D. melanogaster as a model for further analyses of the possible biological roles of 

gene-specific codon usage biases. We used a hierarchical clustering analysis to identify groups of 

Drosophila genes that share similar codon usage patterns, which classified the genes into two 

major clusters (Clusters A and B; Figure 2.2). Further analysis of Cluster A revealed that these 

genes prefer the rare codons Lys-AAA, Glu-GAA, Gln-CAA, Phe-TTT, Tyr-TAT, and His-

CAT, relative to their usage in Cluster B genes. Genes in Cluster B could be further divided into 

several smaller subclusters defined by the selective usage of specific combinations of codons. 

Together, these data indicate that in D. melanogaster, different functional classes of genes may 

have been shaped by selection for different patterns of biased codon usage, and therefore, 

different codon combinations might correspond to different biological functions. We also 

observed species-specific heterogeneous codon usage patterns across genes in the genomes of A. 
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thaliana, S. cerevisiae, C. elegans, and H. sapiens (Figures 2.3-2.6), which indicates that 

selection for the increased usage of specific combinations of codons might represent a 

fundamental element in genome architecture. 
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Next, we hypothesized that clustered genes with similar codon usage patterns might share similar 

biological functions. To test this hypothesis, we first analyzed publicly available tissue-specific 

gene expression data in D. melanogaster [162], which revealed that genes that are preferentially 

expressed in the male accessory glands are significantly overrepresented in Cluster A and 

underrepresented in Cluster B (Table 2.1). Similarly, analysis of previously published data on 

sexually dimorphic genes [163,164] revealed that genes with male-enriched expression are 

significantly overrepresented in Cluster A and underrepresented in Cluster B (Table 2.2), which 

is consistent with previous observation that in D. melanogaster, non-sexually-dimorphic and 

female-enriched genes exhibit stronger usage bias towards common codons than genes with 

male-enriched expression [191]. Together, these data suggest that a specific combination of rare 

codons contributes to functions of some genes associated with the male reproductive system. 
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Table 2.1: Tissue-specific expression patterns of genes in Clusters A and B. Genes included 

in Clusters A and B are as in Figure 2.2. Significant over- or under-representation is shown in 

bold. N/A means that no tissue-specific genes were found in the entire genome or the focal gene 

cluster. Although present in the FlyAtlas database, we did not identify tissue-enriched genes in 

the thoracic-abdominal ganglion, virgin female spermatheca, inseminated female spermatheca, 

and adult fat body, and therefore, are not included here. Fold enrichment is relative to the entire 

genome.  Bonferroni correction is applied, p< 0.05/20 = 0.0025. 

 Cluster A Cluster B 

Tissue Fold enrichment p-value Fold enrichment p-value 

Adult Central Nervous System 0.48 0.378 1.13 0.04 

Brain N/A N/A 0.57 0.205 

Crop N/A N/A 1.15 0.622 

Midgut 2.31 0.066 1.19 0.003 

Hindgut N/A N/A 1.01 0.582 

Malpighian Tubules 1.11 0.599 1.1 0.205 

Ovary 1.71 0.256 1.09 0.123 

Testis 1.36 0.082 0.56 <0.001 

Male Accessory Gland 4.45 <0.001 0.36 <0.001 

Carcass N/A N/A 0.34 <0.001 

Salivary Gland N/A N/A 0.49 0.024 

Heart N/A N/A 0.86 0.493 

Eye 2.53 0.187 0.8 0.05 
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Table 2.2: Sex-biased expression patterns of genes in Clusters A and B. Genes included are 

as in Table 2.1. Significant over- or under-representation is shown in bold. Fold enrichment is 

relative to the entire genome. Bonferroni correction is applied, p< 0.05/4 = 0.0125. 

Gene cluster Sex 
Fold 

enrichment 
p-value 

Cluster A 
Male 1.66 <0.001 

Female 1.67 0.091 

Cluster B 
Male 0.61 <0.001 

Female 1.07 0.06 
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To identify additional biological functions that might be affected by selection on gene-specific 

codon usage biases, we next used Gene Ontology (GO) analyses [192]. The most robust GO 

categories identified indicated that genes that encode extracellular matrix proteins are 

overrepresented, and genes that encode cytoplasmic proteins are underrepresented, in Cluster A 

(Table 2.3). We also found that genes annotated as encoding odorant-binding proteins, a class of 

secreted proteins, as well as other extracellular space proteins, are underrepresented in Cluster B 

(Table 2.3). Together, these data suggest that one possible common function for at least some of 

the genes in Cluster A is that they encode secreted proteins. These findings are in agreement with 

previous analyses of codon usage patterns in other eukaryotes, which revealed a similar trend of 

increased usage of rare codons in extracellular proteins [193,194]. Further analyses of the 

heterogeneous Cluster B revealed additional enriched GO terms, which may be associated with 

specific codon usage patterns of subclusters within Cluster B (Table 2.3 and Figure 2.2). 
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Table 2.3: Gene ontology analysis of gene clusters defined by codon usage patterns. Clusters 

A and B are defined by their codon usage patterns, and only genes carrying signatures of natural 

selection on synonymous codon usage are included, as shown in Figure 2.2. Molecular function, 

cellular component, and biological process GO terms are analyzed. Only significant over- or 

under-representations are shown. Fold enrichment is relative to the entire genome. We did not 

obtain informative results when analyzing biological process GO terms of Cluster A genes. 

Gene 

cluster 

Annotation 

category 
GO term 

Fold 

enrichment 
p-value 

Cluster 

A 

Molecular 

function 

extracellular matrix structural 

constituent (GO:0005201) 
24.32 <0.001 

Cellular 

component 

extracellular matrix (GO:0031012) 5.55 0.002 

cytoplasm (GO:0005737) 0.54 0.023 

Cluster 

B 

Molecular 

function 

organic anion transmembrane 

transporter activity (GO:0008514) 
1.54 0.006 

cofactor binding (GO:0048037) 1.5 0.005 

ATP binding (GO:0005524) 1.47 <0.001 

ATPase activity, coupled 

(GO:0042623) 
1.44 <0.001 

active transmembrane transporter 

activity (GO:0022804) 
1.43 0.006 

phosphotransferase activity, alcohol 

group as acceptor (GO:0016773) 
1.34 0.018 

cation transmembrane transporter 

activity (GO:0008324) 
1.33 0.017 

protein binding (GO:0005515) 1.18 <0.001 

odorant binding (GO:0005549) 0.43 <0.001 

Cellular 

component 

apical part of cell (GO:0045177) 1.56 0.003 

cell cortex (GO:0005938) 1.53 0.002 

supramolecular fiber (GO:0099512) 1.47 0.015 

integral component of plasma 

membrane (GO:0005887) 
1.37 <0.001 

cytoskeletal part (GO:0044430) 1.29 0.018 
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cytosol (GO:0005829) 1.23 0.032 

endomembrane system 

(GO:0012505) 
1.17 0.024 

nucleus (GO:0005634) 1.12 0.001 

macromolecular complex 

(GO:0032991) 
1.11 0.006 

extracellular space (GO:0005615) 0.76 0.023 

Biological 

process 

regulation of small GTPase mediated 

signal transduction (GO:0051056) 
1.56 0.036 

axon guidance (GO:0007411) 1.51 <0.001 

actin cytoskeleton organization 

(GO:0030036) 
1.47 0.004 

photoreceptor cell differentiation 

(GO:0046530) 
1.47 0.038 

anion transport (GO:0006820) 1.46 0.024 

compound eye morphogenesis 

(GO:0001745) 
1.45 <0.001 

central nervous system development 

(GO:0007417) 
1.45 <0.001 

muscle structure development 

(GO:0061061) 
1.44 0.002 

open tracheal system development 

(GO:0007424) 
1.43 0.007 

imaginal disc-derived wing 

morphogenesis (GO:0007476) 
1.43 <0.001 

regulation of developmental growth 

(GO:0048638) 
1.41 0.012 

transmembrane transport 

(GO:0055085) 
1.41 <0.001 

embryonic morphogenesis 

(GO:0048598) 
1.4 0.029 

regulation of localization 

(GO:0032879) 
1.4 <0.001 

cell migration (GO:0016477) 1.4 0.006 

carboxylic acid metabolic process 

(GO:0019752) 
1.4 <0.001 

regulation of cellular component 

biogenesis (GO:0044087) 
1.39 0.008 
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regulation of anatomical structure 

morphogenesis (GO:0022603) 
1.38 0.027 

negative regulation of cell 

communication (GO:0010648) 
1.37 0.013 

negative regulation of signaling 

(GO:0023057) 
1.37 0.013 

negative regulation of transcription, 

DNA-templated (GO:0045892) 
1.37 0.023 

regulation of nervous system 

development (GO:0051960) 
1.36 0.013 

ovarian follicle cell development 

(GO:0030707) 
1.35 0.016 

regionalization (GO:0003002) 1.33 <0.001 

regulation of cell differentiation 

(GO:0045595) 
1.33 0.025 

anatomical structure formation 

involved in morphogenesis 

(GO:0048646) 

1.33 <0.001 

regulation of organelle organization 

(GO:0033043) 
1.32 0.02 

response to abiotic stimulus 

(GO:0009628) 
1.31 0.007 

regulation of biological quality 

(GO:0065008) 
1.3 <0.001 

cell fate commitment (GO:0045165) 1.28 0.019 

behavior (GO:0007610) 1.28 0.001 

organic substance transport 

(GO:0071702) 
1.27 0.002 

positive regulation of cellular process 

(GO:0048522) 
1.24 <0.001 

macromolecule localization 

(GO:0033036) 
1.23 0.023 

organic substance catabolic process 

(GO:1901575) 
1.21 0.039 

phosphate-containing compound 

metabolic process (GO:0006796) 
1.21 0.02 

signal transduction (GO:0007165) 1.21 <0.001 

cellular component assembly 

(GO:0022607) 
1.2 0.012 
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cellular macromolecule metabolic 

process (GO:0044260) 
1.11 0.022 

organonitrogen compound metabolic 

process (GO:1901564) 
1.11 0.016 
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2.3.3  Biased Gene-specific Codon Usage Contributes to the Regulation of 

Spatial Protein Expression Patterns 
Our analyses revealed that Cluster A, defined by the increased usage of a specific combination of 

several rare codons, includes genes with putative male-biased functions (Tables 2.1-2.2). One 

possible explanation for the observed association between a specific codon usage pattern and 

tissue-enriched expression pattern is that the selected specific rare synonymous codons match 

tissue-specific tRNA pools, and thus the preferential usage of these specific rare codons seems to 

enhance protein translation efficiency in specific tissues or cell types [48,195,196]. Therefore, 

we next tested the hypothesis that the specific pattern of codon usage bias exhibited by Cluster A 

genes contributes to increased translation efficiency in the male reproductive system.  

Our clustering analysis revealed that Cluster A genes preferentially use the rare codons Lys-

AAA, Gln-CAA, Glu-GAA, Phe-TTT, Tyr-TAT, and His-CAT (Figure 2.2). However, only the 

first three rare codons are recognized by exactly matching tRNA anticodons, while the latter 

three rare codons share the same tRNAs with their more commonly used synonymous codons 

with a mismatch (wobble) at the third codon position [171,197]. Therefore, because the 

hypothetical impact of codon usage bias on the spatial regulation of protein translation depends 

on the increased availability of specific tRNAs in specific tissues and cell types, we next 

analyzed the specific usage of rare codons AAA, CAA, and GAA in all genes that show enriched 

expression in the male reproductive system, independent of whether these genes have passed the 

initial statistical threshold for the detection of selection on gene-specific codon usage patterns. 

We found that these specific rare synonymous codons are indeed overrepresented in male-

reproductive-system-specific genes (Figure 2.7). 
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Figure 2.7: Rare codons Lys-AAA, Gln-CAA, and Glu-GAA are overrepresented in 

protein-coding sequences of genes with enriched expression in the male reproductive 

system. The relative usage frequencies of Lys-AAA, Gln-CAA, Glu-GAA, and the combined 

relative usage frequency of these codons weighed by the amino acid composition, were 

calculated for all genes with valid records in the FlyAtlas tissue-specific transcriptomic database. 

1284 male-reproductive-system-specific genes and 9822 other genes were included. Data are 

presented in a box plot, where means are shown by crosses and medians are shown by solid lines 

in the middle of boxes. The relative usage frequencies and the combined relative usage 

frequency of the three rare codons are all significantly higher for male-reproductive-system-

specific genes than for other genes (Mann-Whitney test, p < 0.001). 
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Next, we hypothesized that if the selection on an increased relative usage of rare codons AAA, 

CAA, and GAA serves a biological function that is specific to the male reproductive system then 

it should depend, at least in part, on the increased expression of the specific rare tRNAs that bind 

these specific codons. In accordance with this hypothesis, northern blot analyses of tissue-

specific tRNA expression revealed that tRNALys
TTT is enriched in the male reproductive organs, 

further supporting the hypothesis that spatial regulation of some tRNA genes that correspond to 

rare codons could contribute to tissue-specific increase in protein translation efficiency (Figure 

2.8A-C). The expression patterns of the tRNAs that match Glu-GAA and Gln-CAA were not 

investigated because their sequences are almost identical to their common tRNA counterparts, 

which does not allow their independent detection by hybridization probes [198].  
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Figure 2.8: Gene-specific codon usage bias affects spatial protein expression in D. 

melanogaster. (A) Representative northern blots and (B-C) summary data of the relative 

transcript abundance of tRNALys
CTT (common) and tRNALys

TTT (rare) across male tissues. *, 

p<0.05 (n = 4, ANOVA followed by SNK post hoc tests). Error bars denote standard deviation. 

†: Reproductive system is excluded. (D-E) Representative images showing EGFP and RFP 

expression in the HPZ (yellow lines mark tissue boundaries). (F-G) Representative images 

showing EGFP and RFP expression in the AGSC (yellow outlines surround secondary cells). (H-

I) Summary data of normalized EGFP signals in HPZ and AGSC. *, p<0.01 (n=5, two-tailed 

unpaired Student’s t-test). Error bars denote standard deviation. (J) Real-time qRT-PCR mRNA 

expression data of EGFPCommon and EGFPRareKEQ (two-tailed unpaired Student’s t-test, n = 4, 

NS). Error bars denote SEM. 
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Observing increased expression of the rare tRNA that matches the rare codon Lys-AAA in the 

male reproductive system further suggested that some male-enriched D. melanogaster genes 

have evolved a biased codon usage pattern that restricts their efficient translation in a tissue-

specific manner. We tested this hypothesis by generating transgenic flies that express different 

alleles of EGFP under the control of the UAS-GAL4 binary expression system [168]. One allele 

was comprised of common codons for all amino acids (EGFPCommon), while the other allele 

differed from EGFPCommon only by using rare codons AAA, GAA, and CAA for amino acids 

Lys, Glu, and Gln respectively (EGFPRareKEQ), which represent about 18% of the total residues in 

EGFP. Each EGFP allele was also co-expressed with an RFP reporter encoded by common 

codons for all residues, which served as a transgene expression control. Both transgenes were 

driven by the ubiquitous Act5C-GAL4 driver [199]. To evaluate the effect of codon usage bias 

on the spatial pattern of both EGFP alleles in vivo, we compared the two genotypes by 

measuring the RFP-normalized EGFP signals in the accessory gland secondary cells (AGSCs), 

which are responsible for secreting seminal proteins, and in the hindgut proliferation zone 

(HPZ), which harbors gut epithelial stem cells [200]. We found that the signal from the 

EGFPRareKEQ allele in the AGSCs was significantly higher than that of the EGFPCommon allele. In 

contrast, both alleles produced similar signals in the HPZ (Figure 2.8D-I). Because both alleles 

were expressed by the same GAL4 driver and the baseline mRNA expression levels of both 

alleles are similar (Figure 2.8J), these results suggest that this specific combination of rare 

codons enhances protein translation in the D. melanogaster male reproductive system. Together, 

these data indicate that in contrast to the widely accepted assumption that “optimal” translation 

rates depend on the selective usage of common synonymous codons, the actual optimal 
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translation of some proteins associated with the male reproductive system depends on the 

selective usage of a specific combination of rare codons. 

2.4 Discussion 
The computational and empirical data we present here indicate that, in spite of variation in the 

proportion of protein-coding genes affected by selection on gene-specific codon usage bias 

across species, non-neutral synonymous mutations are likely much more common in eukaryotic 

genomes than currently assumed. Thus, the results of our unbiased and broadly applicable 

statistical approach suggest that gene-specific codon usage bias is a fundamental organizational 

principle of eukaryotic genomes that is sensitive to natural selection, and therefore, represents an 

important component of the genotype-phenotype axis on the developmental and physiological 

timesclaes, as well as the molecular evolution of genomes in diverse eukaryotic clades and 

biological contexts. Furthermore, our studies indicate that many of the previous reports about the 

phenotypic consequences of synonymous mutations are unlikely to represent anecdotal cases. 

Instead, they signify a fundamental aspect of the spatial regulation of eukaryotic gene activity. 

Our genome-scale data also suggest that it should no longer be assumed a priori that most 

synonymous mutations are neutral. Instead, tests for selection on protein-coding genes should 

adjust their parameters according to the statistical probabilities of synonymous mutations being 

non-neutral [201]. Thus, common estimates for rates of molecular evolution of protein-coding 

genes, which rely on the assumption that synonymous mutations are neutral, are likely 

overestimating or underestimating the impact of natural selection. Consequently, the 

interpretations of the possible associations between specific genetic and phenotypic variations in 

particular [202], and genome evolution in general [37,203], could be biased. This is especially 

important in the context of the commonly used tests for identifying molecular signatures of 
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selection in specific protein-coding genes, and for classifying specific modes of natural selection 

(e.g., “positive” versus “negative” selection) [70,101,107,157,204,205].   

As currently framed, our quantitative approach for identifying gene-specific signatures of natural 

selection on synonymous mutations is based on a set of assumptions that enable its broad 

application to any genomes with available annotations of protein-coding sequences, so that the 

approach can assess the generality of neutral synonymous mutations. However, we acknowledge 

that some of these assumptions might not represent the correct biological context for all genes 

under all possible conditions. We also anticipate that the assumption that adjacent nucleotides 

have no effect on the mutation rates of focal nucleotides could increase false-positive rates [206]. 

However, we foresee that this possible source of false-positives would be compensated for by the 

assumption that the mutational bias of each focal gene is independent, which mathematically 

minimizes the χ2 statistic calculated from the observed and expected codon usage patterns 

according to Equation (2.3). The risk for false-positive outcomes is further alleviated by the 

conservative use of relaxed constraints for estimating μ values [184,185]. Nevertheless, false-

positive outcomes produced by our method could be further reduced by having more precise 

estimates of the μ parameters, which could be achieved by using population-level genetic 

variation data, sequences of short introns in or near the focal gene [207], more specific 

information about species-specific mutation rates, and how mutation rates might be impacted by 

the identities of adjacent nucleotides. 

The specific biological reasons for why different combinations of codons have been selected for 

in the context of individual genes in various species remain mostly unknown. Nevertheless, our 

data indicate that in multicellular organisms, one of the reasons may be that natural selection 

optimizes codon usage patterns to match specific spatial constraints on gene function. We found 
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that gene-specific codon usage bias is not uniform across the genome. Instead, our data suggest 

that different groups of genes in the same species often exhibit enrichment for specific 

combinations of rare or common codons, which suggests that different combinations of codons 

may have been selected for diverse biological reasons. In this regard, we show that at least one 

group of genes with enriched expression in the reproductive system of male D. melanogaster 

preferentially use the rare codons Lys-AAA, Gln-CAA, and Glu-GAA. By using allelic variants 

of a reporter gene, we show that the selective usage of these three rare codons is sufficient for 

generating spatially biased protein expression patterns. Therefore, “optimal” codon usage 

patterns of individual genes do not necessarily require the use of the most common codons for all 

amino acids; instead, some rare codons may serve as “facultative optimal codons”, as the tRNAs 

perfectly matching them could be relatively abundant in specific cells and/or during a specific 

period of time. Although our findings were not formally stipulated by the “translational selection 

theory”, they are consistent with its assertion that natural selection on codon usage bias can 

optimize translation by matching gene-specific codon usage patterns to cellular tRNA pools 

[1,38,195,196]. Consequently, our study provides a broader context to this fundamental 

evolutionary theory by emphasizing the possible role of gene-specific codon usage bias in the 

spatial regulation of proteins in multicellular eukaryotes. However, regulation of spatial protein 

expression cannot explain all cases of selection on gene-specific codon usage bias because 

genomes of some unicellular eukaryotes, such as the choanoflagellate Monosiga brevicollis and 

the green algae Chlamydomonas reinhardtii, also include a large proportion of protein-coding 

genes that exhibit signatures of selection on their codon usage patterns (Figure 2.1). While we do 

not understand yet the role of selection on heterogeneous gene-specific codon usage bias in 
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unicellular eukaryotes, it is possible that in these organisms it contributes to the temporal 

regulation of gene expression and/or phenotypic responses to external stimuli.   

Our studies also highlight the importance of understanding the relationships between tRNAs and 

protein-coding genes. Specifically, our studies demonstrate that for at least some D. 

melanogaster protein-coding genes, efficient tissue-specific translation requires an interaction 

between an increased usage of a specific set of rare codons, and the increased expression of their 

matching rare tRNAs. This is likely the result of the co-evolution between enriched expression of 

tRNAs and the usage patterns of their cognate codons in genes that require efficient translation in 

specific tissues. However, the mechanism that enables this observed co-evolution remains 

unknown. Although previous studies have argued that tRNA gene copy number is likely the 

primary mechanism that regulates the relative levels of individual tRNAs in cellular pools [38], 

variations in gene copy number alone cannot explain the tissue-specific expression patterns of 

some tRNAs observed by us (Figure 2.8A-C) and others [196,208]. Therefore, although tRNAs 

are thought to be exclusively transcribed by the constitutively-active RNA Pol III complex, there 

must be additional molecular mechanisms that enable the temporal and spatial regulation of 

some unique tRNAs at the transcriptional and/or post-transcriptional levels [209–212]. 

Although the majority of data presented here are from studies in Drosophila, we also show that 

many human protein-coding genes carry signatures of selection on their biased and 

heterogeneous codon usage patterns as well (Figure 2.1 and Figure 2.6). In addition, previous 

meta-analyses of human genome-wide association studies (GWAS) suggested that synonymous 

and nonsynonymous SNPs have similar likelihoods and effect sizes in terms of association with 

disease phenotypes [202]. Therefore, our findings that many protein-coding genes are under 

selection for codon usage bias could have broad implications for studies of genetic variants 
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underlying quantitative phenotypes in human populations. Specifically, our analyses suggest that 

synonymous SNPs are not necessarily neutral as often assumed [152–157], and therefore, are 

likely to contribute to overall trait variations by directly impacting the functions of specific genes 

and their associated phenotypes in health and disease [213]. Consequently, as was first stated by 

Darwin in the On the Origin of Species, “Variations neither useful nor injurious would not be 

affected by natural selection”, a genuine “neutral” mutation in a protein-coding DNA sequence 

should be defined by its impact on associated phenotypes in the context of fitness, independent 

of whether it is synonymous or nonsynonymous. 

2.5  Materials and Methods 

2.5.1  Genomic and Transcriptomic Data 
Protein-coding DNA sequences were from Ensembl 89 (https://www.ensembl.org/) [166]. 

Reference coding sequences included in the analysis of gene-specific codon usage bias were 

chosen according to the following criteria: 1) The sequence length is a multiple of three. 2) The 

sequence uses standard genetic code. 3) For each gene, only the longest mRNA isoform was 

used for analysis. If there were multiple isoforms of the same length, then the first record shown 

in the FASTA file was used. 4) The encoded protein includes all 19 amino acids that have 

degenerate codons. For the amino acid serine, the two-fold and four-fold degenerate codon 

groups were treated as if they encoded two different amino acids. Transcriptomic data were from 

the FlyAtlas microarray database [162] and the modENCODE RNA-seq database [163,164]. 

2.5.2  Estimating μ and Expected Codon Counts 
The relationships between μ values and codon counts are described by Equation (2.3) (Results 

section). Based on the standard genetic code and all possible combinations for synonymous 

nucleotide substitutions, we classified all degenerate codons into six categories. For each 

https://www.ensembl.org/
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category, we used Equation (2.3) to generate a homogeneous linear equation system. 

Subsequently, we treated one of the x variables as a known parameter and analytically solved all 

other x variables. Finally, these solutions were used to calculate the expected codon counts of a 

protein-coding gene. 

Category one – Codons for Arginine: 

{
 
 
 

 
 
 
𝑥𝐴𝐺𝐴 × 𝜇𝐴→𝐶 + 𝑥𝐴𝐺𝐴 × 𝜇𝐴→𝐺 = 𝑥𝐶𝐺𝐴 × 𝜇𝐶→𝐴 + 𝑥𝐴𝐺𝐺 × 𝜇𝐺→𝐴
𝑥𝐴𝐺𝐺 × 𝜇𝐴→𝐶 + 𝑥𝐴𝐺𝐺 × 𝜇𝐺→𝐴 = 𝑥𝐶𝐺𝐺 × 𝜇𝐶→𝐴 + 𝑥𝐴𝐺𝐴 × 𝜇𝐴→𝐺
𝑥𝐶𝐺𝐴 × 𝜇𝐶→𝐴 + 𝑥𝐶𝐺𝐴 × (𝜇𝐴→𝐶 + 𝜇𝐴→𝐺 + 𝜇𝐴→𝑇)
                           = 𝑥𝐴𝐺𝐴 × 𝜇𝐴→𝐶 + 𝑥𝐶𝐺𝐶 × 𝜇𝐶→𝐴 + 𝑥𝐶𝐺𝐺 × 𝜇𝐺→𝐴 + 𝑥𝐶𝐺𝑇 × 𝜇𝑇→𝐴
𝑥𝐶𝐺𝐺 × 𝜇𝐶→𝐴 + 𝑥𝐶𝐺𝐺 × (𝜇𝐺→𝐴 + 𝜇𝐺→𝐶 + 𝜇𝐺→𝑇)
                           = 𝑥𝐴𝐺𝐺 × 𝜇𝐴→𝐶 + 𝑥𝐶𝐺𝐴 × 𝜇𝐴→𝐺 + 𝑥𝐶𝐺𝐶 × 𝜇𝐶→𝐺 + 𝑥𝐶𝐺𝑇 × 𝜇𝑇→𝐺
𝑥𝐶𝐺𝐶 × (𝜇𝐶→𝐴 + 𝜇𝐶→𝐺 + 𝜇𝐶→𝑇) = 𝑥𝐶𝐺𝐴 × 𝜇𝐴→𝐶 + 𝑥𝐶𝐺𝐺 × 𝜇𝐺→𝐶 + 𝑥𝐶𝐺𝑇 × 𝜇𝑇→𝐶
𝑥𝐶𝐺𝑇 × (𝜇𝑇→𝐴 + 𝜇𝑇→𝐶 + 𝜇𝑇→𝐺) = 𝑥𝐶𝐺𝐴 × 𝜇𝐴→𝑇 + 𝑥𝐶𝐺𝐶 × 𝜇𝐶→𝑇 + 𝑥𝐶𝐺𝐺 × 𝜇𝐺→𝑇

. (2.4) 

Category two – Codons for Leucine: 

{
 
 
 

 
 
 
𝑥𝑇𝑇𝐴 × 𝜇𝑇→𝐶 + 𝑥𝑇𝑇𝐴 × 𝜇𝐴→𝐺 = 𝑥𝐶𝑇𝐴 × 𝜇𝐶→𝑇 + 𝑥𝑇𝑇𝐺 × 𝜇𝐺→𝐴
𝑥𝑇𝑇𝐺 × 𝜇𝑇→𝐶 + 𝑥𝑇𝑇𝐺 × 𝜇𝐺→𝐴 = 𝑥𝐶𝑇𝐺 × 𝜇𝐶→𝑇 + 𝑥𝑇𝑇𝐴 × 𝜇𝐴→𝐺
𝑥𝐶𝑇𝐴 × 𝜇𝐶→𝑇 + 𝑥𝐶𝑇𝐴 × (𝜇𝐴→𝐶 + 𝜇𝐴→𝐺 + 𝜇𝐴→𝑇)
                           = 𝑥𝑇𝑇𝐴 × 𝜇𝑇→𝐶 + 𝑥𝐶𝑇𝐶 × 𝜇𝐶→𝐴 + 𝑥𝐶𝑇𝐺 × 𝜇𝐺→𝐴 + 𝑥𝐶𝑇𝑇 × 𝜇𝑇→𝐴
𝑥𝐶𝑇𝐺 × 𝜇𝐶→𝑇 + 𝑥𝐶𝑇𝐺 × (𝜇𝐺→𝐴 + 𝜇𝐺→𝐶 + 𝜇𝐺→𝑇)
                           = 𝑥𝑇𝑇𝐺 × 𝜇𝑇→𝐶 + 𝑥𝐶𝑇𝐴 × 𝜇𝐴→𝐺 + 𝑥𝐶𝑇𝐶 × 𝜇𝐶→𝐺 + 𝑥𝐶𝑇𝑇 × 𝜇𝑇→𝐺
𝑥𝐶𝑇𝐶 × (𝜇𝐶→𝐴 + 𝜇𝐶→𝐺 + 𝜇𝐶→𝑇) = 𝑥𝐶𝑇𝐴 × 𝜇𝐴→𝐶 + 𝑥𝐶𝑇𝐺 × 𝜇𝐺→𝐶 + 𝑥𝐶𝑇𝑇 × 𝜇𝑇→𝐶
𝑥𝐶𝑇𝑇 × (𝜇𝑇→𝐴 + 𝜇𝑇→𝐶 + 𝜇𝑇→𝐺) = 𝑥𝐶𝑇𝐴 × 𝜇𝐴→𝑇 + 𝑥𝐶𝑇𝐶 × 𝜇𝐶→𝑇 + 𝑥𝐶𝑇𝐺 × 𝜇𝐺→𝑇

. (2.5) 

Category three – Four-fold degenerate codons: 

{
 
 

 
 
𝑥𝑝𝑞𝐴 × (𝜇𝐴→𝐶 + 𝜇𝐴→𝐺 + 𝜇𝐴→𝑇) = 𝑥𝑝𝑞𝐶 × 𝜇𝐶→𝐴 + 𝑥𝑝𝑞𝐺 × 𝜇𝐺→𝐴 + 𝑥𝑝𝑞𝑇 × 𝜇𝑇→𝐴
𝑥𝑝𝑞𝐶 × (𝜇𝐶→𝐴 + 𝜇𝐶→𝐺 + 𝜇𝐶→𝑇) = 𝑥𝑝𝑞𝐴 × 𝜇𝐴→𝐶 + 𝑥𝑝𝑞𝐺 × 𝜇𝐺→𝐶 + 𝑥𝑝𝑞𝑇 × 𝜇𝑇→𝐶
𝑥𝑝𝑞𝐺 × (𝜇𝐺→𝐴 + 𝜇𝐺→𝐶 + 𝜇𝐺→𝑇) = 𝑥𝑝𝑞𝐴 × 𝜇𝐴→𝐺 + 𝑥𝑝𝑞𝐶 × 𝜇𝐶→𝐺 + 𝑥𝑝𝑞𝑇 × 𝜇𝑇→𝐺
𝑥𝑝𝑞𝑇 × (𝜇𝑇→𝐴 + 𝜇𝑇→𝐶 + 𝜇𝑇→𝐺) = 𝑥𝑝𝑞𝐴 × 𝜇𝐴→𝑇 + 𝑥𝑝𝑞𝐶 × 𝜇𝐶→𝑇 + 𝑥𝑝𝑞𝐺 × 𝜇𝐺→𝑇

. (2.6) 

Category four – Codons for Isoleucine: 
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{

𝑥𝐴𝑇𝐴 × (𝜇𝐴→𝐶 + 𝜇𝐴→𝑇) = 𝑥𝐴𝑇𝐶 × 𝜇𝐶→𝐴 + 𝑥𝐴𝑇𝑇 × 𝜇𝑇→𝐴
𝑥𝐴𝑇𝐶 × (𝜇𝐶→𝐴 + 𝜇𝐶→𝑇) = 𝑥𝐴𝑇𝐴 × 𝜇𝐴→𝐶 + 𝑥𝐴𝑇𝑇 × 𝜇𝑇→𝐶
𝑥𝐴𝑇𝑇 × (𝜇𝑇→𝐴 + 𝜇𝑇→𝐶) = 𝑥𝐴𝑇𝐴 × 𝜇𝐴→𝑇 + 𝑥𝐴𝑇𝐶 × 𝜇𝐶→𝑇

. (2.7) 

Category five – C/T-ended two-fold degenerate codons: 

𝑥𝑝𝑞𝐶 × 𝜇𝐶→𝑇 = 𝑥𝑝𝑞𝑇 × 𝜇𝑇→𝐶. (2.8) 

Category six– A/G-ended two-fold degenerate codons: 

𝑥𝑝𝑞𝐴 × 𝜇𝐴→𝐺 = 𝑥𝑝𝑞𝐺 × 𝜇𝐺→𝐴. (2.9) 

The above equations are analytically solved by SymPy [214] and the results are shown in 

Appendix 1.2. Using these solutions, with a given set of μ values and counts of amino acid 

residues, we can calculate the expected counts of synonymous codons. For example, the 

expected counts of codons for Lys can be calculated by 

{
 
 

 
 𝐸𝑥𝐴𝐴𝐴 = 𝑦𝐿𝑦𝑠 ×

𝑥𝐴𝐴𝐴

𝑥𝐴𝐴𝐴+𝑥𝐴𝐴𝐺
= 𝑦𝐿𝑦𝑠 ×

𝑥𝐴𝐴𝐴

𝑥𝐴𝐴𝐴+𝑥𝐴𝐴𝐴×
𝜇𝐴→𝐺
𝜇𝐺→𝐴

= 𝑦𝐿𝑦𝑠 ×
1

1+
𝜇𝐴→𝐺
𝜇𝐺→𝐴

𝐸𝑥𝐴𝐴𝐺 = 𝑦𝐿𝑦𝑠 ×
𝑥𝐴𝐴𝐺

𝑥𝐴𝐴𝐴+𝑥𝐴𝐴𝐺
= 𝑦𝐿𝑦𝑠 ×

𝑥𝐴𝐴𝐴×
𝜇𝐴→𝐺
𝜇𝐺→𝐴

𝑥𝐴𝐴𝐴+𝑥𝐴𝐴𝐴×
𝜇𝐴→𝐺
𝜇𝐺→𝐴

= 𝑦𝐿𝑦𝑠 ×

𝜇𝐴→𝐺
𝜇𝐺→𝐴

1+
𝜇𝐴→𝐺
𝜇𝐺→𝐴

, (2.10) 

where ExAAA is the expected count of AAA codon, and yLys is the count of Lys residues. 

Then we can use the expected counts and the observed real counts of all degenerate codons to 

calculate a χ2 value. Since for a given protein-coding sequence, the χ2 value is a function of μ 

values, we can define this function as χ2(Θ), where Θ is a vector describing all μ values, 

𝛩 = (𝜇𝐴→𝐶 , 𝜇𝐶→𝐴, 𝜇𝐴→𝐺 , 𝜇𝐺→𝐴, 𝜇𝐴→𝑇 , 𝜇𝑇→𝐴, 𝜇𝐶→𝐺 , 𝜇𝐺→𝐶 , 𝜇𝐶→𝑇 , 𝜇𝑇→𝐶 , 𝜇𝐺→𝑇 , 𝜇𝑇→𝐺). (2.11) 
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For a gene, to estimate μ values, we try to minimize the value of χ2(Θ) by changing the elements 

in Θ, using the sequential least squares programming (SLSQP) algorithm [215].  

Since equations generated from Equation (2.3) form a system of homogeneous linear equations, 

it is meaningless to infer exact μ values from the minimization of χ2(Θ); rather, only the relative 

magnitudes of different μ values are important for calculating the expected codon counts later. 

As we used the assumption that the lowest μ value is at least 1/100 of the highest, we set the 

range of μ values between 0.001 and 0.1 during the minimization of χ2(Θ). For each gene, the 

minimum χ2(Θ) is used to calculate p-value. Since we assumed that reference genomic data 

represent a "wild type" genome, the procedure mentioned above was applied to each individual 

reference gene. 

2.5.3  Codon Usage Heatmaps 
For a protein-coding gene g, the relative usage frequency fgd of a codon d is defined as 

𝑓𝑔𝑑 =
𝑛𝑔𝑑

𝑦𝑔𝑎
, (2.12) 

where ngd is the count of d in g, and yga is the count of amino acid a encoded by d and its 

synonymous codons in g. It should be noted that codons for Ser are not treated as two codon 

groups in codon usage heatmaps. As the mechanism of recognizing stop codons is fairly different 

from recognizing other codons [216], and methionine and tryptophan respectively have only one 

codon, the analysis is restricted to the other 59 codons. Therefore, a 59-dimension vector Bg is 

used to describe the codon usage pattern of g, 

𝐵𝑔 = (𝑓𝑔1, 𝑓𝑔2, 𝑓𝑔3, ⋯ , 𝑓𝑔𝑑 , ⋯ , 𝑓𝑔59)
𝑇
. (2.13) 
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For a genome containing M protein-coding genes, an M-dimension vector Hd is used to describe 

how often a codon d is used across these genes, 

𝐻𝑑 = (𝑓1𝑑 , 𝑓2𝑑 , 𝑓3𝑑 , ⋯ , 𝑓𝑔𝑑, ⋯ , 𝑓𝑀𝑑). (2.14) 

Both Bg’s and Hd’s are hierarchically clustered. The values of all fgd’s are then color-coded to 

generate a codon usage heatmap. 

The “gplots” package [217] in R was used to generate heatmaps. The method of hierarchical 

clustering was complete linkage with Euclidean distance measuring the dissimilarities between 

codons and Spearman’s correlation coefficient measuring the similarities between genes. 

2.5.4  Identifying Genes with Tissue-specific Expression Patterns 
Mean adult gene expression data from the FlyAtlas database were used to identify genes with 

tissue-specific expression patterns. A gene was classified as tissue-specific if its average mRNA 

level in a specific tissue was at least ten-fold to the tissue with the second highest mRNA level. 

To reduce redundancy, “Head” expression values were excluded from the analysis. Specifically, 

since both “Brain” and “Thoracic-abdominal ganglion” are parts of the central nervous system 

(CNS), and many CNS-specific genes are expressed in both places, we generated a merged 

“Adult central nervous system” category that included the highest mRNA level across these two 

original FlyAtlas categories for each analyzed gene. 

2.5.5  Identifying Genes with Sex-biased Expression Patterns 
Adult fly expression data from the modENCODE RNA-seq database were used to identify genes 

with either male- or female-biased expression patterns. Only genes that showed at least ten-fold 

expression in one sex relative to the other were defined as sex-biased. 
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2.5.6  Hypergeometric Tests for Gene Set Enrichment 
The hypergeometric tests were performed using the online tool at 

http://www.rothsteinlab.com/tools/apps/hyper_geometric_calculator. 

2.5.7  Gene Ontology Analysis 
Gene ontology (GO) analysis [192] of D. melanogaster genes was performed by using online 

tools (http://geneontology.org/). Category enrichments were determined by comparing term 

frequencies between each gene cluster and the whole genome, followed by a Bonferroni 

correction. 

2.5.8  Animals 
Fruit flies (D. melanogaster) were raised on corn syrup-soy food (Archon Scientific) at 25°C and 

60% relative humidity with a 12-hour light/dark cycle. Custom gene synthesis was used to 

generate the cDNAs encoding EGFP and mCherry fluorescent proteins (IDT Inc., Iowa City IA). 

See Appendix 1.1 for sequences of the mCherryCommon, EGFPCommon, and EGFPRareKEQ alleles. 

Transgenic animals that express each allele under UAS control were generated by cloning each 

cDNAs into the EcoRI/NotI cloning sites of the pUASTattB plasmid [167]. Since the 

EGFPRareKEQ allele contains one internal EcoRI site, digestion time was shortened to less than 20 

minutes to allow incomplete digestion. The UAS-RFPCommon transgene was inserted into a 

chromosome II landing site (Bloomington #24483), and the UAS-EGFPCommon and UAS-

EGFPRareKEQ transgenes were inserted into the same chromosome III landing site (Bloomington 

#24749) by using the C31 integrase approach [167]. Double homozygotic lines UAS-

RFPCommon; UAS-EGFPCommon and UAS-RFPCommon; UAS-EGFPRareKEQ were generated and then 

crossed to Act5C-GAL4/SM6 (Duncan lab, Washington University). Unless specified, the wild 

type Canton-S strain was used in all molecular analyses. 

http://www.rothsteinlab.com/tools/apps/hyper_geometric_calculator
http://geneontology.org/
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2.5.9  Analyses of tRNA Gene Expression 
Northern blots were used to measure relative tRNA abundance in different body parts. Total 

RNA was extracted from four pools of 10 dissected male tissues (head, reproductive system, and 

remaining thorax and abdominal parts) and 10 whole male flies with the TRIzol reagent 

(Invitrogen Catalog # 15596-026). Probe sequences were: tRNALys
CTT, 

AACGTGGGGCTCGAACCCACGACCCTGA; tRNALys
TTT, 

GAACAGGGACTTGAACCCTGGACCCTTG. Probes were labeled with 32P using T4 PNK 

(NEB Catalog # M0201S). Signals were measured and normalized to total tRNA signals using 

the BIO-RAD Quantity One 1-D analysis software. ANOVA followed by SNK post hoc test was 

used to compare tRNA levels between samples. 

2.5.10  Real-time qRT-PCR 
The mRNA expression levels of reporter genes in whole four-day-old male flies were quantified 

by using real-time qRT-PCR, following previously published methods [218,219]. For RpL32, the 

forward primer was CACCAAGCACTTCATCCG, and the reverse primer was 

TCGATCCGTAACCGATGT. For EGFPCommon and EGFPRareKEQ, the forward primers were 

respectively AACTTCAAGATCCGCCACAAC and AACTTCAAAATCCGCCACAAC, while 

these alleles shared the same reverse primer GTGCTCAGGTAGTGGTTATCG. 

2.5.11  Quantitative Reporter Gene Imaging 
Male reproductive and gut tissues from four-day-old adult male flies that express either the 

EGFPCommon or EGFPRareKEQ were dissected in chilled PBS and mounted for imaging on a Nikon 

A1Si laser scanning confocal microscope with a 20X oil objective (n=5 samples per genotype). 

All images were taken within 10 minutes of dissection. Single plane fluorescent images of the 

AGSC were used to estimate EGFP expression levels of each allele. Similar images of the HPZ 

were used as generic tissue controls. The NIS-Element Ar software was used to capture EGFP 
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and RFP signals and generate channel-merged images. Normalized EGFP signals from each 

image were quantified using the Fiji image processing software [220]. The tissue-specific effect 

of the EGFP codon usage was analyzed by comparing the normalized EGFP signals in either the 

AGSC or HPZ between genotypes with a two-tailed unpaired Student’s t-test. 
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Chapter 3: Codon Clusters with Biased 

Synonymous Codon Usage Represent Hidden 

Functional Domains in Protein-coding DNA 

Sequences 

3.1 Abstract 
Protein-coding DNA sequences are thought to primarily affect phenotypes via the amino acid 

sequences they encode. Yet, emerging data suggest that, although they do not affect protein 

sequences, synonymous mutations can cause phenotypic changes. Previously, we have shown 

that signatures of selection on gene-specific codons usage bias are common in genomes of 

diverse eukaryotic species. Thus, synonymous codon usage, just as amino acid usage pattern, is 

likely a regular target of natural selection. Consequently, here we propose the hypothesis that at 

least for some protein-coding genes, codon clusters with biased synonymous codon usage 

patterns might represent “hidden” nucleic-acid-level functional domains that affect the action of 

the corresponding proteins via diverse hypothetical mechanisms. To test our hypothesis, we used 

computational approaches to identify over 3,000 putatively functional codon clusters (PFCCs) 

with biased usage patterns in about 1,500 protein-coding genes in the Drosophila melanogaster 

genome. Specifically, our data suggest that these PFCCs are likely associated with specific 

categories of gene function, including enrichment in genes that encode membrane-binding and 

secreted proteins. Yet, the majority of the PFCCs that we have identified are not associated with 

previously annotated functional protein domains. Although the specific functional significance of 

the majority of the PFCCs we have identified remains unknown, we show that in the highly 

conserved family of voltage-gated sodium channels, the existence of rare-codon cluster(s) in the 
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nucleic-acid region that encodes the cytoplasmic loop that constitutes inactivation gate is 

conserved across paralogs as well as orthologs across distant animal species. Together, our 

findings suggest that codon clusters with biased usage patterns likely represent “hidden” nucleic-

acid-level functional domains that cannot be simply predicted from the amino acid sequences 

they encode. Therefore, it is likely that on the evolutionary timescale, protein-coding DNA 

sequences are shaped by both amino-acid-dependent and codon-usage-dependent selective 

forces. 

3.2 Introduction 
In general, it is assumed that the primary function of a protein-coding sequence is to encode a 

specific sequence of amino acids whose biochemical properties determine the structure and 

functions of the encoded peptide. However, emerging data indicate that synonymous mutations, 

which do not affect amino acid sequences, can still have dramatic phenotypic impacts [6,21,30]. 

Thus, it has been hypothesized that some important factors affecting protein structures and 

functions are not simply encoded by amino acid residues but by nucleic-acid-level information, 

such as codon usage bias [6,172]. Therefore, just as a sequence of amino acids with a specific 

order and/or specific biochemical properties can form a protein domain that performs specific 

functions, it is also possible that a sequence of codons with a specific codon usage pattern could 

serve as a nucleic-acid-level domain that affects the functions of the mature protein.  

Based on the hypothesis that codon-usage-encoded domains can affect protein functions, 

researchers have identified rare-codon clusters, characterized by enriched whole-genome rare 

codons in relatively short regions within protein-coding sequences, that possibly decelerate 

translation and thus modify protein functions by affecting co-translational folding and/or 

modifications of nascent peptide chains [24,172,221–224]. Nevertheless, if functional codon 
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clusters do exist, local deceleration of translation may not be the only mechanism through which 

they affect protein functions. It is also possible that functional codon clusters could correspond to 

locally accelerated translation, a specific combination of translationally decelerated and 

accelerated regions, specific RNA secondary structures [8,225], and accessibility of miRNAs 

[27]. Thus, for generally investigating codon clusters as functional domains that may be 

“hidden” from the amino acid sequences, exclusive focus on rare-codon clusters may lead to 

biased results. Therefore, it is necessary to develop statistical methods that generally detect 

putatively functional codon clusters (PFCCs), no matter what specific codons they prefer or 

through what mechanisms they may affect protein functions.  

Consequently, to identify PFCCs, we developed a conservative statistical approach and applied it 

to the Drosophila melanogaster genome with approximately 14,000 protein-coding genes, which 

yielded over 3,000 PFCCs in about 1,500 genes. Interestingly, some of these PFCCs strongly 

prefer common codons while some others adopt complex codon usage patterns that cannot be 

simply described as preference for common or rare codons, which has not been reported before. 

Furthermore, we found that genes encoding transmembrane proteins are more likely to bear 

PFCCs. However, only a small proportion of the identified PFCCs are associated with the coding 

sequences of transmembrane helices, which suggests that PFCCs are either associated with other 

types of protein domains that are overrepresented in transmembrane proteins or not necessarily 

associated with amino-acid-encoded domains. We further found that the majority of the 

identified PFCCs are not associated with established protein domains in the Pfam database [169]. 

These data suggest that most PFCCs likely encode “hidden” nucleic-acid-level functional 

domains that cannot be predicted solely from amino acid sequences. The rationale for this 

inference is as follows: first, Pfam is a well-established database of conserved protein domains 
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that have undergone strong natural selection; second, the PFCCs can be identified only when 

natural selection on local codon usage patterns is strong enough to generate statistically 

detectable signals; third, if the major impacts of PFCCs on gene functions are mediated by 

amino-acid-encoded protein domains, most PFCCs are expected to be associated with amino-

acid-encoded domains that have undergone strong natural selection; fourth, the actual 

observation contradicts the expectation, and thus the functions of PFCCs should not be strongly 

associated with amino-acid-encoded domains. Finally, by implementing comparative analysis 

between homologs, we showed that the family of voltage-gated sodium channels likely evolved 

conserved preference for rare codons in a region responsible for the channel inactivation. 

Together, our data suggest that similar to amino acid sequences, codon clusters can also encode 

diverse functional domains, which provides an additional level of regulation over the structures, 

modifications, and functions of proteins. 

3.3  Results 

3.3.1  Identifying Putatively Functional Codon Clusters (PFCCs) 
If the synonymous codon usage of a codon cluster does not perform specific functions, it should 

not be affected by natural selection and thus it can be explained by the background codon usage 

frequencies, which is mainly determined by mutations and genetic drift [174,226]. For example, 

if a gene locates in a GC-enriched chromosomal region that has resulted from GC-biased 

mutations, it is expected that the background codon usage is biased towards GC-ended codons; 

thus, if a sub-genic region is not significantly affected by natural selection on codon usage, its 

synonymous codon usage should also be biased towards GC-ended codons. Therefore, if the 

codon usage pattern of a codon cluster cannot be explained by the background codon usage 

frequencies, it should be significantly affected by natural selection; thus, such a codon cluster is 
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by definition a PFCC. To identify PFCCs, first we needed to choose background codon usage 

frequencies. Previous studies on synonymous codon usage usually used the whole-genome codon 

usage frequencies as the background [221–224]. Nevertheless, our recent study [227] showed 

that gene-specific codon usage pattern can be fairly different from the whole-genome one. Thus,  

even if the synonymous codon usage of a codon cluster cannot be explained by whole-genome 

codon usage, it may still be adequately explained by gene-specific codon usage, and vice versa. 

Therefore, to filter out the interference from the discrepancy between whole-genome and gene-

specific codon usage patterns so that PFCCs are conservatively identified, neither whole-genome 

nor gene-specific codon usage frequencies should be able to explain the codon usage pattern of a 

PFCC. Based on the aforementioned logic, we developed a statistical approach to scan protein-

coding sequences in order to identify PFCCs (see 3.5.2 Identifying PFCCs).  

By applying the approach to 13,821 protein-coding genes from the reference D. melanogaster 

genome, we identified 3,050 PFCCs in 1,445 genes (Appendix 3.1). This result indicates that 

PFCCs do exist, and they impact at least 10% of protein-coding genes in the D. melanogaster 

genome. 

3.3.2  Codon Usage Patterns of PFCCs Are Diverse 
In principle, the codon usage patterns of PFCCs can deviate from the background codon usage 

frequencies for various non-mutually exclusive biological reasons. First, the enrichment of rare 

codons in a PFCC might decelerate translation [224]. Second, it is possible that the enrichment 

of common codons in a PFCC could accelerate translation. Third, PFCCs with more complex 

codon usage patterns, which cannot be simply described as the preference for common or rare 

codons, might serve important functions by affecting mRNA secondary structure [8,225],  

miRNA accessibility [27], or epigenetic modifications [46]. Thus, classifying the identified 
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PFCCs by their codon usage patterns could be informative for assessing how PFCCs may affect 

protein functions.  

Codon adaptation index (CAI) [3] has been widely used to describe a protein-coding sequence’s 

propensity of using common codons. In general, a higher CAI indicates stronger preference for 

common codons and/or avoidance of rare codons. However, directly using CAI as the index to 

classify PFCCs could lead to biased results, especially when common codons are not enriched in 

the PFCCs. This is because the differences between usage frequencies of the synonymous codons 

for some amino acids are much larger than those of other amino acids. Thus, even if two codon 

clusters both strictly use rare codons, they could have very different CAIs depending on the 

amino acid sequences. To circumvent such a weakness of CAI, we propose to use a transformed 

CAI (TCAI) to describe the general codon usage pattern of a PFCC.  

TCAI is calculated as below. For a PFCC, the corresponding amino acid sequence and the 

background codon usage pattern – either the whole-genome or gene-specific codon usage pattern 

– are used to randomly generate 10,000 “pseudo-clusters” of codons that encode exactly the 

same amino acid sequences as what is encoded by the PFCC. Thus, on average, the overall 

codon usage patterns of these pseudo-clusters should follow the background codon usage pattern. 

Then the CAIs of all pseudo-clusters are calculated, and TCAI is defined as the result of 

subtracting the proportion of pseudo-clusters whose CAIs are higher than the CAI of the PFCC 

from the proportion of pseudo-clusters whose CAIs are lower than the CAI of the PFCC. Thus, 

TCAI varies between -1 and 1. TCAI = -1 means that the CAIs of all pseudo-clusters are higher 

than that of the PFCC, suggesting that the PFCC strongly prefers rare codons; in contrast, TCAI 

=1 suggests that the PFCC strongly prefers common codons. Thus, TCAI effectively suppresses 

the interference from different levels of codon usage biases for different amino acids.  
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We calculated TCAIs for all identified PFCCs, either by using whole-genome (Figure 3.1A) or 

gene-specific (Figure 3.1B) codon usage pattern as the background. The distribution of TCAI 

values (Figure 3.1) indicates that most PFCCs are rare-codon clusters, while common-codon 

clusters do exist as shown by a small peak in the rightmost part of the histograms. More 

interestingly, there are also some codon clusters whose TCAI values are intermediate, suggesting 

that their codon usage patterns are more complex and cannot be simply described by strong 

preference for common or rare codons. The preponderance of rare-codon clusters may be 

explained by two reasons that are not mutually exclusive. First, the preponderance may represent 

the fact that rare-codon clusters are biologically more important than other types of functional 

codon clusters. Second, the preponderance may also be partly an artifact of technically easier 

detection of enriched rare codons in a short nucleotide sequence. Nonetheless, it was 

undoubtedly confirmed that there are different types of codon clusters in terms of synonymous 

codon usage patterns. 
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Figure 3.1: Distribution of TCAI values. TCAI values were calculated by using the whole-

genome (A) or gene-specific (B) codon usage patterns as the background codon usage. The 

TCAI of a rare-codon cluster is near -1, while that of a common-codon cluster is near 1. 
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We also noted that although the distribution patterns shown in Figure 3.1A and Figure 3.1B are 

qualitatively similar, the actual values of corresponding columns in the histograms are 

quantitatively different. This suggests the possibility that a PFCC could be assigned to different 

types of codon clusters, depending on which background codon usage pattern is used. Such a 

possibility may interfere the interpretations of the putative functions of the PFCC. For example, a 

rare-codon cluster in terms of whole-genome codon usage may be classified as a common-codon 

cluster in terms of gene-specific codon usage, and thus it could be unclear whether the PFCC 

may decelerate or accelerate translation. In order to assess the influence of the discrepancy 

between whole-genome and gene-specific codon usage patterns on the classification of PFCCs, 

we used a scatter plot to examine the relationship between whole-genome TCAI and gene-

specific TCAI (Figure 3.2). The data points were then clustered by K-mean clustering to seven 

types (K=7). 
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Figure 3.2: Influence of the discrepancy between whole-genome and gene-specific codon 

usage patterns on classifying PFCCs. Codon usage patterns of identified PFCCs were 

described by TCAI. Since gene-specific and whole-genome-level TCAI values for the same 

codon cluster could be different, we plotted the gene-specific TCAI against whole-genome TCAI 

for all codon clusters and then classified codon clusters by K-mean clustering (K=7). 
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We found that most codon clusters have similar whole-genome and gene-specific TCAI (Figure 

3.2, types I-V). However, some common-codon clusters in terms of whole-genome TCAI were 

classified as rare-codon clusters in terms of gene-specific TCAI (Figure 3.2, type VI), and vice 

versa (Figure 3.2, type VII). This result suggests that due to the discrepancy between whole-

genome and gene-specific codon usage patterns, it is difficult to predict the exact biological roles 

of some identified PFCCs. For example, in our previous study, we showed that some whole-

genome rare codons can be translationally optimal for tissue-specific genes [227]. Thus, a rare-

codon cluster in terms of whole-genome codon usage, which would be naïvely considered as a 

“decelerating codon cluster”, might be a common-codon cluster in terms of gene-specific codon 

usage, which could actually serve as an “accelerating codon cluster”. Therefore, although PFCCs 

can be detected by statistical approaches proposed by us and others [223,224], to 

computationally predict the candidate functional roles of these codon clusters may require extra 

information such as tRNA expression profile and better tools for predicting the secondary and 

tertiary structures of RNAs.  

To summarize, PFCCs are diverse according to their codon usage patterns. Rare-codon clusters, 

whose main function is presumably decelerating translation [223,224], seem to be the majority of 

PFCCs. There are also other types of PFCCs, including common-codon clusters and PFCCs with 

more complex codon usage patterns, which likely have functions other than decelerating 

translation. Nonetheless, the discrepancy between whole-genome and gene-specific codon usage 

patterns makes it hard to predict the possible functions of the PFCCs whose whole-genome 

TCAI and gene-specific TCAI are dramatically different. 
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3.3.3  PFCC Distribution Is Not Restricted to Specific Regions of Protein-

Coding Sequences 
Except for the codon usage patterns of PFCCs, the locations of PFCCs in protein-coding 

sequences may also provide hints to the possible functions of PFCCs. Previous studies have 

shown that a potential important function of codon clusters is that N-terminal rare-codon clusters 

could affect secretion of proteins [48,193,194], possibly via interaction with the nascent chains 

of signal peptides [48,193]. Therefore, we next tested if the PFCCs detected by our approach 

tend to locate near the N-terminus; if they do, it could suggest that PFCCs are likely associated 

with secretion of proteins.  

To measure how close a PFCC-encoded region is to the N-terminus, we defined the relative 

location index (RLI) of a PFCC as the ratio of the distance between the midpoint of the PFCC-

encoded region and the N-terminus to the length of the entire protein. Thus, a small RLI means 

that the PFCC-encoded region is close to the N-terminus. We then plotted the distribution of 

PFCCs against their RLIs (Figure 3.3A). We found that although the density of PFCCs is 

apparently higher in the N-terminal region, the distribution of PFCCs is not restricted to this 

region (Figure 3.3A). As we have assigned these codon clusters to seven types (Figure 3.2), we 

also examined if some specific types of PFCCs exhibit skewed distribution towards the N-

terminal region (Figure 3.3B-H). As expected, type I codon clusters, which can be described as 

rare-codon clusters, exhibit slight enrichment near the N-terminus (Figure 3.3B). To our surprise, 

type III codon clusters, which can be described as common-codon clusters, exhibit relatively 

strong enrichment near the N-terminus (Figure 3.3D). Other types of codon clusters do not 

exhibit clear enrichment near the N-terminus. We also performed a gene ontology (GO) analysis 

[165,228] (http://geneontology.org/) on the genes carrying N-terminal codon clusters (RLI < 0.1) 

to see if the genes encoding secreted proteins are enriched. We found that not only some 

http://geneontology.org/
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extracellular matrix structural constituents, mostly mucins, are enriched, but also proteins 

associated with plasma membrane or transcription-level regulation are enriched (Appendix 3.2). 

Together, these data indicate that although N-terminal regions are more likely to harbor PFCCs, 

many PFCCs actually locate in other regions (Figure 3.3). They also suggest that although the 

function of a subset of the PFCCs may be explained by N-terminal rare-codon clusters’ impact 

on secretion or signal peptides, such a function is unlikely a general role played by other PFCCs. 

For example, the codon clusters locating in the middle of genes should have little to do with 

signal peptides. Thus, PFCCs likely perform various biological functions that need further 

investigation.  
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Figure 3.3: Spatial distribution of putatively functional codon clusters. For all identified 

PFCCs and each type of PFCCs shown in Figure 3.2, the distribution of PFCCs is plotted against 

the location coordinates, measured by RLI (RLI=0 means N-terminus; RLI=1 means C-

terminus). 
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3.3.4  Specific Protein Functional Classes Are Overrepresented in Genes 

Carrying PFCCs While Most PFCCs Are Not Associated with Known Protein 

Domains 
To further investigate the biological roles of PFCCs, we next performed GO analyses on the 

genes carrying PFCCs, in order to test the hypothesis that PFCCs are associated with various 

functional features of protein-coding genes. We found that in all 1445 genes that carry the 

PFCCs, genes encoding membrane-binding proteins and transcription-related proteins are 

overrepresented, while genes encoding ribosomal and mitochondrial proteins are 

underrepresented (Appendix 3.3). This result suggests that functional codon clusters might be 

associated with transmembrane domains, so we then tested if the amino acid sequences encoded 

by the PFCCs are near or overlapped with the transmembrane helices predicted by TMHMM 

[229]. Unexpectedly, we found that only about 6% of the PFCCs are near or overlapped with 

some transmembrane helices (Table 3.1, Appendix 3.4). Thus, there seems to be a discrepancy 

between the overrepresentation of transmembrane proteins in the genes carrying PFCCs and 

relatively few PFCCs that are near or overlapped with the sequences encoding transmembrane 

helices. Nevertheless, such a discrepancy could be explained by that PFCCs may be functionally 

more important for the non-transmembrane regions in transmembrane proteins. The discrepancy 

may also be explained by that transmembrane helices are less sensitive to the change in codon 

usage since the helices are strongly affected by the biochemical properties, such as 

hydrophobicity, of amino acid residues [229,230].  
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Table 3.1: Biased codon clusters overlap with transmembrane helices. A codon cluster is 

defined to be associated with a transmembrane helix if the distance between at least one amino 

acid residue of the helix and the closest residue encoded by the codon cluster does not exceed 20 

amino acids. 

  Association type 
Number of 

clusters 

Clusters 

associated with 

transmembrane 

helices 

1-to-1 

association 

cluster in helix 14 

115 
195 

helix in cluster 16 

helix overlap left of cluster 21 

helix overlap right of cluster 24 

helix upstream to cluster 20 

helix downstream to cluster 20 

1-to-multiple association 80 

All clusters 3050 
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If most PFCCs are not associated with transmembrane helices, then it is possible that PFCCs are 

associated with other types of protein domains. Consequently, we examined the association 

between PFCCs and annotated protein domains in the Pfam database [169,231]. We found that 

about 1/4 of the PFCCs are near or overlapped with some annotated Pfam protein domains, yet it 

is still unclear how the other 3/4 might influence protein functions (Table 3.2, Appendix 3.5). 

Among the PFCCs of which each is associated with only one Pfam protein domain, about 1/2 

locate within protein domains (Table 3.2), which was consistent with what was recently reported 

by Chaney et al. [224]. These data suggest that although some PFCCs likely affect protein 

functions by modifying the co-translational processes concerning protein domains defined by 

amino acid sequences, the majority of PFCCs seem to be associated with unknown functional 

domains.  

To summarize, although specific protein functional classes are overrepresented in the genes 

carrying PFCCs, most of the PFCCs are not associated with known protein domains defined by 

amino acid sequences. Therefore, PFCCs likely represent “hidden” nucleic-acid-level domains 

that regulate protein functions. 
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Table 3.2: Biased codon clusters overlap with Pfam domains. A codon cluster is defined to be 

associated with a Pfam domain if the distance between at least one amino acid residue of the 

Pfam domain and the closest residue encoded by the codon cluster does not exceed 20 amino 

acids. 

  Association type 
Number of 

clusters 

Clusters 

associated with 

Pfam domains 

1-to-1 

association 

cluster in domain 299 

584 
746 

domain in cluster 3 

domain overlap left of cluster 63 

domain overlap right of cluster 75 

domain upstream to cluster 58 

domain downstream to cluster 86 

1-to-multiple association 162 

All clusters 3050 
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3.3.5  Voltage-gated Sodium Channels Include a Conserved Rare-codon 

Cluster Associated with the Inactivation Gate 
To identify possible specific functions of some PFCCs, we next investigated PFCCs identified in 

the D. melanogaster voltage-gated sodium channel (Nav) genes as a proof of principle for the 

following reasons. First, Nav has multiple transmembrane domains [232–234] and we have 

shown that transmembrane proteins are associated with PFCCs (Appendix 3.3). Second, Nav is a 

well-characterized protein family in terms of its physiological roles and structure-function 

relationship. Third, the D. melanogaster genome harbors two Nav paralogs whose divergence 

was dated back to the origin of Bilateria, which allows us to identify the PFCCs with conserved 

codon usage patterns.  

Each Nav α-subunit consists of four transmembrane domains (Domains I-IV) linked by 

cytoplasmic chains, plus an N-terminal and a C-terminal cytoplasmic chains. The inactivation 

gate, which is responsible for stopping the sodium influx during action potential, is formed by 

the cytoplasmic chain between Domain III (DIII) and Domain IV (DIV) that will be refer to as 

DIII-IV linker below [234]. In general, most invertebrates have two types of Nav, namely type 1 

Nav (Nav1) and type 2 Nav (Nav2), while vertebrates have lost the Nav2 gene but have gained 

multiple Nav1 paralogs [234]. As aforementioned, D. melanogaster has two paralogs of Nav, 

namely para, the Dmel/Nav1, and NaCP60E, the Dmel/Nav2 [235,236].  

Multiple PFCCs were identified in Dmel/Nav1 and Dmel/Nav2, but the PFCCs in Dmel/Nav1 

and those in Dmel/Nav2 are not always homologous. Nonetheless, we found that both genes 

have PFCCs in the DIII-IV linkers (Figure 3.4). To assess the potential functions of these 

PFCCs, we then scanned the DIII-IV linkers with a 15-amino-acid sliding window and calculated 

TCAI for each window. We found that these PFCCs exhibit strong preference for rare codons 
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(Figure 3.5A, Dmel; Figure 3.5B, Dmel), suggesting that decelerating translation during the 

synthesis of the inactivation gate may be the key function of these PFCCs. We further scanned 

the DIII-IV linkers of Nav homologs in several other representative eukaryotic species, and 

found that the majority of them also have sub-regions preferring rare codons (Figure 3.5, TCAI < 

-0.8). 
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Figure 3.4: Identifying PFCCs in D. melanogaster Nav paralogs. Dmel/Nav1 and Dmel/Nav2 

are aligned by amino acid sequences. p-values were corrected by FDR (FDR = 0.05), and those 

lower than the threshold indicate codon clusters whose codon usage patterns are significantly 

different from both whole-genome and gene-specific codon usage patterns. Both Dmel/Nav1 and 

Dmel/Nav2 have PFCCs in the DIII-IV linkers, shown by the red bar.   



 

72 

 

 

Figure 3.5: Nav paralogs generally bear rare-codon clusters in DIII-DIV linkers. (A) Nav1. 

(B) Nav2. Dmel: Drosophila melanogaster, fruit fly; Agam: Anopheles gambiae, malaria 

mosquito; Bmor: Bombyx mori, silkmoth; Amel: Apis mellifera, Western honey bee; Dpul: 

Daphnia pulex, water flea; Lgig: Lottia gigantea, owl limpet; Hsap: Homo sapiens, human. 

Homo sapiens has ten Nav1 paralogs but no Nav2. As suggested by Fig. 2, regions with TCAI < 

-0.8 are regarded as rare-codon clusters. Red boxes highlight the DIII-IV linkers carrying rare-

codon clusters. Black lines: TCAI = 0.8. Blue curves: TCAI calculated by using whole-genome 

codon usage as the background. Orange curves: TCAI calculated by using gene-specific codon 

usage as the background. 
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Considering that the divergence between Nav1 and Nav2 was dated back to the origin of 

Bilateria [234], the conserved preference for rare codons in the DIII-IV linkers further support 

the hypothesis that the normal function of inactivation gate requires decelerated translation of 

this region. Decelerated translation is possibly critical for the correct folding pattern or 

phosphorylation of the DIII-IV linker [237–240]. In this regard, we hypothesize that synonymous 

mutations from rare codons to common codons in the DIII-IV linker could induce changes in the 

action potential through prolonged or shortened depolarization. Also, as some nonsynonymous 

mutations in the DIII-IV linker could cause cold-induced paralysis [241], it is possible that the 

synonymous mutations from rare codons to common codons in this region can cause similar 

phenotypes.  

Furthermore, we noticed that not all DIII-IV linkers bear obvious rare-codon clusters (Figure 

3.5A, Bmor, Dpul, Lgig, Hsap5, Hsap8, Hsap10). Therefore, it is possible that for some species, 

synonymous codon usage in the DIII-IV linker is less sensitive to natural selection, perhaps due 

to other mechanisms that compensate the effects of rare codons on protein folding. More 

interestingly, we found that among the Nav1 paralogs in human, some have rare-codon clusters 

in the DIII-IV linkers while others do not. We also found that among the paralogs with rare-

codon clusters, the specific locations of rare-codon clusters can be different. These findings 

perhaps suggest that rare-codon clusters are associated with the division of labor between Nav1 

paralogs. As Nav1 paralogs have differentiated tissue-specific expression profiles [242], one 

mechanism underlying the possible codon-usage-mediated division of labor may be that these 

paralogs adapt their DIII-IV linkers’ codon usage patterns to tissue-specific tRNA pools 

[196,208,227], so that the corresponding protein-coding sequences are able to more finely 

regulate the function of inactivation gate. 
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3.4 Discussion 
Here we show that clusters of codons with biased codon usage patterns may serve as nucleic-

acid-level domains that affect gene functions, just as a sequence of amino acids with a specific 

order and/or specific biochemical properties can form a protein domain. We accomplished this 

by developing a conservative statistical approach to identify PFCCs in the D. melanogaster 

genome. We have identified over 3000 PFCCs, and most of them strongly prefer rare codons. 

Nevertheless, we also found that a small proportion of the PFCCs exhibit other patterns of codon 

usage, such as preference for common codons, which was not reported before. We showed that 

although the PFCCs are associated with specific protein functional classes including 

transmembrane proteins and transcription factors, most of them are not associated with known 

protein domains defined by amino acid sequences. As a proof-of-principle, we used the example 

of a rare-codon cluster associated with the inactivation gate of Nav to propose a hypothesis 

concerning how a PFCC could affect specific biochemical and physiological properties of a 

protein. Together, our results suggest that it is likely a general phenomenon that codon clusters 

with biased codon usage patterns serve as diverse “hidden domains” involved in regulating 

protein functions. 

In this paper, based on a widely used codon usage index CAI [3], we proposed an alternative 

codon usage index TCAI (see 3.5.3 Calculating TCAI) that was used for classifying PFCCs. 

Compared to CAI, TCAI is better at describing the preference for rare codons. This is because 

when CAI is calculated, codon usage frequencies are all normalized to the frequencies of the 

most common synonymous codons. Thus, the CAI value of any codon cluster that strictly uses 

common codons will always be 1, while if two codon clusters that strictly use rare codons but 

have different amino acid sequences, they may have fairly different CAI values. However, by 
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using the newly proposed TCAI, rare-codon clusters will have similar TCAI values that are -1 or 

very close to -1, while common-codon clusters keep TCAI values at 1 or near 1. Thus, TCAI is a 

good choice when researchers intend to identify rare-codon clusters.  

In comparison to previous methods for detecting functional codon clusters [224], the method 

presented here is more conservative in terms of detecting rare-codon clusters due to the usage of 

both whole-genome and gene-specific codon usage patterns as the background codon usage. Yet, 

it is more powerful in terms of detecting other types of codon clusters due to a more relaxed 

assumption about the possible functional roles of codon clusters. The diverse codon usage 

patterns and locations of the PFCCs suggest that codon clusters may affect protein functions 

through various mechanisms. The major mechanism through which codon clusters regulate 

protein functions is possibly the deceleration of translation, as shown by the preponderance of 

rare-codon clusters in the identified PFCCs. However, we must admit that the preponderance of 

rare-codon clusters may be partly an artifact of technically easier detection of the preference for 

rare codons by our approach. To increase the power of codon-cluster-detection algorithms and 

more accurately assess the prevalence and importance of different types of codon clusters, 

researchers may need to incorporate phylogenetic analyses of homologous protein-coding genes 

in order to identify codon clusters with conserved codon usage patterns.  

Consistent with previous reports [224], we found that some of the PFCCs are associated with 

known protein domains defined by amino acid sequences, which suggests that some codon 

clusters do have the potential to assist correct folding and modifications of protein domains. 

However, we also found that the majority of PFCCs are not associated with known protein 

domains [169,231], indicating that these PFCCs may carry necessary information for regulating 

protein functions and such information cannot be predicted from amino acid sequences. Thus, 
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codon clusters could serve as “hidden domains” in protein-coding sequences. For example, some 

“free coiled regions” of proteins may not be actually “free”: their folding and modifications 

could be restricted by the codon usage patterns of the corresponding genomic regions. Further 

investigation into the codon clusters that may encode “hidden domains” could be important for 

biologists to better understand how genetic information directs the functions of proteins.  

As we have shown by the example of rare-codon clusters in the DIII-IV linkers of Nav proteins, 

functional codon clusters may be important for some key functions of proteins. This could have 

important implications for molecular evolutionary studies and genetic engineering practice. For 

molecular evolutionary studies, codon clusters with critical functions suggest that synonymous 

sites in such functional codon clusters may bias the estimation of the rate of neutral evolution if 

researchers consider synonymous mutations as neutral mutations. Moreover, it is possible that 

the selective pressure on synonymous codon usage may be even stronger than that on 

nonsynonymous mutations, which could greatly interfere the results and inferences of the 

evolutionary analyses based on the comparison between synonymous and nonsynonymous sites. 

For genetic engineering practice, functional codon clusters suggest that when transgenes are 

designed, simple codon optimization [40], which generally uses common codons to encode 

amino acid residues, may not be the best choice to achieve desired structure and functions of the 

engineered proteins. Instead, the codon usage of different regions within a transgene may need to 

be more delicately controlled.  

Together, our data support the broad existence of diverse and functional codon clusters that may 

affect protein functions and associated phenotypes through various mechanisms. In this regard, 

we suggest that functional codon clusters should be seriously considered if researchers are to 
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thoroughly understand how genetic information is interpreted into functional, phenotypic, and 

evolutionary outputs in vivo.  

3.5  Materials and Methods 

3.5.1  Reference Protein-coding Sequences 
Reference protein-coding sequences of D. melanogaster were downloaded from Ensembl 89 

[166]. Protein-coding sequences fulfilling the following criteria were chosen. 1) The sequence 

length is a multiple of three. 2) The sequence uses standard genetic code. 3) For each gene, only 

the longest mRNA isoform was used; if there were multiple isoforms of the same length, then the 

first record shown in the FASTA file was used.  

The protein-coding sequences of Nav1 and Nav2 in analyzed species can be found in Appendix 

3.6. 

3.5.2  Identifying PFCCs 
Figure 3.6 depicts how to identify PFCCs in a protein-coding sequence. For a window Wi starting 

with the ith codon in a protein-coding sequence, the window size S is set to vary between 5 to 50 

codons. For each window size, two χ2 tests are performed by comparing the codon usage of the 

window respectively to whole-genome codon usage and gene-specific codon usage, and the 

higher p-value is selected as the representative p-value. Then the representative p-values are 

plotted against window sizes, which generates a p-S curve representing a function p(S) that 

describes the relationship between p-value and window size (Figure 3.6A-D). If p(S) is 

monotonic, the lowest p-value together with its corresponding S are selected as the representative 

p and S for Wi, namely pi and Si; otherwise the p-value and the S that correspond to the lowest 

stationary point of p(S) are selected as pi and Si. For the focal protein-coding sequence, all pi’s 

are corrected by setting the false discovery rate (FDR) [189] to 0.05 so as to get the corrected p-
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values pi,corrected’s; then windows with pi,corrected values lower than the threshold 0.05 are detected 

as positive segments with unexpected codon usage patterns (Figure 3.6E). Finally, isolated 

positive segments, together with the codon clusters generated by merging overlapped positive 

segments, are detected as PFCCs. 
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Figure 3.6: Using sliding windows with adaptive sizes to identify PFCCs. (A-D) With a given 

start of the window, p-values for different window sizes are calculated. (D) The lowest stationary 

point on the p-S curve is picked to get the representative window size and p-value. (E) Windows 

with different starts are processed as described in (A-D), and then representative p-values are 

corrected by setting FDR=0.05. All representative p-values are plotted against the coordinates of 

the starts of windows in order to locate PFCCs.   
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3.5.3  Calculating TCAI 
To calculate the TCAI of a given sequence of codons, the background relative codon usage 

frequencies need to be calculated first. For example, if a gene uses 10 AAA and 30 AAG to 

encode Lys, the gene-specific background relative codon usage frequencies of AAA and AAG 

will respectively be 10/(10+30)=0.25 and 10/(10+30)=0.75. Then the focal sequence of codons is 

translated to an amino acid sequence. The next step is to generate a pseudo-sequence of codons 

according to the amino acid sequence and the background relative codon usage frequencies. For 

example, assuming that the amino acid sequence is Lys-Lys and the background relative codon 

usage frequencies are 0.25 for AAA and 0.75 for AAG, the first Lys will have a 25% chance to 

be encoded by AAA and 75% chance to be encoded by AAG, and so will the second Lys. This 

step of pseudo-sequence generation is repeated for 10,000 times so that there will be 10,000 

pseudo-sequence of codons, which represent the expected results if codons are used randomly to 

encode the amino acids. Then the CAIs [3] of all pseudo-sequences and the CAI of the actual 

codon sequence are calculated. Finally, TCAI is calculated by subtracting the proportion of 

pseudo-sequences whose CAIs are higher than the CAI of the corresponding actual sequences 

from the proportion of pseudo-sequences whose CAIs are lower than the CAI of the 

corresponding actual sequences.  

When TCAI is -1, it means that none of the pseudo-sequences has a CAI lower than the actual 

sequence; thus, the actual sequence strongly prefers rare codons. In contrast, when TCAI is 1, the 

actual sequence strongly prefers common codons.  

3.5.4  K-mean Clustering of PFCCs 
K-mean clustering is done by using the online tool at http://scistatcalc.blogspot.com/2014/01/k-

means-clustering-calculator.html. The number of clusters (i.e., K) is determined by the elbow 

http://scistatcalc.blogspot.com/2014/01/k-means-clustering-calculator.html
http://scistatcalc.blogspot.com/2014/01/k-means-clustering-calculator.html
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method, according to https://pythonprogramminglanguage.com/kmeans-elbow-method/. Each 

input data point of K-mean clustering is specified by its gene-specific and whole-genome TCAIs. 

3.5.5  Calculating RLI 
For a protein-coding sequence with L codons, the RLI of a PFCC which starts at the ith codon 

and has a size of Si codons is calculated as (i + Si / 2) / L. 

3.5.6  Searching for Transmembrane Helices 
For a focal PFCC, the protein sequence from the first residue or the 150th residue upstream to 

the PFCC-encoded region, whichever is closer to the PFCC-encoded region, to the last sense 

codon or the 150th codon downstream to the PFCC-encoded region, whichever is closer to the 

PFCC-encoded region, is input to TMHMM [229] in order to search for transmembrane helices 

near or overlapped with the PFCC-encoded region. The coordinates of identified transmembrane 

helices are recorded. 

3.5.7  Searching for Pfam Protein Domains 
For a focal PFCC, the protein sequence from the first residue or the 150th residue upstream to 

the PFCC-encoded region, whichever is closer to the PFCC-encoded region, to the last sense 

codon or the 150th codon downstream to the PFCC-encoded region, whichever is closer to the 

PFCC-encoded region, is input to the hmmscan program of HMMER [231] on 

https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan in order to search for Pfam protein 

domains [169] near or overlapped with the PFCC-encoded region. The coordinates and names of 

identified Pfam domains are recorded. 

3.5.8  Classifying Association between PFCCs and Protein Domains 
The association between a PFCC and a protein domain is classified to one of the following 

categories. 

https://pythonprogramminglanguage.com/kmeans-elbow-method/
https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
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1) No association: The closest distance between the PFCC-encoded region and the protein 

domain is longer than 20 residues. 

2) 1-to-multiple association: Multiple protein domains are overlapped with the region that starts 

from the 20th residue upstream to the PFCC-encoded region and ends at the 20th residue 

downstream to the PFCC-encoded region. 

3) Cluster in domain: Only one protein domain is associated with the PFCC. The PFCC-encoded 

region locates within the protein domain. 

4) Domain in cluster: Only one protein domain is associated with the PFCC. The protein domain 

locates within the PFCC-encoded region. 

5) Domain overlap left of cluster: Only one protein domain is associated with the PFCC. The 

start of the protein domain is upstream to the PFCC-encoded region and the end of the protein 

domain locates within the PFCC-encoded region. 

6) Domain overlap right of cluster: Only one protein domain is associated with the PFCC. The 

start of the protein domain locates within the PFCC-encoded region and the end of the protein 

domain is downstream to the PFCC-encoded region. 

7) Domain upstream to cluster: Only one protein domain is associated with the PFCC. The end 

of the protein domain is upstream to the PFCC-encoded region. 

8) Domain downstream to cluster: Only one protein domain is associated with the PFCC. The 

start of the protein domain is downstream to the PFCC-encoded region. 
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3.5.9  Alignment of Nav Homologs and Identification of DIII-IV Linkers 
Nav orthologs were aligned by using MAFFT algorithm [243,244]. The annotated DIII-IV 

linkers of Dmel/Nav1 (https://www.uniprot.org/uniprot/P35500) and Dmel/Nav2 

(https://www.uniprot.org/uniprot/Q9W0Y8) were used to locate the DIII-IV linkers of the Nav1 

and Nav2 in other analyzed species. Dmel/Nav1 and Dmel/Nav2 were also aligned by using 

MAFFT algorithm (https://www.ebi.ac.uk/Tools/msa/mafft/) [243,244].  

  

https://www.uniprot.org/uniprot/P35500
https://www.uniprot.org/uniprot/Q9W0Y8
https://www.ebi.ac.uk/Tools/msa/mafft/
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Chapter 4: Conclusions 

4.1 Synonymous Mutations Are Not Intrinsically 

Associated with Neutral Mutations 
It has been known for over four decades that synonymous mutations could be non-neutral as they 

can cause phenotypic changes through affecting physical and chemical properties of mRNA, 

translational machinery, co-translational processes, and epigenetic modifications. However, the 

reports of non-neutral synonymous mutations are mostly perceived by evolutionary biologists as 

rare exceptions to a seemingly convincing rule that synonymous mutations are generally neutral. 

Nonetheless, the putative generality of such a rule had not been rigorously tested. 

In my thesis, by developing and applying a widely applicable statistical method to detect 

signatures of natural selection on gene-specific codon usage biases, I have shown that non-

neutral synonymous mutations must not be rare exceptions. This is because the broadly existing 

signatures of natural selection on gene-specific codon usage biases contradict the putative 

generality of neutral synonymous mutations. In this regard, I think it is legitimate to claim that 

the known cases of non-neutral synonymous mutations are not a mere collection of anecdotal 

examples; rather, they should be the outcomes of a general rule that synonymous codon usage 

performs broad and critical biological functions in ontogenesis and phylogenesis. Using 

synonymous mutations as general proxies for neutral mutations will likely introduce systematic 

biases.  

Nonetheless, the dissociation between synonymous and neutral mutations does not necessarily 

lead to the rejection of the neutral theory of molecular evolution. This is because the core 

statement of the neutral theory, that most mutations are evolutionarily neutral, is compatible with 
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prevalent non-neutral synonymous mutations. By definition, synonymous mutations are unlikely 

to affect intergenic regions and introns, which could form the majority of genomes, especially for 

eukaryotes. Therefore, even if all synonymous mutations are not neutral, it is still possible that 

most mutations are neutral. It is a specific branch of the neutral theory that is likely significantly 

impacted by the broad existence of non-neutral synonymous mutations – that is, the methods that 

detect signatures of natural selection on protein-coding genes by assuming synonymous 

mutations as neutral mutations. Evolutionary biologists and population geneticists should rely 

more on the methods that are not based on this assumption, find better proxies for neutral 

mutations, or incorporate the probabilities of non-neutral synonymous mutations in order to 

assess the confidence intervals of their results. 

4.2 Rare Codons Are Not Necessarily Translationally 

Suboptimal 
For most biologists who admit that translational selection can result in broad impacts of 

synonymous codon usage on protein functions, translation efficiency of a codon is usually 

thought to be intrinsically linked to the copy number of its cognate tRNA genes and/or its usage 

frequency in the whole genome or in a set of highly-expressed housekeeping genes [1–3,31,38]. 

For example, rare codons should be recognized by low-copy-number tRNA anticodons, and they 

should be suboptimal for translation.  

However, by combining computational and experimental approaches, I have shown that such a 

view oversimplifies the possible functions of biased synonymous codon usage in protein 

translation. Genome-wide rare codons could be recognized by locally enriched tRNAs, and thus 

the preference for rare codons may actually increase translation efficiency in specific cells and/or 

during a specific period of time. In this regard, I claim that codon optimality may not be simply 
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inferred from whole-genome codon usage frequencies or tRNA gene copy numbers. Rather, 

codon optimality is context-dependent; therefore, more information, especially the actual cellular 

tRNA expression profiles, will be necessary to precisely infer cell- and/or tissue-specific optimal 

codon usage. This also means that the traditional strategy for optimizing the codon usage of 

transgenes, which mostly assumes that genome-wide common codons are optimal, may need to 

be revised. For example, if a genetic engineering project requires efficient tissue-specific 

expression of a transgene, it could be a better strategy to encode some amino acid residues of the 

transgenic protein by genome-wide rare codons. Furthermore, if the desired functions of a 

transgene require slow accumulation of its encoded protein in the cellular pool, suboptimal 

codons may be the better choices. For example, for synthetic genes that form a transcriptional 

oscillator [245], using suboptimal codons may help maintain the oscillating behavior. This is 

because it has been shown that the preferential usage of suboptimal codons is necessary for the 

native proteins underlying circadian rhythm to maintain the concerted fluctuation of 

concentrations [30,33]. 

It should be noted that my finding that genome-wide rare codons can be optimal in specific 

tissues do not reject the assumptions of the translational selection theory in general. This is 

because my finding also supports that the interaction between anticodons and codons is one of 

the key ways in which synonymous codon usage affects phenotypes. My findings are more of 

fine-scale modifications of the translational selection theory, as they show that the codon-

anticodon interaction is not constant across time and space. Thus, the codon-anticodon 

interaction provides more degrees of freedom for synonymous codon usage to regulate gene 

functions. 
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4.3 Codon Clusters Represent Nucleic-Acid-Level Domains 

Affecting Protein Functions 
Functional domains of proteins are usually thought to be formed by sequences of amino acid 

residues with specific biochemical properties. In this regard, researchers have been using 

multiple experimental and computational tools to detect functional domains from the databases 

of amino acid sequences. Their efforts have generated fruitful results, including the discovery of 

transmembrane helices and the development of protein domain databases such as the Pfam 

database [169].  

However, as synonymous codon usage broadly affects protein functions, it is also possible that 

some functional domains of proteins can be encoded by codon sequences with characteristic 

codon usage patterns. Indeed, by developing and applying a statistical method to detect 

putatively functional codon clusters (PFCCs), I have identified in D. melanogaster genome over 

three thousand PFCCs defined by codon usage patterns rather than amino acid sequences. These 

PFCCs have diverse patterns of synonymous codon usage, and the majority of them do not co-

occur with known protein domains that are determined by amino acid sequences. Furthermore, 

by using voltage-gated sodium channels as examples, I have explained how conserved 

preference for rare codons in a specific homologous region can be favored by natural selection. 

Thus, my results suggest that functional domains of proteins are encoded not only by amino acid 

sequences but also by DNA sequences with characteristic codon usage patterns. To understand 

how the structures and functions of proteins are regulated in vivo, it is necessary to incorporate 

nucleic-acid-level information in addition to the amino-acid-level one. 
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4.4 This Thesis Calls for Re-evaluating the Research 

Paradigms Based on the General Neutrality of Synonymous 

Mutations 
In my thesis, I conclude that the neutrality of synonymous mutations and amino-acid 

determinism of protein properties only partially capture the critical factors affecting protein 

functions, associated phenotypes, and molecular evolution of protein-coding sequences. Non-

neutral synonymous mutations, context-dependent optimality of rare codons, and codon-usage-

encoded functional domains represent prevalent, important, yet likely underappreciated 

mechanisms regulating organismal functions.  

I expect that my thesis will have impacts on evolutionary biology, population genetics, and 

structural biology. First, the prevalent signatures of natural selection on synonymous mutations 

indicate that it is likely inappropriate to use synonymous mutations as proxies for neutral 

mutations without prior evidence. Thus, the methods based on the general neutrality of 

synonymous mutations are prone to generate biased results in terms of the rates of evolution and 

the types of natural selection. Second, the broad existence of functional synonymous codon 

usage suggests that synonymous SNPs could significantly contribute to phenotypic variations, 

and thus excluding synonymous SNPs – which is a common approach for filtering out “noise” – 

should not be a standard step in GWAS. Third, the context-dependent optimality of rare codons 

implies that synonymous codon usage has the potential to play various roles in shaping 

organismal functions. It also suggests that in genetic engineering practice, the synonymous 

codon usage of a transgene should be carefully designed so that it is adapted to the desired 

functions, instead of simply choosing the common, putatively optimal codons. Fourth, the 

detection of codon-usage-defined functional domains indicates that amino-acid determinism is 
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not enough to explain the structural and functional properties of proteins. Proteins, especially 

when expressed in vivo, should be viewed not only as strings of amino acid residues, but also as 

highly dynamic, context-dependent entities that incorporate information from multiple levels to 

ensure normal functions of organisms. In this regard, the best predictor of protein functions may 

not always be the amino acid sequences.  

4.5 Future Directions 
As shown by my work, the assumption that synonymous mutations are generally neutral, which 

underlies multiple statistical methods for analyzing the evolution of protein-coding genes, is not 

entirely accurate. Therefore, it may be necessary to modify these methods by incorporating the 

effects of non-neutral synonymous mutations, in order to more accurately assess the impacts of 

natural selection on protein-coding genes. One possible modification is to estimate the 

robustness of the results of these methods when a certain proportion of synonymous mutations 

are assigned as non-neutral mutations. If the results are relatively robust when the proportion of 

putatively non-neutral synonymous mutations increases, it is likely that the results are reliable; 

otherwise, researchers may need to admit that the signal-to-noise ratios of the results are not high 

enough to allow clear inferences about the roles of natural selection. 

I have also claimed that simple “codon optimization”, which generally uses common, putatively 

optimal codons to encode amino acid residues, may not always be the best strategy for choosing 

codons for engineered genes. Therefore, a more comprehensive algorithm for choosing the most 

appropriate codons for engineered genes may be necessary. Such an algorithm may be achieved 

by training an artificial neural network with the known associations between specific codon 

usage patterns and gene functions.  
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Although I have computationally identified PFCCs in the D. melanogaster genome, I have not 

succeeded in experimentally investigating whether these PFCCs are truly functional domains and 

what their specific functions might be. During my graduate study, I tried to test the functional 

effects of the PFCCs in the type 1 voltage-gated sodium channel (para) and the ligand 

decapentaplegic (dpp) in the TGF-β signaling pathway. Unfortunately, the manipulation of the 

para codon usage was not technically feasible, because modifying the codon usage pattern of the 

DIII-IV linker would result in high GC-content that prevented the artificial syntheses of the DNA 

sequences that would be used for generating transgenic plasmids. For dpp, although I 

successfully synthesized the plasmid carrying the experimental allele, and the two putatively 

successful CRISPR (http://flycrispr.molbio.wisc.edu/scarless) [246] transformant fruit flies 

exhibited abnormal wing morphology, these transformants seemed to be dominantly sterile and 

with low viability, which prevented me from further experimental studies. Nevertheless, for 

researchers interested in functional codon clusters, it might be worthwhile to experimentally 

investigate the functional roles of other PFCCs shown in Appendix 3.1. Among these PFCCs, I 

would recommend starting with the N-terminal rare codon cluster of lozenge (lz). This is because 

lz plays a key role in eye development so that the phenotypic effects may be easily quantified, 

and the position and codon usage pattern of its PFCC are similar to those of dpp.  

As long as researchers could free their mind from the seemingly intrinsic association between 

synonymous mutations and evolutionary neutrality, they would find diverse interesting directions 

worthy of investigation. 

  

http://flycrispr.molbio.wisc.edu/scarless
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Appendices  

Appendix 2.1 Sequences of Fluorescent Reporter cDNAs 
>mCherry_Common 

ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTT

CAAGGTGCACATGGAGGGCAGCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAG

GGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGG

GCGGCCCCCTGCCCTTCGCCTGGGATATCCTGAGCCCCCAGTTCATGTACGGCAGCA

AGGCCTACGTGAAGCACCCCGCCGATATCCCCGATTACCTGAAGCTGAGCTTCCCCG

AGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGATGGCGGCGTGGTGACCGTG

ACCCAGGATAGCAGCCTGCAGGATGGCGAGTTCATCTACAAGGTGAAGCTGCGCGG

CACCAACTTCCCCAGCGATGGCCCCGTGATGCAGAAGAAGACCATGGGCTGGGAGG

CCAGCAGCGAGCGCATGTACCCCGAGGATGGCGCCCTGAAGGGCGAGATCAAGCAG

CGCCTGAAGCTGAAGGATGGCGGCCACTACGATGCCGAGGTGAAGACCACCTACAA

GGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTGAACATCAAGCTGGATA

TCACCAGCCACAACGAGGATTACACCATCGTGGAGCAGTACGAGCGCGCCGAGGGC

CGCCACAGCACCGGCGGCATGGATGAGCTGTACAAGAGCCGCTAG 

 

>EGFP_Common 

ATGAGCCGCGTGAGCAAGGGCGAGGAGCTGTTCACCGGCGTGGTGCCCATCCTGGT

GGAGCTGGATGGCGATGTGAACGGCCACAAGTTCAGCGTGAGCGGCGAGGGCGAG

GGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCT

GCCCGTGCCCTGGCCCACCCTGGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAG

CCGCTACCCCGATCACATGAAGCAGCACGATTTCTTCAAGAGCGCCATGCCCGAGG

GCTACGTGCAGGAGCGCACCATCTTCTTCAAGGATGATGGCAACTACAAGACCCGC

GCCGAGGTGAAGTTCGAGGGCGATACCCTGGTGAACCGCATCGAGCTGAAGGGCAT

CGATTTCAAGGAGGATGGCAACATCCTGGGCCACAAGCTGGAGTACAACTACAACA

GCCACAACGTGTACATCATGGCCGATAAGCAGAAGAACGGCATCAAGGTGAACTTC

AAGATCCGCCACAACATCGAGGATGGCAGCGTGCAGCTGGCCGATCACTACCAGCA

GAACACCCCCATCGGCGATGGCCCCGTGCTGCTGCCCGATAACCACTACCTGAGCAC

CCAGAGCGCCCTGAGCAAGGATCCCAACGAGAAGCGCGATCACATGGTGCTGCTGG

AGTTCGTGACCGCCGCCGGCATCACCCTGGGCATGGATGAGCTGTACAAGTAG 

 

>EGFP_RareKEQ 
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ATGAGCCGCGTGAGCAAAGGCGAAGAACTGTTCACCGGCGTGGTGCCCATCCTGGT

GGAACTGGATGGCGATGTGAACGGCCACAAATTCAGCGTGAGCGGCGAAGGCGAA

GGCGATGCCACCTACGGCAAACTGACCCTGAAATTCATCTGCACCACCGGCAAACT

GCCCGTGCCCTGGCCCACCCTGGTGACCACCCTGACCTACGGCGTGCAATGCTTCAG

CCGCTACCCCGATCACATGAAACAACACGATTTCTTCAAAAGCGCCATGCCCGAAG

GCTACGTGCAAGAACGCACCATCTTCTTCAAAGATGATGGCAACTACAAAACCCGC

GCCGAAGTGAAATTCGAAGGCGATACCCTGGTGAACCGCATCGAACTGAAAGGCAT

CGATTTCAAAGAAGATGGCAACATCCTGGGCCACAAACTGGAATACAACTACAACA

GCCACAACGTGTACATCATGGCCGATAAACAAAAAAACGGCATCAAAGTGAACTTC

AAAATCCGCCACAACATCGAAGATGGCAGCGTGCAACTGGCCGATCACTACCAACA

AAACACCCCCATCGGCGATGGCCCCGTGCTGCTGCCCGATAACCACTACCTGAGCAC

CCAAAGCGCCCTGAGCAAAGATCCCAACGAAAAACGCGATCACATGGTGCTGCTGG

AATTCGTGACCGCCGCCGGCATCACCCTGGGCATGGATGAACTGTACAAATAG 
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Appendix 2.2 Analytical Solutions of Equation Systems Used 

to Estimate μ Values 
Please refer to Appendix 2.2.docx.  

 

Appendix 2.3 tRNA Northern Blot Images 
Please refer to Appendix 2.3.zip.  

 

Appendix 2.4 Fluorescent Reporter Expression Images 
Please refer to Appendix 2.4.zip.  

 

Appendix 2.5 Real-time qRT-PCR Data 
Please refer to Appendix 2.5.xlsx.  

 

Appendix 2.6 Computer Code Used in Chapter 2 
Please refer to Appendix 2.6.zip.  

 

Appendix 3.1 Detected PFCCs 
Please refer to Appendix 3.1.xlsx.  

 

Appendix 3.2 Association Between Genes with N-terminal 

PFCCs (RLI<0.1) and GO Terms 
Please refer to Appendix 3.2.xlsx.  

 

Appendix 3.3 Association Between Genes with PFCCs and 

GO Terms 
Please refer to Appendix 3.3.xlsx.  
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Appendix 3.4 Association Between PFCCs and 

Transmembrane Helices 
Please refer to Appendix 3.4.xlsx.  

 

Appendix 3.5 Association Between PFCCs and Pfam Protein 

Domains 
Please refer to Appendix 3.5.xlsx.  

 

Appendix 3.6 Nav Homologs 
Please refer to Appendix 3.6.xlsx.  

 

Appendix 3.7 Computer Code Used in Chapter 3 
Please refer to Appendix 3.7.zip.  
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