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In the study of systems where basic laws have eluded us, as is largely the case in 

neuroscience, the simplest approach to progress might be to ask: what are the biggest, 

most noticeable things the system does when left alone? Without any perturbations or 

fine dissections, can regularities be found in the basic operations of the system as a 

whole? In the case of the brain, it turns out that there is an amazing amount of activity 

even in the absence of explicit environmental inputs or outputs. We call this 

spontaneous, or resting state, brain activity. Prior work has shown that spontaneous 

brain activity is dominated by very low frequencies: the biggest changes in brain activity 

happen relatively slowly, over 10’s-100’s of seconds. Moreover, this very slow activity of 

the brain is quite metabolically expensive. The brain accounts for 2% of body mass in 

an adult, but requires 20% of basal metabolic expenditure. Remarkably, the energy 

required to sustain brain function is nearly constant whether one is engaged in a 

demanding mental task or simply out to lunch. Furthermore, work over the past three 
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decades has established that the spontaneous activities of the brain are not random, 

but instead organized into specific patterns, most often characterized by correlations 

within large brain systems. Yet, how do these correlations arise, and does spontaneous 

activity support slow signaling within and between neural systems? In this thesis, we 

approach these questions by providing a comprehensive analysis of the temporal 

structure of very low frequency spontaneous activity. Specifically, we focus on the 

direction of travel in low frequency activity, measured using resting state fMRI in 

humans, but also using electrophysiological techniques in humans and mice, and 

optical calcium imaging in mice. Our temporal analyses reveal heretofore unknown 

regularities in the way slow signals move through the brain. We further find that very low 

frequency activity behaves differently than faster frequencies, that it travels through 

distinct layers of the cortex, and that its travel patterns give rise to correlations within 

networks. We also demonstrate that the travel patterns of very low frequency activity 

are highly dependent on the state of the brain, especially the difference between wake 

and sleep states. Taken together, the findings in this thesis offer a glimpse into the 

principles that govern brain activity.  
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Chapter 1: Introduction 
 

Contemporary neuroscience is rife with remarkable tools for exploring the brain in 

ever greater detail. As of this writing, we have access to experimental methodologies 

that allow us to delineate the wide diversity of individual cells in the brain with 

unprecedented fidelity (Tasic et al. 2016), to turn on or off individual ion channels in cell 

types of interest (Urban and Roth 2015; Yizhar et al. 2011), to manipulate single genes 

in living brains (Swiech et al. 2015), to map the connectivity structure of individual 

neurites (Lichtman et al. 2008), and even to record neural activity at nanosecond 

resolution from thousands of in vivo individual neurons (Stevenson and Kording 2011). 

In combination, these techniques may indeed make it possible, as articulated by 

President Obama’s BRAIN Initiative executive committee, “to produce dynamic pictures 

of the brain that show how individual brain cells (…) interact at the speed of thought.” 

Yet rather than capitalizing on modern developments to study fast interactions among 

small brain elements, the present thesis aims to understand very slow activity across 

the whole brain. Why?  

The best defense I can muster is that although the reductionist approach of 

mainstream neuroscience may very well yield insights, there are reasons to believe that 

a full understanding of the brain will not emerge from reductionism alone. Consider, for 

example, our physical understanding of the universe. A reductionist approach to physics 

could reasonably posit that a complete understanding of electron pairs (although there 

are, of course, even smaller elements to consider!) is necessary to understand the bulk 

behavior of matter. While this approach might yield significant insight on quantum 

mechanical principles and the electrostatic force, in a two-electron system, one would 
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never notice gravity, a force 1042 times weaker than the electrostatic force. Of course, 

the fact that gravity emerges as a noticeable influence only in enormous collections of 

matter does not diminish its importance in shaping our universe, and to this day, there 

still does not exist a reductionist quantum theory of gravity. Indeed, historically, failure to 

grasp quantum mechanics did not hinder Johannes Kepler from describing planetary 

motion or Isaac Newton from finding the law of gravitation. Evidently, there are limits to 

reductionist understandings of complex systems, and as Philip Anderson observed, 

“more is different”.  

How does this relate to neuroscience and the present thesis? The answer is that 

there is mounting evidence, aided by the advent of large-scale neuroimaging tools, that 

there are functional brain properties that are best observed and understood at the 

whole-brain scale. In particular, very low frequency brain activity exhibits a remarkable 

long-distance organization in both space and time in the absence of any explicit input or 

output (Fox and Raichle 2007; Hiltunen et al. 2014). The spatio-temporal patterns 

discovered in very low frequency spontaneous (or “resting state”) brain activity were not 

presaged by previous studies of circuit-level neural activity, and although these findings 

were initially dismissed as “noise”, artifact, or epi-phenomena, recent work has linked 

these low frequency resting state patterns to several aspects of human brain function in 

health and disease (Biswal et al. 2010; Buckner et al. 2008; Emerson et al. 2017; Smith 

et al. 2015; Snyder and Raichle 2012). These findings have established the existence 

and practical utility of organized low frequency activity in the brain. Yet, we still lack 

answers to fundamental questions of how spontaneous patterns arise in very low 

frequency brain activity, the rules that govern their organization, and their relationship to 
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higher frequency brain activity. The temporal properties of low frequency resting state 

activity are especially unclear, as the predominant strategy for quantifying the 

organization of low frequencies has been zero-lag correlations, which by definition 

preclude any understanding of directed signaling (Mitra and Raichle 2016). Thus, the 

focus of this thesis is to explore the principles underlying the whole-brain spatio-

temporal organization of infra-slow (<0.1 Hz) frequency brain activity specifically from a 

temporal perspective, including an examination of directed signaling in infra-slow 

frequencies. We will then leverage our understanding of the temporal structure of infra-

slow activity to understand how the spontaneous organization in these frequencies 

varies over state and interacts with higher frequencies, as well as how specific cortical 

layers contribute to the organization of systems-wide activity.  

To frame the relevance of this work, it is necessary to appreciate in greater detail 

how low frequency activity has shaped our understanding of the brain to date. Work 

involving spontaneous very low frequency activity in the brain can be traced to two 

strains in the extant literature. First, and more recent, are findings attributable to the 

advent of neuroimaging. Positron Emission Tomography (PET) imaging represented a 

breakthrough in functional neuroimaging, as it allowed the first truly reliable, whole-brain 

in vivo view of brain function in humans (Snyder and Raichle 2012). Unlike previous 

modalities such as the electroencephalogram (EEG) (Berger 1929), which measured 

electrophysiogical brain activity, early PET studies measured brain metabolism or “cost” 

(Raichle and Mintun 2006). Using ingenious “subtraction paradigms”, researchers 

measured brain metabolism during an experimental condition, and then subtracted out 

brain metabolism measurement in a corresponding control (Raichle 2015). The resulting 
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difference yields remarkably beautiful pictures of the spatial topographies of large-scale 

brain systems involved in particular tasks, such as language generation (Petersen et al. 

1988; Raichle 2015). In addition to providing in vivo pictures of known brain networks, 

the subtraction paradigm in PET imaging also led to the discovery of new brain 

networks that were previously unknown to neuroscience, including the default mode 

network (Raichle et al. 2001). In retrospect, it is difficult to imagine neuron-by-neuron 

investigations ever revealing this large brain-wide system.  

The ability to visualize in vivo activity in specific brain networks during tasks in 

many ways stole the show with respect to the scientific content of PET. Yet lurking in 

the PET subtraction paradigm was another powerful finding: brain networks identified 

through the subtraction paradigm represented minuscule changes in brain cost. For 

example, metabolism in the language network during verb-generation only increases by 

1% or less (Raichle 2015), a finding that is concordant with a previous mental arithmetic 

study conducted by Sokoloff at the whole-brain level which showed no appreciable 

increase in metabolism during task (Sokoloff et al. 1955). Ongoing basal brain 

metabolism, on the other hand, is quite expensive. In a resting adult, although the brain 

is 2% of the body’s mass, it comprises 20% of the body’s metabolic activity (Raichle and 

Mintun 2006). These findings bring to the fore an important principle: although the brain 

is tremendously active from a metabolic perspective, task-induced changes in brain 

metabolism are negligible. Most of the brain’s metabolism is instead attributable to 

spontaneous (or task-independent) activities (Raichle 2011).  

This statement raises an obvious question: if not task-linked neural activity, then 

what is responsible for the brain’s enormous cost? One answer is the energy required to 
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maintain electrochemical hyperpolarization in neurons, primarily established by Na+-K+ 

transport pumps, which is a necessary precondition for neuronal cells to undergo action 

potentials (although surprisingly energy-dependent ion transport only accounts for ~40% 

of brain metabolism (Astrup et al. 1981)). Putting aside the 40% detail for a moment 

(perhaps Astrup neglected to poison a heavy tail of energetically costly ion pumps), we 

can compose a simple portrait: the brain expends tremendous energy maintaining a 

stable, quiescent baseline (electrochemical hyperpolarization) from which neurons are 

briefly released (in the form of action potentials) to send high frequency electrical 

signals. Task-based neural activity appears “cheap” because the cost is paid up front by 

establishing the hyperpolarized baseline.  

The only difficulty with this explanation is that it does not align with experimental 

fact. The “quiescent baseline” model suggests a reflexive brain that is intrinsically silent 

in the absence of explicit input or output. Instead, even prior to imaging, recordings of 

brain activity ranging from in vivo EEG to slice preparations revealed that the brain is 

spontaneously active (Berger 1929). However, these spontaneous activities of the brain 

were often dismissed as artifact, noise in the neural system, or simply neural activity 

attributable to uncontrolled variables. In retrospect, several findings laid the groundwork 

for challenging this perspective, but a critical breakthrough came in work conducted 

using voltage sensitive dye imaging by Grinvald and colleagues (Kenet et al. 2003). 

Grinvald imaged brain activity in the anesthetized cat visual area 18, where most cells 

were known to be sensitive to stimulus orientation, and first produced a standard 

orientation map of the cortex using measured evoked activity to full-field gratings of 

vertical orientation.  Then comes the clever part: Grinvald also recorded the 
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spontaneous activity in visual area 18 of anesthetized cats in a dark room with no visual 

input. He then computed a map of the correlation structure of spontaneous visual 

activity in the absence of any visual input, and surprisingly, the correlation structure of 

spontaneous (input-free) activity in the visual cortex precisely matched the evoked-

patterns in response to vertical gratings. In other words, the spontaneous fluctuations 

were not merely noisy departures from the brain’s attempt to hold a quiescent baseline. 

Instead, spontaneous fluctuations were exquisitely organized into correlated 

topographies in concordance with evoked topographies. However, there was a critical 

difference between the evoked and spontaneous activity: whereas the evoked maps 

were produced using neural activity within the first 100ms of grating presentation, that is 

activities of 10 Hz and faster, the fluctuations driving the correlation structure of the 

spontaneous activity were much slower, <1 Hz. Thus, while the correlation structure of 

spontaneous activity matched the evoked topography in visual area 18, spontaneous 

activity was far slower than evoked activity.  

Shortly after the Grinvald study, Biswal and colleagues showed a similar 

correspondence between the correlation structure of spontaneous activity and task-

evoked activity topography in primary motor cortex using fMRI (Biswal et al. 1995), 

where the frequency of the blood oxygen level dependent (BOLD) signal  (<0.1 Hz infra-

slow activity) is even lower than what Grinvald observed. Still, even in fMRI, the 

principle that evoked activities are faster than spontaneous fluctuations hold true: task-

evoked fMRI activity generally describes at longest a 20 second period (0.05 Hz), 

whereas the correlation structure of fMRI activity is driven by cycles of 100 seconds or 

longer (0.01 Hz) (Biswal et al. 2010; Buckner and Vincent 2007; Damoiseaux et al. 



 7 

2006). As an aside, although the fast-evoked versus slow-spontaneous principle is not 

explored in this thesis, Ken Harris has written about the mechanistic and possible 

functional consequences of this idea in elegant recent work (Sakata and Harris 2009).  

The discovery that correlation patterns in spontaneous activity are organized into 

topographies that resemble task-evoked systems has led to thousands of papers 

exploring the details of spatial correlation networks and their relationships to a wide 

array of physiological and pathological neural functions in humans and animal models 

(Albert et al. 2009a; Albert et al. 2009b; Biswal et al. 2010; Buckner et al. 2008; Mantini 

et al. 2011; Smith et al. 2015; Stafford et al. 2014; Thomas Yeo et al. 2011; White et al. 

2011). However, the question of how correlation patterns arise in spontaneous activity, 

especially those observed using resting state fMRI (rs-fMRI), and what these patterns 

might mean has received less attention. There is a perplexingly persistent dogma that 

BOLD signals, observed using fMRI or other techniques such as optical imaging, reflect 

a “sluggish” version of higher frequency activity (Friston et al. 1998). The idea is that 

neurons undergo action potentials, or neural networks oscillate at high frequencies (10-

100 Hz), and that in response to this neural activity, there is a slow blood flow response, 

giving rise to BOLD measurements (de Zwart et al. 2005; Lindquist et al. 2009; Ma et al. 

2016). The slow blood flow response is postulated to be a low-pass filter on high 

frequency neural activity, thus presenting a “smeared out” view of underlying neural 

activity (de Zwart et al. 2005; Kim and Kim 2011). Worse still, the parameters of the 

“vascular low-pass filter” are feared to vary across the brain, so much so that any timing 

differences in BOLD signals across the brain are reflexively attributed to properties of 

blood vessels as opposed to neural activity (Friston 2009; Handwerker et al. 2004).  
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Yet again, the difficulty with this model is that it is contradicted by experimental 

fact. First, simulations which model the correlation structure of rs-fMRI on the basis of 

high frequency resonance in structural networks explain only a modest portion of 

observed data (Honey et al. 2009). Second, direct recordings of brain electrophysiology 

and calcium fluctuations have demonstrated that spontaneous infra-slow fluctuations in 

BOLD signals are directly linked to spontaneous infra-slow fluctuations in neuronal 

physiology (He et al. 2008; Hiltunen et al. 2014; Leopold et al. 2003; Matsui et al. 2016; 

Pan et al. 2013). In other words, very low frequency brain activity is not the 

consequence of measuring through a “vascular low-pass filter”. Instead, infra-slow 

activity is a bona fide feature of brain function, a fact that may have been obscured by 

the failure of many studies to record or analyze neural activity <0.1 Hz (Sirotin and Das 

2009).  

The understanding that infra-slow activity exists in the brain allows us to pose 

some interesting questions. For example, what is the purpose of infra-slow brain activity, 

and might infra-slow activity travel within the brain to give rise to its correlation 

structure? Here we arrive at the second strain of the extant literature. Although 

neuroimaging may have popularized low frequency brain activity in recent times, robust 

investigations into very low frequency neural activity were conducted in the 1950’s and 

60’s. Indeed, to the best of my knowledge, the Soviet scientist Nina Aleksanda 

Aladjalova was the first to use the term “infra-slow” with reference to neural activity in 

her 1954 letter to Nature (Aladjalova 1954), where she reported spontaneous very slow 

fluctuations (periods of 10 seconds or greater) in local field potential activity in the rabbit 

visual and motor cortex (in vivo), recorded using a direct-current coupled amplifier of her 
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own design.  Aladjalova also made several further contributions to the understanding of 

infra-slow activity in the brain (Aladjalova 1962): (1) She noted that unlike the sinusoidal 

characterization of higher frequency rhythms, infra-slow activity is arrhythmic, in 

accordance with our present understanding of scale-free spectral content in brain 

activity, (2) She found that very brief visual stimulations did not elicit infra-slow activity 

changes, but that longer, seconds long stimuli did, and (3) She found that although 

there was no simple relationship between infra-slow activity and action potentials, action 

potentials were far more likely in certain phases of the infra-slow fluctuation, leading her 

to believe that infra-slow activity represented changes in cortical excitability. In each of 

these discoveries, Aladjalova was remarkably prescient.  

On the final point, that infra-slow activity may represent changes in cortical 

excitability, Aladjalova cited work conducted by Benjamin Libet in the 1940’s that 

studied propagation of very low frequency neural activity in cortical slices (Libet and 

Kahn 1947). Libet found that he could document reproducible patterns of propagated 

spontaneous infra-slow frequency activity (although he did no call it that) in the frog 

cortex, and that these patterns were remarkably robust to even transection of the frog 

cortex. That is, the waves Libet was observing could move across cuts in the cortex, 

leading him to theorize that “the whole [cortical] sheet would behave like the polarized 

membrane of a nerve fiber.  A local depolarization, resulting from the discharge of one 

cell or a few adjacent ones, would permit neighboring cells to discharge through the 

“leak” current and so initiate a spreading wave of depolarization.” The idea that 

spontaneous activity can spread, relatively slowly, across the cortex as if the cortical 

sheet were itself a medium has also been advanced in contemporary studies using 
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calcium and voltage sensitive dye imaging in mice (Chan et al. 2015; Matsui et al. 2016; 

Mohajerani et al. 2010; Stroh et al. 2013). 

     The purpose of presenting this history, which is by no means complete (see also: 

(Bishop 1932; O'Leary and Goldring 1964; Steriade et al. 1993)) is to emphasize that 

the central ideas in this thesis, while out of the mainstream fashion of neuroscience, are 

not without precedent. As is evident, decades of prior work has already suggested that 

infra-slow neural activity is a genuine phenomenon of biological interest, that there are 

reproducible patterns in the way infra-slow activity travels through the brain, and that 

these infra-slow activity patterns appear to be an emergent phenomenon of large 

groups of neurons (and possibly glia and other brain cell types (Poskanzer and Yuste 

2011)).  

The ensuing chapters of this thesis will build upon these ideas in the following steps: 

 First, we will demonstrate that there is a consistent set of lead-lag relationships 

(that is, apparent propagation) in resting state fMRI data collected in humans. 

These lead-lag relationships in infra-slow BOLD signals are roughly on the order 

of 1 second, that is, below the temporal sampling density of most fMRI data. 

Nonetheless, I will show that we can compute these temporal delays by applying 

parabolic interpolation to empirically computed cross-correlation curves. 

Moreover, we will showcase the first evidence that the temporal structure of rs-

fMRI can be altered as a function of state.  

 Second, we will explore the dimensionality of the temporal structure of rs-fMRI, 

as a means of estimating the number of temporal sequences or “lag threads” 

found in the data. Decomposing the general delay structure of rs-fMRI into a set 
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of temporal sequence factors allows us to explore two issues. First, if the 

dimensionality of the temporal structure is greater than 1, then by definition, no 

single factor (set of delays) can explain the entirety of rs-fMRI temporal structure. 

In particular, it means that even if one set of delays is attributable purely to 

differences in vasculature across the brain, the other temporal sequences must 

be attributable to other presumably neural processes. Second, we are able to 

leverage the extracted temporal sequences to demonstrate that the correlation 

structure of rs-fMRI is the consequence of specific properties in its temporal 

structure. The reverse is not true: the correlation structure of rs-fMRI does not 

constrain its temporal structure.  

 Third, we will explore how the temporal structure of rs-MRI is altered in as a 

function of arousal state, specifically in wakefulness versus slow wave sleep. The 

difference between these states has been previously studied using functional 

connectivity analysis on rs-fMRI, and although differences have been found, the 

effect sizes are quite small. We demonstrate dramatic reversals in the direction 

of rs-fMRI activity travel across arousal states. 

 Fourth, we continue our exploration of the role of spontaneous infra-slow rs-fMRI 

activity during sleep by specifically studying cortical-hippocampal temporal 

structure in wakefulness and slow wave sleep. In addition to rs-fMRI, we also 

study infra-slow electrophysiology, acquired in humans, in wake and sleep. On 

this basis, we demonstrate that the direction of infra-slow signals between cortex 

and hippocampus reverses across wake and sleep, in both rs-fMRI and 

electrocorticography, establishing an electrophysiological correlate of rs-fMRI 
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directionality. We further find that higher frequency delta band (1-4Hz) activity 

travels in the opposite direction as infra-slow activity, during both wakefulness 

and sleep, implying that infra-slow propagation may serve as a very low 

frequency feedback signal which moves in the opposite direction as higher 

frequency feed forward activity.  

 Fifth, we move from the human to the mouse. Using whole-cortex 

calcium/hemoglobin imaging and laminar electrophysiology in mice, we show that 

infra-slow activity in each of these modalities travels through the cortex along 

stereotyped trajectories that are distinct from trajectories in delta (1-4Hz) activity. 

Moreover, there is directionality reversal in both infra-slow and delta activity 

trajectories across wakefulness and anesthesia. Finally, we find that infra-slow 

travels through distinct cortical layers as compared to both delta activity and 

higher frequencies. These findings expand our understanding of resting state 

BOLD signal relationships and illustrate the unique physiology of long-distance 

organization in spontaneous infra-slow brain activity. 

The specific arguments contained in these chapters are sometimes rather technical, but 

the final argument advanced in this thesis is quite simple:  spontaneous infra-slow brain 

activity has a distinct, lawful, state-dependent temporal structure as it moves through 

specific layers of the cerebral cortex.  
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Chapter 2: Computing temporal delays in resting state fMRI 
 
This chapter has been published as a journal article. The citation is: 

Mitra A, Snyder A, Hacker C, Raichle M. (2014). Lag structure in resting state 
fMRI. J. Neurophysiol. doi:10.1152/jn.00804.2013. 

 

Marc Raichle, Abraham Snyder and I conceived the project and research approach. I 

designed and implemented the methods and performed the data analysis. Carl Hacker 

helped with figure construction. Marc Raichle, Abraham Snyder and I wrote the paper.  
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2.1 Preface 

At the time this paper was published in 2014, the idea that temporal lags in resting state 

fMRI data might be meaningful had never been articulated in print. Two points of 

common wisdom precluded consideration of BOLD signal temporal lags. First, 

conventional fMRI sequences provide one image of the human brain every 2-3 seconds. 

The fMRI community believed that such slow sampling of bran activity meant that 

meaningful temporal delays could not be computed from the data. Second, even if 

temporal delays were found, it was widely held that these delays were likely due to 

vascular factors. Indeed, the only papers that had considered temporal lags in fMRI to 

date were solely focused on long vascular delays in stroke tissue.  

 

In this paper, we demonstrated that parabolic interpolation can be applied to cross-

correlation/covariance curves derived from fMRI data to compute temporal delays on 

the order of ~0.5 seconds, and that the temporal structure derived from these 

computations is extremely stable in a group of ~700 subjects. We further argued that 

computed temporal delays are not attributable to purely vascular factors by 

demonstrating focal differences in temporal delays across conditions and providing a 

rough estimate of the dimensionality of temporal structure in resting state fMRI (more on 

this in Chapter 3). Finally, this work revealed one of the first yet enduring principles of 

the organization of resting state fMRI signals: in normal, awake adults, there is no net 

temporal sequence to activity among networks. That is, we do not consistently observe, 

for example, the visual network as a whole sending signals to the motor network. 

Instead, we find bi-directional signal flow between networks.  
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2.2 Abstract  

The discovery that spontaneous fluctuations in BOLD (blood oxygen level dependent) 

signals contain information about the functional organization of the brain has caused a 

paradigm shift in neuroimaging.  It is now well established that intrinsic brain activity is 

organized into spatially segregated resting state networks (RSNs).  Less is known 

regarding how spatially segregated networks are integrated by the propagation of 

intrinsic activity over time.  To explore this question, we examined the latency structure 

of spontaneous fluctuations in the fMRI BOLD signal.  Our data reveal that intrinsic 

activity propagates through and across networks on a timescale of approximately one 

second.  Variations in the latency structure of this activity resulting from sensory state 

manipulation (eyes open versus closed), antecedent motor task (button press) 

performance, and time of day (morning vs. evening) suggest that BOLD signal lags 

reflect neuronal processes rather than hemodynamic delay.  Our results emphasize the 

importance of the temporal structure of the brain’s spontaneous activity. 

2.3 Introduction 
 
It has been recognized since the inception of fMRI that the blood oxygen level 

dependent  (BOLD) signal exhibits spontaneous fluctuations (Purdon and Weisskoff 

1998).  Although this phenomenon was initially regarded as noise, Biswal and 

colleagues showed that spontaneous fluctuations of the BOLD signal are temporally 

synchronous within the somatomotor system (Biswal et al. 1995). This basic result has 

since been extended to multiple functional systems spanning the entire brain (Buckner 

et al. 2011a; Choi et al. 2012; Power et al. 2011; Thomas Yeo et al. 2011). 

Synchronicity of intrinsic activity is widely referred to as functional connectivity; the 
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associated topographies are known as resting state networks (RSNs; equivalently, 

intrinsic connectivity networks (Fox and Raichle 2007)). The importance of 

understanding intrinsic activity is underscored by the fact that RSNs recapitulate the 

topographies of fMRI responses to a wide variety of sensory, motor and cognitive task 

paradigms (Cordes et al. 2000; Smith et al. 2009) providing a powerful means of 

delineating brain functional organization without the need for subjects to perform tasks.  

RSNs also provide an important window on the pathophysiology of various diseases 

(Fox and Greicius 2010; Zhang and Raichle 2010).  These results establish that intrinsic 

brain activity is spatially structured, linked to the representation of function, and clinically 

relevant. 

 

Almost all prior fMRI studies of intrinsic brain activity have used either seed-based 

correlation mapping (Biswal et al. 2010) or spatial independent components analysis 

(sICA) (Beckmann et al. 2005).  Critically, both of these computational strategies 

incorporate the assumption that activity within RSNs is exactly synchronous. However, 

resting state fMRI studies in rat and man suggest that intrinsic activity is 

spatiotemporally structured (Majeed et al. 2011; Majeed et al. 2009).  Ample evidence 

of temporally structured intrinsic activity has been observed in the mouse using voltage 

sensitive dye imaging (Ferezou et al. 2007; Han et al. 2008; Huang et al. 2010; 

Mohajerani et al. 2013; Mohajerani et al. 2010; Sato et al. 2012).  In humans, Garg and 

colleagues (Garg et al. 2011) performed vector autoregressive (VAR) modeling of 

intrinsic activity followed by dimensionality reduction and identified two main 

spatiotemporal streams propagating through the brain.  More recently, Smith and 
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colleagues (Smith et al. 2012) used temporal independent component analysis (tICA) to 

isolate multiple “temporal functional modes” in human resting state fMRI data.  Implicit 

in this analysis is the notion that intrinsic brain activity can be decomposed into 

spatiotemporal components.  However, the temporal features of these components 

were not explicitly explored.  

 

Here, we specifically focus on the temporal features of intrinsic brain activity as 

expressed in its latency structure. We demonstrate that lags in intrinsic activity, as 

reflected in the BOLD signal, are highly reproducible across several large cohorts of 

young healthy adults. Moreover, this structure is modified, with appropriate focality, by 

the state of the eyes (open or closed), recent motor task performance, and time of day 

(i.e., morning vs. evening). When represented in 3D image format, iso-lag contours 

superficially resemble resting state networks (RSNs). However, closer analysis shows 

that lag topography actually is orthogonal to RSNs. Thus, each RSN encompasses a 

range of early and late regions and no RSN leads or follows any other. Rather, a 

temporal structure emerges which provides a framework for the functional integration of 

more conventionally defined RSNs.    

2.4 Methods 

Theory 

Conventional seed-based correlation analysis involves computation of the Pearson 

correlation, 𝑟, between the time series extracted from a seed region, e.g., 𝑥1(𝑡), and a 

second time series, 𝑥2(𝑡), extracted from other loci (either single voxels or another 

region of interest).  Thus, 
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 𝑟𝑥1𝑥2
=

1

𝜎𝑥1𝜎𝑥2

1

𝑇
∫𝑥1(𝑡) ∙ 𝑥2(𝑡)𝑑𝑡,       (1) 

 

where 𝜎𝑥1
 and 𝜎𝑥2

 are the temporal standard deviations of signals 𝑥1 and 𝑥2, and 𝑇 is 

the interval of integration. Here, we generalize the assumption of exact temporal 

synchrony and compute lagged cross-covariance functions. Thus, 

 

 𝐶𝑥1𝑥2
(𝜏) =

1

𝑇
∫𝑥1(𝑡 + 𝜏) ∙ 𝑥2(𝑡)𝑑𝑡,       (2) 

 

where 𝜏 is the lag (in units of time). The value of 𝜏 at which 𝐶𝑥1𝑥2
(𝜏) exhibits an 

extremum defines the temporal lag (equivalently, delay) between signals 𝑥1 and 𝑥2 

(Konig 1994).  (Alternative strategies for latency analysis are discussed in the 

Appendix.)  Clearly, Eqs. 1 and 2 are related. Thus, 𝐶𝑥1𝑥2
(0) = 𝜎𝑥1

𝜎𝑥2
𝑟𝑥1𝑥2

. In other 

words, the Pearson correlation is equal to the cross-covariance at zero lag, normalized 

by the signal standard deviations. Because cross-covariance functions are not 

normalized, they retain sensitivity to signal magnitudes, which is critical in the present 

analyses. Although cross-covariance functions can exhibit multiple extrema in the 

analysis of periodic signals, BOLD time series are aperiodic (He et al. 2010; Maxim et al. 

2005), and almost always give rise to lagged cross-covariance functions with a single, 

well defined extremum, typically in the range ±0.5 sec.  We determined the extremum 

abscissa and ordinate using parabolic interpolation (Figure 1).   
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Figure 2-1: Calculation of pair-wise timeseries lag using cross-covariance and parabolic 
interpolation.  The top right panel shows 195 s of two sampled time series extracted from 
two loci in the brain.  The corresponding lagged cross-covariance function, computed 
over a full run (~300 s), is shown in the lower left panel (Eq. 2). The lagged cross-
covariance is defined over the range ±L, where L is the run duration.  The range of the 
plotted values is restricted to ±12 s, which is equivalent to ±4 frames (red markers) when 
the repetition time is 3s.  The lag between the timeseries is the value at which the 
[absolute value of the] cross-covariance function is maximal.  This extremum can be 
determined at a resolution finer than the temporal sampling density (one frame every 3 
seconds) by performing parabolic interpolation (green line, lower right panel) through the 
computed values (red markers).  This extremum (arrow, yellow marker) defines both the 
lag between time series 𝒊 and 𝒋 (𝝉𝒊,𝒋; Eq. 4) and the corresponding amplitude (𝒂𝒊,𝒋; Eq. 5). 

Given a set of 𝑛 time series, {𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)}, extracted from 𝑛 regions of interest 

(ROIs), a lagged cross-covariance function can be computed between every pair of time 

series. Thus, 

 

 𝐶𝑥𝑖𝑥𝑗
(𝜏) =

1

𝑇
∫𝑥𝑖(𝑡 + 𝜏) ∙ 𝑥𝑗(𝑡)𝑑𝑡      𝑖, 𝑗 ∈ 1,2, … , 𝑛.     (3) 
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𝐶𝑥𝑥(𝜏) is an 𝑛 ×  𝑛 matrix that describes the covariance structure of the signal system 

parametric in lag.  Finding all 𝜏𝑖,𝑗 corresponding to the extrema, 𝑎𝑖,𝑗, of 𝐶𝑥𝑖𝑥𝑗
(𝜏) yields 

the anti-symmetric matrix, 𝑇: 

 

 𝑇 =  [

𝜏1,1 ⋯ 𝜏1,𝑛

⋮ ⋱ ⋮
−𝜏1,𝑛 ⋯ 𝜏𝑛,𝑛

].          (4) 

 

The diagonal entries of 𝑇 are necessarily zero, as any time series has zero lag with 

itself.  Moreover, 𝜏𝑖,𝑗 = −𝜏𝑗,𝑖, since time series 𝑥𝑖(𝑡) preceding 𝑥𝑗(𝑡) implies that 𝑥𝑗(𝑡) 

follows 𝑥𝑖(𝑡) by the same interval.  𝑇 is widely known as a time-delay (TD) matrix, and 

represents all lag information contained in {𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)}.   

 

The TD matrix does not contain any information regarding signal magnitudes.  

Therefore, the relative contribution of each signal pair to the entire spatiotemporal 

process is lost.  To recover signal magnitude information, we define a second anti-

symmetric matrix, 𝐴: 

 

 𝐴 =  [

𝜏1,1∙𝑎1,1 ⋯ 𝜏1,𝑛 ∙ 𝑎1,𝑛

⋮ ⋱ ⋮
−𝜏1,𝑛 ∙ 𝑎1,𝑛 ⋯ 𝜏𝑛,𝑛 ∙ 𝑎𝑛,𝑛

].       (5) 
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𝐴 is anti-symmetric for the same reasons as is 𝑇.  In 𝐴, the time delays, 𝜏𝑖,𝑗, are 

weighted by the magnitude of the signals at the extremum of 𝐶𝑥𝑖𝑥𝑗
(𝜏).  We refer to 𝐴 as 

an amplitude-weighted time-delay (AWTD) matrix. 

 

We projected the multivariate data represented in the TD and AWTD matrices onto one-

dimensional maps using the technique described by Nikolic and colleagues (Nikolic 

2007; Schneider et al. 2006).  We refer to these one-dimensional maps as latency 

projections.  Operationally, the projection is done by taking the mean across the 

columns of 𝑇 (Eq. 4) and 𝐴 (Eq. 5), that is,  

 

      𝑇𝑝 = [∑ 𝜏1,𝑗
𝑛
𝑗=1  … ∑ 𝜏𝑛,𝑗

𝑛
𝑗=1 ],                         (6) 

 

and 

 

    𝐴𝑝 = [∑ 𝜏1,𝑗∙𝑎1,𝑗
𝑛
𝑗=1  … ∑ 𝜏𝑛,𝑗∙𝑎𝑛,𝑗

𝑛
𝑗=1 ],                      (7) 

 

where 𝑇𝑝 and 𝐴𝑝 are 1 × 𝑛 latency projections of the TD and AWTD matrices, 

respectively.  Thus 𝑇𝑝 and 𝐴𝑝 are row vectors whose elements represent latency and 

amplitude-weighted latency at each ROI.  These projections can be represented in 3D 

image format (e.g., Figure 2).  Critically, the projection technique is valid only if the TD 

and AWTD matrices are significantly transitive.  Transitivity refers to the existence of 

consistent lag relations.  Perfect transitivity means that the sum of lags over all closed 

loops is exactly zero.  Given measurement error, perfect transitivity is never observed in 



 29 

real neural data.  A test for significant transitivity can be implemented by considering all 

time series triples (Nikolic 2007).  Partial transitivity is defined as the fraction of all 

possible triples in a TD matrix that exhibit transitivity.  A TD matrix is said to be 

significantly transitive if the fraction of all possible triples that exhibit transitivity 

significantly exceeds the number expected by chance alone (p < .05).  All TD and 

AWTD matrices presented here satisfy this condition.  Additional details regarding the 

projection technique are given in (Schneider et al. 2006). 

 

Latency projections represent spatiotemporal processes in the brain.  An estimate of the 

regional amplitude (in units of BOLD percent change) of each such process can be 

computed as the quotient of 𝐴𝑝 divided by 𝑇𝑝.  Thus, 

 

    𝐴𝑚𝑝 = 𝐴𝑝./𝑇𝑝,         (8) 

 

where the division is performed element-wise.  𝐴𝑚𝑝 is a 1 × 𝑛 row vector, which we 

refer to as the latency process amplitude (LPA) image, that estimates the contribution of 

the spatiotemporal process to the total BOLD time series at each ROI.  To compute this 

estimate, we first apply principal component analysis (PCA) to the complete set of 

BOLD time series.  PCA assigns a percentage of the variance in the BOLD time series 

to each PC.  𝐴𝑚𝑝 is projected onto each PC to find a weight 𝑤𝑖: 

 

           𝑤𝑖
𝐴𝑚𝑝 = 𝑃𝑟𝑜𝑗(𝐴𝑚𝑝, 𝑃𝐶𝑖

𝐵𝑂𝐿𝐷), 𝑖 = 1…𝑛.        (9) 
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These weights are used to compute a weighted sum of PC variances. 

 

          𝑉𝑎𝑟𝐿𝑃
𝐵𝑂𝐿𝐷 = ∑ 𝑤𝑖

𝐴𝑚𝑝
𝑖 ∙ 𝑉𝑎𝑟𝑃𝐶𝑖

𝐵𝑂𝐿𝐷 , 𝑖 = 1…𝑛.      (10) 

 

Thus, each latency projection accounts for a computable fraction, 𝑉𝑎𝑟𝐿𝑃, of BOLD time 

series variance.  Analogously, the TD matrix is subjected to PCA, and latency 

projections (in units of seconds) are projected onto the TD matrix eigenvectors.  

 

 𝑤𝑖
𝐿𝑃 = 𝑃𝑟𝑜𝑗(𝐿𝑃, 𝑃𝐶𝑖

𝑇𝐷), 𝑖 = 1…𝑛.        (11) 

 

These weights are used to compute the variance of the TD matrix accounted for by the 

latency projection. 

 

          𝑉𝑎𝑟𝐿𝑃
𝑇𝐷 = ∑ 𝑤𝑖

𝐿𝑃
𝑖 ∙ 𝑉𝑎𝑟𝑃𝐶𝑖

𝑇𝐷 , 𝑖 = 1…𝑛.       (12) 
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Imaging methods 

 

Participants 
 
Four extant, independent data sets were analyzed in this study. A large data set (N = 

692) was obtained from the Harvard-MGH Brain Genomics Superstruct Project (Yeo et 

al. 2011b) (dataset 1, Table 1). The 692 subjects in dataset 1 were randomly divided 

into 7 cohorts of approximately 99 subjects each to test the reproducibility of our 

analyses.  Three additional data sets (Fox et al. 2005b; Fox et al. 2007; Shannon et al. 

2013) were previously acquired at the Neuroimaging Laboratories of the Mallinckrodt 

Institute of Radiology at the Washington University School of Medicine (datasets 2-4, 

see Table 1).  All patients were young adults screened to exclude neurological 

impairment and psychotropic medications. Demographic information and acquisition 

parameters are given in Table 1. 

 

Table 2-1: Characteristics of analyzed datasets.   
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MRI acquisition 
 
Imaging was performed with a 3T Siemens Allegra (Washington University) or a 3T 

Siemens Tim Trio (Harvard-MGH) scanner. Functional images were acquired using a 

BOLD contrast sensitive gradient echo echo-planar sequence [parameters listed in 

Table 1].  In dataset 1, all participants were simply instructed to keep their eyes open, 

remain still, and not fall asleep.  Two fMRI runs were acquired per subject.  In dataset 2, 

three runs were acquired in the eyes open visual fixation condition and 3 runs were 

acquired with eyes closed (Fox et al. 2005b).  In dataset 3, we contrasted 2 resting state 

runs separately acquired before and after an intervening run during which subjects 

performed an attention demanding button press task (Fox et al. 2007).  During the 

button press task, subjects were instructed to press a button in response to a visual cue 

(dimming of the fixation cross-hair).  In dataset 4, we contrasted 2 resting state runs 

acquired in the morning (~1 hour after each subject’s usual wake time) and evening (~2 

hours before usual bed time).  In all datasets, anatomical imaging included one sagittal 

T1-weighted magnetization prepared rapid gradient echo (MP–RAGE) scan (T1W) and 

one T2-weighted scan (T2W). The MP-RAGE sequence in dataset 1 was multi-echo. 

 

fMRI preprocessing 

Initial fMRI preprocessing followed conventional practice (Shulman et al. 2010). Briefly, 

this included compensation for slice-dependent time shifts, elimination of systematic 

odd-even slice intensity differences due to interleaved acquisition, and rigid body 

correction of head movement within and across runs. Atlas transformation was achieved 

by composition of affine transforms connecting the fMRI volumes with the T2W and 
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T1W structural images. Head movement correction was included with the atlas 

transformation in a single resampling that generated volumetric timeseries in (3mm)3 

atlas space. Additional preprocessing in preparation for latency analysis included spatial 

smoothing (6 mm full width at half maximum (FWHM) Gaussian blur in each direction), 

voxel-wise removal of linear trends over each fMRI run, temporal low-pass filtering 

retaining frequencies below 0.1 Hz, and zero-meaning each voxel time series.  Spurious 

variance was reduced by regression of nuisance waveforms derived from head motion 

correction and timeseries extracted from regions (of “non-interest”) in white matter and 

CSF.  Nuisance regressors included also the BOLD timeseries averaged over the brain 

(Fox et al. 2005b).  Additionally, we employed frame-censoring with a threshold of 0.5% 

root mean square frame-to-frame intensity change (Power et al. 2012). Frame-

censoring excluded 3.8 ± 1.1% of all magnetization steady-state frames from the 

correlation mapping computations. 

 

Gray matter segmentation and ROI definition 

All present analyses were restricted to gray matter.  A gray matter mask was 

constructed on the basis of a group averaged 18F-flurodeoxyglucose positron emission 

tomography (FDG-PET) image.  Group level gray matter masks conventionally are 

constructed by segmenting structural scans, e.g., using FreeSurfer (Fischl 2012).  Here 

we achieved the same objective by thresholding a group average metabolic image, 

exploiting the fact that gray matter has approximately uniform FDG uptake.  This 

strategy generates smoother gray matter partitions than structural segmentation.  The 

source FDG-PET image, in (3mm)3 atlas space, was generated in a separate 
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experiment (Vaishnavi et al. 2010), and was thresholded to exclude white matter, large 

vessels, and cerebrospinal fluid (CSF) spaces.  To reduce the dimensionality of the 

latency analyses (number of ROIs), the gray matter mask was divided into (6mm)3 cubic 

ROIs, discounting any cubes containing fewer than 50% gray matter voxels.   

 

2.5 Results 

Resting state latency projections 

Latency projection results obtained in dataset 1 are displayed in Figure 2.  The latency 

projection result (Figure 2A,C) spans approximately one second between the earliest 

and latest areas of the brain. The principle features of this map are: (i) a high degree of 

bilateral symmetry, and (ii) spatially distinct early and late regions.  The earliest and 

latest brain regions are the posterior cingulate cortex/precuneus (PCC) and the 

cerebellum, respectively.  The amplitude-weighted latency projection (Figure 2B) and 

the un-weighted TD latency projection (Figure 2A) exhibit similar topographies.  Figure 

2D illustrates the across sub-group spatial correlogram corresponding to the 7 sub-

groups comprising dataset 1.  This correlogram quantitatively demonstrates the spatial 

similarity between time delay (TD) and amplitude-weighted time delay (AWTD) latency 

projections (off diagonal blocks) as well as reproducibility across sub-groups (diagonal 

blocks).   

 

The latency process amplitude (LPA) image (Figure 3A,B; see Eq. 8 for derivation) has 

high values in brain areas that strongly contribute to the brain’s latency structure.  As is 

true of the results shown in Figure 2, the LPA maps are highly similar across sub-
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groups of dataset 1 (Figure 3C).  High amplitude values appear in the default mode 

network (Raichle et al. 2001), as well as some other areas, most notably the visual 

cortex.  The cerebellum, as a whole, contributes relatively little to the brain’s latency 

structure except in parts that belong to the DMN (Crus II and the inferior vermis).  We 

note that the topographies of lag (Figure 2A,C) and latency process amplitude (Figure 

3A,B) are distinct.     

 

Figure 2-2: Results obtained in dataset 1.  The 692 subjects were randomly divided into 7 
equally sized subgroups of approximately 99 subjects each.  (A) Latency projection of 
the time delay (TD) result obtained in the first sub-group illustrated in voxel-space.  Lag 
is measured in seconds.  (B) Latency projection of the amplitude-weighted time delay 
(AWTD) result corresponding to the TD result shown in (A).  Because the BOLD signal 
magnitude depends on multiple fMRI sequence parameters, the unit of amplitude-
weighted lag is arbitrary.  (C) Surface representation of the volumetric result shown in (A). 
Arrows point to specific regions mentioned in the Discussion:  posterior precuneus 
cortex (PCC), ventromedial prefrontal cortex (VMPFC), dorsal anterior cingulate cortex 
(dACC), anterior insula (AI), posterior parietal cortex (PPC), dorsolateral prefrontal cortex 
(DLPFC). (D) Spatial correlation between all TD (first 7 rows/columns) and AWTD (last 7 
rows/columns) latency projections calculated in the 7 sub-groups. 
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The amplitude map can be used to estimate the relative contribution of the 

corresponding latency projection to the total variance of the BOLD signal within gray 

matter.  This accounting is analogous to fractionating variance using principal 

component analysis. In our data, on average, 20.1% (+/- 0.7%) of the total variance in 

the whole brain BOLD signal time series is explained by the latency projection (Eq. 10). 

Moreover, 71.5% (+/- 1.4%) of the TD matrix variance is attributable to the latency 

projection (Eq. 12).  Therefore, the latency process we have identified is a significant 

driver of sequential BOLD activity in the resting state, but it represents only a first 

component. 

 

Figure 2-3: (A) Latency process amplitude (LPA) map illustrated in voxel-space obtained 
in the first sub-group of dataset 1 (same data as in Figure 2A-C).  The scale is in units of 
BOLD amplitude.  See Eq. 8 for derivation.  (B) Surface representation of the volumetric 
result shown in (A).  (C)  Spatial correlation between all amplitude maps calculated in the 
7 subgroups of dataset 1.   
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State contrasts 

The effect of state contrast on the latency structure of intrinsic activity was studied in 

three experiments.  We first compared the eyes open versus the eyes closed (EO-EC) 

condition (dataset 2, Table 1).  In the eyes open state, subjects were instructed to 

maintain visual fixation on a small crosshair.  This state contrast is known to modulate 

the amplitude of intrinsic BOLD activity in visual cortex (Marx et al. 2004; McAvoy et al. 

2008).  The latency projection correlates of this experiment are shown in Figure 4.  The 

most prominent change in latency was a shift toward later values in the dorsal visual 

stream with eyes open as compared with eyes closed.  Similar changes were observed 

in the ventral visual stream, curiously omitting V1.  The latency projection amplitude 

(LPA) also showed a large shift toward higher values in the dorsal visual stream with 

eyes closed as compared with eyes open.  This result is consistent with numerous 

previous reports documenting reduced amplitude of BOLD fluctuations in the eyes open 

state (Bianciardi et al. 2009; Marx et al. 2004; McAvoy et al. 2008).  This set of 

observations is significant in the light of potential relations between latency and 

perfusion (see below). 

Figure 2-4: Latency results obtained in dataset 2.  
(A) Eyes Open (EO).  (B) Eyes Closed (EC).  (C) 
Eyes Open minus Eyes Closed.  (D) Voxels with a 
statistically significant EO versus EC latency 
effect.  (E) EO minus EC latency process 
amplitude (LPA) difference image.  Color 
indicates statistically significant voxels.    
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Figure 2-5: Latency results 
obtained in dataset 3. (A) 
Before button-press task. (B) 
After button-press task.  (C) 
After minus Before.  (D) 
Voxels with a statistically 
significant recent task 
performance latency effect. (E) 
After minus Before latency 
process amplitude (LPA) 
difference image.  Color 
indicates statistically 
significant voxels. 

 

 

In the second experiment, we compared the resting state after versus before 

performance of a cued right hand button push task (Fox et al. 2007; Fox et al. 2006).  

During the task fMRI run, subjects were instructed to press a button in response to a 

visual cue (dimming of the fixation cross-hair).  The most prominent latency change was 

a shift toward later latency values in left ventral motor cortex following task performance 

(Figure 5). A shift toward earlier latency values was observed in bilateral striatum, 

although this effect was significant in only a small cluster of voxels in the right putamen 

(Figure 5D).  As opposed to the EO-EC experiment, this contrast was computed over 

two identical resting state conditions (i.e., before and after task performance) rather 

than concurrent state contrast (i.e., eyes open at rest versus eyes closed at rest).  

Consequently, the change in latency structure seen following the button press task is a 
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function of antecedent task performance.  The latency projection amplitude (LPA) 

showed a large reduction in the PCC (Figure 5E).  No LPA change was observed in the 

voxels showing significant latency shifts.  Thus, the LPA and latency effects were 

spatially dissociated in the button-push paradigm, whereas in the EO-EC experiment 

the effects were spatially overlapping.   

 

Figure 2-6: Latency results obtained in dataset 4. (A) 
Morning latency map. (B) Evening latency map.  (C) 
Evening minus morning change in latency. Warm hues 
indicate increased lateness in the evening. Cool hues 
indicate increased earliness in the evening. (D) 
Statistically significant latency differences are seen in 
entorhinal and insular cortex. (E) Previously reported 
(Shannon et al. 2013) diurnal change in functional 
connectivity. Magenta indicates the two regions of 
interest, right and left entorhinal cortex, exhibiting the 
greatest diurnal change in functional connectivity with 
the rest of the brain (circled in central slices in panels A-
E). Presently reported diurnal changes in latency (panels 
A-D) correspond to previously published functional 
connectivity changes in entorhinal cortex (panel E). 

 

Finally, we contrasted resting state latency in data acquired shortly after waking in the 

morning and just prior to retiring in the evening (Shannon et al. 2013). This contrast was 

chosen specifically because it revealed significant diurnal changes in functional 

connectivity bilaterally in entorhinal cortex (magenta region in Figure 6E).   In the 

morning, entorhinal cortices were functionally connected prominently to anterior insula.  
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In the evening, entorhinal cortices exhibited strong functional connectivity with cortical 

areas involved in memory retrieval as well as a significant reduction in functional 

connectivity with anterior insula. The present results, shown in Figure 6A-D, 

demonstrate significant latency changes in the entorhinal cortices from late in the 

morning (Figure 6A) to relatively early in the evening (Figure 6B).  In contrast, latency 

shifted in the opposite direction in insular cortex (i.e., later in the evening as compared 

to morning).  There were no statistically significant changes in LPA in the morning vs. 

evening contrast, again demonstrating that latency and amplitude effects can be 

dissociated.   

 

Latency in relation to RSNs 

Inspection of Figure 2A suggests a similarity in spatial scale between RSNs (Figure 7) 

and latency maps.  This observation raises the question of the relation between RSNs 

and latency maps.  To address this question, we computed the mean latency within 

each RSN.  The obtained result was remarkably close to zero in every RSN (root mean 

squared latency value averaged over RSNs = 0.03 s).  This outcome is not imposed by 

our analytic strategy.  We generated surrogate RSNs matched in spatial frequency and 

scale to true RSNs to test whether the orthogonal relationship between RSNs and 

latency structure could be attributed to chance (Figure 7, See Appendix for more 

details).  This analysis indicated that the likelihood of observing a root mean square 

value of 0.03 s is less than 1% (Figure 8), suggesting that the observed latency-RSN 

relationship is not attributable to chance alone. The implication of this result is that no 

RSN is either early or late.  Instead, activity propagates both through and across RSNs.     
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Figure 9 shows the TD matrix corresponding to the results shown in Figure 2.  Critically, 

the ROIs have been ordered first by RSN membership (Hacker et al. 2013) (see Figure 

7), and, within RSN, by temporal order using latency projections by RSN block.  Figure 

9 also includes voxels assigned to the cerebrospinal fluid (CSF) category.  The diagonal 

blocks in the TD matrix represent latency within RSNs (e.g., within DMN latencies, 

outlined in white); the off diagonal blocks represent latencies across RSNs. 

 

Figure 2-7: Real and surrogate RSNs.  RSN labels and color-codes are presented in lower 
left.  To test the statistical significance of the latency-RSN relationship, we created 
surrogate RSNs matched in spatial frequency to real RSNs.  The real RSNs were defined 
as the group level winner-take-all result in Hacker et. al. 2013 (referred to here as “MLP 
RSNs”).  Surrogate RSNs (N = 1000) were generated by applying symmetric group 
operations to the real RSNs (see Appendix).  One typical example of surrogate RSNs is 
illustrated adjacent to the real RSNs.  Spatial frequency domain representations (3D 
Fourier transforms of RSNs and surrogate RSNs) are on the upper right.  The spatial 
frequency domain results are averaged over all real RSNs and over all surrogate RSNs, 
respectively, omitting the CSF component.  Only the 𝑓𝑧=0 planes of the 3D spatial 
frequency domain representations are shown.  The graph (lower right) shows relative 
spectral power (in dB) read out along the diagonal blue traces in the frequency domain 

representations.  The plots are symmetric about the Nyquist folding frequency = 
𝟎.𝟓

𝟑𝒎𝒎
, 

which reflects the spatial sampling density (3mm cubic voxels).  Critically, the spatial 
frequency content of the surrogate RSNs is well matched to the real RSNs. 
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Figure 2-8: Histogram of summed squared 
mean latency values in surrogate RSNs. 1000 
surrogate RSN partitions (e.g., Figure 7) were 
generated.  The latency mean was evaluated for 
each surrogate RSN.  On the assumption that 
mean RSN latencies are normally distributed 
about zero, the sum of squares of these values 
theoretically is distributed as χ2(7).  The light 
blue trace represents the theoretical gamma 
probability density function fit to the 
simulations (blue histogram).  The vertical pink 
line represents the summed squared latency 
values in the real RSNs (0.006s2). A squared 

sum value of 0.006s2 corresponds to a root mean square value of 0.03s, as reported in 
the main text.  The surrogate data indicate the probability of this outcome occurring by 
chance is p < 0.0096. 
 

Figure 9 includes some features that are algebraically constrained.  In particular, the TD 

matrix is anti-symmetric.  Therefore, each diagonal block is anti-symmetric as well.  

However, the algebra does not impose any relation between latency and RSN 

membership.  Therefore, the structure evident in Figure 9 is informative.  The diagonal 

blocks show a wide range and well-ordered distribution of latencies.  Thus, activity 

propagation is present within each RSN.  The CSF block is much less well ordered even 

though it was analyzed identically to the true RSNs.  This distinction demonstrates that 

the observed intra-RSN latency structure reflects brain organization at the systems level 

and is not an algebraic artifact.  

 

The off-diagonal blocks represent activity propagation across networks.  Each block 

contains well-ordered early, middle, and late components much like the diagonal blocks.  

Again, this is not algebraically imposed.  To obtain a numerical measure of latency 

spread within blocks, we computed the latency standard deviation.  The mean value of 

this measure across the diagonal blocks was 0.15s.  The same result (0.15s) was 
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obtained in off-diagonal blocks.  The existence of latency ordering within off-diagonal 

blocks suggests organized lag relations between constituent parts of RSNs. As an 

example, consider the off-diagonal block corresponding to the DMN paired with the 

dorsal attention network (DAN), outlined in white in Figure 9.  A well-ordered 

progression from early (blue) to late (red) is evident, indicating that parts of the DMN 

lead the DAN and vice versa.  Again, a comparison with the CSF blocks is informative.  

Very little structure is evident in the DAN:CSF block (outlined in white), reflecting the 

absence of organized reciprocal latency. 

Figure 2-9: Relationship of latency to 
RSNs.  The figure shows a TD matrix 
with ROIs ordered by RSN membership 
(see Figure 7 for abbreviations).  Within 
each RSN, the ROIs are further ordered 
by latency.  Note wide range of latencies 
within RSNs (diagonal blocks, each 
necessarily anti-symmetric) and anti-
symmetric features across RSNs (off-
diagonal blocks).  Note also absence of 
organization in CSF blocks.  Blocks 
referred to in the Main Text are outlined 
in white.  The diagonal blocks in the TD 
matrix illustrate that each network has 
early, middle, and late components.  
Moreover, the off diagonal blocks have 
early, middle, and late components.  

Therefore, no network leads or follows any other network.  Rather, lags are equivalently 
distributed within and across RSNs.   

To examine the possibility that the latency process is present with more power within 

certain RSNs or RSN pairs, we computed the amplitude-weighted time-delay matrix 

(Figure 10), in which ROIs are ordered as in Figure 9.  Since the lag values are 

weighted by amplitude, ROI interactions with little power have values closer to zero 

(green hues in Figure 10).  As above, we computed a measure of spread within blocks 

as the amplitude-weighted latency standard deviation.  Among the RSNs, the DMN and 
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VIS exhibited the greatest spread of amplitude weighted latencies.  This feature 

appears in Figure 10 has a high level of blue/red saturation.  In contrast, the CSF blocks 

are comprised primarily of values near zero (appear green).  These results are in line 

with Figure 3.  The critical feature in Figure 10 is that the diagonal and off-diagonal 

blocks are comparably saturated.  In quantitative terms, the diagonal and off-diagonal 

blocks exhibit comparable mean standard deviations (0.35 and 0.33, respectively, in 

units of amplitude·seconds).  Combining the results shown in Figures 9 and 10 implies 

that lag amplitudes are similarly distributed within and across RSNs.   

Figure 2-10: Amplitude-weighted time 
delay (AWTD) matrix corresponding to 
Figure 9.  Blocks referred to in the Main 
Text are outlined in white.   

 

Control analyses 

We considered three non-neuronal explanations for the spatial patterns of BOLD 

latency projections (Figure 2).  First, is there a relationship to vascular territories 

(anterior cerebral artery, middle cerebral artery, posterior cerebral artery)?  Reference 

to standard vascular territory maps (Damasio 1983) shows no clear correspondence.  In 

particular, Figure 2 shows latency contrast around the ventral central sulcus, whereas 

this part of the brain and widely surrounding areas are all middle cerebral artery territory.  
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Although different vascular territories see arterial blood at different latencies with 

respect to the aorta, there is no parsimonious mechanism by which this difference could 

translate to differential BOLD signal latencies.  Second, better perfused tissue may be 

expected to show a more prompt response to neural activity.  In fact, precisely this 

mechanism probably accounts for delayed BOLD signals in the vicinity of recent infarcts 

(Amemiya et al. 2013).  Accordingly, we compared latency projections to a group 

average perfusion map constructed on the basis of PET data (Vaishnavi et al. 2010).  A 

scatter plot of cerebral blood flow (CBF) versus latency was constructed (Figure 11).  

Inspection of this plot showed no clear evidence of a systematic relation between CBF 

and latency (Pearson r = -0.05).  A negative correlation is in line with the theory that 

better perfused tissue shows more prompt BOLD response to neuronal activity.  

However, this effect is negligible, as it only explains 2.5% of latency variance.   

Figure 2-11: Comparison of cerebral blood flow 
versus time-delay (TD) latency projection.  (A) 
Cerebral blood flow map obtained in a group of 33 
normal young adults.  (B) TD latency projection; 
same data as Figure 2A-C.  (C) Scatter plot showing 
the relationship between cerebral blood flow and 
the latency projection. Each dot represents one ROI.  
To test whether the reproducibility of latency 
structure (Figure 2D) is attributable to CBF, we 
computed the mean cross-group correlation for the 
7 cohorts in dataset 1, before and after regressing 
out the effects of CBF.  The mean cross-group 
correlation was r = 0.898 in both cases.  This result 
demonstrates that the effect of CBF on measured 
latency, if present, is negligible.     
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Finally, it is well known that the BOLD signal is strongly weighted toward the venous 

side of the circulation (Hall et al. 2002).  Therefore, the BOLD signal in cerebral veins 

should appear at late latencies (Lee et al. 1995).  To investigate this possibility, a group 

average “venogram” was constructed by computing the voxel-wise beta-map 

corresponding to the differentiated global signal (see Appendix for details).  

Thresholding this map to retain only negative values generated an image demarcating 

the major venous structures in the head (Figure 12).  Reference to this map 

demonstrated that cerebral venous structures do account for some features of the 

latency map, in particular, lateness in the superior and sagittal sinuses.  Most of the 

vascular spaces, however, were already excluded from our analysis by our gray matter 

mask (see Methods).  Thus most of the features evident in Figure 2 do not correspond 

to the “venogram” and, therefore, are not attributable to cerebral venous outflow.   

Figure 2-12: Venous contribution to 
latency structure.  (A) Venogram.  (B)  
TD latency projection for comparison.  
Our gray matter masking procedure 
(see Methods) excludes many of the 
voxels that correspond to venous 
structures, but some overlap is 
apparent. (C) TD latency projection with 
venous structures masked out. 
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2.6 Discussion 

Summary of Present Findings 

We used latency projections (Nikolic 2007) to study the lag structure of the resting state 

BOLD signal in healthy young adults. Substantial consistency was demonstrated over 7 

large cohorts.  The amplitude of lagged activity was highest in the default mode, control, 

and visual networks.  Latency process amplitude (LPA) estimation indicated that the 

spatio-temporal process shown in Fig. 2A accounts for approximately 20% of the resting 

state BOLD signal.  These results provide of means of studying integration within and 

across resting state networks, which so far have been defined primarily in terms of 

network segregation. 

 

We studied the effects of three state contrasts (eyes open vs. eyes closed, before vs. 

after right handed button push in response to visual cue, morning vs. evening) to test 

whether latency structure depends on neuronal activity.  Temporal structure was 

modified, with appropriate focality, in all three experiments, suggesting that the latency 

structure is indeed neuronally driven.   

 

Time-delay matrices (Fig. 9) suggest functional integration within and across RSNs. 

Surprisingly, we found that the temporal structure of the BOLD signal is orthogonal to 

RSN topography.  In other words, there is equivalent activity propagation both within 

and across RSNs.  The well-ordered organization of activity propagation within and 

across RSNs contrasts with the highly disorganized activity evident in CSF, 

demonstrating that the observed propagation structure is not algebraically imposed.  By 
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generating surrogate RSNs, we demonstrated that the orthogonal relationship between 

RSNs and latency is not attributable to chance (Figure 7, Appendix).  

 

Finally, we investigated the effects of CBF and large vascular structures on latency 

structure.  

CBF was found to have negligible explanatory power (Figure 11).  The superior sagittal 

sinus contributed some late features in the latency map, but masking the latency image 

by an fMRI-derived “venogram” (see Appendix) demonstrated that most latency features 

are not attributable to large vascular structures (Figure 12).   

 

Observed latency in relation to vascular physiology 

The BOLD signal is governed by the local concentration of deoxyhemoglobin, which is 

paramagnetic and, therefore, an MRI contrast agent (Ogawa et al. 1990).  Changes in 

the fMRI BOLD signal, either task-related or spontaneous, reflect changes in blood flow 

that are greater than changes in oxygen consumption.  These changes have been 

physiologically linked to changes in local field potentials (Goense and Logothetis 2008; 

Logothetis 2008; Logothetis et al. 2001; Logothetis and Wandell 2004) and cellular 

metabolism (i.e., changes in cellular redox states (Mintun et al. 2004; Vern et al. 1997; 

1998) and aerobic glycolysis (see (Raichle and Mintun 2006) for review)).  Most recently, 

propagated activity in the mouse brain (see Neurophysiology of latency) has been 

visualized using voltage sensitive dye imaging (Mohajerani et al. 2013; Mohajerani et al. 

2010), which entirely avoids the question of neurovascular coupling.  Nevertheless, 

concern lingers that regional variations in the latency of neurovascular coupling could 
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largely account for observed delay structure (Friston 2009; 2011; Friston et al. 2013; 

Friston and Dolan 2010; Handwerker et al. 2004).   

 

Hemodynamic and neuronal contributions to observed lag structure cannot be 

separated on the basis of the BOLD signal alone.  However, we can adjudicate between 

a primarily neuronal vs. primarily hemodynamic explanation for observed lag structure 

by considering the plausibility of each of these explanations for our results.   

 

First, we find changes in latency structure as a result of state contrasts (Figures 4-6). A 

vascular explanation for this result implies focal changes in the dynamics of 

neurovascular coupling.  It might be argued that the latency differences in Figures 4 and 

6 reflect changes in sympathetic tone (due to eye closure or time of day) leading to 

altered vascular dynamics. However, Figure 5 contrasts two resting states separated by 

a task run. It is highly plausible that task performance leaves a neural trace. In fact, 

such traces must underlie episodic memory and skill acquisition. It is much less 

plausible, although not inconceivable, that prior task performance leaves a trace 

manifesting as focally altered vascular hemodynamic coupling. Second, latency 

projections are orthogonal to RSNs (Figures 7 and 8) in a manner not attributable to 

chance.  Thus, there exists a structured relationship between RSNs, which 

unquestionably reflect neuronal activity, and latency projections.  A purely vascular 

explanation for this relationship is difficult to imagine, although we cannot exclude it.  

Conversely, a neuronal explanation for this relationship suggests that lagged activity 

plays a role in functional integration across segregated brain networks.  Third, let us 
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suppose that regional differences in neurovascular coupling delays do exist.  We further 

assume that neural processes are effectively simultaneous, that is, we neglect axonal 

conduction delays on the order of tens of msec (Vicente et al. 2008).Then, by 

hypothesis, some regions transduce neural activity into a BOLD signal before other 

regions. This time shift can be represented as a set of ordered relations, as illustrated in 

Figure 2. We show in the Appendix that such a structure gives rise to a lag matrix of 

dimensionality exactly one.  However, Bayesian Information Criterion analysis  (Minka 

2001) indicates that the most likely dimensionality of the BOLD TD matrix (Figure 9) is 2 

(Figure 13, See Appendix for details).  This result implies the existence of two transitive 

systems of lags within the TD matrix. Regionally dependent latencies in neurovascular 

coupling mathematically can account for only one of these (see Appendix).  Therefore, 

hemodynamic delays, even if they exist, cannot account for the entirety of the observed 

latency structure.   

 

Although these considerations argue for a neuronal basis for latency structure, the 

present fMRI data provide only indirect evidence. Future direct tests combining other 

modalities (e.g., metabolic or electrophysiologic) with fMRI will be necessary to 

definitely assess the physiological basis of latency structure.   

 

Neurophysiology of latency 

Several features in our latency projection results are consistent with previous 

identification of sources and sinks of intrinsic activity obtained using vector auto-

regressive (VAR) modeling.  Sources and sinks correspond, respectively, to early and 
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late areas in the latency structure.  Specifically, Garg and colleagues found that inferior 

parietal cortex and PCC are sources of propagated activity (Garg et al. 2011).  This 

result matches our assignment of these regions as early in the latency projection 

(Figure 2).  Similarly, Desphande and colleagues identified the DMN as a major locus of 

propagated intrinsic brain activity, in agreement with our amplitude map result (Figure 3) 

(Deshpande et al. 2011).  Moreover, the anterior prefrontal cortex was reported to be a 

sink of propagated activity, which matches our assignment of this region as late in the 

latency projection (Figure 2).  Many of the above discussed features were also obtained 

by Majeed and colleagues using a novel iterative technique based on computing lagged 

correlation functions (Majeed et al. 2011).   

 

Propagated activity is well documented in the electrophysiology literature.  Recent work 

in the mouse using voltage sensitive dye (VSD) imaging has documented wave-like 

propagation of both evoked and spontaneous activity (Ferezou et al. 2007; Han et al. 

2008; Huang et al. 2010; Mohajerani et al. 2013; Mohajerani et al. 2010; Sato et al. 

2012).  Although VSD is capable of millisecond temporal resolution, the observed 

spontaneous activity motifs in the mouse cortex play out over approximately 0.5s 

(Mohajerani et al. 2013; Mohajerani et al. 2010), in close agreement with our results 

(Figure 2A).  The speed of spontaneous activity propagation in the mouse has been 

estimated as approximately 0.2 m/s (Han et al. 2008; Mohajerani et al. 2010).  In our 

data, we take as typical a latency difference of 0.5 s over 10 cm, which yields a 

propagation speed of 0.2 m/s, in agreement with the mouse estimate.  Slow wave 

propagation has also been documented during slow wave sleep (SWS).  The speed of 
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slow wave propagation in SWS has been estimated as 0.4 to 6.3 m/s (Massimini et al. 

2004; Murphy et al. 2009b).  This speed of propagation estimate is reasonably 

comparable to the estimate from our data (0.2m/s, see above), given that the SWS 

figure was obtained on the basis of scalp electroencephalography (EEG) and inverse 

source modeling (Murphy et al. 2009b).  Interestingly, Murphy and colleagues report 

that the DMN is preferentially involved in slow wave propagation during SWS (Murphy 

et al. 2009b), which is concordant with our finding that the DMN is represented with high 

amplitude in the latency projection (Figure 3).   Although SWS and waking quiet rest are 

distinct states, intrinsic activity exhibits many similarities across levels of arousal 

(Larson-Prior et al. 2009; Vincent et al. 2007).  RSNs are present, albeit with arousal-

dependent features, in both wakefulness and SWS (Samann et al. 2011).  Substantial 

evidence indicates that the slow waves in SWS represent UP and DOWN state 

oscillations (Huber et al. 2004; Massimini et al. 2004; Murphy et al. 2009b; Yuste 1997).  

It has been reported that UP and DOWN states persist during wakefulness, although 

they are intermixed with other activity and are much less periodic (Vyazovskiy et al. 

2011).  If so, the same mechanism may drive slow activity in waking and SWS.  Thus, 

there exists a plausible electrophysiological mechanism underlying slow propagated 

BOLD activity.   

 

Murphy and colleagues find that sources and sinks of spontaneous activity in the mouse 

recapitulate patterns of activity observed in task responses (Mohajerani et al. 2013). In 

other words, primary areas (such as primary somatosensory cortex) tend to be sources 

in task-evoked and spontaneous activity, while higher order areas such as the parietal 
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lobule are sinks during task-evoked and spontaneous activity.  Our results show partial 

correspondence with this principle.  In particular, primary motor cortex is early and 

superior parietal lobule is late (Figure 2C), in agreement with task-evoked studies in 

mice (Mohajerani et al. 2013).  Additionally, lateral prefrontal cortex exhibits very 

delayed response to item recognition trials (Schacter et al. 1997), which is in agreement 

with our spontaneous activity lag results (Figure 2A,C).  However, primary sensory and 

auditory cortices are late in our data (Figure 2C), in contrast with the Murphy results. 

These divergences could be attributable to differences in species or technique, but we 

believe that the more likely explanation lies in a fundamental distinction between 

spontaneous and task-evoked activity. Task-evoked BOLD responses in humans exhibit 

a wide variety of waveforms and variable mixtures of sustained and transient 

components, depending on locus and task paradigm (Fox et al. 2005a; Gonzalez-

Castillo et al. 2012).  Moreover, these responses play out on a time scale on the order 

of several seconds.  In contrast, our lag results are generally confined to a range of ±0.5 

seconds.  Thus, although there may be some shared motifs between lagged 

spontaneous and task-evoked activity, the two phenomena most likely represent 

different processes with different temporal structures (see (Raichle 2011) for further 

discussion).   

 

Functional significance of latency 

It is striking that the resting state BOLD signal, which has been used to identify spatially 

segregated functional networks (Power et al. 2011; Yeo et al. 2011a), also carries a 

signature of functional integration within and across RSNs.  Critically, resting state 
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activity propagation is directed, as reflected in a latency map (Figure 2).  Thus, there is 

a stereotyped pattern of activity propagation in the human brain, such that, on average, 

certain brain loci initiate propagated activity (early regions) while other loci are 

destinations (late regions).  While it is widely believed that cross-network 

communication underlies brain function (Bressler and Menon 2010), discussion of this 

point largely derives from task based experiments.  Our analyses reveal loci 

corresponding to sources and sinks of propagated intrinsic activity.  Remarkably, many 

of the same loci have been independently identified, on the basis of task-based fMRI, as 

key cortical nodes regulating behavior (Bressler and Menon 2010; Nelson et al. 2010).  

Specifically, these loci (Figure 2C) are:  posterior precuneus cortex (PCC, early), 

ventromedial prefrontal cortex (VMPFC, late), dorsal anterior cingulate cortex (dACC, 

early), anterior insula (AI, late), posterior parietal cortex (PPC, early), dorsolateral 

prefrontal cortex (DLPFC, late).   These areas represent three pairs of regions 

belonging to the default mode, salience, and fronto-parietal control networks, 

respectively.  It is probably not coincidental that, within each network pair, one region is 

early while the other is late.   Indeed, the orthogonality of RSN and latency topography 

suggests that propagated activity in the resting state may serve as a framework for RSN 

integration.  Thus, analyzing latency structure might be a useful method to increase our 

understanding of cognitive processes, whether they are physiologic or pathologic in 

nature.   

 

One feature of our results that deserves further comment is that the cerebellum as a 

whole is late in the latency map (Figure 2A).  The cerebellum is widely regarded as 
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responsible for reflexive adjustments during active behavior (Buckner et al. 2011b; 

Leiner et al. 1991; Strick et al. 2009), for example, adjusting motor programs in 

response to unanticipated changes in environmental parameters (e.g., load).  In the 

resting state, the role of the cerebellum appears to be minor, as reflected by the low 

amplitude of intrinsic cerebellar BOLD fluctuations (Li et al. 2012; Logothetis and 

Wandell 2004).  Our data suggest that, at least in the resting state, the primary direction 

of information flow appears to be from prosencephalon to cerebellum.  This observation 

is consistent with the current understanding of the cerebellum as primarily a receiver of 

multimodal information from the cerebral cortex (Leiner et al. 1991).  Nonetheless, we 

cannot exclude the possibility that the vascular response to neural demand is generally 

late in the cerebellum. However, this explanation would be specific to the cerebellum as 

opposed to the posterior circulation, because visual and infero-temporal cortices are 

mostly early. 

 

State Contrasts in Latency 

The original motivation for examining state contrasts was to present evidence that 

neuronal phenomenology drives latency structure.  However, the observed effects of 

state contrast on latency are potentially of physiologic interest.  In the eyes open 

condition, propagated signals appear to flow from primary to higher order visual cortex 

(Figure 4A), in accordance with known direction information flow in visual processing 

(Van Essen et al. 1992). In the eyes closed condition, the direction of signal propagation 

appears to reverse (Figure 4B).  Speculatively, this reversal may reflect may reflect top-

down influences supporting mental imagery (Stokes et al. 2009).  In the button push 
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contrast, we theorize that changes in latency after performance of a motor task reflect 

physiologic processes related to learning.  Although the task is simple (pushing a button 

in response to cross-hair dimming), it is attention demanding, and subjects do show an 

improvement in reaction time (data not shown).  Enhanced signaling from putamen to 

the left motor region (Figure 5D) may underlie this improvement.  This result is 

consistent for the known role of the putamen in motor learning (Grafton et al. 1995). 

 

The presently observed latency differences between morning and evening (Figure 

6C,D) spatially correspond to previously reported functional connectivity changes in 

medial temporal lobe and insula (Figure 6E) (Shannon et al. 2013).  The previous 

findings point to changes in signal correlation; the present results point to diurnal 

changes in directed signaling.  Specifically, the entorhinal cortex is late in the morning 

and early in the evening. Entorhinal cortex is the main interface between hippocampus 

and neocortex (Lavenex and Amaral 2000). It is believed that the hippocampus 

accumulates encoded experiences during the day, and that this form of memory is labile 

(Axmacher et al. 2009). Memory consolidation is thought to require transfer of 

information from hippocampus to neocortex, which takes place later in the day and 

during sleep (Axmacher et al. 2009).  Accordingly, entorhinal cortex may be late in the 

morning because it is acting as an information accumulator. Conversely, entorhinal 

cortex is early in the evening because it is transferring information to cortex, thereby 

facilitating formation of hippocampal independent memories. The insula is relatively 

early in the morning and late in the evening. Interpreting this effect will require further 

investigation.   
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Limitations 

There are 3 principle limitations of this work.  First, our method for estimating latencies 

(parabolic interpolation of pair-wise cross-covariance estimates) undoubtedly includes 

some imprecision, in part because the temporal sampling density is relatively low (see 

Repetition Times in Table 1).  However, our conclusions are based on results obtained 

at the group level.  These group level latency estimates are reproducible across 7 large 

cohorts (Figure 2D). 

 

Second, our findings are based on resting state fMRI data pre-processed using global 

signal regression (GSR).  GSR is a controversial processing step (Fox et al. 2009; 

Murphy et al. 2009a); however, in preliminary analyses, it was determined that omission 

of GSR greatly reduces the range of observed latencies.  This is easily understandable 

as a consequence of retaining large quantities of instantaneously correlated shared 

variance.  It is likely that some fraction of the global signal is neuronally derived 

(Scholvinck et al. 2010); however, it is certain that a large fraction is non-neuronal 

artifact attributable to head motion (Power et al. 2012; Power et al. 2013; Yan et al. 

2013) and variable pCO2 (Birn et al. 2006).  Moreover, the artifactual component of the 

global signal exhibits substantial cross subject variability (He and Liu 2012; Power et al. 

2013).  Therefore, GSR is a necessary noise-reduction technique in the present 

analysis.  
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Finally, to estimate the statistical significance of the orthogonality of latency structure 

with respect to RSNs, we developed a method to generate surrogate RSNs with the aim 

of matching the spatial characteristics of real RSNs (see Appendix).  While the topology 

of true RSN structure was preserved in the surrogates, the spatial frequency distribution 

was only approximately matched (Figure 7).  Nevertheless, we are persuaded that the 

orthogonality relationship is statistically significant.   
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2.8 Appendix 

Alternative Strategies for Computing and Analyzing Latencies 

We directly computed lags between time series on the basis of lagged cross-covariance 

functions.  Parabolic interpolation was used to determine the lag of maximal covariance 

at a temporal resolution finer than the sampling density.  An alternative method based 

on iterating lagged correlation functions has been described (Majeed et al. 2011; 

Majeed et al. 2009), but it applies to whole images as opposed to ROI pairs.  

Additionally, the iterative method provides no basis for calculating what percentage of 

variance attributable to latency components.  The major alternative strategy for 

estimating lags is the phase-slope method, in which lag is computed as the derivative 

http://www.sciencedirect.com/science/article/pii/S1053811913006113#gts0025
http://www.sciencedirect.com/science/article/pii/S1053811913006113#gts0020
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with respect to frequency of complex coherence phase (Jenkins and Watts 1968).  

Although the phase slope method has been used to analyze fMRI data (Hinkley et al. 

2013; Sun et al. 2005), we chose a time domain method because the frequency domain 

method requires differentiation, which yields noisy and unstable estimates.  Moreover, 

the phase-slope method requires evaluating slope over some interval under the 

assumption that the slope is constant, which is not necessarily true.    

 

Having obtained a time delay matrix by any method, alternatives for extracting latency 

components include the present (projection) method (Nikolic 2007; Schneider et al. 

2006) and eigenvector decomposition.  We tested both approaches and found that the 

principal eigenvector generally is very similar to the result obtained by the projection 

method.  However, the projection method yielded much more reproducible results in 

cross-subgroup analysis shown in Main Text Figure 2.   

 

A substantial body of previous work has applied vector autoregressive (VAR) methods 

to the study of directed influences in fMRI data (Deshpande et al. 2011; Friston et al. 

2003; Garg et al. 2011; Goebel et al. 2003; Smith et al. 2012).   All of these methods 

require the computation of 𝑘 × 𝑘 × 𝜏 matricies, where 𝑘 is the number of ROIs, and 𝜏 is 

the order of the model.  Even if model order is limited to 1 (Garg et al. 2011; Smith et al. 

2012), VAR does not directly return lag, which is the present quantity of interest.  

Dynamic causal modeling (dcm) is a VAR based method for estimating the most likely 

topology of directed graphs.   However, in practice, dcm is limited to a handful of ROIs, 

and therefore, is unsuited to the present investigation.  Granger causality (Deshpande 
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et al. 2011; Goebel et al. 2003) is theoretically less combinatorically demanding than 

dcm, but like dcm, is essentially an information-theoretic analysis.  The scope of our 

analysis is much more restricted and does not rely on models.  Our results carry 

implications regarding the existence of propagated disturbances and directed influences 

in intrinsic brain activity, but we here avoid information theoretic approaches in favor of 

a more concrete and interpretable analysis based on lags.   

 

Generation of surrogate RSNs 

We generated surrogate RSNs topologically matched to real RSNs and approximately 

matched in spatial frequency distribution (Figure 7).  Surrogate RSNs were generated 

by treating the left hemisphere of the real RSN brain as an element of a high 

dimensional symmetric group that respects the topology of the true RSNs.  We then 

applied randomly generated full-rank permutations on the uni-hemispheric RSN brain 

partition.  In greater detail, the 3D MLP RSN partition was converted to a 1D vector and 

the ends were connected to form a ring.  The ring, then, was randomly rotated and the 

3D to 1D transform inverted.  In principle, other group operations could have been 

applied, but rotation theoretically preserves spatial scale.  The resulting 3D map was 

reflected across the mid-sagittal line to generate hemispherically symmetric surrogate 

RSNs.  Equivalence of spatial scale was verified by 3D-Fourier analysis (Figure 7). 

 

Generation of “venograms”     

Regression frequently is used to compute the topography within the brain of reference 

signals, e.g., estimated response waveforms in task fMRI.  Similarly, the topography of 
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a time shifted reference signal can be computed by regressing the derivative of the time 

signal (Friston et al. 1998).  This technique is easily understood as an application of a 

Taylor Expansion: 𝑓(𝑡 + ∆𝑡) =  𝑓(𝑡) + ∆𝑡 ∙
𝑑𝑓

𝑑𝑡
.  In the present work, 𝑓(𝑡) is the global 

signal, which has already been removed by regression during pre-processing.  Thus, 

regression of the differentiated global signal yields the topography of the delayed global 

signal, i.e., large venous structures.  

 

Estimation of TD matrix dimensionality 

Experimentally observed lag structures include measurement errors.  Hence, the 

dimensionality of our TD matrices must be estimated. To perform this estimation, we ran 

the procedure created by T. P. Minka, which compares the eigenspectrum of the actual 

data to the eigenspectrum of a random matrix and expresses the result in terms of 

likelihood (Minka 2001). The Minka algorithm requires a positive definite matrix.  As the 

TD matrix is not positive definite, the algorithm was run on the square of the TD matrix, 

which is mathematically required to have the same dimensionality of the TD matrix itself 

(Allison et al. 2010). The most likely dimensionality of the lag structure illustrated in 

Figure 9 is 2 (Figure 13).  

Figure 2-13: Estimation of time-delay (TD) matrix 
model order.  The TD matrix intrinsic dimensionality 
likelihood was calculated (Minka 2001) using 
Bayesian Information Criterion (BIC) in the 7 groups 
corresponding to Figure 2.  In each group, the 
dimensionality of highest likelihood is 2.  This result 
implies the existence of two transitive systems of 
lags within the TD matrix.  Regionally dependent 
neurovascular coupling can explain only one of 
these transitive systems of lags.  Therefore, 
hemodynamic delays, even if they are substantial, 

cannot account for the entirety of latency structure. 
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Dimensionality of a TD matrix representing a single set of fixed delays 

We prove that a fixed set of regionally distinct neurovascular coupling delays explains 

only one component of a TD matrix. The proof depends on showing that a TD matrix 

representing a single set of lagged relationships has only a single eigenvector. 

Let the fixed set of regional delays be represented as the column vector, 

(

 
 𝑑1

𝑑2
𝑑3...
𝑑𝑛)

 
 

, where 𝑛 

is the number of regions.  Suppose that 𝑇 is the anti-symmetric matrix generated by this 

set of delays. Thus,  

𝑇 =  [

0 ⋯ 𝜏1,𝑛

⋮ ⋱ ⋮
−𝜏1,𝑛 ⋯ 0

] =  [
0 ⋯ 𝑑𝑛 − 𝑑1

⋮ ⋱ ⋮
𝑑1 − 𝑑𝑛 ⋯ 0

].                                                      (A1) 

Previous work has shown that, for a nonzero anti-symmetric matrix 

𝐴 ∈  ℝ𝑛×𝑛, 𝑟𝑎𝑛𝑘(𝐴) ≤ 2𝑘 if and only if there exists 𝒙1, … , 𝒙𝑘, 𝒚1, … 𝒚1  ∈  ℝ𝑛 such that 

𝐴 =  ∑ (𝑘
𝑖=1 𝒙𝑖𝒚𝑖

𝑇 − 𝒚𝑖𝒙𝑖
𝑇) (Allison et al. 2010).  Hence, if we construct 𝒙, 𝒚 such that 

𝑇 =  𝒙𝒚𝑇 − 𝒚𝒙𝑇, then 𝑘 = 1, and 𝑟𝑎𝑛𝑘(𝑇) ≤ 2.  Since the rank of any anti-symmetric 

matrix over ℝ must be even (Allison et al. 2010), 𝑟𝑎𝑛𝑘(𝑇) = 2, as 𝑇 is nonzero.  The 

eigenvalues of a real, anti-symmetric matrix come in conjugate imaginary pairs (Allison 

et al. 2010). Therefore, 𝑇 has only 2 conjugate imaginary eigenvalues, ±𝑐𝑖, 

corresponding to a single eigenvector, ±𝑣, except for sign.  Notice that the 

dimensionality of 𝑇 is 1 even though its rank is 2.  This is because for all real, anti-

symmetric matrices, the rank is 2 times the dimensionality, as eigenvalues come in 

conjugate imaginary pairs (see above).  Thus, once we construct 𝒙, 𝒚 such that 𝑇 =
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 𝒙𝒚𝑇 − 𝒚𝒙𝑇, we have proven that a TD matrix representing a single set of lagged 

relationships has only a single eigenvector. 

Now, it remains to construct 𝒙, 𝒚 such that 𝑇 =  𝒙𝒚𝑇 − 𝒚𝒙𝑇.  Let 𝒙 ∈  ℝ𝑛 such that 𝑥𝑖 = 1 

for all 𝑖 and 𝑦𝑗 = 𝑑𝑗 for 𝑗 = 1,… , 𝑛.  Then, 

𝒙𝒚𝑇 − 𝒚𝒙𝑇 = 

(

 
 
 
 
 
 

1
1
1
.
.
.
1)

 
 
 
 
 
 

(𝑑1 𝑑2 …𝑑𝑛) − 

(

 
 
 
 
 
 
 

𝑑1

𝑑2

𝑑3

.

.

.
𝑑𝑛)

 
 
 
 
 
 
 

(1 1 1…1) =  

[
 
 
 
 
 
𝑑1 𝑑2    …    𝑑𝑛

𝑑1 𝑑2    …    𝑑𝑛

.

.

.
𝑑1 𝑑2    …    𝑑𝑛]

 
 
 
 
 

−  

[
 
 
 
 
 
𝑑1 𝑑1    …    𝑑1

𝑑2 𝑑2    …    𝑑2

.

.

.
𝑑𝑛 𝑑𝑛    …    𝑑𝑛]

 
 
 
 
 

 

= [
0 ⋯ 𝑑𝑛 − 𝑑1

⋮ ⋱ ⋮
𝑑1 − 𝑑𝑛 ⋯ 0

]

= 𝑇,                                                                                                               (𝐴2) 

completing the construction required for the proof.   

An alternative formulation applies the principle that the eigenvalues of a linear system 

satisfy the characteristic equation of its matrix.  We illustrate this principle in a simple 

case of a 3 × 3 time delay matrix.  Let (
𝑑1
𝑑2
𝑑3

) be the onset times for the system.  Then: 

𝑇

=  [
0

𝑑2 − 𝑑1

𝑑3 − 𝑑1

    
𝑑1 − 𝑑2

0
𝑑3 − 𝑑2

   
𝑑3 − 𝑑1

𝑑2 − 𝑑3

0

].                                                                                                       (𝐴3) 

The characteristic equation is: 

𝑑𝑒𝑡 [
−𝜆

𝑑2 − 𝑑1

𝑑3 − 𝑑1

    
𝑑1 − 𝑑2

−𝜆
𝑑3 − 𝑑2

   
𝑑1 − 𝑑3

𝑑2 − 𝑑3

−𝜆

] 
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= −𝜆 ∙ 𝑑𝑒𝑡 [
−𝜆 𝑑2 − 𝑑3

𝑑3 − 𝑑2 −𝜆
] − (𝑑1 − 𝑑2)𝑑𝑒𝑡 [

𝑑2 − 𝑑1 𝑑2 − 𝑑3

𝑑3 − 𝑑1 −𝜆
]

+ (𝑑1 − 𝑑3)𝑑𝑒𝑡 [
𝑑2 − 𝑑1 −𝜆
𝑑3 − 𝑑1 𝑑3 − 𝑑2

] 

= −𝜆(𝜆2 − (𝑑2 − 𝑑3)(𝑑3 − 𝑑2)) − (𝑑1 − 𝑑2)(−𝜆(𝑑2 − 𝑑1) − (𝑑2 − 𝑑3)(𝑑3 − 𝑑1))

+ (𝑑1 − 𝑑3)(𝜆(𝑑3 − 𝑑1) − (𝑑2 − 𝑑1)(𝑑3 − 𝑑2)) 

= [−𝜆3 − 𝜆(𝑑2 − 𝑑3)
2] +  [−𝜆(𝑑2 − 𝑑1)

2 + (𝑑1 − 𝑑2)(𝑑2 − 𝑑3)(𝑑3 − 𝑑1)]

+ [−(𝑑1 − 𝑑2)(𝑑2 − 𝑑3)(𝑑3 − 𝑑1) − 𝜆((𝑑3 − 𝑑1)
2] 

=  −𝜆3 −  𝜆 ∑(𝑑𝑗 − 𝑑𝑘)
2

𝑗≠𝑘

= 0 

⇔ 𝜆2 + ∑(𝑑𝑗 − 𝑑𝑘)
2

𝑗≠𝑘

= 0.                                                                                                                      (𝐴4) 

 

Since ∑ (𝑑𝑗 − 𝑑𝑘)
2

𝑗≠𝑘  is a sum of squares, it must be positive.  Therefore (𝐴4) has two 

conjugate imaginary solutions corresponding to a single eigenvector, as claimed.   
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Chapter 3: Spontaneous temporal sequences give rise to 
human resting state networks 
 
 
This chapter has been published as a journal article. The citation is: 

Mitra A, Snyder A, Blazey T, Raichle M. (2015). Lag threads organize the brain’s 
intrinsic activity. Proceedings of the National Academy of Sciences. doi: 
10.1073/pnas.1503960112. 
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3.1 Preface 

In Chapter 2, we demonstrated that reproducible temporal lags on the order of ~0.5 

seconds can be computed in resting state fMRI data. Furthermore, we showed that 

resting state fMRI temporal structure cannot be attributed purely to vascular factors. 

Finally, we demonstrated interesting connections between the temporal and correlation 

structure of resting state fMRI.  

 

These findings raise an important question: what is the fundamental relationship 

between correlation-based resting state networks and the temporal structure of resting 

state fMRI? Some relation is expected, as the two measures are derived from precisely 

the same time series. Chapter 3 tackles this question by demonstrating that the 

correlation structure of resting state fMRI emerges as a consequence of its temporal 

structure. In detail, we present an improved dimensionality estimation strategy for the 

temporal structure of resting state fMRI. Using this strategy, we factor resting state fMRI 

temporal structure into multiple temporal sequences, which we call “lag threads”. We 

find a striking regularity among lag threads: in each temporal sequence, the direction of 

activity through canonical resting state networks is a preserved unidirectional sequence. 

We demonstrate through simulation that this property, along with temporal delays that 

are short relative to the frequency of fluctuation, is sufficient to produce correlations 

within the unidirectional routes. Finally, we show that we can recover, to a fair 

approximation, the correlation structure of resting state fMRI starting only from its 

temporal structure. The reverse cannot be done, as there is degeneracy in the mapping 

between correlation structure to temporal structure.  
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As a practical matter, the supplemental materials for this paper are not included in this 

thesis. The reason for this is that the supplemental materials are 60 pages of dense 

technical matter with nearly 30 figures. Readers interested in this material can find it 

online with the published manuscript; the supplemental references in this text 

correspond exactly the published supplement.  

3.2 Abstract 

It has been widely reported that intrinsic brain activity, in a variety of animals including 

humans, is spatiotemporally structured. Specifically, propagated slow activity has been 

repeatedly demonstrated in animals. In human resting state fMRI, spontaneous activity 

has been understood predominantly in terms of zero-lag temporal synchrony within 

widely distributed functional systems (resting state networks). Here, we use resting 

state fMRI from 1376 normal, young adults to demonstrate that multiple, highly 

reproducible, temporal sequences of propagated activity, which we term “lag threads”, 

are present in the brain. Moreover, this propagated activity is largely unidirectional 

within conventionally understood resting state networks. Modeling experiments show 

that resting state networks naturally emerge as a consequence of shared patterns of 

propagation. An implication of these results is that common physiologic mechanisms 

may underlie spontaneous activity as imaged with fMRI in humans and slowly 

propagated activity as studied in animals. 

3.3 Introduction 

Spontaneous (intrinsic) neural activity is ubiquitously present in the mammalian brain as 

first noted by Hans Berger (Berger 1969). Spontaneous activity persists in all 
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physiological states, although the statistical properties of this activity are modified by 

level of arousal and ongoing behavior (Buzsaki and Draguhn 2004; Cossart et al. 2003; 

Grinvald et al. 2003; Gusnard et al. 2001; Ikegaya et al. 2004; Luczak et al. 2007; 

Ringach 2009). Invasive studies in animals using diverse techniques, e.g., local field 

potentials (Ferezou et al. 2007; Hahn et al. 2006; Logothetis et al. 2001), voltage 

sensitive dyes (Grinvald and Hildesheim 2004; Kenet et al. 2003; Mohajerani et al. 

2013; Petersen et al. 2003), and calcium imaging (Ikegaya et al. 2004; Miller et al. 2014; 

Stroh et al. 2013), have demonstrated richly organized intrinsic activity at multiple 

temporal and spatial scales. The most utilized technique for studying whole brain 

intrinsic activity in humans is resting state functional magnetic resonance imaging (rs-

fMRI). Biswal and colleagues first reported that slow (<0.1 Hz) spontaneous fluctuations 

of the blood oxygen level dependent (BOLD) signal are temporally synchronous within 

the somatomotor system (Biswal et al. 1995). This basic result has since been extended 

to multiple functional systems spanning the entire brain (Buckner et al. 2011; Choi et al. 

2012; Power et al. 2011; Thomas Yeo et al. 2011). Synchrony of intrinsic activity is 

widely referred to as functional connectivity; the associated topographies are known as 

resting state networks (RSNs (Fox and Raichle 2007); equivalently, intrinsic connectivity 

networks (Seeley et al. 2007)). 

 

Almost all prior rs-fMRI studies have used either seed-based correlation mapping 

(Biswal et al. 2010) or spatial independent components analysis (sICA) (Beckmann et al. 

2005). Critically, neither or these techniques provide for the possibility that activity within 

RSNs may exhibit temporal lags on a time scale finer than the temporal sampling 
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density. However, we recently demonstrated highly reproducible lags on the order of ~1 

sec by application of parabolic interpolation to resting state fMRI data acquired at a rate 

of one volume every 3 sec (Fig. S1; (Mitra et al. 2014)). Moreover, this lag structure can 

be modified, with appropriate focality, by a variety of task paradigms (Mitra et al. 2014).  

 

Investigations of rs-fMRI lag structure previously have been limited by the concern that 

observed lags may reflect regional differences in the kinetics of neurovascular coupling 

rather than primary neural processes (Friston and Dolan 2010; Handwerker et al. 2004). 

However, our previous dimensionality analysis demonstrated that there are at least two 

independent lag processes within the brain (Mitra et al. 2014). The neurovascular model 

can account for only one of these. Hence, there must be at least one lag process that is 

genuinely of neural origin. We have since made significant methodological 

improvements (Theory; Fig. 1) that enable a more detailed characterization of lag 

structure in BOLD rs-fMRI data. We report our results in two parts.  

 

In Part I, we present an expanded view of the lag structure within the normal adult 

human brain culled from BOLD rs-fMRI data in 1376 individuals. Specifically, we show 

that at least eight orthogonal lag processes can be reproducibly demonstrated. We refer 

to these processes as "threads" by way of analogy with modern computer programming 

practice in which single applications contain multiple, independent thread sequences.  

 

In Part II, we investigate the relation between lag threads and zero-lag temporal 

correlations, that is, conventional, resting-state functional connectivity. We find that, 
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although there is no simple relation between lag and zero-lag temporal correlation over 

all pairs of voxels, apparent propagation is largely unidirectional within RSNs. We also 

show that zero-lag temporal correlation structure of rs-fMRI arises as a consequence of 

lags, whereas the reverse is not true. These results suggest that lag threads account for 

observed patterns of zero-lag temporal synchrony, and that RSNs are an emergent 

property of lag structure. 

 

3.4 Methods 

Theory 

We define the lag between two fMRI timeseries by computing the cross-covariance 

function at intervals of one frame and identifying the local extremum using parabolic 

interpolation (Fig.S1). This analysis assumes the existence of a single temporal lag 

between regions. The validity of this assumption depends on the fact that BOLD fMRI 

timeseries are aperiodic (He et al. 2010; Maxim et al. 2005) (see “lagged cross-

covariance curves exhibit a single peak” in SI for additional discussion of this point). 

Measured lags at the group level (i.e., averaged over individuals) typically assume 

values in the range ±1 sec. Apparent propagation is inferred on the basis of observed 

lag between two timeseries. This formulation makes no assumptions regarding the path 

over which the activity "propagates" between regions. Thus, "propagation," as defined 

here, entails lags on the order of ~1 sec in activity over spatial scales on the order of 

centimeters. 
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As an aid to understanding the methodology, we describe our approach to 

characterizing lag structure using a simple illustrative model containing three orthogonal 

lag processes (threads) propagating through six nodes (Fig. 1). Apparent propagation, 

as defined here, is shown using synthetic timeseries with “1/f” spectral content 

duplicated from real BOLD rs-fMRI data ((He et al. 2010); see “simulating synthetic 

BOLD fMRI timeseries” in SI for further detail) propagating through six nodes (Fig. 1A). 

The superposition of the three thread processes is shown in Fig. 1B. Analysis of the 

superposed timeseries observed at the six nodes (using the procedure illustrated in Fig. 

S1) yields the time delay matrix shown in Fig. 1C; we call this matrix 𝑇𝐷. Having 

computed 𝑇𝐷, we can compute a mean for each column, using the previously described 

projection strategy for computing BOLD rs-fMRI lag topographies (Mitra et al. 2014). In 

the case of a single lag process, the projection strategy is sufficient to recover the 

ordering (see Figs. S2, S3). However, as shown in the Fig. 1D, in the case of multiple 

superposed lag processes, the column-wise projection generates an over-simplified 

approximation of the dynamic system. 
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Figure 3-1: Illustration of 
lag threads. Panel A 
shows three patterns of 
propagation (lag threads) 
through 6 nodes. The 
objective is to 
demonstrate the mapping 
between lag structure and 
principal components 
analysis (PCA). The 
illustration is not 
intended as a model of 
propagation in neural 
tissue.  Each lag thread is 
also shown as a multi-
dimensional timeseries 
with spectral content 
duplicated from real 
BOLD rs-fMRI data. Panel 

B shows the superposition of the three lag threads. Panel C shows the time-delay matrix 
(𝑻𝑫) recovered by analysis of the superposed timeseries in (B), using the technique 
illustrated in SI Appendix, Fig. S1. The bottom row of panel C shows the latency 
projection of 𝑻𝑫, computed as the average over each column. Panel D illustrates the 
latency projection as a node diagram. This projection represents nodes that are, on 
average, early or late. Critically, the projection fails to capture the full lag structure. Panel 
E illustrates eigendecomposition of the covariance structure of 𝑻𝑫𝒛, derived from 𝑻𝑫 by 
removing the mean of each column (see SI Appendix, equations [S4] - [S8]). There are 3 
significant eigenvalues, indicating the presence of 3 lag threads. In an ideal case, 
eigenvalues 4-6 would be zero; in this example, imperfect superposition leads to a small 
fourth non-zero eigenvalue. The eigenvectors corresponding to the first three 
eigenvalues are the thread topographies (shown above the eigenvalues). The lag thread 

sequences defined in (A) were accurately recovered purely by eigen-analysis of 𝑻𝑫𝒛. It 
should be noted that the lag threads in this illustration were a priori constructed to be 
mutually orthogonal (see SI Appendix, equation [S7]). Hence, they were neatly recovered 
intact by eigendecomposition of 𝑻𝑫𝒛. Also, although the nodes in this illustration are 
represented as foci, the algebra applies equally well to voxels, regions of interest, or 
extended, possibly disjoint, topographies.  

 

In the present work, to recover lag processes in multidimensional timeseries, we use 

principal components analysis (PCA). PCA assumes linear superposition of 

components. The validity of this assumption is discussed in SI (see "validity of applying 

PCA to recover lag thread topographies"). In each column, 𝑖 ∈  {1,2, …6}, of the time 

delay matrix 𝑇𝐷, the vector corresponding to column 𝑖 is a lag map of the system with 



 85 

reference to timeseries 𝑖. That is, the first column of 𝑇𝐷 is a lag map of the system with 

respect to the first timeseries, and so on. Now, consider the matrix, 𝑇𝐷𝑧, constructed by 

subtracting the mean of each column from 𝑇𝐷. The columns of 𝑇𝐷𝑧 are zero-centered 

lag maps. Application of PCA to 𝑇𝐷𝑧, recovers the eigenspectrum representing the 

number of lag threads present in the system. Fig. 1E shows that precisely three non-

zero eigenvalues are found in this illustrative case. The eigenvectors corresponding to 

these non-zero eigenvalues can be used to recover the topography of the lag threads; 

the node diagrams above the non-zeros eigenvalues in the lower right panel of Fig. 1 

illustrate the recovered lag processes. In the case of no delays (Fig. S2), or only a 

single set of delays (Fig. S3), PCA finds 0 or 1 non-zero eigenvalue. Thus, 𝑇𝐷 analysis 

is sufficient to assess the number of lag threads in the system. Although Fig. 1 

illustrates 𝑇𝐷 and 𝑇𝐷𝑧 as square matrices (i.e., the number of voxels in each lag map is 

equal to the number of lag maps), lag thread computation is algebraically well defined 

also when the number of voxels greatly exceeds the number of lag maps.  

To increase the signal to noise ratio in real BOLD rs-fMRI data, we produced 6 mm3 

voxel resolution lag maps from timeseries extracted from 330 15 mm3 cubic ROIs, 

uniformly distributed throughout gray matter (see SI for further detail).  

Imaging data 

A large data set (n  = 1376) was obtained from the Harvard-MGH Brain Genomics 

Superstruct Project ((Buckner et al. 2012); Table 1). The 1376 subjects were randomly 

divided into 2 groups of 688 subjects to test the reproducibility of our analyses. Please 

see SI (or methods in Chapter 2) for further detail regarding preprocessing and 

computational methods. 
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Table 3-1: Subjects analyzed in the present study. 

3.5 Results 

Part I 
Existence and reproducibility of lag threads 

Fig. 2 shows the topography of four lag threads derived from real BOLD rs-fMRI data 

acquired in the first group of 688 subjects. Blue hues indicate regions that are early, i.e., 

"sources" of propagated BOLD activity; red hues indicate regions that are late, i.e., 

"destinations" of propagated BOLD activity. The range of lag values in each thread is ~2 

seconds. The threads exhibit a high degree of bilateral symmetry. Interestingly, 

although specific anatomical structures are often prominent sources or destinations 

within threads, these topographies do not respect RSN boundaries (Fig. 2; Movies 1-4). 

BOLD rs-fMRI signals propagate in lag threads both within and across resting state 

networks. We have previously reported this principle in relation to the distribution of lag 

values over pairs of nodes in the brain (Mitra et al. 2014). 
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Figure 3-2: Four lag threads 
computed from real BOLD rs-
fMRI data in the first group of 
688 subjects. Blue and red 
hues represent, respectively, 
voxels that are early or late 
relative to the thread mean. 
Each map is in units of 
seconds. Note that brainstem 
and subcortical regions are 
early in Thread 1, whereas 
higher order cortical regions 
such as frontopolar cortex 
(seen in transverse slices) are 
late. The significance of these 
observations is considered in 
the Discussion. 

 

Fig. 3A shows the first 20 eigenvalues derived by spatial PCA of the lag threads derived 

from the first 688-subject group (the first 4 threads of which are illustrated in Fig. 2). In 

Fig. 1E, only non-zero eigenvalues correspond to lag threads, making it easy to infer the 

dimensionality of the system. In real data, the presence of noise means that all 

eigenvalues are non-zero; hence, dimensionality must be estimated (Minka 2001). 

Using an information criterion, we estimated the dimensionality in Fig. 3A to be 8 (see 

SI for further detail).  To explore the reproducibility of our results, we applied the same 

calculations to a second, separate group of 688 subjects and obtained eigenspectrum 

and dimensionality estimates indistinguishable from the results shown in Figure 3A. 

Reproducibility of lag thread topographies across the two groups of 688 subjects is 
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illustrated in Figure 3B. It is evident that lag threads are highly reproducible across 

groups. The full topographies of the first 8 lag threads are reported in SI (Figs. S7-S14). 

 

Figure 3-3: Dimensionality and reproducibility of lag threads. Panel A displays the first 20 
eigenvalues derived from the BOLD rs-fMRI lag structure computed in the first group of 
688 subjects; the maximum likelihood dimensionality estimate is 8 (see SI equation [S7]). 
The orange box encloses the first 8 eigenvalues. Panel B shows the spatial correlation 
matrix (Pearson r) representing the first 8 lag thread maps in the first and second groups 
of 688 subjects. The rows and columns are ordered by thread map (T1, T2, …) and group 
(G1, G2). The 2 × 2 blocks of high correlation along the diagonal demonstrate that lag 
thread topographies are highly reproducible across the two groups. 

Multiple lag threads in a small number of regions 

The high dimensionality of the lag system shown in Fig. 3 theoretically could reflect our 

specific choices of ROIs and lag map resolution (see SI; Fig. S5). To test this possibility, 

we constructed 17 regions of interest by thresholding the eight thread maps to define 

prominent sources and destinations. These ROIs are shown in Fig. 4A. Many of these 

regions have been previously identified as critical nodes that organize the brain’s 

ongoing activity (van den Heuvel et al. 2012). The corresponding 17  17 time delay 

matrices in the two groups of 688 subjects each are shown in Fig. 4B. Excellent 

reproducibility is evident (Fig. 4C). Moreover, the maximum likelihood dimensionality 
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estimate in both groups is 8 (Fig. 4D), precisely the same result shown in Fig. 3A. Fig. 4 

demonstrates that high dimensional lag structure can emerge from a relatively small set 

of ROIs as long as key regions of the brain are represented. Seed-based lag maps of 

these ROIs are shown in Figs. S15-S24. 

Figure 3-4: High 
dimensionality lag 
structure derived from 
selected regions of 
interest (ROIs). Panel A 
shows 17 ROIs 
obtained by 
thresholding the first 8 
lag thread maps 
derived in the first 
group of 688 subjects 
(Fig. 2; Figs. S7-S14). 
These ROIs represent 
maximally early and 
late nodes over several 
lag threads. The color 
code in (A) identifies 
ROIs without relation to 
latency. Panel B shows 

the 17 × 17 time delay 
matrix (𝑻𝑫) 
corresponding to these 
ROIs in both groups of 
688 subjects. These 
matrices are exactly 
skew-symmetric (Mitra 
et al. 2014). Panel C 

shows a scatter plot of group 2 vs. group 1 unique (upper triangle) 𝑻𝑫 values; excellent reproducibility is 

evident. Panel D shows the 17 eigenvalues of 𝑻𝑫𝒛 in the first group of 688 subjects. The second group of 688 
subjects yielded a nearly identical eigenspectrum (not shown in panel D as the plotted points overlap). In 
both groups, the estimated dimensionality is 8, in agreement with Fig. 3.  

Part II 
Lag threads in relation to zero-lag temporal correlation 

Having demonstrated the existence and reproducibility of multiple lag threads in human 

rs-fMRI data, we next investigated the relation of lag threads to zero-lag temporal 

correlation structure. To this end, we examined shared patterns of propagation across 

lag threads. We did this by defining a matrix �̃�, whose columns represent the 

topographies of the first 8 lag threads (in units of sec, as in Fig. 2). We include 8 lag 

threads on the basis of the dimensionality estimate of lag structure (Fig. 3). �̃� is a 6528 
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 8 (voxels × threads) matrix, where each voxel has 8 latency values (in units of sec), 

one for each thread. To find common patterns of propagation across lag threads, we 

computed, across all voxel pairs, correlations in latency values across lag threads 

((1 𝑘⁄ )�̃�Λ𝑘
−1�̃�𝑇; see Eq. [S9] in SI). The corresponding 6526  6526 (voxels × voxels) 

correlation matrix (Fig. 5A) reveals commonalities in signal propagation across lag 

threads (see SI for additional discussion). Critically, the voxel-wise correlation structure 

across lag threads (Fig. 5A) resembles the conventional zero-lag temporal correlation 

structure of BOLD rs-fMRI (Fig. 5B; RSN membership as in (Hacker et al. 2013)). We 

quantitatively confirmed the similarity between the correlation structures in Figs. 5A and 

5B by computing the Pearson r correlation between the unique values in each matrix (r 

= 0.41). Thus, there is a correspondence between common patterns of propagation 

across lag threads (Fig. 5A) and the zero-lag temporal structure of rs-fMRI.  

 

The similarity between the matrices shown in Figs. 5A and 5B raises the question of 

whether, across pairs of voxels, lag is directly related to zero-lag temporal correlation.  

Hypothetically, voxel pairs exhibiting shorter temporal lags could be exhibit higher 

temporal correlation at zero-lag. However, a 2-dimensional histogram of zero-lag 

Pearson r vs. lag for all voxel pairs (Fig. 5C) demonstrates no systematic relation. A 

second possibility is that regions belonging to the same resting state network are iso-

latent (i.e., exhibit the same lag value) in each lag thread. For example, the entire 

default mode network could be early in one thread but late in another. However, the 

topographies shown in Fig. 2 show that this is not the case. Additionally, we have 

previously shown that resting state networks are not iso-latent. Rather, the range of 
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intra- and inter-RSN lag values is the same and no RSN is either early or late as a 

whole (see Fig. 9 in (Mitra et al. 2014)). Therefore, the similarity between the cross-

thread correlations (Fig. 5A) and zero-lag BOLD rs-fMRI temporal correlations (Fig. 5B) 

requires a more subtle explanation. To provide the basis for this explanation, we 

introduce the concept of “lag thread motifs”. 

 

Figure 3-5: Voxel:voxel correlation structure of two different measures derived from the 
first group 688 subjects. Panel A shows the voxel-wise correlation matrix computed over 
latency values in the 8 lag threads (Eq. [S9] in SI). These correlations represent the 
extent to which voxel pairs exhibit similar latency values across all 8 lag threads. Panel B 
shows the corresponding zero-lag temporal correlation matrix. Note similarity of block 
structure in panels A and B (Pearson r = 0.41; p < 10-5). As there are 6526 (6 mm)3 voxels 
in each map, the full correlation matrices are 6526 × 6526. The matrices displayed in (A) 
and (B) have been masked to include only voxels with a ≥90% chance of belonging to 
one of 8 resting state networks (RSNs) (Hacker et al. 2013) (Fig. S5). Thus, the displayed 
matrices are 1065 × 1065. The rows and columns are ordered by RSN: dorsal attention 
network (DAN), ventral attention network (VAN), auditory network (AUD), primary 
sensorimotor network (SMN), visual network (VIS), frontoparietal network (FPC), 
language network (LAN), default mode network (DMN). Panel C displays a 2D histogram, 
compiled over voxel pairs, of lag vs. temporal correlation. All 6526 × 6526 voxel pairs are 
represented, excluding those within 1 cm of each other (to reduce the influence of local 
correlations). Note no systematic relation, over voxel pairs, of lag vs. zero-lag temporal 
correlation (r = -0.03). The same result is found using only the voxels shown in panels A 
and B (r = -0.02). 

Lag thread motifs 

 We illustrate the concept of a lag thread motif using a 4 voxel model system with 2 lag 

threads (Fig. 6). The overall pattern of propagation between the 4 voxels is different in 



 92 

the two threads (Fig. 6A). However, the sequence of propagation through voxels 1 and 

2 is identical. Voxels 1 and 2, therefore, constitute a “lag thread motif”: a set of regions 

in which the sequence of propagation is the same across lag threads. There are no 

other motifs in Fig. 6. The patterns of propagation shown in Fig. 6A are realized in Fig. 

6B using synthetic timeseries with “1/f” spectral content duplicating that of real BOLD rs-

fMRI data ((He et al. 2010); see “simulating synthetic BOLD fMRI timeseries” in SI for 

further detail). Again, although the overall pattern of propagation differs between 

threads, the sequence of propagation between the first two voxels is preserved (dotted 

arrows in the dark red boxes).  

Figure 3-6: Simple illustration 
of lag thread motifs. Panel A 
illustrates 2 lag threads 
propagating through 4 nodes 
The overall pattern of 
propagation differs in the two 

threads but the sequences through nodes 1 and 2 are the same (red box). Thus, nodes 1 
and 2 represent a lag thread motif. Panel B illustrates simulated timeseries realized with 
spectral content duplicated from real BOLD rs-fMRI data (see SI for further details). The 
sequences of propagation (dotted arrows) are as in (A). Red boxes indicate the preserved 
sequence (thread motif). True lag threads are mutually orthogonal; here, this constraint 
is ignored to illustrate the idea of a thread motif using a minimal number of nodes. As in 
Fig. 1, nodes can represent voxels or regions of interest. 

We asked whether the thread motif model can explain the findings in Fig. 5, specifically 

the similarity between the cross-thread correlations (Fig. 5A) and zero-lag temporal 

correlations (Fig. 5B); and the absence of a systematic relation between zero-lag 

Pearson r vs. lag for all voxel pairs (Fig. 5C). We explore this question in Fig. 7, which 

presents a simulation experiment based on the model presented in Fig. 6, but scaled up 

to include 30 voxels, 8 orthogonal lag threads and 2 thread motifs (see SI for details 

concerning generation of orthogonal model lag threads. Fig. S6 shows an explicit 

description of the model). Motif 1 propagates through voxels 1-5; motif 2 propagates 
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through voxels 6-10. Fig. 7A shows the voxel-wise correlation across simulated lag 

threads (paralleling Fig. 5A). Voxels sharing a thread motif necessarily exhibit perfectly 

correlated lag sequences (diagonal blocks labeled "1" and "2"). Fig. 7B shows the 30  

30 zero-lag temporal correlation matrix (paralleling Fig. 5B) computed on the basis of 

the synthetic "1/f" time series representing the lag threads (see SI for additional details). 

Thus, thread motifs are sufficient to induce lag thread correlation structure, as in real rs-

fMRI data (Fig. 5A). Moreover, the matrices shown in Figs. 7A and 7B (synthetic data) 

exhibit the same similarity as the matrices shown in Figs. 5A and 5B (real data). This 

similarity suggests that the existence of shared lag thread motifs is sufficient to explain 

zero-lag temporal correlations. We note that this model depends on the “1/f” spectral 

content of BOLD rs-fMRI time series. The existence of an association between lag 

structure and temporal correlation requires that the underlying time series exhibit some 

degree of autocorrelation; lag structure would be dissociated from correlation structure 

in a system in which the signals were comprised of infinitely narrow impulses or white 

noise. Finally, Fig. 5C indicates that there is no systematic relationship in real BOLD rs-

fMRI data across voxel pairs between conventional zero-lag Pearson r and lag. This 

feature is present also in our simulation (Fig. 7C). The low correlation between 

conventional zero-lag Pearson r and lag in the synthetic data (r = -.04) confirms that 

thread motifs need not introduce a systematic relation between these quantities. 

Therefore, the results of Fig. 7 (simulation) suggest that the results shown in Fig. 5 (real 

data) can be explained if thread motifs correspond to conventional resting state 

networks, in other words, if intra-RSN sequences of propagation are preserved across 

threads. 
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Figure 3-7: Scaled up illustration 
of lag thread motifs. This 
simulation includes 30 voxels 
(equivalently, 30 ROIs), 8 
orthogonal lag threads, and 2 
thread motifs. The 2 thread motifs 
consist of voxels 1-5 and voxels 
6-10, respectively. Panel A 
displays the voxel:voxel 
correlation matrix across latency 
values in the 8 simulated lag 
threads (as in Fig. 5A; Eq. [S9] in 
SI). Voxels belonging to a thread 
motif are perfectly correlated 
(diagonal blocks labeled “1” and 
“2”). Panel B illustrates a zero-lag 
temporal correlation matrix (as in 
Fig. 5B), computed from 
timeseries reconstructed on the 
basis of thread structure (as in 
Fig. 6B). Voxels belonging to a 

thread motif exhibit high zero-lag temporal correlation. Panel C displays a scatter plot of 
the pairwise lag vs. pairwise zero-lag temporal correlation, as in Fig. 5C. Note no 
systematic relation, for pairs of voxels, between lag and zero-lag temporal correlation. 
Thus, thread motifs do not impose a systematic relation between these quantities. Panel 
D shows a scatter plot as in panel C, but limited to voxels within the first thread motif 
(similar results are obtained with the second motif). For voxel pairs within a motif, lag 
and zero-lag temporal correlation are negatively correlated. 

RSNs correspond to lag thread motifs  

The simulation in Fig. 7 suggests a model in which conventionally defined RSNs 

correspond to thread motifs, and implies two testable predictions. First, if the sequence 

of propagation is preserved within thread motifs, it follows that the dimensionality of 

intra-RSN lag structure should be one (see Fig. S3 for further explanation).  Second,  

though the simulation in Fig. 7 contains no systematic relation, over all voxel pairs, 

between lag and zero-lag temporal correlation (Fig. 7C), if we examine the relationship 

between zero-lag Pearson r and lag considering only voxels within a motif, a substantial 

negative correlation emerges (r = -0.75; Fig. 7D). The basis for this relation is that, 

within a single thread motif, more nearly synchronous time series must be more 
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correlated. However, in general, threads propagate in multiple directions outside of 

motifs (e.g., as in Fig. 6). Consequently, relations of the type shown in Fig. 7D are 

obscured in Figs. 5C and 7C, because the fraction of intra-motif voxel pairs is a small 

fraction of all voxel pairs. Therefore, if RSNs correspond to lag thread motifs, voxel-

pairs within a RSN should exhibit a substantial negative correlation between zero-lag 

Pearson r and lag (Fig. 7D).  

Figure 3-8: Thread motifs in 
real BOLD rs-fMRI data. Panel 
A shows the maximum 
likelihood dimensionality of 
lag structure computed within 
resting state networks as 
defined in Fig. 5. With the 
exception of the SMN, intra-
RSN lag structure has 
dimensionality 1. SMN is an 
exception because the 
ordering of primary motor (M) 
and primary sensory (S) 
cortices is not fixed. M is 
earlier than S in some threads, 
e.g., Thread 3 (T3), whereas 
the reverse is true in other 
threads, e.g., Thread 7 (T7). 
Panel B shows the correlation, 
over pairs of voxels within 

RSNs, between lag and zero-lag temporal correlation. With the exception of the SMN, 
there is a substantial negative correlation between these quantities in each RSN. Panel C 
shows a zero-lag temporal correlation matrix for BOLD rs-fMRI timeseries reconstructed 
on the basis of 8 lag threads derived from real data (Fig. 2). Note similarity of the 

matrices shown in panel C and Fig. 5B (both 1065  1065). Panel D shows a scatter plot 
of the unique (upper triangle) values in the simulated (panel C) vs. real (Fig. 5B) zero-lag 
temporal correlation matrices. Dark blue dots represent intra-RSN relations, whereas 
light blue dots represent inter-RSN relations; the dark blue dots are semi-transparent to 
make all the data visible. The line of identity is indicated in red. The scatter plot 
demonstrates substantial agreement between the reconstructed and real data (r = 0.58 
over all data; r = 0.62 for intra-RSN relations, r = 0.24 for inter-RSN relations).  

 

We test these predictions in Fig. 8A-B. Fig. 8A shows the maximum likelihood 

dimensionality for the temporal lag structure calculated within resting state networks as 
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defined in (Hacker et al. 2013). As predicted by the thread motif model, the maximum 

likelihood dimensionality is 1 for all RSNs except the sensorimotor network (SMN). Fig. 

8B shows the Pearson correlation derived from a scatter plot of zero-lag temporal 

correlation vs. lag over all intra-network voxels (as in Figs. 5C and 7C). Again, as 

predicted by the thread motif model, there is a substantial negative correlation in every 

RSN except the SMN. Therefore, although lag threads represent various patterns of 

propagation with generally reciprocal signaling across regions, within each RSN, BOLD 

rs-fMRI signal propagation is largely unidirectional.  

 

The apparently anomalous dimensionality result obtained with respect to the 

sensorimotor network (SMN; Fig. 8A,B) highlights an interesting point concerning the 

correspondence between RSNs and thread motifs. Conventional BOLD rs-fMRI 

analyses generally agglomerate primary somatomotor and somatosensory areas into a 

single RSN (Esposito et al. 2013; Thomas Yeo et al. 2011) (see also Fig. 5B). 

Separation of motor and sensory areas into distinct parcels has only recently been 

achieved using a boundary mapping technique (Gordon et al. 2014). In contrast, lag 

threads sharply distinguish primary sensory vs. primary motor cortices (see Fig. 8A). 

Primary motor cortex is earlier than primary sensory cortex in most threads (Fig. 2; 

threads 3 and 4), but the ordering is reversed in other threads (Figs. S11, S12). This 

feature is also illustrated in Fig. 8A. Consequently, the observed dimensionality of lag 

structure in the SMN (as conventionally defined) is 2 (Fig. 8A). We verified that the 

dimensionality of lag structure in the separated motor and sensory components of the 

SMN is 1 in both cases (results not shown). 
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Zero lag temporal synchrony emerges from lag structure 

The previous results suggest that RSNs correspond to lag thread motifs, that is, that the 

sequence of propagation within RSNs is largely preserved across lag threads. This 

finding raises the possibility that zero-lag temporal synchrony (i.e., conventional 

functional connectivity) within RSNs emerges from lag structure. To test this hypothesis, 

we converted each of the first eight lag threads extracted from real data (Fig. 2) into 

time series with the same spectral content as BOLD rs-fMRI (as in Fig. 6B; see 

“Simulating lag threads” in SI for further details). We then superposed these time series, 

weighted in proportion to their respective eigenvalues (see Fig. 4A and equation [S9]), 

to reconstruct synthetic BOLD rs-fMRI data with appropriate spectral content and 

imposed structure derived only from lag threads. The zero-lag temporal correlation 

matrix computed from the reconstructed time series is shown in Fig. 8C. This matrix is 

strikingly similar to the zero-lag temporal correlation matrix computed from real BOLD 

rs-fMRI data (Fig. 5B). Figure 8D shows a scatterplot of the real (Fig. 5B) vs. 

reconstructed (Fig. 8C) zero-lag temporal correlation values. Light blue and dark blue 

dots in Fig. 8D represent inter-RSN and intra-RSN correspondence, respectively. The 

scatterplot quantitatively demonstrates substantial agreement between the zero-lag 

temporal correlation structure of real and reconstructed data (r = 0.58). The model 

better predicts intra-RSN correlation structure (r = 0.62) vs. inter-RSN correlation 

structure (r = 0.24); the implication of this difference is at present not understood. 

Nevertheless, Figs. 8C and 8D suggest that intra-RSN synchrony RSNs is an emergent 

property of lag structure.  
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Figure 3-9: Simulated timeseries with the 
same zero-lag temporal correlation 
structure as rs-fMRI does not contain a 
consistent lag structure. In this 
simulation, we produced 12 minute 
epochs of synthetic BOLD timeseries for 
a set of 36 previously defined ROIs 
(Brier et al. 2012) such that spectral 
content and zero-lag temporal 
correlation structure of each simulation 
was matched to real data (see SI for 
further detail). A single 12 minute 
simulation closely approximates the true 
zero-lag temporal correlation structure 
of rs-fMRI, as shown by the close 
agreement between the group average 
structure of real data (A) and a single 
simulation (B). The zero-lag temporal 

correlation matrix and time delay matrix (TD; as in Fig. 4B) were computed for each 
simulation. The blue line in panel C plots the correlation between the upper triangle 
values in the zero-lag correlation matrix of real group average data vs. simulated data as 
a function of the number of simulations. The red line plots the same quantity as a 
function of number of real data sets. Panel C demonstrates that the zero-lag temporal 
correlation structure of real and simulated data both rapidly converge to the same mean. 
Panel D plots the sum of the upper triangle of the time delay matrix as a function of the 
quantity of included data. The blue line (simulated data) rapidly converges to zero; thus, 
the average time delay structure of simulated data converges to the all zeros matrix. In 
contrast, the red line (real data) converges to a non-zero value. Panel D demonstrates 
that a consistent, non-trivial lag structure is present in real but not simulated rs-fMRI 
timeseries. 
 

Fig. 8 demonstrates that zero-lag temporal correlation can arise from patterns in lag. Fig. 

9 demonstrates that lag structure is not uniquely determined by zero-lag temporal 

correlation structure. To illustrate this point, we generated synthetic, multi-dimensional 

timeseries with spectral content and second order statistics (i.e., zero-lag correlation 

structure) matched to that of the real BOLD rs-fMRI data (Figs. 9A,B; see “zero-lag 

temporal correlation need not specify lag structure” in SI for details). Fig. 9C shows that 

the average zero-lag temporal correlation matrix, in both synthetic (blue) and real (red) 

data, converges to the average structure derived from real data. Fig. 9D concerns lag 

and demonstrates a very different result. In particular, the average time delay matrix 
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computed over synthetic data rapidly converges to the all zeros matrix (blue line in Fig. 

9D), whereas the TD matrix computed over real data converges to a consistent, non-

zero delay structure (red line in Fig. 9D). Fig. 8C demonstrates that lag structure can be 

used to reconstruct zero-lag temporal correlations, whereas Fig. 9 shows that the 

reverse does not hold. The implication of these results is that lag structure represents 

the more fundamental level of organization in rs-fMRI.  

 

3.6 Discussion 

Summary of findings 

The structure of human intrinsic brain activity, as imaged with resting state BOLD fMRI, 

has been understood predominantly in terms of zero-lag, temporal synchrony within 

widely distributed functional systems (RSNs). We previously demonstrated that inter-

regional lags are reproducibly present in BOLD rs-fMRI data and that these lags are not 

attributable to hemodynamic factors (Mitra et al. 2014). We have substantially expanded 

on our previous findings here. In Part I, we demonstrated that lag threads in human rs-

fMRI exhibit multiple, highly reproducible patterns of propagated activity (lag threads) in 

BOLD rs-fMRI data (Figs. 2-4). We also showed that there are most likely 8 lag threads 

in our current analysis, and that 8 lag threads can emerge from a small set of key ROIs 

(Figs. 3-4). 

 

In Part II, we investigated the relation between lag threads and zero-lag temporal 

correlations in BOLD rs-fMRI. To this end, we examined common patterns of 

propagation across lag threads by computing voxel-wise correlations across 8 lag 
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threads (Fig. 5A). We found that voxel-wise lag-thread correlations and BOLD rs-fMRI 

zero-lag temporal correlations exhibit similar structure (Fig. 5). To explain this similarity, 

we hypothesize the existence of lag thread motifs, that is, sequences of propagation 

through subsets of regions that are shared across multiple threads (Fig. 6). Simulation 

experiments showed that zero-lag temporal synchrony within RSNs naturally emerges 

as a consequence of lag thread motifs (Fig. 7). We also demonstrated that 

conventionally defined zero-lag RSNs very likely correspond to lag thread motifs (Figs. 

8A, 8B). Finally, we reproduced, to a fair approximation, the zero-lag temporal 

correlation structure of BOLD rs-fMRI using synthetic time series with imposed structure 

derived only from lag threads (Figs. 8C, 8D). The reverse relation does not hold, that is, 

zero-lag temporal correlation structure does not determine a unique lag structure (Fig. 

9). Hence, temporal synchrony can be understood as a consequence of BOLD rs-fMRI 

lag structure.  

 

It is important to note that, although the thread motif model provides a basis for 

understanding how synchrony arises from patterns in lag, this model is in no way 

imposed in the reconstruction in Fig. 8C; BOLD time series were reconstructed purely 

on the basis of lag threads calculated from real data. We conclude that lag threads 

represent a fundamental organizing property of the brain’s intrinsic activity.  

 

Physiology of propagated activity 

A prominent concern regarding lags in human rs-fMRI has been that all observed 

phenomenology could be attributable to regional variations in the kinetics of 
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neurovascular coupling (Friston 2009; 2011; Friston et al. 2013; Friston and Dolan 

2010; Handwerker et al. 2004)  Such regional differences can be represented as an 

ordered sequence, as illustrated in Figure 1. Importantly, this set of temporal shifts can 

account for only a single lag thread (Mitra et al. 2014). Delayed signals in large venous 

structures most likely contribute to the topography of lag Thread 5 (Fig.  S11). However, 

the existence of at least 8 lag threads demonstrates that regional differences in 

neurovascular coupling account for a minor component of BOLD rs-fMRI lag structure.  

 

Our results raise the question of what physiological mechanisms might underlie 

propagation of slow spontaneous activity over the whole brain. Propagation of low 

frequency (<1Hz) spontaneous activity has been extensively described in the rodent 

brain using various modalities, including whole cell recordings (Hahn et al. 2006), local 

field potentials (Luczak et al. 2007; Sheroziya and Timofeev 2014; Sirota et al. 2003), 

voltage sensitive dyes (Ferezou et al. 2007; Mohajerani et al. 2013; Mohajerani et al. 

2010), and calcium imaging (Stroh et al. 2013).  We have previously shown that 

spontaneous BOLD signal fluctuations correspond to low frequency (<1Hz) local field 

potentials, also known as slow cortical potentials (SCPs), which represent slow 

endogenous changes in excitability (He et al. 2008; Pan et al. 2013). Thus, we 

speculate that propagation of activity in the BOLD signal is likely to represent 

propagation of slow changes in neuronal excitability.  

 

Propagated changes in neuronal excitability have been previously described in terms of 

UP/DOWN states (UDS). UDS are slow (<1Hz), spontaneous, subthreshold changes in 
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neuronal membrane potential. These membrane potential fluctuations are effectively 

synchronous at a sub-millimeter spatial scale (Petersen et al. 2003; Steriade et al. 

1993a; Steriade et al. 1993b), but exhibit multiple, complex patterns of propagation over 

larger spatial scales (Cossart et al. 2003; Fucke et al. 2011; Hahn et al. 2006; Ikegaya 

et al. 2004; Nir et al. 2011; Petersen et al. 2003; Sheroziya and Timofeev 2014), 

spanning thalamus (Sheroziya and Timofeev 2014), striatum (Plenz and Kitai 1998), 

and cortex (Sheroziya and Timofeev 2014). Although UDS were initially associated with 

anesthesia and slow wave sleep, it is now known that UDS persist and propagate 

during quiet wakefulness (Ferezou et al. 2007; Hahn et al. 2006; Petersen et al. 2003). 

The lags we found (on the order of ~1sec over the whole brain) in human spontaneous 

activity are comparable to UDS propagation delays in rodents (Amzica and Steriade 

1995; Ferezou et al. 2007; Hahn et al. 2006; Mohajerani et al. 2013; Mohajerani et al. 

2010; Petersen et al. 2003; Sheroziya and Timofeev 2014). There also are intriguing 

correspondences between the directionality of lags in the BOLD signal and lags in UDS 

in rodents. Reports by Hahn and colleagues (Hahn et al. 2006) and Sirota and 

colleagues (Sirota et al. 2003) both document  that slow fluctuations in somatosensory 

neocortical areas lead activity in hippocampus by less than a second. These findings 

agree with lags between hippocampus and somatosensory cortex in a seed-based lag 

map derived from entorhinal cortex (Fig. S17). 

 

Thus, UDS might underlie BOLD rs-fMRI signal fluctuations (He et al. 2008; Poskanzer 

and Yuste 2011; Ringach 2009). However, some features of these two phenomena are 

discrepant. In particular, UDS are generally periodic with frequency content in the range 
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0.5-0.8Hz (Hahn et al. 2006; Petersen et al. 2003; Steriade et al. 1993a), whereas the 

resting state BOLD fMRI signal is aperiodic and dominated by frequencies ≤ 0.1Hz (He 

et al. 2010). Whether or not UDS are responsible for the present results, we note that 

there is no consensus regarding the mechanisms underlying slowly propagated activity. 

Proposed explanations include shifts in excitatory-inhibitory balance (Amzica and 

Steriade 1995), thalamo-cortical interactions (Sheroziya and Timofeev 2014), astrocytic 

gliotransmission (Araque et al. 2014; Poskanzer and Yuste 2011), and metabolic 

neuromodulators such as adenosine (Amzica and Steriade 1995; Fellin et al. 2009).  

Future work is required to definitively elucidate the physiologic mechanisms underlying 

propagation in the BOLD rs-fMRI signal.  

 

Topography of lag threads 

Each lag thread (Fig. 2; Movies 1-4; Fig. S7-S14) exhibits a unique, highly reproducible 

(Fig. 3B) topography. It is evident that these topographies generally are bilaterally 

symmetric, as are most functional systems and resting state networks. Although 

fragments of functional systems can be observed in the lag threads (e.g., frontopolar 

cortex components of the frontoparietal control network in Thread 1), the contours of the 

thread maps do not correspond to the topographies of RSNs. This point relates to our 

previous demonstration that RSNs as a whole are not iso-latent; rather, each RSN 

contains a wide range of latency values and includes both early and late nodes (Mitra et 

al. 2014).  
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Several topographic features of the lag threads suggest functional properties. Since 

these points are speculative, we consider only the first two lag threads. In Thread 1, the 

earliest regions are brainstem, thalamus, hippocampus, and putamen; late areas 

include frontopolar cortex and central insula. This sequence suggests a "bottom-up" 

process in which activity begins subcortically and propagates to progressively higher 

order areas of the cerebral cortex (Fig. 2; Movie 1). Another striking finding is that the 

putamen is early while the caudate is late. See Movie 1 to visualize activity propagation 

from posterior putamen to the head of the caudate. As far as we are aware, this finding 

has not been previously described. In Thread 2, thalamus, hippocampus, and brainstem 

are late with respect to cerebral cortex, i.e., opposite to their temporal position in Thread 

1. This sequence suggests a "top-down" process in which activity propagates from 

higher to lower centers (Fig. 2; Movie 2).  However, other features, e.g., late cerebellum, 

early putamen, and late caudate, are common to Threads 1 and 2. The functional 

significance of specific lag thread topographies is unknown and requires further study.  

 

The role of lag threads in integration vs. segregation 

Activity in the brain, at various spatial scales, has been discussed in terms of two 

fundamental concepts: synchrony (Buzsaki and Draguhn 2004; Kenet et al. 2003; 

Lachaux et al. 1999) and lagged propagation (Cossart et al. 2003; Ikegaya et al. 2004; 

Massimini et al. 2004; Nikolic 2007; Sheroziya and Timofeev 2014).  Taken to their 

logical extremes, synchrony and lag are opposed in a simple system: a perfectly 

synchronous system contains no lags, and a system with a single set of lags is not 

synchronous ((Tognoli and Kelso 2014); Fig. S3). The fact that the brain’s spontaneous 
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activity exhibits both of these properties may be a manifestation of the dual functions of 

neuronal segregation and integration (Mitra et al. 2014; Raichle 2011). Conventional 

zero-lag resting state functional connectivity analysis has provided a powerful tool for 

utilizing synchronicity to map spatially distinct functional areas (Buckner et al. 2011; 

Choi et al. 2012; Fox and Raichle 2007; Gordon et al. 2014; Power et al. 2011; Thomas 

Yeo et al. 2011). However, functional parcellations do not explain how spatially 

segregated modules in the brain become integrated (Raichle 2011). Lag threads 

demonstrate that spontaneous activity exhibits apparent propagation both within and 

between spatially segregated resting state networks. Therefore, lag threads may explain 

how spatially segregated networks can be integrated over a time scale of seconds. 

 

Conversely, lag threads pose their own problem: if spontaneous activity is characterized 

by a lag structure, how does synchrony arise? Our results suggest that lag thread motifs 

provide an answer. Preservation of lag sequencing within certain regions of the brain 

(i.e., resting state networks) across multiple threads gives rise to zero-lag synchrony 

within these systems (Fig. 8C and 8D). Thus, the lag thread motif model unifies the 

coexistence of synchrony (spatial segregation) and lags (temporal integration) in the 

brain’s spontaneous activity.     

 

The physiological functions served by lag threads remain unknown, but previous work 

sheds some light on this matter. We have shown that the lag structure of rs-fMRI is 

focally modulated, in humans, following the performance of a motor task (Mitra et al. 

2014), suggesting that the lag structure of intrinsic activity may be involved in learning 
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and memory. Indeed, the spatiotemporal structure of UDS (discussed above), a 

potential correlate of lags in the BOLD rs-fMRI signal, has been linked to consolidation 

and plasticity mechanisms (Hahn et al. 2006; Petersen et al. 2003; Sheroziya and 

Timofeev 2014; Steriade and Timofeev 2003). Additional support for this perspective 

comes from studies of neurodevelopment showing that precise patterns of propagated 

intrinsic activity are essential for fine-tuning synaptic connections (Adelsberger et al. 

2005; Goodman and Shatz 1993; Katz and Shatz 1996). It is believed that persistence 

of this principle into adulthood supports the brain's capacity for lifelong plasticity 

(Hensch 2005; Katz and Shatz 1996; Penn and Shatz 1999; Spitzer 2006). A second 

hypothesis is that the cortex, like the spinal cord, acts as a central pattern generator 

(Yuste 1997; Yuste et al. 2005), and that patterns of propagated intrinsic activity 

represent neuronal programs that are recruited to perform tasks (Hall et al. 2014; 

Ikegaya et al. 2004; Luczak et al. 2007). Thus, lag threads may form the basis for 

activity sequences that naturally play out in responses to events. 

 

Lag threads are a robust and reproducible organizational feature of spontaneous slow 

activity, here demonstrated in two groups of 688 young normal adults (Figs. 3 and 4). 

Regardless of their specific functions, the consistency of lag thread phenomenology 

suggests that this organizational feature is essential to normal brain physiology and 

function. We hypothesize that perturbed lag thread structure may underlie some 

neuropathological conditions. If so, these conditions may not manifest as altered 

conventional functional connectivity, since changes in lag thread structure (for instance, 

altered thread hierarchy in Fig. 3A) may not change zero-lag temporal correlations. 
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Hence, an understanding of the physiologic functions of lag threads may lead to better 

understanding of the brain in health and disease. 

 

Limitations and future directions 

The signal to noise ratio (SNR) of BOLD rs-fMRI is limited. Accordingly, extensive 

averaging over very large subject groups was required to obtain stable lag estimates at 

(6 mm)3 voxel resolution using (15 mm)3 reference ROIs. We are optimistic that future 

improvements in BOLD fMRI (Feinberg and Yacoub 2012), for instance, increased 

temporal resolution, will allow detection of lag threads in smaller populations, provided 

that voxelwise SNR remains adequate and preprocessing strategies effectively remove 

artifact. Alternative approaches to studying rs-fMRI lags, at coarser resolution, but with 

less sensitivity to SNR limitations, include deriving lag structure from selected ROIs, as 

in Figure 4, and computing lag projections, as in (Mitra et al. 2014). 

 

A second caveat is that the presently reported correspondence between lag thread 

motifs and RSNs (Figs. 8A,8B) reflects a specific RSN parcellation (see Fig. S5; 

(Hacker et al. 2013)), although the inferences derived from this result most likely 

depend only minimally on the details on any particular parcellation scheme (Power et al. 

2011; Thomas Yeo et al. 2011). We note that the correlation-based results (Figs. 5A, 5B, 

8C, 8D) are parcellation independent.  

 

Third, as lag threads are simply principal components of lag structure, they formally 

constitute only a basis set for lagged activity. Consequently, the sign of the lag threads 
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are, by definition, undetermined by a factor of ±1. Moreover, the assumption of linear 

superposition in PCA implies that topologically complex or non-linear temporal 

sequence topographies cannot be recovered. However, we did find that kernel PCA, a 

non-linear technique, recovers lag thread topographies (Fig. S28) quite similar to those 

shown in Fig. 2. Additionally, the sign and topographies of seed-based lag maps (Fig. 

S15-S24) are uniquely determined. We used these maps to demonstrate that lag thread 

topographies reasonably separate seed-based lag maps into common clusters, and that 

the sign of each lag thread has most likely been correctly assigned (see “Validity of 

applying PCA to recover lag thread topographies” in SI). 

 

Fourth, there is an ambiguity concerning voxels with lag values near zero in each lag 

thread. One possibility is that these voxels are in the middle of the temporal sequence 

represented by the lag thread. Alternatively, the voxel may not participate in the 

temporal sequence. At present, we cannot distinguish between these possibilities.  

 

Finally, Fig. 8C shows a temporal correlation matrix computed on the basis of 

reconstructed BOLD rs-fMRI timeseries. This result reproduces many features of real 

data (Fig. 5B), but the correspondence obviously is imperfect (Pearson r = 0.58; Fig. 

8D). Importantly, we assumed that the spectral content of BOLD rs-fMRI is uniform over 

gray matter and that lag threads superpose linearly. These assumptions represents an 

approximation (Salvador et al. 2008), although the extent to which spectral shapes are 

regionally dependent at frequencies below 0.1 Hz is uncertain (He et al. 2010). We also 

restricted our reconstruction to only the first 8 lag threads deemed significant by 
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maximum likelihood dimensionality analysis. Although the remaining lag threads 

contribute less individual variance, they may collectively play an important role in 

shaping correlation structure. In view of these approximations, a more complete model 

may be expected to provide a closer match between a reconstructed and true 

correlation structure of BOLD rs-fMRI timeseries. As our reconstruction relies only on 

lag threads, we have also excluded other phenomena which may contribute to the 

coordination of zero-lag correlation structure.  
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4.1 Preface 
 
The previous chapters have established that a reproducible temporal structure exists in 

resting state fMRI, and that there is a rule for explaining how resting state correlation 

structure emerges from temporal structure. However, simply knowing the existence of a 

phenomenon does not provide any explanation of its possible functions.  

 

Chapter 4 explores the temporal structure of resting state fMRI in human wakefulness 

versus slow wave sleep. We find that whereas the correlation structure is only modestly 

altered across arousal states, the temporal structure changes drastically. In particular, 

we demonstrate that the cross-network temporal structure is dramatically altered across 

arousal states, whereas the within-network temporal structure is largely preserved. The 

major implications of this chapter are (1) The temporal structure of resting state fMRI is 

labile, and highly sensitive to state of arousal, and (2) That the cross-network temporal 

structure of resting state fMRI may play a role in conscious awareness. The latter 

conclusion is reached on the basis of findings that show spontaneous cross-network 

temporal structure to be highly ordered in wakeful, but not slow wave sleep, conditions.  

 

4.2 Abstract 
 
Propagation of slow intrinsic brain activity has been widely observed in 

electrophysiogical studies of slow wave sleep (SWS). However, in human resting state 

fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag 

temporal synchrony (functional connectivity) within systems known as resting state 

networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved 
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across wake and sleep. Here, we use a recently developed analysis technique to study 

propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in 

normal adults during wake and SWS. This analysis reveals marked changes in 

propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved 

within traditionally defined RSNs but lost between RSNs. Additionally, propagation 

between cerebral cortex and subcortical structures reverses directions, and intra-cortical 

propagation becomes reorganized, especially in visual and sensorimotor cortices. 

These findings show that propagated rs-fMRI activity informs theoretical accounts of the 

neural functions of sleep. 

 

4.3 Introduction 
 

Sleep is a state during which interactions with the environment are greatly attenuated. 

The behavioral consequences of this state, namely, immobility and reduced 

responsiveness, carry obvious costs, such as compromised avoidance of predators. 

Nevertheless, nearly all animals sleep, suggesting that sleep is essential to normal 

physiology (Cirelli and Tononi 2008). In most mammals, including humans, prolonged 

sleep deprivation leads to impaired performance, psychosis, and eventually death 

(Brown et al. 2012; Everson et al. 1989; Rechtschaffen 1998). Sleep is attended by 

changes in gene expression (Abel et al. 2013; Cirelli and Tononi 2000), neuromodulator 

levels (Brown et al. 2012), metabolism (Boyle et al. 1994; Braun et al. 1997), and 

markedly altered patterns of neural activity (Dang-Vu 2012; Loomis et al. 1935a; b; 

McCormick and Bal 1997). Yet, the fundamental functions of sleep remain elusive. 
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Sleep conventionally is divided into stages, the deepest of which is slow wave sleep 

(SWS; also known as N3 sleep) (Iber 2007; Rechtschaffen and Kales 1968). The 

electrophysiologic hallmark of SWS is the slow oscillation, which manifests as periodic 

alternations of membrane potential, also known as Up/Down states (UDSs), 

characteristically at frequencies in the range of 0.5 - 1.5 Hz (Achermann and Borbely 

1997; Steriade et al. 1993). As observed with extracellular local field potential (LFP) 

recordings, slow oscillations are locally synchronous but exhibit apparent propagation 

over the whole brain on a time scale of 100’s of milliseconds (Hahn et al. 2012; Nir et al. 

2011; Riedner et al. 2007; Sheroziya and Timofeev 2014). Similar patterns of 

propagation have also been observed using electroencephalography (EEG), in which 

SWS manifests as a predominance of high amplitude, 1-4 Hz (delta) rhythms 

(Massimini et al. 2004). 

 

The observation of propagated slow electrophysiological activity during SWS raises the 

question of whether similar phenomenology might be observed by other means, 

specifically, resting state functional magnetic resonance imaging (rs-fMRI). Infra-slow 

(<0.1 Hz) intrinsic (equivalently, spontaneous) activity recorded using rs-fMRI has been 

understood predominantly in terms of zero-lag temporal synchrony (functional 

connectivity) within systems known as resting state networks (RSNs) (Beckmann et al. 

2005; Biswal et al. 2010). Prior rs-fMRI studies have found that RSNs are generally 

preserved across wake and SWS  (Horovitz et al. 2009; Larson-Prior et al. 2009; 

Picchioni et al. 2013; Samann et al. 2011; Tagliazucchi et al. 2013a). Importantly, 
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conventional functional connectivity analyses assume temporal synchronicity and make 

no provision for the possibility that intrinsic activity may propagate between regions.  

We have recently described an alternative analysis technique which explicitly focuses 

on apparent propagation in rs-fMRI data (Mitra et al. 2015; Mitra et al. 2014; Yuste and 

Fairhall 2015). Our methodology applies parabolic interpolation to lagged cross-

covariance curves to detect temporal lags at a resolution finer than the temporal 

sampling density of rs-fMRI (see Methods; Fig. 1). Using this technique, we previously 

demonstrated, in awake, normal humans, that the blood oxygen level dependent 

(BOLD) signal exhibits highly reproducible temporal lag patterns on a time scale of ~1 

sec; some regions are systematically early with respect to the rest of brain, whereas 

other regions are systematically late (Mitra et al. 2015; Mitra et al. 2014). Moreover, 

temporal lags in BOLD signal activity are altered, with appropriate focality, by prior 

performance of motor tasks as well as by time of day (Mitra et al. 2014). We 

operationally infer apparent propagation on the basis of measured temporal lags, 

assuming nothing regarding the path or mechanism by which BOLD signals "propagate" 

between regions. In particular, the temporal scale of this phenomenology is much 

slower than axonal transmission via fiber tracts (Caminiti et al. 2009). With this 

understanding, we omit "apparent" in references to BOLD signal propagation. 

Previous work has related propagated slow electrophysiological activity during SWS to 

several aspects of physiology. First, SWS is believed to represent an off-line state 

during which propagated slow activity plays a central role in the consolidation of 

memory (Born et al. 2006; Maquet 2001; Marshall et al. 2006; Stickgold 2005). In 

particular, propagation along the anterior-posterior axis of the brain has been linked to 
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consolidation of declarative memory (Marshall et al. 2006). Second, loss of 

environmental awareness during SWS is thought to be mediated by thalamic 

hyperpolarization, which is modulated by propagation of slow (< 1 Hz) activity from 

cortex to thalamus (Blethyn et al. 2006; Hughes et al. 2002). Evidence of such 

propagation has never been observed in vivo. Finally, it has been theorized that 

reduced subjective awareness ("unconsciousness") during SWS results from loss of 

integration across networks (Mashour 2005; Tononi 2004). Here, we report whole-brain 

patterns of propagated rs-fMRI activity in humans, contrasting eyes-closed wake vs. 

SWS. Our results lend support to each of the aforementioned perspectives. 

 

4.4 Results 
 
We characterize lag structure (e.g., apparent propagation) using three major 

approaches. First, we begin by computing lags for all pairs of voxels in gray matter in rs-

fMRI data (Fig. 1; (Mitra et al. 2014)). These results are assembled into time-delay (TD) 

matrices, which have dimensions voxels × voxels and entries in units of seconds 

(Methods Eq. E3). TD matrices represent the lag between all pairs of voxels in gray 

matter. Second, computing the mean over all columns of the TD matrix yields a lag 

projection map (Methods Eq. E4; Fig. 1). Lag projection maps topographically represent 

the mean lag between each voxel and the rest of the brain. Third, computing lags over 

the whole brain with respect to a particular region yields a seed-based lag map. Seed-

based lag maps topographically represent the degree to which each voxel is, on 

average, early vs. late with respect to the selected seed. The present results are 

reported in terms of lag projection maps (Figure 2), seed-based lag maps (Figures 3 

and 4), and TD matrices (Figure 5). Additionally, it is possible to decompose lag 
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structure into multiple temporal sequences ("lag threads") by applying spatial principal 

components analysis (PCA) to the TD matrix (Mitra et al. 2015) (see Figure 7 caption for 

details). Lag thread results are presented in Figure 7.  

Figure 4-1: 
Calculation of lag 
structure using 
lagged cross-
covariance 
functions and 
parabolic 
interpolation. Lags 
are defined by 
analysis of 
timeseries derived 
from two loci. (A): 
Two exemplar loci 
(both in the default 
mode network). 
The time series 
were extracted 
from the illustrated 
loci over ~200 s. 
(B): The 
corresponding 
lagged cross-

covariance function (Methods equation E2). Although the lagged cross-covariance is 
defined over the range ± 𝐓, where 𝐓 is the run duration, the range of the plotted values is 
restricted to ±8.32 s, which is equivalent to ±4 frames (red markers) as the repetition time 
was 2.08 s. The lag between the time series is the value at which the absolute value of 
the cross-covariance function is maximal. (C): This extremum can be determined at a 
resolution finer than the temporal sampling density by parabolic interpolation (green 
line) through the computed values (red markers). This extremum (arrow, yellow marker) 

defines both the lag between time series 𝐢 and 𝐣 (𝛕𝐢,𝐣) and the corresponding amplitude 

(𝐚𝐢,𝐣). (D): Toy case illustration of a time-delay (TD) matrix (Methods equation E3) 

representing 3 voxels. TD matrices encode the lag between every pair of analyzed voxels 
and are anti-symmetric by definition. The mean over each column of a TD matrix 
generates a lag projection map (Methods equation E4). A TD matrix obtained with real rs-
fMRI data and the corresponding lag projection map are shown in panels (E) and (F), 
respectively. Panels A-D are adapted from (Mitra et al. 2014). 
 

Figures 2A-B exhibit lag projection maps computed during wake and SWS. State-

dependent shifts are evident in the lag projection maps, for example in occipital cortex 

and thalamus (Figs. 2A-B). Fig. 2C shows all statistically significant spatial clusters 
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(|𝑍| > 4.5, 𝑝 < 0.05 corrected; see Methods) in the wake vs. SWS comparison. These 

clusters include: thalamus, bilateral putamen, brainstem, visual cortex, medial prefrontal 

cortex (mPFC), and paracentral lobule (PCL) (Fig. 2C). Visual cortex was later (more 

positive lag values) during wake as compared to SWS, whereas the remaining clusters 

were earlier (more negative lag values).  

Figure 4-2: Lag 
projection maps in wake 
and slow wave sleep. 
Lag projection maps 
depict the mean lag 
between each voxel and 
the rest of the brain 
(Mitra et al. 2014; Nikolic 
2007). Panels A-B 
display lag projection 
maps, in units of 
seconds, derived from 
wake (A) and SWS (B). 
These lag projection 
maps demonstrate 
changes in lag structure 
as a function of state. 
For example, thalamus is 
early (blue) during wake 
but late (red) during 
SWS; the opposite shift 
is evident in visual 
cortex. Panel C shows 
voxels exhibiting cluster-
wise statistical 
significance in the wake 
vs. SWS comparison (|Z| 

> 4.5, p < 0.05 corrected). These clusters are centered on putamen bilaterally, thalamus, 
paracentral lobule (PCL), visual cortex, medial prefrontal cortex (mPFC), and brainstem. 
Axial slices: Z = +69, +57, +9, -3, -27, -39. Sagittal slice: X = +3. 

Having found voxel clusters exhibiting statistically significant changes in lag structure in 

the whole-brain wake vs. SWS contrast, we next computed seed-based lag maps using 

the clusters shown in Fig. 2C as seeds (see Methods). Seed-based lag maps represent 
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temporal lags between each voxel and the average timecourse computed over the 

seed-region of interest.  

 

Figure 4-3: Seed-based lag maps in wake and SWS corresponding to the subcortical 
regions identified in Fig. 2C: thalamus (A), putamen (B), and brainstem (C). Also shown 
are lag difference maps (SWS minus wake) thresholded for cluster-wise statistical 
significance (|Z| > 4.5, p < 0.05 corrected; as in Fig. 2C). During wake, the cerebral cortex 
is generally late (yellow/red hues) with respect to subcortical regions. The cerebral 
cortex becomes early (blue/green hues) with respect to subcortical areas during SWS. All 
significant lag differences are negative (blue), and predominantly found in cortex. Pre-
frontal cortex becomes markedly early with respect to the posterior parts of the brain 
(pink arrows in A and B). This feature suggests a “front-to-back” propagation of slow 
waves in SWS (Massimini et al. 2004). Lag structure in the brainstem and thalamus is 
relatively constant (pink ovals in A and C). Lag structure is present within the thalamus 
in panel A even though the whole thalamus was used as the reference seed. This effect is 
observed because voxels within large seed-regions, e.g., thalamus, can exhibit non-zero 
lags with the mean timecourse computed over the entire seed. Axial slices: Z = +45, +9. 
Sagittal slice: X = +3. 

Seed-based lag maps obtained with the subcortical clusters, specifically, thalamus, 

putamen, and brainstem, are shown in Fig. 3, which illustrates altered lags during SWS 

compared to wake. Three principal findings are evident. First, whereas cortex is 
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generally late with respect to the subcortical seeds during wake, cortex becomes earlier 

than subcortical structures during SWS (see significant differences in Fig. 3). Second, a 

“front-to-back” propagation pattern appears in SWS; this phenomenon is best seen in 

the sagittal views of the thalamus and putamen lag maps (pink arrows, Figs. 3A-B). This 

pattern may correspond to previous reports of slow wave propagation along the 

anterior-posterior axis of the brain (Massimini et al. 2004; Murphy et al. 2009). Third, the 

lag structure within the thalamus and brainstem (Fig. 3A,C, pink ovals) remains largely 

constant across states. An early-to-late sequence extending from lower brainstem to 

rostral thalamus is evident in each of the seed-based lag maps shown in Fig. 3A,C (pink 

ovals). Hence, the general pattern of BOLD signal propagation between cortex and 

subcortical structures reverses during SWS, but propagation within the brainstem-

thalamus axis is largely preserved across wake vs. SWS.  
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Figure 4-4: Seed-based lag maps in wake and SWS corresponding to the cortical regions 
identified in Fig. 2C: visual cortex (A), medial prefrontal cortex (B), and paracentral lobule 
(C). Also shown are lag difference maps (SWS minus wake), thresholded for statistical 
significance, as in Fig 2. Panel A shows that, whereas the visual seed is neither wholly 
late nor early in wake, nearly the entire cortex is late with respect to visual cortex during 
SWS. Panel B shows that medial prefrontal cortex (mPFC) exhibits both early and late lag 
shifts between wake and SWS. The mPFC lag map in SWS also exhibits the “front-to-
back” propagation pattern highlighted in Figure 3 (pink arrow). Panel C shows that many 
of the lag relations of the paracentral lobule seed are reversed during SWS relative to 
wake. For example, in wake, the seed-region leads lateral sensory-motor cortex and 
posterior insula. These relations reverse in SWS and nearly the entire cerebral cortex 
becomes early with respect to the paracentral lobule. Slice coordinates identical to Fig. 3. 

Figure 4 displays seed-based lag maps obtained with the cortical clusters shown in Fig. 

2C. State-contrasts in lag structure differ by seed. Specifically, visual cortex (Fig. 4A) is 

neither wholly late nor early during wake, but nearly the entire cerebral cortex becomes 

late with respect to visual cortex during SWS. Two especially prominent foci of lateness  
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Figure 4-5: Time delay (TD) matrices. Panels A-B display TD matrices (in units of 
seconds) in wake and SWS, respectively. Each pixel represents the lag between two 
voxels. TD matrices are, by definition, anti-symmetric. Hence, all relevant information is 
contained in the displayed upper triangular values. The matrices displayed in (A-B) have 
been masked to include only cortical (6 mm)3 voxels with a ≥90% chance of belonging to 
one of 7 resting state networks (RSNs: dorsal attention network (DAN), ventral attention 
network (VAN), sensory motor network (SMN), visual network (VIS), frontoparietal control 
network (FPC), language network (LAN), default mode network (DMN)) ((Hacker et al. 
2013), see Fig. 5- figure supplement 2). The same RSN definitions are applied in wake and 
SWS. After sorting voxels by RSN membership, voxels were sorted from early to late 
within RSN in the wake state. The wake ordering was applied to the SWS TD matrix. 
Panel C shows the Spearman rank order correlation between wake and SWS lag values in 
each of the 28 intra- and inter- RSN blocks in panels (A-B). The diagonal blocks in panel 
C exhibit high correlation values, indicating that intra-RSN propagation is relatively 
preserved across wake and SWS. The correlation values in the off-diagonal blocks in 
panel C are low, demonstrating that inter-RSN propagation is strongly altered during 
SWS. White asterisks indicate significant (p < 0.05) effects computed by permutation 
resampling, including correction for multiple (N = 28) comparisons. Panel D plots the 
mean within-block values of the wake TD matrix shown in panel A. The values in panel D 
(in units of sec) are very near zero, implying that no RSN is entirely leads or follows other 
RSNs. Panel E plots the mean within-block values of the SWS TD matrix shown in panel 
B. Note significant visual network earliness with respect to other networks (p < 0.05 by 
permutation resampling, multiple comparisons corrected for 21 upper diagonal blocks). 
Owing to anti-symmetry, the horizontal blue and vertical orange blocks both represent 
visual earliness. Diagonal blocks in panels D and E are colored gray to symbolize that 
they are constrained to be zero-mean. 
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in SWS are dorsolateral prefrontal cortex and the paracentral lobule (Fig. 4A). A variety 

of lag shifts are evident in the results obtained with the medial prefrontal seed (Fig. 4B). 

For example, subgenual prefrontal cortex (red arrow) shifts from mid-latency (lag values 

near zero) during wake to very early during SWS, and the paracentral lobule shifts from 

mid-latency during wake to late during SWS. A “front-to-back” propagation pattern (also 

highlighted in Fig. 3) is clearly evident in the sagittal view in Fig. 4B during SWS. Fig. 

4C illustrates dramatic changes in the lag relations of the paracentral lobule. In wake, 

paracentral lobule leads both lateral sensory-motor cortex and posterior insula. These 

relations are reversed in SWS, during which nearly the entire cortex becomes markedly 

early with respect to the paracentral lobule.  

 

The results presented so far highlight topographic features of apparent propagation that 

change between wake and SWS. The next set of results considers pair-wise lag 

relations defined over pairs of 6mm3 isotropic cortical gray matter voxels. The results 

are presented as time-delay (TD) matrices. Voxels in the TD matrices are ordered first 

by resting state network affiliation (see Fig. 5-figure supplement 2). Then, within RSNs, 

the voxels are ordered from earliest (most negative) to latest (most positive) according 

to mean latency determined in wake (Fig. 5A). The ordering computed during wake was 

applied to the SWS TD results (Fig. 5B). A key algebraic feature of TD matrices is that 

they are exactly anti-symmetric (𝜏𝑖,𝑗 = −𝜏𝑗,𝑖; Methods Eq. E3). Thus, if the lag between 

voxels 𝑖 and 𝑗 is 𝜏 seconds, then the lag between voxels 𝑗 and 𝑖 must be exactly −𝜏 

seconds (see Methods).  
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As TD matrices are anti-symmetric, each diagonal block, which represents intra-RSN 

lag structure, is anti-symmetric as well. However, the algebra does not impose any 

relation between lag and RSN membership. Thus, the structure evident in the wake TD 

matrix (Fig. 5A) is informative, and recapitulates previous findings obtained in a 

separate, large data set (Mitra et al. 2014). The diagonal blocks show a wide range and 

well-ordered distribution of lags. This organization reflects propagation within RSNs; the 

DMN block, highlighted in green in Fig. 5A, is an example of intra-network lag 

organization. The off-diagonal blocks, which represent lags across RSNs, also contain 

well-ordered early, middle, and late components, much like the diagonal blocks. This 

feature is not algebraically imposed. An important implication of the early-to-late 

organization of the inter-RSN blocks in Fig. 5A is that each RSN is neither early nor late 

with respect to the others during the wake state, a feature which we have previously 

reported (Mitra et al. 2014). To illustrate this point, consider the off-diagonal block 

corresponding to the DMN paired with the dorsal attention network (DAN), outlined in 

yellow in Fig. 5A. A well-ordered progression from early (blue) to late (red) is evident, 

indicating that parts of the DMN lead the DAN and vice versa; neither the DMN nor the 

DAN leads or follows the other as a whole. 

 

We next compared the TD matrix in SWS (Fig. 5B) to the TD matrix in wake. Three 

features emerged from this comparison. First, the range of lag values in SWS is larger 

than in the wake data, as if the speed of BOLD signal propagation has slowed. We 

quantitatively represent this effect as the standard deviation (SD), computed over the 
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upper triangular (hence unique) lag values in wake and SWS. SD during wake was 0.42 

± 0.05 seconds, whereas SD during SWS was 0.65 ± 0.07 seconds. This effect was 

significant (p < 0.01, by permutation resampling with 10,000 trials). 

 

Second, inter-RSN lag structure is altered in SWS. This effect appears as a loss of early 

(blue) to late (red) organization in off-diagonal blocks, e.g., as in the DAN:DMN block 

(yellow outline in Fig. 5B). To quantitatively assess this change, we computed the rank 

correlation (Spearman’s 𝜌) between wake and SWS lag values over all voxel pairs in 

each of the 8∙7/2 = 28 unique intra- and inter-RSN blocks (Figs. 5A-B). Blocks exhibiting 

a significantly low correlation (p < 0.05, corrected for 28 multiple comparisons) 

comparing wake vs. SWS are marked with a white asterisk in Fig. 5C; these effects 

represent a significant change in lag structure between resting state networks. 

Importantly, these effects were observed only in off-diagonal (cross-RSN) blocks. In 

other words, intra-network lag structure was relatively preserved (𝜌 > 0.6) across states, 

e.g., within the DMN (green outline Fig. 5A-B). In contrast, inter-network lag structure 

was markedly altered (𝜌 < 0.3) in the majority of off-diagonal blocks. Thus, Fig. 5C 

demonstrates that, whereas propagation within RSNs is relatively preserved during 

sleep, propagation across RSNs is significantly altered. During SWS, most cross-RSN 

blocks (excluding visual network pairs) develop a "disorganized" structure, in which 

well-ordered propagation appears to be lost. This effect is not attributable to voxel 

ordering, as the voxels are ordered identically in the wake and SWS TD matrices (Fig. 

5A). The same disorganized appearance persists even if the SWS TD matrix ROIs are 

ordered according to their own stage-specific lag structure (Fig. 5-figure supplement 1).  
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A third effect evident in Figs. 5A-B is the appearance of an "all early” organization in the 

visual network ("VIS", pink box) in SWS. That is, in half the TD matrix, all cross-RSN 

voxel pairs involving the visual network exhibit negative (early; blue) lag values in SWS, 

indicating that voxels in the visual network are earlier than nearly all other cortical 

voxels. Thus, the principle, which applies in wake, that no RSN leads or follows any 

other (Mitra et al. 2014), does not hold during SWS.  

 

To quantitatively investigate changes in lag structure between the visual network and 

the rest of the brain, we computed the mean lag value for each off-diagonal (inter-RSN) 

block in wake and SWS (Figs. 5D and 5E respectively). Anti-symmetry forces a mean 

lag value of zero within diagonal blocks. Thus, 21 unique blocks are considered in this 

analysis. If no RSN leads or follows any other in aggregate, the average lag value in 

each inter-RSN block should be zero. Fig. 5D illustrates that this is the case during 

wake: The mean lag in each off-diagonal block is very nearly zero, as previously 

reported in a completely independent dataset (Mitra et al. 2014). Fig. 5E shows that this 

principle approximately applies also in SWS except in the visual network (white 

asterisks). During SWS, voxels in the visual network become early with respect to other 

cortical voxels (Fig. 5E). An analogous, but opposite feature also appears in a subset of 

the cross-RSN sensorimotor (SMN) block, which assumes an "all late" (red) 

configuration. In other words, this set of voxels becomes late with respect to cortical 

BOLD signal activity in nearly all other cortical voxels during SWS. The voxels in 

question correspond to the paracentral lobule (Fig. 2C). That the paracentral lobule 
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becomes late in SWS is also evident in Fig 4C. This effect is not significant in Fig. 5E 

because the paracentral lobule is only part of the a priori defined SMN. 

 

4.5 Discussion 
 
We investigated apparent propagation of spontaneous infra-slow activity, as measured 

by rs-fMRI, in wake and slow wave sleep. Our whole-brain comparison identified several 

cortical and subcortical regions exhibiting significantly different state-dependent lags 

(Fig. 2). These regions were used for seed-based analyses. Lag maps seeded in the 

thalamus, brainstem, and putamen demonstrated that subcortical structures are early in 

relation to cortex during wake, but late during SWS (Fig. 3). In contrast, propagation 

within the brainstem-thalamic axis was relatively preserved across states (Fig. 3). 

Cortical seed-based lag maps, computed using visual cortex, medial prefrontal cortex, 

and paracentral lobule, exhibited complex, regionally specific effects (Fig. 4). Finally, 

comparison of TD matrices in wake vs. SWS revealed that inter-RSN propagation was 

significantly altered in SWS whereas intra-RSN propagation was relatively preserved 

(Fig. 5C). 

 

These findings demonstrate dramatic rearrangements in propagated infra-slow intrinsic 

activity during SWS as compared to wake. By comparison, the effect of SWS on zero-

lag correlation structure (functional connectivity) is much more modest (Fig. 6). State 

differences in functional connectivity manifest as quantitative changes in the magnitude 

of correlations, for example, reduced correlations between anterior and posterior brain 

regions during SWS (Picchioni et al. 2013). However, the overall topography of resting 
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state networks (RSNs) generally is preserved (Horovitz et al. 2009; Larson-Prior et al. 

2009; Picchioni et al. 2013; Samann et al. 2011; Tagliazucchi et al. 2013b) (Fig. 6). 

Interestingly, some of the present lag findings topographically correspond to effects 

observed with conventional functional connectivity. Specifically, SWS induces focal 

functional connectivity changes in visual cortex, paracentral lobule, and thalamus; this 

topography substantially overlaps some of the presently observed lag effects (compare 

sagittal views in Figs. 2C and 6D-E). In a similar vein, PET studies show that SWS, as 

well as pathological disorders of consciousness, both are associated with prominent 

reductions in thalamic metabolism (Laureys 2005). This finding hypothetically 

corresponds, in the present results, to the prominent thalamic shift in lag status from 

early in wake to late in SWS. However, much more work is needed to determine 

whether these intriguing correspondences are in any way general.  

Figure 4-6: Zero-lag correlation 
(conventional functional connectivity; FC) 
matrices. (A): wake. (B): slow wave sleep. 
Voxels shown in the correlation matrices 
correspond to Figs. 5A-B (see also Fig. 5-
figure supplement 2), and matrix values are 
Fisher-z transformed Pearson correlations 
averaged over subjects. Note relatively 
preserved RSN organization across states, 
in line with previous analyses of these data 
(Tagliazucchi et al. 2013a). To assess the 
topography of pair-wise correlation 
changes, we computed the difference 
between the SWS and wake correlation 
matrices (wake minus SWS), and applied 
spatial principal components analysis 
(PCA) to the difference matrix. The 
resulting eigenspectrum (panel C) shows 
that there are 2 statistically significant (p < 
0.05; red line) PCs (threshold computed by 
permutation re-sampling). The 

topographies of these PC's are shown in panels D and E. These topographies reflect modest FC reductions 
in visual/somatosensory networks in wake vs. SWS, and modest FC increases in the DMN and thalamus in 
wake vs. SWS. These results are in accordance with previous findings comparing wake vs. NREM sleep 
(Horovitz et al. 2008; Picchioni et al. 2013). Importantly, zero-lag correlation structure (panels A-B) is much 
more preserved across wake and SWS than is lag structure (Figure 5). Axial slices: Z = +69, +57, +45, +33, +9, 
-3, -27, -39. Sagittal slices: X = +3, +12, -12. 
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Relation of BOLD signal apparent propagation to electrophysiology 

The implications of our findings critically depend on how spontaneous BOLD fMRI 

signal fluctuations relate to electrophysiology. This question currently remains a topic of 

active investigation (Florin et al. 2014). Several studies using invasive recordings have 

found that slow (0.5-4 Hz) and infra-slow (<0.1 Hz) local field potentials correspond 

most closely to BOLD signal fluctuations and correlation structure. This correspondence 

has been demonstrated in wake (He et al. 2008; Hiltunen et al. 2014; Nir et al. 2008), 

sleep (He et al. 2008), and anesthesia (Pan et al. 2013). Thus, a natural hypothesis is 

that temporal lags in the BOLD signal reflect propagation of slow and infra-slow 

electrophysiological activity. However, as far as we are aware, temporal lags in infra-

slow electrophysiology have not been investigated at the systems level. On the other 

hand, propagation of slow activity has been widely reported. The spectral content of the 

slow oscillation at the low end, approximately 0.5 Hz, approaches the infra-slow range. 

Hence, in the following, we consider correspondence between reports of propagated 

slow electrophysiology and the present results, with the understanding that future 

investigations specifically of infra-slow propagation are needed. 

 

Slow electrophysiological activity has been most studied in the context of SWS and 

anesthesia, during which the slow oscillation, or UP/DOWN states (UDSs), (Steriade et 

al. 1993) is a characteristic feature. UDSs classically are described as periodic at 

frequencies in the 0.5-1.5 Hz range, and are known to propagate on a time-scale of 

100s of milliseconds (Hahn et al. 2006; McCormick et al. 2015; Petersen et al. 2003). 

More recently, UDSs have also been described in awake, resting rodents (Ferezou et al. 
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2007). Although UDS periodicity is a characteristic of single neuron membrane potential 

recordings (Hahn et al. 2006; Petersen et al. 2003), macro-electrode recordings, e.g., 

electroencephalography (EEG) and electrocorticography (ECoG), show aperiodic, 1/f-

like spectral content during SWS (He et al. 2010; Nir et al. 2011; Sirota et al. 2003). 

More generally, the spectral content of intrinsic electrophysiologic activity and rs-fMRI is 

1/f-like in wake as well as SWS (He et al. 2008; Hiltunen et al. 2014). Moreover, macro-

electrode recordings of slow activity also show apparent propagation on time-scales as 

long as 1-2 seconds during sleep and anesthesia (Nir et al. 2011; Sirota et al. 2003), as 

in the present rs-fMRI data.  

Figure 4-7: Lag structure dimensionality in 
wake and SWS. We have previously shown 
that multiple temporal sequences can be 
extracted from a TD matrix by applying spatial 
principal components analysis (PCA) to the 
TD matrix after zero-centering each column 
(Mitra et al. 2015). Here we show PCA-derived 
eigenvalues (scree plot) obtained in wake 
(pink) and SWS (blue). The maximum 
likelihood dimensionality estimates derived 
using the method of (Minka 2001) are 4 and 3, 
respectively, in wake and SWS. N.B.: We 
previously obtained a maximum likelihood TD 
dimensionality estimate of 8 in a much larger 
(N = 688) awake dataset (Mitra et al. 2015). The 

lower presently obtained figure (4) reflects less statistical power owing to a smaller 
subject sample (N = 39). 
 

Propagated slow potentials during SWS share additional points of concordance with the 

present BOLD fMRI results. Electrophysiological studies in both humans and rodents 

suggest that slow activity tends to originate in medial prefrontal cortex and propagate to 

more posterior regions (Massimini et al. 2004; Nir et al. 2011; Sheroziya and Timofeev 

2014). We also observe a “front-to-back” propagation pattern (see Figs. 4B and 7-

supplement 2). However, this pattern should be understood as only one of many. In that 
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regard, a noteworthy principle that has emerged on the basis of human high-density 

EEG and ECoG recordings is that slow waves originate in multiple locations and 

propagate through multiple routes (Massimini et al. 2004; Murphy et al. 2009; Nir et al. 

2011). A necessary algebraic consequence of this principle is that the lag structure of 

propagated slow activity exists in a multi-dimensional space (Mitra et al. 2015). We 

have recently demonstrated precisely this point by analysis of a very large resting state 

fMRI dataset acquired in quietly resting awake adults (Mitra et al. 2015). We confirm 

that the same principle applies in the current fMRI data, both during wake and SWS (Fig. 

7). Indeed, the spatial principal components ("lag threads") derived by analysis of the 

fMRI time-delay matrix provides a compact means of visualizing how the propagation of 

intrinsic activity becomes rearranged in wake vs. SWS (Fig. 7-figure supplements 1 and 

2). 

 

To the best of our knowledge, apparent propagation of either slow or infra-slow 

electrophysiological activity in the awake state has not been reported in either humans 

or animals. However, voltage sensitive dye (VSD) studies in quietly resting rodents have 

demonstrated multiple patterns of propagation of slow intrinsic activity over 100s of 

milliseconds (Mohajerani et al. 2013; Mohajerani et al. 2010). Moreover, propagation 

patterns assessed using VSD are bilaterally symmetric (Mohajerani et al. 2010), as are 

BOLD fMRI patterns of propagation (Mitra et al. 2015; Mitra et al. 2014).  

 

In summary, the available evidence suggests that the BOLD signal and slow/infra-slow 

electrophysiological activity exhibit similarities in spectral content, correlation structure, 
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and apparent propagation. The present results motivate future investigations to clarify 

the physiological links between propagated UDSs, propagated VSD patterns in rodents, 

and propagated BOLD fMRI signal fluctuations in humans, both during wakefulness and 

SWS. Direct electrophysiological studies of infra-slow propagation are especially 

needed. In the following, we discuss hypotheses regarding the possible functions of 

propagated infra-slow activity, observed using rs-fMRI, in relation to theories originally 

derived by observations of propagated slow potentials. 

 

Relation of present results to the physiology of slow wave sleep 

Cortical re-arrangements in lag structure are complex and regionally dependent, as 

demonstrated by the seed-based analyses shown in Fig. 4. In the following, we present 

three hypotheses, informed by prior studies of SWS, suggesting how infra-slow 

propagation may relate to the physiological functions of sleep. Future work combining 

rs-fMRI sleep recordings with behavioral data will be required to investigate these 

hypotheses. 

 

First, slow wave sleep is believed to represent an off-line state during which slow 

activity enables consolidation of newly acquired memories (Born et al. 2006; Maquet 

2001; Marshall et al. 2006; Stickgold 2005). Human imaging studies of word-pair 

association tasks have shown that the medial prefrontal cortex (mPFC) is implicated in 

consolidation of declarative memory (Euston et al. 2012; Gais et al. 2007; Takashima et 

al. 2006). Consolidation is accompanied by increases in mPFC activity during 

successful later recall (Gais et al. 2007; Takashima et al. 2006). The locus of these 
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previously reported effects is notably close to the mPFC region illustrated in Fig. 2C (cf. 

Fig. 3 in (Takashima et al. 2006) and Fig. 4 in (Gais et al. 2007)). Using the same task, 

Marshall and colleagues found that artificially initiating slow wave activity by applying 

current via frontal electrodes during SWS boosts subsequent recall (Marshall et al. 

2006). Thus, the available data suggest that the mPFC shift towards earliness during 

SWS may facilitate consolidation of declarative memory. This hypothesis could be 

tested by relating infra-slow, front-to-back propagation to consolidation of declarative 

memory.  

 

Second, SWS is also thought to improve procedural memory, e.g., motor sequence 

learning and motor adaptation (Stickgold 2005). We observed significant wake vs. SWS 

latency shifts in putamen and paracentral lobule (PCL) (Figs. 2-4), both of which 

structures are strongly associated with procedural learning (Graybiel 2005; Halsband 

and Lange 2006; Knowlton et al. 1996). The paracentral lobule is a functional 

component of the supplementary motor area (SMA) (Lim et al. 1994). Sleep-dependent 

improvements in procedural tasks have been postulated to involve plasticity in cortico-

striatal circuits (Doyon and Benali 2005). Thus, the reversal in the temporal lag between 

putamen and cortex (Fig. 3B) during SWS could be a correlate of off-line consolidation 

of procedural memory. Similarly, altered apparent propagation in PCL may relate to 

offline adjustment of motor programs. Alternatively, PCL lateness during SWS could 

represent a correlate of the abolition of motor behavior. These possibilities could be 

investigated by combining rs-fMRI studies of SWS with procedural learning paradigms. 
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Third, we show that visual cortex is neither wholly late nor early during wake, but that 

nearly the entire cerebral cortex becomes late with respect to visual cortex during SWS 

(Fig. 4A, Fig. 5). This visual cortex finding may relate to the now widely recognized fact 

that dreaming also occurs in NREM sleep (Hobson et al. 2000). Recent work has shown 

that BOLD fMRI activity in visual cortex predicts NREM dreaming (Horikawa et al. 2013). 

Hence, there may exist a link between initiation of infra-slow activity in visual cortex and 

dreaming. The question of whether initiation of infra-slow activity in visual cortices 

relates to dreaming has not been studied thus far, but could be explicitly examined 

using the methodology of Horikawa and colleagues (Horikawa et al. 2013). 

 

Relation of present results to thalamic gating of sensory input 

Wakefulness is a state during which environmental awareness is possible (Seth et al. 

2005). The thalamus plays a critical role in this state by relaying sensory signals to the 

cerebral cortex (Alkire et al. 2008). Electrophysiological recordings have shown that the 

awake state is associated with depolarization of thalamocortical cells, which facilitates 

transmission of ascending input to the cortex (Brown et al. 2012; Franks 2008; 

McCormick and Bal 1997). Conversely, during SWS, signals from the environment do 

not reliably reach the cortex owing to hyperpolarization of thalamocortical neurons 

(Franks 2008; Franks and Lieb 1994; Hirsch et al. 1983; Steriade and Timofeev 2003). 

Thus, the thalamus “gates" transmission of environmental stimuli to the cortex. 

Moreover, in vitro work suggests that thalamic hyperpolarization in SWS is modulated 

by propagation of slow (< 1 Hz) activity from cortex to thalamus (Blethyn et al. 2006; 

Hughes et al. 2002). Our analysis of BOLD signal fluctuations is consistent with this 
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account: Cerebral cortex leads thalamus during SWS, but thalamus leads cortex during 

wake (Fig. 3A). Importantly, BOLD signal propagation from brainstem to thalamus is 

similar in wake and SWS. This result suggests that the thalamus is the site at which 

ascending signals are impeded during SWS, in accordance with the hypothesized role 

of the thalamus as a sensory gate.  

   

Relation of present findings to theories of consciousness 

Figure 5 shows that cross-network lag structure is extensively altered in SWS as 

compared to wake. During wake, both diagonal- and off-diagonal blocks of the TD 

matrix exhibit well-ordered early, middle, and late components. Thus, cross-network and 

within-network propagation are comparable during wake. During SWS, apparent 

propagation within and across networks is no longer comparable (Figs. 5B,E). Cross-

network (off-diagonal) blocks lose their "early-to-late" structure, whereas within-network 

(diagonal blocks) lag structure is preserved (Figs. 5A-C). Moreover, most cross-network 

blocks (excluding visual network pairs) appear disorganized during SWS. Speculatively, 

the dissociation between preserved within-network propagation and disorganized cross-

network propagation suggests that neural communication during SWS, as measured by 

propagation of BOLD signals, is largely intact within functional networks (RSNs), but is 

disrupted across functional networks. These observations support theories postulating 

that reduced subjective awareness ("unconsciousness") during SWS results from loss 

of integration across networks (Mashour 2005; Tononi 2004). "Conscious" here refers to 

the awake, or on-line, state. Accordingly, decreased subjective awareness during SWS 

theoretically results from loss of integration across networks, while within-network 
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activity is generally preserved (Boly et al. 2012; Mashour 2005; Tagliazucchi et al. 

2013a). A corollary is that, during SWS, neural communication is maintained within 

functional modules, but altered across functional modules, resulting in “network 

segregation” (Mashour 2013; Tagliazucchi et al. 2013a). Our TD matrix results are 

consistent with this principle, provided the assumption that BOLD signal propagation 

reflects neural communication at a broad spatio-temporal scale,  

 

We interpret our findings as follows. During wake, the brain is capable of responding to 

the environment and functional systems reciprocally communicate to sustain conscious 

content (Alkire et al. 2008; McCormick et al. 2015). Accordingly, we find ascending 

BOLD signal propagation from thalamus to cortex (Fig. 3A), as well as well-ordered 

propagation of activity between resting state networks (Fig. 5A). In SWS, off-line brain 

activity theoretically serves mechanisms concerned with synaptic homeostasis and 

memory consolidation (McClelland et al. 1995; McCormick et al. 2015). Features of the 

off-line state (SWS) include reduced responses to environmental stimuli, altered inter-

network communication, but relatively intact intra-network communication (McClelland 

et al. 1995; McNaughton et al. 2003; Tagliazucchi et al. 2013a). Accordingly, we 

observe reversal of thalamo-cortical propagation (Fig. 3A), altered cross-RSN 

propagation (Fig. 5B-C), and intact within-RSN propagation. Future study of BOLD 

signal propagation and infra-slow activity is necessary to obtain a better understanding 

of the physiology of spontaneous activity in wake and sleep. 

 

4.6 Materials and Methods 
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EEG–fMRI Acquisition and Artifact Correction: Acquisition parameters and details for 

these data have been previously published (Tagliazucchi et al. 2013b). fMRI was 

acquired using a 3 T scanner (Siemens Trio) with optimized polysomnographic settings 

(1,505 volumes of T2*-weighted echo planar images, repetition time/echo time = 2,080 

ms/30 ms, matrix = 64 × 64, voxel size = 3 × 3 × 2 mm3, distance factor = 50%; field of 

view = 192 mm2). 30 EEG channels were simultaneously recorded using a modified cap 

(EASYCAP) with FCz as reference (sampling rate = 5 kHz, low pass filter = 250 Hz, 

high pass filter = 0.016 Hz). MRI and pulse artifact correction were performed based on 

the average artifact subtraction method (Allen et al. 1998) as implemented in Vision 

Analyzer2 (Brain Products) followed by ICA-based rejection of residual artifact 

components (CBC parameters; Vision Analyzer). EEG sleep staging was done by an 

expert according to the American Academy of Sleep Medicine (AASM) criteria (Iber 

2007). 

 

Subjects: 63 non-sleep-deprived subjects were scanned in the evening (starting at 

~8:00 PM). Subjects were instructed to keep eyes closed during wakefulness. 

Hypnograms were inspected to identify epochs of contiguous sleep stages lasting at 

least 5 min (150 volumes). These criteria yielded 39 subjects contributing to the present 

analyses. Included are 70 epochs of wakefulness, 47 epochs of N2 sleep, and 38 

epochs of N3 sleep (SWS). Detailed sleep architectures of each participant have been 

previously published (Tagliazucchi et al. 2013b).  
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fMRI preprocessing: fMRI preprocessing was as described in (Mitra et al. 2014). Briefly, 

this included compensation for slice-dependent time shifts, elimination of systematic 

odd-even slice intensity differences due to interleaved acquisition, and rigid body 

correction of head movement within and across runs. Atlas transformation was achieved 

by composition of affine transforms connecting the fMRI volumes with the T2-weighted 

and T1-weighted structural images. Additional preprocessing in preparation for lags 

analysis included spatial smoothing (6 mm full width at half maximum (FWHM) 

Gaussian blur in each direction), voxel-wise removal of linear trends over each fMRI run, 

and temporal low-pass filtering retaining frequencies below 0.1 Hz. Spurious variance 

was reduced by regression of nuisance waveforms derived from head motion correction 

and timeseries extracted from regions (of “non-interest”) in white matter and CSF as 

well the BOLD timeseries averaged over the brain (Fox et al. 2009). Frame censoring 

was computed at a threshold of 0.5% root mean square frame-to-frame intensity change 

(Power et al. 2012). Epochs containing fewer than 10 contiguous frames were excluded. 

These criteria removed 5.3 ± 0.9% of frames per individual during wake, 6.1 ± 0.7% 

during N2 sleep, and 5.8 ± 0.7% during N3 sleep. There were no statistically significant 

differences in the amount of frame censoring by state.  

 

 

 

Computation of lag between BOLD time series 
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Our method for computing lags between time series has been previously published 

(Mitra et al. 2014). Conventional seed-based correlation analysis involves computation 

of the Pearson correlation, 𝑟, between the time series, 𝑥1(𝑡), extracted from a seed 

region, and a second time series, 𝑥2(𝑡), extracted from some other locus (single voxel 

or region of interest).  Thus, 

 𝑟𝑥1𝑥2
=

1

𝜎𝑥1𝜎𝑥2

1

𝑇
∫𝑥1(𝑡) ∙ 𝑥2(𝑡)𝑑𝑡,      [E1]  

where 𝜎𝑥1
 and 𝜎𝑥2

 are the temporal standard deviations of signals 𝑥1 and 𝑥2, and 𝑇 is 

the interval of integration. Here, we generalize the assumption of exact temporal 

synchrony and compute lagged cross-covariance functions. Thus, 

 𝐶𝑥1𝑥2
(𝜏) =

1

𝑇
∫𝑥1(𝑡 + 𝜏) ∙ 𝑥2(𝑡)𝑑𝑡,      [E2] 

where 𝜏 is the lag (in units of time). The value of 𝜏 at which 𝐶𝑥1𝑥2
(𝜏) exhibits an 

extremum defines the temporal lag (equivalently, delay) between signals 𝑥1 and 𝑥2 

(Konig 1994). Although cross-covariance functions can exhibit multiple extrema in the 

analysis of periodic signals, BOLD time series are aperiodic (He et al. 2010; Maxim et al. 

2005), and almost always give rise to lagged cross-covariance functions with a single, 

well defined extremum, typically in the range ±1 sec.  We determine the extremum 

abscissa and ordinate using parabolic interpolation (Mitra et al. 2014). 

Given a set of 𝑛 time series, {𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)}, finding all 𝜏𝑖,𝑗 corresponding to the 

extrema, 𝑎𝑖,𝑗, of 𝐶𝑥𝑖𝑥𝑗
(𝜏) yields the anti-symmetric, time delay matrix: 

 𝑇𝐷 =  [

𝜏1,1 ⋯ 𝜏1,𝑛

⋮ ⋱ ⋮
−𝜏1,𝑛 ⋯ 𝜏𝑛,𝑛

].       [E3] 
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The diagonal entries of 𝑇𝐷 are necessarily zero, as any time series has zero lag with 

itself.  Moreover, 𝜏𝑖,𝑗 = −𝜏𝑗,𝑖, since time series 𝑥𝑖(𝑡) preceding 𝑥𝑗(𝑡) implies that 𝑥𝑗(𝑡) 

follows 𝑥𝑖(𝑡) by the same interval. Here, the timeseries were extracted from (6mm)3  

cubic voxels evenly distributed throughout gray matter in the whole brain (Mitra et al. 

2015).  

We projected the multivariate data represented in the 𝑇𝐷 matrix onto one-dimensional 

maps using the technique described by Nikolic and colleagues (Nikolic 2007; Schneider 

et al. 2006).  We refer to these one-dimensional maps as lag projections.  Operationally, 

the projection is done by taking the mean across the columns of 𝑇𝐷 (Eq. E3), that is,  

      𝑇𝑝 = [∑ 𝜏1,𝑗
𝑛
𝑗=1  … ∑ 𝜏𝑛,𝑗

𝑛
𝑗=1 ].                        [E4] 

Seed-based lag maps were computed according to [E2], except instead of computing 

lags between all voxels, we computed the lag between a reference timeseries extracted 

from the seed and timeseries extracted from all (6mm)3 voxels. This procedure 

produces a one-dimensional seed-based lag map. 

Group level 𝑇𝐷 matrices, lag projections, and seed-based lag maps were obtained in 

each state (W, N2 sleep, and N3 sleep) by computing each quantity at the individual 

subject level (averaging across temporally contiguous epochs) and then averaging. 

 

Statistical analysis:  

Statistical significance of wake versus SWS differences in lag projection maps was 

assessed on a cluster-wise basis using threshold-extent criteria computed by extensive 

permutation resampling (Hacker et al. 2012; Hayasaka and Nichols 2003). Figure 5C 

reports Spearman 𝜌 correlations over entries in 𝑇𝐷 matrix blocks in wake and SWS. 
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Statistical significance was assessed by permutation resampling of the matrix entries 

within blocks, with correction for multiple comparisons. Figures 5D and E report mean 

lag values averaged over entries in 𝑇𝐷 matrix blocks. Statistical significance of the 

difference in mean lag value across TD matrix blocks was also assessed through 

permutation resampling, with correction for multiple comparisons. 
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5.1 Preface 
 
Chapter 4 demonstrates that the temporal organization of spontaneous resting state 

fMRI activity is dramatically altered across wake and sleep. On this basis, we theorized 

that the direction infra-slow signals travel through the brain plays a role in governing 

broad physiological states, such as wake and sleep. Yet this vague conception does not 

provide a satisfactory sense of what the computational purpose of directed infra-slow 

activity may be. Moreover, although we have treated resting state fMRI as a proxy for 

infra-slow brain activity based on the evidence summarized in the introduction, we have 

yet to discern whether the temporal structure of resting state fMRI is indeed mirrored in 

electrophysiological signals.  

 

Chapter 5 addresses these questions in the context of a prominent theory for 

declarative memory consolidation. The broad idea is that cortex and hippocampus 

exchange information. During the day, cortex signals to hippocampus to create an index 

of short-term associations. At night during sleep, it is believed that hippocampus-index 

associations are activated and conveyed back to cortex for long-term memory 

consolidation. Importantly, at no time is the signaling between hippocampus and cortex 

thought to be purely unidirectional. Instead, a slow feedback signal needed for 

coordinating cortico-hippocampal activity is thought to move in the opposite direction 

from the “information transfer” direction during wake and sleep. However, evidence of 

such feedback signaling and directionality reversal had until this point been lacking. 

Chapter 5 fills this gap by demonstrating infra-slow activity in humans, measured using 

resting state fMRI and electrocorticography, move in the feedback direction between 
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cortex and hippocampus, as had been theorized. The correspondence between fMRI 

and electrophysiology also showed, for the first time, that temporal structure measured 

in fMRI agrees with electrophysiology. As a final note: the supplemental materials for 

this paper are well over 40 pages in length. Therefore, the supplementary materials are 

not included in this thesis. Readers interested in this material can find it online with the 

published manuscript; the supplemental references in this text correspond exactly the 

published supplement. 

 

5.2 Abstract 
 
Declarative memory consolidation is hypothesized to require a two-stage, reciprocal 

cortical-hippocampal dialogue. According to this model, higher frequency signals 

convey information from cortex to hippocampus during wakefulness, but in the reverse 

direction during slow wave sleep (SWS). Conversely, lower frequency activity 

propagates from the information “receiver” to the “sender” to coordinate the timing of 

information transfer. Reversal of sender/receiver roles across wake and SWS implies 

that higher and lower frequency signaling should reverse direction between cortex and 

hippocampus. However, direct evidence of such a reversal has been lacking in humans. 

Here, we use human resting state fMRI and electrocorticography to demonstrate that 

delta band activity and infra-slow activity propagate in opposite directions between the 

hippocampus and cerebral cortex. Moreover, both delta and infra-slow activity reverse 

propagation directions between hippocampus and the cerebral cortex across wake and 

SWS. These findings provide direct evidence for state-dependent reversals in human 

cortical-hippocampal communication. 
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5.3 Introduction 

Declarative memories are initially hippocampus-dependent and gradually become 

hippocampus-independent over time, that is, consolidated (Scoville and Milner 1957; 

Squire and Alvarez 1995). It is theorized that a two-stage reciprocal dialogue between 

the hippocampus and the cerebral cortex underlies memory consolidation (Buzsaki 

1996; 1989; Sirota et al. 2008). According to this model, active behavior generates 

experiential codes in the cortex that are transmitted to the hippocampus, which houses 

a labile information store. Later, during slow wave sleep (SWS), recently acquired 

hippocampal information is reactivated and transmitted to the cerebral cortex, where it is 

integrated into a more permanent memory store (Buzsaki 1996; McNaughton et al. 

2003). Thus, the hippocampus and cerebral cortex are proposed to exchange roles in 

sending and receiving information across wake and SWS (Buzsaki 1996; McNaughton 

et al. 2003). Importantly, this model does not imply that all signals travel from the 

“sender” to the “receiver”. Instead, the theory proposes that high frequency activity 

carries information from “sender” to “receiver”, that is, from cortex to hippocampus or 

hippocampus to cortex, depending on the stage of memory consolidation (wake or SWS, 

respectively) (Sirota et al. 2008). Conversely, low frequency activity propagates from the 

“receiver” back to the “sender” to coordinate the transfer of high-frequency information 

through modulation of the “sender’s” excitability (Hahn et al. 2012; Isomura et al. 2006; 

Sirota et al. 2008; Wilson and McNaughton 1994). Hence, the two-stage reciprocal 

dialogue model predicts that lower and higher frequency activity between hippocampus 

and cortex should propagate in opposite directions across wake and SWS, as illustrated 
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in the schematic in Figure 1. However, such reversal has not been directly observed in 

humans.  

 

Figure 5-1: Schematic representation of the two-stage reciprocal cortical-hippocampal 
dialogue. Information is carried by high frequency signals. During wake and SWS, the 
information “receiver” coordinates the timing of transmissions from the “sender” via 
propagated low frequency signals. 
 

We have recently analyzed temporal lags (delays) in neural signals to study the net 

propagation of spontaneous activity. In particular, we investigated resting state fMRI (rs-

fMRI) blood oxygen level dependent (BOLD) signals and demonstrated directed 

propagation of infra-slow activity (<0.1 Hz) in normal young adults (Mitra et al. 2015a; 

Mitra et al. 2014). Although rs-fMRI data is generally analyzed on the basis of zero-lag 

correlation topographies (e.g., functional connectivity) (Biswal et al. 1995; Fox and 

Raichle 2007), our prior work has established that the resting state BOLD signal also 

exhibits a highly reproducible propagation structure in awake adults (Mitra et al. 2015a; 

Mitra et al. 2014). Moreover, in a data-driven analysis, we found that BOLD signal 

propagation is markedly altered in wake versus SWS, including state-dependent 

reversal of propagation between subcortical structures (thalamus and striatum) and the 
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cerebral cortex (Mitra et al. 2015b). On this basis, we hypothesized that the reciprocal 

cortico-hippocampal dialogue (Fig. 1) may manifest a lower frequency component in 

infra-slow signals, whereas a higher frequency component may be found in oscillations 

more traditionally associated with hippocampal function (Buzsaki et al. 2013; Jacobs 

2014; Sirota et al. 2008). 

 

To investigate this hypothesis, we here analyze two data sets: (1) combined non-

invasive electroencephalography (EEG) and rs-fMRI acquired in 38 normal, young 

adults during wake and SWS, and (2) invasive electrocorticography (ECoG) data 

collected during wake and SWS in 5 patients undergoing evaluation for surgical 

management of epilepsy. We study infra-slow propagation by examining temporal lags 

in cortico-hippocampal rs-fMRI signals as well as electrophysiological infra-slow signals 

extracted from ECoG. Higher frequencies are examined by studying temporal lags in 

local field potentials (LFPs) measured using ECoG. On this basis, we investigate 

cortical-hippocampal propagation of both slow and fast signals in humans during 

wakefulness and SWS.  
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5.4 Results 

Figure 5-2: Calculation of 
rs-fMRI temporal lags 
using parabolic 
interpolation. Lags are 
derived by pairwise 
analysis of time series 
derived from the 
hippocampus region of 
interest (ROI) and every 
cortical voxel. (A): 
Hippocampal ROI and a 
sample gray matter voxel. 
(B): Time series extracted 
from the regions in (A). 
(C): The corresponding 
lagged cross-covariance 
function. The range of the 
plotted values is 
restricted to ±8.32 s, 
which is equivalent to ±4 
frames (red markers) as 

the repetition time was 2.08 s. The lag between the time series is the value at which the 
absolute value of the cross-covariance function is maximal. (D):This extremum (arrow, 
teal marker) can be determined at a resolution finer than the temporal sampling density 
by parabolic interpolation (magenta line) through the computed values (red markers). In 
this example, the cortical time series is on balance ~0.5 seconds later than the 
hippocampal time series.  See Methods and (Mitra et al. 2014) for further detail. 

Resting state fMRI 

We first examined infra-slow signaling using rs-fMRI in 38 normal adults, on the basis of 

prior work demonstrating state-dependent reversal of BOLD signal propagation between 

cortex and subcortical structures (Mitra et al. 2015b). As illustrated in Figure 2, we 

compute temporal lags in rs-fMRI data by applying parabolic interpolation to lagged 

covariance curves derived over pairs of time series (this methodology has been 

previously described in detail (Mitra et al. 2014)). Parabolic interpolation allows the 

detection of temporal lags finer than the temporal sampling density of fMRI. The 

temporal lag between the hippocampus region of interest (ROI) and each gray matter 

voxel represents, on average, whether the BOLD signal in the hippocampus leads or 
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follows the cortical voxel.  

 
 

The set of all temporal lags with respect to the hippocampus, during wake and SWS, is 

shown in Figure 3 in the form of a lag map. Negative lag values (cool hues) in Fig. 3 

indicate voxels where activity on average leads the hippocampus; positive lag values 

(warm hues) indicate voxels where activity on average follows the hippocampus. The 

range of lags in Fig. 3, ~±1 second, agrees with previous findings (Mitra et al. 2015a).  

 

Figure 5-3: Hippocampus seed-based lag maps (using the ROI in Figure 2A) of infra-slow 
rs-fMRI BOLD activity in wake (A) and SWS (B). Maps depict the mean delay between 
each voxel and the hippocampus seed-region. Negative lag values indicate regions 
where activity leads the hippocampus; positive lag values indicate regions where activity 

follows the hippocampus. The range of lags is ~±1 second as shown in the color scale. 

Contrasting Figs. 3A-B, it is evident that the hippocampal lag maps are substantially 

altered across wake and SWS. To assess the distribution of these effects over 

functional systems, we computed the mean lag between the hippocampus and an array 

of neocortical RSNs
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Figure 5-4: Topography of wake vs. SWS rs-fMRI hippocampal lag differences. (A): Mean 
lag between the hippocampus and each of cortical 8 networks during wake and SWS (see 
Fig. S1 for network topographies). Error bars represent 95% confidence intervals over 
subjects. (B): SWS minus wake hippocampus lag difference map, e.g., Fig. 3B minus Fig. 
3A. (C): Difference map in (B), masked for statistical significance at the spatial cluster 
level (|Z| > 4.5, p < 0.05 corrected).  (D)-(E): Group-level lagged covariance curves, in 
wake and SWS, between medial prefrontal cortex (mPFC) and hippocampus as well as 
between putamen and hippocampus. mPFC and putamen ROIs were derived from spatial 
clusters in (C). It is evident that mPFC shifts from “late” to “early”, across wake and SWS, 
with respect to the hippocampus. In contrast, the putamen shifts from “early” to “late” 
across wake and SWS. Abbreviations: dorsal attention network (DAN), ventral attention 
network (VAN), sensory motor network (SMN), visual network (VIS), frontoparietal control 
network (FPC), language network (LAN), default mode network (DMN), and auditory 
network (AUD). * designates statistically significant reversal in propagation direction (p < 
0.05, Bonferroni corrected; see Methods). 

 

in wake and SWS (see supplemental Figure S1A for topographic network definitions). 

The results, shown in Figure 4A, demonstrate that every neocortical RSN is late with 

respect to the hippocampus during wake. In contrast, during SWS, every RSN is early 
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with respect to the hippocampus, with the exception of the sensory motor network 

(SMN). Thus, infra-slow rs-fMRI activity generally propagates from hippocampus to 

cerebral cortex during wake, but in the opposite direction, from cerebral cortex to 

hippocampus, during SWS. This reversal in propagation is statistically significant in 

three networks: the visual network, the auditory network, and the default mode network 

(DMN). 

 

To examine lags at a finer spatial scale, we next analyzed voxel-wise lag differences 

(Fig. 4B). Statistically significant spatial clusters are shown in Fig. 4C. Clusters with 

negative lag values (blue) in Fig. 2C are earlier with respect to hippocampus during 

SWS as compared to wake. These clusters include the posterior cingulate precuneus, 

parietal cortex, and medial prefrontal cortex, a constellation of regions corresponding to 

the default mode network (Raichle et al. 2001). Additional significant spatial clusters of 

increased earliness were found in the calcarine sulcus (visual network) and auditory 

cortex (auditory network).  

 

Positive lag values, indicating voxels that are later with respect to hippocampus during 

SWS as compared to wake, are also found in Fig. 4B. This effect was statistically 

significant in two spatial clusters (Fig. 4C): the paracentral lobule and parts of the right 

dorsal striatum (caudate nucleus and putamen). The paracentral lobule is a functional 

component of the supplementary motor area (SMA) (Lim et al. 1994), which belongs to 

the SMN. Thus, increased lateness in paracentral lobule accounts for the exceptional 

status of the SMN in Fig. 4A. The SMA and dorsal striatum both play a major role in 
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procedural motor learning (Halsband and Lange 2006). Hence, our results raise the 

possibility that regions integral to motor learning exhibit increased lateness with respect 

to the hippocampus during SWS. Indeed, a trend toward increased lateness was also 

observed at the voxel-level in rostral cingulate cortex (Fig. 4B), another area implicated 

in procedural motor learning (Halsband and Lange 2006).  

 

In control analyses, we verified that BOLD signal amplitude in the hippocampal ROI is 

unchanged in wake vs. SWS (Supplemental Fig. S1B), as is zero-lag correlation (e.g., 

conventional functional connectivity) between the hippocampus and the major cortical 

networks (Supplemental Figure S1C). Therefore, the observed shifts in BOLD signal lag 

cannot be attributed to loss of hippocampal signal or loss of cortical-hippocampal 

functional connectivity. Moreover, entorhinal cortex lag analyses yielded results nearly 

identical to those obtained using the hippocampus (Supplemental Figure S2). Therefore, 

the findings in Figs. 3-4 should be understood as applying to the hippocampal system, 

including entorhinal cortex.  
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Figure 5-5: 
Cortical-
hippocampal lags 
in infra-slow 
gamma BLP 
fluctuations. (A): 
Group-level 
electrode 
coverage; heat-
map indicates 
cross-subject 
coverage density. 
(B): Hippocampal 
system seed-
electrode 
locations for each 
of the 5 subjects. 
One seed 
electrode is more 
anterior than the 
rest; however, the 
results obtained in 

this subject are comparable to the others (see “PT 5” in Figs. S3-S5). (C): Sample 60 sec 
gamma band LFP timeseries (blue), along with the corresponding infra-slow BLP 
timeseries (red). (D): Sample lagged covariance curves between two gamma BLP time 
series (a hippocampal time series and a DMN time series) in one subject, in wake and 
SWS. Note that in this example, the DMN electrode is late with respect to the 
hippocampus during wake, and early during SWS. (E): Group level cortical-hippocampal 
lags for infra-slow gamma BLP. To accommodate variable cortical electrode coverage 
across subjects, lag results were computed at the RSN level (as in Fig. 4A). Note shift 
from positive (late) to negative (early) temporal lags across most networks, with 
significant effects in VIS, DMN, and AUD. * designates statistically significant reversal in 
propagation direction. Lag results for delta, theta, and alpha BLP are shown in Fig. S3.  

Infra-slow electrophysiology 

We have thus far examined temporal lags in rs-fMRI data. We next examined lags in 

infra-slow activity using ECoG data collected during wake and SWS in 5 patients 

undergoing evaluation for surgical management of epilepsy (see Supplemental Table 

S1 for patient details and Supplemental Methods for sleep staging). These patients had 

no medial temporal lobe pathology and were grossly cognitively normal including intact 

memory function. Cortical electrode coverage across subjects is illustrated in Figure 5A; 

the locations of electrodes in the hippocampal system in each of the 5 patients are 
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shown in Figure 5B.  

 

Infra-slow activity in ECoG has previously been assessed two ways, either through 

infra-slow local field potentials (LFPs) (He et al. 2008) or infra-slow fluctuations in band 

limited power (BLP) (Foster et al. 2015; Leopold et al. 2003; Nir et al. 2008). Both infra-

slow potentials and infra-slow fluctuations in BLP exhibit temporal correlation patterns 

that have been shown to correspond to RSNs derived using rs-fMRI (Foster et al. 2015; 

He et al. 2008). Owing to clinical amplifier limitations, infra-slow potentials were not 

available in the present data; hence, we examined cortical-hippocampal lags in infra-

slow BLP fluctuations, parametric in carrier frequency: delta (0.5-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz) and gamma (40-100 Hz). Use of infra-slow BLP to assess infra-slow 

fluctuations in electrophysiology is well established (Foster et al. 2015; Leopold et al. 

2003; Liu et al. 2014; Nir et al. 2008).  

 

Accordingly, we computed lags in each subject between the hippocampal electrode and 

all cortical electrodes using infra-slow BLP time series parametric in carrier frequency. 

An example of lagged covariance curves in wake and SWS, illustrated using gamma 

BLP timeseries, is shown in Figure 5D. To accommodate variable cortical electrode 

coverage across subjects, group-average lag results were computed at the network 

level (as in Fig. 4A). The most robust evidence of statistically significant reversal of lags 

in infra-slow BLP between cortex and hippocampus was found in the gamma BLP, as 

shown in Figure 5E. Notably, infra-slow fluctuations in gamma BLP exhibited cortical-

hippocampal lags closely matched to our rs-fMRI results (compare Figs. 5E, 4A). The 
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range of gamma BLP lags is similar to that reported in Fig. 4A (~±1 second). Moreover, 

with one exception, each cortical RSN was late with respect to hippocampus during 

wake, whereas the reverse was true during SWS. This reversal was statistically 

significant in the visual, default mode and auditory networks (p < 0.05, corrected). The 

lone exception to the finding of increased earliness in SWS was the SMN, which 

exhibited increased lateness with respect to hippocampus in SWS as compared to wake 

(Fig. 5E). Notably, the same SMN effect was observed in the rs-fMRI results (Fig. 4A).  

 

We found no statistically significant wake vs. SWS reversal of infra-slow BLP lags in the 

alpha or theta bands (Supplemental Figure S3A-B). Interestingly, one significant lag 

reversal was found in the visual network in delta BLP, but the direction of this lag 

reversal is opposite to what was observed for gamma BLP (see Supplemental Figure 

S3A-B for further discussion). We also computed zero-lag correlations for BLP signals 

between the hippocampal electrode and each cortical network, and found that none of 

the lag changes can be attributed to statistically significant changes in correlation 

between wake and SWS (Supplemental Figure S3C). Stable infra-slow BLP correlations 

across wake and SWS agree with previously reported work (Foster et al. 2015; Nir et al. 

2008). Finally, we verified that the cortical and hippocampal electrodes in each patient 

had power at all analyzed frequencies during both wake and SWS (Supplemental 

Figure 4). Although there is more delta band power during SWS than wake (by 

definition), power in delta frequencies is present during wakefulness. Moreover, as has 

been previously reported, gamma oscillations are present during wake and SWS (Le 

Van Quyen et al. 2010).  
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Figure 5-6: 
Cortical-
hippocampal lags 
in delta LFPs. (A): 
Sample 30 
seconds of time 
series from the 
hippocampus 
(orange) and 
cortex (blue) in 
one subject during 
wake and SWS. 
(B): Lagged 
covariance curves 
corresponding to 
the time series in 
(A). Note that in 
this example, the 
cortex is early 
with respect to the 
hippocampus 
during wake, and 

late during SWS. (C) Group level cortical-hippocampal lags for delta LFPs. Note shift 
from negative (early) to positive (late) temporal lags across most networks, with 
significant effects in DAN, VIS, and FPC. * designates statistically significant reversal in 
propagation direction. Lag results for theta, alpha, and gamma LFPs are shown in Fig. S5.  

Local field potentials 

The reciprocal two-stage model predicts the existence of high-frequency signals that 

propagate from cerebral cortex to hippocampus during wake, and from hippocampus to 

cerebral cortex during SWS (Figure 1). To test this feature of the model, we analyzed 

temporal lags in local field potentials. Although low frequency LFPs, such as delta, are 

generally considered “slow”, in the present context they are treated as “fast” as these 

frequencies are at least one order of magnitude higher than the infra-slow range. As 

before, we analyzed lags computed between the hippocampal electrode and every 

cortical electrode, parametric in frequency. An example is illustrated in Figure 6A: the 

top trace shows delta band activity in the hippocampus and a cortical electrode during 

wakefulness. The bottom trace shows delta band activity in the same electrodes in the 
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same patient during SWS. Lagged covariance curves computed from the time series 

during wake and SWS are illustrated in Figure 6B; in the illustrated example, it is 

evident that the cortex leads the hippocampus during wake (negative lag value), 

whereas the reverse is true during SWS (positive lag value). Group-average lag results 

for delta band activity, computed at the network level, are shown in Figure 6C. The 

range of the temporal lags in Fig. 6C, approximately ± 50 milliseconds, are much faster 

than the ~1 second infra-slow lags reported in Fig. 5E. In general, cortex leads 

hippocampus during wake, and hippocampus leads cortex during SWS. This reversal in 

propagation direction was statistically significant in the dorsal attention network, the 

visual network, and the frontoparietal control network. It is notable that the SMN 

exhibited the opposite effect although this contrast was not statistically significant. That 

is, the net balance of propagation during wakefulness is from hippocampus to cortex in 

the SMN, and vice versa during SWS. Thus, the SMN appears as an exception in both 

infra-slow and delta band lag analyses.  

 

We found no statistically significant wake vs. SWS reversal of LFP lags in the theta, 

alpha, or gamma bands (Supplemental Figure S5A-B). We also found that, at the 

network level, correlations in LFP activity between the hippocampus and cerebral cortex 

were stable across wake and SWS in all analyzed bands (Supplemental Figure S5C). 

Thus, the changes in the direction of temporal lag found in delta activity are not 

attributable to changes in correlation structure.  
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5.5 Discussion 

Summary of present findings 

We analyzed human cortical-hippocampal signaling, as a function of wake and SWS, at 

multiple timescales using both rs-fMRI and electrocorticography. In general, we find that 

infra-slow activity, as measured using spontaneous BOLD signals and fluctuations in 

gamma BLP, propagates from the hippocampus to the cerebral cortex during wake, but 

in the opposite direction during SWS. In contrast, spontaneous delta band LFPs 

measured using ECoG generally propagate from cerebral cortex to hippocampus during 

wake, and from hippocampus to cerebral cortex during SWS. Taken together, these 

results demonstrate reversal of cortical-hippocampal signaling in humans, across wake 

and slow wave sleep, in two distinct frequency ranges. Our findings are consistent with 

the two-stage reciprocal theory of cortico-hippocampal communication (Fig. 1), if infra-

slow signals are taken to represent the low frequency component of the model, and 

delta band activity is viewed as the higher frequency component. These results 

represent a departure from rodent hippocampus studies which associate delta/theta 

activity with low frequency signaling, and gamma/sharp-wave activity with higher 

frequency signals (Buzsaki 2002; Roumis and Frank 2015; Sirota and Buzsaki 2005; 

Sirota et al. 2003). We speculate that the differences may be attributable to cross-

species effects (Jacobs 2014) as well as different signaling processes captured by 

macro- as opposed to micro-electrode recordings (discussed further in “Hippocampal 

Delta”) (Buffalo et al. 2011).  

 

Our data also reveal significant exceptions to the general infra-slow/delta scheme in the 



 176 

SMN and putamen. In these regions, the directions of the temporal lags we observed 

are precisely reversed from findings in the rest of the cortex, for both infra-slow and 

delta band activity. Thus, not only is the direction of cortical-hippocampal signaling a 

function of wake vs. sleep and frequency, the direction of signaling also depends on the 

part of cortex in question (Figure 7).  

Figure 5-7: Schematic of present 
findings. The left column depicts 
infra-slow and delta LFP lags 
between the hippocampus and 
most of cortex, highlighting the 
DMN, VIS, and AUD. The temporal 
delays found between the 
hippocampus and these cortical 
systems agrees with the directions 
predicted by the two-stage 
reciprocal dialogue model (Fig. 1), 
if infra-slow activity is taken to 
represent the low frequency 
component of the model, and delta 

LFPs represent the higher frequency component. However, the right column 
demonstrates that precisely the opposite lags are found when considering the putamen 
and the SMN with respect to the hippocampus. Dotted red lines designate temporal lags 
implied, but not directly observed, by mirrored dissociation between systems. We 
hypothesize that the temporal lags depicted in the left and right columns may represent 
the parallel functions of the declarative and procedural memory systems, respectively. 
As depicted in the right column, our results suggest that the hippocampus is in an 
ongoing dialogue with the procedural memory system. 
 

Infra-slow signaling 

Our results highlight the role of infra-slow activity, measured by both rs-fMRI and 

fluctuations in gamma BLP, in the cortico-hippocampal dialogue. The findings suggest 

that the direction of infra-slow propagation between cortex and hippocampus is related 

the cortical-hippocampal state (encoding vs. consolidating). The procedural memory 

system may be subject to a similar principle, as we have previously found reversal in 

propagated infra-slow activity between putamen in cortex across wake and SWS (Mitra 

et al. 2015b).  
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Infra-slow activity has been widely implicated in organizing brain function. First, prior 

work has demonstrated infra-slow modulation of high frequency cortico-hippocampal 

interactions during SWS (Sirota et al. 2003). Second, it is now well-known that infra-

slow fluctuations (assessed by rs-fMRI and electrophysiological techniques) are 

temporally correlated within functional systems (or resting state networks) spanning the 

entire brain (He et al. 2008; Nir et al. 2008). Indeed, zero-lag correlation topographies in 

rs-fMRI activity have been previously shown to correspond most closely to correlation 

topographies derived using gamma BLP, as opposed to BLP fluctuations at other 

frequencies (Foster et al. 2015; Leopold et al. 2003; Nir et al. 2008). Our findings extend 

the correspondence between rs-fMRI and infra-slow fluctuations in gamma BLP by 

demonstrating agreement in their temporal lag structure, with respect to cortical-

hippocampal delays. The agreement between rs-fMRI and gamma BLP suggests that 

large-scale coordinated infra-slow fluctuations in activity, assessed by these techniques, 

likely correspond to spatially broad changes in cortical excitability (He et al. 2008; 

Leopold et al. 2003; Monto et al. 2008).  

 

In accordance with the two-stage reciprocal dialogue model, we suggest that slow, 

coordinated changes in excitability play a role in coordinating higher frequency 

information exchange between the cortex and hippocampus. It has been previously 

demonstrated that spontaneous infra-slow activity modulates broad-band 

electrophysiological activity through cross-frequency, phase-amplitude coupling (Monto 

et al. 2008). Thus, given its broad influence over multiple temporal scales and large 
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distances, temporal lags in infra-slow activity are well suited for the coordination of 

systems level activity necessary for cortical-hippocampal communication. Importantly, 

the long temporal lags (~1 second) observed in infra-slow activity indicate that these 

very slow frequencies do not propagate via direct axonal transmission; instead, we 

hypothesize that infra-slow signals travel at the population level to act as a slow 

feedback signal to regulate higher frequency activity. 

 

Our study does not address the mechanisms that cause the direction of propagated 

infra-slow activity between hippocampus and cortex to reverse. However, prior evidence 

suggests that the differences in neuromodulator tone between wake and SWS 

(Stickgold 2005), especially cholinergic input (Hahn et al. 2012; Hasselmo 1999), play a 

role in altering patterns of intrinsic activity. Specifically, the reduction of cholinergic tone 

during SWS (Hasselmo 1999) may differentially alter the excitatory:inhibitory balance in 

different parts of the brain (Buzsaki et al. 2007). Regionally variable differences in 

excitatory tone could underlie reversals in the net propagation of activity. The 

physiology underlying infra-slow propagation over 100’s-1000’s of milliseconds is also 

presently unknown. This mechanistic uncertainty extends to propagation of ~1 Hz 

activity over 100’s of milliseconds, where prior work has implicated factors ranging from 

purinergic signaling to the balance in excitatory and inhibitory activity (Hahn et al. 2012; 

Poskanzer and Yuste 2011). Future work is required to resolve these questions.  

 

Hippocampal delta 

We find that, on balance, spontaneous delta LFPs propagate from the cerebral cortex to 
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the hippocampus during wakefulness, and from hippocampus to cerebral cortex during 

SWS. These results, in the context of the two-stage reciprocal dialogue model, suggest 

that delta band activity plays a role in human cortical-hippocampal information 

exchange in both wake and sleep. Although hippocampal function has been traditionally 

associated with theta (4-8 Hz) band activity on the basis of rodent studies (Battaglia et 

al. 2011; Buzsaki 2002), recent work has shown that memory related activity in the 

primate (including human) hippocampus manifests also in the delta (0.5-4 Hz) range 

(Arnolds et al. 1980; Jacobs 2014; Lega et al. 2012; Moroni et al. 2012; Moroni et al. 

2014; Watrous et al. 2011). Human ECoG studies have shown that delta LFP activity 

propagates from cortex to hippocampus with a delay of ~30 milliseconds during recall 

tasks (Lega et al. 2012), in agreement with the delay time and direction observed in our 

awake data (Fig. 6B). Furthermore, delta power in the human hippocampus increases 

during SWS following a memory task, and the degree of this increase is correlated with 

post-sleep memory recall (Moroni et al. 2014), suggesting a role for hippocampal delta 

in memory consolidation during SWS. To the best of our knowledge, phase delays in 

delta LFPs between hippocampus and cortex have not been previously studied in 

human SWS. However, our finding of signaling from hippocampus to cerebral cortex in 

SWS is consistent with delta activity facilitating consolidation by transfer of information 

from hippocampus to cortex.  

 

The propagation of delta LFPs from hippocampus to much of cortex during SWS may 

appear, at first blush, to contradict prior work, which has demonstrated propagation of 

slow waves from cortex to hippocampus (Isomura et al. 2006; Nir et al. 2011). However, 
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much of the prior work examining slow wave (or Up/Down state) propagation has used 

motor cortex recordings to examine the cortico-hippocampal relationship (Isomura et al. 

2006; Nir et al. 2011). In agreement with these studies, we find that delta LFPs in the 

motor cortex propagate to the hippocampus during SWS (Fig. 5E). Thus, in evaluating 

cortical-hippocampal propagation of activity, cortical location is a critical factor, as 

further discussed below in Network Specificity. In this regard, a present limitation is the 

lack of medial electrode coverage (Fig. 5A); it is quite possible that these medial 

structures have a different lag relation to the hippocampus, in delta LFPs, than the 

lateral regions we measured. Finally, it is important to note that delta LFPs represent a 

broader set of neural processes than slow waves (Amzica and Steriade 1998). Our 

focus on contrasting wake vs. SWS informed the present focus on delta LFPs rather 

than slow wave events, but differences between these phenomena may drive some 

differences in cortico-hippocampal relations (see Supplemental Appendix A for further 

discussion). 

 

We did not observe consistent cortical-hippocampal temporal lags in theta, alpha, or 

gamma LFPs. However, this negative finding does not mean that activity in these 

frequencies does not play an essential role in cortical-hippocampal communication. Our 

temporal lags analysis detects biases in the direction of signaling; thus, strongly 

reciprocal signaling, which may be equally important for cortical-hippocampal 

communication, may not produce a clear lag direction. Moreover, our LFP data is 

acquired on the basis of ECoG electrodes on the surface of the brain. These electrodes 

do not provide the cortical laminar specificity which has been essential for detecting 
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directed alpha and gamma band activity in other parts of the brain (Buffalo et al. 2011; 

van Kerkoerle et al. 2014). Finally, it is important to note the caveat that the present 

electrophysiological recordings are obtained in epilepsy patients. Hence, it is possible 

that the findings reported here may not generalize to normal human physiology. The 

agreement between the results obtained using rs-fMRI in normal subjects and gamma 

BLP in epilepsy patients is a good control with respect to infra-slow signaling, but ethical 

considerations prevent any similar comparison with normal participants with respect to 

LFP data.  

 

Network specificity 

In general, infra-slow activity (rs-fMRI and gamma BLP) propagates from the 

hippocampus to the cerebral cortex during wakefulness, and in the reverse direction 

during SWS. Delta LFP activity between the hippocampus and cortex generally travels 

in the opposite direction as infra-slow activity during wake and SWS. These reversals 

are especially prominent in the DMN, the visual network, and the auditory network. A 

prominent DMN effect is significant given the emerging work associating the ongoing 

function of this network with declarative memory processes both during waking recall 

(Foster et al. 2015; Stevens et al. 2010) and during offline consolidation (Kaplan et al. 

2016). Functional signaling between the hippocampus and the DMN is also consistent 

with the robust anatomical connections between these systems (Lavenex and Amaral 

2000). Therefore, our findings add to growing evidence that the ongoing activity in the 

DMN is intimately related to declarative memory function.  
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Prominent lag reversals in the visual and auditory networks suggest the key role of 

sensory systems in both encoding and consolidating declarative memories. Previous 

work has shown that sensory information is conveyed to the hippocampus during 

wakefulness (Battaglia et al. 2011; Buzsaki 1996; 1989) and that neurons in both the 

auditory and visual cortices engage in coordinated high frequency replay with the 

hippocampus during SWS (Bendor and Wilson 2012; Haggerty and Ji 2015; Ji and 

Wilson 2007). Temporal lag reversals between hippocampus and visual/auditory 

cortices may reflect systems level manifestations of these processes.  

 

Propagation between the sensory motor network (SMN), including the putamen (as 

measured in rs-fMRI), and the hippocampus occurs in the opposite direction with 

respect to the rest of the cortex, at infra-slow and delta frequencies, during wake and 

SWS. These results are consistent with prior work which has demonstrated a 

fundamental dissociation between the declarative memory system, which is 

hippocampus-dependent, and the procedural memory system, which depends on the 

striatum and supports motor learning and habitual behavior ((DeCoteau et al. 2007; 

Eichenbaum et al. 1992; Knowlton et al. 1996; Logothetis et al. 2012; Stickgold 2005); 

Figure 7). However, although the direction of propagation dissociates the procedural 

memory system from other parts of the brain, we also find evidence of signaling 

between the elements of the procedural system (SMN and putamen) and the 

hippocampus. Thus, our data suggest that in addition to functional dissociation, there is 

ongoing communication between the declarative and the procedural memory systems, 

in which the hippocampus appears to play an important role. This view is consistent with 
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prior work demonstrating coordination between the declarative and procedural memory 

systems (DeCoteau et al. 2007).  

 

Conclusion: 

Analysis of human spontaneous brain activity reveals direct evidence for reciprocal 

cortical-hippocampal communication across lower (infra-slow rs-fMRI and gamma BLP) 

and higher (delta LFP) frequency signals. As predicted by the two-stage model of 

declarative memory consolidation, the direction of propagation in both the slower (infra-

slow) and faster (delta) signals reverses direction in SWS vs. wake. However, the 

direction of hippocampal signaling with sensory motor areas differs as compared to the 

rest of the brain. Future work is required to determine the behavioral role of this 

propagated activity, as well as to investigate how these frequencies relate to other 

cortical and hippocampal rhythms.  

 

5.6 Methods 

EEG–fMRI Acquisition and Artifact Correction:  

Acquisition parameters and details for these data have been previously published 

(Tagliazucchi et al. 2013). fMRI was acquired using a 3 T scanner (Siemens Trio) with 

optimized polysomnographic settings (1,505 volumes of T2*-weighted echo planar 

images, repetition time/echo time = 2,080 ms/30 ms, matrix = 64 × 64, voxel size = 3 × 

3 × 2 mm3, distance factor = 50%; field of view = 192 mm2). 30 EEG channels were 

simultaneously recorded using a modified cap (EASYCAP) with FCz as reference 

(sampling rate = 5 kHz, low pass filter = 250 Hz, high pass filter = 0.016 Hz). MRI and 
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pulse artifact correction were performed based on the average artifact subtraction 

method (Allen et al. 1998) as implemented in Vision Analyzer2 (Brain Products) 

followed by ICA-based rejection of residual artifact components (CBC parameters; 

Vision Analyzer). EEG sleep staging was done by an expert according to the American 

Academy of Sleep Medicine (AASM) criteria (Iber 2007). 

 

fMRI Subjects:  

63 non-sleep-deprived subjects were scanned in the evening (starting at approximately 

8:00PM). Written informed consent was obtained from all subjects whose data was 

analyzed in this study, and data collection for this study was approved by the Goethe 

University ethics committee. Hypnograms were inspected to identify epochs of 

contiguous sleep stages lasting at least 5 min (150 volumes). These criteria yielded 38 

subjects contributing to the present analyses. Included are 70 epochs of wakefulness 

and 38 epochs of N3 sleep (SWS). Detailed sleep architectures of each participant have 

been previously published (Tagliazucchi et al. 2013).  

 

Electrocorticography Subjects:   

All participants were patients at Barnes Jewish Hospital or St. Louis Children's Hospital 

with drug-resistant epilepsy undergoing electrocorticographic (ECoG) monitoring to 

localize seizure foci. All participants provided informed consent with oversight by the 

local Institutional Review Board in accordance with the National Institutes of Health 

guidelines and the ethical standards of the Declaration of Helsinki. Participants were 

selected from a large ECoG database in which least 4 days of clinical ECoG recordings 
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as well as pre-operative structural and functional MRI and post-implant X-ray computed 

tomography (CT) images were acquired (n=25). Five subjects passed stringent 

electrophysiologic and spatial coverage criteria (see Supplemental Experimental 

Procedures) for inclusion in the study. We only analyzed data from patients who did not 

show any sign of medial temporal lobe pathology, were grossly cognitively normal by 

clinical neurological assessment, showed no signs of memory impairment, and had a 

combined IQ > 80 as assessed by Wechsler Adult Intelligence Scale—Fourth Edition 

(WAIS–IV).  Furthermore, 4 of the 5 subjects in the present analysis were not on any 

medications during the ECoG recording period. See Supplemental Table S1 for 

individual subject profiles. 

 

Epochs of wakefulness and sleep in the patients were identified behaviorally with video 

records. Periods of SWS during sleep were identified electrophysiologically on the basis 

of delta power in ECoG electrodes. Delta power was assessed using ECoG electrodes 

as opposed to traditional scalp EEG because, as noted by prior studies, the post-

surgical condition of the skull precludes collection of usable EEG/polysomnography data 

(Hangya et al. 2011). Thus, following previously established practice (Hangya et al. 

2011; He et al. 2008), we classified sustained periods (≥5 minutes) of delta power (> 

20% power in the 0.5-2 Hz range) in ECoG electrodes during behaviorally identified 

sleep as SWS (He et al. 2008; Iber 2007). We only analyzed SWS epochs lasting a 

minimum of 5-minutes to match the fMRI analysis. 
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Statistical analysis:  

Statistical significance of wake versus SWS differences in lag maps (Fig. 4) was 

assessed on a cluster-wise basis using threshold-extent criteria computed by extensive 

permutation resampling (Hacker et al. 2012; Hayasaka and Nichols 2003). Statistical 

significance in group-level lag reversals (Figs. 4-6) is computed using a one-sample t-

test, where statistically significant reversals are inferred only when mean lag values are 

significantly different from zero, and in opposite directions, across wake and SWS. p-

values in Fig. 4 were Bonferroni corrected for 8 comparisons;  p-values in Figs. 5-6 

were Bonferroni corrected for 24 comparisons (6 networks × 4 frequency bands).  

 

Details regarding preprocessing of fMRI and ECoG data, as well as further explanation 

of lags computations, are found in the Supplemental Experimental Procedures, found 

online. 
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Chapter 6: Distinct Temporal Dynamics and Laminar 
Relationships in Infra-slow Brain activity 
 

6.1 Preface 

In Chapter 5 we examined the temporal structure of infra-slow activity between human 

cortex and hippocampus to find that there is correspondence between fMRI and 

electrophysiology, and that moreover, delta frequency (1-4 Hz) activity moves in a 

different direction than even lower frequency infra-slow activity. Taken together, these 

findings raise a host of questions. For one, is the temporal structure correspondence 

between infra-slow fMRI and electrophysiology a property that extends to the rest of 

cortex? Furthermore, does the difference in directionality between infra-slow and delta 

activity manifest more broadly? And what about higher frequencies? If infra-slow activity 

is moving in a different direction than other canonical high frequency activity bands, is it 

possible that infra-slow brain physiology is a distinct process that moves through distinct 

layers of the cortex as compared to higher frequency activity? We consider these 

questions in Chapter 6 by moving to a mouse model and applying optical imaging as 

well as laminar electrophysiology.  

6.2 Abstract 

Long-distance systems-level functional connectivity in spontaneous infra-slow (<0.1Hz) 

blood oxygen level dependent (BOLD) signals has become a major theme in the study 

of brain function using resting state fMRI and optical imaging in both humans and 

animal models. Yet the neurophysiology of how spontaneous BOLD signals become 
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organized over long distances remains largely unknown. Here, using whole-cortex 

calcium/hemoglobin imaging and laminar electrophysiology in mice, we show that infra-

slow activity (ISA) in each of these modalities travels through the cortex along 

stereotypical trajectories that are distinct from trajectories in delta (1-4Hz) activity. 

Moreover, both infra-slow and delta activity trajectories reverse directions across 

wakefulness and anesthesia. Finally, we find that ISA travels through distinct cortical 

layers as compared to both delta activity and higher frequencies. These findings expand 

our understanding of resting state BOLD signal relationships and illustrate the unique 

physiology of long-distance organization in spontaneous infra-slow brain activity. 

 

6.3 Introduction 

Imaging of spontaneous brain activity, from human resting state functional magnetic 

resonance imaging (rs-fMRI) to murine optical imaging, reveals long-distance 

relationships even in the absence of explicit input or output (Biswal et al. 1995; Fox and 

Raichle 2007; Kenet et al. 2003; Ma et al. 2016; Vanni et al. 2017; White et al. 2011). 

Initially dismissed as noise or artifact, the long-distance organization of spontaneous 

low frequency activity is now a widely studied property of brain function (Fox and 

Raichle 2007). Infra-slow (<0.1Hz) fluctuations in the blood oxygen level dependent 

(BOLD) signal are of particular interest as they are spontaneously correlated 

(functionally connected) within large task-associated systems (Fox and Raichle 2007) 

and because BOLD signal functional connectivity has been related to a wide array of 

cognitive traits and neuropsychiatric conditions (Greicius 2008; Mitra et al. 2015b; Smith 

et al. 2015).  
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Yet, despite the popularity of resting state fMRI (rs-fMRI) as a method for studying brain 

function, the neurophysiology of how spontaneous patterns arise in BOLD signals is not 

well understood. One prominent viewpoint posits that synchronization of action 

potentials is an inherent property of connected neural networks; therefore, high 

frequency neural activity naturally tends toward synchrony within highly structurally 

connected large-scale networks (Honey et al. 2009). In this model, infra-slow 

correlations in the BOLD signal simply reflect a vascular low-pass filtering of much 

higher frequency neural activity (de Zwart et al. 2005; Honey et al. 2009). However, 

simulations modeling spontaneous BOLD signal organization as low-pass filtered action 

potentials synchronized through known white-matter connections yield only modest 

agreement with measured BOLD signal correlations (Honey et al. 2009).  Furthermore, 

a simple anatomical connectivity model cannot explain the dramatic changes in 

functional organization across wake versus sleep states (Mitra et al. 2015b).   

 

As an alternative, previous work has linked spontaneous BOLD signals to infra-slow 

activity (ISA) in local field potentials (He et al. 2008; Leopold et al. 2003; Pan et al. 

2013). Historically, infra-slow local field potential activity has been shown to be 

structured in space and time (Aladjalova 1962), and recent studies in humans (Mitra et 

al. 2015a; Mitra et al. 2014) and mice (Matsui et al. 2016) have reported that BOLD 

signals propagate through the cerebral cortex along stereotypical spatio-temporal 

sequences to give rise to long-distance organization. Taken together, these findings 

suggest that there is a bona fide infra-slow brain process that propagates over long 
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distances to establish systems-level BOLD signal organization. However, key questions 

raised by this hypothesis remain unanswered.  

 

First, do spontaneous temporal sequences in BOLD signals correspond specifically to 

infra-slow neural activity, or do they somehow reflect higher frequency spatio-temporal 

trajectories, such as in delta (1-4Hz) activity? Second, does the temporal organization of 

infra-slow activity correspond to the functional state of the brain? Third, distinct high 

frequency spectral bands such as gamma (>40 Hz) and alpha (8-12 Hz) are known to 

travel through specific layers of the cortex (Bastos et al. 2015; Buffalo et al. 2011; van 

Kerkoerle et al. 2014): if there is a distinct infra-slow temporal structure, does it travel 

through specific cortical layers as well? This third question is especially important as it 

raises the possibility that the extant literature on rs-fMRI functional connectivity reflects 

heretofore unsuspected laminar specificity.  

 

To explore these questions, we explicitly focus on the spatio-temporal structure of infra-

slow BOLD signals and their relation to both infra-slow and higher frequency neural 

activity. We first use simultaneous hemoglobin/calcium optical imaging of mouse cortex 

to demonstrate that spontaneous infra-slow blood oxygen signals travel through the 

cortex in a stereotyped trajectory closely matching that of infra-slow calcium activity, yet 

distinct from delta (1-4Hz) calcium trajectories. Furthermore, in studying spontaneous 

activity in awake and anesthetized mice, we find that ISA trajectories are highly state-

dependent, such that their directions are nearly reversed across states of 

consciousness. Finally, we record infra-slow laminar electrophysiology in the mouse 
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cortex and find that specific cortical layers are indeed responsible for directed long-

distance relationships in ISA.  

 

6.4 Results 

Stability of functional connectivity over frequencies and state 

 

We first acquired simultaneous, wide-field calcium/hemoglobin imaging in 7 transgenic 

mice expressing GCaMP6f under control of a Thy1 promoter (Figure 1A; Figure S1A-B). 

Imaging was acquired in a “resting state”: mice were stationary and not subjected to any 

imposed experimental condition (see Methods). Spontaneous activity was imaged both 

during wakefulness and under ketamine/xylazine anesthesia; each mouse was imaged 

twice on two separate days.  

 

We focused our analysis of the imaging data on spontaneous infra-slow (0.02-0.1 Hz) 

and delta (1-4 Hz) activity, using functional connectivity (FC) and temporal delays (TD) 

(Figures 1B-C). Both measures are derived from lagged-correlations between pairs of 

time series (Methods; (Mitra et al. 2014)). FC is zero-lag correlation and TD is the 

temporal offset corresponding to the peak correlation. Temporal offsets measure lead-

lag relationships between regions, allowing us to detect temporal sequences in 

spontaneous activity. The matrices in Figs. 1D-E (dimensions pixels x pixels) illustrate 

FC and TD between all pairs of cortical calcium time series. FC matrices in Fig. 1D 

show that, as previously reported (Chan et al. 2015; Ma et al. 2016; Silasi et al. 2016), 
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the correlation structure of spontaneous activity is stable over a range of frequencies 

(ISA vs. delta) and across states of consciousness (wake vs. anesthesia).  

 

Distinct spatio-temporal sequences in ISA and delta in anesthesia and wake 

 

The TD matrices in Fig. 1E demonstrate that temporal structure differs significantly (p < 

0.001; see Methods) over frequency and state. The patterns of blue and red hues in 

each TD matrix, indicating temporally early and late pixels respectively, are different 

across the four conditions (ISA and delta, anesthesia and wake). The timescales vary 

as well, ranging from +/- 0.5 sec in ISA to +/- 10 msec in delta activity. TD matrices 

were highly reproducible across the two days of imaging (Figure S1C). Thus, TD 

structure is far more frequency and state-dependent than FC.   

 

We visualized the cortical topography of spontaneous temporal sequences with lag 

projections (images 1-4; Figure 2A), which are row-wise means of TD matrices (images 

1-4; Figure 1E). Lag projections depict the degree to which, on average, each pixel is 

early (blue) or late (red) compared to the rest of the cortex. Hence, image 1 of Fig. 2A 

illustrates that that on average, under anesthesia, anterior delta leads posterior delta by 

~100 msec, consistent with prior reports of anterior-posterior propagation of delta 

activity in anesthesia and sleep (Massimini et al. 2004; Stroh et al. 2013). In contrast, 

posterior ISA leads anterior ISA by ~0.5 sec (image 2; Fig. 2A). Posterior (visual) 

earliness under anesthesia is consistent with ISA findings in human sleep (Mitra et al. 

2015b). During wake, delta and ISA exhibit back-to-front and front-to-back temporal 
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patterns, respectively, again at very different timescales (images 3-4 in Fig. 2A). In sum, 

Fig. 2A illustrates that spontaneous delta and ISA, measured using GCaMP6 

fluorescence, travel in distinct trajectories at different speeds. Moreover, both delta and 

ISA generally reverse direction in wake vs. anesthesia.  

 

To investigate how blood oxygen level dependent signals relate to infra-slow and delta 

activity, we repeated the analyses in Fig. 2A with hemoglobin signals (Fig. 2B). ISA lag 

projections for total hemoglobin and calcium are highly similar (images 2 and 4, in Figs. 

2A-B), consistent with prior reports of correspondence between infra-slow neural activity 

and hemodynamic signals (Huang et al. 2014; Leopold et al. 2003; Li et al. 2015; Pan et 

al. 2013). However, delta frequency total hemoglobin lag projections do not match delta-

band calcium signals (images 1 and 3, in Figs. 2A-B) and are not reproducible (Figure 

S1D). Analysis of oxyhemoglobin and deoxyhemoglobin yields concordant findings 

(Figure S2A-C). Thus, the correspondence of hemoglobin and calcium temporal 

structure is limited to infra-slow frequencies. 

 

To verify our calcium temporal delay findings, we further analyze directionality using 

Granger Causality (GC). Figure 2C shows GC for two calcium time series, extracted 

from visual and motor regions, filtered into delta and ISA. GC reveals statistically 

significant causation in the same direction as the temporal sequences shown in Fig. 2A, 

with the exception of wake delta (GC direction matches TD but is not statistically 

significant).  
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We also computed phase-frequency curves using the visual and motor regions defined 

in Fig. 2C. The result (Fig. 2D) illustrates that phase offsets are stable over 0.02-0.32Hz 

and over 1-5Hz with a sharp directionality transition at ~0.64 Hz, in both wakefulness 

and anesthesia. Figure 2D suggests that there are only two, as opposed to many, 

spontaneous temporal patterns over 0.02-5Hz. We explored this hypothesis over the 

whole-cortex by computing TD matrices (as in Fig. 1E) for calcium signals filtered into 

double octave frequency bins (0.02-5.12 Hz; Fig. 2D). We then computed the similarity 

between all pairs of TD matrices using rank-order correlations (Figure 2E). In both 

anesthesia and wake, two blocks of high correlation are apparent, in the 0.02-0.32 Hz 

range, and in the 0.64-5 Hz range. Thus, there are only two spectral regimes of 

temporal sequences over 0.02-5.12Hz. Additionally, infra-slow and delta TD matrices 

are anti-correlated, indicating that activity moves in roughly the opposite direction 

across infra-slow vs. delta frequency ranges. The same approach also quantifies 

reversal of directionality across wake and anesthesia (figure S2D-F). 

 

Frequency and state-dependent laminar relationships 

 

Having found distinct temporal structures in infra-slow and delta activity, we next 

consider whether distinct cortical layers coordinate long-distance spontaneous 

relationships in these two frequency bands. We explored this hypothesis by inserting 

two 16-channel depth electrodes in the visual and motor cortices of mice (Figure 3A) to 

record wide-spectrum (0.02-100Hz) local field potentials (LFPs). Visual and motor 

cortices were chosen to match the analyses in Figure 2.  



 202 

 

Figures 3B-C illustrate 16 x 12 FC and TD matrices between motor and visual cortices. 

These matrices show relationships between 16 recording sites from superficial-to-deep 

in motor cortex to 12 sites along the depth of visual cortex (visual cortex is thinner than 

motor cortex). It is evident that the cross-laminar FC and TD structure of ISA and delta 

are distinct (p < 0.001; see Methods) both from each other and across wake and 

anesthesia. Indeed, ISA cross-laminar relationships are also distinct compared to higher 

frequencies up to 100 Hz (Figure S3A). Note Figure 3C only reports statistically 

significant temporal delays (p<0.05 Bonferroni-corrected; see Methods); non-significant 

results are gray.  

 

The cross-laminar TD matrices (Fig. 3C) further show bi-directional temporal offsets, 

between motor and visual cortex, within a frequency band. For example, in ISA under 

anesthesia (image 2; Fig. 3C), layers II-V in motor cortex lead layers II-IV in visual 

cortex (light blue). However, ISA in deeper visual layers leads superficial/middle layers 

in motor cortex (red). The relative strength of signaling in each direction can be inferred 

from the correlation matrices. Comparing image 2 across Figs. 3B-C, note that the 

correlations corresponding to the red (visual-to-motor) temporal offsets are stronger 

than correlations corresponding to the blue (motor-to-visual) temporal offsets. Hence, 

for ISA under anesthesia, the visual-to-motor direction predominates, in accordance 

with calcium imaging in Figure 2A. In contrast, we find the reverse during wake: the 

motor-to-visual direction predominates in ISA (image 4; Figs. 3B-C). The same principle 

is seen in spontaneous delta activity; deep motor leads visual under anesthesia, and 



 203 

visual leads superficial layers of motor while in wake state (images 1 and 3; Figs. 3B-C). 

Schematics summarizing cross-laminar relationships in delta and ISA are shown in 

Figure 3D.  

 

Finally, although we find that ISA and delta are functionally distinct, prior task-based 

work has shown cross-frequency interaction between ISA phase and delta amplitude 

(Monto et al. 2008). To explore whether this occurs spontaneously, we computed 

phase-amplitude coupling (PAC) between ISA phase and delta amplitude (Fig. 3E). 

PAC was computed both over all electrodes in our electrophysiological recordings, as 

well as separately over all pixels in GCaMP6 imaging. In both cases, there is a robust, 

statistically significant (p<0.001; see Methods) relationship between ISA phase and 

delta amplitude, and the phase of this relationship shifts between wake and anesthesia.  

 

6.5 Discussion 

In summary, we find that spontaneous infra-slow brain activity exhibits a lawful temporal 

structure as it moves through specific layers of the mouse cerebral cortex. Furthermore, 

the direction of ISA travel depends on the state (awake versus anesthetized) of the 

brain. In each state, the direction and topography of ISA temporal sequences are 

concordant across hemoglobin imaging, calcium imaging, and electrophysiology. 

Moreover, the spatio-temporal and cross-laminar organization of spontaneous ISA 

differs from both delta activity and higher frequencies up to 100 Hz. Taken together, 

these results demonstrate that there is a distinct infra-slow neurophysiological process 

in the brain whose temporal structure is state-dependent, and that blood oxygen signals 
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specifically correspond to the temporal and laminar organization of infra-slow brain 

activity. 

 

Implications for BOLD imaging 

 

The question of whether directed signal flow through specific cortical layers is 

responsible for the long distance organization of blood oxygen signals and ISA has not 

been previously explored. Yet, understanding the specific basis for the systems-scale 

organization of BOLD signals is essential for interpreting the large and growing field of 

rs-fMRI. In line with prior work, we find that the correlation structure of ISA and delta are 

quite similar (Chan et al. 2015; Ma et al. 2016). However, the present imaging results 

clearly differentiate directed trajectories in spontaneous ISA, as measured using blood 

oxygen and calcium signals, from spontaneous delta band activity (Figure 2A-B). We 

find that, whereas ISA temporal structure is quite similar across blood oxygen and 

calcium signals, the temporal structure of delta activity in the calcium signal is not 

mirrored in blood oxygen signals (Fig. 2). In fact, the delta band temporal structure of 

blood oxygen signals was not statistically reliable (Fig. S1D), demonstrating that the 

temporal structure of blood oxygen signals corresponds specifically to ISA.   

 

Laminar electrophysiology further shows that, not only do delta and ISA travel in 

different directions, they also travel through different layers of the cortex. Anterior-to-

posterior delta waves under anesthesia (Massimini et al. 2004) originating in deep 

cortical layers (Stroh et al. 2013), and visual-to-superficial motor travel of wake delta 
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activity (Shimaoka et al. 2017) have been reported separately before. Directed laminar 

travel of ISA has not been previously reported. On the basis of temporal delays (Figures 

2-3), we infer that ISA in anesthesia tends to travel from deep visual layers (V-VI) to 

most of motor cortex (I-V). During wake, ISA tends to travel from layers I-V in motor 

cortex to layers I-IV in visual cortex (Fig. 3C image 4); however, the shortest motor-

visual lags are between layer V of motor cortex and layers I-IV of visual cortex (Figure 

3C-D, image 4). Assuming the shortest temporal delays reflect the most direct 

relationships, we conclude that ISA tends to be sent from deep layers (V-VI) and 

received in more superficial layers (I-IV).  

 

In addition to providing laminar information, the directionality of ISA in our 

electrophysiological recordings is in agreement with results derived from both calcium 

and blood oxygen imaging. Hence, we can infer that the temporal organization found in 

ISA imaging data, in both calcium and blood oxygen signals, is attributable to the deep-

to-superficial laminar relationships uncovered through electrophysiology. These findings, 

linking infra-slow electrophysiology, calcium, and hemoglobin signals, establish a new 

basis for interpreting the neurophysiology of long-distance relationships in rs-fMRI, but 

many questions remain. Spread of low-frequency spontaneous activity from deep layers 

is consistent with prior work (Sakata and Harris 2009), but further details of traveling 

ISA remain to be understood, with possible roles for polysynaptic connectivity (Van Dijk 

et al. 2010), subcortical connections (Xiao et al. 2017), subthreshold spread of activity 

(Berger et al. 2007), and even glial cells and metabolic signaling (Poskanzer and Yuste 

2011). 
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Relationship between ISA and delta activity 

 

Although ISA and delta activity travel across the cortex in different directions and 

through different cortical layers, two of the present findings suggest that spontaneous 

activity in these two spectral regimes may nonetheless be functionally linked. First, ISA 

and delta travel in approximately opposite directions along the anterior-posterior axis of 

the dorsal mouse cortex, during both wakefulness and anesthesia (Fig. 2E). We have 

previously observed delta and ISA traveling in reciprocal directions between the human 

hippocampus and cerebral cortex (Mitra et al. 2016), and hypothesized that this was a 

unique feature of cortico-hippocampal communication. Our present results in the mouse 

suggest, instead, that reciprocal travel of delta and ISA occurs more broadly. A possible 

function of this reciprocal travel is the conveyance of slow (delta) feedforward and 

slower (ISA) feedback influences, as has been observed for gamma and alpha activity 

in visual cortex during visual tasks (Bastos et al. 2015; Buffalo et al. 2011; van 

Kerkoerle et al. 2014), although the concepts of feedforward and feedback must be 

expanded to address spontaneous activity.  

 

Second, the phase of ISA is coupled with the amplitude of delta band activity, in both 

calcium and electrophysiological recordings, and during both wakefulness and sleep 

(the phase relationship shifts slightly across states of consciousness; Fig. 3E). The 

computational purpose of this phase amplitude coupling is presently unclear, but in the 

context of prior work (Bastos et al. 2015; Monto et al. 2008), we speculate that 
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spontaneous activity may be hierarchically organized by frequency, such that the 

function of ISA is found in its interactions with higher frequencies, especially the delta 

band.  

 

State-dependence 

 

Finally, we find a reversal in the prevailing direction of temporal sequences in both delta 

and ISA across wake and anesthesia. This reversal of directionality is not observed in 

higher frequencies (Figure S3A). We therefore hypothesize that the temporal structure 

of low frequency activity, especially its direction of cortical travel, plays a special role in 

governing functional brain states. Future studies are required to explore precisely how 

spontaneous spatio-temporal sequences relate to conscious awareness.  

 

Our present laminar electrophysiology findings also suggest that, mechanistically, the 

reversal in the predominant direction of travel in ISA and delta activity is accomplished 

by changing the relative weighting of bi-directional signaling in distinct cross-laminar 

relationships, as illustrated in Figure 3D. The basis of this re-weighting requires further 

investigation, but it is natural to suggest that neuromodulation may play a role in 

directionality shifts across wake vs. anesthesia (Lydic and Baghdoyan 2005; Marder 

2012). 

 

6.6 Figures 
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Fig. 6-1 Correlations and temporal sequences in wide-field imaging of spontaneous 
calcium activity in mouse cortex. (A) Calcium fluorescence and hemoglobin absorbance 
were concurrently imaged in the dorsal cortical surface of transgenic Thy1/GCaMP6 mice 
using sequential illumination by four high-power LEDs (see Methods). (B) An example 
lagged correlation curve computed using two infra-slow activity (ISA) timeseries 
extracted from motor and visual regions of interest (ROIs). The zero-lag correlation value 
defines functional connectivity (FC); abscissa corresponding to the extremum value of 
the correlation defines the temporal delay (TD) for the pair of ROIs. (C) Same as (B), but 
for delta band activity. (D) FC matrices, illustrating correlations between all pixels, shown 
for delta and ISA, in wake and anesthesia. FC matrices are by definition symmetric 
(𝒓𝒊,𝒋  =  𝒓𝒋,𝒊). The rows and columns of the matrix are individual pixels from the dorsal 

surface of the mouse cortex arranged from anterior to posterior. (E) TD matrices 
representing the temporal delay between every pair of pixels, where the matrices are 
organized as in (D). TD matrices are by definition anti-symmetric (𝝉𝒊,𝒋  =  −𝝉𝒋,𝒊). See also 

Figure S1.  
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Fig. 6-2 Spontaneous temporal sequences systematically differ across frequencies and 
states of consciousness. (A) GCaMP6 lag projections illustrating the mean delay between 
each pixel and the rest of cortex. Infra-slow and delta activity move in distinct trajectories, 
at different speeds, during both wake and anesthesia. (B) Total hemoglobin lag maps, 
derived as in (A), with matching timescales. (C) Granger causality analysis of GCaMP6 
activity. Two ROIs in visual and motor cortices were defined by identifying regions of 
maximal lag in panel (A1-4); see Methods for coordinates. Statistically significant (p < 
0.01; see Methods) Granger causality was found in agreement with (A), except in wake 
delta. (D) Frequency vs. phase analysis between the two ROIs in (C) in wake (pink) and 
anesthesia (blue). (E) Whole-cortex GCaMP6 TD matrix comparisons parametric in 
frequency under anesthesia (left panel) and wake (right panel). Each matrix entry reports 
the similarity (rank-order correlation) between a pair of TD matrices. See also Figure S2.  
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Fig. 6-3 Cross-laminar relationships in spontaneous visual-motor activity vary 
systematically across frequency and state. (A) 16-channel 1.5mm depth probes were 
inserted into motor and visual cortices. The thinner visual cortex is fully spanned by 12-
channels. Probes were painted with DiI; position was confirmed in histologic sections 
counterstained with DAPI. (B) Cross-laminar FC. The four 16 x 12 matrices illustrate 
correlations between the 16 electrodes in motor cortex (rows) and the 12 electrodes in 
visual cortex (columns); electrodes are arranged from superficial (S) to deep (D). (C) 
Cross-laminar temporal delay matrices, arranged as in panel (B). Blue designates motor 
leading visual cortex; red indicates motor following visual cortex. Non-significant 
temporal delays are grey. (D) Schematic representation of the results in (B)-(C), 
highlighting the shortest delays between regions. Thick lines designate the predominant 
direction of signaling. Layer labels are approximate. (E) Phase-amplitude coupling (PAC) 
between ISA phase and delta amplitude. Sample 5 minute time series (gray) 
demonstrates ISA phase and delta amplitude are computed by first filtering (blue) and 
then applying a Hilbert transform (red). Delta amplitude is binned by infra-slow phase for 
each time series (electrode or pixel), and averaged to produce PAC histograms for 
electrophysiology and GCaMP6 imaging, in wake and anesthesia. See also Figure S3.  
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6.8 Methods and Supplementary Materials 

Methods 
 
Mice 

All procedures described below were approved by the Washington University Animal 

Studies Committee in compliance with AAALAC guidelines. Imaging studies were 

performed on transgenic mice expressing GCaMP6f under control of a 

mouse Thy1 promoter acquired from Jackson Laboratories (JAX Strain: C57BL/6J-

Tg(Thy1-GCaMP6f)GP5.5Dkim; stock: 024276)  (Chen et al. 2013; Dana et al. 2014). 

GCaMP6/Thy1 transgenic genotypes were confirmed by PCR using the forward primer 

5’-CATCAGTGCAGCAGAGCTTC-3’ and reverse primer 5’-

CAGCGTATCCACATAGCGTA-3’. Histology of GCaMP6 fluorescence is shown in 

supplemental Figure S1. Electrophysiology studies were performed on C57Bl6/J mice 
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(Jackson Laboratories; stock: 664). All mice were raised in standard cages in a 

dedicated mouse facility with a 12hr-12hr light/dark cycle. 

 

Animal Preparation for Optical Imaging 

Seven GCaMP6 mice (12-16weeks of age, 28-36g) were used for imaging in this study. 

Mice were sedated with isoflurane (3% induction, 1% maintenance, 0.5 L/min) and 

placed in a stereotactic holder. The head was then shaved, and a midline incision made 

to expose the skull. Body temperature was maintained at 37°C using a temperature 

controlled heating pad. Chronic cranial windows made of Plexiglas and with pre-tapped 

holes were fixed to the skull using dental cement (C&B-Metabond, Parkell Inc., 

Edgewood, NY, USA).   

 

Animal Preparation for Electrophysiology 

Ten C57Bl6/J mice were used to obtain electrophysiological recordings. Mice were 

given dexamethasone (20μL 4mg/mL, S.C.) 4 hours prior to surgery, and mannitol (150 

μL, 20% manitol, I.P.) immediately prior to surgery. Mice were anesthetized using 

isoflurane anesthesia (3% induction, 1.5% maintenance). Once anesthetized, lidocaine 

anesthetic was given locally, scalp hair was removed, a midline incision was made in 

the scalp, and the scalp was retracted. The periosteal membranes were removed. Two 

craniectomies (1mm in diameter) were performed over the motor and visual locations 

determined by stereotactic coordinates derived from the Granger Causality analysis 

shown in main text Figure 2C (Motor cortex = 1.5 mm Left of bregma, 1.6 mm anterior to 

bregma; visual cortex = 2.6 mm Left of bregma, 3.0 mm posterior to bregma). A third 
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craniotomy was made on the right hemisphere (2.3 mm Right of bregma, 0.9 mm 

anterior to bregma), and a permanent ground wire was placed and secured with C&B 

Metabond dental cement (Parkell Inc., Edgewood, NY, USA). A custom-made fixation 

block with screw threading was attached to the skull with dental cement (to enable head 

fixation during recording). The left hemisphere craniectomies were covered with a self-

healing silicone polymer that allowed silicone electrodes to pass through 

undamaged.  Mice were given S.C. buprenorphine at the end of the procedure for pain 

control, and mice were given 5 days of recovery time before any recording was 

performed. 

 

Optical Imaging System 

Sequential illumination was provided by four LEDs: 470nm (measured peak λ=454nm 

(referred to as 454nm LED in this study), LCS-0470-15-22, Mightex Systems, 

Pleasanton, CA, USA), 530nm (measured peak λ=523nm, LCS-0530-15-22), 590nm 

(measured peak λ=595nm, LCS-0590-10-22), and 625nm (measured peak λ=640nm, 

LCS-0625-03-22). The 454nm LED is used for GCaMP excitation, and the 523nm, 

595nm, and 640nm LEDs are used for multispectral oximetric imaging. The 523nm LED 

was also used as an emission reference for GCaMP6 fluorescence in order to remove 

any confound of hemodynamics in the fluorescence signal (described below). Both the 

454nm and 523nm LED light paths were made collinear by using a multi-wavelength 

beam combiner dichroic mirror (LCS-BC25-0505, Mightex Systems, Pleasanton, CA, 

USA). For image detection, we used a cooled, frame-transfer EMCCD camera (iXon 

897, Andor Technologies, Belfast, Northern Ireland, United Kingdom) in combination 
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with an 85mm f/1.4 camera lens (Rokinon, New York, NY, USA). The acquisition 

framerate was 16.8Hz per channel, with the overall framerate of the camera as ~67HZ. 

This framerate is well above the temporal resolution necessary to adequately 

characterize hypothesized GCaMP6 activity. To increase frame rate as well as increase 

SNR, the CCD was binned at 4 x 4 pixels; this reduced the resolution of the output 

images from full-frame 512 x 512 pixels to 128 x 128 pixels. Both the LEDs and the 

exposure of the CCD were synchronized and triggered via a DAQ (PCI-6733, National 

Instruments, Austin, TX, USA) using MATLAB (MathWorks, Natick, MA, USA). The 

field-of-view was adjusted to be approximately 1 cm2 resulting in an area that covered 

the majority of the convexity of the cerebral cortex with anterior-posterior coverage from 

the olfactory bulb to the superior colliculus. The resulting pixels were approximately 

78µm x 78µm. To minimize specular reflection from the skull, we used a series of linear 

polarizers in front of the LED sources and the CCD lens. The secured mouse was 

placed at the focal plane of the camera. The combined, collimated LED unit was placed 

approximately 8 cm from the mouse skull, with a working distance of approximately 

14cm as determined by the acquisition lens. A 515nm longpass filter (Semrock, 

Rochester, NY, USA) was placed in front of the CCD to filter out 470nm fluorescence 

excitation light and a 460/60nm bandpass filter (Semrock, Rochester, NY, USA) was 

used in front of the excitation source to further minimize leakage of fluorescence 

excitation light through the 515nm longpass filter. The pulse durations for the LEDs are 

20ms, 5ms, 3ms, 1ms for 454nm, 523nm, 595nm, and 640nm, respectively.  
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Electrophysiology system 

For electrophysiology recordings, mice were placed on a felt hammock and the skull 

was fixed to a secure bar via the fixation block. Two 1.5mm 16-channel linear array 

electrodes (NeuroNexus model number A1x16-5mm-100-703-A16, Ann Arbor, MI, USA) 

were attached to separate micromanipulators (David Kopf Instruments, Los Angeles, 

California, USA). Electrodes were painted with DiI (1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate; Sigma-Aldrich, St. Louis, MO, USA), and 

placed into the brain (through the transparent silicone sealant which enabled direct 

visualization of the cortex) under direct visualization using a surgical stereoscope 

(Olympus, Tokyo, Japan). Electrode placement was confirmed in three ways: 1) the 

most superficial contact was visually guided to just under the cortical surface; 2) the 

electrophysiological signal in the most superficial contact during the transition from 

noise/air to brain was monitored 3) electrodes were painted with DiI and placement was 

confirmed with histologic sections of the mouse brain (main text Fig. 3A). Local field 

potentials were recorded using an amplifier with high-pass filter cutoff of .02Hz (Intan 

RDH2132) connected to the recording computer through an acquisition board 

(OpenEphys), with a reference wire positioned on the right hemisphere contralateral to 

the electrodes (2.3 mm Right of bregma, 0.9 mm anterior to bregma). All recordings 

were made in a completely dark room. For each mouse, awake recordings were done 

first, followed by ketamine/xylazine administration via I.P. injection in the same session 

(i.e., without removing the electrodes from the brain).  

 

Awake recordings 
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As described in the electrophysiology system description, awake mouse recordings 

(imaging and electrophysiology) were performed by mice on a felt hammock with head-

fixation, either to the optical window in the case of imaging or to the skull in the case of 

electrophysiology. The hammock provided a dark, comfortable environment while 

preventing the awake mouse from applying torque on their restrained head. After 

recovery from surgery, the mouse was acclimated to the hammock apparatus by a 

training period consisting of two 20min sessions. Acclimation is indexed by a return to 

normal behavior (e.g., whisking, grooming, and walking with head restrained). Though 

no accelerometers or other behavioral measures were used to track motion within the 

pouch during recordings, mice were qualitatively observed to be relaxed with infrequent 

limb motion after completion of the acclimation protocol. Awake imaging was performed 

for 60 minutes on two separate days, separated by two weeks, in each of the 7 mice 

analyzed in this study. The 60 minute imaging sessions were acquired over 12 5-minute 

runs. Awake electrophysiology was acquired continuously for 60 minutes in 10 mice.  

 

Anesthetized recordings 

For anesthetized imaging and electrophysiology, mice were anesthetized with I.P. 

injection of a ketamine/xylazine cocktail (86.9 mg/kg Ketamine, 13.4 mg/kg Xylazine). 

Anesthetic effect was verified by confirming that the animal was not responsive to a hind 

paw pinch. The animal was placed and kept on a solid state water circulating heating 

pad (T/Pump Classic, Stryker Co., Kalamazoo, MI, USA), maintained at 42°C. 

Anesthetized imaging was performed for 45 minutes (the duration of anesthetic effect) 

on two separate days, separated by two weeks, in each of the 7 mice analyzed in this 
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study. The 45 minute imaging sessions were acquired over 9 5-minute runs. 

Anesthetized electrophysiology was acquired continuously for 45 minutes in 10 mice.  

 

Epifluorescence and Confocal Imaging 

Mice were deeply anesthetized with FatalPlusTM (Vortech Pharmaceuticals, Dearborn, 

MI, USA) and transcardially perfused with 0.01 M PBS. The brains were removed and 

fixed in 4% paraformaldehyde for 24 h and transferred to 30% sucrose in 0.2 M PBS. 

After brains were saturated, they were snap-frozen on dry ice and coronal sections, 50 

μm thick, were made with a sliding microtome. Sections were stored in 0.2 M PBS, 30% 

sucrose, and 30% ethylene glycol at −20°C. For viewing, cut sections were washed in 

PBS, mounted, and intrinsic GCaMP6 fluorescence was examined with epifluorescence 

microscopy (Nikon Eclipse 80i, Nikon Instruments Inc., Melville, NY, USA). For viewing 

using confocal microscopy, additional cut sections were washed in PBS, mounted, and 

coverslipped in DAPI containing mounting media (Vector Laboratories, Burlingame, CA, 

USA). Fluorescent images were acquired with a Nikon A1-Rsi inverted confocal 

microscope using a 10x objective. DAPI labeled cells and electrode marker DiI were 

excited with 405nm and 560nm laser lines, respectively (Nikon A1-Rsi, Nikon 

Instruments Inc., Melville, NY, USA). 

 

Image Processing 

A representative frame of baseline light levels in a dark environment, calculated from a 

mean of dark images collected over 1 minute, was subtracted from the raw data. All 

pixel time traces were individually detrended to remove any variations in light levels due 
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to photobleaching, LED current drift, and nonuniformity across the skull (Kubota et al. 

2008). Reflectance changes in the 523nm, 595nm, and 640nm LED channels were 

used in combination to provide oximetric data using the Modified Beer-Lambert Law, 

described previously (White et al. 2011). Images in each contrast were smoothed with a 

Gaussian filter (5x5 pixel box with a 1.3 pixel standard deviation). The GCaMP6 

fluorescent signal must be corrected for any contribution from vascular activity and 

varying concentrations of absorptive hemoglobin. Though the effects of hemodynamics 

will likely not mask the emission signals entirely, they will influence them. Common 

correction methods to calculate relative fluorescence changes include using a reference 

wavelength for applying subtraction and ratiometric techniques. We implemented a 

ratiometric correction algorithm (Equation 1) to correct fluorescent emission for any 

absorption by hemoglobin and deoxyhemoglobin using the reflectance channels at the 

GCaMP6 emission wavelengths (523nm LED) as a reference.  

𝑦(𝑡) =
𝐼𝑒𝑚(𝑡)

𝐼𝑟𝑒𝑓(𝑡)
·

𝐼0
𝑟𝑒𝑓

𝐼0
𝑒𝑚             [E1] 

Iem refers to the detected fluorescent emission intensity. Iref describes the measured 

reflectance changes at the emission wavelength. A single frame from the 628nm 

reflectance channel was loaded into Adobe Photoshop CC 2014 (Adobe Systems, San 

Jose, CA, USA) and all regions not corresponding to brain were manually painted white. 

The image was loaded back into MATLAB and used to create a binary brain mask. All 

subsequent analysis was performed on those pixels labeled as brain. Image sequences 

from each mouse (as well as the brain mask for each mouse) were affine-transformed 

to a common atlas space (based on the Paxinos mouse atlas) using the positions of 

bregma and lambda (Franklin & Paxinos, 2008).  
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Electrophysiology Signal Processing 

16-channel recordings were referenced to a ground wire positioned on the right 

hemisphere contralateral to the electrodes (2.3 mm Right of bregma, 0.9 mm anterior to 

bregma). To further verify that 16 channels spanned the depth of motor cortex and 12 

channels spanned the depth of visual cortex (main text Figure 2A), we analyzed the 

spectral content of all channels. We found very similar spectral content in all 16 

channels of motor cortex in all recordings, indicating that all channels were likely in 

cortex. In contrast, channels 13-16 in visual cortex exhibited far lower power than 

channels 1-12, indicating that 12 channels span the depth of visual cortex, and that 

channels 13-16 were in underlying white matter (and hence excluded from analysis). 

60Hz notch filtering was applied to remove electronic noise from the data (Supplemental 

Figure S6).  

 

Computation of correlation and temporal lags:  

As described in main text Figure 1B-C, conventional correlation analysis involves 

computation of the Pearson correlation, 𝑟, between the time series, 𝑥1(𝑡), extracted 

from a seed region, and a second time series, 𝑥2(𝑡), extracted from some other locus 

(single pixel or region of interest).  Thus, 

 𝑟𝑥1𝑥2
=

1

𝜎𝑥1𝜎𝑥2

1

𝑇
∫𝑥1(𝑡) ∙ 𝑥2(𝑡)𝑑𝑡,      [E2]  

where 𝜎𝑥1
 and 𝜎𝑥2

 are the temporal standard deviations of signals 𝑥1 and 𝑥2, and 𝑇 is 

the interval of integration. Here, we generalize the assumption of exact temporal 

synchrony and compute lagged cross-correlation functions. Thus, 

 𝑟𝑥1𝑥2
(𝜏) =

1

𝜎𝑥1𝜎𝑥2

1

𝑇
∫𝑥1(𝑡 + 𝜏) ∙ 𝑥2(𝑡)𝑑𝑡,     [E3] 
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where 𝜏 is the lag (in units of time). In both optical and electrophysiological recordings, 

lagged correlation curves were computed between pairs of recordings (pixels and 

electrodes, respectively). The value of 𝜏 at which 𝑟𝑥1𝑥2
(𝜏) exhibits an extremum defines 

the temporal lag (equivalently, delay) between signals 𝑥1 and 𝑥2 (Konig 1994). The 

value of  𝑟𝑥1𝑥2
(0) is the traditional zero-lag Pearson correlation. All pairs of temporal 

lags and zero-lag correlations define time-delay (TD) and functional connectivity (FC) 

matrices, respectively. In the imaging data, 16.8Hz temporal sampling density limits 

detection of empirical temporal delays to ~60ms; however, we apply  parabolic 

interpolation to imaging-derived lagged cross-correlation curves to detect temporal 

delays shorter than the temporal sampling rate, as previously described (Mitra et al. 

2016; Mitra et al. 2014). There is strong agreement between empirical temporal delay 

matrices and temporal delay matrices computed using parabolic interpolation (Pearson r 

= 0.99 between measurements) in delta activity under anesthesia, as well as infra-slow 

activity measured in wake and anesthesia. The exception is delta activity during wake, 

where parabolic interpolation uncovers short temporal lags (+/-10 ms in main text Figure 

1E) that cannot be measured empirically. Critically, wake delta activity temporal delays 

computed using parabolic interpolation are stable over two days of measurement 

(Supplemental Figure 1), agree with previous findings in the literature acquired with 

higher temporal sampling rates (Shimaoka et al. 2017), and agree with the present 

electrophysiological findings sampled at 300Hz (main text Figure 3C). Parabolic 

interpolation was only applied to the imaging data; electrophysiological temporal delays 

were computed empirically as the data was acquired at a much higher temporal 

sampling density.  
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Computation of group-level FC and TD matrices 

In the imaging data, lagged-correlations were computed between every pair of pixels in 

the brain for each 5 minute run. FC and TD matrices computed over 5 minute runs were 

then averaged for each mouse across wake and anesthesia sessions. Separate 

averages computed for each mouse for each day of imaging allowed us to verify cross-

day stability (Supplemental Figure 1). Occasionally, the spectral content of an awake 

imaging run contained delta signatures of sleep (see Figure S3B-D); these runs were 

omitted from the awake analysis, leading to a loss of 5.2% of the total wake imaging 

data collection. Group level FC and TD matrices are computed from the average of 

individual mouse FC and TD matrices over both days of imaging. A similar strategy was 

applied to compute FC and TD matrices in the electrophysiology data. Although the 

electrophysiological data was acquired continuously, to match the imaging analyses, we 

split the recordings into 5 minute epochs and computed FC and TD matrices in each 

epoch. Epochs were then averaged first within a mouse (wake and anesthesia), and 

then across mice, to produce main text Figure 3 and Supplemental Figure 2. As in the 

imaging data, we also used delta power to exclude likely periods of sleep from the wake 

electrophysiology (see Figure S3). As a result, one of the ten mice from which we 

recorded electrophysiology yielded no usable wake data, leading to nine mouse data 

sets in the electrophysiology analyses. In the remaining 9 mice, 8.3% of total wake data 

was omitted due to putative sleep.  

 

Computation of group-level phase-frequency plot 
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Time series were extracted, in the imaging data, from visual and motor regions of 

interest (ROIs), shown in main text Figure 2. Then, in each 5 minute epoch of usable 

data, ROI time series were filtered into a double-octave frequency bin (0.02-0.08Hz 

ranging to 1.28-5.12Hz). For each 5 minute epoch and each double-octave frequency 

bin, the phase relationship between motor and visual time series was computed. These 

phase relationships were then averaged first within, then across, sessions as described 

for the computation of FC and TD matrices.  

 

Computation of group-level Granger Causality (GC) 

GC analysis was performed in the time domain using Anil Seth’s GC toolbox (Barnett 

and Seth 2014). Time series were extracted, in the imaging data, from visual and motor 

ROIs shown in main text Figure 2. These time series were then filtered into delta (1-

4Hz) and ISA (0.02-0.1) frequency ranges, in anesthesia and wake. As GC does not 

lend itself to averaging over epochs, we concatenated 5 minute epochs of time series, 

in each frequency band, over sessions and mice. We then applied time domain GC 

analysis to these concatenated time series in each frequency band, where the auto-

regressive model order was set to 150% of the lowest frequency in the frequency bin 

(e.g., 75 seconds for ISA, 1.5 seconds for delta), as recommended (Barnett and Seth 

2014). Statistically significant GC was found in every case (p < 0.01) except wake delta, 

where GC was detected but with a p-value of 0.25.  

 

Computation of statistical significance 
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The high dimensionality of the presently analyzed data required the use of various non-

parametric means for assessing statistical significance, described below:  

(1) Statistical differences in TD matrices in Figure 1E: As described in the 

computation of group-level FC and TD matrices, group-level TD matrices are 

computed by averaging TD matrices computed over 5 minute epochs first within 

then across mice. Therefore, to test for statistical significance between group-

level TD matrices, we computed group-level TD matrices in which the underlying 

5 minute epoch TD matrices were randomly permuted (either over ISA vs. delta, 

or wake vs. anesthesia). We then computed a null-distribution of magnitude 

difference (Euclidian distance) between surrogate group-level TD matrices. On 

the basis of this null-distribution, we conclude that differences in the TD matrices 

in Figure 1E are statistically significant (p < 0.001), both across ISA vs. delta, as 

well as across wake vs. anesthesia.  

(2) Statistical differences in lag projections in Figure 2A: Same strategy as (1) above, 

except surrogate group-level TD matrices were transformed into lag projections 

(through column-wise means) to produce surrogate group-level lag projections. 

The null-distribution was then computed as a vector Euclidian distance between 

lag projections, treating the images as 1-dimensional vectors (e.g., one number 

per brain pixel). On the basis of this null-distribution, we conclude that differences 

in the lag projections in Figure 2A are statistically significant (p < 0.001), both 

across ISA vs. delta, as well as across wake vs. anesthesia.  

(3) Statistical differences in FC and TD matrices in Figures 3B-C: Precisely the same 

approach outlined in (1) above, applied to electrophysiology FC and TD matrices.  
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(4) Statistical thresholding of temporal delays in Figure 3C: Surrogate temporal 

delays were computed for each pair of recordings by randomly phase-permuting 

filtered time series prior computation of lagged correlations, resulting in a null-

distribution of temporal delays. The empirical distribution of temporal delays 

between each pair of channels (recall TD was computed for each mouse over 5-

minute epochs) was then compared to the null-distribution with the Kolmogorov-

Smirnov test. The correlation matrices in Supplemental Figure S3G-I makes plain 

that channels within a cortical layer are not independent; thus, we apply a 

Bonferroni-correction on layers (6*6 = 36) such that only temporal delays with p < 

0.001 are shown as significant.  

(5) Statistical significance of phase-amplitude coupling (PAC) in Figure 3E: The null-

hypothesis for the phase-amplitude histograms shown in Figure 3E is a uniform 

distribution. Therefore, we tested for significant PAC by using the Kolmogorov-

Smirnov test to compare the empirical PAC histograms to a uniform distribution, 

resulting in a p-value < 0.001. We also applied a second permutation-based test 

of PAC using modulation index as described in (Canolty et al. 2006). In essence, 

PAC can be thought of as a vector on a circle depicting a preferred phase 

relationship between a pair of signals; the length of this vector is the modulation 

index. By randomly permuting the underlying signals, a surrogate PAC vector is 

computed, along with its length (e.g., a surrogate modulation index). The null-

distribution of surrogate modulation indices provides a test of statistical 

significance. By this measure as well, the presently observed PAC (imaging and 

electrophysiology) is highly significant (p < 0. 001).  
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Supplemental Figures 

 

 

 

Figure S1: Confocal fluorescence images of a 50 µm section from a representative Thy1-GCaMP6f 
mouse. (A) GCaMP is expressed in all cortical layers, while strongest expression is deeper in 
cortical layers V/VI (100 µm scale bar). (B) GCaMP expression is cytoplasmic, and its fluorescence 
reflects calcium dynamics in both the cell body and distal processes (20 µm scale bar). GCaMP6 
temporal delay structure is highly reproducible across two days of imaging. Each of the seven 
mice analyzed in this study was imaged in two separate sessions (wake and anesthesia) 
separated by two weeks. We therefore compared group-average day 1 vs. day 2 TD matrices using 
Spearman rho correlations, in ISA vs. delta, over anesthesia and wake. (C) TD comparisons in the 
GCaMP6 signal. The 2x2 blocks along the diagonal establish that day 1 and day 2 TD matrices are 
highly similar. Moreover, the anti-correlations between delta and ISA within state (e.g., within 
anesthesia and within wake) demonstrate that the reciprocal travel of ISA and delta is also highly 
reproducible. (D) TD comparisons in the total hemoglobin signal. Note that only ISA temporal 
delay structure is strongly reproducible across day 1 and day 2; delta TD structure is not nearly as 
reproducible.  Moreover, anti-correlations are only observed between ISA in anesthesia vs. wake.  
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Figure S2: Lag projections are concordant across total hemoglobin, oxyhemoglobin (OxyHb), and 
deoxyhemoglobin (DeoxyHb) signals. (A) Re-capitulation of total hemoglobin lag projection 
images from main text Figure 2B, computed in anesthesia and wake, in delta and infra-slow 
frequencies. (B) Lag projections computed using oxyhemoglobin signals. (C) Lag projections 
computed using deoxyhemoglobin signals. Whole-cortex GCaMP6 TD and FC matrix comparisons 
parametric in frequency under anesthesia and during wakefulness. (D-F) Each matrix entry reports 
the similarity (rank-order correlation) between a pair of TD matrices. (D-C) repeat the analyses in 
Figure 2E. (F) Similarities between anesthesia TD matrices and wake TD matrices. Note that higher 
frequency (>0.64Hz) anesthesia TD matrices resemble lower frequency (<0.32Hz) wake TD 
matrices. Similarly, higher frequency (>0.64Hz) wake TD matrices resemble lower frequency 
(<0.16Hz) anesthesia TD matrices. Moreover, lower frequency anesthesia vs. wake TD matrices are 
anti-correlated, as are higher frequency anesthesia vs. wake TD matrices. These results establish 
that temporal sequences reverse directions between wake and anesthesia. (G-I) The same 
analyses as in (D-F), but now applied to FC matrices. Note that FC matrices over double-octaves 
are much more similar than are the corresponding TD matrices. FC matrices are also more similar 
across state (wake vs. anesthesia in panel (I)) than are TD matrices.   
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Figure S3: Laminar correlation and time delay matrices, as in Figure 3B-C, over 0.02-100Hz. (A) 
Each analyzed frequency band, for example ISA, appears twice in this figure: once for the wake 
analysis (W) and once for the anesthetized analysis (A). Frequency bands are defined as follows: 
ISA = 0.02-0.1Hz, delta = 1-4Hz, alpha = 8-12Hz, beta = 12-30Hz, lgamma = 30-60Hz, hgamma = 60-
100Hz. We omitted theta (4-6Hz) from this figure as the results look nearly identical to the delta 
band analyses. Looking at the ISA wake (ISA W) in detail, the two matrices correspond to 
correlations (FC; on the left) and time delays (TD; on the right). Furthermore, each matrix displays 
intra- and inter-laminar relationships. Thus, the upper left (16x16) block of the FC matrix in ISA 
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wake shows intra-laminar relationships within the motor cortex, where row and columns are 
sorted from superficial to deep. The lower right (12x12) block of the FC matrix in ISA wake shows 
intra-laminar relationships within the visual cortex, where row and columns are sorted from 
superficial to deep. Finally, the upper right block (16x12) shows inter-laminar relationships 
between motor and visual cortex. Hence, the upper right block of the ISA W FC matrix is a repeat 
of image 4 in main text Figure 3B. These images demonstrate frequency specificity of 
spontaneous cross-laminar relationships between visual and motor cortex. Moreover, note that 
the apparent reversal of visual-motor signal direction in ISA and delta activity, between wake and 
anesthesia, is not observed in higher frequencies. Spectral content of spontaneous activity in 
wake vs. anesthesia. (B) Spectral content of spontaneous activity of 16-channels in motor cortex, 
during wake (pink) and anesthesia (teal). Note that a prominent delta power peak is present during 
anesthesia. Delta power peaks are also seen during sleep, and this spectral feature was used to 
exclude putative sleep periods from the wake data. Spectral drop-out and 60Hz reflects notch-
filtering to reduce electronic noise. (C) Spectral content of spontaneous activity of 12-channels in 
visual cortex, during wake (pink) and anesthesia (teal). (D) Spectral content of spontaneous 
GCaMP6 activity, averaged over all pixels, during wake (pink) and anesthesia (teal). 
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Chapter 7: Conclusions 

7.1 Summary of Results 

Spontaneous activity has played a prominent role in our growing understanding of brain 

function over the past decades. Thanks in large part to advances in neuroimaging, we 

now understand that spontaneous activity accounts for a majority of the brain’s 

metabolic cost (Raichle 2011; Raichle and Mintun 2006), that spontaneous fluctuations 

in brain activity are dominated by very low frequencies (He et al. 2008; Leopold et al. 

2003; Ma et al. 2016; Pan et al. 2013), and that these low frequency fluctuations in brain 

activity are correlated (functionally connected) within large systems spanning the entire 

brain (Fox and Raichle 2007; Fox et al. 2005; Power et al. 2011; Yeo et al. 2011). The 

aim of this thesis was to ask, can we go further? In particular, is there any meaningful 

temporal organization in infra-slow brain activity, and might this reveal to us anything 

about the fundamental neurophysiology underlying the remarkable systems 

organization of very low frequencies?  

 

The answer, as detailed in the previous chapters, is an emphatic “yes”. In Chapter 2, we 

laid out an analytic technique for measuring brain-wide temporal structure in infra-slow 

fMRI data, demonstrating that parabolic interpolation can be applied to cross-correlation 

functions to measure temporal delays below the resolution of the fMRI temporal 

sampling rate. We also found that the temporal structure of resting state fMRI is highly 

stable at the group level, is not attributable to simple blood flow metrics, and exhibits a 

relationship to canonical resting state networks. In Chapter 3, we explored this 

relationship between temporal and correlation structure to find that correlations within 
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networks arise as a consequence of structured temporal relations in resting state fMRI 

data which we call “lag threads”.  

 

Chapters 4-6 aimed to better understand the function and neurophysiology of directed 

temporal structure of resting state fMRI signals. Chapter 4 showed that the temporal 

organization of resting state fMRI is drastically altered across human wakefulness and 

slow wave sleep, suggesting that the direction very low frequency signals move through 

the brain might shape the broad state of brain function. Chapter 5 built on this 

hypothesis by exploring directed infra-slow signaling between human hippocampus and 

cortex in wakefulness and slow wave sleep in the context of the two-stage theory for 

memory consolidation. We demonstrate that the direction of infra-slow signals between 

hippocampus and cortex is consistent with the direction of feedback “coordination” 

signals (Buzsaki 1996; 1989; Sirota and Buzsaki 2005) during both wake and sleep. 

Furthermore, in Chapter 5, we showed for the first time correspondence between 

temporal structures across infra-slow fMRI and electrophysiology, at least between the 

hippocampus and cortex. Agreement between electrophysiology and fMRI bolstered our 

assumptions that fMRI measures an infra-slow brain process, and validated our use of 

parabolic interpolation in fMRI cross-correlation functions, as temporal offsets derived 

from electrophysiology with fast temporal sampling were empirical. Finally, in Chapter 5 

we found that delta band (1-4 Hz) activity travels in the reciprocal direction, between 

hippocampus and cortex, from that of infra-slow activity. This finding suggested that the 

temporal structure of spontaneous activity might be frequency-specific.  
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In Chapter 6, we moved to the mouse model and used optical imaging and laminar 

electrophysiology to explicitly explore the idea that temporal structure varies across 

frequencies of neural activity. Through a combined analysis of calcium activity, blood 

oxygen level dependent signals, and electrophysiology, we found that infra-slow activity 

travels through spatio-temporal trajectories across the mouse cortex that are distinct 

from trajectories found in higher frequencies, including the relatively slow delta band. 

Moreover, we found that the temporal structure of infra-slow blood oxygen signals 

corresponds specifically to infra-slow electrophysiology and calcium activity, 

demonstrating that a specific neurophysiology is responsible for the temporal 

organization of blood oxygen signals. We also found that infra-slow brain activity travels 

across mouse cortex through specific cortical layers which are again differentiable from 

delta and higher frequency activity. Finally, the directions of travel in spontaneous infra-

slow and delta activity are reciprocal, and are to a first approximation reversed across 

states of conscious awareness.  

 

These investigations represent merely a beginning of our understanding of the way 

infra-slow signals move through the brain, and what the significance of directed infra-

slow signaling in spontaneous activity may be. However, we can summarize the 

previous chapters into a set of rules and principles, which I outline below 

7.2 Principle 0: Never fear to compute, but never compute out of fear 

This dictum is more philosophical than scientific, but nonetheless bears mentioning. We 

have faced surprising resistance to the idea that interpolation can be used to compute 

super resolution temporal delays in fMRI, even though the concept of smoothing 
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auto/cross-correlation functions (whether in space or time) to achieve super resolution is 

quite old, and in fact forms the basis of super resolution light microscopy (Betzig et al. 

2006). Of course, it is important to verify that the results of an interpolation-based 

computation are stable and robust. Yet, even having done so (Mitra et al. 2014), the 

fMRI community has proven somewhat wary, with many arguing that higher resolution 

technologies are necessary to achieve further insight. The present work argues against 

the absolute need for better technology to achieve better scientific understanding. By 

overcoming our pre-conceived fears of data limitations and doing some simple 

computations, it is surprising how much can be learned from extant technologies.  

 

On the other hand, the general skepticism of new analytic methodologies in the fMRI 

community may stem from the proliferation of measures, ranging from a menagerie of 

graph theoretic measures (modularity, efficiency, connectedness, spring embedding, 

etc.) to measures like entropy, dynamic functional connectivity, dynamic connectivity 

modeling, and so on. The jury is still out, but in hindsight many of these approaches 

may prove to be “computation out of fear”, that is, applications of advanced 

computational machinery without a clear basis or purpose. One of the nice features of 

computing temporal delays is that they are theoretically simple, easily interpreted, and 

they imply a clear falsifiable hypothesis: that there is directed signaling with a system. I 

suspect that computational methods meeting these criteria will, over time, add more 

value than those that do not.  
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7.3 Principle 1: Infra-slow activity generally moves unidirectionally within 

networks 

Lagged correlation curves indicate the average directionality between a pair of time 

series. Thus, finding a directed temporal lag in a cross-correlation does not preclude 

occasional signaling in the reverse direction, but it does imply that signaling in one 

direction is more prominent than the other. With this caveat in mind, when we computed 

the temporal structure of resting state fMRI signals in Chapter 2, we found that there is 

a clear directionality to signal travel within resting state networks. Each of the commonly 

studied resting state networks (Hacker et al. 2013) has early and late nodes. For 

example, as shown in Figure 1A-B, within the dorsal attention network (DAN), the frontal 

eye fields (FEF) are early with respect to the intra-parietal sulci (IPS). Another example, 

illustrated in Figure 1C-D, is the default mode network (DMN), where retrosplenial 

cortex (RSC) leads posterior parietal, precuneus, and medial frontal cortices (PPC, PCC, 

mPFC). Thus, common statements of the type “functional connectivity between the RSC 

and mPFC means that these cortices talk to each other” are incorrect.  Instead, the 

RSC very specifically sends infra-slow signals to the mPFC (bearing in mind the caveat 

regarding the interpretation of lagged correlations we mentioned already).  
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Figure 7-1: Intra- and inter-network signaling in the dorsal attention and default mode 
networks. (A) A frontal eye field (FEF)-seeded correlation map, as in conventional 
functional connectivity studies. The red areas reveal the dorsal attention network (DAN) 
topography; blue areas highlight regions outside the DAN, especially the default mode 
network (DMN). (B) A FEF-seeded lag map within areas of eye correlation with the FEF, 
defined using (A). The idea is to examine temporal lags within the DAN. (B) shows that 
FEF regions are blue whereas areas in the intra-parietal sulcus (IPS) are red, indicating 
that BOLD signals tend to move from FEF to IPS within the DAN. (E) A FEF-seeded lag 
map with areas anti-correlated with the FEF, defined using (A). The idea is to examine 
temporal lags between activity in the FEF and activity in nodes of another network, the 
DMN. Note that the PCC is blue/green, whereas the posterior parietal cortex (PPC) is 
yellow, and the medial prefrontal cortex is orange/red. Hence, the PCC is the least 
delayed with respect to the FEF, followed by the PPC, and finally the mPFC. (C) A 
posterior precuneus cingulate (PCC)-seeded correlation map, as in conventional 
functional connectivity studies. The red areas reveal the DMN topography; blue areas 
highlight regions outside the DMN, especially the DAN. (D) A PCC-seeded lag map within 
areas of eye correlation with the FEF, defined using (C). The idea is to examine temporal 
lags within the DMN. (D) shows that PCC regions are blue whereas areas in the PPC are 
yellow, and the mPFC region is orange. This result demonstrates the back-to-front 
temporal sequence for activity within the DMN. (F) A PCC-seeded lag map with areas 
anti-correlated with the PCC, defined using (D). The idea is to examine temporal lags 
between activity in the PCC and activity in nodes of another network, the DAN. Note that 
the FEF is green/yellow, whereas the IPS is orange/red. Hence, in the DAN, the FEF is the 
least delayed with respect to the IPS. (G) A schematic summary of the spatial and 
temporal relationships between the DMN and the DAN depicted in the images (A) through 
(F).   
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In Chapter 3 we further found that the strong correlations within resting state networks 

are in fact a consequence of unidirectional signal travel, and in Chapter 4, we showed 

that this one-way within-network signal travel is preserved across wake and sleep. The 

idea that infra-slow signals move unidirectionally within networks, and that this 

unidirectional travel is preserved across very different states of brain function, adds a 

new dimension to the interpretation of resting state networks. As opposed to reflecting 

noisy cross-talk within the elements of the network, it would appear that infra-slow 

signals may have a computational role in coordinating activity within networks; 

otherwise, it is difficult to imagine why the brain would take the trouble to maintain such 

order in intra-network infra-slow signaling. Yet, for now, what this computational role 

might be, and how it is physiologically enacted in the brain, is not known.  

 

Probing the computational purpose of unidirectional infra-slow activity within networks 

may prove tricky, as disrupting this property may entail significantly altering brain 

function, with all its attendant difficulties in interpretation. Finding the physiological basis 

of early versus late nodes within a network may be simpler. Examining commonalities in 

receptor make-up and gene expression within “early” nodes in the cortex, for example, 

might be a promising start  

 



 241 

7.4 Principle 2: Cross-network infra-slow activity is bi-directional and initiated 

by early intra-network nodes 

We have focused a great deal on the unidirectional travel of infra-slow fMRI activity 

within networks, but what about inter-network signaling? In Chapter 2, we showed that 

one property of cross-network temporal organization is that, in awake adults, no network 

leads or follows any other network. That is, on average, we cannot say, for example, 

that spontaneous BOLD signals originate in the visual network and move to the motor 

network. Instead, we find that across time, some elements of the visual network lead the 

motor network, but there are also elements of the motor network that lead the visual 

network.  

 

Thus, there is bi-directional infra-slow signaling between resting state networks. Can we 

say anything else? It turns out we can. Consider infra-slow signaling between the DMN 

and the DAN, illustrated in Figure 1E-F. Starting with the DAN, we first examine 

temporal lags between the FEF and all nodes of the DMN. We find that the FEF is 

approximately equi-latent (zero-lag) with the RSC, but that the FEF is early compared to 

all the other nodes of the DMN (PCC, PPC, mPFC). Thus, let us suppose DAN  DMN 

signals originate in the FEF (we will prove this shortly): then we know that FEF signals 

travel the RSC/PCC, before moving to the rest of the DMN. In other words, the earliest 

part of the dorsal attention network sends cross-network signals to the earliest node in 

the DMN, the RSC/PCC. Therefore, it appears that cross-network signals move 

between early nodes.  
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Do we find the same principle when examining DMN  DAN signals? In fact we do 

(Figure 1F). The earliest node of the DMN, the RSC, has approximately zero-lag with 

the FEF, but leads all the other nodes of the DAN. The fact that the PCC leads all nodes 

in the DAN except the FEF implies that DAN  DMN signals must originate in the FEF, 

as claimed. Thus we find reciprocal signaling between early nodes of the DAN and 

DMN, with near zero-lag between the FEF and PCC rising from bi-directional signaling 

between these nodes, as summarized in Figure 1G.  

 

What about the rest of the brain? We could attempt to verify bi-directional cross-network 

signaling between early nodes one network pair at a time, but there is an easier way. 

The principle we articulated implies that intra-network signals travel in the same 

direction as inter-network signals. If this does not seem obvious, consider an intra-

network signal arising in the DMN: it will start in the RSC and move toward the mPFC 

(Fig. 1). Now consider a cross-network signal moving from the DAN to the DMN: it will 

start in the FEF, then move to the RSC and continue along to the mPFC. Thus it’s clear 

that intra- and cross-network signals in these examples have the same direction within 

the DMN. But what of the FEF leading the RSC? This relationship would appear to 

differentiate cross-network signal travel from intra-network signal travel, except for the 

fact that we know signals travel from the DMN to DAN as well, going from the RSC to 

the FEF, nullifying any net directionality between these two early nodes of the DMN and 

the DAN, respectively.  
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Therefore, whether we study intra- or inter-network signaling, the areas that tend to be 

“early” or “late” are the same, at least in our analysis of the DMN and DAN thus far. We 

can examine whether this idea is true in general by computing lag projections, which are 

simply images of the average temporal delay between a particular voxel and the rest of 

the brain. We have previously computed lag projections by averaging over all delays 

between all pairs of voxels, whether those delays corresponded to inter- or intra-

network relations, to produce an average picture of where infra-slow activity tends to 

start and terminate in the brain.  

 

However, we can modify this technique to produce two lag projections (Figure 2B): First, 

we produce a projection over only positive correlations in the brain representing, to a 

first approximation, intra-network relationships (Fig. 2B, left). Thus, the positive 

correlation lag projection captures the temporal structure of within-network signaling. 

The reader will notice that there are some positive correlations outside of the defined 

RSNs; parcellation schemes for RSNs require arbitrary decisions that affect boundaries. 

This, and the hierarchical architecture of resting state networks (RSNs), largely 

accounts for the positive correlations outside of our specified RSNs (Yeo et al. 2011).   

 

Next, we can compute a lag projection over only negative correlations in the brain 

(Figure 2B, right). As RSNs are defined by positive correlations, it follows that all 

negative correlations are between networks, and hence the resulting lag projection 

captures the temporal structure of inter-network signaling.  
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Figure 7-2: A general analysis of intra- vs. 
inter-network signaling in resting state 
fMRI. (A) For every pair of voxels in the 
brain, we can define a zero-lag 
correlation matrix, shown on the left, and 
a temporal lags matrix, shown on the 
right. Together these matrices contain all 
functional connectivity and temporal 
delay information in the system. (B) 
Since resting state networks are defined 
as areas with high positive correlations 
(Mitra and Raichle, 2016; Mitra et al., 
2015a), we can approximate intra-
network signaling by only considering 
temporal delays which correspond to 
positive correlations, and ignore the rest.  
This as shown on the left where the 
masked temporal lags matrix is 
computed only over positive correlations.   
In contrast, shown on the right, we can 
approximate inter-network signaling by 
only considering temporal delays which 
correspond to negative correlations as 
these are by definition inter-network 
relationships in resting state data. This 
reveals areas that tend to be early or late 
in inter-network communication. 
Critically (C), positive (left) and negative 

(right) lag projection maps are highly similar (spatial correlation r = 0.92), indicating that 
the temporal structure of within-network signaling mimics the temporal structure of 
cross-network signaling.  

If it is true that cross-network signals originate in early parts of the sending network, and 

then travel through the same route and intra-network signals in the receiving network, 

then the overall temporal structure of lag projections computed over positive vs. 

negative correlations should be highly similar. Indeed, as illustrated in Figure 2C, the 

two lag projection topographies are nearly identical (spatial correlation r = 0.92).  

 

Principles 1 and 2 can be summarized by way of a traffic analogy: RSNs represent one-

way streets, in which signals travel unidirectionally. Cross-network interactions are bi-

directional, but the two-way streets are found only between early nodes in networks. So 
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if we want to drive from the DMN to the DAN, we must start in the RSC, visit the FEF, 

then continue through the DAN along its one-way street. Similarly, to drive from the 

DAN to the DMN, we start in the FEF, travel the other direction to the RSC, and 

continue along the DMN one-way street.  

 

As articulated in Principle 1, the functional meaning of this structure is presently unclear. 

However, we can say one more thing: cross-network temporal structure is malleable, as 

shown in Chapter 4. During slow wave sleep, there is no organized cross-network lag 

structure in general, with the exception of the visual network, which precedes all other 

networks in terms of spontaneous infra-slow activity. On this basis, it is tempting to 

suggest that the specific cross-network organization observed in awake adults is a 

correlate of conscious awareness, but this hypothesis requires further study. 

 

The study of temporal structure during state contrasts in Chapter 6 also reveals a 

mechanism for the malleability of cross-network flow of infra-slow activity, at least 

between mouse visual and motor cortices. Using laminar electrophysiology, we find that 

infra-slow activity moves bi-directionally (visual to motor and motor to visual) through 

different cortical layers during wake and anesthesia; however, the relative strength of 

signaling in each direction, as measured by correlation magnitudes, is modulated 

across states to arrive at a predominant direction of travel. Critically, the predominant 

directionality of the infra-slow laminar electrophysiology agrees with that found using 

infra-slow blood oxygen signals, establishing a mechanistic bridge to our human fMRI 

findings.  
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7.5 Principle 3: Blood oxygen signals reflect a distinct, infra-slow brain process 

As the organization of resting state fMRI activity becomes linked to ever more complex 

phenomena, such as individual variability in brain function (Smith et al. 2015) and 

diagnosis of neuropsychiatric conditions (Emerson et al. 2017), it is imperative to have 

some understanding of the underlying physiology of blood oxygen signals, especially 

the physiology underlying their spatio-temporal organization.  

 

Chapter 6 adds to mounting evidence, reviewed in the Introduction, that blood oxygen 

signals correspond specifically to an infra-slow brain process that is distinct from higher 

frequencies, even the relatively slow delta band, as evidenced by clear differences in 

spontaneous spatio-temporal trajectories across frequencies. Indeed, Chapter 6 further 

demonstrates that cortical spatio-temporal relationships measured using resting state 

fMRI are likely attributable to a heretofore unsuspected level of specificity in cross-

laminar relationships. The finding that infra-slow brain processes have distinct spatio-

temporal and laminar structure not only informs our understanding of blood oxygen 

signals and fMRI, it also raises a critical question: how should infra-slow phenomena be 

interpreted? 

 

There is no clear answer at present, but given its aforementioned differences from 

higher frequencies, one implication is that we should not assume that infra-slow 

physiology is just a slow version of higher frequency physiology. For example, we know 

that a visual stimulus leads to the firing of action potentials in primary visual cortex. 
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Thus, when we observe an infra-slow visual-evoked fMRI response in primary cortex, it 

is generally assumed that the infra-slow fMRI response is a low frequency correlate of 

action potentials firing in response to visual stimulus (Bianciardi et al. 2009). If this were 

the case, it should follow that we should not observe an infra-slow fMRI response in the 

absence of a visual stimulus. Yet, Heeger and colleagues have shown that the mere 

expectation of a visual stimulus, with no actual visual stimulus present, evokes an infra-

slow fMRI response in early visual areas that is nearly identical to when a visual 

stimulus is in fact present (Ress et al. 2000). In a follow up experiment, Sirotin and Das 

showed that the infra-slow visual fMRI response driven by the expectation of a stimulus, 

in the absence of actual visual stimulus, could not be predicted from either multi-unit 

activity or local field potentials (LFPs) in the 10-150 Hz range (Sirotin and Das 2009). 

The natural conclusion, in light of the work shown in this thesis, is that there is a distinct 

infra-slow brain process responsible for the blood oxygen response, and that this infra-

slow brain process somehow codes predictions/expectations in primary visual cortex. 

Strangely, Sirotin and Das never analyzed their low frequency LFP data (at least in 

print), instead arriving at the bizarre conclusion that the cerebral vasculature is able to 

predict future stimuli. In fact, to this day, the obvious prediction that infra-slow 

electrophysiology underlies expectation-based responses in early visual cortex has 

gone untested.  

 

I hope that the present work along with Heeger’s observations (among many others: 

see for example (Maier et al. 2008)) will reignite a serious consideration of the meaning 

of infra-slow brain processes, and how they differ from higher frequencies. Indeed, the 
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findings in Chapter 6 that infra-slow activity travels in a reciprocal direction compared to 

delta band activity, and that there is a ~90 degree relationship between infra-slow phase 

and delta amplitude, suggest a functional hierarchy across frequencies, but there is 

much that must yet be understood regarding both the “function” and the “hierarchy”.  

 

7.6 Principle 4: The direction of spontaneous infra-slow activity is state-

dependent 

In Chapters 4-6, we have emphasized differences in the temporal structure of infra-slow 

activity between wakeful versus sleep/anesthetized states. Differences in the direction 

infra-slow activity travels through the brain across states of arousal/awareness have 

informed the hypothesis that the patterns of traveling low frequency activity (infra-slow 

and delta) govern broad states of brain function. How this works precisely is not known, 

but one could imagine a structured state-space landscape established by the 

spontaneous spatio-temporal organization of very low frequencies. If we view this state-

space landscape in terms of organization of broad-scale neural excitability, it follows 

that this state-space landscape might constrain and guide the movement of higher 

frequency activity. Thus, the striking differences we have observed between wake and 

sleep/anesthesia might be interpreted as shifts in the landscape underlying broad 

changes in brain state.  

 

Does the spatio-temporal organization of infra-slow activity change across other kinds of 

brain states, not associated with differences in arousal or awareness? Preliminary 

evidence suggests yes. For one, as shown in Chapter 2, there are differences in the 
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temporal structure of fMRI activity before versus after task performance. Moreover, in 

work not presented in this thesis, we have shown that the putamen is “abnormally early” 

in high-functioning adults with autism spectrum disorders (ASD), and that the degree of 

putamen earliness in individual subjects correlates with the severity of their repetitive 

motor behaviors, a core trait of ASD (Mitra et al. 2015).  

 

There is even emerging evidence that the temporal structure of infra-slow fMRI activity 

may be a correlate of an early language sensitive period (Figure 3). Pioneering work 

over the past decades has demonstrated that early-life language acquisition proceeds 

through a predictable trajectory. Infants begin life with the capacity to perceive phonetic 

differences across all languages, but by 12 months of age infant phoneme perception 

narrows such that native-language phonemes are perceived more accurately while non-

native phoneme discrimination declines (Kuhl et al. 2006; Kuhl et al. 1992; Werker et al. 

1981; Werker and Tees 1983). These findings have led to the hypothesis that the first 

year of life represents a “sensitive-period” for acquiring language comprehension, such 

that the brain is initially optimized to detect and learn statistical regularities in spoken 

language, and develops during the first year and beyond toward a configuration that 

allows efficient extraction of meaning from spoken language(Kuhl 2004; Werker and 

Hensch 2015). However, functional correlates of the sensitive-period for human 

language network remain elusive.  
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Figure 7-3: Reversal of the 
spontaneous temporal relationship 
between Broca’s and Wernicke’s 
area over development. (A) 
Temporal offsets between Broca’s 
and Wernicke’s area over 
development. Blue indicates early; 
red indicates late. LRN, HRN, and 
HRP stand for low genetic risk ASD-
negative, high genetic risk ASD-
positive, and high-genetic risk ASD-
positive, respectively. (B) Mean and 
standard error of Broca-Wernicke 
temporal offsets over development . 
Red asterisks denote statistically 
significant differences (p<0.05, 
Bonferonni corrected) between HRP 
and LRN groups. Neonates are 
connected using a dotted line as 
they are presumed ASD-negative; 
adults are connected using a 
dashed line as their genetic risk 
status is unknown.  

 

 

Figure 3 shows preliminary evidence (unpublished) that the direction of infra-slow fMRI 

activity within the language system changes over time. In adults, Broca’s area is early 

compared to Wernicke’s area, in line with the unidirectional travel of infra-slow activity 

through networks posited in Principle 1. In neonates, on the other hand, infra-slow 

activity still moves unidirectionally, but in the opposite direction as compared to adults, 

from Wernicke’s area to Broca’s area. The shift from this neonatal directionality to the 

adult directionality occurs over the 6-12 month age: just as the early sensitive period for 

phoneme recognition is drawing to a close. Moreover, the orderly shift from a typical 

neonatal to adult language temporal structure is altered in children with ASD, which is 

significant as language delays/disorders are common in ASD. Therefore, it seems 
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possible that the direction of infra-slow activity in the language network marks the 

brain’s passage through an early sensitive period.  Future work will have to investigate 

this connection, but these results add evidence to the perspective that travel patterns in 

infra-slow activity relate to and possibly govern govern important changes in the state of 

the brain.  

 

7.7 Final Comments:  

 
These four principles offer a summary of what we have learned over the course of this 

thesis, some ideas for future investigations, and more importantly, a set of falsifiable 

rules. Future work must continue to test these principles. If the rules are contradicted by 

future work, they will be abandoned. However, if these principles prove useful, not by 

being completely correct, but by offering a stepping stone to a greater understanding of 

brain function, then we will have achieved what we set out to accomplish. 
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